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Abstract

We investigate ways to test for various aspects of seasonality in marine time series. In

particular, we analyze series from the Stonehaven Ecosystem long-term monitoring

station, run by Marine Scotland, Aberdeen. Our main focus is in identifying any

systematic changes in seasonality as these may be attributed to climate change. We

explore existing methodologies and introduce simple and robust Resampling tests.

Generalized Additive Models (GAMs) are used to seasonally decompose each series

and test the significance of individual components.

We study the seasonal patterns of some environmental series but also phytoplankton

and zooplankton species series from Stonehaven. Climate change will have a direct

effect on phytoplankton communities as they are influenced by changes in the cur-

rents, the water temperature and salinity, as well as the availability of nutrients. The

zooplankton species feed on the phytoplankton biomass and are themselves prey to

larger fish and other top predators. Evaluating the seasonal patterns of phytoplank-

ton and zooplankton populations is in itself important because plankton species are

at the heart of the marine food web.

Of the environmental series from Stonehaven which we examined, Salinity, Ammo-

nia and Nitrate have patterns that are systematically shifting earlier in the year.

Chlorophyll a, which is an indicator of the phytoplankton biomass, has a pattern

whose amplitude is gradually decreasing while it is also shifting slightly earlier in

the year. Amongst the zooplankton series analyzed, Acartia clausi copepodite stage

1



2

6 males (C6m), Calanus finmarchicus C5 and Calanus helgolandicus C5 have pat-

terns systematically shifting earlier in time. Calanus helgolandicus C6f and C6m

and Juvenile Calanus copepods C1 - 4 have seasonal patterns whose amplitude is

systematically increasing as well as shifting earlier in the year. These zooplankton

species are important because of their role as prey in the life cycle of the most com-

mercially important fish. Our results indicate the nature and magnitude of the effect

that climate change has on marine life and provide a basis for further analyses.



Chapter 1

Introduction

1.1 Climate Change

In the summer of 2003 a heat wave was responsible for many deaths in Europe.

Anderson & Bausch (2006), in a briefing note on climate change and natural disasters

to the European Parliament, report that at least 22, 146 people lost their lives due

to the unprecedented heat wave. In the same note they mention a number of other

natural disasters that have struck Europe and the rest of the world and are linked

to climate change.

Climate change is generally regarded as the single most serious problem facing the

world today. Climate is a generic name for the average weather conditions expe-

rienced over a long period of time. The climate is always changing as a result of

various natural causes but it is believed that during the last century human factors

have been responsible for other, greater than natural, climate change. Over the last

hundred years, the temperature of the Earth has risen by 0.74oC, while 0.4oC of this

warming has occurred since the 1970s (Department for Environment, Food & Rural

Affairs, DEFRA, 2008).
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In the UK alone, many changes over recent years have been observed. According

to the Inter-Agency Committee on Marine Science and Technology (IACMST) some

notable examples include:

• The annual mean Central England Temperature has increased by 0.5oC during

the last century.

• The mean of annual mean temperatures over 30 years in Northern Ireland and

Scotland increased by 0.3oC from 1873-1902 to 1961-1990.

• There is a tendency towards wetter winters in north-east England and drier

summers in south-east England.

• Mean annual sea surface temperature of the UK coastline has increased by

0.5oC.

• The mean sea level around the UK coast has increased by about 1 mm per year

during the last century.

These are all considered manifestations of climate change by IACMST (2005). The

phrase ‘climate change’ is used to describe the man-attributed, rather than natural

change in the climatological conditions.

A major contributor towards climate change is the usage of fossil fuels in human

societies. Fossil fuels, such as coal and oil, are used in homes, factories, trains, planes

and cars. These emit carbon dioxide which is considered a harmful ‘greenhouse’ gas.

Greenhouse gases are the gases that when released into the atmosphere surrounding

the Earth, keep it warm. Due to the large scale deforestation since the Industrial

Revolution there are not as many trees to absorb the increasing quantities of this

extra carbon dioxide. Additionally, other types of greenhouse gases are released into

the atmosphere and thus, the mixture of gases in earth’s atmosphere is changing.

This greenhouse effect is very important when we talk about climate change as

these greenhouse gases prohibit the Earth from cooling. It is these extra greenhouse

gases which humans have released that are thought to pose the greatest threat to
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the environment and the current climatological conditions, according to the UK

Phenology Network (2009). Nature’s Calendar, the name of the web-site of the UK’s

Phenology group, has a good discussion and material on climate change.

Eutrophication, defined as ‘an increase in the rate of supply of organic matter to an

ecosystem’ by Nixon (1995), is considered a global concern, too, and is attributed to

man-made causes. Eutrophication is partly a consequence of increased system pro-

ductivity due to nutrient enrichment, say Carpenter et al. (1998) and triggers signif-

icant changes in coastal ecosystems. The presence of eutrophication has many unde-

sirable outcomes such as toxic algal blooms and low dissolved-oxygen levels (hypoxia)

with disastrous effects on the ecosystem (National Research Council, 2000).

Nonetheless, it is not only the phenomenon of climate change itself that is worrying

but also the ways these changes in climate influence the course of life on earth. Plant

life is affected greatly by the existing climatological conditions and thus, a change

in them would result in a change in the plant life (Sherry et al., 2007). Animal and

human life are in turn affected directly and indirectly (through plants) by climate

change. Therefore, climate change is not to be taken lightly. In modern society,

scientists and politicians are concerned with finding ways to tackle this. A first step

in battling climate change is assessing the current state. A lot of research has been

done to estimate the extent of change by examining indicators of seasonal changes,

as they occur in nature, (IACMST, 2005; Heath et al., 1999; Menzel et al., 2005).

In science, an event is considered seasonal when it is periodic, i.e. it repeats itself

after a set period of time. Thus, by examining the timing and succession of seasons

in nature one can monitor changes in the climate.

1.2 Phenology

This interest in the succession of seasons is not new. In Japan and China the time of

blossoming of some trees (e.g. cherry trees) is associated with ancient festivals and

thus, some of these dates can be traced back to the eighth century. The study of
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the times of recurring natural phenomena, especially in relation to climate, is called

phenology. Examples include recording when the first cuckoo was heard each year or

when the blackthorn blossom was first spotted. Robert Marsham was Britain’s first

phenologist and started recording his ’Indications of Spring’ as early as 1736. The

first individual records found are from a Weather Diary from Egioke (near Redditch)

from March 1703 (UK Phenology Network, 2009).

These individual records can then be compared with other ones allowing us to com-

pare, for example, the rates of change in the succession of seasons. The UK Phenol-

ogy Network (UKPN) is run by the Woodland Trust and the Centre for Ecology and

Hydrology. It has over 25,000 volunteers who send in observations from their local

areas. From their web-site, Nature’s Calendar, the UKPN urges observers to record

a variety of events by the time of year. These include, for example, the sighting of

specific, migrating, bird species or the blossoming of specific plants.

In addition, many scientific monitoring projects / stations have been running since

the last century. For example, the Sir Alister Hardy Foundation for Ocean Science

(SAHFOS) runs the Continuous Plankton Recorder (CPR) Survey, a marine mon-

itoring programme that has been collecting data from the North Atlantic and the

North Sea on the ecology and biogeography of plankton since 1931. Another example

is Plymouth’s Marine Laboratory which is involved in various monitoring projects

including the CPR Survey and long-term and decadal time series monitoring stations

in the English Channel (Plymouth Marine Sciences Partnership, 2009).

As climate change has gained much publicity in recent years so has phenology (Cook

et al., 2005; Bell, 2009). Bell (2009) talks about the history of phenology and presents

findings from her analysis of the data on flowering at the Kew Gardens. She notes

shifts, earlier in the year, in the flowering date of many species and draws attention

to the consequences of climate change.

An interesting neologism in phenology is the phrase ‘season creep’ used to refer to

observed changes in the timing of seasons. A gradual shift of a season to earlier or

later in the year is called season creep. It is especially used to describe the movement
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of spring to earlier in the year due to climate change, (McFedries, 2006). We will

refer to season creep later when we try to detect the effects of climate change in

marine data sets.

1.3 Stonehaven Ecosystem Monitoring

Marine life is affected by climate change and it is the possibility of detecting and

identifying season creep in marine life that is the main focus of this thesis. We are

investigating ways to evaluate seasonal stability in data from the Stonehaven long-

term Ecosystem monitoring station, located in the eastern North Sea (56o57.8’N

02o06.2’W), in a water depth of around 50m, see Figure 1.1. This monitoring station

is run by the Fisheries Research Services (FRS) in Aberdeen1.

The Stonehaven data consist of weekly samples (weather permitting) since January

1997. The database includes measurements of environmental variables (such as tem-

perature and salinity) and nutrients (e.g. nitrate) but also counts of many phyto-

plankton and zooplankton species.

Analyzing the data, we examine the nature of seasonal patterns focusing mainly on

zooplankton time series. This relates to other work at various monitoring sites around

Scotland, the UK and the North Atlantic generally (Beaugrand & Reid, 2003; Heath

et al., 1999). In Figure 1.2, we see the ocean currents in the North Sea. Stonehaven

is in the northwestern North Sea and is influenced by the inflow of mixed Scottish

coastal and oceanic water that flows south along the Scottish east coast.

Furthermore, studying the seasonal patterns of phytoplankton and zooplankton pop-

ulations is important because plankton species are at the heart of the marine food

web, see Figure 1.3. Climate change influences the course and strength of currents,

the water temperature and salinity and the thermal stratification of the sea, which

1On April 1 2009, Fisheries Research Services (FRS) was merged with the Scottish Fisheries Pro-
tection Agency (SFPA) and the Scottish Government Marine Directorate to form Marine Scotland
- Scotlands new marine management organisation.
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Figure 1.2: The circulation patterns of North Sea water. The width of arrows is indicative
of volume transport. Red arrows indicate relatively pure Atlantic water. From
ICES (2006).
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all affect plankton communities and chemical nutrient supply. These changed condi-

tions influence the physiology and population dynamics of the phytoplankton species

that absorbs the energy from the sun and chemical nutrients to provide the biomass

that feeds the zooplankton species. Larger fish such as cod and haddock feed on

zooplankton, and thus a change in the seasonality of phytoplankton can alter the

timing and balance of productivity in the sea and affect commercially important fish

and other top predators such as seabirds and cetaceans.

We use methods based on Classical Seasonal Decomposition (CSD) to test for sta-

bility in the seasonal pattern of the series. A seasonal pattern can exhibit changes

in the size of the seasonals (amplitude change) or in the timing of occurrence (phase

change). Furthermore, these changes can happen in a systematic or a random way. A

random change (fluctuation) in the seasonal cycle can often be attributed to environ-

mental factors (e.g. an unusually cold period) while systematic changes are mostly

related to climatological conditions and their effects on the environment (e.g. days

become gradually colder). Once the instability of the seasonal pattern is verified we

explore the nature of it. We are interested in systematic changes in either the size or

the timing of the seasonal pattern. Thus, we are actually looking for evidence that

climate change influences marine life.

There exists a vast bibliography of studies on seasonal stability, many of which come

from econometrics such as Said & Dickey (1984); Hylleberg et al. (1990). These

studies have produced a number of highly sophisticated, complex and elaborate tech-

niques e.g. (seasonal) unit root tests, that aim to address issues arising in the con-

text of seasonal (in)stability in economic time series. Nonetheless, these methods are

based on theoretical hypotheses and should be applied with great care. Furthermore,

they were created for use with monthly or quarterly time series, and thus cannot be

applied to higher frequency (weekly) biological data without problems. We are inter-

ested in testing the stability of a pattern and do not necessarily require the detailed

output of some of these unit root tests. Furthermore, the Stonehaven data are not

equi-spaced in time, with many missing values and duplicate measurements, and in-

clude erroneous values due to equipment malfunctions. Therefore, it is important to
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(phytoplankton) account for all of the primary production. The zooplankton are made up of a diverse
mixture of herbivores, omnivores and carnivores, which in turn support stocks of pelagic fish (herring,
sprat, sandeels), bottom living demersal fish (cod, haddock, flatfish), jellyfish, birds and mammals (seals
and cetaceans). Our knowledge of the species which make up each trophic level is scant for the smallest
organisms and increases with size. There are probably very many different species of bacteria, for example
in the North Sea, but we are only able to resolve a few types with the instruments we have available today.
On the other hand, all of the fish species in the North Sea have probably now been described.

The phytoplankton:
There are four main types of phytoplankton:

picoalgae - very small (<0.002 mm) single cells, essentially photosynthetic bacteria;

flagellates - small (<0.01 mm) single cells with limited swimming abilities;

diatoms - 0.01-1 mm sized cells all of which have a hard silica outer casing (frustule) which contains the
living plant material. The cells absorb the silica from the seawater. Some diatoms form chains of cells up to
1 cm in length;

Fig. 1 Schematic diagram showing the food web structure of the marine ecosystem.
Figure 1.3: The food web. From FRS material.
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find straightforward, robust and simple procedures for testing scientific hypotheses

about changes in the seasonal cycle that can be used to analyse the Stonehaven data

set but also can easily be applied by marine biologists in the future. We consider

two main approaches: Resampling and Generalized Additive Modelling.

In the following chapters we firstly talk about CSD techniques and use three time

series as illustrative examples. Then we review some testing methodologies for the

different types of seasonality and present some new simple approaches. A sensitivity

analysis of the newly presented methods is conducted. Finally the results from our

analysis of the Stonehaven data sets are discussed along with possibilities for further

work.



Chapter 2

Seasonal Decomposition

2.1 Introduction to Seasonal Decomposition

A time series is defined as a sequence of observations occurring in time. Typically,

in time series, adjacent observations are dependent and time series analysis consists

of methodologies to analyse this dependence. A time series is said to be seasonal

with period s when similarities in the series occur every s basic time intervals (Box

& Jenkins, 1976).

One of the oldest approaches to the analysis of a time series, Xt with period s,

is to consider the series as the union of three components; a long term, relatively

slow, movement of the data referred to as trend; a periodic component of period

s, corresponding to seasonality; and the remainder or error. Hence, the series can

be decomposed into those three components, the trend component, Tt, the seasonal

component, St and the remainder, or the error term, Rt. Then the individual com-

ponents can be further examined to allow more detailed interpretation of the data

or even projected to the future to create forecasts.

Xt = f(St, Tt, Rt) (2.1)

13
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The trend in a series, which can be thought of as a measure of its local level, exhibits

slow movement and can be linear or non linear. A linear trend can be easily projected

in the future to give an insight as to what the behaviour of the series will probably

be a few time steps ahead.

The seasonal component is the periodic movement of the series, and thus can be

viewed in terms of amplitude (size) and phase (timing) similar to a sinusoid. By

examining the time of occurrence and the nature of the seasonal pattern one can get

an appreciation of the different effects influencing the behaviour of the series. The

seasonal component in a series can behave in a number of different ways as explained

in the next section. It is of great importance in biological applications as animal

life cycles are often strongly seasonal and so it may yield insight into the underlying

mechanisms that drive the process examined.

Furthermore, both the trend and the seasonal components can be modelled as either

deterministic or stochastic. The above methodology is known as seasonal decompo-

sition. The decomposition of a time series can take a variety of forms but the two

most common and useful ones are the i) additive, with the underlying assumption

that adding these components together will produce the original series, thus:

Xt = Tt + St + Rt (2.2)

or ii) multiplicative, in which the original series is the product of the components,

thus:

Xt = Tt ∗ St ∗ Rt. (2.3)

The selection of the model depends on the nature of the time series. One easy ap-

proach is to fit a trend to the series and look at the derived discrepancies between

the fitted trend and the seasonal troughs and peaks in the series. If the size of the

discrepancies appears to be stable over changes in trend then the additive decom-

position model may be applicable, while if they are increasing or decreasing with

the trend, the multiplicative model is preferred. In the latter case, however, instead
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of employing the multiplicative model one may choose to take the logarithm of the

analyzed series and use the additive decomposition model:

log(Xt) = log(Tt ∗ St ∗Rt) (2.4)

log(Xt) = log(Tt) + log(St) + log(Rt). (2.5)

A vast variety of techniques used to decompose series exists. The most common

method used for trend extraction is the moving average (MA). The MA method is

based on the reasoning that neighbouring observations are likely to be close in value

(Makridakis et al., 1998). The value of the moving average of order q, MA(q), at

time t is the average of the observation at time t and the m = q−1
2 points on either

side of it:

Tt =
1

q

j=m�

j=−m

Xt+j, (2.6)

where Xt+j is the observation at time t + j, i.e. j observations after the one we are

estimating the trend for. In the above definitions q is odd and there are no MA(q)

values for the first or last (q − 1) time points. The higher the order of the MA,

the more terms and information from the data are lost. There are different ways to

overcome the problem of missing values introduced by such a MA. A simple one is

to use a lower order MA for the end points (‘end filters’) hence, reducing the number

of missing values.

Choosing the order of a MA equal to the suspected periodicity, s, eliminates the

seasonality as it is creating averages with length equal to the periodicity, negating

thus, the seasonal variation in the series. Therefore, a MA(s) may be used to capture

the slow long term movement in the data. If the periodicity is an even number then

a centred MA(2× s) is employed to ensure that the estimated values correspond to

meaningful observation times. A centred MA(2 × s) is simply a MA(s) followed by

a MA(2).
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Once a trend has been estimated it is removed from the time series to produce a

de-trended series that is then examined for seasonal effects. A stable seasonal cycle

is estimated by averaging for each period across all years. These are called seasonal

factors. Commonly the seasonal factors are standardized by subtracting from each of

them their overall mean, thus ensuring that they sum to zero. The term ‘seasonals’

will always be used to refer to standardized estimates of stable seasonal factors.

However, it is not always clear that the seasonality present in the series is stable over

time. This is illustrated using three example time series below.

1. The monthly U.S. housing starts of privately owned single-family structures

from January 1965 to January 1976, is referred to as the House series (Abraham

& Ledolter, 1983). The House series is plotted in Figure 2.1.
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Figure 2.1: The House series.

Using a centred moving average for trend extraction and averaging for the seasonal

component, the House series is decomposed, figure 2.2.

The de-trended series in figure 2.2 indicates a stable seasonal pattern. However, the

December values in the de-trended series (marked with red circles) tend to fall over

time questioning the stability of the seasonals. A change in the December size of the

seasonals could be connected to unusually heavy winters for some years or a change
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Figure 2.2: The House series with the centred moving average estimated trend, the de-
trended series with marked Decembers, the stable seasonals and the residuals.

in the behaviour of the market during the holidays period.

2. The monthly unemployment rate in the UK from January 1986 to December 1996,

referred to as the Unemployment series (National Statistics Online, 1997). This series

is shown in Figure 2.3.

In Figure 2.4 the de-trended series of the Unemployment data shows two peaks that

appear to change in relative size indicating that the nature of seasonality may not

be stable. Also there is still some trend in the de-trended series so a further trend

extraction should be considered.

3. Finally a monthly temperature time series from the Kola peninsula from January

1967 to January 2001 is also examined, the Kola series (Marshall, pers. comm.,

2004). This series, shown in Figure 2.5, is a part of the observed temperatures in

the Kola section that have been monitored for more than 100 years (Ottersen et al.,

2005). The Russian State Hydro-meteorological University (RSHU) and the Polar

Research Institute of Marine Fisheries and Oceanography (PINRO) are involved in

the collection process and in collaboration with the Institute of Marine Research in

Norway are analyzing the data (Bochkov, 2005; Averkiev et al., 2005). The Kola
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Figure 2.3: The Unemployment series.

Figure 2.4: The Unemployment series with the centred moving average estimated trend, the
de-trended series, the stable seasonals and the residuals.



19

section temperatures are considered to be representative of fluctuations in the cli-

mate in the Barents Sea, (Ottersen et al., 2005). Yndestad et al. (2008) examine

relationships between the Kola section and the Faroe-Shetland Channel time series.

For us, the Kola series is of particular interest as part of our analysis involves looking

at temperature series from Stonehaven.
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Figure 2.5: The Kola series.

Figure 2.6 shows the Kola series decomposed by the aforementioned methodology.

We notice that although the original series in Figure 2.5 displays frequent and sub-

stantial changes, the de-trended series in Figure 2.6 indicates that these are probably

changes in trend as there are no signs of any changes in seasonality.

A strength or weakness of the available decomposition methods is their ability or

inability to cope with missing values in the series and this is a problem with our

data from Stonehaven, so it must be considered. A time series can have missing

values at the beginning or at the end, or even internally. There are two direct

solutions to this problem. One is to use techniques that allow for the existence

of missing values and do not get affected by them, while the second is to replace

the missing values in some way and then use “standard” procedures. Thus, one

could perform a seasonal decomposition that allows for missing values and then

extrapolate or interpolate the estimated components accordingly to substitute the
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Figure 2.6: The Kola series with the centred moving average estimated trend, the de-trended
series, the stable seasonals and the residuals.

missing entries, or use extrapolation (or interpolation) on the time series before

conducting the decomposition.

The last section of this chapter is a brief review of the existing literature on seasonal

decomposition. Further discussion on seasonality follows as it is important to explain

the terminology used for this central component of seasonal decomposition.

2.2 Trending Seasonality

The idea of a trending seasonal pattern may seem peculiar at first but it appears

to be so for many time series. For example, in Nature even though our intuition

may be that seasonality should be stable, e.g. colder winters and warmer summers,

for temperature data, the phenomenon of global warming with all its consequences

raises the question of whether that seasonal pattern stays stable or whether there is

a shift/change of the seasonality as time passes, i.e. coldest or warmest temperature

occurs earlier or later in the year. This is just one example of how a trending seasonal

pattern may arise in an environmental context, but there are many more occurrences
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in other areas. In this section we discuss briefly what kinds of trend are possible in

an existing seasonal pattern and explain the reasons for considering one specific type

of change more important in the context of this thesis.

We may define a trending seasonal pattern as one which exhibits change from year

to year. This change can be in the size of the pattern (amplitude change), in the

time of the occurrence of the pattern (phase change) or a combination of the above.

Furthermore, regardless of the nature of the change (amplitude or phase) the change

can take place in a systematic way - meaning an average drift in one direction,

either increase or decrease - or as random fluctuations. Thus, a systematic shift in

time (later or earlier each year) is a systematic change of phase while a systematic

increase or decrease in the size of the seasonals is a systematic amplitude change. A

random movement in the timing of peaks and troughs is referred to as a fluctuation

in time and a random change of the size of the seasonals as fluctuating amplitude

change. Considering the combinations of the possible nature and types of change,

there are nine different possibilities for a seasonal pattern that are demonstrated in

Table 2.1.

Table 2.1: Types of Seasonal Patterns

Phase

No Change Systematic Change Fluctuation

A
m

p
li
tu

d
e

No Change AN & PN AN & PS AN & PF

Systematic Change AS & PN AS & PS AS & PF

Fluctuation AF & PN AF & PS AF & PF

The different types of change that a seasonal pattern may exhibit are shown in

Figure 2.7. Clockwise from top left we see a systematic increase and a fluctuation in

amplitude and a systematic earlier shift and a fluctuation in phase.

In Nature and in particular, in marine biology, commonly series exhibit seasonals

changing in one way or another. However, even though all types of changing season-

ality may be scientifically of interest, we can often differentiate between the causes
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Figure 2.7: A systematic (increasing) amplitude change, a fluctuation in amplitude, a sys-
tematic (earlier) shift in time and a fluctuation in time, using a period of 52
weeks. In the bottom two plots the dotted lines mark the 30th week.

of these types of change. While fluctuations in the size or timing of a seasonal pat-

tern are associated with climatological factors that can themselves fluctuate rapidly,

a systematic change is mostly associated with large scale environmental factors, i.e.

the underlying long term change in the environment, and thus are realised as system-

atic -usually small- changes over time. In our analysis of the data from Stonehaven

that follows, we are particularly interested in those slow, long term dynamics, and

thus our focus is mainly to find ways to identify and estimate systematic change in

either size or time. Clearly, a systematic time shift can be related to climate change

and global warming. Initially, however, all types of seasonality will be considered for

the series analysed.

Not all time series have a seasonal pattern and amongst those that exhibit seasonal

behaviour, some seasonal patterns stay stable while others change over time. A

seasonal pattern will be referred to as a stable seasonal pattern or stable seasonality if

it remains stable over time, as a pseudo-trending seasonal pattern or pseudo-trending

seasonality if it exhibits any kind of fluctuations, and as a trending seasonal pattern or

trending seasonality if it is changing smoothly with time, i.e. systematic shift in time
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and systematic amplitude change. Thus, when identifying the kind of seasonality in

a series only systematic changes will be considered as a trending seasonality while

attempts to identify random changes are noted, even though considered ‘pseudo-

trending’ as mentioned above.

2.3 Brief Description of Seasonal Decomposition

Bibliography

In this section a brief review of existing methodologies for (seasonal) decomposition of

a time series is presented. As noted, these methodologies try to extract two separate

components, a trend-cycle and seasonality, from a time series and thus distinguish

them from the randomness. A quick look at the history of decomposition follows

based on Makridakis et al. (1998).

The first attempts to decompose a series originated around the start of the 20th cen-

tury. It was believed that to study the serial correlation within or between variables

one had to remove any spurious correlation caused by trend. Poynting (1884) and

Hooker (1901) attempted to eliminate the trend and seasonal fluctuation by aver-

aging over several years. Later Spencer (1904) and Anderson and Nochmals (1914)

generalized the procedure of trend extraction to include polynomials of higher or-

der.

At the same time economists were working towards the same goal, trying to predict

economic depressions. Separating the elements of economic activity would isolate the

changes in the business cycle from seasonal and other effects. In 1911 a committee

was appointed in France to analyse the causes of the economic crisis in 1907. The

group attempted to separate the trend from the cycle of the series. In the United

States, Copeland (1915) tried to extract the seasonal fluctuation from the other

components of the series.

Time series decomposition as known today was first employed by F. R. Macauley of
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the National Bureau of Economic Research in the 1920s. He introduced the ratio-to-

moving average approach to time series decomposition that is the basis of Census II.

Shiskin (1957) created Census II, a computer programme for decomposition of time

series which is now the most widely used of the decomposition packages.

A brief discussion of the most commonly used decomposition ideas and techniques

follows. There is a variety of different ways to estimate or extract the trend and

seasonal components and many possible combinations. We start with some simple

ways to estimate these components individually and go on to look at more elaborate

algorithms.

2.3.1 Weighted Moving Average - WMA

Averaging neighbouring values can be used to estimate the trend in a series. An

extension on the MA(q) is to attribute (unequal) weights to the observations ac-

cording to their distance from the centre of the MA. Meaning that the closer the

observation is to the time point of estimation the more influence it will have on that

estimate. This method is known as a weighted moving average (WMA). The size

of the weights can be decided based on the nature of the series. Procedures that

use weights that decrease exponentially are called exponential smoothing procedures

(Makridakis et al., 1998). A general form of a WMA at time t is:

Tt =
j=m�

j=−m

αjXt+j, (2.7)

where αj are the weights and m = q−1
2 . When all αj are set equal to 1/q we have the

simple MA(q), (2.6). Two conditions commonly apply to the weights: they should
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sum to one and they should be symmetric:

m�

j=−m

αj = 1

αj = α−j

There are, however, situations that asymmetric weights are more appropriate. When

the weights do not sum to one (2.7) is divided by their sum.

The benefit from using a WMA is that since the observations are slowly down-

weighted and do not leave the average abruptly the result is much smoother than a

simple MA. Nevertheless, there are two main disadvantages. At the end points of the

series, realative to the order used, missing values occur as they cannot be estimated

by the WMA. Trying to overcome this issue, one could employ smaller order WMA

at the ends, known as ‘end filters’. This, however, further results in flat estimates

near the end of the series even when a pronounced trend is obvious (Makridakis

et al., 1998).

Furthermore, using WMA leaves the trend sensitive to outliers and extreme values.

A modified smoothing technique that behaves better when outliers are present is to

use running (moving) medians. Again an order needs to be chosen that corresponds

to the number of data points included but now the median and not the mean of

these points is used. This procedure is robust to outliers but produces ‘rough’ fits.

One could use a smoother on the trend estimated by running medians to produce

a smooth trend (Faraway, 2006). Similarly robust to outliers, running medials are

defined, where medials are the means once the highest and lowest observation are

removed (Makridakis et al., 1998).

2.3.2 Local Regression Smoothing

Using local regression smoothing one can avoid the above issues created by using

a (W)MA. Instead of averaging a window of the series one now fits a straight line
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through them,

Tt = at + btt. (2.8)

The two parameters at and bt represent the intercept and slope of the line at time t,

respectively. These can be estimated by Ordinary Least Squares (OLS), minimizing

the sum of squared errors. Hence, fitting a series of straight lines to the data we get

estimates for each data point. Using local regression to estimate the trend allows us

to estimate a local trend instead of a global linear trend (Chatfield, 2000). Similar

to WMA we can attribute weights, αj to the observations and thus fit by minimizing

the weighted sum of squares. This method improves the bias observed when using

(W)MA at the end of the series (Makridakis et al., 1998).

In order to use local regression smoothing one has first to decide the value of the

smoothing parameter, q, which in analogy to the order of a MA, represents the

number of data points considered in each fit. A large value of q would produce a

very smooth picture but could lose some of the existing pattern while a small value

could incorporate noise in our estimates.

Cleveland’s Locally Weighted Scatterplot Smoother (LOWESS or LOESS) is an im-

plementation of weighted local regression smoothing with protection against outliers

that can influence the fitted lines or curves. It fits a locally-fitted polynomial of

degree d to the data with common values of d equal to 1, locally-linear, or 2, locally-

quadratic (Cleveland et al., 1990). LOWESS starts with an initial weighted local

regression. The residuals from this regression are computed. Then the weights are

adjusted so that the observations that resulted in large residuals have smaller contri-

bution to the regression. The local regression is then repeated with the new weights.

The new residuals are calculated and the weights adjusted again, accordingly. The

procedure repeats down-weighting the points that give large residual values, as sus-

pected outliers. When the estimated trend converges the procedure stops (Cleveland,

1981).

Constantly down-weighting data points with large produced residuals makes LOWESS
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more robust than local weighted regression. In fact, if there are no outliers, the re-

sulting trends from the two procedures would be almost the same while when there

are extreme values LOWESS produces better results (Makridakis et al., 1998).

2.3.3 Seasonality Estimation/Extraction

If a stable seasonal pattern is assumed, one can average each season’s observations to

produce seasonal factors. This, nonetheless, can easily be affected by extreme values.

Taking seasonal medials or medians can help deal with outliers. Nevertheless, the

above methods assume a seasonal pattern that does not change in time.

MA can be used to extract the seasonal pattern of a series that is believed to change in

time. Seasonal averaging to estimate seasonal factors would not capture a changing

pattern. Using a (W)MA for each season would, however, allow for changes in

time. Alternatively, one could use local regression to estimate a seasonal pattern

that changes in time. For each season’s points local regression can be employed to

provide smooth estimates of this periodic component (Makridakis et al., 1998).

To extract and not estimate the seasonal pattern one could also use a linear filter.

Though, many possibilities exist, seasonal differencing is a simple commonly used

way. The seasonal difference is written as 1 − B
s where s is the periodicity of the

series and B is the back-shift operator, Bxt = xt−1 so that (1− B
s)xt = (xt − xt−s)

(Chatfield, 2000).

2.3.4 Census Bureau methods

The U.S. Bureau of Census has developed, over the years, a number of intricate

methods for seasonal adjustment of, mainly economic, time series. The most recent

variant is X-12-ARIMA (Findley et al., 1998). This is an extension of the X-11-

ARIMA, Census II method, in an effort to suitably seasonally adjust more types of
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economic data (Makridakis et al., 1998). The following discussion on X-12-ARIMA

is based on Findley et al. (1998); Makridakis et al. (1998).

The Census II decomposition uses a number of different WMAs. As mentioned

before, this leads to a loss of data points at the beginning and end of the series. The

X-12-ARIMA uses end-filters to avoid losing many data points at the end points of

the series. Additionally, it gives the user the ability to create forecasts and backcasts

based on an ARIMA model and thus, extend the series to accommodate for the

WMAs.

The X-12-ARIMA method has twelve steps and extends its predecessor, X-11, to

include alternative seasonal, trade-day and holiday effect adjustments with a variety

of seasonal and trend filter options. Furthermore, the diagnostics for assessing the

quality of the seasonal adjustments are more methodical and it allows extensive

modelling for linear regression models with ARIMA errors (regARIMA). Finally, it

uses an interface which can facilitate batch processing of large numbers of series.

This latest Census II method allows for additive (A) and multiplicative (M) decom-

position and also a pseudo-additive (PA) one. The last one is used to seasonally

adjust series with small (even zero) values in the same season every year. A PA

decomposition has the form:

Xt = Tt ∗ (St + Rt − 1) (2.9)

where, Xt is the examined time series, St the seasonals, Tt the trend and Rt the

remainder component.

Assuming a seasonal time series Xt with periodicity s, the algorithm begins with a

centred MA(2 × s) to estimate the trend, T
1
t
. For monthly data a MA(2 × 12) is

used:

T
1
t

=
1

24
Xt−6 +

1

12
Xt−5 + · · · +

1

12
Xt + · · · +

1

12
Xt+5 +

1

24
Xt+6 (2.10)
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The estimated trend is then removed from the series - forecasts and backcasts are

used at the end points- to create the de-trended series, Detr
1
t
. The de-trended series

is formed by subtraction in the additive case or division in the multiplicative one, of

the trend from the original series:

A : Detr
1
t

= Xt − T
1
t

(2.11)

M, PA : Detrt = Xt/T
1
t

(2.12)

From the de-trended series the initial estimate of the seasonal component, Ŝ
1
t
, is

computed using a MA(3× 3)1 seasonal MA for monthly periodicity:

Ŝ
1
t

=
1

9
Detr

1
t−24 +

2

9
Detr

1
t−12 +

3

9
Detr

1
t
+

2

9
Detr

1
t+12 +

1

9
Detr

1
t+24 (2.13)

To remove any noise included in this initial estimate of the seasonals, Ŝ
1
t
, a centred

MA(2×s) (2×12 for monthly) is applied to it and it is then removed from the initial

estimate to produce seasonal factors, S
1
t
:

A : S
1
t

= Ŝ
1
t
−

�
1

24
Ŝ

1
t−6 +

1

12
Ŝ

1
t−5 + · · · +

1

12
Ŝ

1
t

+ · · · +
1

12
Ŝ

1
t+5 +

1

24
Ŝ

1
t+6

�
,

or

M, PA : S
1
t

=
Ŝ

1
t

1
24 Ŝ

1
t−6 + 1

12 Ŝ
1
t−5 + · · · + 1

12 Ŝ
1
t + · · · + 1

12 Ŝ
1
t+5 + 1

24 Ŝ
1
t+6

Thus, the initial remainder, R
1
t

can now be computed, removing the estimated sea-

sonal factors from the de-trended.

A : R
1
t

= Detr
1
t
− S

1
t

(2.14)

M : R
1
t

= Detr
1
t
/S

1
t

(2.15)

PA : R
1
t

= Detr
1
t
− S

1
t

+ 1 (2.16)

1double MA(3)
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The points at which this remainder takes large values are identified as extreme ob-

servations and the seasonal component is re-estimated without them. Hence, any

points that fail to follow the pattern of the rest of the data are replaced by esti-

mates. These seasonals are removed from the original series to give a de-seasonalized

series, Des
1
t
:

A : Des
1
t

= Xt − S
1
t

(2.17)

M : Des
1
t

= Xt/S
1
t

(2.18)

PA : Des
1
t

= Xt − T
1
t
∗ (S1

t
− 1) (2.19)

The trend is now estimated from the de-seasonalized series using a Henderson’s

WMA that removes the noise from the trend. The Henderson’s filters have a choice

of lengths of 9, 13 or 23 with the possibility of it being automatically chosen, see

Findley et al. (1998). A second estimate of the seasonal factors is computed similarly

to before but with a MA(3×5) used for monthly series. Then a second de-seasonalized

series is computed, as in (2.17), (2.18) and (2.19), and a final trend is extracted from

it using Henderson’s filters. These steps are iterated to ensure a more successful

estimation of the components by replacing extreme values and eliminating any noise

that enters the estimation.

Systematic diagnostic checks are used to evaluate the decomposition. Spectrum es-

timates can be examined to determine whether seasonal effects are present in the

residual series. A detectable residual seasonal pattern can be attributed to inap-

propriate seasonal adjustments of the model or to a trend in the seasonals. X-

12-ARIMA includes two types of stability diagnostics; 1)sliding spans which uses

overlapping sub-spans to analyze the difference between the largest and smallest ad-

justments made to a point and 2)revision histories which considers the difference

between the earliest adjustment of a point and the latest one based on all future

available points.

Furthermore, X-12-ARIMA allows for a variety of regressors to be included in the



31

regARIMA models. These can used to model sudden changes in the level or the

seasonality of the series. Additionally, seasonal effects such as leap years, holidays,

trading-days and others can be modelled this way. There are automatic model iden-

tification and selection procedures employed in the X-12-ARIMA which help utilize

the regARIMA models. Constructing regARIMA models with specific terms the user

can test for the existence of effects such as changes in the seasonal pattern. Never-

theless, X-12-ARIMA allows only for quarterly or monthly seasonal periods.

2.3.5 A Seasonal-Trend Decomposition Based on LOESS -

STL

An alternative to the aforementioned Census II methods is a Seasonal-Trend Decom-

position Based on LOESS (STL) (Cleveland et al., 1990). It consists of a sequence

of LOESS applications and thus is a resistant to extreme values decomposition tech-

nique. It can be applied to time series with missing values and contrary to the X-12-

ARIMA the STL allows any seasonal period greater than 1. It cannot accommodate,

however, the many seasonal effects (such as trading-day etc.) that X-12-ARIMA can

and it has no built-in diagnostics for the seasonal adjustment. There is only an addi-

tive version of STL but the logarithm of the data can be used for the multiplicative

case (Makridakis et al., 1998). The following description is based on Cleveland et al.

(1990).

This method consists of two recursive procedures, one nested within the other. Dur-

ing each iteration of the inner loop the trend and seasonal components are estimated.

One iteration of the outer loop consists of multiple runs of the inner and then com-

putation of robustness weights to be used in the next run of the inner loop, to reduce

the contribution of the extreme values to the overall estimation procedure. For the

initial run of the outer loop these robustness weights are all set to 1.

The inner loop starts by de-trending the series, (2.11), and thus, an initial estimate

of the trend, T
1
t

is needed. This is usually set to be zero. Wherever there are missing
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values in the original series there will be ones also in the de-trended one as STL does

not substitute them by estimates.

The de-trended values for each season are collected to form seasonal ‘sub-series’.

For example, for monthly data twelve seasonal sub-series are created. Each sub-

series is then smoothed by LOESS with parameter qs and d = 1. The smooth is

estimated at all internal points of the series, including any missing values, but it is

also extrapolated one point before and one ahead of the end points of the sub-series,

i.e. one year backcast and forecast of the seasonals. The smoothed sub-series are put

together to create the seasonal component, Ŝ
1
t
.

A low-pass filter, MA(3 × s × s), is used on this seasonal component, consisting of

three MAs followed by a LOESS with parameter ql and d = 1 to create L
1
t
. Data

points are lost at both ends, s at each end, from the usage of MAs but as the sub-

series were extended proactively earlier this does not cost any of the original time

points. The low frequency component L
1
t

is subtracted from the seasonals Ŝ
1
t

(i.e.

de-trending of the seasonal) to ensure that no low frequency movement enters the

seasonal estimation:

S
1
t

= Ŝ
1
t
− L

1
t

(2.20)

where S
1
t

is the final seasonal component of this iteration. A de-seasonalized series is

created as in (2.17) and LOESS is used on it to extract the trend, T
1
t
. This LOESS

has parameter qt and d = 1. The trend is estimated at all points of the original

series, including any missing values. This trend will be used as the initial estimate

for the next iteration of the inner loop.

The outer loop begins after one or two iterations of the inner one. The remainder

component is computed by subtracting the estimated trend and seasonals from the

original series. A large value in the remainder is considered evidence of an extreme

value in the original series. Once these are identified, robustness weights are com-

puted giving small or zero weights to them. Let h = 6×median(|Rt|), the robustness
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weight at time t is:

wt = B(|Rt|/h), where (2.21)

B(t) =

�
(1− t

2)2
, 0 ≤ t ≤ 1

0, t ≥ 1
(2.22)

Therefore, when the inner loop is repeated after one outer loop iteration the new

robustness weights are used for two LOESS applications, for the trend and seasonal

estimations. The two LOESS used to estimate the seasonal component and the

trend component are used on the appropriate series after it has been multiplied by

the newly calculated robustness weights.

STL allows us to choose a number of parameters according to the data examined.

Firstly, the number of inner and outer loop iterations has to be decided. Com-

monly one pass through the outer loop consists of one or two iterations of the inner

loop while a total of 10 or 20 outer loop iterations take place (Makridakis et al.,

1998). If we use one inner loop iteration per outer loop iteration then a total of 5

passes through the outer are sufficient while 10 provide a near certainty of conver-

gence2.

Furthermore, the qs, ql and qt parameters for the LOESS used have to be chosen.

Cleveland et al. (1990) suggest the value of the least odd integer greater than or

equal to s for the ql parameter and an odd value of at least 7 for the qs parameter,

based on an eigenvalue analysis of the inner loop filters. Parameter ql controls the

level of smoothness of the trend that entered the seasonal estimation and is then

removed from it. The value of the qs parameter determines the amount of change

allowed in the estimated seasonal component. A small value of qs allows substantial

changes from year to year while a large ensures that the change is slow.

Finally, the qt parameter sets the amount of variation from the data to be included

2criterion used for convergence by Cleveland et al. (1990) is maxt|Uk
t − U

k+1
t |/(maxtU

k
t −

mintU
k
t ) < 0.01 where U

k is the trend or seasonal component estimated in iteration k.



34

in the trend estimation. A high value includes less variation, smoother estimate

of trend, while a small one more variation, wigglier estimate. Thus, a trade-off is

created as we want a high value for qt so that only the slow, long-term variation

is included in the estimation but we also want a low enough value so that no low-

frequency effects remain in the remainder to be treated as extreme values. An odd

value is proposed for this parameter, too by Cleveland et al. (1990) and they also

suggest that the following inequality should hold:

qt ≥
1.5s

1− 1.5q−1
s

. (2.23)

If the series examined has two or more seasonal components, STL can be used suc-

cessively to estimate firstly the seasonal component with the shortest period and

then, after that is subtracted from the data, the other ones till the longest-period

component is estimated.

Therefore, STL offers choices in specifying the amount of variation in the trend and

seasonal components, making it very flexible. Nevertheless, the estimated trend is

unstable at the end of the series since LOESS is used (Makridakis et al., 1998).

2.3.6 Structural Time Series Models

Structural time series models (STMs) are linear Gaussian state-space models for time

series based on a decomposition of the series into various components (Harvey, 1990).

These components are referred to as ‘unobserved’ components because they are not

observed directly but are assumed to have ARMA representations (Harvey, 1993).

STMs commonly include three components; a trend, a seasonal and a remainder (or

error) component. The following description is based on Harvey (1990, 1993).

Let xt, (t = 1, 2, . . . , T ), be the observed time series. A simple STM that includes a
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local trend (local level model) is:

xt = mt + vt, vt ∼ N(0, σ2
v
) (2.24)

mt+1 = mt + ut, ut ∼ N(0, σ2
u
) (2.25)

where mt is the level/trend at time point t. Though the trend can take many forms,

in this case it is modelled as a random walk by (2.25). When σ
2
u

= 0, xt has a constant

level while when σ
2
v

= 0 xt is a random walk. A signal-noise ratio (q = σ
2
u
/σ

2
v
) can

be used to describe this model.

A basic structural model that includes a trend and a seasonal component is:

xt = mt + st + vt, vt ∼ N(0, σ2
v
) (2.26)

mt+1 = mt + bt + ut, ut ∼ N(0, σ2
u
) (2.27)

bt+1 = bt + zt, zt ∼ N(0, σ2
z
) (2.28)

st+1 + st + · · · + st−s+2 = wt, wt ∼ N(0, σ2
w
) (2.29)

where mt is the trend and st is the seasonal dummy at time t when xt has period s.

When σ
2
w

= 0, xt has a stable seasonal pattern.

From the above models we can see that STMs can be regarded as regression models

in which the explanatory variables are functions of time and the parameters are time

varying.

Changes in the seasonal pattern can be incorporated in these models with a stochastic

trigonometric seasonal component:

yt = µt + γt + �t t = 1, . . . , T (2.30)
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where γt =
�[s/2]

j=1 γj,t and each γj,t is generated by

�
γj,t

γ
�

j,t

�
=

�
cosλj sinλj

−sinλj cosλj

� �
γj,t−1

γ
�

j,t−1

�
+

�
ωj,t

ω
�

j,t

�
j=1, . . . , [s/2]

t=1, . . . , T.
(2.31)

In the above equation λj = 2πj/s is frequency, in radians, and ωj,t and ω
�

j,t
are

two mutually uncorrelated white noise disturbances with zero means and common

variance which is the same for all j.

Once a model has been put in state space form, the Kalman filter may be applied for

prediction and smoothing. In addition, for a Gaussian model the Kalman filter can be

used to construct the likelihood function by a prediction error decomposition.

2.3.7 TRAMO - SEATS

Contrary to the U.S. Bureau of Census, in Europe, Eurostat uses Time series Regres-

sion with ARIMA noise, Missing observations and Outliers (TRAMO) and Signal

Extraction in ARIMA Time Series (SEATS) to seasonally adjust time series with

monthly or lower frequency. A short description of these methods follows and is

based on Maravall (2002).

TRAMO can be used for estimation, forecasting and interpolation of regARIMA

models. Additionally, it can be run in an entirely automatic manner. It performs a

regARIMA in the presence of missing values and outliers. Let xt be our time series

with n observations. TRAMO fits the regression:

xt = ytβt + zt (2.32)

where β = (β1, β2, . . . , βm)T is a vector of regression coefficients, yt = (y1t, y2t, . . . , ymt)T
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is a vector of m regression variables and zt follows an ARIMA process:

φ(B)ϕ(B)zt = θ(B)at, (2.33)

where B is the backshift operator (i.e.Bxt = Xt−1), φ(B), ϕ(B), θ(B) are finite poly-

nomials in B and at is white noise. All the unit roots from differencing are contained

in ϕ(B) so that φ(B) is the stationary autoregressive polynomial and θ(B) is the

moving average polynomial.

We can specify which regression variables to be included in the model or let the

program generate them. These regression variables include trading day effects, holi-

day effects and intervention variables as dummy variables or sequences of ones and

zeros.

The parameters in (2.32) and (2.33) are initially estimated by Maximum Likelihood

(ML) or Ordinary Least Squares (OLS). Then the Kalman filter (Harvey, 1990) and

the QR algorithm (Francis, 1961, 1962) are used to get new parameter estimates.

Constructed t-tests for outliers are computed for each datum to check for the exis-

tence of outliers.

The detected outliers are not included in the estimation. Similarly to stepwise re-

gression, multiple regressions are used to detect outliers and select the “best” re-

gression equation. Three types of outliers are detected; additive outlier, level shift

and transitory change. Nevertheless, the user can also specify outliers. Furthermore,

seasonal effects, such as trading day effects, are considered and tested for, when

applicable.

Missing observations are dealt in two ways; interpolation or assigning an arbitrary

value and an additive outlier. In the latter case the interpolator is computed as the

difference between the assigned value and the estimated regression parameter. Mean

Squared Errors (MSE) are reported for all interpolators.
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Finally, TRAMO can automatically identify and fit an ARIMA model to the se-

ries after the outliers, missing values and trading effects have been accommodated

properly. Firstly the non-stationary polynomial, ϕ(B), of (2.33) is identified by iter-

ating a sequence of AR and ARMA(1,1) models 3. Then an ARMA model is chosen

for the stationary series, within the range of ARMA models with 0 ≤ (p, q) ≤ 3,

0 ≤ (P, Q) ≤ 2.

Hence, TRAMO adjusts a time series, estimating the deterministic effects of outliers,

trading day or holiday effects and the ARIMA model that was identified. This infor-

mation is then passed to SEATS for further analysis. SEATS decomposes (additive

or multiplicative) a series that follows this ARIMA into four components (trend,

seasonal, transitory and remainder) using signal extraction techniques. The trend

component has a spectral peak at 0 frequency, the seasonal has spectral peaks at

seasonal frequencies while the remainder (irregular) component captures white noise

behaviour and thus has a flat spectrum. Contrary to the remainder, the zero-mean

stationary transitory component picks up fluctuations that are not white noise but

do not belong in the trend or the seasonal components. These components depend on

the structure of the identified ARIMA and if no outliers and no trading day, holiday

etc. effects are present in a series, then SEATS can be used directly to identify and

decompose the ARIMA model that fits the series.

The ARIMA models for the components are established by partitioning the spectrum

into additive spectra, one for each component. Under the assumption that only the

remainder component includes noise (‘canonical’ property) a unique decomposition

of the spectrum is identified. Minimizing the MSE, estimators of the components

are computed filtering the series after extending it first with forecasts and backcasts.

Revisions are used, as in X-12-ARIMA, till convergence is achieved. Along with

these estimated components, SEATS provides their forecasts for several years with

standard errors for all. A comparison of the differences between the theoretical and

the empirical moments for these estimators can be used for diagnostic checks while

spectral diagnostics are also available.

3Differencing and seasonal differencing are considered up to order (1−B)2(1−B
s).
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SEATS, thus, decomposes the series, as modelled by TRAMO, into four components.

If the ARIMA model identified and estimated by TRAMO cannot be decomposed

appropriately then SEATS identifies a different model to work with. By default

additive outliers and transitory changes are included in the remainder component

by SEATS while level shifts to the trend. All trading day, holiday and generally all

calendar effects are added to the seasonal component. The regression variables in

the regARIMA can be added to any desired component but by default are treated

as a separate one.

Overall, TRAMO-SEATS provides the user with an automated tool for seasonal

adjustment, however, there are a few points that merit some consideration. SEATS

prefers ARIMA models where the total AR order, including differencing, is equal

to the total MA order (balanced models) and if that is not the case for the chosen

one by TRAMO, SEATS may use many revisions. Thus, SEATS is more suited for

balanced models. Furthermore, SEATS should only be used to seasonally adjust

time series with a seasonal pattern as it can induce seasonality into the adjustment

of non seasonal series (Hood, 2002). Spectral diagnostics can be used to check for

seasonality in the original series as well as in the remainder component. Findley

et al. (2005) propose modifications of SEATS diagnostics used to detect over- or

underestimation of the components. The diagnostics of SEATS are computed using

variance estimates under the assumption of an applied infinitely long filter which

results in bias towards underestimation. Findley et al. (2005) advocate that usage

of time-varying variances associated with the actual finite length filters that are

employed leads to unbiased versions of the current diagnostics.

We should note that a new version of the X-12-ARIMA is now based on TRAMO

while another is developed that includes SEATS. TRAMO-SEATS and X-12-ARIMA

have been implemented in a single interface called ‘DEMETRA’4.

4This is freely available at http://circa.europa.eu/irc/dsis/eurosam/info/data/demetra.htm
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2.4 Discussion

In this chapter we have talked about the different types of seasonality that may be

present in a series. Furthermore, we have presented a number of commonly used

techniques to decompose a series into a trend and seasonals. Since, however, there

are many types of seasonality we should identify the correct type before we attempt

to extract or estimate it. Additionally, for many of these methods to work properly

the existence of a seasonal pattern has firstly to be verified.

The discussed methodologies are complex and require a well behaved quarterly or

monthly times series. As discussed before, the Stonehaven data are higher frequency

data and include missing values and duplicate measurements. Therefore, we would

have to use monthly aggregates, risking that small changes in the pattern could go

unnoticed. Additionally, in the context of this thesis we are mainly interested in tests

between the different types (including absence) of seasonality. Hence, the detailed

output of the above procedures is not required. These tests should be simple, robust

and fairly automated so that they can be implemented easily on the Stonehaven

data and help us draw accurate conclusions about the seasonality in them but also

in order to be of use to marine biologists in the future. The next chapter is a brief

introduction to testing techniques for seasonality in a series.



Chapter 3

Testing for Seasonality

3.1 Introduction to testing

3.1.1 Introduction

As mentioned before, in classical seasonal decomposition of time series, the series is

decomposed into three basic components, the trend, the seasonal and the residuals.

In common practice the seasonals are assumed to be stable over time, i.e. that the

shape, size and timing of the seasonal cycle does not change with time. The previous

chapter presented the possible types of seasonality in a time series and discussed

techniques available to model these components in a seasonal decomposition. Nev-

ertheless, one needs to decide the nature of the components to be included in the

seasonal decomposition model.

In addition, in many sciences the purpose of a decomposition is to develop an under-

standing of the underlying dynamics that drive the process observed and therefore,

an assumption of stability is beyond scope. For example in biological science the

study of biological series is not intending to register the emerging patterns and sim-

ply extrapolate them in to the future but rather investigate what drives the series;

41
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how and why the patterns are derived. In that context one may wish to conduct tests

to check the nature of the seasonals and then estimate them accordingly. Estimating

a stable seasonal component when in fact there is a trend in its shape, size or timing

will distort the picture one has of the data and thus, it may lead one to draw wrong

conclusions or simply miss the existence of some features.

Testing the existence of a seasonal pattern and furthermore trying to evaluate the

kind of seasonality is of great interest to theoretical and applied scientists. In theory

testing for existence and type of seasonals is used to verify theories and expand

knowledge of phenomena. In practice it is of utmost importance to test whether

what a scientist thinks he is observing corresponds to reality.

This chapter discusses different ways to test for seasonality. There are tests for

the existence of seasonality and tests for the type of seasonality, once the existence

has been verified. Firstly, old preliminary analyses for a stable seasonal pattern are

presented and then formal testing frameworks for the detection of seasonality, from

econometrics, are reviewed. The House, Unemployment and Kola time series are

used as examples.

3.1.2 Preliminary Analyses – Testing for Stable Seasonal-

ity

Suppose that during the analysis of a discrete time series {Xt} there are strong indi-

cations of an existing stable seasonal pattern and the objective is to assess whether

this is true. A number of ways to explore and verify the existence of stable seasonality

in a time series exist.

A popular first approach is to fit a straight line to each seasonal factor of the de-

trended series across the years. The trend is removed by a moving average of order

equal to the periodicity of the series. The p-values are then weighed against a pre-

defined significance level to evaluate the fit, thus testing the null hypothesis that
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the seasonality is stable, the regression coefficient is equal to zero, (H0 : b = 0)

against the alternative of non stable seasonality, the regression coefficient is not

zero, (HA : b �= (0)). Therefore, a p-value smaller than the predefined significance

level rejects the null hypothesis in favor of the alternative while a greater accepts

it.
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Figure 3.1: The House, stable seasonal, series estimated p-values.

However, in the above case we are conducting multiple testing and thus a few issues

arise. Using a 5% significance level implies that there is a 5% chance that the p-

value will in fact be insignificant when it appears significant. Considering that when

dealing with monthly data we are conducting twelve such tests while for weekly, as

the Stonehaven data, fifty two, it becomes evident that the interpretation of the

outcome of these tests is at best ambiguous if not misleading and a simpler way of

testing for stability is needed.

From figure 3.1 we can see that two of twelve p-values for the House data are close

to 0.05 but none of them are significant, while figure 3.2 shows that four p-values are

significant for the Unemployment data. The Kola p-vaues are all insignificant, figure

3.3. Hence, the p-values coincide with our previous observation of the behaviour of

the series. However, inference is not always straightforward.
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Figure 3.2: The Unemployment, trending seasonal, series estimated p-values.
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Figure 3.3: The Kola, stable seasonal, series estimated p-values.
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Figure 3.4: The House estimated p-values Q-Q Plot.

In addition, one could check whether the collected p-values follow a Uniform distri-

bution by plotting a Quantile-Quantile (Q-Q) plot of them.

The Q-Q plots in figures 3.4, 3.5 and 3.6 all indicate a non stable seasonal pattern.

This can be due to a violation of the assumption of independence.

Another approach is to sum the double negative logarithm of the p-values and check

if it follows a Chi-squared distribution. If the p-values are insignificant then the

sum of their the double negative logarithm follows a Chi-squared distribution with

degrees of freedom equal to twice the number of observations in each cycle of the

seasonal component, i.e. twenty four degrees of freedom for monthly data. Assuming

it does, we conclude that the seasonality is stable.
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Figure 3.5: The Unemployment estimated p-values Q-Q Plot.
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Figure 3.6: The Kola estimated p-values Q-Q Plot.
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X =
12�

i=1

(−2ln(pi)). prob(X ∼X 2(24))

House Data Set 39.103 2.7× 10−2

Unemployment Data Set 73.288 6.871× 10−07

Kola Data Set 9.675 9.958× 10−1

From the table above, only the Kola data set is deemed stable. The Unemployment

data set is identified as trending while the House series is also deemed to have a

trending seasonal pattern.

Additionally, there are a number of assumptions for the above tests to show accurate

results. The most commonly violated one being the assumption that the p-values

are independent to each other, while assumptions of homoscedasticity and normality

of the logarithm of the p-values are also made. Often time series data is made from

monthly or even weekly observations and therefore there is high concern that the

p-values may in fact be correlated. More often than not, one will notice that there

is high autocorrelation between some values and that could be responsible for the

failure of the tests to verify the suspicion of a stable seasonal pattern.

Looking at p values when fitting harmonics or straight lines can be helpful. However,

the problem of multiplicity arises from the sequential tests, since for monthly data

one would need to look at twelve of these p values while for weekly fifty two! Q-Q

plots and Fisher’s test can be applied to deal with the multiplicity problem but then

the assumption of independence is forced. An assumption that is commonly violated.

The accuracy of these tests depends on the p values being independent but in time

series they are highly dependent.

In the following section formal testing methodologies are presented.
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3.2 (Seasonal) Unit Root Tests

3.2.1 Introduction

The early analysis of time series consisted of a (seasonal) decomposition of a se-

ries into trend and seasonal components. These two estimated components contain

important information and reward careful examination and interpretation.

In many sciences the information contained in the aforementioned components is

considered of essence in order to understand the behavior and dynamics of the series

but particularly in economics a number of methods have been devised to estimate

long-run economic relationships and therefore the majority of articles cited in this

chapter will be of economic areas.

Many different issues might occur when one performs a regression with different

orders of integrated variables. To avoid this problem, one has to be very careful

during the identification stage of the model to identify the correct order of integration.

In the context of ARIMA models, identifying the order of integration is equivalent

to determining the parameter d in the ARIMA (p, d, q) model. The Box–Jenkins

approach (Box & Jenkins, 1976) involved the use of graphs of the autocorrelation

function for determining the parameter d. The recent developments of unit root tests

is simply the use of formal statistical tests in place of the visual inspection of the

graphs of the autocorrelation function (Maddala & Kim, 1998).

