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ABSTRACT

The existence of harmonics and oscillations represent major problems for reliable
operation of power system components. Therefore, investigating their response
requires finding an appropriate model which reflects their response including these
variations. The mathematical derivation of the state space models and impedance
models of some of voltage source converters in flexible ac transmission systems
(VSC-FACTS) systems is presented using synchronous dg and dg-dynamic phasor
approach. Two types of the VSC-FACTS devices are studied in this thesis; the static
synchronous compensator (STATCOM) due to its popularity in the power system
network and static synchronous series compensator (SSSC) due to its effective on
damping system oscillations. The effect of mechanical section of the synchronous
machine and turbine sections on the machine impedance is analysed. A generalised
state space and impedance modelling is proposed by converting the synchronous dq
models to dg-dynamic phasor models. A development of harmonic stability criteria
for the proposed modelling is presented. The proposed modelling is employed to
present the harmonics effect on the STATCOM and SSSC response and to identify
their unbalanced operation in frequency domain. The main features of the proposed
modelling technique are compared comprehensively with the conventional modelling
techniques for stability studies assessment. It shows the advantages of proposed
method and the importance of including the harmonics in the stability studies. A
comparison between different control modes of the SSSC is discussed in the
frequency domain. The effectiveness of these control modes on damping system
oscillations is investigated using the impedance concept. It presented the
effectiveness of impedance control mode on damping system oscillations over the
other control modes. A fast impedance measurement unit (IMU) is proposed to
monitor the small signal stability. The proposed IMU can measure accurately the
system impedance within a very short time without any filtering requirements. The
effect of changing the STATCOM control gains on the impedance norm is
investigated. Also, the effect of shunt and series virtual impedances on the infinite
norm of the STATCOM impedance which can be used by network operators to retain

the stability is discussed.
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CHAPTER 1

INTRODUCTION

1.1 Background

The existence of voltage source converter based flexible ac transmission systems
(VSC-FACTS) has widely increased in recent years. They were proposed to control
the operation of transmission systems and damp systems’ oscillations. Since the first
introduction of the VSC-FACTS devices, several connections to the grid and
topologies have been proposed such as shunt, series and shunt-series connections.
Analysing their performance requires finding an appropriate model which reflects the
device’s response in different operating conditions. Modelling the steady-state
operation of VSC-FACTS is usually carried out using simple modelling techniques
such as voltage or current supply where the devices’ dynamics are ignored. However,
the transient response of these devices needs more attention due to the huge
parameters that affect it. In addition, modelling of these devices becomes harder to
develop in the presence of harmonics and predicts their response. Therefore, the
proper modelling of VSC-FACTS devices is essential in order to assess their stability
in presence of harmonics or unbalanced conditions [1]. Modelling of VSC and its
application in power system for transient conditions has been presented in the
literature using different techniques. The efficiency and suitability of these
techniques vary depending on the application and the accuracy required. For
instance, detailed modelling can reflect most of the VSC-FACTS response,
however, it increases the computational time thereby imposing a practical limitation
on the number of components that can be simulated simultaneously [2]. Similarly,
the implementation of Park's transformation (synchronous dq) to the time domain
variables is commonly used transformation coordinates to model systems and
analyse their stability. However, it is unable to represent all harmonic frequencies

that might co-exist at power frequency and affect steady-state and dynamic operation



of the system [3][4]. Alternatively, the dynamic phasor approach, which is extracted
from time-domain differential equations, offers numerous benefits compared
to traditional modelling approaches [5]. The dynamic phasor covers a broad
bandwidth of frequencies where it uses a small integration step at high frequencies
and increases the integration steps at lower frequencies. It is more appropriate for
small signal studies where the dynamic phasor parameters are time-invariant
parameters which reduce errors due to system linearization. Two forms of dynamic
phasor modelling have been introduced, the abc-dynamic phasor and dg-dynamic
phasor. The first type suffers from a large number of equations required for
modelling as well as it does not suit the modelling control systems. The dg-dynamic
phasor technique uses fewer equations and is more suitable for stability analysis and

it could model different types of control systems.

The existence of harmonics and oscillations are found over a wide range of
frequencies which represent major problems for the reliable operation of power
systems. These harmonics and oscillations could be initiated by different events in
the power system; for example, low-frequency oscillations can be initiated due to the
sub-synchronous resonance (SSR), while the high-frequency variations are largely
initiated by switching of power electronics converters [6][7]. In the literature,
including the harmonics in the modelling was carried out by mapping the input
frequencies to the output. Frequency mapping produces infinite outputs with possibly
infinite harmonics due to the interaction between different frequencies within the
system. Neglecting higher order harmonics to enforce frequency mapping could lead
to a significant error on the modelling due to the influence of some of truncated
harmonics. Thus it is important to select all frequencies which are relevant to the

study under consideration and ignore those are irrelevant [8].

1.2 Research motivation

Two methods were found in the literature based on the frequency mapping concept;
the harmonic linearization method and harmonic state space (HSS) method. The
inclusion of harmonics in modelling using harmonic linearization method has a

disadvantage as it does not include the frequency coupling between the studied



harmonics without the transformation via the symmetrical components.
Alternatively, with the high order matrices utilised by HSS, it is difficult to study the
unbalanced systems and the time-variant parameters which enforce the linearization
to be around this time-periodic operating trajectory, not around the steady-state
operating point, are the main disadvantages [9][10]. It the literature, the
implementation of the generalised form of dg-dynamic phasor has not been widely
presented to study systems’ stability and unbalanced conditions identification. The
use of dg-dynamic phasor modelling in stability analysis offers significant
advantages over the HSS counterpart; for example, it has reduced the order of
matrices, is more suitable for studying control systems, retains mutual coupling of
harmonics, and simplifies stability study under unbalanced conditions. Also, dg-
dynamic phasor parameters are linearized around steady-state point like synchronous
dg which reduces the error of linearization compared to HSS. In addition, it is valid
for studying the stability of complex power electronics devices such as VSC-FACTS
devices with the presence of harmonics and unbalanced networks without the need
for any transformation. The dg-dynamic phasor modelling manages to reproduce the
typical response of VSC-FACTS device at the fundamental frequency as well as at

significant harmonics.

1.3 Research objectives

e Develop state space models and impedance models for small signal stability
analysis using dg-dynamic phasor approach.

e Design an impedance measurement unit for fast monitoring and assessment of
system stability.

e Investigate the effect of harmonics and oscillations on the response of VSC-

FACTS devices and their damping capabilities.

1.4 Thesis methodology
In this thesis, to successfully include the harmonics in modelling of VSC-FACTS
devices and present their effect and their control method, the following research

activities will be conducted:



e Derive the synchronous dg models of VSC-FACTS devices and their
transformation to dynamic phasor.

¢ Investigate the characteristics of dynamic phasor modelling on presenting the
performance of VSC-FACTS devices.

e Propose generalised state space and impedance model of STATCOM using dg-
dynamic phasor modelling

e Propose generalised state space and impedance model of SSSC for three different
control types using dg-dynamic phasor modelling.

e Present the efficiency of proposed modelling methods when including harmonics
and identifying the unbalanced conditions.

e Propose an impedance monitoring unit (IMU) for the application of stability
control and fast monitoring.

e Assess the contribution of VSC-FACTS devices’ control parameters and other
active techniques on stability.

e Compare the effectiveness of SSSC on damping system oscillation and the effect

of harmonics on their operation.

1.5 Thesis layout
The thesis comprises seven chapters as follows:

e Chapter 1 gives an introduction to the thesis and presents its background and
thesis outlines.

e Chapter 2 presents a literature review of modelling techniques and presents a
comprehensive survey in harmonic stability assessment and identification.

e Chapter 3 presents the modelling of the static synchronous series compensator
(SSSC), static synchronous compensator (STATCOM) devices and synchronous
machine using synchronous dq coordinates and the dg-dynamic phasor approach.

e Chapter 4 discusses stability problems and the stability criteria used to assess
system's performance in the synchronous dq frame. Secondly, the mathematical
derivation of the state space equations and impedances of the SSSC, STATCOM
is presented. Lastly modelling the synchronous machine is introduced as it will be
required for the stability analyses in the following chapters.



e Chapter 5 presents firstly a development of harmonic stability criteria for dg-
dynamic phasor modelling. Secondly, a generalised state space and impedance
models of STATCOM and SSSC with different control modes using dg-dynamic
phasor are proposed. Lastly, the chapter presents a comparison between the
proposed modelling and the conventional modelling techniques.

e Chapter 6 introduces an impedance measurement unit (IMU) for the application of
control system-based impedance concept and fast monitoring application. Also,
the chapter presents the effect of changing the STATCOM parameters on the
impedance norms. It presents the effect of implementing control parameters
(virtual impedance) on the infinite norm of STATCOM impedance. Lastly, the
effectiveness of the SSSC is investigated on re-shaping the network impedance to
stabilise the system or damping the system oscillations.

e Chapter 7 presents the conclusions and author’s contributions, including remarks

and recommendations for further research on the field of VSC modelling.



CHAPTER 2

MODELLING AND STABILITY ANALYSIS TECHNIQUES

In this chapter, a review of voltage source converters modelling in flexible ac
transmission systems (VSC-FACTS) for stability assessment is presented. The
review shows also the capability of modelling techniques of including and

identifying the harmonics and oscillations in stability studies.

2.1 Modelling techniques of VSC- FACTS devices

The application of VSC-FACTS has been introduced widely in the literature. These
applications require more attention in modelling to reflect their actual response under
steady-state and transient-state conditions. They vary in complexity, accuracy as well
as the suitability to different operating conditions. The modelling approach, the
integration method and different target of modelling are the main reasons that
challenge the interfacing and the selection between the modelling techniques [11].
The main classification of the modelling techniques for stability assessment is shown

in Figure 2.1 and they are classified as:

2.1.1 Time domain detailed modelling

Time domain detailed modelling or called abc modelling is one of the first modelling
techniques implemented to represent the power system response in balanced and
unbalanced conditions. Each phase of the modelled system is represented by its
magnitude multiplied by a sinusoidal function of its frequency, time and phase shift.
It provides the basis for deriving other modelling techniques [12][13]. A system's
stability can be assessed by the mathematical modelling or using simulations in the
time domain [14][15]. Usually, time domain modelling is carried using a single
phase to reduce the complexity of the analysis.
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In the meantime, the use of time domain simulations is much simpler where no
mathematical model is required. It was employed to assess the effect of time delays
in communication signals on system stability [14] and to present the effectiveness of
HVDC control system as in [15]. Even though abc modelling is a powerful technique
that can represent the response of any system such as VSC-FACTS systems
accurately and effectively, it is inefficient due to the presence of variable quantities
even at steady state conditions. The existence of variable quantities increases the
error due to the linearization in small signal stability studies. Also, the time domain
simulation introduces little insight into the system and is less sensitive to small

changes in the system parameters [16].

2.1.2 Synchronous dg modelling

Synchronous dq or Park’s transformation provides a unique form of describing the
three phase quantities in two rotating dc component located at quadrature coordinates
by shifting system's frequencies by (+w) [17]. It has advantages of modelling
balanced and unbalanced systems by applying a single coordinate and two
coordinates respectively. The synchronous dq quantities are linear time invariant
(LTI) quantities which suit small signal stability studies where the operating point
can be linearized around a steady state point. The implementation of synchronous dq
modelling is commonly used coordinate to analyse the systems and their stabilities
such as the work in [3], [4], [9], [10]. Also, it was employed in well-known state
space models and impedance models for small signal stability studies [18][19]. The
former models were used to show the instability of the system and oscillations for the
whole studied network while the latter were used to predict the system's oscillations
and stability at the point of connection with limited observability compared with
state space analysis [20]. The synchronous dq impedance models were successfully
implemented in the application of detecting system’s oscillations in [21][22], and on
studying the effect of control gains on the system stability in [23][24]. In addition,
the synchronous dg models were employed to study the interaction between different

power system components such as in [25]-[27], and to study the stability of the dc-



link of a VSC connected to a weak grid [28]. The main disadvantage of synchronous
dg modelling is its limited capability to include harmonics in the modelling using

single coordinate.

2.1.3 «ap modelling

af modelling transforms a three-phase system into a two-phase stationary
orthogonal system [29].This refer to the fact that each component of the three-phase
system can always be expressed by two components. «f8 modelling is superior in
modelling large system over the use of other modelling techniques such as
synchronous dg modelling where it uses a single stationary frame rather than using
multiple frames [30]. In one application, the aff model was used to simplify the
stability assessment of a VSC based system by converting the system into a single
input single output system as positive and negative sequence system. This concept
was employed in [31] to study a VSC connected to a grid. However, ignoring the
frequency coupling between the sequence quantities can affect the results of
analysing large systems where couplings usually present. Alternatively, in [32][33],
the coupling between the positive sequence and negative sequence quantities was
considered. The relationship between «f modelling and different modelling
techniques was revealed in [30]. The work was employed to study the effect of phase
locked loop (PLL) behaviour on VSC response using an impedance model. The main
disadvantage of this analysis was its limited capability for frequencies more than
twice the fundamental frequency. Furthermore it cannot include system harmonics
using single coordinates [34]. In addition, the time-varying nature of the «af
modelling components is not suitable for system linearization over small signal

disturbances.

2.1.4 Harmonic linearization modelling

In harmonic linearization modelling, the system inputs are expanded by an infinite
number of harmonics which are convoluted to produce an infinite number of output
harmonics [35]. It has an advantage of including selected harmonics in the stability
analysis and presents their effect on the output of the modelled system. Harmonic

linearization modelling was employed in different applications in literature. It was



employed to study the interactions between VSC-FACTS devices and other system
components in [36][37]. Also, it was used to derive the impedance model of VSC
including PLL response and digital control delay such as in [38]. Representing
balanced and unbalanced systems was another application of harmonic linearization
modelling. It was utilised to study unbalanced systems by the help of symmetrical
component theory in [38] and by including the unbalance as a new variable in the
analysis as in [39]. Harmonic linearization modelling was also used to design the
components of VSC-FACTS devices in the existence of harmonics such as in [40]. It
was employed to design the optimal static synchronous compensator (STATCOM)
based pulse width modulation (OPWM) to ensure the effective operation of
STATCOMSs when harmonics were present. Even though harmonic linearization
modelling can reveal the frequency coupling between the positive and negative
sequence quantities, the modelling cannot present the frequency coupling that might
occur between other existing harmonics in case of linear time invariant (LTI)

parameters has been employed.

2.1.5 Harmonic state space (HSS) modelling

Harmonic state space modelling is based on Fourier series analysis of system
quantities. It decomposes the dynamic system quantities according to their
frequencies to be presented by complex exponential quantities. HSS maps these
exponentially modulated periodic (EMP) of the input signal and the EMP of the
output signal in linear time-periodic (LTP) systems [41][42]. The linear operator that
maps the frequencies is called the harmonic transfer function (HTF) [43]. HSS
modelling can be used to identify the causes of the oscillations in the systems as well
as to present the effect of these oscillations on system response. In system modelling
including harmonics, harmonic state space modelling presents an advantage in
comparison with other conventional techniques such as synchronous dq and af
modelling [44]. This refers to their capability of including the harmonics and
presenting the frequency coupling between harmonics. The effectiveness of this
modelling was presented also using the experimental work where the eigenvalues of
HSS modelling were compared with the eigenvalues of a model based measurement

[45]. The use of HSS modelling in stability assessment was presented in [46][1]. It
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was employed to study the balanced and unbalanced operation of VSC-FACTS and
their interface with the system in the presence of harmonics. Also, HSS modelling
was utilised to present a comprehensive understanding of the HVDC system [47]. It
was used to present the transformation of system harmonics between the ac and dc
sides of a HVDC system as well as the frequency coupling in each stage of the
studied system. The high order matrices utilised by HSS modelling, the difficulty of
studying the unbalanced systems without the use of reduced forms of HSS and the
time-variant parameters which enforce the linearization to be around this time-

periodic operating trajectory are the main disadvantages of this method.

2.1.6 Dynamic phasor modelling

Dynamic phasor modelling was developed based on the generalised average
modelling using the time varying Fourier coefficient in complex form [9]. It converts
the ac periodic parameters to dc parameters which reduce the simulation time and
suits the small signal stability studies. Dynamic phasor modelling can include

harmonics and investigate the unbalanced conditions of the systems.

The utilisation of dynamic phasor approach for modelling and developing interfacing
algorithms was widely presented in the literature. Alternatively, the use of these
modelling in stability assessment has been rarely mentioned. For modelling of
balanced VSC-FACTS systems, the main targets of dynamic phasor modelling were
reduce the simulation time and present an average response of the modelled systems
such as in [53]-[57], therefore, the fundamental frequency was used in the
derivation. In the meantime, the modelling of unbalanced VSC-FACTS systems was
usually carried out by the help of symmetrical component theory which converts the

abc form of the dynamic phasor into dynamic symmetrical components [58]-[61].

The implementation of dynamic phasor modelling for stability assessment was
usually carried out using the abc-dynamic phasor components. Such a use increases
the number of equations required for the analysis. Therefore, single-phase models
were used to simplify the analysis. Even though, the use of these models has a
disadvantage of the limited capability to study the unbalanced systems. It has several

advantages in comparison with the other modelling technique such as synchronous
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dg modelling [62]. These advantages have been employed to design a solid state
transformer controller in the presence of disturbances using state space analysis [63].
Also, dynamic phasor modelling was utilised to identify the low frequency
oscillations present in series compensated systems. It was employed in a state space
model to study the effect of phase unbalance on system oscillations [64]. Similarly,
the small signal impedance of a single-phase dynamic phasor model was utilised to
identify the causes of sub-synchronous resonance (SSR) [65]. The formulation of the
diagonal impedances as pure real and pure imaginary impedances are entirely
ambiguous, where in fact, all impedances are in a complex form. Also, the
implementation of single-phase models and disregarding the co-existence of SSR
frequencies in the analysis can affect the results where the model is unable to capture
system characteristics during dynamic conditions [7], [66], [67]. Using more
comprehensive model, the harmonics were included in a stability assessment in [68].
The analysis employed the fundamental and second harmonics for the converter's dc
side and the fundamental frequency for the ac side. The main limitation of this work
was the derivation has been made for specific harmonics and was not made to
include more harmonics. In general, the main limitations of previous work on
dynamic phasor modelling were the use of abc-dynamic phasor and the consideration
of the fundamental frequency only in the analysis. This reduces the benefit of
dynamic phasor modelling and its application on system analysis. Also, the use of
abc-dynamic phasor modelling is not suitable to include the control systems and
studying the unbalanced operations without transforming system parameters.
Therefore, the use of the dg-dynamic phasor modelling for stability analysis can get
rid of these limitations as well as the limitations of the other modelling techniques

that have been presented in the previous sections.

2.2 Small signal Impedance measurement

The measurement of the dq small-signal stability is proposed in [69] using several
practical methods such as power converters for low power applications, chopper
circuit for high power application and wound-rotor induction machines using phase
injection. Also, the paper developed the stability criteria based on dq synchronous
frame. Alternatively, the researchers in [70] and [71] proposed an algorithm based on

12



the line-to-line injection using chopper circuit to measure the dq impedance. In [72],
the paper presented a design of a measurement unit for medium grid voltage
applications. Due to the dependent of the power demand on the system frequency on
droop controlled microgrids, the paper in [73] proposed an injection circuit using
three-phase buck converter for passive loads. In the meantime, the injected signal
was proposed on different forms such as sinusoidal waveform [69],[70] and [72] or
as chirp signal such as in [74]. The second method reduced the measurement time of
the impedance considerably because it generates different frequencies over a short
period. The advantage of such method is reducing the possibility of changing the
system states during the measurement. Implementing the online impedance
measurement as an ancillary function within the grid side converter was proposed in
[75] which has importance on monitoring systems' stability. The estimation of the
grid positive and negative sequence impedances was done by injecting pulses of
currents from the converter and analysed the measured signal using online discrete
Fourier transform (DFT). The comparison of the measurement circuit results with the
offline measurement showed a proper alignment. The necessity to inject a continuous
harmonics is the main limitation of such measurement unit in the practical use. As
stated, the use of impedance measurement in fast monitoring of system stability has
not been mentioned in the literature. So, this thesis proposes an impedance
measurement unit (IMU) which can be employed by network operators or a

supplementary control system to retain the stability.

2.3 Summary
Different modelling techniques of VSC-FACTS system for stability studies were

reviewed. The main finding and the outcomes can be summarised as:

e The selection between modelling techniques depends on the application and the
accuracy required in the output results.

¢ Synchronous dq modelling and a8 modelling can be used to identify the causes of
harmonics. Both modelling techniques are unable to assess the contribution of

harmonics to the system response using single coordinate. The implementation of
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the fundamental frequency in these models and neglecting of the co-existence
harmonics can affect the stability assessment.

Harmonic linearization modelling cannot present the frequency coupling between
the harmonics once the LTI modelling has been used. The modelling can present
the coupling between the positive and negative sequence gquantities of the studies
system.

Even though harmonic state space (HSS) is a generalised modelling technique that
can include harmonics, it has high matrix orders and it is difficult to use when
studying unbalanced systems.

The HSS enforces the linearization to be carried out around time-periodic
operating trajectory not around the steady-state operating point as linear time
invariant system which could lead to an error in the results of the derived model.
In the literature, dynamic phasor modelling was carried out at the fundamental
frequency and ignored the effect of harmonics. In addition, it used the abc-
dynamic phasor to analyse the balanced and unbalanced systems, where, studying
unbalanced systems was carried out using symmetrical components which
enforces additional transformation of the system quantities.

The use of impedance analysis is more visible for the new electrical installation
and offline studies rather than the online stability studies. This is referred to the
injected harmonics required for impedance measurement which could enforce a

limitation on the use of impedance based assessment.
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CHAPTER 3

DQ-DYNAMIC PHASOR MODELLING OF VSC-BASED FACTS

DEVICES

In this chapter dg-dynamic phasor modelling of the VSC-FACTS devices and other
power system components is presented. These models will be used to analyse the
operation of VSC-FACTS devices and their controllers for small signal stability

analysis.

3.1 Dynamic phasor based modelling (DP modelling)

Power system operation experiences two types of transients; high frequency
transients and low frequency transients. The dynamic phasor approach provides
adequate modelling of a wide range of frequencies rather than using specific
modelling for each specific range such as electromagnetic transient (EMT) or
transient stability models [76]. The integration of the system parameters is carried
out using small steps at high frequencies and increases to larger steps at lower
frequency events. In addition, the dynamic phasor offers numerous benefits
compared to traditional modelling approaches, such as it covers a broad bandwidth of
frequencies. Also, it is more appropriate for fast numerical simulation, accurate, fast
for power components and VSC-FACTS simulation [57], [77]-[79]. Alternatively,
the main difference between dynamic phasor modelling and the synchronous dq
modelling is that the dynamic phasor modelling shifts all system’s frequencies to
(w = 0) "constant (dc)". However, the synchronous dq transformation shifts all

system’s frequencies by (w) as shown in Figure 3.1.
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Two types of dynamic phasor modelling are proposed and investigated in the

literature:

e abc-dynamic phasor modelling: it shifts the three-phase quantities of the studied
system to dynamic phasor.

e dg-dynamic phasor modelling: it transforms the synchronous dq quantities to a
dynamic phasor. This type of modelling will be employed in this thesis for device
modelling and stability analysis in Chapter 5 due to its simplicity and suitability

for the VSC-FACTS devices control systems and unbalanced conditions.

Dynamic phasor modelling is extracted from the system time domain equations
(differential equations) by the application of the generalised average procedure using
time varying Fourier coefficient in complex form. Any complex periodic waveform
x(t) found on interval t € (t —T,t), can be presented using Fourier series as
[80][81]:

x(7) = Yoo X (D) ekt (3.1)
where,
w s the fundamental angular frequency.

k is an integer number the represents harmonic order and defines the accuracy of the

approximation of the original waveform.

X, (t) is a function of time representing the complex Fourier coefficient ‘‘dynamic

phasor parameter’’ of the periodic signal.

The k™ dynamic phasor is determined at time (t) from (3.2) as:

Xe() = 2 [ X(De kot = x, (32)
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Two properties of dynamic phasors are used to solve the systems which are:

e The dynamic phasor modelling of the time variable derivative is:

d d(x)
<_x>k = =k

" T jkw(x)k (3.3)

The property in equation (3.3) can be used exclusively to represent the dynamic
phasor quantities of the studied system using the dynamic phasor approach, however,

the modelling ignores the coupling between different frequencies [82].
e The second property is that the product of two time domain variables is equal to:

(xyhe = Diz-oolXhic—i{y)i (3.4)

Equation (3.4) can be expanded to more than two variables using the same technique
as depicted in Appendix-A. It is a valuable feature of the dynamic phasor which
represents the interaction between different frequencies in the system. The modelling
using dg-dynamic phasor approach requires extracting its Fourier coefficients which
can be extracted by generalising the Euler form of the measured quantities. The

voltage vector (v;) including harmonics is given [80]:
Vi = Dg=+oo Vi cOs(kwt + a) (3.5)

where,

i is phases (a, b or c).

V. is the voltage magnitude.

2T 2T

a is the phase angle between system phases (0, — < 3

Substituting equation (3.5) by its Euler form will result in:

ﬁejkmt + 5e—jkmt
v = Z (3.6)
k=400 2
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The transformation of equation (3.6) to dg by shifting it by (e‘j“’t) with some

rearrangement and multiplying it by (2/3) to have a generalised form gives:

Ve IOt = v, + ju, = é(va + a?vy, + av,)e/"t (3.7)

Multiplying equation (3.7) by (e/®*) gives:
V=10, + vy = (Var +jvgr) + Zie—oo(Van + jvgn)e! @OwE (3.8)
k#n

where,

The bold symbols in previous equations represent the voltage vector,
n is a vector of all positive and negative harmonic orders except (k).
vy 1S the direct voltage at harmonic order (k).

V4 1S the quadrature voltage at harmonic order (k).

The existence of any harmonic on the abc domain is transformed into two harmonics
in the dg-dynamic phasor which means that two main oscillatory frequencies will be
generated as shown in equation (3.8). This doubles the number of equations in
dynamic phasor compared with the number of equations in synchronous dq
modelling. The dg-dynamic phasor can represent balanced and unbalanced operating
conditions using the same modelling. Positive and negative sequence quantities are
generated from each frequency present in the time domain quantities. The coefficient
(—k = k) represents the negative sequence components of the system and the
coefficient (k = —2) represents the unbalanced conditions. The measured quantities
are transformed into dg-dynamic phasor quantities at each harmonic (k) of interest.
Then the output signal is filtered using a low pass filter to get rid of the other

harmonics as shown in Figure 3.2.
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Figure 3.2. Dynamic phasor parameter extraction.

The chosen harmonics order (k) is different between the ac quantities, dq quantities
and dc quantities. For example, harmonics order (k) at the fundamental frequency
for the ac quantities is equal to 1, while at the fundamental frequency for the dg and
dc systems will be equal to zero. From the fundamental frequency prospective, the
2" harmonic in the dq appears in dg-dynamic phasor based on the initiation of this
harmonic in the abc coordinate. The 3™ harmonic appears as 2" harmonic rotates
clock wise and the unbalance rotates in the opposite direction as shown in Figure 3.3.
This can be explained using equation (3.8). Shifting the voltage vector by e=/®t at
the fundamental frequency generates a 2" order component at (k = —2) while,
shifting the voltage vector by e /2%t for the 3 harmonic generates a 2" harmonic at
(k = 2). It is noted that pre-knowledge of the system harmonics and behaviour helps
to reduce the number of equations required to represent the system and consequently

reduces the modelling complexity.

RN ~

Rotation direction Rotation direction

(@) (b)

Figure 3.3. The existence harmonic and unbalance in dg-dynamic phasor:

(a) 2™ harmonic due to 3" abc harmonic, and (b) 2™ harmonic due to unbalance.
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3.2 Modelling some of power system components
The modelling of the basic components of FACTS devices is presented in this

section as well as the synchronous machine.

3.2.1 Voltage source converter

The voltage source converter (VSC) is considered to be a key component of VSC-
FACTS devices. It can be found in these devices as a single VSC such as SSSC or
STATCOM, or back-to-back VSC such as the UPFC. Figure 3.4 shows the basic
structure of a three-phase VSC. The mathematical derivation is carried out with
assumption that the VSC operates in three phase balanced conditions. The converter

voltage and current relations can be derived as follows:
Vea = Wae — Teuleq) - Sq — (ica-1:).Sg + Ung (3.9)
where,
V¢ IS the converter output voltage for phase a.
vy IS the voltage between dc reference point (N) and earth (E).
i.q IS the converter current.
1. 1S the converter resistance.
Sg and S, are the switching function of bridge arm of phase (a) (S, + S, = 1).

For power system studies, eliminating the high order frequencies and considering
the fundamental and dc component is an acceptable approximation to get the
equivalent dynamic phasor model of switching functions [13]. By substituting the
switching functions relations in (3.9), and by considering the system is balanced and

adding the three phase voltages to get the output voltages (V. apc) as:

_mc .
Ve abe = 7vdc- cos(wt - 8c_abc + aabc) — e 1c_abe (3-10)
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where,
m, is the modulation index.
& is the firing angle.

v4c 1S the dc link voltage.

The bold symbols represent the vectors of parameters which equal for equation

(3.10) as:
Ve abe = [vc_a Ve b UC—C]T ic_abc = [iC_a iC_b iC_C]T
— T 2w 21
o =B, By 5] te=[0 2
Moreover, the current equation could be as:
- _ C dvdc _ 8 _ C d‘lidc
Icabe = Mclac—; .cos(wt Cabe T aabc) dc 3,
The dq format of equations (3.10) and (3.11) is given by:
Vedqg = MeqqVac — rcicdq
. dav, dav,
ledq = Cdcd_?cmcdq = CacP d?c
Idc
rC rC
Sb Sc
Cdc__
Sb Sc
rC rC
N

Figure 3.4. Voltage source converter (VSC).
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where,

Vedq = [Vea  Veq]” icaq = [lca lcq]”
B=1[1 o] Mgq = [Mea Meq]”
C,4c 1s the dc link capacitance.

The dg-dynamic phasor is given by transforming equations (3.12) and (3.13):

(Vedg)x = (VacMaq)x — 7e(icaq)x (3.14)
. dv c d c
(fcaq)k = Cac (2 Maq)k — CacB (55N (3.15)

where the vectors in equations (3.14) and (3.15) are defined as:

dvgc __[,9vac dvgc T
(deq)k = [( at My <—dt mq)k]

(VacMgg)x = [(Vacmal  (Vacmgh]”

It is noted from equations (3.14), (3.15) that the current at fundamental frequency as
well as at the harmonics are coupled due to the existence of the harmonics and

fundamental frequency terms respectively in these equations.

3.2.2 Thedc link of VSC-FACTS devices

The dc branch is one of the main components of the VSC-FACTS devices, where the
energy stored in the dc capacitor is used to compensate the dc link voltage change.
The power balance at the dc side of the VSC-FACTS devices including the losses is
given by:

Pac = Pge — Poss = 0

E . E . d‘UdC _ ) _
SVa-la +35Vq 1 CacVac T i7;R=0 (3.16)
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where,
R is the sum of the converter (), filter () and transformer resistances (r;).
Vaq. Laq are the voltages and currents of ac side in the synchronous dq frame.

The dc link plays a crucial role in the coupling between harmonics in VSC-FACTS
devices operations as shown in equations (3.14) and (3.15). This coupling is caused

due to the variation in the ac power as presented in equation (3.16).

3.2.3 Harmonics filter

The operation of VSC is normally accompanied with certain harmonics due to
several causes such as the switching of its converter which requires filitering those
harmonics. From Figure 3.5, the voltage injected (phase a) to the transformer if
required can be derived using Kirchhoff's voltage law (KVL) to get the three phase
form (abc) as:

d . .
Vinj_abc = Vc.abe — lf ElcabC — Tr-1c_abc (3.17)
. . d 3.18
Linj_.abc = lc.abe — Cf Evini_abc ( )

where,

l¢ is harmonic filter inductance.

Cr is harmonic filter capacitor.

Vinj_abc 1S harmonic output voltage or the injected voltage:
Vinj abe = [Vinja  Vinj, Vinjc]"

iinj_abc IS harmonic output current or the injected current:

: N O S S 1 4
iinjabc = [linja  linjp linj]
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ca

E Iinja

ca inj,

Figure 3.5. Harmonic filter circuit.

Equations (3.17) and (3.18) can be transformed into dq format as:

Vinjaq = Vedq — Ly 5 icdq + (Y@oly — 77 )icaq (3.19)
finjgq = fcdq — Cr 3 Vedq + Y@0Cr-Veaq (3.20)
where,
Vedq = [Vea Veq]” iinjdq = [linjg  tinjg]"
Vinjgq = [tinjq iinjq]T fcaq = [ica icq]”

0 1
V=1 o]

The transformation of equations (3.19) and (3.20) to dynamic phasor form yields:
d ,. . .
(Vinjgq k = (Vedq)k — Lf E(lcdq)k + (ywLs — 17 —]kwa)(lcdq)k (3.21)

) ) d .
(finjgqk = (leag)ie = Cr = (Vinjgo dx + (¥ = JK)WCp (Vinjy i (3.22)
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3.2.4 Series injection transformer

To integrate the VSC model with power network, the equivalent circuit of series
transformer should be taken into consideration. For simplicity, the transformer
inductances and resistances are lumped on the secondary side of the transformer, and
the magnetisation branch is neglected (approximate equivalent circuit) for a
transformer with a turns ratio of 1:1, as in Figure 3.6:

a . .
Ve = Ypec_abe + Vinj_abc — Lt dat Ipcc_abe — Ttlpec_abe (3 23)

where,
1, IS the resistance of series transformer L, is the inductance of series transformer
— T - T . . T
VLabc - [vLa va vLC] lpcc_abc - [lpCCa LpCCb lpCCc]

Vpccabe = [Vpcca  Vpecy,  Vpcee]”

Transforming equation (3.23) to synchronous dq to find:

da . - .
VL_.dq = Vpcc dq + Vinjgqg — Lt ~Ipcc_dq — Ttlpec dq + y(‘)Ltlpcc_dq
@ Ttat (3.24)

Primary side Secondary side

Load

.R. ]

Injected voltage by
series devices

Figure 3.6. Approximate equivalent circuit of two winding transformer.
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where,

T

VLdq = [Via  Viq] ipcc_dq = [iPCCd iPCCq]T

Vpec dq = [vpccd vpCCQ]T

The transformation of the transformer voltages presented in equation (3.24) to

dynamic phasor is given as:

d . .
(Vi a)k = Vpee aqhic + (YOL = 5= 7o = jkLew ) (ipec aghc + Vinjgg e~ (3:25)

The dynamic phasor transformation presented in equation (3.25) shows no frequency
coupling between system frequencies. Therefore, the dg-dynamic phasor quantities at
the fundamental frequency are equal to the synchronous dg quantities. The
equalisation means that the behaviour of these components at different frequencies
will be seen as separate networks working at these frequencies without affecting each

other.

