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Abstract 

While postoperative mortality in cardiac surgery has reduced in the past twenty years, 

due to changes in patient population undergoing open-heart surgery, postoperative 

complications are becoming more common. With the development of perioperative 

medicine, data-driven perioperative risk prediction models are now an integral 

component for decision-making about the type of treatment that is most suitable for 

the patient, for communicating risk of surgery, and for auditing purposes. However, 

the currently developed prediction models focus on mortality, rather than 

postoperative complications. 

In this thesis, the problem of postoperative complications in cardiac surgery is 

investigated by analysing cardiac patient data in Golden Jubilee National Hospital to 

predict (1) severe postoperative complications, (2) acute kidney injury and (3) 

delirium. Furthermore, cardiac anaesthetists and surgeons were involved in explorative 

interviews about current challenges in cardiac surgery, and a study to define and 

classify postoperative complications in cardiac surgery. 

Patients undergoing coronary artery bypass graft (CABG), valve and combined CABG 

and valve surgeries in Golden Jubilee National Hospital between 1st April 2012 and 

31st December 2018 were analysed. The prevalence of severe complications, acute 

kidney injury and delirium for this patient population was 5.91%, 18.93% and 12.47%, 

respectively. 

Two types of models were developed: (1) preoperative models using data that was 

available before surgery; and (2) hourly prediction models that used both preoperative 

data and laboratory results recorded in the intensive care unit. 

Out of all preoperative modelling experiments (1), random forest predicting severe 

postoperative complications had the highest performance, with the area under the 

receiver operating characteristic curve (AUC) of 0.713, sensitivity of 0.562 and 

specificity of 0.748. When predicting the onset of acute kidney injury on an hourly 

basis in intensive care (2), BARTm achieved the highest mean AUC of 0.850 with 

sensitivity of 0.821 and specificity of 0.741. For hourly delirium prediction (3), support 
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vector machine achieved the highest mean AUC of 0.941, sensitivity of 0.907 and 

specificity of 0.870. 

This thesis shows that using routinely collected medical data can be used to develop 

both preoperative and hourly ICU predictive models for postoperative complications, 

such as acute kidney injury and delirium. Such prediction models could help with 

clinical decision making, communication about risk, research in complications and 

auditing. 
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Chapter 1. Introduction 

According to the National Adult Cardiac Surgery Audit (NACSA), in the UK and 

Ireland, 34,000 cardiac surgeries were undertaken between 2016 and 2019 [1]. The 

most common open-heart surgeries in the UK are coronary artery bypass graft, 

(CABG), aortic valve replacement, and a combination of CABG and valve surgery.  

CABG is a surgery where blood flow to the heart is improved for patients who have 

severe coronary heart disease. This disease can cause a waxy substance called plaque 

building up inside the coronary arteries which supply oxygen-rich blood to the heart. 

If the plaque hardens, it can narrow the arteries, which subsequently reduces the flow 

of oxygen-rich blood to the heart, causing chest pain or angina. CABG consists of 

connecting a healthy artery or vein from the body to the blocked coronary artery, 

creating a new path for oxygen-rich blood to flow to the heart [2]. 

The four valves of the heart open and close to regulate the blood flow through different 

parts of the heart, ensuring that it travels in one direction. If the valve does not open 

fully and obstructs blood flow, or if it does not close properly, allowing blood to leak 

backwards, a patient has a valve surgery [3]. 

On average, cardiac patients are reported to stay in the hospital for 7.8 days after 

surgery [1], however, the hospital stay can vary based on whether a patient has 

postoperative complications [4], [5]. While postoperative mortality in cardiac surgery 

has reduced in the past twenty years, and is remarkably low (below 3%) [1], [6], due 

to changes in patient population undergoing open-heart surgery, postoperative 

complications are becoming more common [7]. 

Currently, the focus in terms of cardiac surgery outcomes is on mortality1, however, 

as suggested by the Society for Cardiothoracic Surgery (SCTS) “Morbidity2, rather 

than mortality, may be a better indicator of the quality of care” [6]. Nevertheless, the 

SCTS and NACSA reports both state that morbidities, i.e., postoperative 

                                                 
1 Mortality – the condition of being mortal or subject to death [406]. 
2 Morbidity – the condition or state of being diseased, or being caused by disease; physical or mental 

illness [407] 
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complications, are recorded in electronic health records less accurately, and the data 

quality is lacking [1], [6]. Due to this, it is difficult to pinpoint, which complications 

are the most common and what their exact incidence in cardiac surgical population is. 

Furthermore, unlike for clinical diagnosis (i.e., the International Statistical 

Classification of Diseases, ICD-103), postoperative complications do not have a 

classification system that enables high-quality reporting of complication diagnoses. 

However, it is known that complications can have a serious impact on patients’ quality 

of life [8], [9], hospital length of stay [4], [5] and healthcare costs [10]. 

A way to mitigate adverse surgical outcomes, perioperative medicine practices, such 

as the development of preoperative clinics and services [11], involvement of multi-

disciplinary teams [12] and shared decision-making with patients and their families 

[13] have been developed. With the development of perioperative medicine, data-

driven perioperative risk prediction models are now an integral component for 

decision-making about the type of treatment that is most suitable for the patient, for 

communicating risk of surgery and for auditing purposes [14]. However, the current 

widely used prediction models focus on mortality, rather than postoperative 

complications [14]–[16]. 

1.1. Research Hypothesis and Research 

Questions 

The work discussed in this thesis aims to highlight the opportunities of 

routinely collected medical data in developing clinical prediction models for 

predicting postoperative complications in cardiac surgery. Hence, the research 

hypothesis of this thesis is as follows: patient outcomes can accurately be 

predicted following cardiac surgery, using routinely collected preoperative and 

intensive care unit (ICU) data. This thesis aims to develop prediction models, 

both for preoperative and postoperative use, for predicting postoperative 

complications occurring after cardiac surgery. This aim is fulfilled by 

answering the following research questions:RQ1: What is the current 

                                                 
3 https://icd.who.int/browse10/2019/en#/ 
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landscape of dynamic prediction models in critical care in terms of predictive 

modelling methods? 

RQ2: What are cardiac surgery experts’ challenges in cardiac surgery and 

priorities for a new prediction model predicting patient outcomes? 

RQ3: How can postoperative complications be classified using routinely 

collected medical data?  

These research questions are answered through different studies presented in this 

thesis, specifics of which are shown in Table 1.1.  

Table 1.1. Questions answered in each chapter of the thesis. 

Chapter 

Number 

Research 

Question 

Specific Questions Answered 

Chapter 2 RQ1 Which outcomes are predicted in critical care in a dynamic 

manner? 

Which methods are used to handle missing data when developing 

critical care prediction models? 

Which methods are used to deal with the imbalanced classification 

problem when predicting critical care outcomes? 

Which dynamic predictive modelling methods are used to predict 

patient outcomes in critical care? 

Chapter 3 RQ2 What are the current challenges in cardiac surgery? 

What are the current processes to avoid adverse outcomes in 

cardiac surgery? 

What are the clinicians’ priorities for clinical risk prediction 

models?  

Chapter 4 RQ2 What are cardiac surgery experts’ opinion on the usefulness of a 

definition and classification of surgical complications following 

cardiac surgery? 

How do cardiac surgery experts define what events constitute 

surgical complications following cardiac surgery?  

How do cardiac surgery experts classify surgical complications 

following cardiac surgery? 

Chapter 6 RQ3 What is the optimal number of variables required to predict 

postoperative complications, using preoperatively available data? 

Would upsampling of benefit the predictive ability of models in 

case of an imbalanced classification problem? 

Which method performs best when predicting postoperative 

complications, using preoperatively available data? 

Chapter 7 

and 8 

RQ3 How do models perform when predicting the onset of acute kidney 

injury and delirium hours in advance? 

How do models perform when using complete data, missing data 

and imputation methods? 

Which method performs best when predicting acute kidney injury 

and delirium on an hourly basis in an intensive care unit (ICU)? 
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1.2. Comparison to MPhil 

This thesis is a follow-up work from the author’s MPhil project [17]. The Table 1.2 

gives an overview of the differences between the author’s MPhil and PhD. 

Table 1.2. Differences between the MPhil and the PhD. 

Characteristic MPhil PhD 

Literature Review Commonly used preoperative 

prediction models predicting 

postoperative complications 

Dynamic prediction models 

developed for ICU 

Databases CaTHI CaTHI and CentricityTM CIS 

Dates of Procedures April 2012 to March 2016 April 2012 to December 2018 

Type of Data Preoperatively available data 

and some surgical outcome data 

Preoperatively available data, 

ICU laboratory variables and 

some surgical outcome data 

Predicted Outcomes Postoperative complications 

(Yes/No), level of postoperative 

complications 

(No/Mild/Moderate/Severe), 

severe postoperative 

complications (Yes/No or other) 

Severe postoperative 

complications (Yes/No or 

other), postoperative acute 

kidney injury based on KDIGO 

criteria, postoperative delirium 

based on CAM-ICU assessment 

Analysis  Classical statistical methods 

were used and risk factor 

analysis undertaken 

Experiments with different data 

(preoperative and 

postoperative), experiments 

with number of variables in 

models, imbalanced 

classification problem 

approaches, missing data 

approaches.  

Prediction Methods Static models, only logistic 

regression  

Static models and hourly 

dynamic prediction models. 

Various machine learning 

methods were used. 

Stakeholder involvement Clinical supervisor only Clinical supervisor, cardiac 

anaesthetists and cardiac 

surgeons based in Scottish 

cardiac centres (Chapter 3), 

cardiac anaesthetists and 

intensivists largely based in the 

UK (Chapter 4) 

 

The contributions of this thesis have addressed the main limitations of the MPhil 

project, listed below.  

1. The PhD includes laboratory data from the intensive care unit, enabling more 

precise retrospective diagnosis of certain complications, as opposed to relying 

on only reported complications in the CaTHI database. The problems with the 

reporting of postoperative complications are addressed throughout this thesis.  
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2. The definition of “Severe” postoperative complication in the PhD are more 

objective due to being based on a Delphi study (Chapter 4). 

3. The predicted outcomes in the PhD were chosen based on the identified needs 

of cardiac anaesthetists and cardiac surgeons (Chapter 3), and availability of 

widely used diagnostic criteria (Chapter 5). 

4. The models predicting postoperative outcomes in the PhD include also more 

granular data, such as laboratory values recorded in the ICU, as opposed to 

only preoperatively available data (Chapters 7 and 8). 

5. The MPhil, in general, is focusing on risk factor analysis and classical 

statistical analysis methods, such as logistic regression. The PhD, however, 

experiments with a number of machine learning methods to predict various 

clinical outcomes, also with the number of variables included in the prediction 

model, approaches for imbalanced classification methods and experiments 

with methods to handle missing data.  

1.3. Contribution to Knowledge 

This thesis presents several contributions to knowledge both in the field of computer 

and information sciences and cardiac surgery.  

Computer and information sciences contributions: 

1. The literature review conducted as part of this thesis is the first review to 

analyse the currently available prediction models developed to predict patient 

outcomes in critical care and ICU in real-time. The review identifies which 

patient outcomes are predicted, the methods used for model development, and 

the performance of the models. 

2. In this thesis, two types of novel models were developed focusing on predicting 

“Severe” postoperative complications (acute kidney injury and delirium) using 

preoperative and intensive care unit data. Their performance was AUC = 0.713 

for “Severe” complications, using preoperative data only, and mean AUC = 

0.850 for the model predicting acute kidney injury between hour 0 and 25 at 1 

hour intervals in the ICU, and mean AUC = 0.941 for the model predicting 

delirium between hour 0 and hour 13 at 1 hour intervals in the ICU, using 
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preoperative and ICU data. It was found that the optimal prediction time, based 

on performance measures, is achieved when acute kidney injury is predicted 1 

hour in advance, using BARTm (AUC = 0.918), and delirium 13 hours in 

advance, also using BARTm (AUC = 0.997). 

3. Based on the results of the literature review, this thesis is the first to apply 

BARTm to critical care data that includes missing values when predicting 

patient outcomes. The findings of this thesis demonstrate that hourly BARTm 

models for acute kidney injury and delirium were robust at handling missing 

values, achieving high mean performance of AUC = 0.830 and AUC = 0.930 

for acute kidney injury and delirium, respectively. These performance 

measures were achieved when the models were applied on data with 37.9% of 

missing data for acute kidney injury model and 3.2% of missing data for 

delirium model. It is worth noting that patients with more than 40% of missing 

data were removed from analysis. As missing data in electronic health records 

is common, being able to make a prediction for a patient who does not have all 

the necessary data available allows for clinicians to make a decision with the 

aid of prediction model for most patients. 

Medical and cardiac surgery contributions: 

1. The findings of the exploratory interviews identified that according to cardiac 

surgeons and anaesthetists, the main challenges of cardiac surgery are 

postoperative complications, changes in patient population and procedures. 

The study also found that for a new prediction model for patient outcomes, 

clinicians prioritise the prediction of postoperative complications to mortality.  

2. A Delphi study reached a consensus on the definition for postoperative 

complications in cardiac surgery and classification of these are “Mild”, 

“Moderate”, “Severe” and “Death”. Consensus was reached on the 

characteristics for “Mild” and “Severe” postoperative complications. The 

results of this study allow to develop standardised way of identifying, 

recording and reporting of complications to help the development of future 

quality benchmarks, clinical audit, care quality assessment, risk management 

and research. For example, in this thesis, using the classification criteria found 
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from this study, “Severe” complications were predicted based on 

preoperatively available data.  

3. The models developed in this thesis were able to predict acute kidney injury up 

to 24 hours in advance with sensitivity and specificity of 0.821 and 0.741, 

respectively, and delirium up to 13 hours in advance with sensitivity and 

specificity of 0.907 and 0.870, respectively. 

4. It was found that creatinine, urea, daily fluid balance, urine output, lactate and 

hydrogen ion were the most important variables when predicting acute kidney 

injury. Lactate, urine output, potassium and hydrogen ion were the most 

important variables when predicting delirium. 

1.4. Thesis Overview 

As explained previously, the work in this thesis aimed to develop predictive models 

for postoperative complications in cardiac surgery that could be used preoperatively 

and postoperatively. Firstly, to understand the current landscape of dynamic ICU 

prediction models, Chapter 2 shows the findings of a literature review that analyses 

dynamic prediction models developed to predict patient outcomes in critical care and 

in an intensive care, which informed the predictive modelling methods and predicted 

outcomes in this thesis. To understand the requirements of potential users for such 

prediction models, Chapter 3 analyses exploratory interviews with cardiac 

anaesthetists and cardiac surgeons based in Scottish cardiac centres. Subsequently, to 

improve challenges that postoperative complications bring in cardiac surgery, a Delphi 

study was undertaken in Chapter 4 to find a consensus in definition and classification 

of postoperative complications in cardiac surgery. Chapter 5 explains the predictive 

modelling methods that were used in Chapters 6 to 8. Chapter 6 uses preoperatively 

available data to predict “Severe” postoperative complications, postoperative acute 

kidney injury and delirium. Chapter 7 predicts the onset of acute kidney injury in 

intensive care on an hourly basis. Chapter 8 predicts the onset of delirium in intensive 

care, also on an hourly basis. Finally, Chapter 9 discusses the overall findings in this 

thesis, strengths and limitations, and future work.  
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Chapter 2. Dynamic Prediction Models 

in the Critical Care: A Literature Review 

2.1. Introduction and Background 

2.1.1. Machine Learning and Deep Learning in Medicine 

While this thesis focuses on the data analysis in the preoperative and ICU stage of 

cardiac surgery, the subject area of artificial intelligence (AI) and machine learning in 

medicine is vast. Numerous reviews have been undertaken to analyse different aspects 

of AI and dynamic prediction in medicine, including the current challenges in 

developing deep learning models in healthcare [18], [19], implementation and 

adoption of AI [20]–[23], and reporting standards of studies developing AI-based 

systems in healthcare [24], [25].  

The vast amount of data the healthcare industry produces have resulted in expansive 

evolvement of machine learning techniques which are used to understand complex 

data in various areas of healthcare. Some of these include models for bioinformatics, 

speech recognition and medical image processing, and are used to develop decision 

support tools, medical devices, diagnostic tools and medical treatments [26]. 

The methods of understanding large amounts of data can be referred to as either 

artificial intelligence (AI), machine learning or deep learning, and which can be 

collectively defined as machines that mimic human intelligence and their ability to 

learn through automatic calculation, conceptualising, self-improvement, abstraction 

and creative thinking [27]. Machine learning is where an algorithm learns from a large 

dataset and responds to this specific dataset, often requiring human expertise identify 

relevant features. Deep learning is a further development of machine learning, which 

is based on very large artificial neural networks. Artificial neural networks are 

composed of inter-connected nodes that loosely resemble and mimic the brain’s 
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neuronal functions, and therefore do not require human expertise to identify relevant 

features (except through the provision of training data), but learn about the features 

from the aforementioned training data [26]. 

The main deep learning methods used to predict various outcomes in medicine are 

currently recurrent neural networks (RNN), autoencoders, convolutional neural 

networks (CNN) and transformer-based models. RNN is a method that can capture 

temporal aspects of longitudinal data, which makes it a very popular method in 

predictive modelling in medicine [18]. Since medical data is often vast, autoencoders 

are often used to reduce the dimension size of the data without losing essential 

properties of the data, such as structures and regular patterns [18]. CNNs are often 

used to label or classify clinical text due to their ability to analyse images, speech and 

videos [28]. Transformer-based models are used to learn computationally expensive 

tasks, such as gene expressions and medical imaging [29]. 

AI can be applied to a variety of decision support tools, including supporting patient 

self-management, automating triaging based on existing data sets, facilitating the 

interpretation of images and to help with medication adherence [23]. Some of the most 

successful endeavours of AI in medicine are currently in the fields of biomedical 

imaging and biomedical signal processing. Deep neural networks have been used to 

detect various cancers [30]–[34] from imaging technologies, such as magnetic 

resonance imaging (MRI), positron emission tomography (PET) and histopathology 

images. According to a recent systematic review by Kumar et al., convolutional neural 

networks are the most commonly used method to predict and diagnose cancer, based 

on image recognition [35]. However, various review articles have expressed the 

concern of limited evidence for the accuracy of deep learning in screening various 

cancers, such as breast cancer [36], predicting lymph node metastasis in colorectal 

cancer patients [37], and prostate cancer [38]. 

In terms of signal processing, machine learning and deep learning have been used to 

detect electrical signals from human body, including the prediction of atrial fibrillation 

from electrocardiogram (ECG) signals [39] and diagnosis of Parkinson’s disease, 

using electroencephalogram (EEG) and electromyography (EMG) [40]. 
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2.1.1.1. Current Challenges in AI and Medicine 

Developing AI in medicine can face a number of challenges when using electronic 

health record data. Firstly, lack of labels is an issue. A large amount of data is captured 

as free-text medical notes, making the extraction of meaningful clinical outcomes and 

patient status difficult [19], [41]. Furthermore, as medical notes are entered not 

necessarily in real-time, the time of when diagnoses were recorded might not be 

accurate [18]. Hence, efforts should be directed towards capturing diagnoses codes on 

real-time, based on patient information, such as laboratory results or vital signs. This 

issue is also connected to the problem of lack of appropriate IT infrastructure. The 

transition from paper-based records to digital standardised medical systems has been 

slow, which hinders the healthcare providers’ readiness to embed new AI-based 

medical systems [19]. 

Another challenge of AI is interpretability as deep learning models are known to be of 

“black-box” nature due to not providing any explicit explanation of how the results 

were achieved [18], [19], [42]. As stated by van Smeden et al., with such “black-box” 

models, the predictions are difficult to scrutinise, which may reduce the 

trustworthiness of the AI prediction model for the user [25]. 

Ethics, privacy and confidentiality has also been stated as a concern when it comes to 

developing new AI-based medical prediction models [19]. As historically medicine-

related studies have been randomised controlled trials, and not purely studies of patient 

data, there is a lack of infrastructure that enables safe and ethical exchange of patient 

data between medical institutions and researchers. To avoid this issue, open-source 

databases have been developed to help with innovation in AI-based prediction models 

[18]. An example of such widely used open-access database is the intensive care unit 

database Medical Information Mart for Intensive Care (MIMIC) [43] has been used by 

numerous studies to develop machine learning and deep learning models for patient 

outcomes such as mortality, sepsis and cardiac complications, as discussed in a 

systematic review by Syed et al. [44].  

2.1.1.2. Implementation and Adoption of AI in Medicine 

While there is a vast amount of AI-based prediction models in medicine, the 

information about implementation and adoption of AI is limited. As stated by 
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Seneviratne et al.: “Very few of these algorithms ever make it to the bedside; and even 

the most technology-literate academic medical centres are not routinely using AI in 

clinical workflows” [20]. A systematic review by Khanijahani et al. found that the 

main factors that influence the successful implementation of AI-based medical 

systems are perceived ease of use or usefulness, performance or effort expectancy, and 

social influence [21]. One of the main barriers to acceptance of AI by physicians was 

perceived threat to autonomy due to physicians worrying that AI will override or 

replace their judgement [21]. To address the shortcomings of current prediction 

models, Seneviratne et al. suggest shifting the focus from optimising performance 

metrics to practical aspects of model design, such as actionability, safety and utility, 

and consulting the potential users of the model [20]. 

While the current methods largely demonstrate theoretical and empirical benefits, all 

studies presented in this Section came to conclusion that before implementation of AI-

based and dynamic prediction models, further investigation is needed in evaluating the 

performance and impact of the currently available models on clinical decision-making. 

It has also been found that reporting guidelines for developing AI prediction models 

have rarely been followed, which negatively affects the reproducibility and 

replicability of the findings [25]. To help with implementation and measuring 

effectiveness of the prediction models, specifically prospective testing and randomised 

controlled trials are needed [24], [44].  

As claimed by Panch et al., “the inconvenient truth is that at present the algorithms 

that feature prominently in research literature are in fact not, for the most part, 

executable at the frontlines of clinical practice.” [45] The existing ways of working do 

not allow to make room for AI innovations and the current healthcare data 

infrastructure that enables training algorithms in an optimal way is lacking [46]. 

2.1.2. Aims of the Literature Review 

Critical care units (specifically intensive care units (ICU) and high dependency units 

(HDU)) continuously monitor patients and large volumes of both high and low 

frequency patient data is often captured and stored by patient monitoring systems. 

Studies have shown that the timeliness of health interventions has a significant effect 
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on the clinical outcomes [47], [48]. The timeliness can be improved with accurate 

prognosis and early warning. 

As stated by Huddar et al., “Accurate knowledge of the aetiology of ICU complications 

is often lacking, leading to the inability of accurate identification of high-risk patients 

and prevention of complications.” This has resulted in current medical interventions 

needing to be reactive, with the adequate care being provided to patients after the 

complication has already been developed [49]. 

In this chapter various dynamic predictive modelling methods were explored for 

predicting patient outcomes, primarily in ICU or critical care unit, based on 

longitudinal time-series data, including laboratory results. What exactly is meant by 

“dynamic” models is explained in detail in Section 2.2.3. 

This chapter aims to answer the following questions: 

• Which outcomes are predicted in the critical care in a dynamic manner? 

• Which methods are used to handle missing data when developing critical care 

prediction models? 

• Which methods are used to deal with imbalanced classification problem when 

predicting critical care outcomes? 

• Which dynamic predictive modelling methods are used to predict patient 

outcomes in critical care? 

Through answering these questions, this review will inform this thesis on which 

methods to choose for developing a dynamic prediction model predicting 

postoperative complications following cardiac surgery based on ICU data. 

Furthermore, it will answer the second research question of this thesis: “What is the 

current landscape of dynamic prediction models in the ICU in terms of predictive 

modelling methods?”. 
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2.2. Methods 

2.2.1. Data Sources and Search Strategy 

The search included the articles published between 1st January 2000 and 25th April 

2022 and was undertaken using PubMed. In addition, references from found papers 

were screened, using PubMed. 

The search was undertaken using the PubMed website for ((dynamic predict* [MeSH]) 

OR (real time predict* [MeSH])) AND ((patient outcome*[Title/Abstract]) OR 

(mortality[Title/Abstract]) OR (morbidity[Title/Abstract]) OR 

(complication*[Title/Abstract][MeSH])) AND ((critical care) OR (intensive care)) 

NOT (cancer) NOT (COVID-19) NOT (Paediatric) NOT (Pediatric) NOT (trauma). 

The titles and abstracts of the found articles were screened, and the eligible articles 

were read in full to screen for eligibility. To make the process more systematic, the 

papers were downloaded and imported to NVivo [50] to undertake the full paper 

screening.  

2.2.2. Citation Management 

For the citation management and sorting the studies, Mendeley [51] was used. The 

Excel tables were created for managing the extracted data, including the first author of 

the study, year of publication, patients included in the study, predicted outcome, 

methods used to develop the predictive model, methods to pre-process the data and 

deal with missing values, types of features used in the model and performance 

measures used in the study. 

2.2.3. Eligibility Criteria and Analysis 

In Table 2.1 the inclusion and exclusion criteria are presented. In terms of study design, 

only papers about the development of the prediction model were included. Papers that 

only evaluated models or were review papers were excluded. 

In terms of patient population, only adult critical care or ICU patients were included 

in the study. Prediction models developed specifically for cancer or trauma patients 

were excluded. While predicting ICU outcomes for cancer or trauma patients could 



14 

 

help with managing unplanned ICU admissions [52], the additional confounding 

variables that cancer or trauma could add are most likely not relevant for predicting 

complications following cardiac surgery, which is the aim of this thesis. Since the 

COVID-19 pandemic from early 2020, many prediction models have been developed 

to predict COVID-19-related outcomes [53]. Because, this is a non-routine situation, 

studies with COVID-19 patients were excluded. 

In terms of the setting, only adult critical care or adult ICU related studies were 

included. If the prediction model was developed in any other hospital setting that is 

not adult critical care or ICU, the study was excluded. 

In terms of the predicted outcome, only studies including classification tasks were 

included. Studies developing regression models, or any other model that is not 

classification model, were excluded. This decision was made, because usually adverse 

clinical outcomes, such as mortality or complications, are defined as binary categorical 

outcomes, or are diagnosed based on a number of laboratory variables, as opposed to 

one numerical variable [54]. Therefore, as this review aims to understand the currently 

used methods to predict patient outcomes to develop clinical prediction models 

predicting complications, treating the outcomes as classification problems, as opposed 

to predicting the value of a certain laboratory variable is the chosen path in this thesis. 

Papers developing prediction models for outcomes that are directly related to the 

patient health were included, including mortality, complications, and ICU stay. Studies 

that investigated other outcomes, such as bed planning or healthcare costs were 

excluded from this review. 

Table 2.1. Inclusion and exclusion criteria for papers based on patients included in the study, variables 

used in analysis, outcome of the analysis, intervention, and study design. 

Criterium Included Excluded 

Study design Primary study, i.e., study that 

develops a prediction model 

Review article, validation study, 

commentary. 

Patients Adult critical care or intensive care 

patients, non-cancer patients, non-

COVID-19 patients, non-trauma 

patients  

Any other patient who is not 

admitted to critical or intensive 

care, cancer patients, COVID-19 

patients, trauma patients. 

Setting Adult critical care or intensive care 

unit 

Paediatric critical care or intensive 

care unit, emergency department, 

hospital wards, or any other hospital 

setting that is not adult critical care 

or intensive care unit. 
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Criterium Included Excluded 

Type of a problem Classification Regression, or any other method 

that is not classification 

Outcome Patient outcomes: mortality, 

morbidity, postoperative 

complications, hospital length of 

stay, ICU length of stay or any other 

outcome that is directly related to 

patient’s health 

Outcomes that are not directly 

related to the patient (e.g., costs) 

Variables Includes laboratory data that were 

treated as dynamic variables 

Includes only static variables (i.e., 

that are measured once) or variables 

that are not vital signs or laboratory 

data 

Type of model Must be a model predicting patient 

outcomes based on dynamic 

variables on a “real-time” basis. 

Static prediction model 

Comparator Any model performance measure 

(e.g., AUC, sensitivity, specificity, 

accuracy, etc) 

No model performance reported 

 

Prediction models that were developed using dynamic laboratory test results were 

included in the study. The “dynamic variable” is defined as variables that are measured 

repeatedly as time changes. These could be laboratory results that are measured every 

hour or every day. Also, inclusion of vital signs that are measured every second or 

every minute was allowed. The models could include static variables (measured only 

once) to aid prediction, however, studies that used only static variables, were excluded. 

Because the aim of this thesis is to develop prediction models that predicts 

postoperative outcomes using dynamic variables on an hourly basis, only papers that 

develop these kinds of models were included. The definition of “dynamic” here is 

flexible, where the prediction is made repeatedly as the time passes. The prediction 

could be made in every second, minute or hour, or even less often. The main idea is 

that the developed models make a prediction repeatedly as new information comes in, 

or as the predicted event gets closer in time.  

Finally, only studies that reported performance measures for their models were 

included in the review. If a study did not include performance measures, the study was 

excluded.  



16 

 

2.2.4. Study Selection 

As seen in Figure 2.1, in the initial search, 511 articles on PubMed were listed. In 

addition, 81 papers were identified from hand-searching citations and reference lists 

of the qualifying papers. This resulted with 592 records that were screened based on 

the title and abstract. Based on title and abstract, 508 papers were excluded. Following 

reading the full text of the 89 articles, 1 paper was excluded due to being a secondary 

study, 12 papers were excluded due to not solving a classification problem, 4 papers 

were excluded due to not using dynamic vital signs and laboratory results data, 16 

papers were excluded due to not developing a dynamic prediction, 17 papers were 

excluded due to not being about ICU or critical care patients, and 6 papers were 

excluded due to not being about adult patients.   

Overall, 33 articles were included in the final review. 
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Figure 2.1. Flow diagram of study selection based on The PRISMA Statement [55]. 

 

2.3. Results 

2.3.1. Brief Description of Studies 

The studies included in the review are: [56], [57], [66]–[75], [58], [76]–[85], [59], 

[86]–[88], [60]–[65]. The information about the studies, including the first author, 

year, country, number of patients, types of patients, predicted outcome, data types and 

types of variables in studies can be found from the data extraction table (Table 2.2). 
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The majority of the studies were conducted in the USA (19 studies), four studies were 

conducted in China, and two in India. Other countries where studies were undertaken 

were Australia, Germany, Finland, the Netherlands, Portugal, South Korea, Thailand 

and the UK.  

In terms of study size, five studies used more than 30,000 patient records in the 

development of their models [58], [67], [75], [79], [89], Johnson et al. using the largest 

number of patients of 50,488 [67]. Nine studies used between less than 30,000, but 

more than 10,000 patient records [57], [63], [66], [74], [77], [82], [83], [85], [88]. Nine 

studies use considerably small datasets of less than 1000 patient records [49], [62], 

[64], [70], [71], [73], [80], [81], [84], the smallest study population being in the study 

by Shashikumar et al. (242 patient records) [81]. 