Phillips & Perron (1988) state that:

“One major field of application where the hypothesis of a unit root has important

implications is economics. This is because a unit root is often a theoretical implication

of models which postulate the rational use of information that is available to economic

agents. Formal statistics tests of the unit root hypothesis are of additional interest to

economists because they can help to evaluate the nature of the nonstationarity that

most macroeconomic data exhibit. In particular, they help in determining whether the
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the trend is stochastic, through the presence of a unit root, or deterministic, through

the presence of a polynomial time trend.”

There is no question that unit root tests can provide useful results to contribute

to the investigation and evaluation of the trend and seasonal components; however,

they do come with limitations as a number of different assumptions need to be made

before one can use them effectively. In all likelihood, the most important step before

conducting a unit root test is the correct specification of the deterministic trend in

a model. As mentioned before, most time series models include both a deterministic

and a stochastic trend and the miss-specification of the deterministic trend will affect

the identification of an underlying stochastic one by shadowing or overemphasizing

it. If a time series has a unit root then this is the indication of an existing stochastic

trend; thus, it is of great importance that the deterministic trend, one incorporates

in the model to be tested, is in fact appropriate. The critical values given for the

different unit root tests also differ according to the various forms of deterministic

trends in the tested models. Due to this fact, the unit root testing procedures are not

as straightforward as conventional testing procedures (Maddala & Kim, 1998).

Over recent years there has been a continuous development of new unit root testing

frameworks in an effort to overcome drawbacks and limitations of the earlier ones, and

different paths have been created. Early on, the tests were developed to distinguish

between a stationary and a nonstationary process; testing for a zero frequency unit

root but were then extended to analyze seasonal patterns; testing for unit roots at all

or some seasonal frequencies. In this section we will try to give a broad overview of

the best known and most commonly used tests along with some of their development

over the years; the purpose being to use unit root tests to evaluate trend and seasonal

components in biological series and thus expand their application in an area other

than economics. An effort was made to sort the tests by first arranging them in a

chronological order - not very strictly so as to separate between unit root tests and

seasonal unit root tests - and also classify them in two broad categories according

to the approach they use towards time series analysis; whether the analysis uses

(seasonal) ARIMA models or the structural time series models. Since a full review



50

of all existing unit root testing techniques is beyond the scope of this chapter, the

reader is referred to Maddala & Kim (1998) for a more detailed discussion. At the

end of this chapter two diagrams are summarizing the discussed tests, Figure 3.7 the

ones using ARIMA models and Figure 3.8 the ones that use structural time series

models.

3.2.2 ARIMA Models

Dickey - Fuller Test

The first unit root testing framework was introduced by Dickey & Fuller (1979). The

realization that the number of existing unit roots is equal to the parameter d in the

ARIMA (p, d, q) model, motivated Dickey and Fuller to replace the somewhat intu-

itive visual inspection of the sample autocorrelation function with a formal testing

procedure for unit roots. The test, known as the standard DF test, is of the null hy-

pothesis that a first-order autoregressive, AR(1), process contains a unit root against

the alternative that it is stationary and is based on the assumption of independently

and identically distributed (iid) errors.

As a basis for the test the following autoregressive model is used:

Xt = ρXt−1 + �t, t = 1, 2, . . . , (3.1)

where X0 = 0, ρ is a real number and {�t} is a sequence of independent normal

random variables with mean zero and variance σ
2 [i.e., �t ∼ NID(0, σ2)].

For the time series Xt to converge (as t → ∞) to a stationary time series |ρ| < 1

is needed. Given n observations, the Maximum Likelihood Estimator (MLE) of ρ is

the OLS estimator
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ρ̂ =

�
n�

t=1

X
2
t−1

�−1 n�

t=1

XtXt−1. (3.2)

Then a t test statistic is formed:

t̂ρ =
ρ̂− 1

SE(ρ̂)
(3.3)

where SE(ρ̂) is the standard error of the OLS estimator. The asymptotic distribution

of the statistic is a functional of the Wiener process,

t̂ρ →
W (1)2 − 1

2
�� 1

0 W (r)2dr

� 1
2

(3.4)

where W is a standard Wiener process.

Wiener Process or Brownian Motion:

A stochastic process {X(t), t ≥ 0} is said to be Brownian Motion process if:

1. X(0) = 0;

2. {X(t), t ≥ 0} has stationary and independent increments;

3. for every t > 0, X(t) ∼ N(0, σ2
t).

In the above model no drift or linear trend was included and the derived asymptotic

distribution, for the null hypothesis, is under the assumption that the data generating

process (DGP) had no drift and no linear trend in it. The DF test can, however,

be used when a drift and/or linear trend are included in the model and depending

on whether the DGP has a drift and/or linear trend in it the critical values change.

The test statistic stays the same for all cases but for the case of the linear trend

the asymptotic distribution of the statistic, under the hypothesis of a unit root, is

a different functional of the Wiener process. Fuller in 1976 provided tables with
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the various critical values needed for the above mentioned test statistics. The null

hypothesis of a unit root is rejected when the test statistic is smaller than the given

critical value (Dickey & Fuller, 1979).

This is a parametric test for a zero frequency unit root but can also be used to

test the validity of a given co-integrating relationship (Harvey, 2001). An issue with

this test is that the normal test significance level is affected when the error terms �t

in (3.1) are autocorrelated, as is often the case with time series data. In addition,

as Dickey and Fuller mention : “There is evidence that these tests are biased tests,

accepting the null hypothesis more than 95 percent of the time for ρ close to, but less

than, one.”

In a recent paper (da Silva Lopes, 2004) investigates the effects of deterministic

seasonality in DF tests and concludes that: “. . . the common perception that deter-

ministic seasonality has nothing to do with testing the long-run properties of the data

is incorrect” and suggests ways to account for it.

Augmented Dickey - Fuller Test

For a wide class of errors which allows some heterogeneity and serial correlations in

errors, a different regression which contains lagged differences was suggested:

∆Xt = α + ρXt−1 +
p�

i=1

βi∆Xt−i + �t, (3.5)

where the first differences series {∆Xt} has a stationary AR(p) representation with

a known p. This is the augmented Dickey-Fuller test (ADF) (Maddala & Kim,

1998). Augmenting the regression with lagged differences intends to remove the

serial correlation from the disturbance (Chambers & McGarry, 2002).

The nominal significance level of 5% under the null hypothesis (ρ = 1) is held better,

if p is larger (Maddala & Kim, 1998). However, it has been noted that then the power
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of the test decreases, i.e. the tests can no longer distinguish between a process with

unit roots and a stationary process with ρ values close to, but less than, one- much

like the DF test . Thus, there is a trade-off between the validity and the power of the

test in choosing p. Some authors suggest using information based rules such as the

Akaike Information Criterion (AIC) or the Schwarz Bayesian Information Criterion

(BIC) for the selection of p, while others argue using sequential rules (see Maddala

& Kim (1998)).

Furthermore, the ADF test only works well in the presence of seasonal unit roots in

the DGP if the test regression is sufficiently augmented with lags; otherwise, over-

rejections of the null will occur (da Silva Lopes, 2004). In the same article Lopes

also mentions that the ADF test does not work very well with small samples.

Finally (Busetti & Taylor, 2003) discuss the presence of unattended structural breaks

in the sample; “a process which is stochastically stationary about a deterministic com-

ponent subject to structural breaks can display properties very similar to a unit root

process. . . . the conventional ADF tests cannot reject the unit root null hypothesis,

even asymptotically, where a broken trend exists.”

Said - Dickey (SD) Test

The ADF test was extended to the more general case where the series of first dif-

ference in (3.5) are of the general ARMA(p, q) form with the parameters p and q

unknown and serially correlated errors. Said & Dickey (1984) showed that it is pos-

sible to approximate an ARIMA(p, d, q) model by an autoregression whose order is

a function of the sample size n. By the use of OLS the coefficients in this autoregres-

sive approximation are estimated and then used as statistics whose limit distributions

coincide with the ones tabulated by Dickey and listed by Fuller (1976).

The procedure will be given, here, for p = d = 1 but in the same paper it is extended

to the general p, q case with iid errors. The model considered is as in (3.1) where

now:
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�t = α�t−1 + et + βet−1 (t́ = . . . ,−2,−1, 0, 1, 2, . . . ), (3.6)

where it is assumed that |α| < 1, |β| < 1, X0 = 0 and {et} is a sequence of iid

random variables. The null hypothesis to be tested is H0 : ρ = 1. Then,

et =
∞�

j=0

(−β)j(�t−j − α�t−j−1) (3.7)

and it follows that

Xt −Xt−1 = (ρ− 1)(Xt−1) + (α + β)(�t−1 − β�t−2 + β
2
�t−3 − . . . ) + et. (3.8)

Under the null hypothesis of a unit root, �t = Xt − Xt−1. This motivates us to

estimate the coefficients in (3.8) by regressing the first difference, ∆Xt, on Xt−1,

∆Xt−1, ∆Xt−2, . . . , ∆Xt−k where k is a suitable integer. For the estimators of the

coefficients in (3.8) to be consistent it is essential to let k be a function of the number

of observations, n. In addition, it is assumed that n
−1/3

k → 0 and that there exist

c > 0, r > 0 such that ck > n
1/r, Said and Dickey (1984).

When the stated conditions are met the limiting distribution of the t-statistics of

the coefficient on the lagged dependent variable Xt−1 has the same Dickey & Fuller

(1979) distribution as when the errors are iid.

Since, this test is an extension of the ADF test it suffers from the same drawbacks.

In addition (Maddala & Kim, 1998) highlight that the actual size of the test may

deviate greatly from the nominal size if the order or the autoregressive correction is

not increased as the sample size increases; in order to accommodate the additional

effect of the correlation structure of the residuals. Thus, if there are important

moving average components in the structure of the series {Xt} a large number of
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nuisance parameters may be needed in the estimation. Additionally, one needs to

remember that an effective observation is lost for each extra lag of ∆Xt introduced,

leading one to deduce that this approach may in fact have significantly lower power

when moving average terms are more important than if the errors were iid.

Phillips Test

All the testing frameworks mentioned above are confined to the case where the

sequence of innovations driving the model are independent with a common variance.

Furthermore, it is frequently assumed that these innovations �t are iid (0, σ2) or, even

further, that they are iid and follow the normal distribution. However, independence

and homoscedasticity are strong assumptions that are often violated when working

with time series data (Phillips, 1987). In addition, from economic theory, these

assumptions are false in the context of aggregate time series that maybe characterized

as a random walk. Thus (Phillips, 1987) stated that : “For both empirical and

theoretical considerations, therefore, it is important to develop tests for unit roots

that do not depend on these conditions.”

Consequently (Phillips, 1987) provided asymptotic theory for the least squares re-

gression estimator and the associated regression t statistic which allows for quite

general weakly dependent and heterogeneously distributed innovations; performing

non-parametric adjustments to the existing test statistics.

Let {Xt}∞t=1 be a stochastic process generated in discrete time according to (3.1)

and

ρ = 1 (3.9)

Under (3.9) the representation Xt = St + X0 is formed in terms of the partial sum

St =
�

t

1 �j of the innovation sequence {�j} in (3.1) and the initial condition X0.

Phillips defines S0 = 0 and assumes that X0 has a certain specific distribution.
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To be precise it is assumed that {�t}∞t is a sequence of random variables that satisfy

the following conditions:

1.

E(�t) = 0, all t;

2.

suptE|�t|β <∞ for some β > 2;

3.

σ
2 = limT→∞E(T−1

S
2
T
) exists and σ

2
> 0;

4.

{�t}∞t is strong mixing with mixing coefficients αmthat satisfy:

∞�

t

α
1−2/β

m
<∞.

These conditions allow for both temporal dependence and heteroscedasticity in the

process {�t}∞t ; while condition (4) controls the extent of temporal dependence so

that, although there may be substantial dependence amongst recent events, events

which are separated by long intervals of time are almost independent (Phillips, 1987).

For the definition of strong mixing and mixing coefficients αm the reader is referred

to White (1984).

Then the new test statistics are:

Zρ = T (ρ̂− 1)− (1/2)(s2
T l
− s

2
�
)
�

�
T
−2

T�

1

X
2
t−1

�
(3.10)
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and

Zt = (ρ̂− 1)

�
T�

1

X
2
t−1

�t−2
�
sT l − (1/2)(s2

T l
− s

2
�
)



sT l

�
T
−2

T�

1

X
2
t−1

�1/2



−1

(3.11)

where T is the sample size, l is the lag truncation number and ρ̂ =
�

T

1 XtXt−1/
�

T

1 X
2
t−1

is the OLS estimator of ρ. Furthermore, s
2
�

and s
2
T l

, under the null hypothesis (3.9),

are the consistent estimators:

s
2
�

= T
−1

T�

1

(Xt −Xt−1)
2 = T

−1
T�

1

�
2
t

(3.12)

and

s
2
T l

= T
−1

T�

1

�
2
t
+ 2T−1

l�

τ=1

T�

t=τ+1

�t�t−τ (3.13)

of σ
2
�
, the variance of the innovation process {�t}, and σ

2
T

= var(T−1/2
ST ), respec-

tively.

An interesting feature of the new test statistics is that their limiting distributions

are identical to those found in earlier work under the assumption of iid errors. In

particular, as T tends to infinity,

Zρ =⇒ (W (1)2 − 1)/2
� 1

0 W (t)2dt

(3.14)

and

Zt =⇒ (W (1)2 − 1)/2

{
� 1

0 W (t)2dt}1/2
(3.15)

where once again critical values are given by Fuller (1976).

The above test can be used in a broad category of models. Phillips (1987) says:
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“It applies, for example, to virtually any ARMA model with a unit root and even

ARMAX systems with a unit root and with stable exogenous processes that admit

a Wold decomposition.” One of the benefits of the Phillips test is that it is not

necessary to identify the model in order to apply the test and consistently estimate

the existence of a unit root in the series. Furthermore, it can easily be performed on

models with a drift and a time trend (Phillips, 1987).

However (Chambers & McGarry, 2002) highlight that the t-ratio of this test suf-

fers nuisance parameter dependencies that are a reflection of the dynamics in the

disturbance making the inference of the outcome difficult.

Phillips - Perron (PP) test

Phillips & Perron (1988) extended the above study of Phillips to the cases where

(a) a drift, and (b) a drift and a linear trend are included in the specification of the

model. These extensions are important for practical applications, where the presence

of a nonzero drift is very common. Moreover, in many cases and, particularly with

economic time series, the main competing alternative to the presence of a unit root

is deterministic linear time trend. It is therefore important that regression tests for

unit roots allow for this possibility.

The models considered are driven by a sequence of innovations denoted by {�t} which

satisfies the four conditions as in Phillips test. Let {Xt} be a time series generated

by (3.1) and (3.9). Initial conditions are set at t = 0 and y0 may be any random

variable, including a constant, whose distribution is fixed and independent of the

sample size T .

The two least squares regression equations are considered

Xt = µ̂ + ρ̂Xt−1 + �̂t (3.16)

Xt = µ̃ + β̃(t− 1

2
T ) + ρ̃Xt−1 + �̃t, (3.17)
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where (µ̂, ρ̂) and (µ̃, β̃, ρ̃) are the conventional least squares regression coefficients.

The regression t statistics are formed and their limiting distributions derived; all

depending upon the nuisance parameters σ
2 and σ

2
�
, which is an obstacle to inference

in the case where σ
2 �= σ

2
�
. Using the consistent estimators from Phillips (1987) -

replacing the {�t} for the residuals from (3.16) and (3.17)- transformations of the test

statistics are used; which eliminate the nuisance parameters asymptotically.

Furthermore, since the estimator in (3.13) is not constrained to be nonnegative, as

it was defined can be negative when there are large negative sample covariances,

simple modifications to it are suggested. For example the weighted variance estima-

tors:

σ̂
2
T l

= T
−1

T�

t=1

�̂
2
t
+ 2T−1

l�

s=1

wsl

T�

t=s+1

�̂t�̂t−s, (3.18)

σ̃
2
T l

= T
−1

T�

t=1

�̃
2
t
+ 2T−1

l�

s=1

wsl

T�

t=s+1

�̃t�̃t−s, (3.19)

where wsl = 1 − s/(l + 1), is the triangular window, while other windows could be

used.

The limit distributions of the new test statistics developed here are expressed as

functionals of standard Brownian motion and are the same as those tabulated by

Fuller (1976). This means that their tests may be used with existing tabulations

even though they allow for much more general time series specifications. In the same

paper they also study the asymptotic local power properties of their tests using the

theory of near-integrated processes and provide some simulation evidence on the

finite sample performance of the new tests Phillips & Perron (1988).

Variance ratio tests

Cochrane (1988) proposed a variance ratio (VR) statistic to evaluate the presence

of a unit root by measuring the degree of persistence in a time series. The variance

ratio is the variance of the kth lag difference of the series divided by k-times the
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variance of its first-difference:

V Rk =
Vk

V1
(3.20)

where Vk = var(Xt − Xt−k)/k. The V Rk can be expressed as the weighted sum of

the correlations rj between ∆Xt and ∆Xt−j:

V Rk = 1 + 2
k�

j=1

�
1− j

k + 1

�
rj (3.21)

As an estimator for the variance ratio Cochrane used:

ˆV Rk =
k
−1

var(Xt −Xt−k)

var(Xt −Xt−1)

� T

T − k + 1

�
(3.22)

which is an unbiased estimator and as T →∞, k →∞, and k/T → 0, has a limiting

normal distribution with mean V Rk and variance 4kV R
2
k
/3T .

In practice one considers V Rk for different values of k and rejects models when at

least some of the V R statistics provide evidence against it. However, further papers

from different authors, (see Maddala & Kim (1998)) suggest that this penalizes the

null hypothesis since the tests are correlated and thus argue that there are substantial

size distortions with the use of the asymptotic approximations and furthermore with

the use of sequential testing procedure with different values of k. Instead one could

use a joint test that takes under consideration the different V Rk statistics and by

using Monte Carlo methods derives the critical values for them.

Dickey, Hasza and Fuller (DHF) test

Dickey et al. (1984) researched regression estimators of coefficients in seasonal au-

toregressive models. They expanded the DF test to look for unit roots in all the

seasonal and zero frequencies.
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Let the time series Xt satisfy

Xt = ρdXt−d + �t, t = 1, 2, . . . , (3.23)

where X−d+1, X−d+2, . . . , X0 are initial conditions and the �t are iid (0, σ2) random

variables. The above model is a simple seasonal time series model in which d is equal

to the period of the present seasonality.

In their paper they consider several regression-type estimators of ρd and compute

percentiles of their distributions under the hypothesis that ρd = 1. The null hypoth-

esis for this test is that there are unit roots at the 0 and all seasonal frequencies with

the alternative of no unit roots (Maddala & Kim, 1998).

The first estimator of ρd is the OLS estimator defined as

ρ̂d =
� n�

t=1

X
2
t−d

�−1
n�

t=1

Xt−dXt. (3.24)

If the initial conditions are fixed and �t are normal, ρ̂d is the MLE. The Studentized

regression statistic for testing the hypothesis H0 : ρd = 1 is

τ̂d = (ρ̂d − 1)
�� n�

t=1

X
2
t−d

�−1
S

2
�−1/2

, (3.25)

where

S
2 = (n− 1)−1

n�

t=1

(Xt − ρ̂dXt−d)
2; (3.26)

are included in the standard output from a computer regression of X
�

t
= Xt −Xt−d

on Xt−d.

An alternative model for seasonal data is the stationary model in which the obser-

vations satisfy
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Xt = ρdXt−d + �t, |ρd| < 1. (3.27)

Where, for normal stationary Xt satisfying (3.27),

Xt = ρdXt+d + �t, �t ∼ NID(0, σ2). (3.28)

An alternative estimator of ρd, which they call the symmetric estimator is

ρ̃d =
�
2

n�

t=1

(XtXt−d)
��� n�

t=1

(X2
t

+ X
2
t−d

)
�
, (3.29)

and define the associated Studentized statistic as

τ̃d = 2
1
2 (ρ̃d − 1)

�� n�

t=1

(X2
t

+ X
2
t−d

)
�−1

S
2
�−1/2

, (3.30)

where

S
2 = (2n− 1)−1

n�

t=1

[(Xt − ρ̃dXt−d)
2 + (Xt−d − ρ̃dXt)

2]. (3.31)

Models (3.23) and (3.27) both imply that the time series Xt has a zero mean, some-

thing that is rarely encountered in practice. Therefore, an alternative regression

model is considered

Xt =
d�

i=1

θiδit + ρdXt−d + �t, t = 1, 2, . . . , (3.32)

where

δit =

�
1, if t = i(mod d)

0, otherwise
(3.33)
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and {�t} is a sequence of iid (0, σ2) random variables. The regression of Xt on

δ1t, δ2t, . . . , δdt, Xt−d for t=1,2,. . . , n, produces coefficients θ̂1, θ̂2, . . . , θ̂d, ρ̂µd. The

Studentized regression statistic associated with ρ̂µd − 1 is denoted by τ̂µd.

Assuming that |ρd| < 1, a reparameterized version of model (3.32) is

Xt −
d�

i=1

δitµi = ρd

�
Xt−d −

d�

i=1

δitµi

�
+ �t, (3.34)

where

θi = (1− ρd)µi, i = 1, 2, . . . , d. (3.35)

Under the model (3.34) the hypothesis ρd = 1 implies that θi = 0 regardless of the

value of µi. Thus, specifying ρd = 1 in the model (3.34) allows µi to assume any

value. Under the alternative of |ρd| < 1, however, µi is an identified parameter and

should be estimated (Dickey et al., 1984).

Two estimators for µi are then considered for the stationary model. The first is that

defined by the regression estimators for (3.32), and the second is the seasonal mean

µ̃i defined by

µ̃i = (ni + 1)−1
ni�

j=0

X−d+i+dj, i = 1, 2, . . . , d, (3.36)

where ni is the greatest integer not exceeding (n + d − i)/d. The estimator µ̃i can

be used to define a symmetric estimator of ρd, analogous to (3.29), as follows

ρ̃µd =
� n�

t=1

(x2
t
+ x

2
t−d

)
�−1

2
n�

t=1

xtxt−d, (3.37)

where

xt = Xt −
d�

i=1

µ̃iδit. (3.38)



64

However, if the initial conditions are fixed, the θi (or µi) should be estimated using

the regression model.

The percentiles of the distributions for time series that have unit roots at the seasonal

lag are computed in the same paper (Dickey et al., 1984), in which the above method

was introduced, by Monte Carlo integration for finite samples and by analytic tech-

niques and Monte Carlo integration for the limit case. The tabled distributions may

be used to test the hypothesis that a time series has a seasonal unit root.

A major drawback of this test is that it does not allow for unit roots at some but not

all of the seasonal frequencies and that the alternative has a very particular form,

namely that all the roots have the same modulus (Hylleberg et al., 1990).

Hylleberg, Engle, Granger and Yoo (HEGY) Test

Hylleberg et al. (1990) developed a test that follows the Dickey-Fuller framework and

looks at unit roots at all the seasonal frequencies as well as the zero frequency. In

the same paper they provide tables of the critical values for the limiting distributions

of the developed test statistics.

To test the hypothesis that the roots of ϕ(B) lie on the unit circle against the alterna-

tive that they lie outside the unit circle, it is convenient to rewrite the autoregressive

polynomial in the form:

ϕ(B) =
p�

k=1

λk∆(B)(1− δk(B))/δk(B) + ∆(B)ϕ�(B), (3.39)

where the λk are a set of constants, ϕ
�(B) = ϕ

��(B)+
�

λk with ϕ
��(B) a (possibly

infinite or rational) polynomial and

δk(B) = 1− 1

θk

B , ∆(B) =
p�

k=1

δk(B). (3.40)
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In this representation ϕ(0) = ϕ
�(0) which is normalized to unity.

It is clear that the polynomial ϕ(B) will have a root at θk if and only if λk = 0. Thus

testing for unit roots can be carried out equivalently by testing for parameters λ = 0

in an appropriate expansion.

For example, to test for seasonal unit roots in quarterly data one would expand a

polynomial ϕ(B) about the roots +1,−1, +i, and −i as θk, k = 1, . . . , 4. Then, from

(3.39),

ϕ(B) = −π1B(1 + B + B
2 + B

3)− π2(−B)(1−B + B
2 −B

3)

− (π4 + π3B)(−B)(1−B
2) + ϕ

�(B)(1−B
4), (3.41)

where π1 = −λ1, π2 = −λ2, 2λ3 = −π3 + iπ4, and 2λ4 = −π3 − iπ4. Since ϕ(B) is

real, λ3 and λ4 had to be complex conjugates.

The data are assumed to be generated by a general autoregression of the form

ϕ(B)xt = �t, (3.42)

and (3.41) is used to replace ϕ(B), giving

ϕ
�(B)y4t = π1y1t−1 + π2y2t−1 + π3y3t−2 + π4y3t−1 + �t, (3.43)

where

y1t = (1 + B + B
2 + B

3)xt = S(B)xt,

y2t = −(1−B + B
2 −B

3)xt,

y3t = −(1−B
2)xt,

y4t = (1−B
4)xt = ∆4xt.

Equation (3.43) can be estimated by OLS, possibly with additional lags of y4 to

whiten the errors. To test the hypothesis that ϕ(θk) = 0, where θk is either +1,−1, +i

or −i, one needs simply to test that λk is zero. For the root 1 this is simply a test



66

for π1 = 0, and for −1 it is π2 = 0. For the complex roots +i and −i, λ3 will have

absolute value of zero only if both π3 and π4 equal zero which suggests a joint test.

There will be no seasonal roots if π2 and either π3 or π4 are different from zero, which

therefore requires the rejection of both a test for π2 and a joint test for π3 and π4. To

conclude that a series has no unit roots at all and is therefore stationary, one would

have to establish that each of the π’s is different from zero (save possibly either π3

or π4).

The hypothesis tests can be amended to include a constant, seasonal dummies and

a time trend. Then (3.43) becomes

ϕ
�(B)y4t = µ + βt +

4�

k=2

Skt + π1y1t−1 + π2y2t−1 + π3y3t−2 + π4y3t−1 + �t, (3.44)

which can be estimated by OLS and statistics on the π’s can be used for infer-

ence. The asymptotic and finite sample distributions change (Beaulieu & Miron,

1993).

F-type statistics for the joint null hypotheses are computed, F1234, F234, F34, against

the alternative that they are not all equal to zero. Furthermore, t-statistics are

computed for the one-sided ‘t’ tests on π1, π2 and π3 and the two-sided ‘t’ test on

π4 = 0. Critical values for the above tests are given in Hylleberg et al. (1990), where

they present the aforementioned testing framework.

Nonetheless, the lag augmentation that is employed is only a partial solution to the

problem caused by serial correlation between the innovations driving the process

(Burridge & Taylor, 2001a,b). In addition, the HEGY test is sensitive to periodic

heteroscedasticity (PH) amongst the innovations and may have less power for the

zero frequency unit root than the DF test (da Silva Lopes, 2004).
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Chambers McGarry

As demonstrated by Phillips (1987), testing for a unit root at the zero frequency

can be carried out using a straightforward regression of a variable on its lag, with

any neglected (stationary) dynamics captured by the disturbance process. However,

the limiting distribution of the resulting t-ratio suffers from nuisance parameter de-

pendencies that are a reflection of the dynamics in the disturbance, thus making

inference difficult. A method of eradicating nuisance parameters from the limiting

distributions is to perform the regression in the frequency domain and by doing so

it is not necessary to be concerned with selecting the appropriate number of lagged

variables to include in the regression, which always takes the same form in the fre-

quency domain. Another advantage is that the setup allows for unit root testing

in autoregressive moving average (ARMA) models as well as purely autoregressive

models (Chambers & McGarry, 2002).

Consider a univariate process Xt having the autoregressive representation of (3.42),

where �t ∼ IID(0, σ2
�
), B denotes the lag operator, T denotes sample size, and

ϕ(z) = 1−
�

p

j=1 ϕjz
j is a polynomial of order p, where p ≥ s, the number of seasons.

The polynomial ϕ(z) can be expressed as the product of two lower-order polynomials

in the form ϕ(z) = as(z)b(z). In this representation as(z) is a polynomial of order s

having 0 ≤ s1 ≤ s roots on the unit circle and s − s1 roots outside the unit circle,

while b(z) is a polynomial of order p− s that has all its roots outside the unit circle.

It is, therefore, the polynomial as(z) that captures possible seasonal integration in

the process Xt. Attention will be focused on testing the number of roots of as(z)

that lie on the unit circle when s = 4, which is appropriate for testing for seasonal

unit roots with quarterly data.

With the factorisation of ϕ(z) described above and s = 4 it is possible to write (3.42)

as

a4(B)Xt = ut (3.45)
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where ut = φ(B)�t is a stationary random disturbance in which

φ(z) = 1+
�∞

j=1 φjz
j = b(z)−1 that satisfies

�∞
j=1 j

2
φ

2
j

<∞ and �t ∼ IID(0, σ2
�
) with σ

2
�

<

∞.

Following HEGY, the polynomial a4(z) = 1+
�4

j=1 ajz
j can be decomposed as

a4(z) = −π1zα1(z)− π2zα2(z)− π3zα3(z)− π4zα4(z) + (1− z
4), (3.46)

where α1(z) = 1 + z + z
2 + z

3
, α2(z) = −(1 − z + z

2 − z
3), α3(z) = −z(1 − z

2)

and α4(z) = −(1 − z
2). The coefficients π1, π2, π3 and π4 correspond to the roots

1,−1, i and −i respectively in the sense that if πj = 0 then a4(z) possesses the

corresponding root. Matching the coefficients in (3.46) with those of a4(z) yields

the relationships a1 = −π1 + π2 + π4, a2 = −π1 − π2 + π3, a3 = −π1 + π2 − π4, and

a4 = −π1 − π2 − π3 − 1. Alternatively, solving these expressions for the πj in terms

of the aj yields π1 = −a4(1)/4, π2 = −(1−a1 +a2−a3 +a4)/4, π3 = −(1−a2 +a4)/2

and π4 = (a1 − a3)/2. Note that the term (1 − z
4) is not multiplied by another

polynomial, as in HEGY, in which a representation of ϕ(z), rather than just a4(z),

is sought and which results in a term of the form a
�(z)(1−z

4), where a
�(z) is a finite

polynomial. This term is required in HEGY to account for the additional terms in

the polynomial involving b(z), which in this approach has already been incorporated

within the disturbance term ut.

Let yt = (1−B
4)Xt and define the variables

yjt = αj(B)Xt (j = 1, . . . , 4). (3.47)

Then, using the representation (3.46) for a4(z), (3.45) may be written as the regres-

sion model

yt =
4�

j=1

πjyj,t−1 + ut, t = 1, 2, . . . , T, (3.48)
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which is in the form of the HEGY regression1 but with one notable exception their

representation of ϕ(z) yields a variable on the left hand side which may be de-

noted a
�(B)yt and which incorporates the dynamics that are effectively associated

with b(z), in order to produce a white noise disturbance. In the spectral regres-

sion approach adopted here such dynamics are assigned to the disturbance term

ut and are treated non-parametrically via the use of appropriate spectral density

estimates.

Defining the vectors xt = [y1,t−1, y2,t−1, y3,t−1, y4,t−1]
�

and π = [π1, π2, π3, π4]
�

(3.48)

may be written as the regression model

yt = x
�

t
π + ut, t = 1, 2, . . . , T. (3.49)

The frequency domain tests of the restrictions πj = 0 (j = 1, . . . , 4) considered here

are based on the frequency domain regression estimator of π defined by

π̂ =

�
1

2M

M�

j=−M+1

f̂xx(ωj)f̂ûû(ωj)
−1

�−1 �
1

2M

M�

j=−M+1

f̂xy(ωj)f̂ûû(ωj)
−1

�
. (3.50)

In the above definition of π̂, f̂ab(ω) denotes a nonparametric estimate of the spectral

density function of two (possibly vector) random processes at and bt, given by

f̂ab(ω) =
1

2π

M�

n=−M

k
� n

M

�
Cab(n)e−inω

, (3.51)

where k(.) is a bounded, even, kernel function satisfying k(0) = 1 and k(x) =

0 for x /∈ [−1, 1], M is a bandwidth parameter, ωj = πj/M , and

1The variable y4t is denoted y3t by HEGY and y3t is HEGY’s y3t−1.



70

Cab(n) =






T
−1

�
T−n

t=1 atb
�
t+n

, n ≥ 0

T
−1

�
T

t=|n|+1 atb
�

t−|n|, n < 0.

(3.52)

In addition, when T → ∞, the bandwidth parameter M → ∞ but in a way such

that M/T
1/2 → 0.

The variable ût = yt − x
�
t
π̂OLS denotes the residual from a time domain regression

of yt on xt, where π̂OLS is the OLS estimator. The estimated asymptotic covariance

matrix of π̂ is

VT =
1

T

�
1

2M

M�

j=−M+1

f̂xx(ωj)f̂ûû(ωj)
−1

�−1

. (3.53)

Two types of test statistic are considered for testing the individual null hypothesis

that πj = 0(j = 1, . . . , 4). The first type of statistic is simply T π̂j(j = 1, . . . , 4) while

the second type is the t-ratio defined by

tj =
π̂j

V
1/2
T,jj

, j = 1, . . . , 4, (3.54)

where VT,jj denotes the j’th diagonal element of VT . The hypotheses that π3 = π4 = 0

and that π1 = π2 = π3 = π4 = 0 can be tested using Wald statistics constructed

from the unrestricted estimator π̂. They will be denoted J34 and J1234 respectively,

and are defined by

Ji = π̂
�
R

�

i
[RiVT R

�

i
]−1

Riπ̂, i = 1234, 34. (3.55)

where R1234 = I4, R34 = [02, I2], 0n denotes an n × n matrix of zeros, In denotes

an n × n identity matrix and VT is the covariance matrix defined in (3.53). The
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limiting distributions of these statistics, under the stated assumptions, are given by

Chambers & McGarry (2002) when they propose their method.

Bootstrapping the HEGY tests

Burridge & Taylor (2003) argue that the effects on the sampling distributions of

the HEGY statistics induced by shocks which are serially correlated, periodically

heteroscedastic, and possibly asymmetric, can be successfully accommodated by the

use of a bootstrap. In addition, the bootstrap corrects the adverse effects of data-

dependent lag selection seen in the conventional augmented HEGY tests and stops

inflation of test significance levels above their nominal levels. Finally, the bootstrap

delivers estimated tail probabilities which are the quantities required for inference

and so there is no issue of the unreliability of tabulated critical values.

The model considered is a quarterly time series which can be written as

a(B)X4t+s = u4t+s + µs + βs(4t + s), (3.56)

φ(B)u4t+s = �4t+s, (3.57)

where a is a fourth order polynomial in the usual lag operator, B. This allows for

periodic intercepts and time trends through µs and βs respectively. The shocks

{u4t+s} are an AR(m) process, in which the m roots of φ(z) = 0 all lie outside

the unit circle. In addition, they are allowed to be periodically heteroscedastic,

and to have an asymmetric distribution, that is, we define the annualised vector

innovation process �t = (�4t−3, �4t−2, �4t−1, �4t)́ and assume that �t ∼IID(0,–) with

–=diag(σ2
−3, . . . ,σ

2
0), and with finite fourth moments. The innovations are otherwise

unrestricted. The shocks, {�4t+s}, and hence {X4t+s}, display PH unless σs = σ, for

all s, Burridge and Taylor (2003).
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In order to derive the HEGY tests, the polynomial a(B) is factorised at the seasonal

frequencies ωk ≡ 2kπ/4, k=0, 1, 2, and expanded around the seasonal unit roots

exp(±2kπi/4), k = 0, 1, 2, to obtain the auxiliary regression equation

∆4X4t+s = µ
�

s
+ β

�

s
(4t + s) +

4�

j=1

πjyj,4t+s−1 +
m�

j=1

φj∆4X4t+s−j + �4t+s, (3.58)

which may be estimated along 4t + s = m + 5, . . . , 4T . The inclusion of sea-

sonal level and trend dummies in (3.58), whose parameters µ
�

s
and β

�

s
, respectively,

are linear mappings of µs and βs of (3.56), s = −3, . . . , 0, ensures that the sam-

pling distributions of the estimated coefficients on the transformed level variables,

yj,4t+s, j = 1, . . . , 4, and their associated t- and F-statistics are unaffected by the

µ ≡ (µ−3, . . . , µ0)́ and β ≡ (β−3, . . . , β0)́ parameters. The transformed level variables

which correspond to the seasonal frequencies ωk = 2kπ/4, are given by (3.47).

The tests of interest are the regression t-statistics, t1, t2, t3 (one-sided) and t4 (two-

sided), together with the F-statistics, F34, F234 and F1234.

The bootstrap algorithm begins with estimation of (3.58), with the lag length, m,

and the intervening lags to be retained, selected using the sequential elimination

procedure advocated by Beaulieu & Miron (1993, pp.318-319). That is, a maximum

lag, mmax, and the deterministics are specified, and the test equation estimated.

Thereafter, if any lagged fourth differences have t-statistics smaller than 1.65 in

absolute value (i.e. insignificant at an approximate level of 10%), the least significant

lag is removed and the equation re-estimated. This continues until all the included

lags are significant, at which point their estimated coefficients and the seven unit

root test statistics are recorded, and their residual vector is stored.

The residuals for each quarter are stored separately, and a sample from each of

their empirical distributions is drawn. These four independently drawn samples are

merged, preserving the seasonal ordering, into the vector �
�, which is then used
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to construct a bootstrapped observed sequence under the null hypothesis via the

equation,

φ̂(B)∆4X
�

4t+s
= �

�

4t+s
(3.59)

initialized at 0.

The full fitting algorithm, using the same maximum lag, selection method, and the

deterministics is then applied to the X
�

4t+s
series and the resulting test statistics com-

pared with the originals. This procedure is repeated for a large number of bootstrap

samples and record how many of the bootstrapped statistics are more extreme (in

the relevant tail/s) than the original, thus locating the latter in the bootstrap null

cumulative density function (cdf).

An important feature of the fitted equation is that the test statistics and the residual

vector are unaffected by the deterministic parameters under both the null and the

alternatives. Thus, in simulating the null distribution by the bootstrap sampling from

the seasonal residual empirical cdfs we need not incorporate the fitted deterministic

parameters in the bootstrap samples, provided they are included in the test equation

fit to those samples (Burridge & Taylor, 2003).

Pons

Pons (2004) asserts that temporal aggregation has important implications for sea-

sonal time-series analysis, since this data transformation confuses non-observable

seasonal cycles with observable ones. This sampling effect known as aliasing implies

that when a particular quarterly seasonal unit root is detected, it is not possible

to state whether the unit root is present at a monthly frequency with the same pe-

riod, or at another monthly frequency with a period not observable at the quarterly

interval.

In his paper (Pons, 2004) proposes to control effects from temporal aggregation

by combining monthly and quarterly seasonal unit root tests and applies it to the

HEGY test. It is argued, first, theoretically and then demonstrated with a Monte
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Carlo experiment that it is possible to improve substantially the performance of

the seasonal unit root test that only uses monthly information. Furthermore, the

proposed methodology can be extended to all seasonal unit root tests that test for

integration or no integration at the separate frequencies.

3.2.3 Structural Time Series Models

Unit root testing is normally carried out within a framework of autoregressive models.

Auto-regressions are popular, especially in economics, because they are easy to fit.

An alternative approach is to use structural time series models (STMs). These models

are formulated in terms of unobserved components such as trends, seasonals, and

cycles. The most interesting testing issues in structural time series models concern

testing the null hypothesis that a particular component is deterministic against the

alternative that it is stochastic and non-stationary. The non-stationarity in question

appears under the alternative rather than under the null hypothesis. In the unit root

tests, such as augmented Dickey-Fuller, the situation is reversed, but for unobserved

components models this is not the natural way to proceed (Harvey, 2001).

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) Test

Kwiatkowski et al. (1992) propose a test of the null hypothesis that an observable

series is stationary around a deterministic trend. The series is expressed as the sum of

deterministic trend, random walk and stationary error, and the test is the Lagrange

Multiplier (LM) test of the hypothesis that the random walk has zero variance.

Under the additional assumptions that the random walk is normal and that the

stationary error is normal white noise, the one-sided LM statistic for the trend sta-

tionarity hypothesis is the same as the Locally Best Invariant (LBI) test statistic.

However, the assumption that the error is white noise is not credible in many appli-

cations, since it implies that under the null hypothesis the variable should have iid
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deviations from the trend. Therefore, they derive the asymptotic distribution of the

statistics under general conditions on the stationary error, and propose a modified

version of the LM statistic that is valid asymptotically under these general condi-

tions. The asymptotic distribution is nonstandard, involving higher-order Brownian

bridges.

Let Xt, (t = 1, 2, . . . , T ), be the observed series to be tested for stationarity. It is

assumed that it can be decomposed into the sum of a deterministic trend, a random

walk, and a stationary error:

Xt = βt + rt + �t. (3.60)

Here rt is a random walk:

rt = rt−1 + ut, (3.61)

where the ut are iid (0, σ2
u
). The initial value r0 is treated as fixed and serves the

role of an intercept. The stationarity hypothesis is simply that σ
2
u

= 0. Since

�t is assumed to be stationary, under the null hypothesis Xt is trend-stationary.

Kwiatkowski, Phillips, Schmidt and Shin also consider the special case of the model

(3.60) in which case under the null hypothesis Xt is stationary around a level (r0)

rather than around a trend.

Let et, (t = 1, 2, . . . , T ), be the residuals from the regression of X on an intercept

and time trend. Let σ̂
2
�

be the estimate of the error variance from this regression

(the sum of squared residuals, divided by T ). Define the partial sum process of the

residuals:

St =
t�

i=1

ei, t = 1, 2, . . . , T. (3.62)

Then the LM -and the LBI- statistic is



76

LM =
T�

t=1

S
2
t
/σ̂

2
�
. (3.63)

The ’long-run variance’ of the model is defined as

σ
2 = lim

T→∞
T
−1

E(S2
T
), (3.64)

which will enter into the asymptotic distribution of the test statistic. A consistent

estimator of σ
2, say s(l)2, can be constructed from the residuals et. Specifically,

KPSS use an estimator of the form

s
2(l) = T

−1
T�

t=1

e
2
t
+ 2T−1

l�

s=1

w(s, l)
T�

t=s+1

etet−s (3.65)

as in Phillips (1987) or Phillips & Perron (1988).

Here w(s, l) is an optional weighting function that corresponds to the choice of a

spectral window. In the construction of the test, KPSS use the Bartlett2 window

w(s, l) = 1− s/(l + 1) which guarantees the non-negativity of s
2(l). For consistency

of s
2(l), it is necessary that the lag truncation parameter l → ∞ as T → ∞. The

rate l = o(T 1/2) will usually be satisfactory under both the null and the alternative

(Kwiatkowski et al., 1992).

For the tests of both the level-stationary and trend-stationary hypotheses, the de-

nominator of the LM statistic in (3.63) is σ̂
2
�
, which converges in probability to σ

2
�
.

However, when the errors are not iid, the appropriate denominator of the test statistic

is an estimate of σ
2 instead of σ

2
�
.

First the level-stationary case is considered. The model is as in (3.60) with β set to

zero, so that the residuals et are from a regression of y on intercept only; that is,

et = Xt − X̄ = Xt − µ. St is then the partial sum process of the residuals et as in

(3.62). So the test statistic is

2In Phillips & Perron (1988) is mentioned as the triangular window.
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η̂µ = T
−2

T�

t=1

S
2
t
/s

2(l) (3.66)

with

η̂µ →
� 1

0

W1(r)
2
dr, (3.67)

under the assumptions of Phillips and Perron (1988). Here W1(r) is a standard

Brownian bridge:

W1(r) = W (r)− rW (1),

where W (r) is a Wiener process (Brownian motion).

The analysis of the trend-stationary case is very similar to that of the level-stationary

case. The model is now exactly as in (3.60). Let et be the residuals from a regression

of Xt on intercept and trend, and let St be the partial sum process of the et as in

(3.62). Furthermore, let η̂τ be the new test statistic, where the subscript τ indicates

that we have extracted a mean and a trend from X, and serves to distinguish the

trend-stationary case from the level-stationary case. Then

η̂τ = T
−2

T�

t=1

S
2
t
/s

2(l) (3.68)

and its asymptotic distribution is

η̂τ →
� 1

0

W2(r)
2
dr (3.69)

where the second-level Brownian bridge W2(r) is given by

W2(r) = W (r) + (2r − 3r2)W (1) + (−6r + 6r2)

� 1

0

W (s)ds. (3.70)

The upper tail critical values for both derived limiting distribution are calculated via
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a direct simulation and tabulated by the authors of these tests in the paper where

the tests were introduced (Kwiatkowski et al., 1992). In addition, KPSS say that

the above tests are intended to complement unit root tests, such as the Dickey-Fuller

tests and can be extended to allow for nonlinear trends.

Canova and Hansen (CH) Test

In the same sense that HEGY generalized the DF framework from the zero frequency

to the seasonal frequencies (Canova & Hansen, 1995) generalize the KPSS framework

from the zero frequency to the seasonal frequencies. They describe a set of tests

to examine the structural stability of seasonal patterns over time. The tests are

built on the null hypothesis of unchanged seasonality and can be tailored to test for

unit roots at seasonal frequencies or for time variation in seasonal dummy variables.

Thus, they propose a test for whether the seasonal pattern changes sufficiently over

time to warrant a seasonal unit root, or whether a stable seasonal pattern is more

appropriate. A discussion of the way they propose to test for non-constant seasonal

patterns follows.

They start from a linear time series model with stationary seasonality, a seasonal

dummy model:

Xi = y
�
iβ + d

�

i
α + �i, i = 1, 2, . . . , T. (3.71)

In (3.71), Xi is real valued, yi is a k × 1 vector of explanatory variables, di is an

s× 1 vector of seasonal dummy indicators and α is an s× 1 parameter vector, where

s is the period of the seasonal component. In addition, �i ∼ (0, σ2) is an error

uncorrelated with yi and di. Notice that there is no intercept µ included in the

above model to achieve identification. The advantage of this formulation is that the

coefficients α represent seasonal effects. To study whether the seasonal intercepts, α,

have changed over time, Canova and Hansen modify the above conventional seasonal

dummy model by entering αi in place of α.
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There are many forms of potential nonstationarity for αi that could be considered;

in their paper they consider stochastic variation of a martingale form:

A
�
αi = A

�
αi−1 + ui, (3.72)

where α0 is fixed and {ui,Fi} is a martingale difference sequence with covariance

matrix E(uiúi) = τ
2
G, G = (ÁΩ̂A)−1. The s × a matrix A selects the elements of

α that we allow to stochastically vary under the alternative hypothesis. Note that

when τ = 0 the coefficient vector is fixed at α0 for the entire sample.

The LM test for H0 : τ = 0 against H1 : τ �= 0 is given by the statistic:

L =
1

T 2

T�

t=1

D̂
�

t
A(ÁΩ̂A)−1

ÁD̂t =
1

T 2
tr

�
(ÁΩ̂A)−1

Á

T�

t=1

D̂tD̂
�

t
A

�
, (3.73)

where D̂t =
�

t

i=1 di�̂i, tr(Q) is the trace of Q and Ω̂, the consistent kernel estimate

of the long-run covariance matrix of di�i, Ω, is defined as:

Ω̂ =
m�

k=−m

w
� k

m

� 1

n

�

i

di+k �̂i+kd́i�̂i. (3.74)

In the above equation m is the bandwidth and w(.) is any kernel function that

produces positive semidefinite covariance matrix estimates, such as the Bartlett,

Parzen, or the quadratic spectral.

Testing the stability of the ath seasonal intercept, (where 1 ≤ a ≤ s), can be achieved

by choosing A to be the unit vector with a 1 in the ath element and zeros elsewhere.

This produces the test statistic:

La =
1

Ω̂aaT
2

T�

t=1

D̂2
at, (3.75)
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where D̂at is the ath element of D̂t, and Ω̂aa is the ath diagonal element of Ω̂. Under

H0 the limiting distribution of this test statistic is given by:

La →d CvM(1) for each a = 1, . . . , s, (3.76)

where CvM(p) =
� 1

0 Wp(r)
�
Wp(r)dr, ‘→d’ denotes convergence in distribution and

Wp denotes a vector standard Brownian bridge of dimension p. When p = 1, the

distribution of CvM(p) simplifies to that known as the Cramér-von Mises goodness-

of-fit distribution widely used in the statistical literature, so we will refer to CvM(p)

as the generalized Cramér-von Mises distribution with p degrees of freedom.

Here, the statistics La are essentially the KPSS statistic applied to the seasonal sub-

series (only the observations from the ath seasonal are used). Thus, the KPSS test

is for instability in the average level of the series, but the La tests are for instability

in the seasonal subseries.

One straightforward test statistic for testing instability in all the seasonal intercepts

can be obtained by taking A = I, yielding:

LJ =
1

T 2

T�

t=1

D̂
�

t
Ω̂−1

D̂t. (3.77)

Standard analysis shows that under H0, LJ →d V M(s). Note that LJ is a test for

instability in any of the seasonal intercepts, so that it will have power against zero-

frequency movements in Xt. In other words, LJ is a joint test for instability at the

zero frequency as well as at the seasonal frequencies. To cope with this problem one

could test for variation in the joint seasonal intercept process that keeps the overall

mean constant. Specifically, decompose the seasonal intercepts a into an overall

mean and deviations from the mean. Then test the joint stability of those deviations

from the mean.
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Critical values for the pre-described test statistics, the generalized Von Mises distri-

bution, are given in the same paper where they propose their tests Canova & Hansen

(1995).

One shortcoming of the above framework is that the test for a unit root at a particular

frequency is seriously affected by the existence of other “unattended” unit roots which

may exist at the same or other frequencies. In particular, the stationarity tests distort

below nominal size under the null and display an associated loss of power under the

alternative as argued by Hylleberg (1995). Furthermore, even though the above test

takes care of both stationary autocorrelation and heteroscedasticity, is not well suited

to handle non-stationary dynamics in the residuals. Finally, it can be argued that, in

the same way CH advise against second differencing, because it can absorb at least

one of the annual unit roots, it is possible to lose semi-annual unit roots by the first

differencing they are proposing (Hylleberg, 1995).

Taylor

As an answer to the problem raised by the unattended unit roots by Hylleberg (1995),

Taylor (2003) suggests that before testing for a unit root at a particular frequency

one should first transform the data by applying a differencing filter (prefilter), that

reduces the order of integration at each one of the remaining (unattended) frequencies

by one.

Taylor proposes the following prefilters:

F0 = (1−B
d)/(1−B) for testing at the zero frequency, (3.78)

Fπ = (1−B
d)/(1 + B) for testing at the Nyquist, π, frequency, (3.79)

where d is even, and

Fk(B) = (1−B
d)/(1− 2cos(2kπ/d)B + B

2) for testing at the harmonic frequencies

(3.80)
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where k = 1, . . . , d� and d
� ≡ (d/2)− 1, if d is even or [d/2], if d is odd.

An advantage of the above technique is that it does not alter the limiting distri-

bution theory for the tests vis-á-vis the case in which the are no unattended unit

roots(Taylor, 2003).

(Un)Attended Structural Breaks - Busetti and Harvey, Busetti and Tay-

lor

Busetti & Harvey (2003) argue that the KPSS and CH stationarity tests are likely to

be oversized if there are structural breaks in the seasonal pattern and propose mod-

ifications to the test statistics to overcome that effect. However, these modifications

change the limiting null distribution of the statistics from CvM(s1) to CvM(2s1),

where s1 is the number of seasonal intercepts included in the test. In contrast to the

seasonal breaks, breaks in the trend leave the asymptotic distribution of the statistics

unaffected as long as they are correctly modelled.

In the context of a regression of a time-series variable on a set of zero and seasonal

frequency spectral indicator variables the null hypothesis, of interest, is that of fixed

parameters against the alternative that (at least one of) the parameters on a given

subset, say J1, of the spectral indicators evolve as random walks, revealing thus that

the process has unit root(s) at (at least one of) the spectral frequencies included in

J1. If some or all of the parameters on the spectral frequency regressors included

in J1 display a structural break these breaks are termed attended while otherwise

unattended (Busetti & Taylor, 2003).

Busetti and Taylor, referring to the KPSS and CH tests, state:‘From a practical per-

spective, the impact of unattended breaks and unattended unit roots on the stationarity

tests of Section 2 are just as important as those arising from attended breaks.’

Busetti & Taylor (2003) put forward two ways of dealing with processes that are

stochastically stationary about a deterministic component subject to structural breaks
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and thus, can display properties very similar to a unit root process. The first, for

structural breaks is bias correcting the original stability tests while the second, effec-

tive against both structural breaks and unattended unit roots is achieved by running

stability tests on pre-filtered data. Their work extends the suggestions of Busetti &

Harvey (2003) on dealing with structural breaks.

Suppose that there is a structural break at an unknown point in the sample, a0 ∈
(0, 1). They propose to replace in the KPSS and CH test statistics the biased estima-

tor -in the presence unattended breaks- of the error variance by an asymptotically

unbiased one, which is obtained by minimizing the sum of squared residuals over

all the possible break dates, Busetti and Harvey (2003), Busetti and Taylor (2003).

Specifically, under the null, a
� = arg infaσ̂

2(a) is a superconsistent3 estimator of

a0 and thus, σ̂
2(a) = T

−1
�

T

t=1 �t(a)2 is the estimator they are proposing for the

denominator of the statistics; where �t(a) denotes the OLS residuals from the fitted

regression.

To deal with both structural breaks and unattended unit roots they use the differ-

encing filter �2 = (1 + B)(1 + B
2) to reduce by one the order of integration at all of

the spectral frequencies where a structural breaks is suspected.

Both suggested methodologies recover (under mixing conditions, see Busetti & Taylor

(2003)) the usual limiting null distribution of the Cramér-von Mises family, appro-

priate to the case where there are no breaks or unattended unit roots.

3.2.4 Discussion

It is evident that the question of which testing procedure one should use is not

readily answered because the reason that one decides to test for unit roots in the

first place is crucial. However, the DF, ADF and PP tests should be avoided since

they lack power against meaningful alternatives. In addition, as for the variance

ratio test, in small samples, using the asymptotic distributions results in substantial

3It converges to the true value at rate T .
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size distortions and it is advised to obtain small sample critical values using Monte

Carlo methods.

Generally, one of the issues arising when conducting unit root tests is the specification

of the deterministic trend in a model, as mentioned at the beginning of this chapter,

as it is closely related to the power and size of the tests. It is important to include

as many deterministic regressors as there are deterministic components in the trend

function of the DGP. Otherwise the test will at best lose finite sample power or

at worst have power that goes to zero as the sample size increases. Nevertheless,

one does not want to include more deterministic regressors than necessary as that

will decrease the power of the test, Maddala & Kim (1998). Some authors propose

sequential testing to overcome the above problem, but that then leads to new issues

as the asymptotic distributions for general trends have yet to be derived. Finally

for the majority of the tests mentioned above a trade off arises from the fact that

if the number of observations, n is too small the tests are biased when there is

autocorrelation while for a large value of n the tests lose power.

A large number of tests have been devised as modifications to the older ones, trying

to deal with some of the arising issues. Chambers & McGarry (2002), state that

there are different ways to deal with nuisance parameter dependencies. Firstly, one

can augment the regression with lagged differences in an attempt to remove the

serial correlation from the disturbance, i.e. ADF test, or, extended to seasonal unit

root tests, i.e. HEGY, include a sufficient number of lagged (seasonal) differences as

additional regressors in order to whiten the residuals. However, the outcome of such

tests will be affected by the number of lagged differences employed.

Secondly, one can make non-parametric adjustments to the test statistics, thus

achieving the desired limiting distributions. Lastly, by carrying out the regression

in the frequency domain instead of the time domain, one can use non-parametric

spectral density estimators to deal with the heteroscedasticity attributed to serial

correlation. Furthermore, by employing the bootstrap method or Monte Carlo one

can be sure of the limiting distributions not being affected by violated assumptions.
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These four ways are the main ways by which the mentioned tests were modified to

accommodate more general conditions. For more information about unit root and

seasonal unit root tests the reader is referred to Maddala and Kim (1998).

3.2.5 Applications

Three of the aforementioned tests are applied to the House, Unemployment and

Kola data sets. We start by applying the Phillips-Perron test which tests the null

hypothesis of a unit root at 0 frequency against the alternative hypothesis of sta-

tionarity.

Table 3.1: Phillips-Perron Unit Root Test

Series p-value

House Data 0.0140

Unemployment Data 0.826

Kola Data 0.01

The results are presented in Table 3.1. The test concludes that only Unemployment

has a stochastic trend; unit root at 0 frequency.

The HEGY test tests the null hypothesis of a unit root at all frequencies against

the alternative of stationarity. No deterministic components were included in the

models. In Table 3.2 the results from this test are displayed. All series are found to

have a seasonal unit root and no root at the long-run (0) frequency.

The Canova-Hansen test tests for instability in the seasonal pattern. The null hy-

pothesis is of a stable seasonal pattern against the alternative of a unit root. The

following tests are for stationary cycles at all seasonal frequencies without includ-

ing a first order lag and a linear trend. The Canova-Hansen test accepts the null

hypothesis of a stable seasonal pattern, i.e. no unit root, see Tables 3.3 and 3.4.
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Table 3.2: HEGY Unit Root Test p-values

Freq. House Unemployment Kola

0 0.100 0.100 0.100

π/6 0.100 0.010 0.100

π/3 0.100 0.100 0.010

π/2 0.010 0.100 0.010

2π/3 0.048 0.100 0.010

5π/6 0.010 0.010 0.010

π 0.010 0.100 0.010

Table 3.3: Canova-Hansen Unit Root Test p-values

Series L-statistic

House Data 1.117

Unemployment Data 1.088

Kola Data 0.656

It is seen that the interpretation of the test results is difficult as a number of decisions

have to be made before the tests are performed. The power and the size of these tests

is closely related to the model chosen to represent the data. One has to decide on the

appropriate order of integration in the model to be tested. The order of integration

is important as it can affect the outcome of the tests directly, through the creation of

the test statistic, and indirectly, through the appointed critical values. Furthermore,

the deterministic parts of the model have to be chosen correctly.

The specification of the deterministic trend in the model, as mentioned before, is

crucial. One should include as many deterministic regressors as there are determin-

istic components in the trend function of the DGP. Otherwise the power of the test

may converge to zero as the sample size increases. One the other hand, including

more deterministic regressors than necessary can still have a detrimental effect to
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Table 3.4: Canova-Hansen Unit Root Test Critical Values

L-statistic p-value

2.49 0.10

2.75 0.05

2.99 0.025

3.27 0.01

the power of the test. The critical values used for inference differ according to the

various forms of the specified deterministic trend. Through the above three examples

we see that it is hard to decide on the above features, especially when the purpose

of conducting these tests is to explore the nature of the series examined as is in the

context of this thesis.

In addition, these tests come with limitations as a number of different assumptions

need to be made before one can use them effectively. Assumptions of independence

and Normality are often required while heteroscedasticity and autocorrelation can

also hinder the correct interpretation of the test results.