3.2.5 Synchronous machine modelling

The synchronous machine is one of the most common components in the power
system networks. So, having its mathematical model is very crucial especially in
studying the effectiveness of VSC-FACTS on damping the SSR oscillation using
small signal impedance. The synchronous machine voltage equations are expressed
referred to rotor reference frame as shown in Figure 3.7. Detailed derivations of the

following equations are found in [83] and [84]:
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Figure 3.7. Synchronous generator equivalent circuit:

(a) d-axis equivalent circuit and (b) g-axis equivalent circuit.

From the equivalent circuit in Figure 3.7, the voltages in the synchronous dg form

are given as:

r

Va

qs

T . r r Tr r
Vkdq1 | = —diag[rs s Tkar Tkqr Tfa Tkq2]

T
Vkdq2

fiqs 0 — Wy
% Akdqt |+ Wy 0 zeros(6x2)
zeros(4 X 2)

)‘-i(rdqz
where,
15 1S the stator resistance.
Teq1 1S the resistance of d-axis damper.
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Trqx 1S the resistance of g-axis damper.

774 is the field resistance.

Viagx 1S the voltage across damper (x), where x=1,2.
ikaqx 1 the current flow in damper (x), where x=1,2.

Akdqx 1S the damper (x) flux linkage, where x=1,2.

Vigs = Was  vas]” Vidqr = [Vkar  Viga]” Vidgz = [Via  Vig2]”
Eqs = [ Zs Zs]T )ki(rdq1 = [}‘;crdl )‘;crql]T )\;(rdqz = [v}’cd VI({ZZ]T
iaqs = [igs igs]T i;(rdql = [iI,cCil il’cc]l]T ii(rdqz = [i],cd i;CZZ]T

The flux linkages can be written as:

aqs il(;lqs LLmdq
Aaqr| = diag[—Lis —Lis Lyar Ligr Lra Ligz] |ikaqr | + [LLmag imaqg  (3.27)
)‘erqZ ii{dqz Llimaq
where,

Ly, is the leakage inductance .
ka1 1S the inductance of d-axis damper.
kqa 1S inductance of g-axis damper.
Ly, is the field inductance.
Lia, Lmgq are the magnetizing inductance viewed from rotor.
imdq 1S the magnetizing current viewed from rotor as:  if,qq = [ima  imql”

10]

LLyyqq is the magnetizing inductance matrix: LLyqq = [Lma  Lmg] [0 1
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w, 1S the speed of the rotor reference frame.

The rotor variables are referred to the stator windings for convenience, and the

electric torque is calculated as:
3 (P . .
T, =2 (3) (M- ths — As- 155) (3.28)
where,

P is the number of pole pairs of synchronous machine.

The transformation of equation (3.26) and (3.27) to dynamic phasor form is:

<V£qs>k (iaqs)k
<Vl,(1;iq1>k = —diag[s T Tkar Tiq1 ng Tkq2] <i;<rdq1>k +
<Vl,(l;iq2)k (i;(rdq2>k
()‘gqs>k ()‘aqs)k
% (Mgaq1 )| + jkw [{Aaqr)x | +
()‘-{{dqz)k O‘{{dq2>k
0 — Wy aqs
( W, 0  zeros(6 X 2)||Akaqr |«
Zer05(4 X 2) )‘i(rdqz (329)
(A'aqs>k (iaqs>k
(Mgaq)ic | = diag[—Lis —Lis Liar Ligr Lra Liqz] |(ikagi)x | +
<li(rdq2>k <ii(rdq2)k
LLyaq
< LLmdq i:ndq>k
LLmdq (330)

While, the electrical torque transformation to dynamic phasor form is given by:

P
2

(Tehe =3 (2) (B2l di—ilis)i} = {2 colAysdimililis)}) (3:31)

It is obvious from equation (3.31) that the harmonics are affecting the operation of

the synchronous machine at the fundamental frequency as well at the harmonics,
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which will be coupled with the fundamental frequency as shown by the electrical
torque equation (3.31).

3.3 VSC-FACTS devices control

This section presents an overview of the control system of the VSC-FACTS. These
control systems are employed with the previous derivation of power system
components based on the required application for the VSC-FACTS. The control of
two types of VSC-FACTS is presented here, the SSSC due to its application in
damping system oscillations and the STATCOM due to its popularity in power

system networks.

3.3.1 Static synchronous series compensator (SSSC) control system

The purpose of the series compensator is to inject series voltage that controls the
active and reactive power flow through the line. The structure of SSSC connected to
a grid is shown in Figure 3.8. The resistance (R.) and the inductance (Lg.)
represent the sum of the converter, harmonic filter and series transformer resistances
and inductances respectively. Three control methods have been proposed in literature
to control the injected voltage, using the power flow through the line, the voltage at
the load side or the line impedance as presented in Figure 3.9. For most of the power
system applications, the SSSC is used to inject the reactive power without injecting
any active power. Thus, the SSSC injected voltage is kept in quadrature with the line
current, where, the leading voltage injects a series inductive load with the line, while

the lagging voltage injects a series capacitive load [85].
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VSC

Figure 3.8. Structure of SSSC connected to a grid.

3.3.1.1 Power control mode

For SSSC operation, it is normal to use the sending/receiving end of the transmission
line as the input to the controller as shown in Figure 3.9(a). So, the injected voltage
depends on these inputs. The power flow through the compensated line can be given

as.
Piine = Py — P, (3.32)
Quine = Q1 — Q2 (3.33)
where,

Pjine is the line active power.

Quine 1S the line reactive power.

P;, Q4 are the powers at the sending end.
P,, Q, are the powers at the receiving end.

The general expression of active and reactive powers in dq form is equal to:
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P =2 (vq.iq +vg.ig) (3.34)

Ime Ii( )APSE I+§? Koo
K
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q S
(b)
Av, +
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+
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S
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q S
(©)

Figure 3.9. SSSC control systems: (a) Power control mode, (b) Voltage control mode

and (c) Impedance control mode.

Q = 2(—vg.iq +va-ig) (3.35)

where, the subscripts (d and q) refer to direct and quadrature quantities.

w
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Based on Figure 3.9, the SSSC control signals can be written as:

Useq = vad(Pl*ine - Pline) + X (3.36)
Useq = Rppg (Q;ine - Qline) + X (3-37)
where,

Pjine 1S the line active power reference.

Q/ine 15 the line reactive power reference.

X1 = Kiya [ (Pjine — Pune)dt (3.38)
X2 = Kivg [ (Qfine — Quine)dt (3.39)
K,vq is the proportional control gain of direct axis voltage.

K,»q s the proportional control gain of quadrature axis voltage.

K;,q I1s the integral control gain of direct axis voltage.

Ki,q is the integral control gain of quadrature axis voltage.

3.3.1.2 Voltage control mode

The second type of SSSC control employs the quadrature voltage of SSSC (vg,,) and
the dc link voltage as inputs. The SSSC voltage is utilised to control the reactive
power of the SSSC using a previous knowledge of the operating conditions of the
compensated system. Alternatively, the active power is controlled through the dc link

voltage of the SSSC as shown in Figure 3.9. The control signal equations are:

Useq = vad(véc - vdc) + X1 (3.40)

Useq = Kpvg(Vieq = Vseq) + X2 (3.41)
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X1 = Kipa f(v;;c - vdc)dt (3.42)

x3 = Kivg [(Vieq — Vseq)dt (3.43)
v 1S the reference dc link voltage.

Vseq IS the reference quadrature voltage of SSSC.

3.3.1.3 Impedance control mode

In this operating mode, the line impedance is varied by a specific inserted
impedance, to control the voltage magnitude as a proportional to the line current. The
difficulty of this control mode is related to its practical use where it will be difficult
to use the device impedance as an input. The SSSC impedance could have resistive,
inductive or capacitive behaviour according to the quadrature line impedance

required [86]. The SSSC impedance (., ) is equal to:

Useq
Xeoq = (3.44)

iseq

In the meantime, the d-axis input parameter is the dc link voltage of the SSSC (vg,).
This configuration is capable of controlling the reactive power generated and

consumed active power losses of the device. The control signal equations are given

as.
Useq = Kpva(Wge — Vac) + x4 (3.45)
Useq = Kpuq (x;eq — xseq) + x5 (3.46)
x1 = [ Kipg(vie — vac)dt (3.47)
X3 = | Kipg(Xseq — Xseq)dt (3.48)

The three control modes transformation to dynamic phasor can be done by the use of
equations (3.1) to (3.4) to have the following ones:
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(Useadk = vad((ﬂ*)k — (i) + (X1 )k (3.49)
(Useqde = Kpog({o™) e — (o)1) + (x2) (3.50)
Also, the integral term can be transformed as:

Kiva (") — (k)

(1) = ST ko (3.51)
_ Kivq ((0*)k - <0>k)
Ty (352)
where,

u is the input control parameter of the d-axis control.
o is the input control parameter of the g-axis control.

3.3.2 Static synchronous compensator (STATCOM) control system
The structure of a STATCOM connected to a power network is illustrated in
Figure 3.10. The STATCOM is modelled as resistance and inductance behind a

voltage source. The resistance (Ry) and the inductance (Ls) represent the sum of the

converter, harmonic filter and series transformer resistances and inductances.

Cdc:: Vdc

VSC

Figure 3.10. Structure of STATCOM connected to a grid.

The suitability of the outer controller’s inputs depends on the stiffness and the
topology of the network. The quadrature voltage is controlled using the two

following methods:
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3.3.2.1 Direct voltage control

The detailed equations describing the STATCOM controller can be found in several
papers [87]-[89]. For weak ac grids, the dc link voltage of STATCOM and ac

voltage of the controlled busbar are chosen as inputs to the voltage control loop to

achieve better controlabilty of the bus voltage due to the change of powr flow [90].

The STATCOM control system contains four proportional integral (P1) controllers as

shown in Figure 3.11. According to Figure 3.11, the converter control voltage of the

STATCOM is given by:

Usqg = —Kpig(isqg — isq) — X1

Usqg = —Kpig(idg = sq) — X2

X1 = Kiiq [(isq — isq)dt

x; = Kiiq [ (i3 — isq)dt
where,
K,iq is the proportional control gain of direct axis current.
K,iq is the proportional control gain of quadrature axis current.
K;;4 is the integral control gain of direct axis current.
K;iq is the integral control gain of quadrature axis current.
isq is the direct axis components of STATCOM current.
Lsq is the quadrature axis components of STATCOM current.
In the meantime, the reference currents are:

lsa = Kpva(Wae — Vac) + %3

i;q = Bpugq (v;d - vsd) + Xy
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X3 = Kivd f(véc - vdc)dt (359)

X4 = Kigq f(v;d — vgq)dt (3.60)
Vdc
Vdc
PWM
Vag
Vsd
Figure 3.11. ac voltage controller of STATCOM.
where,

K,»q is the proportional control gain of direct axis voltage.
K,»q is the proportional control gain of quadrature axis voltage.
K;,q 1S the integral control gain of direct axis voltage.

Ki»q is the integral control gain of quadrature axis voltage.

The transformation of equations (3.53) to (3.60) can be carried out using a similar

procedure followed for the SSSC section as:

(Usahk = —Kpia ((isadx — (isadi) — (x1)k (3.61)
(usq)k = _Kpiq ((i;q)k - <isq>k) - <x2>k (362)
)y = Kiia (Ciga e — (isadi) (3.63)
X1/ = s+ jkw

38



Kiiq(a;q)k - <isq)k)
s+ jkw

(20, =

(isa)k = Kpva((Vach — (Vacdi) + (x3)k
(i;q> = vaq ((v;d)k — (Vsai) + (xadi

Kivd((vc*lc> - <Udc>)
s+ jkw

(x3)k =

Kivg((Vsq) = (Vsa))
s+ jkw

(x4)i =

3.3.2.2 Reactive power control

(3.64)

(3.65)
(3.66)

(3.67)

(3.68)

Figure 3.12 shows the STATCOM controller using reactive power control. The

quadrature reference current equation is given as:

i;q = vaq(Q* —Q)+x,

x4 = Kipg [(Q" — Q)dt

where, the reactive power is calculated as:

Q= %(vsq lsq — vsdisq)

Figure 3.12. Reactive power control of STATCOM.
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The dynamic phasor transformation of equations (3.69) to (3.71) is given as:

<i;q)k = vaq((Q*)k - <Q>k) + <x4>k (372)
(Xade = King Q") = (Q)i0) (3.73)
(@ = = ((Wsqdolisadi + (Wsghilisado = (Wsadolisgd — (Wsadiedisq)o) (3.74)

Equation (3.74) presents the frequency coupling between the input parameters of the
STATCOM due to the use of the reactive power as an input to its quadrature voltage
control. Also, this control mode presented a higher frequency coupling than the use
of direct voltage control of the STATCOM.

3.4 STATCOM simulation including harmonics and unbalance

In this case study, the STATCOM behaviour is simulated in the presence of the
harmonics firstly under unbalanced conditions. Two harmonics are injected by the
source which has been considered in the STATCOM simulating (5" and 7"
harmonics). The grid and STATCOM parameters are listed in Table 3.1. Using the
abc-dq transformation matrix presented to extract the positive and negative sequence
quantities of the STATCOM, the fundamental frequency and considered harmonics
(5™ and 7™) are transformed to dg-dynamic phasor form as shown in Table 3.2. the
section of the 5™ and the 7™ harmonics in this thesis is based on the existence of
these harmonics in nowadays power networks. The resultant quantities are filtered
using a low pass filter to get rid of the harmonics associated with these quantities. It
is noted from Table 3.2 that each frequency in the abc frame is transformed to two
frequencies in dg-dynamic phasor using equation (3.8), one is rotating in the positive
direction and the other is rotating in the negative direction. It is assumed in this
simulation that PLL effects are ignored. The time domain detailed model and the dg-
dynamic phasor model are shown in Figure 3.13. Both modelling plots are well
matched to each other which prove the validity of dg-dynamic phasor modelling to
represent the VSC-FACTS devices under these distorted conditions. The complex
part of dg-dynamic phasor modelling results from the multiplication of voltages and

currents by the capacitor and inductances. The ignorance of this part has insignificant
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error as shown in Figure 3.14 parts (a) and (b). So, this part can be neglected in the

STATCOM modelling.

Table 3.1. Grid and STATCOM parameters.

Parameter value Parameter value
Shase 1.1 kVA Kpva 10 V/IA
Vi ase 415 kV Kivg 0.001 V/A.s
Ry, Ly 0.25Q, 1 mH Kpuq 0.01 VIA
Rf, Ls 0.1Q,5mH Kivg 2VI/As

f 50 Hz Vic 1000 V
Kpidq 50 AV Cac 400 pF
Kiidq 1000 A/V s

Table 3.2. Extraction of dynamic phasor quantities of studied system.

. Harmonic dg-dynamic phasor
Reference in abc order (k) i garametgrs
W 0 Vao + jVq0
5w 4 Vg, +JVq,
7w 6 Uda + jv%
) -2 Vg, +JjVq,
—5w -6 Va_, +JVq_,
—7w -8 Va_g + jv‘l—s

|— abc model --- DP model

40Q

200

\pltage (V)
e

-200

15 1505 1.51 1.515 1.52 1.525 1.53 1.535 1.54 1.545 1.55
Time(s)

Figure 3.13. Comparison between time domain and dg-dynamic phasor in time domain.
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Figure 3.14. Comparison between the real and complex representation of d and g quantities:

(a) vq output of the STATCOM and (b) v, output of the STATCOM.

The operation of the STATCOM under the unbalanced conditions can be represented
as shown in Figure 3.15. In this case, the fundamental frequency (k = 0) and the
negative sequence quantity (k = —2) are used to simulate the unbalanced operation.
The dg-dynamic phasor model of STATCOM shows a well agreed performance
compared with the STATCOM detailed model.

400- ‘ ‘ [— abc model ---- DP model

200

Voltage (V)
[=]

-200

_400 . . . .
15 1.51 1.52 1.53 1.54 1.55
Time(s)

Figure 3.15. Comparison between dg-dynamic phasor model and time-domain model of

STATCOM under unbalanced operating conditions.
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3.5 Summary

This chapter presented the dg-dynamic phasor modelling of basic components of
FACTS devices and the synchronous machine. These models will be used as the base
models for the analysis of VSC-FACTS devices in the following chapters on

studying the small signal stability. Some findings are:

¢ Dynamic phasor modelling shifts all system frequencies to become at zero which
improves the speed of the simulation, especially for large systems. Also, the
dynamic phasor approach slows down the variation of system parameters which
improves the observation of changing those parameters.

e Modelling using dg-dynamic phasor at the fundamental frequency is equal to the
synchronous dq where the harmonics order (k = 0) in the dynamic phasor
equations.

e The expansion of dg-dynamic phasor can simplify the analysis when studying the
balanced and unbalanced systems.

e The third harmonic and the unbalanced frequency are seen as 2nd order harmonics
in dg-dynamic phasor. However, the two components rotate in different
directions, where the 2nd order harmonic rotates clockwise, and the unbalanced
component rotates anti clockwise.

e The extraction of the dg-dynamic phasor showed the suitability of this approach in
simulating balanced and unbalanced conditions.

e Also, the results revealed that the complex part caused by the transformation of
the differentiation can be neglected. This conclusion is beneficial for stability
studies once the system needs to be linearized using MATLAB/Simulink which

has limitation when on linearizing complex quantities.
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CHAPTER 4

SMALL SIGNAL STABILITY OF VSC BASED FACTS IN

SYNCHRONOUS DQ FRAME

Small signal stability assessment in the dg frame is presented in this chapter. It gives
an introduction to the stability problem and the stability criteria when using
synchronous dg modelling to assess a system's performance. Secondly, the chapter
presents the measurement techniques of the small signal impedance based on a
black-box concept where the measurements of the device terminal are used to
calculate the impedance. Lastly, the mathematical derivation of the state space
equations and impedances of the SSSC, STATCOM and the synchronous machine
are presented. The eigenvalue analysis is a conventional and fast technique used to
implement and assess the system's behaviour. The benefit of using eigenvalue
analysis is that the analysis can show the system instability and the oscillations for
the whole studied network. Alternatively, the small signal impedance is both
powerful and practical, especially in real-world applications where creating a fully
detailed model of the power network becomes a challenging task compared to the
eigenvalue analysis. In addition, it predicts system oscillations and stability at the
point of connection using the generalised Nyquist plot or called eigenloci of the
impedance. It employs the phase-margin as an indication of harmonic oscillation,
where that low phase-margin means that the system exhibit harmonics. The main
disadvantage of eigenloci is that the validity of the prediction of system's stability is

limited for the simultaneous parameter change in the control loop only.

4.1 The basic principle of small signal stability

The capability of a system to remain stable after being exposed to a small
disturbance is defined as small signal stability. Solving the stability problem under
these disturbances can be simplified by linearizing the system equations over the

period of the event [91]. If a system described in the state space form:
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x' = Ax + Bu (4.1)
y =Cx+ Du (4.2)
where, the bold symbols represent vectors and,
x is the system state vector.
u is the system input vector.
y is the system output vector.

The linearized form of these state space equations is given by:

Ax' = AAX + BAu 4.3)
Ay = CAx + DAu (4.4)
where,

Ax is the linearized state vector of dimension (n).
Au is the linearized input vector of dimension (7).
Ay is the linearized output vector of dimension (j).
A is the linearized state matrix of size (n X n).
B is the linearized input matrix of size (n X r).
C is the linearized output matrix of size (j X n).
D is the linearized feedforward matrix of size (j X r).
4.2 Small signal stability criteria
Based on equations (4.3) and (4.4), two stability measures have been developed to

assess the stability of the system. The first is the eigenvalue analysis of the state

matrix (A) and the second is the small signal impedance which defines the
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relationship between the system inputs and outputs. These methods are less
demanding computationally compared with the nonlinear equivalents [3]. Also, the
system admittance/impedance can be derived from the system state space equations
as [92]:

YZgq = ClsI —A]"'B+D (4.5)

Deriving the system impedance using (4.5) is limited for certain systems where the
system states can be derived as a function of terminal quantities. The output of (4.5)
can be the impedance or admittance based on the inputs and the outputs of the

system.

4.2.1 Stability criteria-based eigenvalue analysis

The eigenvalue analysis is a conventional and fast technique used to implement and
assess the system's response. The benefit of eigenvalue analysis is that the analysis
can show the system instability and the oscillations for the whole studied network. It
ensures the system stability if the system eigenvalues (4,) satisfy the following

criterion where:

Ay <0 (4.6)

4.2.2 Stability criteria-based small signal impedance

Small signal impedance modelling is a powerful and practical alternative to
eigenvalues analysis, especially in situations where creating a fully detailed model of
the power network is tedious [23][67]. In addition, it predicts system oscillations and
stability at the point of connection using the generalised Nyquist plot or called
eigenloci of the impedance [18]. The criteria developed for this technique will be
investigated in more depth in the following section. The generalised Nyquist
criterion (GNC) is one of the most important stability criteria used to assess the
stability of the systems using small signal impedance. The GNC employs the phase-
margin as an indication of harmonic oscillation, where that low phase-margin means
that the system exhibits harmonics [3][18]. It was developed firstly to assess dc

system stability and modified later for ac systems. The criterion examines whether or
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not the eigenvalues of the product of generator (device) impedance (Z,) and system
admittance (Zsys) encircles the point (-1, 0) in the complex plane [93]. In the

synchronous dq frame, the impedance of a device connected to a system is given by:

A Z
pdd qu] 4.7)

>~ |Zpga  Zpaq
where,
Zpaa, Zpqq are the diagonal impedances of d and g axis channels.
Zpaq » Zpga are the off-diagonal impedances of d and g axis channels.

The small signal impedance of the system as seen by the device/generator is of the

form:
Z Z
Zsys — sysdd sysdq] (48)
Zsysqd Zsysqq

The ac network impedance represents the equivalent of all system components as
being seen by the device (Figure 4.1). The return ratio matrix (L) of system and

generator is given as:

qu = Zqu- Ysysdq (49)
[ = [Z[)dd Zqu] [Zsysdd ZSySdQ] (4.10)
dq Zqu Zqu Zsysqd Zsysqq |

The result of equation (4.10) is a (2x2) matrix which has eigenvalues [33] obtained
as:

det(Lyg + A4q-1) =0 (4.11)
where,

Aaq 1s the eigenvalues of return ratio matrix.
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Point of common

coupling  ———p

System impedance (Zsys )

rDevice impedance (Z,)

Connected device

Figure 4.1. Device/generator and system impedance.

The system stability is ensured if and only if the set of the characteristic plot of Ly,
in the complex plane does not encircle the critical point (-1, 0) or the total sum of

anticlockwise encirclement is equal to the total number of right hand side of
(Zp) and (Yys) lies on complex plan [94]. Applying this definition requires the use
of the relationship between the characteristic plot of L,, and its eigenvalues, where
the absolute of (/’ldq) should satisfy the following criterion for all the frequencies to

guarantee system stability:
Aag <0 —0 < f<o (4.12)

Some other criteria were derived based on the Generalised Nyquist which
transformed the GNC to become more mathematical rather than a plot. It employs
the norm of relation matrix (Lg,) to assess the stability based on the
impedances/admittances magnitude. In addition, the stability norms suit the use of
impedance measurement to control the stability. These stability criteria such as
infinite one norm, the G-norm and maximum singular value which can be defined as
[95]:

e The infinite-one norm is:

2o = 12 I¥S1l, < 05 @13)
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where,
1Zg||_is the infinity norm of impedance.
[Y7 ||, is the unity norm of admittance.

e Alternatively, the G-norm is:

Z¥ee = ||1Z5°|| IYwz |l < 0.25 (4.14)
where,
”qu ”G = max(|Zgaal. [Zgaq|. |Zgqal- 1Z544])

a7 I, = max(IYuraal, [Ywraql [Yurqal, [Yuraql)

e A third criterion which examines the stability of the system based on the

maximum singular value of both sides of the interfacing point of the system:
ZY,5 = 5(2{)5 (V) < 1 (4.15)

Even though the use of such criteria simplifies the stability assessment, they are
sufficient criteria but not necessary to predict stability. Also, they cannot assess

instability caused due to the change of system phase angle.

4.3 Small signal impedance measurement

The dynamic nature of power systems due to the installation of new equipment,
connecting and disconnecting system components tends to affect the stability. From
the impedance technique point of view, these changes in the power system are
referred to the change in the system impedance. According to the stability criteria
listed in Section 4.2.2, maintaining the system impedance at certain levels can ensure
a system’s stability and avoid any oscillations with the power system. This section
presents the impedance measurement method and presents the methods to disturb a

system for such measurement.
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4.3.1 Impedance measurement definition
Measuring the small signal impedance requires injecting small disturbance
(voltage/current) to the measured device. The measured quantities are used to find

the impedances at different dq coordinates as described by:

[de qu] [Avvld Avvlq] [Alld Allq]
d

4.16
Avvyg  Avvyg| |Aiyg  Aiyg ( )

q

where,
Avv,4 is the measured voltage at 1% (x=1) and 2™ (x=2) measurement.
Ai,4 is the measured current at 1 (x=1) and 2" (x=2) measurement.

Two measurements are needed to solve equation (4.16) which can be done by
disturbing the system twice at the same frequency. The injection of the perturbation
signal is carried out in series with the device (voltage injection) or in parallel (current
injection). The selection between the two types is based on factors such as the
suitability to system configuration and the existence of the harmonics in the
measured system [74][96].

4.3.2 Impedance measurement using multi-tone perturbation signal

Different types of perturbation signals have been introduced in the literature to
measure the impedance, such as sinusoidal signal injection [96], chirp perturbation
signal [74] and multi-tone perturbation signal [97]. The multi-tone signal employs a
superposition theory to inject multiple of frequencies (multi-tone) within the range of
interest to perturb the measured network/device. It is proposed here to be of the form

shown in equation (4.17) where the injected signal can be a voltage or current:

Xinj = Xm Cos(wt + @ + Pin;) X1y cos(w;t) (4.17)
where,
Xin;j IS the instantaneous value of injected signal.

m IS the magnitude of injected signal.

50



w Iis the system natural frequency.
w; 1s the sliding frequency of injected frequencies.

A minimum number of frequencies should be used in the multi-tone signal to ensure
the effectiveness of this signal in comparison with the chirp signal [97]. Two
injections are enough to measure the impedance using multi-tone signal with
minimum filtering effort which is considered as an advantage of this technique. This
method is proposed in this thesis to develop an impedance measurement unit (IMU),
which can be used for fast stability assessment via network operators or a
supplementary control system. The construction of the IMU and the control system

will be presented in Chapter 6.

4.4 Small signal derivation of power system components

As stated, the system impedance can be extracted by direct measurement at system
terminals or using the mathematical derivation. The derivation is more convenient to
add system’s delays such as the delay caused by pulse width modulation. The state
space and impedance models of some VSC-FACTS devices, as well as the

synchronous machine, are presented in this section.

4.4.1 Small signal derivation of SSSC
The linearization of the three control methods (power control mode, voltage control
mode and impedance control mode) presented in Chapter 3 is introduced. The state

space equations of the SSSC presented in Chapter 3 can be linearized as:

Rse

Ai, AVieqq —
sedq Lse

. 1 .
sedq — L_se Alsedq - L_SeAmsedq + ywAlsedq (4-18)

where,
R, , L, are the SSSC resistance and inductance respectively.
iseq 1S the direct component of SSSC current.

[seq 1S the quadrature component of SSSC current.
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Vseq 1S the direct component of SSSC voltage.
Vseq 1S the quadrature component of SSSC voltage.
Mg,eq4 1S the direct component of the SSSC converter modulation index.
Meq IS the quadrature component of the SSSC converter modulation index.
The current, voltage and modulation vectors are defined as:

isedq = [isea  Iseq]”

Vsedq = [Vsed  Vseq]”

Mgeqq = [Msea  Mseq]”

4.4.1.1 State space analysis of SSSC with power control mode
This linearized form of the power control mode equations is given by:

AX’IZ = Kivquinne - KivquPQline (4.19)
Amsedq: vaquQrine - vaquPQline + 1. Ale (4-20)
where,

Pjine is the active power flow in the transmission line.
Qiine 1S the reactive power flow in the transmission line.

Axqp = [Ax; Ax,]T, 1= L 0] ,

0 1 PQiine = [Pline Qline]T

The active and reactive power flow through the controlled transmission line can be

calculated as:

APQjine = APQq — APQ; (4.21)
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APQjipe =

—lsed lsed _iseq iseq ][AVIZd] 3[V2a —

“lseq lseq lsed “lsed AVqu vlq

where,

V14 1S the direct axis component of sending end bus.

Vig Vzq — U1q]
V2q V2da — Vig Isedq

(4.22)

v,4 1S the direct axis component of receiving end bus.

v;4 Is the quadrature axis component of sending end bus.

v, IS the quadrature axis component of receiving end bus.

The bus voltage vector is equal to:

Avy; = [Avy  Avy]

The arrangement of equations from (4.19) to (4.22) can be written in the following

form:
Avsedq
AX), Axq, | Avizg |
AP[ ] B
Alsedq Alsedq P[ AVqu
APQikine

where, the state matrix (4p) is given as:

r 3

0 0 -3 iva(V1a — V2q)
3
0 0 Kivg(V2q — v1q)
Ap = 1 R 3K
d
— 0 SRy — )
LSE Lse 2 Lse
1 3 Kpugq
0 - P (vg—vig) -
- se se

While, the input matrix (Bp) is given in the form:

53

(4.23)

: ivd(UZq - vlq)

ivq (vld - de)

3vad( v,
q

3

— V)t @

__Rse | 3Kypq
v — D
Ies o Lo, (V14 Zd)



3 . 3 . 3 . 3 . b

0 0 - E Kivd lsed E Kivd lseq - E Kivdlseq E Kivdlsed Kivd 0

3 . 3 . 3 . 3 .

0 0 - E Kivq lseq — E Kivq lsed E Kivq lsed E Kivq lseq 0 Kivq
2o 3Kpua, _ 3 Kpva; 3 Kpvd ; _ 3 Kpva ; _Kpwa
Lse 2 Ly ¢4 2 Le S¢1 2 L ¢4 2 Ly ¢4 Lse

0o L 3Kpw, 2 iced —3fvay o 3K, 0 — X

! Lse 2 Lse ¢ 2 s¢ 2 Lge S¢ 2 Lge ¢4 Lse

4.4.1.2 State space analysis of SSSC with voltage control mode

The controlling the power flow by controlling the voltage drop between the buses is
the second control method found in the literature. The quadrature component of bus
voltage (vseq) Is used as an input to the voltage control loop. It is employed to
control the reactive power of the SSSC. Alternatively, the active power is controlled
through the dc link voltage of the SSSC.

Axllz AX12 v;c
Aigeqq| = Ay |Alseaq| + By | Vseq (4.24)
AU&C Avdc Avsedq

where,

v, is the dc link reference voltage.
Vgeq IS the quadrature voltage reference.

The definition of the state matrix (A,/) and the input matrix (B,,) are given as:

0o 0 0 0 Ky .
0 0 0 0 0
1 R Kpvd
—_— — —se w —_pva
Lse Lse Lse
Ay = 1 Rge
0o -t — — Bee 0
Lse Lse
3 . .2 3 . .
0 0 SVsed~2lsed-Rse 3 Vseq lsed-Rse_E(Vsed-lsed'i'vseq-lseq)
CacVdc 2 Cvgc Cdcvéc g
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Kivg 0 0 0
0 Kivq 0 _Kivq

1 1

R et I = 0
v Kpvq 1
0 -0 0 (14 Kpyq)
0 0 E ised E iseq
2Cdacvdc 2 CqcVdc

4.4.1.3 State space analysis of SSSC with impedance control mode

The linearized form of the impedance control mode is given by the state space

equation as:
!
Axq, Axq, Ve
Ai;edq =4 Alsedq + B; x;eq
AU&C Avdc AVsedq
where,

Xseq IS the quadrature impedance reference.