External validation was carried out by three studies [74], [77], [88]. When other studies 

were single-centre studies, it is worth noting that Silva et al. used data from 42 ICUs 

from 9 European Union countries [82]. 

In terms of the data used, out of 33 studies included in this review, 19 studies 

developed their models, using a version of the Multiparameter Intelligent Monitoring 

in Intensive Care (MIMIC) database [90]. Eleven studies used the MIMIC-II [56], 

[57], [73], [61], [63], [65], [66], [68]–[71], six studies used the MIMIC-III [58], [60], 

[67], [85]–[87], and two studies used the MIMIC-IV [79], [88]. Two studies used the 

MIMIC-III for validating their models externally [74], [77]. Of publicly available 

datasets, two studies also used the eICU database [91] – one for development of the 

model [79] and one for external validation [88]. 

In the next sections, the studies were discussed based on the outcomes they were 

predicting, how the studies approached missing data and imbalanced classification 

problems, the predictive modelling methods they used and the performance of the 

models. 
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Table 2.2. Data extraction table for the included studies. 

First 

Author 

Year Country Number of 

patients 

Patient 

Population 

Outcome 

predicted 

MIMIC eICU Data 

types 

Types of 

Variables 

Bhattacharya 2018 India 4,547 patients All ICU adult 

patients 

Acute 

hypotensive 

episode 

MIMIC-II No Numerical 5 vital signs 

Caballero 2015 USA 11,648 patients  All ICU patients Mortality MIMIC-II No Mixed Vital signs, 

laboratory 

results, medical 

notes 

Deasy 2020 UK 46,476 patients All adult patients 

admitted to 

critical care who 

stayed in hospital 

for > 48 hours 

Mortality MIMIC-III No Mixed Patient 

demographics, 

vital signs, 

laboratory tests 

Dummitt 2018 USA 7,819 patients All ICU patients Septic shock No No Mixed Patient 

demographics 

and vital signs 

Feng 2021 China 5,653 patients Adult patients 

with non-

invasive 

ventilation for 

over 48 hours in 

ICU 

Non-invasive 

ventilation 

failure 

MIMIC-III No Mixed Patient 

demographics, 

vital signs, 

laboratory tests 

Ghosh 2017 Australia 1,310 patients  ICU patients Septic Shock MIMIC-II No Numerical Mean arterial 

pressure, heart 

rate and 

respiratory rate 

Gultepe 2014 USA 741 patients ICU Patients 

with Systemic 

Inflammatory 

Response 

Syndrome 

Mortality, 

Lactate Level 

(Sepsis) 

No No Numerical Vital signs and 

laboratory 

results 
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First 

Author 

Year Country Number of 

patients 

Patient 

Population 

Outcome 

predicted 

MIMIC eICU Data 

types 

Types of 

Variables 

Henry 2015 USA 16,025 patients All ICU patients, 

any surgery 

Septic shock MIMIC-II No Mixed Patient 

demographics, 

vital signs, and 

laboratory 

results 

Hernandez 2021 USA 406 patients Adult patients in 

ICU recovering 

from surgery 

Haemodynamic 

instability 

No No Mixed Patient 

demographics, 

vital signs, and 

ECG data 

Huddar 2016 India 775 patients ICU patients Acute 

respiratory 

Failure 

MIMIC-II No Mixed Clinical Notes 

+ vital signs 

Hug 2009 USA 10,066 patients Adult ICU 

patients 

Mortality MIMIC-II No Mixed Patient 

demographics, 

vital signs, and 

laboratory 

results 

Johnson 2017 USA 50,488 patients  ICU patients 

corresponding to 

adults for 

surgical, 

medical, 

neurological and 

coronary critical 

illness 

Mortality MIMIC-III No Mixed Patient 

demographics, 

vital signs, and 

laboratory 

results 

Joshi 2012 USA 10,000 patients  Adult patients in 

ICU 

Mortality MIMIC-II No Mixed Vital signs and 

laboratory 

results 

Lee 2010 USA 1,311 patients  ICU patients Hypotensive 

episodes 

MIMIC-II No Mixed Vital signs 

Lehman 2015 USA 453 patients  ICU patients Mortality MIMIC-II No Numerical Vital signs 
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First 

Author 

Year Country Number of 

patients 

Patient 

Population 

Outcome 

predicted 

MIMIC eICU Data 

types 

Types of 

Variables 

Lehman 2013 USA 337 patients ICU patients 

with day 1 

SAPS-I scores 

and at least 18 

jours of blood 

pressure data 

since 24h from 

ICU admission 

Mortality MIMIC-II No Numerical Vital signs 

Ma 2019 USA 3,763 patients Medical ICU 

patients 

Mortality No No Mixed Patient 

demographics, 

vital signs, 

laboratory tests 

Mao  2012 USA 772 patients ICU patients Mortality MIMIC-II No Numerical Vital signs 

Meyer 2018 Germany 11,492 patients 

(development), 

5,898 (external 

validation) 

All ICU patients, 

Any surgery 

Bleeding, 

mortality and 

renal failure 

MIMIC-III 

(external 

validation) 

No Mixed Patient 

demographics, 

vital signs, and 

laboratory 

results 

Misra 2021 USA 45,425 patients Adult ICU 

patients 

Septic shock No No Mixed Patient 

demographics, 

vital signs and 

laboratory 

results 

Mohammed 2020 USA 5,958 patients Adult medical 

ICU patients 

Sepsis No No Numerical Vital signs 

Nemati 2018 USA 27,527 

(development), 

42,411 (external 

validation) 

All ICU patients, 

regardless of 

reason being 

there 

Sepsis MIMIC-III 

(external 

validation) 

No Mixed Patient 

demographics, 

vital signs and 

laboratory 

results 
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First 

Author 

Year Country Number of 

patients 

Patient 

Population 

Outcome 

predicted 

MIMIC eICU Data 

types 

Types of 

Variables 

Park 2020 South Korea 36,023 patients Adult ICU and 

Ward patients 

Bacteremia 

(Septic 

complication) 

No No Mixed Patient 

demographics, 

vital signs and 

laboratory data 

Pattalung 2021 Thailand 18,353 MIMIC-

III patients, 

18,134 MIMIC-

IV patients, 

36,283 eICU 

patients 

Adult ICU 

patients staying 

in ICU for > 48h 

Mortality MIMIC III and 

MIMIC-IV 

Yes Numerical Vital signs and 

laboratory 

variables 

Raj 2019 Finland 472 patients Adult traumatic 

brain injury 

patients 

Mortality No No Numerical Patient 

demographics, 

vital signs, and 

laboratory 

results 

Shashikumar 2017 USA 242 patients Adult ICU 

patients 

Sepsis No No Mixed Patient 

demographics 

and vital signs 

Silva 2006 Portugal, 42 

ICUs of 9 EU 

countries (list 

of countries 

unavailable) 

13,164 patients  Adult patients in 

ICU that did not 

have burns or 

had a bypass 

surgery 

Mortality No No Numerical 17 variables 

collected 

within the first 

24h of 

admission 

Thoral 2021 The 

Netherlands 

14,105 

admissions 

Adult ICU 

patients 

ICU readmission 

and mortality as 

a composite 

outcome 

No No Mixed Patient 

demographics, 

vital signs and 

laboratory 

results 

van Wyk 2019 USA 754 patients All ICU adult 

patients 

Sepsis No No Numerical Vital signs and 

laboratory 

results 
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First 

Author 

Year Country Number of 

patients 

Patient 

Population 

Outcome 

predicted 

MIMIC eICU Data 

types 

Types of 

Variables 

Xia 2019 China 18,415 patients Adult ICU 

patients with 

length of stay 

>10 days 

Mortality MIMIC-III No Numerical Vital signs and 

laboratory 

results 

Yee 2019 USA 9,165 patients  All ICU patients Septic shock MIMIC-III No Mixed Patient 

demographics 

and laboratory 

results 

Yijing 2022 China 1,860 patients Adult ICU 

patients 

Cardiac arrest MIMIC-III No Numerical ECG, and vital 

signs 

Zhao 2021 China 11,362 patients 

(development), 

35,252 (external 

validation) 

Adult ICU 

patients who 

stayed in ICU 

>24h 

Sepsis-induced 

coagulopathy 

MIMIC-IV 

(development) 

Yes 

(external 

validation) 

Mixed Patient 

demographics, 

vital signs, and 

laboratory 

results 
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2.3.2. Specific Outcomes Predicted by the Models 

The Table 2.3 shows the outcomes predicted by the studies included in this review. 

Table 2.3. Outcomes predicted by included studies. 

Outcome Number of papers Author and Year Prevalence of the 

Outcome 

Mortality 16 Caballero 2015 Not reported   
Deasy 2020 13.0%   
Gultepe 2014 35.0%   
Hug 2009 Not reported   
Johnson 2017 Not reported   
Joshi 2012 12.0%   
Lehman 2013 14.0%   
Lehman 2015 15.0% - 19.0%*   
Ma 2019 1.2% - 17.0%*   
Mao 2012 2.3%   
Meyer 2018 6.2%   
Pattalung 2021 8.0% - 14.1%*   
Raj 2019 19.5%   
Silva 2006 Not reported   
Thoral 2021 5.3%   
Xia 2019 11.7% 

Septic complications 12 Dummitt 2018 2.3%   
Ghosh 2017 15.9%   
Gultepe 2014 20.3%   
Henry 2015 14.1%   
Misra 2021 12.7%   
Mohammed 2021 10.35%   
Nemati 2018 8.6%   
Park 2020 1.9%-2.3%*   
Shashikumar 2017 22.0%   
van Wyk 2019 32.5%   
Yee 2019 1.9%   
Zhao 2021 59.0% 

Cardiac complications 4 Bhattacharya 2018 28.5%   
Hernandez 2021 35.0%   
Lee 2010 24.2%-25.4%*   
Yijing 2022 9.1% 

Respiratory complications 2 Feng 2021 46.7%   
Huddar 2016 11.7% 

Bleeding 1 Meyer 2018 4.9% 

Renal complications 1 Meyer 2018 1.0% 

* If a range is reported, the authors carried out different experiments with different datasets, where 

prevalence of outcome varied. 

 

When comparing the models amongst papers included in this review, it is important to 

keep in mind that the predicted outcomes can have varying definitions. In addition, the 

data pre-processing can play a role in how well the models perform. 
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2.3.2.1. Mortality 

Most models predicting mortality had the outcome defined as mortality that happened 

any time in the ICU [57], [58], [62], [67], [68], [70], [79], [82], [85], [92]. Hug et al. 

however, added mortality within 30 days from ICU discharge to ICU mortality [66]. 

Lehman et al., Mao et al. and Meyer et al. predicted in-hospital mortality [71], [73], 

[74]. Finally, Raj et al. predicted 30-day mortality [80] and Thoral et al. predicted a 

composite outcome of in-hospital mortality and ICU readmission within 7 days of ICU 

discharge [83].  

The prevalence of mortality in the studies ranged vastly, specifically between 1.2% 

and 35.0%. This is because the studies analysed different types of patient populations, 

where in some the mortality is more prevalent than in others. For example, Ma et al. 

found that amongst medical ICU patients, 1.2% of patients died within 6 hours since 

ICU admission [72]. Gultepe et al., however predicted mortality amongst sepsis 

patients, for which high mortality rate (35.0%) was expected [62]. 

2.3.2.2. Septic Complications 

Septic complications are incredibly serious complications. A large study investigating 

sepsis-related mortality in English ICUs found that sepsis can affect a quarter of adult 

ICU patients in England, and can kill one in four ICU patients affected [93]. Sepsis 

occurs when an infection in the body results in the systemic inflammatory response 

syndrome and is defined to be severe if sepsis causes organ dysfunction [94]. Septic 

complications can have a significant impact on patient due to being associated with 

increased mortality and life-long complications, such as permanent organ damage, 

cognitive impairment, and physical disability [94]. 

Even though septic complications were predicted by 12 studies, the definition of the 

outcome varied substantially. Four papers [76], [77], [81], [88] used the Third 

International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) criteria 

[54] to predict the onset of sepsis in general. Two studies [59], [75] used the Systemic 

inflammatory Response Syndrome (SIRS) criteria [95] to predict specifically septic 

shock. It is worth mentioning that Misra et al. treated septic shock patients as the cases 

and patients with other septic complications as controls [75]. The studies by Ghosh et 
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al. [61] and Henry et al. [63] defined septic shock as the outcome in a similar way as 

SIRS criteria, however, they did not specifically state that they were using this widely 

used, agreed upon criteria. Van Wyk et al. [84] predicted the onset of sepsis by 

following the Sepsis-2 criteria [94], even though a new criteria (Sepsis-3) had already 

been published three years prior the van Wyk et al.’s study. This is a limitation to van 

Wyk et al.’s study as later published papers showed that the definition of sepsis by 

these two criteria were very different [96], and hence the developed models can 

misclassify patients to have different levels of sepsis.  

Avoiding the conflicting sepsis definition criteria, Gultepe et al. predicted high lactate 

levels (≥ 4mmol/l vs <4mmol/l), which is considered to be a sign of possible sepsis 

[62]. Yee et al., however, made their own criteria for septic shock [86]. This is 

considered to be a limitation to the study as, even though the currently available criteria 

for diagnosis of septic shock are not perfect [97], they are still based on consensus and 

are heavily validated [98], [99]. Finally, Park et al. predicted bacteraemia [78], which 

is a septic complication, and hence was included under this category in this review. 

Similarly to the models predicting mortality, for septic complications, the prevalence 

of outcomes also varied substantially: 1.9%-59.0%. Yee et al. predicted septic shock 

in the whole ICU population, resulting with a very low prevalence of septic shock of 

1.9% [86]. Park et al. predicted bacteraemia also in the general ICU, resulting with 

low prevalence (between 1.9% and 2.3%, depending on experiment) [78]. Zhao et al., 

however, analysed sepsis patients only, and predicted sepsis-induced coagulopathy, 

which turned out to be very prevalent (59.0%) amongst sepsis patients [88].  

2.3.2.3. Cardiac Complications 

Two models predicted hypotensive episodes [56], [69]. Acute hypotensive episode is 

a sudden onset of a period of sustained low blood pressure [56]. Bhattacharya et al. 

defined hypotensive episode as a period of 30 minutes where at least 90% of mean 

arterial pressure measurements were no greater than 60mmHg. A long-lasting 

hypotension can result in dangerously decreased tissue blood flow with consequent 

end-organ damage. Treating hypotension appropriately can be effective to avoid 

severe sepsis [100], shock [101] and acute coronary syndrome [102]. 
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Hernandez et al. predicted haemodynamic instability, which is related to arrhythmia, 

respiratory failure and hypotension [64]. In their paper they did not clearly define, 

however, what they considered haemodynamic instability to be. 

Yijing et al. predicted cardiac arrest in critically ill patients. The cardiac arrest was 

defined as the start time of the first occurrence of the specified abnormal events, 

however the abnormal events were not described in the paper [87]. This is a limitation 

to the study as it makes the prediction model difficult to reproduce. 

When looking at studies predicting various cardiac complications, the prevalence was 

also very variable: between 9.1% and 35.0%. This is because hypotensive episodes 

and haemodynamic instability are more common complications, especially in cardiac 

patients, who were included in Hernandez et al.’s, Bhattacharya’s and Lee’s datasets, 

resulting in high number of patients with the predicted outcomes [56], [64], [69]. 

Cardiac arrest, however, is a less common complication, especially if all ICU patients 

are included in the dataset, not only cardiac surgery patients [103]. Hence, Yijing et 

al. predicted an outcome that had prevalence of 9.1% in their study population [87]. 

2.3.2.4. Other Complications 

Feng et al. predicted late non-invasive ventilation failure in ICU. They defined the 

outcome as death during or intubation after non-invasive ventilation [60]. 

Interestingly, in Feng et al.’s patient cohort, the prevalence of late non-invasive 

ventilation failure was very high (46.7%). This could be because they included patients 

who received non-invasive ventilation as a primary treatment following ICU 

admission [60]. 

Huddar et al. predicted acute respiratory failure, which occurs when the respiratory 

system fails in oxygenation and/or CO2 elimination from the lungs [49].  It is 

considered to be the end point of respiratory complications, such as pneumonia or 

atelectasis. There are various factors than can be associated with acute respiratory 

failure: patient-related factors, including age, pre-existing chronic obstructive 

pulmonary disease, congestive heart failure and arrhythmia; and procedure-related 

variables, including emergency surgery, prolonged surgery and surgical site [104]. 

Compared to the other studies, Huddar et al. reported the common incidence of acute 
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respiratory failure ranging between 0.2% to 3.4%, however, in Huddar et al.’s patient 

population, the incidence of acute respiratory failure was 11.7%. This might be 

because Huddar et al. retrospectively diagnosed the complication based on a specific 

criterion that followed the vital signs recorded automatically in the ICU [49], whereas 

studies in the literature are using different definition of what constitutes for a patient 

to have respiratory failure [105]. This shows that some complications that are reported 

without specific criteria based on laboratory results or vital signs can be under-reported 

in the electronic health records. 

In addition to mortality, Meyer et al. also predicted postoperative bleeding and renal 

failure requiring renal replacement therapy [74]. The renal failure was defined using 

Kidney Disease: Improving Global Outcomes (KDIGO) criteria [106]. Acute kidney 

injury, formerly called acute renal failure, is a sudden decline in glomerular filtration 

rate [107]. Glomeruli are tiny filters in the kidneys that filter waste from the blood. 

This rate estimates how much blood passes through the glomeruli each minute. Acute 

kidney injury is usually caused by an event that leads to kidney malfunction, such as 

dehydration, blood loss from major surgery or injury, or the use of medicines [108].  

Even though acute renal failure in cardiac patients is often considerably low [109], 

Meyer et al.’s prevalence for renal failure was very low (1.0%). This might be due to 

different studies defining acute renal failure differently. Meyer et al., however, used 

the KDIGO criteria, which is an internationally recognised criteria for diagnosing renal 

complications, including renal failure [106]. 

2.3.3. Methods Used to Develop Dynamic Models Predicting 

Patient Outcomes 

2.3.3.1. Missing Data Approaches 

Missing data in ICUs, being an incredibly data-rich environment, is inevitable [110]. 

The large number of missing values in medical databases represent a challenge as a 

patient’s health state needs to be examined even when no observations are available 

[57]. Furthermore, data collection errors are common in clinical practice [111], and 

hence using various approaches to treat missing data can be beneficial when dealing 

with these errors. 
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Table 2.4 Missing data approaches used by each included paper. 

Missing Data Approach 
Number of 

Papers 

Author and 

Year 
Amount of missing data 

Imputation 9 Caballero 2015 34% estimated 
  Dummitt 2018 0-94.7% 
  Lehman 2015 Not reported 
  Ma 2019 0-93.21% 
  Misra 2021 Not reported 
  Park 2020 Not reported 
  Pattalung 2021 Not reported 

  Shashikumar 

2017 
Not reported 

  Zhao 2021 Not reported 

Carrying 

Forward/Interpolation 
7 Dummitt 2018 0-94.7% 

  Joshi 2012 Not reported 
  Meyer 2018 Not reported 
  Park 2020 Not reported 
  Pattalung 2021 Not reported 
  Yijing 2022 Not reported 

  Xia 2019 Not reported 

Informative Missingness 2 Deasy 2020 Not reported 

  Huddar 2016 Not reported 

Removal of variables 3 Dummitt 2018 0-94.7% 
  Feng 2021 Not reported 
  Misra 20021 Not reported 

Removal of entries 3 Lehman 2015 Not reported 

  Raj 2019 

Mean = 70 values for 

intracranial pressure, 78 

values for mean arterial 

pressure and 70 for cerebral 

perfusion pressure 
  Silva 2006 4 entries 

Model "handles" 1 Zhao 2021 Not reported 

Unclear 4 
Bhattacharya 

2018 
Not reported 

  Gultepe 2014 Not reported 
  Thoral 2021 Not reported 
  Yee 2019 Not reported 

None reported 11 Ghosh 2017 Not reported 
  Henry 2015 Not reported 
  Hernandez 2021 Not reported 
  Hug 2009 Not reported 
  Johnson 2017 Not reported 
  Lee 2010 Not reported 
  Lehman 2013 Not reported 
  Mao 2012 Not reported 
  Mohammed 2020 Not reported 
  Nemati 2018 Not reported 
  van Wyk 2019 Not reported 

 

The common methods for handling missing data found in this review are: 
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• Removal of variables with large numbers of missing data 

• Removal of records with large numbers of missing data 

• For time-series data, if some data are available for a patient, carrying forward 

or interpolation methods 

• If no time-series data available, imputation methods 

• Using models that are robust when handling missing data 

How the studies included in this review dealt with missing data are shown in Table 

2.4. Nine studies used an imputation method, seven papers reported carrying forward 

the previously reported values, three papers removed variables with a certain number 

of missing values, three papers removed records with a certain number of missing 

values, two papers used informative missingness (i.e., where missing data can give 

information itself, e.g., tests not taken due to patient being healthy), and one paper 

used a prediction method that took missing values into account. In four papers, missing 

data approaches were discussed, however it was unclear what exactly was done about 

it, and for eleven papers the missing data approaches were not mentioned at all. 

Imputation Methods 

Imputation methods are used to fill in missing values with another, probable value. 

Using imputation methods can be beneficial as this allows including patients who can 

have relevant features for analysis but could be otherwise be excluded from analysis 

due to data collection or recording errors [112]. Imputation methods were used by 

almost a third of the studies (10 papers). 

Shashikumar et al. [81] and Park et al. [78] used mean imputation to replace missing 

values. Mean imputation is a single imputation method where the missing values are 

replaced by the mean of the observed values of the variable with missing data [112]. 

Even though mean imputation is a very straight-forward method, it can cause severely 

biased estimates due to changing the variance of the data [113]. That being said, if the 

missingness of data is low (<10%) and the variables with missing values are not highly 

correlated with the predicted outcome, the effects on the reliability of predicted 

outcome are marginal [114]. 

Dummitt et al. [59] and Zhao et al. [88] used the population median to populate missing 

values. This was also done for clear outliers that were removed from dataset and 
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replaced with new values based on the population median [59]. Median imputation is 

very similar to mean imputation, but instead of replacing the missing values with the 

population mean, the median is used. Similar to mean imputation, median imputation 

is also a very straight-forward approach, however, takes into account that real-life data 

are not always normally distributed [115]. It has been shown to perform similarly well 

as more sophisticated imputation methods [116].  

Interestingly, Pattalung et al. replaced the missing values with the value “-1” [79]. In 

their paper they do not explain further why this decision was made and what 

assumptions they had when undertaking this approach. In practice, replacing missing 

values with a certain agreed-upon value would simplify the usage of a prediction 

model if a clinician was faced with missing values. However, this can significantly 

alter the probability for a patient to have the predicted outcome. In Pattalung et al.’s 

paper it was found that their model had slight differences in the variable importance 

values when trained on two different databases [79], which could be a result by the 

missing data approach. This makes the developed prediction model less usable if 

applied to other institutions. 

Caballero et al. used Regularised Expectation Maximization (EM) to fill out the 

missing values [57]. EM is based on iterated analyses of linear regressions of variables 

with missing values on variables with available values, with regression coefficients 

estimated by ridge regression, a regularised regression method in which a continuous 

regularisation parameter controls the filtering of the noise in the data. The 

regularisation parameter is determined by generalised cross-validation, such as to 

minimise, approximately, the expected mean-squared error of the imputed values. The 

regularised EM algorithm has been shown to be able to estimate missing values for 

various types of missing data problems [117]. 

Lehman et al. used Gaussian noise imputation for time-series data to replace missing 

or invalid values in their dataset [71]. In the literature there is a wealth of information 

about Gaussian processes handling missing values, however Lehman et al. used 

logistic regression (Section 2.3.3.3) for their prediction model. Since they did not 

provide a reference to what exactly they mean by using Gaussian noise to “fill in the 
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missing or invalid values” [71], it is unclear what processes they carried out to handle 

missing data. 

Ma et al. used a tree-based estimation algorithm to replace missing values [72]. To do 

that, they replaced the missing values with the value “-1000” as this value was very 

different from the non-missing values. This was done for the estimation algorithm to 

treat these missing values differently. However, Ma et al. do not provide a reference 

to what kind of tree-based estimation algorithm they used for the imputation [72]. 

There are various tree-based algorithms that have been developed to impute missing 

data, including methods developed by D’Ambrosio et al. [118], Vateekul et al. [119], 

and Rahman et al. [120]. Not specifying which tree-based method was used for missing 

data imputation makes the developed models not reproducible and reduces the chance 

for the models to be implemented in clinical practice due to lack of transparency [121].  

Misra et al. used random forest imputation to replace missing values in their data [75]. 

Random forest imputation, i.e., missForest is a pattern-based method, which can be 

applied to any kind of data (numerical or categorical). It requires no tuning of 

parameters or assumptions about the data distribution [122]. MissForest has been 

shown to outperform most other methods of missing data imputation, showing low 

imputation error and maintaining predictive ability in clinical prediction models [123], 

[124]. 

Carrying Forward and Interpolation 

A few studies used the “carrying forward” method, where the patients’ most recent 

reading from earlier in the database is used, if available. This method was used by 

Dummitt et al. [59], Joshi et al. [68], Meyer et al. [74], Park et al. [78], Pattalung et al. 

[79], and Yijing et al. [87]. 

An alternative to the carrying forward method is linear interpolation, used by Xia et 

al. [85]. In one-dimensional data sequence, linear interpolation estimates the missing 

value based on the two data points adjacent to the points that has a missing value [125]. 

Therein lies the difference between interpolation and carrying forward: for carrying 

forward, the missing values are replaced with the previously recorded value; for 

interpolation, however, the missing values are replaced with a value that has been 

calculated based on also the next available value. The primary assumption of carrying 
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forward method is that the value did not change from the previously recorded value, 

which is likely incorrect [126]. The interpolation method can be more reflective of the 

changes in patient’s health as it takes into account the next recorded value but also 

makes an assumption that the trajectory between the two data points is linear [125]. 

Removal Methods 

Three papers excluded variables from the analysis that had a high level of missing 

data. Dummitt et al., for example, removed variables with >89% of missing data, 

however kept other variables in the analysis that were deemed essential for their 

prediction task [59]. Feng et al. and Misra et al. removed variables with missing rate 

over 40% [60], [75]. 

Three papers also excluded records with a high number of missing values. Silva et al. 

removed entries due to missing values, however the total number of remaining records 

was very high (13,164 records) [82]. Lehman et al. excluded patients with more than 

15% of missing or invalid samples [71]. Raj et al., however, excluded the patient only 

if the missing values fell in a specific time window [80]. 

Informative Missingness 

Two papers used informative missingness to approach missing data. Deasy et al., for 

example, explained that the missing data included in their recurrent neural networks 

model was treated as separate discrete events where models used these as “informative 

missingness” [58]. Informative missingness, as Huddar et al. argue, means that the 

data are missing because clinicians deemed the test unnecessary. This provides 

information on the patient’s status by showing that the patient was too healthy to need 

a test or receive medication. The missingness can be incorporated, for example, by 

creating a separate category for a variable that has missing values [127]. 

Incorporating informative missingness needs to be decided upon based on how the 

developed prediction model will be used in practice. If a system is incorporated in an 

electronic health system, and calculates probabilities for predicted outcomes 

automatically, the effect of informative missingness can be hidden from the clinician. 

However, if risk prediction is done by hand using a scoring system, the clinician is 

able to make an informed decision by also including informative missingness [127]. 
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Since Deasy et al. developed a prediction model that incorporates all data from the 

electronic health record [58], and Huddar et al. developed a model that is incorporated 

with the electronic health record [49], it is difficult to know how much the developed 

models actually take this informative missingness into account. 

Model-Handled Methods 

Zhao et al. explain that the boosting machine learning methods they were using in their 

analysis can use missing data when making the prediction. These models were 

CatBoost, light Gradient Boosting, Extreme Gradient Boosting (XGBoost), and 

Gradient Boosting Machine (GBM) [88]. 

Even though Zhao et al. stated that no entries with missing data were removed from 

analysis, they did not report what the rate of missingness in the data was. It has been 

shown that the amount and the distribution of missing data plays an important role 

when developing predictive models in terms of variability and bias of the results [113], 

[114], [128]. 

Other Approaches 

Four papers did not explain their methods for handling missing data very clearly. 

Bhattacharya et al. mentioned that data were “cleaned”, but no further information was 

given [56].  

Gultepe et al. stated that no missing data were included in the study, meaning that 

assumably only records with complete data were included in the study [62]. 

Thoral et al. mentioned that values with no biological plausibility were removed from 

analysis, however, did not report what was done with these missing values in the data 

as they did not mention removing variables with these values or patient records with 

these values [83]. 

Yee et al. reported interpreting missing values as “not measured”, but they did not 

explain how these “not measured” values were handled in their analysis [86]. 

In total, eleven studies did not report any action taken regarding missing values [61], 

[63], [84], [64], [66], [67], [69], [70], [73], [76], [77].  



 

 

35 

 

2.3.3.2. Imbalanced Classification Problem Approaches 

In total, 14 papers mentioned facing an imbalanced classification problem in their 

analysis and reported how they approached this problem (Table 2.5). 

Table 2.5. Approaches for imbalanced classification problem used by papers. 

Imbalanced Classification Number of Papers Author and Year 

Balanced by method 7 Huddar 2016   
Lee 2010   
Mao 2012   
Misra 2021   
Mohammed 2020   
Pattalung 2021   
Silva 2006 

Performance Measures 3 Johnson 2017   
Ma 2019   
Thoral 2021 

Data selection 2 Meyer 2018   
van Wyk 2019 

Modelling method approach 2 Caballero 2015   
Dummitt 2018 

 

Balanced by Method 

Seven papers reported using a specific method to manipulate the sample to achieve a 

balanced dataset. Two papers used Synthetic Minority Oversampling Technique 

(SMOTE) on their training sets [49], [75]. Misra et al. also reported using upsampling 

[129], however, it is unclear why both SMOTE [130] and upsampling were used, and 

how these two methods were used at the same time [75]. Over-sampling was also used 

by Pattalung et al. on their training data [79]. 

Lee et al. reported using subsampling [131] in their training data to achieve a balanced 

data set [69]. Undersampling [132] was used by Mao et al. [73], and Silva et al. [82]. 

Mohammed et al. used a Bayesian bootstrap method [133] to balance controls with 

cases [76].  

Most papers carried out these sampling methods on training sets only, and left the 

testing sets as original, as is recommended [134], however, Mao et al. [73] and 

Mohammed et al. [76] carried out the balancing methods on both training and testing 

data. This approach is not recommended [134] as this means that their models were 

tested on balanced datasets which do not reflect the proportion of cases and controls 
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as it does in practice. In addition, this means that the predicted probabilities can be 

incorrect and not be applied in a real-world situation [135]. 

