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ABSTRACT 

The existence of harmonics and oscillations represent major problems for reliable 

operation of power system components. Therefore, investigating their response 

requires finding an appropriate model which reflects their response including these 

variations. The mathematical derivation of the state space models and impedance 

models of some of voltage source converters in flexible ac transmission systems 

(VSC-FACTS) systems is presented using synchronous dq and dq-dynamic phasor 

approach. Two types of the VSC-FACTS devices are studied in this thesis; the static 

synchronous compensator (STATCOM) due to its popularity in the power system 

network and static synchronous series compensator (SSSC) due to its effective on 

damping system oscillations. The effect of mechanical section of the synchronous 

machine and turbine sections on the machine impedance is analysed. A generalised 

state space and impedance modelling is proposed by converting the synchronous dq 

models to dq-dynamic phasor models. A development of harmonic stability criteria 

for the proposed modelling is presented. The proposed modelling is employed to 

present the harmonics effect on the STATCOM and SSSC response and to identify 

their unbalanced operation in frequency domain. The main features of the proposed 

modelling technique are compared comprehensively with the conventional modelling 

techniques for stability studies assessment. It shows the advantages of proposed 

method and the importance of including the harmonics in the stability studies. A 

comparison between different control modes of the SSSC is discussed in the 

frequency domain. The effectiveness of these control modes on damping system 

oscillations is investigated using the impedance concept. It presented the 

effectiveness of impedance control mode on damping system oscillations over the 

other control modes. A fast impedance measurement unit (IMU) is proposed to 

monitor the small signal stability. The proposed IMU can measure accurately the 

system impedance within a very short time without any filtering requirements. The 

effect of changing the STATCOM control gains on the impedance norm is 

investigated. Also, the effect of shunt and series virtual impedances on the infinite 

norm of the STATCOM impedance which can be used by network operators to retain 

the stability is discussed.  
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  CHAPTER  1

 INTRODUCTION 

1.1 Background 

The existence of voltage source converter based flexible ac transmission systems 

(VSC-FACTS) has widely increased in recent years. They were proposed to control 

the operation of transmission systems and damp systems’ oscillations. Since the first 

introduction of the VSC-FACTS devices, several connections to the grid and 

topologies have been proposed such as shunt, series and shunt-series connections. 

Analysing their performance requires finding an appropriate model which reflects the 

device’s response in different operating conditions. Modelling the steady-state 

operation of VSC-FACTS is usually carried out using simple modelling techniques 

such as voltage or current supply where the devices’ dynamics are ignored. However, 

the transient response of these devices needs more attention due to the huge 

parameters that affect it. In addition, modelling of these devices becomes harder to 

develop in the presence of harmonics and predicts their response. Therefore, the 

proper modelling of VSC-FACTS devices is essential in order to assess their stability 

in presence of harmonics or unbalanced conditions [1]. Modelling of VSC and its 

application in power system for transient conditions has been presented in the 

literature using different techniques. The efficiency and suitability of these 

techniques vary depending on the application and the accuracy required. For 

instance, detailed modelling can reflect most of the VSC-FACTS response, 

however, it increases the computational time thereby imposing a practical limitation 

on the number of components that can be simulated simultaneously [2]. Similarly, 

the implementation of Park's transformation (synchronous dq) to the time domain 

variables is commonly used transformation coordinates to model systems and 

analyse their stability. However, it is unable to represent all harmonic frequencies 

that might co-exist at power frequency and affect steady-state and dynamic operation 
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of the system [3][4]. Alternatively, the dynamic phasor approach, which is extracted 

from time-domain differential equations, offers numerous benefits compared 

to traditional modelling approaches [5]. The dynamic phasor covers a broad 

bandwidth of frequencies where it uses a small integration step at high frequencies 

and increases the integration steps at lower frequencies. It is more appropriate for 

small signal studies where the dynamic phasor parameters are time-invariant 

parameters which reduce errors due to system linearization. Two forms of dynamic 

phasor modelling have been introduced, the abc-dynamic phasor and dq-dynamic 

phasor. The first type suffers from a large number of equations required for 

modelling as well as it does not suit the modelling control systems. The dq-dynamic 

phasor technique uses fewer equations and is more suitable for stability analysis and 

it could model different types of control systems.  

The existence of harmonics and oscillations are found over a wide range of 

frequencies which represent major problems for the reliable operation of power 

systems. These harmonics and oscillations could be initiated by different events in 

the power system; for example, low-frequency oscillations can be initiated due to the 

sub-synchronous resonance (SSR), while the high-frequency variations are largely 

initiated by switching of power electronics converters [6][7]. In the literature, 

including the harmonics in the modelling was carried out by mapping the input 

frequencies to the output. Frequency mapping produces infinite outputs with possibly 

infinite harmonics due to the interaction between different frequencies within the 

system. Neglecting higher order harmonics to enforce frequency mapping could lead 

to a significant error on the modelling due to the influence of some of truncated 

harmonics. Thus it is important to select all frequencies which are relevant to the 

study under consideration and ignore those are irrelevant [8].  

1.2 Research motivation 

Two methods were found in the literature based on the frequency mapping concept; 

the harmonic linearization method and harmonic state space (HSS) method. The 

inclusion of harmonics in modelling using harmonic linearization method has a 

disadvantage as it does not include the frequency coupling between the studied 
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harmonics without the transformation via the symmetrical components. 

Alternatively, with the high order matrices utilised by HSS, it is difficult to study the 

unbalanced systems and the time-variant parameters which enforce the linearization 

to be around this time-periodic operating trajectory, not around the steady-state 

operating point, are the main disadvantages [9][10]. It the literature, the 

implementation of the generalised form of dq-dynamic phasor has not been widely 

presented to study systems’ stability and unbalanced conditions identification. The 

use of dq-dynamic phasor modelling in stability analysis offers significant 

advantages over the HSS counterpart; for example, it has reduced the order of 

matrices, is more suitable for studying control systems, retains mutual coupling of 

harmonics, and simplifies stability study under unbalanced conditions. Also, dq-

dynamic phasor parameters are linearized around steady-state point like synchronous 

dq which reduces the error of linearization compared to HSS. In addition, it is valid 

for studying the stability of complex power electronics devices such as VSC-FACTS 

devices with the presence of harmonics and unbalanced networks without the need 

for any transformation. The dq-dynamic phasor modelling manages to reproduce the 

typical response of VSC-FACTS device at the fundamental frequency as well as at 

significant harmonics.  

1.3 Research objectives 

 Develop state space models and impedance models for small signal stability 

analysis using dq-dynamic phasor approach. 

 Design an impedance measurement unit for fast monitoring and assessment of 

system stability. 

 Investigate the effect of harmonics and oscillations on the response of VSC-

FACTS devices and their damping capabilities. 

1.4 Thesis methodology 

In this thesis, to successfully include the harmonics in modelling of VSC-FACTS 

devices and present their effect and their control method, the following research 

activities will be conducted: 
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 Derive the synchronous dq models of VSC-FACTS devices and their 

transformation to dynamic phasor.  

 Investigate the characteristics of dynamic phasor modelling on presenting the 

performance of VSC-FACTS devices. 

 Propose generalised state space and impedance model of STATCOM using dq-

dynamic phasor modelling 

 Propose generalised state space and impedance model of SSSC for three different 

control types using dq-dynamic phasor modelling. 

 Present the efficiency of proposed modelling methods when including harmonics 

and identifying the unbalanced conditions. 

 Propose an impedance monitoring unit (IMU) for the application of stability 

control and fast monitoring. 

 Assess the contribution of VSC-FACTS devices’ control parameters and other 

active techniques on stability. 

 Compare the effectiveness of SSSC on damping system oscillation and the effect 

of harmonics on their operation. 

1.5 Thesis layout 

The thesis comprises seven chapters as follows: 

 Chapter 1 gives an introduction to the thesis and presents its background and 

thesis outlines. 

 Chapter 2 presents a literature review of modelling techniques and presents a 

comprehensive survey in harmonic stability assessment and identification.  

 Chapter 3 presents the modelling of the static synchronous series compensator 

(SSSC), static synchronous compensator (STATCOM) devices and synchronous 

machine using synchronous dq coordinates and the dq-dynamic phasor approach.  

 Chapter 4 discusses stability problems and the stability criteria used to assess 

system's performance in the synchronous dq frame. Secondly, the mathematical 

derivation of the state space equations and impedances of the SSSC, STATCOM 

is presented. Lastly modelling the synchronous machine is introduced as it will be 

required for the stability analyses in the following chapters.  
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 Chapter 5 presents firstly a development of harmonic stability criteria for dq-

dynamic phasor modelling. Secondly, a generalised state space and impedance 

models of STATCOM and SSSC with different control modes using dq-dynamic 

phasor are proposed. Lastly, the chapter presents a comparison between the 

proposed modelling and the conventional modelling techniques.  

 Chapter 6 introduces an impedance measurement unit (IMU) for the application of 

control system-based impedance concept and fast monitoring application. Also, 

the chapter presents the effect of changing the STATCOM parameters on the 

impedance norms. It presents the effect of implementing control parameters 

(virtual impedance) on the infinite norm of STATCOM impedance. Lastly, the 

effectiveness of the SSSC is investigated on re-shaping the network impedance to 

stabilise the system or damping the system oscillations.  

 Chapter 7 presents the conclusions and author’s contributions, including remarks 

and recommendations for further research on the field of VSC modelling. 
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  CHAPTER  2

 MODELLING AND STABILITY ANALYSIS TECHNIQUES 

In this chapter, a review of voltage source converters modelling in flexible ac 

transmission systems (VSC-FACTS) for stability assessment is presented. The 

review shows also the capability of modelling techniques of including and 

identifying the harmonics and oscillations in stability studies.  

2.1 Modelling techniques of VSC- FACTS devices 

The application of VSC-FACTS has been introduced widely in the literature. These 

applications require more attention in modelling to reflect their actual response under 

steady-state and transient-state conditions. They vary in complexity, accuracy as well 

as the suitability to different operating conditions. The modelling approach, the 

integration method and different target of modelling are the main reasons that 

challenge the interfacing and the selection between the modelling techniques [11]. 

The main classification of the modelling techniques for stability assessment is shown 

in Figure 2.1 and they are classified as: 

 Time domain detailed modelling  2.1.1

Time domain detailed modelling or called abc modelling is one of the first modelling 

techniques implemented to represent the power system response in balanced and 

unbalanced conditions. Each phase of the modelled system is represented by its 

magnitude multiplied by a sinusoidal function of its frequency, time and phase shift. 

It provides the basis for deriving other modelling techniques [12][13]. A system's 

stability can be assessed by the mathematical modelling or using simulations in the 

time domain [14][15]. Usually, time domain modelling is carried using a single 

phase to reduce the complexity of the analysis.  
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In the meantime, the use of time domain simulations is much simpler where no 

mathematical model is required. It was employed to assess the effect of time delays 

in communication signals on system stability [14] and to present the effectiveness of 

HVDC control system as in [15]. Even though abc modelling is a powerful technique 

that can represent the response of any system such as VSC-FACTS systems 

accurately and effectively, it is inefficient due to the presence of variable quantities 

even at steady state conditions. The existence of variable quantities increases the 

error due to the linearization in small signal stability studies. Also, the time domain 

simulation introduces little insight into the system and is less sensitive to small 

changes in the system parameters [16]. 

 Synchronous dq modelling 2.1.2

Synchronous dq or Park’s transformation provides a unique form of describing the 

three phase quantities in two rotating dc component located at quadrature coordinates 

by shifting system's frequencies by (±𝜔) [17]. It has advantages of modelling 

balanced and unbalanced systems by applying a single coordinate and two 

coordinates respectively. The synchronous dq quantities are linear time invariant 

(LTI) quantities which suit small signal stability studies where the operating point 

can be linearized around a steady state point. The implementation of synchronous dq 

modelling is commonly used coordinate to analyse the systems and their stabilities 

such as the work in [3], [4], [9], [10]. Also, it was employed in well-known state 

space models and impedance models for small signal stability studies [18][19]. The 

former models were used to show the instability of the system and oscillations for the 

whole studied network while the latter were used to predict the system's oscillations 

and stability at the point of connection with limited observability compared with 

state space analysis [20]. The synchronous dq impedance models were successfully 

implemented in the application of detecting system’s oscillations in [21][22], and on 

studying the effect of control gains on the system stability in [23][24]. In addition, 

the synchronous dq models were employed to study the interaction between different 

power system components such as in [25]–[27], and to study the stability of the dc-
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link of a VSC connected to a weak grid [28]. The main disadvantage of synchronous 

dq modelling is its limited capability to include harmonics in the modelling using 

single coordinate.  

 𝜶𝜷 modelling  2.1.3

𝛼𝛽 modelling transforms a three-phase system into a two-phase stationary 

orthogonal system [29].This refer to the fact that each component of the three-phase 

system can always be expressed by two components. 𝛼𝛽 modelling is superior in 

modelling large system over the use of other modelling techniques such as 

synchronous dq modelling where it uses a single stationary frame rather than using 

multiple frames [30]. In one application, the 𝛼𝛽 model was used to simplify the 

stability assessment of a VSC based system by converting the system into a single 

input single output system as positive and negative sequence system. This concept 

was employed in [31] to study a VSC connected to a grid. However, ignoring the 

frequency coupling between the sequence quantities can affect the results of 

analysing large systems where couplings usually present. Alternatively, in [32][33], 

the coupling between the positive sequence and negative sequence quantities was 

considered. The relationship between 𝛼𝛽 modelling and different modelling 

techniques was revealed in [30]. The work was employed to study the effect of phase 

locked loop (PLL) behaviour on VSC response using an impedance model. The main 

disadvantage of this analysis was its limited capability for frequencies more than 

twice the fundamental frequency. Furthermore it cannot include system harmonics 

using single coordinates [34]. In addition, the time-varying nature of the 𝛼𝛽 

modelling components is not suitable for system linearization over small signal 

disturbances.  

 Harmonic linearization modelling 2.1.4

In harmonic linearization modelling, the system inputs are expanded by an infinite 

number of harmonics which are convoluted to produce an infinite number of output 

harmonics [35]. It has an advantage of including selected harmonics in the stability 

analysis and presents their effect on the output of the modelled system. Harmonic 

linearization modelling was employed in different applications in literature. It was 
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employed to study the interactions between VSC-FACTS devices and other system 

components in [36][37]. Also, it was used to derive the impedance model of VSC 

including PLL response and digital control delay such as in [38]. Representing 

balanced and unbalanced systems was another application of harmonic linearization 

modelling. It was utilised to study unbalanced systems by the help of symmetrical 

component theory in [38] and by including the unbalance as a new variable in the 

analysis as in [39]. Harmonic linearization modelling was also used to design the 

components of VSC-FACTS devices in the existence of harmonics such as in [40]. It 

was employed to design the optimal static synchronous compensator (STATCOM) 

based pulse width modulation (OPWM) to ensure the effective operation of 

STATCOMs when harmonics were present. Even though harmonic linearization 

modelling can reveal the frequency coupling between the positive and negative 

sequence quantities, the modelling cannot present the frequency coupling that might 

occur between other existing harmonics in case of linear time invariant (LTI) 

parameters has been employed.  

 Harmonic state space (HSS) modelling 2.1.5

Harmonic state space modelling is based on Fourier series analysis of system 

quantities. It decomposes the dynamic system quantities according to their 

frequencies to be presented by complex exponential quantities. HSS maps these 

exponentially modulated periodic (EMP) of the input signal and the EMP of the 

output signal in linear time-periodic (LTP) systems [41][42]. The linear operator that 

maps the frequencies is called the harmonic transfer function (HTF) [43]. HSS 

modelling can be used to identify the causes of the oscillations in the systems as well 

as to present the effect of these oscillations on system response. In system modelling 

including harmonics, harmonic state space modelling presents an advantage in 

comparison with other conventional techniques such as synchronous dq and 𝛼𝛽 

modelling [44]. This refers to their capability of including the harmonics and 

presenting the frequency coupling between harmonics. The effectiveness of this 

modelling was presented also using the experimental work where the eigenvalues of 

HSS modelling were compared with the eigenvalues of a model based measurement 

[45]. The use of HSS modelling in stability assessment was presented in [46][1]. It 
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was employed to study the balanced and unbalanced operation of VSC-FACTS and 

their interface with the system in the presence of harmonics. Also, HSS modelling 

was utilised to present a comprehensive understanding of the HVDC system [47]. It 

was used to present the transformation of system harmonics between the ac and dc 

sides of a HVDC system as well as the frequency coupling in each stage of the 

studied system. The high order matrices utilised by HSS modelling, the difficulty of 

studying the unbalanced systems without the use of reduced forms of HSS and the 

time-variant parameters which enforce the linearization to be around this time-

periodic operating trajectory are the main disadvantages of this method. 

 Dynamic phasor modelling  2.1.6

Dynamic phasor modelling was developed based on the generalised average 

modelling using the time varying Fourier coefficient in complex form [9]. It converts 

the ac periodic parameters to dc parameters which reduce the simulation time and 

suits the small signal stability studies. Dynamic phasor modelling can include 

harmonics and investigate the unbalanced conditions of the systems.  

The utilisation of dynamic phasor approach for modelling and developing interfacing 

algorithms was widely presented in the literature. Alternatively, the use of these 

modelling in stability assessment has been rarely mentioned. For modelling of 

balanced VSC-FACTS systems, the main targets of dynamic phasor modelling were 

reduce the simulation time and present an average response of the modelled systems 

such as in [53]–[57], therefore, the fundamental frequency was used in the 

derivation. In the meantime, the modelling of unbalanced VSC-FACTS systems was 

usually carried out by the help of symmetrical component theory which converts the 

abc form of the dynamic phasor into dynamic symmetrical components [58]–[61].  

The implementation of dynamic phasor modelling for stability assessment was 

usually carried out using the abc-dynamic phasor components. Such a use increases 

the number of equations required for the analysis. Therefore, single-phase models 

were used to simplify the analysis. Even though, the use of these models has a 

disadvantage of the limited capability to study the unbalanced systems. It has several 

advantages in comparison with the other modelling technique such as synchronous 
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dq modelling [62]. These advantages have been employed to design a solid state 

transformer controller in the presence of disturbances using state space analysis [63]. 

Also, dynamic phasor modelling was utilised to identify the low frequency 

oscillations present in series compensated systems. It was employed in a state space 

model to study the effect of phase unbalance on system oscillations [64]. Similarly, 

the small signal impedance of a single-phase dynamic phasor model was utilised to 

identify the causes of sub-synchronous resonance (SSR) [65]. The formulation of the 

diagonal impedances as pure real and pure imaginary impedances are entirely 

ambiguous, where in fact, all impedances are in a complex form. Also, the 

implementation of single-phase models and disregarding the co-existence of SSR 

frequencies in the analysis can affect the results where the model is unable to capture 

system characteristics during dynamic conditions [7], [66], [67]. Using more 

comprehensive model, the harmonics were included in a stability assessment in [68]. 

The analysis employed the fundamental and second harmonics for the converter's dc 

side and the fundamental frequency for the ac side. The main limitation of this work 

was the derivation has been made for specific harmonics and was not made to 

include more harmonics. In general, the main limitations of previous work on 

dynamic phasor modelling were the use of abc-dynamic phasor and the consideration 

of the fundamental frequency only in the analysis. This reduces the benefit of 

dynamic phasor modelling and its application on system analysis. Also, the use of 

abc-dynamic phasor modelling is not suitable to include the control systems and 

studying the unbalanced operations without transforming system parameters. 

Therefore, the use of the dq-dynamic phasor modelling for stability analysis can get 

rid of these limitations as well as the limitations of the other modelling techniques 

that have been presented in the previous sections. 

2.2 Small signal Impedance measurement  

The measurement of the dq small-signal stability is proposed in [69] using several 

practical methods such as power converters for low power applications, chopper 

circuit for high power application and wound-rotor induction machines using phase 

injection. Also, the paper developed the stability criteria based on dq synchronous 

frame. Alternatively, the researchers in [70] and [71] proposed an algorithm based on 
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the line-to-line injection using chopper circuit to measure the dq impedance. In [72], 

the paper presented a design of a measurement unit for medium grid voltage 

applications. Due to the dependent of the power demand on the system frequency on 

droop controlled microgrids, the paper in [73] proposed an injection circuit using 

three-phase buck converter for passive loads. In the meantime, the injected signal 

was proposed on different forms such as sinusoidal waveform [69],[70] and [72] or 

as chirp signal such as in [74]. The second method reduced the measurement time of 

the impedance considerably because it generates different frequencies over a short 

period. The advantage of such method is reducing the possibility of changing the 

system states during the measurement. Implementing the online impedance 

measurement as an ancillary function within the grid side converter was proposed in 

[75] which has importance on monitoring systems' stability. The estimation of the 

grid positive and negative sequence impedances was done by injecting pulses of 

currents from the converter and analysed the measured signal using online discrete 

Fourier transform (DFT). The comparison of the measurement circuit results with the 

offline measurement showed a proper alignment. The necessity to inject a continuous 

harmonics is the main limitation of such measurement unit in the practical use. As 

stated, the use of impedance measurement in fast monitoring of system stability has 

not been mentioned in the literature. So, this thesis proposes an impedance 

measurement unit (IMU) which can be employed by network operators or a 

supplementary control system to retain the stability.  

2.3 Summary 

Different modelling techniques of VSC-FACTS system for stability studies were 

reviewed. The main finding and the outcomes can be summarised as: 

 The selection between modelling techniques depends on the application and the 

accuracy required in the output results. 

 Synchronous dq modelling and 𝛼𝛽 modelling can be used to identify the causes of 

harmonics. Both modelling techniques are unable to assess the contribution of 

harmonics to the system response using single coordinate. The implementation of 
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the fundamental frequency in these models and neglecting of the co-existence 

harmonics can affect the stability assessment.  

 Harmonic linearization modelling cannot present the frequency coupling between 

the harmonics once the LTI modelling has been used. The modelling can present 

the coupling between the positive and negative sequence quantities of the studies 

system. 

 Even though harmonic state space (HSS) is a generalised modelling technique that 

can include harmonics, it has high matrix orders and it is difficult to use when 

studying unbalanced systems.  

 The HSS enforces the linearization to be carried out around time-periodic 

operating trajectory not around the steady-state operating point as linear time 

invariant system which could lead to an error in the results of the derived model. 

 In the literature, dynamic phasor modelling was carried out at the fundamental 

frequency and ignored the effect of harmonics. In addition, it used the abc-

dynamic phasor to analyse the balanced and unbalanced systems, where, studying 

unbalanced systems was carried out using symmetrical components which 

enforces additional transformation of the system quantities. 

 The use of impedance analysis is more visible for the new electrical installation 

and offline studies rather than the online stability studies. This is referred to the 

injected harmonics required for impedance measurement which could enforce a 

limitation on the use of impedance based assessment. 
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  CHAPTER  3

DQ-DYNAMIC PHASOR MODELLING OF VSC-BASED FACTS 

DEVICES 

In this chapter dq-dynamic phasor modelling of the VSC-FACTS devices and other 

power system components is presented. These models will be used to analyse the 

operation of VSC-FACTS devices and their controllers for small signal stability 

analysis. 

3.1 Dynamic phasor based modelling (DP modelling) 

Power system operation experiences two types of transients; high frequency 

transients and low frequency transients. The dynamic phasor approach provides 

adequate modelling of a wide range of frequencies rather than using specific 

modelling for each specific range such as electromagnetic transient (EMT) or 

transient stability models [76]. The integration of the system parameters is carried 

out using small steps at high frequencies and increases to larger steps at lower 

frequency events. In addition, the dynamic phasor offers numerous benefits 

compared to traditional modelling approaches, such as it covers a broad bandwidth of 

frequencies. Also, it is more appropriate for fast numerical simulation, accurate, fast 

for power components and VSC-FACTS simulation [57], [77]–[79].  Alternatively, 

the main difference between dynamic phasor modelling and the synchronous dq 

modelling is that the dynamic phasor modelling shifts all system’s frequencies to 

(𝜔 = 0) ''constant (dc)''. However, the synchronous dq transformation shifts all 

system’s frequencies by (𝜔) as shown in Figure 3.1. 

.  
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Figure 3.1. Frequency shifting for synchronous dq and dynamic phasor modelling. 
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Two types of dynamic phasor modelling are proposed and investigated in the 

literature: 

 abc-dynamic phasor modelling: it shifts the three-phase quantities of the studied 

system to dynamic phasor. 

 dq-dynamic phasor modelling: it transforms the synchronous dq quantities to a 

dynamic phasor. This type of modelling will be employed in this thesis for device 

modelling and stability analysis in Chapter 5 due to its simplicity and suitability 

for the VSC-FACTS devices control systems and unbalanced conditions.  

Dynamic phasor modelling is extracted from the system time domain equations 

(differential equations) by the application of the generalised average procedure using 

time varying Fourier coefficient in complex form. Any complex periodic waveform 

𝑥(𝜏) found on interval 𝜏 ∈ (𝑡 − 𝑇, 𝑡), can be presented using Fourier series as 

[80][81]: 

𝑥(𝜏) = ∑ 𝑋𝑘(𝑡)𝑒
𝑗𝑘𝜔𝜏∞

𝑘=−∞   (3.1) 

where,  

𝜔  is the fundamental angular frequency. 

𝑘 is an integer number the represents harmonic order and defines the accuracy of the 

approximation of the original waveform. 

𝑋𝑘(𝑡) is a function of time representing the complex Fourier coefficient ‘‘dynamic 

phasor parameter’’ of the periodic signal.  

The 𝑘th dynamic phasor is determined at time (𝑡) from (3.2) as: 

𝑋𝑘(𝑡) =
1

𝑇
∫ 𝑋(𝜏)𝑒−𝑗𝑘𝜔𝜏
𝑡

𝑡−𝑇
= 𝑥𝑘  (3.2) 
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Two properties of dynamic phasors are used to solve the systems which are: 

 The dynamic phasor modelling of the time variable derivative is: 

〈
𝑑𝑥

𝑑𝑡
〉𝑘 =

𝑑〈𝑥〉𝑘

𝑑𝑡
+ 𝑗𝑘𝜔〈𝑥〉𝑘  (3.3) 

The property in equation (3.3) can be used exclusively to represent the dynamic 

phasor quantities of the studied system using the dynamic phasor approach, however, 

the modelling ignores the coupling between different frequencies [82].  

 The second property is that the product of two time domain variables is equal to: 

〈𝑥𝑦〉𝑘 = ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
∞
𝑖=−∞   (3.4) 

Equation (3.4) can be expanded to more than two variables using the same technique 

as depicted in Appendix-A. It is a valuable feature of the dynamic phasor which 

represents the interaction between different frequencies in the system. The modelling 

using dq-dynamic phasor approach requires extracting its Fourier coefficients which 

can be extracted by generalising the Euler form of the measured quantities. The 

voltage vector (𝑣𝑖) including harmonics is given [80]: 

𝑣𝑖 = ∑ 𝑉𝑘 cos(𝑘𝜔𝑡 + 𝛼)𝑘=±∞   (3.5) 

where, 

𝑖  is phases (a, b or c). 

𝑉𝑘  is the voltage magnitude. 

𝛼  is the phase angle between system phases (0 , −
2𝜋

3
, 
2𝜋

3
). 

Substituting equation (3.5) by its Euler form will result in: 

𝑣𝑖 =∑
�⃗�𝑒𝑗𝑘ω𝑡 + �⃗�𝑒−𝑗𝑘ω𝑡

2𝑘=±∞
 (3.6) 
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The transformation of equation (3.6) to dq by shifting it by (𝑒−𝑗ω𝑡) with some 

rearrangement and multiplying it by (2/3) to have a generalised form gives: 

�⃗⃗⃗�𝑒−𝑗ω𝑡 = 𝑣𝑑 + 𝑗𝑣𝑞 =
2

3
(𝑣𝑎 + 𝑎

2𝑣𝑏 + 𝑎𝑣𝑐)𝑒
𝑗𝑛𝜔𝑡  (3.7) 

Multiplying equation (3.7) by (𝑒𝑗ω𝑡) gives: 
 

�⃗⃗⃗� = 𝑣𝑑 + 𝑗𝑣𝑞 = (𝑣𝑑𝑘 + 𝑗𝑣𝑞𝑘) + ∑ (𝑣𝑑𝑛 + 𝑗𝑣𝑞𝑛)𝑒
𝑗(𝑛−𝑘)𝜔𝑡∞

𝑛=−∞
𝑘≠𝑛

  (3.8) 

 where, 

The bold symbols in previous equations represent the voltage vector,  

𝑛  is a vector of all positive and negative harmonic orders except (𝑘). 

𝑣𝑑𝑘 is the direct voltage at harmonic order (𝑘). 

𝑣𝑑𝑘 is the quadrature voltage at harmonic order (𝑘). 

The existence of any harmonic on the abc domain is transformed into two harmonics 

in the dq-dynamic phasor which means that two main oscillatory frequencies will be 

generated as shown in equation (3.8). This doubles the number of equations in 

dynamic phasor compared with the number of equations in synchronous dq 

modelling. The dq-dynamic phasor can represent balanced and unbalanced operating 

conditions using the same modelling. Positive and negative sequence quantities are 

generated from each frequency present in the time domain quantities. The coefficient 

(−𝑘 = �̅�) represents the negative sequence components of the system and the 

coefficient (�̅� = −2) represents the unbalanced conditions. The measured quantities 

are transformed into dq-dynamic phasor quantities at each harmonic (𝑘) of interest. 

Then the output signal is filtered using a low pass filter to get rid of the other 

harmonics as shown in Figure 3.2.  
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Figure 3.2. Dynamic phasor parameter extraction. 

The chosen harmonics order (𝑘) is different between the ac quantities, dq quantities 

and dc quantities. For example, harmonics order (𝑘) at the fundamental frequency 

for the ac quantities is equal to 1, while at the fundamental frequency for the dq and 

dc systems will be equal to zero. From the fundamental frequency prospective, the 

2
nd

 harmonic in the dq appears in dq-dynamic phasor based on the initiation of this 

harmonic in the abc coordinate. The 3
rd

 harmonic appears as 2
nd

 harmonic rotates 

clock wise and the unbalance rotates in the opposite direction as shown in Figure 3.3. 

This can be explained using equation (3.8). Shifting the voltage vector by 𝑒−𝑗ω𝑡 at 

the fundamental frequency generates a 2
nd

 order component at (𝑘 = −2) while, 

shifting the voltage vector by 𝑒−𝑗2ω𝑡 for the 3
rd

 harmonic generates a 2
nd

 harmonic at 

(𝑘 = 2). It is noted that pre-knowledge of the system harmonics and behaviour helps 

to reduce the number of equations required to represent the system and consequently 

reduces the modelling complexity. 

  

(a) (b) 

Figure 3.3. The existence harmonic and unbalance in dq-dynamic phasor: 

(a) 2
nd

 harmonic due to 3
rd

 abc harmonic, and  (b) 2
nd

 harmonic due to unbalance. 
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3.2 Modelling some of power system components 

The modelling of the basic components of FACTS devices is presented in this 

section as well as the synchronous machine.  

 Voltage source converter  3.2.1

The voltage source converter (VSC) is considered to be a key component of VSC-

FACTS devices. It can be found in these devices as a single VSC such as SSSC or 

STATCOM, or back-to-back VSC such as the UPFC. Figure 3.4 shows the basic 

structure of a three-phase VSC. The mathematical derivation is carried out with 

assumption that the VSC operates in three phase balanced conditions. The converter 

voltage and current relations can be derived as follows: 

𝑣𝑐𝑎 = (𝑣𝑑𝑐 − 𝑟𝑐. 𝑖𝑐𝑎). 𝑆𝑎 − (𝑖𝑐𝑎. 𝑟𝑐). 𝑆𝑎
′ + 𝑣𝑁𝐸   (3.9) 

where,  

𝑣𝑐𝑎 is the converter output voltage for phase 𝑎. 

𝑣𝑁𝐸 is the voltage between dc reference point (𝑁) and earth (𝐸).  

𝑖𝑐𝑎 is the converter current. 

𝑟𝑐 is the converter resistance. 

𝑆𝑎
′  and  𝑆𝑎 are the switching function of bridge arm of phase (a) (𝑆𝑎 + 𝑆𝑎

′ = 1 ). 

 For power system studies, eliminating the high order frequencies and considering 

the fundamental and dc component is an acceptable approximation to get the 

equivalent dynamic phasor model of switching functions [13]. By substituting the 

switching functions relations in (3.9), and by considering the system is balanced and 

adding the three phase voltages to get the output voltages (𝐯𝐜_𝐚𝐛𝐜) as: 

𝐯𝐜_𝐚𝐛𝐜 =
𝑚𝑐

2
𝑣𝑑𝑐 . 𝑐𝑜𝑠(𝜔𝑡 − 𝛅𝐜_𝐚𝐛𝐜 + 𝛂𝐚𝐛𝐜) − 𝑟𝑐 . 𝐢𝐜_𝐚𝐛𝐜  (3.10) 
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 where,  

𝑚𝑐 is the modulation index. 

𝛿 is the firing angle. 

𝑣𝑑𝑐 is the dc link voltage. 

The bold symbols represent the vectors of parameters which equal for equation 

(3.10) as: 

𝐯𝐜_𝐚𝐛𝐜 = [𝑣𝑐_𝑎 𝑣𝑐_𝑏 𝑣𝑐_𝑐]𝑇  𝐢𝐜_𝐚𝐛𝐜 = [𝑖𝑐_𝑎 𝑖𝑐_𝑏 𝑖𝑐_𝑐]𝑇  

𝛅𝐜𝐚𝐛𝐜 = [𝛿𝑐𝑎 𝛿𝑐𝑏 𝛿𝑐𝑐]
𝑇  𝛂𝐚𝐛𝐜 = [0 −

2𝜋

3

2𝜋

3
]  

Moreover, the current equation could be as: 

𝐢𝐜_𝐚𝐛𝐜 = 𝑚𝑐𝐶𝑑𝑐.
𝑑𝑣𝑑𝑐

𝑑𝑡
. 𝑐𝑜𝑠(𝜔𝑡 − 𝛅𝐜𝐚𝐛𝐜 + 𝛂𝐚𝐛𝐜) − 𝐶𝑑𝑐

𝑑𝑣𝑑𝑐

𝑑𝑡
  (3.11) 

The dq format of equations (3.10) and (3.11) is given by: 

𝐯𝐜𝐝𝐪 = 𝐦𝐜𝐝𝐪𝑣𝑑𝑐 − 𝑟𝑐𝐢𝐜𝐝𝐪  (3.12) 

𝐢𝐜𝐝𝐪 = 𝐶𝑑𝑐
𝑑𝑣𝑑𝑐

𝑑𝑡
𝐦𝐜𝐝𝐪 − 𝐶𝑑𝑐𝛽

𝑑𝑣𝑑𝑐

𝑑𝑡
  (3.13) 
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Figure 3.4. Voltage source converter (VSC). 
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where,  

𝐯𝐜𝐝𝐪 = [𝑣𝑐𝑑 𝑣𝑐𝑞]𝑇      𝐢𝐜𝐝𝐪 = [𝑖𝑐𝑑 𝑖𝑐𝑞]𝑇  

𝛽 = [1 0]𝑇  𝐦𝐜𝐝𝐪 = [𝑚𝑐𝑑 𝑚𝑐𝑞]𝑇  

𝐶𝑑𝑐 is the dc link capacitance.  

The dq-dynamic phasor is given by transforming equations (3.12) and (3.13): 

〈𝐯𝐜𝐝𝐪〉𝐤 = 〈𝐯𝐝𝐜𝐦𝐝𝐪〉𝐤 − 𝑟𝑐〈𝐢𝐜𝐝𝐪〉𝐤  (3.14) 

〈𝐢𝐜𝐝𝐪〉𝐤 = 𝐶𝑑𝑐 〈
𝐝𝐯𝐝𝐜

𝐝𝐭
𝐦𝐝𝐪〉𝐤 − 𝐶𝑑𝑐𝛽 〈

𝑑𝑉𝑑𝑐

𝑑𝑡
〉𝑘  (3.15) 

where the vectors in equations (3.14) and (3.15) are defined as: 

〈
𝐝𝐯𝐝𝐜

𝐝𝐭
𝐦𝐝𝐪〉𝐤 = [〈

𝑑𝑣𝑑𝑐

𝑑𝑡
𝑚𝑑〉𝑘 〈

𝑑𝑣𝑑𝑐

𝑑𝑡
𝑚𝑞〉𝑘]

𝑇

  

〈𝐯𝐝𝐜𝐦𝐝𝐪〉𝐤 = [〈𝑣𝑑𝑐𝑚𝑑〉𝑘 〈𝑣𝑑𝑐𝑚𝑞〉𝑘]𝑇   

It is noted from equations (3.14), (3.15) that the current at fundamental frequency as 

well as at the harmonics are coupled due to the existence of the harmonics and 

fundamental frequency terms respectively in these equations.  

 The dc link of VSC-FACTS devices 3.2.2

The dc branch is one of the main components of the VSC-FACTS devices, where the 

energy stored in the dc capacitor is used to compensate the dc link voltage change. 

The power balance at the dc side of the VSC-FACTS devices including the losses is 

given by: 

𝑃𝑎𝑐 − 𝑃𝑑𝑐 − 𝑃𝑙𝑜𝑠𝑠 = 0   

3

2
𝑣𝑑 . 𝑖𝑑 +

3

2
𝑣𝑞 . 𝑖𝑞 − 𝐶𝑑𝑐𝑣𝑑𝑐

𝑑𝑣𝑑𝑐

𝑑𝑡
− 𝑖𝑑

2. 𝑅 = 0   
       

(3.16) 
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where,  

𝑅 is the sum of the converter (𝑟𝑐), filter (𝑟𝑓) and transformer resistances (𝑟𝑡).  

𝑣𝑑𝑞 , 𝑖𝑑𝑞 are the voltages and currents of ac side in the synchronous dq frame. 

The dc link plays a crucial role in the coupling between harmonics in VSC-FACTS 

devices operations as shown in equations (3.14) and (3.15). This coupling is caused 

due to the variation in the ac power as presented in equation (3.16). 

 Harmonics filter 3.2.3

The operation of VSC is normally accompanied with certain harmonics due to 

several causes such as the switching of its converter which requires filitering those 

harmonics. From Figure 3.5, the voltage injected (phase a) to the transformer if 

required can be derived using Kirchhoff's voltage law (KVL) to get the three phase 

form (abc) as: 

𝐯𝐢𝐧𝐣_𝐚𝐛𝐜 = 𝐯𝐜_𝐚𝐛𝐜 − 𝑙𝑓
𝑑

𝑑𝑡
𝐢𝐜𝐚𝐛𝐜 − 𝑟𝑓 . 𝐢𝐜_𝐚𝐛𝐜  (3.17) 

𝐢𝐢𝐧𝐣_𝐚𝐛𝐜 = 𝐢𝐜_𝐚𝐛𝐜 − 𝐶𝑓
𝑑

𝑑𝑡
𝐯𝐢𝐧𝐣_𝐚𝐛𝐜  

(3.18) 

where,  

𝑙𝑓 is harmonic filter inductance. 

𝐶𝑓 is harmonic filter capacitor. 

𝐯𝐢𝐧𝐣_𝐚𝐛𝐜 is harmonic output voltage or the injected voltage:  

𝐯𝐢𝐧𝐣_𝐚𝐛𝐜 = [𝑣𝑖𝑛𝑗𝑎 𝑣𝑖𝑛𝑗𝑏 𝑣𝑖𝑛𝑗𝑐]𝑇  

𝐢𝐢𝐧𝐣_𝐚𝐛𝐜 is harmonic output current or the injected current:  

𝐢𝐢𝐧𝐣_𝐚𝐛𝐜 = [𝑖𝑖𝑛𝑗𝑎 𝑖𝑖𝑛𝑗𝑏 𝑖𝑖𝑛𝑗𝑐]
𝑇  
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Figure 3.5. Harmonic filter circuit. 

Equations (3.17) and (3.18) can be transformed into dq format as: 

𝐯𝐢𝐧𝐣𝐝𝐪 = 𝐯𝐜𝐝𝐪 − 𝐿𝑓
𝑑

𝑑𝑡
𝐢𝐜𝐝𝐪 + (𝛾𝜔0𝑙𝑓 − 𝑟𝑓)𝐢𝐜𝐝𝐪  (3.19) 

𝐢𝐢𝐧𝐣𝐝𝐪 = 𝐢𝐜𝐝𝐪 − 𝐶𝑓
𝑑

𝑑𝑡
𝐯𝐜𝐝𝐪 + 𝛾𝜔0𝐶𝑓 . 𝐯𝐜𝐝𝐪  (3.20) 

 where,   

𝐯𝐜𝐝𝐪 = [𝑣𝑐𝑑 𝑣𝑐𝑞]𝑻  𝐢𝐢𝐧𝐣𝐝𝐪 = [𝑖𝑖𝑛𝑗𝑑 𝑖𝑖𝑛𝑗𝑞]
𝑻  

𝐯𝐢𝐧𝐣𝐝𝐪 = [
𝑖𝑖𝑛𝑗𝑑 𝑖𝑖𝑛𝑗𝑞]

𝑻   𝐢𝐜𝐝𝐪 = [𝑖𝑐𝑑 𝑖𝑐𝑞]𝑻    

𝛾 = [
0 1
−1 0

]   

The transformation of equations (3.19) and (3.20) to dynamic phasor form yields: 

〈𝐯𝐢𝐧𝐣𝐝𝐪〉𝐤 = 〈𝐯𝐜𝐝𝐪〉𝐤 − 𝐿𝑓
𝑑

𝑑𝑡
〈𝐢𝐜𝐝𝐪〉𝐤 + (𝛾𝜔𝐿𝑓 − 𝑟𝑓 − 𝑗𝑘𝜔𝐿𝑓)〈𝐢𝐜𝐝𝐪〉𝒌  (3.21) 

〈𝐢𝐢𝐧𝐣𝐝𝐪〉𝐤 = 〈𝐢𝐜𝐝𝐪〉𝒌 − 𝐶𝑓
𝑑

𝑑𝑡
〈𝐯𝐢𝐧𝐣𝐝𝐪〉𝐤 + (𝛾 − 𝑗𝑘)𝜔𝐶𝑓  〈𝐯𝐢𝐧𝐣𝐝𝐪〉𝐤   (3.22) 
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 Series injection transformer 3.2.4

To integrate the VSC model with power network, the equivalent circuit of series 

transformer should be taken into consideration. For simplicity, the transformer 

inductances and resistances are lumped on the secondary side of the transformer, and 

the magnetisation branch is neglected (approximate equivalent circuit) for a 

transformer with a turns ratio of 1:1, as in Figure 3.6: 

𝐯𝑳𝐚𝐛𝐜 = 𝐯𝐩𝐜𝐜_𝐚𝐛𝐜 + 𝐯𝐢𝐧𝐣_𝐚𝐛𝐜 − 𝐿𝑡
𝑑

𝑑𝑡
𝐢𝐩𝐜𝐜_𝐚𝐛𝐜 − 𝑟𝑡𝐢𝐩𝐜𝐜_𝐚𝐛𝐜  

    

(3.23) 

where, 

𝑟𝑡 is the resistance of series transformer  𝐿𝑡 is the inductance of series transformer 

𝐯𝑳𝐚𝐛𝐜 = [
𝑣𝐿𝑎 𝑣𝐿𝑏 𝑣𝐿𝑐]𝑇  𝐢𝐩𝐜𝐜_𝐚𝐛𝐜 = [𝑖𝑝𝑐𝑐𝑎 𝑖𝑝𝑐𝑐𝑏 𝑖𝑝𝑐𝑐𝑐]

𝑇    

𝐯𝐩𝐜𝐜_𝐚𝐛𝐜 = [𝑣𝑝𝑐𝑐𝑎 𝑣𝑝𝑐𝑐𝑏 𝑣𝑝𝑐𝑐𝑐]𝑇   

Transforming equation (3.23) to synchronous dq to find: 

𝐯𝐋_𝐝𝐪 = 𝐯𝐩𝐜𝐜_𝐝𝐪 + 𝐯𝐢𝐧𝐣𝐝𝐪 − 𝐿𝑡
𝑑

𝑑𝑡
𝐢𝐩𝐜𝐜_𝐝𝐪 − 𝑟𝑡𝐢𝐩𝐜𝐜_𝐝𝐪 + 𝛾𝜔𝐿𝑡𝐢𝐩𝐜𝐜_𝐝𝐪   

    

(3.24) 
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Figure 3.6. Approximate equivalent circuit of two winding transformer. 
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where, 

𝐯𝐋_𝐝𝐪 = [𝑣𝐿𝑑 𝑣𝐿𝑞]𝑇  𝐢𝐩𝐜𝐜_𝐝𝐪 = [𝑖𝑝𝑐𝑐𝑑 𝑖𝑝𝑐𝑐𝑞]
𝑇  

𝐯𝐩𝐜𝐜_𝐝𝐪 = [𝑣𝑝𝑐𝑐𝑑 𝑣𝑝𝑐𝑐𝑞]𝑇   

The transformation of the transformer voltages presented in equation (3.24) to 

dynamic phasor is given as: 

〈𝐯𝐋_𝐝𝐪〉𝐤 = 〈𝐯𝐩𝐜𝐜_𝐝𝐪〉𝐤 + (𝛾𝜔𝐿𝑡 −
𝑑

𝑑𝑡
− 𝑟𝑡 − 𝑗𝑘𝐿𝑡𝜔) 〈𝐢𝐩𝐜𝐜_𝐝𝐪〉𝐤 + 〈𝐯𝐢𝐧𝐣𝐝𝐪〉𝐤  (3.25) 

The dynamic phasor transformation presented in equation (3.25) shows no frequency 

coupling between system frequencies. Therefore, the dq-dynamic phasor quantities at 

the fundamental frequency are equal to the synchronous dq quantities. The 

equalisation means that the behaviour of these components at different frequencies 

will be seen as separate networks working at these frequencies without affecting each 

other. 

 Synchronous machine modelling 3.2.5

The synchronous machine is one of the most common components in the power 

system networks. So, having its mathematical model is very crucial especially in 

studying the effectiveness of VSC-FACTS on damping the SSR oscillation using 

small signal impedance. The synchronous machine voltage equations are expressed 

referred to rotor reference frame as shown in Figure 3.7. Detailed derivations of the 

following equations are found in [83] and [84]: 
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Figure 3.7. Synchronous generator equivalent circuit: 

(a) d-axis equivalent circuit and (b) q-axis equivalent circuit. 

From the equivalent circuit in Figure 3.7, the voltages in the synchronous dq form 

are given as:  

[

𝐯𝐝𝐪𝐬
𝐫

𝐯𝐤𝐝𝐪𝟏
′𝐫

𝐯𝐤𝐝𝐪𝟐
′𝐫

] = −𝑑𝑖𝑎𝑔[𝑟𝑠 𝑟𝑠 𝑟𝑘𝑑1
′𝑟 𝑟𝑘𝑞1

′𝑟 𝑟𝑓𝑑
′𝑟 𝑟𝑘𝑞2

′𝑟 ] [

𝐢𝐝𝐪𝐬
𝐫

𝐢𝐤𝐝𝐪𝟏
′𝐫

𝐢𝐤𝐝𝐪𝟐
′𝐫

] +

𝑑

𝑑𝑡
[

𝛌𝐝𝐪𝐬
𝐫

𝛌𝐤𝐝𝐪𝟏
′𝐫

𝛌𝐤𝐝𝐪𝟐
′𝐫

] + [

0 −𝜔𝑟
𝜔𝑟 0 𝑧𝑒𝑟𝑜𝑠(6 × 2)

𝑧𝑒𝑟𝑜𝑠(4 × 2)
] [

𝛌𝐝𝐪𝐬
𝐫

𝛌𝐤𝐝𝐪𝟏
′𝐫

𝛌𝐤𝐝𝐪𝟐
′𝐫

]  

(3.26) 

where, 

𝑟𝑠 is the stator resistance. 

𝑟𝑘𝑑1
′𝑟  is the resistance of d-axis damper.  
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𝑟𝑘𝑞𝑥
′𝑟  is the resistance of q-axis damper. 

𝑟𝑓𝑑
′𝑟  is the field resistance. 

𝐯𝐤𝐝𝐪𝐱
′𝐫  is the voltage across damper (x), where x= 1,2. 

𝐢𝐤𝐝𝐪𝐱
′𝐫  is the current flow in damper (x), where x= 1,2. 

𝛌𝐤𝐝𝐪𝐱
′𝐫  is the damper (x) flux linkage, where x= 1,2. 

𝐯𝐝𝐪𝐬
𝐫 = [𝑣𝑑𝑠

𝑟 𝑣𝑑𝑠
𝑟 ]𝑇   𝐯𝐤𝐝𝐪𝟏

′𝐫 = [𝑣𝑘𝑑1
′𝑟 𝑣𝑘𝑞1

′𝑟 ]𝑇  𝐯𝐤𝐝𝐪𝟐
′𝐫 = [𝑣𝑓𝑑

′ 𝑣𝑘𝑞2
′𝑟 ]𝑇  

𝛌𝐝𝐪𝐬
𝐫 = [λ𝑑𝑠

𝑟 λ𝑑𝑠
𝑟 ]𝑇   𝛌𝐤𝐝𝐪𝟏

′𝐫 = [λ𝑘𝑑1
′𝑟 λ𝑘𝑞1

′𝑟 ]𝑇   𝛌𝐤𝐝𝐪𝟐
′𝐫 = [𝑣𝑓𝑑

′ 𝑣𝑘𝑞2
′𝑟 ]𝑇  

𝐢𝐝𝐪𝐬
𝐫 = [𝑖𝑑𝑠

𝑟 𝑖𝑑𝑠
𝑟 ]𝑇   𝐢𝐤𝐝𝐪𝟏

′𝐫 = [𝑖𝑘𝑑1
′𝑟 𝑖𝑘𝑞1

′𝑟 ]𝑇  𝐢𝐤𝐝𝐪𝟐
′𝐫 = [𝑖𝑓𝑑

′ 𝑖𝑘𝑞2
′𝑟 ]𝑇  

The flux linkages can be written as: 

[

𝛌𝐝𝐪𝐬
𝐫

𝛌𝐤𝐝𝐪𝟏
′𝐫

𝛌𝐤𝐝𝐪𝟐
′𝐫

] = 𝑑𝑖𝑎𝑔[−𝐿𝑙𝑠 −𝐿𝑙𝑠 𝐿𝑘𝑑1
′ 𝐿𝑘𝑞1

′ 𝐿𝑓𝑑
′ 𝐿𝑘𝑞2

′ ] [

𝐢𝐝𝐪𝐬
𝐫

𝐢𝐤𝐝𝐪𝟏
′𝐫

𝐢𝐤𝐝𝐪𝟐
′𝐫

] + [

𝐿𝐿𝑚𝑑𝑞
𝐿𝐿𝑚𝑑𝑞
𝐿𝐿𝑚𝑑𝑞

] 𝐢𝐦𝐝𝐪
𝐫   (3.27) 

where, 

 𝐿𝑙𝑠 is the leakage inductance . 

𝐿𝑘𝑑1
′  is the inductance of d-axis damper.  

𝐿𝑘𝑞𝑥
′  is inductance of q-axis damper. 

 𝐿𝑓𝑑
′  is the field inductance. 

𝐿𝑚𝑑 , 𝐿𝑚𝑞 are the magnetizing inductance viewed from rotor. 

𝐢𝐦𝐝𝐪
𝐫  is the magnetizing current viewed from rotor as:       𝐢𝐦𝐝𝐪

𝐫 = [𝑖𝑚𝑑
𝑟 𝑖𝑚𝑞

𝑟 ]𝑇  

𝐿𝐿𝑚𝑑𝑞  is the magnetizing inductance matrix: 𝐿𝐿𝑚𝑑𝑞 = [𝐿𝑚𝑑 𝐿𝑚𝑞] [
1 0
0 1

] 
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𝜔𝑟 is the speed of the rotor reference frame.  

The rotor variables are referred to the stator windings for convenience, and the 

electric torque is calculated as: 

𝑇𝑒 =
3

2
 (
𝑃

2
) (𝜆𝑑𝑠

𝑟 . 𝑖𝑞𝑠
𝑟 − 𝜆𝑞𝑠

𝑟 . 𝑖𝑑𝑠
𝑟 )   (3.28) 

 where, 

𝑃 is the number of pole pairs of synchronous machine. 

The transformation of equation (3.26) and (3.27) to dynamic phasor form is:  

[

〈𝐯𝐝𝐪𝐬
𝐫 〉𝑘

〈𝐯𝐤𝐝𝐪𝟏
′𝐫 〉𝑘

〈𝐯𝐤𝐝𝐪𝟐
′𝐫 〉𝑘

] = −𝑑𝑖𝑎𝑔[𝑟𝑠 𝑟𝑠 𝑟𝑘𝑑1
′𝑟 𝑟𝑘𝑞1

′𝑟 𝑟𝑓𝑑
′𝑟 𝑟𝑘𝑞2

′𝑟 ] [

〈𝐢𝐝𝐪𝐬
𝐫 〉𝑘

〈𝐢𝐤𝐝𝐪𝟏
′𝐫 〉𝑘

〈𝐢𝐤𝐝𝐪𝟐
′𝐫 〉𝑘

] +

𝑑

𝑑𝑡
[

〈𝛌𝐝𝐪𝐬
𝐫 〉𝑘

〈𝛌𝐤𝐝𝐪𝟏
′𝐫 〉𝑘

〈𝛌𝐤𝐝𝐪𝟐
′𝐫 〉𝑘

] + 𝑗𝑘𝜔 [

〈𝛌𝐝𝐪𝐬
𝐫 〉𝑘

〈𝛌𝐤𝐝𝐪𝟏
′𝐫 〉𝑘

〈𝛌𝐤𝐝𝐪𝟐
′𝐫 〉𝑘

] +

〈[

0 −𝜔𝑟
𝜔𝑟 0 𝑧𝑒𝑟𝑜𝑠(6 × 2)

𝑧𝑒𝑟𝑜𝑠(4 × 2)
] [

𝛌𝐝𝐪𝐬
𝐫

𝛌𝐤𝐝𝐪𝟏
′𝐫

𝛌𝐤𝐝𝐪𝟐
′𝐫

]〉𝑘  

(3.29) 

[

〈𝛌𝐝𝐪𝐬
𝐫 〉𝑘

〈𝛌𝐤𝐝𝐪𝟏
′𝐫 〉𝑘

〈𝛌𝐤𝐝𝐪𝟐
′𝐫 〉𝑘

] = 𝑑𝑖𝑎𝑔[−𝐿𝑙𝑠 −𝐿𝑙𝑠 𝐿𝑘𝑑1
′ 𝐿𝑘𝑞1

′ 𝐿𝑓𝑑
′ 𝐿𝑘𝑞2

′ ] [

〈𝐢𝐝𝐪𝐬
𝐫 〉𝑘

〈𝐢𝐤𝐝𝐪𝟏
′𝐫 〉𝑘

〈𝐢𝐤𝐝𝐪𝟐
′𝐫 〉𝑘

] +

〈[

𝐿𝐿𝑚𝑑𝑞
𝐿𝐿𝑚𝑑𝑞
𝐿𝐿𝑚𝑑𝑞

] 𝐢𝐦𝐝𝐪
𝐫 〉𝑘  

(3.30) 

While, the electrical torque transformation to dynamic phasor form is given by: 

〈𝑇𝑒〉𝑘 =
3

2
 (
𝑃

2
) ({∑ 〈𝜆𝑑𝑠

𝑟 〉𝑘−𝑖〈𝑖𝑞𝑠
𝑟 〉𝑖

∞
𝑖=−∞ } − {∑ 〈𝜆𝑞𝑠

𝑟 〉𝑘−𝑖〈𝑖𝑑𝑠
𝑟 〉𝑖

∞
𝑖=−∞ })    (3.31) 

It is obvious from equation (3.31) that the harmonics are affecting the operation of 

the synchronous machine at the fundamental frequency as well at the harmonics, 
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which will be coupled with the fundamental frequency as shown by the electrical 

torque equation (3.31). 

3.3 VSC-FACTS devices control  

This section presents an overview of the control system of the VSC-FACTS. These 

control systems are employed with the previous derivation of power system 

components based on the required application for the VSC-FACTS. The control of 

two types of VSC-FACTS is presented here, the SSSC due to its application in 

damping system oscillations and the STATCOM due to its popularity in power 

system networks.  

 Static synchronous series compensator (SSSC) control system 3.3.1

The purpose of the series compensator is to inject series voltage that controls the 

active and reactive power flow through the line. The structure of SSSC connected to 

a grid is shown in Figure 3.8. The resistance (𝑅𝑠𝑒) and the inductance (𝐿𝑠𝑒) 

represent the sum of the converter, harmonic filter and series transformer resistances 

and inductances respectively. Three control methods have been proposed in literature 

to control the injected voltage, using the power flow through the line, the voltage at 

the load side or the line impedance as presented in Figure 3.9. For most of the power 

system applications, the SSSC is used to inject the reactive power without injecting 

any active power. Thus, the SSSC injected voltage is kept in quadrature with the line 

current, where, the leading voltage injects a series inductive load with the line, while 

the lagging voltage injects a series capacitive load [85].  
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Figure 3.8. Structure of SSSC connected to a grid. 

 Power control mode 3.3.1.1

For SSSC operation, it is normal to use the sending/receiving end of the transmission 

line as the input to the controller as shown in Figure 3.9(a). So, the injected voltage 

depends on these inputs. The power flow through the compensated line can be given 

as: 

𝑃𝑙𝑖𝑛𝑒 = 𝑃1 − 𝑃2  (3.32) 

𝑄𝑙𝑖𝑛𝑒 = 𝑄1 − 𝑄2  (3.33) 

where,  

𝑃𝑙𝑖𝑛𝑒  is the line active power. 

𝑄𝑙𝑖𝑛𝑒 is the line reactive power. 

𝑃1, 𝑄1 are the powers at the sending end. 

𝑃2, 𝑄2  are the powers at the receiving end. 