Due to this fact, the unit root testing procedures are not as straightforward as con-

ventional testing procedures (Maddala & Kim, 1998). For the purpose of our analyses

we require methods that do not impose many assumptions on the series and whose

interpretation is fairly straightforward. Furthermore, as discussed in the previous

chapter we are concerned with the different types of seasonality focusing mainly on

systematic changes in either phase or amplitude. Thus, the above sophisticated test-

ing techniques emphasize on many aspects that are not necessary in our studies while

they fail to answer our main concerns regarding the type of seasonality. Thus, there

is a need for a simple and robust way to test for the various types seasonality.
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Figure 3.7: A diagram summarizing the Unit Root Tests that assume an ARIMA structure.
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Chapter 4

Further Tests on Seasonality

4.1 Introduction

As we have seen from the last chapter conducting seasonality tests is not always

straightforward and never without difficult inference. Furthermore, these elaborate

and sophisticated testing frameworks focus on aspects that, even though interesting,

may fall outside the main scope of our study. As an alternative to the above men-

tioned techniques simple, robust and fairly automated procedures are presented in

this chapter. The first section introduces Resampling Tests based on Classical Sea-

sonal Decomposition (CSD) while the second looks at Generalized Additive Models

(GAMs) and how they can be utilized to test for types of seasonality.

4.2 Resampling Tests for Seasonality

The first procedure presented is used to test the absence of a seasonal structure

against the alternative of a stable seasonal cycle, the second the presence of a stable

seasonal cycle against the alternative of a trending one and the third the absence of

90
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a seasonal structure against the presence of a trending one.

4.2.1 Non Seasonal vs Seasonal

This testing procedure is beneficial when one needs to test the existence of a stable

seasonal pattern in the examined time series. The starting hypothesis is that of no

seasonal pattern (H0 : Non Seasonal) with the alternative hypothesis of a stable one

(HA : Stable Seasonal). Thus, one should be cautious when applying this method to

a series that is suspected of having a trending seasonal pattern as this test may fail

to indicate it. A series with a highly trending seasonal cycle that is buried in noise

may in fact be deemed “non seasonal” using this testing algorithm. For those series,

a different test, one between no seasonal pattern and a trending one, might be more

appropriate and follows.

The procedure starts by employing an additive approach, assumes no seasonal pat-

tern exists, and thus, a trend component, Tt, is extracted from the data, {Xt}, using a

(centred, if necessary) moving average of order s, MA(s), where s is the hypothetical

periodicity:

Xt = Tt + Rt (4.1)

Stable seasonal indices are evaluated by averaging Rt across the years for each season

and then standardizing them. Thus:

Rt = St + R
∗
t

The sum of the squared residuals, R
∗
t

is saved, SSR =
�

t

R
∗2
t

.

The residuals, {Rt}, are randomized to create the series {Rt1}. Then seasonal indices,

St, are evaluated from Rt. The sum of the squared residuals, (SSR1) is then noted

and the procedure of randomizing the errors from the first decomposition, {Rt}, is

repeated nine hundred and ninety eight times, (998), to generate the sums of squared
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residuals, SSR1, . . . , SSR999. Thus, for k=1, . . . , 999 we have:

Rtk = Stk + R
∗
tk

(4.2)

and SSRk =
�

t

R
∗2
tk

.

Inference is based on the fact that if the series really has a stable seasonal pattern,

then SSR will be significantly smaller than the sum of squared residuals evaluated

from the randomized residuals, Rtk, i.e. SSRk. Hence, the lower tail of the distribution

is used and a p-value is computed as follows1:

p-value =

999�

i=1

I(SSR > SSRi)

1000
, (4.3)

where

I(TRUE) = 1 and I(FALSE) = 0 (4.4)

For a given significance level, too small a p-value indicates a stable seasonal pattern

while, an acceptable p-value is evidence of non-seasonality. This algorithm offers

a simple test but without the need for any assumptions about distribution or the

serial (in)dependence of the data making it robust and useful in practical time series

analysis.

One should note, however, that using MAs means that if we test a non seasonal

series we may find it seasonal as the MAs can induce seasonality to a non seasonal

series during trend extraction. It may, thus, be better to use a different smoothing

technique to estimate the trend. In a later chapter we will modify this algorithm to

use Friedman’s super-smoother which is described later.

1A further test on whether the seasonality is stable or not, once its existence has been verified,
will be conducted.
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4.2.2 Stable Seasonal vs Trending Seasonal

Using the previous algorithm one can verify the existence of seasonality, but only

in the form of a stable seasonal pattern. When seasonality is clearly present one

wants to test whether that pattern is truly stable and not trending. In this case,

the starting hypothesis is that of a stable seasonal pattern (H0 : Stable Seasonality)

with the alternative hypothesis of a trending one (HA : Trending Seasonality).

It becomes crucial to distinguish between the trend in the series and any trend in the

seasonal pattern, as over-smoothing the series will underestimate the existing trend,

while if one allows the trend to pick up too much of the variation in the series it could

actually extract some of the seasonality in it, and even pick up noise. The latter may

not seem important if the purpose of our analysis is to forecast, since the variation

may still be modelled correctly (though not by the seasonal component) and thus,

the forecasts could be successful. However, since the purpose of this study is to

understand and describe the behaviour of the series and the underlying dynamics in

it, it is very important to correctly recognize and distinguish between the long term

trend and any trend in the seasonals.

Using a stable CSD procedure, a stable seasonal pattern and a trend component are

extracted from the data. This stable CSD is performed using a MA(s) where s is

the periodicity of the series, Xt, to extract a first trend, T
1
t
, and produce the first

de-trended series, Detr
1
t
:

Detr
1
t

= Xt − T
1
t
. (4.5)

Then the first seasonals, S
1
k
, k = 1, . . . , s, are estimated in the usual way. These are

then repeated to create the series of first seasonals, S
1
t
, of equal length to the starting

time series, Xt. This in turn is subtracted from the data to produce a deseasonalized

series, Des
1
t
:

Des
1
t

= Xt − S
1
t
. (4.6)

A MA(s) is again employed to smooth the de-seasonalized series, Des
1
t
, and yield a
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second trend, T
2
t
, and thus, a second de-trended series, Detr

2
t
:

Detr
2
t

= Xt − T
2
t
. (4.7)

We now generate a second set of seasonals, S
2
k
, k = 1, . . . , s which form a second/final

time series of seasonals, S
2
t
. The overall mean of the second seasonals is added to

the second trend to form the final trend, T
3
t
:

Xt = T
3
t

+ S
2
t

+ Rt. (4.8)

The values in each season of the residuals, {Rt}, from this decomposition are sepa-

rately smoothed across the years to evaluate trending seasonals, S
∗
t
. Then we remove

these trending seasonals from the series to generate residuals, R
∗
t
,

Rt = S
∗
t

+ R
∗
t
. (4.9)

The smoother in this case is Friedman’s super-smoother, a variable span scatter-

plot smoother. Friedman’s super-smoother is a running lines smoother that chooses

between three different spans for the lines. The running lines smoothers are sym-

metric, using k data points for each predicted value, k/2 data points on each side,

with values of k as 0.5 ∗n, 0.2 ∗n and 0.05 ∗n, where n is the number of data points

in the time series. Then, by cross-validation for each prediction, the best of the

three fitted smoothers is chosen. Finally, the best spans are smoothed by a running

lines smoother and the final prediction is chosen by linear interpolation (Friedman,

1984).

The above smoother was selected as the most appropriate from others available in

literature because it uses cross-validation to choose from different spans, making it

automatic, more robust and more reliable to extract the present trending seasonals

whilst not over-smoothing the data.
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The sum of the squared residuals is saved, SSR. The residuals, Rt, are now random-

ized to create the series {Rt1}. Then the super-smoother is again used on the {Rt1}
series for each season across the years to extract a trending seasonal pattern, S

∗
t1,

and generate residuals, R
∗
t1:

Rt1 = S
∗
t1 + R

∗
t1.

The sum of the squared residuals (SSR1) from this decomposition is then noted and

the procedure of randomizing the {Rt} series, from which the trending seasonals are

extracted, is repeated nine hundred and ninety eight times to generate the sums of

squared residuals, SSR1, . . . , SSR999, which are saved, as before.

If the series does not truly have trending seasonality then applying this procedure

to the randomized data should be essentially the same as applying it to the original

data, whereas if the series does exhibit trending seasonality then the application

to the original data will yield a significantly better fit as measured by the sum of

squared residuals.

Thus, the lower tail of the distribution is used for inference and the p-value is as in

(4.3). Too small a p-value is taken to indicate trending seasonality at the appropriate

level, whereas an acceptable p-value indicates stable seasonality.

As mentioned in the previous chapter, there may be different types of changing

seasonals. A sensitivity analysis of the above procedure will follow later. Finally

we recall that the definition of a trending seasonal pattern is that the seasonals are

systematically shifted in time, while a seasonal pattern that is stable or fluctuating

in time is considered a stable seasonal pattern, i.e. regardless of other changes.

4.2.3 Non Seasonal vs Trending Seasonal

In this section we discuss a test between the starting hypothesis of no seasonal pattern

(H0 : Non Seasonal) and the alternative hypothesis of a trending seasonal pattern

(HA : Trending Seasonality). This testing procedure is similar to the two already
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mentioned with the obvious difference that the non seasonal decomposition, (only

a trend is extracted) employed in the first test is used on the data to generate the

residuals that will now be used in exactly the same way as in the second test.

Under the null hypothesis of no seasonality present, a trend, Tt, is extracted, using

a MA(s), from the data, {Xt}, where s is again the putative periodicity, as in (4.1).

The residuals, Rt, from this non seasonal decomposition are then smoothed, each

season separately, as in (4.9). Repeated randomisation of the residuals, as before,

allows us to compute appropriate residual sums of squares and perform our test.

When the series does not really have trending seasonality applying this method to

the randomized data is the same as applying it to the original data. If the series,

however, does exhibit trends in the seasonals then the fit to the original data will be

significantly better than the randomized ones. Therefore, inference uses the lower

tail of the distribution with p-value from equation (4.3).

This testing procedure should be valuable if we wish to examine the behaviour of a

time series buried in noise, i.e. the signal of the trending seasonal pattern is too small

or too trending to be detected as a stable one using the first testing procedure.

4.2.4 Applications

The above Resampling tests are used to draw conclusions on the seasonality of the

three example time series. The p-values from the tests for the House, Unemployment

and Kola time series are presented in Table 4.1.

Table 4.1: Resampling Results

NS vs SS SS vs TS (NS vs TS)
House Data Set 0 0.317 0.134

Unemployment Data Set 0 0 0.027
Kola Data Set 0 0.994 0.738

The House time series clearly has stable seasonality with a zero p-value for the
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Non Seasonal vs. Seasonal test and a non significant p-value of 0.317 for the Stable

Seasonal vs. Trending Seasonal test. Similarly, the Unemployment time series clearly

exhibits trending seasonality with both p-values equal to zero for the same tests.

Finally, the results for the Kola data indicate a stable seasonal pattern with zero

and 0.994 p-values. Note that the latter p-value is close to 1 as the evaluated stable

seasonal model gives a very good fit, meaning that the SSR of the first CSD has a

low value so that the subsequent decompositions do not generate smaller SSRs. In

practice, since they all tested seasonal, the Non Seasonal vs Trending Seasonal test

would not be applied; nevertheless, the Unemployment series is identified as having

a trending seasonal even against the alternative of no seasonality.

4.2.5 Discussion

The above tests do not require any assumptions of a specific distribution or of serial

(in)dependence of the time series examined, making them very robust. Consequently

they are easy to implement and have a more reliable interpretation than other more

elaborate techniques that focus on many different aspects of seasonality. The main

purpose of this thesis is to analyze and examine biological time series that are serially

correlated and exhibit different types of seasonality that need to be identified and

explored, so the above tests provide a good basis. Along with the GAM testing

procedures that follow, these are the main tools used in the data analysis of these

biological time series in the following chapters.

4.3 Introduction to Generalized Additive Mod-

els

Generalized Additive Models (GAMs) are often used in literature to build models of

biological data (Venables & Dichmont, 2004) (Guisan et al., 2002) (Barry & Welsh,

2002). In this thesis we use GAMs to test for different types of seasonality. We start
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with a brief explanation of GAM theory and then we construct three different types

of model, under assumptions about seasonality. Examples are used to illustrate the

framework described. The description that follows is based on Wood (2006).

We start with a linear model:

Xi = a + byi + �i, i = 1, 2, . . . , n (4.10)

where X1, . . . , Xn are independent r.v.s following the Normal distribution with mean

µi = a + byi (i = 1, 2, . . . , n) and variance σ
2. The y1, . . . , yn are the explanatory

variables of the model and �1, . . . , �n are the errors. The errors are assumed to be iid

with �i ∼ N(0, σ2). Parameters a and b are unknown and need to be estimated.

The degrees of freedom (d.f.) for the above linear model are (n− 2) since it involves

two parameters, a and b. In general, if a model with p parameters is being fitted to

n data points then its residual d.f. are (n− p).

Such a more general model is more easily written in matrix form, using that Xi ∼
N(µi, σ

2), as:

E(X) = µ = yβ (4.11)

where E(.) denotes expectation, X = (X1, . . . , Xn)T , is the response variable, µ =

(µ1, . . . , µn)T is the mean vector, β = (β1, . . . , βp)T , a vector of unknown parameters

and

y =





1 y11 y12 . . . y1p−1

1 y21 y22 . . . y2p−1

...
...

...
...

1 yn1 yn2 . . . ynp−1





is a matrix of the explanatory variables and is known as the model matrix. The

linear component of the model is given by yβ.

Two approaches are commonly used for estimation; OLS and ML estimation. In
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OLS we minimise, with respect to (w.r.t.) β, the mean squared error (MSE):

1

n
(x− yβ)(x− yβ)T (4.12)

where x = (x1, . . . , xn)T is a realisation of X. Hence, the estimated parameter values

minimise the errors in our model in this sense.

The ML estimation is based on maximising the likelihood function of X w.r.t. β.

Thus, we find the parameter estimates that maximise the likelihood of the data

given the chosen model. Let Xi have a probability (density or mass) function f(xi)

then the Likelihood (L) is defined as:

L(β) =
n�

i=1

f(xi). (4.13)

where L(β) implies that for given values of xi the likelihood function can be seen as

a function of the unknown parameters.

Maximisation of the log-likelihood, denoted by l, yields the same results and is often

computationally more efficient,

l(β) = log

�
n�

i=1

f(xi)

�
=

n�

i=1

log(f(xi)) =
n�

i=1

li (4.14)

The MLE and the OLS estimator of β are the same for the linear model when the

errors are normal and it is given by:

β̂ = (yTy)−1yTx (4.15)

provided that (yTy) is invertible. The matrix H = y(yTy)−1yT is called the ‘hat

matrix’ and the elements of its main diagonal, Hii will appear again later.
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Generalized Linear Models (GLMs) allow for a response distribution other than Nor-

mal and for a degree of non-linearity in the model structure. The independent r.v.s

Xi now follow an exponential family2 distribution with p.d.f.:

f(x) = exp

�
xθ − b(θ)

α(τ)
+ c(x, τ)

�
(4.16)

where α(.), b(.) and c(.) are arbitrary functions, θ is the canonical parameter and

τ is the scale (dispersion) parameter. For more information on exponential family

properties see Dobson (2002).

The general structure of a GLM is:

g(µ) = yβ (4.17)

where, since Xi follows an exponential family distribution, E(X) = µ = b
�
(θ)

and

Var(X) = b
��
(θ)α(τ). (4.18)

Assuming α(τ) can be written as α(τ) = τ/ω, where ω is a known constant, we can

write the variance of X in relation to µ as:

Var(X) = V (µ)τ (4.19)

where V (.) a function such that V (µ) = b
��
(θ)/ω. The relationship between the

linear predictor (4.17) and the mean µ is given by g, a monotonic, differentiable

‘link function’, while β is a vector of unknown parameters (Dobson, 2002). Due to

this generalization the model fitting has to be iterative and large sample limiting

results are needed for inference. The estimation and inference are based on ML

estimation but now this requires an iterative LS approach.

2Examples include the Poisson, the Binomial, the Normal and the Gamma distributions.
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The log-likelihood function for each of the observed xi’s is:

li = {xiθ − b(θ)} /α(τ) + c(xi, τ) (4.20)

and for all the observed xi’s :

l =
n�

i=1

li =
n�

i=1

xiθ/α(τi)−
n�

i=1

b(θi)/α(τi) +
n�

i=1

c(xi, τi) (4.21)

The above model’s terms are parametric and thus many plausible non-parametric

(n.p.) functions are excluded from the model fit. Also we have to decide the appro-

priate form of the model while it would be easier, yet computationally more costly,

to let the modelling approach choose the appropriate form of the model. GAMs

provide a framework for n.p. components in GLMs.

“A generalized additive model is a generalized linear model with a linear predictor

involving a sum of smooth functions of covariates.” state Hastie & Tibshirani (1990).

So a general structure is:

g(µ) = yβ + f1(y1) + f2(y2) + f3(y3) + · · · + fm(ym) (4.22)

where the fj are smooth, twice differentiable n.p. functions of the covariates, yk, the

other parts are as defined earlier. Thus, the relationship between the mean of the

response variable and the covariates is specified in terms of smooth functions and

not only parametric terms. The range of potential fits to the data is much larger

than the parametric approach (Faraway, 2006).

INFERENCE

To estimate f1, f2, . . . , fm one needs to represent them in such a way that (4.22)

becomes a linear model. This is achieved by choosing a basis for each one of them,

defining the space of functions of which each of the f1, f2, . . . , fm is an element.

The basis selection amounts to choosing some basis functions that are treated as
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completely known: if bji(y) is a set of such basis functions for fj(y), i = 1, 2, . . . , qj,

then fj(y) can be represented as:

fj(y) =

qj�

i=1

βjibji(y), (4.23)

for some values of the unknown parameters, βji. The fj are smooth n.p. functions

of the covariates yj.

So, for example, one could use a cubic spline basis. A cubic spline is a curve that

consists of sections of cubic polynomials joined together at points, known as knots,

in such a way that they are continuous in value, as well as the first and second

derivatives. Generally, a spline is a polynomial in each interval between two knots

and a piecewise polynomial overall. A disadvantage of a single polynomial would be

that it does not perform well over the whole domain but only locally. Spline bases are

not faced with the same problem, but need more than n parameters to be estimated

for a fit to n data points. This computational cost can be addressed using regression

splines. For regression splines the smoothing problem is solved for a small subset of

the data and the implied basis is then used for model construction of the whole data

set. For the above bases one has to choose the knot locations. The knots are often

evenly spaced through the range of the data but specific knots can be chosen (Wood,

2003).

Choosing basis functions can restrict the model as other ones might be better suited.

Using thin plate regression splines (t.p.r.s.) one does not have to choose basis func-

tions and knot locations as these emerge from the minimization of the constructed

objective function, see Wood (2003). A t.p.r.s. basis has the benefits of thin-plate

splines but requires a smaller number of parameters to be estimated. Instead of

choosing number of knots and knot locations in t.p.r.s. one has only to choose the

basis dimension, later when we refer to the number of knots for a t.p.r.s. we mean

the value of the basis dimension. Another benefit from using t.p.r.s. is that con-

trary to the above bases, t.p.r.s. can successfully represent smooths of more than one



103

variable.

Using OLS or ML to select fj would result, almost certainly, in a very wiggly line

that passes through most points of the data. Therefore, we need a way to control

the smoothness of these functions (splines). One way would be to repeatedly change

the basis dimension by altering the number of knots3 but that could lead to various

issues with uneven knot spacing and/or dependence on the location of the knots.

Furthermore, if a large number of basis functions is used to approximate the real

underlying function, the model will probably overfit while if the basis dimension is

kept small it will be too restricted to approximate the truth (Wood & Augustin,

2002). An alternative is to keep the dimension of the basis fixed at a sufficiently

large value and add a ‘wiggliness’ penalty to the log-likelihood to be maximized or

to the objective function of the OLS.

A common way to measure the wiggliness of a function is to use its second derivative.

This gives the rate of change of the slope, known as curvature, of that function. For

example, Silverman & Green (1993) state that for a given set of increasing points

{xi, yi : i = 1, . . . , n} from all the continuous functions on [y1, yn], with continu-

ous first derivatives, the smoothest function can be defined as the one that mini-

mizes: �
yn

y1

f
��
(y)2

dy. (4.24)

Assuming that f has a basis expansion f(y) =
q�

i

βibi(y) we can write

�
yn

y1

f
��
(y)2

dy = β
TSβ (4.25)

3i.e. with backward selection we would start with many knots and then drop knots sequentially.
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since f
��
(y) = β

Tz(y), where zi(y) = b
��
i
(y) and thus,

�
yn

y1

f
��
(y)2

dy =

�
yn

y1

β
Tz(y)zT (y)βdy = β

TSβ, S =

�
yn

y1

z(y)zT (y)dy (4.26)

GAMs maximize a penalized log-likelihood which can be used as a simple generali-

sation of the penalized OLS:

(x− µ)T (x− µ) +
�

j

λjJj (4.27)

where Jj is a function measuring the wiggliness of fj and λj
4 is the smoothing

parameter relating to fj. Smoothing parameters are used to balance the minimization

of the badness of the fit, measured by the first part, and the model wiggliness, as

measured by the second part (Wood, 2003).

Thus, instead of maximizing the log-likelihood, l(β) a penalized log-likelihood, lp(β)

is maximized, using Penalized Iterative Re-weighted Least Squares (P-IRLS) :

lp(β) = l(β)− 1

2

�

j

λjβ
TSjβ (4.28)

where β is a vector of the unknown parameters of the corresponding penalized GLM

once the bases are chosen and the term β
TSjβ is used to measure the wiggliness of

the j
th smooth function with Sj a matrix of known coefficients5. The λj are smoothing

parameters, controlling the trade-off between goodness of fit of the model and model

smoothness.

For known λj the lp can be maximized to find β̂ but since the λj need themselves

to be estimated iterative steps for convergence are employed, see Wood (2006). The

automatic methods of choosing smoothing parameters are explained later in this

4A spline whose smoothness is controlled by smoothing parameters is called a ‘smoothing spline’.
5The majority of wigliness measures, e.g.

�
f

��

j (x)2dx, can be written in the form β
T
Sjβ.
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section.

In GAMs the d.f. cannot be defined as in the linear model case. To measure the

flexibility of the model Wood defines effective d.f. as the trace6 of the hat matrix

of the GAM, tr(H). Thus, the residual d.f. of the GAM in (4.22) can be written as

(n− tr(H)), where the hat matrix, H, is:

H = y(yTy + λS)−1yT
, (4.29)

where S and λ as above.

When the link function is the identity function and the errors are normal, then

analogous to the linear parametric model case the residual variance, σ
2, can be

estimated by the residual sum of squares divided by the residual d.f.:

σ̂
2 =

�
n�

i=1

(xi − µ̂i)
2

�
/ (n− tr(H)) (4.30)

where H is the influence (hat) matrix such that g(µ̂) = Hx. The above estimator

for the additive model is unbiased (see Wood (2006)). From equations (4.19) and

(4.30), the scale parameter for the GAM can be estimated by the Pearson-type scale

estimator,

τ̂ =

�
n�

i=1

V (µ̂i)
−1(xi − µ̂i)

2

�
/ (n− tr(H)) . (4.31)

In the package “mgcv”, created by Simon Wood, available in R, the modeller can

choose the number of knots to be used for basis construction, but this is only setting

an upper bound on the flexibility of a term. The smoothing parameters, λj, control

the effective d.f. and this is part of model specification. Therefore, the actual fit

retains some insensitivity to the chosen basis dimension as long as it is not set

restrictively low. The only difference between two sufficiently large basis dimensions

6Trace is defined as the sum of the elements on the main diagonal of a square matrix.
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is that a function space with the larger one will contain more functions with the

estimated effective d.f. than the smaller one.

Un-Biased Risk Estimator

The smoothing parameters λ, that control the level of smoothing, are needed for the

estimation of the model coefficients and can be estimated in two ways. When the

scale parameter is known, then attempting to minimize the expected MSE leads to

minimizing an estimate of it given by the Un-Biased Risk Estimator (UBRE) which

is also closely related to Mallow’s Cp
7 :

Vu(λ) = (x−Hx)T (x−Hx) /n− σ
2 + 2tr(H)σ2

/n (4.32)

which depends on the smoothing parameters through H. Nevertheless this is inap-

propriate when the scale parameter has to be estimated.

Cross Validation

When the scale parameter is unknown, minimizing the mean square prediction error

(P ) is preferred. P is the average squared error in predicting a new observation x

using the fitted model and can be written as:

P = σ
2 + MSE, where MSE =

tr(H)

n
σ

2 (4.33)

by substituting (4.30) into (4.32). Since P is directly dependent on σ
2, any criteria

based on P will resist over-smoothing much more than criteria based on MSE alone,

as the σ
2 estimate would then be inflated.

To estimate P , cross validation is used. Excluding one datum, xi, from the model

fitting process implies that the model fitted to the remaining data is independent of

the omitted xi. Thus, the squared error in predicting xi can be estimated, and, by

omitting all data in turn we get the ordinary cross validation (OCV) score estimate

7
Cp = (x−Hx)T (x−Hx) /σ

2 − n + 2tr(H).
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of P :

Vo =
1

n

n�

i=1

�
xi − µ̂

|−i|
i

�2
(4.34)

where µ̂
|−i|
i

denotes the prediction of E(xi) obtained from the model fitted without

observation xi. While the right hand side (r.h.s.) of (4.34) requires n model fits, it

can be shown, see Wood (2006), that Vo can be computed from one fit of the original

model using the following formula:

Vo =
1

n

n�

i=1

(xi − µ̂i)2

(1−Hii)2
(4.35)

Nevertheless, OCV is hard to compute for a GAM where there are several smoothing

parameters. In practice, the weights 1 − Hii, are commonly replaced by the mean

weight, tr(I−H)/n. Then the corresponding OCV score of (4.34) can be re-written

as:

Vg =
n

[n− tr(H)]2

n�

i=1

(xi − µ̂i)
2
, (4.36)

which is known as the Generalized Cross Validation (GCV) score. The above equa-

tion can be modified to include a parameter γ, as in (4.37), which can be used to

inflate the model d.f. in the GCV score and result in smoother fits (Kim & Gu,

2004). For the traditional GCV score, as in equation(4.36) ,this parameter should

be set to 1 while values greater than 1 favour smoother fits.

V
∗
g

=

n

n�

i=1

(xi − µ̂i)
2

[n− γtr(H)]2
(4.37)

Simulation results by Kim & Gu (2004) suggest a value of 1.4 for γ. This value gives

smooth fits with good performance.

The estimation of the smoothing parameters, λ, is done using iterative minimization
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of the GCV score or UBRE score, see Wood (2006). Once a basis is chosen for a

GAM this is transformed in a linear model or a GLM with one or more associated

penalties. Hence the GAM is fitted, once a basis and wiggliness penalty are chosen,

by penalized likelihood maximization which is achieved using Penalized Iterative

Re-weighted Least Squares (P-IRLS).

In the “mgcv” package, estimation of a GAM consists of two iterative loops. The

outer loop optimizes a smoothness selection score minimising it, w.r.t. the parame-

ters, using Newton’s method or other non-linear optimisation algorithm. Thus, the

smoothing parameters are estimated. Once the outer loop converges, the inner loop

uses P-IRLS to estimate the model given the smoothing parameters. This package

allows us to choose the maximum number of iterations per loop and the optimisa-

tion algorithm adopted in the outer loop. We are using Newton’s method in several

dimensions, backed up by steepest descent to iteratively adjust the smoothing pa-

rameters for each penalty.

4.3.1 Testing with GAMs

The function ‘gam’ from the “mgcv” package in R is used to build GAMs. We

develop three different GAMs to allow us to test directly for our different forms of

seasonality. The first model is non seasonal and includes only a smooth function of

time to incorporate the long term trend in the series. The second one models stable

seasonality using factors, and a trend using a smooth function over time, as before.

Finally, our third model includes, in addition, trending seasonality, in the form of

smooth functions of time per season used as a factor. Hence, the models are nested

making formal comparison easier. Considering the nature and form of the time series

examined an appropriate exponential family distribution is chosen.
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Constructing hypotheses models:

Non Seasonal Model, Model-NS contains only a smooth function of time.

g(µt) = f1(y1t) = s(t), t : time (4.38)

Stable Seasonal Model, Model-SS contains a smooth function of time and incorporates

factors for the seasons.

g(µt) = f1(y1t) + fac = s(t) + fac, t : time, fac : 1, 2, . . . , s (4.39)

Trending Seasonal Model, Model-TS contains a smooth function of time, factors for

seasons and smooth functions of time per season as factor.

g(µt) = f1(y1t) + fac + f2(y2t) + · · · + fs(yst) = s(t) + fac + s(t, by = ff),

t : time, fac : 1, 2, . . . , s, ffij =

�
1, j = i− [i/j]

0, otherwise
, i = 1, . . . , n and j = 1, . . . , s.

(4.40)

In the above equation ff is an n × s matrix, where n is the length of the data and

s the suspected periodicity. The (i, j) element in ff is equal to 1 when i is the jth

season of the current year.

Thin plate regression splines (TPRS) are used for the trend and the trending sea-

sonals while seasonal factors are used for the stable seasonals.

We consider two ways to test between models. When the scale parameter, σ
2, is

unknown we use F-ratio tests to check whether the increase in the residual sum of

squares from dropping the extra term(s) is significant. When the scale parameter is

known we use the scaled deviances of the two models to construct a log-likelihood

ratio statistic. The scaled deviance, D
∗ of a model is the deviance, D divided by

the scale parameter, τ . In the following examples the scale parameter is unknown

and thus, ANOVA is used between non-seasonal versus seasonal and stable seasonal
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versus trending seasonal models.

We use the following criteria to evaluate and compare the model fits:

1)Akaike’s Information Criterion (AIC):

− 2l + 2p (4.41)

2) (Schwartz) Bayesian Information Criterion

− 2l + pln(n) (4.42)

where l the log-likelihood, p the number of parameters and n the length of the data.

Furthermore, the GCV score can be used for comparison between nested models with

the lowest score preferable. Since we are comparing nested models we are using the

GCV score as another criterion.

To avoid over-fitting and to favour smoother fits we reduce the model d.f. thus

inflating the GCV score using γ = 1.4 instead of the default value 1 as a constant

multiplier in the construction of the model in equation(4.37) (Kim & Gu, 2004). This

is done because the nature of the models we are examining calls for smooth fitted

terms for all GAMs fitted. The default size of basis dimension, k = 10, is used for

all model terms.

Finally, one has to check the validity of the GAMs in question. We look at the

residuals of these models creating diagnostic plots. For this purpose standardised

deviance residuals are created, d̂std
8. To check the normality assumption we examine

a QQ (quantile-quantile) plot of these residuals and their histogram. To check the

constant variance assumption of the response variable we plot the residuals against

the response while a plot of the residuals themselves would reveal any remaining

8
d̂std,i = (d̂i − ¯̂

d)
��

σ̂
�

(1−Hii)
�
, where Hii are the elements on the leading diagonal of the

hat matrix, H, and ¯̂
d the average of the deviance residuals d̂i.
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pattern that was not incorporated in the model.

4.3.2 Applications

We demonstrate the above described procedure using the House, Unemployment

and Kola data sets from previous chapters. For these examples the Gaussian family

with the identity link function are chosen. Criteria are reported along with plots to

support the choice of seasonality for each series. For the first series diagnostic plots

for all fitted models are discussed while later only the ones from the chosen model

are presented.

House Data

The GCV score can be used for comparison between nested models. The smallest

score, in this case the SS model, is preferred, which corresponds to the results of our

Resampling test, Table 4.1.

GCV Score: Non-Seas: 39378.33, Stable: 5129.542 & Trending: 45951.786

Table 4.2: House Data ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 124.047 4358058
SS 111.295 412375 12.752 3945682 83.508 < 2.2e-16
TS 97.065 311305.536 14.23 101069.75 2.215 0.012

The results from the ANOVA between the models are displayed in Table 4.2. The

first row of the table refers to the NS model while the second one gives the results of

the ANOVA between the NS and the SS model and the third one the results between

the SS and TS GAMs. These indicate that the series is seasonal with a trending

seasonal pattern, conflicting with GCV and Resampling.

Figure 4.1 shows the two most likely fits for the House data; the SS model fit is

depicted in red while the TS in blue. The trend and the stable seasonals from the

SS model are plotted. The stable seasonal pattern is very smooth, considering that
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Figure 4.1: The upper left plot shows the House data with the trend from the stable GAM in
red. The upper right plot shows the stable seasonals estimated from the stable
GAM while in the lower plot the House data are plotted as dots with the fits
from the stable (red) and trending (blue) GAMs.

twelve factors were estimated.

The smooth functions fitted by the TS model are plotted in Figure (4.2). Their

confidence intervals are given by the dotted lines. For the first eleven months the

confidence intervals (C.I) of the smooths include the zero value for all the x-axis.

December, however, shows a significant deviation from zero, which agrees with our

previous thoughts.

Table 4.3: House Data AIC & BIC:

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.953 21.705 35.935

AIC 1765.93 1480.198 1471.545
BIC 1791.739 1542.768 1575.138

The AIC criterion, Table 4.3 identifies, like the ANOVA and possibly for the same

reasons, the TS as the best model. BIC is more conservative and points to a stable

pattern.
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Figure 4.2: The (twelve) trending seasonals from the TS model of the House data with
confidence intervals (dotted lines), by row from top left.

It seems unlikely that the House data have a systematically trending seasonal pattern,

since only the Decembers display apparent change in the sense of fluctuations in size.

This change could be due to unusually cold Decembers or to more people going away

on holidays. In other words, it may simply be a fluctuation rather than systematic

change in December values. The GAMs are clearly sensitive to any kind of change in

the seasonals. For example, the change in the size of the seasonals in the December

months in the series may be the reason for this result. Since we are only interested in

systematic shifts and not random changes the House series is found to have a stable

seasonal pattern.

Figures: (4.3) and (4.4) show the diagnostic plots from the NS and TS models. The

NS QQ plot and histogram show a violation in the Gaussian assumption while there

is some remaining pattern in the residuals. Even though this is far from satisfactory

it is to be expected since this series is suspected and tested positive for presence of

seasonality. The TS model’s diagnostic plots are better. There is a slight deviation

from normality shown in the QQ plot and in the histogram of the residuals. The

other plots, however, show no problems so the fit was found acceptable.
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Figure 4.3: Residuals plots from the NS model for the House data. From the upper left
corner clockwise: residual QQ plot, residuals plotted against the response, the
residuals themselves and the residuals’ histogram.

Figure 4.4: Diagnostic plots for the TS model for the House data.
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Figure 4.5: The diagnostic plots for the SS GAM fitted to the House data.

In Figure 4.5 we see some diagnostic plots for the chosen GAM with the stable sea-

sonal pattern. The QQ plot shows that there is no serious violation of the Gaussian

assumption which is further verified by the histogram, which is not ideal but sat-

isfactory. The plot of the residuals against the response does not show a violation

of the constant variance assumption. Finally, there are no patterns apparent in the

plot of the residuals.

Unemployment Data

The GCV score suggests the TS model as most suitable for the Unemployment data,

as with Resampling, Table 4.1.

GCV Score: Non-Seas: 0.104, Stable: 0.049 & Trending: 0.046

Table 4.4: Unemployment Data ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 121.857 11.102
SS 110.306 3.877 11.551 7.225 17.796 < 2.2e-16
TS 96.287 2.397 14.019 1.48 4.24 < 2.2e-16
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Table 4.5: Unemployment Data AIC & BIC:

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.143 21.694 35.713

AIC 68.725 -45.992 -80.941
BIC 97.965 16.548 22.013

The ANOVA, Table 4.4, between the models indicate that the series is seasonal with

a trending seasonal pattern.

Figure 4.6: The Unemployment data with the trend from the SS model in red, the stable
seasonals and the data as dots with stable (red) and trending (blue) GAM fits
are depicted clockwise from upper left.

The SS and TS fits in Figure (4.6) indicate that the TS model is better. Also, in the

same Figure, the terms of the SS model are plotted.

The twelve trending seasonals for the Unemployment data are shown in Figure (4.7).

February, July and August seem to deviate from a straight line with their C.I. ex-

cluding zero for some points.

The BIC, Table 4.5, conservatively points to a stable seasonal pattern while the AIC

recognizes a trending one. The BIC seems to favour smoother models while the AIC

more closely fitted ones.
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Figure 4.7: The smooth functions of the TS model of the Unemployment data, corresponding
to the twelve months.

Figure 4.8: Diagnostic plots for the TS model of the Unemployment data. Clockwise from
top left: a QQ plot of the residuals, the residuals plotted against the response,
the residuals plot and histogram.
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Figure 4.9: Diagnostic plots for the TS model with a larger basis dimension, 12, of the
Unemployment data. Clockwise from top left: a QQ plot of the residuals, the
residuals plotted against the response, the residuals plot and histogram.

The residual plots for the chosen TS model in Figure (4.8) show a slight deviation

from the normality assumption in the QQ plot and histogram of the residuals. This

is mainly evident in the tails of the distribution. In addition, there is some remaining

pattern in the residuals as the model does not go high enough in the peaks and low

enough in the troughs.

Trying to accommodate the remaining pattern we fitted the TS model with basis

dimension equal to 12. The checking plots in Figure (4.9), however, are not satis-

factory. The QQ plot shows a deviation from normality which is further verified by

the histogram which shows that the distribution of the residuals is left skewed. The

skewness is caused by the fact that the new model is going high in to the peaks of

the series but not low enough in to the troughs thus creating more negative residuals

than positive ones. The pattern in the residuals now is not so profound at the begin-

ning but continues the same in the middle and end of the series. Thus, since none

of our results where affected by this change, we decided that the first TS model, in
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Figure (4.8), is more satisfactory.

Kola Data

The Kola data are deemed to have a stable pattern according to the GCV score,

which agrees with the Resampling result in Table 4.1.

GCV Score: Non-Seas: 0.691, Stable: 0.155 & Trending:0.168

Table 4.6: Kola Data ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 121.857 11.102
SS 110.306 3.877 11.551 7.225 17.796 < 2.2e-16
TS 376.094 54.382 10.998 0.322 0.203 0.997

The ANOVA, Table 4.6, between the models further reinforces the opinion that the

series is seasonal with a stable seasonal pattern.

Figure 4.10: The upper left plot depicts the Kola data with the trend from the SS GAM
in red. The stable seasonals and the data as dots with the stable (red) and
trending (blue) fitted GAMs, follow clockwise.

In Figure (4.10) we see the fits of the SS and TS models and the terms of the

former. The stable seasonals look a lot like a sinewave which is expected since as a
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temperature series it should follow a smooth pattern of change. The trend reflects

the changes in the level of the series.

Figure 4.11: The smooth trending seasonals estimated in the TS model for the Kola data.

The trending seasonals can further be examined by looking at Figure (4.11). No

month has a slope that is significantly different from zero.

Table 4.7: Kola Data AIC & BIC:

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.553 21.908 32.906

AIC 1001.01 381.864 401.449
BIC 1043.34 469.743 533.442

BIC and AIC, Table 4.7, recognize a stable seasonal pattern. The Kola data are

temperature data so they exhibit a very well behaved stable pattern that does not

change in time in any way and thus, even the GAMs, which are sensitive to any kind

of change, do not pick up a trend in the seasonals.

Since the SS model is chosen for this series, its residual checking plots are shown in

Figure (4.12). There seem to be no violations of the assumptions but the residuals

still show a pattern in them. This is because the SS GAM, as well as the TS, fails
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Figure 4.12: Here the residual checking plots for the stable GAM of the Kola data.

to capture all the variability in the series. Thus, they do not go as high in the peaks

of the data or as low in the troughs, hence leaving some seasonality not included in

the model.

4.3.3 Discussion

The GAMs offer a simple and straightforward way to construct hypothesis about the

nature of the seasonal components in the series. The results from tests between the

constructed models are easily interpreted. However, as seen through the examples,

the GAMs are very sensitive and are quite close to performing twelve tests for unit

roots, when dealing with monthly series as the above examples, or fifty-two when

dealing with weekly series as the data sets from Stonehaven. Nevertheless, the only

assumption made in the construction of these models is a distributional one for the

response variable and thus are more robust when testing between different kinds of

seasonality. The following chapter presents a sensitivity analysis and a comparison

of the two testing methodologies discussed in this chapter. Furthermore, ways to
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control various kinds of change in the seasonals are investigated as sometimes the

presence of one change in the seasonals can interfere with the identification of a

systematic shift in time.



Chapter 5

Comparison of Methods

5.1 Comparison of Methods

In order to compare the methodologies presented in the previous chapter and to

evaluate their shortcomings and advantages a brief sensitivity analysis is conducted

and the summary of the results is given in this chapter. We create two different

seasonal patterns to correspond to the environmental series and to the densities

of the zooplankton and phytoplankton species. We then simulate different types

of changes and try to measure the ability of the Resampling and the GAMs to

distinguish between a stable and a trending seasonal pattern.

The first pattern we will examine is the seasonal pattern of the Temperature 45m

series from Stonehaven and is denoted by Senv. This is estimated using Friedman’s

super-smoother on the de-trended series and is a sinewave with amplitude of 6.7.

The second set of seasonals, Sdens, corresponds to the densities of the zooplankton

and phytoplankton species. In order to construct density data with zero values

we generate Negative Binomial random variables with means equal to the seasonal

pattern of the C. finmarchicus C5 series from Stonehaven as this is estimated by CSD

methods using Friedman’s super-smoother. These random variables are divided by a

123
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set volume of 200ml to generate densities. The levels of noise in the generated series

are controlled by the θ parameter of the Negative Binomial distribution. Figure 5.1

shows the created patterns.

Figure 5.1: The seasonal patterns. From the top the pattern corresponding to the envi-
ronmental data, the mean used for the Negative Binomial distribution and the
pattern corresponding to densities, derived as a random Negative Binomial vari-
able with the previous plotted mean.

We manipulate these seasonal patterns accordingly to construct different types of

seasonality as presented in section 2.2 and use the Resampling and GAMs to test the

patterns. Once the seasonals from the Senv pattern have the appropriate behaviour

we add to them white noise of different variances. The TS GAM fitted to the

Temperature 45m series had residuals with s.d. = 0.46 giving a signal to noise ratio

of 3.35/0.46 = 7.283. Thus, we create noise with s.d. equal to 1, 0.5 and 0.25 and

then depending on how well or badly the method performs we also use noise with

s.d. equal to 2 or 0.1, respectively.

The C. finmarchicus C5 series has a mean µ̂ = 1.75 and a variance of σ̂
2 = 33.071.

Assuming the Negative Binomial distribution, the θ parameter can be calculated as

1
σ̂

2
res = 17.14
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θ̂ = µ̂
2
/(σ̂2 − µ̂) since σ̂

2 = µ̂ + µ̂
2
/θ̂. This gives a value of 0.0982 for θ. Therefore,

for the Sdens pattern we use values of 0.5 and 0.03 for the θ parameter. We note that

the variance (i.e. noise) for a Negative Binomial variable decreases as the value of

the θ parameter increases. When the method performs badly we also use a value of

1 for the parameter while if the method performs well we also use θ = 0.01. For the

rest of this chapter, we denote by Senv and Sdens the patterns after the appropriate

manipulations according to the type of change examined are performed.

We should note that when creating random changes, systematic ones may be created

by chance. Since we generate 11 years of observations for the simulations, we used a

sequence of values, 1 : 11, to estimate the random occurrence of systematic changes.

Thus, we created 1000 random ordered samples without replacement from the set

of 1 : 11. Then the correlations between the randomly created sets and the original

ordered sequence were computed. From those, 29 correlations were found greater

in absolute value from 0.7. A histogram of them is shown in Figure 5.2. In 1000

randomly created sets 29 were found highly correlated. This in the context of this

chapter means that when we are constructing random changes there is roughly a

chance of 2.9% that a systematic one will occur.

We avoid running weekly GAMs because they are computationally intensive and

instead create monthly series for GAMs while we use weekly for the Resampling.

Both weekly and monthly series run for eleven years and the monthly ones are simply

monthly aggregates of the weekly series, assigning four weeks to each month with 13

months within a year.

For each type of seasonality simulated we create 100 random instances that are

examined by the two methods. For random changes in the Senv pattern we create

100 random changes and add to them randomly generated noise while for systematic

ones, where only one pattern can be created, random instances are created by adding

100 different random noise sequences. Random instances for the Sdens are easily

created as we generate 100 different sets of observations from a Negative Binomial

20.199 with σ̂
2
res
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Figure 5.2: The computed correlations between 1 : 11 and the 1000 randomised ordered sets
of them. The dotted lines mark 0.7 and −0.7.

distribution. Furthermore, while for systematic changes the change in each year is

relative to the previous one, e.g. when shifted earlier in time this is relative to the

previous year, for random changes the change is always relative to the starting year,

e.g. shifting randomly in time by an equal amount each year having as starting point

the time in the first year.

For model choice for the GAMs we note the GCV, AIC and BIC scores and the

ANOVA between the SS and TS models. All Resampling tests below are between

SS and TS. For the Sdens created series we use the logarithm of the series plus 1 for

the Resampling and a log-Normal distribution for the GAMs while the original series

and a Normal distribution are used for the Senv pattern.

5.1.1 Stable Seasonality

We start by examining the ability of the Resampling and the GAMs to identify

a stable seasonal pattern that exhibits no changes. Thus, we keep the patterns
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unchanged and start by testing with Resampling between SS and TS. Tables are

produced to summarise the percentage of correct results for each series. A correct

result in this case is stable seasonality.

In Table 5.1 we see that the Resampling identifies the stable seasonality every time

when the added noise has s.d.≤ 1 and more than 90% of the time with s.d.= 2 for

the Senv pattern.

Table 5.1: Stable Seasonality - Senv Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25

Senv 96% 100% 100% 100%

Table 5.2 shows the Resampling results for the Sdens pattern. Similar to the results

for the Senv one, the Resampling performed on the Sdens pattern recognises stable

seasonality all the time, even when θ = 0.01.

Table 5.2: Stable Seasonality - Sdens Resampling Results

Seasonals Theta
0.5 0.03 0.01

Sdens 100% 100% 100%

The GAMs do well in identifying a SS pattern in both occasions, Tables 5.3 and 5.4.

Therefore, we also use noise with s.d. equal to 2 for the Senv pattern and θ = 0.01

for the Sdens. The GAM results for the Senv pattern improve as the size of the noise

is reduced and overall are satisfactory.

For the Sdens pattern the GAM results are also very good, see Table 5.4. As the value

of the θ parameter increases the percentage of correct results increases, too.
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Table 5.3: Stable Seasonality - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 100% 77% 76% 100%

1 100% 85% 82% 100%

0.5 100% 93% 90% 100%

0.25 100% 100% 100% 100%

Table 5.4: Stable Seasonality - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 100% 78% 81% 100%

0.5 97% 75% 79% 99%

0.03 93% 71% 77% 96%

0.01 90% 67% 73% 95%
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5.1.2 Systematic Time Shift

Now we examine the ability of the resampling and the GAMs to identify a systematic

shift in time as trending seasonality. To simulate small systematic changes in time

we fit a spline to the seasonals and then predict 520 points within a year. Thus, we

can now move the patterns by tenths of a week per year. We examine the situations

in which the pattern moves by one, two, three or four tenths of a week per year. For

our analysis with GAMs we use monthly data with the equivalent monthly shifts,

e.g. 1/40 of a month per year. Then we evaluate the ability of the two methods to

identify the trending patterns.

Systematic Time Shift by 1/10 of a week per year

We simulate a systematic shift in time for the patterns, shifting them by one tenth

of a week earlier every year. In table 5.5 we see the result from the Resampling for

the Senv created series. The pattern is correctly identified as trending only about a

quarter of the time when the noise has a s.d. equal to 0.5. When the noise is reduced

further (s.d. = 0.25 and 0.1) the Resampling identifies the time shift 80% and 100%

of the time, respectively. This shift is very small and therefore we did not expect

it to be easily detectable after we add noise to the pattern. Nonetheless, there is

an improvement as the size of the noise is reduced and when the noise is small the

Resampling test always identifies the pattern as trending.

Table 5.5: Systematic Time Shift by 1/10 of a week - Senv Resampling Results

Seasonals Noise s.d.
1 0.5 0.25 0.1

Senv 10% 24% 80% 100%

Table 5.6 summarises the results for the Sdens created series. The Resampling does

not perform very well for the Sdens, with correct results less than 55% of the time

for all attempted θ values.
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Table 5.6: Systematic Time Shift by 1/10 of a week - Sdens Resampling Results

Seasonals Theta
1 0.5 0.03

Sdens 52% 17% 3%

The GAM results for the Senv are presented in Table 5.7. It is interesting that for

the Senv pattern the ANOVA and the AIC, when the size of the noise is equal to 1,

almost always detect a TS pattern while the GCV score and the BIC detect a stable

pattern. As the s.d. of the noise is reduced the results improve and when the s.d. of

the noise is 0.25 all criteria always point to a trending pattern.

Table 5.7: Systematic Time Shift by 1/40 of a month - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

1 25% 92% 94% 4%

0.5 100% 100% 100% 91%

0.25 100% 100% 100% 100%

In Table 5.8, the criteria for the GAMs mostly fail to identify the change for the

Sdens for all θ parameter values examined. The ANOVA and AIC point to TS more

often than not when θ = 1.

Table 5.8: Systematic Time Shift by 1/40 of a month - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 7% 84% 72% 1%

0.5 6% 47% 36% 1%

0.03 6% 23% 14% 1%
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Systematic Time Shift by 2/10 of a week per year

Here we simulate again a systematic shift in time for the patterns, but shifting

them by two tenths of a week earlier every year. This is twice the shift attempted

earlier.

The Resampling results for the Senv, Table 5.9 have improved from the previous 1/10

of a week shift results. We also note the great improvement with the reduction of

the size of the noise. The shift is now always identified when the s.d. is equal to 0.25

instead of 0.1 that was previously. Nonetheless, the shift remains mostly unidentified

when a noise with s.d. greater than 0.5 is used.

Table 5.9: Systematic Shift 2/10 of a week - Senv Resampling Results

Seasonals Noise s.d.
1 0.5 0.25

Senv 18% 77% 100%

In Table 5.10 we see that the results for the Sdens pattern have not improved

greatly.

Table 5.10: Systematic Shift 2/10 of a week - Sdens Resampling Results

Seasonals Theta
1 0.5 0.03

Sdens 60% 29% 16%

Looking at the results from the GAMs, Tables 5.11 and 5.12, we notice that they

have improved overall for the Senv series and now the systematic time shift is always

identified by the GCV score, the ANOVA and the AIC when the noise has s.d. equal

to 1. The BIC identifies TS 92% of the time with s.d.= 1 and always for smaller

noise. Hence, we attempted adding noise with s.d.= 2. The ANOVA and AIC still

identify a trending pattern more than 90% of the time.

The results for the Sdens have also improved. For all attempted values of θ the
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Table 5.11: Systematic Shift 2/40 of a month - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 30% 94% 95% 0%

1 100% 100% 100% 92%

0.5 100% 100% 100% 100%

0.25 100% 100% 100% 100%

trending seasonality remains undetected by the GCV score and the BIC most of the

time. When θ = 1, though, the ANOVA and AIC point to a TS.

Table 5.12: Systematic Shift 2/40 of a month - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 16% 88% 75% 8%

0.5 7% 60% 38% 4%

0.03 5% 34% 21% 3%
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Systematic Time Shift by 3/10 of a week per year

Now we create series based on the two patterns after we shift them by 3/10 of a week

per year.

We notice that the percentage of correct Resampling results for the Senv pattern,

Table 5.13 has doubled from the previous section for noise with s.d. greater than

0.5.

Table 5.13: Systematic Time Shift by 3/10 of a week - Senv Resampling Results

Seasonals Noise s.d.
1 0.5 0.25

Senv 44% 100% 100%

The Resampling results for the Sdens series have also improved, Table 5.14. The

trending pattern is identified by the Resampling 82% of the time for θ = 1. For

θ < 1, however, the pattern is mistaken for stable.

Table 5.14: Systematic Time Shift by 3/10 of a week - Sdens Resampling Results

Seasonals Theta
1 0.5 0.03

Sdens 82% 51% 26%

The percentages of correct results from the criteria used on GAM selection are pre-

sented in Tables 5.15 and 5.16. For the Senv series there is a significant improvement

with all criteria identifying the shift 100% of the time when the signal to noise ratio

is 3.35/1 = 3.35. For added noise with s.d.= 2 the GCV score, the ANOVA and the

AIC point to a TS pattern more than 90% of the time while the conservative BIC

only 40%.

There is a slight improvement for the Sdens series but still the shift is mostly unde-

tected when θ < 1. The results improve as the level of noise is decreased.
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Table 5.15: Systematic Time Shift by 3/40 of a month - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 91% 99% 99% 40%

1 100% 100% 100% 100%

0.5 100% 100% 100% 100%

0.25 100% 100% 100% 100%

Table 5.16: Systematic Time Shift by 3/40 of a month - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 25% 90% 82% 4%

0.5 13% 71% 42% 3%

0.03 5% 40% 29% 1%
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Systematic Time Shift by 4/10 of a week per year

Finally, we create a shift of a 4/10 of a week per year, equivalent to 4/40 of a month

per year. The Resampling results for the Senv, Table 5.17, are further improved and

now identify trending seasonality more than 50% when used on a series with added

noise with s.d.= 1. The results for the Sdens have also improved and now is identified

as trending seasonality 93% of the time with θ = 1.

Table 5.17: Systematic Time Shift by 4/10 of a week - Senv Resampling Results

Seasonals Noise s.d.
1 0.5 0.25

Senv 52% 100% 100%

Table 5.18: Systematic Time Shift by 4/10 of a week - Sdens Resampling Results

Seasonals Theta
1 0.5 0.03

Sdens 93% 62% 32%

The criteria used for the GAMs created for the Senv series almost always identify the

trend in the series, Table 5.19. The percentage of correct results has improved and

now the GCV score also points to a TS pattern always when the noise has s.d. = 2.

In Table 5.20 we see that the results for the Sdens have improved, as well, and the TS

is identified more than half the time by the ANOVA and the AIC with θ = 1.

Table 5.19: Systematic Time Shift by 4/40 of a month - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 100% 100% 100% 89%

1 100% 100% 100% 100%

0.5 100% 100% 100% 100%

0.25 100% 100% 100% 100%
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Table 5.20: Systematic Time Shift by 4/40 of a month - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 52% 97% 91% 19%

0.5 21% 82% 48% 7%

0.03 9% 58% 34% 5%

5.1.3 Random Time Shift

We simulate a random change in time, shifting the patterns by one tenth of a week.

The starting point of the shift is always the timing of the peak in the first year. The

direction is chosen randomly, allowing also the pattern to not move, i.e. stay at the

starting point. A pattern that exhibits random changes in time is considered a stable

pattern, as it is pseudo-trending.

The percentage of correct Resampling test results for trending seasonal pattern in

the Senv series are given in Table 5.21. The random change in time is never confused

for a systematic change by the Resampling algorithm.

Table 5.21: Random Time Shift 1/10 of a week - Senv Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25

Senv 100% 100% 100% 100%

In Table 5.22 we see that the Resampling results for the Sdens also do not confuse

the random shift in time with a systematic one. For all attempted values of θ for the

generated Negative Binomial variables more than 90% of them are found stable.

In Tables 5.23 and 5.24 we see the percentage of correctly identified SS by the different

criteria used on the constructed GAMs. For the Senv series the GAMs correctly

identify a stable pattern most of the time. As the size of the noise is decreased the
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Table 5.22: Random Time Shift 1/10 of a week - Sdens Resampling Results

Seasonals Theta
0.5 0.03 0.01

Sdens 96% 96% 93%

ANOVA and AIC results improve while the GCV and BIC identify it as stable even

when adding a noise with s.d. equal to 2.

Table 5.23: Random Time Shift 1/40 of a month - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 100% 65% 63% 100%

1 100% 79% 77% 100%

0.5 100% 81% 80% 100%

0.25 100% 80% 78% 100%

For the Sdens series the GAMs also, more often than not, say that it is stable. The

above imply that the random shift in time is not treated by the GAMs as a trend in

the seasonals, which would not necessarily be wrong but according to our definition

of trending seasonality it is undesirable.

Table 5.24: Random Time Shift 1/40 of a month - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 87% 59% 79% 100%

0.5 96% 49% 65% 99%

0.03 93% 65% 73% 98%

0.01 93% 54% 67% 100%
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5.1.4 Systematic Amplitude Change

We simulate a systematic amplitude change (increase) by a 1/10 of the amplitude

size per year. We consider this trending seasonality as the change is of a systematic

nature.

The Resampling test results for the Senv pattern are presented in Table 5.25. The

resampling always detects the trending pattern.

Table 5.25: Systematic Amplitude Change - Senv Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25

Senv 98% 100% 100% 100%

The Resampling results for the Sdens series are presented in Table 5.26. For θ = 1

the Resampling always identifies a TS pattern.

Table 5.26: Systematic Amplitude Change - Sdens Resampling Results

Seasonals Theta
1 0.5 0.03

Sdens 100% 60% 25%

In Table 5.27 the results from the GAMs for the Senv series are summarised. The

results look good and the size of the noise does not appear to influence the ability of

the GAMs to identify trending seasonality.

The results for the Sdens are at about the same level as the ones for the systematic

time shift by 4/40 of a month. The ANOVA and the AIC are the two criteria that

more often recognise the trend in the seasonals.
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Table 5.27: Systematic Amplitude Change - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 100% 100% 100% 100%

1 100% 100% 100% 100%

0.5 100% 100% 100% 100%

0.25 100% 100% 100% 100%

Table 5.28: Systematic Amplitude Change - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 48% 92% 87% 13%

0.5 13% 67% 56% 2%

0.03 5% 42% 26% 0%
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5.1.5 Random Amplitude Change

We now create random amplitude changes in the two seasonal patterns. The change is

by 1/10 of the size of the pattern and the direction (increase or decrease) is randomly

chosen. This type of pattern is considered pseudo-trending and thus stable.

The Resampling results for the Senv series are presented in Table 5.29. Even when

the noise is big the pattern is always identified as stable while when the noise is

significantly reduced it is identified as stable only 97% of the time. This could be

attributed to the fact that since the direction of the changed is randomly chosen

systematic changes (i.e. in one direction) may in fact be created. We, nonethe-

less, believe that the Resampling does not recognise a random amplitude change as

TS.

Table 5.29: Random Amplitude Change - Senv Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25

Senv 100% 100% 100% 97%

The results from the Resampling on the Sdens series are summarised in Table 5.30.

The Sdens series is more than 90% of the time recognised as SS when in the presence

of noise, even when using θ = 0.01. We thus, believe that the fluctuation in the

amplitude is identified as stable by the Resampling.