Data Selection 

Two studies approached the imbalanced classification problem by sampling their data 

as equally sized case and control groups [74], [84]. This means that both of these 

studies worked with balanced training and testing datasets, which makes the predicted 

probabilities by models not applicable in a real-world setting [135].  

Choosing Appropriate Modelling Method 

Caballero et al.[57] and Dummitt et al. [59] approached the imbalanced classification 

problem by choosing predictive modelling methods that have been shown to be robust 

when handling imbalanced datasets. Caballero et al. report that the naïve Bayes 

classifier they were using for text classification had shown good predictive 

performance for unbalanced classes [57]. Dummitt et al. checked that the number of 

events per variable was kept above the recommended thresholds for the classification 

methods they used to ensure the model coefficients would not be biased by the case 

balance [59]. It was, however, not explained how this was achieved. 

Choosing Appropriate Performance Measures 

Three papers reported that due to the imbalanced classification problem, instead of 

reporting only the accuracy of the model, they also reported area under the receiver 

operating characteristic curve (AUROC) and area under the precision-recall curve 

(AUPRC) [67], [72], [83]. These performance measures have been shown to give a 

better reflection of how the model recognises both positive and negative classes [136], 

[137].  

2.3.3.3. Classification Methods Used by Studies to Predict Patient 

Outcomes in a Dynamic Manner 

Table 2.6 summarises which classification method each paper used. The most used 

methods were logistic regression (18 papers), random forest (11 papers), support 

vector machines (10 papers), and neural networks (10 papers).  Other more commonly 

used methods included gradient boosting machines (5 papers), and naïve Bayes (4 

papers). 
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Table 2.6. Classification methods used by papers to predict patient outcomes dynamically. 

Method 
Number of 

studies 
First Author and Year 

 

Logistic regression (all versions) 18 Caballero 2015    
Dummitt 2018    
Feng 2021    
Huddar 2016    
Hug 2009    
Johnson 2017    
Joshi 2012    
Lehman 2013    
Lehman 2015    
Mao 2012    
Misra 2021    
Raj 2019    
Shashikumar 2017    
Silva 2006    
Thoral 2021    
van Wyk 2019  

  
 

Zhao 2021  

Random Forest 11 Caballero 2015  

  Dummitt 2018  

  Feng 2021  

  Hernandez 2021  

  Huddar 2016  

  Ma 2019  

  Misra 2021  

  Mohammed 2020  

  Thoral 2021  

  van Wyk 2019  

   Zhao 2021  

Support Vector Machines 10 Ghosh 2017    
Gultepe 2014    
Hernandez 2021    
Huddar 2016    
Mao 2012    
Misra 2021    
Mohammed 2020    
Thoral 2021    
van Wyk 2019  

  
 

Zhao 2021  

Neural Networks (any kind) 10 Deasy 2020  

  Meyer 2018  

  Park 2020  

  Pattalung 2021  

  van Wyk 2019  

  Feng 2021  

  Lee 2010  

  Silva 2006  

  Feng 2021  

  Xia 2019  

Gradient Boosting Machine (all 

versions) 

5 Feng 2021  

  
Johnson 2017    
Thoral 2021  



38 

 

Method 
Number of 

studies 
First Author and Year 

 

  
Yijing 2022  

  
 

Zhao 2021  

Naïve Bayes 4 Caballero 2015  

  Gultepe 2014  

  Hernandez 2021  

  Zhao 2021  

Cox proportional hazards 3 Dummitt 2018    
Henry 2015    
Nemati 2018  

Decision Trees 3 Huddar 2016    
Misra 2021    
Zhao 2021  

AdaBoost 2 Hernandez 2021    
Huddar 2016  

Bayesian Networks 2 Gultepe 2014    
Yee 2019  

Hidden Markov Models 2 Ghosh 2017    
Gultepe 2014  

C5.0 1 Misra 2021  

CatBoost 1 Zhao 2021  

Dual boundary classifier 1 Bhattacharya 2018  

Gaussian Mixture Model 1 Gultepe 2014  

LASSO 1 Johnson 2017  

LUCCK (Learning Using 

Concave and Convex Kernels) 

1 Hernandez 2021  

 

The outcomes were predicted in varying frequencies. The closest to “real-time” models 

were those that updated their prediction every time new measurements were entered 

into the system. Eleven studies followed this prediction frequency [49], [56], [87], 

[61], [63], [64], [73], [74], [82], [85], [86]. Eight studies developed models to predict 

outcomes on an hourly basis [57], [58], [67], [69]–[71], [79], [83].  

Twelve studies predicted the outcomes less often [59], [60], [84], [88], [62], [72], [75]–

[78], [80], [81]. More specifically, Ma et al. predicted mortality in every 6 hours [72]. 

Nemati et al. predicted sepsis 12, 8, 6 and 4 hours before the onset [77]. Park et al. 

predicted bacteraemia 8, 16 and 24 hours in advance [78]. Raj et al.’s model made new 

predictions of mortality every 8 hours [80]. For Shashikumar et al.’s model, sepsis was 

predicted 4 hours in advance [81]. Dummitt et al. made the prediction of septic shock 

4, 8 and 24 hours beforehand [59]. Feng et al.’s model predicted late non-invasive 

ventilation failure in 8, 16, 24, 36 and 48 hours after the start of non-invasive 

ventilation [60]. Gultepe et al. predicted mortality and high lactate levels in 6, 12 and 

24 hours [62]. Misra et al. predicted septic shock within 1, 3, and 6 hours before the 
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onset [75]. Mohammed et al. predicted sepsis at around 18 hours beforehand [76]. Van 

Wyk et al. predicted sepsis 3 and 6 hours in advance [84]. Zhao et al. predicted sepsis-

induced coagulopathy on a daily basis [88]. 

For two studies it was unclear how often their dynamic models predicted the outcome 

[66], [68]. 

2.3.4. Performance of the Models 

By far the most reported performance measure was area under the receiver operating 

characteristic curve (AUROC), reported by 29 papers. It was common to also report 

sensitivity (18 papers) and specificity (17 papers). Less commonly reported 

performance measures included accuracy (10 papers), positive (7 papers) and negative 

predictive values (5 papers), area under the precision-recall curve (AUPRC) (4 

papers), and F1 score (5 papers).  

A number of papers tested various methods to predict patient outcomes (see Section 

2.3.3.3), however, Tables 2.7 to 2.9 show the highest performing models and their 

respective performance measures for the papers. 

When looking at how the models performed based on predicting mortality (Table 2.7), 

Meyer et al. had the highest AUROC of 0.950 when predicting mortality, achieved 

with recurrent deep neural network [74]. The second-best performance was achieved 

by Johnson et al. with the AUROC of 0.920 (gradient boosting machine) [67], followed 

by Pattalung et al. (AUROC = 0.910, recurrent neural network) [79] and Ma et al. 

(AUROC = 0.905, random forest) [72].  

In terms of sensitivity, the model by Gultepe et al. has by far the highest sensitivity of 

0.949, achieved with support vector machine [62]. The model developed by Mao et al. 

has the highest specificity of 0.950 (support vector machine) [73]. Based on accuracy, 

Meyer et al. had the highest performance of 0.880 (recurrent deep neural network), 

and they also achieved very high positive and negative predictive values of 0.900 and 

0.860, respectively [74]. Only four papers reported AUPRC when predicting mortality, 

Johnson et al. with the highest of 0.665 (gradient boosting machine) [67], and out of 

the two papers that reported the F1 score, Deasy et al. achieved the highest of 0.821 

with recurrent neural network [58]. 
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Looking at the papers that predicted septic complications (Table 2.8), Park et al. 

achieved very high AUROC of 0.960 (recurrent neural network) when predicting 

bacteraemia, which is a septic complication [78]. Misra et al. also achieved a high 

performance (AUROC = 0.948, random forest) when predicting septic shock [75]. 

Based on sensitivity, Park et al. also had the highest performance (Sens = 0.940) [78], 

and Misra et al. had the highest specificity of 0.796 [75]. 

The papers developing models to predict some other complications achieved 

considerably high AUROC, sensitivity and specificity (Table 2.9). Interestingly, 

Meyer et al., when predicting renal complications, achieved very high accuracy (0.900, 

recurrent neural network), AUROC (0.960), sensitivity (0.940), specificity (0.860), 

and positive and negative predictive values (0.870 and 0.940, respectively). 

Notably, the models by Meyer et al. achieved high performance measures for the 

predicted outcomes. However, as explained in Section 2.3.3.2, Meyer et al. used a 

balanced dataset for both training and testing data, meaning their model performance 

is not necessarily reflective of the real-world situation [135]. In their patient 

demographics, mortality was present in 6.2% of patients, bleeding in 4.9% and renal 

failure in 1.0%. These proportions show highly imbalanced data, meaning that the 

models tested on a testing set where 50% of the patients experienced renal failure reach 

AUROC of 0.960 is not applicable on a real-world situation where renal failure occurs 

in only 1% of patients.  



 

 

41 

 

Table 2.7. Best-performing classification method and their respective highest reported performance of papers predicting mortality. 

Mortality          

Author and Year Classification Method Accuracy AUROC Sensitivity Specificity PPV NPV AUPRC F1 score 

Caballero 2015 Logistic Regression  0.866 0.789 0.791     

Deasy 2020 Recurrent Neural Network 
 

0.770 
    

 
 

Gultepe 2014 Support Vector Machine 0.728 0.726 0.949 0.308 
  

 0.821 

Hug 2009 Logistic Regression 
 

0.885 
    

 
 

Johnson 2017 Gradient Boosting Machine 
 

0.920 
    

0.665 
 

Joshi 2012 Logistic Regression 
 

0.890 
    

 
 

Lehman 2013 Logistic Regression 
 

0.800 
    

 
 

Lehman 2015 Logistic Regression 
 

0.700 
    

 
 

Ma 2019 Random Forest 
 

0.905 
    

0.381 
 

Mao 2012* Support Vector Machine 
 

0.633 0.143 0.950 0.415 0.791  
 

Meyer 2018* Recurrent Deep Neural 

Network 

0.880 0.950 0.850 0.910 0.900 0.860  
 

Pattalung 2021 Recurrent Neural Network  0.910 0.810 0.860 0.850 0.820   

Raj 2019 Logistic Regression 
 

0.840 
    

 
 

Silva 2006 Artificial Neural Network 0.792 0.871 0.781 0.795 
  

 
 

Thoral 2021 Gradient Boosting Machine 
 

0.789 
    

0.202 
 

Xia 2019 Long-Short Term Memory 0.753 0.845 0.776 0.750 0.294 
 

0.486 0.426 
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Table 2.8. Best-performing classification method and their respective highest reported performance of papers predicting septic complications. 

Septic Complications      

Author, Year Classification Method Accuracy AUROC Sensitivity Specificity PPV NPV AUPRC F1 score 

Dummitt 2018 Generalised Linear Model 

via Penalised Maximum 

Likelihood 

 
0.860 

      

Ghosh 2017 Coupled Hidden Markov 

Models 

0.871 
       

Gultepe 2014 Gaussian Mixture Model 0.843 0.849 0.928 0.500 
   

0.905 

Henry 2015 Cox Proportional Hazards 
 

0.830 0.850 0.670 
    

Misra 2021 Random Forest 
 

0.948 0.839 0.881 
    

Mohammed 2021* Random Forest 0.768 
 

0.739 0.796 0.788 
  

0.760 

Nemati 2018 Weilbull-Cox Proportional 

Hazards 

0.670 0.850 
 

0.670 
    

Park 2020 Recurrent Neural Network 
 

0.960 0.940 
     

Shashikumar 2017 Elastic Net Logistic 

Classifier 

 
0.780 0.850 0.550 

    

van Wyk 2019* Random Forest 
  

0.800 
    

0.680 

Yee 2019 Bayesian Network 
 

0.810 0.790 0.660 0.460 0.900 
  

Zhao 2021 Categorical Boosting 
 

0.869 0.820 0.757 
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Table 2.9. Best-performing classification method and their respective highest reported performance of papers predicting respiratory, cardiac, bleeding and renal 

complications. 

Author and Year Classification Method Accuracy AUROC Sensitivity Specificity PPV NPV AUPRC F1 score 

Respiratory complications         

Feng 2021 Time Updated Light 

Gradient Boosting 

Machine 

 
0.912 

    
 

 

Huddar 2016 Support Vector Machine 
 

0.873 
    

 
 

Cardiac complications 
     

 
 

Bhattacharya 2018 Dual Boundary Classifier 0.870  0.830 0.900 
  

 
 

Hernandez 2021 Random Forest  0.890       

Lee 2010 Artificial Neural Network 0.758 0.819 0.748 0.746 0.665 0.833   

Yijing 2022 Extreme Gradient Boosting 0.960 0.940 0.860 0.850 
  

 
 

Bleeding  
      

 
 

Meyer 2018* Recurrent Deep Neural 

Network 

0.800 0.870 0.740 0.860 0.840 0.770  
 

Renal complications  
      

 
 

Meyer 2018* Recurrent Deep Neural 

Network 

0.900 0.960 0.940 0.860 0.870 0.940  
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2.4. Discussion 

In this literature review, studies developing dynamic prediction models predicting 

patient outcomes in critical care were reviewed. The studies were discussed based on 

the outcomes they predicted, how they approached missing data and imbalanced 

classification problems, the methods they used to develop the prediction models, and 

the performance their models achieved. 

2.4.1. Predicted Outcomes 

By far, the most predicted outcome by papers included in this review was mortality. 

There are various reasons why predicting mortality is so common. 

Firstly, mortality is very straight-forward to define, and is a binary outcome: “dead” 

or “alive”. Having a clearly defined and binary outcome is a lot easier to predict as 

opposed to more complex multi-level outcome that has a more varying definition (e.g., 

when predicting morbidity). Secondly, mortality is the ultimate negative outcome, 

which should be avoided. Thirdly, historically, mortality has always been a way to 

audit and measure the performance of healthcare centres [6]. 

However, nowadays, mortality rates are getting lower [138], and become less relevant 

when looking at the ways to sustain healthcare systems. With the aging population, 

morbidity, on the other hand, is becoming more prevalent and is the reason why 

healthcare systems around the world are struggling to sustain their current model [4], 

[139].  

The definition of the predicted outcome can be what makes or breaks a prediction 

model: because the definition of mortality is clear, there is no bias in the recorded 

outcome. As was seen in the papers predicting septic complications, the studies had 

various ways to define sepsis. These definitions included internationally approved 

definitions and classifications of sepsis, such as SIRS, Sepsis-2 and Sepsis-3, however, 

these agreed-upon definitions and classifications are not perfect [97], and are 

constantly evolving [54]. Even though sepsis is a widely researched complication, as 

evidenced by the large number of papers predicting septic complications in this review, 

sepsis patients are still often identified too late [140]. The problem of varying 
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definitions of sepsis outcomes might be also explain the lack of prediction of critical 

care complications in general. For example, acute kidney injury is a relatively common 

complication [141], and is now easily identified using the Kidney Disease: Improving 

Global Outcomes (KDIGO) criteria [106], which hopefully enables the development 

of more prediction models for this complication. 

Even though electronic health records have come a long way, databases still do not 

take into account the current consensus definitions of various complications, such as 

acute kidney injury, sepsis or the definition of complications in general, which lead to 

the prediction models being unusable in practice [142]. Both the sepsis and kidney 

disease criteria can be calculated once necessary laboratory measurements are taken. 

This is also the case for other complications that have an agreed criteria for diagnosis, 

such as liver failure [143]. This means that the time of the onset of the predicted 

complication can be compromised and shows that further effort in defining 

complications to enable timely and accurate diagnosis for these outcomes is required. 

2.4.1. Missing Data 

Surprisingly, a third of the included studies did not report how missing data were 

handled in their research. This is a clear limitation of these studies as missing data in 

electronic health records is highly prevalent [110]. Reporting how missing data were 

handled when developing a clinical prediction model is a critical step for transparency, 

as also required by the transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD) reporting guidance [121]. 

As stated by Tsvetanova et al., currently there is no clear guidance on how to handle 

missing data when developing, validating and implementing clinical prediction models 

[144]. As seen in this review, various imputation methods, specifically mean and 

median imputation, are very popular ways of handling missing data. Single imputation 

methods, such as mean and median imputation, and even replacing missing values with 

a specific value, like Pattalung et al. did, can introduce some bias to the results. 

However, alternative methods, such as missForest imputation and k-nearest 

neighbours imputation, are more computationally intensive and therefore potentially 
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incompatible when producing rapid, deployable prediction models for serious 

complications, like septic shock, in real-time [59], [114], [144]. 

In general, the description of methods used to approach missing data were lacking in 

the found papers. In total, 4 papers did not state their methods clearly to understand 

what exactly was done. Eleven papers did not report missing data at all. Besides, the 

papers that did report their methods were not entirely clear whether the methods were 

applied on the full data or only to training or testing data.  

In addition to the methods, the rate of missing data in papers was not very well 

documented. The TRIPOD adherence assessment requires transparency on (1) whether 

there is missing data, (2) the method for handling missing data, (3) details of the 

software used to handle missing data, and (4) description of which variables were 

affected by the missing data methods [121]. Only five papers stated clearly how much 

missing data there was in their datasets [57], [59], [72], [80], [82]. This means that for 

the majority of papers, it is unknown how many variables or patient records were 

removed from their data, how much of the data were replaced with imputation 

methods, carry-forward or interpolation methods, and how much data had to be 

handled by the prediction models. This is a serious limitation to the studies in general 

as it reduces the transparency of the model development, and hence makes it less clear 

how applicable the models are to use in practice [121]. 

Finally, only one paper used models that are robust enough to handle missing data 

[88]. There are now various methods available that have been developed to take 

missing data into account, including CatBoost [88], C5.0 [145] and BARTm [146]. 

2.4.2. The Imbalanced Classification Problem 

A third of the studies were dealing with highly imbalanced classification problems, 

where the prevalence of the predicted outcome was <10%. In total, 14 studies reported 

taking an action to help with the imbalanced classification problem. Four main 

methods were found to be used to approach the class imbalance: (1) using balancing 

methods, such as upsampling, downsampling or SMOTE; (2) selecting equal case and 

control groups; (3) using performance measures reflective of class imbalance; and (4) 
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using a modelling method that has been shown to perform well with imbalanced 

outcome. 

There were some limitations in the studies found in this review in terms of the 

imbalanced classification problem. Surprisingly, four studies did not report the 

prevalence of the outcome they were predicting. Knowing the prevalence and the 

methods to pre-process the data (e.g., missing data and balancing methods) helps to 

understand how applicable the models are in clinical practice with the real-world data. 

In addition, when most studies applied the balancing methods correctly, the studies by 

Mao et al. [73] and Mohammed et al. [76] applied the balancing method on the full 

dataset, before partitioning the training and testing dataset. This is not a recommended 

approach [134]. In addition, the study by Meyer et al. [74] and van Wyk et al. [84] 

chose equal case and control cohorts for the full dataset, again, before dividing the data 

into training and testing dataset. For these four papers, this means that their models 

were evaluated on the testing dataset that was balanced, which does not reflect the real-

world data. 

In general, it is surprising that so many studies used balancing methods to solve the 

imbalanced classification problem, especially, if so many predictive modelling 

methods, including common ones, like logistic regression and random forest, have 

been shown to handle imbalanced classes well [147]–[149]. 

It is known that balancing methods or developing models on training sets that have a 

balanced outcome can lead to poor calibration, where the probability of the predicted 

outcome is overestimated. As said by van den Goorbergh et al., “Outcome imbalance 

is not a problem in itself” and “imbalance correction may even worsen model 

performance” [135]. This can also explain that Meyer et al.’s results of AUROC of 

0.95, 0.87 and 0.96 for mortality, bleeding and kidney failure, respectively, may be an 

overestimation of how well the outcomes were predicted, especially because in their 

original data, the prevalence of these complications was 6.2% for mortality, 4.9% for 

bleeding and 1.0% for renal failure. 
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The models by Mao et al., Mohammed et al., and van Wyk et al. achieved only 

moderate performance measures. This is surprising as they tested their models on 

balanced datasets.  

2.4.3. Classification Methods and Prediction Frequency 

The most common classification method to predict clinical outcomes was logistic 

regression. This is not surprising as logistic regression has been shown to have very 

competitive performance compared to more complex machine learning methods 

[150]–[152]. In addition, logistic regression is a highly interpretable model, showing 

which variables are associated with the predicted outcome with easily interpretable 

odds ratios. Understanding why a prediction model predicts a certain level of 

probability for a patient to have an outcome is important in practice, so that clinicians 

know which factors need to be paid attention to. 

The majority of the studies predicted outcomes in a certain frequency. Even though all 

studies in this review developed dynamic, “real-time” models, in reality the outcomes 

were predicted less frequently than on a real-time basis. The reason for this is simple: 

when vital signs are collected very often (e.g., every few minutes) [84], then laboratory 

results are collected less frequently. Some laboratory results could be collected every 

few hours, and some daily [58], [79]. This makes a fully real-time prediction 

impossible. 

Often when predicting the outcome every time when new information is entered into 

the system, not all variables are updated, which means that in reality the variable values 

with no new information were carried forward from the previous timestamp, as done 

by a number of studies in this review. As stated by Haukoos et al. [126], this assumes 

that the patient state in terms of the carried forward variable stays the same, while in 

reality this might not be the case. 

2.4.4. MIMIC Databases 

The MIMIC databases were commonly used in studies included in this review. While 

using publicly available databases to develop clinical prediction models helps with the 

transparency and reproducibility of the models [43], there are a few limitations to using 

certain MIMIC databases. Namely, a third of the papers used the MIMIC-II database, 
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which includes ICU patients’ data collected between 2001 and 2008 [153]. Even 

though this database was the only one available during the time when nine of the 

studies were published, for two studies, the newer version – MIMIC-III – was already 

available for almost two years [56], [61]. 

The MIMIC-III database was first released in 2015 and includes ICU patients’ data 

collected between 2001 and 2012 [90]. MIMIC-IV database was first released in 2020 

and includes patient data collected between 2008 and 2019. It also includes clinical 

data prior to ICU admission [154]. 

Understandably, there was a substantial gap between the release of MIMIC-III and 

MIMIC-IV, and hence the papers were using data that were up to a decade old (e.g., 

Yijing et al.’s paper was published in 2022 and used MIMIC-III [87]). This is a 

limitation to the studies as patient population is ever-changing [138], [155], [156], and 

clinical interventions, practice and policies change constantly [157]. In addition, with 

more studies investigating electronic health records, the data quality in clinical systems 

are improving [158]. Hence, using a data that was recorded many years ago might 

make the developed clinical prediction models not usable in current patient population.  

Meyer et al. and Nemati et al. validated their locally developed prediction models on 

the MIMIC-III databases. Meyer et al.’s original data were collected between 2000 

and 2016, which does include the years of when MIMIC-III data were collected, 

making it hopefully more relevant to validate on [74]. However, Nemati et al. 

developed their model using the data collected between 2013 and 2015, and hence 

testing their model on an older database is counterintuitive. This might be also the 

reason of the moderate performance Nemati et al.’s model achieved [77]. It is difficult 

to comment on the Meyer et al.’s models’ performance due to their approach regarding 

imbalanced classification problem (as discussed in Sections 2.3.3.2 and 2.4.3). 

An alternative database to the MIMIC is the eICU database, released in 2018. The 

eICU database includes ICU data collected between 2014 and 2015 [91]. Even though 

the dataset is newer, only two studies used this dataset [79], [88]. The lack of usage of 

eICU might be that the MIMIC databases have been widely used in the literature for 

over a decade, whereas the eICU has been available for four years only.  
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Another limitation of using the MIMIC and eICU is that they are both US-based 

databases. Although, eICU consists of data from 208 US hospitals, the MIMIC 

databases consist of patient data only from the Beth Israel Deaconess Medical Center. 

Even though a third of the studies were based in the USA and used the MIMIC 

databases, ten studies were conducted outside of the USA and still used the MIMIC 

databases. This means that the majority (21 out of 33) of the studies have developed 

US-centric prediction models which might not necessarily be applicable in other 

countries, or even in the general US patient population. 

Overall, the availability of open-source large ICU databases brings a lot of 

opportunities for clinical data analytics innovation. These databases are great sandpits 

to test and develop new methodologies and approaches to improve clinical outcomes 

[43]. However, to be able to apply models in practice, more recent and diverse data 

should be used to ensure the applicability of the models in a current, up-to-date patient 

population. 

2.4.5. Limitations 

In general, from the studies found, it was difficult to determine whether the dynamic 

prediction models found in this review have been put into practice: as found by van 

Smeden et al., studies analysing how prediction models fit in the existing clinical 

workflow are rare [25], and hence scientific literature regarding implementation of 

such prediction models is lacking. This problem occurs in studies developing AI-based 

prediction models in general, as these models are rarely validated, as also explained in 

Section 2.1. Hence, in the future, more studies should be conducted that analyse the 

impact of the prediction models on patient outcomes and clinical workflow. 

As this thesis focuses on analysing cardiac patient population, in this review, the study 

population was kept considerably narrow: only adult critical care or ICU patients were 

included. While excluding settings, such as emergency department and remote 

monitoring, could cause missing out on interesting dynamic prediction modelling 

approaches in these other settings, the data collected in the emergency department and 

remote monitoring can be quite different from cardiac ICU and general ICU data, 

where laboratory values and vital signs are collected in a similar manner. Furthermore, 

the length of stay in these settings can be considerably different, causing the data 
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collection patterns to be different in these patient populations also. Because of the 

differences in the data, the opportunities for an objective comparison between the 

found models can be limited. 

However, to understand the current landscape of AI and dynamic predictive modelling 

in medicine in general, numerous systematic reviews have been undertaken to look at 

different aspects of these models, as further explained in Section 2.1.1. At the time of 

writing, this chapter, however, is the only known review concerning dynamic 

prediction models predicting patient outcomes in critical care and ICU. 

 

2.5. Conclusion 

This review analysed published papers that predicted patient outcomes in ICU in a 

dynamic manner. The real-time prediction models are able to warn the clinicians 

earlier, and therefore provide the ward staff with sufficient time to intervene in order 

to prevent clinical deterioration [159]. The found studies show that there is a strong 

interest in developing dynamic prediction models for various ICU patient outcomes, 

however, the models developed so far have limitations. Based on these limitations 

identified in this chapter, the following steps will be taken in this thesis: 

1. With many studies predicting mortality, more focus should be directed towards 

the prediction of complications. Hence, in this thesis acute kidney injury and 

delirium will be predicted both preoperatively and on an hourly basis in the 

ICU.  

2. Predictive modelling methods that have shown to be robust when dealing with 

missing data should be further explored. In this thesis, in addition to other 

widely used predictive modelling methods, two methods that are shown to be 

appropriate to use with missing data - C5.0 and BARTm - will be experimented 

with. 

3. More emphasis should be placed on testing the models in local databases that 

are appropriate for the patient population that is the potential demographic 
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where the prediction model is used. The analysis in this thesis will be carried 

out in the largest Scottish cardiac centre Golden Jubilee National Hospital. 

Chapter 3. Exploratory Interviews with 

Cardiac Surgeons and Anaesthetists 

3.1. Introduction 

Due to healthcare being a data rich domain, and the evolving technology, various 

clinical decision support tools have been developed to help in managing a patient’s 

journey through treatments. Data-driven clinical decision support tools are now an 

integral part of hospitals, especially in cardiac surgery, where various risk stratification 

tools have been developed to be used in perioperative assessment, focusing commonly 

on mortality [14], [16]. However, the currently used preoperative risk prediction 

models are widely criticised due to overestimating the risk of postoperative mortality 

[160] and for not being updated to fit the current cardiac care due to the changing 

cardiac patient population and evolving surgical procedures [161], [162]. 

While there are numerous risk prediction models for various outcomes in cardiac 

surgery, as shown in Chapter 2, the main risk prediction models used in UK cardiac 

centres are reported to be logistic European System for Cardiac Operative Risk 

Evaluation (EuroSCORE) [6] and Acute Physiology and Chronic Health Evaluation 

(APACHE) II [163], both of which were developed to predict mortality [164], [165]. 

As per Medical Research Council, involving stakeholders into the development phase 

when developing a new intervention is a crucial step in building a meaningful and 

usable clinical system [166]. As in thesis, a prediction model predicting postoperative 

complications that can be put into practice for cardiac surgery is developed, further 

understanding was required about the current challenges in cardiac surgery, clinicians’ 

current views on and expectation for risk prediction models, and their opinion about 

postoperative complications in cardiac patients.  
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Semi-structured interviews were conducted with cardiac surgeons (N=3) and cardiac 

anaesthetists (N=9) in three Scottish cardiac centres: Golden Jubilee National Hospital, 

Royal Infirmary Edinburgh, and Aberdeen Royal Infirmary.  

This study was an exploratory qualitative scoping study that was not intended to be in-

depth qualitative work, however, was essential to set the scene and rationale for the 

studies presented in this thesis. In order to develop usable clinical prediction models, 

this study aimed to understand the following: 

• What are the current challenges in cardiac surgery? 

• What are the current processes to avoid adverse outcomes in cardiac surgery? 

• What are the clinicians’ priorities for newly developed clinical risk prediction 

models?  

Through previous work in MPhil (see Chapter 1, Section 1.2) there was some 

understanding of the commonly used preoperative cardiac risk prediction models and 

complications in cardiac surgery population. Hence, a deductive approach was used 

for this scoping phase, following the Ritchie and Spencer framework [167].  

Since the main contribution of this thesis is the development of models to predict 

postoperative complications, a top-level exploratory thematic analysis was used to 

understand the clinicians’ views on clinical prediction models and the problem of 

postoperative complications in cardiac surgery. 

3.2. Methods 

This study was approved by the Department of Computer and Information Sciences 

Ethics Committee at the University of Strathclyde (ID: 837).  

The study was conducted through N=11 semi-structured interviews with cardiac 

surgeons, cardiac anaesthetists, and cardiac intensivists. Open-ended questions were 

used to encourage exploratory and reflective discourse, placing an emphasis on the 

participant’s perspective (Appendix 3.1). This also allowed clinicians to discuss what 

they themselves considered important and noteworthy in relation to challenges in 

cardiac surgery, adverse postoperative outcomes and perioperative risk prediction 

models. The questions were collated to reflect these aspects based on the knowledge 
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that all UK cardiac institutions use logistic EuroSCORE and APACHE scores to 

predict mortality preoperatively and in the ICU [6], [163]. However, the problem of 

complications is rarely discussed in official auditing reports [6], which makes it 

difficult to understand the size of the problem. Furthermore, there is a lack of 

qualitative work including cardiac surgeons and anaesthetists to understand their 

perspective regarding postoperative outcomes and also how they use currently 

available risk scoring systems. The questions were also discussed with the clinical 

supervisor Prof Stefan Schraag who is a consultant cardiac anaesthetist at the Golden 

Jubilee National Hospital. 