The general expression of active and reactive powers in dq form is equal to: 
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𝑃 =
3

2
(𝑣𝑑 . 𝑖𝑑 + 𝑣𝑞 . 𝑖𝑞)  (3.34) 
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(c)  

Figure 3.9. SSSC control systems: (a) Power control mode, (b) Voltage control mode                 

and (c) Impedance control mode. 

𝑄 =
3

2
(−𝑣𝑞 . 𝑖𝑑 + 𝑣𝑑 . 𝑖𝑞)    (3.35) 

where, the subscripts (d and q) refer to direct and quadrature quantities.  
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Based on Figure 3.9, the SSSC control signals can be written as:  

𝑢𝑠𝑒𝑑 = 𝐾𝑝𝑣𝑑(𝑃𝑙𝑖𝑛𝑒
∗ − 𝑃𝑙𝑖𝑛𝑒) + 𝑥1   (3.36) 

𝑢𝑠𝑒𝑞 = 𝐾𝑝𝑣𝑞(𝑄𝑙𝑖𝑛𝑒
∗ − 𝑄𝑙𝑖𝑛𝑒) + 𝑥2   (3.37) 

where,  

𝑃𝑙𝑖𝑛𝑒
∗   is the line active power reference.  

𝑄𝑙𝑖𝑛𝑒
∗  is the line reactive power reference.  

𝑥1 = 𝐾𝑖𝑣𝑑 ∫(𝑃𝑙𝑖𝑛𝑒
∗ − 𝑃𝑙𝑖𝑛𝑒)𝑑𝑡    (3.38) 

𝑥2 = 𝐾𝑖𝑣𝑞 ∫(𝑄𝑙𝑖𝑛𝑒
∗ − 𝑄𝑙𝑖𝑛𝑒)𝑑𝑡    (3.39) 

𝐾𝑝𝑣𝑑  is the proportional control gain of direct axis voltage. 

𝐾𝑝𝑣𝑞  is the proportional control gain of quadrature axis voltage. 

𝐾𝑖𝑣𝑑  is the integral control gain of direct axis voltage. 

𝐾𝑖𝑣𝑞  is the integral control gain of quadrature axis voltage. 

 Voltage control mode 3.3.1.2

The second type of SSSC control employs the quadrature voltage of SSSC (𝑣𝑠𝑒𝑞) and 

the dc link voltage as inputs. The SSSC voltage is utilised to control the reactive 

power of the SSSC using a previous knowledge of the operating conditions of the 

compensated system. Alternatively, the active power is controlled through the dc link 

voltage of the SSSC as shown in Figure 3.9. The control signal equations are: 

𝑢𝑠𝑒𝑑 = 𝐾𝑝𝑣𝑑(𝑣𝑑𝑐
∗ − 𝑣𝑑𝑐) + 𝑥1  (3.40) 

𝑢𝑠𝑒𝑞 = 𝐾𝑝𝑣𝑞(𝑣𝑠𝑒𝑞
∗ − 𝑣𝑠𝑒𝑞) + 𝑥2   (3.41) 
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𝑥1 = 𝐾𝑖𝑣𝑑 ∫(𝑣𝑑𝑐
∗ − 𝑣𝑑𝑐)𝑑𝑡    (3.42) 

𝑥2 = 𝐾𝑖𝑣𝑞 ∫(𝑣𝑠𝑒𝑞
∗ − 𝑣𝑠𝑒𝑞)𝑑𝑡    (3.43) 

𝑣𝑑𝑐
∗  is the reference dc link voltage.  

𝑣𝑠𝑒𝑞
∗  is the reference quadrature voltage of SSSC.   

 Impedance control mode 3.3.1.3

In this operating mode, the line impedance is varied by a specific inserted 

impedance, to control the voltage magnitude as a proportional to the line current. The 

difficulty of this control mode is related to its practical use where it will be difficult 

to use the device impedance as an input. The SSSC impedance could have resistive, 

inductive or capacitive behaviour according to the quadrature line impedance 

required [86]. The SSSC impedance (𝑥𝑠𝑒𝑞) is equal to: 

𝑥𝑠𝑒𝑞 =
𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
   (3.44) 

In the meantime, the d-axis input parameter is the dc link voltage of the SSSC (𝑣𝑑𝑐). 

This configuration is capable of controlling the reactive power generated and 

consumed active power losses of the device. The control signal equations are given 

as:  

𝑢𝑠𝑒𝑑 = 𝐾𝑝𝑣𝑑(𝑣𝑑𝑐
∗ − 𝑣𝑑𝑐) + 𝑥1  (3.45) 

𝑢𝑠𝑒𝑞 = 𝐾𝑝𝑣𝑞(𝑥𝑠𝑒𝑞
∗ − 𝑥𝑠𝑒𝑞) + 𝑥2  (3.46) 

𝑥1 = ∫𝐾𝑖𝑣𝑑(𝑣𝑑𝑐
∗ − 𝑣𝑑𝑐)𝑑𝑡   (3.47) 

𝑥2 = ∫𝐾𝑖𝑣𝑞(𝑥𝑠𝑒𝑞
∗ − 𝑥𝑠𝑒𝑞)𝑑𝑡      (3.48) 

The three control modes transformation to dynamic phasor can be done by the use of 

equations (3.1) to (3.4) to have the following ones: 
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〈𝑢𝑠𝑒𝑑〉𝑘 = 𝐾𝑝𝑣𝑑(〈𝜇
∗〉𝑘 − 〈𝜇〉𝑘) + 〈𝑥1〉𝑘  (3.49) 

〈𝑢𝑠𝑒𝑞〉𝑘 = 𝐾𝑝𝑣𝑞(〈𝜎
∗〉𝑘 − 〈𝜎〉𝑘) + 〈𝑥2〉𝑘  (3.50) 

Also, the integral term can be transformed as:   

〈𝑥1〉𝑘 =
𝐾𝑖𝑣𝑑(〈𝜇

∗〉𝑘 − 〈𝜇〉𝑘)

𝑠 + 𝑗𝑘𝜔
 (3.51) 

〈𝑥2〉𝑘 =
𝐾𝑖𝑣𝑞(〈𝜎

∗〉𝑘 − 〈𝜎〉𝑘)

𝑠 + 𝑗𝑘𝜔
 (3.52) 

where, 

 𝜇 is the input control parameter of the d-axis control. 

 𝜎 is the input control parameter of the q-axis control. 

 Static synchronous compensator (STATCOM) control system 3.3.2

The structure of a STATCOM connected to a power network is illustrated in 

Figure 3.10. The STATCOM is modelled as resistance and inductance behind a 

voltage source. The resistance (𝑅𝑓) and the inductance (𝐿𝑓) represent the sum of the 

converter, harmonic filter and series transformer resistances and inductances.  

V
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gR gL fR fL

dcC dcv
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sv
 

Figure 3.10. Structure of STATCOM connected to a grid. 

The suitability of the outer controller’s inputs depends on the stiffness and the 

topology of the network. The quadrature voltage is controlled using the two 

following methods: 
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 Direct voltage control  3.3.2.1

The detailed equations describing the STATCOM controller can be found in several 

papers [87]–[89]. For weak ac grids, the dc link voltage of STATCOM and ac 

voltage of the controlled busbar are chosen as inputs to the voltage control loop to 

achieve better controlabilty of the bus voltage due to the change of powr flow [90]. 

The STATCOM control system contains four proportional integral (PI) controllers as 

shown in Figure 3.11. According to Figure 3.11, the converter control voltage of the 

STATCOM is given by: 

𝑢𝑠𝑑 = −𝐾𝑝𝑖𝑑(𝑖𝑠𝑑
∗ − 𝑖𝑠𝑑) − 𝑥1  (3.53) 

𝑢𝑠𝑞 = −𝐾𝑝𝑖𝑞(𝑖𝑠𝑞
∗ − 𝑖𝑠𝑞) − 𝑥2  (3.54) 

𝑥1 = 𝐾𝑖𝑖𝑑 ∫(𝑖𝑠𝑑
∗ − 𝑖𝑠𝑑)𝑑𝑡   (3.55) 

𝑥2 = 𝐾𝑖𝑖𝑞 ∫(𝑖𝑠𝑞
∗ − 𝑖𝑠𝑞)𝑑𝑡   (3.56) 

where, 

𝐾𝑝𝑖𝑑 is the proportional control gain of direct axis current. 

𝐾𝑝𝑖𝑞 is the proportional control gain of quadrature axis current. 

𝐾𝑖𝑖𝑑 is the integral control gain of direct axis current. 

𝐾𝑖𝑖𝑞 is the integral control gain of quadrature axis current. 

𝑖𝑠𝑑 is the direct axis components of STATCOM current. 

𝑖𝑠𝑞 is the quadrature axis components of STATCOM current. 

In the meantime, the reference currents are:  

𝑖𝑠𝑑
∗ = 𝐾𝑝𝑣𝑑(𝑣𝑑𝑐

∗ − 𝑣𝑑𝑐) + 𝑥3   (3.57) 

𝑖𝑠𝑞
∗ = 𝐾𝑝𝑣𝑞(𝑣𝑠𝑑

∗ − 𝑣𝑠𝑑) + 𝑥4   (3.58) 
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𝑥3 = 𝐾𝑖𝑣𝑑 ∫(𝑣𝑑𝑐
∗ − 𝑣𝑑𝑐)𝑑𝑡    (3.59) 

𝑥4 = 𝐾𝑖𝑣𝑞 ∫(𝑣𝑠𝑑
∗ − 𝑣𝑠𝑑)𝑑𝑡    (3.60) 
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Figure 3.11. ac voltage controller of STATCOM. 

where, 

𝐾𝑝𝑣𝑑 is the proportional control gain of direct axis voltage. 

𝐾𝑝𝑣𝑞 is the proportional control gain of quadrature axis voltage. 

𝐾𝑖𝑣𝑑 is the integral control gain of direct axis voltage. 

𝐾𝑖𝑣𝑞 is the integral control gain of quadrature axis voltage. 

The transformation of equations (3.53) to (3.60) can be carried out using a similar 

procedure followed for the SSSC section as: 

〈𝑢𝑠𝑑〉𝑘 = −𝐾𝑝𝑖𝑑(〈𝑖𝑠𝑑
∗ 〉𝑘 − 〈𝑖𝑠𝑑〉𝑘) − 〈𝑥1〉𝑘  (3.61) 

〈𝑢𝑠𝑞〉𝑘 = −𝐾𝑝𝑖𝑞(〈𝑖𝑠𝑞
∗ 〉𝑘 − 〈𝑖𝑠𝑞〉𝑘) − 〈𝑥2〉𝑘  (3.62) 

〈𝑥1〉𝑘 =
𝐾𝑖𝑖𝑑(〈𝑖𝑠𝑑

∗ 〉𝑘 − 〈𝑖𝑠𝑑〉𝑘)

𝑠 + 𝑗𝑘𝜔
 

(3.63) 
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〈𝑥2〉𝑘 =
𝐾𝑖𝑖𝑞(〈𝑖𝑠𝑞

∗ 〉𝑘 − 〈𝑖𝑠𝑞〉𝑘)

𝑠 + 𝑗𝑘𝜔
 

(3.64) 

〈𝑖𝑠𝑑
∗ 〉𝑘 = 𝐾𝑝𝑣𝑑(〈𝑣𝑑𝑐

∗ 〉𝑘 − 〈𝑣𝑑𝑐〉𝑘) + 〈𝑥3〉𝑘   (3.65) 

〈𝑖𝑠𝑞
∗ 〉 = 𝐾𝑝𝑣𝑞(〈𝑣𝑠𝑑

∗ 〉𝑘 − 〈𝑣𝑠𝑑〉𝑘) + 〈𝑥4〉𝑘   (3.66) 

〈𝑥3〉𝑘 =
𝐾𝑖𝑣𝑑(〈𝑣𝑑𝑐

∗ 〉 − 〈𝑣𝑑𝑐〉)

𝑠 + 𝑗𝑘𝜔
 

(3.67) 

〈𝑥4〉𝑘 =
𝐾𝑖𝑣𝑞(〈𝑣𝑠𝑑

∗ 〉 − 〈𝑣𝑠𝑑〉)

𝑠 + 𝑗𝑘𝜔
 

(3.68) 

 Reactive power control 3.3.2.2

Figure 3.12 shows the STATCOM controller using reactive power control. The 

quadrature reference current equation is given as: 

𝑖𝑠𝑞
∗ = 𝐾𝑝𝑣𝑞(𝑄

∗ − 𝑄) + 𝑥4   (3.69) 

𝑥4 = 𝐾𝑖𝑣𝑞 ∫(𝑄
∗ − 𝑄)𝑑𝑡    (3.70) 

where, the reactive power is calculated as: 

𝑄 =
3

2
(𝑣𝑠𝑞𝑖𝑠𝑑 − 𝑣𝑠𝑑𝑖𝑠𝑞)  

 

(3.71) 
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Figure 3.12. Reactive power control of STATCOM. 

 



 

40 

 

The dynamic phasor transformation of equations (3.69) to (3.71) is given as: 

〈𝑖𝑠𝑞
∗ 〉𝑘 = 𝐾𝑝𝑣𝑞(〈𝑄

∗〉𝑘 − 〈𝑄〉𝑘) + 〈𝑥4〉𝑘   (3.72) 

〈𝑥4〉𝑘 = 𝐾𝑖𝑣𝑞(〈𝑄
∗〉𝑘 − 〈𝑄〉𝑘)   (3.73) 

〈𝑄〉𝑘 =
3

2
(〈𝑣𝑠𝑞〉0〈𝑖𝑠𝑑〉𝑘 + 〈𝑣𝑠𝑞〉𝑘〈𝑖𝑠𝑑〉0 − 〈𝑣𝑠𝑑〉0〈𝑖𝑠𝑞〉𝑘 − 〈𝑣𝑠𝑑〉𝑘〈𝑖𝑠𝑞〉0)  (3.74) 

Equation (3.74) presents the frequency coupling between the input parameters of the 

STATCOM due to the use of the reactive power as an input to its quadrature voltage 

control. Also, this control mode presented a higher frequency coupling than the use 

of direct voltage control of the STATCOM.  

3.4 STATCOM simulation including harmonics and unbalance  

In this case study, the STATCOM behaviour is simulated in the presence of the 

harmonics firstly under unbalanced conditions. Two harmonics are injected by the 

source which has been considered in the STATCOM simulating (5
th

 and 7
th

 

harmonics). The grid and STATCOM parameters are listed in Table 3.1. Using the 

abc-dq transformation matrix presented to extract the positive and negative sequence 

quantities of the STATCOM, the fundamental frequency and considered harmonics 

(5
th

 and 7
th

) are transformed to dq-dynamic phasor form as shown in Table 3.2. the 

section of the 5
th

 and the 7
th

 harmonics in this thesis is based on the existence of 

these harmonics in nowadays power networks. The resultant quantities are filtered 

using a low pass filter to get rid of the harmonics associated with these quantities. It 

is noted from Table 3.2 that each frequency in the abc frame is transformed to two 

frequencies in dq-dynamic phasor using equation (3.8), one is rotating in the positive 

direction and the other is rotating in the negative direction. It is assumed in this 

simulation that PLL effects are ignored. The time domain detailed model and the dq-

dynamic phasor model are shown in Figure 3.13. Both modelling plots are well 

matched to each other which prove the validity of dq-dynamic phasor modelling to 

represent the VSC-FACTS devices under these distorted conditions. The complex 

part of dq-dynamic phasor modelling results from the multiplication of voltages and 

currents by the capacitor and inductances. The ignorance of this part has insignificant 
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error as shown in Figure 3.14 parts (a) and (b). So, this part can be neglected in the 

STATCOM modelling. 

Table 3.1. Grid and STATCOM parameters. 

Parameter value Parameter value 

𝑆𝑏𝑎𝑠𝑒 1.1 kVA 𝐾𝑝𝑣𝑑 10 V/A 

𝑣𝑏𝑎𝑠𝑒 415 kV 𝐾𝑖𝑣𝑑 0.001 V/A.s 

𝑅𝑔, 𝐿𝑔 0.25 Ω, 1 mH 𝐾𝑝𝑣𝑞 0.01 V/A 

𝑅𝑓 , 𝐿𝑓 0.1 Ω, 5 mH 𝐾𝑖𝑣𝑞 2 V/A.s 

𝑓 50 Hz 𝑣𝑑𝑐 1000 V 

𝐾𝑝𝑖𝑑𝑞 50 A/V 𝐶𝑑𝑐 400 µF 

𝐾𝑖𝑖𝑑𝑞 1000 A/V.s   

 

Table 3.2. Extraction of dynamic phasor quantities of studied system. 

Reference in abc 
Harmonic 

order (𝑘) 

dq-dynamic phasor 

parameters 

𝜔 0 𝑣𝑑0 + 𝑗𝑣𝑞0 

5𝜔 4 𝑣𝑑4 + 𝑗𝑣𝑞4 

7𝜔 6 𝑣𝑑6 + 𝑗𝑣𝑞6 

−𝜔 -2 𝑣𝑑−2 + 𝑗𝑣𝑞−2 

−5𝜔 -6 𝑣𝑑−6 + 𝑗𝑣𝑞−6 

−7𝜔 -8 𝑣𝑑−8 + 𝑗𝑣𝑞−8 
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Figure 3.13. Comparison between time domain and dq-dynamic phasor in time domain. 
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(b) 

Figure 3.14. Comparison between the real and complex representation of d and q quantities:  

(a) 𝑣𝑑 output of the STATCOM and (b) 𝑣𝑞 output of the STATCOM. 

The operation of the STATCOM under the unbalanced conditions can be represented 

as shown in Figure 3.15. In this case, the fundamental frequency (𝑘 = 0) and the 

negative sequence quantity (𝑘 = −2) are used to simulate the unbalanced operation. 

The dq-dynamic phasor model of STATCOM shows a well agreed performance 

compared with the STATCOM detailed model. 
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Figure 3.15. Comparison between dq-dynamic phasor model and time-domain model of 

STATCOM under unbalanced operating conditions.  
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3.5 Summary 

This chapter presented the dq-dynamic phasor modelling of basic components of 

FACTS devices and the synchronous machine. These models will be used as the base 

models for the analysis of VSC-FACTS devices in the following chapters on 

studying the small signal stability. Some findings are: 

 Dynamic phasor modelling shifts all system frequencies to become at zero which 

improves the speed of the simulation, especially for large systems. Also, the 

dynamic phasor approach slows down the variation of system parameters which 

improves the observation of changing those parameters.  

 Modelling using dq-dynamic phasor at the fundamental frequency is equal to the 

synchronous dq where the harmonics order (𝑘 = 0) in the dynamic phasor 

equations.   

 The expansion of dq-dynamic phasor can simplify the analysis when studying the 

balanced and unbalanced systems. 

 The third harmonic and the unbalanced frequency are seen as 2nd order harmonics 

in dq-dynamic phasor. However, the two components rotate in different 

directions, where the 2nd order harmonic rotates clockwise, and the unbalanced 

component rotates anti clockwise. 

 The extraction of the dq-dynamic phasor showed the suitability of this approach in 

simulating balanced and unbalanced conditions. 

 Also, the results revealed that the complex part caused by the transformation of 

the differentiation can be neglected. This conclusion is beneficial for stability 

studies once the system needs to be linearized using MATLAB/Simulink which 

has limitation when on linearizing complex quantities. 
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  CHAPTER  4

SMALL SIGNAL STABILITY OF VSC BASED FACTS IN 

SYNCHRONOUS DQ FRAME 

Small signal stability assessment in the dq frame is presented in this chapter. It gives 

an introduction to the stability problem and the stability criteria when using 

synchronous dq modelling to assess a system's performance. Secondly, the chapter 

presents the measurement techniques of the small signal impedance based on a 

black-box concept where the measurements of the device terminal are used to 

calculate the impedance. Lastly, the mathematical derivation of the state space 

equations and impedances of the SSSC, STATCOM and the synchronous machine 

are presented. The eigenvalue analysis is a conventional and fast technique used to 

implement and assess the system's behaviour. The benefit of using eigenvalue 

analysis is that the analysis can show the system instability and the oscillations for 

the whole studied network. Alternatively, the small signal impedance is both 

powerful and practical, especially in real-world applications where creating a fully 

detailed model of the power network becomes a challenging task compared to the 

eigenvalue analysis. In addition, it predicts system oscillations and stability at the 

point of connection using the generalised Nyquist plot or called eigenloci of the 

impedance. It employs the phase-margin as an indication of harmonic oscillation, 

where that low phase-margin means that the system exhibit harmonics. The main 

disadvantage of eigenloci is that the validity of the prediction of system's stability is 

limited for the simultaneous parameter change in the control loop only.  

4.1 The basic principle of small signal stability 

The capability of a system to remain stable after being exposed to a small 

disturbance is defined as small signal stability. Solving the stability problem under 

these disturbances can be simplified by linearizing the system equations over the 

period of the event [91]. If a system described in the state space form: 
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𝐱′ = 𝐴𝐱 + 𝐵𝐮   (4.1) 

𝐲 = 𝐶𝐱 + 𝐷𝐮  (4.2) 

where, the bold symbols represent vectors and, 

𝐱 is the system state vector. 

𝐮 is the system input vector. 

𝐲 is the system output vector. 

 The linearized form of these state space equations is given by: 

𝚫𝐱′ = 𝐴𝚫𝐱 + 𝐵𝚫𝐮   (4.3) 

𝚫𝐲 = 𝐶𝚫𝐱 + 𝐷𝚫𝐮  (4.4) 

where,  

𝚫𝐱 is the linearized state vector of dimension (𝑛). 

𝚫𝐮 is the linearized input vector of dimension (𝑟). 

𝚫𝐲 is the linearized output vector of dimension (𝑗). 

𝐴 is the linearized state matrix of size (𝑛 × 𝑛). 

𝐵 is the linearized input matrix of size (𝑛 × 𝑟). 

𝐶 is the linearized output matrix of size (𝑗 × 𝑛). 

𝐷 is the linearized feedforward matrix of size (𝑗 × 𝑟). 

4.2 Small signal stability criteria 

Based on equations (4.3) and (4.4), two stability measures have been developed to 

assess the stability of the system. The first is the eigenvalue analysis of the state 

matrix (𝐴) and the second is the small signal impedance which defines the 
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relationship between the system inputs and outputs. These methods are less 

demanding computationally compared with the nonlinear equivalents [3]. Also, the 

system admittance/impedance can be derived from the system state space equations 

as [92]: 

𝑌𝑍𝑑𝑞 = 𝐶[𝑠𝐼 − 𝐴]−1𝐵 + 𝐷  (4.5) 

Deriving the system impedance using (4.5) is limited for certain systems where the 

system states can be derived as a function of terminal quantities. The output of (4.5) 

can be the impedance or admittance based on the inputs and the outputs of the 

system. 

 Stability criteria-based eigenvalue analysis  4.2.1

The eigenvalue analysis is a conventional and fast technique used to implement and 

assess the system's response. The benefit of eigenvalue analysis is that the analysis 

can show the system instability and the oscillations for the whole studied network. It 

ensures the system stability if the system eigenvalues (𝜆𝑛) satisfy the following 

criterion where: 

𝜆𝑛 ≤ 0  (4.6) 

 Stability criteria-based small signal impedance  4.2.2

Small signal impedance modelling is a powerful and practical alternative to 

eigenvalues analysis, especially in situations where creating a fully detailed model of 

the power network is tedious [23][67]. In addition, it predicts system oscillations and 

stability at the point of connection using the generalised Nyquist plot or called 

eigenloci of the impedance [18]. The criteria developed for this technique will be 

investigated in more depth in the following section. The generalised Nyquist 

criterion (GNC) is one of the most important stability criteria used to assess the 

stability of the systems using small signal impedance. The GNC employs the phase-

margin as an indication of harmonic oscillation, where that low phase-margin means 

that the system exhibits harmonics [3][18]. It was developed firstly to assess dc 

system stability and modified later for ac systems. The criterion examines whether or 
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not the eigenvalues of the product of generator (device) impedance (𝑍𝐷) and system 

admittance (𝑍𝑠𝑦𝑠) encircles the point (-1, 0) in the complex plane [93]. In the 

synchronous dq frame, the impedance of a device connected to a system is given by: 

𝑍𝐷 = [
𝑍𝐷𝑑𝑑 𝑍𝐷𝑑𝑞
𝑍𝐷𝑞𝑑 𝑍𝐷𝑞𝑞

]  (4.7) 

where, 

𝑍𝐷𝑑𝑑, 𝑍𝐷𝑞𝑞 are the diagonal impedances of d and q axis channels. 

𝑍𝐷𝑑𝑞 , 𝑍𝐷𝑞𝑑 are the off-diagonal impedances of d and q axis channels. 

The small signal impedance of the system as seen by the device/generator is of the 

form: 

𝑍𝑠𝑦𝑠 = [
𝑍𝑠𝑦𝑠𝑑𝑑 𝑍𝑠𝑦𝑠𝑑𝑞
𝑍𝑠𝑦𝑠𝑞𝑑 𝑍𝑠𝑦𝑠𝑞𝑞

]  (4.8) 

The ac network impedance represents the equivalent of all system components as 

being seen by the device (Figure 4.1). The return ratio matrix (𝐿𝑑𝑞) of system and 

generator is given as: 

𝐿𝑑𝑞 = 𝑍𝐷𝑑𝑞. 𝑌𝑠𝑦𝑠𝑑𝑞   (4.9) 

𝐿𝑑𝑞 = [
𝑍𝐷𝑑𝑑 𝑍𝐷𝑑𝑞
𝑍𝐷𝑞𝑑 𝑍𝐷𝑞𝑞

] [
𝑍𝑠𝑦𝑠𝑑𝑑 𝑍𝑠𝑦𝑠𝑑𝑞
𝑍𝑠𝑦𝑠𝑞𝑑 𝑍𝑠𝑦𝑠𝑞𝑞

]  (4.10) 

The result of equation (4.10) is a (2×2) matrix which has eigenvalues [33] obtained 

as: 

det(𝐿𝑑𝑞 + 𝜆𝑑𝑞. 𝐼) = 0   (4.11) 

where,  

𝜆𝑑𝑞 is the eigenvalues of return ratio matrix. 
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Figure 4.1. Device/generator and system impedance. 

The system stability is ensured if and only if the set of the characteristic plot of 𝐿𝑑𝑞 

in the complex plane does not encircle the critical point (-1, 0) or the total sum of 

anticlockwise encirclement is equal to the total number of right hand side of 

(𝑍𝐷) and (𝑌𝑠𝑦𝑠) lies on complex plan [94]. Applying this definition requires the use 

of the relationship between the characteristic plot of 𝐿𝑑𝑞 and its eigenvalues, where 

the absolute of (𝜆𝑑𝑞) should satisfy the following criterion for all the frequencies to 

guarantee system stability: 

𝜆𝑑𝑞 ≤ 0 −∞ ≤ 𝑓 ≤ ∞  (4.12) 

Some other criteria were derived based on the Generalised Nyquist which 

transformed the GNC to become more mathematical rather than a plot. It employs 

the norm of relation matrix (𝐿𝑑𝑞) to assess the stability based on the 

impedances/admittances magnitude. In addition, the stability norms suit the use of 

impedance measurement to control the stability. These stability criteria such as 

infinite one norm, the G-norm and maximum singular value which can be defined as 

[95]: 

 The infinite-one norm is: 

𝑍𝑌∞1 = ‖𝑍𝑔
𝑑𝑞‖

∞
‖𝑌𝑁𝑇

𝑑𝑞‖
1
< 0.5  (4.13) 
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where,  

‖𝑍𝑔
𝑑𝑞‖

∞
 is the infinity norm of impedance. 

‖𝑌𝑁𝑇
𝑑𝑞‖

1
 is the unity norm of admittance. 

 Alternatively, the G-norm is: 

𝑍𝑌𝐺𝐺 = ‖𝑍𝑔
𝑑𝑞‖

𝐺
‖𝑌𝑁𝑇

𝑑𝑞‖
𝐺
< 0.25  (4.14) 

where,  

‖𝑍𝑔
𝑑𝑞‖

𝐺
= max(|𝑍𝑔𝑑𝑑|, |𝑍𝑔𝑑𝑞|, |𝑍𝑔𝑞𝑑|, |𝑍𝑔𝑞𝑞|)  

‖𝑌𝑁𝑇
𝑑𝑞‖

𝐺
= max(|𝑌𝑁𝑇𝑑𝑑|, |𝑌𝑁𝑇𝑑𝑞|, |𝑌𝑁𝑇𝑞𝑑|, |𝑌𝑁𝑇𝑞𝑞|)  

 A third criterion which examines the stability of the system based on the 

maximum singular value of both sides of the interfacing point of the system:  

𝑍𝑌𝜎𝜎 = 𝜎(𝑍𝑔
𝑑𝑞)𝜎(𝑌𝑁𝑇

𝑑𝑞) < 1  (4.15) 

Even though the use of such criteria simplifies the stability assessment, they are 

sufficient criteria but not necessary to predict stability. Also, they cannot assess 

instability caused due to the change of system phase angle. 

4.3 Small signal impedance measurement  

The dynamic nature of power systems due to the installation of new equipment, 

connecting and disconnecting system components tends to affect the stability. From 

the impedance technique point of view, these changes in the power system are 

referred to the change in the system impedance. According to the stability criteria 

listed in Section 4.2.2, maintaining the system impedance at certain levels can ensure 

a system’s stability and avoid any oscillations with the power system. This section 

presents the impedance measurement method and presents the methods to disturb a 

system for such measurement.  
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 Impedance measurement definition 4.3.1

Measuring the small signal impedance requires injecting small disturbance 

(voltage/current) to the measured device. The measured quantities are used to find 

the impedances at different dq coordinates as described by: 

[
𝑍𝑑𝑑 𝑍𝑑𝑞
𝑍𝑞𝑑 𝑍𝑞𝑞 

] = [
𝛥𝑣𝑣1𝑑 𝛥𝑣𝑣1𝑞
𝛥𝑣𝑣2𝑑 𝛥𝑣𝑣2𝑞

] [
𝛥𝑖1𝑑 𝛥𝑖1𝑞
𝛥𝑖2𝑑 𝛥𝑖2𝑞

]
−1

  (4.16) 

where,  

Δ𝑣𝑣𝑥𝑑  is the measured voltage at 1
st
 (𝑥=1) and 2

nd
 (𝑥=2) measurement. 

Δ𝑖𝑥𝑑 is the measured current at 1
st
 (𝑥=1) and 2

nd
 (𝑥=2) measurement. 

Two measurements are needed to solve equation (4.16) which can be done by 

disturbing the system twice at the same frequency. The injection of the perturbation 

signal is carried out in series with the device (voltage injection) or in parallel (current 

injection). The selection between the two types is based on factors such as the 

suitability to system configuration and the existence of the harmonics in the 

measured system [74][96].  

 Impedance measurement using multi-tone perturbation signal 4.3.2

Different types of perturbation signals have been introduced in the literature to 

measure the impedance, such as sinusoidal signal injection [96], chirp perturbation 

signal [74] and multi-tone perturbation signal [97]. The multi-tone signal employs a 

superposition theory to inject multiple of frequencies (multi-tone) within the range of 

interest to perturb the measured network/device. It is proposed here to be of the form 

shown in equation (4.17) where the injected signal can be a voltage or current: 

𝐱𝐢𝐧𝐣 = 𝐱𝐦 cos(𝜔𝑡 + 𝛼 + 𝜙𝑖𝑛𝑗)∑ cos(𝜔𝑖𝑡) 
𝑛
𝑖=1   (4.17) 

where, 

𝐱𝐢𝐧𝐣 is the instantaneous value of injected signal. 

𝐱𝐦 is the magnitude of injected signal. 
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𝜔 is the system natural frequency. 

 𝜔𝑖 is the sliding frequency of injected frequencies. 

A minimum number of frequencies should be used in the multi-tone signal to ensure 

the effectiveness of this signal in comparison with the chirp signal [97]. Two 

injections are enough to measure the impedance using multi-tone signal with 

minimum filtering effort which is considered as an advantage of this technique. This 

method is proposed in this thesis to develop an impedance measurement unit (IMU), 

which can be used for fast stability assessment via network operators or a 

supplementary control system. The construction of the IMU and the control system 

will be presented in Chapter 6.  

4.4 Small signal derivation of power system components 

As stated, the system impedance can be extracted by direct measurement at system 

terminals or using the mathematical derivation. The derivation is more convenient to 

add system’s delays such as the delay caused by pulse width modulation. The state 

space and impedance models of some VSC-FACTS devices, as well as the 

synchronous machine, are presented in this section. 

 Small signal derivation of SSSC 4.4.1

The linearization of the three control methods (power control mode, voltage control 

mode and impedance control mode) presented in Chapter 3 is introduced. The state 

space equations of the SSSC presented in Chapter 3 can be linearized as: 

𝚫𝐢𝐬𝐞𝐝𝐪
′ =

1

𝐿𝑠𝑒
𝚫𝐯𝐬𝐞𝐝𝐪 −

𝑅𝑠𝑒
𝐿𝑠𝑒

𝚫𝐢𝐬𝐞𝐝𝐪 −
1

𝐿𝑠𝑒
𝚫𝐦𝐬𝐞𝐝𝐪 + 𝛾𝜔𝚫𝐢𝐬𝐞𝐝𝐪  (4.18) 

where, 

𝑅𝑠𝑒 , 𝐿𝑠𝑒 are the SSSC resistance and inductance respectively.  

𝑖𝑠𝑒𝑑 is the direct component of SSSC current. 

𝑖𝑠𝑒𝑞 is the quadrature component of SSSC current.  
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𝑣𝑠𝑒𝑑 is the direct component of SSSC voltage.  

𝑣𝑠𝑒𝑞 is the quadrature component of SSSC voltage.  

𝑚𝑠𝑒𝑑 is the direct component of the SSSC converter modulation index.  

𝑚𝑠𝑒𝑞 is the quadrature component of the SSSC converter modulation index. 

The current, voltage and modulation vectors are defined as: 

𝐢𝐬𝐞𝐝𝐪 = [𝑖𝑠𝑒𝑑 𝑖𝑠𝑒𝑞]𝑇  

𝐯𝐬𝐞𝐝𝐪 = [𝑣𝑠𝑒𝑑 𝑣𝑠𝑒𝑞]𝑇  

𝐦𝐬𝐞𝐝𝐪 = [𝑚𝑠𝑒𝑑 𝑚𝑠𝑒𝑞]𝑇  

 State space analysis of SSSC with power control mode 4.4.1.1

This linearized form of the power control mode equations is given by: 

𝚫𝐱𝟏𝟐
′ = 𝐾𝑖𝑣𝑑𝑞𝐏𝐐𝐥𝐢𝐧𝐞

∗ − 𝐾𝑖𝑣𝑑𝑞𝚫𝐏𝐐𝐥𝐢𝐧𝐞  (4.19) 

𝚫𝐦𝐬𝐞𝐝𝐪= 𝐾𝑝𝑣𝑑𝑞𝐏𝐐𝐥𝐢𝐧𝐞
∗ − 𝐾𝑝𝑣𝑑𝑞𝚫𝐏𝐐𝐥𝐢𝐧𝐞 + 𝐼. 𝚫𝐱𝟏𝟐 (4.20) 

where,  

𝑃𝑙𝑖𝑛𝑒 is the active power flow in the transmission line.  

𝑄𝑙𝑖𝑛𝑒 is the reactive power flow in the transmission line.  

𝚫𝐱𝟏𝟐 = [Δ𝑥1 Δ𝑥2]
𝑇 ,      𝐼 = [

1 0
0 1

] ,         𝐏𝐐𝒍𝒊𝒏𝒆 = [𝑃𝑙𝑖𝑛𝑒 𝑄𝑙𝑖𝑛𝑒]
𝑇  

The active and reactive power flow through the controlled transmission line can be 

calculated as: 

𝚫𝐏𝐐𝐥𝐢𝐧𝐞 = 𝚫𝐏𝐐𝟏 − 𝚫𝐏𝐐𝟐  (4.21) 
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𝚫𝐏𝐐𝐥𝐢𝐧𝐞 =

3

2
[
−𝑖𝑠𝑒𝑑 𝑖𝑠𝑒𝑑 −𝑖𝑠𝑒𝑞 𝑖𝑠𝑒𝑞
−𝑖𝑠𝑒𝑞 𝑖𝑠𝑒𝑞 𝑖𝑠𝑒𝑑 −𝑖𝑠𝑒𝑑

] [
𝚫𝐯𝟏𝟐𝐝
𝚫𝐯𝟏𝟐𝐪

] +
3

2
[
𝑣2𝑑 − 𝑣1𝑑  𝑣2𝑞 − 𝑣1𝑞
𝑣1𝑞 − 𝑣2𝑞 𝑣2𝑑  − 𝑣1𝑑

] 𝚫𝐢𝐬𝐞𝐝𝐪  
(4.22) 

where,  

𝑣1𝑑 is the direct axis component of sending end bus. 

𝑣2𝑑 is the direct axis component of receiving end bus. 

𝑣1𝑞 is the quadrature axis component of sending end bus. 

𝑣2𝑞 is the quadrature axis component of receiving end bus. 

The bus voltage vector is equal to: 

𝚫𝐯𝟏𝟐 = [Δ𝑣1 Δ𝑣2]  

The arrangement of equations from (4.19) to (4.22) can be written in the following 

form: 

[
𝚫𝐱𝟏𝟐

′

𝚫𝐢𝐬𝐞𝐝𝐪
′ ] = 𝐴𝑃 [

𝚫𝐱𝟏𝟐
𝚫𝐢𝐬𝐞𝐝𝐪

] + 𝐵𝑃

[
 
 
 
𝚫𝐯𝐬𝐞𝐝𝐪
𝚫𝐯𝟏𝟐𝐝
𝚫𝐯𝟏𝟐𝐪
𝚫𝐏𝐐𝐥𝐢𝐧𝐞

∗ ]
 
 
 

  (4.23) 

where, the state matrix (𝐴𝑃) is given as: 

𝐴𝑃 =

[
 
 
 
 
 
 0 0 −

3

2
𝐾𝑖𝑣𝑑(𝑣1𝑑  − 𝑣2𝑑) −

3

2
𝐾𝑖𝑣𝑑(𝑣2𝑞 − 𝑣1𝑞)

0 0
3

2
𝐾𝑖𝑣𝑞(𝑣2𝑞 − 𝑣1𝑞) −

3

2
𝐾𝑖𝑣𝑞(𝑣1𝑑  − 𝑣2𝑑)

−
1

𝐿𝑠𝑒
0 −

𝑅𝑠𝑒

𝐿𝑠𝑒
+
3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
( 𝑣1𝑑  − 𝑣2𝑑)

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(𝑣2𝑞 − 𝑣1𝑞) + ω

0 −
1

𝐿𝑠𝑒

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(𝑣2𝑞 − 𝑣1𝑞) − ω −

𝑅𝑠𝑒

𝐿𝑠𝑒
+
3

2

𝐾𝑣𝑝𝑞

𝐿𝑠𝑒
(𝑣1𝑑  − 𝑣2𝑑)]

 
 
 
 
 
 

  

While, the input matrix (𝐵𝑃) is given in the form: 



 

54 

 

𝐵𝑃 =

[
 
 
 
 
 
 0 0 −

3

2
𝐾𝑖𝑣𝑑𝑖𝑠𝑒𝑑

3

2
𝐾𝑖𝑣𝑑𝑖𝑠𝑒𝑞 −

3

2
𝐾𝑖𝑣𝑑𝑖𝑠𝑒𝑞

3

2
𝐾𝑖𝑣𝑑𝑖𝑠𝑒𝑑 𝐾𝑖𝑣𝑑 0

0 0 −
3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑒𝑞 −

3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑒𝑑

3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑒𝑑

3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑒𝑞 0 𝐾𝑖𝑣𝑞

1

𝐿𝑠𝑒
0

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
𝑖𝑠𝑒𝑑 −

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
𝑖𝑠𝑒𝑞

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
𝑖𝑠𝑒𝑞 −

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
𝑖𝑠𝑒𝑑 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

0
1

𝐿𝑠𝑒

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
𝑖𝑠𝑒𝑞

3

2
𝑖𝑠𝑒𝑑 −

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
𝑖𝑠𝑒𝑑 −

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
𝑖𝑠𝑒𝑞 0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒 ]
 
 
 
 
 
 

  

 State space analysis of SSSC with voltage control mode 4.4.1.2

The controlling the power flow by controlling the voltage drop between the buses is 

the second control method found in the literature. The quadrature component of bus 

voltage (𝑣𝑠𝑒𝑞) is used as an input to the voltage control loop. It is employed to 

control the reactive power of the SSSC. Alternatively, the active power is controlled 

through the dc link voltage of the SSSC. 

[

𝚫𝐱𝟏𝟐
′

𝚫𝐢𝐬𝐞𝐝𝐪
′

𝛥𝑣𝑑𝑐
′

] = 𝐴𝑉 [

𝚫𝐱𝟏𝟐
𝚫𝐢𝐬𝐞𝐝𝐪
𝛥𝑣𝑑𝑐

] + 𝐵𝑉 [

𝑣𝑑𝑐
∗

𝑣𝑠𝑒𝑞
∗

𝚫𝐯𝐬𝐞𝐝𝐪

]  (4.24) 

where, 

𝑣𝑑𝑐
∗  is the dc link reference voltage. 

𝑣𝑠𝑒𝑞
∗  is the quadrature voltage reference. 

The definition of the state matrix (𝐴𝑉) and the input matrix (𝐵𝑉) are given as: 

𝐴𝑉 =

[
 
 
 
 
 
 
 
0 0 0 0 −𝐾𝑖𝑣𝑑
0 0 0 0 0

−
1

𝐿𝑠𝑒
0 −

𝑅𝑠𝑒

𝐿𝑠𝑒
ω

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒

0 −
1

𝐿𝑠𝑒
−ω −

𝑅𝑠𝑒

𝐿𝑠𝑒
0

0 0
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑠𝑒

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑣𝑠𝑒𝑞

𝐶𝑣𝑑𝑐

𝑖𝑠𝑒𝑑
2 .𝑅𝑠𝑒−

3

2
(𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞)

𝐶𝑑𝑐𝑣𝑑𝑐
2 ]
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𝐵𝑉 =

[
 
 
 
 
 
 
 

𝐾𝑖𝑣𝑑 0 0 0
0 𝐾𝑖𝑣𝑞 0 −𝐾𝑖𝑣𝑞

−
1

𝐿𝑠𝑒
𝐾𝑝𝑣𝑑 0

1

𝐿𝑠𝑒
0

0 −
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
0

1

𝐿𝑠𝑒
(1 + 𝐾𝑝𝑣𝑞) 

0 0
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐 ]
 
 
 
 
 
 
 

  

 State space analysis of SSSC with impedance control mode 4.4.1.3

The linearized form of the impedance control mode is given by the state space 

equation as: 

[

𝚫𝐱𝟏𝟐
′

𝚫𝐢𝐬𝐞𝐝𝐪
′

𝛥𝑣𝑑𝑐
′

] = 𝐴𝐼 [

𝚫𝐱𝟏𝟐
𝚫𝐢𝐬𝐞𝐝𝐪
Δ𝑣𝑑𝑐

] + 𝐵𝐼 [

𝑣𝑑𝑐
∗

𝑥𝑠𝑒𝑞
∗

𝚫𝐯𝐬𝐞𝐝𝐪

]  (4.25) 

where, 

𝑥𝑠𝑒𝑞
∗  is the quadrature impedance reference. 

The state matrix (𝐴𝐼) and the input matrix (𝐵𝐼) are given as: 

𝐴𝐼 =

[
 
 
 
 
 
 
 
 
0 0 0 0 −𝐾𝑖𝑣𝑑

0 0 0
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 0

−1

𝐿𝑠𝑒
0 −

𝑅𝑠𝑒

𝐿𝑠𝑒
ω

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒

0
−1

𝐿𝑠𝑒
−ω −

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2

1

𝐿𝑠𝑒
𝐾𝑝𝑣𝑞  −

𝑅𝑠𝑒

𝐿𝑠𝑒
0

0 0
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑠𝑒

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐

𝑖𝑠𝑑
2 .𝑅𝑠𝑒−

3

2
(𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞)

𝐶𝑑𝑐𝑣𝑑𝑐
2 ]

 
 
 
 
 
 
 
 

  

𝐵𝐼 =

[
 
 
 
 
 
 
 
 
𝐾𝑖𝑣𝑑 0 0 0

0 𝐾𝑖𝑣𝑞 0 −
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞

−
𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

1

𝐿𝑠𝑒
 0

0 −
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
0

1

𝐿𝑠𝑒
(1 +

𝐾𝑝𝑣𝑞

𝑖𝑠𝑒𝑞
)

0 0
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐 ]
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 dq impedance model of SSSC with power control mode 4.4.1.4

The generalised impedance model of SSSC controlled by the power control mode 

can be derived using the following generalised equations: 

𝚫𝐯𝐬𝐞𝐝𝐪 = 𝑎𝑝𝑠𝑒𝚫𝐢𝐬𝐞𝐝𝐪 + 𝚫𝐦𝐬𝐞𝐝𝒒  (4.26) 

𝚫𝐦𝐬𝐞𝐝𝐪 = 𝑏𝑝𝑠𝑒𝚫𝐏𝐐𝐥𝐢𝐧𝐞
∗ − 𝑏𝑝𝑠𝑒 𝚫𝐏𝐐𝐥𝐢𝐧𝐞 (4.27) 

𝚫𝐏𝐐𝐥𝐢𝐧𝐞 = −𝑐𝑝𝑠𝑒𝚫𝐯𝐬𝐞𝐝𝐪 + 𝑐𝑝𝑠𝑒𝚫𝐯𝐋𝐝𝐪 + 𝑑𝑝𝑠𝑒𝚫𝐢𝐬𝐞𝐝𝐪 − 𝑓𝑝𝑠𝑒𝚫𝐢𝐬𝐞𝐝𝐪  (4.28) 

Using back substitution of equations (4.26) to (4.28), the impedance of SSSC 

controlled by active and reactive is given as: 

𝑍𝑝𝑆𝑆𝑆𝐶 = (𝐼 − 𝑏𝑝𝑠𝑒𝑐𝑝𝑠𝑒)
−1(𝑎𝑝𝑠𝑒 + 𝑏𝑝𝑠𝑒𝑓𝑝𝑠𝑒 − 𝑏𝑝𝑠𝑒𝑑𝑝𝑠𝑒)  (4.29) 

The definition of the matrices in equation (4.29) can be given as: 

 The SSSC topology matrix: 

𝑎𝑝𝑠𝑒 = [
𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒 −ω𝐿𝑠𝑒
ω𝐿𝑠𝑒 𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒

]  

 The SSSC current controller:  

𝑏𝑝𝑠𝑒 = [
𝐾𝑝𝑣𝑑 +

𝐾𝑖𝑣𝑑

𝑠
0

0 𝐾𝑝𝑣𝑞 +
𝐾𝑖𝑣𝑞

𝑠

]  

 The active and reactive powers calculations matrix: 

𝑐𝑝𝑠𝑒 =
3

2
[
𝑖𝑠𝑒𝑑 𝑖𝑠𝑒𝑞
𝑖𝑠𝑒𝑞 −𝑖𝑠𝑒𝑑

]  𝑑𝑝𝑠𝑒 =
3

2
[
𝑣𝑠𝑒𝑑 𝑣𝑠𝑒𝑞
−𝑣𝑠𝑒𝑞 𝑣𝑠𝑒𝑑

]   𝑓𝑝𝑠𝑒 =
3

2
[
𝑣𝐿𝑑 𝑣𝐿𝑞
−𝑣𝐿𝑞 𝑣𝐿𝑑

]  

 dq impedance model of SSSC with voltage control mode 4.4.1.5

The SSSC impedance controlled by voltage control mode is derived as: 

𝚫𝐯𝐬𝐞𝐝𝐪 = 𝑎𝑝𝑠𝑒𝚫𝐢𝐬𝐞𝐝𝐪 + 𝚫𝐦𝐬𝐞𝐝𝐪  (4.30) 



 

57 

 

𝚫𝐦𝐬𝐞𝐝𝐪 = 𝑏𝑝𝑠𝑒𝚫𝐕𝐕
∗ − 𝑏𝑝𝑠𝑒𝚫𝐕𝐕  (4.31) 

𝑐𝑣𝑠𝑒𝚫𝐕𝐕 = 𝑑𝑣𝑠𝑒𝚫𝐯𝐬𝐞𝐝𝐪 + 𝑒𝑣𝑠𝑒𝚫𝐢𝐬𝐞𝐝𝐪  (4.32) 

where, 

𝚫𝐕𝐕 = [𝑣𝑑𝑐 𝑣𝑠𝑒𝑞]     

The dc link voltage and quadrature voltage matrices are: 

𝑐𝑣𝑠𝑒 = [𝐶𝑑𝑐𝑠𝑣𝑑𝑐 +
3

2
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞−𝑖𝑠𝑒𝑑

2 .𝑅𝑠𝑒

𝑣𝑑𝑐
0

0 1

]  

𝑑𝑣𝑠𝑒 = [
3

2
𝑖𝑠𝑒𝑑

3

2
𝑖𝑠𝑒𝑞

0 1
]  𝑒𝑣𝑠𝑒 = [

3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑. 𝑅𝑓

3

2
𝑣𝑠𝑒𝑞

0 0
]  

So, the impedance, in this case, is: 

𝑍𝑣𝑆𝑆𝑆𝐶 = {𝐈 + 𝑏𝑣𝑠𝑒(𝑐𝑣𝑠𝑒)
−1𝑑𝑣𝑠𝑒}

−1{𝑎𝑣𝑠𝑒 − 𝑏𝑣𝑠𝑒(𝑐𝑣𝑠𝑒)
−1𝑒𝑣𝑠𝑒}  (4.33) 

 dq impedance model of SSSC with impedance control mode 4.4.1.6

Similar to the voltage control mode, the generalised impedance model of SSSC 

controlled by impedance control mode is given as: 

𝚫𝐯𝐬𝐞𝐝𝐪 = 𝑎𝑣𝑠𝑒𝚫𝐢𝐬𝐞𝐝𝐪 + 𝚫𝐦𝐬𝐞𝐝𝐪  (4.34) 

𝚫𝐦𝐬𝐞𝐝𝐪 = 𝑏𝑣𝑠𝑒𝚫𝐕𝐗
∗ − 𝑏𝑣𝑠𝑒𝚫𝐕𝐗  (4.35) 

𝑐𝑣𝑠𝑒𝚫𝐕𝐗 = 𝑑𝑖𝑠𝑒𝚫𝐯𝐬𝐞𝐝𝐪 + 𝑒𝑖𝑠𝑒𝚫𝐢𝐬𝐞𝐝𝐪  (4.36) 

where, 

𝚫𝐕𝐗 = [𝑣𝑑𝑐 𝑥𝑠𝑒𝑞]𝑇  

The dc link voltage and impedance calculation matrix as: 
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𝑑𝑖𝑠𝑒 = [

3

2
𝑖𝑠𝑒𝑑

3

2
𝑖𝑠𝑒𝑞

0
1

𝑖𝑠𝑒𝑞

]    𝑒𝑖𝑠𝑒 = [

3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑. 𝑅𝑓

3

2
𝑣𝑠𝑒𝑞

0
𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2

]  

In the same way, the impedance of a SSSC controlled by impedance is: 

𝑍𝑖𝑆𝑆𝑆𝐶 = {𝐈 + 𝑏𝑖𝑠𝑒(𝑐𝑖𝑠𝑒)
−1𝑑𝑖𝑠𝑒}

−1{𝑎𝑖𝑠𝑒 − 𝑏𝑖𝑠𝑒(𝑐𝑖𝑠𝑒)
−1𝑒𝑖𝑠𝑒}  (4.37) 

 Stability norms of SSSC control modes  4.4.1.7

The effect of different control modes on the small signal impedance has not been 

investigated in the literature. So, to identify the similarity and the differences 

between control modes over the frequency, the impedances of the three control 

modes are compared under the same operating conditions as seen in Figure 4.2. Both 

impedance control mode and voltage control mode has the same impedances over all 

frequencies.  
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Figure 4.2. SSSC impedance comparison for different control modes. 
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This is referred to the use of the SSSC impedance is similar to the use of the SSSC 

voltage. Alternatively, the power control mode is slightly different in magnitude for 

the diagonal impedances; in the meantime, this difference is increased for the off-

diagonal impedances. Similarly, the phase shifts of the power control mode have 

180
o
 phase difference over the whole range of frequency in the off-diagonal 

impedances and only at higher frequencies for the diagonal impedances. This appears 

the operation of the power control mode as a decreased capacitive while the voltage 

and impedance control modes as an increased inductive.   

 The validation of SSSC control modes 4.4.1.8

Three control methods of the SSSC are validated using the small signal impedance 

measurement of the SSSC detailed model. Such validation ensures the validity of the 

average and linearized model of the SSSC. The series voltage injection is 

implemented in these measurements to perturb the SSSC. The SSSC is operating at 

the same operating conditions for the three control modes, which has the parameters 

listed in Table 4.1. Due to the series connection of the SSSC; the impedance of the 

SSSC can be measured as a two-port circuit, which will have different values in each 

measurement direction, or it can be measured as a converter and harmonic filter. The 

second measurement provides the easiest way where the total impedance of the 

SSSC will be equal to the filter, converter and the series injection transformer 

impedance as shown in Figure 4.3. In the case of the delay elements embedded in the 

model, the typical derivation of the impedance is more convenient to add such 

delays. 
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Figure 4.3. Impedance measurement of SSSC. 

Table 4.1. SSSC control modes parameters. 

Parameter value 

𝑅𝑓 , 𝐿𝑓 0.5 Ω, 5 mH 

𝑅𝑠𝑒 , 𝐿𝑠𝑒 15.60 Ω, 70 mH 

𝐶𝑑𝑐  800 μF 

𝑣𝑑𝑐 1000 V 

𝐾𝑝𝑣𝑑 , 𝐾𝑖𝑣𝑑 -0.15 V/A, 0.001 V/A.s 

𝐾𝑝𝑣𝑞 ,  𝐾𝑖𝑣𝑞 -0.15 V/A, 0.001 V/A.s 

𝑣𝑠𝑒 100 V 

𝑓𝑠 50 Hz 
 

The measured impedance calculated using the measured voltages and currents at the 

bus (A) in Figure 4.3. In the measurement, series injection method is employed to 

extract the impedances of the three control mode of SSSC time domain Simulink 

model. The four impedances (𝑍𝑑𝑑 , 𝑍𝑑𝑞 , 𝑍𝑞𝑑 and 𝑍𝑞𝑞) are agreed with the calculated 

impedance as shown in Figure 4.4, and Figure 4.6 which validate the mathematical 

models of the SSSC.  
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Figure 4.4. SSSC impedance for power control mode.  
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Figure 4.5. SSSC impedance for voltage control mode.  
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Figure 4.6. SSSC impedance for impedance control mode. 

The previous plots the accuracy of the mathematical model of the three control 

modes of the SSSC on representing its response in the analysis. 

 Small signal derivation of STATCOM 4.4.2

The STATCOM is the second type of the VSC-FACTS devices which is modelled 

here. The phase-locked loop (PLL) effect is ignored in the analysis. Two control 

modes for the STATCOM are considered in this section. These are the voltage 

control mode and reactive power control mode.  

 State space analysis of STATCOM with direct voltage control  4.4.2.1

The linearized state space equations of the STATCOM presented in chapter 3 are 

given as:  
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𝑑

𝑑𝑡
[

𝚫𝐱𝟏𝟐
𝚫𝐱𝟑𝟒
𝚫𝐢𝐬𝐝𝐪
𝛥𝑣𝑑𝑐

] = 𝐴𝑠𝑣 [

𝚫𝐱𝟏𝟐
𝚫𝐱𝟑𝟒
𝚫𝐢𝐬𝐝𝐪
𝛥𝑣𝑑𝑐

] + 𝐵𝑠𝑣 [
𝚫𝐯𝐬𝐝𝐪
𝐯∗

]  (4.38) 

𝚫𝐢𝐬𝐝𝐪 = 𝐶𝑆𝑇𝐴𝑇[𝚫𝐱𝟏𝟐 𝚫𝐱𝟑𝟒 𝚫𝐢𝐬𝐝𝐪 𝛥𝑣𝑑𝑐]𝑇  (4.39) 

where,  

𝚫𝐱𝟏𝟐 = [Δ𝑥1 Δ𝑥2]
𝑻   𝚫𝐱𝟑𝟒 = [Δ𝑥3 Δ𝑥4]

𝑻  

𝚫𝐢𝐬𝐝𝐪 = [Δ𝑖𝑠𝑑 Δ𝑖𝑠𝑞]𝑇  is the linearized current vector of STATCOM currents. 

𝚫𝐯𝐬𝐝𝐪 = [Δ𝑣𝑠𝑑 Δ𝑣𝑠𝑞]𝑇  is the linearized voltage vector of STATCOM voltages. 

𝐯∗ = [𝑣𝑑𝑐 𝑣𝑠𝑑]  is the dc link voltage and direct voltage vector. 