(4.25)

The state matrix (A4;) and the input matrix (B,) are given as:

0
0
-1 R
- O se
AI = | Lse Lse
-1
0 — —w
Lse
3 .
0 0 ZVsed~2ised-Rse
L Cacvdc
" Kiva 0 0
0 Kug 0
_ Kpva 0 $
BI = Lge Lse
K
0 -
Lse
0 O 3 ised
2Cacvdc

0
KiyqVseq
-2
lseq
w

_ vseq 1 K

.2 N

ISeq Lse
E Useq
2Cqacvac

0
_ Kivg

iseq

0

<1+M

lseq

X

Lse
E iseq
2Cdcvdc

55

)

pvq T [

“Bivd
0
vad
Lse
Rse O
Lge

.2 3 . .
lsd-Rse_E(Vsed-lsed ‘H’seq-lseq)

2
Cacvge




4.4.1.4 dqgimpedance model of SSSC with power control mode
The generalised impedance model of SSSC controlled by the power control mode

can be derived using the following generalised equations:

AVsedq = apseAisedq + Arnsedq (4.26)
AInsedq = bpseAPQikine - bpse APQline (427)
Al)Qline = _CpseAVsedq + CpseAVqu + dpseAisedq - fpseAisedq (4-28)

Using back substitution of equations (4.26) to (4.28), the impedance of SSSC

controlled by active and reactive is given as:

ZpSSSC = (I - bpsecpse)_l(apse + bpsefpse - bpsedpse) (4-29)
The definition of the matrices in equation (4.29) can be given as:

e The SSSC topology matrix:

_ SLge + R, —wLg,
Pse = | wL,, sLeo + Rsp

e The SSSC current controller:

Kiy
Kpva +=2%
bpse =

K ivq
N

Kpyq +

e The active and reactive powers calculations matrix:

dpse = = fpse =3

ised iseq 3[ VUsed vseq] 37 Vid qu]
217 VUseq Vsed 21=Vq Vpra

3
CPse = = [ .
2llseq —lsed

4415 dgimpedance model of SSSC with voltage control mode
The SSSC impedance controlled by voltage control mode is derived as:

AVsedq = apseAisedq + AInsedq (4.30)
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Amgeqq = bpsAVV* — bps,AVV (4.31)
CUseAVV = d Vs, AVgeqq + €VseAigedq (4.32)

where,
AVV = [Vdc vseq]

The dc link voltage and quadrature voltage matrices are:

3 . 3 . .2
~Vsed-lsedt5Vseq-lseq—ised-Rse
2 2

CVsp = [Cdcsvdc + e 0

0 1

3 i 3 i
dvg, = lz (S)ed 7>

3 . 3
evg, = [E Used — leed-Rf Evseql
0 0

So, the impedance, in this case, is:
Zysssc = {1+ buge (Cvse)_ldvse}_l{avse — bvg, (Cvse)_levse} (4.33)
4.4.1.6 dgimpedance model of SSSC with impedance control mode

Similar to the voltage control mode, the generalised impedance model of SSSC

controlled by impedance control mode is given as:

AVgeqq = AVgeAigeqq + AMgeqq (4.34)

Amgeqq = bvg AVX* — b, AVX (4.35)

Vs AVX = dig,AVgeqq + €iseAisedq (4.36)
where,

AVX = [vdc xseq]T

The dc link voltage and impedance calculation matrix as:
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3. 3. 3 . 3
] E lsed E lseq ] Evsed - leed- Rf E VUseq
dige = 0 1 €lge =

Use
0 q

iseq iseq
In the same way, the impedance of a SSSC controlled by impedance is:

ZiSSSC = {I + bise (Cise)_ldise}_l{aise - bise(Cise)_leise} (4-37)

4.4.1.7 Stability norms of SSSC control modes

The effect of different control modes on the small signal impedance has not been
investigated in the literature. So, to identify the similarity and the differences
between control modes over the frequency, the impedances of the three control
modes are compared under the same operating conditions as seen in Figure 4.2. Both
impedance control mode and voltage control mode has the same impedances over all

frequencies.

_ Zdd = 0 Zdq
Q === Power control mode Q '
E 100| - -voltage control mode =
2 ——Impedance control mode 3
2 50 =2 30
2 50 2
2 2
= =
g | Zw
o 0 ik, o 90
g &.Lu,‘..“ g 0
RROLL YT
-90 : -90 ‘
10° 107 10t 10° 107 10t
Frequency (rad/s) Frequency (rad/s)
Zqd Zqq

o 40 ‘ & 100 :
T [~~~ o m T =
(5] (5]
3 30 2 50
= =
g g
= 8 - &
RS RS
g 0 g o
e e
o o wony

-180 -90 *

10° 107 10t 10° 107 10t
Frequency (rad/s) Frequency (rad/s)

Figure 4.2. SSSC impedance comparison for different control modes.
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This is referred to the use of the SSSC impedance is similar to the use of the SSSC
voltage. Alternatively, the power control mode is slightly different in magnitude for
the diagonal impedances; in the meantime, this difference is increased for the off-
diagonal impedances. Similarly, the phase shifts of the power control mode have
180° phase difference over the whole range of frequency in the off-diagonal
impedances and only at higher frequencies for the diagonal impedances. This appears
the operation of the power control mode as a decreased capacitive while the voltage

and impedance control modes as an increased inductive.

4.4.1.8 The validation of SSSC control modes

Three control methods of the SSSC are validated using the small signal impedance
measurement of the SSSC detailed model. Such validation ensures the validity of the
average and linearized model of the SSSC. The series voltage injection is
implemented in these measurements to perturb the SSSC. The SSSC is operating at
the same operating conditions for the three control modes, which has the parameters
listed in Table 4.1. Due to the series connection of the SSSC; the impedance of the
SSSC can be measured as a two-port circuit, which will have different values in each
measurement direction, or it can be measured as a converter and harmonic filter. The
second measurement provides the easiest way where the total impedance of the
SSSC will be equal to the filter, converter and the series injection transformer
impedance as shown in Figure 4.3. In the case of the delay elements embedded in the
model, the typical derivation of the impedance is more convenient to add such
delays.
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Figure 4.3. Impedance measurement of SSSC.

Table 4.1. SSSC control modes parameters.

Parameter value
Rf, Ls 0.50,5mH
Rse, Lse 15.60 Q, 70 mH
Cac 800 uF
Ve 1000 V
Kpvar Kiva -0.15 V/A, 0.001 V/As
Kyvgr Kivg -0.15 V/A, 0.001 V/As
Ve 100 V
fs 50 Hz

The measured impedance calculated using the measured voltages and currents at the
bus (A) in Figure 4.3. In the measurement, series injection method is employed to
extract the impedances of the three control mode of SSSC time domain Simulink
model. The four impedances (Zg4, Z4q, Zqq and Z,q) are agreed with the calculated
impedance as shown in Figure 4.4, and Figure 4.6 which validate the mathematical
models of the SSSC.
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Figure 4.6. SSSC impedance for impedance control mode.

The previous plots the accuracy of the mathematical model of the three control

modes of the SSSC on representing its response in the analysis.

4.4.2 Small signal derivation of STATCOM

The STATCOM s the second type of the VSC-FACTS devices which is modelled
here. The phase-locked loop (PLL) effect is ignored in the analysis. Two control
modes for the STATCOM are considered in this section. These are the voltage

control mode and reactive power control mode.

4.4.2.1 State space analysis of STATCOM with direct voltage control
The linearized state space equations of the STATCOM presented in chapter 3 are

given as:
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AXIZ AXIZ
Ax Ax Av,

4 Ai 31 = Asv Ai 14 st[ qu]
Avdc Avdc

Aisdq = CSTAT [AXIZ AX34_ Aisdq Ade]T

where,

Axyp = [Ax;  Axp]"
Aisgq = [Alsa  Algq]”
Avsyq = [Avsq  Avgg]T

V' = [Vac Vsal

Ax3y = [Ax3

Ax,]T

(4.38)

(4.39)

is the linearized current vector of STATCOM currents.

is the linearized voltage vector of STATCOM voltages.

is the dc link voltage and direct voltage vector.

The state matrix (Asv) and the input matrix (Bsv) are:

0 0 Kiid 0

0 O 0 Kiiq

0 O 0 0

0 O 0 0

_|X Kpid

Asv = L 0 L 0
0o L o Xeu

Ly Ly

0 O 0 0

0 0

_Kiqupvq 0

0 0

—Kivq 0

Bsv = 1 0

Ly

_ KpigKpug 1

Lr Ly

3 isq 3 isq
L 2C4cVdc 2 CqcVdc

—Kiiq 0 —KiiaKpva
0 ~Kiiq 0
0 0 —Njvd
0 0 0
Ly Ly
Kyig—R
—w pig”"*f 0
Ly
3 . . 3 . 3 .
SVsd—2Llsd-Rf 3 Usq l?d.Rf—EvsdlSd—Evsq.lsq
CacVdc 2CdacVdc Cdcvéc
0 Kiidevd_
Kiqupvq 0
0 Kivd
Kivq 0
0 KpiaKpvd
Ly
KpigKpvg 0
Ly
0 0
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Kpiaq Kiiaq: represent the proportional and integral gains of current controller of

direct and quadrature components

Kpvaq Kivaq: represent the proportional and integral gains of voltage controller of

direct and quadrature components

4.4.2.2 State space analysis of STATCOM with reactive power control

Using the reactive power required at a busbar is the second type of control modes of
the STATCOM as shown in Chapter 3. The state space matrix (Asq) and the input
matrix (Bsq) of the STATCOM which their quadrature voltage magnitude is

controlled with the reactive power is given as follows:

Asq =
0 0 Kuyq O —Kiiq 0 —KiijaKppa
3 3
0 0 0 Kiiq - E Kiiq vaq Vsq E Kiqupvq Vsa — Kiiq 0
00 0 O 0 0 Ky
3 3
00 0 O —>KingVsq > KivgVsa 0
L o Ko Ry~ Kpia w ~KpiaKpva
Ly Ly Ly Ly
3
0 i 0 Kpiq _ 3 KpiqKpvqVsq —w _Rf_Kpiq+EKPquPqu5d 0
Lf Lf 2 Lf Lf
3 ,
00 0 0 20sa=2lsa Ry 3_Vsq ac
L CacVdc 2CqcVdc Cdcvéc
[ 0 0 Kiidevd 0 ]
3 . -3 .
EKiiq pvgqlsq ?Kiiq pvqlsd 0 Kiqupvq
0 0 Kipa 0
3 . -3 . .
> Kivq lsq o Kivq lsa 0 Klvq
Bsq = 1 KpidKpvd
il 0 _pidpvd 0
Ly Ly
, 3 ,
3 KpigKpvglsq  175KpiaKpvalsa 0 Kpiq
2 Lf Lf Lf
3 igq 3 isq
2_led_ 2_lsa_ 0 0
- 2 CdcVdc 2 Cacvdc -

where, the linearization of the reactive power is given as:
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3 . 3 . 3. 3.
AQ = EquAlsd — gvsdAlsq —-3 lsqAVsq + ElsdAqu (4.40)

4.4.2.3 dg impedance of STATCOM based direct voltage control
The impedance model of the STATCOM can be derived by the arrangement of the
STATCOM linearized equations (4.38) and (4.39) to have:

Avgqq = azAiggq — bZAi;dq (4.41)
Aiggq = czV" — czv (4.42)

The definition of symbols in equations (4.41) and (4.42) is found in the previous
sections. The voltage controller is responsible for controlling the dc link and bus

voltages using:
d,v = fv,Avgqq + ev,Aigyq (4.43)
where, the submatrices are defined as:

e The topology matrix:

aZ = ..

e The current and voltage controller matrices are defined as:

Cz; =

K:: Kip
(Kpid + :d) 0 (KP”d + sd) 0
Kiy
0 (K + ﬁ) 0 (vaq + Tq)
S

bZ:_

piq

e The dc link voltage calculation matrices

stcvé —Qqc 3 Y 3
d, = [ vdcc 0] ev, = l(z Vsa ZLSd'Rf) 2 Vsql
0 1 0 0
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3. 3. _ 2 3 . .

f — lg lsd Elsq] Age = lsd-Rf - 5 (vsdlsd + VUsq- lsq)

z
1 0

Equations (4.42) and (4.43) show the STATCOM impedance in synchronous dq
coordinates. The full derivation of STATCOM impedance is found in Appendix-B.
Using Mason’s gain formula or any block reduction method, the total transfer

function of the small signal STATCOM impedance is as follows:
AVgaq = ZsrarcomvBisaq + DagV” (4.44)
where, the STATCOM impedance (Zsrarcomv) 1S given as:

ot bedten (4.45)
Zsrarcomv = [ —byc,d; 1 fv,

The STATCOM operation is considered in this thesis to be ideal, meaning that the
pulse width modulation delay (PWM) and the measurement delay (md) are ignored.
The main effect of ignoring the PWM delay is that the off-diagonal impedance will
be very small, whilst the measurement delay is significant only in large systems.
These delays can be added to the model as shown in Figure 4.7 or by making the

stability assessment more conservative.

> a,

Alsdq

AV,

Figure 4.7. Block diagram of STATCOM impedance model of direct voltage control.
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4.4.2.4 dqg impedance of STATCOM with reactive power control
The second type of STATCOM control is the control with reactive power control. It

is derived in similar way as the previous analysis as (details in Appendix-D):
ZSTATCOMQ = (I - bzczdz_lfz)_l(az + bzczdz_lez) (446)

The definitions of the matrices in equation (4.46) are:

isd isq —

— e, =

fZ - [—l i z 3 3
sq sd

4.4.2.5 The validation of STATCOM model

The impedance injection method is used to validate the linearized model of the
STATCOM. This model is compared with the linearized equations derived here by
finding the small signal admittance of the two models as shown in Figure 4.8. The
resulted impedances of the two models are equal over the range of the frequency of
study which validates the linearized equations. The effect of the operating point on
the measured impedance has been reported in [87], therefore, both average and
mathematical models of the STATCOM are measured at the same operating

conditions.
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Figure 4.8. Validation of STATCOM impedance model based direct voltage control.

The accuracy of the measured impedance can be improved by repeating the
measurement several times with different magnitudes and phase of the injected
signal. The impedance representation of the STATCOM shows off-diagonal
impedances is fixed impedance at low frequencies while it decreases at high
frequencies. In the meantime for the diagonal impedance, the Z;; changes its
magnitude and phase by the change of the frequency while the Z,, has affixed

magnitude and phase at low frequencies and tend to increase at higher frequencies.

4.4.3 Small signal derivation of synchronous machines

The synchronous machine is one of the main factors, which ensures the stability
issues and might responsible for the system oscillations. The performance of VSC-
FACTS devices will be examined on damping those oscillations and compared

between their effectiveness.

4.4.3.1 State space analysis of the synchronous generator
The arrangement of the linearized equations of the synchronous generator presented
as [98].
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[ Aiaqs ] [ Ai‘riqs ] AvEqs

d Ai\ll;qlz Ai\lr<q12 AV'fa

7 | Al | = ~Dsyndsyn| A |+ Doyn | AV g1, (4.47)
A, A, | 4Tn |
Awd Awd 0

The inclusion of the mechanical part can be included as shown the state space

equation (4.48) as:

T :r
Ai’} Ai’) r
d|™ kaaz| o |70 kalz| AV'kq12
Dsyn dt| Aifiq |~ | Aifia |+ BB AV (4.48)
AS | a8 | T
tu

lAooJ lAwJ

where,
e The stator current vector and voltage vector referred to the rotor is given as:
Ailys = [Aifs  Aig]T AVigs = [Avgs  Avg]T
e The quadrature dampers currents and voltage vector are:
Ai‘lr(qlz =[AV%q1  AV}g2]"
AVigiz = [AVkq1 AVig2]”
e The excitation field and direct damper voltage and current vectors are:
Aifyq = [AlFq Aiw';d]T AV'ia = [AVq Av‘id]T
e The speed of the turbine masses vector:
Aw = [Aw; Aw, Aw; Aw, Aws]T
e The angular position of turbine masses vector

A8 = [A61 A52 A53 A54, A55]T
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e The mechanical torques developed by the respective turbine sections:
Tow = [Tepy Tipy Tip Tup]”
Aw8 = [AS Aw]

While, the definition of the matrices (Dsy,,), (AA) and (BB)are:

AA, AA, AAgs
AA,y AA,, AA,;
AAz1 AAz, AAs;

AA =

The definitions of the submatrices of the matrix (AA) are:

Ay =
Ts 0 0 —WrLig — Wplymg  Wrlymg  @Wrlpg
0 T 0 0 0 0
0 0 T 0 0 0
erls + ermd _ermd _wrl’md Ts 0 0
0 0 0 0 Tiq1 0
0 0 0 0 0 Tkq2
SLCT R 0 0 0
2H, 2H,
ki kg kip kg 0 0
2H,  2H; 2H; 2H, AAi, = Zeros[6 X 5]
Adas =] 0 ka3 k3 k23 k3 0
32 — 2H3 2H3 2H;  2H3
0 0 k3q _kas  k3s kus AA,; = zeros [5 X 6]
2H, 2H, 2H, 2H,
0 0 0 Kas  _las
2Hg 2Hs
[—Lisifys + Ling(—iyg2—ixg1 +ifs) 0 0 0 0
Llsigs - Lmd (i}d + i;crdl - igs) 0 0 0O
AAq5 = 0 0 0 0O AA,, = Zeros[5 X 5]
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
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-2 0 0 0 0
2H,
w 0 0 0 0 0 -2 o0 o0 o0
0 w 0 0 0 2H; 5
AA23=[0 0 w 0 0} Adgz=| 0 0 —z- 0 0
0 0 0 w O D,
00 0 0 w 0 0 0 —5-0
0 0 0 0 -2
2H5_

w1
Az, = E[aalm adzz4]

-(Lmq igso) - (Lmd icryso) - (Lmd igso)

_(_Lmdi(gso + Lmq igso) (Lmq igso - Lmd(igso - lftio)) (Lmq igso)

1
aa,,. =
231 zeros (4 X 6)J|

Also, the definition of the matrices (Dy,,,) and (BB) is:

Dsyn
—Lis = Lina Lina Lina 0 0 0
—Lma  Ligar +Lma  Lma 0 0 0
—Lna Lima  Ligqg + Lina 0 0 0 zeros(6 X 10)
0 0 0 —Lis — Linq Ling Ling
= 0 0 0 —Lygq Liggi + Lmg  Lmg
0 0 0 —Lpg Limg  Likgz + Lmg
zeros(10 X 6) 1(10 x 6)
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1(6 X 6) zeros(6 X 3)
zeros(6 X 9)

5B — e 0 0 0
0 L 0 0
2H;
zeros(4 X 5) 0 0 — 0
2H,
0 0 0 =

4.4.3.2 dg impedance of the synchronous generator
The synchronous machine equation can be linearizing and by substituting the mutual

inductance equation in voltage equations to have:

[ Avﬂrlqs
AV | =
_AV\1r<q12
—7s —SLig  wyLig 0 0 0 0
—wyL;s —15 — sl 0 0 0 0
N N Oy
0 0 =1y +SLixas 0 0 0 A_l\drqs
0 0 0 —75 + SLizg 0 0 Ai fka [+
\ ‘ AP
0 0 0 0 -1+ 5Ly 0 ! ka12
0 0 0 0 0 —Tin2 + SLikga.
[ Slina —@rlmg] Lisils — Lingimg 0]
SLmd 0 0 0
SLmd 0 0 0
Aif o+ Awd 4.49
ermd SLmq mdq Lmd i:nd - LlSiZiS 0 ( )
0 SLing 0 0
0 SLyng | . 0 0-

According to current directions assumed in synchronous machine equivalent circuit

presented in chapter 3, and using KCL and with the assumption that the field voltage

is constant during the operation (Av]ld = 0), the stator voltage is given as:
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r —
Avdqs =

l(_rs - SLls) + SLmdAmsd erls - erqumsq ]Air +
_erls + ermdAmsd (_7:9 - SLls) + SLqumsq das

) 4.50
[T (450
(Linaima — Lisigs) 0

Z Z L, i"
AVE g = [ o dq] Aifqs + 4+ |(Lssths = Lmatina) 0] Awd (4.51)
Zqa (Linaima — Lisigs) 0

Avggs = ZZAiggs + AL A8 (4.52)

By linearizing the electrical torque equation and substituting the mutual inductance

and the currents in torque equation for getting the form:

ATem = [Td ]A ifgs
(4.53)
where, ATem = [AT, AT,]"
ATem = GquAi{,qS (4.54)
The rotor speed deviation (Aw,.) can be found as:
da 1
—Aw, = — (AT, — AT, — Dy Aw,) (4.55)
Aw8 = AH.GTyqAif,s (4.56)
1 0 T. T
AH = I2H5+D1 l, Gqu = [ d Q]
0 0 0 0
Substituting (4.56) in (4.52) to have:
AVigs = (ZZ + AL . AH.GTyq)Aigys (4.57)
AV(Ii‘qs = ZsynchAil(iqs (4.58)
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A detailed full derivation is included in Appendix-C. The validation of the
synchronous machine impedance (4.58) is carried out using the direct measurement
of the synchronous impedance using the impedance measurement method presented
previously in this chapter. A voltage injection method is employed to perturb the
synchronous machine. The injected frequencies are between (1 to 10000) rad/s. The
parameters of the synchronous machine are listed in Table 4.2. The mathematical
model in equation (4.58) is validated by comparing it with the impedance
measurement of the detiled model as shown in Figure 4.9. The two measurements are
generally well matched except for (Z,,) at very low frequencies. This is attributed to
the nonlinearity response of the synchronous machine to low frequency
measurements which affected the results.

Table 4.2. Synchronous machine parameters.

Parameter Value Parameter Value
Ts, Lis 2.85mQ, 21 mH Ling, Limg 1.785 mQ, 0.54 H
Rea, Lisa 86.85 mQ, 0.171H Riar, Likas 97.8 mQ, 0.7701 H
Riqu Likg 43 mQ, 0.383 Riq2 Likgz 11.6 mQ, 1.375 H
ifdo 0.6586 A ikqn 23.3pA
ika1 -9.5467 PA ik 273mA
H, 2.82s H, 0.88421 s
Hy 0.85867 s H, 0.1556 s
Hg 0.092897 s K1, 70.858 pu/rad
Ky3 52.038 pu/rad K3y 34.929 pu/rad
Kys 19.303 pu/rad [ D, D3 D, D] [0000]
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Figure 4.9. Validation of the impedance of electrical part of synchronous machine.

The general trend of the diagonal impedance shows an increase of the synchronous
impedance magnitude while the phase is almost constant at 270°. Alternatively, the
off-diagonal impedances are constant at about 20 dB with a constant phase at 0° and

180° for the Z 4and Z,4 respectively.

4.4.3.3 Effect of turbine dynamics on synchronous machine impedance

Including the mechanical part of the synchronous machine is introduced in this
section. The mechanical part has four mass sections and the generator as shown in
Figure 4.10 which is be beneficial for studying the system oscillations and the
efficiency of VSC-FACTS on damping those oscillations. The turbine converts the
stored energy of steam into rotating energy. Based on the pressure of the each turbine
section, these sections are named as two low-pressure turbine section (LPa LPg),

intermediate pressure (IP) and high pressure section (HP).
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Figure 4.10. Turbine-generator system connected to grid.

The speed relations at the generator and the other for sections of turbine system

shown in Figure 4.10 can be given as [91]:

e For the generator:

dAw,

2H
Lodt

SAS
A(l)l = L

e Low pressure (LPa):

dAw,

2H, —=
Z2 dt

SAS
A(Uz = z

e Low pressure (LPg):

dAw;
dt

2H,

SAS
A(Ug = 3

w

¢ Intermediate pressure (IP):

= k12(6;, — 61) — T, — D1Aw,
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=Tip, + ky3(83 — 62) — kq2(6, — 61) — DyAw,

= Typy t+ k34(84 — 83) — kp3(63 — 6;) — D3Aws

(4.59)

(4.60)

(4.61)



dAw
2H, it = = Tip + kys (85 — 84) — k34 (84 — 83) — Dy, (4.62)

SAS
A(l)4 = -

e High pressure (HP):

dA(l)S
2H ——3

b Tip + kas(8s — 64) — k34(64 — 83) — Dy, (4.63)

SAS
A(l)5 = 2

The back substitution of equations (4.59) to (4.63) to find (Aw,) as a function of the

turbine/generator sections yields:

skipw skiykyz0? skizkyskzaw®
Awy =——Tp,+—F—FF Tyt ———F——Tir
AjA; T AAyAs ' A1AAzA, (4.64)
skizkozkzakssw® S
Typ — AT,
A1AA3A4As Ay

where,

H; is the inertia constant of mass i.
w Is the rated speed.

k;; is the shaft stiffness of section i j
D; is the damping coefficient.

(k12w)2

Ay = 2H;s? + kypw + sD; —
A

77



kysw)?
A2 == 2H252 + k23w+k12(l) + SDZ - ( 23 )

Az
ks w)?
A3 = 2H352 + k34a) + kzg(l) + SD3 - ( SIZ )
4
2
A4 = 2H4SZ + k45(l) + k34(l) + SD4 - —(k4A5w)
5

A5 = 2H552 — SDS + k45(l)

The relation between the electrical torque including the mechanical part can be found

by modifying equation (4.56) by substituting equation (4.64) to yields the form:

Awd = AHy,ATem + AH, Ty, (4.65)
where,
> 0
AHM = Al
0 0

Kiw K12k230)2 K12k23k34»0)3 K12k23k4,5604
AHyy = [sA4As  S2A3A4As  S3A,A3A,As  s*A1A,A3A,As
0 0 0 0

Substituting equation (4.65) and equation (4.54) into equation (4.57) yields:

AV = (ZZ + AL . AHy,. Gqu)Aigqs + AA.AH), ATy, (4.66)
AV(Ii‘qs = Zsynch_MAiaqs (4.67)
where,

ZZ is the impedance of electrical part of synchronous machine
Zsynch_m 18 the impedance of synchronous machine including turbine and generator

mechanics which equal to:
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Zsynch_M == ZZ + A/l AHM Gqu

The full derivation of these equations is included in Appendix-C. The synchronous
machine impedance can be represented using equation (4.66), as shown in
Figure 4.11.

Electrical part

Aidqs A\qus
> 77 —H: f———
Y
GTy, AL
AT,
A®d
T N ATem 2 An
=) " AHu
» AH,,,

Mechanical part

Figure 4.11. Impedance model of the synchronous machine.

The effect of including the mechanical parts to the machine impedance is shown in
Figure 4.12. The three impedances (electrical impedance (ZZ) electrical impedance
and generator dynamics (Zsyncx) and generator and turbine impedance (Zsyncn u) are
equal for direct impedance (Z44). The off-diagonal impedances (Z,4, Z44) are equal
for the three impedances except some spikes around the 100 rad/s shown by the
impedance of turbine-generator impedance (Zsyncn ). The main difference between
these impedances is found in the quadrature impedance (Z,,). At low frequency the
three impedances have different magnitudes; however, the impedances of generator
(Zsyncn) and turbine-generator have almost the same phase. In the meantime, at
higher frequencies (over 200 rad/s) the impedance of the electrical part (ZZ) and the
turbine-generator impedance have equal values in phase and magnitude. This is
referred to the effect of synchronous machine inductances which will be much larger

than effect of other system parameters on the total impedance. So, the electrical

79



impedance of the synchronous machine is sufficient to represent the machine in
power frequency studies.

— Zdd = 40 Zdq
g 40 |-~ Electrical imp. g
2 20 Generator mech imp. 2 20
= 0 —Turbine-generator. imp. 2
% -20f % or
= & = 3
g ‘ 2
= K=
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o o
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Figure 4.12. Effect of turbine dynamics on synchronous machine impedance.

The combined turbine-generator impedance and the electrical impedance of the
synchronous machine can be understood from equation (4.66), where the second part
of equation becomes almost zero at high frequencies to have the synchronous

machine impedance equal to:
Zsynchm = ZZ + AL . AHy. GTyq =~ ZZ (at high frequencies) (4.68)

Alternatively, the impedance including only the generator mechanics (Zyncn)
requires much higher frequencies to align to the electrical impedance (ZZ) as shown
in Figure 4.12 due to the mechanical effect of the generator. Also, at high
frequencies, the synchronous machine inductances will be dominant where all the

other effects can be ignored.
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The difference between the mechanical effect of the generator and turbine-generator
on the synchronous machine response is presented in Figure 4.13. As expected, the
inverse of the mechanical constant of the turbine-generator (s/A;) is much bigger
than the mechanical constant of the generator (1/2Hs + D;) alone. Also, the
magnitude of turbine-generator mechanical constant is peaked sharply close to the
fundamental frequency due to the oscillatory modes of individual turbine masses

which change the phase by 180° at each mass [99].
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Figure 4.13. Mechanical effect of generator and turbine-generator mechanics.

4.5 Summary

The small signal stability in dg coordinates was discussed in this chapter. Some
stability criteria have been reviewed and presented which will be used in Chapter 6
to assess the stability of VSC-FACTS based systems. The chapter also presented the
methods used to extract the small signal stability models for the state space and
impedance analysis techniques. These models found by direct measurements for the
impedance analysis or by finding the mathematical model of the system which is
essential for the state space analysis. In addition, the small signal model for the SSSC
controlled using three control modes, and the STATCOM were presented. The
chapter included the mechanical part effect of the synchronous machine in the state

space and impedance models. The derived models in this chapter will be utilised to

81



examine the response of the VSC-FACTS devices in power systems and include the
harmonics in stability problem in Chapter 6. The following points summarise the

main outcomes of the chapter:

e The small signal stability-based state space equations require a mathematical
derivation which might be difficult to find. However, it eases the modification and
design of the control system and presents the contribution of each parameter on
the stability problem.

e The small signal impedance provides the concept of black-box control, where the
impedance is extracted by the system/device measurements. This feature is very
helpful in practical applications, where having full details about the system
components become difficult.

e The impedance measurement can be found by perturbing the device/system using
series or shunt injection. The perturbation signal could be sinusoidal, chirp or
multi-tune signal. The selection between these signals can be carried out based on
the application and the time allowed for measurements where the accuracy
increases as the measurement time increases.

e The SSSC controlled with power control mode presented some differences in the
impedance magnitude and phase in comparison with the voltage and impedance
control modes. The other two control mode appeared having the same impedance
magnitude and phase where the SSSC impedance is derived from SSSC voltage
and current quantities.

e The effect of including the turbine dynamics to the synchronous machine is the
effect of the quadrature impedance (Z,,) present mainly at low-frequency range
(below the fundamental frequency) where it might affect the stability and cause
low-frequency oscillations.

e The difference between the electrical-part impedance, generator mechanical
impedance and the turbine-generator impedance were presented. The impedances
are equal at high frequencies, where the machine equation denominator of the

mechanical effect goes to infinity at high frequencies.
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CHAPTER 5

DQ-DYNAMIC PHASOR BASED SMALL SIGNAL STABILITY

ANALYSIS FOR VSC-FACTS DEVICES

This chapter proposes a generic dg-dynamic phasor model for studying stability of
VSC-FACTS devices in the presence of harmonics and unbalanced conditions.
Equations in this chapter are presented for each stage separately to reduce the
complexity of dynamic phasor transformation and present the sources of frequency
coupling at each stage of the studied system. A development of harmonic stability
criteria is presented at the beginning of this chapter. Secondly, generalised state
space and impedance models of STATCOM and SSSC with different control modes
are presented and simulated. Lastly, high level qualitative comparisons between the

proposed model and other conventional modelling techniques are discussed.

5.1 Introduction

In synchronous dg coordinates, the small signal stability using the eigenvalue
analysis and equivalent impedance are two methods widely employed to assess
system stability. In most cases, the effect of the harmonics is ignored, and this may
lead to significant system stability problems, particularly, when the system operates
in harmonic polluted environment. Typically, harmonic state space (HSS) facilitates
stability studies of linear time-periodic (LTP) systems, which consider the impact of
harmonics on system stability. LTP systems produce infinite outputs, with possibly
infinite harmonics, due to the interaction between different frequencies within the
system. The use of dg-dynamic phasor offers significant advantages over the HSS
counterpart; for example, it has reduced order of matrices, more suitable for studying
control systems, retains mutual coupling of harmonics, and simplifies stability study

under unbalanced conditions.
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5.2 Proposed dg-dynamic phasor for small signal stability analysis
In this section, the development of the new dg-dynamic phasor model for small
signal stability studies is discussed. The dynamic phasor transformations of the state

space equations of an arbitrary system in the synchronous dq frame are given as:
d 0 o)
(a AX) = Y- oofAaqBX)k + Xi=—oo{BagAU) (5.1)

(AY ) = Yke—oo{CaqAX)y + (DgqAU) (5.2)

Equations (5.1) and (5.2) can be written as:

4t (X0 = App(AX)y + Bpp(AU)y (5:3)
(AY)x = Cpp{AX) + Dpp(AU)y (5.4)
where,

App is the generalised state matrix.

Bpp is the generalised input matrix.

Cpp is the generalised output matrix of size.

Dpp is the generalised feedforward matrix of size.

(AX)y is the state vector and equal to:

(AX) = [(AX)p=o (BX)p=k, BX)p=i; - (AX)p—g, T
(AU), is the output vector and equal to:

(AU, = [(AU)=g (AU, (AU)ig - (AU)pcy,]”

The bold symbols represent vectors which have an infinite length and include all the
interested harmonics of interest in the study (k = o). Equations (5.3) and (5.4)
represent the generalised state space equations including the harmonics with infinite

dimensions. The roll-off nature of the inductances and capacitances in the system
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provides a reasonable size of the analysed systems matrices due to the low-pass
characteristics of these components [100]. The optimum size of arbitrary system
matrices can be found by scanning the frequency spectrum until the impedance does
not change and the additional eigenvalues at the origin of complex plane [101]. The

system matrix sizes are calculated using the following equations as follows:

size(App) = (2(1 + h)Lg, 2(1 + h) L) (5.5)

size(Bpp) = (2(1 + h)Lg, 2(1 + h)Ly) (5.6)

size(Cpp) = (2(1 + ), 2(1 + h)Ly) (5.7)

size(Dpp) = (2(1 + h), 2(1 + h)Ly) (5.8)
where,

h is the number of harmonics to be included in the study.
L, is the number of states of the studied system.
L, is the number inputs of the studied system.

For an example, when two harmonics (h = 2) plus fundamental are considered when
analysing the stability of the STATCOM. The synchronous dg model of the
STATCOM has (L, = 7) states and (L,= 4) inputs as:

AX = [Ax; Ax; Axz Axy Aiggq Avg]T
AU = [Avgy  Avg, Avg. QT

So, the size of the state matrix (App) becomes (42x42) and input matrix
(Bpp) becomes (42x24). The state space equations (5.3) and (5.4) permit asymptote
stability assessment of complex systems using eigenvalues. Equally, small signal
impedance offers a powerful and practical alternative method for stability
assessment, where synthesis of detailed system model is challenging [67][23]. It can

be derived with some minor algebraic manipulations, which yields:
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(AY ), = Zpp(AX)k

Zpp = {Cpp + DppBpp(S + jkw — App)}

(5.9)

(5.10)

Similarly, the impedance (Zpp) represents the generalised impedance of the system

with infinite dimensions including all the harmonics of interest and can be written as:

Zpp =

where,
k is the conjugate of harmonic order (k).
(vaq )k is the direct and quadrature voltage at harmonic order (k).

(iqq )k is the direct and quadrature current at harmonic order (k).