Table 5.30: Random Amplitude Change - Sdens Resampling Results

Seasonals Theta
0.5 0.03 0.01

Sdens 96% 94% 93%

The GAM results for the Senv are presented in Table 5.31. The ANOVA and AIC

results deteriorate when the noise is reduced. This can be translated to mean that

these two criteria identify random amplitude change as TS but in the presence of a big

noise it remains undetected. Therefore, we also use noise with s.d.= 2 and s.d.=0.01
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to have a clearer picture of the behaviour of the results. We believe that the ANOVA

and AIC identify a random amplitude change as trending seasonality.

Table 5.31: Random Amplitude Change - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 100% 65% 57% 100%

1 100% 27% 16% 100%

0.5 99% 1% 1% 100%

0.25 100% 0% 0% 100%

0.01 100% 0% 0% 100%

The results for the Sdens are similar to the ones for the Senv pattern. As the noise

decreases the results from the GCV score and the BIC improve while the AIC and

ANOVA detect more frequently a TS pattern. Again, this verifies that the ANOVA

and AIC treat a random amplitude change as trending seasonality.

Table 5.32: Random Amplitude Change - Sdens GAMs Results

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 90% 27% 42% 100%

0.5 91% 39% 61% 100%

0.03 90% 57% 75% 100%

0.01 87% 61% 71% 99%
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5.1.6 Systematic Time Shift and Random Amplitude Change

Since in most marine biological data-sets the aforementioned changes rarely occur

alone we will now examine the most interesting case, for the purpose of this thesis,

of simultaneously occurring changes. We care mostly about systematic shifts in

time and thus, we would like to evaluate how our methods respond in the presence

of a systematic time shift and a random amplitude change. This stems from our

concern that a random change may mask a systematic one and thus we are not that

concerned with the cases of two random, or two systematic changes occurring in the

same pattern.

Systematic Time Shift 1/10 of a week and Random Amplitude Change

We shift the pattern by 1/10 of a week per year or 1/40 of a month per year and

allow the amplitude to change randomly by a 1/10 of its size per year.

The Resampling results for the Senv series are given in Table 5.33. We see that the

Resampling almost always fails to detect the systematic shift in the presence of a

random amplitude change, when the noise has s.d.≥ 0.5. This not surprising as the

time shift is very small and was not easily detected in the presence of noise when no

amplitude change was occurring.

Table 5.33: Systematic Time Shift 1/10 and Random Amplitude Change - Senv Resampling
Results

Seasonals Noise s.d.
1 0.5 0.25 0.1

Senv 8% 17% 69% 98%

The Resampling results for the Sdens series can be seen in Table 5.34. The Sdens

series is hardly ever found trending. The systematic shift of 1/10 is too small to be

detected in the presence of a random amplitude change.
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Table 5.34: Systematic Time Shift 1/10 and Random Amplitude Change - Sdens Resampling
Results

Seasonals Theta
1 0.5 0.03

Sdens 11% 4% 1%

The percentage of correct GAM results for the Senv are shown in Table 5.35. The

results improve as the noise decreases in size. All the criteria point to a TS pattern

when the added noise has s.d.≤ 1.

Table 5.35: Systematic Time Shift 1/40 and Random Amplitude Change - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 89% 100% 100% 32%

1 100% 100% 100% 100%

0.5 100% 100% 100% 100%

0.25 100% 100% 100% 100%

The Sdens is rarely recognised to have a TS pattern when θ = 0.03. Decreasing the

noise in these series, using θ = 1, all criteria, except the BIC, more often than not

recognise a TS pattern when θ > 0.5.

Table 5.36: Systematic Time Shift 1/40 and Random Amplitude Change - Sdens GAMs Re-
sults

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 58% 85% 73% 41%

0.5 35% 65% 51% 27%

0.03 25% 34% 28% 9%
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Systematic Time Shift 2/10 of a week and Random Amplitude Change

Since a shift of 1/10 of a week per years is quite small we double the shift but keep

the amplitude change the same. The Resampling results for the Senv, Table 5.37

have improved with TS being identified 100% of the time when the noise is small,

s.d.= 0.1.

Table 5.37: Systematic Time Shift 2/10 and Random Amplitude Change - Senv Resampling
Results

Seasonals Noise s.d.
1 0.5 0.25

Senv 16% 68% 100%

In Table 5.38 the Resampling results have significantly improved for the Sdens series.

Nonetheless, the trending pattern is still only recognised 34% of the time when

θ = 1.

Table 5.38: Systematic Time Shift 2/10 and Random Amplitude Change -Sdens Resampling
Results

Seasonals Theta
1 0.5 0.03

Sdens 34% 18% 3%

The GAM results for the Senv series are presented in Table 5.39. The series is now

recognised to have a trending pattern by all criteria even with s.d.= 2.

The results for the Sdens series, also have improved. The ANOVA and the AIC

continue to point to a TS pattern when θ ≥ 0.5 but the GCV score and the BIC still

identify a seasonal pattern stable when θ = 0.03.
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Table 5.39: Systematic Time Shift 2/40 and Random Amplitude Change - Senv GAMs Results

Criterion

Seasonals Noise s.d. GCV ANOVA AIC BIC

Senv

2 100% 100% 100% 100%

1 100% 100% 100% 100%

0.5 100% 100% 100% 100%

0.25 100% 100% 100% 100%

Table 5.40: Systematic Time Shift 2/40 and Random Amplitude Change - Sdens GAMs Re-
sults

Criterion

Seasonals Theta GCV ANOVA AIC BIC

Sdens

1 80% 100% 100% 53%

0.5 66% 84% 79% 40%

0.03 31% 51% 48% 23%
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5.1.7 Discussion of Results

Though the above sensitivity analysis is far from complete it gives us an idea of how

our methodologies behave, indicating their strengths and weaknesses. We observe

the different behaviours of the methods towards the two distinct patterns employed

above. Overall, the Resampling seems more reliable when testing the Senv pattern

while the methods do overall equally well for the Sdens.

Both methods identify a systematic change as TS, with the GAMs being the more

sensitive of the two in the case of the Senv. Similarly, both methods consider a random

shift in time mostly as SS. A random amplitude change, however, is considered stable

by the Resampling for the Senv and Sdens while found trending by the ANOVA and

AIC criteria for both patterns. In addition, the GAMs appear to be more sensitive

towards systematic shift in time in the presence of a random amplitude change than

the Resampling. The difference between the results from the two methods is more

pronounced for the Sdens pattern. This, however, could be attributed to the fact that

the GAMs identify a random amplitude change as trending seasonality.

Generally, the ANOVA and AIC seem to identify small random changes in the noise

added to the pattern as trends in the seasonals. From all criteria used for model

selection the ANOVA is the least conservative, often favouring the TS model while

the BIC is the most conservative one, pointing to a stable pattern even when all

other criteria disagree. Nonetheless, under extreme circumstances (when there is

a great trend in the seasonals or no trend at all) they both succeed in identifying

the appropriate type of model, TS or SS. The ANOVA identifies correctly as stable

seasonals the random time shift 80% of the time for the Senv when the noise s.d. is

equal to 0.5 and the BIC, even though conservative, does point to TS 100% of the

time for the Senv when exhibiting a systematic time shift of 4/40 of a month per year

or a shift of 3/40 but with small noise.

Another interesting point is that if there is a systematic shift in time along with a

random change in the amplitude of the pattern the methods’ successful detection of
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a trending seasonality depends on the size of the shift relatively to the size of the

random amplitude change. In view of this, it is recommended that once a change

of the seasonals has been observed and possibly even verified with some tests the

series should be scaled to accommodate this and then the above tests should be

conducted.

The above means that if the Resampling algorithm indicates a trending seasonality

for a series similar to the Senv, this is always of the systematic type. In addition,

however, it implies that when the Resampling finds a stable seasonality, there is

still a probability that a systematic shift in time exists but in the presence of a

random change in the size of the seasonals or that the noise in the series is too

big. To summarise, the Resampling does not appear to give false alarms of trending

seasonality but may fail to detect one under specific conditions.

For the GAMs, however, the interpretation of the results is not as straightforward.

It seems that small changes, which could in fact be simple noise, can bias the results

towards trending seasonality. Therefore, the GAMs are considered more sensitive to

any kind of change than the Resampling. Looking closely at the output available from

the GAMs, one can, nonetheless, see whether the trend identified in the seasonals

is of a systematic nature. The plots of the smooth functions fitted to the trending

seasonals can shed light to the nature of the detected change. A systematic change

(time or amplitude) is manifested as a monotonic line or curve while anything else

points to a random change.

Neither approach performs as well on the Sdens as on the Senv series. The sudden

changes in the pattern itself make it hard to detect changes of a smooth nature.

In addition, the Resampling is very conservative towards the Negative Binomial

created data as systematic changes are often found stable. The GAMs do not perform

very well for the Negative Binomial data either but outperform the Resampling in

most situations. The Sdens pattern corresponds to densities and thus, behaves very

differently from the Senv pattern.

As a final note the reader is reminded that in nature a change in the seasonal pattern
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hardly ever is of only one type. Issues arise when testing for a specific type of change

in the presence of other types, “unattended”, changes. This is similar to conducting

seasonal unit root tests for specific roots in the presence of other “unattended” unit

roots. Therefore, the above methodologies should be applied with care and if possible

together as they have different strengths and weaknesses and thus, compliment each

other.



Chapter 6

Stonehaven Results

6.1 The Data

In the following two chapters we present the results from our analysis of the data

from Stonehaven. The data consists of weekly samples since January 1997 from the

Stonehaven long-term monitoring station, western North Sea (56o57.8’N 02o06.2’W),

in water depth of around 50m. The data can be broken down into three main

categories: the environmental series, such as temperature, salinity and nutrients

in the water, the phytoplankton, diatoms and dinoflagellates, and the zooplankton

series. The length of the examined series varies. The environmental and zooplankton

series run from the start of 1997 to the end of 2007 while the phytoplankton series

from the start of 2000 to the end of 2008. The phytoplankton series is shorter as, in

the beginning of 2000, a new, more reliable, way to count them was introduced. We

examine 13 environmental series, 5 phytoplankton and 37 zooplankton series.

Due to unforeseen weather conditions, the samples are not taken on pre-specified

dates and so they are not equi-spaced in time. For our analysis we divide the year

in 52 weeks and then allocate the observations to weeks according to their sampling

dates. The 26th of December is not included in any week but no problems should

149
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occur since there is no sampling taking place on that date. We made no adjustments

for the leap years, 2000, 2004 and 2008, as there are no observations taken on the

29th of February in any leap year.

Another option we considered, was to compute monthly averages of the series. Since,

however, we are investigating shifts of seasonality and we would expect them to be

usually small, hardly by a month, we would risk not capturing them. Looking at

the data as daily observations, i.e. Julian dates1, was also considered as an option

but the number of missing values is too great to lead to accurate interpretation of

the results. Therefore, we choose to treat the measurements as weekly observations

(taking the average on rare occasions when there was more than one observation in

a week), since there is no consistency of the sampling dates through the years.

There is, however, a notable trend in the sampling dates. In most weeks the dates

of sampling are decreasing, i.e. 25th, 24th, 23rd of January, in consecutive years. A

possible reason for this is that they are actually sampling on the same day, e.g.

Mondays. Under our assumption of weekly aggregates this causes no problem but if

the analysis shows any effects then we can run it through actual dates as mentioned

above.

Nonetheless, there are weeks, as defined by us, with no samples and some with more

than one sample. Having weeks with no data, introduces missing values in the series

that have to be dealt with. Substitution of the missing values will introduce more

uncertainty in our analysis, especially since there are many such runs, hence it is

avoided. Instead of using interpolation and extrapolation methods to substitute the

missing values we settle on using decomposition techniques that will allow for the

existence of internal and external missing values in the series.

In addition, one should note that there are no samples taken in very bad weather.

Since the collection of samples involves going to sea, no samples are collected when

that is thought unsafe. Therefore, the months in winter time (December, January)

1The sampling dates include leap years so a total of 4017 days for environmental and zooplankton
series and 3288 days for the phytoplankton series.
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are more sparsely sampled than the rest. That is to say that for some weeks in

these months only few samples exist, e.g. only four samples are collected in week 1

as defined by us, between the 27th of December of one year and the 2nd of January

of the next year.

6.2 Methodologies

An outline of the general adjustments made to the methodologies presented in Chap-

ter 4, in order to be used for our analysis of the data, follows. Further modifications

are needed to suit the individual characteristics of each type of data- environmental,

phytoplankton or zooplankton. A section is devoted to each type of data, with de-

tails of the data set’s collection method and the exact specifications of the methods

used discussed.

6.2.1 Resampling

As mentioned before, when allocating observations to weeks within a year, missing

values are produced. These missing values present an issue with the Resampling

techniques. Resampling, as presented in Chapter 4, cannot be employed on a series

with missing values so a modification is devised. The MAs used in the Resampling

algorithms to extract the trends in the series cannot be computed in the presence

of missing values. Thus, they are substituted by Friedman’s super-smoother. The

super-smoother can deal with missing values allowing the rest of the Resampling

algorithms to remain unchanged. Furthermore, using the super-smoother instead of

the MA to compute the trend helps ensure that no seasonality is induced into the

series during the extraction of the trend.

Furthermore, the Resampling requires the data to be in the form of a time series

so averages of all observations within one defined week are taken. Missing values

are allocated to the weeks with no observations. The p-values corresponding to the



152

appropriate tests, i.e. NS v.s. SS and then either SS v.s. TS or NS v.s. TS, for each

series are reported and interpreted.

6.2.2 GAMs

The construction of GAMs does not require the data in the form of a time series.

Furthermore, it allows for more than one value per week thus utilizing all collected

samples. We construct the three GAMs - NS, SS and TS- and using a number of

criteria we then choose the model that best describes the data.

Thin plate regression splines are used to model the trend and trending seasonals.

The dimension of the basis for the trend is the default, 10, while higher values

are attempted when it is needed. The basis dimension for the trending seasonals,

however, has to be specified for the model to be computed, due to convergence issues.

We use three knots per season for the trending seasonals since we have at most eleven

years of data, meaning at most 5 values to smooth over.

The nature of the data is such that one expects a smooth stable pattern without

spikes. Using seasonal factors to model the stable seasonals provides a better fit

to the data while a cyclic smoother may be closer to the Natural seasonal pat-

terns and the interpretation of the series. Some seasonal patterns in the data are

sharply defined, for particular species for example, and thus it can be difficult for a

smoother to capture them but, nonetheless, any systematic changes are unlikely to

be spiky. Seasonal factors allow big, abrupt changes to happen while a systematic

change takes place more gradually. Furthermore, a seasonal factor corresponds to a

whole week making the detection of small changes more difficult. A smooth curve

produces a shape closer to the truth and makes the detection of systematic changes

easier. Therefore, using seasonal factors for the stable seasonals does not always seem

appropriate as the results would not be smooth for the species time series.

Nonetheless, for the environmental series, the factors are deemed appropriate as the

patterns to be estimated are quite smooth and thus the seasonalities produced using
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the factors will not be highly variable. Thus, for demonstration purposes, factors

will be used to estimate the stable seasonals of all environmental series while a cyclic

smoother will be employed for all the species series. This way we can demonstrate

both methods.

In addition, in order, again, to favour smoother fits we are using γ = 1.4 instead

of the default value of 1 in the construction of the GCV score as per Kim and Gu

(2004).

6.3 Environmental Series Results

The environmental series consist of two measurements, one taken at surface level and

one at approximately 45m depth. Thus, for example, we have surface Temperature

(at 1m) and Temperature at 45m measurements. The one exception is Chlorophyll a

for which we have only one series. The samples for Chlorophyll a detection are taken

from a 10m integrating tube sampler (Lund sampler). Fluorometry is the method

used to measure Chlorophyll a. A one litre sub-sample from the contents of the

tube sampler is filtered to a glass fibre filter paper (GF/F, nominal 0.7 micron pore

size). The pigments are extracted from the filter paper by soaking in 90% buffered

acetone for 16 to 30 hours and measured on a fluorometer, as described in Smith

et al. (2007).

For most environmental series (exceptions are Temperature, Salinity and surface

Silicate) a second sub-sample is taken from the sample to create ‘duplicate’ mea-

surements. When there is a discrepancy between the two measurements the average

is used as the appropriate measurement for that collection date. In Resampling the

data needs to be in the form of a time series and thus, the averages of the dupli-

cate measurements are taken. Furthermore, in Resampling we are also averaging

measurements taken on the same week, using weeks as defined by us. Nevertheless,

as mentioned before, the GAMs allow for multiple entries per week and thus no

averaging is done, neither for duplicates nor for weekly measurements.
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The nutrients are measured by taking a sample of sea-water using Niskin bottles and

then a sub-sample is measured in an automated nutrient analyser. The equipment

used to measure nutrients in the water has a detection limit of around 0.01, below

which zero values are reported. Since the equipment used to collect nutrient infor-

mation has a detection limit, the zeros in the database most probably correspond to

very small, undetectable traces of nutrients rather than their absence. Hence, for our

analysis we substitute these zero values by very small but non-zero ones. We create

random values in the range of 0− 0.001 using a Uniform distribution. This ensures

that we have non-zero values for our analysis but also that the values entered are

random and a lot smaller than the detection limit of the equipment used. The series

that have zero values that are substituted in this way are: Nitrate at 1m (surface),

Ammonia at 1m, Phosphate at 1m, Chlorophyll a and Silicate at 45m.

We also have to consider the extreme values in the database. Extreme values could

be caused by malfunctioning equipment or contamination of the sample and thus

when one is observed we evaluate whether it is a true value. Examining the original

values instead of the averaged ones and reading the various notes on that collection,

reporting on malfunctioning equipment etc., we decide what the case is. Because

we are interested in the seasonal pattern of these series, it is thought that extreme

values, even when correctly recorded, will not contribute to a better estimation of

the seasonal effects. Nonetheless, we only remove extreme values that are verified as

erroneous. Where an extreme value is removed a missing value is introduced.

A special case of extreme values is the contamination of the Phosphate samples

in 2006. All measurements from the 13th of June to the 2nd of October 2006 for

Phosphate 45m and from the 13th of June 2006 to the 10th of January 2007 for

Phosphate 1m are removed from the database. Missing values are placed in their

space.

For the majority of the series presented in this section the Gaussian family is assumed

with the identity link function for the construction of GAMs while for a few a log

link is used. The Temperature, Salinity, Ammonia, Phosphate and Nitrate series are
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modelled using the identity link, thus assuming a decomposition structure:

X̂t = µt = Tt + St + Rt, (6.1)

as the seasonals and the residuals are unaffected by the trend. On the other hand,

the two Silicate series are modelled using a log link which implies a different structure

to the above:

log(µt) = Tt + St (6.2)

X̂t = µt = e
St+Tt + Rt (6.3)

and thus,

X̂t = e
St ∗ e

Tt + Rt. (6.4)

For these series the seasonals increase as the trend increases and decrease as the trend

decreases, hence we assume a multiplicative relationship between these two compo-

nents. The residuals are not affected by the changes in the level of the trend and

therefore, they are added and not multiplied to the other two components. Durbin &

Murphy (1975) discuss seasonal decomposition using mixed additive-multiplicative

models similar to the one above. When the structure in (6.4) is assumed appropriate

plots verifying this assumption will be presented.

The Chlorophyll a series is modelled using the Gamma family and the log link as the

Gaussian models provided a very bad fit.

Furthermore, the seasonal pattern for each series is extracted using factors. The

Chlorophyll a series, however, is an indicator of the phytoplankton biomass and is

highly variable. Thus it will be modelled using the aforementioned cyclic smoothers.

We believe that since we will use the cyclic components to model the stable season-

ality in the individual species series it is appropriate to use it also for the Chlorophyll
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a series. For the majority of the environmental series presented in this chapter,

however, the two ways to model the stable seasonals differ only slightly but when

the seasonals are very smooth or the series is noisy the cyclic smoothers or factors,

respectively, could be used to estimate a smooth seasonal pattern.

All the environmental series are found seasonal, as it was expected. Therefore,

in the following discussion of the results of our analysis we focus on whether the

seasonality is stable or trending (i.e. exhibits systematic change). Resampling results

are only presented for the stable seasonal (SS) vs trending seasonal (TS) test while

all constructed GAMs are reported. The GCV score of GAMs can be used to choose

between nested models with the lowest score being preferable. Therefore, for model

selection we note the GCV score of the three GAMs, conduct ANOVA between

the three models and report AIC and BIC scores. We also report the percentage

deviance explained by each GAM as a measure of fit. Furthermore, when we suspect

that the series has a trending seasonal pattern we look at the fitted smooth functions

corresponding to each week to further verify this. Once we decide that a series is

shifting in time we attempt to quantify the shift by examining the occurrence of

some easily identifiable peaks in the de-trended fitted values of the TS GAM. This,

nonetheless, is not always possible as there may not be identifiable peaks and/or the

shape of the seasonal pattern may change greatly over time.

To check our GAMs for violations of any assumptions we create diagnostic plots.

Using standardized deviance residuals, d̂std
2, we create a QQ plot for normality, a

plot of the residuals against the response, the residual histogram and a residual plot.

When referring to ‘residuals’ below in the context of diagnostic plots we mean the

previously defined standardized deviance residuals.

Table 6.1 summarises the results for all environmental series analysed. However, for

most series only the surface measurement is presented in the main section of this

thesis as similarities occur between the surface and the 45m measurements. Both

2
d̂std,i = (d̂i − ¯̂

d)
��

σ̂
�

(1−Hii)
�
, where Hii are the elements on the leading diagonal of the

hat matrix, H, and ¯̂
d the average of the deviance residuals d̂i.
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series of Salinity and Ammonia are discussed as their behaviours differed slightly. A

full description of all results can be found in the electronic Appendix located at the

back of the thesis. Plots and tables of results are presented only when they appear

noteworthy for the particular series.

Table 6.1: Environmental Series Results

Series Pattern

Temperature
1m Pseudo-trending in Amplitude

45m Pseudo-trending in Amplitude

Salinity
1m Trending (Time Shift Earlier)

45m Trending (Time Shift Earlier)

Silicate
1m Pseudo-trending in Amplitude

45m Pseudo-trending in Amplitude

Phosphate
1m Pseudo-trending in Amplitude

45m Pseudo-trending in Amplitude

Ammonia
1m Trending (Time Shift Earlier)

45m Trending (Time Shift Earlier)

Nitrate
1m Trending (Time Shift Earlier)

45m Trending (Time Shift Earlier)

Chlorophyll a Trending (Amplitude Decreasing & Time Shift Earlier)
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6.3.1 Temperature

Temperature data usually have a stable seasonal pattern, much like the Kola data

discussed in Chapter 4. Sea water temperatures are affected by various factors.

IACMST (2001) reports that changes in the local surface heat exchange, local wind

field, influx of oceanic water and freshwater run-off are all contributors towards the

changes in temperature. For example, uncommonly cold or warm years cause changes

in the size of this pattern. If the years are getting colder or warmer gradually, the

change will be systematic while if random climatological effects occur the pattern

will fluctuate in size and/or timing of occurrence. The two Temperature series are

modelled using the Gaussian family with an identity link. The Temperature series

are measured in degrees Celsius (DegC).

Temperature - 1m

We start by examining the surface temperature (Temperature 1m). This series will

be examined first using factors and then using a cyclic component for the seasonals.

Thus, we will demonstrate that both methods of modelling the seasonal component

produce the same results. This is especially true in the case of the following environ-

mental series while for the species time series the cyclic component will be preferred

due to the noise in those series.

The Resampling test between stable and trending seasonality indicates a stable sea-

sonal pattern.

Resampling Testing Stable vs Trending: p = 0.649→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 7.328, Stable: 0.619 & Trending: 0.759

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 1.01, Stable: 94 & Trending: 95.1
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Table 6.2: Temperature 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 520 3784.289
SS 462.633 228.53 57.367 3555.759 125.477 < 2.2e-16
TS 406.649 188.96 55.984 39.57 1.521 0.013

The ANOVA, in Table 6.2,however, points to the TS GAM.

Figure 6.1: The upper left plot depicts the Temperature at 1m with the trend from the SS
GAM as a red line. The stable seasonals and the Temperature 1m marked by
dots with the stable (red) and trending (blue) fitted GAMs, follow clockwise.

Figure 6.1 shows the trend of the SS GAM as a red line over the Temperature at 1m

series, marked by a black line. In the same Figure the seasonals from the SS model

are also plotted and the two fits for the SS (red) and TS (blue) models.

As mentioned before, here the stable seasonals in the GAM are estimated using

factors. In Figure 6.2 we see the stable seasonals estimated using factors (above)

and using a cyclic component (below). To aid comparison we plot only the estimated

seasonals without adding the average trends estimated by the two SS models, with

factors and with a cyclic component. The estimated patterns are very similar with

the lower being a smoother version of the upper.
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Figure 6.2: The upper shows the stable seasonals estimated by the SS GAM when using
factors while the bottom one when using a cyclic component.

Figure 6.3: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
Temperature 1m.
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The smooth functions corresponding to the trending seasonals as estimated by the

TS GAM are plotted in Figures 6.3 and 6.4. Weeks 31 and 50 deviate greatly from

a straight line with their C.I. not always including the zero value. Nevertheless, a

curve like the one for week 50, in Figure 6.4, is not of much interest to us as it simply

implies a random and not systematic change. What is of great importance to our

study is a significant monotonic upwards or downwards slope since that would be an

indication of a systematic change, time shift or amplitude change. This leads us to

believe that there is not a systematic change occurring in these weeks.

Figure 6.4: The smooth functions fitted by the TS GAM, corresponding to the trending
seasonals for weeks 37-52 for the Temperature 1m.

In addition, we would hardly expect a change in the seasonal pattern to occur in

only two specific weeks (i.e. weeks 31 and 50) every year. We expect a sequence

of trending weeks that would then indicate a change in the seasonals. Therefore,

our decision is that this series has a stable seasonal pattern in terms of systematic

changes but may exhibit a random change.

Furthermore, the AIC and BIC scores in Table 6.3 verify the choice of stable season-

ality.

Nevertheless, to further examine the above identified as potential trending weeks, 31
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Table 6.3: Temperature 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 60.367 116.351

AIC 2521.426 1170.935 1183.652
BIC 2534.221 1428.418 1679.923

Figure 6.5: The stable seasonal pattern (red) and the trending seasonal pattern (blue) from
the TS GAM fitted to the Temperature at 1m series.

& 50, we look at a graph the stable (red) and trending (blue) seasonals from the TS

GAM, Figure 6.5. Using the stable seasonals as a point of reference we can note any

changes in the size or the timing of peak of the trending seasonals. In addition, we

can examine whether the change is occurring in one direction, systematic change,

or both, random change. We thus verify that no systematic change occurs in the

pattern of the Temperature at 1m series. There is, however, a small fluctuation in the

size of the seasonals which points to a pseudo-trending in amplitude pattern.

We believe that the Temperature 1m series has a stable seasonal pattern and the

ANOVA results are influenced by a very small random change in the size of the

seasonals.
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In Figures 6.6 and 6.7 we see some residual plots for the SS and TS GAMs. The

plot on the top left corner is a QQ plot of the residuals. For both models this plot

shows that the upper end of the series deviates from normality. The top right plot

shows the residuals plotted against the response and is satisfactory. Similarly, the

histograms are acceptable. The plots of the residuals from both models show some

remaining pattern. This occurs because the fits of the SS and TS models do not

go high enough in all the peaks and low enough in all the troughs and thus, some

pattern is still left in the residuals.

Figure 6.6: The residual checking plots for the SS GAM of the Temperature 1m data. No
problems are highlighted.
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Figure 6.7: Residual checking plots for the TS GAM of the of the Temperature 1m data. No
violations are noted.
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Using a Cyclic Component to Model the Stable Seasonals

We examine now the surface temperature (Temperature 1m) using a cyclic compo-

nent to model the stable seasonality. The GCV score of the GAMs points to the

stable seasonal model:

GCV Score: Non-Seas: 7.328, Stable: 0.508 & Trending: 0.759

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 1.01, Stable: 93.6 & Trending: 95.1

Table 6.4: Temperature 1m ANOVA - Cyclic Component

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 520 3784.289
SS 508.406 246.091 11.594 3538.198 630.495 < 2.2e-16
TS 406.653 188.966 101.753 57.125 1.208 0.104

The ANOVA, in Table 6.4, now also points to the SS GAM.

Figure 6.8: The upper left plot depicts the Temperature at 1m with the trend from the SS
GAM as a red line. The stable seasonals and the Temperature 1m marked by
dots with the stable (red) and trending (blue) fitted GAMs, follow clockwise.
Both GAMs use a cyclic component for stable seasonality.

Figure 6.8 shows the trend of the SS GAM as a red line over the Temperature at 1m
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series, marked by a black line. In the same Figure the seasonals from the SS model

are also plotted and the two fits for the SS (red) and TS (blue) models.

Table 6.5: Temperature 1m AIC & BIC - Cyclic Component

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 14.594 116.347

AIC 2521.426 1118.033 1183.661
BIC 2534.221 1180.167 1679.026

Furthermore, the AIC and BIC scores in Table 6.5 verify the choice of a stable

seasonal pattern.

In Figures 6.9 and 6.10 we see the residual plots for the SS and TS GAMs. They are

similar to the ones produced when the stable seasonals were fitted by factors.

Figure 6.9: The residual checking plots for the SS GAM (using a cyclic component) of the
Temperature 1m data. No problems are highlighted.

The two methods for modelling the stable seasonal component in the GAMs produce

similar results that lead us to choose the SS GAM.

The results for the Temperature series at both 1m and 45m are similar and have

shown that these series have stable seasonal patterns in terms of systematic shifts in
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Figure 6.10: Residual checking plots for the TS GAM (using a cyclic component) of the of
the Temperature 1m data. No violations are noted.

time. In particular, both patterns are pseudo-trending in amplitude. The existence

of an underlying gradual rise in annual average temperatures (increasing trend) does

not affect our results and reflects the general patterns seen in the wider northeast

Atlantic Ocean of which the North Sea is an attached region (ICES, 2009).
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6.3.2 Salinity

Salinity levels are affected by in-flowing oceanic water, freshwater run-off and local

evaporation/ precipitation changes according to IACMST (2001). Therefore, salinity

data are generally more variable than temperature data. The salinity levels at 1m

are also easily affected by rainfall and river inflow since the fresh water is input to

the sea surface layers. The salinity levels at 45m, on the contrary, are less affected

by rapid fluctuations caused by freshwater influences and are thus expected to be

less noisy.

Oceanic water has generally a higher salinity than coastal water, thus water with a

high oceanic content that is advected into the sampled area will be indicated in the

data by an increase in salinity values. Both salinity levels, however, are generally

higher in late summer when the influx of coastal water, often mixed with increased

oceanic water, penetrates down along the Scottish east coast (Hay, pers. comm.,

2009). Salinity is measured in practical salinity units (psu).

The GAMs constructed for the two Salinity series use an additive structure, as in

(6.1), using the Gaussian family with the identity link function. The seasonal com-

ponent and the residuals are not affected by changes in the level of the trend. Hence,

all three components are added to create the series.

Salinity - 1m

The Resampling test for the Salinity at 1m (Salinity 1m) series identifies a stable

seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.340→ Stable

The GCV score of the three GAMs also points to that conclusion:

GCV Score: Non-Seas: 0.063, Stable: 0.053 & Trending: 0.061
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The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 14.6, Stable: 46.9 & Trending: 60.3

This series is noisy, hence the percentage explained deviance by the GAMs is small

compared to the percentage deviance explained for the Temperature series.

Table 6.6: Salinity 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 501.482 30.564
SS 449.529 19.001 51.954 11.563 5.265 < 2.2e-16
TS 392.005 14.199 57.523 4.802 2.305 1.540e-06

The ANOVA results, given in Table 6.6, however, favour the TS GAM.

Figure 6.11: The upper left plot depicts Salinity at 1m with the SS model’s trend as a red
line. The stable seasonals and the Salinity 1m marked by dots with the stable
(red) and trending (blue) fitted GAMs, follow clockwise.

The two fits (SS and TS) of the GAMs for Salinity 1m are shown in the lower graph

in Figure 6.11. The TS fit is better than the SS one as it goes higher into the peaks

and lowers into the troughs of the series. The trend and stable seasonals from the

SS GAM are depicted in the same picture.
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Figure 6.12: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Salinity 1m data.

In Figures 6.12 and 6.13 we can see the fifty two smooth functions fitted by the TS

GAM for the trending seasonals. Many weeks deviate from a straight line parallel

to the x-axis. The majority of them, however, is not monotonically increasing or

decreasing indicating a random change. Nonetheless, there a few weeks, 6 and 19-

22 that point to a systematic change.

There is the possibility of a systematic shift in time, that is being initialised towards

the end of the series and thus, it cannot easily be detected.

Table 6.7: Salinity 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.518 60.471 117.995

AIC 29.895 -108.142 -141.386
BIC 66.227 147.8 358.02

The AIC, Table 6.7, favours the TS GAM while the BIC, in the same table, chooses

the NS model. The AIC, similarly to the ANOVA, is more sensitive and points to

the TS GAM.
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Figure 6.13: The smooth trending seasonals estimated in the TS model for the Salinity 1m
series, here weeks 37-52.

Figure 6.14: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Salinity at 1m series.
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To further investigate whether there is a systematic change in the timing of the sea-

sonal pattern and identify its direction we plot the stable seasonals and the trending

seasonals, as estimated by the TS GAM, on the same plot, Figure 6.14. We note

a random amplitude change with the amplitude being bigger towards the start and

end of the examined series. There is also a slight shift of the seasonals earlier over

the years. This, however, is hard to quantify as there is a change in the size and

shape of the seasonals for these years. There appears to be a transition from one

seasonal pattern to another one with a slightly different from.

Figure 6.15: The residual checking plots for the SS GAM of Salinity 1m show a deviation
from normality.

In Figures 6.15 and 6.16 we see some diagnostic plots for the SS and TS GAMs.

The QQ plots and histograms show a deviation from normality near the extremes

of the series. These models are not well fitted to the data but were found the most

appropriate ones from those attempted.
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Figure 6.16: Plots of the standardized deviance residuals from the TS GAM of Salinity 1m
show a deviation from normality.
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Salinity - 45m

As mentioned above, Salinity at 45m is not as easily affected by rainfall and river in-

put as the surface Salinity and thus, the series is more well behaved. The Resampling

test finds this series to have a trending seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.018→ Trending

The GCV score, however, of the SS and TS GAMs is almost the same:

GCV Score: Non-Seas: 0.027, Stable: 0.017 & Trending: 0.018

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 27, Stable: 66.5 & Trending: 76.1

The GAMs are able to explain a greater portion of the variability in this series than

they were for the Salinity at 1m.

Table 6.8: Salinity 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 498.66 13.04
SS 447.537 5.978 51.123 7.062 10.342 < 2.2e-16
TS 390.533 4.265 57.004 1.713 2.752 4.824e-09

In Table 6.8 the ANOVA favours the TS GAM.

The Salinity 45m series along with the fits of the SS (red) and TS (blue) GAMs

are shown in Figure 6.17. The terms of the SS GAM are also plotted in the same

picture.

In Figures 6.18 and 6.19 we can see the fifty two smooth functions for the trending

seasonals in the TS model. A number of weeks (2, 6, 20-26, 36, 39 and 49) deviate

from a straight line parallel to the x-axis. Furthermore, a monotonic curve like that

for weeks 20-26 indicates a systematic change.

The AIC score, Table 6.9, is lower for the TS GAM, thus preferring it. In the same

table, the BIC points to the SS GAM.



175

Figure 6.17: Clockwise from top left the Salinity 45m series with the trend from the SS GAM
(red line), the stable seasonals and the Salinity 45m series (dotted) with the
stable (red) and trending (blue) fitted GAMs.

Table 6.9: Salinity 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.34 13.943 72.595

AIC -398.205 -692.167 -749.727
BIC -354.101 -432.148 -248.555

In Figure 6.20 we see the stable (red) and trending (blue) seasonals from the TS

GAM. The amplitude of the seasonals fluctuates in the same way as for the seasonals

in the Salinity at 1m series. The amplitude in the first three and the last two

observed years is greater than for the rest of the years. Furthermore, we notice that

the trending seasonal peak at the beginning of the series occurs just after the stable

seasonal one and gradually shifts earlier in the year to occur just before the stable

peak towards the end of the series. Finally, for week 1 the stable seasonals attribute

a low value while the trending ones a high one.

To further observe the changes in the seasonal pattern of Salinity 45m we choose to

examine the de-trended fitted values of the TS GAM rather than the original series

since the latter is very noisy. In Figure 6.21 we see the de-trended fitted values from
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Figure 6.18: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Salinity 45m data.

Figure 6.19: The smooth trending seasonals estimated in the TS model for the Salinity 45m,
weeks 37-52.
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Figure 6.20: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Salinity at 45m series.

the TS GAM for Salinity 45m. The trough is marked by dotted lines at weeks 10 and

30. The peak is shifting earlier in the year while the size and shape of the seasonals

also seems to be changing.

Figures 6.22 and 6.23 show some diagnostic plots for the SS and TS GAMs. There

are no problems with the models.

Salinity at 1m is more easily affected by river input and rain and can thus, change

randomly in size and timing. Hence, it is easier to detect a systematic change when

looking at a depth of 45m than the surface, as the results have demonstrated. The

Resampling results for Salinity 1m can have been affected by the fluctuation in the

size of the seasonals and thus, have greater difficulty in detecting a systematic shift.

Nonetheless, the GAMs for Salinity at 1m identified the changes in the seasonals.

Both Salinity series have patterns with fluctuating amplitude that are also shifting

earlier in the year.
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Figure 6.21: The de-trended fitted values from TS GAM for Salinity 45m. The vertical lines
mark weeks 10 and 30. The peak appears to shift earlier in the year.

Figure 6.22: The residual checking plots for the SS GAM of Salinity 45m show no violations.
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Figure 6.23: The standardized deviance residuals’ checking plots from the TS GAM of Salin-
ity 45m show no violations of the assumptions of the model.
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6.3.3 Silicate

Silicate, phosphate and nitrate are the three key nutrients used by phytoplankton in

their growth that we are examining from the Stonehaven database. Parsons et al.

(1988) say that silicate is usually higher in river water than in sea water. Thus,

silicate builds up during winter time from river inputs and sea sediments. It is

consumed mainly by diatoms to create their ‘glass’ exoskeleton. The levels of the

surface silicate are more easily affected by extreme events in external conditions such

as floods, increased run-off from the land etc.; thus we expect the surface series to

be more noisy than the 45m one.

Both Silicate series exhibit a winter peak. Because the weather in winter is poorer

than other seasons the sampling during the winter weeks is more often prohibited by

the weather conditions than for other weeks in the year. This means that we may

not have as much information about the peak of these series as we have for other

series that peak in the summer, spring or autumn. From an ecological perspective,

however, the spring time when silicate starts being consumed and the autumn when

silicate begins to replenish are more critical periods in the annual cycle of these

series (Hay, pers. comm., 2009). Silicate is measured in millimoles per cubic metre

(N/m
3).

Silicate - 1m

The Silicate at 1m (Silicate 1m) data have a stable seasonal pattern according to the

Resampling test results.

Resampling Testing Stable vs Trending: p = 0.191→ Stable

For this series we use the log link with the Gaussian family to build the GAMs. In

Figure 6.24 we see two plots. The top plot shows the mean value of the series for

each year plotted against the range of the series for that year. We see a positive

connection between them which is further verified by the correlation, 0.442. Thus,
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the amplitude of the seasonals changes with changes in the level of the trend. It

increases when the trend increases and decreases when the decreases. Hence these

two components, trend and seasonal, are multiplicative.

The lower plot in Figure 6.24 shows the fitted values from the SS GAM using a

log link and a Gaussian family plotted against the absolute value of the Pearson

residuals from that model. We fit a super-smoother, marked by the red line, to

check for any relationship between them. The produced line is almost parallel to

the x-axis indicating that the residuals are not affected by changes in the trend and

thus, should be added to the other two components and not multiplied. Therefore,

the log link is appropriate.

Figure 6.24: The top plot shows the mean value of the Silicate at 1m series for each year
against the range of the series for that year. The bottom plot shows the fitted
values from the SS GAM plotted against the absolute residuals from that model
with a smoother running through them, red line.

The GCV score agrees with the Resampling results and also points to the SS GAM:

GCV Score: Non-Seas: 4.126, Stable: 1.374 & Trending: 1.410

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 8.67, Stable: 77.5 & Trending: 84
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Table 6.10: Silicate 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 558.41 2270.386
SS 502.627 558.739 55.775 1711.552 27.605 < 2.2e-16
TS 445.331 397.104 57.296 161.635 3.164 8.225e-12

The ANOVA in Table 6.10 favours the TS GAM.

Figure 6.25: Clockwise from top left the Silicate 1m series with the trend from the SS GAM,
the stable seasonals and Silicate 1m (dotted) with the stable (red) and trending
(blue) fitted GAMs.

The Silicate 1m series along with the fits of the SS (red) and TS (blue) GAMs are

shown in Figure 6.25. The trend and seasonals of the SS GAM are also plotted in

the same picture.

In Figures 6.26 and 6.27 we can see the fifty two smooth functions for the trending

seasonals in the TS model. Weeks 18 and 33 deviate from a straight line. These type

of curves though correspond to a random and not a systematic type of change.

Table 6.11 depicts the AIC and BIC scores for the three GAMs. The AIC points to

the TS GAM while the BIC the SS model.
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Figure 6.26: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Silicate 1m data.

Figure 6.27: The smooth trending seasonals estimated in the TS model for the Silicate 1m,
weeks 37-52.

Table 6.11: Silicate 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 5.598 61.373 118.669

AIC 2393.966 1716.193 1638.53
BIC 2418.536 1982.139 2152.755
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This series has a pseudo-trending in amplitude seasonal pattern. This fluctuation

in the size is probably the reason that the AIC and the ANOVA point to the TS

GAM. Nevertheless, this is considered a stable seasonal pattern in the context of this

study.

Figures 6.28 and 6.29 show the diagnostic plots for the SS and TS GAMs which seem

fine.

Figure 6.28: The residual checking plots for the SS GAM of Silicate 1m show no violations.

Both Silicate measurements appear to have pseudo-trending in amplitude seasonal

patterns. As this chemical is a strongly limiting factor in the growth of diatoms we

might expect to see similar patterns with these when we examine the phytoplankton

series, as is verified later.
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Figure 6.29: The standardized deviance residuals’ checking plots from the TS GAM of Sili-
cate 1m show no violations of the assumptions of the model.
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6.3.4 Phosphate

As with other nutrients the phosphate concentration is increasing during winter to

be consumed by phytoplankton during the rest of the year. Parsons et al. (1988)

point out that the phosphates concentration may in fact be below the detection

limit after a phytoplankton bloom. Hence, changes in phosphate concentration are

closely linked to the biological demands of the phytoplankton species. Nonetheless,

phosphate is not usually a limiting nutrient for phytoplankton growth in the sea;

whereas in freshwater systems it is. In the following series the majority of 2006

data had to be removed due to a contamination of the samples. Missing values were

introduced. Phosphate is measured in millimoles per cubic metre (N/m
3).

Both Phosphate series are modelled using a Gaussian distribution with the identity

link function.

Phosphate - 1m

The Resampling results for Phosphate at 1m (Phosphate 1m) indicate a stable sea-

sonal pattern.

Resampling Testing Stable vs Trending: p = 0.316→ Stable

The GCV scores of the three GAMs, also, point to the SS model:

GCV Score: Non-Seas: 0.037, Stable: 0.022 & Trending: 0.024

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 17.7, Stable: 60.8 & Trending: 68.5

Table 6.12: Phosphate 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 642.222 23.201
SS 591.532 11.055 50.689 12.147 12.823 < 2.2e-16
TS 536.782 8.872 54.751 2.183 2.412 2.978e-07
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The ANOVA results, presented in Table 6.12, favour the TS GAM, however.

Figure 6.30: The Phosphate 1m series is plotted in the top left with the trend from the SS
GAM (red line). The stable seasonals and the Phosphate 1m (dotted) with the
stable (red) and trending (blue) fitted GAMs follow clockwise.

In Figure 6.30 the series of Phosphate 1m with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted in the

same picture. In addition, in this plot we note that years 2003 and 2004 behave

differently to the previous years.

Table 6.13: Phosphate 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.778 61.468 116.218

AIC -303.114 -685.1 -719.032
BIC -254.826 -409.722 -198.369

The AIC and BIC scores in Table 6.13 point to the TS and SS GAMs, respec-

tively.

Examining further the series, see Figure 6.31, we notice that the size of the season-

als fluctuates while the series has a stable seasonal pattern in terms of systematic
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Figure 6.31: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Phosphate at 1m series.

changes. Additionally, from 2002 onwards the main peak is split into two peaks, thus

changing the shape of the seasonals.

Figures 6.32 and 6.33 show some diagnostic plots for the SS and TS GAMs. There

are no major problems with the models even though the upper tail of the distribution

of the residuals deviates from the Gaussian family.

Our analyses do not show any systematic changes in the patterns of both phosphate

measurements. This is partly expected as phosphate is seldom a limiting nutrient

hence an increase or decrease in supply and demand may be less evident for phosphate

than for example Nitrate which is a limiting nutrient in the sea.
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Figure 6.32: The residual checking plots for the SS GAM of Phosphate 1m show no viola-
tions.

Figure 6.33: The standardized deviance residuals’ checking plots from the TS GAM of Phos-
phate 1m show no violations of the assumptions of the model.



190

6.3.5 Ammonia

Ammonia in the water is derived as an excretion product of the animal zooplankton

as well as being produced during their death and decay. Ammonia is also rapidly

taken up by phytoplankton. The amount produced by the zooplankton in the water

may be rapidly consumed by the phytoplankton. Thus a low value of ammonia

may reflect a small number of zooplankton present or a rapid consumption rate and

should be carefully interpreted. Generally, the level of ammonia increases during the

months of high zooplankton abundance. Rapid changes in ammonia levels are hard

to interpret. Ammonia samples can easily be contaminated during collection and

handling (Hay, pers. comm., 2009). Ammonia is measured in millimoles per cubic

metre (N/m
3).

The GAMs for both Ammonia series are constructed using an additive structure

(identity link function) as no evidence to the contrary were found.

Ammonia - 1m

The Resampling results for Ammonia at 1m (Ammonia 1m) indicate a stable seasonal

pattern.

Resampling Testing Stable vs Trending: p = 0.285→ Stable

The GCV scores disagree with the choice of the SS model:

GCV Score: Non-Seas: 0.494, Stable: 0.464 &Trending: 0.450

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 4.3, Stable: 27.9 & Trending: 40.9

In addition, the ANOVA , in Table 6.14, is in favour of the TS one.

In Figure 6.34 the series of Ammonia 1m with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.
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Table 6.14: Ammonia 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 692.948 336.992
SS 641.501 253.957 51.448 83.035 4.077 < 2.2e-16
TS 585.16 208.242 56.341 45.715 2.28 1.135e-06

Figure 6.34: Clockwise from top left the Ammonia 1m series with the trend from the SS
GAM marked by a red line, the stable seasonals and Ammonia 1m (dotted)
with the stable (red) and trending (blue) fitted GAMs.

Figures 6.35 and 6.36 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 2, 19, 35, 37, 40, 41 and 42 differ from a straight line

parallel to the x-axis. This indicates that the smooths for these weeks are significant

and should be included in the model.

The AIC and BIC scores in Table 6.15 point to the TS and NS GAMs, respec-

tively.

In Figure 6.37 the stable (red) and trending (blue) seasonals from the TS GAM are

plotted over each other. There is a fluctuation in the size of the seasonals of this

series. This, however, could hinder the Resampling test’s ability to identify a shift

in time. There is probably a systematic shift in time that is very small and thus,
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Figure 6.35: The smooth fitted functions for weeks 1-36, in the TS model for the Ammonia
1m data.

Figure 6.36: The smooth trending seasonals estimated in the TS model for the Ammonia
1m, weeks 37-52.

Table 6.15: Ammonia 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 7.052 58.499 114.84

AIC 1487.794 1392.946 1366.903
BIC 1519.876 1659.098 1889.385
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Figure 6.37: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Ammonia at 1m series.

easily disguised by the random amplitude fluctuations.

In Figures 6.38 and 6.39 the diagnostic plots for the SS and TS GAMs show a

deviation from normality.
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Figure 6.38: The residual checking plots for the SS GAM of Ammonia 1m.

Figure 6.39: The residual checking plots from the TS GAM of Ammonia 1m.
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Ammonia - 45m

The Resampling results for Ammonia at 45m (Ammonia 45m) indicate a trending

seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.019→ Trending

The GCV score of the three GAMs, however, points to the SS model:

GCV Score: Non-Seas: 0.486, Stable: 0.436 & Trending: 0.452

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 5.04, Stable: 32 & Trending: 46.5

Table 6.16: Ammonia 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 687.936 328.899
SS 635.569 235.522 52.367 93.377 4.812 < 2.2e-16
TS 579.177 185.188 56.392 50.334 2.792 8e-10

The Resampling result is further enforced by the ANOVA, in Table 6.16, which is in

favour of the TS GAM, too.

In Figure 6.40 we see the series of Ammonia 45m with the trend from the SS GAM.

The stable seasonals and the fitted values of the SS (red) and TS (blue) GAMs are

also plotted.

Figures 6.41 and 6.42 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 22, 24, 25, 29, 31, 35, 37, 39, 40, 41, 42 and 50

deviate significantly from a straight line parallel to the x-axis.

Table 6.17: Ammonia 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 7.064 59.431 115.823

AIC 1465.391 1338.366 1284.29
BIC 1497.78 1608.33 1810.411
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Figure 6.40: Clockwise from top left the Ammonia 45m series with the trend from the SS
GAM, the stable seasonals and Ammonia 45m (dotted) with the stable (red)
and trending (blue) fitted GAMs.

The AIC and BIC scores in Table 6.17 point to the TS and NS GAMs, respec-

tively.

In Figure 6.43 we see the stable (red) and trending (blue) seasonals from the TS

GAM. The peak shifts systematically earlier in time while there is also a random

amplitude change.

Similarly to Salinity, finding Ammonia at 45m to have a trending seasonal pattern

verifies our thoughts about a systematic shift masked by the fluctuation in the size

of the pattern for the Ammonia at 1m series. Ammonia at 1m could be trending but

the series maybe too noisy for it to be detected. Weeks 40, 41 and 42 were found

trending for the Ammonia at 1m as well as for the Ammonia at 45m.

To estimate the shift in time we plot the de-trended fitted values from the TS of this

series and then note the occurrence of the main peak, see Figure 6.44. With a black

dotted line we mark week 20 and with a red line week 50 in all years. The main peak

seems to be shifting earlier in each year.

Figures 6.45 and 6.46 show some diagnostic plots for the SS and TS GAMs. No
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Figure 6.41: The smooth fitted functions for weeks 1-36, in the TS model for the Ammonia
45m data.

Figure 6.42: The smooth trending seasonals estimated in the TS model for the Ammonia
45m, weeks 37-52.
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Figure 6.43: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Ammonia at 45m series.

Figure 6.44: The de-trended fitted values from the TS GAM fitted to the Ammonia 45m
series. The dotted lines mark weeks 20 and 50.
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major issues appear with the models even though there is a deviation from normality

especially at the upper tail of the series.

Figure 6.45: The residual checking plots for the SS GAM of Ammonia 45m.

There is evidence of a shift earlier in the year for the seasonals of both Ammonia

series. This bears a striking resemblance to that seen in the Salinity data. We

perceive a shift through some transitory years from one state to another rather than

an entirely smooth trend. This may be a reflection of the pattern of zooplankton

abundance and decay as they are mainly responsible for the ammonia signal.
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Figure 6.46: The standardized deviance residuals’ checking plots from the TS GAM of Am-
monia 45m.
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6.3.6 Nitrate

Nitrate is the main nutrient in the water that drives the marine phytoplankton

production and is quite often present in limiting concentrations. It has a seasonal

nature with slow build up in winter months and rapid decline in spring as the light

levels increase to allow the phytoplankton community to begin their photosynthesis.

When there is sufficient light phytoplankton is reproduced and the levels of nitrate

in the water decrease (Hay, pers. comm., 2009). Nitrate is measured in millimoles

per cubic metre (N/m
3).

The GAMs for both Nitrate series examined below are based on an additive structure,

using the identity link function, and a Gaussian family.

Nitrate - 1m

The Resampling results for Nitrate at 1m (Nitrate 1m) indicate a stable seasonal

pattern. We do note that the p-value is quite small though.

Resampling Testing Stable vs Trending: p = 0.075→ Stable

The GCV score of the three GAMs rejects the choice of the SS model in favour of

the TS one:

GCV Score: Non-Seas: 13.292, Stable: 3.130 & Trending: 3.04

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.98, Stable: 82.1 & Trending: 86.7

Table 6.18: Nitrate 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 699.902 9229.376
SS 643.064 1706.362 56.838 7523.014 49.881 < 2.2e-16
TS 587.779 1267.405 55.285 438.956 3.682 1.68e-15
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This is further enforced by the ANOVA, in Table 6.18, which is in favour of the TS

GAM, too.

Figure 6.47: Clockwise from top left the Nitrate 1m series with the trend from the SS GAM,
the stable seasonals and the Nitrate 1m series marked with dots with the stable
(red) and trending (blue) fitted GAMs.

In Figure 6.47 the series of Nitrate 1m with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and residuals of the SS GAM are also plotted. For

years 2000 and 2001 neither fit goes low enough in the trough, both overestimating

the levels of Nitrate.

Figures 6.48 and 6.49 depict the smooth functions fitted to each week by the TS

GAM. The C.I.s of weeks 2, 11-18, 43 and 48-50 differ from a straight line parallel to

the x-axis, marking them significant in our model. In particular, for weeks 12-17 the

fitted smooth functions exhibit a monotonic behaviour indicating a trending seasonal

pattern.

The AIC and BIC scores in Table 6.19 point to the TS and SS GAMs, respec-

tively.

The two seasonal patterns, stable and trending, estimated by the TS GAM are

plotted in Figure 6.50. The peak of the trending seasonals, blue, at the start of the
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Figure 6.48: The smooth fitted functions for weeks 1-36, in the TS model for the Nitrate
1m data.

Figure 6.49: The smooth trending seasonals estimated in the TS model for the Nitrate 1m,
weeks 37-52.

Table 6.19: Nitrate 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 4.098 60.936 116.221

AIC 3813.3 2740.293 2641.797
BIC 3831.967 3017.879 3171.226
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Figure 6.50: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Nitrate at 1m series.

series appears to the right of the stable seasonals, red, and moves gradually earlier

in the year. Thus, towards the end of the series the peak of the trending seasonals

is located just to the left of the stable one. Furthermore, we can verify that there is

a random amplitude change as the overall size of the estimated trending seasonals

first decreases and then increases.

To further examine the shift, in Figure 6.51 we see the de-trended fitted values from

the TS GAM for Nitrate at 1m plotted by year. Dotted vertical lines are drawn to

mark weeks 20 (black) and 50 (red). The summer trough appears to shift gradually

earlier in time.

Figures 6.52 and 6.53 show some diagnostic plots for the SS and TS GAMs. The

assumption of normality is violated at the extremes of the series. In addition, there

are some high residual values due to the model fits over-predicting or under-predicting

the Nitrate levels.

The apparent shift earlier in the Nitrate seasonal pattern indicates that there may
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Figure 6.51: The de-trended fitted values from TS GAM for Nitrate 1m. The vertical lines
mark weeks 20 and 50 in black and red, respectively.

Figure 6.52: The residual checking plots for the SS GAM of Nitrate 1m.
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Figure 6.53: The standardized deviance residuals’ checking plots from the TS GAM of Nitrate
1m.

be evidence of earlier uptake by the phytoplankton and so a shift in the timing of

the spring bloom. Nevertheless, the point in time that the Nitrate levels begin to

replenish does not appear to be shifting earlier in the year as does the point of its

decline. This could possibly translate to a longer period during which blooms take

place.
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6.3.7 Chlorophyll a

Smith et al. (2007) state that Chlorophyll a is the primary pigment of interest in

monitoring programmes as it is the most abundant in photosynthesising plants and

is also readily detected by fluorescence detection. Most of the phytoplankton species

contain Chlorophyll a. The Chlorophyll a (Chlorophyll) series gives an indication

of the phytoplankton biomass and not rate of production as for example there may

be a huge population of zooplankton consuming it and thus very little biomass as

Chlorophyll evident in the water samples (Bresnan, pers.comm., 2008). CHlorophyll

a is measured in micrograms per litre (µg/l).

The GAMs for this series assume a Gamma family with a log link and a cyclic com-

ponent for the trending seasonals extraction. The diagnostic plots for the Gaussian

family models were very poor indicating that a different family would be more ap-

propriate. Though the diagnostic plots for the Gamma family are not ideal, Figures

6.59 and 6.60, are an improvement from the ones for the Gaussian family.

When using a cyclic component to model the stable seasonality there are two choices

for the construction of the TS GAM. One can choose to include or exclude the term

corresponding to the stable seasonal (i.e. the cyclic smoother) in the TS model.

Including the stable seasonal term ensures that the models are properly nested and

thus the ANOVA and the GCV score can be used for comparison. The goodness of

fit measures are essentially the same on both occasions.

Nonetheless, the confidence intervals for the smooth terms corresponding to the

trending seasonals are wider when the stable term is included. This is an indication

that the contribution of the stable cyclic component affects the estimation of the

standard error of the trending seasonals. No other differences occur and to better

demonstrate the above issue, for this series we will present the results for both ways.

For the rest of this thesis, when a series is modelled using a cyclic component for the

stable seasonals both models are examined and the plots of the smooth functions are

always from the TS GAM without the stable component.
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The Resampling results for Chlorophyll indicate a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.138→ Stable

Including the Stable Seasonals’ Term in the TS GAM

In agreement with the Resampling results the GCV score, also, prefers the SS model:

GCV Score: Non-Seas: 1.042, Stable: 0.424 & Trending: 0.532

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.32, Stable: 62.1 & Trending: 70.5

Table 6.20: Chlorophyll ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 689.929 709.733
SS 680.915 278.136 9.015 431.599 117.211 < 2.2e-16
TS 578.751 216.898 102.164 61.239 1.599 4.887e-04

The ANOVA, in Table 6.20, is in favour of the TS GAM, however.

Figure 6.54: Clockwise from top left the Chlorophyll series with the trend from the SS GAM,
the stable seasonals and Chlorophyll (dotted) with the stable (red) and trending
(blue) fitted GAMs.
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In Figure 6.54 the series of Chlorophyll with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.

Figure 6.55: The smooth fitted functions for weeks 1-36, in the TS model for the Chlorophyll

data.

Figures 6.55 and 6.56 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 25, 35 and 36 differ significantly from a straight

line parallel to the x-axis. The smooth functions corresponding to these weeks are

not monotonic and thus they indicate a random change.