The state matrix (𝐴𝑠𝑣) and the input matrix (𝐵𝑠𝑣) are: 

𝐴𝑠𝑣 =

[
 
 
 
 
 
 
 
 
 
0 0 𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑
0 0 0 𝐾𝑖𝑖𝑞 0 −𝐾𝑖𝑖𝑞 0

0 0 0 0 0 0 −𝐾𝑖𝑣𝑑
0 0 0 0 0 0 0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑑

𝐿𝑓
0

𝐾𝑝𝑖𝑑−𝑅𝑓

𝐿𝑓
𝜔

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓
−𝜔

𝐾𝑝𝑖𝑞−𝑅𝑓

𝐿𝑓
0

0 0 0 0
3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 ]

 
 
 
 
 
 
 
 
 

  

𝐵𝑠𝑣 =

[
 
 
 
 
 
 
 
 
 

0 0 0 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑
−𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞 0 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞 0

0 0 0 𝐾𝑖𝑣𝑑
−𝐾𝑖𝑣𝑞 0 𝐾𝑖𝑣𝑞 0
1

𝐿𝑓
 0 0

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

−
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓

1

𝐿𝑓
 

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
0

3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
0 0 ]
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𝐾𝑝𝑖𝑑𝑞 𝐾𝑖𝑖𝑑𝑞: represent the proportional and integral gains of current controller of 

direct and quadrature components 

𝐾𝑝𝑣𝑑𝑞 𝐾𝑖𝑣𝑑𝑞: represent the proportional and integral gains of voltage controller of 

direct and quadrature components 

 State space analysis of STATCOM with reactive power control  4.4.2.2

Using the reactive power required at a busbar is the second type of control modes of 

the STATCOM as shown in Chapter 3. The state space matrix (𝐴𝑠𝑞) and the input 

matrix (𝐵𝑠𝑞) of the STATCOM which their quadrature voltage magnitude is 

controlled with the reactive power is given as follows: 

𝐴𝑠𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
0 0 𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑

0 0 0 𝐾𝑖𝑖𝑞 −
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑞

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑑 − 𝐾𝑖𝑖𝑞 0

0 0 0 0 0 0 −𝐾𝑖𝑣𝑑

0 0 0 0 −
3

2
𝐾𝑖𝑣𝑞𝑣𝑠𝑞

3

2
𝐾𝑖𝑣𝑞𝑣𝑠𝑑 0

1

𝐿𝑓
0

𝐾𝑝𝑖𝑑

𝐿𝑓
0

−𝑅𝑓−𝐾𝑝𝑖𝑑

𝐿𝑓
𝜔

−𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓
−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑞

𝐿𝑓
− 𝜔

−𝑅𝑓−𝐾𝑝𝑖𝑞+
3

2
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑑

𝐿𝑓
0

0 0 0 0
3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
 

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐

𝛼𝑑𝑐

𝐶𝑑𝑐𝑣𝑑𝑐
2 ]

 
 
 
 
 
 
 
 
 
 
 

  

𝐵𝑠𝑞 =

[
 
 
 
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑 0
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑞

−3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑑 0 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞

0 0 𝐾𝑖𝑣𝑑 0
3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑞

−3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑑 0 𝐾𝑖𝑣𝑞

 
1

𝐿𝑓
0

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
0

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑞

𝐿𝑓
 
1−

3

2
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑑

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓

3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
0 0 ]

 
 
 
 
 
 
 
 
 
 

  

where, the linearization of the reactive power is given as: 
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Δ𝑄 =
3

2
𝑣𝑠𝑞Δ𝑖𝑠𝑑 −

3

2
𝑣𝑠𝑑Δ𝑖𝑠𝑞 −

3

2
𝑖𝑠𝑞Δ𝑣𝑠𝑑 +

3

2
𝑖𝑠𝑑Δ𝑣𝑠𝑞  (4.40) 

 dq impedance of STATCOM based direct voltage control 4.4.2.3

The impedance model of the STATCOM can be derived by the arrangement of the 

STATCOM linearized equations (4.38) and (4.39) to have: 

𝚫𝐯𝐬𝐝𝐪 = 𝑎𝑍𝚫𝐢𝐬𝐝𝐪 − 𝑏𝑍𝚫𝐢𝐬𝐝𝐪
∗   (4.41) 

𝚫𝐢𝐬𝐝𝐪
∗ = 𝑐𝑍𝐯

∗ − 𝑐𝑍𝐯  (4.42) 

The definition of symbols in equations (4.41) and (4.42) is found in the previous 

sections. The voltage controller is responsible for controlling the dc link and bus 

voltages using: 

𝑑𝑧𝐯 = 𝑓𝑣𝑧𝚫𝐯𝐬𝐝𝐪 + 𝑒𝑣𝑧𝚫𝐢𝐬𝐝𝐪  (4.43) 

where, the submatrices are defined as: 

 The topology matrix: 

𝑎𝑍 = [
𝐿𝑓s + 𝑅𝑓 + (𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
) −ω𝐿𝑓

ω𝐿𝑓 𝑅𝑓 + 𝐿𝑓s + (𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
)
]   

 The current and voltage controller matrices are defined as: 

𝑏𝑍 = −[
(𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑
𝑠
) 0

0 (𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
)

] 𝑐𝑍 = [
(𝐾𝑝𝑣𝑑 +

𝐾𝑖𝑣𝑑

𝑠
) 0

0 (𝐾𝑝𝑣𝑞 +
𝐾𝑖𝑣𝑞

𝑠
)
]  

 The dc link voltage calculation matrices 

𝑑𝑧 = [
𝑠𝐶𝑑𝑐𝑣𝑑𝑐

2 −𝛼𝑑𝑐

𝑣𝑑𝑐
0

0 1
]   𝑒𝑣𝑧 = [(

3

2
𝑣𝑠𝑑 − 2𝑖𝑠𝑑. 𝑅𝑓)

3

2
𝑣𝑠𝑞

0 0
] 
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𝑓𝑣𝑧 = [
3

2
𝑖𝑠𝑑

3

2
𝑖𝑠𝑞

1 0
]  

𝛼𝑑𝑐 = 𝑖𝑠𝑑
2 . 𝑅𝑓 −

3

2
(𝑣𝑠𝑑𝑖𝑠𝑑 + 𝑣𝑠𝑞 . 𝑖𝑠𝑞)  

Equations (4.42) and (4.43) show the STATCOM impedance in synchronous dq 

coordinates. The full derivation of STATCOM impedance is found in Appendix-B. 

Using Mason’s gain formula or any block reduction method, the total transfer 

function of the small signal STATCOM impedance is as follows: 

𝚫𝐯𝐬𝐝𝐪 = 𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑉𝚫𝐢𝐬𝐝𝐪 + 𝐷𝑑𝑞𝐯
∗   (4.44) 

where, the STATCOM impedance (𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑉) is given as: 

𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑉 =
𝑎𝑍 + 𝑏𝑍𝑐𝑍𝑑𝑧

−1𝑒𝑣𝑧
 𝐼 − 𝑏𝑍𝑐𝑍𝑑𝑧−1𝑓𝑣𝑧

 
(4.45) 

The STATCOM operation is considered in this thesis to be ideal, meaning that the 

pulse width modulation delay (𝑃𝑊𝑀) and the measurement delay (𝑚𝑑) are ignored. 

The main effect of ignoring the PWM delay is that the off-diagonal impedance will 

be very small, whilst the measurement delay is significant only in large systems. 

These delays can be added to the model as shown in Figure 4.7 or by making the 

stability assessment more conservative. 

md
+

+
+
+PMW
+++

-

Za

Zb

md

Zd

Zev

Zfv

*

*
dc

sd

v

v

 
 
 

sdqΔi

vsdqΔ

 

Figure 4.7. Block diagram of STATCOM impedance model of direct voltage control. 
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 dq impedance of STATCOM with reactive power control 4.4.2.4

The second type of STATCOM control is the control with reactive power control. It 

is derived in similar way as the previous analysis as (details in Appendix-D): 

𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑄 = (I − 𝑏𝑧𝑐𝑧𝑑𝑧
−1𝑓𝑧)

−1(𝑎𝑧 + 𝑏𝑧𝑐𝑧𝑑𝑧
−1𝑒𝑧)  (4.46) 

The definitions of the matrices in equation (4.46) are: 

𝑓𝑧 =
3

2
[
𝑖𝑠𝑑 𝑖𝑠𝑞
−𝑖𝑠𝑞 𝑖𝑠𝑑

] 𝑒𝑧 = [
(
3

2
𝑣𝑠𝑑 − 2𝑅𝑓𝑖𝑠𝑑)

3

2
𝑣𝑠𝑞

3

2
𝑣𝑠𝑞 −

3

2
𝑣𝑠𝑑

]  

 The validation of STATCOM model 4.4.2.5

The impedance injection method is used to validate the linearized model of the 

STATCOM. This model is compared with the linearized equations derived here by 

finding the small signal admittance of the two models as shown in Figure 4.8. The 

resulted impedances of the two models are equal over the range of the frequency of 

study which validates the linearized equations. The effect of the operating point on 

the measured impedance has been reported in [87], therefore, both average and 

mathematical models of the STATCOM are measured at the same operating 

conditions.  
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Figure 4.8. Validation of STATCOM impedance model based direct voltage control. 

The accuracy of the measured impedance can be improved by repeating the 

measurement several times with different magnitudes and phase of the injected 

signal. The impedance representation of the STATCOM shows off-diagonal 

impedances is fixed impedance at low frequencies while it decreases at high 

frequencies. In the meantime for the diagonal impedance, the 𝑍𝑑𝑑 changes its 

magnitude and phase by the change of the frequency while the 𝑍𝑞𝑞 has affixed 

magnitude and phase at low frequencies and tend to increase at higher frequencies. 

 Small signal derivation of synchronous machines 4.4.3

The synchronous machine is one of the main factors, which ensures the stability 

issues and might responsible for the system oscillations. The performance of VSC-

FACTS devices will be examined on damping those oscillations and compared 

between their effectiveness.  

 State space analysis of the synchronous generator 4.4.3.1

The arrangement of the linearized equations of the synchronous generator presented 

as [98]. 
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𝑑

𝑑𝑡
 

[
 
 
 
 
 
𝚫𝐢𝐝𝐪𝐬

𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝐢𝐦𝐝𝐪
𝐫

𝚫𝛚𝛅 ]
 
 
 
 
 

= −𝐷𝑠𝑦𝑛
−1 𝐴𝑆𝑦𝑛

[
 
 
 
 
 
𝚫𝐢𝐝𝐪𝐬

𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝐢𝐦𝐝𝐪
𝐫

𝚫𝛚𝛅 ]
 
 
 
 
 

+ 𝐷𝑠𝑦𝑛
−1

[
 
 
 
 
 
𝚫𝐯𝐝𝐪𝐬

𝐫

𝚫𝐯`𝐟𝐤𝐝
𝐫

𝚫𝐯`𝐤𝐪𝟏𝟐
𝐫

𝛥𝑇𝑚
0 ]

 
 
 
 
 

  (4.47) 

The inclusion of the mechanical part can be included as shown the state space 

equation (4.48) as: 

𝐷𝑠𝑦𝑛
𝑑

𝑑𝑡

[
 
 
 
 
 𝚫𝐢𝐝𝐪𝐬

𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝛅
𝚫𝛚 ]

 
 
 
 
 

= 𝐴𝐴

[
 
 
 
 
 𝚫𝐢𝐝𝐪𝐬

𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝛅
𝚫𝛚 ]

 
 
 
 
 

+𝐵𝐵

[
 
 
 
 
𝚫𝐯𝐝𝐪𝐬

𝐫  

𝚫𝐯`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐯`𝐟𝐤𝐝
𝐫

𝐓𝐭𝐮 ]
 
 
 
 

  (4.48) 

where, 

 The stator current vector and voltage vector referred to the rotor is given as: 

𝚫𝐢𝐝𝐪𝐬
𝐫 = [Δ𝑖𝑑𝑠

𝑟 Δ𝑖𝑞𝑠
𝑟 ]𝑇  𝚫𝐯𝐝𝐪𝐬

𝐫 = [Δ𝑣𝑑𝑠
𝑟 Δ𝑣𝑞𝑠

𝑟 ]𝑇  

 The quadrature dampers currents and voltage vector are: 

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫 = [Δ𝑣`𝑘𝑞1

𝑟 Δ𝑣`𝑘𝑞2
𝑟 ]𝑇  

𝚫𝐯`𝐤𝐪𝟏𝟐
𝐫 = [Δ𝑣`𝑘𝑞1

𝑟 Δ𝑣`𝑘𝑞2
𝑟 ]𝑇  

 The excitation field and direct damper voltage and current vectors are: 

𝚫𝐢`𝐟𝐤𝐝
𝐫 = [𝚫𝒊`𝒇𝒅

𝒓 𝚫𝒊`𝒌𝒅
𝒓
]
𝑻
 𝚫𝐯`𝐟𝐤𝐝

𝐫 = [𝚫𝒗`𝒇𝒅
𝒓 𝚫𝒗`𝒌𝒅

𝒓
]
𝑻
   

 The speed of the turbine masses vector:  

 𝚫𝛚 = [Δ𝜔1 Δ𝜔2 Δ𝜔3 Δ𝜔4 Δ𝜔5]
𝑇  

 The angular position of turbine masses vector 

𝚫𝛅 = [Δ𝛿1 Δ𝛿2 Δ𝛿3 Δ𝛿4 Δ𝛿5]
𝑇   
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 The mechanical torques developed by the respective turbine sections: 

𝐓𝐭𝐮 = [𝑇𝐿𝑃𝐴 𝑇𝐿𝑃𝐵 𝑇𝐼𝑃 𝑇𝐻𝑃]𝑇  

𝚫𝛚𝛅 = [Δ𝛿 Δ𝜔]  

While, the definition of the matrices (𝐷𝑠𝑦𝑛), (𝐴𝐴) and (𝐵𝐵)are: 

𝐴𝐴 = [

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

] 

The definitions of the submatrices of the matrix (𝐴𝐴) are: 

𝐴11 =

[
 
 
 
 
 
 
 

𝑟𝑠 0 0 −𝜔𝑟𝐿𝑙𝑠 −𝜔𝑟𝐿𝑚𝑞 𝜔𝑟𝐿𝑚𝑞 𝜔𝑟𝐿𝑚𝑞

0 𝑟𝑘𝑑1
`𝑟 0 0 0 0

0 0 𝑟𝑓𝑑
`𝑟 0 0 0

𝜔𝑟𝐿𝑙𝑠 + 𝜔𝑟𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑑 𝑟𝑠 0 0

0 0 0 0 𝑟𝑘𝑞1
`𝑟 0

0 0 0 0 0 𝑟𝑘𝑞2
`𝑟

]
 
 
 
 
 
 
 

   

𝐴𝐴32 =

[
 
 
 
 
 
 
 
 −

𝑘12

2𝐻1

𝑘12

2𝐻1
0 0 0

𝑘12

2𝐻2
−

𝑘23

2𝐻2
−

𝑘12

2𝐻2

𝑘23

2𝐻2
0 0

0
𝑘23

2𝐻3
−

𝑘34

2𝐻3   
−

𝑘23

2𝐻3

𝑘34

2𝐻3   
0

0 0
𝑘34

2𝐻4
−

𝑘45

2𝐻4
−

𝑘34

2𝐻4

𝑘45

2𝐻4

0 0 0
𝑘45

2𝐻5
−

𝑘45

2𝐻5]
 
 
 
 
 
 
 
 

   

𝐴𝐴12 = 𝑍𝑒𝑟𝑜𝑠[6 × 5]   

𝐴𝐴21 = 𝑧𝑒𝑟𝑜𝑠 [5 × 6]  

𝐴𝐴13 =

[
 
 
 
 
 
 
−𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 + 𝐿𝑚𝑞(−𝑖𝑘𝑞2
`𝑟 −𝑖𝑘𝑞1

`𝑟 + 𝑖𝑞𝑠
𝑟 ) 0 0 0 0

𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 − 𝐿𝑚𝑑(𝑖𝑓𝑑

` + 𝑖𝑘𝑑1
`𝑟 − 𝑖𝑑𝑠

𝑟 ) 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 
 
 

  𝐴𝐴22 = 𝑍𝑒𝑟𝑜𝑠[5 × 5] 
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𝐴𝐴23 =

[
 
 
 
 
𝜔 0 0 0 0
0 𝜔 0 0 0
0 0 𝜔 0 0
0 0 0 𝜔 0
0 0 0 0 𝜔]

 
 
 
 

   𝐴𝐴33 =

[
 
 
 
 
 
 
 
 −

𝐷1

2𝐻1
0 0 0 0

0 −
𝐷2

2𝐻2
0 0 0

0 0 −
𝐷3

2𝐻3
0 0

0 0 0 −
𝐷4

2𝐻4
0

0 0 0 0 −
𝐷5

2𝐻5]
 
 
 
 
 
 
 
 

  

𝐴𝐴31 =
𝜔1

2𝐻1
[𝑎𝑎131 𝑎𝑎231]     

𝑎𝑎131 = [

(𝐿𝑚𝑞𝑖𝑑𝑠0
𝑟 ) −(𝐿𝑚𝑑𝑖𝑞𝑠0

𝑟 ) −(𝐿𝑚𝑑𝑖𝑞𝑠0
𝑟 )

]    

𝑎𝑎231 =

[
 
 
 
(−𝐿𝑚𝑑𝑖𝑞𝑠0

𝑟 + 𝐿𝑚𝑞𝑖𝑞𝑠0
𝑟 )  (𝐿𝑚𝑞𝑖𝑑𝑠0

𝑟 − 𝐿𝑚𝑑(𝑖𝑑𝑠0
𝑟 − 𝑖𝑓𝑑0

`𝑟 )) (𝐿𝑚𝑞𝑖𝑑𝑠0
𝑟 )

𝑧𝑒𝑟𝑜𝑠 (4 × 6)
]
 
 
 

    

 

 

Also, the definition of the matrices (𝐷𝑠𝑦𝑛)  and (𝐵𝐵) is: 

𝐷𝑠𝑦𝑛

=

[
 
 
 
 
 
 
 
 
 
 
−𝐿𝑙𝑠 − 𝐿𝑚𝑑 𝐿𝑚𝑑 𝐿𝑚𝑑 0 0 0

−𝐿𝑚𝑑 𝐿𝑙𝑘𝑑1
` + 𝐿𝑚𝑑 𝐿𝑚𝑑 0 0 0

−𝐿𝑚𝑑 𝐿𝑚𝑑 𝐿𝑙𝑓𝑑
` + 𝐿𝑚𝑑 0 0 0 𝑧𝑒𝑟𝑜𝑠(6 × 10)

0 0 0 −𝐿𝑙𝑠 − 𝐿𝑚𝑞 𝐿𝑚𝑞 𝐿𝑚𝑞

0 0 0 −𝐿𝑚𝑞 𝐿𝑙𝑘𝑞1
` + 𝐿𝑚𝑞 𝐿𝑚𝑞

0 0 0 −𝐿𝑚𝑞 𝐿𝑚𝑞 𝐿𝑙𝑘𝑞2
` + 𝐿𝑚𝑞

𝑧𝑒𝑟𝑜𝑠(10 × 6) 𝐼(10 × 6)
]
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𝐵𝐵 =

[
 
 
 
 
 
 
 
 
 
 

𝐼(6 × 6) 𝑧𝑒𝑟𝑜𝑠(6 × 3)

𝑧𝑒𝑟𝑜𝑠(6 × 9)

1

2𝐻2
0 0 0

0
1

2𝐻3
0 0

𝑧𝑒𝑟𝑜𝑠(4 × 5) 0 0
1

2𝐻4
0

0 0 0
1

2𝐻5]
 
 
 
 
 
 
 
 
 
 

  

 dq impedance of the synchronous generator 4.4.3.2

The synchronous machine equation can be linearizing and by substituting the mutual 

inductance equation in voltage equations to have: 

[

𝚫𝐯𝐝𝐪𝐬
𝐫

𝚫𝐯`𝐟𝐤𝐝
𝐫

𝚫𝐯`𝐤𝐪𝟏𝟐
𝐫

] =

[
 
 
 
 
 
 
−𝑟𝑠 − 𝑠𝐿𝑙𝑠 𝜔𝑟𝐿𝑙𝑠 0 0 0 0
−𝜔𝑟𝐿𝑙𝑠 −𝑟𝑠 − 𝑠𝐿𝑙𝑠 0 0 0 0

0 0 −𝑟𝑘𝑑1
`𝑟 + 𝑠𝐿𝑙𝑘𝑑1

` 0 0 0

0 0 0 −𝑟𝑓𝑑
`𝑟 + 𝑠𝐿𝑙𝑓𝑑

` 0 0

0 0 0 0 −𝑟𝑘𝑞1
`𝑟 + 𝑠𝐿𝑙𝑘𝑞1

` 0

0 0 0 0 0 −𝑟𝑘𝑞2
`𝑟 + 𝑠𝐿𝑙𝑘𝑞2

`
]
 
 
 
 
 
 

[

𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

 𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

] +

[
 
 
 
 
 
 
𝑠𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑞
𝑠𝐿𝑚𝑑 0
𝑠𝐿𝑚𝑑 0
𝜔𝑟𝐿𝑚𝑑 𝑠𝐿𝑚𝑞
0 𝑠𝐿𝑚𝑞
0 𝑠𝐿𝑚𝑞 ]

 
 
 
 
 
 

𝚫𝐢𝐦𝐝𝐪
𝐫 +

[
 
 
 
 
 
𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 0

0 0
0 0

𝐿𝑚𝑑𝑖𝑚𝑑
𝑟 − 𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 0
0 0
0 0]

 
 
 
 
 

𝚫𝛚𝛅                      (4.49) 

𝚫𝐢𝐦𝐝𝐪
𝐫 = [Δ𝑖𝑚𝑑

𝑟 Δ𝑖𝑚𝑞
𝑟 ]𝑇  

According to current directions assumed in synchronous machine equivalent circuit 

presented in chapter 3, and using KCL and with the assumption that the field voltage 

is constant during the operation (Δ𝑣𝑓𝑑
` = 0), the stator voltage is given as: 
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𝚫𝐯𝐝𝐪𝐬
𝐫 =

[
(−𝑟𝑠 − 𝑠𝐿𝑙𝑠) + 𝑠𝐿𝑚𝑑𝐴𝑚𝑠𝑑 𝜔𝑟𝐿𝑙𝑠 − 𝜔𝑟𝐿𝑚𝑞𝐴𝑚𝑠𝑞
−𝜔𝑟𝐿𝑙𝑠 + 𝜔𝑟𝐿𝑚𝑑𝐴𝑚𝑠𝑑 (−𝑟𝑠 − 𝑆𝐿𝑙𝑠) + 𝑠𝐿𝑚𝑞𝐴𝑚𝑠𝑞

] 𝚫𝐢𝐝𝐪𝐬
𝐫 +

[
(𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 ) 0

(𝐿𝑚𝑑𝑖𝑚𝑑
𝑟 − 𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 ) 0
] 𝚫𝛚𝛅    

 

(4.50) 

𝚫𝐯𝐝𝐪𝐬
𝐫 = [

𝑍𝑑𝑑 𝑍𝑑𝑞
𝑍𝑞𝑑 𝑍𝑞𝑞

] 𝚫𝐢𝐝𝐪𝐬
𝐫 + [

(𝐿𝑙𝑠𝑖𝑞𝑠
𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟 ) 0

(𝐿𝑚𝑑𝑖𝑚𝑑
𝑟 − 𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 ) 0
] 𝚫𝛚𝛅   (4.51) 

𝚫𝐯𝐝𝐪𝐬
𝐫 = 𝑍𝑍𝚫𝐢𝐝𝐪𝐬

𝐫 + 𝐴𝜆 𝚫𝛚𝛅   (4.52) 

By linearizing the electrical torque equation and substituting the mutual inductance 

and the currents in torque equation for getting the form: 

𝚫𝐓𝐞𝐦 = (
3

2
) (

𝑃

2
) [
𝑇𝑑 𝑇𝑞
0 0

]𝚫𝐢𝐝𝐪𝐬
𝐫    

where, 𝚫𝐓𝐞𝐦 = [Δ𝑇𝑒 Δ𝑇𝑚]
𝑇 

(4.53) 

𝚫𝐓𝐞𝐦 = 𝐺𝑇𝑑𝑞𝚫𝐢𝐝𝐪𝐬
𝐫    (4.54) 

The rotor speed deviation (Δω𝑟) can be found as:  

𝑑

𝑑𝑡
Δω𝑟 =

1

2𝐻
(Δ𝑇𝑚 − Δ𝑇𝑒 − 𝐷1. Δω𝑟)   (4.55) 

𝚫𝛚𝛅 = 𝐴𝐻. 𝐺𝑇𝑑𝑞𝚫𝐢𝐝𝐪𝐬
𝐫   (4.56) 

𝐴𝐻 = [
−1

2𝐻𝑆+𝐷1
0

0 0
] ,               𝐺𝑇𝑑𝑞 = [

𝑇𝑑 𝑇𝑞
0 0

]   

Substituting (4.56) in (4.52) to have: 

𝚫𝐯𝐝𝐪𝐬
𝐫 = (𝑍𝑍 + 𝐴𝜆 . 𝐴𝐻. 𝐺𝑇𝑑𝑞)𝚫𝐢𝐝𝐪𝐬

𝐫    (4.57) 

𝚫𝐯𝐝𝐪𝐬
𝐫 = 𝑍𝑠𝑦𝑛𝑐ℎ𝚫𝐢𝐝𝐪𝐬

𝐫    (4.58) 
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A detailed full derivation is included in Appendix-C. The validation of the 

synchronous machine impedance (4.58) is carried out using the direct measurement 

of the synchronous impedance using the impedance measurement method presented 

previously in this chapter. A voltage injection method is employed to perturb the 

synchronous machine. The injected frequencies are between (1 to 10000) rad/s. The 

parameters of the synchronous machine are listed in Table 4.2. The mathematical 

model in equation (4.58) is validated by comparing it with the impedance 

measurement of the detiled model as shown in Figure 4.9. The two measurements are 

generally well matched except for (𝑍𝑑𝑑) at very low frequencies. This is attributed to 

the nonlinearity response of the synchronous machine to low frequency 

measurements which affected the results. 

Table 4.2. Synchronous machine parameters. 

Parameter Value Parameter Value 

𝑟𝑠, 𝐿𝑙𝑠 2.85 mΩ, 21 mH 𝐿𝑚𝑑 , 𝐿𝑚𝑞 1.785 mΩ, 0.54 H 

𝑅𝑓𝑑 , 𝐿𝑙𝑓𝑑 86.85 mΩ, 0.171H 𝑅𝑘𝑑1, 𝐿𝑙𝑘𝑑1 97.8 mΩ, 0.7701 H 

𝑅𝑘𝑞1, 𝐿𝑙𝑘𝑞1 43 mΩ, 0.383 𝑅𝑘𝑞2, 𝐿𝑙𝑘𝑞2 11.6 mΩ, 1.375 H 

𝑖𝑓𝑑0 0.6586 A 𝑖𝑘𝑞1 23.3µA 

𝑖𝑘𝑑1 -9.5467 µA 𝑖𝑘𝑞2 .273mA 

𝐻1 2.82 s 𝐻2 0.88421 s 

𝐻3 0.85867 s 𝐻4 0.1556 s 

𝐻5 0.092897 s 𝐾12 70.858 pu/rad 

𝐾23 52.038 pu/rad 𝐾34 34.929 pu/rad 

𝐾45 19.303 pu/rad [ 𝐷2 𝐷3 𝐷4 𝐷5] [0 0 0 0] 
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Figure 4.9. Validation of the impedance of electrical part of synchronous machine.  

The general trend of the diagonal impedance shows an increase of the synchronous 

impedance magnitude while the phase is almost constant at 270
o
. Alternatively, the 

off-diagonal impedances are constant at about 20 dB with a constant phase at 0
o
 and 

180
o
 for the 𝑍𝑑𝑞and 𝑍𝑞𝑑 respectively.  

 Effect of turbine dynamics on synchronous machine impedance 4.4.3.3

Including the mechanical part of the synchronous machine is introduced in this 

section. The mechanical part has four mass sections and the generator as shown in 

Figure 4.10 which is be beneficial for studying the system oscillations and the 

efficiency of VSC-FACTS on damping those oscillations. The turbine converts the 

stored energy of steam into rotating energy. Based on the pressure of the each turbine 

section, these sections are named as two low-pressure turbine section (LPA, LPB), 

intermediate pressure (IP) and high pressure section (HP).  
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Figure 4.10. Turbine-generator system connected to grid. 

The speed relations at the generator and the other for sections of turbine system 

shown in Figure 4.10 can be given as [91]: 

 For the generator: 

2𝐻1
𝑑Δ𝜔1
𝑑𝑡

= 𝑘12(𝛿2 − 𝛿1) − 𝑇𝑒 − 𝐷1Δ𝜔1 

Δ𝜔1 =
𝑆Δ𝛿1

𝜔
   

 

(4.59) 

 Low pressure (LPA): 

2𝐻2
𝑑Δ𝜔2
𝑑𝑡

= 𝑇𝐿𝑃𝐴 + 𝑘23(𝛿3 − 𝛿2) − 𝑘12(𝛿2 − 𝛿1) − 𝐷2Δ𝜔2 

 Δ𝜔2 =
𝑆Δ𝛿2

𝜔
 

(4.60) 

 

 Low pressure (LPB): 

2𝐻3
𝑑Δ𝜔3
𝑑𝑡

= 𝑇𝐿𝑃𝐵 + 𝑘34(𝛿4 − 𝛿3) − 𝑘23(𝛿3 − 𝛿2) − 𝐷3Δ𝜔3 

 Δ𝜔3 =
𝑆Δ𝛿3

𝜔
  

(4.61) 

 

 Intermediate pressure (IP): 
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2𝐻4
𝑑Δ𝜔4
𝑑𝑡

= 𝑇𝐼𝑃 + 𝑘45(𝛿5 − 𝛿4) − 𝑘34(𝛿4 − 𝛿3) − 𝐷4Δ𝜔4 

 Δ𝜔4 =
𝑆Δ𝛿4

𝜔
 

(4.62) 

 

 High pressure (HP): 

2𝐻5
𝑑Δ𝜔5
𝑑𝑡

= 𝑇𝐼𝑃 + 𝑘45(𝛿5 − 𝛿4) − 𝑘34(𝛿4 − 𝛿3) − 𝐷4Δ𝜔4 

 Δ𝜔5 =
𝑆Δ𝛿5

𝜔
 

(4.63) 

 

The back substitution of equations (4.59) to (4.63) to find (Δ𝜔1) as a function of the 

turbine/generator sections yields: 

Δ𝜔1 =
𝑠𝑘12𝜔

𝐴1𝐴2
𝑇𝐿𝑃𝐴 +

𝑠𝑘12𝑘23𝜔
2

𝐴1𝐴2𝐴3
𝑇𝐿𝑃𝐵 +

𝑠𝑘12𝑘23𝑘34𝜔
3

𝐴1𝐴2𝐴3𝐴4
𝑇𝐼𝑃

+
𝑠𝑘12𝑘23𝑘34𝑘45𝜔

4

𝐴1𝐴2𝐴3𝐴4A5
𝑇𝐻𝑃  −

𝑠

𝐴1
Δ𝑇𝑒 

(4.64) 

 

 

where, 

𝐻𝑖 is the inertia constant of mass 𝑖.  

𝜔 is the rated speed. 

𝑘𝑖𝑗 is the shaft stiffness of section 𝑖 𝑗 

𝐷𝑖 is the damping coefficient. 

𝐴1 = 2𝐻1s
2 + 𝑘12𝜔 + 𝑠𝐷1 −

(𝑘12𝜔)
2

𝐴2
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𝐴2 = 2𝐻2𝑠
2 + 𝑘23𝜔+𝑘12𝜔 + 𝑠𝐷2 −

(𝑘23𝜔)
2

𝐴3
 

𝐴3 = 2𝐻3𝑠
2 + 𝑘34𝜔 + 𝑘23𝜔 + 𝑠𝐷3 −

(𝑘34𝜔)
2

𝐴4
 

𝐴4 = 2𝐻4𝑠
2 + 𝑘45𝜔 + 𝑘34𝜔 + 𝑠𝐷4 −

(𝑘45𝜔)
2

A5
  

A5 = 2𝐻5𝑠
2 − 𝑠𝐷5 + 𝑘45𝜔  

The relation between the electrical torque including the mechanical part can be found 

by modifying equation (4.56) by substituting equation (4.64) to yields the form: 

𝚫𝛚𝛅 = 𝐴𝐻𝑀𝚫𝐓𝐞𝐦+ 𝐴𝐻𝑀2𝐓𝐭𝐮  (4.65) 

where, 

𝐴𝐻𝑀 = [
−
𝑠

𝐴1
0

0 0

] 

𝐴𝐻𝑀2 = [
𝐾12𝜔

𝑠𝐴4𝐴5

𝐾12𝑘23𝜔
2

𝑠2𝐴3𝐴4𝐴5

𝐾12𝑘23𝑘34𝜔
3

𝑠3𝐴2𝐴3A4𝐴5

𝐾12𝑘23𝑘45𝜔
4

𝑠4𝐴1𝐴2𝐴3A4𝐴5
0 0 0 0

] 

 

Substituting equation (4.65) and equation (4.54) into equation (4.57) yields: 

𝚫𝐯𝐝𝐪𝐬
𝐫 = (𝑍𝑍 + 𝐴𝜆 . 𝐴𝐻𝑀 . 𝐺𝑇𝑑𝑞)𝚫𝐢𝐝𝐪𝐬

𝐫 + 𝐴𝜆 . 𝐴𝐻𝑀2𝚫𝐓𝐭𝐮 (4.66) 

𝚫𝐯𝐝𝐪𝐬
𝐫 = 𝑍𝑠𝑦𝑛𝑐ℎ_𝑀𝚫𝐢𝐝𝐪𝐬

𝐫   (4.67) 

where, 

𝑍𝑍 is the impedance of electrical part of synchronous machine 

𝑍𝑠𝑦𝑛𝑐ℎ_𝑀 is the impedance of synchronous machine including turbine and generator 

mechanics which equal to: 
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𝑍𝑠𝑦𝑛𝑐ℎ_𝑀 = 𝑍𝑍 + 𝐴𝜆 . 𝐴𝐻𝑀. 𝐺𝑇𝑑𝑞    

The full derivation of these equations is included in Appendix-C. The synchronous 

machine impedance can be represented using equation (4.66), as shown in         

Figure 4.11. 

ZZ

AdqGT
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+ MAH
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+
+

2MAH

+

+
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ΔTem

dqsΔi

tuT
Δωδ
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Figure 4.11. Impedance model of the synchronous machine. 

 

The effect of including the mechanical parts to the machine impedance is shown in 

Figure 4.12. The three impedances (electrical impedance (𝑍𝑍) electrical impedance 

and generator dynamics (𝑍𝑠𝑦𝑛𝑐ℎ) and generator and turbine impedance (𝑍𝑠𝑦𝑛𝑐ℎ_𝑀) are 

equal for direct impedance (𝑍𝑑𝑑). The off-diagonal impedances (𝑍𝑑𝑞 , 𝑍𝑞𝑑) are equal 

for the three impedances except some spikes around the 100 rad/s shown by the 

impedance of turbine-generator impedance (𝑍𝑠𝑦𝑛𝑐ℎ_𝑀). The main difference between 

these impedances is found in the quadrature impedance (𝑍𝑞𝑞). At low frequency the 

three impedances have different magnitudes; however, the impedances of generator 

(𝑍𝑠𝑦𝑛𝑐ℎ) and turbine-generator have almost the same phase. In the meantime, at 

higher frequencies (over 200 rad/s) the impedance of the electrical part (𝑍𝑍) and the 

turbine-generator impedance have equal values in phase and magnitude. This is 

referred to the effect of synchronous machine inductances which will be much larger 

than effect of other system parameters on the total impedance. So, the electrical 



 

80 

 

impedance of the synchronous machine is sufficient to represent the machine in 

power frequency studies.  
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Figure 4.12. Effect of turbine dynamics on synchronous machine impedance. 

The combined turbine-generator impedance and the electrical impedance of the 

synchronous machine can be understood from equation (4.66), where the second part 

of equation becomes almost zero at high frequencies to have the synchronous 

machine impedance equal to: 

𝑍𝑠𝑦𝑛𝑐ℎ_𝑀 = 𝑍𝑍 + 𝐴𝜆 . 𝐴𝐻𝑀. 𝐺𝑇𝑑𝑞 ≈ 𝑍𝑍 (at high frequencies) (4.68) 

Alternatively, the impedance including only the generator mechanics (𝑍𝑠𝑦𝑛𝑐ℎ) 

requires much higher frequencies to align to the electrical impedance (𝑍𝑍) as shown 

in Figure 4.12 due to the mechanical effect of the generator. Also, at high 

frequencies, the synchronous machine inductances will be dominant where all the 

other effects can be ignored.   
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The difference between the mechanical effect of the generator and turbine-generator 

on the synchronous machine response is presented in Figure 4.13. As expected, the 

inverse of the mechanical constant of the turbine-generator (𝑠/𝐴1) is much bigger 

than the mechanical constant of the generator (1 2𝐻𝑠 + 𝐷1⁄ ) alone. Also, the 

magnitude of turbine-generator mechanical constant is peaked sharply close to the 

fundamental frequency due to the oscillatory modes of individual turbine masses 

which change the phase by 180
o
 at each mass [99].  
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Figure 4.13. Mechanical effect of generator and turbine-generator mechanics. 

4.5 Summary 

The small signal stability in dq coordinates was discussed in this chapter. Some 

stability criteria have been reviewed and presented which will be used in Chapter 6 

to assess the stability of VSC-FACTS based systems. The chapter also presented the 

methods used to extract the small signal stability models for the state space and 

impedance analysis techniques. These models found by direct measurements for the 

impedance analysis or by finding the mathematical model of the system which is 

essential for the state space analysis. In addition, the small signal model for the SSSC 

controlled using three control modes, and the STATCOM were presented. The 

chapter included the mechanical part effect of the synchronous machine in the state 

space and impedance models. The derived models in this chapter will be utilised to 
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examine the response of the VSC-FACTS devices in power systems and include the 

harmonics in stability problem in Chapter 6. The following points summarise the 

main outcomes of the chapter: 

 The small signal stability-based state space equations require a mathematical 

derivation which might be difficult to find. However, it eases the modification and 

design of the control system and presents the contribution of each parameter on 

the stability problem. 

 The small signal impedance provides the concept of black-box control, where the 

impedance is extracted by the system/device measurements. This feature is very 

helpful in practical applications, where having full details about the system 

components become difficult. 

 The impedance measurement can be found by perturbing the device/system using 

series or shunt injection. The perturbation signal could be sinusoidal, chirp or 

multi-tune signal. The selection between these signals can be carried out based on 

the application and the time allowed for measurements where the accuracy 

increases as the measurement time increases. 

 The SSSC controlled with power control mode presented some differences in the 

impedance magnitude and phase in comparison with the voltage and impedance 

control modes. The other two control mode appeared having the same impedance 

magnitude and phase where the SSSC impedance is derived from SSSC voltage 

and current quantities. 

 The effect of including the turbine dynamics to the synchronous machine is the 

effect of the quadrature impedance (𝑍𝑞𝑞) present mainly at low-frequency range 

(below the fundamental frequency) where it might affect the stability and cause 

low-frequency oscillations.  

 The difference between the electrical-part impedance, generator mechanical 

impedance and the turbine-generator impedance were presented. The impedances 

are equal at high frequencies, where the machine equation denominator of the 

mechanical effect goes to infinity at high frequencies. 
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  CHAPTER  5

DQ-DYNAMIC PHASOR BASED SMALL SIGNAL STABILITY 

ANALYSIS FOR VSC-FACTS DEVICES 

This chapter proposes a generic dq-dynamic phasor model for studying stability of 

VSC-FACTS devices in the presence of harmonics and unbalanced conditions. 

Equations in this chapter are presented for each stage separately to reduce the 

complexity of dynamic phasor transformation and present the sources of frequency 

coupling at each stage of the studied system. A development of harmonic stability 

criteria is presented at the beginning of this chapter. Secondly, generalised state 

space and impedance models of STATCOM and SSSC with different control modes 

are presented and simulated. Lastly, high level qualitative comparisons between the 

proposed model and other conventional modelling techniques are discussed.  

5.1 Introduction 

In synchronous dq coordinates, the small signal stability using the eigenvalue 

analysis and equivalent impedance are two methods widely employed to assess 

system stability. In most cases, the effect of the harmonics is ignored, and this may 

lead to significant system stability problems, particularly, when the system operates 

in harmonic polluted environment. Typically, harmonic state space (HSS) facilitates 

stability studies of linear time-periodic (LTP) systems, which consider the impact of 

harmonics on system stability. LTP systems produce infinite outputs, with possibly 

infinite harmonics, due to the interaction between different frequencies within the 

system. The use of dq-dynamic phasor offers significant advantages over the HSS 

counterpart; for example, it has reduced order of matrices, more suitable for studying 

control systems, retains mutual coupling of harmonics, and simplifies stability study 

under unbalanced conditions. 
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5.2 Proposed dq-dynamic phasor for small signal stability analysis  

In this section, the development of the new dq-dynamic phasor model for small 

signal stability studies is discussed. The dynamic phasor transformations of the state 

space equations of an arbitrary system in the synchronous dq frame are given as:  

〈
𝐝

𝐝𝐭
𝚫𝐗〉𝑘 = ∑ 〈𝐴𝑑𝑞𝚫𝐗〉𝑘

∞
𝑘=−∞ + ∑ 〈𝐵𝑑𝑞𝚫𝐔〉𝑘

∞
𝑘=−∞   (5.1) 

〈𝚫𝐘〉𝑘 = ∑ 〈𝐶𝑑𝑞𝚫𝐗〉𝑘
∞
𝑘=−∞ + 〈𝐷𝑑𝑞𝚫𝐔〉𝑘       (5.2) 

Equations (5.1) and (5.2) can be written as:  

𝐝

𝐝𝐭
〈𝚫𝐗〉𝐤 = 𝐴𝐷𝑃〈𝚫𝐗〉𝐤 + 𝐵𝐷𝑃〈𝚫𝐔〉𝐤   (5.3) 

〈𝚫𝐘〉𝐤 = 𝐶𝐷𝑃〈𝚫𝐗〉𝐤 + 𝐷𝐷𝑃〈𝚫𝐔〉𝐤           (5.4) 

where, 

𝐴𝐷𝑃 is the generalised state matrix.  

𝐵𝐷𝑃 is the generalised input matrix.  

𝐶𝐷𝑃 is the generalised output matrix of size. 

𝐷𝐷𝑃 is the generalised feedforward matrix of size.  

〈𝚫𝐗〉𝐤 is the state vector and equal to: 

〈𝚫𝐗〉𝐤 = [〈𝚫𝐗〉𝑘=0 〈𝚫𝐗〉𝑘=𝑘1 〈𝚫𝐗〉𝑘=𝑘1̅̅̅̅ … 〈𝚫𝐗〉𝑘=𝑘𝑛]
T  

〈𝚫𝐔〉𝐤 is the output vector and equal to: 

〈𝚫𝐔〉𝐤 = [〈𝚫𝐔〉𝑘=0 〈𝚫𝐔〉𝑘=𝑘1 〈𝚫𝐔〉𝑘=𝑘1̅̅̅̅ … 〈𝚫𝐔〉𝑘=𝑘𝑛]
T   

The bold symbols represent vectors which have an infinite length and include all the 

interested harmonics of interest in the study (𝑘 = ±∞). Equations (5.3) and (5.4) 

represent the generalised state space equations including the harmonics with infinite 

dimensions. The roll-off nature of the inductances and capacitances in the system 
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provides a reasonable size of the analysed systems matrices due to the low-pass 

characteristics of these components [100]. The optimum size of arbitrary system 

matrices can be found by scanning the frequency spectrum until the impedance does 

not change and the additional eigenvalues at the origin of complex plane [101]. The 

system matrix sizes are calculated using the following equations as follows: 

𝑠𝑖𝑧𝑒(𝐴𝐷𝑃) = (2(1 + ℎ)ℒ𝑎, 2(1 + ℎ)ℒ𝑎)        (5.5) 

𝑠𝑖𝑧𝑒(𝐵𝐷𝑃) = (2(1 + ℎ)ℒ𝑎, 2(1 + ℎ)ℒ𝑏)       (5.6) 

𝑠𝑖𝑧𝑒(𝐶𝐷𝑃) = (2(1 + ℎ), 2(1 + ℎ)ℒ𝑎)        (5.7) 

𝑠𝑖𝑧𝑒(𝐷𝐷𝑃) = (2(1 + ℎ), 2(1 + ℎ)ℒ𝑏)       (5.8) 

where,  

ℎ is the number of harmonics to be included in the study. 

ℒ𝑎  is the number of states of the studied system.  

ℒ𝑏 is the number inputs of the studied system.  

For an example, when two harmonics (ℎ = 2) plus fundamental are considered when 

analysing the stability of the STATCOM. The synchronous dq model of the 

STATCOM has (ℒ𝑎 = 7) states and (ℒ𝑏= 4) inputs as: 

𝚫𝐗 = [Δ𝑥1 Δ𝑥2 Δ𝑥3 Δ𝑥4 Δ𝑖𝑠𝑑𝑞 Δ𝑣𝑑𝑐]𝑇  

𝚫𝐔 = [Δ𝑣𝑠𝑑 Δ𝑣𝑠𝑞 Δ𝑣𝑑𝑐
∗ Q∗]𝑇      

 So, the size of the state matrix (𝐴𝐷𝑃) becomes (42×42) and input matrix 

(𝐵𝐷𝑃) becomes (42×24). The state space equations (5.3) and (5.4) permit asymptote 

stability assessment of complex systems using eigenvalues. Equally, small signal 

impedance offers a powerful and practical alternative method for stability 

assessment, where synthesis of detailed system model is challenging [67][23]. It can 

be derived with some minor algebraic manipulations, which yields: 
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〈𝚫𝐘〉𝐤 = 𝑍𝐷𝑃〈𝚫𝐗〉𝐤        (5.9) 

𝑍𝐷𝑃 = {𝐶𝐷𝑃 + 𝐷𝐷𝑃𝐵𝐷𝑃
−1(𝑆 + 𝑗𝑘𝜔 − 𝐴𝐷𝑃)}  (5.10) 

Similarly, the impedance (𝑍𝐷𝑃) represents the generalised impedance of the system 

with infinite dimensions including all the harmonics of interest and can be written as: 

𝑍𝐷𝑃 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
〈𝑣𝑑〉𝑘=0

〈𝑖𝑑〉𝑘=0

〈𝑣𝑑〉𝑘=0

〈𝑖𝑑〉𝑘=𝑘1
⋯

〈𝑣𝑑〉𝑘=0

〈𝑖𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑑〉𝑘=0

〈𝑖𝑞〉𝑘=0

〈𝑣𝑑〉𝑘=0

〈𝑖𝑞〉𝑘=𝑘1
⋯

〈𝑣𝑑〉𝑘=0

〈𝑖𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑑〉𝑘=𝑘1
〈𝑖𝑑〉𝑘=0

〈𝑣𝑑〉𝑘=𝑘1
〈𝑖𝑑〉𝑘=𝑘1

⋯
〈𝑣𝑑〉𝑘=𝑘1
〈𝑖𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑑〉𝑘=𝑘1
〈𝑖𝑞〉𝑘=0

〈𝑣𝑑〉𝑘=𝑘1
〈𝑖𝑞〉𝑘=𝑘1

⋯
〈𝑣𝑑〉𝑘=𝑘1
〈𝑖𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
〈𝑣𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑑〉𝑘=0

〈𝑣𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑑〉𝑘=𝑘1
⋯

〈𝑣𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑞〉𝑘=0

〈𝑣𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑞〉𝑘=𝑘1
⋯

〈𝑣𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑞〉𝑘=0

〈𝑖𝑑〉𝑘=0

〈𝑣𝑞〉𝑘=0

〈𝑖𝑑〉𝑘=𝑘1
⋯

〈𝑣𝑞〉𝑘=0

〈𝑖𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑞〉𝑘=0

〈𝑖𝑞〉𝑘=0

〈𝑣𝑞〉𝑘=0

〈𝑖𝑞〉𝑘=𝑘1
⋯

〈𝑣𝑞〉𝑘=0

〈𝑖𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑞〉𝑘=𝑘1
〈𝑖𝑑〉𝑘=0

〈𝑣𝑞〉𝑘=𝑘1
〈𝑖𝑑〉𝑘=𝑘1

⋯
〈𝑣𝑞〉𝑘=𝑘1
〈𝑖𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑞〉𝑘=𝑘1
〈𝑖𝑞〉𝑘=0

〈𝑣𝑞〉𝑘=𝑘1
〈𝑖𝑞〉𝑘=𝑘1

⋯
〈𝑣𝑞〉𝑘=𝑘1
〈𝑖𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
〈𝑣𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑑〉𝑘=0

〈𝑣𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑑〉𝑘=𝑘1
⋯

〈𝑣𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑑〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑣𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑞〉𝑘=0

〈𝑣𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑞〉𝑘=𝑘1
⋯

〈𝑣𝑞〉𝑘=𝑘𝑛̅̅ ̅̅

〈𝑖𝑞〉𝑘=𝑘𝑛̅̅ ̅̅ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        (5.11) 

where, 

 �̅� is the conjugate of harmonic order (𝑘).  

〈𝑣𝑑𝑞〉𝑘 is the direct and quadrature voltage at harmonic order (𝑘). 

〈𝑖𝑑𝑞〉𝑘 is the direct and quadrature current at harmonic order (𝑘). 

5.3 Stability criteria for the new generalised dq-dynamic phasor modelling  

In this section, the development of the stability criteria for the proposed generalised 

dq-dynamic phasor modelling is introduced. The generalised state space equation in 

(5.3) with infinite dimensions can be written in a frequency coupling form as:  

𝐝

𝐝𝐭
𝚫𝐗

𝒌
= [

𝐴 −M+ 𝜌 𝐴𝐶𝑓
𝐴𝐶ℎ 𝐴 −M + 𝜌

]𝚫𝐗𝒌 + [
𝐵 𝐵𝐶
𝐵𝐶 𝐵

]𝚫𝐔𝑘  (5.12) 
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where, 

𝐴𝐶𝑓 , 𝐴𝐶ℎ are the mutual effect between the fundamental frequency and harmonics. 

𝜌  is the frequency coupling at the fundamental frequency caused by the existence of 

positive and negative harmonics at a specific harmonic.  

𝑀 is a diagonal matrix which represents the transformation of differential variables 

of the system to dynamic phasor, and it is defined as: 

M = diag[0 𝑗𝜔𝐼 −𝑗𝜔𝐼 𝑗𝑘1𝜔𝐼 −𝑗𝑘1𝜔𝐼 ⋯ −𝑗𝑘𝑛𝜔𝐼]  

So, the eigenvalues of the generalised state matrix in (5.12) can be written as [102]: 

𝛌𝐤(𝐴𝐷𝑃) = det(𝐴𝐷𝑃 − 𝜆) = (𝐴 − M) + 𝜌 ± (𝐴𝐶𝑓 . 𝐴𝐶ℎ)
1/2 

  (5.13) 

According to equation (5.13), the inclusion of harmonics in a stable system generates 

repeated eigenvalues and does not affect the stability of the system if and only if the 

frequency coupling terms {𝜌 ± (𝐴𝐶𝑓 . 𝐴𝐶ℎ)
1/2 

} are equal to zero. The stability of the 

system is ensured when the system eigenvalues (𝛌𝐤) satisfy the condition in equation 

(5.14) which guarantees that all system eigenvalues will be located at the left hand 

side of the plane: 

𝛌𝐤(𝐴𝐷𝑃) ≤ 0                              (−∞ ≤ 𝜔 ≤ +∞) (5.14) 

Using the small signal impedance (𝑍𝐷𝑃) from equation (5.10), the stability at the 

connection of the device to the grid can be evaluated by the generalised Nyquist 

stability criterion [103][104]. It is carried out by creating a Nyquist plot of the 

eigenvalues of the return ratio matrix (𝐿𝑅) which can predict the stability of the 

system as: 

𝚫𝛌𝐤 = det(𝛌𝐤𝐼 − 〈𝐿𝑅〉𝑘) = 0    (5.15) 

〈𝐿𝑅〉𝑘 = 〈𝑍𝑔〉𝑘. 〈𝑌𝑑𝑒𝑣𝑖𝑐𝑒〉𝑘  (5.16) 
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where, 

𝑌𝑑𝑒𝑣𝑖𝑐𝑒 is the device admittance in the synchronous dq frame. 

𝑍𝑔 is the grid impedance in synchronous dq frame. 

〈𝑍𝑔〉𝑘 is the grid impedance in dq-dynamic phasor. 

〈𝑌𝑑𝑒𝑣𝑖𝑐𝑒〉𝑘 is the device admittance in dq-dynamic phasor. 

In the case where the frequency coupling is ignored, the impedance is equal for all 

frequencies. Consequently, it is a repeated plot for all impedances. The frequency 

range of the Nyquist plot in equation (5.15) is (−∞ ≤ 𝜔 ≤ +∞) where the 

parameters of the proposed model are linear time invariant which is similar to the 

frequency range presented in Chapter 4 for synchronous dq criteria. 

5.4 Proposed generalised dq-dynamic phasor modelling for STATCOM device 

This section proposes a generalised state space and impedance model for the 

STATCOM based on the proposed dq-dynamic phasor modelling that can facilitate 

stability studies considering the effects of harmonics and network unbalance. As 

stated, simplified forms of the synchronous dq equations are transformed to dq-

dynamic phasor to avoid the complexity of dynamic phasor transformation and 

identify the causes of the system frequency coupling. 

 Generalised state space model of STATCOM 5.4.1

The proposed generalised state space model is developed by transforming the 

STATCOM synchronous dq model presented in Chapter 4 to dq-dynamic phasor. 