Based on the questions stated in Section 3.1, a priori themes were created, as per the 

framework approach developed by Ritchie and Spencer [167]. These a priori themes 

were challenges in cardiac surgery, current processes to avoid adverse outcomes in 

cardiac surgery, and clinicians’ priorities for new clinical risk prediction models.  

Since the PhD project was in collaboration with Golden Jubilee National Hospital 

(GJNH), most of the interviewees were from GJNH, which is the largest cardiac centre 

in Scotland. To understand the bigger picture of cardiac surgery in Scotland, 

participants from Royal Infirmary Edinburgh (RIE) and Aberdeen Royal Infirmary 

(ARI) were also interviewed. Invitations for interviews were sent to 64 potential 

participants, 28 of them were cardiac surgeons (18 from GJNH, 6 from RIE, and 3 

from ARI), and 37 were cardiac anaesthetists (16 from GJNH, 13 from RIE, and 8 

from ARI). In total, invitations were sent three times. 

Table 3.1. Themes collated through top-level thematic analysis of the interviews. 

Main Theme Sub-Theme 

Challenges in cardiac surgery Postoperative complications and changes in 

cardiac surgery  

 Communication between clinical professionals 

and patients 

 Data collection on adverse postoperative 

outcomes and audit 

Current processes to avoid adverse outcomes in 

cardiac surgery 

Perioperative management processes 

 Clinicians’ perceptions on clinical risk 

prediction tools 

Clinicians’ priorities for new clinical risk 

prediction models 
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Following the interviews, as recommended by Braun and Clarke [168], the interviews 

were transcribed by the author, then reviewed, and participants’ quotes were 

highlighted and coded based on the topics of what was said. In addition, sections of 

two transcripts were coded separately by two other PhD students who have extensive 

experience conducting qualitative research (Dr Diane Morrow and Ramsay Meiklem) 

to ensure higher level of objectivity of the analysis. Discrepancies were discussed at 

supervisory meetings and resolved with the guidance of Dr Matt-Mouley Bouamrane. 

This process resulted in 13 codes, which were collated under the a priori themes. If 

codes were more appropriate for a theme that was not pre-selected, a new theme was 

created. The final themes were then refined and reported as main themes (a priori 

themes) and sub-themes4, which were collated through the thematic analysis [168], 

shown in Table 3.1.  

3.3. Findings 

3.3.1. Participant Characteristics 

Twelve participants took part in the interviews. Nine participants were from Golden 

Jubilee National Hospital, two participants were from Aberdeen Royal Infirmary, and 

one was from Royal Infirmary Edinburgh. Nine participants were cardiac anaesthetists 

(eight consultants) and three were cardiac surgeons (all consultants). The transcripts 

from eleven interviews were included in the analysis due to the corruption of the 

recording, resulting with nine participants from Golden Jubilee National Hospital and 

two participants from Aberdeen Royal Infirmary. The mean time of the interviews was 

25 minutes and 34 seconds with standard deviation of 10 minutes and 30 seconds. The 

median time of interviews was 23 minutes and 2 seconds. The shortest interview lasted 

for 14 minutes and 4 seconds, and the longest interview lasted for 48 minutes and 30 

seconds. 

In terms of involvement in patient pathway from preoperative assessment to surgery 

itself and postoperative recovery, surgeons were always involved in preoperative 

assessment, and so were anaesthetists in most cases. In general, surgeons were more 

                                                 
4 The codes with their respective sub-themes and main themes can be found from DOI: 

10.15129/fe89d27b-fa1e-4698-865e-5e4a2697b8ee. 
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involved in preoperative assessment than anaesthetists, however, anaesthetists were 

more involved in postoperative care, especially in the intensive care unit (ICU). 

When asked to describe their normal work week, a consultant cardiac anaesthetist said 

the following: 

“Well, depends on exactly what I'm doing, if I'm working in intensive care, then we 

generally look after the patients after they've undergone cardiac or thoracic surgery. 

And that's either patients who are relatively straightforward and go through sort of a 

fast-stream ICU - we have very little input to those patients. Generally, the nursing staff 

will look after them, but on the other side in the long-term ICU we have the patients, 

who obviously develop complications and have a longer stay in intensive care. They 

require a lot more input, and that's really where I spend more of my time, perhaps.” 

(Participant 3) 

A consultant cardiac surgeon said the following: 

“So, it's more normal week, so I have two days operating a week and one day for 

cardiac surgery, which is mostly aortic valve replacements, coronary bypass grafting, 

occasional mitral type procedures and there's another day operating in thoracic 

surgery, which is predominantly lung dissections, etc. I'm in outpatient clinic once a 

week, I have two MDTs [multi-disciplinary team meetings] a week, which can have 

outpatient clinics attached to them as well.” (Participant 5) 

3.3.2. Current Challenges in Cardiac Surgery 

3.3.2.1. Postoperative Complications, Changes in Patient Population 

and Procedures 

There were various challenges mentioned by the interviewees, the most common ones 

included adverse outcomes in cardiac surgery, changing patient population, and 

changing procedures in cardiac surgery. 

“We see a lot of patients who survive, but have a very rough road, lots of complications, 

long hospital stays and fully expect not to have their presurgical function.” (Participant 

1) 

There were various adverse outcomes referred to by participants, the most frequently 

mentioned ones being atrial fibrillation, bleeding, delirium, infections, low blood 

pressure, multiorgan failure, renal complications, respiratory complications, sepsis and 
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stroke. It was evident that some complications especially, such as stroke and delirium, 

have become more prevalent based on the experts’ opinion.  

“And probably the biggest one we now see is delirium. You know, delirium is a massive 

problem in cardiac intensive care. Taking an elderly population, giving them lots of 

medication, taking them outside their normal routine and you know, polypharmacy, put 

all of those things into a melting pot and then their brain is scrambled at the end. That's 

[delirium] a really big problem, that's the single biggest change I've probably seen in 

the last five years, is the increase of delirium.” (Participant 3) 

Some complications, such as atrial fibrillation, can be considerably straightforward. 

“Cardiac problems such as atrial fibrillation, about 40% of the patients have it, and 

that's just a bit of a standard risk. And I've been involved with some work trying to 

minimise atrial fibrillation, there's a whole number of interventions that you can do, 

some of which are minor differences, but most of it is just, half the patients get it, half 

the patients won't. As you get it, you treat it appropriately.” (Participant 11) 

“You know, the easy one is atrial fibrillation, but I don't really see it as a complication. 

It happens to a quarter to a third of people. So it's too common to be a complication as 

such.” (Participant 2) 

However, some complications can have a lasting impact on a patient. 

“But if you hit the bump or they develop complications or something goes wrong at 

some point along the process then suddenly being in their older years, the comorbidities 

catch up on them. And it becomes a much bigger problem then, they don't bounce back 

in the way that they would do.” (Participant 1) 

“Even minor or moderate complication can have an impact. But it's more the severe 

complications that are most definitely making a mark on pretty much every patient, 

regardless of who they are.” (Participant 4) 

One challenge that often drives the prevalence of adverse outcomes, according to the 

interviewees’ opinion is the aging population. 

“Because surgical complications, once you're elderly, your tissues are frailer and the 

big blood vessels often have calcium in them, tissue tears more easily. You can end up 

with surgical complications that don't happen when you're younger, dealing with 

younger, fitter patients. And there's also calcification of arteries, changes that can lead 
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to strokes, gut, infarctions, kidney problems, lots of different complications” 

(Participant 9)  

“Perhaps, the patient population has gotten older, they have more comorbidity, more 

medical problems in the background.” (Participant 3) 

In addition to aging, patients who undergo open-heart surgery also have more 

comorbidities, which is a challenge for cardiac surgeons and anaesthetists. 

“First there are clinical challenges that I deal with – patients that have variable and 

sometimes unpredictable level of morbidity.” (Participant 4) 

“Most complications happen not because anybody has done anything wrong, but it's the 

nature of doing surgery in patients that are 80 years old and have lots of vascular 

disease, not only in their coronaries, but also clotted arteries supplying their brain and 

all that kind of stuff, so... Quarter of them are diabetics, so that increases the risk of 

having sternal wound infection, etc.” (Participant 5) 

In addition to the changes in population, also the types of procedures patients receive 

have changed. Namely, as opposed to having coronary artery bypass graft, patients are 

having more valve surgeries. 

“I've been a cardiac anaesthetist for about over 20 years, so when I started, the patients 

who I was seeing were primarily requiring coronary artery surgery with a few valve 

patients.  So, what has happened with cardiac surgeries is that you need to take on 

aging population and slightly different population. So, when I started 20 odd years ago, 

it was very rare to see a patient in their 80's presenting for cardiac surgery. And now 

the majority of patients we have are coming for valve surgery and many of whom are in 

their 80's. So, the population that we have for surgery, an awful lot of valve patients and 

an awful lot of elderly valve patients” (Participant 11) 

In addition to more valve surgeries, patients with more straightforward cases tend to 

have minimally invasive surgeries, such as transcatheter aortic valve implantation 

(TAVI) and percutaneous coronary intervention (PCI), meaning open-heart surgeries 

are now common for more complex patients. 

“More and more risky patients for me. People expect to live longer. 10 years back we 

weren't even looking at those patients, we weren't even considering them. But the main 

thing is the changing patients, so getting worse patients, who we previously declined 

and now are offering surgery, or they are coming for TAVI.” (Participant 7) 
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“Now, because of the changing techniques in cardiology, particularly PCI and the 

cardiologists taking on more complex PCI cases is that what before was our core 

population group, they all go now to cardiology.” (Participant 11) 

It is common that these three challenges are linked to one another, as explained by 

Participant 3: 

“My impression is that, perhaps the instance of postop stroke has gone up slightly, but 

again that can be partially explained on the ageing population. You know, patients that 

are over 75 have an increased risk of stroke, patients with coronary artery disease for 

more than 3 years have an increased risk of stroke. Patients who are having valves have 

an increased risk of stroke. And that's the population that we are usually dealing with 

now, so that also includes kidney problems. I suspect the kidney problems have fallen a 

bit, you know, we seem to be, we see patients taking a little renal hit, but I suspect... the 

thing is we're a bit more aggressive on sending patients on filter than we used to be. We 

used to sit and wait for a few days, whereas now when we suspect, we put them under 

filter a tad quicker, so we aggressively manage them going into renal failure rather 

than waiting for them to establish renal failure.” (Participant 3) 

And also agreed by Participant 11: 

“I think stroke has probably gone up, but that probably reflects different patient groups, 

different operations, different technology.” (Participant 11) 

Due to the changes in cardiac population within the past decade, and the complexity 

of open-heart surgery patient cases, mentioned by the experts, complications can be a 

significant challenge in cardiac surgery. 

“Very few of them [patients] have just one single complication.” (Participant 1) 

“Sometimes I think unrealistically, and we are often operating people who are in their 

eighties who have little realistic chance of getting back to full functional lives.” 

(Participant 9) 

“Patients come through that initial operation, but they won't get out of the system. We 

get them extubated on day one. Then they have an atrial fibrillation, then they go into 

cardiac failure, then they get reintubated. then they get a chest infection, then they get 

tracheostomy, then they go into gradual decline, and you know, two-three months later 

we meet them back at the ward, then they've got poor physiological reserve, they end up 

developing respiratory failure. At the end of the day, you know, 3-4 months down the 

line they just die in slow undignified death, because basically, although we fixed the 
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mechanical problem, we never fixed them physiologically, so we never get out of that 

system.” (Participant 11) 

3.3.2.2. Communication Between the Clinical Professionals and 

Patients 

Other challenges also included communication both with other professionals in cardiac 

care and with patients and their families. When it comes to communication of risk and 

understanding of the seriousness of open-heart surgery, there appears to be a 

disconnect between the patient and the clinician. 

“I think the expectations of the healthcare have increased enormously over the last 

decade even. The patients expect to get more treatment or we're able to fix most 

problems and sometimes I think there's a mismatch in terms of the expectations and 

what we can deliver.” (Participant 3) 

The interviewed clinicians seem to have a same view that being able to communicate 

risk to patients and their families can be challenging. 

“It’s not just about medical side of things and I think if you consider that, cause you’re 

not just treating patients, it’s also about being their psychologist. And there’s a journey 

that you have to take to help them to make sure they are in the same place as me.” 

(Participant 7) 

In addition to the communication between the clinicians and patients, there are also 

challenges of communication and understanding between the clinicians working 

directly with patients (such as surgeons and anaesthetists) and hospital management. 

“The type of procedures we do in cardiac surgery in particular have become more 

complex over the last 10-20 years, but theatre allocation hasn't adapted to that new 

need.” (Participant 5) 

It was agreed that more communication is needed to ensure the common aim to provide 

excellent patient care. 

“I guess you just need mutual respect between teams and there needs to be a buy-in in 

all areas about what the calls are of care.” (Participant 6) 
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3.3.2.3. Data Collection on Adverse Postoperative Outcomes and Audit 

Even though it was evident from the interviews with the cardiac surgeons and cardiac 

anaesthetists that complications following cardiac surgery are a challenge, there is also 

a lack of cooperation between data collection, evidence-based medicine, and auditing. 

Because the emphasis is mostly on mortality, the clinicians have doubts about how 

well complications are recorded. Because the data about complications can be of low 

quality, it is difficult to know how often certain complications actually occur in the 

patient records. 

“I doubt it's all robustly recorded at the moment. We just don't know what the incidence 

of everything is.” (Participant 1) 

One important barrier to data collection that came out from the conversations with the 

clinicians was staffing. Regardless of whether the staff member is a surgeon, 

anaesthetist, nurse or a medical student, their priority is patient care, as opposed to data 

entry. This can cause some variability in the quality of the data entered the electronic 

health records. 

“I put data in for our patients. It's relatively accurate, but I wouldn't say it's with most 

comorbidities. We just leave out. Because we can't be bothered, and we don't think it 

makes much difference. But I'm not a data inputter, I'm a consultant and I take my time 

to do it for all of my patients, but even that as accurate of a consultant I am and I 

understand it.” (Participant 6) 

As currently the auditing of cardiac surgery is based on postoperative mortality, and 

as long as the auditing processes do not include complications, the data entered about 

complications in medical systems can remain low in quality. 

“Mortality is what everybody benchmarks and that's what goes forward to the 

government. Having more time or meeting more regularly and better data systems - 

these are the main barriers at the moment [to discuss morbidity or complications].” 

(Participant 3) 

The interviewees were also asked about the mortality and morbidity meetings and the 

discussion about adverse postoperative events there. Mortality and Morbidity (M&M) 

meetings are an organised discussion, where adverse events from surgery are 
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investigated and presented. These were put into practice with an aim to improve patient 

outcomes, quality of care, patient safety and education of clinical staff [169]. 

All participants agreed that most of the time, only mortality is discussed, and morbidity 

is discussed rarely. This was mainly expressed to be due to lack of time, and also due 

to aforementioned data collection barriers. If the incidence of complications was 

known, the seriousness of the issues would be clearer to the M&M meeting attendees. 

“We don't talk about morbidity at all, do we? There's no time. And you struggle to get 

the mortality presented, let alone morbidity. Some of the mortalities... it's difficult to 

know if there's any learning from it, but I think it's good that they all get presented 

whether there's learning or not. It's just a level, minimum requirement, which I think is 

healthy.” (Participant 6) 

Because the number of cases for mortality is considerably low, it can be difficult to 

know for certain what went wrong, which brings out the flaws of the M&M meeting 

mortality discussion as well. 

“M&Ms are more the sort of clinical dissection of what happened to that patient and 

can we learn from that. The problem with these is, it's good practice to do so, but it's 

sentinel event, it's quite often not possible to draw a general conclusion to your 

practice, unless it's supported by general evidence. And that's mostly not the case.” 

(Participant 4) 

3.3.3. Current Processes to Avoid Adverse Outcomes in 

Cardiac Surgery 

There are various ways that cardiac surgeons and cardiac anaesthetists are managing 

patient risk to avoid adverse postoperative outcomes. In general, however, risk is 

inevitable. 

“The only way you can limit surgical risk is to not operate, which is not always 

possible.” (Participant 5)  

Hence, various steps have been created to minimise the risk of severe adverse 

outcomes, including death after surgery. These steps include having multi-disciplinary 

team (MDT) meetings to decide the appropriate treatment plan for the patient. The 

preoperative clinics help to decide what the risk of various adverse outcomes for the 
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patient is. The patient flow at the Golden Jubilee National Hospital from one stage to 

another can be seen in Chapter 5. 

3.3.3.1. Perioperative Management Processes 

The ultimate way to minimise risk is patient selection, which is discussed in multi-

disciplinary teams, however the final decision is made by the surgeon. 

“The traditional model is that we see the patients preoperatively and that is usually, you 

know, the night before the surgery. The clinic means that they're seen in advance of this 

and helps to try and, you know, spot problems, but if I wasn't happy with the patient the 

night before or the day before then I still would cancel surgery. So, I think it's getting 

the balance of which patients should be operated on versus who shouldn't.” 

(Participant 9) 

Even though it was clear from the interviews that the anaesthetists are less involved 

with preoperative clinics, unless further discussion was needed for deciding whether 

the patient is suitable for surgery, all anaesthetists in this study found it necessary to 

see the patient at least the night before surgery. 

“I'm still, even if they've been seen in the clinic by somebody else, I still want to see 

them myself with my own eyes and speak to them myself before surgery. I find it very 

difficult to miss that step out.” (Participant 9) 

A few anaesthetists were also as part of the preoperative team, where they assessed 

patient’s readiness and appropriateness for the surgery. 

“So often we see patients where we think it's not appropriate that they go for surgery 

and they should really go for some other type of intervention, whether that's in 

cardiology or they would have no surgery at all, because their risk is too big. I think 

that's the way to decrease complications in ICU, and that is to be more selective about 

the patients that we take for surgery. So, we look at some known factors, we look at the 

diabetic control, whether they're anaemic, you know, their mobility, muscle mass, and 

also just put that all together and sort of how feel about the patient. There isn't really a 

number as such we can put on it just yet.” (Participant 3) 

Another important part of deciding appropriate treatment plan is shared decision-

making. Shared decision-making is a process in which a healthcare professional and a 

patient discuss treatment options to decide the best care option for them together. This 
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involves discussing possible benefits and risks of various treatments and making sure 

the patient understands the consequences of different options [170]. 

“We had a discussion with an anaesthetist to discuss whether one patient would be 

appropriate to have a double valve replacement, considering the comorbidities and her 

age. We sit down with the patient in that situation to see what she wants. So, we make 

collaborative decisions too. Doing these things is tough and making these decisions... 

There is no right or wrong at times. […] you don't get any prizes for getting last week's 

lottery number, you know. Sometimes our decisions prove to be wrong, but not 

generally we don't make a grossly wrong decisions and if we have doubt, we always 

take somebody's - colleague's opinion to make that decision if we have the time.” 

(Participant 7) 

Conversely to the preoperative stage where discussions about risk are had and various 

treatment options are weighed, during surgery the number of possibilities for 

minimising risk are low.  

“You can modify your operative approach and things to try to deal with this, try to 

minimise this, and you'll never get a 0% mortality or morbidity. There always has to be 

a finite number and the lower it gets the less predictable it gets. Well, you might pay 

more attention to things like blood pressure or bypass and things like that. Which you 

do anyway, but you get into the habit of expecting a confusionist to know what they're 

doing. A lot of the damage has been done before they get to intensive care. So, there's a 

concept called ICU proofing that surgeons employ. So, things that you have to make 

sure is that they're not bleeding, that they're warmed up properly and you know, the 

cardiac support drugs are at minimum. And if you do those three things then variably, 

they'll be in and out of there in no time.” (Participant 2) 

Overall, the majority of the risk reduction and decision-making is done at the 

preoperative stage when there is a possibility to carry out various tests and have 

discussions with the multi-disciplinary team, the patients and their families. 

“So sometimes things don't go as planned. You don't walk into work thinking you're 

going to kill somebody. We treat people with our best intensions and intension to treat. 

To get a better outcome and we do have to make certain decisions, sort of prognostics, 

however accepting life is sacred, we think if somebody has complete brain injury, we 

discuss with the family, that this is not compatible with life and so sometimes we're 

lucky if the patient just ends up passing away or if they are brain dead too and the 

family is willing we let them make the decision, which can be quite significant part of 

the job.” (Participant 7) 
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3.3.3.2. Clinicians’ Perceptions on Clinical Risk Prediction Tools 

It was evident that all participants had used some clinical risk prediction tools in one 

way or another, however, the routine usage was lacking. All interviewees mentioned 

logistic EuroSCORE (European System for Cardiac Operative Risk Evaluation), 

which is a preoperative risk prediction model for postoperative mortality [171]. It was 

also common, that the logistic EuroSCORE was used more by surgeons than 

anaesthetists. The interviewees agreed that there are various risk prediction models in 

cardiac surgery, however, these have their limitations due to which the tools were not 

often used.  

“Things like EuroSCORE... They're useful to some degree. One of the things is that 

probably most people are... They do two things; they allow you to risk stratify the 

patient and it probably gives you some idea on how you're performing or the unit 

performing or the individual surgeon.” (Participant 11) 

Interestingly, there were various approaches in how the logistic EuroSCORE was used. 

A number of interviewees used logistic EuroSCORE to both understand the risk of 

patient outcome and to explain that risk to the patient. However, for some, these risk 

prediction models should be strictly for the clinician’s usage. 

“As far as the patient is concerned, when we speak to them, we give them pretty well the 

same numbers. So could be a complicated operation, but the mortality won't be that 

much higher than an uncomplicated, straightforward operation. So I won't get my 

phone out and tell them if they are going to die or not.” (Participant 2) 

When asked about why the clinical risk prediction models are used so little, the 

interviewees listed limitations, including only involving preoperative data, not making 

personalised prediction, not giving guidance on what to do with the result of the 

prediction, and the models being outdated. 

“One of the problems with the EuroSCORE, for example, is that it seems outdated. 

EuroSCORE gives you a rough percentage of a chance of mortality, but most units, a 

number of years now, if not decades have outperformed the EuroSCORE. So, if the risk 

of death on EuroSCORE is 8%, people would find... which is a high EuroSCORE, 

relatively, people would have mortality rates of 2%. So, it's almost fallen behind. That's 

one reason why people don't look at it quite so much.” (Participant 9) 
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However, the main usage of the logistic EuroSCORE was told to be for documentation 

to support certain decisions. 

“Risk scores are useful, at least you have something to go by. If it comes in defending 

yourself in doubts of malpractice, I think these scores have a place if they are well 

validated. There are lots of criteria in medicine which are useful like CHILD's criteria, 

APACHE score, Thoracoscore. If you want to decline somebody for surgery, it makes 

our job very easy. But then you offer somebody a surgery with very high Thoracoscore, 

then people can go back with the rationale that it isn't very much validated. So, people 

use it to their own advantage in times. What we have to do, when we're making our 

decision, our thinking process has to be explained and put into black and white on the 

paper. When 10 years later if there's an investigation of, or even within two weeks’ time 

there's a mortality incident meeting, that process is explained, and I think that is the 

problem.” (Participant 7) 

3.3.4. Clinicians’ Priorities for Improving Clinical Risk 

Prediction Models  

The interviewed clinicians thought it would be beneficial for a risk prediction model 

to be more personalised to a patient, as opposed to using a population-level prediction, 

like EuroSCORE models do.  

In terms of outcome predicted, one criticism towards currently available risk prediction 

models was that they mostly predict mortality. 

“I think a lot of emphasis is often placed on mortality, which I think is in a wider 

picture obviously devastating for the patient and their family, but actually the morbidity 

is what happens more frequently and has a greater long-term impact on patients, their 

family and the wider care and cost of care for the whole community. So, I think being 

able to, but again I think that's even more difficult, is to be able to predict morbidity as 

opposed to mortality. And I think that's why there aren't many scoring systems around 

that can do it.” (Participant 8) 

Various options were suggested to be predicted, including intensive care unit stay, 

delirium, stroke, bleeding, infections, respiratory complications, and renal 

complications. However, it was mentioned that before predicting these complications, 

the data collection on the incidence of these complications should be improved. In 
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addition, being able to predict a combination of complications, as opposed to 

individual complications was suggested. 

“A lot of the time, you know we can look at patients and if we do the operation, we get 

them in the HDU without complications and just push them through the system, it 

should be OK. But you know if you have other problems, it gets into a cycle, of you 

know, a bit of chest infection, bit of failure, bit of reintubation. Then it starts spiralling 

downwards. And that's probably the one area that you could almost argue you need a 

sort of a better prognostic tool.” (Participant 11) 

Above all, validation of the prediction models appeared to be important for all 

interviewees. 

“Depends on who you speak to, we have different perceptions of the validation quality. 

For example, even the EuroSCORE, although it's been used everywhere, some people 

believe it's not quite as validated in our population, or as the population has changed 

the validation studies are not applicable anymore to a degree they used to.” 

(Participant 4) 

3.4. Discussion 

In this chapter, clinicians were interviewed to understand the rationale behind 

developing a clinical prediction model predicting postoperative complications. This 

was done to understand the current context of which clinical prediction models are 

used in, and what requirements the clinicals have regarding a prediction model 

predicting postoperative complications in cardiac surgery. As per Medical Research 

Council guidance, involving stakeholders in the development phase of a clinical 

system is a necessary step to develop a usable, fit-for-purpose and implementable 

prediction model [166]. Eleven interviews with cardiac anaesthetists and cardiac 

surgeons in Scottish cardiac centres were analysed, using top-level exploratory 

thematic analysis.  

While clinicians working in cardiac patient pathway have been involved in some 

projects to do with digital innovation in cardiac surgery [172], [173], studies involving 

potential users of prediction models for outcomes in cardiac surgery are rare. There 

are hundreds of published papers (as shown in Chapter 2) about developing prediction 

models for postoperative outcomes, however, the evidence of the requirements of 
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potential users of these models is lacking. The study presented in this chapter takes the 

first step to involve stakeholders’ opinion in the model development. 

3.4.1. Current Challenges in Cardiac Surgery 

The main challenges in cardiac surgery currently were found to be adverse outcomes, 

changing patient population and changing procedures, all of which are interconnected. 

Regarding adverse outcomes, various complications were mentioned to be an issue 

that can make patients stay in the ICU for longer and be dependent on the healthcare 

services for a very long time. The commonly mentioned outcomes included bleeding, 

infections, renal complications, delirium, respiratory complications, and stroke. These 

adverse outcomes were explained to be connected to the changing population 

undergoing open-heart surgery. One commonly mentioned change was aging - older 

patients who were previously rejected surgery have now open-heart surgery more 

often. This has also been shown by the Society for Cardiothoracic Surgery reports: 

more than 40% of open heart surgery patients are older than 70 years, and the 

proportion of patients aged older than 80 years has increased from 4% to 11% since 

2008 [6]. Higher age has been shown to be associated with various adverse 

postoperative outcomes, including mortality [174], and complications, such as 

bleeding [175], infections [176], pulmonary complications [177], renal complications 

[178], and delirium [179]. Age itself is usually not considered to be the cause of these 

outcomes, however it can be a marker of other risk factors, such as frailty, 

hypertension, diabetes, and increased atherosclerotic burden, which is associated with 

stroke [180], [181]. Atherosclerosis is thickening or hardening of the arteries, which 

is caused by the build-up of plaque in the inner lining of an artery. 

Another change in population was explained to be patients who have more pre-existing 

conditions, which can add to the risk of developing adverse postoperative outcomes. 

In the literature it has been shown that patients with preoperatively undetected renal 

problems can increase risk of chronic kidney disease after cardiac surgery [182]. In 

addition, frailty, being common in cardiac patients, can add to the risk of mortality and 

postoperative complications [183]. In addition, the number of insulin-dependent 

patients is increasing [184], which is a risk factor for postoperative complications after 

cardiac surgery [185]. 
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In terms of changing procedures, it was found that more straight-forward cases 

undergo minimally invasive surgeries, and patients with higher risk profile tend to go 

for open-heart surgery, such as CABG, valve and combined CABG and valve 

procedures. Furthermore, within the past decade, more patients tended to undergo 

valve procedures, which can be more complicated than CABG. When CABG surgery 

intends to restore circulation to the coronary arteries, which are on the heart surface, 

valve surgeries intend to replace valves, which are located inside the chambers of the 

heart. Valve surgery patients tend to have more advanced heart disease, making valve 

surgeries more complicated, which can be associated with higher risk of mortality and 

morbidity for valve patients than CABG patients [186]. 

3.4.2. Processes to Avoid Adverse Outcomes in Cardiac 

Surgery 

3.4.2.1. General Processes 

It was evident from the interviews that most of the decision-making and risk 

management happens in preoperative stages, where the appropriate treatment with the 

multi-disciplinary team is chosen for the patient. In addition, in preoperative clinics, 

where different laboratory tests can be taken, the risk of mortality and complications 

is assessed. Preoperative examination has shown to reduce adverse outcomes 

following cardiac surgery by helping to identify pre-existing conditions and help 

mitigate possible postoperative risks of unwanted outcomes [187]. 

Patient selection was the ultimate way to reduce patient's risk. If a patient was eligible 

for a minimally invasive surgery, that option was preferred. However, shared decision-

making processes were used, where patient and their family were also involved. Shared 

decision-making together with a patient and a multi-disciplinary team has been shown 

to help provide care that is more consistent with patient’s expectations [188].  

Interestingly, even with the establishment of preoperative clinics and perioperative 

pathway [189], the surgeons ultimately make the decision whether the patient is 

eligible for surgery or not. This is because historically surgeons are held accountable 

in case of adverse surgical outcomes, especially in case of mortality, with the report of 

the Bristol Royal Infirmary Inquiry in 2001 [190]. This report prompted The Society 



70 

 

for Cardiothoracic Surgery to collect data on surgical outcomes and the responsible 

surgeons [6]. This had a positive effect on being able to audit individual cardiac centres 

in terms of quality [6], however, it placed full responsibility on the surgeon, not on the 

full multi-disciplinary team that have an important role in decision-making and caring 

for the patient. That being said, this is an illustration, where a policy change can 

improve data collection on certain hospital outcomes, meaning this could also be done 

with postoperative complications.  

3.4.2.2. Risk Prediction Tool Usage 

In general, the participants have used some risk prediction tools, however, the main 

usage for these was for documentation purposes to justify the decisions made. The 

commonly mentioned risk score was logistic EuroSCORE, which is used in Golden 

Jubilee National Hospital for auditing purposes and is reported on a national scale to 

The Society for Cardiothoracic Surgery in the UK [6].   