Table 6.21: Chlorophyll AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 6.07 15.085 117.249

AIC 1810.663 1108.8 1130.208
BIC 1838.246 1177.345 1662.976

The AIC and BIC scores in Table 6.21 both point to the SS GAM.

Figure 6.57 shows the stable (red) and trending (blue) seasonals estimated by the

SS and TS GAMs, respectively. It could be considered that there is a systematic

amplitude change as the size of the pattern decreases until 2005 and then increases



210

Figure 6.56: The smooth trending seasonals estimated in the TS model for Chlorophyll ,
weeks 37-52.

only slightly 3 . In addition, the shape of the seasonals changes. The sharp peak

during the first three years is joined by a second one later in the year, almost forming

one wider peak. In the last two observed years, however, the shape of the pattern

resembles the first years, with a narrower peak.

In Figure 6.58 we see the de-trended fitted values for Chlorophyll by the TS GAM.

The vertical lines mark weeks 18 and 42 in black and red, respectively. The peak

itself changes in size and shape while the timing of its descend appears to shift a

little earlier in the year.

Figures 6.59 and 6.60 show some diagnostic plots for the SS and TS GAMs. There

is a deviation from normality at the extremes of the series.

3The actual ranges corresponding to years 1997-2008 are: 4.357, 3.921, 3.562, 3.285, 3.070, 2.910,
2.706, 2.631, 2.667, 2.776, 2.912.
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Figure 6.57: The stable seasonals, red, and the trending seasonals, blue, from the SS and
TS GAM, respectively, fitted to the Chlorophyll series.

Figure 6.58: The de-trended fitted values from TS GAM for Chlorophyll a. Weeks 18 and
42 are marked by vertical lines in black and red, respectively.
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Figure 6.59: The residual checking plots for the SS GAM of Chlorophyll show a deviation
from normality at the extremes of the series.

Figure 6.60: The standardized deviance residuals’ checking plots from the TS GAM of
Chlorophyll show a deviation from normality at the lower end of the series.



213

Without the Stable Seasonals’ Term in the TS GAM

The GCV score of the new TS GAM is:

GCV Score: Trending: 0.532

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.32, Stable: 62.1 & Trending: 70.5

Figure 6.61: Clockwise from top left the Chlorophyll series with the trend from the SS GAM,
the stable seasonals and Chlorophyll (dotted) with the SS (red) and TS (blue)
fitted GAMs. The TS GAM does not include the stable cyclic smoother.

In Figure 6.61 the series of Chlorophyll with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.

Figures 6.55 and 6.56 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 25, 35 and 36 differ significantly from a straight

line parallel to the x-axis. The smooth functions corresponding to these weeks are

not monotonic and thus they indicate a random change.

The AIC and BIC scores in Table 6.22 both point to the SS GAM.

The diagnostic plots for the TS GAM are shown in Figure 6.64. There is a deviation

from normality at the extremes of the series.
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Figure 6.62: The smooth fitted functions for weeks 1-36, in the TS model (without the stable
cyclic smoother) for the Chlorophyll data.

Table 6.22: Chlorophyll AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 6.07 15.085 117.317

AIC 1810.663 1108.8 1130.374
BIC 1838.246 1177.345 1663.451

The analyses with either TS GAM points to the existence of trending seasonality.

Furthermore, we note that the scores and test results from the goodness of fit mea-

sures that are used are very similar in both occasions. We prefer, however, to use

the ANOVA and the GCV score for inference and thus we prefer the TS model that

includes the stable term. When looking at the smooth functions fitted to each week

the other TS GAM provides tighter confidence intervals and will thus be preferred

for that particular purpose. For the rest of this thesis both models will be exam-

ined. The ANOVA results and the GCV scores comparisons will always correspond

to the TS model that includes the stable component while when plots of the smooth

functions are presented these will be from the TS GAM without the stable seasonal

term. The AIC and BIC values are always very similar and will thus not be reported

twice.
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Figure 6.63: The smooth trending seasonals estimated in the TS model (without the stable
cyclic smoother) for Chlorophyll , weeks 37-52.

In the Chlorophyll series analysis we note systematic changes in the pattern. There

is evidence that the size of the pattern (amplitude) is gradually decreasing with time.

In the first three years there seems to be a more sudden decline in spring. Ensuing

years show a more stable pattern while in the last three a slight increase in the size

is noted. There is also an indication of an earlier decline in the concentration of

Chlorophyll through autumn.
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Figure 6.64: The standardized deviance residuals’ checking plots from the TS GAM of
Chlorophyll show a deviation from normality at the lower end of the series.
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6.4 Phytoplankton Series Results

The phytoplankton data consist of diatoms and dinoflagellates. Bresnan et al. (2009)

describe the procedure of collecting and analyzing phytoplankton samples. A 10m

Lund tube is used and one litre of sea water is preserved. A 50ml subsample is

analysed under an inverted microscope. After the homogeneity of the sample is

verified all species present are recorded. The species in ten random fields of view are

counted and multiplied up to give densities in one litre of water.

The phytoplankton series are densities derived from counts (cells per litre), and thus

no malfunctioning equipment could interfere with the data. Phytoplankton species

reproduce by cell division (< 2 days/division), therefore very rapid population growth

is common when growth conditions are good. Extreme values are considered correct

and are included in the analysis. Each species is generally adapted to grow optimally

in the environmental conditions during a part of Nature’s seasonal cycle. Because

they are based on counts there are many zero values in the data. For some species

there are more zero values than non-zero ones. Furthermore, commonly the sharp

rises in the population of the phytoplankton create high spikes in the series.

When conducting the Resampling tests we use the logarithm of the examined series

after we add 1 to it. We are thus, accommodating for the high variability in the

spikes of the seasonal pattern. For Resampling tests we take the average of multiple

entries in one pre-defined week to create a time series. This is not necessary for the

GAMs.

Since we are analysing densities the Gamma and then the Normal families were

assumed for our models. Two series, the Total Diatoms and Total Phytoplankton,

included a small number of zeroes and thus we are able to fit the GAMs using a log

Normal distribution with the identity link. Hence, we use the logarithm of the series

after we add 1 to all values and fit using the Normal family.

Nevertheless, for the majority of the series of phytoplankton species and groups, the

number of zero values is restrictive and the models cannot be fitted or when they
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are fitted the fit is very poor. Therefore, we use Binomial models for most series,

trying in this way to model the presence or absence of each species. All the non-zero

values in a series are substituted by ones and then the models are fitted. We create

the same three GAMs as before, NS, SS and TS, but now we assume the Binomial

family with a logit link function, where:

logit(p) = log

�
p

1− p

�
. (6.5)

Considering the UBRE, AIC and BIC score of the three models and the results

from the ANOVA between the models we choose the most appropriate GAM. To

evaluate the fit of the GAMs we cannot perform the usual checks when dealing

with Binomial models as the asymptotic results supporting the usual Chi-Squared

approximation involved in the likelihood-ratio tests is unreliable (Dobson, 2002).

Instead, we compare the residual deviance of the model under examination, as fitted

to the original series, with the residual deviances of the same model when fitted to

99 randomized series that have the same distribution as the original series.

We create 99 random uniform sets, Ut, equal to the length of the data and compare

them to the fitted values, Yt from the GAM in question. Thus, we create 99 series,

F
i

t
, i = 1, . . . , 99, as in (6.6) to which the model is fitted.

F
i

t
= 0, Ut > Yt & F

i

t
= 1, Ut < Yt (6.6)

Then we compare the deviance of the GAM fitted to the original series to the 99

deviances obtained by fitting the same GAM to the F
i

t
series. If the GAM is a good

fit then its deviance should belong to the distribution of the other 99 deviances.

The seasonal patterns of the series fitted by Binomial GAMs have sudden sharp

peaks and thus, we believe that a trend in the seasonals would be traceable looking

at the presence or absence of the species.
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The diagnostic check for the log Normal models is done by examining the standard-

ized deviance residuals. As in the previous section we create a QQ plot, a plot of

the residuals against the response, the residual histogram and a residual plot. When

referring to ‘residuals’ below in context of diagnostic plots we mean the previously

defined standardized deviance residuals.

The Resampling tests are always performed on the densities of the series. All the se-

ries in this section were found seasonal when testing for seasonality with Resampling.

Therefore, only the Resampling test results between stable and trending seasonality

are reported.

All phytoplankton series analysed are found to have seasonal patterns that are stable

in terms of systematic shifts. Only selected results are described below as many series

exhibit similar behaviour. A full description of the results for all series examined can

be found in the electronic Appendix I at the end of this thesis. First the results for

the diatoms are presented and then for the dinoflagellates while lastly we include

the results for the Total Phytoplankton series which is an aggregate of all observed

species.

6.4.1 Diatoms

Diatoms are photosynthesising algae that have a siliceous skeleton. They need sun-

light and chemical nutrients for growth thus, are found closer to the surface (Uni-

versity College London, 2009). Furthermore, diatoms need silicate for their silicate

outer wall. This nutrient in particular is important for diatom growth and can limit

the amount of diatoms present in the water.
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Chaetoceros

The Chaetoceros series includes the total of all observed Chaetoceros species as it

is hard to accurately distinguish between them. They are most active in the up-

per depths that receive sunlight and are prey to many zooplankton species such as

copepods (Bresnan, pers.comm., 2008).

This is an aggregate series of several species of different sizes that may exhibit peaks

at different periods (i.e. have slightly different seasonal cycles). Additionally, due

to the fast reproductive and adaptive abilities of these species we might not be able

to perceive a seasonal change without examining individual species time series. It

is also possible that existing species may be supplemented or replaced by new ones

carried into the region by advection from adjacent regions. The above is true for

all series examined in this section, as identifying individual species is not always

feasible and thus we look at aggregates. Nonetheless, we believe that these analyses,

limited as they are, constitute a first attempt at exploring these species’ seasonal

patterns.

The Resampling results for Chaetoceros indicate a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.144→ Stable

Additionally, the UBRE score prefers the SS model.:

UBRE Score: Non-Seas: 0.157, Stable: −0.067 & Trending: 0.111

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 1.15, Stable: 24.5 & Trending: 42.6

Table 6.23: Chaetoceros ANOVA

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
NS 416.193 476.899
SS 409.491 364.318 6.701 112.590 1.707e-21
TS 349.680 276.858 59.81 87.440 0.01

The ANOVA results, however, presented in Table 6.23, favour the TS GAM.
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Figure 6.65: Clockwise from top left Chaetoceros with the trend (red line) from the SS
model, the stable seasonals and Chaetoceros (dotted) with the stable (red) and
trending (blue) fitted GAMs.

In Figure 6.65 the series of Chaetoceros with the fits of the SS (red) and TS (blue)

GAMs, the trend and seasonals from the SS model are plotted.

Table 6.24: Chaetoceros AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 2.807 9.509 69.319

AIC 482.513 383.324 415.498
BIC 493.851 421.720 695.397

The AIC and BIC scores in Table 6.24 agree with the choice of the SS GAM. We

believe that this series has a stable seasonal pattern.

Diagnostic checking was performed for the SS and TS models as described above.

The original deviance for the TS model is greater than the 99 other derived deviances.

This indicates that the TS model is not a good fit. The SS model, however, is a good

fit as the original deviance is the 41st percentile of the 99 deviances.
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Total Diatoms

This series includes all diatoms in the Stonehaven database. Since this series has a

sufficient number of non zero values we use a log Normal distribution for the GAMs.

The series, however, exhibits very sudden high spikes, for example, going from 0 to

3000000 with a seemingly random allocation of zero values, see Figure 6.66 of the

logged values. This is very hard to model, therefore, we remove the zero values from

the series, inserting missing values in their place, when creating the GAMs. The

three GAMs are created for the logged series after the missing values are removed.

We thus, find a model for the series conditioned on the presence of diatoms. There

are 35 zeroes in a total of 419 samples giving a probability of 0.084. Dividing the

obtained conditional model by 0.084 we obtain the unconditional model.

This is an aggregate of many different species that have various patterns. As a result

the interpretation of the following analysis is very hard. From a biological point of

view, however, the behaviour of the seasonal pattern of all diatoms is interesting

as the diatoms share the same characteristics, for example need silicate and are

all photosynthesising. Thus, diatoms are more sensitive to a change in the spring

weather conditions (Bresnan, pers.comm., 2008).

Figure 6.66: The Logged series of Total Diatoms, after adding 1.
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The Resampling results for the Total Diatoms series indicate a stable seasonal pat-

tern. Resampling Testing Stable vs Trending: p = 0.40→ Stable

Additionally, the UBRE score also prefers the SS model:

UBRE Score: Non-Seas: 3.324, Stable: 1.761 & Trending: 3.051

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.064, Stable: 48.9 & Trending: 64.9

Table 6.25: Total Diatoms ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 382.000 1257.715
SS 377.096 642.522 4.904 615.192 73.623 <2.2e-16
TS 278.194 442.035 98.901 200.487 1.276 0.064

The ANOVA results, presented in Table 6.25, favour the SS GAM.

Figure 6.67: Clockwise from top left the logged Total Diatoms series with the trend (red
line) from the SS GAM, the stable seasonals and the series (dotted) with the
stable (red) and trending (blue) fitted GAMs.

In Figure 6.67 the series of Total Diatoms with the fits of the SS (red) and TS (blue)

GAMs are plotted. In the same Figure, we see the trend and seasonals from the SS

model.
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Table 6.26: Total Diatoms AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.000 7.904 106.806

AIC 1551.326 1303.220 1357.403
BIC 1563.178 1334.447 1779.353

Both the AIC and BIC scores in Table 6.26 point to the SS GAM. This series’

seasonal pattern is stable.

In Figures 6.68 and 6.69 we see the residual plots for the SS and TS models, respec-

tively. The SS model’s QQ plot does not show any deviation from normality, while

the TS’s one is problematic at the lower end of the series.

Figure 6.68: Diagnostic plots for the Total Diatoms SS model.
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Figure 6.69: Diagnostic check for the Total Diatoms TS model.

6.4.2 Dinoflagellates

Dinoflagellates are usually more abundant during late spring and summer and in some

occasions can form massive algal blooms. Unlike the diatoms’ silicate exoskeleton,

the dinoflagellates’ one is made of cellulose. In addition, not all dinoflagellates have

Chlorophyll a. Other pigments are often present and many species are mixotrophic;

i.e. able to photosynthesise or feed on other organisms. Some other dinoflagellates

are fully heterotrophic feeding only on other species. As with many diatoms, the

dinoflagellate species are able to survive as resting cysts and resistant stages in

sediments. The environmental cues that trigger excystment and often blooms are

very poorly understood (Amorim, pers. comm., 2009).

Alexandrium

The genus Alexandrium includes a few species, some being toxic dinoflagellates that

can be responsible for seasonal harmful algal blooms. The series Alexandrium is a
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total of all recorded Alexandrium species. The Resampling results for Alexandrium

indicate a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.114→ Stable

The UBRE score, however, prefers the TS model:

UBRE Score: Non-Seas: −0.513, Stable: −0.615& Trending: −0.662

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 9.05, Stable: 37.1 & Trending: 76.4

Table 6.27: Alexandrium ANOVA

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
NS 414.640 191.752
SS 408.724 132.528 5.900 59.224 5.707e-11
TS 385.169 49.692 23.555 82.836 1.592e-08

The ANOVA results, presented in Table 6.27, favour the TS GAM, too.

Figure 6.70: The Alexandrium series with the trend (red line) from the SS GAM, the stable
seasonals and the series as dots with the stable (red) and trending (blue) fitted
GAMs.

In Figure 6.70 the series of Alexandrium with the fits of the SS (red) and TS (blue)
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GAMs and the terms of the SS GAM are plotted.

Table 6.28: Alexandrium AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 4.376 10.276 33.831

AIC 200.504 153.080 117.354
BIC 218.174 194.574 253.960

The AIC and BIC scores, in Table 6.28, point to the TS and SS GAM, respectively.

This series has a pseudo-trending seasonal pattern and this random change in the

size of the seasonals is the reason that the ANOVA and the AIC prefer the TS

GAM.

Diagnostic checking was performed for the SS and TS models as described above. The

original deviance for the TS model is the 60th percentile of the other 99 deviances.

This indicates that the TS model is a good fit. The SS model is, also, a good fit as

the original deviance is the 50th percentile of the 99 deviances.

Total Dinoflagellates

The Total Dinoflagellates series includes all dinoflagellates species in the Stonehaven

database. The Resampling results for Total Dinoflagellates indicate a stable seasonal

pattern.

As this is an aggregate series of many different species that have various patterns

the interpretation of the following analysis is not straightforward. Nevertheless,

as with the Total Diatoms series, all dinoflagellates share some characteristics and

from a biological point of view the behaviour of the Total Dinoflagellates series is

important.

Resampling Testing Stable vs Trending: p = 0.277→ Stable

Additionally, the UBRE score prefers the SS model:

UBRE Score: Non-Seas: 0.296, Stable: −0.050 & Trending: 0.024
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The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.83, Stable: 32.1 & Trending: 60.6

Table 6.29: Total Dinoflagellates ANOVA

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
NS 415.518 533.046
SS 411.166 375.779 4.352 157.267 1.12e-32
TS 311.353 184.04 99.813 191.739 9.055e-08

The ANOVA results, presented in Table 6.29, favour the TS GAM, however.

Figure 6.71: The Total Dinoflagellates series with the trend (red line) from the SS GAM,
the stable seasonals and the Total Dinoflagellates series marked by dots with
the stable (red) and trending (blue) fitted GAMs.

Figure 6.71 shows plots of the series of Total Dinoflagellates, the trend and seasonals

of the SS GAM and the series as dots with the fits of the SS (red) and TS (blue)

GAMs are plotted.

In Table 6.30 both the AIC and the BIC scores point to the SS one. We believe that

this pattern is stable.

Diagnostic checking was performed for the SS and TS models as described above.

The original deviance for the TS model is greater than the 99 other derived deviances.
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Table 6.30: Total Dinoflagellates AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.482 7.834 107.647

AIC 540.008 391.447 399.334
BIC 554.082 423.081 833.999

This indicates that the TS model is not a good fit. The SS model, however, is a good

fit as the original deviance is the 30th percentile of the 99 deviances.

6.4.3 Total Phytoplankton

The Total Phytoplankton series includes all phytoplankton species in the Stonehaven

database. Similarly to the Total Diatoms series, we remove the zero values from this

series and use a log Normal distribution for the GAMs. The zero values occur

randomly, see Figure 6.72, with a total of 27 in 419 measurements, giving thus a

probability of 0.064 for absence.

Figure 6.72: The logged series of Total Phytoplankton.

The Resampling results for Total Phytoplankton indicate a stable seasonal pat-

tern.
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Resampling Testing Stable vs Trending: p = 0.116→ Stable

Additionally, the GCV score prefers the SS model:

GCV Score: Non-Seas: 3.216, Stable: 1.516 & Trending: 2.538

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.454, Stable: 54.9 & Trending: 66.9

Table 6.31: Total Phytoplankton ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 389.488 1238.050
SS 384.168 561.386 5.319 676.661 87.052 <2.2e-16
TS 284.491 377.569 99.678 183.817 1.39 0.019

The ANOVA results, presented in Table 6.31, favour the TS GAM, however.

Figure 6.73: Clockwise from top left the Total Phytoplankton series with the trend (red
line) from the SS GAM, the stable seasonals and the logged series of Total
Phytoplankton marked by dots with the stable (red) and trending (blue) fitted
GAMs.

In Figure 6.73 the series of Total Phytoplankton with the fits of the SS (red) and TS

(blue) GAMs are plotted. In the same Figure we see the stable seasonals and trend

from the SS model.
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Table 6.32: Total Phytoplankton AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.512 8.832 108.509

AIC 1570.284 1270.897 1314.763
BIC 1584.232 1305.970 1745.681

Both the AIC and BIC scores in Table 6.32 point to the SS GAM. There is a fluctu-

ation of the size of the seasonals of this series but the pattern is stable in terms of

systematic shifts in time.

Figure 6.74: Diagnostic check for the Total Phytoplankton SS model.

In Figures 6.74 and 6.75 residual plots for the SS and TS model are shown. There is

a slight violation of normality at the ends of the series.
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Figure 6.75: Diagnostic check for the Total Phytoplankton TS model.
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6.5 Notes on Results

Both seasonal decomposition based testing procedures, Resampling and the GAMs,

are used to test in each case a specific hypothesis under the specified models. Thus,

the Resampling result is dependent on the estimated trends and stable/trending

seasonals. Similarly, the criteria used for GAM selection test not whether the series

has stable or trending seasonality but if the specified stable or trending model is a

better fit to the data. This implies that a ‘poor’ stable model could give a trending

result and the opposite. In addition, the BIC is more conservative and thus, it has

been observed that if the series seems to be trending (the other results point us in that

direction) then the BIC often indicates a stable model while if the series seems stable

then the BIC points to a non-seasonal model. The ANOVA is more sensitive than

the rest of the criteria used and is influenced by any type of change, thus preferring

trending than stable models. Nevertheless, when there is no change in the seasonals

the ANOVA correctly points to the SS GAM while if there is a big systematic change

in the seasonals the conservative BIC will identify a TS GAM.



Chapter 7

Stonehaven Zooplankton Results

7.1 The zooplankton data

The results from the analysis of the zooplankton time series from Stonehaven are

presented in this chapter. The zooplankton series share some similarities with the

environmental and phytoplankton series of the previous section. They also are weekly

observations but unlike the environmental series these are counts much like the phy-

toplankton, and not measurements. Thus, a zero in the series cannot be attributed

to the detection limit of the equipment but can mean either a zero in the population

or a zero in the sample.

The sampling procedure involves lowering a plankton net1 to a depth of 45m and

hauling vertically to sample the water column from 45m near the seabed at around

50m. The sample is preserved in 4% buffered formaldehyde and returned to the

laboratory for species identification and counts. After removing the big species for

direct count the sample is made up to a standard volume of 200ml and a sub-sample

of suitable volume (2.5, 5 or 10ml) is then extracted and everything in it is identified

to a suitable taxonomic level and counted. The raw numbers of count are derived
1a bongo net with 40 cm diameter and 200 µm mesh

234
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by multiplying up the counts from the sub-sample to the standard (200ml). These

species counts per sample are then corrected to generate average densities of the

species in the water column, expressed as number of cells per litre or as standing

stock (i.e. the number beneath a square meter of water surface). This assumes the

net samples a cylindrical volume with 70% efficiency.

The database does not include information on the volume of the sub-sample used

which would be very useful so as to consider the weight that each observation carries.

In year 1999 (16th of March) the diameter of the net changed from 30 to 40cm (BO200

to BG200) which caused the value of that constant to change. In this section we are

examining the densities of some zooplankton species.

7.1.1 Resampling

The Resampling testing techniques presented in chapter 4 are used with the same

modifications discussed previously to allow for the many missing values in the series.

The observations are allocated weeks in the year (52 in total, not including the 26th

of December) according to the collection date. In order to form time series, when

two or more observations fall in the same week, averages are used. The zooplankton

series often exhibit high spikes, large differences in the counts, so the logarithm of

the series is computed and tested using these procedures 2.

All the reported testing results refer to tests of whether the seasonal pattern is stable

or trending since the nature of the data implies that they are in fact all seasonal; all

results between non-seasonal or seasonal verify this, unless stated otherwise.

2More accurately, the logarithm of the series plus one log(xt +1), to account for the zeros in the
series.
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7.1.2 GAMs

GAMs are used creating the aforementioned three types of models: non-seasonal,

NS, (smooth function of time), stable seasonal, SS, (smooth function of time and a

cyclic component for seasons) and trending seasonal, TS, (smooth function of time,

a cyclic component for seasons and smooth function of time by factors of seasons)

and testing for the best suited one.

The data are not used in the form of a time series so multiple entries for one week

are allowed, thus utilizing all available data points. The Poisson family was at first

assumed, as the data are in the form of counts, with the log link function, but there

arose issues caused by overdispersion and zero inflated counts. Furthermore, the

variation in the exact volume of the sample actually counted drew us to look at the

densities of the zooplankton database instead of the raw counts. For most series

a log Normal distribution gives an adequate fit while Gamma distribution was also

examined but rejected. The constant relating to the volume of water sampled is used

as an offset to account for the change in the width of the net. The stable seasonals

are estimated by a cyclic polynomial with 10 knots and the number of knots for the

trending seasonality terms are set equal to three as in the previous chapter.

For the Gaussian family GAMs use GCV score, an estimate of the prediction error,

to find the appropriate smoothness for each applicable model term. To avoid over-

fitting and to favour smoother fits we are using γ = 1.4 instead of the default value

1 in the construction of the model as advocated by Kim & Gu (2004). ANOVA

is used between non-seasonal versus seasonal and stable seasonal versus trending

seasonal models. Most series were found seasonal so only the stable versus trending

p-values are reported for the majority of them while values for non-seasonal versus

stable seasonal and non-seasonal versus trending seasonal are reported for the series

that were tested non seasonal. Finally AIC and BIC values for all three models are

reported with the minimum highlighted in bold. For each model the GCV score

is also presented with the lowest in bold. We also report the percentage deviance

explained by each GAM as a measure of fit. When the results point to a trending
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seasonal pattern we further examine the smooth terms fitted to each week by looking

at plots of each smooth function.

When fitting GAMs one has to check for any assumptions violations by checking the

residuals through diagnostic plots. As before, we are using standardised deviance

residuals, d̂std
3 for our diagnostic plots. We construct a QQ plot and a histogram

of the residuals to test the assumption of normality. A plot of the residuals against

the response is also examined. The residuals should appear evenly scattered while a

trend in the variability of the residuals would flag a violation of the constant variance

assumption. Finally, we look at the residual values. There should be no patterns in

them as that would indicate that there is still information to be extracted from them

and they are not just ‘noise’.

The results are presented by genus and then species. In Table 7.1 the results for

all zooplankton series examined are summarised. Only the most commonly known

species and series with interesting results are presented in this section. For the first

series of each species presented the results from the GAMs are more extensively

given, including a variety of plots and tables. When similarities occur, the results

for the rest of the series of the same species are not presented. Extensive plots

and tables of results are presented only when they appear noteworthy or in need

of further interpretation. A full description of the results for all zooplankton series

examined can be found in the form of an electronic appendix at the end of this thesis.

As the Resampling is used on the logged data and the GAMs assume a log Normal

distribution, all plots shown below are with regards to the logged data.

Not all species reported here were recorded since 1997. Acartia, Centropages, Temora,

Metridia lucens, Paracalanus parvus and Pseudocalanus elongatus were included in

the database in 1999 so these series are shorter by two years.

3
d̂std,i = (d̂i − ¯̂

d)
��

σ̂
�

(1−Hii)
�
, where Hii are the elements on the leading diagonal of the

hat matrix, H, and ¯̂
d the average of the deviance residuals d̂i.
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Table 7.1: Zooplankton Series Results

Species & Copepodite Stage Pattern

Acartia clausi
4, 5, 6f Pseudo-trending in Amplitude

6m Trending (Time Shift earlier)

Total Acartia Pseudo-trending in Amplitude

Centropages typicus
1-5 and 6m Pseudo-trending in Amplitude

6f Pseudo-trending in Amplitude and Phase

Centropages hamatus 4-6 Pseudo-trending in Amplitude

Calanus finmarchicus
5 Trending (Time Shift earlier)

6f and 6m Pseudo-trending in Amplitude

Calanus helgolandicus
5 Trending (Time Shift Earlier)

6f and 6m Trending (↑ Amplitude & Time Shift Earlier)

Juvenile Calanus 1-4 Trending (↑ Amplitude & Time Shift Earlier)

Calanoid Copepods Pseudo-trending in Amplitude

Temora longicornis 1-6 Pseudo-trending in Amplitude

Total Temora Pseudo-trending in Amplitude

Paracalanus parvus 1-6 Pseudo-trending in Amplitude

Pseudocalanus elongatus 1-6 Pseudo-trending in Amplitude

Metridia lucens
1-5 and 6m Pseudo-trending in Amplitude

6f Non Seasonal

Oithona 1-6 Pseudo-trending in Amplitude

Total Oithona Pseudo-trending in Amplitude

Lamellibranchiata Pseudo-trending in Amplitude
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7.2 Results by species

Copepods

Copepods are small crustaceans that are so abundant that often represent more than

90% of the biomass in mesozooplankton samples. They are mainly herbivores and

as such represent a major pathway for the transfer of energy up the marine food

web. Some copepod species exist in the water all year and some produce resting

stages that allow them to survive winter. It is a feature of most copepods that the

adult males either do not feed or feed less and consequently have a shorter life span

than adult females; whose feeding as adults is translated mainly into egg production

rather than somatic growth (Hay, pers. comm., 2009).

7.2.1 Acartia

Acartia is a small calanoid copepod that is found in shelf seas. The genus Acartia

is common and abundant all around the world’s oceans. It is an important link

in the food chain as it is largely a herbivore mediating energy transfer between

phytoplankton and developing larvae of commercial fish species. Acartia clausi is

resident in the North Sea all year, but late in the year the eggs produced are able

to delay hatching and so rest in the seabed sediments to hatch in spring through

early summer (Hay, pers. comm., 2009). We look at some developmental stages of

Acartia clausi and the total counts of Acartia, including all observed stages of clausi,

longeremis, discudata and bifilosa, which are, relative to clausi, rare species in the

samples .

Acartia clausi

Acartia clausi has a life-cycle that consists of six naupliar stages followed by five

copepodid larval stages to reach adulthood in stage 6. We examine densities of
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Acartia clausi copepodite stages 4 (C4), 5 (C5) and 6 (C6f) females and males

(C6m). The 200 micron net mesh of the sampler does not trap the early nauplii

or the first three copepodite stages in a quantitative way as they pass through this

mesh. Acartia clausi exhibits one peak per year for all examined stages.

Acartia clausi copepodite stage 4

Acartia clausi C4 exhibits one major peak per year and appears to have a stable

seasonal pattern. The Resampling test yields an insignificant p-value when used

on the logged Acartia clausi C4 series to test for trending seasonality. The p-value

indicates a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.312→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 4.774, Stable: 1.297 & Trending: 2.059

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.762, Stable: 75.2 & Trending: 83.3

Table 7.2: Acartia clausi C4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 429.842 2033.470
SS 417.326 508.417 12.516 1525.058 100.018 < 2.2e− 16
TS 314.726 341.736 102.6 166.681 1.496 0.005

Looking at the ANOVA results, Table 7.2, the trending model is preferred.

In Figure 7.1 we see the logged Acartia clausi C4 with the fitted values from the two,

SS (red) and TS (blue), models. In the same Figure the trend and seasonals from

the SS GAM are also plotted.

The AIC and BIC scores, in Table 7.3, point to the SS GAM. The GAMs, as men-

tioned before, are sensitive to any kind of change and the change in the amplitude of

the seasonals, see Figure 7.1, could be the reason the ANOVA prefers the trending

model. This series has a pseudo-trending in amplitude seasonal pattern.
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Figure 7.1: The logged Acartia clausi C4 series with the trend from the SS model, the stable
seasonals and the series as dots with the fits from the stable (red) and trending
(blue) GAMs. Dotted lines denote the years.

Nevertheless, this amplitude change could affect the sensitivity of the above Resam-

pling testing procedure. Thus, the series could be trending in time but the above

test fails to detect it. One should attempt to accommodate for these changes in the

size of the seasonals and then test again the series for trends in time. Testing for

one specific type of change (for us systematic time shift) in the presence of other

unattended changes can lead to ambiguity in the interpretation of the results.

We, nonetheless, believe that this series’ seasonal pattern does not exhibit a system-

atic change, only a random amplitude change.

Table 7.3: Acartia clausi C4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.158 15.667 118.274

AIC 1901.480 1327.674 1361.256
BIC 1914.329 1391.443 1842.447

The diagnostic plots for the SS models are shown in Figure 7.2. The QQ plot is

satisfactory as the residuals display only little deviation from the theoretical quantiles
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at the extremes of the series. Nevertheless, the histogram of the residuals looks

good. The plot of residuals against the fitted values seems fine and the lower right

plot of the residuals themselves shows a slight remaining pattern, but not anything

problematic.

Figure 7.3 shows the diagnostic plots for the TS model. The plots look similar to

those for the SS model. The QQ plot shows a slight deviation from normality at the

extremes of the series which is also seen in the histogram of the residuals. The plot of

the residuals against the fitted values and the residuals themselves show no problems.

The appearance of straight lines in this plot is due to the fact that the residuals take

a small number of values for the corresponding low values of the response and thus,

it is not regarded as a problem.

The Acartia clausi C5 and C6f series examined behave similarly to Acartia clausi

C4, see electronic appendix for details.

Figure 7.2: Diagnostic plots for the SS GAM for Acartia clausi 4. The QQ plot shows a
slight problem with the Gaussian assumption at the extremes of the series.
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Figure 7.3: Diagnostic plots for the TS GAM for Acartia clausi 4. The QQ plot shows a
small problem with the Gaussian assumption at the extremes of the series.
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Acartia clausi copepodite stage 6 males

The Acartia clausi C6m series has a seasonal cycle that changes systematically in

time. The Resampling test for trending seasonality points to stable seasonality.

Resampling Testing Stable vs Trending: p = 0.07→ Stable

The GCV score of the GAMs also favours stable seasonality:

GCV Score: Non-Seas: 4.935, Stable: 1.381 & Trending: 2.076

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.596, Stable: 74.7 & Trending: 83.3

Table 7.4: Acartia clausi C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 429.94 2103.506
SS 416 536.255 13.94 1567.251 87.214 < 2.2e− 16
TS 316.876 352.461 99.124 183.793 1.667 4.913e-4

The ANOVA, however, supports a trending seasonal pattern, Table 7.4.

Figure 7.4: Clockwise from top left corner, the logged Acartia clausi C6m with the trend
from the SS model, the stable seasonals and the series as dots with the fitted
values from the stable (red) and trending (blue) GAMs.
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Figure 7.4 show the Acartia clausi C6m logged densities with the prospective fits

from the SS (red) and TS (blue) models. In the same Figure the trend and seasonals

from the SS GAM are plotted.

Figure 7.5: The smooth fitted functions for weeks 1-36, in the TS model for the Acartia

clausi C6m data.

In Figures 7.5 and 7.6 the smooth functions fitted to each week by the TS GAM

are shown. The smooth functions corresponding to a number of weeks differ from

a straight line parallel to the x-axis. Specifically, the smooth functions of some

weeks like weeks 16-18, 37 and 38 are monotonic indicating a possible systematic

change.

Table 7.5: Acartia clausi C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.06 17 116.124

AIC 1915.91 1353.354 1370.306
BIC 1928.359 1422.518 1842

The AIC and BIC scores point to the SS GAM, however.

To further examine the type of changes the seasonal pattern exhibits, we plot the
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Figure 7.6: The smooth fitted functions for weeks 37-52, in the TS model for the Acartia

clausi C6m data.

stable (red) and trending (blue) patterns estimated by the SS and TS GAMs, respec-

tively, Figure 7.7. There is a random change in the size of the estimated trending

seasonals but also there appears to be a slight systematic shift earlier in the year.

In particular it is the descend from the peak that appears to be shifting earlier in

time.

Our decision is that the pattern exhibits a random amplitude change but also starts

shifting slightly earlier in the year.

The diagnostic plots for the SS and TS GAMs are similar to the ones presented for

Acartia clausi C4.
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Figure 7.7: The stable seasonals, red, and the trending seasonals, blue, from the SS and TS
GAMs, respectively, fitted to the Acartia clausi C6m series.

Total Acartia

The total of all Acartia series available in the database includes all observed stages of

clausi, longeremis, discudata and bifilosa. It has a stable seasonal pattern that does

not shift with time. The Resampling results point to a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.784→ Stable

The GCV score of the GAMs coincides with the Resampling results:

GCV Score: Non-Seas: 4.736, Stable: 1.191 & Trending: 2.043

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 6.88, Stable: 77.9 & Trending: 83.7

Table 7.6: Total Acartia ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 424.141 1943.114
SS 415.537 461.211 8.604 1481.903 155.174 < 2.2e− 16
TS 314.972 340.008 100.565 121.203 1.116 0.238
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All the results, Tables 7.6 and 7.7, point to a stable seasonal pattern.

The terms of the fitted GAM with stable seasonality are plotted in Figure 7.8. In

the same Figure we see the series with the fitted values from the stable (red) and

trending (blue) GAMs.

This series has a stable seasonal pattern in terms of systematic changes. It does

exhibit though a random amplitude change.

Figure 7.8: Total Acartia logged densities with the trend, as a red line, and seasonals from
the SS GAM. The lower plot shows the series as dots with the fits from the SS
(red) and TS (blue) GAMs.

Table 7.7: Total Acartia AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.859 17.463 118.028

AIC 1893.245 1289.154 1358.574
BIC 1929.286 1360.201 1838.763
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7.2.2 Centropages

Centropages is a common genus of calanoid copepods. We will be looking at Cen-

tropages typicus (C. typicus) and Centropages hamatus (C. hamatus). At Helgoland

Roads, these two Centropages species coexist and a seasonal succession is noticed be-

tween C. hamatus and C. typicus. C. typicus prefers the saline and relatively warm

waters of Atlantic origin and is more abundant there in the second half of the year

while maximum abundances of C. hamatus are usually found, before the C. typicus

seasonal peak (Bonnet, 2007).

C. typicus is a larger species with a more carnivorous diet and being optimally

adapted to warmer waters it is found abundantly only through the warmer months.

C. hamatus is a North Sea resident and more abundant species that is more om-

nivorous in its diet. Like Acartia it is known to produce resting eggs later in the

year that overwinter in the seabed sediments and hatch in Spring to develop a new

population, which reproduces with subitaneous eggs that develop normally to hatch

into naupliar stages (Hay, pers. comm., 2009).

Centropages typicus

C. typicus is a calanoid copepod with a wide range of distribution in the North

Atlantic and adjacent shelf seas. It feeds on a wide range of prey both phytoplankton

and animal prey (e.g. nauplii of copepods). Stocks increase in temperatures between

13oC and 20oC causing a seasonal peak in summer and up to early winter in the North

Sea. Its over-wintering behaviour is not understood but since it cannot survive in

the North Sea it is associated with influx of water from the Atlantic ocean (Carlotti

& Harris, 2007; Bonnet, 2007).

C. typicus copepodite stages 1 to 4

C. typicus copepodite stages 1 to 4 (C1-4) exhibits a stable seasonal pattern with

one peak per year. The Resampling test points to a stable seasonal pattern.
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Resampling Testing Stable vs Trending: p = 0.809→ Stable

The GCV score of the GAMs agrees with the Resampling results:

GCV Score: Non-Seas: 0.839, Stable: 0.572 & Trending: 0.916

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 15.1, Stable: 44.5 & Trending: 64.6

Table 7.8: C. typicus C1-4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 422.475 340.473
SS 416.198 222.515 6.278 117.958 35.145 < 2.2e− 16
TS 308.248 141.977 107.949 80.538 1.62 0.001

The ANOVA , Table 7.8, is in favour of a trending seasonal model while the Resam-

pling p-value, the GCV score, the AIC and BIC, Table 7.9, a stable one. There is

a random change in the size of the seasonals and, as explained before, the GAMs

are very sensitive to any kind of change. We believe that there is a fluctuation in

the size of the seasonals but not a systematic shift in time, i.e. pseudo-trending

seasonality.

In Figure 7.9 we see the logged series of C. typicus C1-4 with the terms from the SS

GAM and the SS (red) and TS (blue) fitted GAMs.

Table 7.9: C. typicus C1-4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.525 16.802 124.752

AIC 1144.157 972.965 994.753
BIC 1186.975 1041.324 1502.296

Figures 7.10 and 7.11 show the diagnostic plots for the two GAMs. Both QQ plots

show a deviation from normality.

Finally, as a note we mention that the somewhat intriguing pattern that appears in

the residuals is just a product of the smooth fit. The models fit smooth and gradual
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Figure 7.9: C. typicus C1-4 with the trend from the SS model, the stable seasonals and
the series (marked as dots) with the two fits from the stable (red) and trending
(blue) GAMs.

increases and decreases in the numbers of C. typicus C1-4 but the real data exhibits

very sharp rises and falls which causes a pattern to appear in the residuals. This

could be seen as an indication that these type of time series (rapid increase and

decrease) are not suitably modelled by GAMs. Another possibility is to model them

as binary data with the Binomial family as we did for most phytoplankton series in

the previous chapter.

The results for the other C. typicus series are very similar to those for C. typicus

C1-4. The series of C. typicus C6m, however, has only 75 non zero values and the

diagnostic plots for the GAMs show a poor fit. Modelling it as a binary variable

with a Binomial GAM would be better suited. For detailed results for these series

please see the electronic appendix.
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Figure 7.10: C. typicus C1-4 diagnostic plots for the SS GAM.

Figure 7.11: C. typicus C1-4 diagnostic plots for the TS GAM.
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Centropages hamatus

Centropages hamatus (C. hamatus) is like C. typicus a very abundant calanoid cope-

pod. However, contrary to C. typicus, resting eggs of C. hamatus have been identified

in the Southern North Sea. This is commonly interpreted to mean that these eggs

initiate a first generation which hatches and then develops to adult-hood during

March, when the first females are recorded in the plankton (Bonnet, 2007). All anal-

ysed hamatus series that follow are found to have a seasonal pattern which is stable

in time.

Centropages hamatus copepodite stage 4

C. hamatus C4 exhibits one major peak per year. It starts in spring and lasts till

autumn. The Resampling results identify a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.531→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 1.475, Stable: 0.791 & Trending: 1.181

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.51, Stable: 49.5 & Trending: 66.5

Table 7.10: C. hamatus C4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 628.765
SS 424.657 325.462 5.343 303.303 74.062 < 2.2e− 16
TS 324.255 216.137 100.402 109.326 1.634 0.001

The seasonality of the series changes in terms of size in a random way, see Figure

7.12. The ANOVA, Table 7.10, probably picks up this variation in size and proposes

the trending GAM. However, the GCV score, the p-value from the Resampling and

the AIC and BIC scores, Table 7.11, all indicate a stable model. This pattern is

pseudo-trending in amplitude.
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Figure 7.12: Clockwise from top left: C. hamatus C4 with the trend from the SS model,
the stable seasonals and the series, marked as dots, with the fit from the stable
(red) and trending (blue) GAMs.

In Figure 7.12 the logged C. hamatus C4 series with the two prospective fits from

the SS (red) and the TS (blue) models are shown. In the same Figure the trend and

seasonals from the SS GAM are also plotted.

Table 7.11: C. hamatus C4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 8.343 108.745

AIC 1394.106 1120.316 1144.287
BIC 1406.312 1154.261 1586.708

Figures 7.13 and 7.14 show the diagnostic plots for the two GAMs. Both the SS

and the TS GAMs give an adequate fit. They both exhibit a small deviation from

the normality assumption in the QQ plots and histograms but that does not look

significant enough to prove them inappropriate.

The other C. hamatus series (C5, C6f and C6m) behave similarly to this one and

thus their results will not be presented here.



255

Figure 7.13: C. hamatus C4 diagnostic plots for the SS GAM.

Figure 7.14: C. hamatus C4 diagnostic plots for the TS GAM.
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7.2.3 Pseudocalanus elongatus copepodite stages 1 to 6

Pseudocalanus is considered one of the most common and typical coastal copepods

in the North Sea. It is a largely herbivorous species with no resting/overwintering

developmental stage (Hay, pers. comm., 2009). Pseudocalanus elongatus has six

naupliar stages and five copepodite stages before it reaches adulthood in copepodite

stage 6. It favours temperature of 5o − 15oC while reduced growth has been verified

at 20oC (Stegert et al., 2007). Pseudocalanus elongatus C1-6 has seasonals that peak

twice within a year. The first peak is in spring while the second in autumn. The

pattern appears to be stable in terms of systematic shifts but the size of the seasonals

changes randomly over the years.

Figure 7.15: Clockwise from top left: the logged Pseudocalanus elongatus C1-6 with the
trend from the SS model, the stable seasonals and the logged series (dotted)
with the fitted values of the SS (red) and TS (blue) GAMs.

In Figure 7.15 we see the logged Pseudocalanus elongatus C1-6 series, the terms and

fitted values from the SS GAM and the fitted values from the TS GAM.
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7.2.4 Temora longicornis

Temora longicornis (T. longicornis) is a small, common and often abundant copepod

species endemic to the region and an important component of the plankton commu-

nity. This small copepod is omnivorous, also able to produce resting eggs when

conditions are poor, enabling it to overwinter in a resting state in the sediments;

to reappear when conditions improve in spring (Hay, pers. comm., 2009). All the

following Temora series are T. longicornis and are found to have a stable seasonal

pattern in time with two seasonal peaks. It should be noted that the 200 micron

mesh of the sampler does not catch the small C1- C3 copepodites of this small species

very well.

Temora longicornis copepodite stage 1

The series of T. longicornis C1 has a stable seasonal pattern according to the Re-

sampling results.

Resampling Testing Stable vs Trending: p = 0.241→ Stable

The GCV score of the GAMs agrees with the Resampling conclusion:

GCV Score: Non-Seas: 0.851, Stable: 0.737 & Trending: 1.136

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.308, Stable: 20.6 & Trending: 47.3

Table 7.12: T. longicornis C1 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 362.798
SS 417.485 289.028 12.515 73.77 8.514 5.696e-15
TS 316.323 191.856 101.162 97.173 1.584 0.001

All the tests and criteria, except the ANOVA point to the selection of the stable

seasonal GAM, Tables 7.12 and 7.13.
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Figure 7.16: From top left, clockwise wee see the logged series of T. longicornis C1 with the
trend from the SS model, the stable seasonals and the logged series marked as
dots with the fitted values from the SS (red) and TS (blue) GAMs.

In Figure 7.16 we see the fitted values from the SS (red) and TS (blue) models

and the terms of the SS one. The size of the seasonal pattern changes randomly in

time. The ANOVA probably prefers the TS GAM because it picks up this random

change.

Table 7.13: Temora C1 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 15.515 116.677

AIC 1156.545 1083.372 1108.67
BIC 1168.75 1146.493 1583.36

Figures 7.17 and 7.18 show the diagnostic plots for the two GAMs. The normality

assumption is violated in both models.

The other Temora longicornis series behave similarly to this one but have better

diagnostic plots for both GAMs, see electronic appendix.
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Figure 7.17: The diagnostic plots for the SS model of T. longicornis C1.

Figure 7.18: The diagnostic plots for the TS model of T. longicornis C1.
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Total Temora longicornis

The Total T. longicornis series includes all the observed stages of Temora longicornis.

It has a small peak in spring and a bigger one in autumn. This is an aggregate

series of the developmental stages and thus, the interpretation of the results is more

difficult.

Figure 7.19: Clockwise from top left: the logged Total T. longicornis with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS(blue) GAMs.

In Figure 7.19 we see the logged Total T. longicornis series, the terms and fitted val-

ues from the SS GAM and the fitted values from the TS GAM. The pattern changes

randomly in size but is stable in terms of systematic changes. This series has a pat-

tern whose amplitude fluctuates but does not exhibit any systematic changes.
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7.2.5 Paracalanus parvus copepodite stages 1 to 6

Paracalanus parvus is a small, mainly herbivorous coastal copepod found in temper-

ate waters. Usually in the northern North Sea Paracalanus appears less abundant

than other small copepods such as Pseudocalanus, Acartia and Temora. Like Pseu-

docalanus it has no resting stage for overwintering; instead it survives as best it can

on the food available or stored as lipid in its body (Hay, pers. comm., 2009). Para-

calanus parvus C1-6 series has a seasonal pattern with two peaks, one in spring and

one in autumn. We believe that the seasonal pattern does not exhibit systematic

shifts but a random amplitude change.

Figure 7.20: Clockwise from top left: the logged Paracalanus parvus C1-6 with the trend
from the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS(blue) GAMs.

In Figure 7.20 we see the logged Paracalanus parvus C1-6 series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM.
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7.2.6 Small Calanoid Copepods copepodite stages 1 to 6

The small Calanoid Copepods group is compounded of a number of species mainly

Acartia, Temora, Pseudocalanus, Paracalanus and Centropages. It is of interest to

look at the whole group as any trends would be very significant for overall food web

dynamics in the region. It should be noted that the 200micron mesh size of the

sampling net does not catch the C1 -C3 very well as they are too small. The series

of Small Calanoid Copepods copepodite stages 1 to 6 (C1-6) has a stable seasonal

pattern in terms of systematic changes according to the Resampling results.

Resampling Testing Stable vs Trending: p = 0.271→ Stable

The GCV score of the GAMs also points in the same direction:

GCV Score: Non-Seas: 1.777, Stable: 0.919 & Trending: 1.301

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 14.6, Stable: 57.6 & Trending: 68.2

Table 7.14: Small Calanoid Copepods C1-6 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 517.359 892.112
SS 509.714 442.351 7.644 449.761 67.797 < 2.2e− 16
TS 411.838 331.725 97.877 110.626 1.403 0.013

The ANOVA, Table 7.14, points to a trending seasonal pattern while all other test

results and criteria, Table 7.15, employed point to the stable seasonal model.

In Figure 7.21 the fitted values of the SS (red) and TS (blue) GAMs and the esti-

mated terms of the SS GAM are shown. There are two main peaks in the seasonal

pattern.

There is a fluctuation in the size of the seasonals, see Figure 7.21, but no change of a

systematic nature occurs. This fluctuation could be the reason the ANOVA prefers

the TS GAM.
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Figure 7.21: The logged series of Small Calanoid Copepods C1-6 with the trend from the
SS model, the stable seasonals and the logged series plotted as dots with the
fitted values from the SS (red) and TS (blue) GAMs.

Table 7.15: Small Calanoid Copepods C1-6 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.641 17.286 115.162

AIC 1789.887 1436.193 1480.565
BIC 1831.01 1509.921 1971.766

Figures 7.22 and 7.23 show the diagnostic plots for the two models. The QQ plots

and histograms betray a deviation from the assumption of normality towards the

lower values of the series.
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Figure 7.22: The diagnostic plots for the SS model of Small Calanoid CopepodsC1-6.

Figure 7.23: The diagnostic plots for the TS model of Small Calanoid CopepodsC1-6.
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7.2.7 Calanus finmarchicus

Calanus finmarchicus (C. finmarchicus) is one of the most common copepods in the

North Sea. It is an important component of the North Sea food web as its juveniles

are food for a lot of commercial fish in spring and early summer. This species is

largely herbivorous although able to feed on some microzooplankton and even its

own eggs. Its life-cycle consists of egg, six naupliar stages and five copepodid stages

(Hay, pers. comm., 2009). In stage 5 finmarchicus goes into diapause through the

winter, descending to depths over 500m off the edge of the continental shelf, to

emerge in early spring as a stage six adult.

The exact environmental conditions that trigger and stop the diapausing stage are

not known. C. finmarchicus exhibits a reproductive peak in April till June while later

the diapausing stages (C5 and some C6 females) sink to the bottom to over-winter.

It favours cool waters 0o - 15o and it is believed to have no resident population in the

North Sea (Bonnet et al., 2005). The North Sea is shallow and thus, animals enter

diapause partially which leads to low survival rates (Hirche, 1983). General belief is

that the population is re-initiallized every year by inflow of adults from the North

Atlantic.

In recent years research shows that changes of the climatological conditions impact

on the number and distribution of C. finmarchicus. Work on the CPR4 data shows

that in the last 40 years it has shifted progressively northwards with its numbers

decreasing (Reid et al., 2003).

Calanus finmarchicus copepodite stage 5

The C. finmarchicus C5 series exhibits two (major) peaks in the year. The first

one can be attributed to population development within the influx of water from

the North Atlantic while the next one is a first reproduced generation. Although as

4Continuous Plankton Recorder
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with most copepods reproduction is continuous while food resources are sufficient,

climatological factors influence the reproduction stages of C. finmarchicus so more

generations can be produced under appropriate circumstances. These could manifest

as other peaks within a year (Hay, pers. comm., 2009).

The results from the Resampling tests for trending seasonal pattern on the logged

series suggest a systematic time shift in the occurrence of the peaks and troughs of

the series, i.e. of the periodic component.

Resampling Testing Stable vs Trending: p = 0.001→ Trending

The GCV score of the GAMs, however, points to a stable seasonal pattern:

GCV Score: Non-Seas: 5.35, Stable: 0.439 & Trending: 0.550

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.762, Stable: 29.2 & Trending: 51.8

Table 7.16: C. finmarchicus C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 282.883
SS 509.998 211.56 14.002 71.322 12.279 < 2.2e− 16
TS 415.402 144.086 94.596 67.474 2.056 6.844e− 07

The existence of trend in the seasonals is further verified by the GAMs’ results.

The ANOVA, Table 7.16, and AIC, Table 7.17, agree with the Resampling outcome

while the more conservative BIC does not recognise the benefit of including trending

seasonals in the model.

In Figure 7.24 the logged series of C. finmarchicus C5 with the SS terms and the

fit from both the SS and the TS GAMs. The fit from the TS GAM seems better.

Looking at the first plot in Figure 7.24 we notice the change in the size of the

seasonals but in this case it is not big enough relatively to the rate of shift to mask

it from the Resampling test.

The smooth trending seasonals as fitted to each week are shown in Figures 7.25
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Figure 7.24: The logged series of C. finmarchicus C5 with the trend from the SS model, the
stable seasonals and the series as dots with the fit from the SS (red) and TS
(blue) GAMs.

and 7.26. Weeks 29-31 differ from a straight line parallel to the x-axis and are

monotonic.

In Figure 7.27 we see the two seasonal patterns, stable (red) and trending (blue),

estimated by the SS and TS GAMs, respectively, for the C. finmarchicus C5 series.

There is a fluctuation in the size of the seasonals and a shift earlier in the year.

We note that the pattern changes throughout the years and the second peak slowly

becomes the dominant one. Specifically, the declining slope of the major peak and

the small winter peak appear to be shifting earlier in time.

In Figure 7.28 we see a plot of the de-trended fitted values from TS GAM for C.

finmarchicus C5 with weeks 17, 22, 34 and 39 marked by vertical lines in black, red,

green and blue colour, respectively. We are using the vertical lines to highlight some

peaks and troughs in the seasonals in order to observe the shift earlier in time. This

means that we use the peaks and troughs to quantify the rate of change while marine

biologists would probably use the time of first rise to the peak, however, this is hard

to identify.
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Figure 7.25: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. finmarchicus C5.

Figure 7.26: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. finmarchicus C5.
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Figure 7.27: The stable (red) and trending (blue) seasonal patterns from the SS and TS
GAMs, respectively, for C. finmarchicus C5.

Figure 7.28: The de-trended fitted values from the TS GAM for C. finmarchicus C5. Weeks
17, 22, 34 and 39 are marked by dotted lines in black, red, green and blue,
respectively.
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Table 7.17: C. finmarchicus C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 17.002 111.598

AIC 1172.462 1047.651 1034.808
BIC 1185.258 1120.170 1510.809

Figures 7.29 and 7.30 depict the diagnostic plots for the SS and TS fitted GAMs.

The QQ plots and histograms of the residuals show a right skewed distribution of

residuals for both models. Nonetheless, there is an apparent gradual improvement

as we move from the SS to the TS GAM.

Figure 7.29: The diagnostic plots for the SS GAM of C. finmarchicus C5.
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Figure 7.30: The diagnostic plots for the TS GAM of C. finmarchicus C5.

Calanus finmarchicus copepodite stage 6 females

The Resampling test results for trending seasonality for the C. finmarchicus C6f

logged series show that there is no systematic time shift in its pattern.

Resampling Testing Stable vs Trending: p = 0.087→ Stable

The GCV score of the GAMs reinforces the belief of a stable seasonal pattern:

GCV Score: Non-Seas: 0.183, Stable: 0.162 & Trending: 0.226

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.88, Stable: 17.5 & Trending: 40.1

Table 7.18: C. finmarchicus C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 95.327
SS 516.436 80.943 7.564 14.384 12.133 2.851e-15
TS 414.763 58.834 101.673 22.109 1.533 0.002

Figure 7.31 shows the fit of the stable (red) and trending (blue) GAMs to the logged

C. finmarchicus C6f series and the terms of the SS model.
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Figure 7.31: The series of C. finmarchicus C6f with the trend from the SS model, the stable
seasonals and the series marked by dots with the fit from the SS (red) and TS
(blue) GAMs, appear clockwise from top left.

The ANOVA indicates the existence of a trend in the seasonals but it is of a random

change in the amplitude of the pattern and not a systematic change. There is also

the possibility that there is a small shift in time but it is only now starting and

hence, it is not detected by the Resampling. In this occasion re-scaling the series

to accommodate for the rapid changes in the amplitude of the seasonals and then

testing again could help detect it.

Table 7.19: C. finmarchicus C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.564 112.237

AIC 600.323 529.412 564.949
BIC 613.119 574.472 1043.672

The AIC and BIC scores, Table 7.19, verify our decision of stable seasonality.

The diagnostic plots for the GAMs are similar to the ones for C. finmarchicus

C5.
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Calanus finmarchicus copepodite stage 6 males

The results for C. finmarchicus C6m series are similar to the ones for C6f. The series

has a seasonal pattern that does not exhibit a systematic shift in time.

Figure 7.32: Clockwise from top left: logged C. finmarchicus C6m with the trend from the
SS model, the stable seasonals and the series as dots with the fitted values from
the SS (red) and TS (blue) GAMs.

Figure 7.32 shows the SS (red) and TS (blue) GAMs’ fitted values and the terms of

the SS one. This series has a pseudo-trending in amplitude seasonal pattern.
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7.2.8 Calanus helgolandicus

Calanus helgolandicus (C. helgolandicus) is a southern temperate species that has

not been studied as extensively as C. finmarchicus and thus less is known about its

life-cycle. It is not thought to have a diapause stage like C. finmarchicus but like

its congener it is largely herbivorous (Hay, pers. comm., 2009). It favours warmer

waters than C. finmarchicus but as the water temperature increases in the North Sea

greater numbers of C. helgolandicus are observed. It has a resident population and

at cold temperatures -around 6oC or less- it cannot reproduce and barely survives.

It exhibits two peaks, one in spring and one in autumn but there is a variation in

occurrence (Bonnet et al., 2005).

Calanus helgolandicus copepodite stage 5

When the logged C. helgolandicus C5 series is tested there is evidence of a trending

seasonal pattern. The Resampling p-value indicates that the pattern is not sta-

ble.

Resampling Testing Stable vs Trending: p = 0→ Trending

The GCV score of the GAMs, however, favours the SS GAM:

GCV Score: Non-Seas: 1.444, Stable: 0.931 & Trending: 1.144

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 11.2, Stable: 46.2 & Trending: 65.4

Table 7.20: C. helgolandicus C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 521.451 741.384
SS 510.049 449.106 11.402 292.279 29.113 < 2.2e− 16
TS 410.449 288.613 99.601 160.492 2.292 6.247e-09

The ANOVA, Table 7.20, agrees with the Resampling result and points to the TS
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model.