This transformation includes the system harmonics that could affect the system 

stability. For STATCOM, the state model is depicted in Figure 5.1, while the state 

representation in generalised form as:  

〈
𝐝

𝐝𝐭
𝚫𝐗〉𝐤 = 𝐴𝑠𝐷𝑃〈𝚫𝐗〉𝐤 + 𝐵𝑠𝐷𝑃〈𝚫𝐔〉𝐤        (5.17) 

〈𝚫𝐢𝐬𝐝𝐪〉𝐤 = 𝐶𝑠𝐷𝑃〈𝚫𝐗〉𝐤 + 𝐷𝑠𝐷𝑃〈𝚫𝐔〉𝐤            (5.18) 
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where, 

𝚫𝐗 is the STATCOM state variables which equal to: 

𝚫𝐗 = [Δ𝑥1 Δ𝑥2 Δ𝑥3 Δ𝑥4 Δ𝑖𝑠𝑑𝑞 Δ𝑣𝑑𝑐]𝑇  

〈𝚫𝐗〉𝐤 = [〈𝚫𝐗〉k=0 〈𝚫𝐗〉k=k1 〈𝚫𝐗〉k=k1̅̅̅̅ … 〈𝚫𝐗〉k=kn 〈𝚫𝐗〉k=kn̅̅ ̅̅ ]
𝑻  

𝚫𝐔 = [Δ𝑣𝑠𝑑 Δ𝑣𝑠𝑞 Δ𝑣𝑑𝑐
∗ Q∗]𝑇      

〈𝚫𝐔〉𝐤 = [〈𝚫𝐔〉k=0 〈𝚫𝐔〉k=k1 〈𝚫𝐔〉k=k1̅̅̅̅ … 〈𝚫𝐔〉k=kn 〈𝚫𝐔〉k=kn̅̅ ̅̅ ]
𝑻  

The definitions of state vector and input vector can be found in Chapter 3, and the 

state matrix (𝐴𝑠𝐷𝑃) and input matrix (𝐵𝑠𝐷𝑃) are given as: 

𝐴𝑠𝐷𝑃 =

[
 
 
 
 
 
 
𝑎𝑘=0 𝑎𝑐𝑘=𝑘1̅̅̅̅ 𝑎𝑐𝑘=𝑘1 ⋯ 𝑎𝑐𝑘=𝑘𝑛̅̅ ̅̅ 𝑎𝑐𝑘=𝑘𝑛
𝑎𝑐𝑘=𝑘1 𝑎𝑘=𝑘1 0 0

𝑎𝑐𝑘=𝑘1̅̅̅̅ 𝑎𝑘=𝑘1̅̅̅̅ 0 0

⋮ ⋱ ⋮
0 0 𝑎𝑘=𝑘𝑛

𝑎𝑐𝑘=𝑘𝑛̅̅ ̅̅ 0 0 ⋯ 𝑎𝑘=𝑘𝑛̅̅ ̅̅ ]
 
 
 
 
 
 

  
 

𝐵𝑠𝐷𝑃 =

[
 
 
 
 
 
 
𝑏𝑘=0 𝑏𝑐𝑘=𝑘1̅̅̅̅ 𝑏𝑐𝑘=𝑘1 ⋯ 𝑏𝑐𝑘=𝑘𝑛̅̅ ̅̅ 𝑏𝑐𝑘=𝑘𝑛
𝑏𝑐𝑘=𝑘1 𝑏𝑘=𝑘1 0 0

𝑏𝑐𝑘=𝑘1̅̅̅̅ 𝑏𝑘=𝑘1̅̅̅̅ 0 0

⋮ ⋱ ⋮
𝑏𝑐𝑘=𝑘𝑛 0 0 𝑏𝑘=𝑘𝑛
𝑏𝑐𝑘=𝑘𝑛̅̅ ̅̅ 0 0 ⋯  𝑏𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 
 

  

 

The bar notation (�̅�) represents the conjugate of the harmonic (𝑘). The submatrices 

of the generalised state matrix (𝐴𝐷𝑃) can be defined as: 
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Figure 5.1. Generalised state space model of STATCOM. 
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 The diagonal submatrices (𝑎𝑘=0, 𝑎𝑘=𝑘1 …… , 𝑎𝑘=𝑘𝑛̅̅ ̅̅  ) represent the state matrices 

of the system at specific harmonic order (𝑘) including the frequency coupling 

caused by the dc link voltage which equals to: 

𝑎𝑘,𝑘 =

[
 
 
 
 
 
 
 
 
 
 
−𝑗𝑘ω 0 𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑

0 −𝑗𝑘ω 0 𝐾𝑖𝑖𝑞 −
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉0

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉0 − 𝐾𝑖𝑖𝑞 0

0 0 −𝑗𝑘ω 0 0 0 −𝐾𝑖𝑣𝑑

0 0 0 −𝑗𝑘ω −
3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉0

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉0 0

1

𝐿𝑓
0

𝐾𝑝𝑖𝑑

𝐿𝑓
0

−𝑅𝑓−𝐾𝑝𝑖𝑑

𝐿𝑓
− 𝑗𝑘𝜔 ω

−𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓
−ω−

3

2
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉0

𝐿𝑓

3

2
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉0−𝑅𝑓−𝐾𝑝𝑖𝑞

𝐿𝑓
− 𝑗𝑘𝜔 0

0 0 0 0 𝛼1 𝛼2 𝛼3 − 𝑗𝑘𝜔 ]
 
 
 
 
 
 
 
 
 
 

   

The parameters of the matrix (𝑎𝑘,𝑘) are defined as: 

𝛼1 =
3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑑〉𝑘−𝑖 〈

1

𝑣𝑑𝑐
〉𝑖

𝑘=0
𝑖 −

2𝑅𝑓

𝐶𝑑𝑐
∑ 〈𝑖𝑠𝑑〉𝑘−𝑖 〈

1

𝑣𝑑𝑐
〉𝑖

𝑘=0
𝑖   

𝛼2 =
3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑞〉𝑘−𝑖 〈

1

𝑣𝑑𝑐
〉𝑖

𝑘=0
𝑖   

𝛼3 =
𝑅𝑓

𝐶𝑑𝑐
∑ 〈𝑖𝑠𝑑

2 〉𝑘−𝑖 〈
1

𝑣𝑑𝑐
2 〉𝑖

𝑘=0
𝑖 −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑑〉𝑘−𝑖〈𝑖𝑠𝑑〉𝑖
𝑘=0
𝑖 〈

1

𝑣𝑑𝑐
2 〉0 −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑑〉𝑘−𝑖〈𝑖𝑠𝑑〉𝑖
𝑘=�̅�
𝑖 〈

1

𝑣𝑑𝑐
2 〉𝑘 −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑑〉𝑘−𝑖〈𝑖𝑠𝑑〉𝑖
𝑘=𝑘
𝑖 〈

1

𝑣𝑑𝑐
2 〉�̅� −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑞〉𝑘−𝑖〈𝑖𝑠𝑞〉𝑖
𝑘=0
𝑖 〈

1

𝑣𝑑𝑐
2 〉0 −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑞〉𝑘−𝑖〈𝑖𝑠𝑞〉𝑖
𝑘=�̅�
𝑖 〈

1

𝑣𝑑𝑐
2 〉𝑘 −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑞〉𝑘−𝑖〈𝑖𝑠𝑞〉𝑖
𝑘=𝑘
𝑖 〈

1

𝑣𝑑𝑐
2 〉�̅�  

 The submatrices (𝑎𝑐𝑘=𝑘1̅̅̅̅ , 𝑎𝑐𝑘=𝑘2̅̅̅̅ , … , 𝑎𝑐𝑘=𝑘𝑛̅̅ ̅̅ ) and the matrices 

(𝑎𝑐𝑘=𝑘1 , 𝑎𝑐𝑘=𝑘1 , … , 𝑎𝑐𝑘=𝑘𝑛) represent the effect of positive and negative sequence 

components on the fundamental frequency, and the coupling of the fundamental 

frequency on the negative and positive components is: 
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𝑎𝑐𝑘=𝑘  =

[
 
 
 
 
 
 
 
 

0 0 0

−
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉�̅�

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉�̅� 0

0 0 0

𝑧𝑒𝑟𝑜𝑠(7 × 4) −
3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉�̅�

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉�̅� 0

0 0 0

−
3

2
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉�̅�

𝐿𝑓

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉�̅�

𝐿𝑓
0

𝛼4 𝛼5 𝛼6]
 
 
 
 
 
 
 
 

  

The parameters in the matrix (𝑎𝑐𝑘=𝑘) are defined as: 

𝛼4 =
3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑑〉𝑘−𝑖 〈

1

𝑣𝑑𝑐
〉𝑖

𝑘=�̅�
𝑖 −

2𝑅𝑓

𝐶𝑑𝑐
∑ 〈𝑖𝑠𝑑〉𝑘−𝑖 〈

1

𝑣𝑑𝑐
〉𝑖

𝑘=�̅�
𝑖   

𝛼5 =
3

2
∑ 〈𝑣𝑠𝑞〉𝑘−𝑖 〈

1

𝑣𝑑𝑐
〉𝑖

𝑘=�̅�
𝑖   

𝛼6 =
𝑅𝑓

𝐶𝑑𝑐
∑ 〈𝑖𝑠𝑑

2 〉𝑘−𝑖 〈
1

𝑣𝑑𝑐
2 〉𝑖

𝑘=�̅�
𝑖 −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑑〉𝑘−𝑖〈𝑖𝑠𝑑〉𝑖
𝑘=0
𝑖 〈

1

𝑣𝑑𝑐
2 〉�̅� −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑑〉𝑘−𝑖〈𝑖𝑠𝑑〉𝑖
𝑘=�̅�
𝑖 〈

1

𝑣𝑑𝑐
2 〉0 −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑞〉𝑘−𝑖〈𝑖𝑠𝑞〉𝑖
𝑘=0
𝑖 〈

1

𝑣𝑑𝑐
2 〉�̅� −

3

2

1

𝐶𝑑𝑐
∑ 〈𝑣𝑠𝑞〉𝑘−𝑖〈𝑖𝑠𝑞〉𝑖
𝑘=�̅�
𝑖 〈

1

𝑣𝑑𝑐
2 〉0     

Similarly, the submatrices of input matrix (𝐵𝐷𝑃) are defined as:  

 The diagonal submatrices (𝑏𝑘=0, 𝑏𝑘=𝑘1 , …… , 𝑏𝑘=𝑘𝑛̅̅ ̅̅  ) represent the intput matrices 

at specific harmonic order (𝑘) including the frequency coupling of the dc link 

voltage and equal to: 

𝐵𝑘,𝑘 =

[
 
 
 
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑 0
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉0 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉0 0 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞

0 0 𝐾𝑖𝑣𝑑 0
3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉0 0 𝐾𝑖𝑣𝑞

1

𝐿𝑓
0

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
0

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉0

𝐿𝑓

1

𝐿𝑓
−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉0

𝐿𝑓
0

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓

3

2
∑ 〈

1

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈𝑖𝑠𝑑〉�̅�

𝑘=0
𝑖=±∞

3

2
∑ 〈

1

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑖𝑠𝑞〉𝑖

𝑘=0
𝑖=±∞ 0 0 ]
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 The other submatrices that include the frequency coupling 

(𝑏𝑐𝑘=𝑘1̅̅̅̅ , 𝑏𝑐𝑘=𝑘2̅̅̅̅ , … , 𝑏𝑐𝑘=𝑘n̅̅ ̅̅ ) and (𝑏𝑐𝑘=𝑘1 , 𝑏𝑐𝑘=𝑘2 , … . , 𝑏𝑐𝑘=𝑘n) are: 

𝑏𝑐𝑘=𝑘 =

[
 
 
 
 
 
 
 
 
 

0 0
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉�̅� −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉�̅�

0 0
3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉�̅� −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉�̅� 𝑧𝑒𝑟𝑜𝑠(7 × 2)

0 0
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉�̅�

𝐿𝑓

1

𝐿𝑓
−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉�̅�

𝐿𝑓

3

2
∑ 〈

1

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈𝑖𝑠𝑑〉�̅�

𝑘=�̅�
𝑖=±∞

3

2
∑ 〈

1

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑖𝑠𝑞〉𝑖

𝑘=�̅�
𝑖=±∞ ]

 
 
 
 
 
 
 
 
 

  

The derivation of the generalised state and input matrices presented in (5.17) and 

(5.18) are found in Appendix-D. The matrices (𝐴𝐷𝑃, and 𝐵𝐷𝑃) are linear time 

invariant (LTI) matrices which could include harmonics similar to the harmonic state 

space (HSS) modelling. However, the LTI systems have an advantage of being more 

suitable for small signal stability than the time variant systems. The generalised state 

matrix and input matrix presented in equation (5.17) and (5.18) are capable to 

include the fundamental frequency (𝑘 = 0) as well as an infinite number of 

harmonics (𝑘 = ∓∞). Each harmonic frequency except the fundamental frequency 

generates two components; the positive and negative sequence components of the k
th

 

harmonic (depicted as 𝑘 and �̅� respectively). In the meantime, for the fundamental 

frequency, the dq-transformation generates one component at the fundamental 

frequency and another at the 2
nd

 harmonic order (𝑘 = −2), which is characteristic of 

the system response at unbalanced conditions. The existence of the positive and 

negative sequence components in equation (5.3) and (5.4) facilitates stability studies 

of balanced and unbalanced systems. 

 Generalised impedance model for STATCOM device 5.4.2

The frequency domain analysis of power system presents some valuable information 

about system oscillations and can be utilised to assess the stability at the point of 

common coupling. Similar to the previous section, the generalised impedance model 

of STATCOM is derived from synchronous dq model equations presented in Chapter 

4: 
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∑ 〈𝚫𝐯𝐬𝐝𝐪〉𝑘
∞
𝑘=−∞ = ∑ 〈𝑎𝑧𝚫𝐢𝐬𝐝𝐪〉𝑘

∞
−∞ + ∑ 〈𝑏𝑧𝚫𝐢𝐬𝐝𝐪

∗ 〉𝑘
∞
−∞   

(5.19) 

∑ 〈𝚫𝐢𝐬𝐝𝐪
∗ 〉𝑘

∞
𝑘=−∞ = ∑ 〈𝑐𝑧𝐯

∗〉𝑘
∞
𝑘=−∞ − ∑ 〈𝑐𝑧𝚫𝐯〉𝑘

∞
𝑘=−∞   

(5.20) 

∑ 〈𝑑𝑧𝚫𝐯〉𝑘
∞
𝑘=−∞ = ∑ 〈𝑒𝑧𝚫𝐯𝐬𝐝𝐪〉𝑘

∞
−∞ + ∑ 〈𝑓𝑧𝚫𝐢𝐬𝐝𝐪〉𝑘

∞
−∞      

(5.21) 

After expanding equations (5.19) to (5.21) and re-arrangements, yield:  

〈𝚫𝐯𝐬𝐝𝐪〉𝐤 = 𝐴𝑧〈𝚫𝐢𝐬𝐝𝐪〉𝐤 + 𝐵𝑧〈𝚫𝐢𝐬𝐝𝐪
∗ 〉𝐤  

(5.22) 

〈𝚫𝐢𝐬𝐝𝐪
∗ 〉𝐤 = 𝐶𝑧〈𝐯

∗〉𝐤 − 𝐶𝑧〈𝚫𝐯〉𝐤  
(5.23) 

𝐷𝑧〈𝚫𝐯〉𝐤 = 𝐸𝑧〈𝚫𝐯𝐬𝐝𝐪〉𝐤 + 𝐹𝑧〈𝚫𝐢𝐬𝐝𝐪〉𝐤  
(5.24) 

where,  

 The input voltage vector at all harmonics is: 

〈𝚫𝐯𝐬𝐝𝐪〉𝐤 = [〈𝚫𝐯𝐬𝐝𝐪〉𝐤=𝟎 〈𝚫𝐯𝐬𝐝𝐪〉𝐤=𝐤𝟏 〈𝚫𝐯𝐬𝐝𝐪〉𝐤=𝐤𝟏̅̅̅̅ … 〈𝚫𝐯𝐬𝐝𝐪〉𝐤=𝐤𝐧̅̅ ̅̅ ]
𝑇    

 The STATCOM current vector at all harmonics is: 

〈𝚫𝐢𝐬𝐝𝐪〉𝐤 = [〈𝚫𝐢𝐬𝐝𝐪〉𝐤=𝟎 〈𝚫𝐢𝐬𝐝𝐪〉𝐤=𝐤𝟏 〈𝚫𝐢𝐬𝐝𝐪〉𝐤=𝐤𝟏̅̅̅̅ … 〈𝚫𝐢𝐬𝐝𝐪〉𝐤=𝐤𝐧̅̅ ̅̅ ]
𝑇  

 The inputs of voltage control loop of the STATCOM are: 

〈𝚫𝐯〉𝐤 = [〈𝚫𝐯〉𝐤=𝟎 〈𝚫𝐯〉𝐤=𝐤𝟏 〈𝚫𝐯〉𝐤=𝐤𝟏̅̅̅̅ ⋯ 〈𝚫𝐯〉𝐤=𝐤𝐧̅̅ ̅̅ ]
T  

𝚫𝐯 = [𝑣𝑑𝑐 𝑄]T  

 After further manipulations of (5.22) to (5.24), the generalised STATCOM 

impedance model is obtained as: 

𝑍𝐷𝑃𝑆𝑇𝐴𝑇𝐶𝑂𝑀 = (I − 𝐵𝑧𝐶𝑧𝐷𝑧
−1𝐹𝑧)

−1(𝐴𝑧 + 𝐵𝑧𝐶𝑧𝐷𝑧
−1𝐸𝑧)   (5.25) 

The resultant impedance (5.25) is similar to impedance derived for the synchronous 

dq in chapter 4, however, this impedance includes all harmonics and can be utilised 
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for stability studies. The block diagram of the generalised STATCOM impedance is 

presented in Figure 5.2. The impedance matrices in equation (5.25) follow the same 

pattern found in the derivation of the state space equations in (5.17) and (5.18), 

which are defined as follows: 

 The matrices that represent the STATCOM are: 

𝐴𝑧 =

[
 
 
 
 
 
ℎ𝑑𝑘=0 ℎ𝑙𝑘=𝑘1̅̅̅̅ ℎ𝑙𝑘=𝑘1 ⋯ ℎ𝑙𝑘=𝑘𝑛
ℎ𝑙𝑘=𝑘1 ℎ𝑑𝑘=𝑘1 0 0

ℎ𝑙𝑘=𝑘1̅̅̅̅ 0 ℎ𝑑𝑘=𝑘1̅̅̅̅ 0

⋮ 0 0 ⋱ 0
ℎ𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 ℎ𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐵𝑧 =

[
 
 
 
 
 
𝐵𝑑𝑘=0 𝐵𝑙𝑘=𝑘1̅̅̅̅ 𝐵𝑙𝑘=𝑘1 ⋯ 𝐵𝑙𝑘=𝑘𝑛
𝐵𝑙𝑘=𝑘1 𝐵𝑑𝑘=𝑘1 0 0

𝐵𝑙𝑘=𝑘1̅̅̅̅ 0 𝐵𝑑𝑘=𝑘1̅̅̅̅ 0

⋮ 0 0 ⋱ 0
𝐵𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐵𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

 The matrix that represents current control loop is: 

𝐶𝑧 =

[
 
 
 
 
 
𝐶𝑑𝑘=0 𝐶𝑙𝑘=𝑘1̅̅̅̅ 𝐶𝑙𝑘=𝑘1 ⋯ 𝐶𝑙𝑘=𝑘𝑛
𝐶𝑙𝑘=𝑘1 𝐶𝑑𝑘=𝑘1 0 0

𝐶𝑙𝑘=𝑘1̅̅̅̅ 0 𝐶𝑑𝑘=𝑘1̅̅̅̅ 0

⋮ 0 0 ⋱ 0
𝐶𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐶𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

where, their submatrices are: 

𝐶𝑑𝑘 = [
𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0 0

0 𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0
]  𝐶𝑙𝑘=𝑘1 = [

〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉𝑘
]  
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Figure 5.2. Block diagram of the generalised Impedance of STATCOM. 
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 The matrices that represent voltage control loop and their inputs are: 

𝐷𝑧 =

[
 
 
 
 
 
𝐷𝑑𝑘=0 𝐷𝑙𝑘=𝑘1̅̅̅̅ 𝐷𝑙𝑘=𝑘1 ⋯ 𝐷𝑙𝑘=𝑘𝑛
𝐷𝑙𝑘=𝑘1 𝐷𝑑𝑘=𝑘1 0 0

𝐷𝑙𝑘=𝑘1̅̅̅̅ 0 𝐷𝑑𝑘=𝑘1̅̅̅̅ 0

⋮ 0 0 ⋱ 0
𝐷𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐷𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐸𝑧 =

[
 
 
 
 
 
𝐸𝑑𝑘=0 𝐸𝑙𝑘=𝑘1̅̅̅̅ 𝐸𝑙𝑘=𝑘1 ⋯ 𝐸𝑙𝑘=𝑘𝑛
𝐸𝑙𝑘=𝑘1 𝐸𝑑𝑘=𝑘1 0 0

𝐸𝑙𝑘=𝑘1̅̅̅̅ 0 𝐸𝑑𝑘=𝑘1̅̅̅̅ 0

⋮ 0 0 ⋱ 0
𝐸𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐸𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐹𝑧 =

[
 
 
 
 
 
𝐹𝑑𝑘=0 𝐹𝑙𝑘=𝑘1̅̅̅̅ 𝐹𝑙𝑘=𝑘1 ⋯ 𝐹𝑙𝑘=𝑘𝑛
𝐹𝑙𝑘=𝑘1 𝐹𝑑𝑘=𝑘1 0 0

𝐹𝑙𝑘=𝑘1̅̅̅̅ 0 𝐹𝑑𝑘=𝑘1̅̅̅̅ 0

⋮ 0 0 ⋱ 0
𝐹𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐹𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

where, the sub-matrices of (𝐷𝑧 , 𝐸𝑧 , 𝐹𝑧 ) are defined: 

𝑑𝑘 = [
〈𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
〉0 0

0 〈𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
〉0
] , 𝐷𝑑𝑘 = [

𝛼𝑙𝑘 0
0 1

] ,  𝐷𝑙𝑘=𝑘 = [
𝛼𝑚𝑘=𝑘 0
0 0

] 

𝐹𝑑𝑘 = [
〈
3

2
𝑣𝑠𝑑〉0 − 〈2𝑅𝑓𝑖𝑠𝑑〉0 〈

3

2
𝑣𝑠𝑞〉0

3

2
〈𝑣𝑠𝑞〉0 −

3

2
〈𝑣𝑠𝑑〉0

] , 
𝐸𝑑𝑘 =

3

2
[
〈𝑖𝑠𝑑〉0 〈𝑖𝑠𝑞〉0
−〈𝑖𝑠𝑞〉0 〈𝑖𝑠𝑑〉0

] , 

𝐹𝑙𝑘=𝑘1 = [
〈
3

2
𝑣𝑠𝑑〉𝑘 − 〈2𝑅𝑓𝑖𝑠𝑑〉𝑘 〈

3

2
𝑣𝑠𝑞〉𝑘

3

2
〈𝑣𝑠𝑞〉𝑘 −

3

2
〈𝑣𝑠𝑑〉𝑘

] , 
𝐸𝑙𝑘=𝑘1 =

3

2
[
〈𝑖𝑠𝑑〉𝑘 〈𝑖𝑠𝑞〉𝑘
−〈𝑖𝑠𝑞〉�̅� 〈𝑖𝑠𝑑〉�̅�

]  

The previous submatrices represent the frequency coupling due to the dc link voltage 

and reactive power calculation. The definitions of the parameters are: 
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𝛼𝑙𝑘 = 𝐶𝑑𝑐𝑠〈𝑣𝑑𝑐〉0 − (∑ 〈
1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑖𝑠𝑑

2 𝑅𝑓〉𝑖
𝑘=0
𝑖 ) +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑑〉𝑖

𝑘=0
𝑖 〈𝑖𝑠𝑑〉0 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑑〉𝑖

𝑘=�̅�
𝑖 〈𝑖𝑠𝑑〉𝑘 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑑〉𝑖

𝑘=𝑘
𝑖 〈𝑖𝑠𝑑〉�̅� +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑞〉𝑖

𝑘=0
𝑖 〈𝑖𝑠𝑞〉0 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑞〉𝑖

𝑘=�̅�
𝑖 〈𝑖𝑠𝑞〉𝑘 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑞〉𝑖

𝑘=𝑘
𝑖 〈𝑖𝑠𝑞〉�̅�  

𝛼𝑚𝑘=𝑘 =

𝐶𝑑𝑐(𝑠 + 𝑗𝑘ω )〈𝑣𝑑𝑐〉𝑘 − ∑ 〈
1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑖𝑠𝑑

2 𝑅𝑓〉𝑖
𝑘=𝑘
𝑖 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑑〉𝑖

𝑘=0
𝑖 〈𝑖𝑠𝑑〉𝑘 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑑〉𝑖

𝑘=𝑘
𝑖 〈𝑖𝑠𝑑〉0 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑞〉𝑖〈𝑖𝑠𝑞〉𝑘 +

3

2
∑ 〈

1

𝑣𝑑𝑐
〉𝑘−𝑖 〈𝑣𝑠𝑞〉𝑖

𝑘=𝑘
𝑖 〈𝑖𝑠𝑞〉0

𝑘=0
𝑖   

It is noted that the system analysis for harmonic order (𝑘 = 0), the generalised state 

space and the generalised impedance are equal to the derived forms for the 

synchronous dq model. A similarity between the synchronous dq modelling and the 

proposed DP modelling is therefore expected in the response and the criteria.  

5.5 Stability assessment of STATCOM connected to the grid using the new 

generalised modelling 

In this section, three case studies are presented to show the effectiveness of the 

proposed STATCOM dq-dynamic phasor model for stability assessment. The system 

under steady-state conditions is presented in Figure 5.3. The grid and the STATCOM 

parameters are listed in Table 5.1. In the simulation, the dynamic phasor quantities 

are extracted using a low-pass filter for the ac quantities and using a Fourier analysis 

for the dc quantities. 
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Figure 5.3. Simplified diagram of STATCOM connected to the grid. 
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Table 5.1. Test system parameters. 

Parameter value Parameter value 

𝑆𝑏𝑎𝑠𝑒 100 kVA 𝐾𝑝𝑖𝑑𝑞 , 𝐾𝑖𝑖𝑑𝑞 1000 V/A,  400 V/A.s 

𝑣𝑏𝑎𝑠𝑒 415 kV 𝐾𝑝𝑣𝑑  , 𝐾𝑖𝑣𝑑 20 A/V,  200 A/V.s 

𝑓 50 Hz 𝐾𝑝𝑣𝑞 , 𝐾𝑖𝑣𝑞 -0.002 A/VA,  -0.1 A/VA.s 

𝑅𝑔, 𝐿𝑔 0.25 Ω, 1 mH 𝑣𝑑𝑐 1000 V 

𝑅𝑓 , 𝐿𝑓 0.1 Ω, 5 mH 𝐶𝑑𝑐 400 µF 

𝑃𝐿 , 𝑄𝐿 65 kW, 12 kVAr   

 

 Balanced operation of STATCOM with no harmonics  5.5.1

This case study is employed as a benchmark for the operation of the STATCOM. 

The STATCOM is assumed to operate in balanced conditions with no harmonics. In 

such an operating condition, the system can be modelled either by the synchronous 

dq model presented in Chapter 4 or using the generalised model with harmonic order 

(𝑘 = 0). In this case, the state space analysis of the test system generates seven stable 

states as seen in Table 5.2. Some of STATCOM eigenvalues are overdamped (𝜆1 to 

𝜆5) while the rest of the eigenvalues (𝜆6 and 𝜆7) are repeated real eigenvalues 

(critically damped). The Bode plot of STATCOM impedance presented in equation 

(5.25) is shown in Figure 5.4 which is compared with other case studies later.  

 Unbalanced operation of the STATCOM 5.5.2

The unbalanced operation of the test system is assessed using the derived model of 

generalised state space and impedance analysis. The analysis of the unbalanced 

system displays two balanced systems operating at two different frequencies 

(𝜔𝑛, 2𝜔𝑛) as shown in Table 5.2. As the STATCOM has seven states as presented in 

Chapter 4, the studying of the unbalanced conditions will generate 14 states. The first 

seven states represent the system at the fundamental frequency while the rest 

represent the system at double frequency (−2𝜔). The eigenvalues related to the 

unbalanced operation (𝜆8 to 𝜆14) are considered as underdamped eigenvalues. In the 

state space equation (5.12), the unbalanced operation of the test system is existed if 

the matrix (𝐴𝐶ℎ) exist, while the diagonal matrices show the frequencies of system 
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variation and the instability conditions of the system. The frequency coupling caused 

by the unbalanced conditions deviate the system eigenvalues to the right-hand side 

from their original position that means the unbalance will drag the system to become 

less stable as much as the unbalance increases. Alternatively, in the frequency 

domain, the effect of unbalanced conditions of the STATCOM can be seen by 

changing the level of unbalance such as changing the magnitude of phase (b) as: 

|𝑉𝑏| = [1.0 0.85 0.65]pu  

Table 5.2. The eigenvalue analysis of the test system under balanced and unbalanced 

conditions. 

Modes Balanced condition Unbalanced condition 

λ1 -1.54×10
5
+j0.00 -1.49×10

5
+j0.00 

λ2 -7.99×10
4
+j0.00 -7.99×10

4
+j0.00 

λ3 -221.58+j0.00 -204.51+j0.00 

λ4 -10.47+j0.00 -10.52+j0.00 

λ5 -24.04+j0.00 -23.09+j0.00 

λ6 -2.50+j0.00 -2.50+j0.00 

λ7 -2.50+j0.00 -2.50+j0.00 

λ8 

 

 

-1.49×10
5
+j628.32 

λ9 -7.99×10
4
+j628.32 

λ10 -204.51+j628.32 

λ11 -10.52+j628.32 

λ12 -23.09+j628.32 

λ13 -2.50+j628.32 

λ14 -2.50+j628.32 
 

As shown in Figure 5.4, the STATCOM has four impedances at each harmonic 

frequency, the diagonal impedances (𝑍𝑑𝑑 , 𝑍𝑞𝑞) and the off-diagonal impedances 

(𝑍𝑞𝑑 , 𝑍𝑞𝑞). For the balanced conditions, the fundamental impedances and the second 

order harmonic are equal for the balanced systems as the parameters coupling 

matrices are equal to zero. In addition, the sharp changes of second order impedance 

at the twice fundamental frequency are referred to the existence of the complex part 
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which represent the second order harmonic. Alternatively, the unbalanced condition 

do not affect the off-diagonal impedances due to the change of STATCOM operating 

conditions while the diagonal impedance decreases as the unbalance increases. This 

is referred to the coupling presented between the fundamental frequency and the 

negative sequence component. The two impedances at (𝑘 = 0,−2) match each other 

in case of balanced operation (with no harmonics) or in case of the coupling effect is 

ignored. This can be used as an indication for unbalance of the modelled systems 

which depends on the severity of the unbalance. 
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Figure 5.4. STATCOM impedance under different operating conditions (balanced and 

unbalanced). 
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The reason for the unbalanced effect presents at low frequencies is due to the 

presence of the coupling matrix where their effect will be insignificant at high 

frequencies due to the dominant of fundamental quantities.  

The main difference between the proposed dq-dynamic phasor model and the 

positive and negative sequence based synchronous dq method (PNDQ) is the 

following: 

 Unbalanced systems are derived for positive and negative quantities in PNDQ 

while in the proposed modelling is derived as fundamental frequency and 2
nd

 

order harmonic at double fundamental frequency rotating anti-clockwise          

(𝑘 = −2). The proposed modelling has an advantage of defining the frequency of 

the oscillations and their rotation direction which is helps in identifying the origin 

of the oscillation.  

 The proposed model presents the effect of the fundamental frequency on the 2
nd

 

order harmonic while it does not present any effect of the 2
nd

 harmonic on the 

fundamental frequency. 

 In the proposed modelling, the coupling between the fundamental and harmonic 

frequency will disappear once the system is balanced while the PNDQ keeps 

presenting this coupling even at balanced conditions. This is an advantage of 

using the proposed modelling over the use of PNDQ.  

 STATCOM operation under harmonics 5.5.3

The operation assessment of the STATCOM under harmonics is discussed in this 

section by injecting two harmonics (5
th

 and 7
th

). According to the transformation of 

these frequencies to the dq-dynamic phasor, six frequencies are generated in this 

domain. Each frequency component is transformed into a positive and negative 

component as 𝑘 =(0, -2, 4, -6, 6, -8) respectively. The size of the state matrix (𝐴𝐷𝑃) 

and input matrix (𝐵𝐷𝑃) can be calculated as shown in equation (5.5) and (5.6): 

Size (ADP ) = (2 (1+2) (7), 2 (1+2) (7)) = (42, 42)   (5.26) 

Size (BDP ) = (2 (1+2) (7), 2 (1+2) (4)) = (42, 24)   (5.27) 
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So, 42 eigenvalues are generated in this case, seven at each frequency. The plot of 

the STATCOM eigenvalues is shown in Figure 5.5 to present the effect of coupling 

on its operation. In Figure 5.5a, the coupling between the harmonics is ignored. In 

this case, the harmonic inclusion is observed as multiple stable systems operate at 

different frequencies. Each of these systems is referred to its own coordinates. The 

newly added harmonics are repeated at these harmonics without any change of the 

system stability.  
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Figure 5.5. Eigenvalue analysis of STATCOM using dq-dynamic phasor modelling: 

(a) Coupling effect ignored and (b) Coupling effect considered. 
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The eigenvalues of the test system are shifted up by (ω) in the imaginary axis due to 

the dq-dynamic phasor transformation. Thus, the axis of symmetry is located at 

(ω = jωfundamental). The eigenvalues of the positive sequence components are in the 

upper part of the complex plane, while the negative sequence components are in the 

lower part of the complex plane. Alternatively, the frequency coupling causes a 

displacement of the system eigenvalues as more harmonics are included in the study 

which prevents the presence of the repeated frequencies (see Figure 5.5b). The 

system starts to become unstable as the harmonics are included. It can be concluded 

from Figure 5.5, that ignoring the frequency coupling between the fundamental 

frequency and the existed harmonics could lead to a major error in the analysis.  

In Figure 5.6, the effect of including the harmonics is presented using the 

STATCOM impedance model. Ignoring the frequency coupling in the impedance 

model results the same impedance as synchronous dq impedance of the STATCOM. 

Alternatively, the frequency coupling increases the magnitude and the phase of 

STATCOM impedance, which reduces the stability margin of the STATCOM. Thus, 

the inclusion of the harmonics has a significant impact on the fundamental frequency 

due to the coupling.  
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Figure 5.6. The effect of coupling on STATCOM impedance. 

In the meantime, this effect can be insignificant in case of one harmonic is included 

or in case of two non-close harmonics (such as 5
th

 and 9
th

 ) are considered. For the 

frequency analysis, the effect of including harmonics can be seen also using the 

generalised Nyquist plot, which is presented in Figure 5.7. The STATCOM 

impedance without any harmonics is presented by solid line in Figure 5.7 while the 

STATCOM impedance including the harmonics effect is presented by dotted line. 

Even though the Nyquist plot of the STATCOM impedance without harmonics 

presents a stable system the impedance plot including the harmonics shows an 

oscillatory system.  
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Figure 5.7. Generalised Nyquist plot of STATCOM with and without harmonics coupling. 

5.6 Proposed generalised dq-dynamic phasor modelling for SSSC device 

The generalised dq-dynamic phasor modelling development of SSSC with three 

control modes is presented in this section. It is essential to study the effect of 

harmonics such as SSR effect on the operation of SSSC and its control mode and 

how the harmonics can affect their performance due to their presence in this 

environment.  

 Generalised state space of SSSC  5.6.1

Likewise, the principle followed to derive the STATCOM, the SSSC state space and 

impedance models are presented for different control modes. Such derivation will 

help to compare between such control modes and consequently their suitability to use 

in different power system applications. The detailed derivation can be found in 

Appendix-E.  

 Generalised state space model of SSSC based power control mode 5.6.1.1

As stated in Chapter 3, the input parameters of SSSC in this control mode are the 

active and reactive powers. The transformation of these powers to dynamic phasor 

form is given as:  
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[
 
 
 
 
 
 
〈Δ𝑃𝑚〉0
〈Δ𝑄𝑚〉0
〈Δ𝑃𝑚〉𝑘
〈Δ𝑄𝑚〉𝑘
〈Δ𝑃𝑚〉�̅�
〈Δ𝑄𝑚〉�̅�]

 
 
 
 
 
 

=
3

2

[
 
 
 
 
 
 
〈𝑖𝑠𝑒𝑑〉0 〈𝑖𝑠𝑒𝑞〉0 〈𝑖𝑠𝑒𝑑〉�̅� 〈𝑖𝑠𝑒𝑞〉�̅� 〈𝑖𝑠𝑒𝑑〉𝑘 〈𝑖𝑠𝑒𝑞〉𝑘
〈𝑖𝑠𝑒𝑞〉0 −〈𝑖𝑠𝑒𝑑〉0 〈𝑖𝑠𝑒𝑞〉�̅� −〈𝑖𝑠𝑒𝑑〉�̅� 〈𝑖𝑠𝑒𝑞〉𝑘 −〈𝑖𝑠𝑒𝑑〉𝑘
〈𝑖𝑠𝑒𝑑〉𝑘 〈𝑖𝑠𝑒𝑞〉𝑘 〈𝑖𝑠𝑒𝑑〉0 〈𝑖𝑠𝑒𝑞〉0 0 0

〈𝑖𝑠𝑒𝑞〉𝑘 −〈𝑖𝑠𝑒𝑑〉𝑘 〈𝑖𝑠𝑒𝑞〉0 −〈𝑖𝑠𝑒𝑑〉0 0 0

〈𝑖𝑠𝑒𝑑〉�̅� 〈𝑖𝑠𝑒𝑞〉�̅� 0 0 〈𝑖𝑠𝑒𝑑〉0 〈𝑖𝑠𝑒𝑞〉0
〈𝑖𝑠𝑒𝑞〉�̅� −〈𝑖𝑠𝑒𝑑〉�̅� 0 0 〈𝑖𝑠𝑒𝑞〉0 −〈𝑖𝑠𝑒𝑑〉0]

 
 
 
 
 
 

[
 
 
 
 
 
 
〈Δ𝑣𝑚𝑑〉0
〈Δ𝑣𝑚𝑞〉0
〈Δ𝑣𝑚𝑑〉𝑘
〈Δ𝑣𝑚𝑞〉𝑘
〈Δ𝑣𝑚𝑑〉�̅�
〈Δ𝑣𝑚𝑞〉�̅�]

 
 
 
 
 
 

+

3

2

[
 
 
 
 
 
 
〈𝑣𝑚𝑑〉0 〈𝑣𝑚𝑞〉0 〈𝑣𝑚𝑑〉�̅� 〈𝑣𝑚𝑞〉�̅� 〈𝑣𝑚𝑑〉𝑘 〈𝑣𝑚𝑞〉𝑘
−〈𝑣𝑚𝑞〉0 〈𝑣𝑚𝑑〉0 −〈𝑣𝑚𝑞〉�̅� 〈𝑣𝑚𝑑〉�̅� −〈𝑣𝑚𝑞〉𝑘 〈𝑣𝑚𝑑〉𝑘
〈𝑣𝑚𝑑〉𝑘 〈𝑣𝑚𝑞〉𝑘 〈𝑣𝑚𝑑〉0 〈𝑣𝑚𝑞〉0 0 0

−〈𝑣𝑚𝑞〉𝑘 〈𝑣𝑚𝑑〉𝑘 −〈𝑣𝑚𝑞〉0 〈𝑣𝑚𝑑〉0 0 0

〈𝑣𝑚𝑑〉�̅� 〈𝑣𝑚𝑞〉�̅� 0 0 〈𝑣𝑚𝑑〉0 〈𝑣𝑚𝑞〉0
−〈𝑣𝑚𝑞〉�̅� 〈𝑣𝑚𝑑〉�̅� 0 0 −〈𝑣𝑚𝑞〉0 〈𝑣𝑚𝑑〉0]

 
 
 
 
 
 

[
 
 
 
 
 
 
〈Δ𝑖𝑠𝑒𝑑〉0
〈Δ𝑖𝑠𝑒𝑞〉0
〈Δ𝑖𝑠𝑒𝑑〉𝑘
〈Δ𝑖𝑠𝑒𝑞〉𝑘
〈Δ𝑖𝑠𝑒𝑑〉�̅�
〈Δ𝑖𝑠𝑒𝑞〉�̅�]

 
 
 
 
 
 

         (5.28) 

where, 𝑚 is equal to 1 for the sending end powers and 2 for the receiving end 

powers. The transformation of the SSSC equations using power control mode to 

dynamic phasor is given by the expanding the synchronous dq model of SSSC to 

generalised state space model as: 

𝐝

𝐝𝐭
〈𝚫𝐗〉𝐤 = 𝐴𝑃𝐷𝑃〈𝚫𝐗〉𝐤 + 𝐵𝑃𝐷𝑃〈𝚫𝐔〉𝐤   

 

(5.29) 

where, it is given for the state matrix and input matrix as: 

𝐴𝑃𝐷𝑃 =

[
 
 
 
 
𝑎𝑝𝑘=0 𝑎𝑐𝑝𝑘=�̅� 𝑎𝑐𝑝𝑘=𝑘 … 𝑎𝑐𝑝𝑘=𝑘𝑛
𝑎𝑐𝑝𝑘=𝑘 𝑎𝑝𝑘=𝑘
𝑎𝑐𝑝𝑘=�̅� 𝑎𝑝𝑘=�̅� ⋮

⋮ ⋱
𝑎𝑐𝑝𝑘=𝑘𝑛̅̅ ̅̅ … 𝑎𝑝𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

𝐵𝑃𝐷𝑃 =

[
 
 
 
 
𝑏𝑝𝑘=0 𝑏𝑐𝑝𝑘=�̅� 𝑏𝑐𝑝𝑘=𝑘 … 𝑏𝑐𝑝𝑘=𝑘𝑛
𝑏𝑐𝑝𝑘=𝑘 𝑏𝑝𝑘=𝑘
𝑏𝑐𝑝𝑘=�̅� 𝑏𝑝𝑘=�̅� ⋮

⋮ ⋱
𝑏𝑐𝑝𝑘=𝑘𝑛̅̅ ̅̅ … 𝑏𝑝𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

     

The submatrices of (𝐴𝑃𝐷𝑃) and (𝐵𝑃𝐷𝑃) are given as: 

 The diagonal submatrices are: 
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𝑎𝑝𝑘=𝑘 =

[
 
 
 
 
 
 −𝑗𝑘𝜔 0 −

3

2
𝐾𝑖𝑣𝑑(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0) −

3

2
𝐾𝑖𝑣𝑑(〈𝑣1𝑞〉0 − 〈𝑣2𝑞〉0)

0 −𝑗𝑘𝜔 −
3

2
𝐾𝑖𝑣𝑞(−〈𝑣1𝑞〉0 + 〈𝑣2𝑞〉0) −

3

2
𝐾𝑖𝑣𝑞(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0)

−
1

𝐿𝑠𝑒
0

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0) −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑞〉0 − 〈𝑣2𝑞〉0) + ω

0 −
1

𝐿𝑠𝑒

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(−〈𝑣1𝑞〉0 + 〈𝑣2𝑞〉0) − ω

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0) −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔]

 
 
 
 
 
 

  

𝑏𝑝𝑘=𝑘 =

 

[
 
 
 
 
 
 0 0 −

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉0 −

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉0

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉0

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉0 𝐾𝑖𝑣𝑑 0

0 0 −
3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉0

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉0

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉0 0 𝐾𝑖𝑣𝑞

1

𝐿𝑠𝑒
0

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0 −

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0 −

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

0
1

𝐿𝑠𝑒

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0 −

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0 −

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0 0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒 ]
 
 
 
 
 
 

  

 The non-diagonal matrices which cause the frequency coupling are: 

𝑎𝑐𝑝𝑘=𝑘 =
3

2

[
 
 
 
 
 
 
0 0 −𝐾𝑖𝑣𝑑(〈𝑣1𝑑〉𝑘−〈𝑣2𝑑〉𝑘) −𝐾𝑖𝑣𝑑(〈𝑣1𝑞〉𝑘−〈𝑣2𝑞〉𝑘)

0 0 −𝐾𝑖𝑣𝑞(−〈𝑣1𝑞〉𝑘 + 〈𝑣2𝑞〉𝑘) −𝐾𝑖𝑣𝑞(〈𝑣1𝑑〉𝑘−〈𝑣2𝑑〉𝑘)

0 0
𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑑〉𝑘−〈𝑣2𝑑〉𝑘)

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑞〉𝑘−〈𝑣2𝑞〉𝑘)

0 0
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(−〈𝑣1𝑞〉𝑘 + 〈𝑣2𝑞〉𝑘)

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(〈𝑣1𝑑〉𝑘−〈𝑣2𝑑〉𝑘) ]

 
 
 
 
 
 

 

𝑏𝑐𝑝𝑘=𝑘 =
3

2

[
 
 
 
 
 
0 0 −𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉𝑘 −𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉𝑘 𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉𝑘 𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉𝑘 0 0

0 0 −𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉𝑘 𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉𝑘 𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉𝑘 −𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉𝑘 0 0

0 0
𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘 0 0

0 0
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘 0 0]

 
 
 
 
 

  

 Generalised state space model of SSSC based voltage control mode 5.6.1.2

The transformation of SSSC controlled by voltage control mode to dq-dynamic 

phasor is as follows: 

𝐝

𝐝𝐭
〈𝚫𝐗〉𝐤 = 𝐴𝑉𝐷𝑃〈𝚫𝐗〉𝐤 + 𝐵𝑉𝐷𝑃〈𝚫𝐔〉𝐤   (5.30) 

where,  
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 The state matrix is given as: 

𝐴𝑉𝐷𝑃 =

[
 
 
 
 
𝑎𝑣𝑘=0 𝑎𝑐𝑣𝑘=�̅� 𝑎𝑐𝑣𝑘=𝑘 … 𝑎𝑐𝑣𝑘=𝑘𝑛
𝑎𝑐𝑣𝑘=𝑘 𝑎𝑣𝑘=𝑘
𝑎𝑐𝑣𝑘=�̅� 𝑎𝑣𝑘=�̅� ⋮

⋮ ⋱
𝑎𝑐𝑣𝑘=𝑘𝑛̅̅ ̅̅ … 𝑎𝑣𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

The sub-matrices are: 

𝑎𝑣𝑘=𝑘 =

[
 
 
 
 
 
 
 
−𝑗𝑘𝜔 0 0 0 −𝐾𝑖𝑣𝑑
0 −𝑗𝑘𝜔 0 0 0

−
1

𝐿𝑠𝑒
0 −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔 ω

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒

0 −
1

𝐿𝑠𝑒
−ω −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔 0

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 − 𝑗𝑘𝜔]

 
 
 
 
 
 
 

   

𝑎𝑐𝑣𝑘=𝑘 = [

𝑍𝑒𝑟𝑜(4 × 5)

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘

]  

 And it is given for the input matrix as: 

𝐵𝑉𝐷𝑃 =

[
 
 
 
 
𝑏𝑣𝑘=0 𝑏𝑐𝑣𝑘=�̅� 𝑏𝑐𝑣𝑘=𝑘 … 𝑏𝑐𝑣𝑘=𝑘𝑛
𝑏𝑐𝑣𝑘=𝑘 𝑏𝑣𝑘=𝑘
𝑏𝑐𝑣𝑘=�̅� 𝑏𝑣𝑘=�̅� ⋮

⋮ ⋱
𝑏𝑐𝑣𝑘=𝑘𝑛̅̅ ̅̅ … 𝑏𝑣𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

𝑏𝑣𝑘=𝑘 =

[
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑣𝑑 0
0 −𝐾𝑖𝑣𝑞 0 𝐾𝑖𝑣𝑞
1

𝐿𝑠𝑒
0 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

0 (
1

𝐿𝑠𝑒
+
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
) 0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 0 0 ]
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𝑏𝑐𝑣𝑘=𝑘 = [
𝑍𝑒𝑟𝑜 (4 × 4)

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 0 0

]  

From equation  (5.30), the main cause of frequency coupling in SSSC controlled by 

voltage control mode is the dc link while the harmonics do not have any influence on 

the quadrature input because of the frequency coupling, which is caused by the 

multiplication of the system measured quantities or states.  

 Generalised state space of SSSC based impedance control mode 5.6.1.3

The generalised form of SSSC using impedance control mode is given as: 

𝐝

𝐝𝐭
〈𝚫𝐗〉𝐤 = 𝐴𝐼𝐷𝑃〈𝚫𝐗〉𝐤 + 𝐵𝐼𝐷𝑃〈𝚫𝐔〉𝐤   (5.31) 

 In this case, the state matrix of SSSC is given as: 

𝐴𝐼𝐷𝑃 =

[
 
 
 
 
𝑎𝑖𝑘=0 𝑎𝑐𝑖𝑘=�̅� 𝑎𝑐𝑖𝑘=𝑘 … 𝑎𝑐𝑖𝑘=𝑘𝑛
𝑎𝑐𝑖𝑘=𝑘 𝑎𝑖𝑘=𝑘
𝑎𝑐𝑖𝑘=�̅� 𝑎𝑖𝑘=�̅� ⋮

⋮ ⋱
𝑎𝑐𝑖𝑘=𝑘𝑛̅̅ ̅̅ … 𝑎𝑖𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

where, the sub-matrices are defined as: 

𝑎𝑖𝑘=𝑘 =

[
 
 
 
 
 
 
 
 
−𝑗𝑘𝜔 0 0 0 −𝐾𝑖𝑣𝑑

0 −𝑗𝑘𝜔 0 〈
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 0

−
1

𝐿𝑠𝑒
0 −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔 ω

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒

0 −
1

𝐿𝑠𝑒
−ω

−𝑅𝑠𝑒

𝐿𝑠𝑒
− 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉0 − 𝑗𝑘𝜔 0

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 − 𝑗𝑘𝜔]
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𝑎𝑐𝑖𝑘=𝑘 =

[
 
 
 
 
 
 
 
0 0 0 0 0

0 0 0 〈
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉𝑘 0

0 0 0 0 0

0 0 0 − 〈
𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉𝑘 0

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘]

 
 
 
 
 
 
 

   

 The input matrix (𝐵𝐼𝐷𝑃) is given as: 

𝐵𝐼𝐷𝑃 =

[
 
 
 
 
𝑏𝑖𝑘=0 𝑏𝑐𝑖𝑘=�̅� 𝑏𝑐𝑖𝑘=𝑘 … 𝑏𝑐𝑖𝑘=𝑘𝑛
𝑏𝑐𝑖𝑘=𝑘 𝑏𝑖𝑘=𝑘
𝑏𝑐𝑖𝑘=�̅� 𝑏𝑖𝑘=�̅� ⋮

⋮ ⋱
𝑏𝑐𝑖𝑘=𝑘𝑛̅̅ ̅̅ … 𝑏𝑖𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

where, the coupling in these matrices is caused by the integral part of the SSSC 

controller, impedance calculation and the dc link power balance, which are: 

𝑏𝑖𝑘=𝑘 =

[
 
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑣𝑑 0

0 − 〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉0 0 𝐾𝑖𝑣𝑞

1

𝐿𝑠𝑒
0 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

0 {
1

𝐿𝑠𝑒
+ 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉0} 0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 0 0 ]

 
 
 
 
 
 
 
 

  

𝑏𝑐𝑖𝑘=𝑘 =

[
 
 
 
 
 
 

0 0 0 0

0 − 〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉𝑘 0 0

0 0 0 0

0 〈
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉𝑘 0 0

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 0 0]

 
 
 
 
 
 

  

It is evident that using the impedance (𝑥𝑠𝑒𝑞) as an input to the SSSC makes the SSSC 

become more coupled with the harmonics compared with the use of quadrature 

voltage of the SSSC. This is referred to the interaction between the quadrature 

current and quadrature voltage in this mode.  
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 Generalised impedance model for SSSC device 5.6.2

In this section, the impedance model of SSSC when controlled with three different 

control modes is presented. The full derivation of these models can be found in 

Appendix-E. The impedance analysis of the system has many advantages in 

identifying system oscillations and providing the response of the system in the 

frequency domain. 

 Generalised impedance model of SSSC based power control mode 5.6.2.1

The generalised impedance model of the SSSC when controlled in the power control 

mode can be derived using the following generalised equations derived from the 

synchronous dq equations as: 

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = 𝐴𝑃𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 + 〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤          (5.32) 

〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤 = 𝐵𝑃𝑠𝑒〈𝚫𝐏𝐐𝐥𝐢𝐧𝐞
∗ 〉𝐤 − 𝐵𝑃𝑠𝑒〈𝚫𝐏𝐐𝐥𝐢𝐧𝐞〉𝐤          (5.33) 

The active and reactive power flow through the compensated line can be derived by 

the help of Figure 5.8. Using KVL, the relationship between the bus voltage and the 

SSSC voltage can be given as: 

Δ𝑣𝐿𝑑 − Δ𝑣𝑠𝑒𝑑 = Δ𝑣1𝑑 − Δ𝑣2𝑑          (5.34) 

Δ𝑣𝐿𝑞 − Δ𝑣𝑠𝑒𝑞 = Δ𝑣1𝑞 − Δ𝑣2𝑞  (5.35) 

where, 

Δ𝑣1𝑑𝑞 is the direct and quadrature axis components of sending end voltage. 

 Δ𝑣2𝑑𝑞 is the direct and quadrature axis components of receiving end voltage. 

Using equation (5.28), the active and reactive power is equal to: 

〈𝚫𝐏𝐐𝐥𝐢𝐧𝐞〉𝐤 = −𝐶𝑃𝑠𝑒〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 + 𝐶𝑃𝑠𝑒〈𝚫𝐯𝐋𝐝𝐪〉𝐤 + 𝐷𝑃𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 −

𝐸𝑃𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤  
(5.36) 
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Figure 5.8. Phasor voltage of SSSC connected to a grid. 

 

Using back substitution of equations (5.32) to (5.36), the impedance of SSSC 

controlled by active and reactive powers is given as: 

𝑍𝑃𝑆𝑆𝑆𝐶 = (𝐼 − 𝐵𝑃𝑠𝑒𝐶𝑃𝑠𝑒)
−1(𝐴𝑃𝑠𝑒𝐷𝑃 + 𝐵𝑃𝑠𝑒𝐸𝑃𝑠𝑒 − 𝐵𝑃𝑠𝑒𝐷𝑃𝑠𝑒)  (5.37) 

For the sake of future comparison between the three control modes, the compensated 

line impedance is excluded from the SSSC impedance (𝑍𝑃𝑆𝑆𝑆𝐶) as shown in the 

analysis. The block diagram of generalised SSSC impedance controlled with power 

control mode is presented in Figure 5.9. The definitions of the matrices in equation 

(5.37) are as follows: 
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Figure 5.9. Block diagram of the generalised impedance of SSSC controlled with power control mode. 
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The topology matrix is: 

𝐴𝑃𝑠𝑒 =

[
 
 
 
 
 
𝑎𝑝𝑠𝑒𝑘=0 0 0 0 0

0 𝑎𝑝𝑠𝑒𝑘=𝑘 0 0 0

0 0 𝑎𝑝𝑠𝑒𝑘=�̅� 0 0

0 0 0 ⋱ 0
0 0 0 0 𝑎𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝑎𝑝𝑠𝑒𝑘=𝑘 = [
(𝑠 + 𝑗𝑘ω)𝐿𝑠𝑒 + 𝑅𝑠𝑒 −ω𝐿𝑠𝑒

ω𝐿𝑠𝑒 (𝑠 + 𝑗𝑘ω)𝐿𝑠𝑒 + 𝑅𝑠𝑒
]  

 The current control matrix is: 

𝐵𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐵𝑝𝑠𝑒𝑘=0 𝑏𝑐𝑝𝑠𝑒𝑘=�̅� 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 0 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑏𝑐𝑝𝑠𝑒𝑘=𝑘 𝐵𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑏𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐵𝑣𝑠𝑒𝑘=�̅� 0 0

⋮ ⋮ ⋮ ⋱ ⋮
𝑏𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 … 𝐵𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝐵𝑝𝑠𝑒𝑘=𝑘 = [
(𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 0

0 (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0)
]   

 𝑏𝑐𝑝𝑠𝑒𝑘=𝑘 = [
〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘
]  

 The calculation of active and reactive power matrices are: 

𝐶𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐶𝑝𝑠𝑒𝑘=0 𝑐𝑐𝑝𝑠𝑒𝑘=�̅� 𝑐𝑐𝑝𝑠𝑒𝑘=𝑘 0 𝑐𝑐𝑝𝑠𝑒𝑘=𝑘𝑛
𝑐𝑐𝑝𝑠𝑒𝑘=𝑘 𝐶𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑐𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐶𝑝𝑠𝑒𝑘=�̅� 0 0

⋮ ⋮ ⋮ ⋱ ⋮
𝑐𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 … 𝐶𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

     

𝐷𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐷𝑝𝑠𝑒𝑘=0 𝑑𝑐𝑝𝑠𝑒𝑘=�̅� 𝑑𝑐𝑝𝑠𝑒𝑘=𝑘 0 𝑑𝑐𝑝𝑠𝑒𝑘=𝑘𝑛
𝑑𝑐𝑝𝑠𝑒𝑘=𝑘 𝐷𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑑𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐷𝑝𝑠𝑒𝑘=�̅� 0 0

⋮ ⋮ ⋮ ⋱ ⋮
𝑑𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 … 𝐷𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]
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𝐸𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐸𝑝𝑠𝑒𝑘=0 𝑒𝑐𝑝𝑠𝑒𝑘=�̅� 𝑒𝑐𝑝𝑠𝑒𝑘=𝑘 0 𝑒𝑐𝑝𝑠𝑒𝑘=𝑘𝑛
𝑒𝑐𝑝𝑠𝑒𝑘=𝑘 𝐸𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑒𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐸𝑝𝑠𝑒𝑘=�̅� 0 0

⋮ ⋮ ⋮ ⋱ ⋮
𝑒𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 … 𝐸𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

where, their submatrices are defines as  

𝐶𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑖𝑠𝑒𝑑〉0 〈𝑖𝑠𝑒𝑞〉0
〈𝑖𝑠𝑒𝑞〉0 −〈𝑖𝑠𝑒𝑑〉0

]   𝑐𝑐𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑖𝑠𝑒𝑑〉𝑘 〈𝑖𝑠𝑒𝑞〉𝑘
〈𝑖𝑠𝑒𝑞〉𝑘 −〈𝑖𝑠𝑒𝑑〉𝑘

]  

𝐷𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑣𝑠𝑒𝑑〉0 〈𝑣𝑠𝑒𝑞〉0
−〈𝑣𝑠𝑒𝑞〉0 〈𝑣𝑠𝑒𝑑〉0

]   𝑑𝑐𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑣𝑠𝑒𝑑〉𝑘 〈𝑣𝑠𝑒𝑞〉𝑘
−〈𝑣𝑠𝑒𝑞〉𝑘 〈𝑣𝑠𝑒𝑑〉𝑘

]  

𝐸𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑣𝐿𝑑〉0 〈𝑣𝐿𝑞〉0
−〈𝑣𝐿𝑞〉0 〈𝑣𝐿𝑑〉0

]   𝑒𝑐𝑝𝑘=𝑘 =
3

2
[
〈𝑣𝐿𝑑〉𝑘 〈𝑣𝐿𝑞〉𝑘
−〈𝑣𝐿𝑞〉𝑘 〈𝑣𝐿𝑑〉𝑘

]  

 Generalised impedance model of SSSC based voltage control mode 5.6.2.2

The SSSC impedance controlled by voltage control mode is derived in this section. 