F (Wadk=0  (Va)k=0 (Vadk=0 Walk=0 (Vadk=0 (Wadk=0
(adk=0 (adk=kq (=t {iphk=0 (igdk=k4 (igQk=Ry,
Walk=ky; (Vadk=k, Wadk=k, Walk=ky; (Vadk=k, (Va)k=k,
(adk=0 (adk=kq (=t {iphk=0 (igdk=k4 (igQk=ky,
Vg Vet | Pty | g Gy | Caerg
(adk=0 (ladk=k, (adk=r, {ighk=0 (iglk=k, (igd k=T,
(vq)k=0 (vq)k=0 (vq)k=0 (vq)k=0 <vq)k=0 <vq)k=0
(k=0 (ladk=k, (adk=r, {ighe=0 (iglk=k, (g k=T,
(vq)k=k1 (vq)k=k1 (vq)k=k1 (vq)k=k1 <vq)k=k1 <vq)k=k1
(k=0 (lddk=k, (=t {ipk=0 (igdk=k4 (g k=T,
(Uq)kzﬁ (vq)k=H . (vq)k=H (vq)kzm <Vq)k=E . <Vq)k=E
| (ladk=0  (ladk=k, (adk=r, {ighk=0 (iglk=k, (igdk=F;,

(5.11)

5.3 Stability criteria for the new generalised dg-dynamic phasor modelling

In this section, the development of the stability criteria for the proposed generalised

dg-dynamic phasor modelling is introduced. The generalised state space equation in

(5.3) with infinite dimensions can be written in a frequency coupling form as:

d
aldX =

A—M+p
ACy,

ACy
A—M+

B BC
p] AXj + [BC
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where,

ACy, ACy, are the mutual effect between the fundamental frequency and harmonics.

p is the frequency coupling at the fundamental frequency caused by the existence of

positive and negative harmonics at a specific harmonic.

M is a diagonal matrix which represents the transformation of differential variables

of the system to dynamic phasor, and it is defined as:

M = diag[0 jwl —jwl jkiwl —jkiwl - —jk,wl]

So, the eigenvalues of the generalised state matrix in (5.12) can be written as [102]:
A(App) = det(App — A) = (A — M) + p % (AC;. ACy)"” (5.13)

According to equation (5.13), the inclusion of harmonics in a stable system generates

repeated eigenvalues and does not affect the stability of the system if and only if the
frequency coupling terms {p + (ACf.ACh)l/2 } are equal to zero. The stability of the

system is ensured when the system eigenvalues (A,,) satisfy the condition in equation
(5.14) which guarantees that all system eigenvalues will be located at the left hand

side of the plane:

Using the small signal impedance (Z,p) from equation (5.10), the stability at the
connection of the device to the grid can be evaluated by the generalised Nyquist
stability criterion [103][104]. It is carried out by creating a Nyquist plot of the

eigenvalues of the return ratio matrix (Lg) which can predict the stability of the

system as:
Ay = detQuyd — (L)) = 0 (5.15)
(LR>k = (Zg>k- (Ydevice)k (5-16)
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where,

Yievice 1S the device admittance in the synchronous dq frame.
Zg is the grid impedance in synchronous dq frame.

(Zg) is the grid impedance in dg-dynamic phasor.

(Yaevice )i 1S the device admittance in dg-dynamic phasor.

In the case where the frequency coupling is ignored, the impedance is equal for all
frequencies. Consequently, it is a repeated plot for all impedances. The frequency
range of the Nyquist plot in equation (5.15) is (—oo < w < 4+00) where the
parameters of the proposed model are linear time invariant which is similar to the

frequency range presented in Chapter 4 for synchronous dq criteria.

5.4 Proposed generalised dg-dynamic phasor modelling for STATCOM device

This section proposes a generalised state space and impedance model for the
STATCOM based on the proposed dg-dynamic phasor modelling that can facilitate
stability studies considering the effects of harmonics and network unbalance. As
stated, simplified forms of the synchronous dq equations are transformed to dg-
dynamic phasor to avoid the complexity of dynamic phasor transformation and

identify the causes of the system frequency coupling.

5.4.1 Generalised state space model of STATCOM

The proposed generalised state space model is developed by transforming the
STATCOM synchronous dq model presented in Chapter 4 to dg-dynamic phasor.
This transformation includes the system harmonics that could affect the system
stability. For STATCOM, the state model is depicted in Figure 5.1, while the state

representation in generalised form as:
d
(5;8X)i = Aspp(AX)i + Bspp(AU)y (5.17)

(Aisdq>k = Cspp{AX)y + Dspp(AU)y (5.18)
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where,

AX is the STATCOM state variables which equal to:

AX = [Ax1 Ax; Axg Axy Alggq Avg]T

(AX) = [(AX)k=0 (BX)p=k, (BAX)p; - (BX)k=k, (AXhi]”
AU = [Avsq  Avgg Avge Q77

(AU) = [(AU)k=o (AU)ko, (AUl - (AUhkek, (AU} ]”

The definitions of state vector and input vector can be found in Chapter 3, and the

state matrix (Aspp) and input matrix (Bspp) are given as:

r Q=9 ack=k_1 aCk=k1 oo aCk=H aCk=kn'

aCk=k1 ak=k1 0 0

aCr=k; Ap=F; 0 0
Aspp = .

0 0 Ak=kn

lac-x, 0 0 Ay-%, |

[ bk=0 bCk=EI bCk=k1 e bCk=H bCk:kn_

bCk=k1 bk=k1 0 0

bcy—i bi-%: 0 0
BSDP — k—k1 k—k1 )

bck=k, 0 0 by=kn

_bck=E 0 O A bk=k_n |

The bar notation (k) represents the conjugate of the harmonic (k). The submatrices

of the generalised state matrix (App) can be defined as:
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T
<AX >k:k1 I
| (AX), S,
i As -
I (&), :
(AX), . g
AU g .[ | G
k =k <AX >k—k
- = -
<AU > é Bspp >
k=kn 1 >
(AU >k=k > i
> Dspp

Figure 5.1. Generalised state space model of STATCOM.
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e The diagonal submatrices (ax-o, ag=x, - - , k=g, ) represent the state matrices
of the system at specific harmonic order (k) including the frequency coupling

caused by the dc link voltage which equals to:

Arr =
—jko 0  Kyg O —Kiia 0 —KiiaKppa
. 3 3
0 _]k(‘) 0 Kiiq - EKiqupvq<vsq>0 EKiqupvq<vsd>0 - Kiiq 0
0 0 _]k(l) 0 0 0 _Kivd
. 3 3
0 0 0 _]kw - EKivq<vsq>0 EKivq<vsd)O 0
1 o e “RrKpid — jkw © “KpiaKpva
Ly Ly Ly Ly
3 3
1 M L EKpqupqusq)o EKpqupvq(vsd)o_Rf_Kpiq o
0 P P W L P Jjkw 0
0 0 0 0 al a2 a3 — jkw |

The parameters of the matrix (ay ;) are defined as:

_ 31 yk=0 Ly _ 2Rr k=0, RS
al = 5 Cchl <v5d)k—l <Vdc)l Cac Zl (lSd)k—l <vdc>l

— 31 yk=0 Ly
az = 2Cchl (vsq)k—l <vdc)l

_R_f k=0/:2 L_EL k=0 yr i _
a3 = CdCZl <lsd)k—l (Uéc)l 5 Cdczl <v5d)k—l<Lsd>L <U§C>O

31 yk=k G (LY 3 1 yk=k iy =y —
2 Cchl <v5d>k—l<l5d)l (Uéc)k 2 Cchl (vsd)k—l<l5d)l (Véc)k

31 k=0 . 1 31 k=k . 1

EFEZL (vsq>k—i<lsq)i <T¢Zlc)0 - ET“ZL <vsq)k—i(lsq)i (T‘zlc)k -

31 k=k . 1\

EFEZL <vsq>k—i<lsq)i <T¢21c)k

e The  submatrices  (acy—g;, acx—r; - aCk=r;) and  the  matrices
(ackzkl, ACk=fy» o) ackzkn) represent the effect of positive and negative sequence

components on the fundamental frequency, and the coupling of the fundamental

frequency on the negative and positive components is:
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ACk=f =

zeros(7 X 4)

0
K K

iiq
0

Kivq(vsq)k
0

vq(vsq)k

3
_ 5KpigKpva(vsqdk

Ly
a4

0
vq(vsd>k
0
Kivq(”sd)k

0
3 KpigKpvg{vsalg
2 Ly

a5

Kqu

o O O o O O

a6

The parameters in the matrix (acj—;) are defined as:

— LT s ()

31 yk=k (L
- 2 Cdczl <Usd>k—1 <vdc)
_ 3yk=k 1
5= 2% (Usq ki (E)i

R =ky: 1 31 = . 1
@6 = c_fzf k<l$2d)k—i <v7)i - Ec_zlf U(sae—ilisa)i (7)& -

Zk k(”sd)k l(lSd) ( vz )0 ___Zk O(vsq)k L(lsq> ( vz )k -
Er‘icz;{zk(vsq)k—i(isq)i (7‘216)0

Similarly, the submatrices of input matrix (Bpp) are defined as:

e The diagonal submatrices (byx—q, bx=i,; - --- , b= ) represent the intput matrices
at specific harmonic order (k) including the frequency coupling of the dc link

voltage and equal to:

0 0 Kiidevd 0 )
. 3 .
Kllquvq<lsq)0 EKii‘IKPWI(LSd)O 0 KiiqKpvq
0 0 Kipg 0
3 . 3 . .
Kivq<lsq)0 Kivq(Lsd)O 0 Klvq
Bk,k = i 0 KpiaKpvd 0
Lf Ly
EKpqupvq(isq)o 1 3 KpigKpvq{isa)o 0 KpiqKpvq
2 Lf Lf 2 Lf Lf
Zl +oo< )k (lsd)k ZL =+o0 <Cd vg )k i (qu)l 0 0 |
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e The other submatrices that include the frequency  coupling

(bck=k_1, bCk=k_2, . bCk=E) and (bck=k1, bCk=k2, . bck=kn) are:

0 0

Kllquvq<lsq)k Kqupvq<lsd>E
0 0

3 . 3 .

_ _Kivq<lsq)k _Kivq<lsd>k Z€T'OS(7 X 2)
bCk:k = 2 2

0 0

3 KpigKpvalisk 1 _ 3KpigKpralisak

2 Lf Lf 2 Lf

3 =k
Z +oo< )k (lsd)k 2 ?5:11_600 <C g )k L(lsq)l

The derivation of the generalised state and input matrices presented in (5.17) and
(5.18) are found in Appendix-D. The matrices (App,and Bpp) are linear time
invariant (LTI) matrices which could include harmonics similar to the harmonic state
space (HSS) modelling. However, the LTI systems have an advantage of being more
suitable for small signal stability than the time variant systems. The generalised state
matrix and input matrix presented in equation (5.17) and (5.18) are capable to
include the fundamental frequency (k = 0) as well as an infinite number of
harmonics (k = +). Each harmonic frequency except the fundamental frequency
generates two components; the positive and negative sequence components of the k™
harmonic (depicted as k and k respectively). In the meantime, for the fundamental
frequency, the dg-transformation generates one component at the fundamental
frequency and another at the 2" harmonic order (k = —2), which is characteristic of
the system response at unbalanced conditions. The existence of the positive and
negative sequence components in equation (5.3) and (5.4) facilitates stability studies

of balanced and unbalanced systems.

5.4.2 Generalised impedance model for STATCOM device

The frequency domain analysis of power system presents some valuable information
about system oscillations and can be utilised to assess the stability at the point of
common coupling. Similar to the previous section, the generalised impedance model
of STATCOM is derived from synchronous dg model equations presented in Chapter
4:
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ZI?:—w(Avsdq>k = Zo—ooo<azAisdq)k + Zo—ooo<bZAi;dq)k
ZI?:—OO(Ai;dq)k = 2]?:—00(CZV*>I( - 2]?:—00(CZAV>k

ZI?:—OO(dzA‘»k = Zo—ooo(ezAVsdq>k + Zo—ooo(szisdq)k

After expanding equations (5.19) to (5.21) and re-arrangements, yield:

(AVsaqdk = Az (Aigaq)k + By (Aiggq)x
(Diggqlx = C{v ) — C,(Av)y
D,(Av)y = E,(AVsqq)y + F{Aiggq)i
where,

e The input voltage vector at all harmonics is:

(AVgaq)k = [(AVsaqdk=0 (AVsaqlk=k; (AVsdqdi=i; - (AVsdqlr=ic;]”

e The STATCOM current vector at all harmonics is:

(Bisgq)k = [(Bisaq)k=0 (Aisaqlu=k; (Disaqli=k; - (Blsdqli=ic;]"
e The inputs of voltage control loop of the STATCOM are:

(Av), = [(AV)k—o (AV}i—k, (AV}ki;  (AV)ei T

Av = [vg, Q]T

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

After further manipulations of (5.22) to (5.24), the generalised STATCOM

impedance model is obtained as:

Zppsrarcom = (I —B,C,D;'F,)"* (A, + B,C,D; 'E,)

(5.25)

The resultant impedance (5.25) is similar to impedance derived for the synchronous

dq in chapter 4, however, this impedance includes all harmonics and can be utilised
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for stability studies. The block diagram of the generalised STATCOM impedance is
presented in Figure 5.2. The impedance matrices in equation (5.25) follow the same
pattern found in the derivation of the state space equations in (5.17) and (5.18),

which are defined as follows:

e The matrices that represent the STATCOM are:

rhdy—o hly—%; hly=k, hlg=x, 1
hlg—r,  hdg=g, 0 0
A, = hly—x; 0 hdy_x; 0
: 0 0 0

[ hly—x; 0 0 hdy x|

rBdj— Bly_yx; Bly—, o Blp=g, T
Bly—x, Bdy=g, 0 0
B, = Blk:k_1 0 Bdk:k_1 0
: 0 0 0

_Blk=ﬂ 0 0 Bdk:k_n_

e The matrix that represents current control loop is:

_Cdk=0 Clk=k_1 Clk=k1 Clk=kn_
Click,  Cdieg, 0 0
C; = | Cly=r; 0 Cdy=x; 0
: 0 0 0

-Clk=k_n O 0 Cdk=k_n-

where, their submatrices are:

Kip Kiy
Kppa + (Td)o 0 (H]—.kdw)k 0
Cdk = Kivq Clk=k1 = Kivq
0 vaq + ( S )O 0 (m)k
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Figure 5.2. Block diagram of the generalised Impedance of STATCOM.
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e The matrices that represent voltage control loop and their inputs are:

rDdj—o Dly—x; Dly—y, o Dlpog, T
Dly—, Ddyg, 0 0
D, = le:k_1 0 de:k_1 0
: 0 0 0

| Dly—x 0 0 Ddj x|

(Ed—o Ely_x; Elg—y, o Elog,
Elg—y, Edg=g, 0 0
E, = Elk=k_1 0 Edk:k—l 0
: 0 0 0

|Ely—x, 0 0 Edy_x; ]

[ Fdy—o Fly—x; Flp—g, Fly—g, T
Fly—y,  Fdy=g, 0 0
E, = Flk:k_l 0 de=k—1 0
: 0 0 0

| Fly—r 0 0 Fdj x|

where, the sub-matrices of (D,, E,, F, ) are defined:

Kiid
d, = (Kpiq + T)o 0 Dd,, = [alk 0] Dlje = [amk=k 0]
B Kii ' - ' =k =
0 <Kpiq + Tq)o 0 1 0 0
Cvsado = (2Rrisado Csqdo gd, = 3| (a0 <{sq>ol |
Fae=1" s 2o | 2| ~(isqdo isado
2 {Usado — 3 (Wsado
€ vsa —(2Rfisa)k (ivsq)k gl =3 (lsade  (lsghk
Fliek, = | 2 e R (P R (P
k=kq 3 3 ) lSq % lSd %
2 {Usa )k — 5 Wsadk

The previous submatrices represent the frequency coupling due to the dc link voltage
and reactive power calculation. The definitions of the parameters are:
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i = Cacs(Wacdo = (ZF7 (i (ZaRp)i) + 2 X0 ()i (vsadi Gisado +
2B i Wsadi (s + 2 BT (et (sadi Gisadie +

32;‘=°<v—>k_i (Bsqi (isqo + 3 ZH (i (vsq i Cisg i +

2B Dt (s (isq

OMp=p =

Cac(s + jkw ) {vach — Zk k( >k L(lstf)L ZFO (%ﬂ)k—i (Vsai (tsadr

—+

3 2 i (Ve (isado +
Zk 0( )k L(vsq> (lsq)k+ Zk k( )k l(vsq) <lsq>0

It is noted that the system analysis for harmonic order (k = 0), the generalised state
space and the generalised impedance are equal to the derived forms for the
synchronous dq model. A similarity between the synchronous dq modelling and the
proposed DP modelling is therefore expected in the response and the criteria.

5.5 Stability assessment of STATCOM connected to the grid using the new
generalised modelling

In this section, three case studies are presented to show the effectiveness of the

proposed STATCOM dg-dynamic phasor model for stability assessment. The system

under steady-state conditions is presented in Figure 5.3. The grid and the STATCOM

parameters are listed in Table 5.1. In the simulation, the dynamic phasor quantities

are extracted using a low-pass filter for the ac quantities and using a Fourier analysis

for the dc quantities.

dc*: Vdc

VSC
|

Load

Figure 5.3. Simplified diagram of STATCOM connected to the grid.
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Table 5.1. Test system parameters.

Parameter value Parameter value
Shase 100 kVA Kpiaq: Kiiagq 1000 V/A, 400 V/As
Vpase 415 kV Kpva » Kiva 20 A/V, 200 A/V.s
f 50 Hz Kpug Kivg -0.002 A/VA, 0.1 A/VASs
Ry, Lg 0.25Q, 1 mH Ve 1000 V
Rs, Lf 0.1 Q,5mH Cac 400 pF
P,,Q, 65 kW, 12 kVAr

5.5.1 Balanced operation of STATCOM with no harmonics

This case study is employed as a benchmark for the operation of the STATCOM.
The STATCOM is assumed to operate in balanced conditions with no harmonics. In
such an operating condition, the system can be modelled either by the synchronous
dg model presented in Chapter 4 or using the generalised model with harmonic order
(k = 0). In this case, the state space analysis of the test system generates seven stable
states as seen in Table 5.2. Some of STATCOM eigenvalues are overdamped (4, to
As) while the rest of the eigenvalues (1, and A,) are repeated real eigenvalues
(critically damped). The Bode plot of STATCOM impedance presented in equation
(5.25) is shown in Figure 5.4 which is compared with other case studies later.

5.5.2 Unbalanced operation of the STATCOM

The unbalanced operation of the test system is assessed using the derived model of
generalised state space and impedance analysis. The analysis of the unbalanced
system displays two balanced systems operating at two different frequencies
(wy, 2w,,) as shown in Table 5.2. As the STATCOM has seven states as presented in
Chapter 4, the studying of the unbalanced conditions will generate 14 states. The first
seven states represent the system at the fundamental frequency while the rest
represent the system at double frequency (—2w). The eigenvalues related to the
unbalanced operation (Ag to 1,,) are considered as underdamped eigenvalues. In the
state space equation (5.12), the unbalanced operation of the test system is existed if

the matrix (ACy) exist, while the diagonal matrices show the frequencies of system
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variation and the instability conditions of the system. The frequency coupling caused
by the unbalanced conditions deviate the system eigenvalues to the right-hand side
from their original position that means the unbalance will drag the system to become
less stable as much as the unbalance increases. Alternatively, in the frequency
domain, the effect of unbalanced conditions of the STATCOM can be seen by
changing the level of unbalance such as changing the magnitude of phase (b) as:

V] = [1.0 0.85 0.65]pu

Table 5.2. The eigenvalue analysis of the test system under balanced and unbalanced

conditions.

Modes Balanced condition Unbalanced condition
M -1.54x10°+j0.00 -1.49%10°+j0.00
A -7.99x10%+j0.00 -7.99x10%+j0.00
A3 -221.58+j0.00 -204.51+j0.00
A4 -10.47+j0.00 -10.52+j0.00
As -24.04+j0.00 -23.09+j0.00
Ae -2.50+j0.00 -2.50+j0.00
A -2.50+j0.00 -2.50+j0.00
Ag -1.49%10°+j628.32
Ao -7.99x10%+j628.32
Mo -204.51+j628.32
M1 -10.52+j628.32
A2 -23.09+j628.32
M3 -2.50+j628.32
Ma -2.50+j628.32

As shown in Figure 5.4, the STATCOM has four impedances at each harmonic
frequency, the diagonal impedances (Z,4,Z44) and the off-diagonal impedances
(Zqa, Z4q)- For the balanced conditions, the fundamental impedances and the second
order harmonic are equal for the balanced systems as the parameters coupling
matrices are equal to zero. In addition, the sharp changes of second order impedance
at the twice fundamental frequency are referred to the existence of the complex part
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which represent the second order harmonic. Alternatively, the unbalanced condition
do not affect the off-diagonal impedances due to the change of STATCOM operating
conditions while the diagonal impedance decreases as the unbalance increases. This
is referred to the coupling presented between the fundamental frequency and the
negative sequence component. The two impedances at (k = 0, —2) match each other
in case of balanced operation (with no harmonics) or in case of the coupling effect is
ignored. This can be used as an indication for unbalance of the modelled systems

which depends on the severity of the unbalance.

Zdd Zdq

Phase(deg) Magnitude(dB)

-100 | 0 ? ‘
200 : : 200 el L
10° 102 10° 10° 102 0%
Zqd Zqq
100 : 50 ; :

Phase(deg) Magnitude(dB)

-100 |
200 : 200 5
100 102 104 100 102 104
Frequency(rad/s) Frequency(rad/s)
= Synchronous dq ==== Negative seq. at 0.85 pu
—° Negativeseg.atLpu e Negative seq. at 0.65 pu

Figure 5.4. STATCOM impedance under different operating conditions (balanced and

unbalanced).
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The reason for the unbalanced effect presents at low frequencies is due to the
presence of the coupling matrix where their effect will be insignificant at high

frequencies due to the dominant of fundamental quantities.

The main difference between the proposed dg-dynamic phasor model and the
positive and negative sequence based synchronous dgq method (PNDQ) is the
following:

e Unbalanced systems are derived for positive and negative quantities in PNDQ
while in the proposed modelling is derived as fundamental frequency and 2"
order harmonic at double fundamental frequency rotating anti-clockwise
(k = —2). The proposed modelling has an advantage of defining the frequency of
the oscillations and their rotation direction which is helps in identifying the origin
of the oscillation.

e The proposed model presents the effect of the fundamental frequency on the 2™
order harmonic while it does not present any effect of the 2" harmonic on the
fundamental frequency.

¢ In the proposed modelling, the coupling between the fundamental and harmonic
frequency will disappear once the system is balanced while the PNDQ keeps
presenting this coupling even at balanced conditions. This is an advantage of

using the proposed modelling over the use of PNDQ.

5.5.3 STATCOM operation under harmonics

The operation assessment of the STATCOM under harmonics is discussed in this
section by injecting two harmonics (5™ and 7™). According to the transformation of
these frequencies to the dg-dynamic phasor, six frequencies are generated in this
domain. Each frequency component is transformed into a positive and negative
component as k =(0, -2, 4, -6, 6, -8) respectively. The size of the state matrix (App)

and input matrix (Bpp) can be calculated as shown in equation (5.5) and (5.6):
Size (App ) = (2 (1+2) (7), 2 (1+2) (7)) = (42, 42) (5.26)

Size (Bop ) = (2 (142) (7), 2 (1+2) (4)) = (42, 24) (5.27)
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So, 42 eigenvalues are generated in this case, seven at each frequency. The plot of
the STATCOM eigenvalues is shown in Figure 5.5 to present the effect of coupling
on its operation. In Figure 5.5a, the coupling between the harmonics is ignored. In
this case, the harmonic inclusion is observed as multiple stable systems operate at
different frequencies. Each of these systems is referred to its own coordinates. The
newly added harmonics are repeated at these harmonics without any change of the

system stability.

3x10

Synchronous dq 05" harmonic x5" &7" harmonics |
x x I
3
2x10° ® ®
" Negative Sequence
i~ components
< 1x10% L ]
>
< @ @ Symmetry line
S . O = )Ogngamental
s 0 é é
5 Positive Sequence
-1x10° - components ]
@ @ ®
_2)(103 x 1 1 x 1 *
-15x10* -10x10* -5x10* 0
real axis
@
3
3x10%5 Synchronous dq_ 05" harmonic_x5" &7" harmonics
X %Xlo x X
2x10°% | ‘ 1 2| x x
g L OEle xx
S0’ L B0 8 x
2 5 O
5 X ™ / LE
= ; ° X X |
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Figure 5.5. Eigenvalue analysis of STATCOM using dg-dynamic phasor modelling:

(@) Coupling effect ignored and (b) Coupling effect considered.
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The eigenvalues of the test system are shifted up by (w) in the imaginary axis due to
the dg-dynamic phasor transformation. Thus, the axis of symmetry is located at
(w = jwrundamental)- The eigenvalues of the positive sequence components are in the
upper part of the complex plane, while the negative sequence components are in the
lower part of the complex plane. Alternatively, the frequency coupling causes a
displacement of the system eigenvalues as more harmonics are included in the study
which prevents the presence of the repeated frequencies (see Figure 5.5b). The
system starts to become unstable as the harmonics are included. It can be concluded
from Figure 5.5, that ignoring the frequency coupling between the fundamental

frequency and the existed harmonics could lead to a major error in the analysis.

In Figure 5.6, the effect of including the harmonics is presented using the
STATCOM impedance model. Ignoring the frequency coupling in the impedance
model results the same impedance as synchronous dg impedance of the STATCOM.
Alternatively, the frequency coupling increases the magnitude and the phase of
STATCOM impedance, which reduces the stability margin of the STATCOM. Thus,
the inclusion of the harmonics has a significant impact on the fundamental frequency
due to the coupling.
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Figure 5.6. The effect of coupling on STATCOM impedance.

In the meantime, this effect can be insignificant in case of one harmonic is included
or in case of two non-close harmonics (such as 5™ and 9" ) are considered. For the
frequency analysis, the effect of including harmonics can be seen also using the
generalised Nyquist plot, which is presented in Figure 5.7. The STATCOM
impedance without any harmonics is presented by solid line in Figure 5.7 while the
STATCOM impedance including the harmonics effect is presented by dotted line.
Even though the Nyquist plot of the STATCOM impedance without harmonics
presents a stable system the impedance plot including the harmonics shows an

oscillatory system.
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Figure 5.7. Generalised Nyquist plot of STATCOM with and without harmonics coupling.

5.6 Proposed generalised dg-dynamic phasor modelling for SSSC device

The generalised dg-dynamic phasor modelling development of SSSC with three
control modes is presented in this section. It is essential to study the effect of
harmonics such as SSR effect on the operation of SSSC and its control mode and
how the harmonics can affect their performance due to their presence in this

environment.

5.6.1 Generalised state space of SSSC

Likewise, the principle followed to derive the STATCOM, the SSSC state space and
impedance models are presented for different control modes. Such derivation will
help to compare between such control modes and consequently their suitability to use
in different power system applications. The detailed derivation can be found in

Appendix-E.

5.6.1.1 Generalised state space model of SSSC based power control mode
As stated in Chapter 3, the input parameters of SSSC in this control mode are the
active and reactive powers. The transformation of these powers to dynamic phasor

form is given as:
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(AP,)o {sea)o <iseq)0 (iseadx
(AQm)O <iseq)0 _(ised>0 (iseq)k
(APm)k _ E (ised>k <iseq)k (ised>0
(AQm)k B <iseq)k _(ised>k (iseq)o
(APm>k (ised>k <iseq)k 0
'<AQm)k' -<iseq)ﬁ _(ised>k 0
[ (vmd>0 (vmq>0 (vmd)k (vmq)k
_(vmq>0 (vmd>0 _<Umq)k (vmd)k
E (vmd>k (vmq>k <vmd)0 <Umq)0
2 _(vmq>k (vmd>k _<Umq)0 <vmd)0
Vmade (Vmgde O 0
|—(Vmg)k (Vmade O 0

—(qu>k (Vinadk
0 0
0 0

_(vmq )0 (vmd>0_

(iseq>k <ised)k

_(ised>k (iseq>k
(iseq>0 0
_(ised>0 0

0 <ised)0

0 (iseq>0

(vmd>k (vmq )k_

(vmd>0 (vmq >0

<iseq)k 1
_<ised)k
0

0

<iseq)0

—(Avmd)o_

_<ised)0-

_<Aised)0_
(Aiseq>0
(Aised)k
<Aiseq>k
(Aised)k

_<Aiseq >E-

_<Avmq)ﬁ_

(Avmq)o
(AVa )k
(Avmq)k
(Avmd)E

(5.28)

where, m is equal to 1 for the sending end powers and 2 for the receiving end

powers. The transformation of the SSSC equations using power control mode to

dynamic phasor is given by the expanding the synchronous dq model of SSSC to

generalised state space model as:

d
a(AX)k = APpp(AX)y + BPpp(AU)y

where, it is given for the state matrix and input matrix as:

r APk=0 aCPy=f QCPk=k
ACPk=k APk=k

APDP == acpk:k a'pk=k
lacpy=tm
[ bpi=o bcpr=k bcpr=k
bepy=k bpi=k

BPpp =| bcpy=x bpy=x
by —in

ACPr=knT

APk=kn 4

bcpi=in

bpy—xn

The submatrices of (APpp) and (BPpp) are given as:

e The diagonal submatrices are:
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Pk=k =

- 3 3
—jkw 0 —3 iva ((V1a)o — (V2a)0) -3 ivd(<U1q>0 - (Uzq)o)
. 3
0 —Jjkw — S Riyg (—<U1q>0 + <U2q>0) Kivg (v1a)o — (V2a)0)
1 3 K v 3K v
e > Lp 4 ((V1d)o (V2a)o) — = _]k > Lped (<U1q>0 - (Uzq)o) t+w
1 3 Kpy 3 Kpy Rse .
0 T iw £ ( (v1q)o + <v2q)0) w > Iieq ((v1ado — (V2ado) — oo _]kw_
bpy=r =
_0 0 - ivd(ised>0 _EKivd(iseq)O _Kivd<ised)0 EKivd(iseq>0 Kivd 0
. . . 3 .
0 0 > ivq(lseq>0 5 ivq(lsed)o 5 ivq(lseq>0 > ivq(lsed>0 0 Kivq
1 3K v 3K " 3K v 3K v Kpy
E 0 2 Lp 4 <lsed)0 2 Lp d< seq)O - 2 Lp 4 <lsed)0 E Lp d< seq)O - Lpsed 0
1 3K v 3 Kpy 3 Kpv 3 Kpyq Kpy
i 0 E > Lp q<lseq)0 -3 q( [sed)o -3 Leo q( seq)o > 1. Leo (Lsed>0 0 Lpseq
e The non-diagonal matrices which cause the frequency coupling are:
[0 0 —Kipa((via)k—(v2a)x) _Kivd(<vlq>k_(v2q)k)_
0 0 —Kig(—(vighe + Wagdk) —Kivg((v1ad—(V2a)i)
_ Kpva Kpva
ACPr=k =510 0 L2 (1) e—{vaad) i((1?1(;)k—(172q)k)
Lse LSE
K K
0 0 A (~wigh+W2eh) T (Viad—(vza)i)
| Lge Lge i
[0 0 _Kivd(ised)k _Kivd<iseq)k Kivd(ised)k Kivd(iseq)k 0 07
00 _Kivq<iseq>k Kivq<ised)k Kivq<iseq>k _Kivq(ised)k 00
_3 Kpvd ;. Kpvd ;. Kpvd ;.
bcpk=k T2 00 Lp_ed(lseq>k _Lp_ed<lsed)k _fj(lseq)k 00
Kpvpg . Kpvg ;. Kpvg ;. Kpvg .
_0 0 Lpeq <lseq)k _ﬁased)k _ﬁ(lseq)k ﬁ(%ed)k 0 0_

5.6.1.2 Generalised state space model of SSSC based voltage control mode
The transformation of SSSC controlled by voltage control mode to dg-dynamic

phasor is as follows:
4t (X0 = AVpp(AX) + BVpp(AU); (5.30)

where,
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e The state matrix is given as:

AVk—o ACVy =k ACVk =k ACVk=kn
ACVi aAVg—f
AVDP = | ACVy=x AV =k
lacvk=ﬁ avk=ﬁ J

The sub-matrices are:

AVg=k =
—jkw 0 0 0 —Kip .
0 —jkw 0 0 0
1 R . Kpvd
Lse Lse Lse
1 R .
0 —— - ——= —jkw 0
Lse Lse
3U a—21 de 3 v i2 Rf 317 dlsed 317 i
ZV/sed™ “tsed: seq sed"f,Vsed sed ™, Vseq-'seq .
0 0 ¢ Yo Yo ( 2 Yo — jkw
L CacVdc 2 CqcVdc Cacvgc E
Zero(4 X 5)
ACVi=f =

3 , .2 3 , 3 .

Evsed_ZLsed-Rf> (3 Vseq ) (lsed-Rf_Evsedlsed_EVseq-lseq)
k o k 2

2 CqcVdc Cacvgc

0 0 .

Cacvdc

e And it is given for the input matrix as:

bvg—y bcvi_i bcvgg bcvk=kn]
| bcvkzk bvk=k |
BVDP — bcvk_k bvk_k
bcvy_im bvy -t
-0 0 Kipg 0
0 _Kivq 0 Kivq
1 Kpvd
o 0 %,
bvk:k = se 1 K. * K.
0 (__|_ vvq) 0 _ Kpvg
Lse Lse Lse
E ised E iseq 0 0
—(2 Cdc”dc)o (2 Cdc”dc)o -
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Zero (4 X 4)

(E lsed ) 3 iseq ) 0 0
2Cqcvdc k 2Cqcvdc k

bcvk=k =

From equation (5.30), the main cause of frequency coupling in SSSC controlled by

voltage control mode is the dc link while the harmonics do not have any influence on

the quadrature input because of the frequency coupling, which is caused by the

multiplication of the system measured quantities or states.