The BIC, Table 7.21, and the GCV score prefer the stable seasonal GAM while all

other criteria used for GAM selection coincide with the above verdict of trending

seasonality.

Figure 7.33: Clockwise form top left we see the logged C. helgolandicus C5 series with the
trend from the SS model, the stable seasonals and the logged series as dots
with the fitted values of the SS (red) and TS (blue) GAMs.

In Figure 7.33 we see the fits of the SS (red) and TS (blue) models and the terms of

the SS one. The TS one provides a better fit.

The series has two main peaks, the first one (spring) can be attributed to influx of

mixed coastal and oceanic water from the warmer south and west, since it overwinters

with very poor survival while the second peak (early autumn) is the main generation

population. There is a third peak in late autumn that could be another generation.

All three peaks are shifting slightly earlier every year, Figure 7.33.

The smooth functions fitted to the trending seasonals by the TS GAM are shown in

Figures 7.34 and 7.35. Weeks 29, 30, 32-37, 39, 41, 46 and 47 differ greatly from a

straight line parallel to the x-axis. From these Figures we can also see the nature

of the change. Weeks 29, 30, 32-37 and 47 exhibit a monotonic increase of value
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Figure 7.34: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus C5.

which points to a systematic change while weeks 39, 41 and 46 exhibit an increase

and decrease in value which points to a fluctuation in either phase or amplitude of

the seasonals.

Table 7.21: C. helgolandicus C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 5.549 16.951 116.551

AIC 1684.354 1443.494 1410.114
BIC 1708.022 1515.795 1907.240

In Figure 7.36 we see the two seasonals estimated by the SS and TS GAMs, respec-

tively, fitted to the C. helgolandicus C5 series. The stable one is marked by a red

line and the trending by a blue line. The pattern is shifting earlier in the year. The

amplitude of the individual peaks changes randomly with time while overall the size

of the pattern is increasing systematically.

The de-trended fitted values from the TS model are plotted in Figure 7.37. Weeks

16, 22, 37 and 46 are marked by vertical lines in black, red, green and blue colours,

respectively. These vertical lines are marking the most prevalent peaks in the series.
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Figure 7.35: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus C5.

We can further verify with this plot that the peaks shift earlier in the year.

Figures 7.38 and 7.39 show the diagnostic plots for the two models. The models’

QQ plots and histograms betray a slight deviation from the assumption of normal-

ity.
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Figure 7.36: The stable, red, and trending, blue, seasonals estimated by the SS and TS
GAMs, respectively, for the C. helgolandicus C5 series.

Figure 7.37: The de-trended fitted values from the TS model for the C. helgolandicus C5
series. Marked by the black, red, green and blue line are, respectively, weeks
16, 22, 37 and 46.
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Figure 7.38: The diagnostic plots for the SS model of C. helgolandicus C5.

Figure 7.39: The diagnostic plots for the TS model of C. helgolandicus C5.
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Calanus helgolandicus copepodite stage 6 females

The C. helgolandicus C6f series appears to have a trending seasonal pattern according

to the Resampling results.

Resampling Testing Stable vs. Trending: p = 0→ Trending

The GCV score of the GAMs points to the SS GAM but the score of the TS one is

only slightly greater:

GCV Score: Non-Seas: 1.228, Stable: 0.817 & Trending: 0.851

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 11.3, Stable: 43.2 & Trending: 69.9

Table 7.22: C. helgolandicus C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 639.012
SS 516.917 409.27 7.083 229.742 40.966 < 2.2e− 16
TS 411.811 216.791 105.105 192.479 3.479 < 2.2e− 16

The Resampling p-value, the ANOVA, Table 7.22 and the AIC, Table 7.23, all point

to the existence of a trending seasonal pattern. Hence, the GAM that best describes

the data is the trending seasonal model.

Figure 7.40 shows the fitted values of the SS (red) and TS (blue) models and the

terms of the SS one. C. helgolandicus C6f exhibits a variety of peaks per year.

The smooth functions fitted by the TS GAM for the trending seasonals are plotted in

Figures 7.41 and 7.42. Many weeks deviate from a straight line parallel to the x-axis,

for example weeks 29-42. In particular, weeks 29-37 are monotonically increasing

indicating a systematic change.

Figure 7.43 shows the stable (red) and the trending (blue) seasonals estimated by

the SS and TS GAMs, respectively, for the C. helgolandicus C6f series. The pattern

exhibits a systematic increase in amplitude and a systematic phase change.
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Figure 7.40: The logged C. helgolandicus C6f series with the trend from the SS model, the
stable seasonals and the series, this time marked by dots, with the fitted values
from the SS (red) and TS (blue) GAMs.

Table 7.23: C. helgolandicus C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.083 115.189

AIC 1601.094 1380.902 1256.871
BIC 1613.890 1423.910 1748.185

In Figure 7.44 we see a plot of the de-trended fitted values of the TS GAM fitted

to the logged data. Weeks 30 and 46 are marked by vertical lines in black and red,

respectively. These lines mark the autumn peak of C. helgolandicus C6f. The peak

shifts earlier in the year while it increases with time.

Figures 7.45 and 7.46 show the diagnostic plots for the SS and TS models. Both

models deviate slightly from normality but there is nothing alarming about these

plots.
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Figure 7.41: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus C6f.

Figure 7.42: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus C6f.
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Figure 7.43: The stable (red) and trending (blue) seasonals from the SS and TS models,
respectively, for the C. helgolandicus C6f series.

Figure 7.44: The de-trended fitted values from the TS model for the C. helgolandicus C6f
series. Marked by the black and red lines are, respectively, weeks 30 and 46.
The pattern shifts earlier in the year.
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Figure 7.45: The diagnostic plots for the SS model of C. helgolandicus C6f.

Figure 7.46: The diagnostic plots for the TS model of C. helgolandicus C6f.
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Calanus helgolandicus copepodite stage 6 males

The C. helgolandicus copepodite stage 6 males exhibit a behaviour very similar to

the females of that stage. Thus, the Resampling test points to a trending seasonal

pattern.

Resampling Testing Stable vs. Trending: p = 0→ Trending

The GCV score of the GAMs reinforces the belief of a trending seasonal pattern:

GCV Score: Non-Seas: 0.658, Stable: 0.422 & Trending: 0.381

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 9.31, Stable: 44.1 & Trending: 73.5

Table 7.24: C. helgolandicus C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 342.428
SS 516.678 211.141 7.322 131.287 43.877 < 2.2e− 16
TS 415.934 100.196 100.744 110.945 4.572 < 2.2e− 16

Similar to the females of C. helgolandicus all testing methods, Tables 7.24 and 7.25,

apart from BIC, point to a trending seasonal pattern.

In Figure 7.47 we can see the fitted values if the SS (red) and TS (blue) GAMs and

the terms of the SS one. The TS model provides a better fit to the data.

Figures 7.48 and 7.49 show the fifty-two smooth functions fitted for the trending

seasonals in the TS GAM. Weeks 28-39 deviate from a straight line parallel to the

x-axis. The monotonic nature of weeks 29-37 indicates a systematic change.

To examine further the types of change in the pattern of the C. helgolandicus C6m

series we plot the two patterns estimated by the SS and TS GAMs together, see

Figure 7.50. The pattern changes systematically in amplitude and phase. The size
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Figure 7.47: The logged C. helgolandicus C6m series with the trend from the SS model, the
stable seasonals and the series, this time marked by dots, with the fitted values
from the SS (red) and TS (blue) GAMs.

Table 7.25: C. helgolandicus C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.322 111.066

AIC 1272.944 1033.247 842.657
BIC 1285.739 1077.274 1316.387

of the pattern increases over the years and the pattern itself is shifting earlier in the

year.

Figure 7.51 shows a plot of the de-trended fitted values of the TS GAM fitted to the

logged data. Week 31 is marked by a black vertical line while week 41 by a red one.

The peak that develops between these two vertical line slowly shifts forward in the

year while it increases in size.

Figures 7.52 and 7.53 show the diagnostic plots for the two GAMs. The QQ plots

and histograms show a slight deviations from the normality assumption.
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Figure 7.48: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus C6m.

Figure 7.49: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus C6m.
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Figure 7.50: The stable (red) and trending (blue) seasonal patterns estimated by the SS and
TS GAMs, respectively, for the C. helgolandicus C6m series.

Figure 7.51: The de-trended fitted values from the TS model for the C. helgolandicus C6m
series. Marked by the black and the red lines are, respectively, weeks 31 and
41.
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Figure 7.52: The diagnostic plots for the SS model of C. helgolandicus C6m.

Figure 7.53: The diagnostic plots for the TS model of C. helgolandicus C6m.
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7.2.9 Juvenile Calanus copepodite stages 1 to 4

Calanus in the early copepodite stages 1-4 (C1-4) cannot be accurately distinguished

between the two dominant species, finmarchicus and helgolandicus. Therefore, the

Juvenile Calanus stages 1-4 series includes juveniles from both species.

The Resampling test indicates that this series has a trending seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.002→ Trending

The GCV score of the GAMs, however, is lower for the SS model:

GCV Score: Non-Seas: 2.471, Stable: 1.338 & Trending: 1.594

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 9.84, Stable: 53.4 & Trending: 70.8

Table 7.26: Juvenile Calanus C1-4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 522.078 1272.507
SS 513.365 657.018 8.713 615.49 55.193 < 2.2e− 16
TS 413.791 412.421 99.574 244.596 2.465 2.291e-10

The BIC, Table 7.27, and the GCV score select the stable GAM but the AIC, the

ANOVA, Table 7.26, and the Resampling results point to a trending seasonality.

In Figure 7.54 we see the terms of the SS GAM and the fitted values of the the SS

(red) and TS (blue) GAMs. The seasonal pattern appears to change in size.

Figures 7.55 and 7.56 show the fifty-two smooth functions fitted for the trending

seasonals in the TS GAM. Weeks 26-36, 37 and 38 deviate from a straight line parallel

to the x-axis. Weeks 27-36 are monotonic thus indicating a systematic change.

Figure 7.57 depicts the stable (red) and trending (blue) seasonals as estimated by

the SS and TS GAMs, respectively, fitted to the Juvenile Calanus C1-4 series. The

amplitude of the seasonals fluctuates. Both peaks appear to systematically shift



291

Figure 7.54: Clockwise from top left: the logged Juvenile Calanus C1-4 with the trend from
the SS model, the stable seasonals and the logged series plotted as dots with
the fitted values of the SS (red) and TS (blue) models.

Table 7.27: Juvenile Calanus C1-4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 4.922 13.635 113.209

AIC 1967.258 1636.981 1591.188
BIC 1988.251 1695.139 2074.058

earlier in the year but it is more pronounced for the second peak. Furthermore, the

amplitude of the second peak is gradually increasing while the amplitude of the first

one fluctuates.

In Figure 7.58 we see a plot of the de-trended fitted values from the TS model. Weeks

14, 23, 32 and 41 are marked by dotted vertical lines in black, red, green and blue,

respectively. The Juvenile Calanus C1-4 series has two main peaks, one in spring

and one in autumn. The second peak, marked by the green and blue lines, moves

earlier in the year. The same is true for the first peak, marked by the black and red

lines, but the shift is not of the same rate, i.e. shifts slower.

It is likely, from what we know of the differences in C5 and adult seasonal abundances
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Figure 7.55: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of Juvenile calanus C1-4.

Figure 7.56: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of Juvenile calanus C1-4.
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Figure 7.57: The stable (red) and trending (blue) seasonal patterns from the SS and TS
models, respectively, for the Juvenile Calanus C1-4.

and biology, that a significant number of juvenile Calanus in the first peak are C.

finmarchicus, whereas the majority in the second peak are C. helgolandicus. This

fits with the analysis results for the C. finmarchicus C5 trend and with the trends

seen in all the C. helgolandicus data series. i.e. the C. helgolandicus trend indicates

a more pronounced shift than is evident for C. finmarchicus.

Figures 7.59 and 7.60 show the diagnostic plots for the two models. Both models are

satisfactory.
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Figure 7.58: The de-trended fitted values from the TS model for the Juvenile Calanus C1-4.
Vertical lines mark weeks 14, 23, 32 and 41 in colours black, red, green and
blue, respectively.

Figure 7.59: The diagnostic plots for the SS model of Juvenile Calanus C1-4.
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Figure 7.60: The diagnostic plots for the TS model of Juvenile Calanus C1-4.
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7.2.10 Oithona

Oithona is a very small non-calanoid copepod belonging to the order Cyclopoida

that is an omnivorous ambush feeder, feeding on large phytoplankton cells and mi-

crozooplankton. The Oithona genus is found very commonly in the North Sea and

mainly as the very abundant species Oithona similis. Two other species of Oithona

are found in smaller abundances. These are O. nana, a small inshore species, occa-

sionally abundant, and O. plumifera that is an oceanic species and occasional visitor

to the samples off Stonehaven. The adult copepods can be distinguished but juvenile

stages are difficult to separate into species. As with the other small copepods the

juvenile C1 - C3 stages are not sampled by the 200 micron plankton net with the

same efficiency as the larger, later developmental stages (C4 - C6).

Nielsen & Sabatini (1996) state that the Oithona species do not exhibit as much

variation as the calanoid copepods in terms of their biomass and production. We

examine an aggregate series of Oithona stages C1-6.

Oithona copepodite stages 1 to 6

The Oithona C1-6 has a seasonal pattern that peaks in spring and summer. The

Resampling recognises a stable seasonal pattern.

Resampling Testing Stable vs. Trending: p = 0.083→ Stable

The GCV score of the GAMs also points to a stable seasonality:

GCV Score: Non-Seas: 1.453, Stable: 1.295 & Trending: 1.687

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 45.9, Stable: 53.5 & Trending: 68.3

The Resampling p-value, the GCV score and the BIC suggest a stable seasonal

pattern. However, the ANOVA, Table 7.28, and AIC, Table 7.29, indicate a trending

model as appropriate.
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Table 7.28: Oithona C1-6 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 517.528 730.096
SS 511.054 627.93 6.474 102.167 12.844 2.368e-14
TS 411.132 427.698 99.922 200.232 1.926 4.315e-06

Figure 7.61: Clockwise from top left: the logged Oithona C1-6 with the trend from the SS
model, the stable seasonals and the logged series (dotted) with the fitted values
of the SS (red) and TS (blue) GAMs.

In Figure 7.61 we see the logged Oithona C1-6 series, the terms and fitted values

from the SS GAM and the fitted values from the TS GAM.

The seasonal pattern of the series changes randomly in size. This is probably the

reason that ANOVA and AIC favour the TS GAM.

In Figures 7.62 and 7.63 the diagnostic plots for the two GAMs are shown. In both

QQ plots there is a deviation from normality at the lower end of the series. This is

seen as a long left tail in the histograms. The plots are nonetheless satisfactory.
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Figure 7.62: Diagnostic plots for the stable seasonal GAM for Oithona C1-6.

Figure 7.63: Diagnostic plots for the trending seasonal GAM for Oithona C1-6.
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Table 7.29: Oithona C1-6 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.472 15.946 115.868

AIC 1684.13 11617.784 1615.639
BIC 1724.53 1685.797 2109.85



300

7.2.11 Lamellibranchiata

Lamellibranchiata is a class of Phylum Mollusca and in the plankton samples it is the

larvae of these bottom dwelling adult molluscs with opposing shells, that includes

species such as scallops and cockles, that are caught in the sampler. There are a

number of species of lamellibranch mollusc in the region and so, since their larvae

cannot be distinguished easily even under the light microscope, they are aggregated

into the general category here. It is a feature of the plankton that many bottom

dwelling organisms produce planktonic larvae. Other common examples would be

echinoderms (starfish), polychaetes (worms), decapods (crabs) and the gastropod (spi-

ral shelled) molluscs. It exhibits one major peak in its seasonal pattern in the late

summer. The Resampling find this series to have a stable seasonal pattern.

Resampling Testing Stable vs. Trending: p = 0.568→ Stable

The GCV score of the GAMs, also, chooses stable seasonality:

GCV Score: Non-Seas: 3.563, Stable: 1.521 & Trending: 1.806

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 11.6, Stable: 63.7 & Trending: 77.7

Table 7.30: Lamellibranchiata ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 521.601 1830.72
SS 514.772 752.702 6.83 1078.018 107.947 < 2.2e− 16
TS 412.525 462.851 102.247 289.851 2.527 4.891e-11

The series has a stable seasonal pattern in terms of systematic shifts. There is a

fluctuation in the size of the seasonals for some years and that is probably the cause

for the ANOVA, Table 7.30, and AIC, Table 7.31, choosing the trending model.

Nevertheless, the Resampling, the BIC and GCV score indicate that a stable model

is preferable.

In Figure 7.64 we see the logged Lamellibranchiata series, the terms and fitted values
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Figure 7.64: Clockwise from top left: the logged Lamellibranchiata with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS (blue) GAMs.

from the SS GAM and the fitted values from the TS GAM.

Table 7.31: Lamellibranchiata AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 5.399 12.228 114.475

AIC 2159.528 1705.682 1654.400
BIC 2182.555 1757.839 2142.670

In Figures 7.65 and 7.66 the diagnostic plots for the two GAMs are shown. Both mod-

els’ QQ plots betray a deviation from normality at the extremes of the series.
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Figure 7.65: Diagnostic plots for the SS GAM for Lamellibranchiata.

Figure 7.66: Diagnostic plots for the TS GAM for Lamellibranchiata.
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7.3 Discussion

In this section we presented our analysis of some zooplankton species from the

Stonehaven database. The series of Acartia clausi copepodite stage 6 males (C6m),

Calanus finmarchicus C5 and Calanus helgolandicus C5 were found to have patterns

systematically shifting earlier in time. Calanus helgolandicus C6f and C6m and Ju-

venile Calanus copepods C1 - 4 were recognised to have seasonal patterns whose

amplitude is systematically increasing as well as shifting earlier in the year. These

systematic changes may be linked to climate change. Especially the identified shifts

in the patterns of the two main Calanus species are important because of their role as

prey in the life cycle of commercially important fish such as cod and haddock.

There are a number of issues that arise from the analyses of the above zooplankton

series. We are using the GAMs to model smooth functions that in some cases, for

example the Lamellibranchiata series, do not seem to capture all the signal in the

series. This can be seen in Figure 7.64, where the fitted values of both the SS and

the TS GAMs do not go high enough into the peaks and low enough into the troughs

of the series. The results of this ‘imperfect’ fit is seen as remaining pattern in the

residual plots in Figures 7.65 and 7.66.

In addition, the GAMs do not fit well series that have high variability such as the

T. longicornis C1 series. In Figure 7.16 the series exhibits high spikes. These large

differences in the densities are hard to model, especially using smooth functions as

we are.

Fitting the GAMs we are trying to model the periodicity in the series as a smooth

cyclic component that exhibits smooth changes either systematic or fluctuations.

We are interested in these smooth gradual changes because the effect of climate

change and general long term environmental changes is expected to be slow and

progressive. Nonetheless, for some of the examined series it can be seen that the

periodic component is not very smooth as, especially in terms of the species series,

the populations are sporadically distributed and affected by the currents. This means
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that there is great variability within the samples.

This may affect the comparison of the GAMs when choosing the appropriate type

of seasonality. As mentioned before, the main assumption underlying our testing

techniques is that we are testing between the constructed models to infer about

seasonality and thus if the models are not modelling each term, trend, stable and

trending seasonality, correctly, our conclusions may be biased.

Finally, when a series has more zero values than non-zero ones, for example the

Acartia clausi series, the GAMs with the log Normal distribution do not provide a

good fit. As previously discussed, one could convert the series to a binary one (sub-

stituting all non-zero values with ‘1’s) and fit GAMs with the Binomial distribution.

This would be the same as what was done with some of the phytoplankton series in

Chapter 6. It is our belief that a systematic shift in time would still be recognized by

examining seasonal trends in the presence and absence of the series but nonetheless,

some information would be lost.



Chapter 8

Discussion

8.1 Discussion on Results

In this thesis we have considered ways to examine the nature of seasonality in some

marine biological time series and note the existence of systematic changes in them.

Systematic changes would relate to climate change and its effects on marine life. Some

commonly used testing methodologies, mostly from econometrics, are considered

but are, however, not ideally suited to solve our problem. Thus, we introduced

Resampling tests which are robust and simple to use. Additionally, we present a way

to use GAMs to test for changes in the seasonals. The construction of the GAMs has

to be modified appropriately depending on the nature and behaviour of the series

but nonetheless, they have proved a useful tool.

A brief sensitivity analysis of both methodologies in order to appreciate their strengths

and weaknesses was conducted. We have noted that the Resampling almost always

detects a systematic change, never detects a random change, in time or in the size

of the seasonals, and can fail to detect a systematic one if it is masked by a random

change in the size of the seasonals or by noise. Furthermore, in the context of the

305
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GAMs, we verified that the BIC is a more conservative criterion than the AIC, point-

ing more often to stable seasonality, and that the ANOVA is highly sensitive to any

kind of change and favours a verdict of trending seasonality. In addition, one great

difference between these two methods, Resampling and GAMs, is that the GAMs

recognise a random change in the seasonals as trending seasonality while the Resam-

pling does not. Overall the GAMs are more sensitive to any kind of change.

Using the above methodologies, we analysed time series from the Stonehaven long-

term monitoring station and presented our results. We have established some envi-

ronmental series that are shifting systematically earlier in time, Salinity, Ammonia

and Nitrate while the Chlorophyll a series is shifting earlier in time and exhibits a

systematic change in the size, decreasing. Furthermore, we examined some phyto-

plankton series from which none were found to exhibit systematic change. Finally,

we found some zooplankton series, Acartia clausi C6m, C. finmarchicus C5, C. hel-

golandicus C5, C6f and C6m and Juvenile Calanus C1-4, that shift earlier in time. In

particular, C. helgolandicus C6f and C6m and Juvenile Calanus C1-4, have patterns

whose amplitude increases systematically in time.

8.2 Areas for Further Work

8.2.1 Statistical Interest

There are many ways in which the methodologies used can be improved and fur-

ther developed. The Resampling methodology handles well smooth patterns, as for

example the one from the Temperature data, but is not very accurate when used

on densities or count data. Modifying the way that the seasonal decomposition is

performed within this algorithm could greatly improve this issue. The Resampling

algorithm as is explained here aims to be a simple yet robust testing framework.

Nonetheless, it is possible to create different versions of it according to the data in

question.
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From our analysis of the phytoplankton and zooplankton series we know that the

GAMs are not very appropriate when the pattern in a series is not smooth. Most

series change smoothly in time, meaning that even when they include many zeroes

and high peaks the mean changes gradually. Nonetheless, for some the peaks are very

sudden. This kind of behaviour cannot be successfully modelled in terms of smooth

functions, as in GAMs. Our suggestion was to convert the series into binary and still

use GAMs but assuming the Binomial family. We believe this to have proven valid

but still believe that a different method altogether could be devised for this type of

series. Reducing the patterns of species to presence-absence causes a significant loss

of information. In population studies it is often the rates of population growth or

decline, implied or demonstrated by the abundance data, that may yield the best

indicator of change or effect.

Another suggestion for future work is to attempt to combine the two methodologies

together. Meaning that the residuals from the appropriate GAM could be used in

the Resampling algorithm, treating GAM as a means to seasonally decompose the

different types of series. Those residuals would then be repeatedly randomized and

the above GAM fitted many times so that the residuals could be used for inference.

The GAMs are computationally intensive and this was the main reason we did not

try to combine the two methods. Nonetheless, this could prove to be a successful

testing framework.

In this thesis we attempt to find ways to test for systematic changes in the seasonal

pattern with specific interest in systematic time shifts. Nonetheless, since patterns

in nature exhibit more than one change simultaneously we believe that it would be

worth while trying to find ways to isolate the different types of change. This should

be done after a specific type of change is verified. Isolating the type of change we

are interested in by controlling for all others present would increase the reliability of

the testing results as no interference would be present. For example, we know that

systematic time shift cannot always be detected in the presence of random amplitude

change and have thus suggested re-scaling the series in order to remove the effects of

this random change.



308

A more in-depth sensitivity analysis of the methods would provide further insight

into the ways they need to be improved. We have only examined a few interesting

cases in Chapter 5 and feel that many more questions regarding the performance

of the two methods could be answered by a more thorough sensitivity analysis. In

particular, a sensitivity analysis combined with different types of controls used to

isolate the different types of changes present in a series would be of great benefit.

This would provide us with information on how the methods perform but also how

successful our attempts to isolate the changes are.

The model selection for the GAMs is based on a number of criteria which, valid as

they are, prove to be too sensitive or too conservative for our purposes. A more

suitable criterion could be constructed to be used for model selection for similar to

the above analyses. The effectiveness of this new criterion could be benchmarked

against the other criteria with a sensitivity analysis.

Furthermore, when using GAMs we are modelling the mean of the series, for example

of a Normal distribution. We could, however, attempt to model in a similar fashion

the variability present in the series. Thus, for example, in addition to modelling the

µ for a Gaussian GAM we could try to model the σ
2. Creating again three models,

NS, SS and TS, we could then choose the best model that describes the variance of

the data. In the context of testing for seasonality both results would be taken into

consideration for the final verdict of whether the series exhibits systematic changes

or not. However, if one wished to use the GAMs as a means to forecast the future,

the two chosen models, one for the mean and one for the variability could be used

together to forecast future values. This, however, would not be straightforward as

the way the results will be combined is not clear.

In our analysis, when a systematic shift in time is successfully detected we attempt

to estimate the rate of change. Our method is an ad hoc one, examining major peaks,

that does not correspond to the one marine biologists would often find more suitable

in studies of species phenology, examining the timing of first occurrence. We use the

occurrence of easily identifiable peaks to measure the shift while biologists might be
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more interested in a shift in the initial rise of the peaks. As mentioned before, this is

hard to identify in highly variable series and thus, was not used by us. Nonetheless, a

more scientific way to measure the rate of shift, possibly producing C.I.s for it could

be developed.

8.2.2 Biological Interest

We have examined the types of seasonality in a number of series from Stonehaven

but have made no attempts to consolidate our results. Further investigation of the

existing results would be useful to marine biologists. For example, when two series

are shifting earlier in time it is possible that one is influenced by the other or that

both are influenced by a third unobserved source.

Especially, since we have analysed environmental series which provide the condition

for the blooms in marine species, as well as phytoplankton and zooplankton series,

which are thought to be all part of the food chain, connections between the be-

haviours of some of these series are inevitable. A crude example would be that more

Nitrate/ Nutrients in the water encourages the production of more phytoplankton

which in turn could yield higher zooplankton levels. Else, as may become evident

from fuller analysis of these results, those species which are at the edges of their

adaptive ranges, such as the two Calanus species, may show greater sensitivity to

changes in their environment; than species more fitted to the range of environmen-

tal factors measured. It is also the case that there may be other factors not yet

considered that might affect species population behaviours and sensitivities.

In marine science many types of complex models connecting different series exist.

Similar models could be developed to model series for which a connection is identified

from extending our analysis. The purpose of these models would be to forecast future

populations.

In this study we have focused on the most important and common species of zoo-

plankton and phytoplankton. The Stonehaven long-term monitoring station has a
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wealth of time series covering many other species and groups of organisms, that we,

due to time constraints, did not analyze. Analyzing and comparing more series could

help shed light on their behaviours and help marine biologists in their work.

In addition, there is a second Scottish monitoring station, in Loch Ewe, whose series

do not run as far back as the Stonehaven ones but nonetheless, include almost the

same variety of species. There are also similar time series in other regions (e.g.

Helgoland station in the German Bight of the North Sea or station L4 in the English

channel). These stations are set, so that apart from individual monitoring, their

results can also be compared to draw conclusions based on similarities and differences

in the behaviour of the various series in the different environments.

Finally, we have mentioned the fact that most of the series analyzed here are affected

by many phenomena that are not examined. Series like river inflow and rainfall data

are available and could be examined to enhance our study and look for correlations

between them. Equally interesting results are anticipated if series like the North At-

lantic Oscillation (NAO) and the Joint North Sea Information System (JONSIS, line

east of Orkney Isles) are examined as the influences of the climatic and hydrographic

factors they represent, on the distribution and population of mainly the zooplankton

species, is currently much debated.

The time series analyses presented here consist a step towards moving from finding or

expecting correlations between natural phenomena and understanding the causality

and mechanisms involved. Such insights and models will be critical to developing

understanding and management of ecosystems in the future.



Appendix A

Environmental and Phytoplankton

Series

A.1 Environmental Series Results

A.1.1 Temperature

Temperature data usually have a stable seasonal pattern, much like the Kola data

discussed in Chapter 4. Sea water temperatures are affected by various factors.

IACMST (2001) reports that changes in the local surface heat exchange, local wind

field, influx of oceanic water and freshwater run-off are all contributors towards the

changes in temperature. For example, uncommonly cold or warm years cause changes

in the size of this pattern. If the years are getting colder or warmer gradually, the

change will be systematic while if random climatological effects occur the pattern

will fluctuate in size and/or timing of occurrence. The two Temperature series are

modelled using the Gaussian family with an identity link.

311
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Temperature - 1m

We start by examining the surface temperature (Temperature 1m). This series will

be examined first using factors and then using a cyclic component for the seasonals.

Thus, we will demonstrate that both methods of modelling the seasonal component

produce the same results. This is especially true in the case of the following environ-

mental series while for the species time series the cyclic component will be preferred

due to the noise in those series.

The Resampling test between stable and trending seasonality indicates a stable sea-

sonal pattern.

Resampling Testing Stable vs Trending: p = 0.649→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 7.328, Stable: 0.619 & Trending: 0.759

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 1.01, Stable: 94 & Trending: 95.1

Table A.1: Temperature 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 520 3784.289
SS 462.633 228.53 57.367 3555.759 125.477 < 2.2e-16
TS 406.649 188.96 55.984 39.57 1.521 0.013

The ANOVA, in Table A.1,however, points to the TS GAM.

Figure A.1 shows the trend of the SS GAM as a red line over the Temperature at 1m

series, marked by a black line. In the same Figure the seasonals from the SS model

are also plotted and the two fits for the SS (red) and TS (blue) models.

As mentioned before, here the stable seasonals in the GAM are estimated using

factors. In Figure A.2 we see the stable seasonals estimated using factors (above)

and using a cyclic component (below). To aid comparison we plot only the estimated
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Figure A.1: The upper left plot depicts the Temperature at 1m with the trend from the SS
GAM as a red line. The stable seasonals and the Temperature 1m marked by
dots with the stable (red) and trending (blue) fitted GAMs, follow clockwise.

Figure A.2: The upper shows the stable seasonals estimated by the SS GAM when using
factors while the bottom one when using a cyclic component.
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seasonals without adding the average trends estimated by the two SS models, with

factors and with a cyclic component. The estimated patterns are very similar with

the lower being a smoother version of the upper.

Figure A.3: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
Temperature 1m.

The smooth functions corresponding to the trending seasonals as estimated by the

TS GAM are plotted in Figures A.3 and A.4. Weeks 31 and 50 deviate greatly from

a straight line with their C.I. not always including the zero value. Nevertheless, a

curve like the one for week 50, in Figure A.4, is not of much interest to us as it simply

implies a random and not systematic change. What is of great importance to our

study is a significant monotonic upwards or downwards slope since that would be an

indication of a systematic change, time shift or amplitude change. This leads us to

believe that there is not a systematic change occurring in these weeks.

In addition, we would hardly expect a change in the seasonal pattern to occur in

only two specific weeks (i.e. weeks 31 and 50) every year. We expect a sequence

of trending weeks that would then indicate a change in the seasonals. Therefore,

our decision is that this series has a stable seasonal pattern in terms of systematic

changes but may exhibit a random change.
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Figure A.4: The smooth functions fitted by the TS GAM, corresponding to the trending
seasonals for weeks 37-52 for the Temperature 1m.

Table A.2: Temperature 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 60.367 116.351

AIC 2521.426 1170.935 1183.652
BIC 2534.221 1428.418 1679.923

Furthermore, the AIC and BIC scores in Table A.2 verify the choice of stable sea-

sonality.

Nevertheless, to further examine the above identified as potential trending weeks, 31

& 50, we look at a graph the stable (red) and trending (blue) seasonals from the TS

GAM, Figure A.5. Using the stable seasonals as a point of reference we can note

any changes in the size or the timing of peak of the trending seasonals. In addition,

we can examine whether the change is occurring in one direction, systematic change,

or both, random change. We thus verify that no systematic change occurs in the

pattern of the Temperature at 1m series. There is, however, a small fluctuation in the

size of the seasonals which points to a pseudo-trending in amplitude pattern.

We believe that the Temperature 1m series has a stable seasonal pattern and the
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Figure A.5: The stable seasonal pattern (red) and the trending seasonal pattern (blue) from
the TS GAM fitted to the Temperature at 1m series.

ANOVA results are influenced by a very small random change in the size of the

seasonals.

In Figures A.6, A.7 and A.8 we see some residual plots for the NS, the SS and TS

GAMs. The plot on the top left corner is a QQ plot of the residuals. For the NS

model this plot shows a violation of the Gaussian assumption while only the upper

end deviates from normality for the SS and TS models. The top right plot shows

the residuals plotted against the response. This plot shows a remaining pattern for

the NS model while it is satisfactory for the other two models. The histogram of

the residuals for the NS model verifies the normality assumption violation but the

histograms for the other two models, SS and TS, are acceptable. The plots of the

residuals of all three models show some remaining pattern. This is more accentuated

for the NS model but, nevertheless, some remaining pattern is obvious in the residuals

of the SS and TS models, too. This occurs because the fit of the SS and TS models

does not go high enough in all the peaks and low enough in all the troughs and thus,

some pattern is still left un-modelled. Nonetheless, there is evident improvement
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Figure A.6: The residual checking plots for the NS GAM of Temperature 1m. The QQ plot
and histogram show a violation of the Gaussian assumption. The plots of the
residuals show a clear seasonal pattern.

moving from the NS to the SS.
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Figure A.7: The residual checking plots for the SS GAM of the Temperature 1m data. No
problems are highlighted.

Figure A.8: Residual checking plots for the trending GAM of the of the Temperature 1m
data. No violations are noted.
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Using a Cyclic Component to Model the Stable Seasonals

We examine now the surface temperature (Temperature 1m) using a cyclic compo-

nent to model the stable seasonality. The GCV score of the GAMs points to the

stable seasonal model:

GCV Score: Non-Seas: 7.328, Stable: 0.508 & Trending: 0.759

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 1.01, Stable: 93.6 & Trending: 95.1

Table A.3: Temperature 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 520 3784.289
SS 508.406 246.091 11.594 3538.198 630.495 < 2.2e-16
TS 406.653 188.966 101.753 57.125 1.208 0.104

The ANOVA, in Table A.3, now also points to the SS GAM.

Figure A.9: The upper left plot depicts the Temperature at 1m with the trend from the SS
GAM as a red line. The stable seasonals and the Temperature 1m marked by
dots with the stable (red) and trending (blue) fitted GAMs, follow clockwise.

Figure A.9 shows the trend of the SS GAM as a red line over the Temperature at 1m

series, marked by a black line. In the same Figure the seasonals from the SS model
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are also plotted and the two fits for the SS (red) and TS (blue) models.

Table A.4: Temperature 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 14.594 116.347

AIC 2521.426 1118.033 1183.661
BIC 2534.221 1180.167 1679.026

Furthermore, the AIC and BIC scores in Table A.4 verify the choice of a stable

seasonal pattern.

In Figures A.10 and A.11 we see the residual plots for the SS and TS GAMs. They are

similar to the ones produced when the stable seasonals were fitted by factors.

Figure A.10: The residual checking plots for the SS GAM of the Temperature 1m data. No
problems are highlighted.

The two methods for modelling the stable seasonal component in the GAMs produce

similar results that lead us to choose the SS GAM.
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Figure A.11: Residual checking plots for the stable GAM of the of the Temperature 1m data.
No violations are noted.
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Temperature - 45m

The Resampling test for the Temperature 45m series recognises a stable seasonal

pattern.

Resampling Testing Stable vs Trending: p = 0.493→ Stable

The GCV score of the three GAMs points to the same conclusion:

GCV Score: Non-Seas: 6.309, Stable: 0.352 & Trending: 0.416

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.27, Stable: 96.1 & Trending: 97

Table A.5: Temperature 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 516 3232.801
SS 457.671 127.72 58.329 3105.081 190.759 < 2.2e-16
TS 399.09 99.23 58.582 28.49 1.956 9.917e-05

In Table A.5 the ANOVA results, however, point to the TS GAM.

We see the two fits (SS and TS) of the GAMs in the lower plot in Figure A.12. They

do not differ greatly with the TS one doing slightly better, going higher and lower in

the peaks and troughs. In the same picture we see the trend and the stable seasonals

from the SS GAM.

Table A.6: Temperature 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 61.329 119.91

AIC 2424.545 867.408 853.829
BIC 2437.341 1128.054 1363.445

The AIC and BIC in Table A.6 prefer the TS and SS GAMs, respectively. The AIC

score of the TS model, however, is only slightly better than the SS one.
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Figure A.12: Clockwise from the top left plot, the Temperature at 45m with the trend (red
line), the stable seasonals from the SS GAM and the Temperature at 45m
plotted as dots with the stable (red) and trending (blue) GAM fits.

In Figure A.13 we see the stable seasonals, in red, plotted over the trending seasonals

that are drawn in blue. Both are estimated by the TS GAM. The timing of occurrence

of the seasonals for the Temperature at 45m series does not change, Figure A.13.

This series has a pseudo-trending in amplitude seasonal pattern with a behaviour

similar to the Temperature at 1m series. This small random amplitude change is the

reason that the ANOVA results and the AIC prefer the TS model.

Figure A.14 shows the QQ plot, the residuals plotted versus the response, the residual

histogram and a plot of the standardized deviance residuals of the NS model clockwise

from the top left corner. There is evidence of the seasonal pattern that was not

included in the NS model and it is apparent that the residuals are not normally

distributed.

Figures A.15 and A.16 show the diagnostic plots for the SS and TS GAMs. In these

plots there are remaining traces of a pattern in the residuals, bottom right plot. This,

however, is expected as both models do not manage to go high enough in the peaks

and low enough in the troughs. The QQ plots also show a deviation from normality

for the lower values of the series.



324

Figure A.13: The stable seasonal pattern (red) and the trending seasonal pattern (blue) from
the TS GAM fitted to the Temperature at 45m series.

Figure A.14: The residual checking plots for the NS GAM of the Temperature at 45m show
evidence of a seasonal pattern.
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Figure A.15: The residual checking plots for the SS GAM of the Temperature at 45m show
no violations of the assumptions of the model. There is some remaining pattern
in the residuals.

Figure A.16: The residual checking plots for the TS GAM of the Temperature at 45m show
no violations of the assumptions of the model but some pattern still remains
in the residuals of the model.
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The results for the Temperature series at both 1m and 45m have shown that the series

have a stable seasonal patterns in terms of systematic shifts in time. In particular,

both patterns are pseudo-trending in amplitude. The existence of an underlying

gradual rise in annual average temperatures (increasing trend) does not affect our

results and reflects the general patterns seen in the wider northeast Atlantic Ocean

of which the North Sea is an attached region (ICES, 2009).



327

A.1.2 Salinity

Salinity levels are affected by in-flowing oceanic water, freshwater run-off and local

evaporation/ precipitation changes according to IACMST (2001). Therefore, salinity

data are generally more variable than temperature data. The salinity levels at 1m

are also easily affected by rainfall and river inflow since the fresh water is input to

the sea surface layers. The salinity levels at 45m, on the contrary, are less affected

by rapid fluctuations caused by freshwater influences and are thus expected to be

less noisy.

Oceanic water has generally a higher salinity than coastal water, thus water with a

high oceanic content that is advected into the sampled area will be indicated in the

data by an increase in salinity values. Both salinity levels, however, are generally

higher in late summer when the influx of coastal water, often mixed with increased

oceanic water, penetrates down along the Scottish east coast (Hay, pers. comm.,

2009).

The GAMs constructed for the two Salinity series use an additive structure, as in

(6.1), using the Gaussian family with the identity link function. The seasonal com-

ponent and the residuals are not affected by changes in the level of the trend. Hence,

all three components are added to create the series.

Salinity - 1m

The Resampling test for the Salinity at 1m (Salinity 1m) series identifies a stable

seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.340→ Stable

The GCV score of the three GAMs also points to that conclusion:

GCV Score: Non-Seas: 0.063, Stable: 0.053 & Trending: 0.061

The percentage deviance explained by each GAM is presented below:
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% Deviance Explained: Non-Seas: 14.6, Stable: 46.9 & Trending: 60.3

This series is noisy, hence the percentage explained deviance by the GAMs is small

compared to the percentage deviance explained for the Temperature series.

Table A.7: Salinity 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 501.482 30.564
SS 449.529 19.001 51.954 11.563 5.265 < 2.2e-16
TS 392.005 14.199 57.523 4.802 2.305 1.540e-06

The ANOVA results, given in Table A.7, however, favour the TS GAM.

Figure A.17: The upper left plot depicts Salinity at 1m with the SS model’s trend as a red
line. The stable seasonals and the Salinity 1m marked by dots with the stable
(red) and trending (blue) fitted GAMs, follow clockwise.

The two fits (SS and TS) of the GAMs for Salinity 1m are shown in the lower graph

in Figure A.17. The TS fit is better than the SS one as it goes higher into the peaks

and lowers into the troughs of the series. The trend and stable seasonals from the

SS GAM are depicted in the same picture.

In Figures A.18 and A.19 we can see the fifty two smooth functions fitted by the TS

GAM for the trending seasonals. Many weeks deviate from a straight line parallel
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Figure A.18: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Salinity 1m data.

to the x-axis. The majority of them, however, is not monotonically increasing or

decreasing indicating a random change. Nonetheless, there a few weeks, 6 and 19-

22 that point to a systematic change.

There is the possibility of a systematic shift in time, that is being initialised towards

the end of the series and thus, it cannot easily be detected.

Table A.8: Salinity 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.518 60.471 117.995

AIC 29.895 -108.142 -141.386
BIC 66.227 147.8 358.02

The AIC, Table A.8, favours the TS GAM while the BIC, in the same table, chooses

the NS model. The AIC, similarly to the ANOVA, is more sensitive and points to

the TS GAM.

To further investigate whether there is a systematic change in the timing of the sea-

sonal pattern and identify its direction we plot the stable seasonals and the trending
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Figure A.19: The smooth trending seasonals estimated in the TS model for the Salinity 1m
series, here weeks 37-52.

Figure A.20: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Salinity at 1m series.
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seasonals, as estimated by the TS GAM, on the same plot, Figure A.20. We note

a random amplitude change with the amplitude being bigger towards the start and

end of the examined series. There is also a slight shift of the seasonals earlier over

the years. This, however, is hard to quantify as there is a change in the size and

shape of the seasonals for these years. There appears to be a transition from one

seasonal pattern to another one with a slightly different from.

Figure A.21: Checking plots for the NS GAM of the Salinity at 1m series show evidence of
a seasonal pattern.

Figure A.21 shows some diagnostic plots of the standardized deviance residuals of the

NS model. The seasonal pattern of the series is evident in these plots. Additionally,

there is a deviation from normality at the lower end of the series.

In Figures A.22 and A.23 we see some diagnostic plots for the SS and TS GAMs.

The QQ plots and histograms show a deviation from normality near the extremes

of the series. These models are not well fitted to the data but were found the most

appropriate ones from those attempted.
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Figure A.22: The residual checking plots for the SS GAM of Salinity 1m show a deviation
from normality.

Figure A.23: Plots of the standardized deviance residuals from the TS GAM of Salinity 1m
show a deviation from normality.
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Salinity - 45m

As mentioned above, Salinity at 45m is not as easily affected by rainfall and river in-

put as the surface Salinity and thus, the series is more well behaved. The Resampling

test finds this series to have a trending seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.018→ Trending

The GCV score, however, of the SS and TS GAMs is almost the same:

GCV Score: Non-Seas: 0.027, Stable: 0.017 & Trending: 0.018

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 27, Stable: 66.5 & Trending: 76.1

The GAMs are able to explain a greater portion of the variability in this series than

they were for the Salinity at 1m.

Table A.9: Salinity 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 498.66 13.04
SS 447.537 5.978 51.123 7.062 10.342 < 2.2e-16
TS 390.533 4.265 57.004 1.713 2.752 4.824e-09

In Table A.9 the ANOVA favours the TS GAM.

The Salinity 45m series along with the fits of the SS (red) and TS (blue) GAMs

are shown in Figure A.24. The terms of the SS GAM are also plotted in the same

picture.

In Figures A.25 and A.26 we can see the fifty two smooth functions for the trending

seasonals in the TS model. A number of weeks (2, 6, 20-26, 36, 39 and 49) deviate

from a straight line parallel to the x-axis. Furthermore, a monotonic curve like that

for weeks 20-26 indicates a systematic change.

The AIC score, Table A.10, is lower for the TS GAM, thus preferring it. In the same

table, the BIC points to the SS GAM.
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Figure A.24: Clockwise from top left the Salinity 45m series with the trend from the SS
GAM (red line), the stable seasonals and the Salinity 45m series (dotted) with
the stable (red) and trending (blue) fitted GAMs.

Table A.10: Salinity 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.34 13.943 72.595

AIC -398.205 -692.167 -749.727
BIC -354.101 -432.148 -248.555

In Figure A.27 we see the stable (red) and trending (blue) seasonals from the TS

GAM. The amplitude of the seasonals fluctuates in the same way as for the seasonals

in the Salinity at 1m series. The amplitude in the first three and the last two

observed years is greater than for the rest of the years. Furthermore, we notice that

the trending seasonal peak at the beginning of the series occurs just after the stable

seasonal one and gradually shifts earlier in the year to occur just before the stable

peak towards the end of the series. Finally, for week 1 the stable seasonals attribute

a low value while the trending ones a high one.

To further observe the changes in the seasonal pattern of Salinity 45m we choose to

examine the de-trended fitted values of the TS GAM rather than the original series

since the latter is very noisy. In Figure A.28 we see the de-trended fitted values from
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Figure A.25: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Salinity 45m data.

Figure A.26: The smooth trending seasonals estimated in the TS model for the Salinity 45m,
weeks 37-52.



336

Figure A.27: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Salinity at 45m series.

the TS GAM for Salinity 45m. The trough is marked by dotted lines at weeks 10 and

30. The peak is shifting earlier in the year while the size and shape of the seasonals

also seems to be changing.

Diagnostic plots for the NS GAM are shown in Figure A.29. There is a clear seasonal

pattern in these plots.

Figures A.30 and A.31 show some diagnostic plots for the SS and TS GAMs. There

are no problems with the models.

Salinity at 1m is more easily affected by river input and rain and can thus, change

randomly in size and timing. Hence, it is easier to detect a systematic change when

looking at a depth of 45m than the surface, as the results have demonstrated. The

Resampling results for Salinity 1m can have been affected by the fluctuation in the

size of the seasonals and thus, have greater difficulty in detecting a systematic shift.

Nonetheless, the GAMs for Salinity at 1m identified the changes in the seasonals.

Both Salinity series have patterns with fluctuating amplitude that are also shifting

earlier in the year.
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Figure A.28: The de-trended fitted values from TS GAM for Salinity 45m. The dotted lines
mark weeks 10 and 30. The peak appears to shift earlier in the year.

Figure A.29: The residual checking plots for the NS GAM of Salinity at 45m. There is
evidence of a seasonal pattern.
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Figure A.30: The residual checking plots for the SS GAM of Salinity 45m show no violations.

Figure A.31: The standardized deviance residuals’ checking plots from the TS GAM of Salin-
ity 45m show no violations of the assumptions of the model.
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A.1.3 Silicate

Silicate, phosphate and nitrate are the three key nutrients used by phytoplankton in

their growth that we are examining from the Stonehaven database. Parsons et al.

(1988) say that silicate is usually higher in river water than in sea water. Thus,

silicate builds up during winter time from river inputs and sea sediments. It is

consumed mainly by diatoms to create their ‘glass’ exoskeleton. The levels of the

surface silicate are more easily affected by extreme events in external conditions such

as floods, increased run-off from the land etc.; thus we expect the surface series to

be more noisy than the 45m one.

Both Silicate series exhibit a winter peak. Because the weather in winter is poorer

than other seasons the sampling during the winter weeks is more often prohibited by

the weather conditions than for other weeks in the year. This means that we may

not have as much information about the peak of these series as we have for other

series that peak in the summer, spring or autumn. From an ecological perspective,

however, the spring time when silicate starts being consumed and the autumn when

silicate begins to replenish are more critical periods in the annual cycle of these series

(Hay, pers. comm., 2009).

Silicate - 1m

The Silicate at 1m (Silicate 1m) data have a stable seasonal pattern according to the

Resampling test results.

Resampling Testing Stable vs Trending: p = 0.191→ Stable

For this series we use the log link with the Gaussian family to build the GAMs. In

Figure A.32 we see two plots. The top plot shows the mean value of the series for

each year plotted against the range of the series for that year. We see a positive

connection between them which is further verified by the correlation, 0.442. Thus,

the amplitude of the seasonals changes with changes in the level of the trend. It
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increases when the trend increases and decreases when the decreases. Hence these

two components, trend and seasonal, are multiplicative.

The lower plot in Figure A.32 shows the fitted values from the SS GAM using a

log link and a Gaussian family plotted against the absolute value of the Pearson

residuals from that model. We fit a super-smoother, marked by the red line, to

check for any relationship between them. The produced line is almost parallel to

the x-axis indicating that the residuals are not affected by changes in the trend and

thus, should be added to the other two components and not multiplied. Therefore,

the log link is appropriate.

Figure A.32: The top plot shows the mean value of the Silicate at 1m series for each year
against the range of the series for that year. The bottom plot shows the fitted
values from the SS GAM plotted against the absolute residuals from that model
with a smoother running through them, red line.

The GCV score agrees with the Resampling results and also points to the SS GAM:

GCV Score: Non-Seas: 4.126, Stable: 1.374 & Trending: 1.410

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 8.67, Stable: 77.5 & Trending: 84

The ANOVA in Table A.11 favours the TS GAM.
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Table A.11: Silicate 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 558.41 2270.386
SS 502.627 558.739 55.775 1711.552 27.605 < 2.2e-16
TS 445.331 397.104 57.296 161.635 3.164 8.225e-12

Figure A.33: Clockwise from top left the Silicate 1m series with the trend from the SS GAM,
the stable seasonals and Silicate 1m (dotted) with the stable (red) and trending
(blue) fitted GAMs.

The Silicate 1m series along with the fits of the SS (red) and TS (blue) GAMs are

shown in Figure A.33. The trend and seasonals of the SS GAM are also plotted in

the same picture.

In Figures A.34 and A.35 we can see the fifty two smooth functions for the trending

seasonals in the TS model. Weeks 18 and 33 deviate from a straight line. These type

of curves though correspond to a random and not a systematic type of change.

Table A.12 depicts the AIC and BIC scores for the three GAMs. The AIC points to

the TS GAM while the BIC the SS model.

This series has a pseudo-trending in amplitude seasonal pattern. This fluctuation

in the size is probably the reason that the AIC and the ANOVA point to the TS
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Figure A.34: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Silicate 1m data.

Figure A.35: The smooth trending seasonals estimated in the TS model for the Silicate 1m,
weeks 37-52.

Table A.12: Silicate 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 5.598 61.373 118.669

AIC 2393.966 1716.193 1638.53
BIC 2418.536 1982.139 2152.755
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GAM. Nevertheless, this is considered a stable seasonal pattern in the context of this

study.

Figure A.36: Residual checking plots for the NS GAM of Silicate at 1m. A seasonal pattern
is seen in the plots.

Diagnostic plots for the NS GAM are shown in Figure A.36. There is a clear seasonal

pattern and deviations from normality in these plots. Figures A.37 and A.38 show

the diagnostic plots for the SS and TS GAMs which seem fine.
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Figure A.37: The residual checking plots for the SS GAM of Silicate 1m show no violations.

Figure A.38: The standardized deviance residuals’ checking plots from the TS GAM of Sili-
cate 1m show no violations of the assumptions of the model.
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Silicate - 45m

The Silicate at 45m (Silicate 45m) series has a stable seasonal pattern according to

the Resampling test results.

Resampling Testing Stable vs Trending: p = 0.212→ Stable

In Figure A.39 we see the mean value of the series for each year plotted against

the range of the series for that year, correlation 0.496. In the same Figure the

fitted values from the SS GAM using a log link and a Gaussian family are plotted

against the absolute value of the Pearson residuals from that model. The fit of the

super-smoother is marked by the red line. Though the fit shows the possibility of a

relationship between the level of trend and the residuals this is not a monotonic one.

Hence, similarly to the surface Silicate, the size of the seasonals changes when the

trend changes but we conclude that the residuals should be added and not multiplied

to these components. Therefore, we use the log link with the Gaussian family to

construct the GAMs.

We note, however, that there appears to be a change similar to a step change in the

plot of the absolute residual against the fitted values indicating that the variability

of the residuals changes after a set point of the fitted values. This could be an

indication that the series could better be modelled as two distinct parts and not as a

whole. Nonetheless, for the purposes of our analysis we believe that using one model

to describe the series will not affect the results.

The GCV score of the three GAMs points to the SS model, too:

GCV Score: Non-Seas: 3.064, Stable: 0.990 & Trending: 1.406

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 10.7, Stable: 78.6 & Trending: 84.6

The ANOVA results, presented in Table A.13, favour the TS GAM.

Figure A.40 shows Silicate 45m with the fits of the SS (red) and TS (blue) GAMs.
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Figure A.39: The top plot shows the mean value of the Silicate at 45m series for each year
against the range of the series for that year. The bottom plot shows the fitted
values from the SS GAM plotted against the absolute residuals from that model
with a smoother running through them, red line.

Table A.13: Silicate 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 551.81 1662.269
SS 497.207 398.014 54.612 1264.332 28.921 < 2.2e-16
TS 437.769 285.759 59.438 112.255 2.893 2.365e-10

The trend and seasonals of the SS GAM are also plotted in the same Figure. We see

that the Silicate at 45m series is less noisy than the surface one, as it was expected.

Nonetheless, the peaks and troughs of this series are very noisy, too.

In Figures A.41 and A.42 we can see the fifty two smooth functions for the trending

seasonals in the TS model. Weeks 20 and 22 deviate from a straight line indicating

a random and not a systematic type of change.

The AIC and BIC scores in Table A.14 point to the TS and SS GAMs, respectively.

The Silicate at 45m series exhibits similar behaviour to the surface Silicate. The size

of the seasonals changes randomly but the pattern does not exhibit a systematic shift
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Figure A.40: Clockwise from top left the Silicate 45m series with the trend from the SS
GAM as a red line, the stable seasonals and Silicate 45m (dotted) with the
stable (red) and trending (blue) fitted GAMs.

Table A.14: Silicate 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 6.181 60.793 120.231

AIC 2202.087 1515.088 1449.409
BIC 2229.306 1777.871 1969.116

in time, see Figures A.41 and A.42. Thus, we believe this series has a pseudo-trending

in amplitude seasonal pattern.

Diagnostic plots for the NS GAM are shown in Figure A.43. There is a clear seasonal

pattern in these plots and a violation of the normality assumption.

Figures A.44 and A.45 show some diagnostic plots for the SS and TS GAMs. There

are no serious problems with the models.

Both Silicate measurements appear to have pseudo-trending in amplitude seasonal

patterns. As this chemical is a strongly limiting factor in the growth of diatoms we

might expect to see similar patterns with these when we examine the phytoplankton

series, as is verified later.
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Figure A.41: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Silicate 45m data.

Figure A.42: The smooth trending seasonals estimated in the TS model for the Silicate 45m,
weeks 37-52.
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Figure A.43: Residual checking plots for the NS GAM of Silicate at 45m. A seasonal pattern
is seen in the plots.

Figure A.44: The residual checking plots for the SS GAM of Silicate 45m show no violations.
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Figure A.45: The standardized deviance residuals’ checking plots from the TS GAM of Sili-
cate 45m show no violations of the assumptions of the model.
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A.1.4 Phosphate

As with other nutrients the phosphate concentration is increasing during winter to

be consumed by phytoplankton during the rest of the year. Parsons et al. (1988)

point out that the phosphates concentration may in fact be below the detection

limit after a phytoplankton bloom. Hence, changes in phosphate concentration are

closely linked to the biological demands of the phytoplankton species. Nonetheless,

phosphate is not usually a limiting nutrient for phytoplankton growth in the sea;

whereas in freshwater systems it is. In the following series the majority of 2006

data had to be removed due to a contamination of the samples. Missing values were

introduced.

Both Phosphate series are modelled using a Gaussian distribution with the identity

link function.

Phosphate - 1m

The Resampling results for Phosphate at 1m (Phosphate 1m) indicate a stable sea-

sonal pattern.

Resampling Testing Stable vs Trending: p = 0.316→ Stable

The GCV scores of the three GAMs, also, point to the SS model:

GCV Score: Non-Seas: 0.037, Stable: 0.022 & Trending: 0.024

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 17.7, Stable: 60.8 & Trending: 68.5

Table A.15: Phosphate 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 642.222 23.201
SS 591.532 11.055 50.689 12.147 12.823 < 2.2e-16
TS 536.782 8.872 54.751 2.183 2.412 2.978e-07
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The ANOVA results, presented in Table A.15, favour the TS GAM, however.

Figure A.46: The Phosphate 1m series is plotted in the top left with the trend from the SS
GAM (red line). The stable seasonals and the Phosphate 1m (dotted) with
the stable (red) and trending (blue) fitted GAMs follow clockwise.

In Figure A.46 the series of Phosphate 1m with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted in the

same picture. In addition, in this plot we note that years 2003 and 2004 behave

differently to the previous years.

Table A.16: Phosphate 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.778 61.468 116.218

AIC -303.114 -685.1 -719.032
BIC -254.826 -409.722 -198.369

The AIC and BIC scores in Table A.16 point to the TS and SS GAMs, respec-

tively.

Examining further the series, see Figure A.47, we notice that the size of the season-

als fluctuates while the series has a stable seasonal pattern in terms of systematic
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Figure A.47: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Phosphate at 1m series.

changes. Additionally, from 2002 onwards the main peak is split into two peaks, thus

changing the shape of the seasonals.

Diagnostic plots for the NS GAM are shown in Figure A.48. There is evidence of a

seasonal pattern in these plots.

Figures A.49 and A.50 show some diagnostic plots for the SS and TS GAMs. There

are no major problems with the models even though the upper tail of the distribution

of the residuals deviates from the Gaussian family.
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Figure A.48: Residual checking plots for the NS GAM of Phosphate at 1m. A seasonal
pattern is seen in the plots.