In this case, the dc link voltage and the quadrature voltage are the controller 

references. The SSSC impedance can be derived in a generalised form as:  

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = 𝐴𝑉𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 + 〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤   (5.38) 

〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤 = 𝐵𝑉𝑠𝑒〈𝚫𝐕𝐕
∗〉𝐤 − 𝐵𝑉𝑠𝑒〈𝚫𝐕𝐕〉𝐤  (5.39) 

𝐶𝑉𝑠𝑒〈𝚫𝐕𝐕〉𝐤 = 𝐷𝑉𝑠𝑒〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 + 𝐸𝑉𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤  (5.40) 

Using equations (5.38) to (5.40), the system block diagram can be plotted as 

presented in Figure 5.10, and the SSSC impedance can be derived as: 

𝑍𝑉𝑆𝑆𝑆𝐶 = {𝐈 + 𝐵𝑉𝑠𝑒(𝐶𝑉𝑠𝑒)
−1𝐷𝑉𝑠𝑒}

−1{𝐴𝑉𝑠𝑒 − 𝐵𝑉𝑠𝑒(𝐶𝑉𝑠𝑒)
−1𝐸𝑉𝑠𝑒}  (5.41) 

Similarly, the definitions of the matrices presented in equation (5.41) are given as: 
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Figure 5.10. Block diagram of generalised SSSC impedance controlled with voltage control mode. 
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 The SSSC topology matrices are: 

𝐴𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐴𝑣𝑠𝑒𝑘=0 0 0 ⋯ 0

0 𝐴𝑣𝑠𝑒𝑘=𝑘 0 0 0

0 0 𝐴𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
0 0 … 0 𝐴𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐴𝑣𝑠𝑒𝑘=𝑘 = [
𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒 −ω𝐿𝑠𝑒

ω𝐿𝑠𝑒 𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒
]  

 The current control matrix is:  

𝐵𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐵𝑣𝑠𝑒𝑘=0 𝑏𝑐𝑣𝑠𝑒𝑘=�̅� 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 𝐵𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑏𝑐𝑣𝑠𝑒𝑘=�̅� 0 𝐵𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑏𝑐𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐵𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

𝐵𝑣𝑠𝑒𝑘=𝑘 = [
(𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 0

0 (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0)
]  

𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 = [
〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘
]  

 The dc link voltage and quadrature voltage matrices are given as:  

𝐶𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐶𝑣𝑠𝑒𝑘=0 𝑐𝑐𝑣𝑠𝑒𝑘=�̅� 𝑐𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑐𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑐𝑙𝑣𝑠𝑒𝑘=𝑘 𝐶𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑐𝑙𝑣𝑠𝑒𝑘=�̅� 0 𝐶𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑐𝑙𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐶𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]
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𝐷𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐷𝑣𝑠𝑒𝑘=0 𝑑𝑐𝑣𝑠𝑒𝑘=�̅� 𝑑𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑑𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑑𝑐𝑣𝑠𝑒𝑘=𝑘 𝐷𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑑𝑐𝑣𝑠𝑒𝑘=�̅� 0 𝐷𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑑𝑐𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐷𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝐸𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐸𝑣𝑠𝑒𝑘=0 𝑒𝑐𝑣𝑠𝑒𝑘=�̅� 𝑒𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑒𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑒𝑐𝑣𝑠𝑒𝑘=𝑘 𝐸𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑒𝑐𝑣𝑠𝑒𝑘=�̅� 0 𝐸𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑒𝑐𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐸𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

      

where, their submatrices are: 

𝐶𝑣𝑠𝑒𝑘=𝑘 = [𝐶𝑑𝑐
〈𝑣𝑑𝑐〉0(𝑠 + 𝑗𝑘𝜔) +

3

2
〈

3
2 𝑣𝑠𝑒𝑑 . 𝑖𝑠𝑒𝑑 +

3
2𝑣𝑠𝑒𝑞 . 𝑖𝑠𝑒𝑞 − 𝑖𝑠𝑒𝑑

2 . 𝑅𝑠𝑒

𝑣𝑑𝑐
〉0 0

0 1

] 

𝑐𝑐𝑣𝑠𝑒𝑘=𝑘 = [𝐶𝑑𝑐
〈𝑣𝑑𝑐〉𝑘(𝑠 − 𝑗𝑘𝜔) + 〈

3
2 𝑣𝑠𝑒𝑑 . 𝑖𝑠𝑒𝑑 +

3
2𝑣𝑠𝑒𝑞 . 𝑖𝑠𝑒𝑞 − 𝑖𝑠𝑒𝑑

2 . 𝑅𝑠𝑒

𝑣𝑑𝑐
〉𝑘 0

0 0

] 

𝑐𝑙𝑣𝑠𝑒𝑘=𝑘 = [𝐶𝑑𝑐
〈𝑣𝑑𝑐〉𝑘𝑠 + 〈

3
2 𝑣𝑠𝑒𝑑. 𝑖𝑠𝑒𝑑 +

3
2𝑣𝑠𝑒𝑞 . 𝑖𝑠𝑒𝑞 − 𝑖𝑠𝑒𝑑

2 . 𝑅𝑠𝑒

𝑣𝑑𝑐
〉𝑘 0

0 0

] 

𝐷𝑣𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑖𝑠𝑒𝑑〉0 〈

3

2
𝑖𝑠𝑒𝑞〉0

0 1
] , 𝑒𝑐𝑣𝑠𝑒𝑘=𝑘 = [

〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑. 𝑅𝑓〉𝑘 〈

3

2
𝑣𝑠𝑒𝑞〉𝑘

0 0
] 

𝐸𝑣𝑠𝑒𝑘=𝑘 = [〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑. 𝑅𝑓〉0 〈

3

2
𝑣𝑠𝑒𝑞〉0

0 0

] , 𝑑𝑐𝑣𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑖𝑠𝑒𝑑〉𝑘 〈

3

2
𝑖𝑠𝑒𝑞〉𝑘

0 0

] 

 Generalised impedance model of SSSC based impedance control mode 5.6.2.3

In this section, the derivation of the generalised impedance model of SSSC 

controlled with impedance control mode is presented. It follows the same procedure 

followed for the previous sections. So, the generalised SSSC impedance is given as: 
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Figure 5.11. Block diagram of the generalised SSSC impedance controlled with impedance control mode.
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〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = 𝐴𝐼𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 + 〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤  (5.42) 

〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤 = 𝐵𝐼𝑠𝑒〈𝚫𝐕𝐗
∗〉𝐤 − 𝐵𝐼𝑠𝑒〈𝚫𝐕𝐗〉𝐤  (5.43) 

𝐶𝐼𝑠𝑒〈𝚫𝐕𝐗〉𝐤 = 𝐷𝐼𝑠𝑒〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 + 𝐸𝐼𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤  (5.44) 

The impedance of SSSC controlled by impedance is developed by the help of 

equations (5.42) to (5.44) and the block diagram of the SSSC impedance depicted in 

Figure 5.11. The SSSC impedance is: 

𝑍𝐼𝑆𝑆𝑆𝐶 = {𝐈 + 𝐵𝐼𝑠𝑒(𝐶𝐼𝑠𝑒)
−1𝐷𝐼𝑠𝑒}

−1{𝐴𝐼𝑠𝑒 − 𝐵𝐼𝑠𝑒(𝐶𝐼𝑠𝑒)
−1𝐸𝐼𝑠𝑒}   (5.45) 

The definitions of the matrices in equation (5.45) are: 

 The topology matrix is: 

𝐴𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐴𝑖𝑠𝑒𝑘=0 0 0 ⋯ 0

0 𝐴𝑖𝑠𝑒𝑘=𝑘 0 0 0

0 0 𝐴𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
0 0 … 0 𝐴𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐴𝑖𝑠𝑒𝑘=𝑘 = [
𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒 −ω𝐿𝑠𝑒

ω𝐿𝑠𝑒 𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒
]   

 The current control matrix is: 

𝐵𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐵𝑖𝑠𝑒𝑘=0 𝑏𝑐𝑖𝑠𝑒𝑘=�̅� 𝑏𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑏𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑏𝑐𝑖𝑠𝑒𝑘=𝑘 𝐵𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑏𝑐𝑖𝑠𝑒𝑘=�̅� 0 𝐵𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑏𝑐𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐵𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

𝐵𝑖𝑠𝑒𝑘=𝑘 = [
(𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 0

0 (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0)
],  𝑏𝑐𝑖𝑠𝑒𝑘=𝑘 = [

〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘
]  

 The dc link voltage and SSSC impedance matrices are: 
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𝐶𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐶𝑖𝑠𝑒𝑘=0 𝑐𝑐𝑖𝑠𝑒𝑘=�̅� 𝑐𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑐𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑐𝑙𝑖𝑠𝑒𝑘=𝑘 𝐶𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑐𝑙𝑖𝑠𝑒𝑘=�̅� 0 𝐶𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑐𝑙𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐶𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

𝐷𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐷𝑖𝑠𝑒𝑘=0 𝑑𝑐𝑖𝑠𝑒𝑘=�̅� 𝑑𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑑𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑑𝑐𝑖𝑠𝑒𝑘=𝑘 𝐷𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑑𝑐𝑖𝑠𝑒𝑘=�̅� 0 𝐷𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑑𝑐𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐷𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐸𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐸𝑖𝑠𝑒𝑘=0 𝑒𝑐𝑖𝑠𝑒𝑘=�̅� 𝑒𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑒𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑒𝑐𝑖𝑠𝑒𝑘=𝑘 𝐸𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑒𝑐𝑖𝑠𝑒𝑘=�̅� 0 𝐸𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑒𝑐𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐸𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

where, their submatrices are given for the diagonal submatrices which expand at the 

fundamental frequency of the system while the other matrices are expanded using 

their own frequencies as: 

𝐶𝑖𝑠𝑒𝑘=𝑘 = [𝐶𝑑𝑐〈𝑣𝑑𝑐〉0(𝑠 + 𝑗𝑘𝜔) + 〈

3
2 𝑣𝑠𝑒𝑑 . 𝑖𝑠𝑒𝑑 +

3
2𝑣𝑠𝑒𝑞 . 𝑖𝑠𝑒𝑞 − 𝑖𝑠𝑒𝑑

2 . 𝑅𝑠𝑒

𝑣𝑑𝑐
〉0 0

0 1

] 

𝑐𝑐𝑖𝑠𝑒𝑘=𝑘 = [𝐶𝑑𝑐〈𝑣𝑑𝑐〉0(𝑠 − 𝑗𝑘𝜔) + 〈

3
2 𝑣𝑠𝑒𝑑 . 𝑖𝑠𝑒𝑑 +

3
2 𝑣𝑠𝑒𝑞 . 𝑖𝑠𝑒𝑞 − 𝑖𝑠𝑒𝑑

2 . 𝑅𝑠𝑒

𝑣𝑑𝑐
〉0 0

0 0

] 

𝑐𝑙𝑖𝑠𝑒𝑘=𝑘 = [𝐶𝑑𝑐
〈𝑣𝑑𝑐〉𝑘𝑠 + 〈

3
2 𝑣𝑠𝑒𝑑 . 𝑖𝑠𝑒𝑑 +

3
2𝑣𝑠𝑒𝑞 . 𝑖𝑠𝑒𝑞 − 𝑖𝑠𝑒𝑑

2 . 𝑅𝑠𝑒

𝑣𝑑𝑐
〉0 0

0 0

] 

𝐸𝑖𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑. 𝑅𝑓〉0

3

2
〈𝑣𝑠𝑒𝑞〉0

0 〈
𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞2
〉0
]    𝑑𝑐𝑖𝑠𝑒𝑘=𝑘 =

[
 
 
 
3

2
〈𝑖𝑠𝑒𝑑〉𝑘

3

2
〈𝑖𝑠𝑒𝑞〉𝑘

0 〈
1

𝑖𝑠𝑒𝑞
〉𝑘
]
 
 
 

 

𝑒𝑐𝑖𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑. 𝑅𝑓〉𝑘 〈

3

2
𝑣𝑠𝑒𝑞〉𝑘

0 0
] 𝐷𝑖𝑠𝑒𝑘=𝑘 = [

〈
3

2
𝑖𝑠𝑒𝑑〉0 〈

3

2
𝑖𝑠𝑒𝑞〉0

0 〈
1

𝑖𝑠𝑒𝑞
〉0
]   
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5.7 Stability assessment of SSSC with impedance control mode 

In this section, the effect of harmonics and unbalanced operation on the SSSC with 

impedance control model is presented as an example. The test system including the 

SSSC is presented in Figure 5.12 and the SSSC parameters are shown in Table 5.3. 

The SSSC analysis is carried out by the impedance analysis to presents the 

differences between different operating conditions.   

vsc

SSSC

networkL

Infinite bus

SSSC

control 

fR

fL

2v1v

dcC

 

dcv

vg

5th and 7th harmonics injection

sev seR seL

 

Figure 5.12. SSSC compensates load in presence of harmonics. 

 

Table 5.3. SSSC control modes parameters. 

Parameter Value 

𝑅𝑓 , 𝐿𝑓 5 Ω, 5 mH 

𝑅𝑠𝑒 , 𝐿𝑠𝑒 25 Ω, 161.4 mH 

𝐶𝑑𝑐 800 μF 

𝑣𝑑𝑐 50 kV 

𝐾𝑝𝑣𝑑 , 𝐾𝑖𝑣𝑑 0.01 V/A, 0.01 V/A.s 

𝐾𝑝𝑣𝑞 , 𝐾𝑖𝑣𝑞 -0.22 V/A, 2 V/A.s 

𝑣𝑠𝑒𝑞 1000V 
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 Balanced operation of SSSC with no harmonic  5.7.1

This modelling of SSSC is carried out by the synchronous dq impedance model of 

the SSSC with power control where the harmonics are ignored in the model. The 

SSSC impedance at the fundamental frequency is shown by the dotted line in     

Figure 5.13. It is seen that the SSSC impedance with no harmonics matches the 

SSSC impedance without harmonics coupling.  

 Unbalanced operation of the SSSC 5.7.2

The proposed generalised SSSC model is employed to assess its capability to identify 

the unbalanced operation of the SSSC. Three levels of voltage magnitude will be 

examined in this section as the magnitude of phase-b as [1 0.85 0.65] pu. It is clear 

that the dq-dynamic phasor model of SSSC is efficiently identified the unbalanced 

operation without any transformation to the model. The identification is based on the 

existence of (𝑘 = 0) at the fundamental and (𝑘 = −2) to represent the unbalanced 

operation. Figure 5.13 shows the plot of four impedances as the synchronous dq 

impedance of SSSC (dotted line), the negative sequence impedance for the balanced 

system (solid line), the negative sequence impedance at 0.85 pu voltage (dash-dot 

line) and the negative sequence impedance at the 0.65 pu (dotted line). As shown in 

Figure 5.13, the negative sequence impedance (dotted line) for the balanced case is 

slightly greater than the positive sequence impedance (dashed line) which is referred 

to the existence of controller gains in the coupling matrix. The increase of the 

unbalance increases the magnitude of the coupling matrix which consequently 

increases the SSSC impedance especially at low frequencies. This is referred to the 

parameters of the SSSC controller which will become zero at high frequencies and 

the only effect remains is the measured negative sequence components (𝑘 = −2). 

The identification of the unbalanced operation becomes more obvious as much as the 

coupling between the system components increases and the control system becomes 

more complex.   
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Figure 5.13. SSSC impedance with impedance control model under unbalanced operation.  

As stated previously, the sharp changes in SSSC impedances are caused due to the 

complex part at the studied harmonics in dq-dynamic phasor domain. 

  SSSC operation under the existence of harmonics 5.7.3

In this section, the effect of harmonics on the SSSC impedance with the impedance 

control model is presented. The source injects the 5
th

 and 7
th

 harmonics to the system 

in order to assess the response of the SSSC control modes due to the existence of the 

harmonics. The SSSC has a frequency coupling in both control inputs, where the 

coupling in d-axis is referred to the active power while the q-axis coupling is referred 

to the reactive power. As shown in Figure 5.14, the existence of harmonics has 

almost no effect on the impedance of the SSSC for all frequencies. This is referred to 
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the simplified controller that has been used which causes a slight frequency coupling 

between the fundamental frequency and the other harmonics, where the control 

systems are one of the main causes of coupling in VSC-FACTS devices as will be 

presented in the following section.  
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Figure 5.14. Harmonics effect on SSSC controlled with impedance control mode. 

As a conclusion, the frequency coupling can be ignored in case of this control mode 

is employed in harmonic polluted environment.   

5.8 The concept of frequency coupling in VSC-FACTS devices  

In VSC-FACTS devices and other power system components, the coupling between 

the fundamental frequency and other harmonics might affect the operation and the 
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stability of the device. The main observations regarding the frequency coupling in 

VSC-FACTS devices in dq-dynamic phasor modelling are: 

 The control systems such as the existence of integrators and differentiators as well 

as phase-locked loop (PLL) especially in the weak grids, which cause coupling 

between the fundamental frequency and other frequencies and between the 

harmonics to each other.  

 The existence of the harmonics in the dc link of the VSC-FACTS device which 

causes due to the power variations.  

The frequency coupling in VSC-FACTS devices is illustrated in Figure 5.15 using 

dq-dynamic phasor model. It shows the system inputs are analysed based on their 

frequency to an infinite number of harmonics. This result in the operation of the 

VSC-FACTS device is seen as an infinite number of devices operate at these 

harmonics which might affect each other at certain cases. The sum of the response of 

all these systems is added at the output of the device to present the total response of 

the device. The coupling between the fundamental frequency and the harmonics is 

shown in Figure 5.15 by a bold solid line. It is assumed in this thesis that each 

frequency affects its conjugate (bold dashed line in Figure 5.15) and the fundamental 

frequency without considering any interaction between different harmonics. The 

improved design of these devices eliminates or declines the strength of the link 

between the frequencies which help to improve the immunity of the VSC-FACTS 

devices against harmonic effects. From the impedance perspective, the frequency 

coupling describes the effects of the harmonics on the device impedance, both the 

magnitude and the phase. For instance, the STATCOM impedance presented in 

(5.25) can be written as: 

𝑍𝐷𝑃 =

[
 
 
 
 
 
 
𝑍𝑓 + 𝑝 휀𝑘=𝑘1̅̅̅̅ 휀𝑘=𝑘1 ⋯ 휀𝑘=𝑘𝑛̅̅ ̅̅ 휀𝑘=𝑘𝑛
𝜇𝑘1,0 𝑍𝑘=𝑘1 + 𝑝 0 0 0

𝜇𝑘1̅̅̅̅ ,0 0 𝑍𝑘=𝑘1̅̅̅̅ + 𝑝 0 0

⋮ ⋱
𝜇𝑘𝑛,0 0 0 𝑍𝑘=𝑘𝑛 + 𝑝 0

𝜇𝑘𝑛̅̅ ̅̅ ,0 0 0 0 𝑍𝑘=𝑘𝑛̅̅ ̅̅ + 𝑝]
 
 
 
 
 
 

  (5.46) 
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Figure 5.15. Frequency coupling in VSC-FACTS devices. 
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Equation (5.46) is generalised and written in a compact form as: 

𝑍𝐷𝑃 = {
𝑧𝑓|𝑘=0 + 𝑝 + ∑ (휀𝑘)

∞
𝑘=−∞ 𝑘 = 0

𝑧𝑓|𝑘=0 + 𝑝 + 𝜇𝑘,0           𝑘 ≠ 0
}  (5.47) 

where, 

휀𝑘 is the coupling matrices between fundamental frequency and harmonics.  

𝜇𝑘,0 is the coupling between the harmonics and the fundamental frequency.  
 

The coupling might appear also in the diagonal impedance (𝑝), as the dc link voltage 

is affected by the presence of the positive and negative sequence components of the 

voltages and currents. In the case of the 5
th

 and 7
th

 harmonic existence, positive and 

negative components are generated at (±6𝜔) which causes a frequency coupling. In 

case of the system is considered as fully decoupled, where the system is assumed as 

multi-grids operated at different frequencies, the coupling matrices are: 

휀𝑘 = 𝜇𝑘,0 = 𝑧𝑒𝑟𝑜𝑠 (2,2)   (5.48) 

According to the dynamic phasor transformation in equation (5.48), the measured 

impedance in abc coordinates at a specific harmonic is equal to the impedance of its 

generated harmonics in dq-dynamic phasor multiplied by the transformation factor 

(𝑒±𝑗𝑘𝜔𝑡). 

5.9 Comparison between the proposed dq-dynamic phasor modelling analysis 

and conventional modelling techniques for small signal stability  

Several modelling techniques have been employed in the literature for stability 

assessment in the existence of harmonics and their effects on the operation of system 

devices. These models are summarised in Table 5.4 by comparing their main features 

in comparison with the proposed modelling. The comparison shows superior 

advantages of the proposed modelling for stability analysis. However, the complexity 

of the derivation is the main disadvantage. The selection between these modelling 

techniques is carried out based on the purpose of the study and the operating 

conditions of the studied system. Although the harmonic state space (HSS) technique 



 

130 

 

is based on a similar concept, there are some differences between it and the proposed 

model as: 

 The proposed modelling is very efficient in identifying unbalanced operation of 

the systems in the frequency domain. 

 The frequency range of HSS in stability assessment is (−
𝜔

2
, +

𝜔

2
) where it is based 

on periodic quantities. In the meantime, unlimited range is required to assess the 

stability using the proposed model because the proposed method is based on linear 

time invariant parameters. 

 The positioning of the eigenvalues in the proposed modelling technique is located 

in the opposite of that one resultant using the HSS. This is referred to the 

assumptions made in the analysis of both modelling techniques. 

 Each state variable expands by {6×h} in the HSS method while the proposed 

model expands by {4×h}, where (h) is the number of harmonics. So, the proposed 

modelling has 2/3 the size of HSS. 
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Table 5.4. Comparison between the proposed model and other techniques for small signal stability. 

Characteristic 
Identify 

harmonics effect 

Complexity of 

derivation 

Matrices size of 

each state variable 

Identify 

unbalanced 

operation 

Type of 

parameters 

Stability 

assessment range 

Synchronous dq [3] [18] 

Multiple 

coordinates 

required 

Simple Small 
Using (2

nd
) order 

harmonic 

Linear time-

invariant 
(−∞,+∞) 

Unified modelling using 

αβ [30] 

Multiple 

coordinates 

required 

Simple Small 
Limited for 

ωs>2ω 

Linear time-

variant 
(−∞,+∞) 

Single phase dynamic 

phasor [65], [105], [106] 

Not 

applicable 
Simple Small Not applicable 

Linear time-

invariant 
(−∞,+∞) 

Harmonics linearization 

method-LTI [36][37] 
Yes Moderate Moderate 

Using positive 

negative 

transformation 

Linear time-

invariant 
(−∞,+∞) 

Harmonic state space 

(HSS) [1][47] 
Yes Difficult Large 

Using positive 

negative 

transformation 

Linear time-

variant 
(−

𝜔

2
, +

𝜔

2
) 

Proposed dq-dynamic 

phasor 
Yes Difficult 

Moderate 

(2 3⁄ ) of HSS 

Using positive- 

negative 

components 

Linear time-

invariant 
(−∞,+∞) 
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5.10 Summary 

A generalised dq-dynamic phasor of the state space model and impedance modelling 

for small signal stability analysis has been proposed. Two types of VSC-FACTS 

devices were employed to demonstrate the proposed modelling. The developed 

criteria combined the criteria of synchronous dq modelling and HSS criteria. The 

nature of the developed criteria is based on LTI systems while this system included 

the effect of harmonics on stability. The unbalanced operation of the derived systems 

appeared as a displacement of the eigenvalues in state space analysis and as an 

unmatched plot of positive and negative impedances in impedance analysis. The 

frequency coupling matrix presented a good sign of the unbalanced conditions of the 

devices where its parameters are equal to zero for balanced systems. Also, ignoring 

the frequency coupling presented repeated eigenvalues and the same impedance at all 

frequencies. In the meantime, considering the coupling affects the stability margin of 

the system and can lead to instability. In addition, the inclusion of harmonics in the 

SSSC with impedance control caused no influence on the SSSC impedance due the 

simplicity of the controller and the small effect of harmonics appeared in comparison 

with the fundamental frequency quantities. Nevertheless, with respect to the 

complexity of the analysis, the proposed modelling has a better performance than 

conventional modelling. The proposed generalised modelling manages successfully 

to reproduce their typical response at the fundamental frequency as well as at 

significant low-order harmonics using both eigenvalues and impedance analysis. It 

successfully includes the harmonics and identifies unbalanced conditions as well as 

presenting the effects of harmonic coupling on the fundamental frequency. The 

proposed modelling was more convenient be compared to the synchronous dq 

models and to be simpler to extend the current criteria on synchronous dq to the 

proposed form. The validity of the developed mathematical models was confirmed 

using time-domain simulations performed in MATLAB/Simulink environment. 
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  CHAPTER  6

SMALL SIGNAL STABILITY MONITORING, IMPROVEMENT 

AND CONTROL 

In this chapter, an impedance measurement unit (IMU) is proposed to monitor the 

small signal stability by measuring the system impedance. It has a fast response 

which can be utilised by the network operators or a stability based control system as 

a tool for fast assessment. Also, the effect of changing the STATCOM parameters on 

the impedance norms is investigated. In addition, the effect of implementing control 

parameters (virtual impedance) on infinite norm of STATCOM impedance is 

presented. These control parameters might be utilised by the control system to adjust 

the device impedance. Lastly, the effectiveness of SSSC control modes is 

investigated on damping the system oscillations. The stability assessment is carried 

out using the impedance concept for a series compensated system connected to a 

synchronous machine. 

6.1 Introduction 

Power systems experience many events affecting their operating conditions or that 

might lead to instability. From an impedance based stability perspective, the 

definition of the instability is that when the load-source impedance ratio is greater 

than a specific limit. So, by maintaining the impedance ratio below this limit, the 

stability will be insured. A fast measurement of the impedance at the interfacing 

point improves the response time to retain the system stability. Making the decision 

about the required actions, to maintain the stability, can also be improved by utilising 

the mathematical based criteria such as impedance norms. Even though the 

impedance norms are not sensitive to the phase-related-instability, it can be utilised 

to monitor the stability by network operators or a control system. As well as, having 

a direct relationship between the control parameters of the network or the device will 

aid the control system to maintain stability.  
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6.2 Monitoring the stability of power system 

Stability monitoring can be carried out by designing an impedance measurement unit 

(IMU) and using its measurements to control device/load impedance norm. The IMU 

should provide the required information of the system to change its impedance under 

different operating conditions. The fast response of this measurement unit should be 

guaranteed to ensure effective stability monitoring. In the following sections, the 

design of the proposed IMU is presented. 

  Proposed impedance measurement unit (IMU) 6.2.1

In this section, an impedance measurement unit (IMU) for stability assessment 

applications is proposed. The basic principle of IMU is to inject a perturbation signal 

into the system and then calculate the response using current and voltage 

measurements at the point of interest. Impedance identification is carried out using 

several frequencies to ensure fast response and give a good estimation. The selection 

of the injected frequencies should avoid any coupling between these frequencies in 

dq coordinates. A multi-tone signal is chosen to perturb the measured device. This is 

more effective in comparison with the chirp signal, especially if several frequencies 

are considered [97]. The resultant impedance is less noisy measurements. Also, the 

injected frequencies should be distributed within the range of interest and be 

multiples of the sampling time to reduce the Fast Fourier Transform (FFT) error. 

Two measurements approach is chosen to measure the impedance using series 

injection voltage. The voltage is injected by the injection circuit for a range of the 

frequencies in the first half with positive frequency (+𝜔𝑖) and negative 

frequency (−𝜔𝑖) for the other half of the measurement time (𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒). The time 

(𝑡𝑎) is the period required for each injected signal. It is specified based on the time 

required to finish one duty cycle of the smallest injected frequency or the response 

time of the measured system, and it is defined as: 

𝑡𝑎 =
𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒

2
    (6.1) 

The selection of the IMU parameters and injection technique is based on the 

following factors: 
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 The sampling time is chosen based on the frequency range where the maximum 

range of measured impedance is equal to: 

Maximum frequency range =
1

2(Sampling time)
  (6.2) 

 The measurement time (𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒) is selected based on the expected time constant 

of the measured system and the duty cycle of smallest injected frequency. 

Increasing of the measurement time ensures more accurate measurements. 

 The number of injected frequencies is selected based on the number of 

impedances that can present the impedance trend over the frequency range. 

 The distribution of the injected frequencies should avoid frequency coupling 

between injected frequency components. 

 The injection technique ‘series voltage or shunt current’ of the injected circuit is 

chosen based on the topology of measured system. For instance, current injection 

is more suitable for VSC based devices that use the voltage as an input to phase 

locked loop (PLL), while the voltage injection is easier to implement and suits the 

devices using current as an input to PLL. This is referred to the effect of 

harmonics on the PLL and phase shift of injected signal on the measured 

impedance of these devices. 

 Proposed structure of IMU 6.2.1.1

The impedance measurement unit (IMU) structure is illustrated in Figure 6.1. The 

measurement stages can be defined as: 

 Signal filtering and discretization block: it filters the measurement based on the 

injected frequencies, it transforms the voltages and the currents from abc to 

synchronous dq coordinates. Also, it discretises the measured signals of voltages 

and currents according to the sampling time.  

 Time-based selector block: it splits the measured signals to two parts and delays 

the first parts of the measurements according to the injected time measurement 

(𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒) to differentiate between the first and the second measurement. 



 

136 

 

 Frequency-based magnitude and phase extraction: it finds the magnitude and 

phase of measured voltages and currents at each injected frequency using FFT 

transform and designed frequency selection blocks. 

 Impedance measurement block: it calculates the impedances at each frequency 

using the extracted voltages and currents. 

 Performance validation of the proposed IMU 6.2.1.2

The parameters of the IMU are listed in Table 6.1 where the selection of these 

parameters is carried out based on the previous discussion in section 6.2.1. The 

proposed IMU measurements are compared with a mathematical model of SSSC 

controlled with voltage control mode as an example of VSC-FACTS devices. The 

series injection topology is used to inject the perturbation signal to avoid the effect of 

oscillations on the SSSC performance where the PLL input of SSSC is the quadrature 

voltage. Generally, the IMU is managed to extract the small signal impedance of the 

SSSC precisely over the range of interested frequency as shown in Figure 6.2. The 

SSSC impedance is extracted within 1s which is quick enough to respond to the 

network requirements. The error appearing in the impedances at high frequencies is 

to a low noise ratio (SNR) which can be improved by a selecting different 

combination of injected frequencies [74]. In addition, the accuracy of the proposed 

IMU increases by increasing the measurement time and the number of injected 

frequencies. The measured impedance is sufficient to predict the stability of the 

system and take any corrective actions to maintain the stability of the system. 

Table 6.1. Proposed IMU parameters 

Parameter Value 

Sampling time 10 µs 

Measurement time (𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒) 1 s 

Number of injected frequencies 10 

Frequency vector [10 60 150 200 250 400 500 700 800 900] 
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Figure 6.1. Structure of proposed IMU. 
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Figure 6.2. Comparison between SSSC mathematical model and proposed IMU.  

The increase of the frequency range of measured impedance the sampling time 

should be decreased which might cause a further delay on the operation of the 

proposed IMU.  

 Comparison between the proposed IMU and conventional IMUs 6.2.2

Many publications have proposed impedance measurement units in the literature. 

The focus of these methods was about the injected methods [69], the measurement 

algorithm [70][71] or a design of the IMU [74][72], [107]. However, the main 

limitation of the previous research was the long time required to measure the 

impedance as well as the filtering requirements of the impedances as the objective 

was the accuracy of the measured impedance rather than its fast assessment.       
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Table 6.2 presents the main components and features of the IMUs found in the 

literature in comparison with the proposed IMU. The IMUs used different injection 

methods and different types of signals. The noisy impedance measurement were 

filtered using cross-correlation techniques with a notch filter or discrete Fourier 

transform (DFT). The units that are based on wide-band signals (the proposed IMU 

and in [74][72]) provide a faster measurement time compared to the methods based 

on  sinusoidal signal. As stated, fast measurement processing is crucial for 

maintaining the stability whether by the network operators or by control systems.  

Table 6.2. Comparison between different IMUs performances 

 IMU_1 [74] IMU_2 [72] IMU_3 [107] Proposed IMU 

Injection method Series injection 
Series-shunt 

injection 

Series-shunt 

injection 
Series injection 

Signal type Chirp signal 
Multi-tone 

injection 
Sinusoidal signal 

Multi-tone 

injection 

Processing time 
Depends on the 

number of inputs 

Depends on the 

number of inputs 

Not specified 

Considerably 

slow 

Less than 1 s 

Impedance 

extraction 

procedure 

Cross-correlation 

techniques 

Single phase 

based models 

Cross-correlation 

techniques 

Direct 

measurement 

Filtering 

requirements 

Discrete Fourier 

transform (DFT) 
Large inductance Notch filter Not required 

Number of 

repeated 

injections 

One & ten 

injections for 

each segment 

Two at each 

frequency 

Two at each 

frequency 

Two 

measurements 

 

6.3 Controlling the STATCOM impedance 

From the small signal impedance perspective, improving ac system stability at the 

interfacing point is a function of the impedances of the two connected systems. The 

dq impedance of an ac system has four parts which together define system stability 

based on the impedance matrix. For instance, the use of stability criteria in control 

system requires having a mathematical relationship between the chosen criterion and 

a control variable. The generalized Nyquist criterion (GNC) can ensure the stability 

at the interface; however, it is hard to convert it into a mathematical form. This 
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feature is found in the stability norms-based criteria which can facilitate the use of 

stability norms by the network operators by direct control as shown in Figure 6.3. 

Such relationship presents the actual effect of system parameters on the stability and 

how to maintain it.  Such tuning can be carried out by changing system parameters or 

by utilising virtual impedance which might be more effective for controlling the 

impedance. 

Control 

parameter

Impedance 

calculation
Norm calculation

Assess system 

stability

Direct control of system stability

Conventional stability assessment 

 

Figure 6.3. Concept of stability based impedance control. 

There are some challenges when building a control system based on small signal 

impedance: 

 Noise introduced by the injection circuit used to measure the impedance could 

lead to poor power quality of the system. The existence of noise reduces the 

visibility of continuous stability measurement. Solving this challenge might be 

done by measuring the impedance at specific conditions such where the system 

parameters fail to maintain stability. 

 Even though the stability norms are the only mathematical stability criteria found 

in the literature that can be used in a control system, the dependency on 

magnitude only to find the norm presents some shortages of the stability norms to 

measure the stability of all systems. This is referred to the use of magnitude 

information only in the calculation and ignoring the phase of the impedance. 

Developing other criteria based on magnitude and phase are essential to tackle this 

problem. 
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 Effect on stability norms of changing STATCOM control parameters 6.3.1

As presented in the STATCOM equations in Chapter 4, the STATCOM control 

parameters have a varying effect on the STATCOM’s total impedance. However, this 

relationship is not obvious for stability norms of impedance matrices. Finding the 

relationship between these control system and stability can improve the time 

response to stabilize the system and take corrective actions by system operators. In 

this section, the same test system presented in Chapter 3 is used to present the effect 

of the STATCOM control system on the infinite norm. The test system and 

STATCOM parameters are shown in Table 6.3. 

Table 6.3. System and STATCOM Parameters 

Parameter Value Parameter Value 

𝑣𝑑 , 𝑣𝑞 410 V, 0 V 𝐾𝑝𝑣𝑑 10 V/A 

𝑅𝑓 , 𝐿𝑓 0.5 Ω, 5 mH 𝐾𝑖𝑣𝑑 0.001 V/A.s 

𝐶𝑑𝑐 400 μF 𝐾𝑝𝑖𝑞 800 V/A 

𝑣𝑑𝑐 1000 V 𝐾𝑖𝑖𝑞 8000 V/A.s 

𝐾𝑝𝑖𝑑  800 V/A 𝐾𝑝𝑣𝑞 0.01 V/A 

𝐾𝑖𝑖𝑑  8000 V/A.s 𝐾𝑖𝑣𝑞 2 V/A.s 
 

Figure 6.4 shows how the STATCOM controller voltage and current gains affect the 

infinite norm of the impedance matrix. The STATCOM impedance is calculated at 

different frequencies (10, 200, 800, 1500 and 2500 rad/s) to cover a wide range of 

the STATCOM operation. The effect of STATCOM gains is appeared for some of 

gains, and insignificant for other gains. This response refers to the fact that changing 

gains could affect the phase shift rather than the magnitude of the impedance. For the 

gains of voltage controller, the integral gains (𝐾𝑖𝑣𝑑, 𝐾𝑖𝑣𝑞) have less impact on the 

infinite norm compared with the proportional gains (𝐾𝑝𝑣𝑑, 𝐾𝑝𝑣𝑞) due to the range of 

change of these gains. The increase of the quadrature proportional voltage gain 

(𝐾𝑝𝑣𝑑) tends to decrease the infinite norm as well as the direct proportional voltage 

gain as seen in Figure 6.4a. The current controller gains have similar effect of the 

voltage gains. The increase of the proportional current gain ( 𝐾𝑝𝑖𝑞) tends to reduce 

the infinite norm except for small period while the increase proportional current gain 
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( 𝐾𝑝𝑖𝑑) has positive and negative effect on the infinite norms as shown in 

Figure 6.4b. In the meantime, the integral current controller gains (𝐾𝑖𝑖𝑑, 𝐾𝑖𝑖𝑞) have an 

insignificant effect on the impedance norm. The effect of the STATCOM controllers’ 

gains might not change the impedance norm, but the affect the phase shift of the 

STATCOM impedance. Such a change can be assessed only by the generalised 

Nyquist criterion to assess the stability. The chosen values of control gain influence 

significantly their ability to adjust the infinite norm and might be restricted by the 

steady-state or transient requirement of the connected network. Another restriction 

could be the device setting point where the infinite norm cannot be reduced. This 

conclusion leads to the need to identify another control variable that can control the 

stability norms over a wide range which can be represented by a simple mathematical 

relationship. The possibility of using a control variable to control directly the 

stability norm of the STATCOM impedance matrix that might be added to the 

control system is discussed in the following section.  

 Virtual impedance implementation for STATCOM impedance Control  6.3.2

This section presents the application of virtual impedance to control the 

STATCOM’s behaviour and to reshape its impedances. The basic idea of virtual 

impedance is to add the effect and behaviour of physical series or parallel impedance 

(passive impedance) to the control system (active impedance). The benefit of using 

virtual impedance along with other active techniques is that the active techniques 

regulate the STATCOM impedance magnitude and phase margins within a specific 

range without affecting the output voltage and currents. The aim of this section is to 

examine a simple virtual impedance implementation in a control system. The focus 

of this section is the implementation of virtual pure and complex impedances while 

the other techniques such as the virtual synchronous machine [108] are beyond the 

scope of this thesis. The aims of using virtual impedance here can be summarised as: 

 Find a suitable control variable that has a direct relation with stability norms. 

 Find a control variable that can adjust the infinite norm of the STATCOM 

impedance matrix. 
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Figure 6.4. Relation between control parameters and stability criteria: 

(a) Voltage control loop and (b) Current control loop. 
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 Series virtual impedance (SVI) 6.3.2.1

The basic implementation of series impedance is to connect the virtual impedance 

between the STATCOM output current and the input voltage. However, the actual 

implementation is achieved by connecting the STATCOM output current to the 

reference voltage, as shown in Figure 6.5. For simplicity, the effect of the PLL is 

ignored. The effect virtual impedance is proposed to be as a diagonal matrix as 

shown in (6.3) which is chosen due to the large effect of STATACOM diagonal 

impedances on the norm of STATCOM impedance. Also, the effect of the 

implemented virtual impedance should be defined to be effective within the 

frequency range of interest otherwise equal to zero, as presented in equation (6.3). 

Limiting of the functionality of the virtual impedance can be achieved using low-

pass and high-pass filters, or a second-order band-pass filter. The proposed SVI has 

the form: 

 𝑍𝑠𝑒𝑉𝑖𝑟 =

{
 

 
[

𝑍𝑉𝑖𝑟

 𝐺𝑠𝑒
0

0
𝑍𝑉𝑖𝑟

 𝐺𝑠𝑒

] 𝑓 ∈ [𝑓1, 𝑓2]

0 𝑓 ∉ [𝑓1, 𝑓2]}
 

 

  (6.3) 

where, 𝑓1 and 𝑓2 are the effective boundaries of the virtual impedance frequency 

range of interest.  
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Figure 6.5. Implementation of series virtual impedance in STATCOM model. 
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The definition of the matrices in Figure 6.5 is found in Chapter 4. The transfer 

function (Gse) of the SVI denominator of the diagonal terms in equation (6.3) is 

derived with the help of Figure 6.5 gives:  

𝐺𝑠𝑒 = 𝑑𝑍. 𝑏𝑍 = −[

𝑠𝐶𝑑𝑐𝑣𝑑𝑐
2 −𝛼𝑑𝑐

𝑣𝑑𝑐
(𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
) 0

0 (𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
)
]  (6.4) 

Three types of virtual impedances (𝑍𝑉𝑖𝑟) are tested here to identify their relation to 

the STATCOM infinite norm. There are the purely resistance virtual impedance 

(SRI), the resistive-inductive virtual impedance (RLI) and the resistive-capacitive 

virtual impedance (RCI), which can be presented as: 

𝑍𝑉𝑖𝑟 =

{
 
 

 
 

𝑅𝑣

𝑅𝑣 + 𝑆𝐿𝑣

𝑅𝑣 +
1

𝑆𝐶𝑣 }
 
 

 
 

  (6.5) 

In this study, the power frequency range is defined between 10 rad/s and 2500 rad/s, 

therefore the results are plotted at these frequencies. The impedance norms at other 

intermediate frequencies can be found by interpolating any bounded frequencies. The 

magnitudes of both inductance (𝐿𝑣) and capacitance (𝐶𝑣) are equal to the resistance 

magnitude (𝑅𝑣) when plotting the relationships between the infinite norm and virtual 

impedances presented in Figure 6.6. Figure 6.6 parts (a) and (b) presents the effects 

of changing series-resistive virtual impedance and the series-capacitive virtual 

impedance on the STATCOM impedance infinite norm over a range of frequencies. 

Both impedances have insignificant effect on the STATCOM infinite norm. 

Alternatively, the increase of series resistive-inductive increases the infinite norms as 

shown in Figure 6.6(c), which worsen the stability of the system. 
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Figure 6.6. Effect of virtual impedance on stability norm at different perturbation 

frequencies: 

(a)Series resistive, (b) Series resistive-capacitive and (c) Series resistive-inductive. 
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 Shunt virtual impedance (SHVI) 6.3.2.2

Shunt virtual impedance is connected between the input voltage and the current 

reference to reduce the amount of current flow of the STATCOM and, consequently, 

reduce the total impedance of the STATCOM as shown by the dotted line in 

Figure 6.7. SHVI is proposed to react similarly to impedances in (6.3). The shunt 

virtual impedance is connected between the STATCOM output voltage and the input 

of STATCOM controller as shown in Figure 6.7. The same frequency boundaries as 

in (6.3) are applied to the shunt virtual impedance, as shown in Figure 6.7: 

𝑍𝑠ℎ𝑉𝑖𝑟 =

{
 

 
[

𝑍𝑉𝑖𝑟

 𝐺𝑠𝑒
0

0
𝑍𝑉𝑖𝑟

𝐺𝑠𝑒

] 𝑓 ∈ [𝑓1, 𝑓2]

0 𝑓 ∉ [𝑓1, 𝑓2]}
 

 

  

(6.6) 
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Figure 6.7. Implementation of shunt virtual impedance in STATCOM model. 

Figure 6.8 presents the effects of shunt virtual impedances (SHVI) at different 

frequencies. Shunt resistive and shunt resistive-capacitive impedances have negative 

effect at all frequencies, as shown in Figure 6.8 parts (a) and (b). Both of the 

impedances are suitable for decreasing the infinite norm using the resistive and more 

sharply the resistive-capacitive, consequently, increase the stability margin according 
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to the stability criteria presented in chapter 4. Nevertheless, the shunt resistive and 

shunt resistive-capacitive impedances decrease the STATCOM norm; the inductive 

impedance has almost no effect on the infinite norm except at low frequencies as 

shown in Figure 6.8(c). In general, reducing the current using shunt connections is 

sufficient to reduce the STATCOM impedance; this is because of the nature of the 

STATCOM controller.  
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Figure 6.8. Shunt virtual impedance: 

(a)Shunt resistive, (b) Shunt resistive-capacitive and (c) Shunt resistive-inductive. 
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 To conclude, series virtual impedance has an adverse effect on the infinite norm of 

the STATCOM impedance matrix; whereas shunt connected virtual impedance 

demonstrates better performance. Changing the amount of resistive and resistive-

capacitive virtual impedances can both increase and decrease the STATCOM infinite 

norms. The range over which these impedances may be varied should be limited to 

ensure the required response. The Nyquist plot has been done for four values of shunt 

resistive-capacitive virtual impedance (𝑍𝑉𝑖𝑟 =[20, 30, 40, 50]) as shown in 

Figure 6.9. The effect of decreasing the infinite norm can be seen on the generalised 

Nyquist plot as a shrinking in the plot and moving it to the right-hand side (more 

stable system).  
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Figure 6.9. Nyquist plot of series resistive-capacitive impedance. 

6.4 Improving the oscillatory response of series-compensated power network 

using SSSC 

Power system oscillations such as sub-synchronous resonance (SSR) are caused by 

the undesirable interaction between the power network and the mechanical parts of 

generators. These oscillations cause a low-frequency variation in the systems [6]. 

Damping those oscillations is one of the main functions of the VSC-FACTS devices, 

especially the series connected devices such as static synchronous series 

compensator (SSSC). In this section, the stability of series compensated systems is 
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investigated and the effectiveness of different operating modes of SSSC on damping 

system oscillations is studied. 

 Dynamic performance of series compensated system  6.4.1

Figure 6.10 shows the series compensated system which contains a synchronous 

machine driven by a turbine system, and a transmission line connected to an infinite 

bus. The impedance based stability is utilised to assess the stability of the system at 

the generator terminals, where the system-side represents the transformer, 

transmission line and network admittance as well as the SSSC impedance. The 

parameters used for studying the sub-synchronous resonance (SSR) are listed in 

Table 6.4 for the series compensated network while the synchronous machine 

parameters can be found in Chapter 4. The selection of the test system parameters is 

chosen to ensure the existence of SSR frequency in the test system.  

Table 6.4. Network parameters.  

Base Power 500 MVA 

Secondary side base voltage  500 kV 

Primary side base voltage  22 kV 

𝑅𝑓 , 𝐿𝑓  0.012, 0.180 pu 

𝑅𝐿 , 𝐿𝐿  0.0202, 0.5157 pu 

𝐿𝑠𝑦𝑠  1.148 pu 
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Figure 6.10. Series compensation system. 
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According to the parameters in Table 6.4, the natural frequency (𝑓𝑛) at (20%) 

compensation which represents the oscillatory mode of the test system for example is 

equal to [91]: 

𝑓𝑛 = 𝑓0√
𝑋𝑐

𝑋𝐿
 =27 Hz 

So, the slip frequency which represents the difference between the fundamental 

frequency and the oscillatory mode frequency is: 

Slip frequency = 60 – 27 = 33 Hz 

The network impedance at different compensation levels is shown in Figure 6.11. 

The network compensation levels are studies at 20%, 40% and 80%. The network 

impedance has the same magnitude and phase at frequencies higher than 550 rad/s 

where the capacitive part of the network becomes small in comparison with the 

inductive part. The spikes in the impedance magnitude represent the oscillatory 

modes at different compensation levels of the power network. The 20% 

compensation level leads to an interaction between the synchronous machine and the 

compensated system. 
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Figure 6.11. Network impedance at different compensation levels. 
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The synchronous machine output voltages, output currents and speed deviations of 

turbine masses are presented in Figure 6.12. It shows an increase of the oscillations 

in the currents and voltages due to the disturbances caused by the speed deviation 

which took about 30 s to settle down. 
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Figure 6.12. Synchronous machine measurements for series compensated system (20%): 

(a) Direct stator voltage (𝑣𝑑), (b) Quadrature stator voltage (𝑣𝑞), (c) Direct stator 

current (𝑖𝑑), and (d) Quadrature stator current (𝑖𝑞). 

 Effectiveness of SSSC on damping oscillations 6.4.2

The key function of the SSSC in steady-state application is to control the power flow 

in a transmission line by changing the line impedance. Alternatively, in dynamic 

control, it is to damp system oscillations [109]. The small signal impedance is 

utilised here to assess the effectiveness of different SSSC control modes on damping 

the oscillations. A series compensated network presented in Figure 6.10 is used to 

assess the effectiveness on damping the oscillations. The impedance at the 

interfacing point is calculated for the system side (𝑍𝑠𝑦𝑠) and the generator side (𝑍𝑔𝑒𝑛) 

as: 

𝑍𝑛𝑒𝑡 = (𝑍𝑡 + 𝑍𝑆𝑆𝑆𝐶 + 𝑍𝐿 + 𝑍𝑐𝑜𝑚𝑝 + 𝑍𝑠𝑦𝑠) (6.7) 
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𝑍𝑆𝑆𝑆𝐶 = [
𝑍𝑑𝑑 𝑍𝑑𝑞
𝑍𝑞𝑑 𝑍𝑞𝑞

]   𝑍𝐿 = [
𝑅𝐿 + 𝑠𝐿𝐿 −ω𝐿𝐿 
ω𝐿𝐿 𝑅𝐿 + 𝑠𝐿𝐿

]  

𝑍𝑠𝑦𝑠 = [
𝑠𝐿𝑠𝑦𝑠 −ω𝐿𝑠𝑦𝑠 

ω𝐿𝑠𝑦𝑠 𝑠𝐿𝑠𝑦𝑠
]  𝑍𝑐𝑜𝑚𝑝 = [

𝑠𝐶𝑐𝑜𝑚𝑝 −ω𝐶𝑐𝑜𝑚𝑝 

ω𝐶𝑐𝑜𝑚𝑝 𝑠𝐶𝑐𝑜𝑚𝑝
]
−1

  

where, 

𝑍𝑛𝑒𝑡 is the network impedance. 

𝑍𝑡 is the transformer series impedance. 

𝑍𝑆𝑆𝑆𝐶  is the SSSC impedance. 

𝑍𝐿 is the transmission line impedance. 

𝑍𝑐𝑜𝑚𝑝 is the compensation impedance. 

𝑍𝑠𝑦𝑠 is the rest of system impedance. 

The transformer here is modelled using approximate circuit and equal to: 

𝑍𝑡 = [
𝑅𝑡 + 𝑠𝐿𝑡 −ω𝐿𝑡 
ω𝐿𝑡 𝑅𝑡 + 𝑠𝐿𝑡

]  

In the meantime, the synchronous generator side impedance (𝑍𝑔𝑒𝑛) which was 

derived in Chapter 4 is: 

𝑍𝑔𝑒𝑛 = 𝑍𝑠𝑦𝑛𝑐ℎ  (6.8) 

The performance of the SSSC is tested for voltage control mode on damping the SSR 

frequency of series compensated system at 20% compensation level. Using the 

generalised Nyquist plot, the system was unstable where the plot intersects at the left 

side of point (0, -1). However, the use of the SSSC improves the stability of the 

system and eliminates the oscillations as shown in Figure 6.13. 
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Figure 6.13. Generalised Nyquist plot of compensated and non-compensated system. 

 Comparison between SSSC control modes on damping oscillations 6.4.3

This section investigates the effectiveness of different control modes of SSSC on 

damping system oscillations.  The SSSC improvement on damping the oscillation of 

a series compensated system is presented in Figure 6.14. It is clearly seen that all the 

control modes of the SSSC improve the performance of the system. However, the 

comparison between these modes is difficult in time domain. Therefore, the Nyquist 

plots of these control modes are shown in Figure 6.15 under the same operating 

conditions. The SSSC parameters are shown in Table 5.3, where the same settings 

for the three control modes are maintained for the comparison. 

Table 6.5. SSSC control modes parameters. 

Parameter Value Parameter Value 

𝑅𝑓 , 𝐿𝑓 0.5 Ω, 5 mH 𝐾𝑝𝑣𝑑 , 𝐾𝑖𝑣𝑑 -0.1 V/A, -0.05 V/A.s 

𝑅𝑠𝑒 , 𝐿𝑠𝑒 15.60 Ω, 70 mH 𝐾𝑝𝑣𝑞 , 𝐾𝑖𝑣𝑞 -0.08 V/A, 0.05 V/A.s 

𝐶𝑑𝑐 800 μF 𝑣𝑠𝑒𝑞 170 V 

𝑣𝑑𝑐 1000 V   
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Figure 6.14. Time-domain plots of active and reactive powers of the system: 

(a) Active power-sending end, (b) Reactive power-sending end, (c) Active power-receiving end 

and (d) Reactive power- receiving end. 
 

 

It is concluded from Figure 6.15 that the impedance control mode introduces more 

stable system in comparison with the voltage and power control modes. 

Alternatively, the power control mode shows less effective characteristics on 

stabilising the system compared to the other methods.  
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(c)  

Figure 6.15. Nyquist plot of SSSC control modes: 

(a) Power control mode, (b) Voltage control mode and (c) Impedance control mode. 

6.5 Summary 

In this chapter, monitoring, controlling and improving the stability were presented. In 

the monitoring section, a fast impedance measurement unit (IMU) was proposed to 

facilitate an effective stability monitoring by the network operators. Changing the 

VSC-FACTS device parameters as well as the virtual impedance on the stability was 

examined. Lastly, the performance of the VSC-FACTS device on improving the 

stability of series compensated system was investigated. The following can be 

summarised from this chapter: 

 Using a small number of frequencies to estimate the system impedance ensures 

fast performance of the impedance measurement unit (IMU). 

 The measurement time of the proposed IMU is based on the response of the 

network and the accuracy required. 
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 Several challenges face the development of a control system based on impedance 

such as the suitable stability criteria and power quality level of the networks. 

 Controlling the impedance using device’s parameters could be limited by the 

operating constraints of the device and its capability to effectively control the 

stability.  

 Generally, the series virtual impedance has an adverse effect on the infinite norm 

of the STATCOM impedance matrix; whereas shunt connected virtual impedance 

demonstrates better performance.  

 Even though the time domain plot of active and reactive powers of the 

compensated system looks similar for the three control modes of SSSC, the 

impedance control mode shows more effective performance in comparison with 

other control modes as indicated by the generalised Nyquist plot. 
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  CHAPTER  7

CONCLUSIONS AND FUTURE WORK 

7.1 General conclusions 

The increase in the number of installed VSC-FACTS in power system has increased 

the efforts needed to model these systems, especially when modelling transient 

response or the contribution of harmonics on the systems. Studying system’s stability 

depends on deriving their mathematical models which are distinguished in accuracy 

and complexity. Conventional modelling techniques such as synchronous dq 

modelling and 𝛼𝛽 modelling are usually employed to identify the causes of the 

harmonics, while, the harmonic linearization method and harmonic state space are 

used to present the effect of these harmonics on the systems. In this thesis, the use of 

dq-dynamic phasor in stability assessment was proposed. The dq-dynamic phasor has 

the capability to include harmonics and suits the linearization required for small 

signal stability studies. The basics of modelling in dq-dynamic phasor and how to 

model some of power components were presented in Chapter 3. It was shown that 

modelling using dq-dynamic phasor at the fundamental frequency was equal to the 

synchronous dq modelling. Also, the chapter presented the capability of dq-dynamic 

phasor on modelling balanced and unbalanced responses of the systems. A derivation 

of some VSC-FACTS devices in synchronous dq coordinates was presented in 

Chapter 4. The state space and impedance models of STATCOM controlled with 

voltage control model and reactive power control model were presented. Similarly, 

the SSSC models were derived for three control modes, power control mode, voltage 

control mode and impedance control mode. The SSSC with power control mode 

appeared different impedance in comparison with the other control modes. Also, the 

effects of different sections of synchronous machine and its driving system on the 

impedance were presented. The inclusion of the mechanical section was seen at low 

frequency while it disappeared at high frequencies.  A state space and impedance 
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models where proposed based on dq-dynamic phasor for the STATCOM and the 

SSSC in Chapter 5. The models were sufficient to include the harmonics for stability 

analysis and identify the unbalanced operation based on frequency coupling. The 

proposed models were linearized around a steady state point where the dq-dynamic 

phasor parameters are linear time invariant which reduces the linearization errors in 

comparison with other modelling techniques. Using the proposed modelling, the 

unbalanced operation was appeared as a displacement of the eigenvalues in state 

space analysis and as an unmatched plot of positive and negative impedances in 

impedance analysis. The effect of harmonic coupling on the VSC-FACTS operation 

was obvious for the STATCOM and was limited for the SSSC depending on the 

complexity of their control systems. An impedance measurement unit (IMU) was 

proposed in Chapter 6 for fast monitoring applications. The IMU was developed 

based on the FFT analysis using a multi-tone signal. The validity of the proposed 

IMU was carried out by comparing the results with time domain measurements. The 

accuracy of this measurement unit depends on the measurement time and the time 

delay of the measured system. It discussed the effect of different control parameters 

and virtual impedance on the system stability. Also, the chapter presented the 

efficiency of SSSC control modes on damping system oscillations and the effect of 

different parts of synchronous machine on stability. MATLAB-SIMULINK 

simulations results demonstrated the validity of the proposed models in synchronous 

dq and dq-dynamic phasor modelling as well as the effectiveness of the impedance 

measurement unit. 

7.2 Author’s contributions 

This thesis focused on the modelling of VSC-FACTS devices for small signal 

stability studies including the effects of harmonics and unbalance. The thesis 

contributions can be summarised as follows: 

 STATCOM and SSSC dq-dynamic phasor state space and impedance models for 

small signal stability analysis have been proposed which can include harmonics 

and can also be linearized around steady state point. 
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 An identification method of unbalanced operation of VSC-FACTS devices 

depending on the frequency coupling in the negative sequence harmonic has been 

proposed.  

 A new impedance measurement unit (IMU) based on a multi-tone signal has been 

proposed. It could be used to monitor the short circuit ratio (SCR) in weak grids. 

 The direct relationship between the control parameters of the STATCOM and the 

stability criterion has been revealed for fast stability control. Also, the effect of 

including different types of virtual impedance on stability criteria has been 

investigated.  

 The effectiveness of SSSC control modes on damping system oscillations using 

small signal impedance for series compensated system has been investigated and 

evaluated. 

 The effect of electrical and mechanical parts of the synchronous machine on the 

impedance the machine has been presented. It shows the importance of including 

the turbine dynamic at frequencies below the fundamental frequency. 

7.3 Recommendations for future work 

The work presented in this thesis is mainly focused on the development of 

mathematical models for investigating the small signal stability of VSC-FACTS 

devices. In order to further evaluate the effectiveness and performance of the 

presented work, some possible areas of interest for future work are: 

 Validate the derived dq-dynamic phasor model of VSC-FACTS devices using 

experimental tests when the harmonics co-exist. The number of harmonics that 

should be included can be identified by the frequency scanning of most effective 

harmonics in the analysis. 

 Compare the effectiveness of the proposed method with other modelling 

techniques such as multi-coordinate synchronous dq, harmonic linearization 

method and harmonic state space method. 

 Use the proposed method to design harmonic filters, robust control systems and 

analyse the unbalanced operation of power system devices. 
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 Use the proposed model on damping system oscillations’ design which can be 

used to present the improvements in reducing the harmonics effect and their 

participation on the system performance.  