5.6.1.3 Generalised state space of SSSC based impedance control mode

The generalised form of SSSC using impedance control mode is given as:

d
o (AX) = Alpp(AX)y + Blpp(AU)y (5.31)

¢ In this case, the state matrix of SSSC is given as:

[ Alg—o QAClg—f QAClg— .. acikz,m]
| acik=k aik=k |
AIDP = | aCikzk aik=§ |
lacik=ﬁ aik=mJ

where, the sub-matrices are defined as:

aik=k =
—jkw 0 0 0 —Kipa
. KiygV
0 —jkw 0 (==, 0
lseq
1 R . Kpvd
Lse Lge Lge
1 -R KpyqV .
0 —— - =< — () — jkw 0
Lse Lse Lselseq
3 , .2 3 , 3 ,
0 0 Evsed_leed-Rf)O (i Vseq . (lsed-Rf_Evsedlsezd _EVseq-lseq)
CacVdc 2 CqcVdc Cacvic
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0 0 0 0 0
KivqVseq
0 0 0 (Fluaeen) 0
seq
) 0 0 0 0 0
aClg—p = 0 0 0 _ KpvqVseq 0
Lseigeq
3 . 2 3 , 3 ,
Evsed_ZLSed-Rf 3 Useq lsed-Rf_EVsedlsed_;”seq-lseq
0 0 C——» GC—n 2 Dk
L CdcVdc 2Cacvdc CacVyc i
e The input matrix (BIpp) is given as:
bik=0 bCik=k bCik=k bCik=kn
bCik=k bik:k
BIDP = bCik=k bik=k
bCik=H bik=ﬁ J

where, the coupling in these matrices is caused by the integral part of the SSSC
controller, impedance calculation and the dc link power balance, which are:

0 0 Kpg O
Kiy
0 - <ise:)0 0 Kivq
L _ Kpva
bik:k = Lse 0 Lse 0
2 Kova _ Kby
0 {Lse + (Lseiseq)o} 0 Lse
E ised i iseq
-<2 Cdcvdc)o 2 Cdcvdc)o 0 0
0 0 0 0
K ivq
0 —(— 0 0
lseq
bei =| O 0 0 0
) 0 Bvay, 0 0
Lselseq
E ised E iseq
-(2 Cdc”dc)k <2 Cdcvdc)k 00

It is evident that using the impedance (x,.4) as an input to the SSSC makes the SSSC
become more coupled with the harmonics compared with the use of quadrature
voltage of the SSSC. This is referred to the interaction between the quadrature

current and quadrature voltage in this mode.
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5.6.2 Generalised impedance model for SSSC device

In this section, the impedance model of SSSC when controlled with three different
control modes is presented. The full derivation of these models can be found in
Appendix-E. The impedance analysis of the system has many advantages in
identifying system oscillations and providing the response of the system in the

frequency domain.

5.6.2.1 Generalised impedance model of SSSC based power control mode
The generalised impedance model of the SSSC when controlled in the power control
mode can be derived using the following generalised equations derived from the

synchronous dg equations as:
(Avsedq)k = APse<Aisedq)k + <Amsedq)k (5.32)
(Amsedq>k = BPse(APQikine)k — BP;c(APQjine )k (5.33)

The active and reactive power flow through the compensated line can be derived by
the help of Figure 5.8. Using KVL, the relationship between the bus voltage and the

SSSC voltage can be given as:

Ade — Avsed = Avld — Ade (534)
Avpg — Avgeq = Avig — Avy, (5.35)
where,

Avy 44 is the direct and quadrature axis components of sending end voltage.
Av,4, is the direct and quadrature axis components of receiving end voltage.
Using equation (5.28), the active and reactive power is equal to:

(APQjine)x = —CPso(AVseqq)x + CPe(AVLgq)k + DPyo(Aisedq)k —

. (5.36)
Epse (Alsedq>k

112



Sending —* _p g

—@-v 0004,

end

Vi

Receiving

SSsC
A

Vi

Transmission line
equivalent circuit

Vs

-

end

Figure 5.8. Phasor voltage of SSSC connected to a grid.

Using back substitution of equations (5.32) to (5.36), the impedance of SSSC

controlled by active and reactive powers is given as:

Zpsssc = (I - BPseCPse)_l(APseDP + BPs EP;e — BPseDPse)

For the sake of future comparison between the three control modes, the compensated
line impedance is excluded from the SSSC impedance (Zpsssc) as shown in the
analysis. The block diagram of generalised SSSC impedance controlled with power

control mode is presented in Figure 5.9. The definitions of the matrices in equation

(5.37) are as follows:
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éAisedq }k:m

Alsedq >k=k

DPg-EPe

yo

(Avig) | cPs

CPe

<Av§dq gko

(Av
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_sedq

<A\g{sedq

> gkzkn]
Aviedq k=k,

AP,
APQiie ), i
AI:)Qline K=l
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Block diagram of the generalised impedance of SSSC controlled with power control mode.

114



The topology matrix is:

[@Pse - 0 0 0 0 |
I 0 APse o —p 0 0 0 I
APe=| O 0 @ 0 0|
[ 0 0 o =~ 0 J
0 0 0 0 APse . —xn

a = [(S + jkw)Lge + Rge —wlse
Psep—r = wLg, (s + jkw)Lse + R,

e The current control matrix is:

[ Bpsek;o bcpsek=k bcvsek=k 0 bcvsekzkn]
| beDse o, BPsers 0 0 0 I
BFse = | bCPse )i 0 BVsey_ 0 0 |
: : : S
lbcpsek:H 0 0 Bvsekzﬁj
Kiy
B (vad + < Sd>0) 0
Psep—p = Kiy
0 (Kpva + %00)
Kivd
(ke 0
bCPse e = 0 Kipq
(s+jkoo)k

e The calculation of active and reactive power matrices are:

[ Cpsek=0 Ccpsekzk Ccpsekzk 0 Ccpsekzkn]

CCDsep—r  CDsejp—x 0 0 0
CPse = | CCPsej—x 0 CPsep—r O 0
[ CCse =t 0 0 v CDsepoin J

[ Dpsek=0 dcpsekzk dcpsekzk 0 dcpsekzkn]

ACPser—r  DDser—p 0 0 0
DFse = dcpsekzk 0 Dpsekzk 0 0 |
| dCPse—tm 0 0 DpsekzﬁJ
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r Epsek=0 ecpsek=k ecpsek=k 0 ecpsek=kn]

eCPsep—r  EPsep—y 0 0 0
EPse = | eCPse -3 0 Epse,—z O 0

| ; : S

lecpsek:H 0 0 v EDser i J

where, their submatrices are defines as

C _ E -(ised>0 (iseq>0 l cc _ E -(ised>k (iseq)k l
psek:k 2 _(iseq>0 _(ised>0 psek:k 2 _<iseq)k _(ised>k
_3 [ (vsed)o (vseq)o _3 _ (vsed)k (vseq)kl
Dpsek=k 2 _—(Useq)o (vsed)ol dcpsek=k 2 __<vseq)k (vsed)k
E _3 (Viado (qu)ol ec _3 (Viadk WLq)kl
Psek=k = 2 —(Vigdo  (Viado Pi=k = 3 —(Vrgdk (Vi

5.6.2.2 Generalised impedance model of SSSC based voltage control mode

The SSSC impedance controlled by voltage control mode is derived in this section.
In this case, the dc link voltage and the quadrature voltage are the controller
references. The SSSC impedance can be derived in a generalised form as:

<Avsedq)k = AVse(Aisedq>k + (Amsedq>k (5.38)
(AMgeqq)ic = BVse(AVV™ ) — BVs(AVV)y (5.39)
CVse (AVV)k = DVse (Avsedq>k + EVse <Aisedq)k (5.40)

Using equations (5.38) to (5.40), the system block diagram can be plotted as
presented in Figure 5.10, and the SSSC impedance can be derived as:

ZVSSSC = {l + BVse (CVse)_lDVse}_l{AV;e - BVse (CVse)_lEvse} (541)

Similarly, the definitions of the matrices presented in equation (5.41) are given as:
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Figure 5.10. Block diagram of generalised SSSC impedance controlled with voltage control mode.



e The SSSC topology matrices are:

-Avsek=0 0 0 cos 0
0 AVse_y 0 0 0
AV =| O 0 Avseyg 0
. 0 : :
0 0 0 Avsey_ i
do = [Ese(s +jkw) + Ree ~ols
Sek=k wLg, Lse(s + jkw) + R,

e The current control matrix is:

[ Bvsek;o bcvsek=k bcvsek=k bcvsek=kn_
bcVse, ), BUsej_y 0 0 0
Bvse = bCUsek:k 0 Bvsekzk 0
: 0 :
| bCVse, 7 0 0  Bvge,_z; |
Kiy
(vad + <Td>0) 0
BvSEk=k = Kivq
0 (vaq +( S >0)
Kiva
<s+jku)>k 0
bcvsek=k = 0 Kipq
(s+jkoo)k

e The dc link voltage and quadrature voltage matrices are given as:

[ CVsepoo  CCUser—ip CCUsep—p " CCUsep—pn]
e CUsery 0 0 0
CVie = | Wsep_g 0 CVse - 0
: 0 :

| Wsep 1 0 0 CVsep_17
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Dvse,_y ACVsep_y ACUse;_,
dcVse,, . DVsep_, 0 0

DVse = | dcVse_g, 0 Dvge, _+
: 0
dCVse ) _7m 0 0

[ EVsep_o  €CUser_p  ©€CUsej_y
eCVse, . EVse,_y 0 0

EVie = | €CVse % 0 EVser_%
. 0
[ eCVse 7 0 0

where, their submatrices are:
3

Cvsek=k = | Cac{Vac)o(s + jkw) + 5(2

CCVsep_ i

e,y =

Dvsek:k =

Evsek:k =

, , .2
Vsed- lsed + 7 Useq-lseq — lsed- Rse

0

Vac

0 1

Cdc(vdc)k(s_jka))+<2 sed:sed T 7 Yseq: "seq — “sed: T'se -
Vac

0 0

. . .2
Vsed- lsea T fvseq- lseq — lsed- R

0

Cdc(”dc)ks + <2

Vic
0
[,3 . 3.
(E lsed)O <E lseq)Ol , ecvsek=k =
0 1
3 _ 3 1
[(E Used — leed-Rf)O (E vseq)O
0 0

k
0

[ 3 . 3
(E VUsed — leed-Rf)k (E vseq)k

"

3.
(E lseq)k]
0

0

3.
, dcvsek=k [(E lsed)k

0

5.6.2.3 Generalised impedance model of SSSC based impedance control mode

In this section, the derivation of the generalised impedance model of SSSC

controlled with impedance control mode is presented. It follows the same procedure

followed for the previous sections. So, the generalised SSSC impedance is given as:
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Figure 5.11. Block diagram of the generalised SSSC impedance controlled with impedance control mode.
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<Avsedq)k = Alse(Aisedq)k + <Amsedq)k (5.42)
<Amsedq)k = Blse (AVX*>k - Blse<AVX)k (5.43)
Clsc{AVX)y = DI, (Avsedq)k + Elge (Aisedq)k (5.44)

The impedance of SSSC controlled by impedance is developed by the help of
equations (5.42) to (5.44) and the block diagram of the SSSC impedance depicted in
Figure 5.11. The SSSC impedance is:

Zisssc = {1+ Bl (Clse)_lDIse}_l{AIse - Blse(CIse)_lEIse} (5.45)
The definitions of the matrices in equation (5.45) are:

e The topology matrix is:

Aige,_y O 0 - 0
0 A, 0 0 0
Al =| 0 0 Aig,_, 0
i 0 . )
0 0 0 Aig,_|
Ai _ [Lse(s + jkw) + Rg, —wLg,
Sek=k — WL, Lo (s + jkw) + Rg,

e The current control matrix is:

[ Bisep—o DClisep—ip DbClsery = DClser—pn]
bCise,_, Bisery 0 0 0
Blse = | bcise,_ 0 Bise,_z 0
: 0 :
|bise ), 0 0  Bisep
K; Kivd
o | (e E0) 0 T (="
Sek=k — K; ’ Sek=k Ki
0 (Kpvq + (22),) 0 Gtk

e The dc link voltage and SSSC impedance matrices are:
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Clge =

DI, =

Elg,

[ Clsep—
Clige),_p

Clige,_x
| clise, 7

[ Dise,_,
dcise,
dCise;_7

[ dCise) 7

[ Else,_y
eClsey_y
eClse)_k

_€Clsek=m

CClses_7

Clsepoy
0

dcise;_1

Disep_,
0

eClse)_k

Eiser—y
0

CClsep_p,

=k

dcise;_p

Dise, %

eClse ) _p
0

Eiser_p
0

0 0

0 0

0 Elsek=m-

where, their submatrices are given for the diagonal submatrices which expand at the
fundamental frequency of the system while the other matrices are expanded using

their own frequencies as:

v d'i dat>v N _izd.R
CdC(de)O(S +]k(1))-|—<2 se se 5 Useq- Lseq o e

Ciso,_, = Yo
k=k Vye

0 1

. 3 . .2
7 Vsed- lsed T 7 vseq- lseq — lseq- Rse

)

CCisek=k = Cdc(”dc)o(s —jkw) + (

Vac
0 0
S Veod- isoq + > Vsag-i i2,4.R
] 7 sed- tsed 7 seq-‘'seq ~ lsed-‘se
Cllsek=k = Cdc(”dc)ks + ( Vae )0 0
0 0
3 _ 3 3 3
<E Vseq — 2iseq- Rf>0 E(vseq>0 §<lsed)k E(lseq)k
Elsekzk = Useq dClsekzk = 1
0 ( 2 )0 0 ( )k
lseq lseq
3 3 Ci o Ci Do
Z — q 2 se seq
eCisekzk — (2 Used leed- Rf)k (2 vseq)k Disekzk — 2 2

0

0

1
0 <@>0
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5.7 Stability assessment of SSSC with impedance control mode

In this section, the effect of harmonics and unbalanced operation on the SSSC with
impedance control model is presented as an example. The test system including the
SSSC is presented in Figure 5.12 and the SSSC parameters are shown in Table 5.3.
The SSSC analysis is carried out by the impedance analysis to presents the
differences between different operating conditions.

5™ and 7" harmonics injection

..................... >
Vg Vl Rse Lse V2 Lnetwork

r——— — — " Infinite bus
I R, :

| SSSC |

I control |

| L, 'SSSC

I \ |

| VSC |

| I

| |_| . I

Lo CaNVe |

Figure 5.12. SSSC compensates load in presence of harmonics.

Table 5.3. SSSC control modes parameters.

Parameter Value
R¢, Lf 5Q,5mH
Rger Lo 25Q, 161.4 mH
Cac 800 uF
de 50 kV
Kpvar Kiva 0.01 V/A, 0.01 V/As
Kpvgr Kivg -0.22 VIA, 2 VIAs
Vseq 1000V
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5.7.1 Balanced operation of SSSC with no harmonic

This modelling of SSSC is carried out by the synchronous dq impedance model of
the SSSC with power control where the harmonics are ignored in the model. The
SSSC impedance at the fundamental frequency is shown by the dotted line in
Figure 5.13. It is seen that the SSSC impedance with no harmonics matches the

SSSC impedance without harmonics coupling.

5.7.2 Unbalanced operation of the SSSC

The proposed generalised SSSC model is employed to assess its capability to identify
the unbalanced operation of the SSSC. Three levels of voltage magnitude will be
examined in this section as the magnitude of phase-b as [1 0.85 0.65] pu. It is clear
that the dg-dynamic phasor model of SSSC is efficiently identified the unbalanced
operation without any transformation to the model. The identification is based on the
existence of (k = 0) at the fundamental and (k = —2) to represent the unbalanced
operation. Figure 5.13 shows the plot of four impedances as the synchronous dq
impedance of SSSC (dotted line), the negative sequence impedance for the balanced
system (solid line), the negative sequence impedance at 0.85 pu voltage (dash-dot
line) and the negative sequence impedance at the 0.65 pu (dotted line). As shown in
Figure 5.13, the negative sequence impedance (dotted line) for the balanced case is
slightly greater than the positive sequence impedance (dashed line) which is referred
to the existence of controller gains in the coupling matrix. The increase of the
unbalance increases the magnitude of the coupling matrix which consequently
increases the SSSC impedance especially at low frequencies. This is referred to the
parameters of the SSSC controller which will become zero at high frequencies and
the only effect remains is the measured negative sequence components (k = —2).
The identification of the unbalanced operation becomes more obvious as much as the
coupling between the system components increases and the control system becomes

more complex.
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Figure 5.13. SSSC impedance with impedance control model under unbalanced operation.

As stated previously, the sharp changes in SSSC impedances are caused due to the

complex part at the studied harmonics in dg-dynamic phasor domain.

5.7.3 SSSC operation under the existence of harmonics

In this section, the effect of harmonics on the SSSC impedance with the impedance
control model is presented. The source injects the 5™ and 7™ harmonics to the system
in order to assess the response of the SSSC control modes due to the existence of the
harmonics. The SSSC has a frequency coupling in both control inputs, where the
coupling in d-axis is referred to the active power while the g-axis coupling is referred
to the reactive power. As shown in Figure 5.14, the existence of harmonics has

almost no effect on the impedance of the SSSC for all frequencies. This is referred to
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the simplified controller that has been used which causes a slight frequency coupling

between the fundamental frequency and the other harmonics, where the control

systems are one of the main causes of coupling in VSC-FACTS devices as will be

presented in the following section.
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Figure 5.14. Harmonics effect on SSSC controlled with impedance control mode.

As a conclusion, the frequency coupling can be ignored in case of this control mode

is employed in harmonic polluted environment.

5.8 The concept of frequency coupling in VSC-FACTS devices

In VSC-FACTS devices and other power system components, the coupling between

the fundamental frequency and other harmonics might affect the operation and the
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stability of the device. The main observations regarding the frequency coupling in
VSC-FACTS devices in dg-dynamic phasor modelling are:

e The control systems such as the existence of integrators and differentiators as well
as phase-locked loop (PLL) especially in the weak grids, which cause coupling
between the fundamental frequency and other frequencies and between the
harmonics to each other.

e The existence of the harmonics in the dc link of the VSC-FACTS device which

causes due to the power variations.

The frequency coupling in VSC-FACTS devices is illustrated in Figure 5.15 using
dg-dynamic phasor model. It shows the system inputs are analysed based on their
frequency to an infinite number of harmonics. This result in the operation of the
VSC-FACTS device is seen as an infinite number of devices operate at these
harmonics which might affect each other at certain cases. The sum of the response of
all these systems is added at the output of the device to present the total response of
the device. The coupling between the fundamental frequency and the harmonics is
shown in Figure 5.15 by a bold solid line. It is assumed in this thesis that each
frequency affects its conjugate (bold dashed line in Figure 5.15) and the fundamental
frequency without considering any interaction between different harmonics. The
improved design of these devices eliminates or declines the strength of the link
between the frequencies which help to improve the immunity of the VSC-FACTS
devices against harmonic effects. From the impedance perspective, the frequency
coupling describes the effects of the harmonics on the device impedance, both the
magnitude and the phase. For instance, the STATCOM impedance presented in

(5.25) can be written as:

Zr +p Ex=N; Ex=k, €=k, Ex=k,,
M0  Zk=k, TD 0 0 0
= 0 Zy_7-+ 0 0
ZDP — l’lk'l,O k=kq p . (546)
Mk 0 0 0 L=k, TP 0
L Ux,0 0 0 0 Zy=%, + Dl
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Figure 5.15. Frequency coupling in VSC-FACTS devices.
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Equation (5.46) is generalised and written in a compact form as:

{Zf|k=0 + P+ Xhe—o(Er) k= 0}
Zpp =

5.47
Zflk=0 + P + Ukpo k+0 (5.47)

where,

g, is the coupling matrices between fundamental frequency and harmonics.

U o IS the coupling between the harmonics and the fundamental frequency.

The coupling might appear also in the diagonal impedance (p), as the dc link voltage
is affected by the presence of the positive and negative sequence components of the
voltages and currents. In the case of the 5™ and 7™ harmonic existence, positive and
negative components are generated at (+6w) which causes a frequency coupling. In
case of the system is considered as fully decoupled, where the system is assumed as

multi-grids operated at different frequencies, the coupling matrices are:
& = Uk = zeros (2,2) (5.48)

According to the dynamic phasor transformation in equation (5.48), the measured
impedance in abc coordinates at a specific harmonic is equal to the impedance of its

generated harmonics in dg-dynamic phasor multiplied by the transformation factor

(ei-jka)t)_

5.9 Comparison between the proposed dg-dynamic phasor modelling analysis
and conventional modelling techniques for small signal stability
Several modelling techniques have been employed in the literature for stability
assessment in the existence of harmonics and their effects on the operation of system
devices. These models are summarised in Table 5.4 by comparing their main features
in comparison with the proposed modelling. The comparison shows superior
advantages of the proposed modelling for stability analysis. However, the complexity
of the derivation is the main disadvantage. The selection between these modelling
techniques is carried out based on the purpose of the study and the operating

conditions of the studied system. Although the harmonic state space (HSS) technique
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is based on a similar concept, there are some differences between it and the proposed

model as:

e The proposed modelling is very efficient in identifying unbalanced operation of
the systems in the frequency domain.

e The frequency range of HSS in stability assessment is (—%, + %) where it is based

on periodic quantities. In the meantime, unlimited range is required to assess the
stability using the proposed model because the proposed method is based on linear
time invariant parameters.

e The positioning of the eigenvalues in the proposed modelling technique is located
in the opposite of that one resultant using the HSS. This is referred to the
assumptions made in the analysis of both modelling techniques.

e Each state variable expands by {6xh} in the HSS method while the proposed
model expands by {4xh}, where (h) is the number of harmonics. So, the proposed
modelling has 2/3 the size of HSS.
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Table 5.4. Comparison between the proposed model and other techniques for small signal stability.

. : : : Identify o
Characteristic Ideptlfy Complex!ty of Matrices size of unbalanced Type of Stability
harmonics effect derivation each state variable operation parameters assessment range
Multiple . nd . .
Synchronous dq [3] [18] coordinates Simple Small Usn;]g (2 )_order L|_near time- (—00, +)
. armonic invariant
required
Unified modelling using 'V'“'?‘p'e . Limited for Linear time-
of [30] coordinates Simple Small 0520 variant (—o0, + )
required s
Single phase dynamic Not . . Linear time- _
phasor [65], [105], [106] | applicable Simple Small Not applicable invariant (=0, +o0)
s Using positive . .
Harmonics linearization . Linear time-
method-LT! [36][37] Yes Moderate Moderate negative invariant (=00, +o0)
transformation
. Using positive . .
Harmonic state space . . Linear time- 0w
(HSS) [1][47] Yes Difficult Large negative variant ( >+ 2)
transformation
- i Moderate Using positive- : .
Proposedhggoc:ynamlc Yes Difficult (2 / ) of HSS negative Llirr]me\}/zrr;[;rr:le (=00, 4+ )
P 3 components
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5.10 Summary

A generalised dg-dynamic phasor of the state space model and impedance modelling
for small signal stability analysis has been proposed. Two types of VSC-FACTS
devices were employed to demonstrate the proposed modelling. The developed
criteria combined the criteria of synchronous dq modelling and HSS criteria. The
nature of the developed criteria is based on LTI systems while this system included
the effect of harmonics on stability. The unbalanced operation of the derived systems
appeared as a displacement of the eigenvalues in state space analysis and as an
unmatched plot of positive and negative impedances in impedance analysis. The
frequency coupling matrix presented a good sign of the unbalanced conditions of the
devices where its parameters are equal to zero for balanced systems. Also, ignoring
the frequency coupling presented repeated eigenvalues and the same impedance at all
frequencies. In the meantime, considering the coupling affects the stability margin of
the system and can lead to instability. In addition, the inclusion of harmonics in the
SSSC with impedance control caused no influence on the SSSC impedance due the
simplicity of the controller and the small effect of harmonics appeared in comparison
with the fundamental frequency quantities. Nevertheless, with respect to the
complexity of the analysis, the proposed modelling has a better performance than
conventional modelling. The proposed generalised modelling manages successfully
to reproduce their typical response at the fundamental frequency as well as at
significant low-order harmonics using both eigenvalues and impedance analysis. It
successfully includes the harmonics and identifies unbalanced conditions as well as
presenting the effects of harmonic coupling on the fundamental frequency. The
proposed modelling was more convenient be compared to the synchronous dq
models and to be simpler to extend the current criteria on synchronous dq to the
proposed form. The validity of the developed mathematical models was confirmed

using time-domain simulations performed in MATLAB/Simulink environment.
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CHAPTER 6

SMALL SIGNAL STABILITY MONITORING, IMPROVEMENT

AND CONTROL

In this chapter, an impedance measurement unit (IMU) is proposed to monitor the
small signal stability by measuring the system impedance. It has a fast response
which can be utilised by the network operators or a stability based control system as
a tool for fast assessment. Also, the effect of changing the STATCOM parameters on
the impedance norms is investigated. In addition, the effect of implementing control
parameters (virtual impedance) on infinite norm of STATCOM impedance is
presented. These control parameters might be utilised by the control system to adjust
the device impedance. Lastly, the effectiveness of SSSC control modes is
investigated on damping the system oscillations. The stability assessment is carried
out using the impedance concept for a series compensated system connected to a

synchronous machine.

6.1 Introduction

Power systems experience many events affecting their operating conditions or that
might lead to instability. From an impedance based stability perspective, the
definition of the instability is that when the load-source impedance ratio is greater
than a specific limit. So, by maintaining the impedance ratio below this limit, the
stability will be insured. A fast measurement of the impedance at the interfacing
point improves the response time to retain the system stability. Making the decision
about the required actions, to maintain the stability, can also be improved by utilising
the mathematical based criteria such as impedance norms. Even though the
impedance norms are not sensitive to the phase-related-instability, it can be utilised
to monitor the stability by network operators or a control system. As well as, having
a direct relationship between the control parameters of the network or the device will

aid the control system to maintain stability.
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6.2 Monitoring the stability of power system

Stability monitoring can be carried out by designing an impedance measurement unit
(IMU) and using its measurements to control device/load impedance norm. The IMU
should provide the required information of the system to change its impedance under
different operating conditions. The fast response of this measurement unit should be
guaranteed to ensure effective stability monitoring. In the following sections, the

design of the proposed IMU is presented.

6.2.1 Proposed impedance measurement unit (IMU)

In this section, an impedance measurement unit (IMU) for stability assessment
applications is proposed. The basic principle of IMU is to inject a perturbation signal
into the system and then calculate the response using current and voltage
measurements at the point of interest. Impedance identification is carried out using
several frequencies to ensure fast response and give a good estimation. The selection
of the injected frequencies should avoid any coupling between these frequencies in
dqg coordinates. A multi-tone signal is chosen to perturb the measured device. This is
more effective in comparison with the chirp signal, especially if several frequencies
are considered [97]. The resultant impedance is less noisy measurements. Also, the
injected frequencies should be distributed within the range of interest and be
multiples of the sampling time to reduce the Fast Fourier Transform (FFT) error.
Two measurements approach is chosen to measure the impedance using series
injection voltage. The voltage is injected by the injection circuit for a range of the
frequencies in the first half with positive frequency (4+w;) and negative
frequency (—w;) for the other half of the measurement time (t,cqsure)- The time
(t,) is the period required for each injected signal. It is specified based on the time
required to finish one duty cycle of the smallest injected frequency or the response
time of the measured system, and it is defined as:

tmeasure
ta = T (6 1)

The selection of the IMU parameters and injection technique is based on the

following factors:
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e The sampling time is chosen based on the frequency range where the maximum
range of measured impedance is equal to:

1

Maximum frequency range = ———
a u equency range 2(Sampling time)

(6.2)

e The measurement time (t,,cqsure) IS Selected based on the expected time constant
of the measured system and the duty cycle of smallest injected frequency.
Increasing of the measurement time ensures more accurate measurements.

e The number of injected frequencies is selected based on the number of
impedances that can present the impedance trend over the frequency range.

e The distribution of the injected frequencies should avoid frequency coupling
between injected frequency components.

e The injection technique ‘series voltage or shunt current’ of the injected circuit is
chosen based on the topology of measured system. For instance, current injection
is more suitable for VSC based devices that use the voltage as an input to phase
locked loop (PLL), while the voltage injection is easier to implement and suits the
devices using current as an input to PLL. This is referred to the effect of
harmonics on the PLL and phase shift of injected signal on the measured

impedance of these devices.

6.2.1.1 Proposed structure of IMU
The impedance measurement unit (IMU) structure is illustrated in Figure 6.1. The

measurement stages can be defined as:

o Signal filtering and discretization block: it filters the measurement based on the
injected frequencies, it transforms the voltages and the currents from abc to
synchronous dq coordinates. Also, it discretises the measured signals of voltages
and currents according to the sampling time.

e Time-based selector block: it splits the measured signals to two parts and delays
the first parts of the measurements according to the injected time measurement

(tmeasure) 10 differentiate between the first and the second measurement.
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e Frequency-based magnitude and phase extraction: it finds the magnitude and
phase of measured voltages and currents at each injected frequency using FFT
transform and designed frequency selection blocks.

e Impedance measurement block: it calculates the impedances at each frequency

using the extracted voltages and currents.

6.2.1.2 Performance validation of the proposed IMU

The parameters of the IMU are listed in Table 6.1 where the selection of these
parameters is carried out based on the previous discussion in section 6.2.1. The
proposed IMU measurements are compared with a mathematical model of SSSC
controlled with voltage control mode as an example of VSC-FACTS devices. The
series injection topology is used to inject the perturbation signal to avoid the effect of
oscillations on the SSSC performance where the PLL input of SSSC is the quadrature
voltage. Generally, the IMU is managed to extract the small signal impedance of the
SSSC precisely over the range of interested frequency as shown in Figure 6.2. The
SSSC impedance is extracted within 1s which is quick enough to respond to the
network requirements. The error appearing in the impedances at high frequencies is
to a low noise ratio (SNR) which can be improved by a selecting different
combination of injected frequencies [74]. In addition, the accuracy of the proposed
IMU increases by increasing the measurement time and the number of injected
frequencies. The measured impedance is sufficient to predict the stability of the

system and take any corrective actions to maintain the stability of the system.

Table 6.1. Proposed IMU parameters

Parameter Value

Sampling time 10 ps

Measurement time (teqsure) ls

Number of injected frequencies 10

Frequency vector [10 60 150 200 250 400 500 700 800 900]
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Figure 6.2. Comparison between SSSC mathematical model and proposed IMU.

The increase of the frequency range of measured impedance the sampling time
should be decreased which might cause a further delay on the operation of the
proposed IMU.

6.2.2 Comparison between the proposed IMU and conventional IMUs

Many publications have proposed impedance measurement units in the literature.
The focus of these methods was about the injected methods [69], the measurement
algorithm [70][71] or a design of the IMU [74][72], [107]. However, the main
limitation of the previous research was the long time required to measure the
impedance as well as the filtering requirements of the impedances as the objective

was the accuracy of the measured impedance rather than its fast assessment.
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Table 6.2 presents the main components and features of the IMUs found in the
literature in comparison with the proposed IMU. The IMUs used different injection
methods and different types of signals. The noisy impedance measurement were
filtered using cross-correlation techniques with a notch filter or discrete Fourier
transform (DFT). The units that are based on wide-band signals (the proposed IMU
and in [74][72]) provide a faster measurement time compared to the methods based
on sinusoidal signal. As stated, fast measurement processing is crucial for

maintaining the stability whether by the network operators or by control systems.

Table 6.2. Comparison between different IMUs performances

IMU_1 [74]

IMU_2 [72]

IMU_3 [107]

Proposed IMU

Injection method

Series injection

Series-shunt

Series-shunt

Series injection

injection injection
. L Multi-tone . . . Multi-tone
Signal type Chirp signal injection Sinusoidal signal injection

N Depends on the Depends on the Not P ecified
Processing time . . Considerably Lessthan1s
number of inputs | number of inputs Slow
Impedance Cross-correlation Single phase Cross-correlation Direct
extraction . .
techniques based models techniques measurement
procedure
Filtering Discrete Fourier . . .
requirements transform (DFT) Large inductance Notch filter Not required
Number of . C_)ne_& ten Two at each Two at each Two
repeated injections for
RN frequency frequency measurements
injections each segment

6.3 Controlling the STATCOM impedance

From the small signal impedance perspective, improving ac system stability at the
interfacing point is a function of the impedances of the two connected systems. The
dg impedance of an ac system has four parts which together define system stability
based on the impedance matrix. For instance, the use of stability criteria in control
system requires having a mathematical relationship between the chosen criterion and
a control variable. The generalized Nyquist criterion (GNC) can ensure the stability

at the interface; however, it is hard to convert it into a mathematical form. This
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feature is found in the stability norms-based criteria which can facilitate the use of
stability norms by the network operators by direct control as shown in Figure 6.3.
Such relationship presents the actual effect of system parameters on the stability and
how to maintain it. Such tuning can be carried out by changing system parameters or
by utilising virtual impedance which might be more effective for controlling the
impedance.

Conventional stability assessment

/m
Control Impedance . Assess system
. Norm calculation o
parameter calculation stability

S~ NN

3

Direct control of system stability

Figure 6.3. Concept of stability based impedance control.

There are some challenges when building a control system based on small signal

impedance:

¢ Noise introduced by the injection circuit used to measure the impedance could
lead to poor power quality of the system. The existence of noise reduces the
visibility of continuous stability measurement. Solving this challenge might be
done by measuring the impedance at specific conditions such where the system
parameters fail to maintain stability.

e Even though the stability norms are the only mathematical stability criteria found
in the literature that can be used in a control system, the dependency on
magnitude only to find the norm presents some shortages of the stability norms to
measure the stability of all systems. This is referred to the use of magnitude
information only in the calculation and ignoring the phase of the impedance.
Developing other criteria based on magnitude and phase are essential to tackle this
problem.
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6.3.1 Effect on stability norms of changing STATCOM control parameters

As presented in the STATCOM equations in Chapter 4, the STATCOM control
parameters have a varying effect on the STATCOM’s total impedance. However, this
relationship is not obvious for stability norms of impedance matrices. Finding the
relationship between these control system and stability can improve the time
response to stabilize the system and take corrective actions by system operators. In
this section, the same test system presented in Chapter 3 is used to present the effect
of the STATCOM control system on the infinite norm. The test system and
STATCOM parameters are shown in Table 6.3.