Figure A.49: The residual checking plots for the SS GAM of Phosphate 1m show no viola-
tions.
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Figure A.50: The standardized deviance residuals’ checking plots from the TS GAM of Phos-
phate 1m show no violations of the assumptions of the model.
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Phosphate - 45m

The Resampling results for Phosphate at 45m (Phosphate 45m) indicate a stable

seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.998→ Stable

The GCV score of the three GAMs agree to the choice of the SS model:

GCV Score: Non-Seas: 0.033, Stable: 0.023 & Trending: 0.027

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 25.5, Stable: 57.9 & Trending: 63.9

Table A.17: Phosphate 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 651.108 20.621
SS 600.209 11.659 50.899 8.962 9.065 < 2.2e-16
TS 543.676 9.989 56.534 1.67 1.608 0.004

In contrast, the ANOVA, in Table A.17, is in favour of the TS GAM.

In Figure A.51 the series of Phosphate 45m with the fits of the SS (red) and TS

(blue) GAMs are plotted. The trend of the SS GAM is plotted over the series and

the stable seasonals on a separate plot in the same picture. Years 2003, 2004 and

2006 behave differently to previous years.

Table A.18: Phosphate 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.892 61.791 118.324

AIC -394.369 -669.498 -658.623
BIC -345.421 -391.827 -126.903

The AIC and BIC scores in Table A.18 point to the TS and SS GAMs, respectively.

The AIC scores for the SS and TS models, however, are very similar.



357

Figure A.51: Clockwise from top left the Phosphate 45m series with the trend from the SS
GAM plotted as red line, the stable seasonals and Phosphate 45m (dotted)
with the stable (red) and trending (blue) fitted GAMs.

Similarly to the Phosphate at 1m series, we believe that this series has a pseudo-

trending in amplitude seasonal pattern. The AIC and the ANOVA point to the

TS model because they recognise the fluctuation in the amplitude of the seasonals

as trending seasonality. The fluctuation in the size of the seasonals can be seen in

Figure A.52.

Diagnostic plots for the NS GAM are shown in Figure A.53. In the two right plots

we can see evidence of a seasonal pattern remaining in the residuals.

Figures A.54 and A.55 show some diagnostic plots for the SS and TS GAMs. The

residuals deviate from normality. The plots also show some big residual values for

the years 2003, 2004 and 2006 since, as noted before, during these years the series

behaves differently from the previous ones.

The above analyses do not show any systematic changes in the patterns of the phos-

phate measurements. This is partly expected as phosphate is seldom a limiting

nutrient hence an increase or decrease in supply and demand may be less evident for

phosphate than for example Nitrate which is a limiting nutrient in the sea.
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Figure A.52: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Phosphate at 45m series.

Figure A.53: Residual checking plots for the NS GAM of Phosphate at 45m. A seasonal
pattern is seen in the plots.
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Figure A.54: The residual checking plots for the SS GAM of Phosphate 45m.

Figure A.55: The standardized deviance residuals’ checking plots from the TS GAM of Phos-
phate 45m.
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A.1.5 Ammonia

Ammonia in the water is derived as an excretion product of the animal zooplankton

as well as being produced during their death and decay. Ammonia is also rapidly

taken up by phytoplankton. The amount produced by the zooplankton in the water

may be rapidly consumed by the phytoplankton. Thus a low value of ammonia

may reflect a small number of zooplankton present or a rapid consumption rate and

should be carefully interpreted. Generally, the level of ammonia increases during the

months of high zooplankton abundance. Rapid changes in ammonia levels are hard

to interpret. Ammonia samples can easily be contaminated during collection and

handling (Hay, pers. comm., 2009).

The GAMs for both Ammonia series are constructed using an additive structure

(identity link function) as no evidence to the contrary were found.

Ammonia - 1m

The Resampling results for Ammonia at 1m (Ammonia 1m) indicate a stable seasonal

pattern.

Resampling Testing Stable vs Trending: p = 0.285→ Stable

The GCV scores disagree with the choice of the SS model:

GCV Score: Non-Seas: 0.494, Stable: 0.464 &Trending: 0.450

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 4.3, Stable: 27.9 & Trending: 40.9

Table A.19: Ammonia 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 692.948 336.992
SS 641.501 253.957 51.448 83.035 4.077 < 2.2e-16
TS 585.16 208.242 56.341 45.715 2.28 1.135e-06
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In addition, the ANOVA , in Table A.19, is in favour of the TS one.

Figure A.56: Clockwise from top left the Ammonia 1m series with the trend from the SS
GAM marked by a red line, the stable seasonals and Ammonia 1m (dotted)
with the stable (red) and trending (blue) fitted GAMs.

In Figure A.56 the series of Ammonia 1m with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.

Figures A.57 and A.58 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 2, 19, 35, 37, 40, 41 and 42 differ from a straight line

parallel to the x-axis. This indicates that the smooths for these weeks are significant

and should be included in the model.

Table A.20: Ammonia 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 7.052 58.499 114.84

AIC 1487.794 1392.946 1366.903
BIC 1519.876 1659.098 1889.385

The AIC and BIC scores in Table A.20 point to the TS and NS GAMs, respec-

tively.
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Figure A.57: The smooth fitted functions for weeks 1-36, in the TS model for the Ammonia
1m data.

Figure A.58: The smooth trending seasonals estimated in the TS model for the Ammonia
1m, weeks 37-52.
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Figure A.59: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Ammonia at 1m series.

In Figure A.59 the stable (red) and trending (blue) seasonals from the TS GAM are

plotted over each other. There is a fluctuation in the size of the seasonals of this

series. This, however, could hinder the Resampling test’s ability to identify a shift

in time. There is probably a systematic shift in time that is very small and thus,

easily disguised by the random amplitude fluctuations.

Diagnostic plots for the NS GAM are shown in Figure A.60. There is a seasonal

pattern in these plots and the normality assumption is violated. In Figures A.61

and A.62 the diagnostic plots for the SS and TS GAMs show a deviation from

normality.
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Figure A.60: Residual checking plots for the NS GAM of Ammonia at 1m. A seasonal
pattern is seen in the plots.

Figure A.61: The residual checking plots for the SS GAM of Ammonia 1m.
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Figure A.62: The residual checking plots from the TS GAM of Ammonia 1m.
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Ammonia - 45m

The Resampling results for Ammonia at 45m (Ammonia 45m) indicate a trending

seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.019→ Trending

The GCV score of the three GAMs, however, points to the SS model:

GCV Score: Non-Seas: 0.486, Stable: 0.436 & Trending: 0.452

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 5.04, Stable: 32 & Trending: 46.5

Table A.21: Ammonia 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 687.936 328.899
SS 635.569 235.522 52.367 93.377 4.812 < 2.2e-16
TS 579.177 185.188 56.392 50.334 2.792 8e-10

The Resampling result is further enforced by the ANOVA, in Table A.21, which is

in favour of the TS GAM, too.

In Figure A.63 we see the series of Ammonia 45m with the trend from the SS GAM.

The stable seasonals and the fitted values of the SS (red) and TS (blue) GAMs are

also plotted.

Figures A.64 and A.65 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 22, 24, 25, 29, 31, 35, 37, 39, 40, 41, 42 and 50

deviate significantly from a straight line parallel to the x-axis.

Table A.22: Ammonia 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 7.064 59.431 115.823

AIC 1465.391 1338.366 1284.29
BIC 1497.78 1608.33 1810.411
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Figure A.63: Clockwise from top left the Ammonia 45m series with the trend from the SS
GAM, the stable seasonals and Ammonia 45m (dotted) with the stable (red)
and trending (blue) fitted GAMs.

The AIC and BIC scores in Table A.22 point to the TS and NS GAMs, respec-

tively.

In Figure A.66 we see the stable (red) and trending (blue) seasonals from the TS

GAM. The peak shifts systematically earlier in time while there is also a random

amplitude change.

Similarly to Salinity, finding Ammonia at 45m to have a trending seasonal pattern

verifies our thoughts about a systematic shift masked by the fluctuation in the size

of the pattern for the Ammonia at 1m series. Ammonia at 1m could be trending but

the series maybe too noisy for it to be detected. Weeks 40, 41 and 42 were found

trending for the Ammonia at 1m as well as for the Ammonia at 45m.

To estimate the shift in time we plot the de-trended fitted values from the TS of this

series and then note the occurrence of the main peak, see Figure A.67. With a black

dotted line we mark week 20 and with a red line week 50 in all years. The main peak

seems to be shifting earlier in each year.
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Figure A.64: The smooth fitted functions for weeks 1-36, in the TS model for the Ammonia
45m data.

Figure A.65: The smooth trending seasonals estimated in the TS model for the Ammonia
45m, weeks 37-52.
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Figure A.66: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Ammonia at 45m series.

Figure A.67: The de-trended fitted values from the TS GAM fitted to the Ammonia 45m
series. The dotted lines mark weeks 20 and 50.
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Figure A.68: Residual checking plots for the NS GAM of Ammonia at 45m. The normality
assumption is violated and a seasonal pattern is seen in the residuals.

Diagnostic plots for the NS GAM are shown in Figure A.68. The QQ plot and his-

togram of the residuals show a violation of the normality assumption. Furthermore,

there is a seasonal pattern in the residuals. Figures A.69 and A.70 show some di-

agnostic plots for the SS and TS GAMs. No major issues appear with the models

even though there is a deviation from normality especially at the upper tail of the

series.

There is evidence of a shift earlier in the year for the seasonals of both Ammonia

series. This bears a striking resemblance to that seen in the Salinity data. We

perceive a shift through some transitory years from one state to another rather than

an entirely smooth trend. This may be a reflection of the pattern of zooplankton

abundance and decay as they are mainly responsible for the ammonia signal.
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Figure A.69: The residual checking plots for the SS GAM of Ammonia 45m.

Figure A.70: The standardized deviance residuals’ checking plots from the TS GAM of Am-
monia 45m.
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A.1.6 Nitrate

Nitrate is the main nutrient in the water that drives the marine phytoplankton

production and is quite often present in limiting concentrations. It has a seasonal

nature with slow build up in winter months and rapid decline in spring as the light

levels increase to allow the phytoplankton community to begin their photosynthesis.

When there is sufficient light phytoplankton is reproduced and the levels of nitrate

in the water decrease (Hay, pers. comm., 2009).

The GAMs for both Nitrate series examined below are based on an additive structure,

using the identity link function, and a Gaussian family.

Nitrate - 1m

The Resampling results for Nitrate at 1m (Nitrate 1m) indicate a stable seasonal

pattern. We do note that the p-value is quite small though.

Resampling Testing Stable vs Trending: p = 0.075→ Stable

The GCV score of the three GAMs rejects the choice of the SS model in favour of

the TS one:

GCV Score: Non-Seas: 13.292, Stable: 3.130 & Trending: 3.04

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.98, Stable: 82.1 & Trending: 86.7

Table A.23: Nitrate 1m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 699.902 9229.376
SS 643.064 1706.362 56.838 7523.014 49.881 < 2.2e-16
TS 587.779 1267.405 55.285 438.956 3.682 1.68e-15

This is further enforced by the ANOVA, in Table A.23, which is in favour of the TS

GAM, too.
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Figure A.71: Clockwise from top left the Nitrate 1m series with the trend from the SS GAM,
the stable seasonals and the Nitrate 1m series marked with dots with the stable
(red) and trending (blue) fitted GAMs.

In Figure A.71 the series of Nitrate 1m with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and residuals of the SS GAM are also plotted. For

years 2000 and 2001 neither fit goes low enough in the trough, both overestimating

the levels of Nitrate.

Figures A.72 and A.73 depict the smooth functions fitted to each week by the TS

GAM. The C.I.s of weeks 2, 11-18, 43 and 48-50 differ from a straight line parallel to

the x-axis, marking them significant in our model. In particular, for weeks 12-17 the

fitted smooth functions exhibit a monotonic behaviour indicating a trending seasonal

pattern.

Table A.24: Nitrate 1m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 4.098 60.936 116.221

AIC 3813.3 2740.293 2641.797
BIC 3831.967 3017.879 3171.226
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Figure A.72: The smooth fitted functions for weeks 1-36, in the TS model for the Nitrate
1m data.

Figure A.73: The smooth trending seasonals estimated in the TS model for the Nitrate 1m,
weeks 37-52.
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The AIC and BIC scores in Table A.24 point to the TS and SS GAMs, respec-

tively.

Figure A.74: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Nitrate at 1m series.

The two seasonal patterns, stable and trending, estimated by the TS GAM are

plotted in Figure A.74. The peak of the trending seasonals, blue, at the start of the

series appears to the right of the stable seasonals, red, and moves gradually earlier

in the year. Thus, towards the end of the series the peak of the trending seasonals

is located just to the left of the stable one. Furthermore, we can verify that there is

a random amplitude change as the overall size of the estimated trending seasonals

first decreases and then increases.

To further examine the shift, in Figure A.75 we see the de-trended fitted values from

the TS GAM for Nitrate at 1m plotted by year. Dotted vertical lines are drawn to

mark weeks 20 (black) and 50 (red). The summer trough appears to shift gradually

earlier in time.

Diagnostic plots for the NS GAM are shown in Figure A.76. The seasonal pattern
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Figure A.75: The de-trended fitted values from TS GAM for Nitrate 1m. The vertical lines
mark weeks 20 and 50 in black and red, respectively.

Figure A.76: Residual checking plots for the NS GAM of Nitrate at 1m. A seasonal pattern
and a deviation from normality is seen in the plots.
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of the series can be seen in the residuals.

Figure A.77: The residual checking plots for the SS GAM of Nitrate 1m.

Figures A.77 and A.78 show some diagnostic plots for the SS and TS GAMs. The

assumption of normality is violated at the extremes of the series. In addition, there

are some high residual values due to the model fits over-predicting or under-predicting

the Nitrate levels.
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Figure A.78: The standardized deviance residuals’ checking plots from the TS GAM of Ni-
trate 1m.
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Nitrate - 45m

The Resampling results for Nitrate at 45m (Nitrate 45m) indicate a stable seasonal

pattern.

Resampling Testing Stable vs Trending: p = 0.117→ Stable

The GCV score, however, chooses the TS model:

GCV Score: Non-Seas: 11.826, Stable: 2.711 & Trending: 2.627

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.41, Stable: 82.5 & Trending: 87.1

Table A.25: Nitrate 45m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 694.364 8155.943
SS 637.616 1465.708 56.748 6690.234 51.287 < 2.2e-16
TS 581.488 1080.03 56.128 385.678 3.7 9.412e-16

This is further enforced by the ANOVA, in Table A.25, which is in favour of the TS

GAM, too.

In Figure A.79 the series of Nitrate 45m with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.

Figures A.80 and A.81 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 12-15, 48, 51 and 52 all deviate from a straight line

parallel to the x-axis. Especially weeks 12-15 are monotonous indicating a systematic

change. From the trending pattern estimated by the TS we know that the systematic

change is not a change in the amplitude and thus it is a systematic shift in time.

The AIC and BIC scores in Table A.26 point to the TS and SS GAMs, respec-

tively.

In Figure A.82 the two seasonal patterns estimated by the TS GAM are plotted.

The estimated trending seasonals (blue) appear to shift earlier in time when using
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Figure A.79: Clockwise from top left the Nitrate 45m series with the trend from the SS
GAM, the stable seasonals and the Nitrate 45m series (dotted) with the stable
(red) and trending (blue) fitted GAMs.

Table A.26: Nitrate 45m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.636 60.384 116.512

AIC 3699.694 2616.853 2516.281
BIC 3716.225 2891.405 3046.035

the stable seasonals (red) as a reference point. There is also a random change in the

size of the seasonals.

We believe that this series’ pattern both fluctuates in size and shifts systematically

in time. This is further enhanced by the fact the Nitrate 1m series was found shifting

in time, too.

In Figure A.83 we see the de-trended fitted values of the TS GAM for Nitrate at

45m. The dotted lines mark weeks 20 (black) and 50 (red), thus enclosing the summer

trough. The trough appears to be shifting gradually forward in the year. This is

similar behaviour to the Nitrate at 1m series.

Diagnostic plots for the NS GAM are shown in Figure A.84. There is evidence of a
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Figure A.80: The smooth fitted functions for weeks 1-36, in the TS model for the Nitrate
45m data.

Figure A.81: The smooth trending seasonals estimated in the TS model for the Nitrate 45m,
weeks 37-52.
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Figure A.82: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Nitrate at 45m series.

Figure A.83: The de-trended fitted values from TS GAM for Nitrate 45m. The vertical lines
mark weeks 20 and 50 in black and red.
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Figure A.84: Residual checking plots for the NS GAM of Nitrate at 45m. A seasonal pattern
is seen in the plots.

Figure A.85: The residual checking plots for the SS GAM of Nitrate 45m show a deviation
from normality.
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Figure A.86: The standardized deviance residuals’ checking plots from the TS GAM of Ni-
trate 45m show a deviation from normality at the extremes of the series.

seasonal pattern in the right side plots.

Figures A.85 and A.86 show some diagnostic plots for the SS and TS GAMs. The QQ

plots of the residuals of both models, SS and TS, show a deviation from normality

at the extreme of the series.

The apparent shift earlier in the Nitrate seasonal pattern indicates that there may

be evidence of earlier uptake by the phytoplankton and so a shift in the timing of

the spring bloom. Nevertheless, the point in time that the Nitrate levels begin to

replenish does not appear to be shifting earlier in the year as does the point of its

decline. This could possibly translate to a longer period during which blooms take

place.
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A.1.7 Chlorophyll a

Smith et al. (2007) state that Chlorophyll a is the primary pigment of interest in

monitoring programmes as it is the most abundant in photosynthesising plants and

is also readily detected by fluorescence detection. Most of the phytoplankton species

contain Chlorophyll a. The Chlorophyll a (Chlorophyll) series gives an indication

of the phytoplankton biomass and not rate of production as for example there may

be a huge population of zooplankton consuming it and thus very little biomass as

Chlorophyll evident in the water samples (Bresnan, pers.comm., 2008).

The GAMs for this series assume a Gamma family with a log link and a cyclic com-

ponent for the trending seasonals extraction. The diagnostic plots for the Gaussian

family models were very poor indicating that a different family would be more ap-

propriate. Though the diagnostic plots for the Gamma family are not ideal, Figures

A.92 and A.93, are an improvement from the ones for the Gaussian family.

When using a cyclic component to model the stable seasonality there are two choices

for the construction of the TS GAM. One can choose to include or exclude the term

corresponding to the stable seasonal (i.e. the cyclic smoother) in the TS model.

Including the stable seasonal term ensures that the models are properly nested and

thus the ANOVA and the GCV score can be used for comparison. The goodness of

fit measures are essentially the same on both occasions.

Nonetheless, the confidence intervals for the smooth terms corresponding to the

trending seasonals are wider when the stable term is included. This is an indication

that the contribution of the stable cyclic component affects the estimation of the

standard error of the trending seasonals. No other differences occur and to better

demonstrate the above issue, for this series we will present the results for both ways.

For the rest of this thesis, when a series is modelled using a cyclic component for the

stable seasonals both models are examined and the plots of the smooth functions are

always from the TS GAM without the stable component.

The Resampling results for Chlorophyll indicate a stable seasonal pattern.
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Resampling Testing Stable vs Trending: p = 0.138→ Stable

Including the Stable Seasonals’ Term in the TS GAM

In agreement with the Resampling results the GCV score, also, prefers the SS model:

GCV Score: Non-Seas: 1.042, Stable: 0.424 & Trending: 0.532

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.32, Stable: 62.1 & Trending: 70.5

Table A.27: Chlorophyll ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 689.929 709.733
SS 680.915 278.136 9.015 431.599 117.211 < 2.2e-16
TS 578.751 216.898 102.164 61.239 1.599 4.887e-04

The ANOVA, in Table A.27, is in favour of the TS GAM, however.

Figure A.87: Clockwise from top left the Chlorophyll series with the trend from the SS
GAM, the stable seasonals and Chlorophyll (dotted) with the stable (red) and
trending (blue) fitted GAMs.

In Figure A.87 the series of Chlorophyll with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.
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Figure A.88: The smooth fitted functions for weeks 1-36, in the TS model for the Chlorophyll

data.

Figures A.88 and A.89 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 25, 35 and 36 differ significantly from a straight

line parallel to the x-axis. The smooth functions corresponding to these weeks are

not monotonic and thus they indicate a random change.

Table A.28: Chlorophyll AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 6.07 15.085 117.249

AIC 1810.663 1108.8 1130.208
BIC 1838.246 1177.345 1662.976

The AIC and BIC scores in Table A.28 both point to the SS GAM.

Figure A.90 shows the stable (red) and trending (blue) seasonals estimated by the

SS and TS GAMs, respectively. It could be considered that there is a systematic

amplitude change as the size of the pattern decreases until 2005 and then increases

only slightly 1 . In addition, the shape of the seasonals changes. The sharp peak

1The actual ranges corresponding to years 1997-2008 are: 4.357, 3.921, 3.562, 3.285, 3.070, 2.910,
2.706, 2.631, 2.667, 2.776, 2.912.
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Figure A.89: The smooth trending seasonals estimated in the TS model for Chlorophyll ,
weeks 37-52.

during the first three years is joined by a second one later in the year, almost forming

one wider peak. In the last two observed years, however, the shape of the pattern

resembles the first years, with a narrower peak.

In Figure A.91 we see the de-trended fitted values for Chlorophyll by the TS GAM.

The vertical lines mark weeks 18 and 42 in black and red, respectively. The peak

itself changes in size and shape while the timing of its descend appears to shift a

little earlier in the year.

Figures A.92 and A.93 show some diagnostic plots for the SS and TS GAMs. There

is a deviation from normality at the extremes of the series.
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Figure A.90: The stable seasonals, red, and the trending seasonals, blue, from the SS and
TS GAMs, respectively, fitted to the Chlorophyll series.

Figure A.91: The de-trended fitted values from TS GAM for Chlorophyll a. Weeks 18 and
42 are marked by vertical lines in black and red, respectively.
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Figure A.92: The residual checking plots for the SS GAM of Chlorophyll show a deviation
from normality at the extremes of the series.

Figure A.93: The standardized deviance residuals’ checking plots from the TS GAM of
Chlorophyll show a deviation from normality at the lower end of the series.
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Without the Stable Seasonals’ Term in the TS GAM

The GCV score of the new TS GAM is:

GCV Score: Trending: 0.532

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.32, Stable: 62.1 & Trending: 70.5

Figure A.94: Clockwise from top left the Chlorophyll series with the trend from the SS GAM,
the stable seasonals and Chlorophyll (dotted) with the SS (red) and TS (blue)
fitted GAMs. The TS GAM does not include the stable cyclic smoother.

In Figure A.94 the series of Chlorophyll with the fits of the SS (red) and TS (blue)

GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.

Figures A.88 and A.89 show the smooth functions fitted to each week for the trending

seasonals by the TS GAM. Weeks 25, 35 and 36 differ significantly from a straight

line parallel to the x-axis. The smooth functions corresponding to these weeks are

not monotonic and thus they indicate a random change.

The AIC and BIC scores in Table A.29 both point to the SS GAM.

The diagnostic plots for the TS GAM are shown in Figure A.97. There is a deviation

from normality at the extremes of the series.
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Figure A.95: The smooth fitted functions for weeks 1-36, in the TS model (without the
stable cyclic smoother) for the Chlorophyll data.

Table A.29: Chlorophyll AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 6.07 15.085 117.317

AIC 1810.663 1108.8 1130.374
BIC 1838.246 1177.345 1663.451

The analyses with either TS GAM points to the existence of trending seasonality.

Furthermore, we note that the scores and test results from the goodness of fit mea-

sures that are used are very similar in both occasions. We prefer, however, to use

the ANOVA and the GCV score for inference and thus we prefer the TS model that

includes the stable term. When looking at the smooth functions fitted to each week

the other TS GAM provides tighter confidence intervals and will thus be preferred

for that particular purpose. For the rest of this thesis both models will be exam-

ined. The ANOVA results and the GCV scores comparisons will always correspond

to the TS model that includes the stable component while when plots of the smooth

functions are presented these will be from the TS GAM without the stable seasonal

term. The AIC and BIC values are always very similar and will thus not be reported

twice.
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Figure A.96: The smooth trending seasonals estimated in the TS model (without the stable
cyclic smoother) for Chlorophyll , weeks 37-52.

In the Chlorophyll series analysis we note systematic changes in the pattern. There

is evidence that the size of the pattern (amplitude) is gradually decreasing with time.

In the first three years there seems to be a more sudden decline in spring. Ensuing

years show a more stable pattern while in the last three a slight increase in the size

is noted. There is also an indication of an earlier decline in the concentration of

Chlorophyll through autumn.
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Figure A.97: The standardized deviance residuals’ checking plots from the TS GAM of
Chlorophyll show a deviation from normality at the lower end of the series.
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A.2 Phytoplankton Series Results

A.2.1 Diatoms

Diatoms are photosynthesising algae that have a siliceous skeleton. They need sun-

light and chemical nutrients for growth thus, are found closer to the surface (Uni-

versity College London, 2009). Furthermore, diatoms need silicate for their silicate

outer wall. This nutrient in particular is important for diatom growth and can limit

the amount of diatoms present in the water.

Chaetoceros

The Chaetoceros series includes the total of all observed Chaetoceros species as it

is hard to accurately distinguish between them. They are most active in the up-

per depths that receive sunlight and are prey to many zooplankton species such as

copepods (Bresnan, pers.comm., 2008).

This is an aggregate series of several species of different sizes that may exhibit peaks

at different periods (i.e. have slightly different seasonal cycles). Additionally, due

to the fast reproductive and adaptive abilities of these species we might not be able

to perceive a seasonal change without examining individual species time series. It

is also possible that existing species may be supplemented or replaced by new ones

carried into the region by advection from adjacent regions. The above is true for

all series examined in this section, as identifying individual species is not always

feasible and thus we look at aggregates. Nonetheless, we believe that these analyses,

limited as they are, constitute a first attempt at exploring these species’ seasonal

patterns.

The Resampling results for Chaetoceros indicate a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.144→ Stable
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Additionally, the UBRE score prefers the SS model.:

UBRE Score: Non-Seas: 0.157, Stable: −0.067 & Trending: 0.111

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 1.15, Stable: 24.5 & Trending: 42.6

Table A.30: Chaetoceros ANOVA

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
NS 416.193 476.899
SS 409.491 364.318 6.701 112.590 1.707e-21
TS 349.680 276.858 59.81 87.440 0.01

The ANOVA results, however, presented in Table A.30, favour the TS GAM.

Figure A.98: Clockwise from top left Chaetoceros with the trend (red line) from the SS
model, the stable seasonals and Chaetoceros (dotted) with the stable (red)
and trending (blue) fitted GAMs.

In Figure A.98 the series of Chaetoceros with the fits of the SS (red) and TS (blue)

GAMs, the trend and seasonals from the SS model are plotted.

The AIC and BIC scores in Table A.31 agree with the choice of the SS GAM. We

believe that this series has a stable seasonal pattern.
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Table A.31: Chaetoceros AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 2.807 9.509 69.319

AIC 482.513 383.324 415.498
BIC 493.851 421.720 695.397

Diagnostic checking was performed for the SS and TS models as described above.

The original deviance for the TS model is greater than the 99 other derived deviances.

This indicates that the TS model is not a good fit. The SS model, however, is a good

fit as the original deviance is the 41st percentile of the 99 deviances.

Skeletonema

The Skeletonema series is a total of all recorded Skeletonema observations. There

are a few fast growing and common spring species that are impossible to distinguish

with light microscopy, so as with Chaetoceros this is a group of species and this may

hinder our ability to identify changes in the seasonal pattern.

The Resampling results for Skeletonema indicate a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.136→ Stable

The UBRE score, however, prefers the SS model:

UBRE Score: Non-Seas: 0.036, Stable: −0.186 & Trending: −0.066

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.17, Stable: 27.5 & Trending: 50.9

The ANOVA results, however, presented in Table A.32, favour the TS GAM.

In Figure A.99 the series of Skeletonema with the fits of the SS (red) and TS (blue)

GAMs are plotted. The terms of the SS model are also depicted in the same Fig-

ure.
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Table A.32: Skeletonema ANOVA

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
NS 416.510 427.088
SS 411.382 319.82 5.128 107.27 1.906e-21
TS 356.670 215.78 54.713 103.048 8.472e-05

Figure A.99: Clockwise from top left the Skeletonema series with the trend (red line) from
the SS GAM, the stable seasonals and the series marked by dots with the stable
(red) and trending (blue) fitted GAMs.

The AIC and BIC scores in Table A.33 agree with the choice of the SS GAM.

Diagnostic checking was performed for the SS and TS models as described above.

The original deviance for the TS model is greater than the 99 other derived deviances.

This indicates that the TS model is not a good fit. The SS model, however, is a good

fit as the original deviance is the 45th percentile of the 99 deviances.

Total Diatoms

This series includes all diatoms in the Stonehaven database. Since this series has a

sufficient number of non zero values we use a log Normal distribution for the GAMs.



399

Table A.33: Skeletonema AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 2.490 7.618 62.330

AIC 432.071 335.055 341.436
BIC 442.124 365.814 593.118

The series, however, exhibits very sudden high spikes, for example, going from 0 to

3000000 with a seemingly random allocation of zero values, see Figure A.100 of the

logged values. This is very hard to model, therefore, we remove the zero values from

the series, inserting missing values in their place, when creating the GAMs. The

three GAMs are created for the logged series after the missing values are removed.

We thus, find a model for the series conditioned on the presence of diatoms. There

are 35 zeroes in a total of 419 samples giving a probability of 0.084. Dividing the

obtained conditional model by 0.084 we obtain the unconditional model.

This is an aggregate of many different species that have various patterns. As a result

the interpretation of the following analysis is very hard. From a biological point of

view, however, the behaviour of the seasonal pattern of all diatoms is interesting

as the diatoms share the same characteristics, for example need silicate and are

all photosynthesising. Thus, diatoms are more sensitive to a change in the spring

weather conditions (Bresnan, pers.comm., 2008).

The Resampling results for the Total Diatoms series indicate a stable seasonal pat-

tern. Resampling Testing Stable vs Trending: p = 0.40→ Stable

Additionally, the UBRE score also prefers the SS model:

UBRE Score: Non-Seas: 3.324, Stable: 1.761 & Trending: 3.051

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.064, Stable: 48.9 & Trending: 64.9

The ANOVA results, presented in Table A.34, favour the SS GAM.

In Figure A.101 the series of Total Diatoms with the fits of the SS (red) and TS
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Figure A.100: The Logged series of Total Diatoms, after adding 1.

Table A.34: Total Diatoms ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 382.000 1257.715
SS 377.096 642.522 4.904 615.192 73.623 <2.2e-16
TS 278.194 442.035 98.901 200.487 1.276 0.064

(blue) GAMs are plotted. In the same Figure, we see the trend and seasonals from

the SS model.

Table A.35: Total Diatoms AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.000 7.904 106.806

AIC 1551.326 1303.220 1357.403
BIC 1563.178 1334.447 1779.353

Both the AIC and BIC scores in Table A.35 point to the SS GAM. This series’

seasonal pattern is stable.

Diagnostic checks of the residuals were performed for the three GAMs. In Figure

A.102 we see plots of the standardized deviance residuals for the NS model. There is
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Figure A.101: Clockwise from top left the logged Total Diatoms series with the trend (red
line) from the SS GAM, the stable seasonals and the series (dotted) with the
stable (red) and trending (blue) fitted GAMs.

a deviation from normality in the start of the series and an evident seasonal pattern

in the residuals.

In Figures A.103 and A.104 we see the residual plots for the SS and TS models,

respectively. The SS model’s QQ plot does not show any deviation from normality,

while the TS’s one is problematic at the beginning of the series.
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Figure A.102: Diagnostic plots of the standardized deviance residuals for the Total Diatoms
NS model.

Figure A.103: Diagnostic plots for the Total Diatoms SS model.
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Figure A.104: Diagnostic check for the Total Diatoms TS model.

A.2.2 Dinoflagellates

Dinoflagellates are usually more abundant during late spring and summer and in some

occasions can form massive algal blooms. Unlike the diatoms’ silicate exoskeleton,

the dinoflagellates’ one is made of cellulose. In addition, not all dinoflagellates have

Chlorophyll a. Other pigments are often present and many species are mixotrophic;

i.e. able to photosynthesise or feed on other organisms. Some other dinoflagellates

are fully heterotrophic feeding only on other species. As with many diatoms, the

dinoflagellate species are able to survive as resting cysts and resistant stages in

sediments. The environmental cues that trigger excystment and often blooms are

very poorly understood (Amorim, pers. comm., 2009).

Alexandrium

The genus Alexandrium includes a few species, some being toxic dinoflagellates that

can be responsible for seasonal harmful algal blooms. The series Alexandrium is a



404

total of all recorded Alexandrium species. The Resampling results for Alexandrium

indicate a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.114→ Stable

The UBRE score, however, prefers the TS model:

UBRE Score: Non-Seas: −0.513, Stable: −0.615& Trending: −0.662

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 9.05, Stable: 37.1 & Trending: 76.4

Table A.36: Alexandrium ANOVA

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
NS 414.640 191.752
SS 408.724 132.528 5.900 59.224 5.707e-11
TS 385.169 49.692 23.555 82.836 1.592e-08

The ANOVA results, presented in Table A.36, favour the TS GAM, too.

Figure A.105: The Alexandrium series with the trend (red line) from the SS GAM, the stable
seasonals and the series as dots with the stable (red) and trending (blue) fitted
GAMs.

In Figure A.105 the series of Alexandrium with the fits of the SS (red) and TS (blue)
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GAMs and the terms of the SS GAM are plotted.

Table A.37: Alexandrium AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 4.376 10.276 33.831

AIC 200.504 153.080 117.354
BIC 218.174 194.574 253.960

The AIC and BIC scores, in Table A.37, point to the TS and SS GAM, respectively.

This series has a pseudo-trending seasonal pattern and this random change in the

size of the seasonals is the reason that the ANOVA and the AIC prefer the TS

GAM.

Diagnostic checking was performed for the SS and TS models as described above. The

original deviance for the TS model is the 60th percentile of the other 99 deviances.

This indicates that the TS model is a good fit. The SS model is, also, a good fit as

the original deviance is the 50th percentile of the 99 deviances.

Total Dinoflagellates

The Total Dinoflagellates series includes all dinoflagellates species in the Stonehaven

database. The Resampling results for Total Dinoflagellates indicate a stable seasonal

pattern.

As this is an aggregate series of many different species that have various patterns

the interpretation of the following analysis is not straightforward. Nevertheless,

as with the Total Diatoms series, all dinoflagellates share some characteristics and

from a biological point of view the behaviour of the Total Dinoflagellates series is

important.

Resampling Testing Stable vs Trending: p = 0.277→ Stable

Additionally, the UBRE score prefers the SS model:

UBRE Score: Non-Seas: 0.296, Stable: −0.050 & Trending: 0.024
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The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.83, Stable: 32.1 & Trending: 60.6

Table A.38: Total Dinoflagellates ANOVA

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
NS 415.518 533.046
SS 411.166 375.779 4.352 157.267 1.12e-32
TS 311.353 184.04 99.813 191.739 9.055e-08

The ANOVA results, presented in Table A.38, favour the TS GAM, however.

Figure A.106: The Total Dinoflagellates series with the trend (red line) from the SS GAM,
the stable seasonals and the Total Dinoflagellates series marked by dots with
the stable (red) and trending (blue) fitted GAMs.

Figure A.106 shows plots of the series of Total Dinoflagellates, the trend and seasonals

of the SS GAM and the series as dots with the fits of the SS (red) and TS (blue)

GAMs are plotted.

In Table A.39 both the AIC and the BIC scores point to the SS one. We believe that

this pattern is stable.

Diagnostic checking was performed for the SS and TS models as described above.

The original deviance for the TS model is greater than the 99 other derived deviances.
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Table A.39: Total Dinoflagellates AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.482 7.834 107.647

AIC 540.008 391.447 399.334
BIC 554.082 423.081 833.999

This indicates that the TS model is not a good fit. The SS model, however, is a good

fit as the original deviance is the 30th percentile of the 99 deviances.

A.2.3 Total Phytoplankton

The Total Phytoplankton series includes all phytoplankton species in the Stonehaven

database. Similarly to the Total Diatoms series, we remove the zero values from this

series and use a log Normal distribution for the GAMs. The zero values occur

randomly, see Figure A.107, with a total of 27 in 419 measurements, giving thus a

probability of 0.064 for absence.

Figure A.107: The logged series of Total Phytoplankton.

The Resampling results for Total Phytoplankton indicate a stable seasonal pat-

tern.
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Resampling Testing Stable vs Trending: p = 0.116→ Stable

Additionally, the GCV score prefers the SS model:

GCV Score: Non-Seas: 3.216, Stable: 1.516 & Trending: 2.538

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.454, Stable: 54.9 & Trending: 66.9

Table A.40: Total Phytoplankton ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 389.488 1238.050
SS 384.168 561.386 5.319 676.661 87.052 <2.2e-16
TS 284.491 377.569 99.678 183.817 1.39 0.019

The ANOVA results, presented in Table A.40, favour the TS GAM, however.

Figure A.108: Clockwise from top left the Total Phytoplankton series with the trend (red
line) from the SS GAM, the stable seasonals and the logged series of Total
Phytoplankton marked by dots with the stable (red) and trending (blue) fitted
GAMs.

In Figure A.108 the series of Total Phytoplankton with the fits of the SS (red) and

TS (blue) GAMs are plotted. In the same Figure we see the stable seasonals and

trend from the SS model.
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Table A.41: Total Phytoplankton AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.512 8.832 108.509

AIC 1570.284 1270.897 1314.763
BIC 1584.232 1305.970 1745.681

Both the AIC and BIC scores in Table A.41 point to the SS GAM. There is a

fluctuation of the size of the seasonals of this series but the pattern is stable in terms

of systematic shifts in time.

Diagnostic check of the residuals was performed for all three models. In Figure A.109

we see plots of the residuals of the NS model.

Figure A.109: Diagnostic check for the Total Phytoplankton NS model.

In Figures A.110 and A.111 residual plots for the SS and TS model are shown.
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Figure A.110: Diagnostic check for the Total Phytoplankton SS model.

Figure A.111: Diagnostic check for the Total Phytoplankton TS model.



Appendix B

Zooplankton Series

B.1 The zooplankton data - Results by species

Copepods

Copepods are small crustaceans that are so abundant that often represent more than

90% of the biomass in mesozooplankton samples. They are mainly herbivores and

as such represent a major pathway for the transfer of energy up the marine food

web. Some copepod species exist in the water all year and some produce resting

stages that allow them to survive winter. It is a feature of most copepods that the

adult males either do not feed or feed less and consequently have a shorter life span

than adult females; whose feeding as adults is translated mainly into egg production

rather than somatic growth (Hay, pers. comm., 2009).

B.1.1 Acartia

Acartia is a small calanoid copepod that is found in shelf seas. The genus Acartia

is common and abundant all around the world’s oceans. It is an important link
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in the food chain as it is largely a herbivore mediating energy transfer between

phytoplankton and developing larvae of commercial fish species. Acartia clausi is

resident in the North Sea all year, but late in the year the eggs produced are able

to delay hatching and so rest in the seabed sediments to hatch in spring through

early summer (Hay, pers. comm., 2009). We look at some developmental stages of

Acartia clausi and the total counts of Acartia, including all observed stages of clausi,

longeremis, discudata and bifilosa, which are, relative to clausi, rare species in the

samples .

Acartia clausi

Acartia clausi has a life-cycle that consists of six naupliar stages followed by five

copepodid larval stages to reach adulthood in stage 6. We examine densities of

Acartia clausi copepodite stages 4 (C4), 5 (C5) and 6 (C6f) females and males

(C6m). The 200 micron net mesh of the sampler does not trap the early nauplii

or the first three copepodite stages in a quantitative way as they pass through this

mesh. Acartia clausi exhibits one peak per year for all examined stages.

Acartia clausi copepodite stage 4

Acartia clausi C4 exhibits one major peak per year and appears to have a stable

seasonal pattern. The Resampling test yields an insignificant p-value when used

on the logged Acartia clausi C4 series to test for trending seasonality. The p-value

indicates a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.312→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 4.774, Stable: 1.297 & Trending: 2.059

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.762, Stable: 75.2 & Trending: 83.3

Looking at the ANOVA results, Table B.1, the trending model is preferred.
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Table B.1: Acartia clausi C4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 429.842 2033.470
SS 417.326 508.417 12.516 1525.058 100.018 < 2.2e− 16
TS 314.726 341.736 102.6 166.681 1.496 0.005

Figure B.1: The logged Acartia clausi C4 series with the trend from the SS model, the stable
seasonals and the series as dots with the fits from the stable (red) and trending
(blue) GAMs. Dotted lines denote the years.

In Figure B.1 we see the logged Acartia clausi C4 with the fitted values from the

two, SS (red) and TS (blue), models. In the same Figure the trend and seasonals

from the SS GAM are also plotted.

The AIC and BIC scores, in Table B.2, point to the SS GAM. The GAMs, as men-

tioned before, are sensitive to any kind of change and the change in the amplitude of

the seasonals, see Figure B.1, could be the reason the ANOVA prefers the trending

model. This series has a pseudo-trending in amplitude seasonal pattern.

Nevertheless, this amplitude change could affect the sensitivity of the above Resam-

pling testing procedure. Thus, the series could be trending in time but the above

test fails to detect it. One should attempt to accommodate for these changes in the



414

size of the seasonals and then test again the series for trends in time. Testing for

one specific type of change (for us systematic time shift) in the presence of other

unattended changes can lead to ambiguity in the interpretation of the results.

We, nonetheless, believe that this series’ seasonal pattern does not exhibit a system-

atic change, only a random amplitude change.

Table B.2: Acartia clausi C4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.158 15.667 118.274

AIC 1901.480 1327.674 1361.256
BIC 1914.329 1391.443 1842.447

In Figure B.2 we see four diagnostic plots for the NS GAM. The upper left plot is a

QQ plot of the residuals and shows a violation of the normality assumption. This is

pronounced also in the histogram of the residuals. Additionally, the residuals show

evidence of a seasonal pattern making this model an inadequate fit.

The diagnostic plots for the SS models are shown in Figure B.3. The QQ plot is

satisfactory as the residuals display only little deviation from the theoretical quantiles

at the extremes of the series. Nevertheless, the histogram of the residuals looks

good. The plot of residuals against the fitted values seems fine and the lower right

plot of the residuals themselves shows a slight remaining pattern, but not anything

problematic.

Figure B.4 shows the diagnostic plots for the TS model. The plots look similar to

those for the SS model. The QQ plot shows a slight deviation from normality at

the extremes of the series which is also seen in the histogram of the residuals. The

plot of the residuals against the fitted values and the residuals themselves show no

problems.

For all Acartia series the residual plots look roughly the same with Figures B.2, B.3

and B.4 and thus will not be mentioned.
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Figure B.2: Diagnostic plots for the NS GAM for Acartia clausi 4. The upper left normal
QQ plot shows a problem with the Gaussian assumption. This is further verified
by the lower left histogram of the residuals. The upper right plot of residuals
against the fitted values and the lower right plot of the residuals themselves show
the evident seasonal pattern that was deliberately excluded from this model.

Figure B.3: Diagnostic plots for the SS GAM for Acartia clausi 4. The QQ plot shows a
slight problem with the Gaussian assumption at the extremes of the series.
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Figure B.4: Diagnostic plots for the TS GAM for Acartia clausi 4. The QQ plot shows a
small problem with the Gaussian assumption at the extremes of the series.
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Acartia clausi copepodite stage 5

The Acartia clausi C5 series is found to have a stable seasonal pattern over time.

The Resampling test between stable and trending seasonality yields an insignificant

p-value:

Resampling Testing Stable vs Trending: p = 0.195→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 4.006, Stable: 1.637 & Trending: 2.596

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 7.01, Stable: 63.9 & Trending: 75.6

Table B.3: Acartia clausi C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 424.666 1649.453
SS 416.875 639.728 7.791 1009.726 84.454 < 2.2e− 16
TS 315.241 433.322 101.633 206.406 1.477 0.006

The Resampling p-value, the AIC and BIC, Table B.4, indicate a stable seasonal

pattern while the ANOVA, Table B.3, between the stable and trending seasonal

GAMs favours the trending one. There is a random amplitude change, see Figure

B.5. Probably this change in the amplitude of the seasonals is the reason that the

ANOVA favours the TS GAM.

In Figure B.5 we see the logged Acartia clausi C5 and the two fits from the stable and

trending GAMs. The trend and seasonals from the SS GAM are also plotted.

This series is stable in terms of systematic changes but does exhibit a random change

in the size of the seasonals.
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Figure B.5: Clockwise from top left: the logged Acartia clausi C5 with the trend from the
SS model, the stable seasonals and the series marked by dots with stable (red)
and trending (blue) GAM fitted values.

Table B.4: Acartia clausi C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.334 16.125 117.759

AIC 1821.414 1427.824 1462.8
BIC 1855.321 1493.428 1941.892

Acartia clausi copepodite stage 6 females

The Acartia clausi C6f series has a stable seasonal cycle that does not exhibit any

systematic shifts in time. The Resampling results indicate that the seasonals are

stable.

Resampling Testing Stable vs Trending: p = 0.614→ Stable

The GCV score of the GAMs points in the direction of the SS model, too:

GCV Score: Non-Seas: 3.526, Stable: 1.463 & Trending: 2.433

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 10.1, Stable: 64.8 & Trending: 73.9
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Table B.5: Acartia clausi C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 423.843 1443.888
SS 415.441 566.05 8.402 877.838 76.677 < 2.2e− 16
TS 318.455 419.787 96.986 146.263 1.144 0.195

Figure B.6: The logged series of Acartia clausi C6f with the trend from the SS model, the
stable seasonals and the series as dots with the SS (red) and TS (blue) fits,
clockwise from top left.

The ANOVA, Table B.5, the AIC and BIC, Table B.6, the Resampling p-value and

the GCV score all coincide that pattern is stable. Figure B.6 shows the terms of

the chosen SS GAM and the two fits from the SS (red) and TS (blue) models. This

series behaves similarly to the previous Acartia clausi series, examined before. It is

stable in terms of systematic changes but there is a slight random change in the size

of the seasonals.
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Table B.6: Acartia clausi C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.157 17.559 114.545

AIC 1765.557 1377.832 1442.664
BIC 1802.81 1449.270 1908.683

Acartia clausi copepodite stage 6 males

The Acartia clausi C6m series has a seasonal cycle that changes systematically in

time. The Resampling test for trending seasonality points to stable seasonality.

Resampling Testing Stable vs Trending: p = 0.07→ Stable

The GCV score of the GAMs also favours stable seasonality:

GCV Score: Non-Seas: 4.935, Stable: 1.381 & Trending: 2.076

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.596, Stable: 74.7 & Trending: 83.3

Table B.7: Acartia clausi C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 429.94 2103.506
SS 416 536.255 13.94 1567.251 87.214 < 2.2e− 16
TS 316.876 352.461 99.124 183.793 1.667 4.913e-4

The ANOVA, however, supports a trending seasonal pattern, Table B.7.

Figure B.7 show the Acartia clausi C6m logged densities with the prospective fits

from the SS (red) and TS (blue) models. In the same Figure the trend and seasonals

from the SS GAM are plotted.

In Figures B.8 and B.9 the smooth functions fitted to each week by the TS GAM

are shown. The smooth functions corresponding to a number of weeks differ from

a straight line parallel to the x-axis. Specifically, the smooth functions of some

weeks like weeks 16-18, 37 and 38 are monotonic indicating a possible systematic

change.
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Figure B.7: Clockwise from top left corner, the logged Acartia clausi C6m with the trend
from the SS model, the stable seasonals and the series as dots with the fitted
values from the stable (red) and trending (blue) GAMs.

Table B.8: Acartia clausi C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.06 17 116.124

AIC 1915.91 1353.354 1370.306
BIC 1928.359 1422.518 1842

The AIC and BIC scores point to the SS GAM, however.

To further examine the type of changes the seasonal pattern exhibits, we plot the

stable (red) and trending (blue) patterns estimated by the SS and TS GAMs, respec-

tively, Figure B.10. There is a random change in the size of the estimated trending

seasonals but also there appears to be a slight systematic shift earlier in the year.

In particular it is the descend from the peak that appears to be shifting earlier in

time.

Our decision is that the pattern exhibits a random amplitude change but also starts

shifting slightly earlier in the year.
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Figure B.8: The smooth fitted functions for weeks 1-36, in the TS model for the Acartia

clausi C6m data.

Figure B.9: The smooth fitted functions for weeks 37-52, in the TS model for the Acartia

clausi C6m data.
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Figure B.10: The stable seasonals, red, and the trending seasonals, blue, from the SS and
TS GAMs, respectively, fitted to the Acartia clausi C6m series.

Total Acartia

The total of all Acartia series available in the database includes all observed stages of

clausi, longeremis, discudata and bifilosa. It has a stable seasonal pattern that does

not shift with time. The Resampling results point to a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.784→ Stable

The GCV score of the GAMs coincides with the Resampling results:

GCV Score: Non-Seas: 4.736, Stable: 1.191 & Trending: 2.043

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 6.88, Stable: 77.9 & Trending: 83.7

Table B.9: Total Acartia ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 424.141 1943.114
SS 415.537 461.211 8.604 1481.903 155.174 < 2.2e− 16
TS 314.972 340.008 100.565 121.203 1.116 0.238
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All the results, Tables B.9 and B.10, point to a stable seasonal pattern.

The terms of the fitted GAM with stable seasonality are plotted in Figure B.11. In

the same Figure we see the series with the fitted values from the stable (red) and

trending (blue) GAMs.

This series has a stable seasonal pattern in terms of systematic changes. It does

exhibit though a random amplitude change.

Figure B.11: Total Acartia logged densities with the trend, as a red line, and seasonals from
the SS GAM. The lower plot shows the series as dots with the fits from the SS
(red) and TS (blue) GAMs.

Table B.10: Total Acartia AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.859 17.463 118.028

AIC 1893.245 1289.154 1358.574
BIC 1929.286 1360.201 1838.763
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B.1.2 Centropages

Centropages is a common genus of calanoid copepods. We will be looking at Cen-

tropages typicus (C. typicus) and Centropages hamatus (C. hamatus). At Helgoland

Roads, these two Centropages species coexist and a seasonal succession is noticed be-

tween C. hamatus and C. typicus. C. typicus prefers the saline and relatively warm

waters of Atlantic origin and is more abundant there in the second half of the year

while maximum abundances of C. hamatus are usually found, before the C. typicus

seasonal peak (Bonnet, 2007).

C. typicus is a larger species with a more carnivorous diet and being optimally

adapted to warmer waters it is found abundantly only through the warmer months.

C. hamatus is a North Sea resident and more abundant species that is more om-

nivorous in its diet. Like Acartia it is known to produce resting eggs later in the

year that overwinter in the seabed sediments and hatch in Spring to develop a new

population, which reproduces with subitaneous eggs that develop normally to hatch

into naupliar stages (Hay, pers. comm., 2009).

Centropages typicus

C. typicus is a calanoid copepod with a wide range of distribution in the North

Atlantic and adjacent shelf seas. It feeds on a wide range of prey both phytoplankton

and animal prey (e.g. nauplii of copepods). Stocks increase in temperatures between

13oC and 20oC causing a seasonal peak in summer and up to early winter in the North

Sea. Its over-wintering behaviour is not understood but since it cannot survive in

the North Sea it is associated with influx of water from the Atlantic ocean (Carlotti

& Harris, 2007; Bonnet, 2007).

C. typicus copepodite stages 1 to 4

C. typicus copepodite stages 1 to 4 (C1-4) exhibits a stable seasonal pattern with

one peak per year. The Resampling test points to a stable seasonal pattern.
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Resampling Testing Stable vs Trending: p = 0.809→ Stable

The GCV score of the GAMs agrees with the Resampling results:

GCV Score: Non-Seas: 0.839, Stable: 0.572 & Trending: 0.916

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 15.1, Stable: 44.5 & Trending: 64.6

Table B.11: C. typicus C1-4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 422.475 340.473
SS 416.198 222.515 6.278 117.958 35.145 < 2.2e− 16
TS 308.248 141.977 107.949 80.538 1.62 0.001

The ANOVA , Table B.11, is in favour of a trending seasonal model while the Re-

sampling p-value, the GCV score, the AIC and BIC, Table B.12, a stable one. There

is a random change in the size of the seasonals and, as explained before, the GAMs

are very sensitive to any kind of change. We believe that there is a fluctuation in

the size of the seasonals but not a systematic shift in time, i.e. pseudo-trending

seasonality.

In Figure B.12 we see the logged series of C. typicus C1-4 with the terms from the

SS GAM and the SS (red) and TS (blue) fitted GAMs.

Table B.12: C. typicus C1-4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.525 16.802 124.752

AIC 1144.157 972.965 994.753
BIC 1186.975 1041.324 1502.296

Figures B.13, B.14 and B.15 show the diagnostic plots for the three GAMs. All three

QQ plots show a deviation from normality. For the non-seasonal model the deviation

is significant indicating that the model is not a good fit. However, for the stable and

trending models the diagnostic plots do not exhibit any troubling behaviour.
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Figure B.12: C. typicus C1-4 with the trend from the SS model, the stable seasonals and
the series (marked as dots) with the two fits from the stable (red) and trending
(blue) GAMs.

Finally, as a note we mention that the somewhat intriguing pattern that appears in

the residuals is just a product of the smooth fit. The models fit smooth and gradual

increases and decreases in the numbers of C. typicus C1-4 but the real data exhibits

very sharp rises and falls which causes a pattern to appear in the residuals. This

could be seen as an indication that these type of time series (rapid increase and

decrease) are not suitably modelled by GAMs. Another possibility is to model them

as binary data with the Binomial family as we did for most phytoplankton series in

the previous chapter.

The diagnostic plots for the three GAMs are very similar for the C. typicus C5 and

C6f series and thus will not be discussed further.
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Figure B.13: C. typicus C1-4 diagnostic plots for the NS GAM.

Figure B.14: C. typicus C1-4 diagnostic plots for the SS GAM.
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Figure B.15: C. typicus C1-4 diagnostic plots for the TS GAM.

C. typicus copepodite stage 5

C. typicus C5 has a seasonal peak in autumn which in terms of occurrence is stable

over time. The Resampling tests recognise a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.51→ Stable

The GCV score of the GAMs also choose a stable seasonality:

GCV Score: Non-Seas: 0.332, Stable: 0.278 & Trending: 0.324

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 15.3, Stable: 30.8 & Trending: 49.7

Table B.13: C. typicus C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 422.265 134.384
SS 418.12 109.723 4.145 24.661 22.672 < 2.2e− 16
TS 310.663 69.38 107.456 40.344 1.681 3.01-04

In Figure B.16 we see the C. typicus C5 series with the fitted values from the SS

(red) and TS (blue) GAMs. The trend and seasonals of the SS model are also

shown. There is a random change in the size of the seasonal peak which is the
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reason why ANOVA, Table B.13, recommends the trending GAM. There are various

smaller peaks in different years, nevertheless, we believe that there are no systematic

changes.

Figure B.16: Clockwise from top left: the logged Centropages typicus C5 with the trend
from the SS model and the stable seasonals. In the lower plot the red line is
the fit of the stable GAM while the blue of the trending one. Dots mark the
values of the logged series.

The AIC and BIC scores, Table B.14, point to a stable seasonal pattern.

Table B.14: C. typicus C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.735 14.88 122.337

AIC 742.977 663.683 680.581
BIC 786.652 724.222 1178.298
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C. typicus copepodite stage 6 females

C. typicus C6f has a stable seasonal pattern in time. Its major peak appears in

the beginning of winter but various smaller peaks appear during some years. The

Resampling test for trending seasonality resulted in an insignificant p-value.

Resampling Testing Stable vs Trending: p = 0.881→ Stable

The GCV score of the GAMs reinforces the belief of a stable seasonal pattern:

GCV Score: Non-Seas: 0.369, Stable: 0.278 & Trending: 0.436

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.87, Stable: 33.6 & Trending: 52.8

Table B.15: C. typicus C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 428.838 155.994
SS 416.023 107.808 12.814 48.185 14.511 < 2.2e− 16
TS 320.251 76.625 95.772 31.184 1.361 0.026

All criteria except the very sensitive ANOVA choose the stable GAM over the trend-

ing one, Tables B.15 and B.16. This series exhibits fluctuations in the size as well as

the timing of the seasonals but not a change of a systematic nature.

Figure B.17 shows the fit and terms of the SS GAM and the fit of the TS GAM.

Finally, we note that the diagnostics for the GAMs were not as good as the C. typicus

C1-4 but were still found acceptable.

Table B.16: C. typicus C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 4.162 16.977 112.749

AIC 794.248 660.270 704.313
BIC 811.182 729.339 1163.022
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Figure B.17: C. typicus C6f with the trend from the SS model, the stable seasonals and the
logged series with the fits from the SS (red) and TS (blue) GAMs.

C. typicus copepodite stage 6 males

C. typicus C6m has one major peak towards the end of the year. However, many

smaller peaks appear in some years. The Resampling results point to a stable seasonal

pattern.

Resampling Testing Stable vs Trending: p = 0.857→ Stable

The GCV score of the GAMs reinforces the Resampling results:

GCV Score: Non-Seas: 0.252, Stable: 0.209 & Trending: 0.3447

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.76, Stable: 21.9 & Trending: 44.6

Table B.17: C. typicus C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 429.293 106.784
SS 423.505 85.722 5.787 21.062 17.98 < 2.2e− 16
TS 320.616 60.813 102.89 24.909 1.276 0.057

All criteria, Tables B.17 and B.18, point to the SS GAM and thus we conclude
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that the seasonal pattern does not exhibit systematic changes. There is, however, a

random change in the size of the seasonals, see Figure B.18.

Figure B.18: Clockwise from top left: C. typicus C6m with the trend from the SS model,
the stable seasonals and the series with the fit from the SS (red) and TS (blue)
models.

In Figure B.18 we see the chosen stable GAM’s terms and the fit of both the SS and

the TS models.

Table B.18: C. typicus C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.707 9.495 112.384

AIC 629.607 546.271 603.745
BIC 644.69 584.899 1060.972

The diagnostic plots for the NS, SS and TS GAMs appear in Figures B.19, B.20 and

B.21, respectively. These plots are not satisfactory and indicate that these models

are not a good fit. As this series has only 75 non zero values maybe modelling it as

a binary variable with a Binomial GAM would be better suited. The models we use

are smooth models and thus cannot capture the abrupt changes in this series.
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Figure B.19: C. typicus C6m NS GAM diagnostic plots.

Figure B.20: C. typicus C6m SS GAM diagnostic plots.
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Figure B.21: C. typicus C6m TS GAM diagnostic plots.

Centropages hamatus

Centropages hamatus (C. hamatus) is like C. typicus a very abundant calanoid cope-

pod. However, contrary to C. typicus, resting eggs of C. hamatus have been identified

in the Southern North Sea. This is commonly interpreted to mean that these eggs

initiate a first generation which hatches and then develops to adult-hood during

March, when the first females are recorded in the plankton (Bonnet, 2007). All anal-

ysed hamatus series that follow are found to have a seasonal pattern which is stable

in time.