 Build control system-based impedance for controlling the stability which can be 

used to have an auto-tuning devices: such a control system can be built if the 

mathematical relationship between the device's impedance and the stability is 

clear. As well as the mentioned challenges presented in this thesis have been 

resolved. 
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APPENDIX-A DYNAMIC PHASOR FORMS EXPANSION 

1. Two variable expansion 

1- 〈𝑥𝑦〉0 = 〈𝑥〉�̅�〈𝑦〉𝑘 + 〈𝑥〉0〈𝑦〉0 + 〈𝑥〉𝑘〈𝑦〉�̅�    (A.1) 

〈𝑥𝑦〉𝑘 = 〈𝑥〉𝑘〈𝑦〉0 + 〈𝑥〉0〈𝑦〉𝑘    (A.2) 

〈𝑥𝑦〉�̅� = 〈𝑥〉�̅�〈𝑦〉0 + 〈𝑥〉0〈𝑦〉�̅�    (A.3) 

2. Three variable expansion 

2- 〈𝑥𝑦𝑧〉0 = ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=0
𝑖 〈𝑧〉0 +∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=�̅�
𝑖 〈𝑧〉𝑘 + ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=𝑘
𝑖 〈𝑧〉�̅�   (A.4) 

〈𝑥𝑦𝑧〉𝑘 = ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=0
𝑖 〈𝑧〉𝑘 + ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=𝑘
𝑖 〈𝑧〉0    (A.5) 

〈𝑥𝑦𝑧〉�̅� = ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=0
𝑖 〈𝑧〉�̅� + ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=�̅�
𝑖 〈𝑧〉0   (A.6) 

3. Four variable expansion 

3- 〈𝑥𝑦𝑧𝑚〉𝑘 =

(∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=0
𝑖 〈𝑧〉𝑘 + ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=𝑘
𝑖 〈𝑧〉0)〈𝑚〉0 + ((∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=0
𝑖 )〈𝑧〉0 +

(∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=�̅�
𝑖 )〈𝑧〉𝑘 + (∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=𝑘
𝑖 )〈𝑧〉�̅�) 〈𝑚〉𝑘  

(A.7) 

〈𝑥𝑦𝑧𝑚〉�̅� =

(∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=0
𝑖 〈𝑧〉𝑘 + ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=�̅�
𝑖 〈𝑧〉0)〈𝑚〉0 + ((∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=0
𝑖 )〈𝑧〉0 +

(∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=�̅�
𝑖 )〈𝑧〉𝑘 + (∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=𝑘
𝑖 )〈𝑧〉�̅�) 〈𝑚〉�̅�  

(A.8) 

〈𝑥𝑦𝑧𝑚〉0 =

+(∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=0
𝑖 〈𝑧〉0 +∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=�̅�
𝑖 〈𝑧〉𝑘 + ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=𝑘
𝑖 〈𝑧〉�̅�)〈𝑚〉0 +

(∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=0
𝑖 〈𝑧〉�̅� + ∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=�̅�
𝑖 〈𝑧〉0)〈𝑚〉𝑘 + (∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖

𝑘=0
𝑖 〈𝑧〉𝑘 +

∑ 〈𝑥〉𝑘−𝑖〈𝑦〉𝑖
𝑘=𝑘
𝑖 〈𝑧〉0)〈𝑚〉�̅�  

(A.9) 
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APPENDIX-B STATCOM PERFORMANCE IN SYNCHRONOUS DQ 

1. State space analysis of STATCOM  

This section presents the state derivation of the STATCOM controlled with the reactive 

power and the direct voltage. The linearized state space equations of the STATCOM are 

given by:  

Δ𝑖𝑠𝑑
′  =

1

𝐿𝑓
 Δ𝑣𝑠𝑑 −

𝑅𝑓

𝐿𝑓
Δ𝑖𝑠𝑑 −

1

𝐿𝑓
(Δ𝑢𝑠𝑑) + ωΔ𝑖𝑠𝑞     (B.10) 

Δ𝑖𝑠𝑞
′ =

1

𝐿𝑓
 Δ𝑣𝑠𝑞 −

𝑅𝑓

𝐿𝑓
Δ𝑖𝑠𝑞 −

1

𝐿𝑓
(Δ𝑢𝑠𝑞) − ωΔ𝑖𝑠𝑑  (B.11) 

Δ𝑥1
′ = 𝐾𝑖𝑖𝑑(Δ𝑖𝑠𝑑

∗ − Δ𝑖𝑠𝑑)  (B.12) 

Δ𝑥2
′ = 𝐾𝑖𝑖𝑞(Δ𝑖𝑠𝑞

∗ − Δ𝑖𝑠𝑞)   (B.13) 

The internal signal of the STATCOM is given as: 

Δ𝑢𝑠𝑑 = −𝐾𝑝𝑖𝑑(Δ𝑖𝑠𝑑
∗ − Δ𝑖𝑠𝑑) − Δ𝑥1   (B.14) 

Δ𝑢𝑠𝑞 = −𝐾𝑝𝑖𝑞(Δ𝑖𝑠𝑞
∗ − Δ𝑖𝑠𝑞) − Δ𝑥2   (B.15) 

Δ𝑥3
′ = 𝐾𝑖𝑣𝑑(𝑣𝑑𝑐

∗ − Δ𝑣𝑑𝑐)   (B.16) 

Δ𝑥4
′ = 𝐾𝑖𝑣𝑞(𝑄

∗ − Δ𝑄)   (B.17) 

The reference currents of the STATCOM controlled with reactive power are given for as: 

Δ𝑖𝑠𝑑
∗ = 𝐾𝑝𝑣𝑑(𝑣𝑑𝑐

∗ − Δ𝑣𝑑𝑐) + Δ𝑥3     (B.18) 

Δ𝑖𝑠𝑞
∗ = 𝐾𝑝𝑣𝑞(𝑄

∗ − Δ𝑄) + Δ𝑥4     (B.19) 

where, the reactive power is:  

𝑄 =
3

2
(𝑣𝑠𝑞𝑖𝑠𝑑 − 𝑣𝑠𝑑𝑖𝑠𝑞)   

𝛥𝑄 =
3

2
𝑖𝑠𝑑𝛥𝑣𝑠𝑞 +

3

2
𝑣𝑠𝑞𝛥𝑖𝑠𝑑 −

3

2
𝑖𝑠𝑞𝛥𝑣𝑠𝑑 −

3

2
𝑣𝑠𝑑𝛥𝑖𝑠𝑞   

 

In the meantime, the reference currents of the STATCOM controlled with direct voltage are 

given for as: 

Δ𝑖𝑠𝑑
∗ = 𝐾𝑝𝑣𝑑(𝑣𝑑𝑐

∗ − Δ𝑣𝑑𝑐) + Δ𝑥3     (B.20) 
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𝛥𝑖𝑠𝑞
∗ = 𝐾𝑝𝑣𝑞(𝑣𝑠𝑑

∗ − 𝛥𝑣𝑠𝑑) + 𝛥𝑥4     (B.21) 

While, the dc link voltage is: 

𝛥𝑣𝑑𝑐
′ =

3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
Δ𝑣𝑠𝑑 +

3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
Δ𝑖𝑠𝑑 +

𝛼𝑑𝑐

𝐶𝑑𝑐𝑣𝑑𝑐
2 Δ𝑣𝑑𝑐 +

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
Δ𝑣𝑠𝑞 +

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
Δ𝑖𝑠𝑞   

 

(B.22) 

𝛼𝑑𝑐 = 𝑖𝑠𝑑
2 . 𝑅𝑓 −

3

2
𝑣𝑠𝑑 . 𝑖𝑠𝑑 −

3

2
𝑣𝑠𝑞 . 𝑖𝑠𝑞   

The state space vectors of the STATCOM controlled with reactive power control are: 

𝚫𝐢𝐬𝐝𝐪 = [Δ𝑖𝑠𝑑 Δ𝑖𝑠𝑞]  

𝚫𝐗 = [Δ𝑥1 Δ𝑥2 Δx3 Δ𝑥4 Δ𝑖𝑠𝑑𝑞 Δ𝑣𝑑𝑐]𝑇  

𝚫𝐔 = [Δ𝑣𝑠𝑑 Δ𝑣𝑠𝑞 Δ𝑣𝑑𝑐
∗ Δ𝑄∗]𝑇      

𝚫𝐗′ = 𝐴𝑠𝑞𝚫𝐗 + 𝐵𝑠𝑞𝚫𝐔  (B.23) 

𝚫𝐢𝐬𝐝𝐪 = 𝐶𝚫𝐗  (B.24) 

 

𝐴𝑠𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
0 0 𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑

0 0 0 𝐾𝑖𝑖𝑞 −
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑞

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑑 − 𝐾𝑖𝑖𝑞 0

0 0 0 0 0 0 −𝐾𝑖𝑣𝑑

0 0 0 0 −
3

2
𝐾𝑖𝑣𝑞𝑣𝑠𝑞

3

2
𝐾𝑖𝑣𝑞𝑣𝑠𝑑 0

1

𝐿𝑓
0

𝐾𝑝𝑖𝑑

𝐿𝑓
0

−𝑅𝑓−𝐾𝑝𝑖𝑑

𝐿𝑓
𝜔

−𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓
−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑞

𝐿𝑓
−𝜔

−𝑅𝑓−𝐾𝑝𝑖𝑞+
3

2
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑣𝑠𝑑

𝐿𝑓
0

0 0 0 0
3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
 

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐

𝛼𝑑𝑐

𝐶𝑑𝑐𝑣𝑑𝑐
2 ]

 
 
 
 
 
 
 
 
 
 
 

  

𝐵𝑠𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑 0
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑞

−3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑑 0 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞

0 0 𝐾𝑖𝑣𝑑 0
3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑞

−3

2
𝐾𝑖𝑣𝑞𝑖𝑠𝑑 0 𝐾𝑖𝑣𝑞

 
1

𝐿𝑓
0

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
0

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑞

𝐿𝑓
 
1−

3

2
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞𝑖𝑠𝑑

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓

3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
0 0 ]
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While, the state space vectors of STATCOM model controlled with direct voltage is: 

𝚫𝐢𝐬𝐝𝐪 = [Δ𝑖𝑠𝑑 Δ𝑖𝑠𝑞]  

𝚫𝐗 = [Δ𝑥1 Δ𝑥2 Δ𝑥3 Δ𝑥4 Δ𝑖𝑠𝑑𝑞 Δ𝑣𝑑𝑐]𝑇  

𝚫𝐔 = [Δ𝑣𝑠𝑑 Δ𝑣𝑠𝑞 Δ𝑣𝑑𝑐
∗ Δ𝑣𝑠𝑑

∗ ]𝑇      

𝚫𝐗′ = 𝐴𝑠𝑣𝚫𝐗 + 𝐵𝑠𝑣𝚫𝐔  (B.25) 

𝚫𝐢𝐬𝐝𝐪 = 𝐶𝚫𝐗  (B.26) 

 

𝐴𝑠𝑣 =

[
 
 
 
 
 
 
 
 
 
0 0 𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑
0 0 0 𝐾𝑖𝑖𝑞 0 −𝐾𝑖𝑖𝑞 0

0 0 0 0 0 0 −𝐾𝑖𝑣𝑑
0 0 0 0 0 0 0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑑

𝐿𝑓
0

𝐾𝑝𝑖𝑑−𝑅𝑓

𝐿𝑓
𝜔

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓
−𝜔

𝐾𝑝𝑖𝑞−𝑅𝑓

𝐿𝑓
0

0 0 0 0
3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑.𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 ]

 
 
 
 
 
 
 
 
 

   

𝐵𝑠𝑣 =

[
 
 
 
 
 
 
 
 
 

0 0 0 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑
−𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞 0 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞 0

0 0 0 𝐾𝑖𝑣𝑑
−𝐾𝑖𝑣𝑞 0 𝐾𝑖𝑣𝑞 0
1

𝐿𝑓
 0 0

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

−
𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓

1

𝐿𝑓
 

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
0

3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
0 0 ]

 
 
 
 
 
 
 
 
 

    

2. STATCOM impedance in synchronous dq frame  

Δ𝑣𝑠𝑑 = (𝐿𝑓 + 𝑅𝑓)Δ𝑖𝑠𝑑 −ω𝐿𝑓Δ𝑖𝑠𝑞 + Δ𝑢𝑠𝑑   (B.27) 

Δ𝑣𝑠𝑞 = (𝑅𝑓 + 𝐿𝑓s)Δ𝑖𝑠𝑞 +ω𝐿𝑓Δ𝑖𝑠𝑑 + Δ𝑢𝑠𝑞   (B.28) 

Δ𝑢𝑠𝑑 = −(𝐾𝑝𝑖𝑑 +
𝐾𝑖𝑖𝑑

𝑠
) (Δ𝑖𝑠𝑑

∗ − Δ𝑖𝑠𝑑)  (B.29) 

Δ𝑢𝑠𝑞 = −(𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
) (Δ𝑖𝑠𝑞

∗ − Δ𝑖𝑠𝑞)  (B.30) 

Substituting (B.27) to (B.30) to have: 
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Δ𝑣𝑠𝑑 = (𝐿𝑓 + 𝑅𝑓 + (𝐾𝑝𝑖𝑑 +
𝐾𝑖𝑖𝑑

𝑠
)) Δ𝑖𝑠𝑑 −ω𝐿𝑓Δ𝑖𝑠𝑞 − (𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
)Δ𝑖𝑠𝑑

∗   (B.31) 

Δ𝑣𝑠𝑞 = (𝑅𝑓 + 𝐿𝑓s + (𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
))Δ𝑖𝑠𝑞 +ω𝐿𝑓Δ𝑖𝑠𝑑 − (𝐾𝑝𝑖𝑞 +

𝐾𝑖𝑖𝑞

𝑠
) Δ𝑖𝑠𝑞

∗   (B.32) 

[
Δ𝑣𝑠𝑑
Δ𝑣𝑠𝑞

] = 𝑎𝑍 [
Δ𝑖𝑠𝑑
Δ𝑖𝑠𝑞

] − 𝑏𝑍 [
Δ𝑖𝑠𝑑
∗

Δ𝑖𝑠𝑞
∗ ]  (B.33) 

where, 

𝑎𝑍 = [
𝐿𝑓 + 𝑅𝑓 + (𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
) −ω𝐿𝑓

ω𝐿𝑓 𝑅𝑓 + 𝐿𝑓s + (𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
)
]   

𝑏𝑍 = −[
(𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
) 0

0 (𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
)
]  

The reference currents of the STATCOM controlled with reactive power are:  

Δ𝑖𝑠𝑑
∗ = (𝐾𝑝𝑣𝑑 +

𝐾𝑖𝑣𝑑

𝑠
) 𝑣𝑑𝑐

∗ − (𝐾𝑝𝑣𝑑 +
𝐾𝑖𝑣𝑑

𝑠
)Δ𝑣𝑑𝑐     (B.34) 

Δ𝑖𝑠𝑞
∗ = (𝐾𝑝𝑣𝑞 +

𝐾𝑖𝑣𝑞

𝑠
)𝑄∗ − (𝐾𝑝𝑣𝑞 +

𝐾𝑖𝑣𝑞

𝑠
)Δ𝑄      (B.35) 

By reforming equations (B.34)  and (B.35)  as: 

[
Δ𝑖𝑠𝑑
∗

Δ𝑖𝑠𝑞
∗ ] = 𝑐𝑍 [

𝑣𝑑𝑐
∗

Q∗
] − 𝑐𝑍 [

𝑣𝑑𝑐
Q ]  (B.36) 

where, 

𝑐𝑍 = [
(𝐾𝑝𝑣𝑑 +

𝐾𝑖𝑣𝑑

𝑠
) 0

0 (𝐾𝑝𝑣𝑞 +
𝐾𝑖𝑣𝑞

𝑠
)
]  

While, the reference currents of the STATCOM controlled with direct voltage control are:  

Δ𝑖𝑠𝑑
∗ = (𝐾𝑝𝑣𝑑 +

𝐾𝑖𝑣𝑑

𝑠
) (𝑣𝑑𝑐

∗ − Δ𝑣𝑑𝑐)    (B.37) 

Δ𝑖𝑠𝑞
∗ = (𝐾𝑝𝑣𝑞 +

𝐾𝑖𝑣𝑞

𝑠
) (𝑣𝑠𝑑

∗ − Δ𝑣𝑠𝑑)    (B.38) 

 These equations can be reformed as: 

[
Δ𝑖𝑠𝑑
∗

Δ𝑖𝑠𝑞
∗ ] = 𝑐𝑍 [

𝑣𝑑𝑐
∗

𝑣𝑠𝑑
∗ ] − 𝑐𝑍 [

𝑣𝑑𝑐
𝑣𝑠𝑑

]   
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By substituting the relations between the device and the network measurements in the dc link 

voltage to have: 

{
𝐶𝑑𝑐𝑣𝑑𝑐.s−𝑖𝑠𝑑

2 .𝑅𝑓+
3

2
𝑣𝑠𝑑.𝑖𝑠𝑑+

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝑣𝑑𝑐
}Δ𝑣𝑑𝑐 = (

3

2
𝑣𝑠𝑑 − 2𝑖𝑠𝑑 . 𝑅𝑓)Δ𝑖𝑠𝑑 +

3

2
𝑣𝑠𝑞Δ𝑖𝑠𝑞 +

3

2
𝑖𝑠𝑑Δ𝑣𝑠𝑑 +

3

2
𝑖𝑠𝑞Δ𝑣𝑠𝑞  

(B.39) 

Also the reactive power equation, which is given as:  

Δ𝑄 = 𝑖𝑠𝑑Δ𝑣𝑠𝑞 + 𝑣𝑠𝑞Δ𝑖𝑠𝑑 − 𝑖𝑠𝑞Δ𝑣𝑠𝑑 − 𝑣𝑠𝑑Δ𝑖𝑠𝑞    

So, for the STATCOM controlled with reactive power control is given as: 

𝑑𝑧 [
Δ𝑣𝑑𝑐
Δ𝑄

] = 𝑓𝑧 [
Δ𝑣𝑠𝑑
Δ𝑣𝑠𝑞

] + 𝑒𝑧 [
Δ𝑖𝑠𝑑
Δ𝑖𝑠𝑞

]  (B.40) 

where, 

  𝑑𝑧 = [
𝑠𝐶𝑑𝑐𝑣𝑑𝑐

2 −𝛼𝑑𝑐

𝑣𝑑𝑐
0

0 1
]                𝑒𝑧 = [

(
3

2
𝑣𝑠𝑑 − 2𝑖𝑠𝑑 . 𝑅𝑓)

3

2
𝑣𝑠𝑞

3

2
𝑣𝑠𝑞 −

3

2
𝑣𝑠𝑑

]   

𝑓𝑧 = [

3

2
𝑖𝑠𝑑

3

2
𝑖𝑠𝑞

−
3

2
𝑖𝑠𝑞

3

2
𝑖𝑠𝑑
]  

In the meantime, the STATCOM controlled with direct voltage control is: 

𝑑𝑧 [
Δ𝑣𝑑𝑐
Δ𝑄

] = 𝑓𝑣𝑧 [
Δ𝑣𝑠𝑑
Δ𝑣𝑠𝑞

] + 𝑒𝑣𝑧 [
Δ𝑖𝑠𝑑
Δ𝑖𝑠𝑞

]  (B.41) 

where, 

  𝑑𝑧 = [
𝑠𝐶𝑑𝑐𝑣𝑑𝑐

2 −𝛼𝑑𝑐

𝑣𝑑𝑐
0

0 1
]      𝑒𝑣𝑧 = [

(
3

2
𝑣𝑠𝑑 − 2𝑖𝑠𝑑 . 𝑅𝑓)

3

2
𝑣𝑠𝑞

0 0
]  𝑓𝑣𝑧 = [

3

2
𝑖𝑠𝑑

3

2
𝑖𝑠𝑞

1 0
]  

So, the impedance of the STATCOM controlled with reactive power is: 

[
Δ𝑣𝑠𝑑
Δ𝑣𝑠𝑞 

] = 𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑄 [
Δ𝑖𝑠𝑑
Δ𝑖𝑠𝑞 

] + 𝐶𝑥 [
𝑣𝑑𝑐
∗

𝑣𝑠𝑑
∗ ]     (B.42) 

where, 

𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑄 =
𝑎𝑍 + 𝑏𝑍𝑐𝑍𝑑𝑧

−1𝑒𝑧
 𝐼 − 𝑏𝑍𝑐𝑍𝑑𝑧

−1𝑓𝑧
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𝐶𝑥 = −
𝑏𝑍𝑐𝑍

(𝐼 − 𝑏𝑍𝑐𝑍𝑑𝑧
−1𝑓𝑧)

 

While, the impedance of the STATCOM controlled with direct voltage control is: 

[
Δ𝑣𝑠𝑑
Δ𝑣𝑠𝑞 

] = 𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑉 [
Δ𝑖𝑠𝑑
Δ𝑖𝑠𝑞 

] + 𝐶𝑥 [
𝑣𝑑𝑐
∗

𝑣𝑠𝑑
∗ ]     (B.43) 

Where: The STATCOM impedance  (𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑉) is given as: 

𝑍𝑆𝑇𝐴𝑇𝐶𝑂𝑀𝑉 =
𝑎𝑍 + 𝑏𝑍𝑐𝑍𝑑𝑧

−1𝑒𝑣𝑧
 𝐼 − 𝑏𝑍𝑐𝑍𝑑𝑧

−1𝑓𝑣𝑧
 

𝐶𝑥 = −
𝑏𝑍𝑐𝑍

(𝐼 − 𝑏𝑍𝑐𝑍𝑑𝑧
−1𝑓𝑣𝑧)
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APPENDIX-C SYNCHRONOUS GENERATOR  

1. dq impedance of synchronous generator 

'r

fdi'

1

r

kdir

mdi
'

lkdL

'kdr
mdL

sr

r

r qs 
r

dsv
r

dsp 'fdr

fdv

lsL

'

lfdL

 

'

1

r

kqir

mqi
'

1lkqL

1'kqr
mqL

lsL
sr

r

r ds 

r

qsi

r

qsv
r

qsp

'

1

r

kqi

'

2lkqL

2'kqr

 

HPIPLPA LPBG
 

Figure (1) synchronous generator equivalent circuit 

The equations of the synchronous machine can be expressed as[83] [110] as: 

𝑣𝑑𝑠
𝑟 = −𝑟𝑠𝑖𝑑𝑠

𝑟 −𝜔𝑟λ𝑞𝑠
𝑟 +

𝑑

𝑑𝑡
λ𝑑𝑠
𝑟   (C.44) 

𝑣𝑞𝑠
𝑟 = −𝑟𝑠𝑖𝑞𝑠

𝑟 +𝜔𝑟λ𝑑𝑠
𝑟 +

𝑑

𝑑𝑡
λ𝑞𝑠
𝑟    (C.45) 

𝑣𝑘𝑑1
`𝑟 = −𝑟𝑘𝑑1

`𝑟 𝑖𝑘𝑑1
`𝑟 +

𝑑

𝑑𝑡
𝜆𝑘𝑑1
`𝑟    (C.46) 

𝑣𝑘𝑞1
`𝑟 = −𝑟𝑘𝑞1

`𝑟 𝑖𝑘𝑞1
`𝑟 +

𝑑

𝑑𝑡
𝜆𝑘𝑞1
`𝑟    (C.47) 

𝑣𝑓𝑑
` = −𝑟𝑓𝑑

`𝑟 𝑖𝑓𝑑
` +

𝑑

𝑑𝑡
𝜆𝑓𝑑
`   (C.48) 

𝑣𝑘𝑞2
`𝑟 = −𝑟𝑘𝑞1

`𝑟 𝑖𝑘𝑞2
`𝑟 +

𝑑

𝑑𝑡
𝜆𝑘𝑞2
`𝑟    (C.49) 

The flux linkages may be written as: 
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λ𝑑𝑠
𝑟 = −𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 + 𝐿𝑚𝑑𝑖𝑚𝑑
𝑟    (C.50) 

𝜆𝑘𝑑1
`𝑟 = 𝐿𝑙𝑘𝑑1

` 𝑖𝑘𝑑1
`𝑟 + 𝐿𝑚𝑑𝑖𝑚𝑑

𝑟    (C.51) 

𝜆𝑓𝑑
` = 𝐿𝑙𝑓𝑑

` 𝑖𝑓𝑑
` + 𝐿𝑚𝑑𝑖𝑚𝑑

𝑟   (C.52) 

λ𝑞𝑠
𝑟 = −𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 + 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟    (C.53) 

𝜆𝑘𝑞1
`𝑟 = 𝐿𝑙𝑘𝑞1

` 𝑖𝑘𝑞1
`𝑟 + 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟    (C.54) 

𝜆𝑘𝑞2
`𝑟 = 𝐿𝑙𝑘𝑞2

` 𝑖𝑘𝑞2
`𝑟 + 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟    (C.55) 

where (𝜔𝑟) is the speed of the rotor reference frame, x represents the number of damper 

windings on the q-axis,  which can be 1, 2, or 3, and y represents the number of dumper on 

the d-axis, which can be 1 or 2. The rotor variables are referred to the stator windings for 

convenience.  

By linearizing above equations from (C.45) to (C.55) to have: 

[

𝚫𝐯𝐝𝐪𝐬
𝐫

𝚫𝐯𝐥𝐟𝐤𝐝
`𝐫

𝚫𝐯𝐤𝐪𝟏𝟐
`𝐫

] =

[
 
 
 
 
 
 
 
−𝑟𝑠 0 0 0 0 0
0 −𝑟𝑠 0 0 0 0

0 0 −𝑟𝑘𝑑1
`𝑟 0 0 0

0 0 0 −𝑟𝑓𝑑
`𝑟 0 0

0 0 0 0 −𝑟𝑘𝑞1
`𝑟 0

0 0 0 0 0 −𝑟𝑘𝑞2
`𝑟
]
 
 
 
 
 
 
 

[

𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢𝐥𝐟𝐤𝐝
`𝐫

𝚫𝐢𝐤𝐪𝟏𝟐
`𝐫

] +
𝑑

𝑑𝑡
[

𝜟𝝀𝒅𝒒𝒔
𝒓

𝛥𝝀𝒇𝒌𝒅
`𝒓

𝛥𝝀𝒌𝒒𝟏𝟐
`𝒓

] +

[
 
 
 
 
 
0 −𝜔𝑟 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝜔𝑟 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

[

𝚫𝛌𝒅𝒒𝒔
𝒓

𝚫𝝀𝒇𝒌𝒅
`𝒓

𝚫𝝀𝒌𝒒𝟏𝟐
`𝒓

] +

[
 
 
 
 
 
−λ𝑞𝑠

𝑟 0

λ𝑑𝑠
𝑟 0
0 0
0 0
0 0
0 0]

 
 
 
 
 

𝚫𝝎𝜹                     (C.56) 

And for mutual flux equations: 

[

𝚫𝛌𝐝𝐪𝐬
𝐫

𝚫𝛌𝐟𝐤𝐝
`𝐫

𝚫𝛌𝐤𝐪𝟏𝟐
`𝐫

] =

[
 
 
 
 
 
 
 
−𝐿𝑙𝑠 0 0 0 0 0
0 −𝐿𝑙𝑠 0 0 0 0

0 0 𝐿𝑙𝑘𝑑1
` 0 0 0

0 0 0 𝐿𝑙𝑓𝑑
` 0 0

0 0 0 0 𝐿𝑙𝑘𝑞1
` 0

0 0 0 0 0 𝐿𝑙𝑘𝑞2
`

]
 
 
 
 
 
 
 

[

𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢𝐥𝐟𝐤𝐝
`𝐫

𝚫𝐢𝐤𝐪𝟏𝟐
`𝐫

] +

[
 
 
 
 
 
 
𝐿𝑚𝑑 0
0 𝐿𝑚𝑞
𝐿𝑚𝑑 0
𝐿𝑚𝑑 0
0 𝐿𝑚𝑞
0 𝐿𝑚𝑞]

 
 
 
 
 
 

𝚫𝐢𝐦𝐝𝐪
𝐫   

  (C.57) 

Substituting mutual inductance equation in voltage equations to have: 
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[

𝚫𝐯𝐝𝐪𝐬
𝐫

𝚫𝐯𝐥𝐟𝐤𝐝
`𝐫

𝚫𝐯𝐤𝐪𝟏𝟐
`𝐫

] =

[
 
 
 
 
 
 
−𝑟𝑠 − 𝑆𝐿𝑙𝑠 𝜔𝑟𝐿𝑙𝑠 0 0 0 0

−𝜔𝑟𝐿𝑙𝑠 −𝑟𝑠 − 𝑆𝐿𝑙𝑠 0 0 0 0

0 0 −𝑟𝑘𝑑1
`𝑟 + 𝑆𝐿𝑙𝑘𝑑1

` 0 0 0

0 0 0 −𝑟𝑓𝑑
`𝑟 + 𝑆𝐿𝑙𝑓𝑑

` 0 0

0 0 0 0 −𝑟𝑘𝑞1
`𝑟 + 𝑆𝐿𝑙𝑘𝑞1

` 0

0 0 0 0 0 −𝑟𝑘𝑞2
`𝑟 + 𝑆𝐿𝑙𝑘𝑞2

`
]
 
 
 
 
 
 

[

𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢𝐥𝐟𝐤𝐝
`𝐫

𝚫𝐢𝐤𝐪𝟏𝟐
`𝐫

] +

[
 
 
 
 
 
𝑆𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑞
𝜔𝑟𝐿𝑚𝑑 𝑆𝐿𝑚𝑞
𝑆𝐿𝑚𝑑 0

𝑆𝐿𝑚𝑑 0

0 𝑆𝐿𝑚𝑞
0 𝑆𝐿𝑚𝑞 ]

 
 
 
 
 

𝚫𝐢𝐦𝐝𝐪
𝐫 +

[
 
 
 
 
 
𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 0

𝐿𝑚𝑑𝑖𝑚𝑑
𝑟 − 𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 0

0 0

0 0

0 0

0 0]
 
 
 
 
 

𝚫𝛚𝛅             (C.58) 

𝚫𝝎𝜹 = [Δ𝜔𝑟 Δ𝛿𝑟]  

According to figure (1) current directions and using KCL: 

Δ𝑖𝑓𝑑
` = Δ𝑖𝑑𝑠

𝑟 + Δ𝑖𝑚𝑑
𝑟 − Δ𝑖𝑘𝑑1

`𝑟   (C.59) 

Δ𝑖𝑘𝑞2
`𝑟 = Δ𝑖𝑞𝑠

𝑟 + Δ𝑖𝑚𝑞
𝑟 − Δ𝑖𝑘𝑞1

`𝑟   (C.60) 

From figure (1) :  

Δ𝑣𝑚𝑑
𝑟 = 𝑆𝐿𝑚𝑑Δ𝑖𝑚𝑑

𝑟   (C.61) 

Δ𝑣𝑚𝑞
𝑟 = 𝑆𝐿𝑚𝑞Δ𝑖𝑚𝑞

𝑟   (C.62) 

Δ𝑖𝑘𝑑1
`𝑟 =

1

(𝑟𝑘𝑑1
`𝑟 + 𝑆𝐿𝑙𝑘𝑑1

` )
Δ𝑣𝑘𝑑1

`𝑟  (C.63) 

Δ𝑖𝑘𝑞1
`𝑟 =

1

(𝑟𝑘𝑞1
`𝑟 + 𝑆𝐿𝑙𝑘𝑞1

` )
Δ𝑣𝑘𝑞1

`𝑟  (C.64) 

Δ𝑣𝑚𝑑
𝑟 = −Δ𝑣𝑘𝑑1

`𝑟 = Δ𝑣𝑓𝑑
` − (𝑟𝑓𝑑

`𝑟 + 𝑆𝐿𝑙𝑓𝑑
` )Δ𝑖𝑓𝑑

`   (C.65) 

Due to the assumption that the field voltage is constant during the operation (Δ𝑣𝑓𝑑
` = 0) so: 

Δ𝑣𝑚𝑑
𝑟 = −Δ𝑣𝑘𝑑1

`𝑟 = −(𝑟𝑓𝑑
`𝑟 + 𝑆𝐿𝑙𝑓𝑑

` )Δ𝑖𝑓𝑑
`   (C.66) 

Δ𝑖𝑘𝑑1
`𝑟 = −

𝑆𝐿𝑚𝑑

(𝑟𝑘𝑑1
`𝑟 + 𝑆𝐿𝑙𝑘𝑑1

` )
Δ𝑖𝑚𝑑
𝑟  (C.67) 
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Δ𝑖𝑓𝑑
` = −

𝑆𝐿𝑚𝑑

𝑟𝑓𝑑
`𝑟 + 𝑆𝐿𝑙𝑓𝑑

`
Δ𝑖𝑚𝑑
𝑟  (C.68) 

Δ𝑣𝑚𝑞
𝑟 = −Δ𝑣𝑘𝑞1

`𝑟 = −Δ𝑣𝑘𝑞2
`𝑟   (C.69) 

Δ𝑖𝑘𝑞1
`𝑟 = −

𝑆𝐿𝑚𝑞

(𝑟𝑘𝑞1
`𝑟 + 𝑆𝐿𝑙𝑘𝑞1

` )
Δ𝑖𝑚𝑞
𝑟  (C.70) 

Δ𝑖𝑘𝑞2
`𝑟 = −

𝑆𝐿𝑚𝑞

(𝑟𝑘𝑞2
`𝑟 + 𝑆𝐿𝑙𝑘𝑞2

` )
Δ𝑖𝑚𝑞
𝑟  (C.71) 

From(C.59) , (C.67), (C.70), (C.71) to have : 

Δ𝑖𝑚𝑑
𝑟 = 𝐴𝑚𝑠𝑑Δ𝑖𝑑𝑠

𝑟   (C.72) 

𝐴𝑚𝑠𝑑 =
1

𝑆𝐿𝑚𝑑 (−
1

𝑟𝑓𝑑
`𝑟 + 𝑆𝐿𝑙𝑓𝑑

` −
1

(𝑟𝑘𝑑1
`𝑟 + 𝑆𝐿𝑙𝑘𝑑1

` )
−

1
𝑆𝐿𝑚𝑑

)

 
 

Δ𝑖𝑘𝑑1
`𝑟 = −

𝑆𝐿𝑚𝑑𝐴𝑚𝑠𝑑

(𝑟𝑘𝑑1
`𝑟 + 𝑆𝐿𝑙𝑘𝑑1

` )
Δ𝑖𝑑𝑠
𝑟  (C.73) 

Δ𝑖𝑓𝑑
` = −

𝑆𝐿𝑚𝑑𝐴𝑚𝑠𝑑

(𝑟𝑓𝑑
`𝑟 + 𝑆𝐿𝑙𝑓𝑑

` )
Δ𝑖𝑑𝑠
𝑟  (C.74) 

 

And from (C.60) and (C.70) to have: 

Δ𝑖𝑚𝑞
𝑟 = 𝐴𝑚𝑠𝑞Δ𝑖𝑞𝑠

𝑟   (C.75) 

𝐴𝑚𝑠𝑞 =
1

𝑆𝐿𝑚𝑞 (−
1

(𝑟𝑘𝑞2
`𝑟 + 𝑆𝐿𝑙𝑘𝑞2

` )
−

1

(𝑟𝑘𝑞1
`𝑟 + 𝑆𝐿𝑙𝑘𝑞1

` )
−

1
𝑆𝐿𝑚𝑞

)

 
 

Δ𝑖𝑘𝑞1
`𝑟 = −

𝑆𝐿𝑚𝑞𝐴𝑚𝑠𝑞

(𝑟𝑘𝑞1
`𝑟 + 𝑆𝐿𝑙𝑘𝑞1

` )
Δ𝑖𝑞𝑠
𝑟  (C.76) 

Δ𝑖𝑘𝑞2
`𝑟 = −

𝑆𝐿𝑚𝑞𝐴𝑚𝑠𝑞

(𝑟𝑘𝑞2
`𝑟 + 𝑆𝐿𝑙𝑘𝑞2

` )
Δ𝑖𝑞𝑠
𝑟  (C.77) 

Substituting equations from (C.66) to(C.77) in(4.49) to have: 

𝚫𝐯𝐝𝐪𝐬
𝐫 = [

(−𝑟𝑠 − 𝑆𝐿𝑙𝑠) + 𝑆𝐿𝑚𝑑𝐴𝑚𝑠𝑑 𝜔𝑟𝐿𝑙𝑠 − 𝜔𝑟𝐿𝑚𝑞𝐴𝑚𝑠𝑞
−𝜔𝑟𝐿𝑙𝑠 +𝜔𝑟𝐿𝑚𝑑𝐴𝑚𝑠𝑑 (−𝑟𝑠 − 𝑆𝐿𝑙𝑠) + 𝑆𝐿𝑚𝑞𝐴𝑚𝑠𝑞

] 𝚫𝐢𝐝𝐪𝐬
𝐫 +  
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[
(𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 ) 0

(𝐿𝑚𝑑𝑖𝑚𝑑
𝑟 − 𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 ) 0
] 𝚫𝛚𝛅  

 

(C.78) 

𝚫𝐯𝐝𝐪𝐬
𝐫 = [

𝑍𝑑𝑑 𝑍𝑑𝑞
𝑍𝑞𝑑 𝑍𝑞𝑞

]𝚫𝐢𝐝𝐪𝐬
𝐫 + [

(𝐿𝑙𝑠𝑖𝑞𝑠
𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟 ) 0

(𝐿𝑚𝑑𝑖𝑚𝑑
𝑟 − 𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 ) 0
]𝚫𝝎𝜹  (C.79) 

𝚫𝐯𝐝𝐪𝐬
𝐫 = 𝑍𝑍. 𝚫𝐢𝐝𝐪𝐬

𝐫 + 𝐴𝜆. 𝚫𝝎𝜹  (C.80) 

1.1. Including the effect of the electrical torque: 

The electric torque equation can be linearized on the form: 

Δ𝑇𝑒 = (
3

2
) (
𝑃

2
) {Δλ𝑑𝑠

𝑟 . 𝑖𝑞𝑠
𝑟 + λ𝑑𝑠

𝑟 . Δ𝑖𝑞𝑠
𝑟 − Δλ𝑞𝑠

𝑟 𝑖𝑑𝑠
𝑟 − λ𝑞𝑠

𝑟 Δ𝑖𝑑𝑠
𝑟 } (C.81) 

Substituting the mutual inductance and the currents in  (C.81) to have: 

Δ𝑇𝑒 = (
3

2
) (

𝑃

2
) {(−𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 + 𝐿𝑚𝑑𝑖𝑞𝑠

𝑟 𝐴𝑚𝑠𝑑 + 𝐿𝑙𝑠𝑖𝑞𝑠
𝑟 )Δ𝑖𝑑𝑠

𝑟 + (−𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 +

𝐿𝑚𝑑𝑖𝑚𝑑
𝑟 + 𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑑𝑠
𝑟 𝐴𝑚𝑠𝑞)Δ𝑖𝑞𝑠

𝑟 }  

Δ𝑇𝑒 = (
3

2
) (

𝑃

2
) {−𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 Δ𝑖𝑑𝑠
𝑟 + 𝐿𝑚𝑑𝑖𝑞𝑠

𝑟 Δ𝑖𝑓𝑑
` + 𝐿𝑚𝑑𝑖𝑞𝑠

𝑟 Δ𝑖𝑘𝑑1
`𝑟 − 𝐿𝑚𝑑𝑖𝑞𝑠

𝑟 Δ𝑖𝑑𝑠
𝑟 −

𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 Δ𝑖𝑞𝑠

𝑟 + 𝐿𝑚𝑑𝑖𝑓𝑑
` Δ𝑖𝑞𝑠

𝑟 + 𝐿𝑚𝑑𝑖𝑘𝑑1
`𝑟 Δ𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑑𝑖𝑑𝑠
𝑟 Δ𝑖𝑞𝑠

𝑟 + 𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 Δ𝑖𝑑𝑠

𝑟 −

𝐿𝑚𝑞𝑖𝑑𝑠
𝑟 Δ𝑖𝑘𝑞2

`𝑟 − 𝐿𝑚𝑞𝑖𝑑𝑠
𝑟 Δ𝑖𝑘𝑞1

`𝑟 + 𝐿𝑚𝑞𝑖𝑑𝑠
𝑟 Δ𝑖𝑞𝑠

𝑟 + 𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 Δ𝑖𝑑𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑘𝑞2
`𝑟 Δ𝑖𝑑𝑠

𝑟 −

𝐿𝑚𝑞𝑖𝑘𝑞1
`𝑟 Δ𝑖𝑑𝑠

𝑟 + 𝐿𝑚𝑞𝑖𝑞𝑠
𝑟 Δ𝑖𝑑𝑠

𝑟 }  

 

(C.82) 

Δ𝑇𝑒 = (
3

2
) (
𝑃

2
) { 𝑇𝑑Δ𝑖𝑑𝑠

𝑟 + 𝑇𝑞Δ𝑖𝑞𝑠
𝑟 } (C.83) 

[
Δ𝑇𝑒
Δ𝑇𝑚

] = (
3

2
) (
𝑃

2
) [
𝑇𝑑 𝑇𝑞
0 0

]𝚫𝐢𝐝𝐪𝐬
𝐫  (C.84) 

[
Δ𝑇𝑒
Δ𝑇𝑚

] = 𝐺𝑇𝑑𝑞𝚫𝐢𝐝𝐪𝐬
𝐫    (C.85) 

𝑑

𝑑𝑡
Δω𝑟 =

1

2𝐻
(Δ𝑇𝑚 − Δ𝑇𝑒 −𝐾𝐷 . Δω𝑟) (C.86) 

Δω𝑟 = −
Δ𝑇𝑒

(2𝐻𝑆+𝐾𝐷)
    

dΔ𝛿𝑟

𝑑𝑡
= Δ𝜔𝑟  

𝚫𝝎𝜹 = 𝐴𝐻 [
Δ𝑇𝑒
Δ𝑇𝑚

] (C.87) 
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𝐴𝐻 = [

−1

2𝐻𝑆 + 𝐾𝐷
0

0 0

]  

𝚫𝝎𝜹 = 𝐴𝐻. 𝐺𝑇𝑑𝑞𝚫𝐢𝐝𝐪𝐬
𝐫  (C.88) 

Substituting (4.56) in (4.52) to have: 

𝚫𝐯𝐝𝐪𝐬
𝐫 = 𝑍𝑍 + 𝐴𝜆 . 𝐴𝐻. 𝐺𝑇𝑑𝑞𝚫𝐢𝐝𝐪𝐬

𝐫  (C.89) 

𝚫𝐯𝐝𝐪𝐬
𝐫 = 𝑍𝑠𝑦𝑛𝑐ℎ𝚫𝐢𝐝𝐪𝐬

𝐫  (C.90) 

The impedance 𝑍𝑠𝑦𝑛𝑐ℎ represents the impedance of the synchronous machine including the 

effect of the mechanical part. 

1.2. Eigenvalue analysis 

𝑑

𝑑𝑡
 

[
 
 
 
 
 
𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝐢𝐦𝐝𝐪
𝐫

𝚫𝛚𝛅 ]
 
 
 
 
 

= −𝐷𝑠𝑦𝑛
−1 𝐴𝑆𝑦𝑛  

[
 
 
 
 
 
𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝐢𝐦𝐝𝐪
𝐫

𝚫𝛚𝛅 ]
 
 
 
 
 

+ 𝐷𝑠𝑦𝑛
−1

[
 
 
 
 
 
𝚫𝐯𝐝𝐪𝐬

𝐫

𝚫𝐯`𝐟𝐤𝐝
𝐫

𝚫𝐯`𝐤𝐪𝟏𝟐
𝐫

𝛥𝑇𝑚
0 ]

 
 
 
 
 

  

𝐴𝐴 =

[
 
 
 
 
 
 
 
 
 
−𝐿𝑙𝑠 − 𝐿𝑚𝑑 𝐿𝑚𝑑 𝐿𝑚𝑑 0 0 0 0 0

0 0 0 −𝐿𝑙𝑠 − 𝐿𝑚𝑞 𝐿𝑚𝑞 𝐿𝑚𝑞 0 0

−𝐿𝑚𝑑 𝐿𝑙𝑘𝑑1
` + 𝐿𝑚𝑑 𝐿𝑚𝑑 0 0 0 0 0

−𝐿𝑚𝑑 𝐿𝑚𝑑 𝐿𝑙𝑓𝑑
` + 𝐿𝑚𝑑 0 0 0 0 0

0 0 0 −𝐿𝑚𝑞 𝐿𝑙𝑘𝑞1
` + 𝐿𝑚𝑞 𝐿𝑚𝑞 0 0

0 0 0 −𝐿𝑚𝑞 𝐿𝑚𝑞 𝐿𝑙𝑘𝑞2
` + 𝐿𝑚𝑞 0 0

0 0 0 0 0 0 2𝐻1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 

  

𝐸𝐸 =

[
 
 
 
 
 
 
 
 
 
 

𝑟𝑠 0 0 −𝜔𝑟𝐿𝑙𝑠 −𝜔𝑟𝐿𝑚𝑞 𝜔𝑟𝐿𝑚𝑞 𝜔𝑟𝐿𝑚𝑞 −𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 + 𝐿𝑚𝑞(−𝑖𝑘𝑞2

`𝑟 −𝑖𝑘𝑞1
`𝑟 + 𝑖𝑞𝑠

𝑟 )0

0 𝑟𝑘𝑑1
`𝑟 0 0 0 0 0 0

0 0 𝑟𝑓𝑑
`𝑟 0 0 0 0 0

𝜔𝑟𝐿𝑙𝑠 + 𝜔𝑟𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑑 𝑟𝑠 0 0 𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 − 𝐿𝑚𝑑(𝑖𝑓𝑑

` + 𝑖𝑘𝑑1
`𝑟 − 𝑖𝑑𝑠

𝑟 ) 0

0 0 0 0 𝑟𝑘𝑞1
`𝑟 0 0 0

0 0 0 0 0 𝑟𝑘𝑞2
`𝑟 0 0

𝛽1𝑇 −(
3

2
)(

𝑃

2
) 𝐿𝑚𝑑𝑖𝑞𝑠

𝑟 −(
3

2
) (

𝑃

2
)𝐿𝑚𝑑𝑖𝑞𝑠

𝑟 𝛽2𝑇 (
3

2
) (

𝑃

2
) 𝐿𝑚𝑞𝑖𝑑𝑠

𝑟 (
3

2
) (

𝑃

2
)𝐿𝑚𝑞𝑖𝑑𝑠

𝑟 −𝐷1 0

0 0 0 0 0 0 1 0]
 
 
 
 
 
 
 
 
 
 

  

1.3. Derivation of electrical damping of the synchronous machine 

Solving (4.50) for the currents 𝛥𝑖𝑑𝑠
𝑟  and 𝛥𝑖𝑞𝑠

𝑟 : 



 

188 

 

𝚫𝐢𝐝𝐪𝐬
𝐫 =

(
1

𝑍𝑑𝑑𝑍𝑞𝑞−𝑍𝑑𝑞𝑍𝑞𝑑
) [

𝑍𝑞𝑞 −𝑍𝑑𝑞
−𝑍𝑞𝑑 𝑍𝑑𝑑

]𝚫𝐯𝐝𝐪𝐬
𝐫 +

[
−𝑍𝑞𝑞(𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 ) + 𝑍𝑑𝑞(𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 ) 0

𝑍𝑞𝑑(𝐿𝑙𝑠𝑖𝑞𝑠
𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟 ) − 𝑍𝑑𝑑(𝐿𝑙𝑠𝑖𝑞𝑠
𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟 ) 0
]𝚫𝝎𝜹  

[
Δ𝑇𝑒
Δ𝑇𝑚

] =

(
𝐺𝑇𝑑𝑞

𝑍𝑑𝑑𝑍𝑞𝑞−𝑍𝑑𝑞𝑍𝑞𝑑
) [

𝑍𝑞𝑞 −𝑍𝑑𝑞
−𝑍𝑞𝑑 𝑍𝑑𝑑

]𝚫𝐯𝐝𝐪𝐬
𝐫 +

𝐺𝑇𝑑𝑞 [
−𝑍𝑞𝑞(𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 ) + 𝑍𝑑𝑞(𝐿𝑙𝑠𝑖𝑞𝑠

𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞
𝑟 ) 0

𝑍𝑞𝑑(𝐿𝑙𝑠𝑖𝑞𝑠
𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟 ) − 𝑍𝑑𝑑(𝐿𝑙𝑠𝑖𝑞𝑠
𝑟 − 𝐿𝑚𝑞𝑖𝑚𝑞

𝑟 ) 0
]𝚫𝝎𝜹                (C.91) 

1.4. Including the mechanical part of the synchronous machine 

The mechanical part is described in including [91]  and included into the model as: 

Generator: 

 

2𝐻1sΔ𝜔1 = 𝐾12(Δ𝛿2 − Δ𝛿1) − 𝑇𝑒 − 𝐷1(Δ𝜔1)  

Δδ1 =
Δ𝜔1

𝑠
𝜔0  

 

(C.92) 

𝐿𝑃𝐴   

2𝐻2𝑠Δ𝜔2 = Δ𝑇𝐿𝑃𝐴 + 𝑘23(Δ𝛿3 − Δ𝛿2) − 𝑘12(Δ𝛿2 − Δ𝛿1) − 𝐷2(Δ𝜔2)  

Δδ2 =
Δ𝜔2

𝑠
𝜔0  

 

 

(C.93) 

𝐿𝑃𝐵  

2𝐻3𝑠Δ𝜔3 = Δ𝑇𝐿𝑃𝐵 + 𝑘34 (Δ𝛿4 − Δ𝛿3) − 𝑘23(Δ𝛿3 − Δ𝛿2) −

𝐷3(Δ𝜔3)  

Δδ3 =
Δ𝜔3

𝑠
𝜔0  

 

(C.94) 

𝐼𝑃   

2𝐻4𝑠Δ𝜔4 = Δ𝑇𝐼𝑃 + 𝑘45 (Δ𝛿5 − Δ𝛿4) − 𝑘34(Δ𝛿4 − Δ𝛿3) − 𝐷4(Δ𝜔4)  

Δδ4 =
Δ𝜔4

𝑠
𝜔0  

 

(C.95) 

𝐻𝑃  

2𝐻5𝑠Δ𝜔5 = Δ𝑇𝐻𝑃 − 𝑘45(Δ𝛿5 − Δ𝛿4) − 𝐷5(Δ𝜔5)  

Δδ5 =
Δ𝜔5

𝑠
𝜔0  

 

(C.96) 

 By replacing (Δδ) by (
Δ𝜔

𝑠
𝜔0) and substitute the equations to have: 
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Δ𝜔1 =

𝐾12𝜔0

𝑠A4𝐴5
 Δ𝑇𝐿𝑃𝐴 +

𝐾12𝑘23𝜔0
2

𝑠2𝐴3A4𝐴5
Δ𝑇𝐿𝑃𝐵 +

𝐾12𝑘23𝑘34𝜔0
3

𝑠3𝐴2𝐴3A4𝐴5
Δ𝑇𝐼𝑃 +

𝐾12𝑘23𝑘34𝑘45𝜔0
4

𝑠4𝐴1𝐴2𝐴3A4𝐴5
Δ𝑇𝐻𝑃 −

1

𝐴5
𝑇𝑒   

𝐴5 = 2𝐻1s −
(𝑘12𝜔0)

2

𝑠2A4
+ 𝐾12

𝜔0

𝑠
+ 𝐷1  

 

 

(C.97) 

Δ𝜔2 =
1

A4
 Δ𝑇𝐿𝑃𝐴 +

𝑘23𝜔0

𝑠𝐴3A4
Δ𝑇𝐿𝑃𝐵 +

𝑘23𝑘34𝜔0
2

𝑠2𝐴2𝐴3A4
Δ𝑇𝐼𝑃 +

𝑘23𝑘34𝑘45𝜔0
3

𝑠3𝐴1𝐴2𝐴3A4
Δ𝑇𝐻𝑃 +

𝑘12𝜔0

𝑠A4
Δ𝜔1  

 A4 = 2𝐻2𝑠 −
(𝑘23𝜔0)

2

𝑠2𝐴3
+ 𝑘23

𝜔0

𝑠
+ 𝑘12

𝜔0

𝑠
+ 𝐷2  

 

(C.98) 

Δ𝜔3 =
1

𝐴3
Δ𝑇𝐿𝑃𝐵 +

𝑘34𝜔0

𝑠𝐴2𝐴3
Δ𝑇𝐼𝑃 +

𝑘34𝑘45𝜔0
2

𝑠2𝐴1𝐴2𝐴3
Δ𝑇𝐻𝑃 +

𝑘23𝜔0

𝑠𝐴3
Δ𝜔2  

𝐴3 = 2𝐻3𝑠 −
(𝑘34𝜔0)

2

𝑠2𝐴2
+ 𝑘34

𝜔0

𝑠
+ 𝑘23

𝜔0

𝑠
+ 𝐷3  

(C.99) 

Δ𝜔4 =
1

𝐴2
Δ𝑇𝐼𝑃 +

𝑘45𝜔0

𝑠𝐴1𝐴2
Δ𝑇𝐻𝑃 + 𝑘34

𝜔0

𝑠𝐴2
Δ𝜔3  

𝐴2 = 2𝐻4𝑠 −
(𝑘45𝜔0)

2

𝑠2𝐴1
+ 𝑘45

𝜔0

𝑠
+ 𝑘34

𝜔0

𝑠
+ 𝐷4  

(C.100) 

Δ𝜔5 =
1

𝐴1
Δ𝑇𝐻𝑃 + 𝑘45

𝜔0

𝑠𝐴1
Δ𝜔4  

𝐴1 = 2𝐻5𝑠 + 𝑘45
𝜔0

𝑠
+ 𝐷5  

(C.101) 

The relation between the electrical torque including the mechanical part can be found by 

modifying the equation (C.87) to be on the form: 

𝚫𝝎𝜹 = 𝐴𝐻𝑀 [
Δ𝑇𝑒
Δ𝑇𝑚

] + 𝐴𝐻𝑀2𝑻𝒕𝒖  (C.102) 

Where: 

𝐴𝐻𝑀 = [
−

1

𝐴5
0

0 0
]  

𝐴𝐻𝑀2 = [
𝐾12𝜔0

𝑠𝐴4𝐴5

𝐾12𝑘23𝜔0
2

𝑠2𝐴3𝐴4𝐴5

𝐾12𝑘23𝑘34𝜔0
3

𝑠3𝐴2𝐴3A4𝐴5

𝐾12𝑘23𝑘45𝜔0
4

𝑠4𝐴1𝐴2𝐴3A4𝐴5

0 0 0 0
]  

𝑻𝒕𝒖 = [𝑇𝐿𝑃𝐴 𝑇𝐿𝑃𝐵 𝑇𝐼𝑃 𝑇𝐻𝑃]𝑇  

 

Substituting equation (4.65) and equation (C.85)into equation (4.52) will have: 

𝐓𝐭𝐮 = 𝑍𝑍 + 𝐴𝜆 . 𝐴𝐻𝑀. 𝐺𝑇𝑑𝑞𝚫𝐢𝐝𝐪𝐬
𝐫 + 𝐴𝜆 . 𝐴𝐻𝑀2𝐓𝐭𝐮 (C.103) 



 

190 

 

𝐓𝐭𝐮 = 𝑍𝑠𝑦𝑛𝑐ℎ_𝑀𝚫𝒊𝒅𝒒𝒔
𝒓  (C.104) 

 

2. Eigenvalue analysis of synchronous machine including the mechanical part 

𝑑

𝑑𝑡
𝐷𝑠𝑦𝑛

[
 
 
 
 
 
𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝛅
𝚫𝛚 ]

 
 
 
 
 

= 𝐴𝐴

[
 
 
 
 
 
𝚫𝐢𝐝𝐪𝐬
𝐫

𝚫𝐢`𝐤𝐪𝟏𝟐
𝐫

𝚫𝐢`𝐟𝐤𝐝
𝐫

𝚫𝛅
𝚫𝛚 ]

 
 
 
 
 

+ 𝐵𝐵

[
 
 
 
 
𝑻𝒕𝒖 

𝚫𝒗`𝒌𝒒𝟏𝟐
𝒓

𝚫𝒗`𝒇𝒌𝒅
𝒓

𝐓𝐭𝐮 ]
 
 
 
 

           (C.105) 

𝐴𝐴 = [

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

]  

𝐴11 =

[
 
 
 
 
 
 
 

𝑟𝑠 0 0 −𝜔𝑟𝐿𝑙𝑠 −𝜔𝑟𝐿𝑚𝑞 𝜔𝑟𝐿𝑚𝑞 𝜔𝑟𝐿𝑚𝑞

0 𝑟𝑘𝑑1
`𝑟 0 0 0 0

0 0 𝑟𝑓𝑑
`𝑟 0 0 0

𝜔𝑟𝐿𝑙𝑠 +𝜔𝑟𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑑 −𝜔𝑟𝐿𝑚𝑑 𝑟𝑠 0 0

0 0 0 0 𝑟𝑘𝑞1
`𝑟 0

0 0 0 0 0 𝑟𝑘𝑞2
`𝑟

]
 
 
 
 
 
 
 

  

𝐴𝐴21 = 𝑧𝑒𝑟𝑜𝑠 [5 × 6]  

𝐴𝐴31 =

[
 
 
 
 
𝜔1

2𝐻1
(−𝐿𝑚𝑑𝑖𝑞𝑠0

𝑟 + 𝐿𝑚𝑞𝑖𝑞𝑠0
𝑟 )

𝜔1

2𝐻1
 (𝐿𝑚𝑞𝑖𝑑𝑠0

𝑟 − 𝐿𝑚𝑑(𝑖𝑑𝑠0
𝑟 − 𝑖𝑓𝑑0

`𝑟 ))
𝜔1

2𝐻1
(𝐿𝑚𝑞𝑖𝑑𝑠0

𝑟 )
𝜔1

2𝐻1
(𝐿𝑚𝑞𝑖𝑑𝑠0

𝑟 )
−𝜔1

2𝐻1
(𝐿𝑚𝑑𝑖𝑞𝑠0

𝑟 )
−𝜔1

2𝐻1
(𝐿𝑚𝑑𝑖𝑞𝑠0

𝑟 )

𝑧𝑒𝑟𝑜𝑠 [4 × 6]
]
 
 
 
 

   

𝐴𝐴32 =

[
 
 
 
 
 
 
 
 −

𝑘12

2𝐻1

𝑘12

2𝐻1
0 0 0

𝑘12

2𝐻2
−
𝑘23

2𝐻2
−

𝑘12

2𝐻2

𝑘23

2𝐻2
0 0

0
𝑘23

2𝐻3
−

𝑘34

2𝐻3   
−

𝑘23

2𝐻3

𝑘34

2𝐻3   
0

0 0
𝑘34

2𝐻4
−
𝑘45

2𝐻4
−

𝑘34

2𝐻4

𝑘45

2𝐻4

0 0 0
𝑘45

2𝐻5
−
𝑘45

2𝐻5]
 
 
 
 
 
 
 
 

  

𝐴𝐴12 = 𝑍𝑒𝑟𝑜𝑠[6 × 5]     𝐴𝐴22 = 𝑍𝑒𝑟𝑜𝑠[5 × 5]  

𝐴𝐴13 =

[
 
 
 
 
 
 
−𝐿𝑙𝑠𝑖𝑑𝑠

𝑟 + 𝐿𝑚𝑞(−𝑖𝑘𝑞2
`𝑟 −𝑖𝑘𝑞1

`𝑟 + 𝑖𝑞𝑠
𝑟 ) 0 0 0 0

𝐿𝑙𝑠𝑖𝑑𝑠
𝑟 − 𝐿𝑚𝑑(𝑖𝑓𝑑

` + 𝑖𝑘𝑑1
`𝑟 − 𝑖𝑑𝑠

𝑟 ) 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]
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𝐴𝐴23 =

[
 
 
 
 
𝜔0 0 0 0 0
0 𝜔0 0 0 0
0 0 𝜔0 0 0
0 0 0 𝜔0 0
0 0 0 0 𝜔0]

 
 
 
 

   𝐴𝐴33 =

[
 
 
 
 
 
 
 