Table 6.3. System and STATCOM Parameters

Parameter Value Parameter Value
Vg, Vg 410V,0V Kpva 10 VIA
Rg, Ly 0.5Q,5mH Kiva 0.001 V/Ass

Cac 400 pF Kpiq 800 V/A
Ve 1000 V Kiiq 8000 V/A.s
Kpia 800 V/A Kpug 0.01 VIA
Kiiq 8000 V/A.s Kivg 2 VIAS

Figure 6.4 shows how the STATCOM controller voltage and current gains affect the
infinite norm of the impedance matrix. The STATCOM impedance is calculated at
different frequencies (10, 200, 800, 1500 and 2500 rad/s) to cover a wide range of
the STATCOM operation. The effect of STATCOM gains is appeared for some of
gains, and insignificant for other gains. This response refers to the fact that changing
gains could affect the phase shift rather than the magnitude of the impedance. For the
gains of voltage controller, the integral gains (K4, Ki,q) have less impact on the
infinite norm compared with the proportional gains (K,,q, Kpyq) due to the range of
change of these gains. The increase of the quadrature proportional voltage gain
(Kp,,d) tends to decrease the infinite norm as well as the direct proportional voltage
gain as seen in Figure 6.4a. The current controller gains have similar effect of the
voltage gains. The increase of the proportional current gain ( K,;4) tends to reduce

the infinite norm except for small period while the increase proportional current gain
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(Kpia) has positive and negative effect on the infinite norms as shown in
Figure 6.4b. In the meantime, the integral current controller gains (Kj;4, Kj;q) have an
insignificant effect on the impedance norm. The effect of the STATCOM controllers’
gains might not change the impedance norm, but the affect the phase shift of the
STATCOM impedance. Such a change can be assessed only by the generalised
Nyquist criterion to assess the stability. The chosen values of control gain influence
significantly their ability to adjust the infinite norm and might be restricted by the
steady-state or transient requirement of the connected network. Another restriction
could be the device setting point where the infinite norm cannot be reduced. This
conclusion leads to the need to identify another control variable that can control the
stability norms over a wide range which can be represented by a simple mathematical
relationship. The possibility of using a control variable to control directly the
stability norm of the STATCOM impedance matrix that might be added to the
control system is discussed in the following section.

6.3.2 Virtual impedance implementation for STATCOM impedance Control

This section presents the application of virtual impedance to control the
STATCOM’s behaviour and to reshape its impedances. The basic idea of virtual
impedance is to add the effect and behaviour of physical series or parallel impedance
(passive impedance) to the control system (active impedance). The benefit of using
virtual impedance along with other active techniques is that the active techniques
regulate the STATCOM impedance magnitude and phase margins within a specific
range without affecting the output voltage and currents. The aim of this section is to
examine a simple virtual impedance implementation in a control system. The focus
of this section is the implementation of virtual pure and complex impedances while
the other techniques such as the virtual synchronous machine [108] are beyond the

scope of this thesis. The aims of using virtual impedance here can be summarised as:

e Find a suitable control variable that has a direct relation with stability norms.
e Find a control variable that can adjust the infinite norm of the STATCOM

impedance matrix.

142



— e o 90 :
= 1808952480 it 0 o < Lorads
+ e 800 rad/s
) g 804 - 1500 rad/s
g %/75 \ \., —— 2500 rad/s
g 70
£ €
E 65
60
55 T i 50 002 004 006 008 0.1
Proportional voltage gain (kpvdf Proportional voltage gain (k)
‘ ; ‘ : ——10rad/s -+ 200 rad/s -+ 800 rad/
56.9[ = 184595y 2950 5800 T 56.9. = 1808 Yauis 29508 facis 0"
56.8 56.85’—\
iy 56.8 g 56.8¢ i
E’ 56.7 § 6.5 e
2 ol —
~ 56.65 :
56.6 56'64
56.5 — 5% 10 20 30 50
10 20 30 40 50 .4
Integral voltage gain(k,,) Integral voltage gain (k)
(@)
75 ‘ ‘ 95 —— dfs =+ 200 rad/s e~ 800 radk
* ——10 rad/s 9% ——— %268 rad/s —— %88 rad/s ]
Y -+ 200 rad/s
Q0% e 800 rad/s ﬁD\85*
= % ----1500 rad/s S anl
£ '-‘ —— 2500 rad/s IS 80
% 65 % %75 -
= £ 70-
=6 65
607
10 20 30 40 50 0 10 20 30 40 50
Proportional current gain (k) Proportional current gain(k,,, )
56.95 - .
e N R B e, X WL
56.85f 56.85
~56.81
) o 56.8
§56.7‘*’ ?
B %7 2 56.75
£56.65( =
56.6/ - 56.7;
5% 10 20 30 40 50 0 10 20 30 40 50
Integral current gain(k,,) Integral current gain (k)
(b)

Figure 6.4. Relation between control parameters and stability criteria:

(a) Voltage control loop and (b) Current control loop.
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6.3.2.1 Series virtual impedance (SVI)

The basic implementation of series impedance is to connect the virtual impedance
between the STATCOM output current and the input voltage. However, the actual
implementation is achieved by connecting the STATCOM output current to the
reference voltage, as shown in Figure 6.5. For simplicity, the effect of the PLL is
ignored. The effect virtual impedance is proposed to be as a diagonal matrix as
shown in (6.3) which is chosen due to the large effect of STATACOM diagonal
impedances on the norm of STATCOM impedance. Also, the effect of the
implemented virtual impedance should be defined to be effective within the
frequency range of interest otherwise equal to zero, as presented in equation (6.3).
Limiting of the functionality of the virtual impedance can be achieved using low-

pass and high-pass filters, or a second-order band-pass filter. The proposed SVI has

the form:
Zsevir = { 0 % el } (6.3)
U o felffl)

where, f; and f, are the effective boundaries of the virtual impedance frequency

range of interest.

N ) ES O —
| Implementation
g, ol 2 |

Actual
Implementation

Figure 6.5. Implementation of series virtual impedance in STATCOM model.
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The definition of the matrices in Figure 6.5 is found in Chapter 4. The transfer
function (Gge) Of the SVI denominator of the diagonal terms in equation (6.3) is

derived with the help of Figure 6.5 gives:

SCdcvéc Xdc K Kiigq 0
G — d b — Vdc pi S
se — YWz:-Y7Z —

(6.4)

Kij
0 (Koia +75%)
Three types of virtual impedances (Zy;,-) are tested here to identify their relation to
the STATCOM infinite norm. There are the purely resistance virtual impedance
(SRI), the resistive-inductive virtual impedance (RLI) and the resistive-capacitive

virtual impedance (RCI), which can be presented as:

Zyyr = J Ry + SLy L (6.5)
| |
\ )

In this study, the power frequency range is defined between 10 rad/s and 2500 rad/s,
therefore the results are plotted at these frequencies. The impedance norms at other
intermediate frequencies can be found by interpolating any bounded frequencies. The
magnitudes of both inductance (L,) and capacitance (C,) are equal to the resistance
magnitude (R,) when plotting the relationships between the infinite norm and virtual
impedances presented in Figure 6.6. Figure 6.6 parts (a) and (b) presents the effects
of changing series-resistive virtual impedance and the series-capacitive virtual
impedance on the STATCOM impedance infinite norm over a range of frequencies.
Both impedances have insignificant effect on the STATCOM infinite norm.
Alternatively, the increase of series resistive-inductive increases the infinite norms as

shown in Figure 6.6(c), which worsen the stability of the system.
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Figure 6.6. Effect of virtual impedance on stability norm at different perturbation

frequencies:

(a)Series resistive, (b) Series resistive-capacitive and (c) Series resistive-inductive.
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6.3.2.2 Shunt virtual impedance (SHVI)

Shunt virtual impedance is connected between the input voltage and the current
reference to reduce the amount of current flow of the STATCOM and, consequently,
reduce the total impedance of the STATCOM as shown by the dotted line in
Figure 6.7. SHVI is proposed to react similarly to impedances in (6.3). The shunt
virtual impedance is connected between the STATCOM output voltage and the input
of STATCOM controller as shown in Figure 6.7. The same frequency boundaries as

in (6.3) are applied to the shunt virtual impedance, as shown in Figure 6.7:

Zvir 0
Gse Feffl (6.6)
Zshyir = 0 % vz

0 felfufl/

Actual Implementation

Figure 6.7. Implementation of shunt virtual impedance in STATCOM model.

Figure 6.8 presents the effects of shunt virtual impedances (SHVI) at different
frequencies. Shunt resistive and shunt resistive-capacitive impedances have negative
effect at all frequencies, as shown in Figure 6.8 parts (a) and (b). Both of the
impedances are suitable for decreasing the infinite norm using the resistive and more

sharply the resistive-capacitive, consequently, increase the stability margin according
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to the stability criteria presented in chapter 4. Nevertheless, the shunt resistive and
shunt resistive-capacitive impedances decrease the STATCOM norm; the inductive
impedance has almost no effect on the infinite norm except at low frequencies as
shown in Figure 6.8(c). In general, reducing the current using shunt connections is
sufficient to reduce the STATCOM impedance; this is because of the nature of the
STATCOM controller.
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Figure 6.8. Shunt virtual impedance:

(2)Shunt resistive, (b) Shunt resistive-capacitive and (c) Shunt resistive-inductive.
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To conclude, series virtual impedance has an adverse effect on the infinite norm of
the STATCOM impedance matrix; whereas shunt connected virtual impedance
demonstrates better performance. Changing the amount of resistive and resistive-
capacitive virtual impedances can both increase and decrease the STATCOM infinite
norms. The range over which these impedances may be varied should be limited to
ensure the required response. The Nyquist plot has been done for four values of shunt
resistive-capacitive virtual impedance (Zy; =[20, 30, 40, 50]) as shown in
Figure 6.9. The effect of decreasing the infinite norm can be seen on the generalised
Nyquist plot as a shrinking in the plot and moving it to the right-hand side (more

stable system).

Imaginary axis
o

-0.3 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-08 -07 -06 -05 -04 -03 -02 -01 0 01
Real axis

Figure 6.9. Nyquist plot of series resistive-capacitive impedance.

6.4 Improving the oscillatory response of series-compensated power network
using SSSC

Power system oscillations such as sub-synchronous resonance (SSR) are caused by

the undesirable interaction between the power network and the mechanical parts of

generators. These oscillations cause a low-frequency variation in the systems [6].

Damping those oscillations is one of the main functions of the VSC-FACTS devices,

especially the series connected devices such as static synchronous series

compensator (SSSC). In this section, the stability of series compensated systems is
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investigated and the effectiveness of different operating modes of SSSC on damping

system oscillations is studied.

6.4.1 Dynamic performance of series compensated system

Figure 6.10 shows the series compensated system which contains a synchronous
machine driven by a turbine system, and a transmission line connected to an infinite
bus. The impedance based stability is utilised to assess the stability of the system at
the generator terminals, where the system-side represents the transformer,
transmission line and network admittance as well as the SSSC impedance. The
parameters used for studying the sub-synchronous resonance (SSR) are listed in
Table 6.4 for the series compensated network while the synchronous machine
parameters can be found in Chapter 4. The selection of the test system parameters is

chosen to ensure the existence of SSR frequency in the test system.

Table 6.4. Network parameters.

Base Power 500 MVA
Secondary side base voltage 500 kv
Primary side base voltage 22 kV
Rg, Ly 0.012, 0.180 pu
R, L, 0.0202, 0.5157 pu
Lsys 1.148 pu
den Zsys Sending Receiving
e (e end . end Infinite
LPA=LPa 1P = HP v, : Sefrles R X, Cem V2 Xoooo  bus
ransformer L LYY K
1 [S
Synchronous St el
machine Y R,
I
SSSC
control Xy

Figure 6.10. Series compensation system.
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According to the parameters in Table 6.4, the natural frequency (f,,) at (20%)
compensation which represents the oscillatory mode of the test system for example is
equal to [91]:

X,
fu=fo 2 =27tz

So, the slip frequency which represents the difference between the fundamental

frequency and the oscillatory mode frequency is:
Slip frequency = 60 — 27 = 33 Hz

The network impedance at different compensation levels is shown in Figure 6.11.
The network compensation levels are studies at 20%, 40% and 80%. The network
impedance has the same magnitude and phase at frequencies higher than 550 rad/s
where the capacitive part of the network becomes small in comparison with the
inductive part. The spikes in the impedance magnitude represent the oscillatory
modes at different compensation levels of the power network. The 20%
compensation level leads to an interaction between the synchronous machine and the

compensated system.

zdd zdq
o — 20% compensation & 20 ‘
E 500 40% compensation =
K ==_80% compensation K
= 2 O .
€ 0 te g 1
2 g {
> 5 > ‘
? 2 q|
S N = i
% 0 % 18 : H
= e I
o o 1 1
-36 0 L
1d 102 104 10° 102 104
Frequency (rad/s) Frequency (rad/s)
Zqd Zqq
o 20 o 20
= =
(5] L (5]
2 o --—-“ 2 o
fy fo=
2 [ 2
- % -5
g i g .
5 O g o fi
T T e !
-18 -360===""
1d 102 104 1P 102 104

Frequency (rad/s)

Frequency (rad/s)

Figure 6.11. Network impedance at different compensation levels.
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The synchronous machine output voltages, output currents and speed deviations of
turbine masses are presented in Figure 6.12. It shows an increase of the oscillations
in the currents and voltages due to the disturbances caused by the speed deviation

which took about 30 s to settle down.
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16 0.85
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> >
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(@) (b)
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0 0.0
= -0.02 ~ 00
£ -0.04 2 o0
= .006 =00
008 0.0
0.1 o
01261625 30 40 50 00816 20 30 40 50

time (s) time (s)

(©) (d)

Figure 6.12. Synchronous machine measurements for series compensated system (20%):
(a) Direct stator voltage (v,), (b) Quadrature stator voltage (v,), (c) Direct stator

current (ig), and (d) Quadrature stator current (ig).

6.4.2 Effectiveness of SSSC on damping oscillations

The key function of the SSSC in steady-state application is to control the power flow
in a transmission line by changing the line impedance. Alternatively, in dynamic
control, it is to damp system oscillations [109]. The small signal impedance is
utilised here to assess the effectiveness of different SSSC control modes on damping
the oscillations. A series compensated network presented in Figure 6.10 is used to
assess the effectiveness on damping the oscillations. The impedance at the
interfacing point is calculated for the system side (Z,;) and the generator side (Z.,)

as.

Znet = (Zt + Zsssc + 2, + Zcomp + Zsys) (6.7)
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7 _ de qu 7 = RL +SLL —(A)LL ]
SSSC T | Zoa  Zgq L wl,, R, +sL;
_ [SLsys _(‘)Lsys ] _ sCa,mp —(oCcomp
e wlsys SLsys Leomp = WCeomp SCeomp

where,

Znet 1S the network impedance.

Z, is the transformer series impedance.
Zsssc 1S the SSSC impedance.

Z,, is the transmission line impedance.
Zcomp 1S the compensation impedance.

Zsys s the rest of system impedance.

The transformer here is modelled using approximate circuit and equal to:

Z _ Rt +SLL- _U)Lt
t7 | wL; R, + sL;

In the meantime, the synchronous generator side impedance (den) which was

derived in Chapter 4 is:

den = Zsynch

The performance of the SSSC is tested for voltage control mode on damping the SSR
frequency of series compensated system at 20% compensation level. Using the
generalised Nyquist plot, the system was unstable where the plot intersects at the left
side of point (0, -1). However, the use of the SSSC improves the stability of the

system and eliminates the oscillations as shown in Figure 6.13.
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Figure 6.13. Generalised Nyquist plot of compensated and non-compensated system.

6.4.3 Comparison between SSSC control modes on damping oscillations

This section investigates the effectiveness of different control modes of SSSC on
damping system oscillations. The SSSC improvement on damping the oscillation of
a series compensated system is presented in Figure 6.14. It is clearly seen that all the
control modes of the SSSC improve the performance of the system. However, the
comparison between these modes is difficult in time domain. Therefore, the Nyquist
plots of these control modes are shown in Figure 6.15 under the same operating
conditions. The SSSC parameters are shown in Table 5.3, where the same settings

for the three control modes are maintained for the comparison.

Table 6.5. SSSC control modes parameters.

Parameter Value Parameter Value
R, Ly 05Q,5mH | Kpya Kipa | -0.1VIA, -0.05V/IAS
Ree,Lse | 15.60Q,70 mH | Kpyq, Kivg | -0.08 VIA, 0.05 VIAS
Cae 800 pF Vseq 170 V
Ve 1000 V
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Figure 6.14. Time-domain plots of active and reactive powers of the system:

(a) Active power-sending end, (b) Reactive power-sending end, (c) Active power-receiving end
and (d) Reactive power- receiving end.

It is concluded from Figure 6.15 that the impedance control mode introduces more
stable system in comparison with the voltage and power control modes.
Alternatively, the power control mode shows less effective characteristics on

stabilising the system compared to the other methods.
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Figure 6.15. Nyquist plot of SSSC control modes:

(a) Power control mode, (b) Voltage control mode and (c) Impedance control mode.

6.5 Summary

In this chapter, monitoring, controlling and improving the stability were presented. In
the monitoring section, a fast impedance measurement unit (IMU) was proposed to
facilitate an effective stability monitoring by the network operators. Changing the
VSC-FACTS device parameters as well as the virtual impedance on the stability was
examined. Lastly, the performance of the VSC-FACTS device on improving the
stability of series compensated system was investigated. The following can be

summarised from this chapter:

e Using a small number of frequencies to estimate the system impedance ensures
fast performance of the impedance measurement unit (IMU).
e The measurement time of the proposed IMU is based on the response of the

network and the accuracy required.
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Several challenges face the development of a control system based on impedance
such as the suitable stability criteria and power quality level of the networks.
Controlling the impedance using device’s parameters could be limited by the
operating constraints of the device and its capability to effectively control the
stability.

Generally, the series virtual impedance has an adverse effect on the infinite norm
of the STATCOM impedance matrix; whereas shunt connected virtual impedance
demonstrates better performance.

Even though the time domain plot of active and reactive powers of the
compensated system looks similar for the three control modes of SSSC, the
impedance control mode shows more effective performance in comparison with

other control modes as indicated by the generalised Nyquist plot.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 General conclusions

The increase in the number of installed VSC-FACTS in power system has increased
the efforts needed to model these systems, especially when modelling transient
response or the contribution of harmonics on the systems. Studying system’s stability
depends on deriving their mathematical models which are distinguished in accuracy
and complexity. Conventional modelling techniques such as synchronous dq
modelling and aff modelling are usually employed to identify the causes of the
harmonics, while, the harmonic linearization method and harmonic state space are
used to present the effect of these harmonics on the systems. In this thesis, the use of
dg-dynamic phasor in stability assessment was proposed. The dg-dynamic phasor has
the capability to include harmonics and suits the linearization required for small
signal stability studies. The basics of modelling in dg-dynamic phasor and how to
model some of power components were presented in Chapter 3. It was shown that
modelling using dg-dynamic phasor at the fundamental frequency was equal to the
synchronous dg modelling. Also, the chapter presented the capability of dg-dynamic
phasor on modelling balanced and unbalanced responses of the systems. A derivation
of some VSC-FACTS devices in synchronous dq coordinates was presented in
Chapter 4. The state space and impedance models of STATCOM controlled with
voltage control model and reactive power control model were presented. Similarly,
the SSSC models were derived for three control modes, power control mode, voltage
control mode and impedance control mode. The SSSC with power control mode
appeared different impedance in comparison with the other control modes. Also, the
effects of different sections of synchronous machine and its driving system on the
impedance were presented. The inclusion of the mechanical section was seen at low

frequency while it disappeared at high frequencies. A state space and impedance
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models where proposed based on dg-dynamic phasor for the STATCOM and the
SSSC in Chapter 5. The models were sufficient to include the harmonics for stability
analysis and identify the unbalanced operation based on frequency coupling. The
proposed models were linearized around a steady state point where the dg-dynamic
phasor parameters are linear time invariant which reduces the linearization errors in
comparison with other modelling techniques. Using the proposed modelling, the
unbalanced operation was appeared as a displacement of the eigenvalues in state
space analysis and as an unmatched plot of positive and negative impedances in
impedance analysis. The effect of harmonic coupling on the VSC-FACTS operation
was obvious for the STATCOM and was limited for the SSSC depending on the
complexity of their control systems. An impedance measurement unit (IMU) was
proposed in Chapter 6 for fast monitoring applications. The IMU was developed
based on the FFT analysis using a multi-tone signal. The validity of the proposed
IMU was carried out by comparing the results with time domain measurements. The
accuracy of this measurement unit depends on the measurement time and the time
delay of the measured system. It discussed the effect of different control parameters
and virtual impedance on the system stability. Also, the chapter presented the
efficiency of SSSC control modes on damping system oscillations and the effect of
different parts of synchronous machine on stability., MATLAB-SIMULINK
simulations results demonstrated the validity of the proposed models in synchronous
dg and dg-dynamic phasor modelling as well as the effectiveness of the impedance

measurement unit.

7.2 Author’s contributions
This thesis focused on the modelling of VSC-FACTS devices for small signal
stability studies including the effects of harmonics and unbalance. The thesis

contributions can be summarised as follows:

e STATCOM and SSSC dg-dynamic phasor state space and impedance models for
small signal stability analysis have been proposed which can include harmonics

and can also be linearized around steady state point.
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e An identification method of unbalanced operation of VSC-FACTS devices
depending on the frequency coupling in the negative sequence harmonic has been
proposed.

¢ A new impedance measurement unit (IMU) based on a multi-tone signal has been
proposed. It could be used to monitor the short circuit ratio (SCR) in weak grids.

e The direct relationship between the control parameters of the STATCOM and the
stability criterion has been revealed for fast stability control. Also, the effect of
including different types of virtual impedance on stability criteria has been
investigated.

e The effectiveness of SSSC control modes on damping system oscillations using
small signal impedance for series compensated system has been investigated and
evaluated.

e The effect of electrical and mechanical parts of the synchronous machine on the
impedance the machine has been presented. It shows the importance of including

the turbine dynamic at frequencies below the fundamental frequency.

7.3 Recommendations for future work

The work presented in this thesis is mainly focused on the development of
mathematical models for investigating the small signal stability of VSC-FACTS
devices. In order to further evaluate the effectiveness and performance of the

presented work, some possible areas of interest for future work are:

e Validate the derived dg-dynamic phasor model of VSC-FACTS devices using
experimental tests when the harmonics co-exist. The number of harmonics that
should be included can be identified by the frequency scanning of most effective
harmonics in the analysis.

e Compare the effectiveness of the proposed method with other modelling
techniques such as multi-coordinate synchronous dg, harmonic linearization
method and harmonic state space method.

e Use the proposed method to design harmonic filters, robust control systems and

analyse the unbalanced operation of power system devices.
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e Use the proposed model on damping system oscillations’ design which can be
used to present the improvements in reducing the harmonics effect and their
participation on the system performance.

e Build control system-based impedance for controlling the stability which can be
used to have an auto-tuning devices: such a control system can be built if the
mathematical relationship between the device's impedance and the stability is
clear. As well as the mentioned challenges presented in this thesis have been

resolved.

7.4 Publications

e K. Abojlala, D. Holliday and L. Xu, "Transient analysis of an interline dynamic
voltage restorer using dynamic phasor representation,” 2016 IEEE 17th Workshop
on Control and Modeling for Power Electronics (COMPEL), Trondheim, 2016,
pp. 1-7.

e K. Abojlala, D. Holliday and L. Xu, "Stability norms control using the virtual
impedance concept for power frequency applications,” 2017 International
Symposium on Power Electronics (Ee), Novi Sad, 2017, pp. 1-6.

e K. Abojlala, G. P. Asad, K. Ahmed, D. Holliday and L. Xu " Generalised dg-
dynamic phasor modelling of STATCOM connected to a grid for stability
analysis”, 2018, (submitted to IET Power Electronics).
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APPENDIX-A DYNAMIC PHASOR FORMS EXPANSION

1. Two variable expansion
(xy)o = e + (oo + (e

(yde = (Xheydo + (oW

(ey)e = ey + (Do ¥k

2. Three variable expansion
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3. Four variable expansion
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APPENDIX-B STATCOM PERFORMANCE IN SYNCHRONOUS DQ
1. State space analysis of STATCOM

This section presents the state derivation of the STATCOM controlled with the reactive

power and the direct voltage. The linearized state space equations of the STATCOM are

given by:
f — l _ ﬂ . _ l .
Aig; = L Avgy P Aigy P (Augg) + wAig, (B.10)
.y Rf . 1 ,
Aigg = — Avgg L_fAlsq — ;(Ausq) — wAigy (B.11)
Axi = Kjiq(Digq — Aigq) (B.12)
Ax)y = Kyq(Ais, — Aigg) (B.13)

The internal signal of the STATCOM is given as:

Augy = _Kpid(Ai;d — Aigq) — Axq (B.14)
Mgy = —Kpiq(Bisg — Digg) — Ax, (B.15)
Axz = Kipa(vge — Avgc) (B.16)
Axj = Kipg(Q" — AQ) (B.17)

The reference currents of the STATCOM controlled with reactive power are given for as:
Aigg = Kpva (Wac — Avge) + Axs (B.18)
Aily = Kpypa(Q* — AQ) + Ax, (B.19)
where, the reactive power is:

3 . .
Q= 2 (vsq lsd — vsdlsq)

3. 3 . 3. 3 .

AQ = E lsdAvsq + Evqulsd — Elquvsd - EvsdAlsq

In the meantime, the reference currents of the STATCOM controlled with direct voltage are

given for as:

Aisqg = Kppa(Vac — Avgc) + Axz (B.20)
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ok *
Alsq - vaq (vsd

While, the dc link voltage is:

— Avgy) + Ax,

3

i Vsa—2isq-Rf .

Av)y, = =>—4 g + 2 Aigg + Avdc + ——Avsq +
2CqcVdc Cq Cd 2C4cVdc
3 qu i
2Cqcvqc sq
3 .

Agc = lsd Rf Usd lsd vsq-lsq

(B.21)

(B.22)

The state space vectors of the STATCOM controlled with reactive power control are:

Alsdq [Aigq Aigq]
AX = [Axy Ax; DXz Axy Alggq Avge]
AU = [Avgq Avs, Avy. AQT
AX' = AsqAX + BsqAU
Aiggq = CAX
0 0 Kyg O —Kiiq
0 0 0 Kiiq K”ququsq
0 0 0 0 0
3
00 0 O —>KingVsq
Asq =L o Kpia Ry~ Kpia
Ly Ly Ly
o L o Kpia _3KpiaKpva¥sq _
Lf Lf 2 Lf

0 0 O 0

3 .
SVsd—2lsd-Rf

L CacVdc
[ 0 0 Kiidev
Kuq Kpuq lsq 2 Kuq vaq lsd 0
0 0 Kiva
3 . -3 .
2 Kivq lsq o Kivq lsa 0
Bsq = 1 0 KpiaKpvd
Ly Ly
3 .
3 KpigKpvgisq 1 =3KpigKpvqlsd 0
2 Lf Lf
3 isq 3 isq 0
- 2CqcVdc 2 Cqcvdc

0
Kqu qud - Kiiq
0
gKiqusd
w

3
—Rf—Kpigt;KpiqKprqVsd

_Kiidevd

_Kpidevd

Ly
3 vsq
2Cqcvac

0
KiiqKpvq
0
Kivg
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(B.23)

(B.24)

0
_Kivd
0

Ly

0

Xdc
Cov2
dcVdc




While, the state space vectors of STATCOM model controlled with direct voltage is:

Aiggq = [Aisqg Aigq]

_Kiidevd
0
“Rivd
0
Kpidevd
Ly
0

.2 3 , 3 .
lsd-Rf—gvsd-lsd—EVsq-lsq

AX = [Ax; Ax, Axg Axy Aiggg Avg]T
AU = [Avgy  Avg, Avg. Avgy]T
AX' = AsvAX + BsvAU
Aiggq = CAX
0 0 Kyg O —Kiia 0
0 0 0 Ky 0 ~Kiig
0 O 0 0 0 0
0 O 0 0 0 0
_11 Kpia Kpia=Ry
Asv = Ly 0 Ly 0 Ly @
o L o Ked —w Kpig—Ry
Ly Ly Ly
0 0 0 0 ;vsd—Zisd.Rf 3 v
CacVdc 2Cqcvqc
0 0 0 KiiaKpva
~KiigKpvq 0 KiiqKpvq 0
0 0 0 Kiva
_Kivq 0 Kivq 0
Bsv={ L 0 o KoiaKpua
Lf Lf
__ KpigKpvq 1 KpigKpvq 0
Lf Lf Lf
3_ s 3_Isq 0 0
L 2CqcVdc 2 Cqcvdc

2
Cacvgc

2. STATCOM impedance in synchronous dqg frame

Avgg = (Lf + Ry )Aigq — wLpAigy + Augg
Avgy = (Rp + Lys)Aisg + wLsAigy + Aug,
Mtgq = = (Kpiq +52) (Al3q — Aigq)
Mtgq = = (Kpiq +12) (Bi5q — Aiyy)

Substituting (B.27) to (B.30) to have:
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(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)



Kij . . Ki;
Avy, = (Lf + Ry + (Kpia + d)) Bigg = wLyhig — (Kpiq +=24) Aigg (B.31)

Avg, = (Rf + Les + (Kpig + ‘*)) Bigq + wLphigg — (Kpiq +—22) A, (B.32)
Avsd _ AiSd Al;d
Avsq] =z Aisq] — bz Ai;‘q] (B.33)
where,
Kll
az = Ki;
(,l)Lf Rf + LfS + (Kplq + q)
Kll
\ (Kpia +72) 0
z= " Kii
0 (Kpig +2%)
The reference currents of the STATCOM controlled with reactive power are:
.k KI.V Kw
8i3q = (Kpva + 222) v — (Kppa + 722) Avg (B.34)
ik Kiy * Kiy
8i3 = (Kpvg +22) Q" = (Kpug +-22) AQ (B.35)
By reforming equations (B.34) and (B.35) as:
ANigg]  [vic Vac
Ai;q] =c, [Q* ] — g Q ] (B.36)
where,
KI.V
(Kpva +722) 0
CZ =

Kiy
0 (Kong + %)
While, the reference currents of the STATCOM controlled with direct voltage control are:

Lk Kiy *
Aigg = (vad + d) (vdc - A77dc) (B.37)

% Kiy
Aisq = (vaq + q) (Vsq — Avgq) (B.38)

These equations can be reformed as:
Ai;d] [véc] [vdc]
. =C —C
Aisq “vsq Z gq
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By substituting the relations between the device and the network measurements in the dc link

voltage to have:

. 3 .3 .
Cdcvdc-S_Lszd-Rf‘l'Evsd-lsd+§”sq-lsq 3 . . 3 .
{ Avy. = (5 Vgq — 2igq- Rf) Aigg + Evqulsq +

Vdc

(B.39)
3. 3.
ElsdAvsd + 5 lquvsq
Also the reactive power equation, which is given as:
AQ = isdAvsq + UquiSd — iqude - UsdAisq
So, for the STATCOM controlled with reactive power control is given as:
A’l]dc _ Avsd Aisd
%\ ae| = % Avsq] e Aisq] (B.40)
where,
3 3
Scdcvzzic_adc ~Vsqg — 20 d'R -7,
dZ = [ Vdc 0] e, = (2 ’ 3 ’ f) 23 ™
0 1 2 vsq 3 Usd
3 i 3 i
5 tsd 5 tsq
fz= 23 . § ,
~Slsq Flsd
In the meantime, the STATCOM controlled with direct voltage control is:
Ade _ Avsd Aisd
dz[ AQ ] = fv, [AUsq] + ev, [Aisq] (B.41)
where,
SCacVi —ge 3 . 3 3, 3,
dZ _ I:% 0] ev, = I:(Evsd — ZlSd'Rf) Equ:l va — |:E lsa Elsq:|
0 1 0 0 1 0
So, the impedance of the STATCOM controlled with reactive power is:
Av d Ai d v
[Avjq ] = Zsrarcomq Aissq ] + Cx [vil:] (B.42)
S

where,

aZ + bZCZdz_leZ
ZstarcomQ = [ — bycyd;1f,

180



bzcz

Cp = —
x (I = bzczdz'fy)

While, the impedance of the STATCOM controlled with direct voltage control is:

A'Usd _ AiSd U;c
[Avsq ] = Zsrarcomv [Aisq ] + Cy [V;d] (B.43)

Where: The STATCOM impedance (Zsrarcomy) 1S given as:

, az + byczd; tev,
STATCOMV — —
[ —bycd; fv,

bzcy
(I = bzczdzfv,)

Cy =
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APPENDIX-C SYNCHRONOUS GENERATOR

1. dgimpedance of synchronous generator

I Lls
+ o T | r
r | | fd
kd 1
wr gs + md !
Y Ifd
ds S N I r
p ds 1 fd
- r kd .
°
ir
Fe L|S Iqs
:_/\/\/\,_<>r_r‘v‘v‘v‘\i¢r T X
m kal [ "kq1
r a)r ds + d , Iq
Y
as pﬂ/qrs Lmq leql L|kq2
! 1
- r kaisST kq 2
o—

G LPAG:(LPB IP HPO

Figure (1) synchronous generator equivalent circuit

The equations of the synchronous machine can be expressed as[83] [110] as:

d

ro_ 7 r r
Vgs = —Tslgs — wr}\qs + E}\ds
Y — _ 3T + T + ixr
qu - rslqs WrAgs dt’'as
\T _ \r ‘\T + ilxr
Vka1 = ~Tkdilkdr T 37 Mkd1
\T _ \T '\T + ilxr
Vkq1 = “Tkqilkqr T 3; tkq1
Vig = —Trhing + 21

fd — ifdtfa U g 7fd

v _ roor n ilr
Vkqz = ~Tkqilkqz T 37 Mkq2

The flux linkages may be written as:
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(C.44)

(C.45)

(C.46)

(C.47)

(C.48)

(C.49)



le = _Llsicris + Lmdi;nd (C.50)

Mear = Likarigar + Lmaiia (C.51)
Ara = Ligaiza + Lmaima (C.52)
Ags = —Lisigs + Lingimg (C.53)
a1 = Ligringt + Lingimg (C.54)
quz = L\lqui;crqz + Limglmg (C.55)

where (w,) is the speed of the rotor reference frame, x represents the number of damper
windings on the g-axis, which can be 1, 2, or 3, and y represents the number of dumper on
the d-axis, which can be 1 or 2. The rotor variables are referred to the stator windings for
convenience.