The main reason why risk scores, such as EuroSCORE was not used for regular 

decision-making was the perception of EuroSCORE not being validated enough. The 

first version of EuroSCORE was published in 1999, and was developed in 132 cardiac 

centres in 8 countries, using 20,014 patient records [171]. The original EuroSCORE 

has been validated in various studies [191]. That being said, because of the changing 

patient population in cardiac surgery, there is criticism that the logistic EuroSCORE 

overestimates observed mortality [192]. This is also shown in The Society for 

Cardiothoracic Surgery report, where the average mortality predicted by logistic 

EuroSCORE was reported to increase from 5.6% in 2008 to 8.5% in 2016, however 

the crude mean in-hospital rate was reported to have fallen from 4.0% in 2008 to 2.8% 

in 2016 [6]. Interestingly, the newer version of EuroSCORE (EuroSCORE II) [193], 

published more than a decade ago, still is not used to audit mortality in UK cardiac 

centres [6]. 

3.4.3. Priorities to Improve Risk Prediction Models 

The main suggestion for improving clinical risk prediction models was that the 

predicted outcome should be different from mortality, and the focus should be more 

on outcomes that have a potentially long-term negative effect on patients, such as 

complications and ICU stay. As expected, the complications suggested were same as 
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the ones explained to be current challenges, which were most commonly bleeding, 

delirium, infections, renal and respiratory complications, and stroke. Currently 

developed perioperative risk stratification models mostly predict mortality or specific 

complications [14], [16]. However, the interviewees expressed the need for a model 

that captures several complications at the same time. Currently existing clinical 

prediction models for both preoperative and postoperative prediction will be further 

discussed in Chapters 4, 6, 7 and 8. 

Predicting other outcomes than mortality has some barriers, that were also identified 

by the interviewed clinicians. The main problem the clinicians agreed about was the 

fact that due to historical focus on mortality in auditing, complications are not very 

well recorded in clinical databases, which is part of the problem of data quality in 

electronic health records in general [194]. A great barrier to being able to predict 

complications is that it is unknown what the incidence of the outcomes is, which makes 

knowing the magnitude of the problem difficult. Currently, at the mortality and 

morbidity (M&M) meetings, according to the participants, morbidity is almost never 

discussed due to lack of time, but also not prioritising complications. In order to 

improve the data quality regarding postoperative complications, efforts on auditing 

other outcomes than mortality, and investment of time and resources should be 

directed towards data quality improvement [195].  

However, beyond the requirements of predicted outcomes, the main facilitator for 

clinicians to actually use a tool that would predict adverse outcomes is appropriate and 

thorough validation of such tool. A number of steps are required for a clinical 

prediction model to be validated and to be ready for use in practice. Firstly, the model 

should be developed, using the TRIPOD guidelines [121] to follow reporting 

requirements. Secondly, qualitative work is required to understand the acceptability 

and applicability of the prediction model [196]. Once the prediction model is shown 

to improve patient outcomes, its cost-effectiveness should be evaluated. Finally, 

implementation and dissemination strategy should be identified to help put the 

prediction model into practice [197].  
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3.4.4. Limitations and Areas for Further Research 

As this study was a top-level exploratory analysis to understand the general view of 

cardiac anaesthetists and surgeons regarding the challenges in cardiac surgery, how 

adverse outcomes are avoided and the priorities for new clinical prediction models are, 

the study has a number of limitations and provides a number of avenues for future 

work. 

In terms of participants in this study, even though invitations were sent to all three 

cardiac centres in Scotland, majority of the participants were from the Golden Jubilee 

National Hospital, which reflects the opinions and processes of cardiac patient care for 

that hospital mainly. The reason why most participants were from GJNH might be 

because of the project being affiliated with this hospital, and the author’s regular 

presence and local connections. Even though the majority of the cardiac surgeries in 

Scotland are held in GJNH, which should reflect the cardiac surgical processes in 

Scotland as a whole, the information gathered does not take into account the variance 

in quality and processes that other two cardiac centres might offer. Hence, to 

understand the challenges, care processes and needs for clinical prediction tools for 

Royal Infirmary Edinburgh and Aberdeen Royal Infirmary, further research is needed. 

However, it can be assumed that the clinicians taking part of this study have worked 

in various other cardiac centres around Scotland and the UK in general – hence the 

participating clinicians’ opinions are likely to be based on their experiences throughout 

their careers in different cardiac centres. 

In terms of study results regarding the priorities for improving current clinical 

prediction models, this was not an in-depth analysis of system requirements for a 

clinical prediction model that could be put into practice. Because the nature of the 

responses was speculative, without showing any prototype of such clinical prediction 

models, a usability study should be undertaken where the prediction models can be 

presented to the clinicians to gather feedback on the developed models. Furthermore, 

to aid seamless integration into practice, a contextual inquiry should be undertaken to 

understand how clinicians interact with clinical prediction models and to understand 

how such tools could fit into daily practice.  
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3.5. Conclusions 

This chapter presented preparatory work that shows the need for a clinical prediction 

model for postoperative complications that could potentially help to mitigate the 

identified current challenges in cardiac surgery. As the study presented in this chapter 

was not an in-depth analysis of clinicians’ requirements for a clinical prediction model, 

further research is needed to understand the particular requirements for such model, 

and to understand how the model could fit into practical context. While there are 

numerous prediction models in cardiac surgery, the involvement of potential users of 

such models at the development process is rare. Hence, this study provides a 

contribution by presenting the cardiac surgeons’ and anaesthetists’ priorities fora 

clinical prediction model and highlights the need for a model predicting postoperative 

complications, as opposed to mortality. The findings, regarding which complications 

to predict, were used to decide upon which exact complications are predicted in this 

thesis. 
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Chapter 4. Definition and Classification 

of Postoperative Complications 

Following Cardiac Surgery: A  Delphi 

Study 

4.1. Introduction 

This chapter is investigating how experts working with cardiac surgery patients would 

define and classify complications following cardiac surgeries, such as coronary artery 

bypass graft (CABG), aortic valve, and combined CABG and valve surgeries. 

Currently, the focus of outcome prediction in cardiac surgery is on mortality. However, 

with the number of cardiac surgery patients steadily increasing and more patients 

presenting myocardial infarction before CABG surgery, postoperative complications 

are becoming more prevalent [6]. According to the Society for Cardiothoracic Surgery 

(SCTS), “[In the UK] the mortality rates across all [cardiac surgery] groups are some 

of the lowest in the world despite increasing age, risk profile and frailty of patients” 

[6]. Complications after surgery, however, are common [17], and can have a 

debilitating impact on patients’ quality of life [8], [9]. Depending on the severity of 

complications, they can also increase hospital length of stay [4], [139], and hence 

increase healthcare costs [10]. It is therefore essential that “efforts would be directed 

to further reducing morbidity and length of stay” [6] and that adequate systems are 

developed within clinical care in order to better plan and mitigate these severe 

complications. To achieve lower levels of morbidity and reduced length of stay 

following surgery, SCTS identifies the following required changes [6]: 

- More data needs to be collected on morbidity and long-term mortality, as 

opposed to 30-day or in-hospital mortality. 

- Long-term outcomes need to be monitored more. 
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- The quality of reporting by adding patient-reported outcomes, specifically 

developed for cardiac surgery, in the care pathway needs to be improved [6]. 

From Chapter 3 it was found that prediction models for postoperative complications 

are needed, however, at present, a major obstacle in analysing and predicting morbidity 

is the lack of agreed definition and classification of postoperative complications [198]. 

Due to this, when comparing different research studies within this field, all studies 

have a different definition for “morbidity”, which includes a different set of combined 

complications [199]. The reporting of different complication outcomes in the scientific 

literature therefore prevents the objective comparison of the performance of currently 

developed risk models predicting morbidity. 

This  study aimed to address these issues by using the Delphi method [200] in order to 

answer the following questions: 

1. What is cardiac surgery experts’ opinion on the usefulness of a definition 

and classification of surgical complications following cardiac surgery? 

2. How do cardiac surgery experts define what events constitute surgical 

complications following cardiac surgery?  

3. How do cardiac surgery experts classify surgical complications following 

cardiac surgery? 

4.2. Related Work and Rationale 

4.2.1. The Clavien-Dindo Complications Classification 

System 

The first and also the most well-known proposal for classification of postoperative 

complications in any surgery was published in 1992 by Clavien et al. [201]. They 

created general principles to classify surgical complications based on severity. Dindo 

et al. modified this system in 2004 [202], to include life-threatening complications 

requiring intensive care, and complications involving the central nervous system. To 

show the usefulness of the Clavien-Dindo system, the authors also validated the 

updated system in 6336 general surgery patients. The Clavien-Dindo system assumes 

a patient to have one complication only, however this is unrealistic. To solve that 
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problem, Slankamenac et al. [203] created the Comprehensive Complication Index 

(CCI), allowing the addition of weights for each complication grade, creating the CCI 

score. The CCI score ranges from 0 to 100, where 0 is defined as “no complications” 

and 100 is arbitrarily defined as “death of the patient”.  Table 4.1 shows the grades and 

the definitions of each grade in the Clavien-Dindo classification system.  

Table 4.1. Clavien-Dindo Classification of Surgical Complications [204]. 

Grade Definition 

Grade I Any deviation from the normal postoperative course without the 

need for pharmacological treatment or surgical, endoscopic, and 

radiological interventions.  

Grade II Requiring pharmacological treatment with drugs other than such 

allowed for grade I complications.  

Grade III Requiring surgical, endoscopic, or radiological intervention. 

Grade IIIa Intervention not under general anaesthesia. 

Grade IIIb Intervention under general anaesthesia. 

Grade IV Life-threatening complication (including CNS complications) 

requiring ICU management. 

Grade IVa Single organ dysfunction. 

Grade IVb Multiorgan dysfunction 

Grade V Death of a patient 

 

Different studies have shown benefits of using the Clavien-Dindo classification system 

in different types of surgeries [205]–[213], demonstrating the system’s applicability in 

varying cohorts of patients, and its usefulness as a measurement of standards in the 

quality management for surgical departments. However, there is an argument to be 

made about why cardiac surgery needs its own classification system for complications, 

as discussed in the next section. 

4.2.2. Why Cardiac Surgery Needs its Own Classification 

System for Complications 

Historically, the quality of cardiac surgery has always been defined by mortality rates. 

The widely used risk prediction scores used for audit purposes, such as EuroSCORE 

[164] and Parsonnet score [214] have been designed to predict mortality. The focus on 

mortality was even further ingrained into the system following a report investigating 

deaths of a large number of children following heart surgery at the Bristol Royal 

Infirmary [215]. The report gave 198 recommendations to improve the care standards 

in the National Health Service (NHS), including the recommendation that “clinical 
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audit should be compulsory for all healthcare professionals providing clinical care” 

and “clinical audit must be fully supported”. The report also recommended that “the 

indicators of performance should be comprehensible to the public as well as to 

healthcare professionals” and that “they should be fewer and of high quality, rather 

than numerous but of questionable or variable quality”. According to the report the 

SCTS was already collecting data on mortality, hence, this was a convenient and 

straight-forward way to measure a cardiac centre’s performance and quality. On the 

other hand, morbidity and postoperative complications vary from patient to patient and 

amongst hospitals, meaning that without any agreed definition and classification, 

morbidities are ill-defined and difficult to understand to both expert and patient. 

However, depending on severity, a complication can have a big impact on the patient, 

their family and on the healthcare system, just like mortality [4], [8], [9].    

Hébert et al. [198] were the first to validate the Clavien-Dindo complications 

classification system for cardiac surgery patients. Even though Clavien-Dindo system 

is associated with numbers of comorbidities, length of surgery, length of hospital stay, 

and procedure complexity, the grading system is not specifically developed for cardiac 

surgery, meaning there can be a lot of room for subjectivity [198].  

There are many reasons why outcome measures should be differentiated between 

cardiac and general surgery. Unlike cardiac surgery, general surgery covers a wide 

range of subspecialties, including breast, colorectal, endocrine, upper gastrointestinal 

and transplant surgeries. General surgeries also include a large amount of minimally 

invasive procedures, such as laparoscopic (or “keyhole”) surgeries that result with less 

pain for patients, better outcomes and shorter postoperative recovery [216]. In 

addition, cardiac and general surgery differ also in terms of mortality rates, patient 

population, and hospital length of stay, all of which will be discussed below. 

Different Mortality Rates 

The risk of mortality for general surgery and cardiac surgery are very different: in 

Scotland, the mortality rates for general surgery patients have been under 0.8% since 

the year 2000 [217]. For cardiac surgery, it is around 2.5% [6], which is considered 

low, however significantly higher than it is for general surgery, and therefore proposes 

a higher risk for patients.  
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Furthermore, mortality rates differ among various cardiac surgeries. Between 2015-

2016 the overall mortality rate for CABG patients was 1.0%. For combined CABG 

and valve surgery it was 4.0%, and for redo CABG 7.7%. For valve surgeries, in-

hospital mortality was 4.6%, and for isolated aortic valve replacement (AVR) surgeries 

it was 2.7%. Combined AVR and CABG surgeries on average have resulted in an in-

hospital mortality rate of 5.4% [6]. These statistics are a clear example of the higher 

surgical risk that cardiac surgery presents, compared to general surgery. 

Different Patient Population 

A study by Grant et al. [218] looked at trends and outcomes from 2002 to 2016 for 

cardiac surgery in the UK and found that there has been an increase in patient risk 

profile. According to that study, there has been a significant increase in patients’ mean 

age from 64.2 years in 2002 to 66.4 years in 2010, with the age staying the same until 

2016. Elderly patients are at higher risk of postoperative complications, especially for 

bleeding, infections, neurologic, pulmonary complications and renal problems [219] 

due to age-related changes in cardiovascular physiology, such as changes in the vessel 

wall and the myocardium [220]. In addition, the higher the age, the more likely the 

patient is to have weaker tissues and frailty, causing a lower tolerance to surgery [221]. 

The majority of cardiac patients in the UK have been men, however the proportion of 

female patients has also steadily increased [218]. Women often lack chest pain [222] 

which can delay diagnosis and therefore could lead to worsened myocardial infarction 

[223]. More patients have pulmonary disease and active endocarditis before surgery 

than before, increasing the risk of postoperative mortality and complications [224]–

[227]. Grant et al. also note that the incidence of cardiac surgery for active endocarditis 

has more than doubled from 2002 to 2016 [218]. 

There were fewer isolated CABG procedures taking place in 2016 than there were in 

2002, the number of which reduced by a third. There has been a consistent increase in 

patients undergoing some form of valve surgery, more specifically, isolated valve 

surgery, mitral valve surgery and aortic valve replacement [218]. Valve surgeries in 

general propose higher risk of postoperative mortality and complications to a patient 

than CABG procedures [228]. 
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Different Hospital Length of Stay and Postoperative Complications  

Different types of cardiac surgeries have a varying length of median hospital length of 

stay. According to the latest report by SCTS [6], in the UK in 2015-2016, the CABG 

patients stayed in hospital for the median time of 6 days (6 days for elective, 7 days 

for urgent, 8 days for emergency). For valve surgery patients, the median postoperative 

length of stay was 8 days. Isolated aortic valve replacement (AVR) surgery patients 

stayed in the hospital for the median time of 8 days. Combined AVR and CABG 

surgeries on average have resulted with 9 days median postoperative length of stay [6]. 

Hospital length of stay has been shown to be connected to postoperative complications 

[229]. Complications can vary, depending on type of surgery and the patient’s medical 

history. Some common complications following general surgery include haemorrhage, 

basal atelectasis (minor lung collapse), blood loss, acute myocardial infarction, 

pulmonary embolism, septicaemia and low urine output [230]–[232]. 

While both general and cardiac surgery patients experience postoperative 

complications, cardiac patients have been shown to have a higher risk for reduced 

quality of life than patients undergoing general surgery, due to higher stress to the body 

the cardiac surgery adds. In addition, cardiac patients are more likely to experience 

poorer quality of life six months after cardiac surgery [233]. This is because cardiac 

patients can have major complications such as myocardial infarction, respiratory 

failure, renal failure, and stroke [7], [234]. 

It is important to note that measuring only mortality does not show long-term 

implications to the patient and to the healthcare system as a whole. Being able to 

improve collecting data on complications can help with managing patient’s 

expectations. As postoperative complications, regardless of surgery, have an impact 

on both short and long term outcomes, it is important to improve the research on 

postoperative complications [229]. To be able to provide a more personalised and 

patient-centred care, and to move from general level to more granular level, defining 

and classifying postoperative complications for cardiac surgery patients would be 

highly beneficial to develop clinical support tools offering personalised risk prediction 

for these complications. 
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4.3. Methods 

4.3.1. Ethical Statement 

This study was approved by the University of Strathclyde Department of Computer 

and Information Sciences Ethics Committee (ID 837). 

4.3.2. The Delphi Method 

The questions stated in Introduction are aimed to be answered via the Delphi method. 

The Delphi method is a well-established experts consultation method based on the 

premise that group opinion is more valid and reliable than individual opinion [200]. It 

has been defined as a multi-staged survey system which has a goal to achieve 

consensus on an issue, where there was no consensus before [235].   

The original Delphi method, also known as the Classical Delphi, consists of two or 

more rounds of questionnaires administrated by post to an expert panel. The Round 1 

focuses on the experts’ opinion in an open-ended manner. After analysing the Round 

1, the Round 2 asks the experts to rank the statements or questions according to the 

opinions stated in the previous round. Rounds continue until a consensus is reached on 

some or all the questions [200]. 

This study used the e-Delphi method, which is a similar process to the classical Delphi, 

but administered as an online web survey [200]. The overall study process is outlined 

in Figure 4.1.  

To guarantee experts’ anonymity in the study, the experts remained in both rounds 

anonymous, meaning the participants’ responses in Round 1 and Round 2 were not 

linked. This decision was done due to choosing the “all-rounds” approach, where 

potential participants were invited to take part in subsequent rounds, regardless of 

whether they participated in the previous rounds. It has been shown that this approach 

can improve representation of opinions and can reduce the chances of false consensus 

[236].   

The study rounds are further explained in Sections 4.4 and 4.5. 
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Figure 4.1. The flow of the Delphi study. 

 

4.3.3. Identification of Experts 

Cardiac surgery experts were identified as follows: cardiac anaesthetists, cardiac 

surgeons, and clinicians working with cardiac patients perioperatively or in intensive 

care. Since this was a  study to develop a definition and classification for postoperative 
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complications in cardiac surgery, mailing lists of the following professional 

associations were used to invite prospective participants to the Delphi study: 

Association for Cardiothoracic Anaesthesia and Critical Care (UK based, affiliated 

with the Royal College of Anaesthetists) [237], European Association of 

Cardiothoracic Anaesthesiology and Intensive Care (members from 35 European 

countries) [238], The Society for Cardiothoracic Surgery (UK and Ireland) [239], and 

The UK Society for Computing and Technology in Anaesthesia (UK based) [240]. 

Through these avenues, the invitation was sent to thousands of potentially eligible 

participants, depending on the number of members in each society. 

In addition to the above, cardiac anaesthetists and cardiac surgeons in three Scottish 

cardiac centres were contacted directly via email: the Golden Jubilee National 

Hospital, the Royal Infirmary of Edinburgh, and Aberdeen Royal Infirmary (64 

potential participants, 27 of them cardiac surgeons and 37 of them cardiac 

anaesthetists). Even though some international societies were contacted, it is important 

to note that the questionnaires were in English only. 

4.3.4. Methods of Analysis  

The Delphi process involves both qualitative and quantitative data analysis. The data 

in this study were collected through online questionnaires via Qualtrics [241]. Once 

the questionnaire was closed, the data were exported from Qualtrics and stored in 

Microsoft Excel spreadsheet for analysis. RStudio [242] and NVivo [50] were used for 

quantitative and qualitative analysis, respectively. Since the questionnaires were 

anonymous, each expert was coded as Rx.Py, where x is the number of the study round 

and y is the number of the participant in the round.   

4.3.4.1. Consensus 

The consensus level was determined to be 70%, similarly to other related studies in 

health research [243]–[245]. Descriptive statistics were used to analyse the opinions 

of experts, using frequencies of responses for questions that were not open-ended. If 

the frequency of a response was 70% or higher, the experts were deemed to have 

reached a consensus on this particular response. 
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All responses were considered in the analysis; however, the consensus was calculated 

based on how many experts answered each question. Partially filled responses were 

also included, as other published studies have done in the past [246], [247]. This is 

done because the experts eligible for this study are commonly under great pressure 

from work commitments, and hence including their responses is respectful towards the 

respondents’ time and effort to participate. 

4.3.4.2. Qualitative Analysis 

The Round 1 of the study largely included open-ended questions to determine a variety 

of ways the experts would choose to define complications in cardiac surgery and to 

define categories of postoperative complications.  

The thematic analysis framework [168] was used to analyse the responses to the open-

ended questions in both study rounds. The answers to these open-ended questions were 

analysed and the results were included as options for responses in the subsequent 

rounds of the study [248]. 

Thematic analysis is a method used for identifying, analysing and reporting patterns 

within qualitative data, and has six phases [168]: 

1. Familiarising with data 

2. Generating initial codes 

3. Searching for themes 

4. Reviewing themes 

5. Defining and naming themes 

6. Producing the report. 

Following the guidance of Hasson et al. [248], the statements that were identified as 

identical or similar were grouped as common concepts. Once specific themes were 

created, the statements within a thematic group were synthesised into a single 

summary statement. The wording was kept as close as possible to the statements that 

had been provided by the experts. Any unique statements provided by the experts with 

no related statement were kept as worded originally and included directly in Round 2. 

For reliability check, two participants’ responses from Round 1 were randomly 

selected to be coded by also two other PhD students who have extensive experience in 
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qualitative analysis methods (Dr Diane Morrow and Ramsay Meiklem). Any 

discrepancies were discussed with Dr Matt-Mouley Bouamrane at supervisory 

meetings and resolved, as appropriate.5 

To capture the respondents’ opinions as objectively as possible, a comment box was 

provided after each question to collect respondents’ qualitative comments. This is to 

also increase respondents’ ownership in Delphi studies [248]. These comments were 

also analysed, using the thematic analysis framework [168]. The collated themes of 

these comments were then discussed in the results of this chapter to further explain the 

position of experts regarding defining and categorising complications following 

cardiac surgery.  

4.4. The Round 1 of the Study 

4.4.1. Development of the Questionnaire 

For the Round 1, the questionnaire was designed to explore the experts’ general 

opinions regarding the definition of “postoperative complication following cardiac 

surgery” and categorising postoperative complications. 

The questionnaire (see Appendix 4.1) started with a filter question to make sure that 

only the eligible experts would be included in the study: “Are you in any way involved 

with cardiac surgery patients? (Can be preoperatively, intraoperatively and/or 

postoperatively.)” If the answer to the question was “no”, the expert was directed to 

the end of the survey. 

The questionnaire consisted of three parts below: 

1. The background of the expert. 

2. How the expert would define the term “postoperative complication” 

following cardiac surgery. 

3. Whether the expert would find categorising of complications useful; and if 

yes, how the expert would categorise the complications. 

                                                 
5 How themes were allocated to participant responses can be found from 

https://doi.org/10.15129/fa6c4bc4-98dc-48cd-a568-d89c8a52dd10   
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The Round 1 questionnaire was sent out twice to professional societies and to other 

potential experts between 27th August 2019 and 24th September 2019. In total, the 

Round 1 of the questionnaire was open for 6 weeks and closed on 8th October 2019. 

4.4.2. Expert Demographics 

Overall, 71 experts took part in the Round 1 of the study based on being involved with 

cardiac surgery patient pathway. The majority, i.e., 67 respondents out of 71 (94%) of 

the respondents were based in the United Kingdom, two (3%) were from Saudi Arabia, 

one was from Australia (1%) and one from Bahrain (1%). 

Most of the respondents (45 out of 71, 63%) specialised in both cardiac anaesthesia 

and cardiac critical care, 23 (32%) specialised in cardiac anaesthesia only and 3 (4%) 

specialised in cardiac critical care only. It is important to note that none of the 

participants stated to be cardiac surgeons. This is further discussed in Limitations 

(Section 4.6.1). In terms of experience, the mean number of years worked in the 

specialty was 16.63 (SD = 8.70) years and the median number of years was 16 (IQR = 

12.5). 

As shown in Table 4.2, most of the participating experts were involved with the 

surgery itself (67 out of 71, 94%), decision making (e.g., if patient is fit for surgery) 

(64 out of 71, 90%), preoperative assessment (63 out of 71, 89%) and cardiac intensive 

care unit (63 out of 71, 89%). Some respondents also were involved with long-term 

follow-up of the patient (8 out of 71, 11%) and in other ways (7 out of 71, 10%), such 

as acute and chronic pain management and perioperative echocardiography. 

Table 4.2. Experts’ involvement in cardiac patient pathway 
 

n/N (%) 

The surgery itself 67/71 (94%) 

Decision making (e.g., if patient is fit for surgery) 64/71 (90%) 

Preoperative assessment 63/71 (89%) 

CICU 63/71 (89%) 

Long-term follow-up of the patient 8/71 (11%) 

Other 7/71 (10%) 
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4.4.3. Defining the Term “Postoperative Complication” 

Fifty experts commented on how they would define the term “Postoperative 

Complication” in cardiac surgery. The list of possible definitions that were collated 

from experts’ responses are as follows: 

• An unplanned adverse event occurring after cardiac surgery that may be 

caused or compounded by the surgical process. 

• An unplanned adverse event arising as a result of cardiac surgery, which 

was otherwise unlikely to have occurred in the same period. 

• Any adverse event that impairs a patient’s physical, cognitive, 

psychological or emotional function and quality of life. 

• Any deviation from the ideal recovery pattern after cardiac surgery. 

• Unexpected, or expected but unwanted, outcome of cardiac surgery which 

significantly delays recovery from the procedure compared to the desired 

outcome or leads to the patient failing to derive the intended benefits of 

surgery. 

• Any event resulting from surgery which lengthens the patient’s stay in 

hospital or reduces their quality of life beyond normal. 

• Any unplanned clinical event that leads to a delay in hospital discharge or 

requires additional treatment or intervention to mitigate or reverse the 

event. 

• Any deviation of any physiological system which adversely affects rapid 

recovery to good health. 

• An event which may have an impact on patient’s survival or quality and 

longevity. 

All these definitions focus on different impacts of complications on patient, institution, 

and surgery itself, e.g., delayed recovery, impact on patient’s quality of life and 

hospital length of stay. Hence, for simpler analysis, these statements were analysed 

thematically [168] and categorised under themes based on the definitions that the 

experts offered. For example, the definition “An unplanned adverse event occurring 

after cardiac surgery that may be caused or compounded by the surgical process” 

includes themes of “The event can be unplanned”, “The event must be harmful or 
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unfavourable”, “The complication must be present following cardiac surgery, 

specifically”, and “The event must occur after surgery and is unlikely to occur if the 

patient did not have the surgery”. For simplicity, these themes were then grouped 

under characteristics that complications could have (Table 3.4), with the example 

definition including the characteristics of “unplanned”, “adverse event”, “cardiac 

surgery” and “surgery”.  

Table 4.3 shows the eight themes that were collated in the analysis, together with their 

assigned characteristics. The responses for each definition were then mapped onto each 

characteristic to find out what the experts will deem to be important to define what 

constitutes a postoperative complication following cardiac surgery. 

Table 4.3. Characteristics and their descriptions collated from how experts would define “postoperative 

complication following cardiac surgery”. 

Theme Assigned Characteristic 

The event must be harmful or unfavourable. Adverse event 

The event can have an impact on patient’s survival or quality 

of life and longevity. 

Affects quality of life 

The event can have an impact on hospital length of stay. Delay in hospital discharge 

Due to the event the patient might have to stay in the hospital 

for longer and can adversely affect rapid recovery to good 

health. 

Delay in recovery 

The complication must be present following cardiac surgery, 

specifically. 

Following cardiac surgery, 

specifically 

The event must occur after surgery and is unlikely to occur if 

the patient did not have the surgery. 

Due to surgical process 

The event can be unexpected. Unexpected 

The event can be expected, but unplanned. Unplanned 

 

4.4.4. Usefulness of Classifying Postoperative Complications  

Fifty-one experts answered the question as to whether they thought it was useful to 

define and classify postoperative complications for cardiac surgery. Out of 51 experts 

(Table 4.4), 23 (45%) thought it was “Extremely useful” and 20 (39%) thought it is 

“Very useful”. Combining these percentages, based on the pre-determined consensus 

level of 70%, it can be concluded that the experts have reached the consensus that it is 

very useful to classify postoperative complications for cardiac surgery with a 

consensus level of 84%. 
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Table 4.4. Experts’ opinion on usefulness to classify postoperative complications following cardiac 

surgery. 

Usefulness n/N (%) 

Extremely useful 23/51 (45%) 

Very useful 20/51 (39%) 

Moderately useful 5/51 (10%) 

Slightly useful 2/51 (4%) 

Not at all useful 1/51 (2%) 

 

The experts were also asked to justify their answer regarding the usefulness to classify 

complications following cardiac surgery. Following thematic analysis, the experts’ 

responses could be grouped under four main themes: (1) audit and quality 

measurement, (2) planning and management, (3) risk management and 

communication, and (4) research. The collated themes and their subthemes are shown 

in Table 4.5. 

Table 4.5. Themes and subthemes for the rationale for defining and categorising complications. 

Theme Subtheme 

Audit and quality measurement  

 Quality improvement 

 Benchmarking and comparison 

 Gathering information 

Planning and management  

 Care improvement 

 Communication with different teams 

 Management of care 

 Resource allocation 

Risk management and communication  

 Communication about risk 

 Patients’ and carers’ consent 

 Mitigation of risk 

 Understanding about risk 

Research   

 Patient outcomes 

 Quality of research 

 Comparison of studies 

 New treatments 

 

Audit and quality measurement 

Based on experts’ comments, defining and categorising complications could be useful 

for audit and quality measurement reasons. Currently cardiac centres are rigorously 

audited based on cases of mortality [6].  
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“Currently mortality is recorded universally, while morbidity isn’t which has an impact 

on longevity and quality of life.” (Expert R1.P76) 

To discuss and learn from current mortalities and major morbidities following cardiac 

surgery, Mortality and Morbidity (M&M) meetings are held in cardiac centres. M&M 

meetings aim to support a systematic approach to the review of patient deaths or care 

complications, to improve patient care and provide professional learning [249]. 

However, currently M&M meetings have been shown to focus more on mortality only 

[250], [251], as also shown in Chapter 3. It was mentioned by experts that better 

markers of quality of care rather than mortality are needed. 

One of the reasons why only mortality is vigorously audited and discussed at M&M 

meetings is poor data collection for postoperative complications. Experts expressed 

that defining and categorising complications would simplify gathering information on 

complications.  

“If we do not know what is going wrong, we cannot work out how to stop it happening.” 

(Expert R1.P23)  

Accurate recording of frequency of complications would not only help with auditing 

in general, but also with the other themes found in this analysis, such as hospital 

planning and management, risk management and research. 

Defining and categorising complications would also help with quality improvement 

by determining effects of quality improvement strategies, and benchmarking units’ and 

hospital performances.  