 −

𝐷1

2𝐻1
0 0 0 0

0 −
𝐷2

2𝐻2
0 0 0

0 0 −
𝐷3

2𝐻3
0 0

0 0 0 −
𝐷4

2𝐻4
0

0 0 0 0 −
𝐷5

2𝐻5]
 
 
 
 
 
 
 
 

  

𝐷𝑠𝑦𝑛 =

[
 
 
 
 
 
 
 
 
 
 
−𝐿𝑙𝑠 − 𝐿𝑚𝑑 𝐿𝑚𝑑 𝐿𝑚𝑑 0 0 0

−𝐿𝑚𝑑 𝐿𝑙𝑘𝑑1
` + 𝐿𝑚𝑑 𝐿𝑚𝑑 0 0 0

−𝐿𝑚𝑑 𝐿𝑚𝑑 𝐿𝑙𝑓𝑑
` + 𝐿𝑚𝑑 0 0 0 𝑧𝑒𝑟𝑜𝑠(6 × 10)

0 0 0 −𝐿𝑙𝑠 − 𝐿𝑚𝑞 𝐿𝑚𝑞 𝐿𝑚𝑞

0 0 0 −𝐿𝑚𝑞 𝐿𝑙𝑘𝑞1
` + 𝐿𝑚𝑞 𝐿𝑚𝑞

0 0 0 −𝐿𝑚𝑞 𝐿𝑚𝑞 𝐿𝑙𝑘𝑞2
` + 𝐿𝑚𝑞

𝑧𝑒𝑟𝑜𝑠(10 × 6) 𝐼(10 × 6)
]
 
 
 
 
 
 
 
 
 
 

  

𝐵𝐵 =

[
 
 
 
 
 
 
 
 
 
 

𝐼(6 × 6) 𝑧𝑒𝑟𝑜𝑠(6 × 3)

𝑧𝑒𝑟𝑜𝑠(6 × 9)

1

2𝐻2
0 0 0

0
1

2𝐻3
0 0

𝑧𝑒𝑟𝑜𝑠(4 × 5) 0 0
1

2𝐻4
0

0 0 0
1

2𝐻5]
 
 
 
 
 
 
 
 
 
 

  

The state space equation of the synchronous machine 

𝚫𝑿′ = 𝐴𝚫𝑿+ 𝐵𝚫𝐮    ,     𝚫𝒀 = 𝐶𝚫𝑿  

𝐴 = 𝑖𝑛𝑣(𝐷𝑠𝑦𝑛) ∗ 𝐴𝐴   𝐵 = 𝑖𝑛𝑣(𝐷𝑠𝑦𝑛) ∗ 𝐵𝐵  

𝑋 = [𝚫𝐢𝐝𝐪𝐬
𝐫  𝚫𝐢`𝐤𝐪𝟏𝟐

𝐫 𝚫𝐢`𝐟𝐤𝐝
𝐫 𝚫𝛅 𝚫𝛚]

𝑇
   

𝑢 = [𝚫𝐯𝐝𝐪𝐬
𝐫 𝚫𝐯`𝐤𝐪𝟏𝟐

𝐫 𝚫𝐯`𝐟𝐤𝐝
𝐫 𝛥𝑇𝑚 𝐓]

𝑇
    

𝐶 = [
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

]  
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APPENDIX-D DQ-DYNAMIC PHASOR MODELLING OF STATCOM 

1. State-space analysis of STATCOM  

Δx1
′ = KiidΔx3 − KiidΔisd − KiidKpvdΔvdc + KiidKpvdvdc

∗   (D.106) 

Δx2
′ = KiiqΔx4 −

3

2
KiiqKpvqvsqΔisd + (

3

2
KiiqKpvqvsd − Kiiq)Δisq +

3

2
KiiqKpvqisqΔvsd −

3

2
KiiqKpvqΔisdΔvsq + KiiqKpvqQ

∗   

(D.107) 

Δx3
′ = Kivdvdc

∗ − KivdΔvdc   (D.108) 

Δx4
′ = −

3

2
KivqvsqΔisd  +

3

2
KivqvsdΔisq +

3

2
KivqisqΔvsd −

3

2
KivqisdΔvsq +

KivqQ
∗  

(D.109) 

Δisd
′  = −

1

Lf
Δx1 −

Kpid

Lf
Δx3 + (−

Rf

Lf
+
Kpid

Lf
)Δisd +ωΔisq +

KpidKpvd

Lf
Δvdc +

1

Lf
 Δvsd −

KpidKpvd

Lf
vdc
∗   

(D.110) 

Δisq
′ =

1

Lf
Δx2 +

Kpiq

Lf
Δx4 + (−

3

2

KpiqKpvqvsq

Lf
−ω)Δisd + (−

Rf

Lf
+
3

2

KpiqKpvqvsd

Lf
−

Kpiq

Lf
)Δisq +

3

2

KpiqKpvqisq

Lf
Δvsd + (

1

Lf
−
3

2

KpiqKpvqisd

Lf
)Δvsq +

KpiqKpvq

Lf
Q∗  

(D.111) 

Δvdc
′ =

3

2

isd

Cdcvdc
vsd +

vsd−2isd.Rf

Cdcvdc
Δisd + {

isd
2 .Rf−

3

2
vsd.isd−

3

2
vsq.isq

Cdcvdc
2 }Δvdc +

3

2

isq

Cdcvdc
Δvsq +

3

2

vsq

Cdcvdc
Δisq  

(D.112) 

The transformation of the equations (D.106) to (D.112) to dynamic phasor is given by: 

〈𝛥𝑥1
′ 〉0 = 𝐾𝑖𝑖𝑑〈𝛥𝑥3〉0 − 𝐾𝑖𝑖𝑑〈𝛥𝑖𝑠𝑑〉0 − 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑〈𝛥𝑣𝑑𝑐〉0 +𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑〈𝑣𝑑𝑐

∗ 〉0  (D.113) 

〈𝛥𝑥2
′ 〉0 = 𝐾𝑖𝑖𝑞〈𝛥𝑥4〉0 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉0〈𝛥𝑖𝑠𝑑〉0 + (

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉0 −

𝐾𝑖𝑖𝑞) 〈𝛥𝑖𝑠𝑞〉0 +
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉0〈𝛥𝑣𝑠𝑑〉0 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉0〈𝛥𝑣𝑠𝑞〉0 +

𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑄
∗〉0 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉�̅�〈𝛥𝑖𝑠𝑑〉𝑘 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉�̅�〈𝛥𝑖𝑠𝑞〉𝑘 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉�̅�〈𝛥𝑣𝑠𝑑〉𝑘 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉�̅�〈𝛥𝑣𝑠𝑞〉𝑘 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉𝑘〈𝛥𝑖𝑠𝑑〉�̅� +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉𝑘〈𝛥𝑖𝑠𝑞〉�̅� +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉𝑘〈𝛥𝑣𝑠𝑑〉�̅� −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉𝑘〈𝛥𝑣𝑠𝑞〉�̅�  

(D.114) 

〈𝛥𝑥3
′ 〉0 = 𝐾𝑖𝑣𝑑〈𝑣𝑑𝑐

∗ 〉0 − 𝐾𝑖𝑣𝑑〈𝛥𝑣𝑑𝑐〉0  (D.115) 

〈Δ𝑥4
′ 〉0 = −

3

2
𝐾𝑖𝑣𝑞〈𝑣sq〉0〈Δ𝑖𝑠𝑑〉0 +

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉0〈Δ𝑖𝑠𝑞〉0 +

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉0〈Δ𝑣𝑠𝑑〉0 −

(D.116) 
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3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉0〈Δ𝑣𝑠𝑞〉0 + 𝐾𝑖𝑣𝑞〈𝑄

∗〉0 −
3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉�̅�〈Δ𝑖𝑠𝑑〉𝑘 +

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉�̅�〈Δ𝑖𝑠𝑞〉𝑘 +

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉�̅�〈Δ𝑣𝑠𝑑〉𝑘 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉�̅�〈Δ𝑣𝑠𝑞〉𝑘 −

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉𝑘〈Δ𝑖𝑠𝑑〉�̅� +

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉𝑘〈Δ𝑖𝑠𝑞〉�̅� +

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉𝑘〈Δ𝑣𝑠𝑑〉�̅� −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉𝑘〈Δ𝑣𝑠𝑞〉�̅�  

〈Δ𝑖𝑠𝑑
′ 〉0   = −

1

𝐿𝑓
〈Δ𝑥1〉0 −

𝐾𝑝𝑖𝑑

𝐿𝑓
〈Δ𝑥3〉0 + (−

𝑅𝑓

𝐿𝑓
+
𝐾𝑝𝑖𝑑

𝐿𝑓
) 〈Δ𝑖𝑠𝑑〉0 +ω〈Δ𝑖𝑠𝑞〉0 −

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
〈Δ𝑣𝑑𝑐〉0 +

1

𝐿𝑓
 〈Δ𝑣𝑠𝑑〉0 +

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
〈𝑣𝑑𝑐
∗ 〉0  

(D.117) 

〈Δ𝑖𝑠𝑞
′ 〉0 =

1

𝐿𝑓
〈Δ𝑥2〉0 +

𝐾𝑝𝑖𝑞

𝐿𝑓
〈Δ𝑥4〉0 + (−ω−

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉0) 〈Δ𝑖𝑠𝑑〉0 +

(
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉0 −

𝑅𝑓

𝐿𝑓
−
𝐾𝑝𝑖𝑞

𝐿𝑓
) 〈Δ𝑖𝑠𝑞〉0 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑞〉0〈Δ𝑣𝑠𝑑〉0 + (

1

𝐿𝑓
−

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉0) 〈Δ𝑣𝑠𝑞〉0 +

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑄∗〉0 −

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉�̅�〈Δ𝑖𝑠𝑑〉𝑘 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉�̅�〈Δ𝑖𝑠𝑞〉𝑘 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑞〉𝑘∗〈Δ𝑣𝑠𝑑〉𝑘 −

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉�̅�〈Δ𝑣𝑠𝑞〉𝑘 −

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉𝑘〈Δ𝑖𝑠𝑑〉�̅� +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉𝑘〈Δ𝑖𝑠𝑞〉�̅� +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑞〉𝑘〈Δ𝑣𝑠𝑑〉�̅� −

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉𝑘〈Δ𝑣𝑠𝑞〉�̅�  

(D.118) 

For 𝑘 = 𝑘  

〈𝛥𝑥1
′ 〉𝑘 = 𝐾𝑖𝑖𝑑〈𝛥𝑥3〉𝑘 − 𝐾𝑖𝑖𝑑〈𝛥𝑖𝑠𝑑〉𝑘 − 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑〈𝛥𝑣𝑑𝑐〉𝑘 +𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑〈𝑣𝑑𝑐

∗ 〉𝑘 −

𝑗𝑘ω⟨Δ𝑥1⟩𝑘  
(D.119) 

〈Δ𝑥2
′ 〉𝑘 =

−
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉𝑘〈Δ𝑖𝑠𝑑〉0 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉𝑘〈Δ𝑖𝑠𝑞〉0 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉𝑘〈Δ𝑣𝑠𝑑〉0 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉𝑘 + 𝐾𝑖𝑖𝑞〈Δ𝑥4〉𝑘 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉0〈Δ𝑖𝑠𝑑〉𝑘 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉0〈Δ𝑖𝑠𝑞〉𝑘 − 𝐾𝑖𝑖𝑞〈Δ𝑖𝑠𝑞〉𝑘 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉0〈Δ𝑣𝑠𝑑〉𝑘 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉0〈Δ𝑣𝑠𝑞〉𝑘 + 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑄

∗〉𝑘 −

𝑗𝑘ω⟨Δ𝑥2⟩𝑘  

(D.120) 

〈Δ𝑥3
′ 〉𝑘 = 𝐾𝑖𝑣𝑑〈𝑣𝑑𝑐

∗ 〉𝑘 − 𝐾𝑖𝑣𝑑〈Δ𝑣𝑑𝑐〉𝑘 − 𝑗𝑘ω⟨Δ𝑥3⟩𝑘   (D.121) 

〈Δ𝑥4
′ 〉𝑘 = −

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉𝑘〈Δ𝑖𝑠𝑑〉0 +

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉𝑘〈Δ𝑖𝑠𝑞〉0 +

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉𝑘〈Δ𝑣𝑠𝑑〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉𝑘〈Δ𝑣𝑠𝑞〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉0〈Δ𝑖𝑠𝑑〉𝑘 +

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉0〈Δ𝑖sq〉𝑘 +

(D.122) 
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3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉0〈Δ𝑣𝑠𝑑〉𝑘 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉0〈Δ𝑣𝑠𝑞〉𝑘 + 𝐾𝑖𝑣𝑞〈𝑄

∗〉𝑘 − 𝑗𝑘𝜔〈Δ𝑥4〉𝑘  

〈Δ𝑖𝑠𝑑
′ 〉𝑘   = −

1

𝐿𝑓
〈Δ𝑥1〉𝑘 −

𝐾𝑝𝑖𝑑

𝐿𝑓
〈Δ𝑥3〉𝑘 + (−

𝑅𝑓

𝐿𝑓
+
𝐾𝑝𝑖𝑑

𝐿𝑓
) 〈Δ𝑖𝑠𝑑〉𝑘 +ω〈Δ𝑖𝑠𝑞〉𝑘 +

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
〈Δ𝑣𝑑𝑐〉𝑘 ++

1

𝐿𝑓
 〈Δ𝑣𝑠𝑑〉𝑘 −

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
〈𝑣𝑑𝑐
∗ 〉𝑘 − 𝑗𝑘𝜔〈Δ𝑖𝑠𝑑〉𝑘   

(D.123) 

〈Δ𝑖𝑠𝑞
′ 〉𝑘 =

−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉𝑘〈Δ𝑖𝑠𝑑〉0 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉𝑘〈Δ𝑖𝑠𝑞〉0 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑞〉𝑘〈Δ𝑣𝑠𝑑〉0 −

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉𝑘〈Δ𝑣𝑠𝑞〉0 +

1

𝐿𝑓
〈Δ𝑥2〉𝑘 +

𝐾𝑝𝑖𝑞

𝐿𝑓
〈Δ𝑥4〉𝑘 +

(−ω−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉0) 〈Δ𝑖𝑠𝑑〉𝑘 +

(
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉0 −

𝑅𝑓

𝐿𝑓
−
𝐾𝑝𝑖𝑞

𝐿𝑓
− 𝑗𝑘𝜔) 〈Δ𝑖𝑠𝑞〉𝑘 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖sq〉0〈Δ𝑣𝑠𝑑〉𝑘 +

(
1

𝐿𝑓
−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉0) 〈Δ𝑣𝑠𝑞〉𝑘 +

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑄∗〉𝑘  

(D.124) 

For 𝑘 = �̅� (D.125) 

〈𝛥𝑥1
′ 〉�̅� = 𝐾𝑖𝑖𝑑〈𝛥𝑥3〉�̅� − 𝐾𝑖𝑖𝑑〈𝛥𝑖𝑠𝑑〉�̅� − 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑〈𝛥𝑣𝑑𝑐〉�̅� + 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑〈𝑣𝑑𝑐

∗ 〉�̅� +

𝑗𝑘ω⟨Δ𝑥1⟩�̅�  
(D.126) 

〈𝛥𝑥2
′ 〉�̅� = −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉�̅�〈𝛥𝑖𝑠𝑑〉0 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉�̅�〈𝛥𝑖𝑠𝑞〉0 +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉�̅�〈𝛥𝑣𝑠𝑑〉0 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉�̅�〈𝛥𝑣𝑠𝑞〉0 + 𝐾𝑖𝑖𝑞〈𝛥𝑥4〉�̅� −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉0〈𝛥𝑖𝑠𝑑〉�̅� +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉0〈𝛥𝑖𝑠𝑞〉�̅� − 𝐾𝑖𝑖𝑞〈𝛥𝑖𝑠𝑞〉�̅� +

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉0〈𝛥𝑣𝑠𝑑〉�̅� −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉0〈𝛥𝑣𝑠𝑞〉�̅� + 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑄

∗〉�̅� +

𝑗𝑘𝜔⟨𝛥𝑥2⟩�̅�  

(D.127) 

〈𝛥𝑥3
′ 〉�̅� = 𝐾𝑖𝑣𝑑〈𝑣𝑑𝑐

∗ 〉�̅� − 𝐾𝑖𝑣𝑑〈𝛥𝑣𝑑𝑐〉�̅� + 𝑗𝑘𝜔⟨𝛥𝑥3⟩�̅�   (D.128) 

〈𝛥𝑥4
′ 〉�̅� = −

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉�̅�〈𝛥𝑖𝑠𝑑〉0 +

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉�̅�〈𝛥𝑖𝑠𝑞〉0 +

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉�̅�〈𝛥𝑣𝑠𝑑〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉�̅�〈𝛥𝑣𝑠𝑞〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉0〈𝛥𝑖𝑠𝑑〉�̅� +

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉0〈𝛥𝑖𝑠𝑞〉�̅� +

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉0〈𝛥𝑣𝑠𝑑〉�̅� −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉0〈𝛥𝑣𝑠𝑞〉�̅� + 𝐾𝑖𝑣𝑞〈𝑄

∗〉�̅� + 𝑗𝑘𝜔〈𝛥𝑥4〉�̅�  

(D.129) 

〈𝛥𝑖𝑠𝑑
′ 〉�̅�   = −

1

𝐿𝑓
〈𝛥𝑥1〉�̅� −

𝐾𝑝𝑖𝑑

𝐿𝑓
〈𝛥𝑥3〉�̅� + (−

𝑅𝑓

𝐿𝑓
+
𝐾𝑝𝑖𝑑

𝐿𝑓
) 〈𝛥𝑖𝑠𝑑〉�̅� +𝜔〈𝛥𝑖𝑠𝑞〉�̅� +

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
〈𝛥𝑣𝑑𝑐〉�̅� +

1

𝐿𝑓
 〈𝛥𝑣𝑠𝑑〉�̅� −

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
〈𝑣𝑑𝑐
∗ 〉�̅� + 𝑗𝑘𝜔〈𝛥𝑖𝑠𝑑〉�̅�    

(D.130) 
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〈𝛥𝑖𝑠𝑞
′ 〉�̅� =

−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉�̅�〈𝛥𝑖𝑠𝑑〉0 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉�̅�〈𝛥𝑖𝑠𝑞〉0 +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑞〉𝑘〈𝛥𝑣𝑠𝑑〉0 −

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉𝑘〈𝛥𝑣𝑠𝑞〉0 +

1

𝐿𝑓
〈𝛥𝑥2〉�̅� +

𝐾𝑝𝑖𝑞

𝐿𝑓
〈𝛥𝑥4〉�̅� +

(−𝜔 −
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉0) 〈𝛥𝑖𝑠𝑑〉�̅� +

(
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉0 −

𝑅𝑓

𝐿𝑓
−
𝐾𝑝𝑖𝑞

𝐿𝑓
+ 𝑗𝑘𝜔) 〈𝛥𝑖𝑠𝑞〉�̅� +

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑞〉0〈𝛥𝑣𝑠𝑑〉�̅� +

(
1

𝐿𝑓
−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉0) 〈𝛥𝑣𝑠𝑞〉�̅� +

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑄∗〉�̅�  

(D.131) 

The dc voltage at the fundamental frequency is derived as:  

〈𝛥𝑣𝑑𝑐
′ 〉0  =

〈
3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
𝛥𝑣𝑠𝑑〉0 + 〈

3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
𝛥𝑖𝑠𝑑〉0 + 〈{

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 }𝛥𝑣𝑑𝑐〉0 +

〈
3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
𝛥𝑣𝑠𝑞〉0 + 〈

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
𝛥𝑖𝑠𝑞〉0  

 

〈Δ𝑣𝑑𝑐
′ 〉0 =

〈
3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑑〉0 + 〈

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑞〉0 + 〈

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 〈Δ𝑣𝑑𝑐〉0 +

〈
3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑑〉0 + 〈

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈𝑣𝑠𝑞〉0 + 〈

3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑖𝑠𝑑〉𝑘 +

〈
3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑖𝑠𝑞〉𝑘 + 〈

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉�̅� 〈Δ𝑣𝑑𝑐〉𝑘 + 〈

3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑣𝑠𝑑〉𝑘 +

〈
3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑣𝑠𝑞〉𝑘 + 〈

3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑑〉�̅� + 〈

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑞〉�̅� +

〈
𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘 〈Δ𝑣𝑑𝑐〉�̅� + 〈

3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑑〉�̅� + 〈

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑞〉�̅�  

(D.132) 

〈Δ𝑣𝑑𝑐
′ 〉𝑘 =

〈
3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑑〉0 + 〈

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑞〉0 + 〈

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘 〈Δ𝑣𝑑𝑐〉0 +

〈
3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑑〉0 + 〈

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑞〉0 + 〈

3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑑〉𝑘 +

〈
3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑞〉𝑘 + {〈

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 − 𝑗𝑘𝜔} 〈Δ𝑣𝑑𝑐〉𝑘 +

〈
3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑑〉𝑘 + 〈

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑞〉𝑘  

(D.133) 
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〈𝛥𝑣𝑑𝑐
′ 〉�̅� =

+ 〈
3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈𝛥𝑖𝑠𝑑〉0 + 〈

3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈𝛥𝑖𝑠𝑞〉0 + 〈

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉�̅� 〈𝛥𝑣𝑑𝑐〉0 +

〈
3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈𝛥𝑣𝑠𝑑〉0 + 〈

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈𝛥𝑣𝑠𝑞〉0 + 〈

3

2
𝑣𝑠𝑑−2𝑖𝑠𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈𝛥𝑖𝑠𝑑〉�̅� +

〈
3

2

𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈𝛥𝑖𝑠𝑞〉�̅� + {〈

𝑖𝑠𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑑𝑖𝑠𝑑−

3

2
𝑣𝑠𝑞.𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 + 𝑗𝑘𝜔} 〈𝛥𝑣𝑑𝑐〉�̅� +

〈
3

2

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈𝛥𝑣𝑠𝑑〉�̅� + 〈

3

2

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈𝛥𝑣𝑠𝑞〉�̅�  

(D.134) 

The arrangement of equations (D.113) to (D.134) as a generalised matrices  

[
 
 
 
 
 
 
〈𝛥𝑋′〉0
〈𝛥𝑋′〉𝑘
〈𝛥𝑋′〉�̅�
⋮

〈𝛥𝑋′〉𝑘𝑛
〈𝛥𝑋′〉𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 
 

= 𝐴𝐷𝑃

[
 
 
 
 
 
 
〈𝛥𝑋〉0
〈𝛥𝑋〉𝑘
〈𝛥𝑋〉�̅�
⋮

〈𝛥𝑋〉𝑘𝑛
〈𝛥𝑋〉𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 
 

+ 𝐵𝐷𝑃

[
 
 
 
 
 
 
〈𝑢〉0
〈𝑢〉𝑘
〈𝑢〉�̅�
⋮

〈𝑢〉𝑘𝑛
〈𝑢〉𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 
 

  (D.135) 

 

𝐴𝐷𝑃 =

[
 
 
 
 
 
 
𝐴0,0 𝐴0,𝑘1 𝐴0𝑘1̅̅̅̅ … 𝐴0,𝑘2 𝐴0,𝑘2̅̅̅̅

𝐴𝑘1,0 𝐴𝑘1,𝑘1 0 0 0 0

𝐴𝑘1̅̅̅̅ ,0 0 𝐴𝑘1̅̅̅̅ 𝑘1̅̅̅̅ ⋯ ⋮

⋮ ⋱
𝐴𝑘𝑛,0 𝐴𝑘𝑛,𝑘1 ⋯ 𝐴𝑘𝑛,𝑘𝑛 0

𝐴𝑘𝑛̅̅ ̅̅ ,0 𝐴𝑘𝑛̅̅ ̅̅ ,𝑘1 ⋯ 0 𝐴𝑘𝑛̅̅ ̅̅ ,𝑘𝑛̅̅ ̅̅ ]
 
 
 
 
 
 

  ,    

𝐵𝐷𝑃 =

[
 
 
 
 
 
𝐵0
𝐵𝑘1
𝐵𝑘1̅̅̅̅
⋮
𝐵𝑘𝑛
𝐵𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    𝐴𝐷𝑃 =

[
 
 
 
 
 
 
𝑎𝑘=0 𝑎𝑐𝑘=𝑘1̅̅̅̅ 𝑎𝑐𝑘=𝑘1 ⋯ 𝑎𝑐𝑘=𝑘𝑛̅̅ ̅̅ 𝑎𝑐𝑘=𝑘𝑛
𝑎𝑐𝑘=𝑘1 𝑎𝑘=𝑘1 0 0

𝑎𝑐𝑘=𝑘1̅̅̅̅ 𝑎𝑘=𝑘1̅̅̅̅ 0 0

⋮ ⋱ ⋮
0 0 𝑎𝑘=𝑘𝑛

𝑎𝑐𝑘=𝑘𝑛̅̅ ̅̅ 0 0 ⋯ 𝑎𝑘𝑛̅̅ ̅̅ ]
 
 
 
 
 
 

     

𝑎𝑘,𝑘

=

[
 
 
 
 
 
 
 
 
 
 
 
 
−𝑗𝑘ω 0 𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑 0 −𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑

0 −𝑗𝑘ω 0 𝐾𝑖𝑖𝑞 −
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉0

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉0 −𝐾𝑖𝑖𝑞 0

0 0 −𝑗𝑘ω 0 0 0 −𝐾𝑖𝑣𝑑

0 0 0 −𝑗𝑘ω −
3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉0

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉0 0

1

𝐿𝑓
0

𝐾𝑝𝑖𝑑

𝐿𝑓
0 (−

𝑅𝑓

𝐿𝑓
−
𝐾𝑝𝑖𝑑

𝐿𝑓
− 𝑗𝑘𝜔) ω −

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓

0
1

𝐿𝑓
0

𝐾𝑝𝑖𝑞

𝐿𝑓
−ω−

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉0

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉0 −

𝑅𝑓

𝐿𝑓
−
𝐾𝑝𝑖𝑞

𝐿𝑓
− 𝑗𝑘𝜔 0

0 0 0 0 𝛼1 𝛼2 𝛼3 − 𝑗𝑘𝜔 ]
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𝛼1 =
3

2
〈
𝑣𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 − 〈

2𝑅𝑓𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0  

𝛼2 =
3

2
〈
𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0  

𝛼3 = 〈
𝑖𝑠𝑑
2 .𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 −

3

2
〈
𝑣𝑠𝑑𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 −

3

2
〈
𝑣𝑠𝑞𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0  

𝑎𝑐0,𝑘 =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0

0 0 0 0 −
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑞〉�̅�

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑣𝑠𝑑〉�̅� 0

0 0 0 0 0 0 0

0 0 0 0 −
3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑞〉�̅�

3

2
𝐾𝑖𝑣𝑞〈𝑣𝑠𝑑〉�̅� 0

0 0 0 0 0 0 0

0 0 0 0 −
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑞〉�̅�

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑣𝑠𝑑〉0 −

𝑅𝑓

𝐿𝑓
−
𝐾𝑝𝑖𝑞

𝐿𝑓
0

0 0 0 0 𝛼4 𝛼5 𝛼6]
 
 
 
 
 
 
 
 

  

𝛼4 =
3

2
〈
𝑣𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� − 〈

2𝑅𝑓𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅�  𝛼5 =

3

2
〈
𝑣𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅�    𝛼6 = 〈

𝑖𝑠𝑑
2 .𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉�̅� −

3

2
〈
𝑣𝑠𝑑𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉�̅� −

3

2
〈
𝑣𝑠𝑞𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉�̅�  

𝐵𝐷𝑃 =

[
 
 
 
 
 
 
𝑏𝑘=0 𝑏𝑐𝑘=𝑘1̅̅̅̅ 𝑏𝑐𝑘=𝑘1 ⋯ 𝑏𝑐𝑘=𝑘𝑛̅̅ ̅̅ 𝑏𝑐𝑘=𝑘𝑛
𝑏𝑐𝑘=𝑘1 𝑏𝑘=𝑘1 0 0

𝑏𝑐𝑘=𝑘1̅̅̅̅ 𝑏𝑘=𝑘1̅̅̅̅ 0 0

⋮ ⋱ ⋮
𝑏𝑐𝑘=𝑘𝑛 0 0 𝑏𝑘=𝑘𝑛
𝑏𝑐𝑘=𝑘𝑛̅̅ ̅̅ 0 0 ⋯  𝑏𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 
 

  

𝐵𝑘,𝑘 =

[
 
 
 
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑖𝑑𝐾𝑝𝑣𝑑 0
3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑞〉0 −

3

2
𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞〈𝑖𝑠𝑑〉0 0 𝐾𝑖𝑖𝑞𝐾𝑝𝑣𝑞

0 0 𝐾𝑖𝑣𝑑 0
3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑞〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑑〉0 0 𝐾𝑖𝑣𝑞

1

𝐿𝑓
0

𝐾𝑝𝑖𝑑𝐾𝑝𝑣𝑑

𝐿𝑓
0

3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑞〉0

1

𝐿𝑓
−
3

2

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓
〈𝑖𝑠𝑑〉0 0

𝐾𝑝𝑖𝑞𝐾𝑝𝑣𝑞

𝐿𝑓

3

2
〈

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0

3

2
〈

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 0 0 ]

 
 
 
 
 
 
 
 
 
 

    

𝑏𝑐𝑘=𝑘 = [
𝑍𝑒𝑟𝑜𝑠(6 × 4)

3

2
〈

𝑖𝑠𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘

3

2
〈

𝑖𝑠𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 0 0

]  

2. The impedance analysis of STATCOM 

Using the synchronous dq model, the transformation to dq-dynamic phasor results: 
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[
 
 
 
 
 
 
〈𝛥𝑣𝑠𝑑〉0
〈𝛥𝑣𝑆𝑞〉0
〈𝛥𝑣𝑠𝑑〉𝑘
〈𝛥𝑣𝑠𝑞〉𝑘
〈𝛥𝑣𝑠𝑑〉�̅�
〈𝛥𝑣𝑠𝑞〉�̅�]

 
 
 
 
 
 

= 𝐴𝑧

[
 
 
 
 
 
 
〈Δ𝑖𝑠𝑑〉0
〈Δ𝑖𝑠𝑞〉0
〈Δ𝑖𝑠𝑑〉𝑘
〈Δ𝑖𝑠𝑞〉𝑘
〈Δ𝑖𝑠𝑑〉�̅�
〈Δ𝑖𝑠𝑞〉�̅�]

 
 
 
 
 
 

+ 𝐵𝑧

[
 
 
 
 
 
 
〈Δ𝑖𝑠𝑑

∗ 〉0
〈Δ𝑖𝑠𝑞

∗ 〉0
〈Δ𝑖𝑠𝑑

∗ 〉𝑘
〈Δ𝑖𝑠𝑞

∗ 〉𝑘
〈Δ𝑖𝑠𝑑

∗ 〉�̅�
〈Δ𝑖𝑠𝑞

∗ 〉�̅�]
 
 
 
 
 
 

  (D.136) 

 

𝐴𝑧 =

[
 
 
 
 
 
ℎ𝑑𝑘=0 ℎ𝑙𝑘=𝑘1̅̅̅̅ ℎ𝑙𝑘=𝑘1 ℎ𝑙𝑘=𝑘𝑛
ℎ𝑙𝑘=𝑘1 ℎ𝑑𝑘=𝑘1 0 0

ℎ𝑙𝑘=𝑘1̅̅̅̅ 0 ℎ𝑑𝑘=𝑘1̅̅̅̅ 0

0 0 ⋱ 0
ℎ𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 ℎ𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

ℎ𝑙𝑘=𝑘1 = [
− 〈

𝐾𝑖𝑖𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 0

0 − 〈
𝐾𝑖𝑖𝑞

𝑠+𝑗𝑘𝜔
〉𝑘
]     

ℎ𝑑𝑘 = [
𝐿𝑓(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑓 − 〈𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
〉0 −ω𝐿𝑓

ω𝐿𝑓 𝐿𝑓(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑓 − 〈𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
〉0
]   

ℎ𝑙𝑘=𝑘1̅̅̅̅ = [
− 〈

𝐾𝑖𝑖𝑑

𝑠−𝑗𝑘𝜔
〉𝑘∗ 0

0 − 〈
𝐾𝑖𝑖𝑞

𝑠−𝑗𝑘𝜔
〉𝑘∗
]  

𝐵𝑧 =

[
 
 
 
 
 
𝐵𝑑𝑘=0 𝐵𝑙𝑘=𝑘1̅̅̅̅ 𝐵𝑙𝑘=𝑘1 𝐵𝑙𝑘=𝑘𝑛
𝐵𝑙𝑘=𝑘1 𝑏𝑑𝑘=𝑘1 0 0

𝐵𝑙𝑘=𝑘1̅̅̅̅ 0 𝐵𝑑𝑘=𝑘1̅̅̅̅ 0

0 0 ⋱ 0
𝐵𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐵𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐵𝑑𝑘 = [
〈𝐾𝑝𝑖𝑑 +

𝐾𝑖𝑖𝑑

𝑠
〉0 0

0 〈𝐾𝑝𝑖𝑞 +
𝐾𝑖𝑖𝑞

𝑠
〉0
]   𝐵𝑙𝑘=𝑘1̅̅̅̅ = [

〈
𝐾𝑖𝑖𝑑

𝑠−𝑗𝑘𝜔
〉�̅� 0

0 〈
𝐾𝑖𝑖𝑞

𝑠−𝑗𝑘𝜔
〉�̅�
] 

  𝐵𝑙𝑘=𝑘1 = [
〈
𝐾𝑖𝑖𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 0

0 〈
𝐾𝑖𝑖𝑞

𝑠+𝑗𝑘𝜔
〉𝑘
]  

The generalised form of the STATCOM reference currents is: 
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[
 
 
 
 
 
 
〈Δ𝑖𝑠𝑑

∗ 〉0
〈Δ𝑖𝑠𝑞

∗ 〉0
〈Δ𝑖𝑠𝑑

∗ 〉𝑘
〈Δ𝑖𝑠𝑞

∗ 〉𝑘
〈Δ𝑖𝑠𝑑

∗ 〉�̅�
〈Δ𝑖𝑠𝑞

∗ 〉�̅�]
 
 
 
 
 
 

= 𝐶𝑧

[
 
 
 
 
 
 
〈𝑣𝑑𝑐
∗ 〉0

〈𝑣𝑠𝑑
∗ 〉0

〈𝑣𝑑𝑐
∗ 〉𝑘

〈𝑣𝑠𝑑
∗ 〉𝑘

〈𝑣𝑑𝑐
∗ 〉�̅�

〈𝑣𝑠𝑑
∗ 〉�̅�]

 
 
 
 
 
 

− 𝐶𝑧

[
 
 
 
 
 
 
〈𝑣𝑑𝑐〉0
〈Δ𝑄〉0
〈𝑣𝑑𝑐〉𝑘
〈Δ𝑄〉𝑘
〈𝑣𝑑𝑐〉�̅�
〈Δ𝑄〉�̅� ]

 
 
 
 
 
 

   (D.137) 

 

𝐶𝑧 =

[
 
 
 
 
 
𝐶𝑑𝑘=0 𝐶𝑙𝑘=𝑘1̅̅̅̅ 𝐶𝑙𝑘=𝑘1 𝐶𝑙𝑘=𝑘𝑛
𝐶𝑙𝑘=𝑘1 𝐶𝑑𝑘=𝑘1 0 0

𝐶𝑙𝑘=𝑘1̅̅̅̅ 0 𝐶𝑑𝑘=𝑘1̅̅̅̅ 0

0 0 ⋱ 0
𝐶𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐶𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐶𝑑𝑘 = [
𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0 0

0 𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0
]   𝐶𝑙𝑘=𝑘1̅̅̅̅ = [

〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘𝜔
〉�̅� 0

0 〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘𝜔
〉�̅�
]   

𝐶𝑙𝑘=𝑘1 = [
〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉𝑘
]  

While, the inputs of the STATCOM controller are generalised as: 

𝐷𝑧

[
 
 
 
 
 
 
〈𝑣𝑑𝑐〉0
〈Δ𝑄〉0
〈𝑣𝑑𝑐〉𝑘
〈Δ𝑄〉𝑘
〈𝑣𝑑𝑐〉�̅�
〈Δ𝑄〉�̅� ]

 
 
 
 
 
 

= 𝐸𝑧

[
 
 
 
 
 
 
〈Δ𝑣𝑠𝑑〉0
〈Δ𝑣𝑠𝑞〉0
〈Δ𝑣𝑠𝑑〉𝑘
〈Δ𝑣𝑠𝑞〉𝑘
〈Δ𝑣𝑠𝑑〉�̅�
〈Δ𝑣𝑠𝑞〉�̅�]

 
 
 
 
 
 

+ 𝐹𝑧

[
 
 
 
 
 
 
〈Δ𝑖𝑠𝑑〉0
〈Δ𝑖𝑠𝑞〉0
〈Δ𝑖𝑠𝑑〉𝑘
〈Δ𝑖𝑠𝑞〉𝑘
〈Δ𝑖𝑠𝑑〉�̅�
〈Δ𝑖𝑠𝑞〉�̅�]

 
 
 
 
 
 

  (D.138) 

 

𝐷𝑧 =

[
 
 
 
 
 
𝐷𝑑𝑘=0 𝐷𝑙𝑘=𝑘1̅̅̅̅ 𝐷𝑙𝑘=𝑘1 𝐷𝑙𝑘=𝑘𝑛
𝐷𝑙𝑘=𝑘1 𝐷𝑑𝑘=𝑘1 0 0

𝐷𝑙𝑘=𝑘1̅̅̅̅ 0 𝐷𝑑𝑘=𝑘1̅̅̅̅ 0

0 0 ⋱ 0
𝐷𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐷𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐷𝑑𝑘 = [
𝛼𝑙𝑘 0
0 1

]   𝐷𝑙𝑘=𝑘1̅̅̅̅ = [
𝛼𝑚𝑘=�̅� 0
0 0

]  𝐷𝑙𝑘=𝑘1 = [
𝛼𝑚𝑘=𝑘 0
0 0

]  

𝛼𝑙 = 𝐶𝑑𝑐𝑠〈𝑣𝑑𝑐〉0 + 𝛼1  

𝛼𝑚𝑘=𝑘 = 𝐶𝑑𝑐(𝑠 + 𝑗𝑘ω )〈𝑣𝑑𝑐〉𝑘 + 𝛼2  



 

200 

 

 𝛼1 = −〈
1

𝑣𝑑𝑐
𝑖𝑠𝑑
2 𝑅𝑓〉0 +

3

2
〈
1

𝑣𝑑𝑐
𝑣𝑠𝑑𝑖𝑠𝑑〉0 + 〈

3

2

1

𝑣𝑑𝑐
𝑣𝑠𝑞𝑖𝑠𝑞〉0 

𝛼2 = − 〈
1

𝑣𝑑𝑐
𝑖𝑠𝑑
2 𝑅𝑓〉𝑘 +

3

2
〈
1

𝑣𝑑𝑐
𝑣𝑠𝑑𝑖𝑠𝑑〉𝑘 + 〈

3

2

1

𝑣𝑑𝑐
𝑣𝑠𝑞𝑖𝑠𝑞〉𝑘    

𝐸𝑧 =

[
 
 
 
 
 
𝐸𝑑𝑘=0 𝐸𝑙𝑘=𝑘1̅̅̅̅ 𝐸𝑙𝑘=𝑘1 𝐸𝑙𝑘=𝑘𝑛
𝐸𝑙𝑘=𝑘1 𝐸𝑑𝑘=𝑘1 0 0

𝐸𝑙𝑘=𝑘1̅̅̅̅ 0 𝐸𝑑𝑘=𝑘1̅̅̅̅ 0

0 0 ⋱ 0
𝐸𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐸𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐸𝑑𝑘 =
3

2
[
〈𝑖𝑠𝑑〉0 〈𝑖𝑠𝑞〉0
−〈𝑖𝑠𝑞〉0 〈𝑖𝑠𝑑〉0

]   𝐸𝑙𝑘=𝑘1̅̅̅̅ =
3

2
[
〈𝑖𝑠𝑑〉�̅� 〈𝑖𝑠𝑞〉�̅�
−〈𝑖𝑠𝑞〉�̅� 〈𝑖𝑠𝑑〉�̅�

]  

𝐸𝑙𝑘=𝑘1 =
3

2
[
〈𝑖𝑠𝑑〉𝑘 〈𝑖𝑠𝑞〉𝑘
−〈𝑖𝑠𝑞〉�̅� 〈𝑖𝑠𝑑〉�̅�

]  

𝐹𝑧 =

[
 
 
 
 
 
𝐹𝑑𝑘=0 𝐹𝑙𝑘=𝑘1̅̅̅̅ 𝐹𝑙𝑘=𝑘1 𝐹𝑙𝑘=𝑘𝑛
𝐹𝑙𝑘=𝑘1 𝐹𝑑𝑘=𝑘1 0 0

𝐹𝑙𝑘=𝑘1̅̅̅̅ 0 𝐹𝑑𝑘=𝑘1̅̅̅̅ 0

0 0 ⋱ 0
𝐹𝑙𝑘=𝑘𝑛̅̅ ̅̅ 0 0 𝐹𝑑𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐹𝑑𝑘 = [
(〈
3

2
𝑣𝑠𝑑〉0 − 〈2𝑅𝑓𝑖𝑠𝑑〉0) 〈

3

2
𝑣𝑠𝑞〉0

3

2
〈𝑣𝑠𝑞〉0 −

3

2
〈𝑣𝑠𝑑〉0

]  

𝐹𝑙𝑘=𝑘1̅̅̅̅ = [
〈
3

2
𝑣𝑠𝑑〉�̅� −〈2𝑅𝑓𝑖𝑠𝑑〉�̅� 〈

3

2
𝑣𝑠𝑞〉�̅�

〈
3

2
𝑣𝑠𝑞〉�̅� −

3

2
〈𝑣𝑠𝑑〉�̅�

]  

  𝐹𝑙𝑘=𝑘1 = [
〈
3

2
𝑣𝑠𝑑〉𝑘 − 〈2𝑅𝑓𝑖𝑠𝑑〉𝑘 〈

3

2
𝑣𝑠𝑞〉𝑘

3

2
〈𝑣𝑠𝑞〉𝑘 −

3

2
〈𝑣𝑠𝑑〉𝑘

] 
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APPENDIX-E DQ-DYNAMIC PHASOR MODELLING OF SSSC 

 

1. Power control mode  

sev Lv

2v
1v

 

For SSSC controlled by power control mode is: 

𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑑 =

1

𝐿𝑠𝑒
Δ𝑣𝑠𝑒𝑑 −

𝑅𝑠𝑒

𝐿𝑠𝑒
Δ𝑖𝑠𝑒𝑑 +ωΔ𝑖𝑠𝑒𝑞 −

1

𝐿𝑠𝑒
Δ𝑚𝑠𝑒𝑑  (E.139) 

𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑞 =

1

𝐿𝑠𝑒
Δ𝑣𝑠𝑒𝑞 −ωΔ𝑖𝑠𝑒𝑑 −

𝑅𝑠𝑒

𝐿𝑠𝑒
Δ𝑖𝑠𝑒𝑞 −

1

𝐿𝑠𝑒
Δ𝑚𝑠𝑒𝑞  (E.140) 

𝑑

𝑑𝑡
Δ𝑥1 = 𝐾𝑖𝑣𝑑𝑃2

∗ − 𝐾𝑖𝑣𝑑Δ𝑃2  (E.141) 

𝑑

𝑑𝑡
Δ𝑥2 = 𝐾𝑖𝑣𝑞𝑄2

∗ −𝐾𝑖𝑣𝑞Δ𝑄2  (E.142) 

Δ𝑚𝑠𝑒𝑑 = 𝐾𝑝𝑣𝑑𝑃𝑙𝑖𝑛𝑒
∗ − 𝐾𝑝𝑣𝑑Δ𝑃𝑙𝑖𝑛𝑒 + Δ𝑥1  (E.143) 

Δ𝑚𝑠𝑒𝑞 = 𝐾𝑝𝑣𝑞𝑄𝑙𝑖𝑛𝑒
∗ − 𝐾𝑝𝑣𝑞Δ𝑄𝑙𝑖𝑛𝑒 + Δ𝑥2  (E.144) 

Δ𝑃1 =
3

2
(𝑖𝑠𝑒𝑑Δ𝑣1𝑑 + 𝑖𝑠𝑒𝑞Δ𝑣1𝑞 + 𝑣1𝑑  Δ𝑖𝑠𝑒𝑑 + 𝑣1𝑞 Δ𝑖𝑠𝑒𝑞)  (E.145) 

Δ𝑄1 =
3

2
(𝑖𝑠𝑒𝑞Δ𝑣1𝑑 − 𝑖𝑠𝑒𝑑Δ𝑣1𝑞 −  𝑣1𝑞 Δ𝑖𝑠𝑒𝑑 + 𝑣1𝑑  Δ𝑖𝑠𝑒𝑞)    (E.146) 

Δ𝑃2 =
3

2
(𝑖𝑠𝑒𝑑Δ𝑣2𝑑 + 𝑖𝑠𝑒𝑞Δ𝑣2𝑞 + 𝑣2𝑑  Δ𝑖𝑠𝑒𝑑 + 𝑣2𝑞 Δ𝑖𝑠𝑒𝑞)  (E.147) 

Δ𝑄2 =
3

2
(𝑖𝑠𝑒𝑞Δ𝑣2𝑑 − 𝑖𝑠𝑒𝑑Δ𝑣2𝑞 − 𝑣2𝑞 Δ𝑖𝑠𝑒𝑑 + 𝑣2𝑑  Δ𝑖𝑠𝑒𝑞)   (E.148) 

Δ𝑃𝑙𝑖𝑛𝑒 = Δ𝑃1 − Δ𝑃2         (E.149) 

Δ𝑄𝑙𝑖𝑛𝑒 = Δ𝑄1 − Δ𝑄2     (E.150) 

The transformation of the SSSC equations from (E.139) to (E.150) to dynamic phasor is: 

〈
𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑑〉𝑘 =

1

𝐿𝑠𝑒
〈Δ𝑣𝑠𝑒𝑑〉𝑘 − 〈

𝑅𝑠𝑒

𝐿𝑠𝑒
Δ𝑖𝑠𝑒𝑑〉𝑘 + 〈ωΔ𝑖𝑠𝑒𝑞〉𝑘 − 〈

1

𝐿𝑠𝑒
Δ𝑚𝑠𝑒𝑞〉𝑘  (E.151) 

〈
𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑞〉𝑘 = 〈

1

𝐿𝑠𝑒
Δ𝑣𝑠𝑒𝑞〉𝑘 − 〈ωΔ𝑖𝑠𝑒𝑑〉𝑘 − 〈

𝑅𝑠𝑒

𝐿𝑠𝑒
Δ𝑖𝑠𝑒𝑞〉𝑘 − 〈

1

𝐿𝑠𝑒
Δ𝑚𝑠𝑒𝑞〉𝑘  (E.152) 

〈
𝑑

𝑑𝑡
Δ𝑥1〉𝑘 = 〈𝐾𝑖𝑣𝑑𝑃𝑙𝑖𝑛𝑒

∗ 〉𝑘 − 〈𝐾𝑖𝑣𝑑Δ𝑃𝑙𝑖𝑛𝑒〉𝑘 − 𝑗𝑘𝜔Δ𝑥1  (E.153) 

〈
𝑑

𝑑𝑡
Δ𝑥2〉𝑘 = 〈𝐾𝑖𝑣𝑞𝑄𝑙𝑖𝑛𝑒

∗ 〉𝑘 − 〈𝐾𝑖𝑣𝑞Δ𝑄𝑙𝑖𝑛𝑒〉𝑘 − 𝑗𝑘𝜔Δ𝑥2  (E.154) 

〈Δ𝑚𝑠𝑒𝑑〉𝑘 = 〈𝐾𝑝𝑣𝑑𝑃𝑙𝑖𝑛𝑒
∗ 〉𝑘 − 〈𝐾𝑝𝑣𝑑Δ𝑃𝑙𝑖𝑛𝑒〉𝑘 + 〈Δ𝑥1〉𝑘  (E.155) 
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〈Δ𝑚𝑠𝑒𝑞〉𝑘 = 〈𝐾𝑝𝑣𝑞𝑄𝑙𝑖𝑛𝑒
∗ 〉𝑘 − 〈𝐾𝑝𝑣𝑞Δ𝑄𝑙𝑖𝑛𝑒〉𝑘 + 〈Δ𝑥2〉𝑘  (E.156) 

〈Δ𝑃1〉𝑘 = 〈
3

2
(𝑖𝑠𝑒𝑑Δ𝑣1𝑑 + 𝑖𝑠𝑒𝑞Δ𝑣1𝑞 + 𝑣1𝑑  Δ𝑖𝑠𝑒𝑑 + 𝑣1𝑞 Δ𝑖𝑠𝑒𝑞)〉𝑘  (E.157) 

〈Δ𝑄1〉𝑘 = 〈
3

2
(𝑖𝑠𝑒𝑞Δ𝑣1𝑑 − 𝑖𝑠𝑒𝑑Δ𝑣1𝑞 − 𝑣1𝑞 Δ𝑖𝑠𝑒𝑑 + 𝑣1𝑑  Δ𝑖𝑠𝑒𝑞)〉𝑘       (E.158) 

〈Δ𝑃2〉𝑘 = 〈
3

2
(𝑖𝑠𝑒𝑑Δ𝑣2𝑑 + 𝑖𝑠𝑒𝑞Δ𝑣2𝑞 + 𝑣2𝑑  Δ𝑖𝑠𝑒𝑑 + 𝑣2𝑞 Δ𝑖𝑠𝑒𝑞)〉𝑘  (E.159) 

〈Δ𝑄2〉𝑘 = 〈
3

2
(𝑖𝑠𝑒𝑞Δ𝑣2𝑑 − 𝑖𝑠𝑒𝑑Δ𝑣2𝑞 − 𝑣2𝑞 Δ𝑖𝑠𝑒𝑑 + 𝑣2𝑑  Δ𝑖𝑠𝑒𝑞)〉𝑘   (E.160) 

〈Δ𝑃𝑙𝑖𝑛𝑒〉𝑘 = 〈Δ𝑃1〉𝑘 − 〈Δ𝑃2〉𝑘                      (E.161) 

〈Δ𝑄𝑙𝑖𝑛𝑒〉𝑘 = 〈Δ𝑄1〉𝑘 − 〈Δ𝑄2〉𝑘   (E.162) 

The expansion of the equations (E.151) to (E.162) will result a generalised form of state-

space equation of the SSSC as: 

𝐴𝑃𝐷𝑃 =

[
 
 
 
 
𝑎𝑝𝑘=0 𝑎𝑐𝑝𝑘=�̅� 𝑎𝑐𝑝𝑘=𝑘 … 𝑎𝑐𝑝𝑘=𝑘𝑛
𝑎𝑐𝑝𝑘=𝑘 𝑎𝑝𝑘=𝑘
𝑎𝑐𝑝𝑘=�̅� 𝑎𝑝𝑘=�̅� ⋮

⋮ ⋱
𝑎𝑐𝑝𝑘=𝑘𝑛̅̅ ̅̅ … 𝑎𝑝𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

𝑎𝑝𝑘=𝑘 =

[
 
 
 
 
 
 −𝑗𝑘𝜔 0 −

3

2
𝐾𝑖𝑣𝑑(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0) −

3

2
𝐾𝑖𝑣𝑑(〈𝑣1𝑞〉0 − 〈𝑣2𝑞〉0)

0 −𝑗𝑘𝜔 −
3

2
𝐾𝑖𝑣𝑞(−〈𝑣1𝑞〉0 + 〈𝑣2𝑞〉0) −

3

2
𝐾𝑖𝑣𝑞(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0)

−
1

𝐿𝑠𝑒
0

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0) −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑞〉0 − 〈𝑣2𝑞〉0) + ω

0 −
1

𝐿𝑠𝑒

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(−〈𝑣1𝑞〉0 + 〈𝑣2𝑞〉0) − ω

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(〈𝑣1𝑑〉0 − 〈𝑣2𝑑〉0) −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔]

 
 
 
 
 
 

  

𝑎𝑐𝑝𝑘=𝑘 =
3

2

[
 
 
 
 
 
0 0 −𝐾𝑖𝑣𝑑(〈𝑣1𝑑〉𝑘−〈𝑣2𝑑〉𝑘) −𝐾𝑖𝑣𝑑(〈𝑣1𝑞〉𝑘−〈𝑣2𝑞〉𝑘)

0 0 −𝐾𝑖𝑣𝑞(−〈𝑣1𝑞〉𝑘 + 〈𝑣2𝑞〉𝑘) −𝐾𝑖𝑣𝑞(〈𝑣1𝑑〉𝑘 − 〈𝑣2𝑑〉𝑘)

0 0
𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑑〉𝑘−〈𝑣2𝑑〉𝑘)

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
(〈𝑣1𝑞〉𝑘−〈𝑣2𝑞〉𝑘)

0 0
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(−〈𝑣1𝑞〉𝑘 + 〈𝑣2𝑞〉𝑘)

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
(〈𝑣1𝑑〉𝑘 − 〈𝑣2𝑑〉𝑘) ]

 
 
 
 
 

  

𝐵𝑃𝐷𝑃 =

[
 
 
 
 
𝑏𝑝𝑘=0 𝑏𝑐𝑝𝑘=�̅� 𝑏𝑐𝑝𝑘=𝑘 … 𝑏𝑐𝑝𝑘=𝑘𝑛
𝑏𝑐𝑝𝑘=𝑘 𝑏𝑝𝑘=𝑘
𝑏𝑐𝑝𝑘=�̅� 𝑏𝑝𝑘=�̅� ⋮

⋮ ⋱
𝑏𝑐𝑝𝑘=𝑘𝑛̅̅ ̅̅ … 𝑏𝑝𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

𝑏𝑝𝑘=𝑘 =

[
 
 
 
 
 
 0 0 −

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉0 −

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉0

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉0

3

2
𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉0 𝐾𝑖𝑣𝑑 0

0 0 −
3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉0

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉0

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉0 −

3

2
𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉0 0 𝐾𝑖𝑣𝑞

1

𝐿𝑠𝑒
0

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0 −

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0 −

3

2

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

0
1

𝐿𝑠𝑒

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0 −

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0 −

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉0

3

2

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉0 0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒 ]
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𝑏𝑐𝑝𝑘=𝑘 =
3

2

[
 
 
 
 
 
0 0 −𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉𝑘 −𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉𝑘 𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑑〉𝑘 𝐾𝑖𝑣𝑑〈𝑖𝑠𝑒𝑞〉𝑘 0 0

0 0 −𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉𝑘 𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉𝑘 𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑞〉𝑘 −𝐾𝑖𝑣𝑞〈𝑖𝑠𝑒𝑑〉𝑘 0 0

0 0
𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘 0 0

0 0
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑞〉𝑘

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑖𝑠𝑒𝑑〉𝑘 0 0]

 
 
 
 
 

  

2. Voltage control mode 

The SSSC is controlled in voltage control mode as: 

Δ𝑥1
′ = 𝐾𝑖𝑣𝑑(𝑣𝑑𝑐

∗ − Δ𝑣𝑑𝑐)  
  

(E.163) 

Δ𝑥2
′ = 𝐾𝑖𝑣𝑞(𝑣𝑠𝑒𝑞

∗ − Δ𝑣𝑠𝑒𝑞)  (E.164) 

𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑑 = −

1

𝐿𝑠𝑒
Δ𝑥1 −

𝑅𝑠𝑒

𝐿𝑠𝑒
Δ𝑖𝑠𝑒𝑑 +ωΔ𝑖𝑠𝑒𝑞 +

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
Δ𝑣𝑑𝑐 +

1

𝐿𝑠𝑒
Δ𝑣𝑠𝑒𝑑 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
𝑣𝑑𝑐
∗   (E.165) 

𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑞 = −

1

𝐿𝑠𝑒
Δ𝑥2 −ωΔ𝑖𝑠𝑒𝑑 −

𝑅𝑠𝑒

𝐿𝑠𝑒
Δ𝑖𝑠𝑒𝑞 + (

1

𝐿𝑠𝑒
+
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
)Δ𝑣𝑠𝑒𝑞 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
𝑣𝑠𝑒𝑞
∗   (E.166) 

𝑑(Δ𝑣𝑑𝑐 )

𝑑𝑡
=

3

2
{
Δ𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
+
𝑣𝑠𝑒𝑑Δ𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
−
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
2 Δ𝑣𝑑𝑐} +

3

2
{
Δ𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
+
𝑣𝑠𝑒𝑞.Δ𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
−

𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 Δ𝑣𝑑𝑐} −

2𝑖𝑠𝑒𝑑Δ𝑖𝑠𝑒𝑑.𝑅𝑠𝑒

𝐶𝑑𝑐𝑣𝑑𝑐
+
𝑖𝑠𝑒𝑑
2 .𝑅𝑠𝑒

𝐶𝑑𝑐𝑣𝑑𝑐
2 Δ𝑣𝑑𝑐   

(E.167) 

The transformation to dq-dynamic phasor is: 

〈Δ𝑥1
′ 〉𝑘 = 𝐾𝑖𝑣𝑑〈𝑣𝑑𝑐

∗ 〉𝑘 − 𝐾𝑖𝑣𝑑〈Δ𝑣𝑑𝑐〉𝑘  
  

(E.168) 

〈Δ𝑥2
′ 〉𝑘 = 𝐾𝑖𝑣𝑞〈𝑣𝑠𝑒𝑞

∗ 〉𝑘 − 𝐾𝑖𝑣𝑞〈Δ𝑣𝑠𝑒𝑞〉𝑘  (E.169) 

〈
𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑑〉𝑘 = −

1

𝐿𝑠𝑒
〈Δ𝑥1〉𝑘 −

𝑅𝑠𝑒

𝐿𝑠𝑒
〈Δ𝑖𝑠𝑒𝑑〉𝑘 + 〈ωΔ𝑖𝑠𝑒𝑞〉𝑘 +

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈Δ𝑣𝑑𝑐〉𝑘 +

1

𝐿𝑠𝑒
〈Δ𝑣𝑠𝑒𝑑〉𝑘 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
〈𝑣𝑑𝑐
∗ 〉𝑘  

(E.170) 