By linearizing above equations from (C.45) to (C.55) to have:

—r, 0 0 0 0 0
) 0 - 0 0 0 0 . i
Avdqs 0 0 _rl‘g(ﬂil 0 0 0 Aldqs . Al‘dqs
) . = T
Aviga [ =] 0 0 0 -nh 0 0 ||Alifia |+ 55| A4ska | +
Avig12 0 0 0 0 —TI;Z 1 0 Aiyg1z A2 kq12
[0 0 0 0 0  —Tigal
[0 —w, 0 0 0 0] [—7\25 0
| O 0 0 0 0 Of Alzqs | A% o]
[0 0 0 0 0 0| Ayr 0 0
AL .
|CU7~ 0 00 0 0| \fkd + 0 0 Awd (C.56)
|0 0 0000 Aldkqaz 0 0
0 0 0 0 0 O 0 0
And for mutual flux equations:
—L;; 0 0 0 0 0 )
L 0
) 0 —Ls O 0 0 0 . ’6“1 L
Aags 0 0 Lyga O 0 0 |[4aas Lma rgq
) R = m .
Ma|=| 0 0 0 Ly O 0 ||Ahfka|+|, . o |Almag
r . ='r
Aliq1z 0 0 0 0 Lygu O [Akez] |0 Ly
0 0 0 0 0 Lygl 0 Ling
(C.57)

Substituting mutual inductance equation in voltage equations to have:
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[ Avgqs
AVifg | =
_AVqu12
—75 —SLis  w,L 0 0 0 0
_erlS —T'S - SLlS 0 0 0 0 -r
0 0 r ) Alqu
—Ta1 + SLigar 0 0 0 .
0 0 0 —r7, + SLiq 0 0 Aljpg | +
N N T
0 0 0 0 —ry +Shia 0 Alyqs2
0 0 0 0 0 —Tigz + SLigg2
[ SLmd _ermq_ LlsiZs - Lmqi:nq 0
ermd SLmq Lmd i:nd - Lls iZS 0
SLing 0 . 0 0
SL, 0 |Almag *| 0 ol Awd (C.58)
0 SLing | 0 0|
0 SLiyg | | 0 0
Awd = [Aw, A5, ]
According to figure (1) current directions and using KCL.:
Dirg = Aifg + Aifyg — Digyy (C.59)
Aifgs = Algs + Aifng — Ay (C.60)
From figure (1) :
Ay = SLinaAilg (C.61)
AVg = SLingBilg (C.62)
NP — (C.63)
(rca1 + SLikar)
Ay = ;Av}{ 1 (C.64)
q - - p ,
(Tiq1 + SLiggr)
Mg = =Dy = Aveg — (15 + SLypg)Aigg (C.65)

Due to the assumption that the field voltage is constant during the operation (Av}d = 0) so:

Mg = =Dy = —(175 + SLipg)Disg (C.66)

SL
L Vi (C.67)

Ai\r = 7T l
v (a1 + SLigar) me
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. SL

Avp, = —Av}crql = —Av}fqz
\ SL,,
Al = — ——————Aih,
(Tk:[l + Sleql)
R SLing )
Aiggy = Aifg

(7”1;22 + SL\lqu)
From(C.59), (C.67), (C.70), (C.71) to have :

v -
Aipg = Amsaligs

y _ 1

msd . < 1 1 1 >

d - ~ ~ - ~ ~ -
" Trg + SLigq (s + SLiggr)  Skma

Ai‘r - _ SLmdAmsd r

e (ras + SLikas) @

R SLmaAmsd )
Aijy = —malmsd_pyr

- (r;;zrz + SL\lfd)

And from (C.60) and (C.70) to have:

v -
Aipg = Amsqligs

p _ 1
g <_ 1 B 1 1 >
ma (Tquz + SleqZ) (Tqu1 + Sleql) SLling
. SL,., A
Aifgy = =7 ——— T AT
(qul + Sleql)
. SL,.,A
Aiquz _ mq‘-msq Algs

(rI;ZZ + SL\lqu)
Substituting equations from (C.66) to(C.77) in(4.49) to have:

(_rs - SLls) + SLmdAmsd erls - erqumsq

Avy,. =
das _erls + ermdAmsd (_Ts - SLls) + SLqumsq
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Aiﬁqs +

(C.68)

(C.69)

(C.70)

(C.71)

(C.72)

(C.73)

(C.74)

(C.75)

(C.76)

(C.77)



[(Llsig.sr —Lmqi,f,;q) 0] Awd
(Lmd lma — Llslds) 0

Z Z Lisits — Lpgin 0
Ao = [0 50| Al + ity = mgiing) 0| 55
ad  Zqq (Lmalma — Lisigs) 0
AVj,s = ZZ. A, + AL Awd
1.1. Including the effect of the electrical torque:

The electric torque equation can be linearized on the form:

3

P . . . .
AT, = (E) (E) (AN ihs + Nig. Ails — ANsilys — ApsAily}

Substituting the mutual inductance and the currents in (C.81) to have:

3 P . . . . . .
ATe = (E) (5) {(_Llslgs - Lmqlrnq + LmdlgsAmsd + Llslgs)Algs + (_Llslgs +
Lmdi:nd + Llsicrls - Lmq i:isAmsq)Aigs]

3 P . . . A . A . .
AT, = (E) (E) {_LlslgsAlZis + LmdlgsAlfd + LmdlZSAlkrdl - LmdlcrlsAlgs -
LlsigsAigs + Lmd ifdAigs + LmdikrdlAigs - LmdigsAicrls + LlsigsAigs -
LmqigsAi;crqz - Lmq igsAi}crql + Lmq i(gsAigs + LlsigsAigs - Lmq i;crquigs -

Linging1Bifis + LinginsAifs}

3\ /P , ,
AT, = (E) (E) { TaAigs + T,ALL}
ATe _ 3 p Td Tq T
ARG

AT, :
[ AT;] = GTyqAifgs

d 1
EA(L)-,« = ﬁ (ATm - ATe - KD.Awr)
_ AT, dAs,
Awr = (2HS+Kp) a = hor
_ AT,
Awé = AH [ AT,
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(C.78)

(C.79)

(C.80)

(C.81)

(C.82)

(C.83)

(C.84)

(C.85)

(C.86)

(C.87)



-1
AH = |2HS + K,
0 0

Aw8 = AH.GTyqAiG s (C.88)
Substituting (4.56) in (4.52) to have:

AVigs = ZZ + AL . AH. GTyq Al (C.89)
AVigs = ZsyncnAiggs (C.90)

The impedance Zs,,,,., represents the impedance of the synchronous machine including the

effect of the mechanical part.

1.2. Eigenvalue analysis

.r .r v
[ Alggs | [ Alags | Avygs
=\r T
d IAI kq12 I IAI kq12 I JA\ A
- =\r — -1 1 T
at | Ai'fia | = "Dsyndsyn | Aifq |1 Dsyn|Avigs, |
r T
Il Y JI Il Ai%gq l ATy, |
Awd Awd 0
_LlS Lmd Lmd Lmd 0 0 0 0 07
0 0 0 —Lis = Ling Ling Ling 0 0
—Lima Lixai + Lma Lima 0 0 0 0 0
| ma Lma Lipg + Lma 0 0 0 0 0
0 0 Ling  Likgr + Limg Ling 0 0
0 0 0 Limg Ling Liggz +Lmg 0 0
0 0 0 0 0 0 2H, O
L 0 0 0 0 0 0 0o 1
EE =
Ty 0 0 —wLis = Wrlyg  Wrlpmg Wrlig  —Lisifs + Ling(—ikga—ixgs + ifs)0]
0 T 0 0 0 0 0 0
0 0 T 0 0 0 0 0
erls + ermd _ermd _ermd Ts 0 0 Llsigs - Lmd(i}d + i;:dl - i(;s) 0
0 0 0 0 T 0 0 0
0 0 0 0 0 Tiega 0 0
o =) ) mets= ) O imatts  p20 () () maiis§) (3) bmati D, 0
0 0 0 0 0 0 1 o

1.3. Derivation of electrical damping of the synchronous machine

Solving (4.50) for the currents Aig and Aigs:
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T —
Aldqs =

() [z i+
qs

ZaaZqq=2dq%qa) |1=Zqa  Zaa
[_qu (Llsigs - Lmqirrnq) t Zaq (Llsigs - Lmqirrnq) 0] AwS
qu(Llsigs - Lmqirrnq) - de (Llsigs - Lmqi;nq) 0
[ATe _
AT, | —
(e Y[ Zo o g, +
ZadZqq—ZdqZqd _qu de 1
—Zqq (Llsigs - Lmqirrnq) + Zaq (Llsigs - Lmqirrnq) 0
GTaq . o o o Awd
qu(Llslqs - Lmqlmq) - de(Llslqs - Lmqlmq) 0
1.4. Including the mechanical part of the synchronous machine

The mechanical part is described in including [91] and included into the model as:

Generator: 2HisAw; = K;,(A6; —AS;) — T, — D1 (Aw,)

Aw
A81 = Tl Wo

ZstA(UZ = ATLPA + k23(A83 - A82) - klz(A62 - A(Sl) - Dz(A(lJz)

LPA A82 sz

=—w
S 0

2H3$A(1)3 = ATLPB + k34 (A64, - A63) - k23(A63 - A62) -

LPB DS(Aw3)
A83 = %(JJO
N
2H4SA(U4 = ATIP + k4,5 (A65 - A64) - k34(A64, - A63) - D4(A(1)4)
1P A
A84 = ﬂ(JJO
N
ZHSSA(US = ATHP - k45(A65 - A64_) - Ds(Aws)
HP

Aw
A85 = TS(JJO

By replacing (A8) by (A“’ wo) and substitute the equations to have:

N
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(C.91)

(C.92)

(C.93)

(C.94)

(C.95)

(C.96)



A(l)]_ =

K100 Ki2kp303 Kiakask3awd K12Kkz3K34kas5 05 _ 1
SA4_A5 ATLPA + 52A3A4A5 ATLPB + S3A2A3A4A5 ATIP + S4A1A2A3A4A5 ATHP As Te
C.97
As = 2Hys — M +Kip 22+ Dy (€.97)
_ 1 k23wo k23k34w0 k23k34k45w0 k12w0
Awy = 3= ATpp, + 20 AT p, + 2S00 ATy + 2SSO NT + 2220 Ay
(C.98)
_ (kzswo) Wo
_ 1 k34a)0 k3skasw§ kzaa’o C.99
Bws = -ATyp, + ZSUNT,, 4 GEUS AT, 4 L2800 5, (C.99)
(k3400)*
A3:2H3 #+k34_+k23_+D3
A(,U4 = iATIp + Kaso ATHP + k34&A0)3 (C:I.OO)
Az Az SAZ
AZ = 2H4S - (k45w0) + k45 + k34 + D4
A(,US = iATHP + k45 ﬂA(l)‘l_ (C]'Ol)
A]_ SA]_

Ay = 2Hs + ky5 =2 + Ds

The relation between the electrical torque including the mechanical part can be found by

modifying the equation (C.87) to be on the form:

m
Where:
1
AHy = [_A_s O]
0 0

Kipwo Kizkzsw§  Kigkpsksawd — Kigkpskaswd
AHypp = |sA4As 52434445  $3AA3A4A5  s*A1AAsALAg
0 0 0 0

Tw =ITer, Tipg Tip Typ]”
Substituting equation (4.65) and equation (C.85)into equation (4.52) will have:
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T = Zsynch_MAizqs (C.104)

2. Eigenvalue analysis of synchronous machine including the mechanical part

[ Ai(rllqs ] [ Aitriqs 1 [ Tew
lair | AT | -
d kq12 kq12 AV iq12
2D | At = AA APy + BB Av‘;kd (C.105)
A8 A8
laol Lol 1
AA{, AA, AAs
AA = AA21 AAZZ AA23
Adzy Adsz; Adss
Tg 0 0 —wrlis — Wrlimg  Wrlpyg  @rLpg)
0 T 0 0 0 0
p 0 0 e 0 0 0
n wrlis + wrlng  —wWrlmg  —wrLlmg Ts 0 0
0 0 0 0 Tkq1 0
0 0 0 0 0 Tkqz |

AAy, = zeros [5 X 6]

AAz, =

|[2w_1-111 (_Lmdigso + Lmqigso) Z(L)Tll (Lmqigso - Lmd(igso - i}rdo)) Zw_;l (Lmqigso) Zw_l.;l (Lmqigso) ;_:ll(l‘mdi;so) ;_:)I(Lmdigso)}

|
|

| zeros [4 X 6]

|
[ kaz kiz 0 0 0
2H,  2H;
kiz _kas ka2 ka3 0 0
2H, 2H, 2H, 2H,
_ kas  _ ksa _ kez  Ksa
Adz =| 0 2H; 2H; 2H;  2H; 0
0 0 ksa _kas ks Kas
2H, 2H, 2H, 2H,
0 0 0 kas _ ks
2Hs 2H.
AA,, = Zeros[6 X 5] AA,, = Zeros[5 X 5]
[—Lisis + Ling(—iggz—ixg1 +i5s) 0 0 0 0
Lisigs = Lma(ira + a1 —14s) 0 0 0 0
AA13 = 0 0 O O 0
0 0 0 0O
0 0 0 0O
0 0 0 0O
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-2 0 0 0 0
2H,
0 wy 0 0 0 2y
Adyz =10 0 wy 0 0 Adz;z=]| O 0—2—;30 0
lo 0 0 w, O] by
lo 0 0 0 wl 0 0 0 -5 0
0 0 0 0 —-=
2Hs
Dsyn =
-_Lls - Lmd Lmd Lmd 0 0 0
—Lma  Likar +Lma  Lma 0 0 0
—Lma Ling  Lisg + Lima 0 0 0 zeros(6 X 10)
0 0 0 ~Lis = Limg Lmg Lmg
0 0 0 ~Lmg  Liggt +Lmg  Lmg
0 0 0 —Lmg Ling  Likgz t Lmg
zeros(10 X 6) 1(10 X 6)
1(6 X 6) zeros(6 X 3)
zeros(6 X 9)
1
BB = o 0 0 0
0 — 0 0
2Hs
zeros(4 X 5) 0 0 - 0
2H,
0 0 0 —
2H; |

The state space equation of the synchronous machine
AX' = AAX + BAu , AY =CAX

A = inv(Dsyy) * AA B = inv(Dsyn) * BB
X = [Aifys Aikgz Aifg A8 Aw]

u=[AVi AViga AVEg AT, T|

=[{ 000000 ol
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APPENDIX-D DQ-DYNAMIC PHASOR MODELLING OF STATCOM
1. State-space analysis of STATCOM

Ax} = KijgAx3 — KiigAisq — KiiaKpvalAvace + KiiaKpvavae (D.106)

3 - 3 '
Axz = KiigA%s — 5 KiigKpvgVsqAisa + (E KiiaKpvqVsa = K“q) Blea ¥

s 5 (D.107)
. . X
E KiqupvqlquVSd - E KiqupqulsdAvsq + Kiqupqu
Ax3 = Kivavac — KivaAvac (D.108)
;3 . 3 . 3 . 3 .
AX4 = —C Kiququlsd + - KiquSdAlsq + - KivqlquVSd - KivqlsdAVsq +
2 2 2 2 (D 109)
Kivq Q" '
iqu
. 1 Kpi Rf | Kpi . . KpidKpvd
Aisy = ——Ax; — 24 Ax; + (——f + p‘d) Aigq + wAigq + == Avg +
Le L¢ L¢ L¢ L¢ (D.110)
1 AVos — KpidKpva v '
L¢ sd L¢ dc
oo 1 Kpig (_ 3 KpigKpvgVsq ) : (_& 3 KpigKpvqVsd
Aisq = o Ax, + I Ax, + P w ) Aigq + » +3 L o111
Kpi ) 3 KpigKpvqi 1 3KpigK id) KpiaKpv '
pig 3 Bpigipvqlsq 1 _ 3 Xpighpvals pigipvg ~x
> ) Bigq +3 Ay + (Lf e AR
’ 3 igq vSq—2igq-Rf ,. igd'Rf_%VSd-isd_;VSq-isq
Avge == Vgq + Aigq + > Avgye +
2 Cdcvdce CdcVdc CdcVgc (D 112)
3 isq 3 Vsq Ai

2 CdcVdce Vsq 2 CdcVdc sq
The transformation of the equations (D.106) to (D.112) to dynamic phasor is given by:

(Ax1)o = Kija{Ax3)o — Kija{disa)o — KiiaKpvalAvacdo + KiiaKpvalvacdo (D.113)

I 3 . 3
(4x3)0 = Kiig(824)o — > KiiqKpwq(Usqdo(Bisado + (3 KitgKpug(Vsado —
. 3 . 3 .
Kiiq) (Aisqdo + 2 KisqKpwalisqdotdVsado = 2 KiiqKpvq{isadoldvsqdo +
N 3 . 3 .
Kiqupvq(Q Yo — EKiqupvq(vsq>E<Alsd>k + EKiqupvq<de)k(Alsq)k + (D.114)

3 . 3 . 3 .
EKiqupqusq)E(AUsd)k - EKiqupvqusd)E(AUsq)k - EKiqupvq(vsq>k(Alsd>E +

3 . 3 . 3 .
EKiqupvq(vsd>k(Alsq>E + EKiqupquSq)k(Avsd)k - EKiqupvq<lsd)k<Avsq)E
(Ax3)0 = Kiva{vic)o — Kiva{Avaco (D.115)

, 3. , 3. , 3 . .
(AX4)0 = _EKlvq<vsq>0<Alsd)0 + EKlvq<vsd)0<Alsq)0 + EKlvq(lsq)0<Avsd>O - (D'116)
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3,,. . . % 3 ,,. .
EKlvq<lsd>0<AUsq)0 + Klvq(Q Yo — EKlvq<qu>E(Alsd>k +

3 .,. . 3 .,. . 3 .,. .
EKlvq<vsd>E<Alsq)k + EKlvq<lsq>l_c<Avsd>k - EKlvq<lsd)k<Avsq>k -
3.,,. . 3 .,. . 3., .
EKlvq<vsq)k<Alsd)E + EKlvq<VSd)k<Alsq>E + EKlvq(lsq>k (Avsq )y —

3 . .
3 Klvq<lsd>k<Avsq)k

Py 1 Kypi Rr Ky
(Bifgo = = 10x)o =2 Bxgho + (= T2+ “22) (Misado + oBisg)o —
d ! (D.117)
KpidKpv 1 KpiaKpv *
%(Avdc)o + ; (Avsd)o + %(vdc%
sy 1 Kpig __ . _ 3KpigKpvq :
(Bisilo = (8200 + 220y + (—0 = $ L2 w5, ) Bigaho +
3 KpigKpv Rf Kpi iaKpv . 1
(E%( Vsa)o — Ls a q) (Ai sq)O + ‘%(lsq)omvsd)o + (E -
3KLK]; . KlKIJ * 3K1KU .
~—PP (isa)o (Avsq>0 + Q) — _M<vsq)k<Alsd>k +
2 L L 2 L
f ! / (D.118)
3 KpigKpy 3 KpigKpy 3 KpigKpvq ;.
2%<Vsd)k<Alsq)k + %(lsq)k (Avgg)y — Z%QSd)E(Avsq)k -
3 KpigKpv 3 KpiqgKpv 3 KpiqKpvq ;.
2%(v5q)k(Alsd>k + %(vsdhc(Alsq)k +5 %(lsq)kmvsd)k -
3 KpigKpy .
E%(%d)k(AVsq)k
Fork =k
(Ax1)k = Kija{dx3)k — Kija{Aisadk — KiiaKpva{Avacdk + KiiaKpva{vacdk — (D.119)
Jhw(Axy )
(Axy )y =
. 3 .
Kqu uq(vsq>k<Alsd)0 + _Kiqupvq<vsd)k<Alsq)0 +
Kqu vq(isq)k(Avsd>0 Kqu vq(isd)k + Kiiq<Ax4>k -
(D.120)
Kqupvq(vsq>0(Alsd>k + Kiiq pvq(v5d>0(Alsq)k iiq(Aisq>k +
Kqu vq(isq)0<Avsd>k Kqu vq(lsd>0<AUsq>k + K iiq vq(Q*>k -
Jho(Axy )
(Ax3)k = Kiva{Vachk — KivalAvac)i — jko(Axs)y (D.121)
, 3 . 3 . 3 .
(Axg)y = _EKivq<vsq>k<Alsd>0 + _Kivq<vsd>k<Alsq)0 + _Kivq(lsq)k<Avsd>0 - (D.122)

wq(lsd>k<Aqu)0 wq(vsq)0<Alsd)k + qu<v5d)0<Alsq>k +
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3 . 3 . % .
_Kivq<lsq)0<Avsd>k - EKivq<lsd>0<Aqu>k + Kivq(Q Yk — jkaw(Axy )y

(Diggh = —Li(Axﬂk - Kffm (Axs)y + (—— + Kpld) (Bisa + 0(Aisghi +
K”LI:‘”"”(Avdc)k + + (Avsd)k Kme—I;pm(Véc)k — jkw(Aisq)y
(Aisg )y =

2%?“1(175(;)1((&5(1)0 3Kplil;pvq (Wsai(Qisq)o 3L1;pm<lsq>kmv5d>0
%’Q’iz—’)fp“?(isd)gmsq)o .- (M) +22 DB +

3 Kpigk .
(—w - 5%(”&;)0) (Aigg)y +
3Kpigk R Kp; 3 KpiqK,
(E—Pl‘z 24 (1 Vo — L—f - —]kw) (Digg)p += M(lsq)o(Avsd)k +
f f br
Kqi K KpigK
(l - zw(isd)o) (Avgy)y + XPialPva (y,

Lf 2 Lf Lf

Fork =k

(Ax1)k = Kijq{Ax3)g — Kiijg(Aisq)k — KiaKpyaldvae)r + KijaKpyalvac)y +

Jkw(Ax;)x

, 3. . 3. .
(Ax3)y = _EKlqupvq<V5q>E<Alsd)0 + EKlqupvq<Vsd>k<Alsq>0 +

3, . 3., . .
EKlqupvq(lsq>E(Avsd>0 - EKlqupvq<lsd)R(Avsq)O + Kliq(szL)E -

3 ,,. . 3., . . .
EKlqupvq<vsq>0<Alsd>E + EKlqupuq<vsd>0<Alsq>k - Kliq (A’-sqﬁ +

3. , 3. ) . .
EKlqupvq(lsq>0(Avsd>E - EKlqupvq<lsd)0(Avsq)E + Klqupvq(Q e +

Jkw(Ax;)x

(x5 = Kipa Vi)t — Kiva(Bvac)i + jkw(Axs)g

, 3 . 3 . 3 .
(Ax4.>k = _EKivq<vsq)k<Alsd)0 + EKivq<vsd>E<Alsq>0 + EKivq<lsq>k<Avsd>0 -

3 . 3 . 3 .
_Kivq(lsd>R(Avsq)O - _Kivq<vsq>0(Alsd>E + EKivq(vsd)0<Alsq)k +

> King(isqo$dvsadk — 3 King isgdolAvsg ) + King{Q" e + jkeo(Axs)g

. 1 i R K i
(Ao = =) = P ey + (— ot ”)(Azsd>k+w<msq>k

KpidKpv 1 i v
%(AUM)E +; (Avsa)y — %( Vac)k + jkw(disq)y
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(D.123)

(D.124)

(D.125)

(D.126)

(D.127)

(D.128)

(D.129)

(D.130)



(Ais&)k =

3 KpigK, . 3 Kpigk, . 3 KpigKpvq .
—5%(1@)}(1‘15&0 5%(1&1)%(4‘%@0 + E%Qscﬁk(m’sd% -

3 Kpigk, . 1 Kpi
E%(%d)k(ﬁlvsqh + ;(sz)k + LL;q(AxAQI_c +
3 Kpigk, ) (D.131)
(—o =322 (v ) Ao +
3 KpigKpvq Rf _Kbpiq | . : o\, 3KpigKpvg ;. _
(ET (Wsado =7 =7~ +]kw) (Qisqde + 57 (isqdo{AVsali +
1 3KpiK , KpigK, .
(3 - 272 i), ) g + 222222,
f f f
The dc voltage at the fundamental frequency is derived as:
(sz’lc)o =
. 3 . 3 .
3 isd szd 2igq. Rf Lszd.Rf—Evdesd—Evsq.qu
(2 Cacvac sd)O + ( Cacvde lsd)O ( Cdcvéc Avdc)o +
3 vsq .
(EC—U 17sq)0 + (2 Cacva lsq)O
(sz’lc)o =
= d—2isq-Rf 3 vs, 2 Rf— = dlsd— V
(E———— st vs Yo (Aisq)o + ( . )0 (Aigg)o + ¢ S ZCSC gt Sq)o (Avge)o +
Isd isq zvsd 2i5q-Rf A
(Ec o )o( Vsq)o + (Ec o )o (Vsgdo + <—)k< sadk +
. . D.132)
3 v l d-Rf__Vsdlsd__Vsq-lsq i (
2C, sj )i (Bisg )i + (= chcvéc . i (Avge) + <§c Ss )i (Avsq )y +
i —2isq.Rf v
(5 cdsz Ve (Avgg i + (2 i (Aisa)i + <Ec Ss M (Bisg)r +
) . . .
lsd-Rf_E”sdlsd_EVsq-lsq _ 3 isd _ 3 isq _
( Cact, e {Bvac)r + Cdc”dc)k (Avgg )i + 5 Cdevdc)k (Avsq )k
(Av(lic)k =
vd 2i5q-Rf 3 v de Udld U
(¥)k (Bisa)o + G o= (Alsgdo + ¢ S A B Sq)k (Bvgc)o +
Cacvg Cacvyc
i i Vsd 2isq-Rf
(; Cdsz Ve (Avsado + <Ec SZ Yie (Avsqdo + (2—)0 (Disg )i + (D.133)

3 v, a-Rr— Vsdlsd vsq isq .
2Cq Sf Yo (Bisgh + {< - ZCdCUdC Jo —]kw} (AVache +

G (Avsa + G i) (Bvsg
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<Avélc)k =

3
“Vsd—2isd-Rf Vg . isg-Rf—>Vsdlsa— vs is
(2 Yk (Aisq)o + <EC g )i (Aiggdo + ¢ i ch o7 0 (Avge)o +
isd A lsq A szd 2isq.Rf A
(56 ey )k( Vsq)o + ( )k( Vsqo + (—)0 (Aisq)r + (D.134)
3 Vs sa-Rf— Vsdlsd Vs is .
220 (i) + {< e, +1kw} (Avae)i +
i is
<EC Z Yo (Avsadi + (EC Z Yo (Avsq>l_c
The arrangement of equations (D.113) to (D.134) as a generalised matrices
[ (4X")0 1 [ (AX)o T [ (W)o
(AX" ) (AX ) (u)i
AX' )z AX)z uy
( : L = App ( : L + Bpp ( :>k (D.135)
(AX" ), (AX), (W,
[{AX" )k ] [{(AX)x; ] [ (u)e
(Ao Aok, Aok Aok, Aor ]
Ar, o Ak, 0 0 0 0
App = Ar o 0 A :
Agno  Arnk, Agnin 0
[Axno  Arnka 0 Agmgn
_ BO _ r Ar=0 aCkzk_l ack=k1 aCkzm aCkzkn-
By, Alr=k, Og=k, 0 0
B aCi—%- Ap=%o 0 0
Bpp = ;kl App = k a ke
Bin 0 0 Ay=kn
B lackr; O 0 ar. |
Qe ke
—Jjkw 0 Kiia 0 —Kiia 0 —KiiaKpva
3 3
0 —jkw 0 Kiiq -3 Kqu vq(vsq)o 2 Kqu vq(vsd>0 - Kiiq 0
0 0 —jkw 0 0 0 —Kipa
) 3 3
_ 0 0 0 —jkw _EKivq(Usq)O EKivq<Vsd)0 0
1 Kpia Ry Kpia . _ KpiaKpva
Ly ° Ly ( Ly Ly ]kw> ¢ Ly
1 Kpiq 3 KpigKpvq 3 KpiqKpvq Ry Kpig .
0 L 0 T T2 Usgdo 5 L (Vsado L L Jkw 0
0 0 0 0 a, a2 a3 — jkw |
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a6

S O O O O O
)

3, Vsq 2Rfisd
a, =~ —
L 2 <Cdcvdc)o <Cdcvdc>0
3 Vsq
a2 =-
2 <Cdcvdc>0
iZ;R 3, vsqi 3, Vsql
a3 = (=4 f\ _ 3 /Vsdlsay _ 3 ,Vsqlsq
(Cdcv§c>0 2 <Cdc17521¢>0 2 Cde(Zic)o
0 0 0 O 0 0
3 3
0 00 0 - EKiqupvq<vsq)k EKiqupvq<vsd)E
0O 0 0 O 0 0
3 3
acop = 0 0 0O - EKivq<vsq)k EKivq<vsd)k
0 0 0 O 0 0
3 KpigKpvq _ 3 KpigKpvq _ Ry _ Kpig
0 00O 2 Ly (vsq>k 2 Ly (Vsado Ly Ly
0 0 0 O a4 a5
3, Vsa 2Rfisa 3 Ysq isaR
ad == 7= % a5 == %
2 <Cdcvdc>k <Cdc”dc>k 2 <Cdc”dr_‘)k Cacvgyc
3 Usqlsq Ve
2 ‘v, K
[ bk:O bCk:k_1 bCk:kl bCk:E bck:kn_
beg=r, br=k, 0 0
B _ bCkzk—l bk=k_1 0 0
DP — . . .
bcg=g, O 0 by=kn
_bCk=H 0 0 bk=k_n |
0 0 Kiidevd 0
3 . 3 .
2 Kiiq Kpuq<lsq)0 ) Kiqupvq<lsd)0 0 Kiiq vaq
0 0 Kiyg 0
3 . 3 . .
EKivq(lsq>0 - EKivq(lsd)O 0 Klvq
By = 1 0 KDiaKPva 0
Ly Ly
3 KpigKpvg ;. 1 3KpigKpvg ;. KpiqKpvq
s lsglo =5 (isado 0 .
f f f f
E isd E isq 0 0
2 <Cdcvdc)0 2 <Cdcvdc>0
Zeros(6 X 4)
bCk—k =13 iSd 3 isq
- —(— = 0 O
2 <Cdc”dc)k 2 <Cdcvdc)k

2. The impedance analysis of STATCOM

3 S .S
@6 = (G — 3 (2t

2 Cdcvdc

Using the synchronous dq model, the transformation to dg-dynamic phasor results:
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(Avgq)o] [(Aisq)o] [{Aigq)o]
(Av5q>0 (Aisq>0 (Ai;q)o
(Avgq ) (Aisq )i (Aiggdy
=A . + B S D.136
(Avsq>k z (Alsq>k z (Alsq>k ( )
(Avsq )k (Aigq)k (Aigq)r
<Avsq>k_ _<Aisq>k_ -(Ai;q>l_c_
hdk:() hlka_1 hlk=k1 hlkan
hlk=k1 hdk=k1 0 0
A, = |hlk:k_1 0 hdk:k_1 0 |
[ 0 0 0 J
hlk:E 0 0 hdk:H
Kiiq
- (m)zc 0
hlk:kl = Kiiq
0 - (m)k
y Ly (s + jkw) + Ry — (Kyia +=2%)q ~wly
k= . Kij
(L)Lf Lf(S +]k(1)) + Rf — (Kpiq + Tq>0
Kiiq
" _ —(mh* 0
k=k, — 0 _( Kiiq ) .
s—jkw k
Bdy—g Blk=k—1 Blk=k1 Blk=kn
Blk=k1 bdk=k1 0 0
BZ = |Blk=k_1 0 Bdk=k_1 0 |
[ 0 0 0 J
Blk=H O 0 Bdk=E
Kij Kiia \_
(Kpia +~14), 0 (' 0
Bdy = Kiiq Bli=r; = Kiiq
0 (Kpiq +— o 0 (m)k
Kiia
_ (s+jkw)k 0
Blk=k1 - O ( Kiiq )
s+jkw k

The generalised form of the STATCOM reference currents is:
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_<Al:;d)0_ (Vac)o] {(Vac)o]
(Aisq)o (Vsado (AQ)o
(Digq)r (Vachk (Vac)k
S =C . -C D.137
(Alsq)k z (vsd>k “ (AQ)k ( )
(Aigg)k (Vac)x (Vac)k
[(Aigq )z (Vsa)z] L(AQ)7
Cdk:() Clk:k_1 Clk=k1 Clk=kn
Cli=k, Cdy=y, 0 0
C, = |Clk,:k_1 0 Cdy—rx; 0 |
[ 0 0 0 J
CZRZE 0 0 Cdk:H
Kiy —Kiv T
Kpva + (-2}, 0 (Chate O
Cd, = Kivg Cle=k; = Kivg
0 Kpug + 1o 0 ral®
Kivd
B (Sﬂ—.k@)k 0
Clemin =17 Kivg
<s+jka))k
While, the inputs of the STATCOM controller are generalised as:
‘(vdc)o‘ _(Avsd)o_ _<Aisd)0_
(AQ)O (Avsq>0 (Aisq>0
(Vac)k (Avga )y (Aisqdp
D =E +F . D.138
Z1(AQ)k | (Bvsq )k ?[{Bisg)i ( )
(vd(:)R (Avsd>k (Aisd>ﬁ
[(AQ)r _(Avsq)k_ _<Aisq>k_
[de=0 le:k_l le=k1 le:kn]
[Dljey, Ddy=g, 0 0o |
D, =|Dl_x; 0 Ddy_z; 0
0 0 0
Dl O 0 Ddy—r|

i 8 o= [ i <[

al = Cacs{vacho + a4

amy—y = Cqc(s + jkw ) (vgc)k + ay

199



1. 3,1 . 31 .
ay = —{—isaRro + 35— Vsalsado + (G5~ Vsqlsqdo

1, 3,1 . 31 .
a=—— isaRe)i + 2 G Usalsadi + (G5 Usqlsq )
Edk:() Elk=k_1 Elk=k1 Elk=kn

Eley, Edg—r, O 0

E, = |Elk:k_1 0 Edy_x; 0 |
[ 0 0 0 J
EIRZE 0 0 Edk:H

_3 (isado (isq>0 __3 (isadk (isq>l_<]
Edk 2 _(isq>0 (isd>0] Elk:k _2[_<isq>k (isd>l_<

El _ E (isd)k (isq>k
K=k ™2 _(isq)ﬁ (isd)k
de=0 Flk:k_1 Flk=k1 Flk:kn
Fliek, Fdgey, 0 0
F'Z = |Flk=k_1 0 de:k_l 0 |
I 0 0 o |
|Flye: O 0 Fdy—i-|
3 , 3 ]
(Evsado — (2Rrisade)  Gsqdo
Fdy = 3 3
E(vsq)o _E<vsd>0_
3 . 3 ]
GUsadk —(2Rrisade (G Vsqdx
Flk:k—l = 3 3
G Vsq)® _E<vsd)k_
3 . 3
GUsadk = (2Reisa) G Vsqdi
Fly=k, =

3 3
E(vsq)k - E(vsd)k
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1.