“[Defining and classifying complications] allows comparison of outcomes which may 

be more useful than pure mortality data.” (Expert R1.P48) 

Planning and management 

It was expressed that defining and classifying complications following cardiac surgery 

is necessary for perioperative planning and management reasons. It is especially 

important to create methods for care improvement and to prevent complications. 

“Categorising events is useful if a common cause can be found and addressed; more 

often it is important to treat and recognise the complications early.” (Expert R1.P21) 
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Knowing how complications are categorised would also help with communication, and 

hence could potentially enhance discussion amongst multi-disciplinary teams by 

providing a common terminology. 

Experts also mentioned how a standardised approach could help with management of 

care, including perioperative management and adoption of different working practices. 

Finally, it was also said that categorisation of complications could also help with 

resource allocation and bed planning.  

“Classification may help to understand causative factors and allocation of resources in 

prevention.” (Expert R1.P56) 

Risk management and communication 

It was thought that defining and categorising complications helps to manage and 

communicate about risk. Experts also highlighted the importance of communication 

about risk, not only between experts, but also to patients and their families to help with 

informed decision making. 

“This [classification of complications] could then be used to good effect in discussions 

with patients and families as they would gain consistent information from various 

members of the MDT.” (Expert R1.P13) 

Good communication about risk will also result in better understanding about potential 

adverse outcomes, and helps the patient to give an informed consent to have a 

procedure as the patient will have a fuller understanding of the potential adverse 

consequences. 

“[Classification of complications] may allow better explanation of procedures and 

complications to patients to allow more thorough imparting of knowledge prior to 

consenting.” (Expert R1.P48) 

Research improvement 

Experts thought defining and categorising complications following cardiac surgery 

would help with improving research in postoperative complications. Through research, 

having a standardised approach could help to improve patient outcomes. The experts 

said that research could then help to understand causative factors to later prevent 

complications.  
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“[Categorising complications would be useful] to facilitate […] research and to target 

therapies appropriately to prevent or decrease incidence.” (Expert R1.P61) 

In addition to patient outcomes, experts also commented that having a standardised 

approach could also help to improve the quality of research itself.  

“[Defining and categorising complications is extremely useful] to standardise outcome 

and adverse event reporting in studies to allow more meaningful research, especially 

systematic reviews to occur.” (Expert R1.P10) 

The quality of research could also be improved by achieving better comparability of 

studies and would allow the impact of new therapies to be determined. 

4.4.5. Classification of Postoperative Complications in 

Cardiac Surgery 

Overall, N=48 experts stated how many categories postoperative complications should 

have. Most of the respondents wanted 3 to 5 grades to categorise complications (Table 

4.6), where 16 out of 48 respondents (33%) vote for 3 grades, 12 respondents (25%) 

for 4, and 14 respondents (29%) voted for 5 grades. 

Table 4.6. How experts voted for how many grades should there be to categorise complications. 

Number of grades n/N (%) 

2 grades 3/48 (6%) 

3 grades 16/48 (33%) 

4 grades 12/48 (25%) 

5 grades 14/48 (29%) 

6 grades 3/48 (6%) 

 

Some (26 respondents out of 48, 54%) also named the categories they offered, and it 

became clear that respondents offered the following variations as a common answer: 

“Mild /Moderate/ Severe” 

“None / Mild / Moderate / Severe” 

“Mild / Moderate / Severe / Death” 

“None / Mild / Moderate / Severe / Death” 
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This means that the consensus was reached that the categories for postoperative 

complications for cardiac surgery will be classified as “Mild”, “Moderate” and 

“Severe”. Since many respondents did offer to add “Death” also as a separate class, 

the experts were asked to decide whether to add that to the categories in Round 2 of 

the study. Since no complication would be categorised as “None”, this was not added 

into the categories. 

4.4.6. Defining the Categories of Postoperative Complications 

Experts also provided possible definitions for each grade that they proposed. To 

analyse the suggested definitions, the thematic analysis, explained in detail in Section 

4.3.4.2, focused on characteristics that each complication category could have. Like in 

Section 4.4.3, the characteristics provided by experts for each category of 

complications were collated so that similar characteristics were merged into one, and 

unique characteristics were left in their initial form [235]. The final list of 

characteristics, proposed by experts, were as follows: 

- Effect on overall length of stay in hospital 

- Effect on final outcome 

- Length of the complication 

- Clinical relevance 

- Impact on the patient 

- Occurrence of the complication 

- Clinical intervention is required 

- Impact on the institution 

These factors were then related to a level of complication. For example, the question 

“What is the effect on overall length of stay in hospital?” was turned into “No notable 

effect on overall length of stay” for Mild level of complication, “Some effect on overall 

length of stay” for Moderate and “Extended length of stay” for Severe complication. 

These statements were then used in Round 2 of the Delphi study so experts could vote 

on which characteristics are most important to define each complication category.  
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4.5. The Round 2 of the Study 

4.5.1. Development of the Questionnaire 

The Round 2 survey (see Appendix 4.2) of the Delphi study was sent out to the same 

societies and contact list from the Scottish cardiac centres as described in Section 4.3.3. 

To take part in Round 2, the experts were not required to have taken part in Round 1 

of the study, as per the “all rounds” approach [236]. Just like in Round 1, the experts 

had to answer the filter question to make sure they were eligible to participate. 

The aims of the Round 2 of the study were to reach a consensus regarding the 

following:  

1. how the experts would define what constitutes to a “postoperative 

complication” following cardiac surgery based on the responses from the 

Round 1 of the study; 

2. whether death should be included in the categories of complications; and  

3. how the experts would define each category of complications based on the 

characteristics collated from the Round 1 of the study. 

The choices for answers for the questions were collated based on the results of Round 

1 of the study. Just like in Round 1, descriptive statistics were used to analyse the 

experts’ opinions, using frequencies of responses for questions that were not open-

ended. If the frequency of a response was 70% or higher, the experts were deemed to 

have reached a consensus on this particular response. 

Round 2 of the questionnaires were sent out on 2nd June 2020 and a reminder was sent 

out on 16th June 2020. The survey was open for 4 weeks (closed on 30th June 2020)6.  

                                                 
6 The author is aware of the limitation the notable gap between the time of Round 1 of the study and the 

Round 2 of the study (8 months) can bring. The possibility of losing the momentum of the study might 

be the reason why less participants took part in the Round 2. The Round 2 of the study took place later 

than planned due to unexpected circumstances the author experienced. Furthermore, as the Round 2 

took place during the height of the COVID-19 pandemic, it can be expected that the expert group 

targeted in this study played a crucial role in managing the pandemic, making them less likely to take 

part of the study. 
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Overall, 46 experts took part in the survey and 37 of them finished the survey. As done 

in previous round, this time also responses from participants that filled the survey 

partially, were included. 

4.5.2. Experts’ Definition of What Constitutes “Postoperative 

Complications Following Cardiac Surgery” 

Thirty-eight experts voted for each characteristic (see Section 4.4.3) to define what 

constitutes a complication after cardiac surgery. A consensus was reached that all 

characteristics (Table 4.7), apart from “Unexpected” should be included in the final 

definition. 

Combining these characteristics into a sentence, resulted in the following definition: 

A complication following cardiac surgery is an unplanned adverse event that occurs 

following cardiac surgery that can cause delay in recovery, delay in hospital discharge 

and affect patient’s quality of life and is likely to happen due to surgical process. 

Table 4.7. How experts voted for each characteristic that defines the term “postoperative complication 

after cardiac surgery”. 

Theme Complication Characteristic n/N (%) 

The event can have an impact on 

patient’s survival or quality of life and 

longevity. 

Affects quality of life 35/38 (92%) 

The complication must be present 

following cardiac surgery, specifically. 

Following cardiac surgery, 

specifically 

33/38 (87%) 

The event must occur after surgery and 

is unlikely to occur if the patient did 

not have the surgery. 

Due to surgical process 33/38 (87%) 

The event must be harmful or 

unfavourable. 

Adverse event 28/38 (74%) 

The event can have an impact on 

hospital length of stay. 

Delay in hospital discharge 28/38 (74%) 

Due to the event the patient might have 

to stay in the hospital for longer and 

can adversely affect rapid recovery to 

good health. 

Delay in recovery 28/38 (74%) 

The event can be expected, but 

unplanned. 

Unplanned 27/38 (71%) 

The event can be unexpected. Unexpected 23/38 (61%) 
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4.5.3. Including “Death” in the Classification of Postoperative 

Complications 

Out of 37 experts, 31 (84%) thought that “Death” should be included in the 

classification of postoperative complications. As a result, a consensus has been 

reached that the complications should be categorised in four levels: 

“Mild”, “Moderate”, “Severe” and “Death”. 

The respondents offered various explanations regarding this opinion, overall stating 

that death is the ultimate complication. 

“It [Death] is the ultimate undesired complication.” (Expert R2.P1) 

“This is obvious, complications can be mild/moderate/severe, but death must be 

recognised separately. Death is the real "yes or no" decision maker for the patients as 

well.” (Expert R2.P34) 

However, the experts agreed with the justification of this study that more emphasis 

needs to be put into researching and recording complications as well. 

“It [death] is a finite endpoint. However, the focus needs to move to other 

complications rather than the current focus on death per se as the main outcome.” 

(Expert R2.P2) 

4.5.4. Defining the “Mild”, “Moderate”, “Severe” 

Complication Categories 

Based on the proposed characteristics that were collated from experts’ responses 

(described in Section 4.4.6) a consensus was reached on definitions for “Mild” 

complications (Table 4.8). Hence, a complication following cardiac surgery is 

classified as “Mild” if the complication has the following characteristics: 

• The complication has no consequential effect on the final patient outcome (28 

out of 37 (76%) respondents). 

• The complication has a minimal impact on patient (27 out of 37 (73%) 

respondents). 
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Table 4.8. The characteristics of “Mild” complications. 

Characteristic n/N (%) 

Minimal impact on patient 28/37 (76%) 

No consequential effect on final outcome 27/37 (73%) 

No or only short-term clinical relevance 19/37 (51%) 

No or small amount of intervention required 19/37 (51%) 

No notable effect on overall length of stay 17/37 (46%) 

Mildly debilitating 7/37 (19%) 

Common 7/37 (19%) 

Minimal impact on institution 6/37 (16%) 

Lasting 1 week – 1 month 4/37 (11%) 

 

Similarly, as shown in Table 4.9, a complication following cardiac surgery is classified 

as “Severe” if the complication is: 

• Potentially life-threatening (34 out of 37 (92%) of respondents). 

• There is a consequential or long-standing impact on the patient (31 out of 37 

(84%) respondents). 

• A notable amount of intervention is required due to this complication (26 out 

of 37 (70%) respondents). 

Table 4.9. The characteristics of the “Severe” complications. 

Characteristic n/N (%) 

Potentially life-threatening 34/37 (92%) 

Consequential or long-standing impact on the patient 31/37 (84%) 

Notable amount of intervention required 26/37 (70%) 

Extended length of stay 25/37 (68%) 

With sustained relevance and life-limiting 25/37 (68%) 

Severely debilitating 21/37 (57%) 

Lasting 3 months – 1 year 7/37 (19%) 

Notable or long-standing impact on institution 5/37 (14%) 

Uncommon 2/37 (5%) 

 

The experts did not reach a consensus on the definition for “Moderate” complications 

due to none of the characteristics receiving 70% or more votes (Table 4.10). However, 

one could argue that the definition of moderate is known as it is neither mild nor severe. 

This is further discussed in Section 4.6.1. 
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Table 4.10. The characteristics of “Moderate” complications. 

Characteristic n/N (%) 

Some effect on overall length of stay 23/37 (62%) 

Acutely important, but less clinical consequence long-term 22/37 (59%) 

Some intervention required 22/37 (59%) 

Some effect on final outcome 20/37 (54%) 

Moderately debilitating 19/37 (51%) 

Limited impact on patient 18/37 (49%) 

Lasting 1 – 3 months 4/37 (11%) 

Less common 4/37 (11%) 

Limited impact on institution 4/37 (11%) 

 

Finally, experts were asked to provide examples for each proposed complication level 

(see Appendix 4.3), which included atrial fibrillation, constipation and pain that is 

resolved with analgesia as “Mild” complications; pneumonia, bleeding, and prolonged 

sedation as “Moderate” complications; and acute renal failure, cardiac arrest and stroke 

as “Severe” complications. These examples, however, should be interpreted with 

caution as postoperative outcomes and the actions taken to avoid these should be 

patient-focused, rather than institution-focused, as also stated by experts.  

“[The way we look at complications] should be patient-centred, rather than dependent 

on institutional or team consequences.” (Expert R2.P11) 

Furthermore, as seen in Appendix 4.3, the examples of the experts reflect the non-

consensus in what constitutes to a moderate complication. For example, atrial 

fibrillation can be categorised as “Mild” in some cases, however, depending on its 

effect on patient’s well-being, it can also be categorised under “Moderate” at more 

severe cases. The example complications, together with the definitions and 

characteristics of the complications, were used as a guide to group the postoperative 

complications reported in CaTHI database (see Section 5.5.1) to predict “Severe” 

postoperative complications (Chapter 6). 

4.6. Discussion 

This chapter showed the results of a  Delphi study which aimed to define and categorise 

complications following cardiac surgery. The study reached a consensus on the 

following: 

• It is useful to define and categorise complications following cardiac surgery 
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• how the complications following cardiac surgery are defined; and 

• how the complications following cardiac surgery are classified. 

The experts justified the usefulness of defining and categorising surgical 

complications following cardiac surgery by stating it could help with audit and quality 

control, planning and management, risk management and communication, and 

research.  

Consensus was reached on the characteristics of postoperative complications, and 

hence the following definition was formed: 

A complication following cardiac surgery is an unplanned adverse event that occurs 

following cardiac surgery that can cause delay in recovery, delay in hospital discharge and 

affect patient’s quality of life and is likely to happen due to the surgical process. 

In the Clavien-Dindo classification system, complications were defined as “any 

deviation from the normal postoperative course”, and conditions which are inherent 

to the procedure and are expected, were termed to be “sequelae” [204]. However, the 

definition from this Delphi study provides a more precise explanation on what a 

complication is. Also, as the Clavien-Dindo definition was created for general surgery, 

the definition presented in this study makes an important point that the Clavien-Dindo 

definition does not: a complication following cardiac surgery is an event that is 

unlikely to happen without surgery, and in this case, cardiac surgery. When it comes 

to the definition of “sequelae”, it can be argued that some adverse events following 

surgery can be expected, especially with existing and emerging preoperative prediction 

models. With improved data collection in electronic health records, more models 

predicting complications following surgery can be developed, meaning that many 

complications can be predicted and monitored on a real-time basis. Various studies 

have been published to predict fluid requirement [252], septic complications [253], 

hypotensive episodes [69] and clinical deterioration in general [254]. 

This study achieved a consensus on how to categorise complications following cardiac 

surgery, and how the categories are defined. It was agreed that the categories should 

be: “Mild”, “Moderate”, “Severe”, and “Death”. According to the experts, a “Mild” 

complication is a complication that has no consequential effect on the final patient 

outcome and has minimal impact on patient. The experts agreed that a “Severe” 
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complication is a complication that is potentially life-threatening, requires notable 

amount of intervention, and has a consequential or long-standing impact on the patient.  

4.6.1. Limitations 

4.6.1.1. Study Sample 

In the Round 1 and Round 2 of the study, 51 (out of 71) and 37 (out of 46) experts 

completed the study, respectively. Notably, a considerable number of participants 

dropped out from the questionnaires (29% and 20%, respectively). However, 

according to publications discussing the Delphi method, both rounds of the study had 

a sufficiently large sample size as it does not depend on statistical power, but rather on 

group dynamics for coming to a consensus among experts. Hence, the expert panel 

usually consists of 10 – 30 experts [255]. 

As seen from the results of the study, most experts consisted of cardiac anaesthetists 

and intensivists, however, no cardiac surgeons took part in the study. Historically, the 

decision as to whether a patient will be operated upon will be mainly made by the 

surgeon, as also shown in the findings of Chapter 3. Understanding surgeons’ view on 

defining and classifying complications in cardiac surgery would be useful. However, 

90% of the participants in this study were involved with decision making, which is 

common with the creation of preassessment clinics, where decisions about patient care 

are made by multi-disciplinary teams [256]. 

While this study achieved a consensus on the definition and classification of what 

constitutes to postoperative complications following cardiac surgery, this study may 

be considered as a “pilot” study from a medical contribution perspective. To overcome 

this, in future work a more international panel of experts is needed to increase the 

impact of the classification system. While experts within European Association of 

Cardiothoracic Anaesthesiology and Intensive Care were invited, most of the 

professional societies were UK-based societies, which explains the lack of responses 

from international experts. Since the standards in cardiac surgery are alike 

internationally [256], it is likely that results would be similar, however, the consensus 

would be more representative and more reliable to be put into practice. In addition, the 

societies were mostly related to cardiac anaesthesia, only one (The Society for 
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Cardiothoracic Surgery) being specific for cardiac surgeons. This explains why no 

cardiac surgeons took part in the study. Hence, in the future study, cardiac centres will 

be contacted directly to allow for more international panel, and more efforts will be 

directed towards recruiting more cardiac surgeons to participate. 

4.6.1.2. Defining “Moderate” Complications 

No consensus on the definition of “Moderate” complication was reached. Delphi 

studies do not always reach a consensus on all aspects of the study [257]. 

Categorisation decisions are often made based on the extreme categories rather than 

based on the middle category [258]. This has been addressed with, for example, 

American Society of Anesthesiologists (ASA) Classification [259], where there is no 

“Moderate” category. Historically, there have been concerns about the subjectivity of 

the ASA status [260] and the same problem can occur with the complication 

classification in this chapter. In order to categorise complications appropriately, 

actions and consequences of each category need to be considered. With “Mild” 

complication, some medicines might have to be administered, for example for urinary 

retention, but in general no notable action that requires time and resources is needed. 

With “Severe” complication, whether it is kidney failure or a stroke, dialysis or 

thrombectomy, respectively, might be needed. Both interventions are time-consuming 

and resource intensive. When it comes to a “Moderate” category, however, it is 

uncertain whether it is more on a “Mild” or a “Severe” side. On one hand it gives an 

unclear indication for general understanding regarding what action needs to be taken, 

however, on the other hand, it provides the users with a spectrum of categories and 

therefore a possibility for offering more nuance to the problem. As shown by Mayhew 

et al., for ASA physical status classification, objectivity has been improved and 

variability in classification has been reduced through bringing example cases for each 

classification level [260]. Hence, we also asked experts to provide examples for each 

category. However, further work is needed to provide examples, and hence it important 

to keep in mind that for personalised use, each complication, regardless of which 

category it falls into, needs individual approach for treatment, depending on the 

patient’s current state and medical history.  
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“Grading may be useful in quality management and comparing outcomes from different 

surgical units. Simple grading does however not give any indication of cause or 

prevention.” (Expert R1.P56) 

However, following the results of this study, it is understood that the classification of 

“Mild”, “Moderate”, “Severe” and “Death” is simple and clear to experts and to 

patients when communicating about risk, and can offer understanding for urgency for 

action when the developed model predicts these categories.  

4.7. Conclusion 

Using the Delphi method, this study shows cardiac anaesthetists’ and cardiac 

intensivists’ requirement for a standardised definition and classification for 

postoperative complications in cardiac surgery. The standardisation of complication 

identification, recording and reporting in cardiac surgery could help the development 

of future quality benchmarks, clinical audit, care quality assessment, resources 

planning, risk management, performance comparisons, communication, and research. 

The proposed definition and classification will be used in this thesis to develop 

preoperative prediction models predicting “Severe” postoperative complications in 

cardiac patients (Chapter 6). 
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Chapter 5. Predictive Modelling 

Methods 

5.1. Introduction 

Based on the results of studies undertaken in Chapters 2, 3 and 4, predictive modelling 

experiments are undertaken to predict severe postoperative complications, acute 

kidney injury and delirium. From the prior three chapters, it was evident that currently 

the focus in cardiac outcome reporting is on mortality (as shown in Chapters 2 and 3), 

which explains why the majority of prediction models preoperatively [14], [16] and in 

the ICU (shown in Chapter 2) are developed to predict postoperative mortality. 

However, as shown in Chapters 3 and 4, clinicians working with cardiac patients find 

investigating into cardiac surgery complications important, especially due to aging 

population and more patients with co-existing conditions. 

It is important to note that all analysis (including predicted outcomes, handling of 

variables, predictive modelling methods and performance measures) was discussed 

with the clinical supervisor Prof Stefan Schraag, who is a consultant cardiac 

anaesthetist at the Golden Jubilee National Hospital. While this thesis makes a number 

of contributions to knowledge in medicine, the author’s expertise lies mainly in 

statistics and data science, and hence the input from a clinical expert was necessary to 

develop a fit-for-purpose prediction model for the predicted outcomes. 

As explained in Chapter 2, the definition of mortality is straight-forward, however 

complications can have various ways of diagnosing them. Hence, experiments were 

undertaken in Study 1 to predict severe complications, using the definition from the 

Delphi study (Chapter 4), further explained in Section 5.6.1. In addition, experiments 

were undertaken in both Study 1 and Study 2 to predict complications that cardiac 

clinicians deemed to be serious (Chapter 3). Since septic complications, which are 

considerably well defined, were predicted often by other models, found in the literature 

review (Chapter 2), other complications that had internationally recognised diagnosis 

definitions were considered. Acute kidney injury (AKI) was predicted by only one 
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paper [74] that had many limitations (explained in Chapters 2), and no papers that 

fitted the inclusion criteria in Chapter 2 were identified to predict postoperative 

delirium (further discussed in Chapter 8). Since both AKI and delirium have 

internationally recognised diagnosis criteria available, and are not commonly 

predicted, these two outcomes were chosen (further defined in Sections 5.6.2 and 5.6.3, 

respectively). 

This chapter provides information on the methods used in this thesis. The methods are 

described based on the guidance of the TRIPOD statement [261]. The TRIPOD 

checklist for prediction model development and validation for the models developed 

in this thesis can be found from Appendix 5.1. 

The methods are described for two studies: 

Study 1: Using preoperatively available data to develop preoperative 

prediction models (Chapter 6) to predict: 

1.1: severe complications following cardiac surgery. 

1.2: acute kidney injury following cardiac surgery. 

1.3: delirium following cardiac surgery. 

Study 2: Using preoperative and intensive care unit data to develop hourly 

prediction models in intensive care unit to predict: 

2.1: acute kidney injury following cardiac surgery (Chapter 7). 

2.2: delirium following cardiac surgery (Chapter 8). 

5.2. Ethics 

This study has an ethical approval from the Health Research Authority 

(REC18/YH/0366). In addition, Linda Lapp has signed an honorary contract with the 

Golden Jubilee National Hospital, giving her the right to read-only access to the 

databases under the supervision of the Database Managers Sadia Aftab (CaTHI) and 

Debbie McKechnie (Centricity CIS). 
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As this is a retrospective study of existing electronic health records, no patient contact 

was part of this PhD research. 

5.3. Setting 

In Scotland, there are three hospitals that are specialised in cardiac surgery: Golden 

Jubilee National Hospital (GJNH), Royal Infirmary Edinburgh and Aberdeen Royal 

Infirmary, GJNH being the largest.  

GJNH is Scotland’s flagship hospital, offering world class centres for heart and lung 

services, orthopaedics, ophthalmology, and diagnostic imaging. It acts as a separate 

NHS Board and is also a National Waiting Times Centre to assist other NHS Boards 

with reducing patient waiting times. The Scottish Advanced Heart Failure Service, 

including the Heart Transplant Unit, the Scottish Pulmonary Vascular Unit and the 

Scottish Adult Congenital Cardiac Service are all located at the GJNH. NHS Golden 

Jubilee also hosts the Golden Jubilee Research Institute and the Golden Jubilee 

Innovation Centre. 

Figure 5.1. Number of elective cardiothoracic surgeries in Scottish cardiac centres and NHS Scotland 

in general per financial year (Data from Public Health Scotland [262]). 

 

The Figure 5.1 shows the number of elective cardiothoracic surgeries at Scottish 

cardiac centres and in NHS Scotland from the financial years starting in 2009 to the 

end of 2018. In this timeframe, GJNH has carried out on average 2,407 (SD = 119.0) 



 

 

105 

 

elective cardiothoracic surgeries per year, which makes just over 50% of all elective 

cardiothoracic surgeries in NHS Scotland. Royal Infirmary Edinburgh carries out 

around 30% and Aberdeen Royal Infirmary around 20% of the elective cardiothoracic 

surgeries in NHS Scotland [262]. 

The Figure 5.2 shows the patient’s journey who has elective cardiac surgery at the 

GJNH. The figure also shows in which databases certain information about the patient 

are stored in.   
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Figure 5.2. Patient’s journey for elective cardiac surgery at the Golden Jubilee National Hospital. 
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5.4. Participants 

In total, preoperative data for 7354 adult patients was extracted from the CaTHI 

database. Patients undergoing coronary artery bypass graft (CABG), valve, and 

combined CABG and valve surgery at the GJNH between the 1st of April 2012 and 

21st of December 2018 were included in this study.  

Patients who had not been discharged from the hospital by the time of data extraction 

were also excluded from the analysis due to not having their final outcome recorded 

in the CaTHI database (i.e., dead or discharged, see Section 5.5.1 for information about 

the database). 

Patients with “salvage” priority for surgery were excluded. Patients who received 

dialysis regardless of renal function prior to surgery were also excluded. Patients with 

unknown NYHA grade, unknown previous myocardial infarction (MI) status and 

unknown hypertension history were excluded. This is due to a very small group of 

patients having these characteristics. 

For numerical variables, patients with obviously incorrect entries were excluded, such 

as negative ICU hours and body mass index (BMI) less than 10 or higher than 70. 

Finally, only the records that occurred in the dataset for the patient for the first time 

(unique entries) were included in the analysis.  

Table 5.1. Number of patients in each study and experiment. 

Study  Procedure Dates Final Number of 

Patients 

Study 1 1.1: Severe Complications 01/04/2012 – 31/12/2018 N = 6839 

 1.2: Acute Kidney Injury 01/04/2012 – 31/12/2018 N = 6839 

 1.3: Delirium 01/01/2016 – 31/12/2018 N = 3344 

Study 2 2.1: Acute Kidney Injury 01/04/2012 – 31/12/2018 N = 6294 

 2.2: Delirium 01/01/2016 – 31/12/2018 N = 3322 

 

The final number of patients included into each study is shown in Table 5.1 The patient 

population for delirium prediction studies was notably smaller due to delirium 

diagnosis being recorded in this institution in the ICU since 2016 onwards. The 

delirium diagnosis was done, using CAM-ICU score. This will be further discussed in 

Section 5.6.3. The Study 2 population is smaller than it is for Study 1 in general, 
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because patients who had the predicted outcome (i.e., AKI or delirium) within the first 

hour of ICU admission were excluded from the analysis due to making the event 

unpredictable in the ICU. The outcomes of each study will be discussed more in detail 

in Section 5.6. 

5.5. Databases 

In this thesis, two databases were used to analyse postoperative complications 

following cardiac surgery. These databases are: (1) Cardiac and Thoracic Health 

Information (CaTHI) database, which stores information gathered at preoperative 

clinics at the GJNH; and (2) CentricityTM CIS critical care database, which stores 

laboratory and vital sign information for patients in cardiac ICU. For the Study 1, the 

outcomes of the AKI and delirium were derived from the CentricityTM CIS database, 

and the prediction was undertaken using the variables from the CaTHI database only. 

For the Study 2, the prediction was undertaken, using the variables from both 

databases. 

5.5.1. Cardiac, Cardiology and Thoracic Health Information 

(CaTHI) Database 

The CaTHI database was developed at the GJNH and is currently used in all three 

cardiac centres in Scotland: GJNH, Edinburgh Royal Infirmary and Aberdeen Royal 

Infirmary. As the name suggests, the database consists of cardiac, cardiology and 

thoracic patients’ diagnostic assessments, surgical procedures, and discharge 

information. Data collected from preoperative clinics are stored in this database to 

calculate the logistic EuroSCORE for each patient for audit purposes. 

Logistic EuroSCORE is one of the most commonly used cardiac preoperative risk 

stratification system [164]. The score was initially developed to predict 30-day 

mortality and is indeed used for that purpose in GJNH. The model uses a limited 

number of commonly available variables meaning that it can be conveniently 

implemented in a wide variety of clinical contexts [16]. 
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5.5.1.1. Missing Data 

Since CaTHI is a clinical audit database, most variables were consistently recorded. In 

cases where categorical variables had missing data, the blank fields were coded as 

“Unknown”. The variables with “Unknown” entries included renal impairment 

(43.38%), rhythm (7.97%), smoking status (36.24%), and left main stem disease 

(48.76%). If a numerical variable was not recorded for less than 80% of the patients, 

the variable was excluded from the analysis. The only variable excluded for that reason 

was preoperative haemoglobin level. 

Therefore, the final dataset used for the analysis consisted of 24 preoperative variables 

(Appendix 6.2), including patient characteristics, preoperative variables about 

patients’ cardiac status and comorbidities, as well as other surgical variables. 

5.5.2. CentricityTM CIS Critical Care Database 

The CentricityTM CIS critical care database was developed by General Electric 

Company who develop various medical devices, data analytics applications and 

services [263]. 

The CentricityTM CIS consists of eight databases, which are narrowed down into 

database tables. For the analysis in this thesis the database “Patient” was used. This 

database records all patient-specific values of medication (e.g., dose and rate), vital 

signs and laboratory results, together with timestamps for each new recorded value. 

Also, care notes are saved into this database together with the timestamp of when the 

note was recorded. The database content changes rapidly due to new patient data being 

continuously added both manually and automatically. 

5.5.2.1. Description of CentricityTM CIS Variables Used in This Thesis 

Arterial Base Excess 

The arterial base excess shows the acid-base balance in the blood. It is derived from 

blood pH (potential of hydrogen) and PaCO2 (partial pressure of carbon dioxide). It is 

defined as the amount of acid required to restore a litre of blood to its normal pH at a 

PaCO2 of 40mmHg (millimetres of mercury). The arterial base excess increases in case 

of a metabolic alkalosis, which is a condition in which the body fluids have excess 
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base. The value decreases in case of a metabolic acidosis, which is a condition where 

there is too much acid in the body fluids [264]. A normal range for arterial base excess 

is -2 to +2 mEq/l (milliequivalents per litre). A value outside of the normal range can 

be caused by respiratory and/or metabolic problems [264]. 

Arterial Haematocrit 

The arterial haematocrit is a measurement of the volume of red blood cells as a 

percentage of whole blood (red blood cells and plasma). As it is a percentage, it is 

expressed as a number without units between 0.00 and 1.00. Normal haematocrit levels 

vary based on age and sex. Normal levels for men can be between 40% and 54%. For 

women, it can be between 36% and 48%. If the haematocrit level is lower than normal, 

the person has not enough red blood cells [265]. 