Centropages hamatus copepodite stage 4

C. hamatus C4 exhibits one major peak per year. It starts in spring and lasts till

autumn. The Resampling results identify a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.531→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 1.475, Stable: 0.791 & Trending: 1.181

The percentage deviance explained by each GAM is presented below:



436

% Deviance Explained: Non-Seas: 2.51, Stable: 49.5 & Trending: 66.5

Table B.19: C. hamatus C4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 628.765
SS 424.657 325.462 5.343 303.303 74.062 < 2.2e− 16
TS 324.255 216.137 100.402 109.326 1.634 0.001

The seasonality of the series changes in terms of size in a random way, see Figure

B.22. The ANOVA, Table B.19, probably picks up this variation in size and proposes

the trending GAM. However, the GCV score, the p-value from the Resampling and

the AIC and BIC scores, Table B.20, all indicate a stable model. This pattern is

pseudo-trending in amplitude.

Figure B.22: Clockwise from top left: C. hamatus C4 with the trend from the SS model,
the stable seasonals and the series, marked as dots, with the fit from the stable
(red) and trending (blue) GAMs.

In Figure B.22 the logged C. hamatus C4 series with the two prospective fits from

the SS (red) and the TS (blue) models are shown. In the same Figure the trend and

seasonals from the SS GAM are also plotted.

Figures B.23, B.24 and B.25 show the diagnostic plots for the three GAMs. The NS
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Figure B.23: C. hamatus C4 diagnostic plots for the NS GAM.

Figure B.24: C. hamatus C4 diagnostic plots for the SS GAM.
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Table B.20: C. hamatus C4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 8.343 108.745

AIC 1394.106 1120.316 1144.287
BIC 1406.312 1154.261 1586.708

Figure B.25: C. hamatus C4 diagnostic plots for the TS GAM.

GAM does not give an adequate fit but the SS and TS one seem fine. They both

exhibit a small deviation from the normality assumption in the QQ plots and his-

tograms but that does not look significant enough to prove them inappropriate.

The diagnostic plots for the other C. hamatus series are similar to the ones in Figures

B.23, B.24 and B.23 and thus will not me mentioned.

Centropages hamatus copepodite stage 5

C. hamatus C5 exhibits peaks from spring till autumn. The size of the peak changes

randomly across the years. The Resampling results point to a stable seasonal pat-

tern.

Resampling Testing Stable vs Trending: p = 0.263→ Stable

The GCV score of the GAMs verifies this further:
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GCV Score: Non-Seas: 1.442, Stable: 0.792 & Trending: 1.230

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.526, Stable: 47.2 & Trending: 64.4

Table B.21: C. hamatus C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 614.88
SS 424.734 326.314 5.266 288.566 71.328 < 2.2e− 16
TS 321.939 219.984 102.795 106.33 1.514 0.003

The Resampling, the GCV score and the AIC and BIC scores, Table B.22, favour the

stable model. There is a pronounced change in the size of the seasonals and this could

be the reason why the ANOVA, Table B.21, detects a trend in the seasonals.

Figure B.26 shows the fit from the stable and the trending models along with the

logged C. hamatus C5 series and the terms of the stable GAM.
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Figure B.26: The logged C. hamatus C5 with the trend from the SS model, the stable
seasonals and the logged series as dots with the fitted values from the stable
(red) and the trending (blue) GAMs are shown clockwise from the top left
corner.
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Table B.22: C. hamatus C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 8.266 111.061

AIC 1384.46 1121.29 1156.541
BIC 1396.665 1154.919 1608.383

In Figure B.27 we see the stable, red, and trending, blue, seasonals of the TS GAM

fitted to the logged C. hamatus C5 series. The estimated trending seasonals exhibit a

random amplitude change. Furthermore, the shape of the pattern changes, especially

in the last two years. This makes it hard to identify a small shift in the seasonals.

Therefore, we believe that the amplitude of this series’ pattern fluctuates randomly

but also that there may be a small shift earlier in the year. If the shift is very small

and/or is only happening for a few years it is very hard to detect it.

Figure B.27: The stable, red, and trending, blue, seasonals estimated by the TS model for
the series of C. hamatus C5.
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Centropages hamatus copepodite stage 6 females

C. hamatus C6f behaves similarly to the previous hamatus series, with a rise in the

population between spring and autumn every year. The results from the Resampling

test for trending seasonality indicate that the seasonal pattern is stable.

Resampling Testing Stable vs Trending: p = 0.206→ Stable

The GCV score of the GAMs agrees with the Resampling results:

GCV Score: Non-Seas: 1.400, Stable: 0.703 & Trending: 0.987

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.506, Stable: 52.3 & Trending: 70.1

Table B.23: C. hamatus C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 596.925
SS 422.816 286.068 7.184 310.857 63.952 < 2.2e− 16
TS 323.733 179.651 99.083 106.417 1.935 8.188e-06

Figure B.28 shows the series with the fitted SS (red) and TS (blue) models and the

terms of the SS one.

The AIC, Table B.24, and ANOVA, Table B.23, point to the TS model but the

BIC, GCV score and Resampling choose the SS one. The series does not exhibit

any systematic changes but similar to the C. hamatus C5 series the amplitude of the

pattern changes randomly in time.

Table B.24: C. hamatus C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.184 109.267

AIC 1371.657 1068.262 1065.456
BIC 1383.862 1109.697 1510.001
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Figure B.28: Clockwise from top left: the logged C. hamatus C6f with the trend from the
SS model, the stable seasonals and the logged series with the fitted values from
the SS (red) and the TS (blue) models.
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Centropages hamatus copepodite stage 6 males

C. hamatus C6m is found to have a stable seasonal pattern in terms of systematic

shifts. The Resampling results indicate so.

Resampling Testing Stable vs. Trending: p = 0.348→ Stable

The GCV score of the GAMs, also, points to stable seasonality:

GCV Score: Non-Seas: 1.342, Stable: 0.797 & Trending: 1.143

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.097, Stable: 45.1 & Trending: 63.7

Table B.25: C. hamatus C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 429.862 571.842
SS 418.146 314.035 11.716 257.807 29.3 < 2.2e− 16
TS 323.45 207.521 94.696 106.514 1.753 1.672e-04

Figure B.29 shows the C. hamatus 6m series with the SS (red) and TS (blue) fitted

models and the terms from the SS one.

The Resampling p-value, the GCV score and the AIC and BIC scores, Table B.26,

indicate that the SS model is better. However, the ANOVA results, Table B.25, due

to the random change in the size of the seasonals, prefer the TS one.

Table B.26: C. hamatus C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.138 14.854 109.55

AIC 1353.387 1117.896 1128.323
BIC 1366.152 1178.326 1574.019
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Figure B.29: The C. hamatus C6m series with the trend from the SS model, the stable
seasonals and the series as dots with the stable(red) and trending (blue) fitted
values.

B.1.3 Pseudocalanus elongatus copepodite stages 1 to 6

Pseudocalanus is considered one of the most typical copepods in the North Sea.

Pseudocalanus elongatus has six naupliar stages and five copepodite stages before

it reaches adulthood in copepodite stage 6. It favours temperature of 5o − 15oC

while reduced growth has been verified at 20oC (Stegert et al., 2007). Pseudocalanus

elongatus C1-6 has seasonals that peak twice within a year. The first peak is in

spring while the second in autumn.

Resampling Testing Stable vs Trending: p = 0.233→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 1.996, Stable: 1.462 & Trending: 2.111

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 9.94, Stable: 37.3 & Trending: 60.3

The ANOVA, Table B.27, chooses the trending GAM while the BIC, Resampling

and GCV score the stable one. The AIC, Table B.28, points to the SS GAM though
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Table B.27: Pseudocalanus elongatus C1-6 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 423.807 817.103
SS 416.399 569.139 7.408 247.964 24.489 < 2.2e− 16
TS 317.28 359.94 99.119 209.2 1.86 2.796e− 05

the difference between the scores of the SS and TS models is very small.

Figure B.30: Clockwise from top left: the logged Pseudocalanus elongatus C1-6 with the
trend from the SS model, the stable seasonals and the logged series (dotted)
with the fitted values of the SS (red) and TS (blue) GAMs.

In Figure B.30 we see the logged Pseudocalanus elongatus C1-6 series, the terms and

fitted values from the SS GAM and the fitted values from the TS GAM.

The pattern appears to be stable in terms of systematic shifts but the size of the

seasonals changes randomly over the years.

The diagnostic plots for the models, Figures B.31, B.32 and B.33, indicate an ade-

quate fit, even though the QQ plots and histograms show a deviation from normality

at the extremes of the series.
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Figure B.31: The diagnostic plots for the NS GAM of Pseudocalanus elongatus C1-6.

Figure B.32: The diagnostic plots for the SS GAM of Pseudocalanus elongatus C1-6.



447

Table B.28: Pseudocalanus elongatus C1-6 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.193 16.601 115.720

AIC 1519.68 1378.267 1378.567
BIC 1557.081 1445.808 1849.363

Figure B.33: The diagnostic plots for the TS GAM of Pseudocalanus elongatus C1-6.
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B.1.4 Temora longicornis

Temora longicornis (T. longicornis) is a small, common and often abundant copepod

species endemic to the region and an important component of the plankton commu-

nity. This small copepod is omnivorous, also able to produce resting eggs when

conditions are poor, enabling it to overwinter in a resting state in the sediments;

to reappear when conditions improve in spring (Hay, pers. comm., 2009). All the

following Temora series are T. longicornis and are found to have a stable seasonal

pattern in time with two seasonal peaks. It should be noted that the 200 micron

mesh of the sampler does not catch the small C1- C3 copepodites of this small species

very well.

Temora longicornis copepodite stage 1

The series of T. longicornis C1 has a stable seasonal pattern according to the Re-

sampling results.

Resampling Testing Stable vs Trending: p = 0.241→ Stable

The GCV score of the GAMs agrees with the Resampling conclusion:

GCV Score: Non-Seas: 0.851, Stable: 0.737 & Trending: 1.136

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.308, Stable: 20.6 & Trending: 47.3

Table B.29: T. longicornis C1 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 362.798
SS 417.485 289.028 12.515 73.77 8.514 5.696e-15
TS 316.323 191.856 101.162 97.173 1.584 0.001

All the tests and criteria, except the ANOVA point to the selection of the stable

seasonal GAM, Tables B.29 and B.30.
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Figure B.34: From top left, clockwise wee see the logged series of T. longicornis C1 with the
trend from the SS model, the stable seasonals and the logged series marked as
dots with the fitted values from the SS (red) and TS (blue) GAMs.

In Figure B.34 we see the fitted values from the SS (red) and TS (blue) models

and the terms of the SS one. The size of the seasonal pattern changes randomly in

time. The ANOVA probably prefers the TS GAM because it picks up this random

change.

Table B.30: Temora C1 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 15.515 116.677

AIC 1156.545 1083.372 1108.67
BIC 1168.75 1146.493 1583.36

Figures B.35, B.36 and B.37 show the diagnostic plots for the three GAMs. The

normality assumption is violated in all three models.
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Figure B.35: The diagnostic plots for the NS model of T. longicornis C1.

Figure B.36: The diagnostic plots for the SS model of T. longicornis C1.
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Figure B.37: The diagnostic plots for the TS model of T. longicornis C1.
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Temora longicornis copepodite stage 2

T. longicornis C2 has two peaks per year in its seasonal pattern. the Resampling

results favour stable seasonality.

Resampling Testing Stable vs Trending: p = 0.554→ Stable

The GCV score of the GAMs coincides with Resampling:

GCV Score: Non-Seas: 2.362, Stable: 1.594 & Trending: 2.423

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.354, Stable: 35.9 & Trending: 56.3

Table B.31: T. longicornis C2 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 1007.179
SS 422.82 648.091 7.18 359.087 32.626 < 2.2e− 16
TS 323.903 441.902 98.917 206.19 1.528 0.003

The ANOVA, Table B.31, says that there is a trending seasonal pattern while all other

criteria lead us to choose the stable GAM as most appropriate, Table B.32.

In Figure B.38 we see the logged T. longicornis C2 series, the terms and fitted values

from the SS GAM and the fitted values from the TS GAM. The series has two peaks

per year. The seasonal pattern is stable in terms of systematic changes but it does

exhibit a random amplitude change. The behaviour is similar to the previous T.

longicornis series, C1.

Table B.32: Temora C2 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.18 109.097

AIC 1597.643 1421.546 1453.947
BIC 1609.849 1462.964 1897.801
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Figure B.38: Clockwise from top left: the logged T. longicornis C2 with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS(blue) GAMs.

Figures B.39, B.40 and B.41 show the diagnostic plots for the GAMS. The QQ plots

show a problem with the assumption of normality, this is more serious for the NS

GAM. Overall the diagnostics are satisfactory for the SS and TS GAMs and better

than the ones for T. longicornis C1. The T. longicornis series to follow have similar

diagnostic plots to this series and thus, will not be shown.
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Figure B.39: The diagnostic plots for the NS GAM of T. longicornis C2.

Figure B.40: The diagnostic plots for the SS GAM of T. longicornis C2.
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Figure B.41: The diagnostic plots for the TS GAM of T. longicornis C2.
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Temora longicornis copepodite stage 3

T. longicornis C3 tested to have a stable seasonal pattern in terms of systematic

changes.

Resampling Testing Stable vs Trending: p = 0.918→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 2.735, Stable: 1.255 & Trending: 2.005

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.409, Stable: 58.1 & Trending: 67.8

Table B.33: T. longicornis C3 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 430 1166.158
SS 417.006 490.788 12.994 675.37 44.161 < 2.2e− 16
TS 327.136 377.545 89.869 113.243 1.092 0.289

Everything suggests that a stable seasonal model is more appropriate for T. longi-

cornis C3, Tables B.33 and B.34.

In Figure B.42 we see the fit and terms of SS GAM and the fit of the TS one. The

seasonal pattern is stable.

Table B.34: T. longicornis C3 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 15.994 105.864

AIC 1660.958 1313.069 1379.484
BIC 1673.163 1378.141 1810.183
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Figure B.42: Clockwise from top left: the logged T. longicornis C3 with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS(blue) GAMs.
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Temora longicornis copepodite stage 4

T. longicornis C4 has a stable seasonal pattern according to the Resampling re-

sults.

Resampling Testing Stable vs Trending: p = 0.743→ Stable

The GCV score of the GAMs agrees with the Resampling results:

GCV Score: Non-Seas: 2.491, Stable: 1.261 & Trending: 2.095

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 4.95, Stable: 54.4 & Trending: 64.3

Table B.35: T. longicornis C4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 424.801 1026.418
SS 416.763 492.154 8.038 534.264 56.283 < 2.2e− 16
TS 324.794 385.376 91.968 106.778 0.979 0.539

As with the previous T. longicornis series, all criteria indicate that the pattern is

stable, Tables B.35 nad B.36.

In Figure B.43 we see the logged T. longicornis C4 series, the terms and fitted values

from the SS GAM and the fitted values from the TS GAM. The pattern has two peaks

in the year and the size of them changes randomly in time, see Figure B.43.

Table B.36: T. longicornisC4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.199 16.237 108.206

AIC 1616.216 1314.756 1393.037
BIC 1649.573 1380.816 1833.264
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Figure B.43: Clockwise from top left: the logged T. longicornis C4 with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS(blue) GAMs.
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Temora longicornis copepodite stage 5

T. longicornis C5 has one major peak in the seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.789→ Stable

This is further verified by the GCV score of the GAMs:

GCV Score: Non-Seas: 2.279, Stable: 1.227 & Trending: 1.995

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 5.52, Stable: 51.5 & Trending: 65.8

Table B.37: T. longicornis C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 425.002 940.264
SS 417.89 482.785 7.112 457.479 55.682 < 2.2e− 16
TS 317.375 340.455 100.515 142.33 1.32 0.037

All criteria and tests, except the ANOVA, suggest that the seasonal patern is stable,

Tables B.37 and B.38.

In Figure B.44 we see the logged T. longicornis C5 series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM. The amplitude

of the pattern fluctuates and thus, the ANOVA prefers the TS GAM. This series is

pseudo-trending in amplitude and is stable in terms of systematic changes.

Table B.38: T. longicornis C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 7.998 15.11 115.625

AIC 1577.941 1304.197 1354.334
BIC 1610.48 1365.670 1824.744
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Figure B.44: Clockwise from top left: the logged T. longicornis C5 with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS(blue) GAMs.
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Temora longicornis copepodite stage 6 females

T. longicornis C6f series has a seasonal pattern that peaks once per year and does

not shift with time.

Resampling Testing Stable vs Trending: p = 0.381→ Stable

The GCV score of the GAMs also points to stable seasonality:

GCV Score: Non-Seas: 2.396, Stable: 1.066 & Trending: 1.651

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 5.03, Stable: 59.9 & Trending: 73.2

Table B.39: T. longicornis C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 424.831 987.429
SS 417.051 417.053 7.78 570.375 73.317 < 2.2e− 16
TS 316.168 278.271 100.883 138.782 1.563 0.002

The ANOVA, Table B.39, points to the trending GAM. However, the Resampling

p-value, the GCV score and the AIC and BIC scores, Table B.40, prefer the stable

one.

In Figure B.45 we see the logged T. longicornis C6f series, the terms and fitted values

from the SS GAM and the fitted values from the TS GAM.

We believe that the pattern is stable in terms of systematic changes but does exhibit

random changes in the size of the seasonal pattern, pseudo-trending in amplitude

pattern. This could be the reason the ANOVA indicates a trend in the season-

als.
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Figure B.45: Clockwise from top left: the logged T. longicornis C6f with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS(blue) GAMs.

Table B.40: T. longicornis C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.169 15.949 116.832

AIC 1599.427 1242.649 1269.621
BIC 1632.663 1307.536 1744.944
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Temora longicornis copepodite stage 6 males

T. longicornis C6m males series has a seasonal pattern that peaks in late summer

and does not exhibit systematic changes.

Resampling Testing Stable vs Trending: p = 0.404→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 2.542, Stable: 1.407 & Trending: 2.187

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 4.83, Stable: 49.7 & Trending: 65.7

Table B.41: T. longicornis C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 425.039 1048.902
SS 418.008 554.03 7.031 494.872 53.101 < 2.2e− 16
TS 318.666 378.216 99.342 175.814 1.491 0.005

Only the ANOVA, Table B.41, indicates that the trending model is better, all the

other criteria, Table B.42, choose the trending GAM.

In Figure B.46 we see the logged T. longicornis C6m series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM.

As with the previous T. longicornis series, the seasonal pattern changes in size but

not in a systematic way.

Table B.42: T. longicornis C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 7.961 14.992 114.334

AIC 1625.101 1363.426 1397.193
BIC 1657.489 1424.421 1862.354
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Figure B.46: Clockwise from top left: the logged T. longicornis C6m with the trend from
the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS(blue) GAMs.
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Total Temora longicornis

The Total T. longicornis series includes all the observed stages of Temora longicornis.

It has a small peak in spring and a bigger one in autumn. This is an aggregate

series of the developmental stages and thus, the interpretation of the results is more

difficult.

Resampling Testing Stable vs Trending: p = 0.607→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 3.481, Stable: 1.215 & Trending: 1.944

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 6.46, Stable: 69.1 & Trending: 78.1

Table B.43: Total T. longicornis ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 424.188 1428.745
SS 415.975 471.9 8.213 956.845 102.691 < 2.2e− 16
TS 318.082 334.261 97.893 137.639 1.338 0.032

All the criteria, except ANOVA, suggest a stable seasonal pattern in terms of sys-

tematic shifts, Tables B.43 and B.44.

In Figure B.47 we see the logged Total T. longicornis series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM. The pattern

changes randomly in size but is stable in terms of systematic changes.

Table B.44: Total T. longicornis AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 8.812 17.025 114.918

AIC 1760.313 1298.177 1344.99
BIC 1796.163 1367.443 1812.526
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Figure B.47: Clockwise from top left: the logged Total T. longicornis with the trend from
the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS(blue) GAMs.
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B.1.5 Paracalanus parvus copepodite stages 1 to 6

Paracalanus parvus is a small, mainly herbivorous coastal copepod found in temper-

ate waters. Usually in the northern North Sea Paracalanus appears less abundant

than other small copepods such as Pseudocalanus, Acartia and Temora. Like Pseu-

docalanus it has no resting stage for overwintering; instead it survives as best it can

on the food available or stored as lipid in its body (Hay, pers. comm., 2009). Para-

calanus parvus C1-6 series has a seasonal pattern with two peaks, one in spring and

one in autumn. We believe that the seasonal pattern does not exhibit systematic

shifts but a random amplitude change.

Resampling Testing Stable vs Trending: p = 0.112→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 1.850, Stable: 1.146 & Trending: 1.670

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 16.4, Stable: 50.8 & Trending: 68.9

Table B.45: Paracalanus parvus C1-6 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 422.366 749.951
SS 414.811 441.341 7.554 308.611 38.397 < 2.2e− 16
TS 315.4 279.155 99.412 162.186 1.843 3.638e-05

The ANOVA, Table B.45 points to the trending seasonal GAM while the rest of the

criteria to the stable.

In Figure B.48 we see the logged Paracalanus parvus C1-6 series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM.

We believe that the seasonal pattern is pseudo-trending in amplitude and thus it

does not exhibit any systematic shifts but a random amplitude change.
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Figure B.48: Clockwise from top left: the logged Paracalanus parvus C1-6 with the trend
from the SS model, the stable seasonals and the logged series (dotted) with
the fitted values of the SS (red) and TS(blue) GAMs.

Table B.46: Paracalanus parvus C1-6 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.634 18.189 117.6

AIC 1485.516 1271.581 1272.527
BIC 1528.781 1345.581 1750.975

The diagnostic plots for all three models, Figures B.49, B.50 and B.51, show a devi-

ation from normality. This is more so for the NS GAM while the SS and TS GAMs

also deviate slightly from normality. Nonetheless, all models are satisfactory.
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Figure B.49: The diagnostic plots for the NS GAM of Paracalanus parvus C1-6.

Figure B.50: The diagnostic plots for the SS GAM of Paracalanus parvus C1-6.
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Figure B.51: The diagnostic plots for the TS GAM of Paracalanus parvus C1-6.
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B.1.6 Small Calanoid Copepods copepodite stages 1 to 6

The small Calanoid Copepods group is compounded of a number of species mainly

Acartia, Temora, Pseudocalanus, Paracalanus and Centropages. It is of interest to

look at the whole group as any trends would be very significant for overall food web

dynamics in the region. It should be noted that the 200micron mesh size of the

sampling net does not catch the C1 -C3 very well as they are too small. The series

of Small Calanoid Copepods copepodite stages 1 to 6 (C1-6) has a stable seasonal

pattern in terms of systematic changes according to the Resampling results.

Resampling Testing Stable vs Trending: p = 0.271→ Stable

The GCV score of the GAMs also points in the same direction:

GCV Score: Non-Seas: 1.777, Stable: 0.919 & Trending: 1.301

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 14.6, Stable: 57.6 & Trending: 68.2

Table B.47: Small Calanoid Copepods C1-6 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 517.359 892.112
SS 509.714 442.351 7.644 449.761 67.797 < 2.2e− 16
TS 411.838 331.725 97.877 110.626 1.403 0.013

The ANOVA, Table B.47, points to a trending seasonal pattern while all other test

results and criteria, Table B.48, employed point to the stable seasonal model.

In Figure B.52 the fitted values of the SS (red) and TS (blue) GAMs and the esti-

mated terms of the SS GAM are shown. There are two main peaks in the seasonal

pattern.

There is a fluctuation in the size of the seasonals, see Figure B.52, but no change of

a systematic nature occurs. This fluctuation could be the reason the ANOVA prefers

the TS GAM.
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Figure B.52: The logged series of Small Calanoid Copepods C1-6 with the trend from the
SS model, the stable seasonals and the logged series plotted as dots with the
fitted values from the SS (red) and TS (blue) GAMs.

Table B.48: Small Calanoid Copepods C1-6 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.641 17.286 115.162

AIC 1789.887 1436.193 1480.565
BIC 1831.01 1509.921 1971.766

Figures B.53, B.54 and B.55 show the diagnostic plots for the three models. The NS

model’s QQ plot and histogram betray a deviation from the assumption of normality

while the stable and trending models’ histograms are better.
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Figure B.53: The diagnostic plots for the NS model of C1-6.

Figure B.54: The diagnostic plots for the SS model of Small Calanoid CopepodsC1-6.
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Figure B.55: The diagnostic plots for the TS model of Small Calanoid CopepodsC1-6.
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B.1.7 Calanus finmarchicus

Calanus finmarchicus (C. finmarchicus) is one of the most common copepods in the

North Sea. It is an important component of the North Sea food web as its juveniles

are food for a lot of commercial fish in spring and early summer. This species is

largely herbivorous although able to feed on some microzooplankton and even its

own eggs. Its life-cycle consists of egg, six naupliar stages and five copepodid stages

(Hay, pers. comm., 2009). In stage 5 finmarchicus goes into diapause through the

winter, descending to depths over 500m off the edge of the continental shelf, to

emerge in early spring as a stage six adult.

The exact environmental conditions that trigger and stop the diapausing stage are

not known. C. finmarchicus exhibits a reproductive peak in April till June while later

the diapausing stages (C5 and some C6 females) sink to the bottom to over-winter.

It favours cool waters 0o - 15o and it is believed to have no resident population in the

North Sea (Bonnet et al., 2005). The North Sea is shallow and thus, animals enter

diapause partially which leads to low survival rates (Hirche, 1983). General belief is

that the population is re-initiallized every year by inflow of adults from the North

Atlantic.

In recent years research shows that changes of the climatological conditions impact

on the number and distribution of C. finmarchicus. Work on the CPR1 data shows

that in the last 40 years it has shifted progressively northwards with its numbers

decreasing (Reid et al., 2003).

Calanus finmarchicus copepodite stage 5

The C. finmarchicus C5 series exhibits two (major) peaks in the year. The first

one can be attributed to population development within the influx of water from

the North Atlantic while the next one is a first reproduced generation. Although as

1Continuous Plankton Recorder
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with most copepods reproduction is continuous while food resources are sufficient,

climatological factors influence the reproduction stages of C. finmarchicus so more

generations can be produced under appropriate circumstances. These could manifest

as other peaks within a year (Hay, pers. comm., 2009).

The results from the Resampling tests for trending seasonal pattern on the logged

series suggest a systematic time shift in the occurrence of the peaks and troughs of

the series, i.e. of the periodic component.

Resampling Testing Stable vs Trending: p = 0.001→ Trending

The GCV score of the GAMs, however, points to a stable seasonal pattern:

GCV Score: Non-Seas: 5.35, Stable: 0.439 & Trending: 0.550

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.762, Stable: 29.2 & Trending: 51.8

Table B.49: C. finmarchicus C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 282.883
SS 509.998 211.56 14.002 71.322 12.279 < 2.2e− 16
TS 415.402 144.086 94.596 67.474 2.056 6.844e− 07

The existence of trend in the seasonals is further verified by the GAMs’ results.

The ANOVA, Table B.49, and AIC, Table B.50, agree with the Resampling outcome

while the more conservative BIC does not recognise the benefit of including trending

seasonals in the model.

In Figure B.56 the logged series of C. finmarchicus C5 with the SS terms and the

fit from both the SS and the TS GAMs. The fit from the TS GAM seems better.

Looking at the first plot in Figure B.56 we notice the change in the size of the

seasonals but in this case it is not big enough relatively to the rate of shift to mask

it from the Resampling test.

The smooth trending seasonals as fitted to each week are shown in Figures B.57
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Figure B.56: The logged series of C. finmarchicus C5 with the trend from the SS model, the
stable seasonals and the series as dots with the fit from the SS (red) and TS
(blue) GAMs.

and B.58. Weeks 29-31 differ from a straight line parallel to the x-axis and are

monotonic.

In Figure B.59 we see the two seasonal patterns, stable (red) and trending (blue),

estimated by the SS and TS GAMs, respectively, for the C. finmarchicus C5 series.

There is a fluctuation in the size of the seasonals and a shift earlier in the year.

We note that the pattern changes throughout the years and the second peak slowly

becomes the dominant one. Specifically, the declining slope of the major peak and

the small winter peak appear to be shifting earlier in time.

In Figure B.60 we see a plot of the de-trended fitted values from TS GAM for C.

finmarchicus C5 with weeks 17, 22, 34 and 39 marked by vertical lines in black, red,

green and blue colour, respectively. We are using the vertical lines to highlight some

peaks and troughs in the seasonals in order to observe the shift earlier in time. This

means that we use the peaks and troughs to quantify the rate of change while marine

biologists would probably use the time of first rise to the peak, however, this is hard

to identify.
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Figure B.57: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. finmarchicus C5.

Figure B.58: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. finmarchicus C5.
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Figure B.59: The stable (red) and trending (blue) seasonal patterns from the SS and TS
GAMs, respectively, for C. finmarchicus C5.

Figure B.60: The de-trended fitted values from the TS GAM for C. finmarchicus C5. Weeks
17, 22, 34 and 39 are marked by dotted lines in black, red, green and blue,
respectively.
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Table B.50: C. finmarchicus C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 17.002 111.598

AIC 1172.462 1047.651 1034.808
BIC 1185.258 1120.170 1510.809

Figures B.61, B.62 and B.63 depict the diagnostic plots for all fitted GAMs. The

QQ plots and histograms of the residuals show a right skew distribution of residuals

for all three models. Nonetheless, there is an apparent gradual improvement as we

move from the NS to the SS and finally the TS GAM. The diagnostic plots for the

other C. finmarchicus series examined are similar to these and thus they will not be

shown.

Figure B.61: The diagnostic plots for the NS GAM of C. finmarchicus C5.



482

Figure B.62: The diagnostic plots for the SS GAM of C. finmarchicus C5.

Figure B.63: The diagnostic plots for the TS GAM of C. finmarchicus C5.
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Calanus finmarchicus copepodite stage 6 females

The Resampling test results for trending seasonality for the C. finmarchicus C6f

logged series show that there is no systematic time shift in its pattern.

Resampling Testing Stable vs Trending: p = 0.087→ Stable

The GCV score of the GAMs reinforces the belief of a stable seasonal pattern:

GCV Score: Non-Seas: 0.183, Stable: 0.162 & Trending: 0.226

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 2.88, Stable: 17.5 & Trending: 40.1

Table B.51: C. finmarchicus C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 95.327
SS 516.436 80.943 7.564 14.384 12.133 2.851e-15
TS 414.763 58.834 101.673 22.109 1.533 0.002

Figure B.64: The series of C. finmarchicus C6f with the trend from the SS model, the stable
seasonals and the series marked by dots with the fit from the SS (red) and TS
(blue) GAMs, appear clockwise from top left.
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Figure B.64 shows the fit of the stable (red) and trending (blue) GAMs to the logged

C. finmarchicus C6f series and the terms of the SS model.

The ANOVA indicates the existence of a trend in the seasonals but it is of a random

change in the amplitude of the pattern and not a systematic change. There is also

the possibility that there is a small shift in time but it is only now starting and

hence, it is not detected by the Resampling. In this occasion re-scaling the series

to accommodate for the rapid changes in the amplitude of the seasonals and then

testing again could help detect it.

Table B.52: C. finmarchicus C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.564 112.237

AIC 600.323 529.412 564.949
BIC 613.119 574.472 1043.672

The AIC and BIC scores, Table B.52, verify our decision of stable seasonality.
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Calanus finmarchicus copepodite stage 6 males

C. finmarchicus C6m series also tests negative for a systematic shift in time with the

Resampling test.

Resampling Testing Stable vs Trending: p = 0.383→ Stable

The GCV score of the GAMs further verifies this:

GCV Score: Non-Seas: 0.079, Stable: 0.063 & Trending: 0.088

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 0.12, Stable: 25.2 & Trending: 43.4

Table B.53: C. finmarchicus C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 523.879 40.898
SS 510.07 30.61 13.809 10.288 12.414 < 2.2e− 16
TS 416.206 23.162 93.863 7.448 1.426 0.011

The ANOVA, Table B.53, in this case points to the trending model but the GCV

score and the other criteria identify the stable model as appropriate, Table B.54.

Similarly to the C. finmarchicus C6f series, there is a random change in the size of

the seasonals that is possibly recognised by the ANOVA as trending seasonality.

Figure B.65 shows the SS (red) and TS (blue) GAMs’ fitted values and the terms of

the SS one. This series has a pseudo-trending in amplitude seasonal pattern.

Table B.54: C. finmarchicus C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3.121 16.93 110.794

AIC 155.443 30.653 71.732
BIC 168.756 102.866 544.301

Finally, we should note that this series has only 89 non zero values and that the

diagnostic checks’ QQ plots show a deviation from normality.
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Figure B.65: Clockwise from top left: logged C. finmarchicus C6m with the trend from the
SS model, the stable seasonals and the series as dots with the fitted values
from the SS (red) and TS (blue) GAMs.
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B.1.8 Calanus helgolandicus

Calanus helgolandicus (C. helgolandicus) is a southern temperate species that has

not been studied as extensively as C. finmarchicus and thus less is known about its

life-cycle. It is not thought to have a diapause stage like C. finmarchicus but like

its congener it is largely herbivorous (Hay, pers. comm., 2009). It favours warmer

waters than C. finmarchicus but as the water temperature increases in the North Sea

greater numbers of C. helgolandicus are observed. It has a resident population and

at cold temperatures -around 6oC or less- it cannot reproduce and barely survives.

It exhibits two peaks, one in spring and one in autumn but there is a variation in

occurrence (Bonnet et al., 2005).

Calanus helgolandicus copepodite stage 5

When the logged C. helgolandicus C5 series is tested there is evidence of a trending

seasonal pattern. The Resampling p-value indicates that the pattern is not sta-

ble.

Resampling Testing Stable vs Trending: p = 0→ Trending

The GCV score of the GAMs, however, favours the SS GAM:

GCV Score: Non-Seas: 1.444, Stable: 0.931 & Trending: 1.144

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 11.2, Stable: 46.2 & Trending: 65.4

Table B.55: C. helgolandicus C5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 521.451 741.384
SS 510.049 449.106 11.402 292.279 29.113 < 2.2e− 16
TS 410.449 288.613 99.601 160.492 2.292 6.247e-09

The ANOVA, Table B.55, agrees with the Resampling result and points to the TS
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model.

The BIC, Table B.56, and the GCV score prefer the stable seasonal GAM while all

other criteria used for GAM selection coincide with the above verdict of trending

seasonality.

Figure B.66: Clockwise form top left we see the logged C. helgolandicus C5 series with the
trend from the SS model, the stable seasonals and the logged series as dots
with the fitted values of the SS (red) and TS (blue) GAMs.

In Figure B.66 we see the fits of the SS (red) and TS (blue) models and the terms

of the SS one. The TS one provides a better fit.

The series has two main peaks, the first one (spring) can be attributed to influx of

mixed coastal and oceanic water from the warmer south and west, since it overwinters

with very poor survival while the second peak (early autumn) is the main generation

population. There is a third peak in late autumn that could be another generation.

All three peaks are shifting slightly earlier every year, Figure B.66.

The smooth functions fitted to the trending seasonals by the TS GAM are shown in

Figures B.67 and B.68. Weeks 29, 30, 32-37, 39, 41, 46 and 47 differ greatly from

a straight line parallel to the x-axis. From these Figures we can also see the nature

of the change. Weeks 29, 30, 32-37 and 47 exhibit a monotonic increase of value
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Figure B.67: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus C5.

which points to a systematic change while weeks 39, 41 and 46 exhibit an increase

and decrease in value which points to a fluctuation in either phase or amplitude of

the seasonals.

Table B.56: C. helgolandicus C5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 5.549 16.951 116.551

AIC 1684.354 1443.494 1410.114
BIC 1708.022 1515.795 1907.240

In Figure B.69 we see the two seasonals estimated by the SS and TS GAMs, respec-

tively, fitted to the C. helgolandicus C5 series. The stable one is marked by a red

line and the trending by a blue line. The pattern is shifting earlier in the year. The

amplitude of the individual peaks changes randomly with time while overall the size

of the pattern is increasing systematically.

The de-trended fitted values from the TS model are plotted in Figure B.70. Weeks

16, 22, 37 and 46 are marked by vertical lines in black, red, green and blue colours,

respectively. These vertical lines are marking the most prevalent peaks in the series.
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Figure B.68: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus C5.

We can further verify with this plot that the peaks shift earlier in the year.

Figures B.71, B.72 and B.73 show the diagnostic plots for the three models. The NS

model’s QQ plot and histogram betray a deviation from the assumption of normality

while the stable and trending models’ histograms are better.
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Figure B.69: The stable, red, and trending, blue, seasonals estimated by the SS and TS
GAMs, respectively, for the C. helgolandicus C5 series.

Figure B.70: The de-trended fitted values from the TS model for the C. helgolandicus C5
series. Marked by the black, red, green and blue line are, respectively, weeks
16, 22, 37 and 46.
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Figure B.71: The diagnostic plots for the NS model of C. helgolandicus C5.

Figure B.72: The diagnostic plots for the SS model of C. helgolandicus C5.
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Figure B.73: The diagnostic plots for the TS model of C. helgolandicus C5.
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Calanus helgolandicus copepodite stage 6 females

The C. helgolandicus C6f series appears to have a trending seasonal pattern according

to the Resampling results.

Resampling Testing Stable vs. Trending: p = 0→ Trending

The GCV score of the GAMs points to the SS GAM but the score of the TS one is

only slightly greater:

GCV Score: Non-Seas: 1.228, Stable: 0.817 & Trending: 0.851

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 11.3, Stable: 43.2 & Trending: 69.9

Table B.57: C. helgolandicus C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 639.012
SS 516.917 409.27 7.083 229.742 40.966 < 2.2e− 16
TS 411.811 216.791 105.105 192.479 3.479 < 2.2e− 16

The Resampling p-value, the ANOVA, Table B.57 and the AIC, Table B.58, all point

to the existence of a trending seasonal pattern. Hence, the GAM that best describes

the data is the trending seasonal model.

Figure B.74 shows the fitted values of the SS (red) and TS (blue) models and the

terms of the SS one. C. helgolandicus C6f exhibits a variety of peaks per year.

The smooth functions fitted by the TS GAM for the trending seasonals are plotted in

Figures B.75 and B.76. Many weeks deviate from a straight line parallel to the x-axis,

for example weeks 29-42. In particular, weeks 29-37 are monotonically increasing

indicating a systematic change.

Figure B.77 shows the stable (red) and the trending (blue) seasonals estimated by

the SS and TS GAMs, respectively, for the C. helgolandicus C6f series. The pattern

exhibits a systematic increase in amplitude and a systematic phase change.
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Figure B.74: The logged C. helgolandicus C6f series with the trend from the SS model, the
stable seasonals and the series, this time marked by dots, with the fitted values
from the SS (red) and TS (blue) GAMs.

Table B.58: C. helgolandicus C6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.083 115.189

AIC 1601.094 1380.902 1256.871
BIC 1613.890 1423.910 1748.185

In Figure B.78 we see a plot of the de-trended fitted values of the TS GAM fitted

to the logged data. Weeks 30 and 46 are marked by vertical lines in black and red,

respectively. These lines mark the autumn peak of C. helgolandicus C6f. The peak

shifts earlier in the year while it increases with time.

Figure B.79 shows the diagnostic plots for the NS GAM. The QQ plot and histogram

show a deviation from normality.

Figures B.80 and B.81 show the diagnostic plots for the SS and TS models. Both

models deviate slightly from normality but there is nothing alarming about these

plots.
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Figure B.75: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus C6f.

Figure B.76: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus C6f.
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Figure B.77: The stable (red) and trending (blue) seasonals from the SS and TS models,
respectively, for the C. helgolandicus C6f series.

Figure B.78: The de-trended fitted values from the TS model for the C. helgolandicus C6f
series. Marked by the black and red lines are, respectively, weeks 30 and 46.
The pattern shifts earlier in the year.
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Figure B.79: The diagnostic plots for the NS model of C. helgolandicus C6f.

Figure B.80: The diagnostic plots for the SS model of C. helgolandicus C6f.
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Figure B.81: The diagnostic plots for the TS model of C. helgolandicus C6f.
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Calanus helgolandicus copepodite stage 6 males

The C. helgolandicus copepodite stage 6 males exhibit a behaviour very similar to

the females of that stage. Thus, the Resampling test points to a trending seasonal

pattern.

Resampling Testing Stable vs. Trending: p = 0→ Trending

The GCV score of the GAMs reinforces the belief of a trending seasonal pattern:

GCV Score: Non-Seas: 0.658, Stable: 0.422 & Trending: 0.381

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 9.31, Stable: 44.1 & Trending: 73.5

Table B.59: C. helgolandicus C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 524 342.428
SS 516.678 211.141 7.322 131.287 43.877 < 2.2e− 16
TS 415.934 100.196 100.744 110.945 4.572 < 2.2e− 16

Similar to the females of C. helgolandicus all testing methods, Tables B.59 and B.60,

apart from BIC, point to a trending seasonal pattern.

In Figure B.82 we can see the fitted values if the SS (red) and TS (blue) GAMs and

the terms of the SS one. The TS model provides a better fit to the data.

Figures B.83 and B.84 show the fifty-two smooth functions fitted for the trending

seasonals in the TS GAM. Weeks 28-39 deviate from a straight line parallel to the

x-axis. The monotonic nature of weeks 29-37 indicates a systematic change.

To examine further the types of change in the pattern of the C. helgolandicus C6m

series we plot the two patterns estimated by the SS and TS GAMs together, see

Figure B.85. The pattern changes systematically in amplitude and phase. The size
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Figure B.82: The logged C. helgolandicus C6m series with the trend from the SS model,
the stable seasonals and the series, this time marked by dots, with the fitted
values from the SS (red) and TS (blue) GAMs.

Table B.60: C. helgolandicus C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 3 10.322 111.066

AIC 1272.944 1033.247 842.657
BIC 1285.739 1077.274 1316.387

of the pattern increases over the years and the pattern itself is shifting earlier in the

year.

Figure B.86 shows a plot of the de-trended fitted values of the TS GAM fitted to the

logged data. Week 31 is marked by a black vertical line while week 41 by a red one.

The peak that develops between these two vertical line slowly shifts forward in the

year while it increases in size.

Figures B.87, B.88 and B.89 show the diagnostic plots for the three GAMs. The NS

QQ plot and histogram show a violation of the normality assumption while the other

two models behave better.



502

Figure B.83: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus C6m.

Figure B.84: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus C6m.



503

Figure B.85: The stable (red) and trending (blue) seasonal patterns estimated by the SS
and TS GAMs, respectively, for the C. helgolandicus C6m series.

Figure B.86: The de-trended fitted values from the TS model for the C. helgolandicus C6m
series. Marked by the black and the red lines are, respectively, weeks 31 and
41.
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Figure B.87: The diagnostic plots for the NS model of C. helgolandicus C6m.

Figure B.88: The diagnostic plots for the SS model of C. helgolandicus C6m.
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Figure B.89: The diagnostic plots for the TS model of C. helgolandicus C6m.
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B.1.9 Juvenile Calanus copepodite stages 1 to 4

Calanus in the early copepodite stages 1-4 (C1-4) cannot be accurately distinguished

between the two dominant species, finmarchicus and helgolandicus. Therefore, the

Juvenile Calanus stages 1-4 series includes juveniles from both species.

The Resampling test indicates that this series has a trending seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.002→ Trending

The GCV score of the GAMs, however, is lower for the SS model:

GCV Score: Non-Seas: 2.471, Stable: 1.338 & Trending: 1.594

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 9.84, Stable: 53.4 & Trending: 70.8

Table B.61: Juvenile Calanus C1-4 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 522.078 1272.507
SS 513.365 657.018 8.713 615.49 55.193 < 2.2e− 16
TS 413.791 412.421 99.574 244.596 2.465 2.291e-10

The BIC, Table B.62, and the GCV score select the stable GAM but the AIC,

the ANOVA, Table B.61, and the Resampling results point to a trending seasonal-

ity.

In Figure B.90 we see the terms of the SS GAM and the fitted values of the the SS

(red) and TS (blue) GAMs. The seasonal pattern appears to change in size.

Figures B.91 and B.92 show the fifty-two smooth functions fitted for the trending

seasonals in the TS GAM. Weeks 26-36, 37 and 38 deviate from a straight line parallel

to the x-axis. Weeks 27-36 are monotonic thus indicating a systematic change.

Figure B.93 depicts the stable (red) and trending (blue) seasonals as estimated by

the SS and TS GAMs, respectively, fitted to the Juvenile Calanus C1-4 series. The



507

Figure B.90: Clockwise from top left: the logged Juvenile Calanus C1-4 with the trend from
the SS model, the stable seasonals and the logged series plotted as dots with
the fitted values of the SS (red) and TS (blue) models.

Table B.62: Juvenile Calanus C1-4 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 4.922 13.635 113.209

AIC 1967.258 1636.981 1591.188
BIC 1988.251 1695.139 2074.058

amplitude of the seasonals fluctuates. Both peaks appear to systematically shift

earlier in the year but it is more pronounced for the second peak. Furthermore, the

amplitude of the second peak is gradually increasing while the amplitude of the first

one fluctuates.

In Figure B.94 we see a plot of the de-trended fitted values from the TS model.

Weeks 14, 23, 32 and 41 are marked by dotted vertical lines in black, red, green and

blue, respectively. The Juvenile Calanus C1-4 series has two main peaks, one in

spring and one in autumn. The second peak, marked by the green and blue lines,

moves earlier in the year. The same is true for the first peak, marked by the black

and red lines, but the shift is not of the same rate, i.e. shifts slower.
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Figure B.91: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of Juvenile calanus C1-4.

Figure B.92: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of Juvenile calanus C1-4.
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Figure B.93: The stable (red) and trending (blue) seasonal patterns from the SS and TS
models, respectively, for the Juvenile Calanus C1-4.

It is likely, from what we know of the differences in C5 and adult seasonal abundances

and biology, that a significant number of juvenile Calanus in the first peak are C.

finmarchicus, whereas the majority in the second peak are C. helgolandicus. This

fits with the analysis results for the C. finmarchicus C5 trend and with the trends

seen in all the C. helgolandicus data series. i.e. the C. helgolandicus trend indicates

a more pronounced shift than is evident for C. finmarchicus.

Figures B.95, B.96 and B.97 show the diagnostic plots for the three models. The NS

GAM deviates from normality but the other two models are satisfactory.
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Figure B.94: The de-trended fitted values from the TS model for the Juvenile Calanus C1-4.
Vertical lines mark weeks 14, 23, 32 and 41 in colours black, red, green and
blue, respectively.

Figure B.95: The diagnostic plots for the NS model of Juvenile Calanus C1-4.
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Figure B.96: The diagnostic plots for the SS model of Juvenile Calanus C1-4.

Figure B.97: The diagnostic plots for the TS model of Juvenile Calanus C1-4.
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B.1.10 Metridia lucens

Metridia lucens is a larger species not thought to be resident all year in the North Sea

but rather associated with influx of oceanic water. This species has no known resting

stage and is mainly a herbivore (Hay, pers. comm., 2009). We will investigate the

seasonality of Metridia lucens stages 1 to 5 put together and then separately stage

6 females and males.

Metridia lucens stages 1 to 5

Metridia lucens stages 1 to 5 (C1-5) has three peaks in its seasonal pattern. Two

small ones in spring and autumn and a bigger one in winter.

Resampling Testing Stable vs Trending: p = 0.809→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 0.242, Stable: 0.229 & Trending: 0.397

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 17.6, Stable: 25.6 & Trending: 44.4

Table B.63: Metridia lucens C1-5 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 422.496 98.223
SS 415.852 88.716 6.644 9.507 6.707 2.815e-07
TS 315.078 66.209 100.774 22.507 1.063 0.342

All the test results, Tables B.63 and B.64, indicate that the seasonal pattern does not

exhibit any systematic changes. This pattern is pseudo-trending in amplitude.

In Figure B.98 we see the logged Metridia lucens C1-5 series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM.
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Figure B.98: Clockwise from top left: the logged Metridia lucens C1-5 with the trend from
the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS (blue) GAMs.

Table B.64: Metridia lucens C1-5 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 10.504 17.148 117.922

AIC 607.099 576.410 651.542
BIC 649.833 646.176 1131.299

In Figures B.99, B.100 and B.101 are the diagnostic plots for the non-seasonal, stable

seasonal and trending seasonal GAMs respectively. The QQ plots show that the

upper tail of the distribution of the residuals does not comply with the assumption

of normality. This is further verified by the histograms of the residuals where a long

right tail is present.
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Figure B.99: The diagnostic plots for the non-seasonal GAM of Metridia lucens C1-5.

Figure B.100: The diagnostic plots for the stable seasonal GAM of Metridia lucens C1-5.
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Figure B.101: The diagnostic plots for the trending seasonal GAM of Metridia lucens C1-5.
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Metridia lucens stage 6 females

Metridia lucens C6f has a seasonal pattern that peaks many times per year. The

logged series was found non seasonal when testing for seasonality with Resam-

pling.

Resampling Testing Non Seasonal vs. Stable: p = 0.249→ Non Seasonal

Thus, we then tested between non seasonality and trending seasonality and the results

again indicate the absence of a seasonal pattern.

Resampling Testing Non Seasonal vs. Trending: p = 0.443 → Non Sea-

sonal

The GCV score is the same for the NS and SS GAMs:

GCV Score: Non-Seas: 0.039, Stable: 0.039 & Trending: 0.062

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 10.1, Stable: 10.4 & Trending: 41.6

Furthermore, the ANOVA between the no seasonal and stable seasonal GAMs suggest

again the non seasonal model with a p-value of 0.089. The appearance of this species

in the North Sea, however, is mostly attributed to the currents and the influx of

oceanic water and thus, we believe that there is a seasonal pattern in this series but

that it was not detected.

Table B.65: Metridia lucens C6f ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 423.372 16.104
SS 423.032 16.06 0.34 0.043 3.372 0.089
TS 315.846 10.46 107.186 5.6 1.578 0.001

The AIC, Table B.66, points to the SS GAM while the ANOVA, Table B.65, between

the SS and TS GAM favours the TS one. The GCV and the Resampling indicate

that there is no seasonal pattern.
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Figure B.102: Clockwise from top left: the logged Metridia lucens C6f with the trend from
the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS (blue) GAMs.

In Figure B.102 we see the logged Metridia lucens C6f series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM.

We believe that this series does not have a seasonal pattern.

Table B.66: Metridia lucens 6f AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.628 9.968 117.154

AIC -175.796 -176.285 -147.138
BIC -136.625 -135.732 329.493

The diagnostic plots for the three GAMS, NS, SS and TS, are shown in Figures

B.103, B.104 and B.105, respectively. All QQ plots and histograms show a viola-

tion of the normality assumption. Furthermore, there is a pattern in the residuals

created by the smoothness of the fitted GAMs. This series has only 63 non-zero

values with sudden spikes. Thus, it cannot be successfully modelled using a smooth

model. Treating the series as a binary variable could help overcome some of the

aforementioned issues.
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Figure B.103: The diagnostic plots for the NS GAM of Metridia lucens C6f.

Figure B.104: The diagnostic plots for the SS GAM of Metridia lucens C6f.
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Figure B.105: The diagnostic plots for the TS GAM of Metridia lucens C6f.
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Metridia lucens stage 6 males

This series has many peaks within a year that vary in size and occurrence. The

Resampling test results find this series to have a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.809→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 0.031, Stable: 0.031 & Trending: 0.046

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 6.66, Stable: 9.61 & Trending: 42.6

Table B.67: Metridia lucens C6m ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 426.431 13.004
SS 421.397 12.593 5.034 0.411 2.733 0.019
TS 318.749 8.001 102.648 4.592 1.782 7.58e-05

The results of the ANOVA, the AIC and the BIC are summarised in Tables B.67

and B.68.

In Figure B.106 we see the logged Metridia lucens C6m series, the terms and fitted

values from the SS GAM and the fitted values from the TS GAM.

We believe that the seasonal pattern is stable over time but the size of the seasonals

changes randomly over the years.

Table B.68: Metridia lucens C6m AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 6.569 11.603 114.251

AIC -274.255 -278.068 -268.736
BIC -247.53 -230.864 196.085

The diagnostic plots for the three models are similar to the ones for the females of

Metridia lucens.
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Figure B.106: Clockwise from top left: the logged Metridia lucens C6m with the trend from
the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS (blue) GAMs.
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B.1.11 Oithona

Oithona is a very small non-calanoid copepod belonging to the order Cyclopoida

that is an omnivorous ambush feeder, feeding on large phytoplankton cells and mi-

crozooplankton. The Oithona genus is found very commonly in the North Sea and

mainly as the very abundant species Oithona similis. Two other species of Oithona

are found in smaller abundances. These are O. nana, a small inshore species, occa-

sionally abundant, and O. plumifera that is an oceanic species and occasional visitor

to the samples off Stonehaven. The adult copepods can be distinguished but juvenile

stages are difficult to separate into species. As with the other small copepods the

juvenile C1 - C3 stages are not sampled by the 200 micron plankton net with the

same efficiency as the larger, later developmental stages (C4 - C6).

Nielsen & Sabatini (1996) state that the Oithona species do not exhibit as much

variation as the calanoid copepods in terms of their biomass and production. We

examine an aggregate series of Oithona stages C1-6.

Oithona copepodite stages 1 to 6

The Oithona C1-6 has a seasonal pattern that peaks in spring and summer. The

Resampling recognises a stable seasonal pattern.

Resampling Testing Stable vs. Trending: p = 0.083→ Stable

The GCV score of the GAMs also points to a stable seasonality:

GCV Score: Non-Seas: 1.453, Stable: 1.295 & Trending: 1.687

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 45.9, Stable: 53.5 & Trending: 68.3

The Resampling p-value, the GCV score and the BIC suggest a stable seasonal

pattern. However, the ANOVA, Table B.69, and AIC, Table B.70, indicate a trending

model as appropriate.
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Table B.69: Oithona C1-6 ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 517.528 730.096
SS 511.054 627.93 6.474 102.167 12.844 2.368e-14
TS 411.132 427.698 99.922 200.232 1.926 4.315e-06

Figure B.107: Clockwise from top left: the logged Oithona C1-6 with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS (blue) GAMs.

In Figure B.107 we see the logged Oithona C1-6 series, the terms and fitted values

from the SS GAM and the fitted values from the TS GAM.

The seasonal pattern of the series changes randomly in size. This is probably the

reason that ANOVA and AIC favour the TS GAM.

In Figures B.108, B.109 and B.110 the diagnostic plots for the three GAMs are

shown. In all three QQ plots there is a deviation from normality at the start of the

series. This is seen as a long left tail in the histograms. The plots are nonetheless

satisfactory.
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Figure B.108: Diagnostic plots for the non-seasonal GAM for Oithona C1-6.

Figure B.109: Diagnostic plots for the stable seasonal GAM for Oithona C1-6.
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Table B.70: Oithona C1-6 AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.472 15.946 115.868

AIC 1684.13 11617.784 1615.639
BIC 1724.53 1685.797 2109.85

Figure B.110: Diagnostic plots for the trending seasonal GAM for Oithona C1-6.
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Total Oithona

The overall total of all Oithona species series is found again to be stable in time by

the Resampling tests.

Resampling Testing Stable vs. Trending: p = 0.076→ Stable

The GCV score of the GAMs follows:

GCV Score: Non-Seas: 1.454, Stable: 1.296 & Trending: 1.687

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 45.8, Stable: 53.4 & Trending: 68.3

Table B.71: Total Oithona ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 517.509 730.495
SS 511.039 628.516 6.47 101.98 12.815 2.591e-14
TS 411.107 427.549 99.932 200.967 1.934 3.793e-06

The amplitude change in the seasonals is picked up by the GAMs and thus a trending

model is suggested by the ANOVA, Table B.71, and AIC, Table B.72. Nevertheless,

the seasonal pattern is stable over time, as the Resampling p-value, BIC and GCV

score indicate.

In Figure B.111 we see the logged Total Oithona series, the terms and fitted values

from the SS GAM and the fitted values from the TS GAM. The seasonal pattern has

two peaks, spring and summer. Its amplitude changes randomly but no systematic

change takes place.

Table B.72: Total Oithona AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 9.491 15.961 115.893

AIC 1684.455 1618.305 1615.504
BIC 1724.937 1686.384 2109.822
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Figure B.111: Clockwise from top left: the logged Total Oithona with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS (blue) GAMs.

The diagnostic plots for the GAMs are very similar to the ones for the Oithona

C1-6.
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B.1.12 Lamellibranchiata

Lamellibranchiata is a class of Phylum Mollusca and in the plankton samples it is the

larvae of these bottom dwelling adult molluscs with opposing shells, that includes

species such as scallops and cockles, that are caught in the sampler. There are a

number of species of lamellibranch mollusc in the region and so, since their larvae

cannot be distinguished easily even under the light microscope, they are aggregated

into the general category here. It is a feature of the plankton that many bottom

dwelling organisms produce planktonic larvae. Other common examples would be

echinoderms (starfish), polychaetes (worms), decapods (crabs) and the gastropod (spi-

ral shelled) molluscs. It exhibits one major peak in its seasonal pattern in the late

summer. The Resampling find this series to have a stable seasonal pattern.

Resampling Testing Stable vs. Trending: p = 0.568→ Stable

The GCV score of the GAMs, also, chooses stable seasonality:

GCV Score: Non-Seas: 3.563, Stable: 1.521 & Trending: 1.806

The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 11.6, Stable: 63.7 & Trending: 77.7

Table B.73: Lamellibranchiata ANOVA

Resid. Df Resid. Dev Df Deviance F Pr(>F)
NS 521.601 1830.72
SS 514.772 752.702 6.83 1078.018 107.947 < 2.2e− 16
TS 412.525 462.851 102.247 289.851 2.527 4.891e-11

The series has a stable seasonal pattern in terms of systematic shifts. There is a

fluctuation in the size of the seasonals for some years and that is probably the cause

for the ANOVA, Table B.73, and AIC, Table B.74, choosing the trending model.

Nevertheless, the Resampling, the BIC and GCV score indicate that a stable model

is preferable.

In Figure B.112 we see the logged Lamellibranchiata series, the terms and fitted
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Figure B.112: Clockwise from top left: the logged Lamellibranchiata with the trend from
the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS (blue) GAMs.

values from the SS GAM and the fitted values from the TS GAM.

Table B.74: Lamellibranchiata AIC & BIC

Non-Seasonal Stable Seasonal Trending Seasonal
df 5.399 12.228 114.475

AIC 2159.528 1705.682 1654.400
BIC 2182.555 1757.839 2142.670

In Figures B.113, B.114 and B.115 the diagnostic plots for the three GAMs are shown.

The QQ plot and histogram for the NS model show a violation of the normality

assumption. The other two models have better diagnostics with a deviation from

normality only at the start of the series. The plots are nonetheless satisfactory.
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Figure B.113: Diagnostic plots for the NS GAM for Lamellibranchiata.

Figure B.114: Diagnostic plots for the SS GAM for Lamellibranchiata.
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Figure B.115: Diagnostic plots for the TS GAM for Lamellibranchiata.
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