APPENDIX-E DQ-DYNAMIC PHASOR MODELLING OF SSSC

Power control mode

Vse - Vi
A A

A Vv,

For SSSC controlled by power control mode is:

2 Bised = 1 Avseq = 122 Alsq + whiseq — 1 Amgeg

= Bigeq = LiseAvseq — WAigeq — %Aiseq - iAmseq

= 8%y = KipgP; — KipaAP

00 = KigQ3 — KingAQy

Amigeq = KpvaPline — KpvalPiine + Ax4

AMseq = KpuqQline — KprgAQune + AX2

APy = > (iseqBvsg + iseqV1q + Vig Aiseq + Viq Aiseq)
AQ; =3 (iseqAV1q — iseadVig — V1 Aiseq + Vig Digeq)
AP, = %(isedszd + lseqAV2q + Vag Digeq + Vag Aiseq)
AQz = 2 (iseqAV2q — isealV2q — V2q Biseq + V2a Biseq)
APjine = AP, — AP,

AQiine = AQ1 — AQ,

(E.139)
(E.140)
(E.141)

(E.142)

(E.143)
(E.144)

(E.145)
(E.146)
(E.147)

(E.148)

(E.149)
(E.150)

The transformation of the SSSC equations from (E.139) to (E.150) to dynamic phasor is:

d . 1 Rse r . . 1

(EAlsed>k = E(Avsecﬁk - (EAlsed)k + (wAlseq>k - <L_se Am-seq)k
d .. 1 . Rse r . 1

(5 Dlseq) = (E Avgeq) i — (0ALgeq ) — (L_wAlseq)k - (L—w Amgeq )i
d . .

<E Ax1)k = (KipaPrine )k — (KivaAPline)x — jkwAxy

d * .
<E Axy)y = (Kiquline)k - (KiquQline)k — jkwlAx,

<Amsed)k = <vadpl*ine)k - (vadAPline)k + (Axl)k
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(E.152)
(E.153)

(E.154)

(E.155)



<Amseq>k = (vaqu*ine)k ( pquQline>k + (Ax2>k

3/, . . ,
(Apl)k = (E (lsedAvld + lsquvlq + V1d Alsed + vlq Alseq))k

3 /. . . .
(AQ1)k = (5 (lsquvld - lsedAvlq — Vg Aigeq + V14 Alseq))k

3/. . . .
(APZ)k = (E (lsedAUZd + lsquUZq + Vg Algeq + VUzq Alseq))k
3/. . .
(AQZ)k = (E (lsquUZd - — V2q Alsed + V24 Alseq))k
(APyinedi = (APy)i — (AP )y
(AQiine)r = (AQq )k — (AQ2)k

isedAUZq

(E.156)
(E.157)

(E.158)
(E.159)

(E.160)

(E.161)
(E.162)

The expansion of the equations (E.151) to (E.162) will result a generalised form of state-

space equation of the SSSC as:

APk=0  ACPr=k QACPk=k acpk:kn‘l
ACPk=k  APk=k
APpp = | acpi=x apk=t
laCPk:H APk=kn J
APr=k =
_—jka) 0 EKivd((vld)O —{(v24)0) EKivd ((Ulq)o - <v2q)0)
0 —jko -3 ivq(—<v1q>o+<v2q>o) > Kivg(v1a)o = (v2a)0)
_Lise zKme ((Um)o —(v2q)0) — = —]k 2 vad ((V1q>o (U2q>o) tw
0 _Lise 2 vaq ( (Viglo + (U2q>0) w %Kvaq ((V1d)0 — (V2a)0) — T —]ka)
0 —Kiua(iadk—Waad)  —Kiwa((v1ghk—(vag)i) ]
; 0 —Kipg(—(w1ghk + (Wagdk) —Kivg((viadk — (V2a)k)
WPk =300 0 PU(iah—waah) 2 (aghe—wagh)
0 0 Iziq (—(Wigdk + (V2q)k) M (viahk — (V2adi) |
bpr=0o  bcpr=r bCPr=k bepy= kn]
bepr=k  bPr=k
BPpp = | bepy—g bpy=r |
bepy=tn bpy.= knJ
bpy=k =
[0 0 —>Kialiseado —5Kivaliseqdo 5 Kivalisea)o %Kivdﬁseq)o Kiva 0
0 0 —ZKigliseqlo 7 Kivg(iseado E Kivg{iseq)o E Kipgliseado 0 Kiyg
=0 ;"Lp”%sed)o 3’2’”% iseq)o —3?”< isea)o 2";’"“( iseqdo =240
[0 5 2 Piggdo —2 U)o —3 M iseqdo 3 itliseads 0 — ]
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00 _Kivd<ised>k _Kivd<iseq>k Kivd<ised)k Kivd(iseq)k
0 0 _Kivq<iseq>k ivq(ised)k Kivq<iseq>k - ivq(ised>k
g, = - Kpva ;. vad Kpva ;. vad
bcpk_k !O 0 (lsed>k ( seq)k - (lsed)k ( seq)k
K K K K
|_0 0 — (lseq>k __<lsed>k — - (lseq>k _q<lsed>k
Lge Lse
Voltage control mode
The SSSC is controlled in voltage control mode as:
AX{ = Kiyqg (v;c — Avg,)
Axh = Kipg(Vieq — Avseq)
d ,. , , K 1 K "
—Aigpg = — —Ax1 £ Aigeq + WAigeq + PP Ay e + — AVgpq — 22205,
dat Lge se Lge se
d ,. _ 1 . Rse Kpvq pvq . *
Emseq = _L_sesz — WAigeq — Alseq + (Lse + Lo Avseq Tl Vseq
d(Avgc) — E{Avsed-ised VsedAised _ Vsed-lsed Av } + E{Avseq'iseq + Vseq-Alseq _
dt 2( Cacvac CacVdc Cdcvdc Vac 2( Cdcvdc CdcVdc

2igeqAiseq.Rge

Vseq-lseq Av }

Cdcvdc CdcVdc

i2, R
+ sed"tse Avdc
Cdcvdc

The transformation to dg-dynamic phasor is:

(Ax1)k = Kipa(ae)k — Kiva{Avac)k
(Axz )y = Kivq(”s*eq)k - Kivq<AVseq)k

d ,. 1 R . . Kpva
(EAlsedhc = __<Ax1)k - i(Alsed)k + (wAlseq>k + Lp;; (Avge) +

1 Kpvd
L_<Avsed)k —F= ( dc)k

se

d ,. .
(G Biseq = —L—semxz)k — (@isea)i = 12 (Biseq )i + (7 + 20) (Bvseq e —
K

£ — (Vseq )i

d(4vgc) AVsedised 3 Vsed-Alsed 3 Vsedlsed AUSEQ lseq
(Llbacdy, 3 sy, 3 ey, 3 st gy, 3 (Metelen),
3 Vseq-Aiseq 3 Vseq-lseq 2iseqAised-Rse lsed se
> (—Cdcvd e =3 (—Cdcvglc Vaehk — ¢ Cacvas Yk t <c 3 Avdc)k
(Av{ic)o =

vsed 2iseq-Rf 3 v
(ZCT)O (Aiseq)o + (2 Ca Siq Yo (A lseq)O
i de__Vsedlsed__vseq Iseq 3 i
< = z C )0 (Avdc)o + ( sed )0 (Avsed>0
dedC 2Cq4cva
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(E.163)
(E.164)

(E.165)

(E.166)

(E.167)

(E.168)
(E.169)

(E.170)
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vsed 2lsed Ry

3 lse
(2 0 j Yo (AVgeq)o + (2

Use
)k (Alsed>k + <EC vq )k (Alseq>k +

3
<sed Rf— _vsedlsed__vseq seq>
k

(Avge)y + (‘ fsed )k (AvVgeq )y +

Cdcvdc 2CqcVq

17sed 2igeq-Rf

ise
<2 Ca ; )k (Avseq)k + (2

)k (Alsed>k + (3 Vseq )k (Alseq)k

(lsed Rp— zvsedlsed szeq lseq>
k

e ised 3 iseq _
Cdedc <Avdc>k+<zc Va )k(Avsed)k+<2C iy >k( vseq)k

<Avc’lc)k =

vsed 2ised-Rf

<2

Yk (Alseq)o + (3 Teq )k (Aigeq)o +

Cdcvdc 2 C cVd

3 3 . 3 .
(lsed'Rf_Evsedlsed_gvseq-lseq

e {Avgcho + (22 i (BVseao +

Cdcvéc 2Cqcva
lseq 2 Vsed—2ised- f 3 Vseq (E174)
(2 Cacva )k (Avseq)o + (C—U)O (Alsed)k + < )0 (Alseq)k +
i.?ed'Rf_EvSedised_%vseq-iseq ised
( Cov2 Yo — jkw { (Avgc)y + (EC oy )O (Avgeq )i +
dcVdc
3 1
<EC Sej Yo (Avseq)k
(Avge)y =
vsed 2iseq-Rf 3 v
(4 Cacvae Vi (Qiseado + (2 Ca s;q Vi (Biseqlo +
i a-Rf— Vsedlsed_3vseq Iseq i
( = z Cdcvdc )k (Avdc>0 + (EC se: )k (Avsed)o
(E.175)

3
3 i Vsed—2lsed- v
(EC seq )k (Avseq)o (2 — f)O (Alsed)k + (— seq )0 (Alseq)k +

3

Iseq-Rf— Vsedlsed__vseq iseq i

{( = z Cdcvd )0 +]kw} (Avdc>k + (2 C Sevd )0 (Avsed>k
c

G250 (Avseq)i

So, the generalised form of voltage control mode is given as:
AVg—g ACVj—j QACVUk=f - acvk=kn]
ACVy =k AV =

AVpp = | acvy_x avy—x
acVi—in e AUk=Tn
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V= =

Yo — jkw_

k

r—jkw 0 0 0 —Kiva
0 —jko 0 0 0
-~ 0 B _jkw ) Kpve
Lse Lge Lge
0 — i —w _ fse ]k(l) 0
Lse Lge
0 0 <§v59d_2i59d‘Rf) (3 Vseq ) (iszed-Rf_gvsedised_gvseq-iseq
CacVdc 0 2 Cacvac 0 Cdc”zzir:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
A=k =10 0 0 0 0
0 0 gvsed—zised.Rf) <§ Vseq ) (iszed'Rf_%vsedised_;Vseq-iseq)
CacVdc k 2 Cqcvac k Cdcvzzir:
bvp_g bcvp_r bcvg_y bcvi—in
[ bCszk bvkzk ]
BVpp = | bevyg bvy_g I
lbcvkzgqL bvy_in J
0 0 Kivd 0
0 _Kdi 0 Kivq
L 0 — @ 0
bvy—; = Lse Lse
ek 1 KPWZ vaq
0 L yfwa) g _ew
Lge Lge Lge
3 _lsed 3 iseq 0 0
-(2 Cdcvdc)o <2 Cdc”dc)o
[ 0 0 0 0]
[ O 0 0 0
0 0 0 O
bcv; - =| |
ek | o 0 0 0|
E ised E iseq
l<2 Cdc”dc>k <2 Cdcvdc)k 0 OJ
Impedance control mode
1 Vseq .
Axseq - EAvseq - E Alseq
Axé = Kivq (x;eq - Axseq)
AMgeq = Kppg(Xieq — Axseq) + Ax,
r_ * Kivq KivqVseq 4 -
Ax; = KipgXseq — EAvseq + iseZ Alseq

1 R K
Ailyy = ——Axy — WAigoq — 2 Aigpy —
se 2 sed se :
q Lge Lse a Lselszeq
Kpvq _ Kpvg _«
- se se
Lselseq q Lge q

The transformation to dynamic phasor result:
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Fork=0

K; Kipg?. .
(Axé>0 = Kivq(x;eq>0 - <i = AUseq)O + ( “;lzl =4 A"seq>0
seq seq

. 1 , R . Kppg?.
(Al;eq>0 = _E<Ax2)0 — w(Aigeq)o — i(Alseq)O (% Alseq)O +

1 K K,
T (Avseq)o + (ﬂ Avseq)o - ﬂ(35;‘eq>0
Lge Lselseq Lse

(Axz)o =
KipgV. . K; % KiyqV. .
( “;;z::eq)o (Alseq>0 - <i::>0 <Avseq>0 + Kivq<xseq>0 + ( Lz;zze:eqﬁc (Alseq)k -

K KipqV . Ki
G e (Avgeq )i + ¢ ”;[21 e (Aiseq )z — <iwq>k (AVseq)7
seq seq sed

Rse

KpvqVse
Leo _< = q)O} (Alseq)o

Lgeise?

. 1 .
(Biteqlo = = 1= (4x3)o = (Aiseado +{ -

L 4 (Lo P”q Kpva¥seay ¢ 4:
{Lse + (Lselse )0} (Avseq>0 (xseq>0 ( Lseiz )k (Alseq)k +

Kpv Kpv Vse "
<Ls:lsz & (AVseq _< ot q)k (Aiseq)r +< ~rva )k (AVseq)

Fork =k

i K; KivgV )
(Axé>k = (Kivqxseq)k - (i:—:: Avseq)k + ( “fq =24 Alseq)k
. 1 , R . Kpyg?.
(Al;eq>k = —E(AXZ)k — w(ligeq) — i(Alseth (% Alseq)k +
1 Kpvq _ Kpvg
Leo (Avseq)k + (Lseisquvseq)k Leo (xseq>k
(Axp )y =
KiygV. . K; . KipgV. .
(%)k (Alseq)o - (%)k (Avseq>0 — jkw{Ax,), + (%)0 (Alseq)k -
seq seq seq
K; *
<i wq)o (Avseq)k + Kivq<xseq)k
seq
(Alfeqhic = — (L9, (Aigeqdo + (2L (Avgeqho — = (Bxy )y —
seq/k Lseiszeq k seq/0 Lselseq k seq/0 Lse 2/k

se KU se KV
o(Bigeqh +{ =12 = (L0, — jlewo} (Bl + {7+ 2o} (v i —

Lsel Lselse

K
pvq /%
—(x

Lee ( seq)k
Fork =k

Kipg?V . K; Kipgv B}
(Axé>k = “;:zleqseqﬁ (Alseq>0 - (#:Z)E (Avseq>0 +( u;;z:qseq>0 (Alseq)k -

Kiv * .
<ise:)0 (Avseq)k + Kivq<xseq>k +}ka)<A.X2>k

. KpyqV , K 1
<Al;eq>ﬁ =—{ pvq-zseq>k (Alseq>0 + B )E (Avseq)o - _(Ax2>ﬁ -
LselSeq Lselseq Lge
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K,
(Bisealy + {2 — (2L, + jko
se elseq

Kpvg /) + \_
L_se<xseq>k

Lg

So, the generalised form of impedance control mode is:

[ Qlg—g QCigx— QCigx—g acik:kn]
| aCik=k aik=k |
Alpp = | acly=x Alp=f |
aclk:H e alk:H J
A=k =
—jkw 0 0 0
i KivqVseq
0 —jko 0 (Kiavsea)
seq
1 -R .
-— 0 2 —jkw )
Lge Lge
1 -R K v .
0 - —w _tse _ Lzseqh) _]kw
Lge Lge LselSeq
3 .
“Vsed—2ised-Rf 3 v
2 seq
0 0 F———) GC— o
L CacVdc 2 Cqcvac
0 0 0 0
KivqVseq
0 0 0 <i2—>k
seq
, 0 0 0 0
aCly—y = KppaV
k 0 0 0 — (Easeq
Lseliseq
3 .
“Vsed—2ised-Rf 3 v
2 seq
0 0 F——h G K
L CdcVdc 2Cdcvdc
bik=0 bCik_k bCik=k bCik=kn
bCik=k bik—k
Blpp = | bcig_g bix=r I
[bClk=ﬁ blk=ﬁ J
S 0 Kipg 0 -
Kivq
0 - ( : )0 0 Kivq
lseq
1 Kpva
) —_ 0 — _—pva 0
blk:k = Lse Lge
1 K Kp
0 {— + (ﬂ)o} 0 P
Lge Lselseq Lge
=== GC—) 0 0
L2 Cacvac 2Cdcvdc

}(Aiseq)k + {i +(

Kpvq

Lseiseq

Do} (Bvseq)e =

.2 3 . 3 .
(lsed'R/‘"_Evsedlsed_gvseq-lseq>

2
Cacvgc

S O O O
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.2 3 . 3 .
(lsed-Rf_Evsedlsed_?’seqiseq)

2
Cacvge

k

0 — jkw



0
Kiy,
— (2,
seq
0

Kpvq

bCik:k =

o o o O
o O © O

0
0
0
0

Lse iseq

3 lised 3 iseq
-<2 Cdcvdc>k <2 Cdc”dc)k

o

0
Impedance of SSSC power control mode
Avsed = (SLse + Rse)Aised - (‘)LseAiseq + Amsed

Avseq = sLseAiseq + RseAiseq + wlgeAigeq + Amseq
K; .
Amgeq = (vad + %d) (Pline - APline)

Mgeq = (Kpug + 22) (Qiine — AQuine)

APjjne = AP, — AP,

AQiine = AQ1 — AQ;

Using KVVL

—V; — Ve +V, +V, =0

Vg = VUse = V1 — V2

Avpg — AVseq = AV1q — AVyq

Avpq — AVseq = AvVyq — Ay,

The transformation to dynamic phasor will be:

Fork=20

(AVseado = (SLse + Rse){Aisea)o — wLlse{Aiseq)o + (AMseq)o
(AVseqdo = (SLse + Rse){diseq)o + wlse{diseado + (AMiseq)o

K; * K; * K; %
(Bgeado = (Kpwa + 220 ) (Piinedo + 2yt (Plinedi + (2 (Pl ) —

s—jk s+jkw

K; K; K;
(vad - ( l:d>0) (Apline)o - (S_;-i;jm)k (APline)k - <S+;l;<dw)k <Apline)k
(Amseq>0 =
K; K; K;
- (vaq + (%)0) (AQline>0 - (s—;;cqwm (AQline>k - (S_'_;-l;jw)k (AQline>k +

(vaq + (%)0) (Ql*ine>0 + <sf;'l;fw>§ <Q£kine)k + (sl-:j'fw)k <Ql*ine)k

(APline)o = (AP1>0 - (AP2>0
(AQtine)o = (AQ1)o — (AQ2)o

Fork =k
<Avsed)k = (SLse + Rse +jkw)<Aised>k - ste<Aiseq)k + (Amsed)k
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<Avseq>k = (SLse + Rse +jk(‘))<Aiseq>k + ste<Aised>k + (Amseq>k

(Amgeq)y =
Kiy Kiy Kip *
— () (APune)o = (Kpva + (290 ) (APune)ic + (S22 (Piimedo +

Kiy *
(Kpva + 290 ) (Plinedi

(Amseq>k = (vaq + (M)O) (Ql*ine)k + ( Rivg )k (Ql*ine>0 - vaq(AQline>k -

s+jkw s+jkw

( Sivg )k (AQline>0 - ( Rivg )0 (AQline>k

s+jka s+jka
(APjinedic = (APy) — (AP )

(AQuinek = (AQ1 ) — (AQ2 )

Fork =k

(AVseq)r = (SLse + Rse — jkw)(Aiseq)r — WLse(Aiseq)r + (AMsea)r
(AVseq)i = (SLse + Rse — jkw){Aiseq)k + wLse(Aiseadr + (AMseq)

(AMgeq )y =

- (M)E (APline>0 - (vad + (

s—jkw

Kiy *
(vad + (Td>o) (Pline)%

Kiv Kiy *
Sd)o) (BPiine)ie + (e % (Piinedo +

(Amseq>k = (vaq + (M)O) (Ql*ine>k + (ﬂﬁ (Ql*ine)O - vaq (AQline>E -

s—jkw s—jkw

(2 (AQuinedo — (o) (AQune)

(APjine)r = (AP1)r — (APp)k

(AQuine)r = (AQ1)x — (AQ2)%

Equations from (E.202) to (E.219) equations can be generalised as:

(Avsedq>k = APseDP<Aisedq>k + (Amsedq)k

[@Pse =g 0 0 0 0 1
| 0 APse oy 0 0 0 |
APsepp =| 0 0 sey-x 0 0 |
| 0 0 0 0 |
l 0 0 0 0 apsekzﬁj
Wse ey = [(s + jkw)Lse + Rye o |
Psep—p = wLg, (s + jkw)Lge + R,

(Amsedq>k = BPse<APQikine>k - BPse<APQline>k
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[Bpsek 0 bcpsek=]} bcvsek=k 0 bCUS€k=kn]
Ibcpsek v BDser_y 0 0 0 |
|bcp56k % 0 Bvse,_ O 0 |
[ 0 0 0 J
bCpsek kn 0 0 0 Bvsek=_n
Kiy
B (vad + ( Sd>0) 0
psekzk = Kiy,
0 (vaq +< Sq>0)
Kiya
(s+]km> 0
bCpsek=k = qu
0 <s+jkco)

(APQline>k = _CPse<AVsedq)k + CPse<AVqu>k + DPse<Aisedq>k - FPse<Aisedq>k

[Cpsek=0 CCDsep-r CCPsep—y 0 Ccpsek=kn]

CCPse—  CDser—g 0 0 0
CPo=|chrery 0 CPooyy O 0 |
0 0 0 0
lecPsern O I —
Cp _3 (iseado  (iseq)o cep 3 [(lseade  (iseq) ]
S€k=k 2 (iseq>0 _<ised)0 sele=k — (lseq>k _<ised>k
[ Dpse - dcpsek=k dcpsek=k 0 dcpsek=kn]
| dcPser_e  DPsejey 0 0 0 |
DPy = | dcPse_p 0 Dpser—z O 0 |
| o 0 0 o |
ldepseszz O 0 0 DPsoporyl
Dp =§ (Vsed)o (Useq>0 de =§ (vsed>k (vseq>k
S€k=k 2 _<vseq>0 (vsed>0 S€k=k 2 _(Useq>k (Used>k

[ Fpsek=0 fcpsek=k fcpsek=k 0 fcpsek=kn_
| fePserore  FPser=i 0 0 0
FPe = | fcpsekzk 0 Fpsekzk 0 0
0 0 0
[f CPse—fn 0 0 0 FPseptn
Fpsek—k _3 (Wrado (qu>0] FeDuer = 3 [ (Via)k (ULq>k
= 2| =(vrgdo  (Viado 2| =(wpgh  (Viadk

(AVsedq>k = (I - BPseCPse)_l(APseDP + BpseFPse - BPseDPse)<Aisedq)k + (1 -
BPseCPse)_lBPse<APinne)k - (1 - BPse CPse)_lBPseCPse<AVqu>k

ZPSSSC = (I - BPseCPse)_l(APseDP + BPseFPse - BPseDPse)

Impedance of SSSC voltage control mode

The SSSC is controlled in voltage control mode as:
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(AVseado = (LseS + Rse){Aiseado — WLse({Aiseq)o + (AMseq)o
(AVgeq)0 = (LseS + Rse){Aigeq)o + Whe{Aigeq)o + (AMgeq)o
(Avseq)k = (Lse(s + jkw) + Ree){Alseq)k — Whge{Aiseq )k + (AMgeq)k
(AVseq )k = (Lse (s + jkw) + Rge)(Digeq)i + WLse{Alseq ) + (AMgeq )i
(AVsea)ie = (Lse(s — jkw) + Rse){Aiseq)k — WLse({Aiseq)k + (AMseq )k
(AVseq )k = (Lse(s — jkw) + Rse){Diseq )i + (0Lselisea)r + (AMiseq)x

_ * Klvd * Kivd
A7’nsed - vadvdc + s Vgc — vadAvdc - Avdc
K; K;
_ * wq Livg
ATnseq - vaqueq + s seq vaquseq Av Useq

(Amgeqdo = — (Kyva + (2% ) (Avgcho + (Kwd + (<22 ) (wicdo +

Kivd _ * _ Kivd _ Kivd Kiva _
(S_jkw>k<vdc>k (S_jkO))k(Avdc)k <S+]kw)k<dc>k (S+1km>k( Vac)k

(Beqdo = = (Kpvg + (220 ) (Avseqdo + (Kpug + (200 ) (Wseqo —

K; K; * K;i *
(s_;-l;jw>k (Avseq>k + (ﬁ)k (vseq>k (S_’_“;j )k (A Useq)k + <S+u;(qw)k (vseq)k

(Amgeqde = = (2, (Avgedo + (2 (wicdo + (Kpva + 2% ) Wik —

s+jkw s+jkw
Kiy

(Kpva + 220 (Avge )i

(Amseq>k =

Kiy w Klv
- (s+jljw)k (Avseq>0 + ( q )k (vseq)o + (vaq + < q)O) (vSElI)k

(vaq + (M)O) (Avseq)k

(A = — (2 (Avgedo + (2 ) (Wacdo + (Kpva + (290 ) (Vachk —

s—jkw s—jkw
Kiy

(Kpva + 220 (Avg. )y

(Amseq>R =

— (L (B0seq)o + (mm)z (Vieq o + (Kpwg + (2200 ) (Vieq )i —

(vaq + (%)0) (Avseq)ﬁ

(Avsedq>k = A159<Aisedq)k + (Amsedq>k

[Avsek=0 0 0 0
0 AVsep 0 0 0

AI/;6=‘ 0 0 AVsep 1 0 ‘
: 0 :

[ 0 0 0 AvVserin
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Leo(s + jkw) + Ry,
wlg,

Avsek:k

|

Lso(s + jkw) + Ry,

—wl,,

|

(Amsedq>k = BV (AVV™ )y — BV (AVV)y

[ BvSEkZ0 bcvsek:k bcvsek:k bcvsek:kn]
bcVse,_,  BUsepy 0 0 0 |
BV, = | bcvge,, & 0 BVse, & 0 |
lbcvsek=ﬁ 0 0  BVsep_im J
Kiy
B (vad + ( Sd)o) 0 b
Usep=k = Kiy CUsep=k =
0 (Kpvq + (F22)0)
CVse{AVV)y = DV, (Avsedq)k + EVse<Aisedq>k
[ Cvsek:o CCUsep—ip  CCUsepoy CCUse—in |
| Wsep_p  CUserey, 0 0 0 |
CVee = | clsey_z 0 CVser_1 0 |
: 0 - :
lclvsek:ﬁ 0 0 Cvsek:HJ
3 . 3 . .2
i 3 SVsed-lsedtVseq-iseq—lsed-Rse
CVsepy = [Cd(:(Vdc)O(S +jkw) + 22 2 ~ )
0

3

. 3 . .2
Vsed-lsed t3Vseq-lseq _lsed-Rse>

CCVsep—p, = [Cdc(vdc)k(s — jkw) + (3

Vdc

0

2 v sed-isedtVseaiseq—iZoq-R
27sed-'sedT;Vseq seq™ "sed-"\se
Ut = [Cdcwdc)ks + y 0‘
0 0
[ Dvsek;o dcvsek=§ dcvsek=k dCUsek=kn]
| dcvge,_,,  Dvsep_, 0 0 0 |
DV, = dcVse, g 0 Dvge, & 0 |
| : 0 -, : |
ldcvsekzﬁ 0 0 Dvsepirn J
3. 3, 3,
Dv., . = (E lsed)o (E lseq)o decv — (5 lsed )k
sek=k Sek=k
0 1 0
[ EVser—g €CUsepp ©€CUsej—p €CVsey—kn]
I eCUser_r  EVsep_y 0 0 0 I
EV, =| eCsep_k 0 EvVse, & 0 |
: 0 :
lecvsek:% 0 0  EVsepim J

Cvgy —
Evsek=k = [ 2 sed 0

. 3
leed- Rf)o (E vseq)O

|
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0

(Kwd )

s+jkw

0

o J

0

k

3.
(E lseq)k
0




3 . 3
- (Evsed - leed-Rf>k (Evseq>k
0 0
(Avsedq>k = {I + BVse (CVse)_lDVse}_l{AVse - BVse(CVse)_lEvseKAisedq>k +
{1+ BVie(CVee) ™ DVie} 7' BVgo (AVV ™)y,
So, the SSSC controlled with quadrature voltage impedance is:
ZVSSSC = {I + BVse(CVse)_lDVse}_l{AVse - B‘/;e (CVse)_lEvse}

Impedance of SSSC control mode

€CVsep_

1 vseq .
Ax =—AMv,,, ———— Ai
seq iseq seq lszeq seq

_ * Kiva  « Kiva
Amsed - vadvdc + s Vac — vadAvdc T Avdc

K; K;
— * wq . ivq
Amseq - vaqxseq + s xseq - vaqAxseq - s Axseq

(Amsed>0 = - (vad + (%)0) (Avdc>0 + (vad + <%)O) (v:tc)o +

Kiva _ * _ Kiva _ Kiva * \_ _ Kiva _
(S_jkw>k(vdc)k (S_jkw)k(Avdc)k+(S+jkw)k(vdc)k (S+jkw)k (Avgedk

(Amseq>0 = - (vaq + (%)0) (Axseq)o + (vaq + <%)O) <x;eq)0 -

Kiyg

Kivq _ Kivq _ * Kivq _ * _
(S_jkw>k (AXgeq)i + (m)k (Xseqk — (m)k (AXgeq)i + (m)k (X5eq )%

Kiy Kiy * Kiy *
(AMmgeq)y = — (S+;:w)k (Avgc)o + (s+jkdw)k (Vac)o + (vad + (Td)o) (Vachk —

(Kpva + 220 (Avgche
(Amseq)k =

K; K; . K; .
— (o) (Aseq o + (o (deqdo + (Kpwg + (200 (Xieq ) =

(vaq + (%)0) (Axseq>k

K; K; . K; .
(Amsed>k = (s—;}fwm (Avdc>0 + (s—;'l;cdw>E (vdc)o + (vad + <%d)0) (vdc)k -

(Kpva + 29 ) (Avge)g
<Amseq)k =

(L o + L (o + (Kpug + C290) (e —

s—jkw s—jkw

(vaq - <%)0) (Axseq>k
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<Axseq)0 =

<$)0 (Avseq>0 (vseq>0 (A lseq)O + ( )k (Avseq>k <1;S:_:Z)k (Aiseq>k +
(i)k (Avseq>k (vseq)k (Alseq>k

<Axseq)k =

<$)k <Avseq>0 (vseq)k (4 lseq)O + ( )0 (Avseq>k (Vseq>0 (Alseq>k
(Axseq)k =

(i)k (Avseq>0 (vseq)k (A lseq)O + ( )0 (Avseq>k <Vseq)0 (Alseq>k

The previous equations can be generalised as:

(Avsedq>k = Alse(Aisedq)k + (Amsedq)k

[Aisek=0 0 0 0 ]
0  Aig,, 0 0 0
Al,=| 0 0 Aigyz 0
[ - 0 o
| o 0 w0 Algey ]
Ai _ [Lse (s + jkw) + Ry, —WLg,
Sek=k wLg, L (s + jkw) + Rs,
(Amsedq>k = Bl (AVX" )y — Bl (AVX)y
[ Bisek;o bCisek=k bCisek=k bCisek=kn]
bCise,_, Blisepey 0 0 0 |
| bCisek:k 0 Bisekzk O |
[ 0 S
|bcise, 0 0 Bigep |
Ky, Kiy
Bi (vad + ( Sd>0) 0 bei <s+jljco>k 0
bseg=r = K, Clseg=g = K,
0 (Kpq + 223, ) 0 (o
[ Ciserog CClsep—g CClsep—p ccisek:kn]
clisep_  Clsopey 0 0 0
Clse = | Clisep_z 0 Cigepz 0 |
[ 0 . |
| clise )i 0 (R

i, [cdcwdao(s +jkw) +

3Vsed- lsed"’ >Vseq- seq— lsed Rge
( o O
Vdc

0 1
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(E.243)

(E.244)

(E.245)



3

CaclVack(s — jkw) + (2

. 3 . .2
17sed-lsed'*'Evseq-lseq ~iseq-Rse
e O
Vdc

CClgep oy = [
0 0

3

clise,_, = [Cdc(vdc>ks + (2

. 3 . .2
Vsed-lsed'{'gvseq-lseq —iseq-Rse
e O
Vdc

0 0
[ Disek:0 dcisek:k dcisek:k dcisek:kn]
| dcise,_  Disepy 0 0 0 |
DI, = | dcisek:k 0 Dise, % 0 |
| 0 : i
ldcise, 0 0 Digepszr |
3, 3, 3, 3,
(5 lsed)o (E lseq)O d (E lsed)k (E lseq)k
Di = 1 ci _, 1
T 0 T 0 (o
[ Eisek=o eCisek=k eCisek=k eCisek=kn]
I eCiger_  Elsery 0 0 0 I
El, :| eClse,—_j 0 Eiser_x 0 |
0
leczsek;m 0 0 Elsek—_nJ
3 3
~Veod — 21lceq- R -V 3 . 3
Ei,, _ <2 sed sea-Rr)o <2v seq)o eciy, _ [(Evsed — 2i5eq-Re )i (gvsecﬂk
= se =
k=K 0 o o=k 0 0

Clse(AVX)y = DIso{AVgeqq)k + Else(Aiseqq)k

(AVseqqdx = {1+ Blso(Clse) ™ DIge} H{Alse — Blso(Clse) ™ Else MAiseaq)x +
{1+ Bl (Clge) DI} 1Bl ,(AVX*)y

Similarly, the impedance SSSC controlled with quadrature impedance

Zlgssc = {1 + Blse(Clse) ™' DIse} H{Alge — Blse (Clse) ™ Elge}
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