Bicarbonate (HCO3) 

Bicarbonate (HCO3) is a by-product of a body’s metabolism. Blood takes bicarbonate 

to lungs, which is then exhaled as CO2. Bicarbonate is also regulated by kidneys, which 

therefore regulates body’s acid balance (pH), and is connected to sodium, potassium 

and chloride. Bicarbonate is tested to see if a person has a kidney disease, liver failure 

or other problems related to metabolism. A normal range for bicarbonate levels is 

between 23 to 30 mEq/l in adults. Higher than normal levels can cause a pH increase 

in tissue, which can happen due to vomiting and dehydration. A low level of 

bicarbonate can be caused by diarrhoea, kidney disease, and liver failure [266]. 

C-Reactive Protein 

C-reactive protein is measured to determine whether there is inflammation in the body 

due to infection or to evaluate a person’s risk of a heart attack. It is a protein 

synthesised by the liver, rising in response to inflammation. Some causes for high 

levels of c-reactive protein are acute and chronic conditions and trauma. Currently, 

there is no standard for what a normal level for c-reactive protein is, however, levels 

of less than 0.3 mg/l is considered normal [267]. 

Creatinine 

Creatinine is a product resulting from breaking down creatine phosphate from muscle 

and protein metabolism, which is released at a constant rate by the body. It is the main 

indicator of kidney health, as it is removed from the blood mainly by the kidney 
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through glomerular filtration. Creatinine levels can vary based on age and sex as it is 

directly linked to muscle mass. However, the normal range for creatinine is between 

53 to 115 µmol/l (micromoles per litre). High creatinine levels are caused by 

insufficient filtration in the kidneys [268]. 

Daily Fluid Balance 

Fluid balance describes the input and output of fluids in the body to allow metabolic 

processes to function correctly [269]. Daily fluid balance can be affected by injury or 

illness. Due to dehydration vital organs can have lower volumes of circulation. Fluid 

overload can occur because of poor cardiac or renal function. As the name suggests, 

the fluid balance is calculated based on how much fluid the patient gets orally or 

intravenously, and what is the urine and bowel output for the patient. Hence, the value 

can be positive in case of urine retention and negative in case of dehydration due to, 

for example, diarrhoea [270]. 

Haemoglobin 

Haemoglobin is the protein contained in red blood cells that delivers oxygen to the 

tissues of the body. The haemoglobin levels that are considered to be normal are 140 

to 180 g/l (grams per litre) for men and 120 to 160 g/l for women. When the 

haemoglobin level is low, the patient has anaemia [265]. 

Hydrogen Ion 

Hydrogen ions are produced continuously through body’s metabolic processes and are 

excreted through the kidneys. Hydrogen ion is inversely related to blood pH, which 

measures blood’s acidity or alkalinity. Higher hydrogen ion results in lower blood pH. 

Lower than normal hydrogen ion levels can be because of respiratory disturbance, such 

as mechanical ventilation, which is common in ICU. Higher than normal levels can 

indicate respiratory problems, such as pneumonia, metabolic disturbance, such as renal 

failure, or gastrointestinal issues, such as diarrhoea [271]. The normal range for 

hydrogen ion for humans is between 44 and 36 nmol/l (nanomoles per litre) [272].  

Lactate 

High lactate levels are most used as a marker for septic complications (e.g., sepsis and 

septic shock), but also for cardiac complications (e.g., cardiogenic, obstructive, 
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haemorrhagic shock, and cardiac arrest), respiratory complications (severe lung 

disease, respiratory failure, pulmonary oedema) or any trauma. A normal blood lactate 

level is considered to be between 0.5 to 1 mmol/l. For patients with critical illness 

normal lactate range is considered to be less than 2 mmol/l [273]. 

Potassium 

Normal potassium levels are considered to be between 3.5 to 5.0 mmol/l. To maintain 

normal levels of potassium, kidneys flush excess potassium out of the body. Hence, 

abnormal levels of potassium can indicate kidney disease, heart problems, but also 

gastrointestinal complications (e.g., vomiting and/or diarrhoea). High potassium levels 

can reduce heart muscle activity [274]. 

Sodium 

Sodium plays an important part at maintaining healthy blood pressure and regulating 

body’s fluid balance. Normal sodium levels are considered to be between 135 and 145 

mEq/l. Lower than normal sodium levels can be caused by congestive heart failure, 

kidney complications or liver complications. High sodium levels are often caused by 

dehydration [275]. 

Urea 

Urea is measured to estimate kidney function together with creatinine. Blood urea 

nitrogen to creatinine can indicate kidney problems early, for example, urea 

concentration being high compared to creatinine can indicate a prerenal problem. 

Normal urea levels can be between 2.2 to 7.2 mmol/l [276]. 

Urine Output 

Urine output is used as one of the markers of acute kidney injury as decreased urine 

output can be associated to lower glomerular filtration rate and hence decrease in 

kidney function. Decreased urine output is also considered to mirror a decrease in 

creatinine clearance, which also indicates kidney function [277]. 

Medications 

Dobutamine is a medication used to treat cardiogenic shock and severe heart failure. 

Dopamine is a vasopressor agent used in hypotensive patients. 
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Noradrenaline, also known as norepinephrine, is a vasopressor agent used to manage 

septic shock. 

Vasopressin is a vasopressor agent, also used to manage septic shock. 

5.5.2.2. Missing Data 

The problem of missing data was approached in several ways.  

Firstly, all data were checked for obviously incorrect values based on the literature and 

with the guidance of the clinical supervisor. Some laboratory values in the ICU system 

were impossible for patients to have. This might have happened due to errors in the 

equipment recording the values or manual data entry errors. Hence, the following 

laboratory variables were adjusted as shown in Table 5.2. 

Table 5.2. Laboratory values recorded in the ICU database, their normal values and ranges that were 

marked as NA. 

Variable Normal values Range Marked as 

Arterial Haematocrit 40% to 54% <=0 and >100 NA 

Bicarbonate (HCO3) 23 to 30 mEq/l =0 NA 

Haemoglobin 140 to 180 g/l =0 and >1000 NA 

Hydrogen Ion 44 to 36 nmol/l =0 and >100 NA 

Lactate 0.5 to 1 mmol/l =0 NA 

Potassium 3.5 to 5.0 mmol/l =0 NA 

Sodium 135 to 145 mEq/l =0 and >1000 NA 

Urine Output Patient-dependent >10000 NA 

 

The Table 5.3 shows the completeness of each variable. If a patient had a timestamp 

recorded for a missing value of a variable, then the previously recorded value was 

carried forward to the next timestamp. The maximum sequence length of where the 

values were carried forward was 23 for the hydrogen ion variable. The table also shows 

the number of complete data points and the number of measurements carried forward 

to the next timestamp to replace NAs.  

The only variable recorded for all ICU patients was haemoglobin, with 100% 

completeness. Creatinine was recorded for almost all patients with 98.32% 

completeness. Noradrenaline, dobutamine, dopamine and vasopressin were recorded 

for less than 41% of the patients. This is understandable as these four variables are 

medicines, meaning that not all patients would require them. Hence, to use the 

informative missingness [127], medicine variables were marked as “Yes” if a patient 
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had it recorded for them and “No” if not. This is because, if left as numerical variable, 

the variation would be too small for prediction models to pick up on the differences. 

Table 5.3. Completeness of each laboratory variable, number of complete data points and how many 

data points were carried forward. 

Laboratory variable (Unit) 

Proportion of 

Patients 

Recorded For 

Number of 

complete data 

points 

Number of data 

points carried 

forward 

Arterial Base Excess (mmol/L) 70.04% 170890 13 

Arterial Haematocrit (%) 70.02% 160826 29 

Bicarbonate(mEq/L) 68.86% 167193 16 

C-Reactive Protein (µmol/L) 69.79% 20632 146 

Creatinine (µmol/L) 98.32% 30211 97 

Daily Fluid Balance 63.59% 33159 0 

Haemoglobin (g/L) 100.00% 236528 30 

Hydrogen Ion (mmol/L) 69.21% 168947 2251 

Lactate (mmol/L) 69.21% 139059 347 

Potassium (mmol/L) 70.04% 171166 31 

Sodium (mmol/L) 70.04% 171164 29 

Urea (mmol/L) 69.88% 21823 68 

Urine (L per day) 99.70% 675746 0 

Medicines    

Dobutamine (dose) 29.55% 85987 5558 

Dopamine (dose) 5.75% 14939 1101 

Noradrenaline (dose) 39.58% 114648 7454 

Vasopressin (dose) 2.32% 9967 2254 

 

For example, for hydrogen ion, NA occurred after mean of 1.60 hours (SD = 1.12). 

The maximum time the NA measurement was taken was after 6.42 hours since the 

previous measurement. The differences of time were even shorter between the missing 

values recorded for medicines. For example, for dobutamine, NA occurred after mean 

of 0.66 hours (SD = 0.98). The maximum time difference between the NA value and 

last recorded value was at 23.92 hours. While this happened for one patient only, this 

can be a limitation to the models developed in this thesis. 

It is worth noting that while the treatment of missing values was discussed with clinical 

supervisor Prof Stefan Schraag, by carrying forward values an assumption is made that 

the patient’s status stays the same as the time changes. This can especially be a problem 

when carrying forward values that are usually recorded only once a day (e.g., urea, 

where NA appears in mean of 14.06 hours (SD = 10.64) and maximum NA occurred 

at 24.23 hours since the last value was recorded. While this can be a limitation to the 

data preparation in this thesis, the number of values carried forward for each laboratory 
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value was very small (Table 5.3), and therefore it can be assumed that the effect of 

these carried forward values would have a minimal effect on the models’ performance.  

Also, while carrying forward is a common practice in dynamic prediction modelling, 

the reason as of why some measurements were not taken at certain times for certain 

patients is unknown. However, two speculations can be made: either there was a 

system error where the measurement was not taken correctly and hence the information 

was not entered into the database. Another reason could be that a patient was deemed 

to be generally well based on previous test results, and therefore the concept of 

“informative missingness” could be applied. As shown in the literature review 

(Chapter 2), this concept was applied by Huddar et al. [65], and should be further 

investigated in the future work. 

In addition to the methods described here, experiments were undertaken in Study 2 to 

approach the problem of missing data, further described in Section 5.9.3. 

5.5.2.3. Laboratory Value Measurement Frequency 

The data shows (Table 5.4) that there were clear differences in the frequency of 

laboratory tests in ICU after 24 hours of admission. According to the clinical 

supervisor and database managers, the tests were done routinely for each patient in the 

first 24 hours and after 24 hours the tests were done more on ad-hoc basis. The median 

period in ICU was 22 (IQR = 24) hours, and mean was 48.46 (SD = 102.00) hours. 

The Figures 5.3 to 5.5 reflect the Table 5.4, where the majority of the patients have the 

laboratory tests undertaken at similar frequency. Most patients have the tests for 

creatinine, urea and c-reactive protein between 20 to 30 hours since ICU admission 

(Figure 5.3). 

The Figures 5.4 and 5.5 show that arterial base excess, arterial haematocrit, 

bicarbonate, haemoglobin, hydrogen ion, lactate, potassium and sodium are mostly 

measured in the early hours since ICU admission, more regularly than the laboratory 

values shown in Figure 5.3. 
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Table 5.4. Median hours of when each laboratory variable is recorded in general and based on whether 

the patient has been in the ICU for 24 hours or less vs more than 24 hours. 

  All patients in 

general 

ICU hours ≤24h ICU hours >24h 

Variable Median (IQR) hours Median (IQR) hours Median (IQR) hours 

Every 24 hours       

Creatinine 23.67 (17.22) 0.00 (11.03)* 24.08 (1.15) 

Urea 23.68 (16.90) 0.00 (11.10)* 24.08 (1.15) 

C-reactive protein 23.78 (16.92) 0.00 (10.34)* 24.13 (1.02) 

Every 2-3 hours       

Arterial Base Excess 2.35 (2.67) 1.18 (1.67) 3.32 (2.23) 

Arterial Haematocrit 2.38 (2.68) 1.23 (1.72) 3.35 (2.27) 

Bicarbonate 2.35 (2.67) 1.17 (1.67) 3.33 (2.22) 

Haemoglobin 2.35 (2.73) 1.18 (1.68) 3.35 (2.28) 

Hydrogen Ion 2.32 (2.67) 1.17 (1.65) 3.28 (2.23) 

Lactate 2.78 (2.30) 1.92 (1.67) 3.37 (2.22) 

Potassium 2.37 (2.67) 1.18 (1.67) 3.32 (2.20) 

Sodium 2.35 (2.67) 1.18 (1.67) 3.32 (2.22) 

Depending on patient       

Urine 0.85 (1.10) 0.87 (1.07) 0.83 (1.12) 

Daily Fluid Balance 5.32 (23.95) 0.00 (0.00)* 22.55 (24.13) 

*Usually measured only once when admitted to ICU – hence median = 0.00 hours. 

Figure 5.3. Time of measurement of creatinine, urea and c-reactive protein. 

 

 

Figure 5.4. Time of measurement of arterial base excess, arterial haematocrit, bicarbonate and 

haemoglobin. 
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Figure 5.5. Time of measurement of hydrogen ion, lactate, potassium and sodium. 
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5.6. Predicted Outcomes of the Studies 

For the preoperative models (Study 1), three outcomes are predicted: 

• Whether a patient has severe postoperative complications 

• Whether a patient has postoperative acute kidney injury 

• Whether a patient has postoperative delirium. 

For the hourly ICU prediction models (Study 2), two outcomes are predicted: 

• Whether a patient has acute kidney injury within 25 hours since ICU admission 

• Whether a patient has delirium within 21 hours since ICU admission 

5.6.1. Severe Postoperative Complications 

Since cardiac anaesthetists and surgeons expressed the need for a prediction model to 

predict combined complications (Chapter 3), a Delphi study was undertaken to define 

the complications and classify these. Since “severe” complications were agreed to have 

the biggest impact on patient’s life, the amount of intervention required due to the 

complications, and a long-standing effect on the patient, this group of complications 

was decided to be predicted. 

The exact definition for “severe” complications comes from Chapter 3, which 

presented the Delphi study, where postoperative complications following cardiac 

surgery were defined and classified. In the study, the experts, such as cardiac 

anaesthetists and clinicians working in cardiac ICU, reached a consensus that “severe” 

complications are defined as follows: 

A severe complication following cardiac surgery is a complication that is potentially 

life-threatening, significant amount of intervention is required due to this complication, 

and there is a significant or long-standing impact on the patient. 

In addition to reporting overall surgical outcome (dead/alive) and total stay in hospital, 

the CaTHI database also records whether a patient had a complication following 

surgery. The reported complications were categorised into “mild”, “moderate” and 

“severe” based on the results of the Delphi Study in Chapter 4. The complication 

categorisation within the CaTHI dataset resulted in 27 different “severe” 

complications. The list of complications and the prevalence of these can be found from 
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Appendix 6.1. In instances where patients had several complications from various 

levels of severity, those patients were assigned to the category that recorded the highest 

level.  

The prediction of severe postoperative complications is a continuation of previous 

work in the author’s MPhil, where postoperative complications following cardiac 

surgery were predicted [17]. The differences of the studies done in previous work can 

be found from Table 1.2 in Chapter 1. Part of the results of these prediction 

experiments have been published as conference proceedings [278]. 

It is important to note that the definition of “severe” complications is not based on 

laboratory variables, recorded in electronic health records, but is based on the list of 

complications reported in the CaTHI database. Hence, the time of occurrence of these 

“severe” complications is unknown, and therefore, the prediction of this outcome is 

undertaken only in Study 1, where only preoperative prediction models are developed. 

5.6.2. Acute Kidney Injury 

Acute kidney injury (AKI) is officially defined as “an abrupt decrease in kidney 

function that includes, but is not limited to acute renal failure” [106]. AKI is a broad 

term for various kidney problems, such as acute interstitial nephritis, acute glomerular 

and vasculitic renal disease, ischaemia, toxic injury, as well as prerenal azotaemia and 

acute postrenal obstructive nephropathy.  

According to Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice 

Guideline for Acute Kidney Injury, AKI is defined as any of the following [106]: 

• Increase in serum creatinine by ≥ 0.3 mg/dl (≥ 26.5 µmol/l) within 48 hours; 

or 

• Increase in serum creatinine to ≥ 1.5 times baseline, which is known or 

presumed to have occurred within the prior 7 days; or 

• Urine volume < 0.5 ml/kg/h for 6 hours. 

In this thesis, AKI was defined using the baseline serum creatinine measurement, 

recorded in the CaTHI database as preoperative creatinine, and the subsequently 

recorded serum creatinine measurements in the CentricityTM CIS database, in the ICU 
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postoperatively, as done elsewhere [279]. A difference between each serum creatinine 

and preoperative creatinine measurement was calculated. If the difference was greater 

than or equal to 1.5 times the baseline, the patient was considered to have AKI. In 

addition, the timestamp when the creatinine difference occurred was recorded as AKI 

timestamp. 

Using the KDIGO guideline to diagnose AKI based on the changes of creatinine levels 

compared to the creatinine level recorded in preoperative clinic is objective and 

reliable, and the method is internationally recognised [106]. In addition, as each value 

recorded in ICU has a timestamp, it is easy to assign the timestamp of when the 

creatinine change happened to assign to the AKI diagnosis, making it possible to 

develop a real-time prediction model for AKI in the ICU. Hence, this outcome will be 

predicted in both Study 1 and Study 2 in this thesis. 

As shown in Chapter 6, according to CaTHI, 5.22% of the patients had a renal 

complication in this patient population. However, after applying the KDIGO 

guidelines, 18.93% of the patients had AKI. This very large difference in patients 

recorded to have renal complications shows that AKI is under-reported in the CaTHI 

database and using the KDIGO guidelines is the appropriate approach to diagnose AKI 

retrospectively. 

Following cardiac surgery, up to 40% of patients can experience AKI, resulting in 

increased morbidity and mortality [280]. Patients who have postoperative AKI 

following cardiac surgery are at higher risk of postoperative infection, atrial fibrillation 

and prolonged stay in ICU and hospital [281]. 

There are various ways how clinicians have tried to prevent AKI in cardiac surgery. 

One attempt includes the development of off-pump CABG surgery, intended to be less 

damaging to kidneys, however, the effect of off-pump CABG for reducing AKI is 

inconclusive [281].  
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Known postoperative risk factors for AKI have shown to be haemodynamic 

instability7, nephrotoxic8, inotropic9 and vasoconstrictor drugs10 and systemic 

inflammation [282]. Other factors include postoperative anaemia, reduced cardiac 

output and sepsis. 

5.6.3. Delirium 

According to Oxford Dictionary, delirium is an “acutely disturbed state of mind 

characterised by restlessness, illusions, and incoherence, occurring in intoxication, 

fever and other disorders” [283]. In this thesis, delirium is defined, using the 

Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) diagnosis tool 

that has been reported in the CentricityTM CIS database since 2016. 

The CAM-ICU tool takes 2-3 minutes to use for a reliable result and requires little 

training. It is usable for clinicians without psychiatric training to monitor whether 

critically ill patients develop delirium [284]. The CAM-ICU tool is shown in Table 

5.5. 

The CAM-ICU assessment results are entered the CentricityTM CIS database, meaning 

a timestamp for each assessment result is also recorded. Hence, as the time of the 

diagnosis is known, experiments predicting delirium are undertaken in both Study 1 

and Study 2.  

Delirium can affect up to 50% of hospital patients who are over the age of 65 years 

[285], which makes up the majority of cardiac patients (as shown in Chapter 6). 

Delirium is also relatively common in cardiac surgery patients, with the incidence 

between 26 to 52% [286]. Patients undergoing valve surgery are more likely to have 

postoperative delirium than patients undergoing CABG surgery. The risk is even 

higher for patients who require replacement of both the mitral and aortic valves [287]. 

 

                                                 
7 Haemodynamic instability is defined as one or more out-of-range vital sign measurements, such as 

low blood pressure [408]. 
8 Nephrotoxic drugs are drugs that can have a significant damage on renal function [409]. 
9 Inotropic agents, or inotropes, are medicines that change the force of the heart’s contractions [410]. 
10 Vasoconstrictor drugs contract the smooth muscle in blood vessels, causing the vessels to constrict. 

This helps to increase arterial blood pressure [410]. 
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Table 5.5. The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Delirium is 

diagnosed when both Features 1 and 2 are positive, along with either Feature 3 or Feature 4. This 

assessment method was developed by Ely et al. [284]. 

Feature 1: Acute Onset of Mental Status Changes or Fluctuating Course 

 Is there evidence of an acute change in mental status from the baseline? 

 Did the (abnormal) behaviour fluctuate during the past 24 hours, that is, tend to 

come and go or increase and decrease in severity? 

 Sources of information: Serial Glasgow Coma Scale or sedation score ratings over 

24 hours as well as readily available input from the patient’s bedside critical care 

nurse or family. 

Feature 2: Inattention 

 Did the patient have difficulty focusing attention? 

 Is there a reduced ability to maintain and shift attention? 

 Sources of information: Attention screening examinations by using either picture 

recognition or Vigilance A random letter test (further described in [284]). Neither 

of these tests require verbal response, and thus they are ideally suited for 

mechanically ventilated patients. 

Feature 3: Disorganised Thinking 

 Was the patient’s thinking disorganised or incoherent, such as rambling or 

irrelevant conversation, unclear or illogical flow of ideas, or unpredictable 

switching from subject to subject? 

 Was the patient able to follow questions and commands throughout the assessment? 

“Are you having any unclear thinking?” 

“Hold up this many fingers.” (Examiner holds two fingers in front of the patient) 

“Now, do the same thing with the other hand.” (Not repeating the number of 

fingers) 

Feature 4: Altered Level of Consciousness 

 Any level of consciousness other than “alert”. 

 Alert – normal, spontaneously fully aware of environment and interacts 

appropriately 

 Vigilant – hyperalert 

 Lethargic – drowsy but easily aroused, unaware of some elements in the 

environment, or not spontaneously interacting appropriately with the interviewer; 

becomes fully aware and appropriately interactive when prodded minimally 

 Stupor – difficult to arouse, unaware of some or all elements in the environment or 

not spontaneously interacting with the interviewer; becomes incompletely aware 

and inappropriately interactive when prodded strongly 

 Coma – unarousable, unaware of all elements in the environment, with no 

spontaneous interaction or awareness of the interviewer, so that the interview is 

difficult or impossible even with maximal prodding 

 

Delirium is complex and has multiple factors causing it, and hence it has been shown 

that the most effective strategy to prevent delirium is risk factor analysis and predictive 

modelling, as explained by Inouye et al. [285]. On one hand, for an older people, 

especially for those with dementia and other underlying conditions, a single dose of 

sleeping medication may be enough to bring on delirium. On the other hand, for a 

young healthy patient, delirium usually develops only after a number of interventions, 

such as general anaesthesia, major surgery (e.g., open-heart surgery) and ICU stay 

[285]. 
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A number of risk factors have been identified to be associated with delirium. Currently 

identified biggest risk factors are dementia or other cognitive impairment, functional 

impairment, vision impairment, history of alcohol abuse, and age > 70 years. In 

addition, a presence of a number of comorbidities and abnormal laboratory values 

(blood and urine tests) are also risk factors [285].  

Delirium can have serious long-term effects on patients, such as permanent damage to 

cognitive ability. Due to potential functional decline, it can also lead to complications, 

such as infections or blood clots that weaken patients and increase the risk of mortality 

[288]. Delirium also has consequences, such as increased hospital length of stay [5], 

increased healthcare costs [5], and increased re-admission rates [289].  

5.7. Descriptive Statistics Methods 

Relevant descriptive statistics for each study were shown for preoperative and outcome 

data from CaTHI dataset (Appendix 6.2) and for laboratory data from the CentricityTM 

CIS dataset (Appendices 7.1 and 8.1). For categorical variables, frequencies were 

calculated and shown in percentages. For numerical variables, mean and standard 

deviation were calculated for each variable. These procedures were undertaken for the 

total population as a whole, but also based on whether the patient had the predicted 

outcome, i.e., severe complication (explained in Section 5.6.1), acute kidney injury 

(based on KDIGO classification, explained in Section 5.6.2) or delirium (based on 

CAM-ICU score, explained in Section 5.6.3). The population that had the outcome 

was compared to the population that did not have the outcome based on descriptive 

statistics to understand whether there was a difference between the population with vs 

without the predicted outcome. The comparisons were made, using Pearson’s chi-

squared test of independence [290] for categorical variables and Welch’s Two Sample 

t-test [291] for numerical variables.  

For all tests in this thesis, a 95% significance level is used. 
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5.8. Study 1: Preoperative Prediction Model 

Methods 

5.8.1. Classification Methods 

As this is an imbalanced classification problem involving both categorical and 

numerical variables, various statistical and machine learning methods were used which 

have been shown to be effective for this kind of data analysis [292]: logistic regression 

(LR), random forest (RF), naïve Bayes (NB), bagging classification and regression 

trees (BCART), support vector machine (SVM), AdaBoost (AB), gradient boosting 

model (GBM) and two stacked models: Stack RF and Stack generalised linear model 

(GLM). All models were developed, using 10-fold cross-validation11 in the training 

set, as is recommended in the literature [121].  

Logistic regression, random forest, naïve Bayes and BCART were developed, using 

the “caret” R package version 6.0.90 [293], with methods “glm”, “rf”, “naive_bayes” 

and “treebag”, respectively. For support vector machine, the “e1071” R package 

version 1.7.9 [294] was used. For AdaBoost, the R package “fastAdaboost” version 

1.0.0 [295] was used, and for gradient boosting, R package “gbm” version 2.1.8 [296] 

was used.  

The hyperparameters were arrived at, using manual search [297], which means that 

various options were tested, and the parameters that produced the highest area under 

the receiver operating characteristic curve (AUC) were chosen.12 The random forest 

model was developed, using 200 trees. For AdaBoost, 40 iterations were used, and for 

gradient boosting, the number of trees was set to 100, with the shrinkage of 0.01 and 

interaction depth of 4.  

  

                                                 
11 The general code used for developing the prediction models for Study 1 can be found from DOI: 

10.15129/9da23147-6be9-46f1-95be-6681ed2cc7e0. 

12 For random forest and gradient boosting, the optimal number of trees were found by testing 50 to 500 

trees, increasing the number of trees by 50 tree increments. For AdaBoost, the minimum number of 

iterations tested was 10, and maximum was 100. The tests were made with 10 iteration increments. 
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Figure 5.6. Methods of how the stacked models were developed. 

 

For the stacked models, the data were divided into training, testing, and validation sets 

(further explained in Section 5.8.1.1). As seen from Figure 5.6, the base learners 

(generalised linear model, random forest, naïve Bayes and BCART) were trained, 

using the training set. The predicted probabilities were calculated from the base 

learners, using the testing set. Two meta-learner algorithms were developed: one using 

a generalised linear model to make a prediction based on the predicted probabilities 

derived from the base learners, and the other using a random forest. These two stacked 

models were then evaluated, by finding the predicted probabilities based on validation 

set. All this analysis was undertaken, using the “caret” R package version 6.0.90 [293]. 

5.8.1.1. Training and Testing Datasets 

The severe complications and acute kidney injury were analysed, using the data from 

1st April 2012 to 31st December 2018 (6839 patient records, all unique patients). As 

delirium is recorded in the ICU at the GJNH since 2016, for this outcome, the data 

from 1st of January 2016 to 31st December 2018 is analysed (3344 patient records, all 

unique patients). 

For models that are not stacked models, the respective datasets were divided into 

training (2/3 of data) and testing (1/3 of data) sets. The models were trained, using this 

training set. For stacked models, the respective datasets were divided into three: 

Base learners

Based on training set

Metalearners

Based on predictions using 
testing set

Final predictions

Based on validation set
Stacked Model

Random Forest 
or Generalised 
Linear Model

Generalised 
Linear Model

Random Forest Naïve Bayes BCART
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training (1/2 of data), validating (1/4 of data) and testing (1/4 of data). The base-

learners were trained, using the training data, and the stacked model was built, using 

the training, and validating set. The number of records in each training, testing and 

validating set for each outcome can be found from Table 5.6. 

Table 5.6. Number of records in each dataset, based on predicted outcome and model type. 

Outcome Training (N) Validating (N) Testing (N) 

Severe Complications    

Not stacked models 4583 - 2256 

Stacked models 3420 1710 1709 

Acute Kidney Injury    

Not stacked models 4583 - 2256 

Stacked models 3420 1710 1709 

Delirium    

Not stacked models 2241 - 1103 

Stacked models 1672 836 836 

 

5.8.1.2. Classification Experiments 

Three experiments were undertaken in Study 1, using both original training data and 

upsampled training data. 

Experiment 1: Predicting the outcome using variables that are significantly associated 

with the predicted outcome based on logistic regression. The number of these variables 

will depend on the outcome predicted, and hence will be described separately in 

Sections 6.2, 6.3 and 6.4 in Chapter 6. 

Experiment 2: Predicting the outcome using variables that are included in the logistic 

EuroSCORE (15 variables). These variables are age, sex, left ventricular function, 

extracardiac arteriopathy, previous myocardial infarction, angina status, active 

endocarditis, hypertension, pulmonary disease, neurological dysfunction, serum 

creatinine, previous cardiac surgery, type of surgery, critical preoperative state and 

surgical priority [164]. 

Experiment 3: Predicting the outcome using all variables available preoperatively (24 

variables). This is a classical machine learning approach, where all available variables 

are included in the model. These variables include patient characteristics, preoperative 

variables about patients’ cardiac status and co-morbidities, as well as variables about 

surgery. More detail about the variables in the dataset can be found from Appendix 
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6.2. where also the descriptive statistics for the total patient population and for each 

outcome separately are presented. 

5.8.1.3. Data Upsampling Experiments 

As will become evident in Chapter 6, the instances of the predicted complications are 

far less frequent than the instances of no or non-severe complications, no AKI and no 

delirium. Class imbalance can generate classification difficulty due to the imbalanced 

class distributions, where some classes are highly underrepresented compared to other 

classes. This skewed distribution can make it difficult to develop ‘balanced’ predictive 

algorithms, which can both predict majority and minority class instances accurately 

[298].  

One potential solution to address this problem is to use upsampling. In this chapter, 

the upSample function provided in R package caret [299] version 6.0.90 is used in 

order to obtain a balanced dataset in terms of the frequencies in each classification of 

the predicted outcomes. The upSample function randomly samples a data set so that 

all classes have the same frequency as the majority class. Simple random sampling is 

used, and all the original data are left intact, and additional samples are added to the 

minority class. Some samples are removed from the majority class with replacement 

[299]. The upsampling method is chosen, as opposed to widely popular SMOTE [130], 

due to the fact that SMOTE requires numerical variables only, and cannot handle 

categorical data, whereas upsampling can [299]. As shown in Appendix 6.2, all 

variables in this analysis are categorical variables. 