〈
𝑑

𝑑𝑡
Δ𝑖𝑠𝑒𝑞〉𝑘 = −

1

𝐿𝑠𝑒
〈Δ𝑥2〉𝑘 − 〈ωΔ𝑖𝑠𝑒𝑑〉𝑘 −

𝑅𝑠𝑒

𝐿𝑠𝑒
〈Δ𝑖𝑠𝑒𝑞〉𝑘 + (

1

𝐿𝑠𝑒
+
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
) 〈Δ𝑣𝑠𝑒𝑞〉𝑘 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑣𝑠𝑒𝑞
∗ 〉𝑘  

(E.171) 

〈
𝑑(𝛥𝑣𝑑𝑐 )

𝑑𝑡
〉𝑘 =

3

2
〈
𝛥𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 +

3

2
〈
𝑣𝑠𝑒𝑑.𝛥𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 −

3

2
〈
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
2 𝛥𝑣𝑑𝑐〉𝑘 +

3

2
〈
𝛥𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 +

3

2
〈
𝑣𝑠𝑒𝑞.𝛥𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 −

3

2
〈
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 𝛥𝑣𝑑𝑐〉𝑘 − 〈

2𝑖𝑠𝑒𝑑𝛥𝑖𝑠𝑒𝑑.𝑅𝑠𝑒

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 + 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑠𝑒

𝐶𝑑𝑐𝑣𝑑𝑐
2 𝛥𝑣𝑑𝑐〉𝑘   

(E.172) 

〈Δ𝑣𝑑𝑐
′ 〉0 =

〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑒𝑑〉0 + 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑒𝑞〉0 +

〈
𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 〈Δ𝑣𝑑𝑐〉0 + 〈

3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑒𝑑〉0 +

(E.173) 
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〈
3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑒𝑞〉0 + 〈

3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑖𝑠𝑒𝑑〉𝑘 + 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑖𝑠𝑒𝑞〉𝑘 +

〈
𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉�̅� 〈Δ𝑣𝑑𝑐〉𝑘 + 〈

3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑣𝑠𝑒𝑑〉𝑘 +

〈
3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑣𝑠𝑒𝑞〉𝑘 + 〈

3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑒𝑑〉�̅� + 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑒𝑞〉�̅� +

〈
𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘 〈Δ𝑣𝑑𝑐〉�̅� + 〈

3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑒𝑑〉�̅� + 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑒𝑞〉�̅�  

〈Δ𝑣𝑑𝑐
′ 〉𝑘 =

〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑒𝑑〉0 + 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑖𝑠𝑒𝑞〉0 +

〈
𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘 〈Δ𝑣𝑑𝑐〉0 + 〈

3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑒𝑑〉0 +

〈
3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈Δ𝑣𝑠𝑒𝑞〉0 + 〈

3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑒𝑑〉𝑘 + 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑒𝑞〉𝑘 +

{〈
𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 − 𝑗𝑘𝜔} 〈Δ𝑣𝑑𝑐〉𝑘 + 〈

3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑒𝑑〉𝑘 +

〈
3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑒𝑞〉𝑘  

(E.174) 

〈Δ𝑣𝑑𝑐
′ 〉�̅� =

〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑖𝑠𝑒𝑑〉0 + 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑖𝑠𝑒𝑞〉0 +

〈
𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉�̅� 〈Δ𝑣𝑑𝑐〉0 + 〈

3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑣𝑠𝑒𝑑〉0 +

〈
3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉�̅� 〈Δ𝑣𝑠𝑒𝑞〉0 + 〈

3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑒𝑑〉�̅� + 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑖𝑠𝑒𝑞〉�̅� +

{〈
𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 + 𝑗𝑘𝜔} 〈Δ𝑣𝑑𝑐〉�̅� + 〈

3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑒𝑑〉�̅� +

〈
3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈Δ𝑣𝑠𝑒𝑞〉�̅�  

(E.175) 

So, the generalised form of voltage control mode is given as: 

𝐴𝑉𝐷𝑃 =

[
 
 
 
 
𝑎𝑣𝑘=0 𝑎𝑐𝑣𝑘=�̅� 𝑎𝑐𝑣𝑘=𝑘 … 𝑎𝑐𝑣𝑘=𝑘𝑛
𝑎𝑐𝑣𝑘=𝑘 𝑎𝑣𝑘=𝑘
𝑎𝑐𝑣𝑘=�̅� 𝑎𝑣𝑘=�̅� ⋮

⋮ ⋱
𝑎𝑐𝑣𝑘=𝑘𝑛̅̅ ̅̅ … 𝑎𝑣𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  



 

205 

 

𝑎𝑣𝑘=𝑘 =

[
 
 
 
 
 
 
 
−𝑗𝑘𝜔 0 0 0 −𝐾𝑖𝑣𝑑
0 −𝑗𝑘𝜔 0 0 0

−
1

𝐿𝑠𝑒
0 −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔 ω

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒

0 −
1

𝐿𝑠𝑒
−ω −

𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔 0

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 − 𝑗𝑘𝜔]

 
 
 
 
 
 
 

   

𝑎𝑐𝑣𝑘=𝑘 =

[
 
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘]

 
 
 
 
 

   

𝐵𝑉𝐷𝑃 =

[
 
 
 
 
𝑏𝑣𝑘=0 𝑏𝑐𝑣𝑘=�̅� 𝑏𝑐𝑣𝑘=𝑘 … 𝑏𝑐𝑣𝑘=𝑘𝑛
𝑏𝑐𝑣𝑘=𝑘 𝑏𝑣𝑘=𝑘
𝑏𝑐𝑣𝑘=�̅� 𝑏𝑣𝑘=�̅� ⋮

⋮ ⋱
𝑏𝑐𝑣𝑘=𝑘𝑛̅̅ ̅̅ … 𝑏𝑣𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

𝑏𝑣𝑘=𝑘 =

[
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑣𝑑 0
0 −𝐾𝑖𝑣𝑞 0 𝐾𝑖𝑣𝑞
1

𝐿𝑠𝑒
0 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

0 (
1

𝐿𝑠𝑒
+
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
) 0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 0 0 ]

 
 
 
 
 
 
 

  

𝑏𝑐𝑣𝑘=𝑘 =

[
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 0 0]

 
 
 
 
 

  

3. Impedance control mode 

Δ𝑥𝑠𝑒𝑞 =
1

𝑖𝑠𝑒𝑞
Δ𝑣𝑠𝑒𝑞 −

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2  Δ𝑖𝑠𝑒𝑞  (E.176) 

Δ𝑥2
′ = 𝐾𝑖𝑣𝑞(𝑥𝑠𝑒𝑞

∗ − Δ𝑥𝑠𝑒𝑞)         (E.177) 

Δ𝑚𝑠𝑒𝑞 = 𝐾𝑝𝑣𝑞(𝑥𝑠𝑒𝑞
∗ − Δ𝑥𝑠𝑒𝑞) + Δ𝑥2    (E.178) 

Δ𝑥2
′ = 𝐾𝑖𝑣𝑞𝑥𝑠𝑒𝑞

∗ −
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
Δ𝑣𝑠𝑒𝑞 +

𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2  Δ𝑖𝑠𝑒𝑞  (E.179) 

Δ𝑖𝑠𝑒𝑞
′ = −

1

𝐿𝑠𝑒
Δ𝑥2 −ωΔ𝑖𝑠𝑒𝑑 −

𝑅𝑠𝑒

𝐿𝑠𝑒
Δ𝑖𝑠𝑒𝑞 −

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2  Δ𝑖𝑠𝑒𝑞 +

1

𝐿𝑠𝑒
 Δ𝑣𝑠𝑒𝑞 +

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
Δ𝑣𝑠𝑒𝑞 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
𝑥𝑠𝑒𝑞
∗    

(E.180) 

The transformation to dynamic phasor result: 
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For 𝑘 = 0  

〈Δ𝑥2
′ 〉0 = 𝐾𝑖𝑣𝑞〈𝑥𝑠𝑒𝑞

∗ 〉0 − 〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
Δ𝑣𝑠𝑒𝑞〉0 + 〈

𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2  Δ𝑖𝑠𝑒𝑞〉0     (E.181) 

〈Δ𝑖𝑠𝑒𝑞
′ 〉0 = −

1

𝐿𝑠𝑒
〈Δ𝑥2〉0 −ω〈Δ𝑖𝑠𝑒𝑑〉0 −

𝑅𝑠𝑒

𝐿𝑠𝑒
〈Δ𝑖𝑠𝑒𝑞〉0 − 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2  Δ𝑖𝑠𝑒𝑞〉0 +

1

𝐿𝑠𝑒
 〈Δ𝑣𝑠𝑒𝑞〉0 + 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
Δ𝑣𝑠𝑒𝑞〉0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑥𝑠𝑒𝑞
∗ 〉0    

(E.182) 

〈Δ𝑥2
′ 〉0 =

〈
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 〈Δ𝑖𝑠𝑒𝑞〉0 − 〈

𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉0 〈Δ𝑣𝑠𝑒𝑞〉0 +𝐾𝑖𝑣𝑞〈𝑥𝑠𝑒𝑞

∗ 〉0 + 〈
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉�̅� 〈Δ𝑖𝑠𝑒𝑞〉𝑘 −

〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉�̅� 〈Δ𝑣𝑠𝑒𝑞〉𝑘 + 〈

𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉𝑘 〈Δ𝑖𝑠𝑒𝑞〉�̅� − 〈

𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉𝑘 〈Δ𝑣𝑠𝑒𝑞〉�̅�  

(E.183) 

〈𝛥𝑖𝑠𝑒𝑞
′ 〉0 = −

1

𝐿𝑠𝑒
〈𝛥𝑥2〉0 −𝜔〈𝛥𝑖𝑠𝑒𝑑〉0 + {−

𝑅𝑠𝑒

𝐿𝑠𝑒
− 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉0} 〈𝛥𝑖𝑠𝑒𝑞〉0 +

{
1

𝐿𝑠𝑒
 + 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉0} 〈𝛥𝑣𝑠𝑒𝑞〉0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑥𝑠𝑒𝑞
∗ 〉0 − 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉�̅� 〈𝛥𝑖𝑠𝑒𝑞〉𝑘 +

〈
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉�̅� 〈𝛥𝑣𝑠𝑒𝑞〉𝑘 − 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉𝑘 〈𝛥𝑖𝑠𝑒𝑞〉�̅� + 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉𝑘 〈𝛥𝑣𝑠𝑒𝑞〉�̅�   

(E.184) 

For 𝑘 = 𝑘  

〈Δ𝑥2
′ 〉𝑘 = 〈𝐾𝑖𝑣𝑞𝑥𝑠𝑒𝑞

∗ 〉𝑘 − 〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
Δ𝑣𝑠𝑒𝑞〉𝑘 + 〈

𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2  Δ𝑖𝑠𝑒𝑞〉𝑘   (E.185) 

〈Δ𝑖𝑠𝑒𝑞
′ 〉𝑘 = −

1

𝐿𝑠𝑒
〈𝛥𝑥2〉𝑘 −𝜔〈𝛥𝑖𝑠𝑒𝑑〉𝑘 −

𝑅𝑠𝑒

𝐿𝑠𝑒
〈𝛥𝑖𝑠𝑒𝑞〉𝑘 − 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2  𝛥𝑖𝑠𝑒𝑞〉𝑘 +

1

𝐿𝑠𝑒
 〈𝛥𝑣𝑠𝑒𝑞〉𝑘 + 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
𝛥𝑣𝑠𝑒𝑞〉𝑘 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑥𝑠𝑒𝑞
∗ 〉𝑘   

(E.186) 

〈Δ𝑥2
′ 〉𝑘 =

〈
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉𝑘 〈Δ𝑖𝑠𝑒𝑞〉0 − 〈

𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉𝑘 〈Δ𝑣𝑠𝑒𝑞〉0 − 𝑗𝑘𝜔〈Δ𝑥2〉𝑘 + 〈

𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 〈Δ𝑖𝑠𝑒𝑞〉𝑘 −

〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉0 〈Δ𝑣𝑠𝑒𝑞〉𝑘 + 𝐾𝑖𝑣𝑞〈𝑥𝑠𝑒𝑞

∗ 〉𝑘  

(E.187) 

〈Δ𝑖𝑠𝑒𝑞
′ 〉𝑘 = − 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉𝑘 〈Δ𝑖𝑠𝑒𝑞〉0 + 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉𝑘 〈Δ𝑣𝑠𝑒𝑞〉0 −

1

𝐿𝑠𝑒
〈Δ𝑥2〉𝑘 −

ω〈Δ𝑖𝑠𝑒𝑑〉𝑘 + {−
𝑅𝑠𝑒

𝐿𝑠𝑒
− 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉0 − 𝑗𝑘𝜔} 〈Δ𝑖𝑠𝑒𝑞〉𝑘 + {

1

𝐿𝑠𝑒
+ 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉0} 〈Δ𝑣𝑠𝑒𝑞〉𝑘 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑥𝑠𝑒𝑞
∗ 〉𝑘   

(E.188) 

For 𝑘 = �̅�  

〈𝛥𝑥2
′ 〉�̅� = 〈

𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉�̅� 〈𝛥𝑖𝑠𝑒𝑞〉0 − 〈

𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉�̅� 〈𝛥𝑣𝑠𝑒𝑞〉0 + 〈

𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 〈𝛥𝑖𝑠𝑒𝑞〉�̅� −

〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉0 〈𝛥𝑣𝑠𝑒𝑞〉�̅� + 𝐾𝑖𝑣𝑞〈𝑥𝑠𝑒𝑞

∗ 〉�̅� + 𝑗𝑘𝜔〈𝛥𝑥2〉�̅�  

(E.189) 

〈Δ𝑖𝑠𝑒𝑞
′ 〉�̅� = − 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉�̅� 〈Δ𝑖𝑠𝑒𝑞〉0 + 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉�̅� 〈Δ𝑣𝑠𝑒𝑞〉0 −

1

𝐿𝑠𝑒
〈Δ𝑥2〉�̅� − (E.190) 
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ω〈Δ𝑖𝑠𝑒𝑑〉�̅� + {−
𝑅𝑠𝑒

𝐿𝑠𝑒
− 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉0 + 𝑗𝑘𝜔} 〈Δ𝑖𝑠𝑒𝑞〉�̅� + {

1

𝐿𝑠𝑒
+ 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉0} 〈Δ𝑣𝑠𝑒𝑞〉�̅� −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒
〈𝑥𝑠𝑒𝑞
∗ 〉�̅�  

So, the generalised form of impedance control mode is: 

𝐴𝐼𝐷𝑃 =

[
 
 
 
 
𝑎𝑖𝑘=0 𝑎𝑐𝑖𝑘=�̅� 𝑎𝑐𝑖𝑘=𝑘 … 𝑎𝑐𝑖𝑘=𝑘𝑛
𝑎𝑐𝑖𝑘=𝑘 𝑎𝑖𝑘=𝑘
𝑎𝑐𝑖𝑘=�̅� 𝑎𝑖𝑘=�̅� ⋮

⋮ ⋱
𝑎𝑐𝑖𝑘=𝑘𝑛̅̅ ̅̅ … 𝑎𝑖𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

𝑎𝑖𝑘=𝑘 =

[
 
 
 
 
 
 
 
 
−𝑗𝑘𝜔 0 0 0 −𝐾𝑖𝑣𝑑

0 −𝑗𝑘𝜔 0 〈
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 0

−
1

𝐿𝑠𝑒
0

−𝑅𝑠𝑒

𝐿𝑠𝑒
− 𝑗𝑘𝜔 ω

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒

0 −
1

𝐿𝑠𝑒
−ω

−𝑅𝑠𝑒

𝐿𝑠𝑒
− 〈

𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉0 − 𝑗𝑘𝜔 0

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉0 − 𝑗𝑘𝜔]

 
 
 
 
 
 
 
 

  

 𝑎𝑐𝑖𝑘=𝑘 =

[
 
 
 
 
 
 
 
0 0 0 0 0

0 0 0 〈
𝐾𝑖𝑣𝑞𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉𝑘 0

0 0 0 0 0

0 0 0 − 〈
𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
2 〉𝑘 0

0 0 〈
3

2
𝑣𝑠𝑒𝑑−2𝑖𝑠𝑒𝑑.𝑅𝑓

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑣𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

𝑖𝑠𝑒𝑑
2 .𝑅𝑓−

3

2
𝑣𝑠𝑒𝑑𝑖𝑠𝑒𝑑−

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
2 〉𝑘]

 
 
 
 
 
 
 

   

𝐵𝐼𝐷𝑃 =

[
 
 
 
 
𝑏𝑖𝑘=0 𝑏𝑐𝑖𝑘=�̅� 𝑏𝑐𝑖𝑘=𝑘 … 𝑏𝑐𝑖𝑘=𝑘𝑛
𝑏𝑐𝑖𝑘=𝑘 𝑏𝑖𝑘=𝑘
𝑏𝑐𝑖𝑘=�̅� 𝑏𝑖𝑘=�̅� ⋮

⋮ ⋱
𝑏𝑐𝑖𝑘=𝑘𝑛̅̅ ̅̅ … 𝑏𝑖𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 

  

𝑏𝑖𝑘=𝑘 =

[
 
 
 
 
 
 
 
 

0 0 𝐾𝑖𝑣𝑑 0

0 − 〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉0 0 𝐾𝑖𝑣𝑞

1

𝐿𝑠𝑒
0 −

𝐾𝑝𝑣𝑑

𝐿𝑠𝑒
0

0 {
1

𝐿𝑠𝑒
+ 〈

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉0} 0 −

𝐾𝑝𝑣𝑞

𝐿𝑠𝑒

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉0 0 0 ]
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𝑏𝑐𝑖𝑘=𝑘 =

[
 
 
 
 
 
 

0 0 0 0

0 − 〈
𝐾𝑖𝑣𝑞

𝑖𝑠𝑒𝑞
〉𝑘 0 0

0 0 0 0

0 〈
𝐾𝑝𝑣𝑞

𝐿𝑠𝑒𝑖𝑠𝑒𝑞
〉𝑘 0 0

〈
3

2

𝑖𝑠𝑒𝑑

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 〈

3

2

𝑖𝑠𝑒𝑞

𝐶𝑑𝑐𝑣𝑑𝑐
〉𝑘 0 0]

 
 
 
 
 
 

  

4. Impedance of SSSC power control mode 

𝛥𝑣𝑠𝑒𝑑 = (𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒)𝛥𝑖𝑠𝑒𝑑 −𝜔𝐿𝑠𝑒𝛥𝑖𝑠𝑒𝑞 + 𝛥𝑚𝑠𝑒𝑑  (E.191) 

𝛥𝑣𝑠𝑒𝑞 = 𝑠𝐿𝑠𝑒𝛥𝑖𝑠𝑒𝑞 + 𝑅𝑠𝑒𝛥𝑖𝑠𝑒𝑞 +𝜔𝐿𝑠𝑒𝛥𝑖𝑠𝑒𝑑 + 𝛥𝑚𝑠𝑒𝑞  (E.192) 

Δ𝑚𝑠𝑒𝑑 = (𝐾𝑝𝑣𝑑 +
𝐾𝑖𝑣𝑑

𝑠
) (𝑃𝑙𝑖𝑛𝑒

∗ − Δ𝑃𝑙𝑖𝑛𝑒)  
(E.193) 

Δ𝑚𝑠𝑒𝑞 = (𝐾𝑝𝑣𝑞 +
𝐾𝑖𝑣𝑞

𝑠
) (𝑄𝑙𝑖𝑛𝑒

∗ − Δ𝑄𝑙𝑖𝑛𝑒)  
(E.194) 

Δ𝑃𝑙𝑖𝑛𝑒 = Δ𝑃1 − Δ𝑃2         (E.195) 

Δ𝑄𝑙𝑖𝑛𝑒 = Δ𝑄1 − Δ𝑄2     (E.196) 

Using KVL  (E.197) 

−𝑣1 − 𝑣𝑠𝑒 + 𝑣𝐿 + 𝑣2 = 0  (E.198) 

𝑣𝐿 − 𝑣𝑠𝑒 = 𝑣1 − 𝑣2  (E.199) 

𝛥𝑣𝐿𝑑 − 𝛥𝑣𝑠𝑒𝑑 = 𝛥𝑣1𝑑 − 𝛥𝑣2𝑑  (E.200) 

𝛥𝑣𝐿𝑞 − 𝛥𝑣𝑠𝑒𝑞 = 𝛥𝑣1𝑞 − 𝛥𝑣2𝑞  (E.201) 

The transformation to dynamic phasor will be: 

For 𝑘 = 0 

〈𝛥𝑣𝑠𝑒𝑑〉0 = (𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒)〈𝛥𝑖𝑠𝑒𝑑〉0 −𝜔𝐿𝑠𝑒〈𝛥𝑖𝑠𝑒𝑞〉0 + 〈𝛥𝑚𝑠𝑒𝑑〉0   (E.202) 

〈𝛥𝑣𝑠𝑒𝑞〉0 = (𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒)〈𝛥𝑖𝑠𝑒𝑞〉0 +𝜔𝐿𝑠𝑒〈𝛥𝑖𝑠𝑒𝑑〉0 + 〈𝛥𝑚𝑠𝑒𝑞〉0  (E.203) 

〈Δ𝑚𝑠𝑒𝑑〉0 = (𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑃𝑙𝑖𝑛𝑒

∗ 〉0 + 〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈𝑃𝑙𝑖𝑛𝑒

∗ 〉𝑘 + 〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈𝑃𝑙𝑖𝑛𝑒

∗ 〉�̅� −

(𝐾𝑝𝑣𝑑 − 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈Δ𝑃𝑙𝑖𝑛𝑒〉0 − 〈

𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑃𝑙𝑖𝑛𝑒〉𝑘 − 〈

𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑃𝑙𝑖𝑛𝑒〉�̅�  

(E.204) 

〈Δ𝑚𝑠𝑒𝑞〉0 =

−(𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈Δ𝑄𝑙𝑖𝑛𝑒〉0 − 〈

𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑄𝑙𝑖𝑛𝑒〉𝑘 − 〈

𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑄𝑙𝑖𝑛𝑒〉�̅� +

(𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝑄𝑙𝑖𝑛𝑒

∗ 〉0 + 〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈𝑄𝑙𝑖𝑛𝑒

∗ 〉𝑘 + 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈𝑄𝑙𝑖𝑛𝑒

∗ 〉�̅�  

(E.205) 

〈Δ𝑃𝑙𝑖𝑛𝑒〉0 = 〈Δ𝑃1〉0 − 〈Δ𝑃2〉0         (E.206) 

〈Δ𝑄𝑙𝑖𝑛𝑒〉0 = 〈Δ𝑄1〉0 − 〈Δ𝑄2〉0     (E.207) 

 

For 𝑘 = 𝑘 

〈𝛥𝑣𝑠𝑒𝑑〉𝑘 = (𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒 + 𝑗𝑘𝜔)〈𝛥𝑖𝑠𝑒𝑑〉𝑘 −𝜔𝐿𝑠𝑒〈𝛥𝑖𝑠𝑒𝑞〉𝑘 + 〈𝛥𝑚𝑠𝑒𝑑〉𝑘  (E.208) 
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〈𝛥𝑣𝑠𝑒𝑞〉𝑘 = (𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒 + 𝑗𝑘𝜔)〈𝛥𝑖𝑠𝑒𝑞〉𝑘 +𝜔𝐿𝑠𝑒〈𝛥𝑖𝑠𝑒𝑑〉𝑘 + 〈𝛥𝑚𝑠𝑒𝑞〉𝑘  (E.209) 

〈𝛥𝑚𝑠𝑒𝑑〉𝑘 =

− 〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝛥𝑃𝑙𝑖𝑛𝑒〉0 − (𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝛥𝑃𝑙𝑖𝑛𝑒〉𝑘 + 〈

𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝑃𝑙𝑖𝑛𝑒

∗ 〉0 +

(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑃𝑙𝑖𝑛𝑒

∗ 〉𝑘  

(E.210) 

〈𝛥𝑚𝑠𝑒𝑞〉𝑘 = (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉0) 〈𝑄𝑙𝑖𝑛𝑒

∗ 〉𝑘 + 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝑄𝑙𝑖𝑛𝑒

∗ 〉0 − 𝐾𝑝𝑣𝑞〈𝛥𝑄𝑙𝑖𝑛𝑒〉𝑘 −

〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝛥𝑄𝑙𝑖𝑛𝑒〉0 − 〈

𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉0 〈𝛥𝑄𝑙𝑖𝑛𝑒〉𝑘  

(E.211) 

〈Δ𝑃𝑙𝑖𝑛𝑒〉𝑘 = 〈Δ𝑃1〉𝑘 − 〈Δ𝑃2〉𝑘         (E.212) 

〈Δ𝑄𝑙𝑖𝑛𝑒〉𝑘 = 〈Δ𝑄1〉𝑘 − 〈Δ𝑄2〉𝑘      (E.213) 

For 𝑘 = �̅� 

〈Δ𝑣𝑠𝑒𝑑〉�̅� = (𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒 − 𝑗𝑘ω)〈Δ𝑖𝑠𝑒𝑑〉�̅� −ω𝐿𝑠𝑒〈Δ𝑖𝑠𝑒𝑞〉�̅� + 〈Δ𝑚𝑠𝑒𝑑〉�̅�  (E.214) 

〈Δ𝑣𝑠𝑒𝑞〉�̅� = (𝑠𝐿𝑠𝑒 + 𝑅𝑠𝑒 − 𝑗𝑘ω)〈Δ𝑖𝑠𝑒𝑞〉�̅� +ω𝐿𝑠𝑒〈Δ𝑖𝑠𝑒𝑑〉�̅� + 〈Δ𝑚𝑠𝑒𝑞〉�̅�  (E.215) 

〈Δ𝑚𝑠𝑒𝑑〉�̅� =

− 〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑃𝑙𝑖𝑛𝑒〉0 − (𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 〈Δ𝑃𝑙𝑖𝑛𝑒〉�̅� + 〈

𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈𝑃𝑙𝑖𝑛𝑒

∗ 〉0 +

(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑃𝑙𝑖𝑛𝑒

∗ 〉�̅�  

(E.216) 

〈Δ𝑚𝑠𝑒𝑞〉�̅� = (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉0) 〈𝑄𝑙𝑖𝑛𝑒

∗ 〉�̅� + 〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈𝑄𝑙𝑖𝑛𝑒

∗ 〉0 − 𝐾𝑝𝑣𝑞〈Δ𝑄𝑙𝑖𝑛𝑒〉�̅� −

〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑄𝑙𝑖𝑛𝑒〉0 − 〈

𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉0 〈Δ𝑄𝑙𝑖𝑛𝑒〉�̅�  

(E.217) 

〈Δ𝑃𝑙𝑖𝑛𝑒〉�̅� = 〈Δ𝑃1〉�̅� − 〈Δ𝑃2〉�̅�         (E.218) 

〈Δ𝑄𝑙𝑖𝑛𝑒〉�̅� = 〈Δ𝑄1〉�̅� − 〈Δ𝑄2〉�̅�      (E.219) 

Equations from (E.202) to (E.219) equations can be generalised as: 

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = 𝐴𝑃𝑠𝑒𝐷𝑃〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 + 〈𝚫𝐦𝐬𝐞𝐝𝒒〉𝐤  

𝐴𝑃𝑠𝑒𝐷𝑃 =

[
 
 
 
 
 
𝑎𝑝𝑠𝑒𝑘=0 0 0 0 0

0 𝑎𝑝𝑠𝑒𝑘=𝑘 0 0 0

0 0 𝑎𝑝𝑠𝑒𝑘=�̅� 0 0

0 0 0 ⋱ 0
0 0 0 0 𝑎𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝑎𝑝𝑠𝑒𝑘=𝑘 = [
(𝑠 + 𝑗𝑘ω)𝐿𝑠𝑒 + 𝑅𝑠𝑒 −ω𝐿𝑠𝑒

ω𝐿𝑠𝑒 (𝑠 + 𝑗𝑘ω)𝐿𝑠𝑒 + 𝑅𝑠𝑒
]  

〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤 = 𝐵𝑃𝑠𝑒〈𝚫𝐏𝐐𝐥𝐢𝐧𝐞
∗ 〉𝐤 − 𝐵𝑃𝑠𝑒〈𝚫𝐏𝐐𝐥𝐢𝐧𝐞〉𝐤  
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𝐵𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐵𝑝𝑠𝑒𝑘=0 𝑏𝑐𝑝𝑠𝑒𝑘=�̅� 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 0 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑏𝑐𝑝𝑠𝑒𝑘=𝑘 𝐵𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑏𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐵𝑣𝑠𝑒𝑘=�̅� 0 0

0 0 0 ⋱ 0
𝑏𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 0 𝐵𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝐵𝑝𝑠𝑒𝑘=𝑘 = [
(𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 0

0 (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0)
]   

 𝑏𝑐𝑝𝑠𝑒𝑘=𝑘 = [
〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘
]  

〈𝚫𝐏𝐐𝐥𝐢𝐧𝐞〉𝐤 = −𝐶𝑃𝑠𝑒〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 + 𝐶𝑃𝑠𝑒〈𝚫𝐯𝐋𝐝𝐪〉𝐤 + 𝐷𝑃𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 − 𝐹𝑃𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤  

𝐶𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐶𝑝𝑠𝑒𝑘=0 𝑐𝑐𝑝𝑠𝑒𝑘=�̅� 𝑐𝑐𝑝𝑠𝑒𝑘=𝑘 0 𝑐𝑐𝑝𝑠𝑒𝑘=𝑘𝑛
𝑐𝑐𝑝𝑠𝑒𝑘=𝑘 𝐶𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑐𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐶𝑝𝑠𝑒𝑘=�̅� 0 0

0 0 0 ⋱ 0
𝑐𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 0 𝐶𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

     

𝐶𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑖𝑠𝑒𝑑〉0 〈𝑖𝑠𝑒𝑞〉0
〈𝑖𝑠𝑒𝑞〉0 −〈𝑖𝑠𝑒𝑑〉0

]   𝑐𝑐𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑖𝑠𝑒𝑑〉𝑘 〈𝑖𝑠𝑒𝑞〉𝑘
〈𝑖𝑠𝑒𝑞〉𝑘 −〈𝑖𝑠𝑒𝑑〉𝑘

]  

𝐷𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐷𝑝𝑠𝑒𝑘=0 𝑑𝑐𝑝𝑠𝑒𝑘=�̅� 𝑑𝑐𝑝𝑠𝑒𝑘=𝑘 0 𝑑𝑐𝑝𝑠𝑒𝑘=𝑘𝑛
𝑑𝑐𝑝𝑠𝑒𝑘=𝑘 𝐷𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑑𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐷𝑝𝑠𝑒𝑘=�̅� 0 0

0 0 0 ⋱ 0
𝑑𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 0 𝐷𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝐷𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑣𝑠𝑒𝑑〉0 〈𝑣𝑠𝑒𝑞〉0
−〈𝑣𝑠𝑒𝑞〉0 〈𝑣𝑠𝑒𝑑〉0

]   𝑑𝑐𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑣𝑠𝑒𝑑〉𝑘 〈𝑣𝑠𝑒𝑞〉𝑘
−〈𝑣𝑠𝑒𝑞〉𝑘 〈𝑣𝑠𝑒𝑑〉𝑘

]  

𝐹𝑃𝑠𝑒 =

[
 
 
 
 
 
𝐹𝑝𝑠𝑒𝑘=0 𝑓𝑐𝑝𝑠𝑒𝑘=�̅� 𝑓𝑐𝑝𝑠𝑒𝑘=𝑘 0 𝑓𝑐𝑝𝑠𝑒𝑘=𝑘𝑛
𝑓𝑐𝑝𝑠𝑒𝑘=𝑘 𝐹𝑝𝑠𝑒𝑘=𝑘 0 0 0

𝑓𝑐𝑝𝑠𝑒𝑘=�̅� 0 𝐹𝑝𝑠𝑒𝑘=�̅� 0 0

0 0 0 ⋱ 0
𝑓𝑐𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 0 0 𝐹𝑝𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝐹𝑝𝑠𝑒𝑘=𝑘 =
3

2
[
〈𝑣𝐿𝑑〉0 〈𝑣𝐿𝑞〉0
−〈𝑣𝐿𝑞〉0 〈𝑣𝐿𝑑〉0

]   𝑓𝑐𝑝𝑘=𝑘 =
3

2
[
〈𝑣𝐿𝑑〉𝑘 〈𝑣𝐿𝑞〉𝑘
−〈𝑣𝐿𝑞〉𝑘 〈𝑣𝐿𝑑〉𝑘

]  

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = (𝐼 − 𝐵𝑃𝑠𝑒𝐶𝑃𝑠𝑒)
−1(𝐴𝑃𝑠𝑒𝐷𝑃 + 𝐵𝑃𝑠𝑒𝐹𝑃𝑠𝑒 − 𝐵𝑃𝑠𝑒𝐷𝑃𝑠𝑒)〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 + (𝐼 −

𝐵𝑃𝑠𝑒𝐶𝑃𝑠𝑒)
−1𝐵𝑃𝑠𝑒〈𝚫𝐏𝐐𝐥𝐢𝐧𝐞

∗ 〉𝐤 − (𝐼 − 𝐵𝑃𝑠𝑒𝐶𝑃𝑠𝑒)
−1𝐵𝑃𝑠𝑒𝐶𝑃𝑠𝑒〈𝚫𝐯𝐋𝐝𝐪〉𝐤  

𝑍𝑃𝑆𝑆𝑆𝐶 = (𝐼 − 𝐵𝑃𝑠𝑒𝐶𝑃𝑠𝑒)
−1(𝐴𝑃𝑠𝑒𝐷𝑃 + 𝐵𝑃𝑠𝑒𝐹𝑃𝑠𝑒 − 𝐵𝑃𝑠𝑒𝐷𝑃𝑠𝑒)  

5. Impedance of SSSC voltage control mode 

The SSSC is controlled in voltage control mode as: 



 

211 

 

〈Δ𝑣𝑠𝑒𝑑〉0 = (𝐿𝑠𝑒𝑠 + 𝑅𝑠𝑒)〈Δ𝑖𝑠𝑒𝑑〉0 −ω𝐿𝑠𝑒〈Δ𝑖𝑠𝑒𝑞〉0 + 〈Δ𝑚𝑠𝑒𝑑〉0  (E.220) 

〈Δ𝑣𝑠𝑒𝑞〉0 = (𝐿𝑠𝑒𝑠 + 𝑅𝑠𝑒)〈Δ𝑖𝑠𝑒𝑞〉0 +ω𝐿𝑠𝑒〈Δ𝑖𝑠𝑒𝑑〉0 + 〈Δ𝑚𝑠𝑒𝑞〉0  (E.221) 

〈Δ𝑣𝑠𝑒𝑑〉𝑘 = (𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒)〈Δ𝑖𝑠𝑒𝑑〉𝑘 −ω𝐿𝑠𝑒〈Δ𝑖𝑠𝑒𝑞〉𝑘 + 〈Δ𝑚𝑠𝑒𝑑〉𝑘  (E.222) 

〈Δ𝑣𝑠𝑒𝑞〉𝑘 = (𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒)〈Δ𝑖𝑠𝑒𝑞〉𝑘 +ω𝐿𝑠𝑒〈Δ𝑖𝑠𝑒𝑑〉𝑘 + 〈Δ𝑚𝑠𝑒𝑞〉𝑘  (E.223) 

〈Δ𝑣𝑠𝑒𝑑〉�̅� = (𝐿𝑠𝑒(𝑠 − 𝑗𝑘𝜔) + 𝑅𝑠𝑒)〈Δ𝑖𝑠𝑒𝑑〉�̅� −ω𝐿𝑠𝑒〈Δ𝑖𝑠𝑒𝑞〉�̅� + 〈Δ𝑚𝑠𝑒𝑑〉�̅�  (E.224) 

〈Δ𝑣𝑠𝑒𝑞〉�̅� = (𝐿𝑠𝑒(𝑠 − 𝑗𝑘𝜔) + 𝑅𝑠𝑒)〈Δ𝑖𝑠𝑒𝑞〉�̅� + 〈ω𝐿𝑠𝑒Δ𝑖𝑠𝑒𝑑〉�̅� + 〈Δ𝑚𝑠𝑒𝑞〉�̅�  (E.225) 

Δ𝑚𝑠𝑒𝑑 = 𝐾𝑝𝑣𝑑𝑣𝑑𝑐
∗ +

𝐾𝑖𝑣𝑑

𝑠
𝑣𝑑𝑐
∗ − 𝐾𝑝𝑣𝑑Δ𝑣𝑑𝑐 −

𝐾𝑖𝑣𝑑

𝑠
Δ𝑣𝑑𝑐    (E.226) 

Δ𝑚𝑠𝑒𝑞 = 𝐾𝑝𝑣𝑞𝑣𝑠𝑒𝑞
∗ +

𝐾𝑖𝑣𝑞

𝑠
𝑣𝑠𝑒𝑞
∗ − 𝐾𝑝𝑣𝑞Δ𝑣𝑠𝑒𝑞 −

𝐾𝑖𝑣𝑞

𝑠
Δ𝑣𝑠𝑒𝑞   (E.227) 

〈Δ𝑚𝑠𝑒𝑑〉0 = −(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈Δ𝑣𝑑𝑐〉0 + (𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑣𝑑𝑐

∗ 〉0 +

〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈𝑣𝑑𝑐

∗ 〉𝑘 − 〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑣𝑑𝑐〉𝑘 + 〈

𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈𝑣𝑑𝑐

∗ 〉�̅� − 〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑣𝑑𝑐〉�̅�    

(E.228) 

〈Δ𝑚𝑠𝑒𝑞〉0 = −(𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈Δ𝑣𝑠𝑒𝑞〉0 + (𝐾𝑝𝑣𝑞 + 〈

𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝑣𝑠𝑒𝑞

∗ 〉0 −

〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑣𝑠𝑒𝑞〉𝑘 + 〈

𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈𝑣𝑠𝑒𝑞

∗ 〉𝑘 − 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑣𝑠𝑒𝑞〉�̅� + 〈

𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈𝑣𝑠𝑒𝑞

∗ 〉�̅�   

(E.229) 

〈Δ𝑚𝑠𝑒𝑑〉𝑘 = − 〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑣𝑑𝑐〉0 + 〈

𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈𝑣𝑑𝑐

∗ 〉0 + (𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑣𝑑𝑐

∗ 〉𝑘 −

(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈Δ𝑣𝑑𝑐〉𝑘    

(E.230) 

〈Δ𝑚𝑠𝑒𝑞〉𝑘 =

− 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑣𝑠𝑒𝑞〉0 + 〈

𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈𝑣𝑠𝑒𝑞

∗ 〉0 + (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝑣𝑠𝑒𝑞

∗ 〉𝑘 −

(𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈Δ𝑣𝑠𝑒𝑞〉𝑘   

(E.231) 

〈Δ𝑚𝑠𝑒𝑑〉�̅� = − 〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑣𝑑𝑐〉0 + 〈

𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘ω
〉�̅� 〈𝑣𝑑𝑐

∗ 〉0 + (𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑣𝑑𝑐

∗ 〉�̅� −

(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈Δ𝑣𝑑𝑐〉�̅�   

(E.232) 

〈Δ𝑚𝑠𝑒𝑞〉�̅� =

− 〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑣𝑠𝑒𝑞〉0 + 〈

𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈𝑣𝑠𝑒𝑞

∗ 〉0 + (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝑣𝑠𝑒𝑞

∗ 〉�̅� −

(𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈Δ𝑣𝑠𝑒𝑞〉�̅�   

 

(E.233) 

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = 𝐴𝐼𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 + 〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤   

𝐴𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐴𝑣𝑠𝑒𝑘=0 0 0 ⋯ 0

0 𝐴𝑣𝑠𝑒𝑘=𝑘 0 0 0

0 0 𝐴𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
0 0 … 0 𝐴𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  



 

212 

 

𝐴𝑣𝑠𝑒𝑘=𝑘 = [
𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒 −ω𝐿𝑠𝑒

ω𝐿𝑠𝑒 𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒
]   

〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤 = 𝐵𝑉𝑠𝑒〈𝚫𝐕𝐕
∗〉𝐤 −𝐵𝑉𝑠𝑒〈𝚫𝐕𝐕〉𝐤  

𝐵𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐵𝑣𝑠𝑒𝑘=0 𝑏𝑐𝑣𝑠𝑒𝑘=�̅� 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 𝐵𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑏𝑐𝑣𝑠𝑒𝑘=�̅� 0 𝐵𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑏𝑐𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐵𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

𝐵𝑣𝑠𝑒𝑘=𝑘 = [
(𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 0

0 (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0)
] 𝑏𝑐𝑣𝑠𝑒𝑘=𝑘 = [

〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘
]  

𝐶𝑉𝑠𝑒〈𝚫𝐕𝐕〉𝐤 = 𝐷𝑉𝑠𝑒〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 + 𝐸𝑉𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤  

𝐶𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐶𝑣𝑠𝑒𝑘=0 𝑐𝑐𝑣𝑠𝑒𝑘=�̅� 𝑐𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑐𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑐𝑙𝑣𝑠𝑒𝑘=𝑘 𝐶𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑐𝑙𝑣𝑠𝑒𝑘=�̅� 0 𝐶𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑐𝑙𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐶𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝐶𝑣𝑠𝑒𝑘=𝑘 = [
𝐶𝑑𝑐〈𝑣𝑑𝑐〉0(𝑠 + 𝑗𝑘𝜔) +

3

2
〈
3

2
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞−𝑖𝑠𝑒𝑑

2 .𝑅𝑠𝑒

𝑣𝑑𝑐
〉0 0

0 1

]  

 𝑐𝑐𝑣𝑠𝑒𝑘=𝑘 = [
𝐶𝑑𝑐〈𝑣𝑑𝑐〉𝑘(𝑠 − 𝑗𝑘𝜔) + 〈

3

2
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞−𝑖𝑠𝑒𝑑

2 .𝑅𝑠𝑒

𝑣𝑑𝑐
〉𝑘 0

0 0

]   

𝑐𝑙𝑣𝑠𝑒𝑘=𝑘 = [
𝐶𝑑𝑐〈𝑣𝑑𝑐〉𝑘𝑠 + 〈

3

2
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+

3

2
𝑣𝑠𝑒𝑞𝑖𝑠𝑒𝑞−𝑖𝑠𝑒𝑑

2 .𝑅𝑠𝑒

𝑣𝑑𝑐
〉𝑘 0

0 0

]  

𝐷𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐷𝑣𝑠𝑒𝑘=0 𝑑𝑐𝑣𝑠𝑒𝑘=�̅� 𝑑𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑑𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑑𝑐𝑣𝑠𝑒𝑘=𝑘 𝐷𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑑𝑐𝑣𝑠𝑒𝑘=�̅� 0 𝐷𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑑𝑐𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐷𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

   

𝐷𝑣𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑖𝑠𝑒𝑑〉0 〈

3

2
𝑖𝑠𝑒𝑞〉0

0 1
]  𝑑𝑐𝑣𝑠𝑒𝑘=𝑘 = [

〈
3

2
𝑖𝑠𝑒𝑑〉𝑘 〈

3

2
𝑖𝑠𝑒𝑞〉𝑘

0 0
]  

𝐸𝑉𝑠𝑒 =

[
 
 
 
 
 
𝐸𝑣𝑠𝑒𝑘=0 𝑒𝑐𝑣𝑠𝑒𝑘=�̅� 𝑒𝑐𝑣𝑠𝑒𝑘=𝑘 ⋯ 𝑒𝑐𝑣𝑠𝑒𝑘=𝑘𝑛
𝑒𝑐𝑣𝑠𝑒𝑘=𝑘 𝐸𝑣𝑠𝑒𝑘=𝑘 0 0 0

𝑒𝑐𝑣𝑠𝑒𝑘=�̅� 0 𝐸𝑣𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑒𝑐𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐸𝑣𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

      

𝐸𝑣𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑 . 𝑅𝑓〉0 〈

3

2
𝑣𝑠𝑒𝑞〉0

0 0
]  
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 𝑒𝑐𝑣𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑 . 𝑅𝑓〉𝑘 〈

3

2
𝑣𝑠𝑒𝑞〉𝑘

0 0
] 

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = {𝐈 + 𝐵𝑉𝑠𝑒(𝐶𝑉𝑠𝑒)
−1𝐷𝑉𝑠𝑒}

−1{𝐴𝑉𝑠𝑒 − 𝐵𝑉𝑠𝑒(𝐶𝑉𝑠𝑒)
−1𝐸𝑉𝑠𝑒}〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 +

{𝐈 + 𝐵𝑉𝑠𝑒(𝐶𝑉𝑠𝑒)
−1𝐷𝑉𝑠𝑒}

−1𝐵𝑉𝑠𝑒〈𝚫𝐕𝐕
∗〉𝐤   

So, the SSSC controlled with quadrature voltage impedance is: 

𝑍𝑉𝑆𝑆𝑆𝐶 = {𝐈 + 𝐵𝑉𝑠𝑒(𝐶𝑉𝑠𝑒)
−1𝐷𝑉𝑠𝑒}

−1{𝐴𝑉𝑠𝑒 − 𝐵𝑉𝑠𝑒(𝐶𝑉𝑠𝑒)
−1𝐸𝑉𝑠𝑒}  

6. Impedance of SSSC control mode 

𝛥𝑥𝑠𝑒𝑞 =
1

𝑖𝑠𝑒𝑞
𝛥𝑣𝑠𝑒𝑞 −

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2  𝛥𝑖𝑠𝑒𝑞  (E.234) 

𝛥𝑚𝑠𝑒𝑑 = 𝐾𝑝𝑣𝑑𝑣𝑑𝑐
∗ +

𝐾𝑖𝑣𝑑

𝑠
𝑣𝑑𝑐
∗ −𝐾𝑝𝑣𝑑𝛥𝑣𝑑𝑐 −

𝐾𝑖𝑣𝑑

𝑠
𝛥𝑣𝑑𝑐    (E.235) 

𝛥𝑚𝑠𝑒𝑞 = 𝐾𝑝𝑣𝑞𝑥𝑠𝑒𝑞
∗ +

𝐾𝑖𝑣𝑞

𝑠
𝑥𝑠𝑒𝑞
∗ − 𝐾𝑝𝑣𝑞𝛥𝑥𝑠𝑒𝑞 −

𝐾𝑖𝑣𝑞

𝑠
𝛥𝑥𝑠𝑒𝑞   (E.236) 

〈𝛥𝑚𝑠𝑒𝑑〉0 = −(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝛥𝑣𝑑𝑐〉0 + (𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑣𝑑𝑐

∗ 〉0 +

〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘𝜔
〉�̅� 〈𝑣𝑑𝑐

∗ 〉𝑘 − 〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘𝜔
〉�̅� 〈𝛥𝑣𝑑𝑐〉𝑘 + 〈

𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝑣𝑑𝑐

∗ 〉�̅� − 〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝛥𝑣𝑑𝑐〉�̅�    

(E.237) 

〈Δ𝑚𝑠𝑒𝑞〉0 = −(𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈Δ𝑥𝑠𝑒𝑞〉0 + (𝐾𝑝𝑣𝑞 + 〈

𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝑥𝑠𝑒𝑞

∗ 〉0 −

〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈Δ𝑥𝑠𝑒𝑞〉𝑘 + 〈

𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘ω
〉�̅� 〈𝑥𝑠𝑒𝑞

∗ 〉𝑘 − 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑥𝑠𝑒𝑞〉�̅� + 〈

𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘 〈𝑥𝑠𝑒𝑞

∗ 〉�̅�   

(E.238) 

〈Δ𝑚𝑠𝑒𝑑〉𝑘 = − 〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈Δ𝑣𝑑𝑐〉0 + 〈

𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 〈𝑣𝑑𝑐

∗ 〉0 + (𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑣𝑑𝑐

∗ 〉𝑘 −

(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈Δ𝑣𝑑𝑐〉𝑘    

(E.239) 

〈𝛥𝑚𝑠𝑒𝑞〉𝑘 =

− 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝛥𝑥𝑠𝑒𝑞〉0 + 〈

𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘𝜔
〉𝑘 〈𝑥𝑠𝑒𝑞

∗ 〉0 + (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝑥𝑠𝑒𝑞

∗ 〉𝑘 −

(𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝛥𝑥𝑠𝑒𝑞〉𝑘   

(E.240) 

〈𝛥𝑚𝑠𝑒𝑑〉�̅� = − 〈
𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘𝜔
〉�̅� 〈𝛥𝑣𝑑𝑐〉0 + 〈

𝐾𝑖𝑣𝑑

𝑠−𝑗𝑘𝜔
〉�̅� 〈𝑣𝑑𝑐

∗ 〉0 + (𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝑣𝑑𝑐

∗ 〉�̅� −

(𝐾𝑝𝑣𝑑 + 〈
𝐾𝑖𝑣𝑑

𝑠
〉0) 〈𝛥𝑣𝑑𝑐〉�̅�    

(E.241) 

〈𝛥𝑚𝑠𝑒𝑞〉�̅� =

− 〈
𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘𝜔
〉�̅� 〈𝛥𝑥𝑠𝑒𝑞〉0 + 〈

𝐾𝑖𝑣𝑞

𝑠−𝑗𝑘𝜔
〉�̅� 〈𝑥𝑠𝑒𝑞

∗ 〉0 + (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝑥𝑠𝑒𝑞

∗ 〉�̅� −

(𝐾𝑝𝑣𝑞 − 〈
𝐾𝑖𝑣𝑞

𝑠
〉0) 〈𝛥𝑥𝑠𝑒𝑞〉�̅�   

(E.242) 
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〈𝛥𝑥𝑠𝑒𝑞〉0 =

〈
1

𝑖𝑠𝑒𝑞
〉0 〈𝛥𝑣𝑠𝑒𝑞〉0 − 〈

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 〈𝛥𝑖𝑠𝑒𝑞〉0 + 〈

1

𝑖𝑠𝑒𝑞
〉�̅� 〈𝛥𝑣𝑠𝑒𝑞〉𝑘 − 〈

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉�̅� 〈𝛥𝑖𝑠𝑒𝑞〉𝑘 +

〈
1

𝑖𝑠𝑒𝑞
〉𝑘 〈𝛥𝑣𝑠𝑒𝑞〉�̅� − 〈

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉𝑘 〈𝛥𝑖𝑠𝑒𝑞〉�̅�  

(E.243) 

〈𝛥𝑥𝑠𝑒𝑞〉𝑘 =

〈
1

𝑖𝑠𝑒𝑞
〉𝑘 〈𝛥𝑣𝑠𝑒𝑞〉0 − 〈

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉𝑘 〈𝛥𝑖𝑠𝑒𝑞〉0 + 〈

1

𝑖𝑠𝑒𝑞
〉0 〈𝛥𝑣𝑠𝑒𝑞〉𝑘 − 〈

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 〈𝛥𝑖𝑠𝑒𝑞〉𝑘  

(E.244) 

〈𝛥𝑥𝑠𝑒𝑞〉�̅� =

〈
1

𝑖𝑠𝑒𝑞
〉�̅� 〈𝛥𝑣𝑠𝑒𝑞〉0 − 〈

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉�̅� 〈𝛥𝑖𝑠𝑒𝑞〉0 + 〈

1

𝑖𝑠𝑒𝑞
〉0 〈𝛥𝑣𝑠𝑒𝑞〉�̅� − 〈

𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0 〈𝛥𝑖𝑠𝑒𝑞〉�̅�  

 

(E.245) 

The previous equations can be generalised as: 

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = 𝐴𝐼𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 + 〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤   

𝐴𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐴𝑖𝑠𝑒𝑘=0 0 0 ⋯ 0

0 𝐴𝑖𝑠𝑒𝑘=𝑘 0 0 0

0 0 𝐴𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
0 0 … 0 𝐴𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐴𝑖𝑠𝑒𝑘=𝑘 = [
𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒 −ω𝐿𝑠𝑒

ω𝐿𝑠𝑒 𝐿𝑠𝑒(𝑠 + 𝑗𝑘𝜔) + 𝑅𝑠𝑒
]   

〈𝚫𝐦𝐬𝐞𝐝𝐪〉𝐤 = 𝐵𝐼𝑠𝑒〈𝚫𝐕𝐗
∗〉𝐤 −𝐵𝐼𝑠𝑒〈𝚫𝐕𝐗〉𝐤  

𝐵𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐵𝑖𝑠𝑒𝑘=0 𝑏𝑐𝑖𝑠𝑒𝑘=�̅� 𝑏𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑏𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑏𝑐𝑖𝑠𝑒𝑘=𝑘 𝐵𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑏𝑐𝑖𝑠𝑒𝑘=�̅� 0 𝐵𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑏𝑐𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐵𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

𝐵𝑖𝑠𝑒𝑘=𝑘 = [
(𝐾𝑝𝑣𝑑 + 〈

𝐾𝑖𝑣𝑑

𝑠
〉0) 0

0 (𝐾𝑝𝑣𝑞 + 〈
𝐾𝑖𝑣𝑞

𝑠
〉0)
] 𝑏𝑐𝑖𝑠𝑒𝑘=𝑘 = [

〈
𝐾𝑖𝑣𝑑

𝑠+𝑗𝑘ω
〉𝑘 0

0 〈
𝐾𝑖𝑣𝑞

𝑠+𝑗𝑘ω
〉𝑘
]  

𝐶𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐶𝑖𝑠𝑒𝑘=0 𝑐𝑐𝑖𝑠𝑒𝑘=�̅� 𝑐𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑐𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑐𝑙𝑖𝑠𝑒𝑘=𝑘 𝐶𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑐𝑙𝑖𝑠𝑒𝑘=�̅� 0 𝐶𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑐𝑙𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐶𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

    

𝐶𝑖𝑠𝑒𝑘=𝑘 = [
𝐶𝑑𝑐〈𝑣𝑑𝑐〉0(𝑠 + 𝑗𝑘𝜔) + 〈

3

2
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞−𝑖𝑠𝑒𝑑

2 .𝑅𝑠𝑒

𝑣𝑑𝑐
〉0 0

0 1

]  
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 𝑐𝑐𝑖𝑠𝑒𝑘=𝑘 = [
𝐶𝑑𝑐〈𝑣𝑑𝑐〉𝑘(𝑠 − 𝑗𝑘𝜔) + 〈

3

2
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞−𝑖𝑠𝑒𝑑

2 .𝑅𝑠𝑒

𝑣𝑑𝑐
〉𝑘 0

0 0

]   

𝑐𝑙𝑖𝑠𝑒𝑘=𝑘 = [
𝐶𝑑𝑐〈𝑣𝑑𝑐〉𝑘𝑠 + 〈

3

2
𝑣𝑠𝑒𝑑.𝑖𝑠𝑒𝑑+

3

2
𝑣𝑠𝑒𝑞.𝑖𝑠𝑒𝑞−𝑖𝑠𝑒𝑑

2 .𝑅𝑠𝑒

𝑣𝑑𝑐
〉𝑘 0

0 0

]  

𝐷𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐷𝑖𝑠𝑒𝑘=0 𝑑𝑐𝑖𝑠𝑒𝑘=�̅� 𝑑𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑑𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑑𝑐𝑖𝑠𝑒𝑘=𝑘 𝐷𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑑𝑐𝑖𝑠𝑒𝑘=�̅� 0 𝐷𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑑𝑐𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐷𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

  

𝐷𝑖𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑖𝑠𝑒𝑑〉0 〈

3

2
𝑖𝑠𝑒𝑞〉0

0 〈
1

𝑖𝑠𝑒𝑞
〉0
]  𝑑𝑐𝑖𝑠𝑒𝑘=𝑘 = [

〈
3

2
𝑖𝑠𝑒𝑑〉𝑘 〈

3

2
𝑖𝑠𝑒𝑞〉𝑘

0 〈
1

𝑖𝑠𝑒𝑞
〉𝑘
]  

𝐸𝐼𝑠𝑒 =

[
 
 
 
 
 
𝐸𝑖𝑠𝑒𝑘=0 𝑒𝑐𝑖𝑠𝑒𝑘=�̅� 𝑒𝑐𝑖𝑠𝑒𝑘=𝑘 ⋯ 𝑒𝑐𝑖𝑠𝑒𝑘=𝑘𝑛
𝑒𝑐𝑖𝑠𝑒𝑘=𝑘 𝐸𝑖𝑠𝑒𝑘=𝑘 0 0 0

𝑒𝑐𝑖𝑠𝑒𝑘=�̅� 0 𝐸𝑖𝑠𝑒𝑘=�̅� 0

⋮ 0 ⋱ ⋮
𝑒𝑐𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ 0 … 0 𝐸𝑖𝑠𝑒𝑘=𝑘𝑛̅̅ ̅̅ ]

 
 
 
 
 

      

𝐸𝑖𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑 . 𝑅𝑓〉0 〈

3

2
𝑣𝑠𝑒𝑞〉0

0 〈
𝑣𝑠𝑒𝑞

𝑖𝑠𝑒𝑞
2 〉0

] 𝑒𝑐𝑖𝑠𝑒𝑘=𝑘 = [
〈
3

2
𝑣𝑠𝑒𝑑 − 2𝑖𝑠𝑒𝑑 . 𝑅𝑓〉𝑘 〈

3

2
𝑣𝑠𝑒𝑞〉𝑘

0 0
]  

𝐶𝐼𝑠𝑒〈𝚫𝐕𝐗〉𝐤 = 𝐷𝐼𝑠𝑒〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 + 𝐸𝐼𝑠𝑒〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤  

〈𝚫𝐯𝐬𝐞𝐝𝐪〉𝐤 = {𝐈 + 𝐵𝐼𝑠𝑒(𝐶𝐼𝑠𝑒)
−1𝐷𝐼𝑠𝑒}

−1{𝐴𝐼𝑠𝑒 − 𝐵𝐼𝑠𝑒(𝐶𝐼𝑠𝑒)
−1𝐸𝐼𝑠𝑒}〈𝚫𝐢𝐬𝐞𝐝𝐪〉𝐤 +

{𝐈 + 𝐵𝐼𝑠𝑒(𝐶𝐼𝑠𝑒)
−1𝐷𝐼𝑠𝑒}

−1𝐵𝐼𝑠𝑒〈𝚫𝐕𝐗
∗〉𝐤   

Similarly, the impedance SSSC controlled with quadrature impedance  

𝑍𝐼𝑆𝑆𝑆𝐶 = {𝐈 + 𝐵𝐼𝑠𝑒(𝐶𝐼𝑠𝑒)
−1𝐷𝐼𝑠𝑒}

−1{𝐴𝐼𝑠𝑒 −𝐵𝐼𝑠𝑒(𝐶𝐼𝑠𝑒)
−1𝐸𝐼𝑠𝑒}  