Hence, in addition to developing prediction models for the outcomes using original 

training data, the models were also developed, using upsampled training data. The 

purpose of carrying out the experiments with balanced data also was to potentially 

improve the performance of the models in terms of AUC, sensitivity, and specificity.  

Table 5.7 shows how the number of records in the training data changed through 

upsampling. As the prevalence of severe complications was noticeably lower than it 

was for the other outcomes, the number of added records through upsampling was 

higher.  
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The models’ performance was evaluated, using testing data. It is important to note that 

for experiments using upsampling, the testing data were left as original to ensure 

applicability of the models in real-world scenarios, where the predicted outcomes 

occur considerably rarely. More information about models’ performance evaluation is 

provided in Section 5.10. 

Table 5.7. Details of the number of records changing through upsampling of the training data. 

Outcome 

(Prevalence) 

Model Type Original 

Training Data 

Records Added 

Through 

Upsampling 

Balanced 

Training 

Data 

Severe 

complications 

(5.91%) 

Non-stacked 4583 4067 8650 

Stacked 3420 3044 6464 

Acute kidney injury 

(18.93%) 

Non-stacked 4583 2891 7474 

Stacked 3420 2174 5594 

Delirium (12.47%) Non-stacked 2241 949 3190 

Stacked 1672 1238 2910 

 

5.9. Study 2: Hourly Prediction Model 

Methods 

5.9.1. Predicted Outcomes of the Models 

In the Study 2 acute kidney injury (AKI) and delirium are predicted on an hourly basis 

in the ICU. Both predicted outcomes were defined, as described in Sections 5.6.2 and 

5.6.3. 

In Study 2, the timestamps of when the predicted outcomes were recorded in the 

CentricityTM CIS database were taken into account, enabling the development of 

hourly prediction models. 

It is also important to note that in Study 2, the patients who had AKI or delirium in the 

first hour of ICU stay were removed from analysis. This was done, because it would 

have been impossible to predict an event that had already happened. 
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5.9.2. Data Preparation 

5.9.2.1. Timestamps and Time Windows 

Each laboratory value in the CentricityTM CIS database was recorded with a timestamp 

attached to them. Each dataset corresponding to each laboratory value was stored 

separately as a .csv file. Each file was read into R. The timestamps for each recorded 

laboratory value were converted into time formats for R. The data were grouped by 

PatientID and then arranged in order of events based on the time of when the variable 

was recorded13. 

For the hourly prediction, time windows were used to firstly indicate the onset of the 

predicted outcome. Secondly, the time windows were used to develop prediction 

models for each time window before the event. In this thesis, the hourly prediction was 

undertaken for AKI within 25 hours of ICU stay and for delirium within 21 hours of 

ICU stay. These times were chosen based on the fact that it is common for patients to 

experience these two complications within these timeframes (see Chapter 7 and 8). For 

each these predicted outcomes, models were built for hourly lead times, based on the 

time windows. The lead times were chosen to be every hour from 1 to 24 hours ahead 

of AKI occurring within 25 hours since ICU admission and 1 to 13 hours ahead of 

delirium occurring within 21 hours since ICU admission (See chapters 7 and 8 for 

further explanation).  

To assign time windows for the recorded laboratory values, a new column Time_Diff 

was created to calculate the difference of times when the laboratory value was 

measured based on each PatientID. This time difference was measured in hours.  

A new column Time_Diff_cumulative was created to have the cumulative time 

difference for recorded values for each PatientID. This was done to generalise the 

hours of when measurements were taken to make the timestamps comparable.  

This data file was then linked (left_join, ‘dplyr’ package version 1.0.7 in R) with the 

PatientIDs present in the CaTHI dataset. All laboratory data files were linked with the 

                                                 
13 General code of how the timestamps and time windows were achieved for Study 2 can be found from 

DOI: 10.15129/1ab360f7-0779-4cf3-8a9a-dae621892a51. 
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CaTHI dataset to ensure that the ICU patients that were analysed were undergoing the 

same surgeries. Also, this allowed for the inclusion of preoperative variables in the 

hourly models, as well as finding out about the outcome for each patient journey, 

including the hospital days, and whether they were alive or dead at the end. 

To create time windows to start with the predictive modelling, a new column for each 

laboratory value dataset was created called Time_Window. This was created by 

rounding up the Time_Diff_cumulative column. This means that if the 

Time_Diff_cumulative = 15.67 hours, then the Time_Window = 16. 

To predict the outcomes within a certain time window, only the entries within that 

certain Time_Window were included in that data. This means that if predicting AKI 

within 25 hours, only entries recorded up to the 25th Time Window were included. 

In addition, for prediction of the outcomes in general, patients who had the predicted 

outcome recorded within the first hour since ICU admission were removed from 

analysis, as done in similar studies [67]. This is because the hourly prediction models 

are intended to be used in the ICU, and hence it is impossible to predict an outcome 

that has already happened. Hence, 545 patients who had AKI on admission to the ICU, 

and 22 patients who had delirium on admission to the ICU were excluded from the 

analysis for the Study 2. 

5.9.2.2. Data Structure for Lead Times 

To simplify the data used in models, for each lead time the minimum, maximum, first 

and last measurement of a variable were used, helping to create a more consistent set 

of input data for the models, which might otherwise have had to deal with variations 

in the number of independent variables at each stage. This approach was also taken by 

Hug [300] and Johnson et al. [301] whose studies were found in the literature review 

(Chapter 2).This means that if the predicted outcome happened in time window = 6, 

for each variable first, last, min and max measurements that occurred in time windows 

0-5 were calculated.  

For example, if for a patient the predicted outcome happened in the 21st time window, 

if the prediction was made: 
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- 1 hour in advance, min, max, first and last measurement were calculated based 

on Time Window 0 to 20 

- 2 hours in advance, min, max, first and last measurement were calculated based 

on data in Time_Window 0 to 19 

- 10 hours in advance, min, max, first and last measurement were calculated 

based on data in Time_Window 0 to 11. 

- And so on. 

The Figure 5.7 shows how the models were developed for each lead time before the 

predicted outcome. The first model predicted the outcome 1 hour in advance and used 

all data that were collected until 1 hour before outcome. The second model predicted 

the outcome 2 hours in advance and used all data that were collected until 2 hours 

before the outcome. The nth model predicted the outcome n hours in advance and used 

all data that were collected until n hours before the outcome occurred. 

Figure 5.7. Visualisation of how models were developed for each lead time. 

 

The prediction models had a binary outcome (AKI = Yes/No or delirium = Yes/No), 

but only patients with AKI or delirium = Yes had a timestamp associated with the 

outcome was recorded for them. Hence, an arbitrary time as the end point was chosen 

for patients with AKI or delirium = No. Most patients had AKI between 20 and 25 

hours and delirium between 10 and 14 hours since ICU admission. Hence, to cover all 

bases, an arbitrary end point of 25 hours for AKI prediction and 21 hours for delirium 

prediction was chosen.  
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5.9.3. Classification Experiments 

The missing data where previously recorded values could not be carried forward to the 

next timestamp (Section 5.5.2.2) were approached in three different ways: 

• Experiment 1: Using complete data only - In this approach all patients with 

missing data were removed from analysis. Using complete data allowed using 

different classification methods, such as logistic regression, random forest, 

AdaBoost, gradient boosting and support vector machine, BARTm and C5.0. 

• Experiment 2: Using models that “handle” missing data – In this approach 

two machine learning methods – C5.0 and BARTmachine – were used to carry 

out the prediction of AKI and delirium. These methods were used as these can 

make a prediction, regardless of some patients having missing values in the 

data. Here, patients with more than 40% of missing variables were excluded 

from the analysis, as done elsewhere [300], [302]. 

• Experiment 3: Using imputation – In this approach missing values were 

replaced with other possible values. For usability, imputing 0 to replace 

missing values were tested, which is a similar approach to Pattalung et al.’s 

[79] approach, explained in Chapter 2. In addition, median and missForest 

imputation methods were experimented with. Here also, patients with more 

than 40% of missing variables were excluded from the analysis. The same 

classification methods were used as in Experiment 1. 

Predicting AKI and delirium were imbalanced classification problems, meaning the 

number of patients with the outcomes was relatively small, compared to the number 

of patients without the outcome. Hence, as shown in Table 5.8, predictive modelling 

methods appropriate for this kind of data analysis were used for Experiment 1 and 3: 

logistic regression, random forest, AdaBoost, gradient boosting model and support 

vector machine, BARTm and C5.0. For Experiment 2 only BARTm and C5.0 were used. 

To develop the models, the datasets for each lead time were divided into training set 

(2/3 of data) and testing set (1/3 of data). For every experiment, the models were 

developed using the training data that did not have any missing values. The 

completeness of testing data depended on the experiment (Table 5.6). All models were 



 

 

133 

 

developed on training data, using 10-fold cross validation14, which is the 

recommended approach to developing a prediction model [261].  

Table 5.8. Completeness of data and methods used for predicting AKI and delirium, based on 

experiment. 

Experiment Type of Data Methods 

Experiment 1 Complete data only Logistic regression, random forest, 

AdaBoost, gradient boosting model, 

support vector machine, BARTm and C5.0 

Experiment 2 Complete training data, 

missing values in testing 

data. 

BARTm and C5.0 

Experiment 3 Complete training data, 

imputation methods to 

replace missing values in 

testing data. 

Logistic regression, random forest, 

AdaBoost, gradient boosting model, 

support vector machine, BARTm and C5.0 

 

5.9.3.1. Classification Methods Used for Experiments 1 and 3 

In this section, the classification methods used for Experiments 1 and 3 are described. 

These methods were selected due to being representative of a wide range of approaches 

that are appropriate for mixed data (numerical and categorical), and have also been 

shown to be appropriate for imbalanced classification tasks [303]. The 

hyperparameters were decided based on manual search, as done in Study 1 (Section 

5.8.1). 

Even though, as shown in Chapter 2, the use of neural networks is considerably 

common in developing dynamic prediction models in healthcare, this study did not use 

neural networks in its experiments. The main reason for this decision was the fact that 

patients stayed in the ICU for a relatively short time (just over two days, as shown in 

Chapter 7 and Chapter 8), and the laboratory variables included in the analysis are 

recorded less frequently than a deep neural network model would require for accurate 

prediction (resulting in an average of approximately 20 observations for 11 regularly 

measured variables per patient). The inclusion of more regularly recorded data and 

experiments with deep learning methods are further discussed in Future Work (Section 

9.4). 

                                                 
14 The general code for developing the classification models in Study 2 can be found from DOI: 

10.15129/1ab360f7-0779-4cf3-8a9a-dae621892a51. 
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AdaBoost 

AdaBoost is a boosting algorithm that repeatedly runs a given weak learning algorithm 

on various distributions over the training data, ultimately combining the weak 

classifiers into one classifier [304]. It has been shown to perform well by many studies. 

The AdaBoost model was developed using the package ‘fastAdaboost’ version 1.0.0 

[295], which implements Freund and Schapire’s AdaBoost.M1 algorithm [304], and 

for which n=40 iterations were conducted. AdaBoost.M1 algorithm is a binary 

classifier where the target variable is a factor with exactly two levels. The final model 

comprises of weak decision trees that are combined. 

Gradient Boosting Model 

Gradient boosting model has a similar approach to AdaBoost, where a weak learner is 

modified, i.e., boosted, to become a stronger learner. It works by adding weak learners 

one at a time to existing weak learners, resulting in a better-performing model. Because 

it is a tree-based model, it is also possible to understand the variable importance [305]. 

For the gradient boosting model, the package ‘gbm’ version 2.1.5 [296] was used, 

which uses the Friedman’s gradient boosting algorithm [306]. The number of trees was 

chosen to be n=100 and the shrinkage parameter as 0.01.  

Logistic Regression 

For logistic regression, a generalised linear model is used in this thesis. Logistic 

regression is a traditional statistical method used to develop predictive models for 

diagnosing or prognosing clinical outcomes [150]. Since the datasets in this thesis are 

not very large, and machine learning models are known to require more data than 

logistic regression [307], it is useful to see how the logistic regression models perform 

in comparison to different machine learning approaches. In addition, logistic 

regression is a highly explainable model though the ability to convert the model 

estimates to odds ratios. This helps clinicians to understand which variables are 

associated with the predicted outcome. For logistic regression, package “caret” R 

package version 6.0.90 with method “glm” was used [293]. 
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Random Forest 

Random forest is a popular machine learning algorithm, combining the output of 

multiple decision trees into single result. It is made of multiple decision trees, and 

therefore is an ensemble algorithm, which predicts more accurate results than 

individual decision trees. A clear benefit to using random forest is the ability to extract 

variable importance from the model. This means that it is easy to find out which 

variables are associated with the predicted outcome [308]. For random forest, the R 

package “caret” version 6.0.90 was used [293] with method “rf”. The number of trees 

was set at n=200. 

Support Vector Machine 

Support vector machine is a machine learning method based that works by developing 

a hyperplane that separates observations into one class from another based on the 

variables in the data [309]. Even though support vector machine has been shown to be 

very successful at solving clinical big data classification problems, one drawback of 

the method is its mathematical complexity [310], meaning it is difficult to understand 

which variables are associated with the outcome. For support vector machine, the 

package “e1071” version 1.7.9 [294] was used. 

5.9.3.2. Missingness of Data 

There are some classification methods found in the literature that have been shown to 

handle missing values without imputation. Before carrying out any analysis dealing 

with missing data, it is important to understand why there are missing data. There are 

three types of missing data: 

• Missing completely at random (MCAR) 

• Missing at random (MAR) 

• Missing not at random (MNAR) 

For MCAR, the probability of missing values is the same for any variable. The missing 

values are independent from one another. 

For MAR, there is a relationship between the missing values and some variable in the 

dataset. For example, emergency surgery patients might have less preoperative data 

available, and therefore have, for example, “Unknown” renal function.  
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For MNAR, happens when any variable causes omissions in data. For example, if 

height and weight are not recorded or are recorded incorrectly, the BMI value will be 

missing. 

As we are looking at certain laboratory values that are recorded independently, we 

classify these as MCAR. When it comes to medicine data, these can be classified as 

MNAR as not all patients need the medication. However, the missing medicine data 

problem was solved by changing this into a categorical variable, i.e., does the patient 

have medication (Yes/No). For patients for whom the medication was not recorded, it 

was assumed that the patient did not get the medication.  

5.9.3.3. Classification Methods Handling Missing Values 

BARTm Classification 

One of these methods is BARTmachine (Bayesian Additive Regression Trees), 

developed by Kapelner and Bleich [146]. This method has also been evaluated and 

compared with BART and Random Forest with imputation with missForest [311].  

BARTm is a probabilistic approach to prediction which incorporates built-in estimates 

of uncertainty in the form of credible intervals as well as prior information on 

covariates. Kapelner and Bleich were the first to incorporate missing data into the 

BART algorithm. This was done by relying on the Metropolis-Hastings algorithm 

[312] which attempts to send missing data to whichever of the two daughter nodes 

increases the overall model likelihood. Hence, missingness becomes a valid splitting 

criterion. Their approach is applicable to continuous and nominal covariate data. As 

BART includes estimates of uncertainty, the amount of uncertainty increases with the 

amount of information lost due to missingness [146]. 

BART is a combination of many regression trees estimated via a Bayesian model. 

BART consists of a set of independent priors and likelihoods, with its posterior 

distribution estimated via Gibbs Sampling [313] and with a Metropolis-Hastings step 

[312]. There are three priors within BART which are designed to prevent overfitting:  

1. The prior placed on the tree structure is designed to prevent trees from growing 

too deep, limiting the complexity that can be captured by a single tree. 
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2. The prior placed on the leaf value parameters, which are the predicted values 

found in the terminal nodes and is designed to shrink the leaf values towards 

the overall centre of the response’s empirical distribution. 

3. The prior is placed on the variance of the noise 𝜎2 and is designed to reduce 

overfitting by introducing noise into the model if it begins to fit too agreeably. 

In machine learning, these priors can also be taught of as “tuning parameters” [146]. 

In addition to the BART’s splitting attribute and split value, BARTm works by 

additionally offering a direction for records to be sent when the records have missing 

values. This means, if we have two options (e.g., left and right), then BARTm offers 

options for both of these options if a record has a missing value. This means that the 

prior on splitting rules is the same as the original BART, but with BARTm there is an 

additional consideration that the direction of missingness is equally likely to be left or 

right, conditional on the splitting attribute and value [146]. 

The authors say that the BARTm algorithm should yield better predictive performance 

than classical decision trees because of its ability to alter its trees by pruning and 

regrowing nodes or changing splitting rules [146]. It should be noted that because 

BARTm adjusts itself to predictor space for a location where the missing data would 

most increase the overall marginal likelihood, it therefore has great performance when 

dealing with missing data under MAR and NMAR conditions. However, when 

missingness does not depend on any other covariates, it can be more difficult to find 

appropriate ways to partition the missing data, and therefore BARTm can be less 

effective under MCAR condition [146]. 

In this thesis, to use this method, “bartMachine” package [314] version 1.2.6. in R 

was used. 

C5.0 Classification 

The C5.0 model is an extension of the C4.5 classification algorithm developed by 

Quinlan [315] in 1993. The decision trees like C4.5 and CART trees were among first 

algorithms which incorporate the handling of missing data into the algorithm itself. 

When a node is encountered, the decision tree tests a variable. If for that variable there 

is a missing value, then all outcomes are explored. Thus, for each possible sub-node a 
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prediction is made. The distribution for each sub-node is kept and added. Finally, the 

class chosen for prediction is the class with the biggest density value [315]. 

As a summary, C5.0 algorithm is a tree-based algorithm that works by splitting the 

sample based on the field that provides maximum information gain. Each sub-sample 

generated based on the first split is then split again. This process continues to repeat 

until the sub-samples cannot be split any further. Then, the lower-level splits are re-

examined, and those not significantly contributing to the outcome are removed.  

In order to decide which feature to split upon, the algorithm uses entropy to calculate 

the change in homogeneity resulting from a split on each possible feature. This task is 

referred to as information gain. The information gain for a feature is calculated as the 

differences between the entropy in the segment before the split and the partitions 

resulting from the split: 

As after a split, the data are divided into more than one partition, meaning the function 

to calculate entropy needs to consider the total entropy across all the partitions. This 

is accomplished by weighing each partition’s entropy by the proportion of records 

falling into that partition. The higher the information gain, the better a feature is at 

creating homogenous groups after a split on that feature. 

C5.0 algorithm is known to be quite robust when working with large number of data 

that also contains missing data. C5.0 algorithm, having similarly good performance to 

Neural Networks and Support Vector Machines, however, is easier to understand and 

interpret. 

For the C5.0 model development in this thesis, R package “C50” [316] version 0.1.5. 

was used, together with the default of including missing values as the model can 

accommodate these. 

5.9.3.4. Imputation Methods 

In Experiment 3, to develop the prediction models, complete training data were used, 

but the models were evaluated, using testing data that had missing values replaced with 

three imputation methods: median imputation, 0 imputation, and missForest 

imputation. 
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It was previously described (Section 5.5.2.2) that if a patient had a number of 

laboratory values recorded for them and had a missing value with an attached 

timestamp to it, the previous laboratory value was carried forward to the new 

timestamp with a missing value. The imputation methods, however, were used only 

for patients who did not have these laboratory values recorded for them at all, meaning 

that also no timestamps for these missing values were recorded. Hence, in this thesis, 

the missing laboratory variable summary statistics (minimum, maximum, first and 

last) were replaced with values, derived from the imputation methods. This was due to 

some laboratory variables not being measured for the patients, making it impossible to 

calculate the minimum, maximum, first and last value for them. 

Similarly to Section 5.9.3.3, where methods handling missing data are described, the 

imputation methods can also be applied if the data are missing completely at random 

(MCAR).  

Since the imputation methods are known to distort the variance of the data, patients 

with more than 40% of missing values were excluded from analysis, resulting in 

completeness ranging between 96.00% and 97.40% in testing datasets for each lead 

time for delirium prediction. This means that only up to 4% of the patients had missing 

data (Chapter 8, Section 8.5.1). The AKI prediction experiments, however, resulted in 

completeness between 60.66% and 63.00% in testing datasets, meaning that up to 40% 

of the patients had missing data (Chapter 7, Section 7.5.1). This means that the 

imputation methods can significantly change the variance in AKI data. Nevertheless, 

it is recommended that single imputation methods, such as median imputation, and in 

this case, 0 imputation, are only used for analysis, where only a small number of values 

are missing [317]. However, due to the simplicity of median and 0 imputation methods, 

and hence having a higher likelihood to be put into use in practice, these methods were 

decided to be experimented with. 

Median Imputation 

Median imputation is a single imputation method that replaces missing values, using 

the population median for the numerical predictor. This method has been shown to 

produce similar results to more sophisticated imputation methods, such as multiple 

imputation [116], [318]. 
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The median imputation was chosen as most variables in this dataset were not normally 

distributed, making the median value more appropriate to replace the missing values 

with, than mean. There are three assumptions when median imputation is used: 

1. The data are missing completely at random (MCAR). 

2. The missing observations are likely to look like the majority of the observations 

in the variable (in this case median due to skewed distribution). 

3. The missing values are most likely very close to the value of the median of the 

distribution. 

As explained in Section 5.9.3.2, it can be assumed that the data for patients was missing 

completely at random, which satisfies the first assumption. In addition, most variables 

were not normally distributed, which means that most values lied close to the median 

value. This satisfies the second assumption. The third assumption is more difficult to 

be certain about, because the missing values might be key components that show why 

a patient was having a complication. Since patients with >40% of missing values were 

removed from analysis, the patients with the predicted outcomes had very low number 

of missing values, especially for delirium dataset (shown in Chapters 7 and 8). Hence, 

it can be assumed that for most patients who had missing values and had their data 

replaced with median imputation, the replaced values should be normal laboratory 

levels. 

0 Imputation 

The 0 imputation, being very similar to the median imputation, is a method in which 

the missing values are replaced with the value 0 for a numerical predictor. It was 

inspired by Pattalung et al.’s experiment [79], found in literature review (Chapter 2). 

This approach, not being a recognised imputation method, was experimented with due 

to its extreme simplicity, with a hypothesis that if this method is successful, it would 

be easy to apply into everyday practice. A development of a decision support tool 

where prediction of AKI or delirium can be made for individual patients, a replacement 

of missing values with the value 0 would be easy to understand for clinicians, and 

simple to develop. In addition, the calculation time would be fast as running 

sophisticated imputation methods would be unnecessary. 
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missForest imputation 

The missForest imputation is a method, where missing values are directly predicted, 

using the random forest algorithm on the non-missing values in the dataset. It has also 

been shown to manage missingness rates up to 30%. Even though in this thesis only 

numerical variables were treated with imputation methods, unlike median imputation, 

missForest can also be applied for categorical missing values. In addition, the data 

handled by missForest can be mixed-type, non-parametric, and allows for non-linear 

effects [122]. 

The missForest has been shown to outperform other well-known advanced imputation 

algorithms, such as k-nearest neighbours, multivariate imputation by chained 

equations, and missingness pattern alternating lasso [122], [319]. 

To apply missForest onto the datasets used in this thesis, ‘missForest’ R package 

version 1.4. [320] was used. 

5.10. Models’ Evaluation and Performance 

Measures 

The models’ performance measures were calculated using the testing set derived from 

each dataset. The models were evaluated based on the area under the receiver operating 

characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV) 

and negative predictive value (NPV). These measures were shown for each experiment 

in Study 1 and also for each model developed for each lead time in Study 2. The 

performance metrics were calculated, using the optimal cut-off points, where 

sensitivity and specificity were maximised. In addition, in Study 2, mean and standard 

deviation for each performance measure across all lead times were calculated, 

applicable for the outcome. This was done to understand and summarise the results in 

general. 

The aim of this thesis is to develop a model that reaches the highest overall 

performance (AUC), sensitivity and specificity as possible. This is to ensure that the 

model recognises as many patients with the predicted outcome as possible (sensitivity) 

and as many patients without the predicted outcome as possible (specificity). It is also 
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important to achieve a high NPV to ensure that the probability that the patient actually 

does not have the predicted outcome is high [196]. 

In addition to the models’ discriminative ability, also calibration plots were assessed 

to understand the accuracy of risk estimates between the predicted and observed 

probabilities for the predicted outcome. Using calibration plots is recommended in this 

case as in this thesis the number of patients with the predicted outcomes is sufficient 

[321]. In addition to the plots, calibration is also assessed, using mean and standard 

deviation predicted probabilities, which are compared with the prevalence of the 

outcome. If the mean predicted probability was equal to the prevalence, the model 

estimated the risk of the outcome correctly. If the mean predicted probability was 

higher than the prevalence, the model overestimated the risk of the predicted outcome, 

and vice versa [321]. As the models developed in this thesis were only validated 

internally, in case of poor calibration, the models were not recalibrated as the average 

of predicted risks would match the event rate [321]. 

In addition to the above, to further understand the performance of the models, 

confusion matrices were derived for all Study 1 models and in Study 2 for models 

predicting AKI 12 hours in advance, delirium 13 hours in advance, and both AKI and 

delirium 1 hour in advance, using the optimal cut-off values. 

Furthermore, because in clinical practice it is important to understand why the models 

give a certain probability to a patient to have the predicted outcome, variable 

importance for the models were presented, where possible. Variable importance was 

extracted from each model, based on the variable importance measures available for 

each algorithm, i.e., model coefficients for logistic regression, mean gini importance 

for random forest, proportion of times each variable is chosen for a splitting rule for 

BARTm, variable usage for C5.0, relative influence for gradient boosting. Due to the 

nature of the AdaBoost and support vector machine methods, variable importance for 

these algorithms was not available. Based on each algorithm’s variable importance 

measures, the variables were ranked. For Study 2, because there were 81 variables in 

each model (counting the minimum, maximum, first and last values for each laboratory 

value), to summarise the variable importance, from each model developed for each 
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time window, the top 20 variables were extracted. These were combined with all other 

models developed for each lead time, and then summarised based on the experiment.   
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Chapter 6. Study 1: Predicting Severe 

Postoperative Complications, Acute 

Kidney Injury and Delirium, using 

Preoperative Data 

6.1. Introduction and Related Work 

The 2011 National Confidential Enquiry into Patient Outcome and Death (NCEPOD) 

estimated that there are between 20,000-25,000 deaths among people undergoing a 

surgical procedure every year in the UK [322]. Approximately 80% of these deaths 

occur amongst a minority of ‘high risk’ patients, who make up approximately 10% of 

the overall surgical population. In addition to facing higher mortality rates, these 

patients also have increased risk of postoperative complications, and therefore require 

high levels of care and clinical resources before, during and after surgery [322]. 

Over the last two decades, an increasing number of hospitals have developed 

preoperative clinics and services [11] designed to triage patients well in advance of 

their surgery into ‘low risk patients’, suitable for day-care surgery, and ‘high-risk 

patients’, requiring additional management and admission as inpatients [323]. Data-

driven risk scoring systems are now an integral component of these surgical pre-

assessment clinics, and most of these generally focus specifically on predicting 

patients’ risks of mortality [14]. 

According to the 2021 Blue Book published by the Society for Cardiothoracic Surgery, 

the in-hospital mortality rate after cardiac surgery has remained low: i.e., 2.8% [218], 

[324]. Although surgical mortality rates are decreasing [218], the increasingly 

comorbid patient population [218] has resulted with complications after surgery being 

common, as shown in previous work [17]. Postoperative complications can have an 

important impact on patients’ quality of life [8], [9] and can also increase hospital 
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length of stay [4], [139], [325] and healthcare costs [10], [326], [327]. Hence, a robust 

and reliable predictive model for postoperative complications would prove extremely 

useful for managing patient flows and clinical resources in surgical care. Therefore, to 

explore the feasibility of such prediction model, various methods were experimented 

with to predict severe postoperative complications, acute kidney injury (AKI) and 

delirium. 

Based on the author’s previous work as part of MPhil (see Table 1.2 in Chapter 1), 

there are currently no validated surgical risk prediction models available which can 

predict combined surgical complications and their severity [17]. As shown by two 

earlier systematic reviews [14], [16], the commonly used risk prediction models (such 

as Initial Parsonnet Score [214], Cleveland Clinic Score [328], Society of Thoracic 

Surgeons Score [329], EuroSCORE [171] and EuroSCORE II [193]) have been mainly 

developed to predict mortality. As found in the literature review, undertaken in 

author’s MPhil [17], these common preoperative prediction models have also been 

evaluated at predicting a combination of complications.  

However, all studies had a different set of complications, without justification for why 

exactly these particular complications were chosen. A recent systematic review [330] 

investigating preoperative risk prediction models for complications after cardiac 

surgery did not find any newer models that were not included in the review, conducted 

in author’s MPhil, however, found also that the heterogeneity of predicted outcomes 

makes objective comparison of models impossible. Hence, in this chapter, the 

combined complications as a predicted outcome were defined based on the Delphi 

Study (Chapter 4), offering a more objectively defined outcome that is based on the 

consensus of cardiac anaesthetists and intensivists.  

The commonly used prediction models have also been evaluated at predicting various 

individual complications [17], including prolonged ICU stay, kidney complications, 

prolonged ventilation and deep sternal wound infection. However, as stated in author’s 

MPhil thesis [17], the models were found to have a slightly lower performance when 

predicting a combination of complications, as opposed to individual complications.  
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It was identified in Chapter 3 that in addition to predicting a set of complications, the 

prediction of acute kidney injury (AKI) and delirium would be beneficial. Although 

these two complications have internationally recognised diagnosis criteria (as shown 

in Section 5.6 in Chapter 5), recent developments in preoperative prediction models 

predicting these two outcomes are lacking. Only one model was found to predict AKI 

[279], and one to predict delirium [331], in cardiac surgical patients, using 

preoperatively available data only. 

Birnie et al. [279] developed a preoperative risk prediction model for postoperative 

AKI in cardiac patients, using very large development and validation datasets (total 

n=30,854). Rudolph et al. [331] developed a preoperative prediction model for 

postoperative delirium, using the data of 231 patients.  

While these models predicting AKI and delirium achieved moderately high 

performance (AUC = 0.74 for Birnie et al. and AUC = 0.75 for Rudolph et al.), like 

the aforementioned well-known preoperative risk prediction models, these were also 

developed, using logistic regression. While logistic regression is easy to understand 

and has been shown to be competitive with machine learning methods [150], [332], 

other approaches should be experimented with to find out whether other methods can 

improve the prediction of severe postoperative complications, postoperative AKI and 

delirium. 

Hence, in this chapter, in addition to logistic regression, other methods are 

experimented with, including tree-based, boosting and ensemble methods with the aim 

to achieve a better performance than previously developed prediction models. 

Furthermore, as the percentage of patients with severe postoperative complications 

was relatively small compared to no or other complications, this chapter also faced an 

imbalanced classification problem, which is one of the biggest challenges in prediction 

modelling due to its presence in many real-world classification tasks [333]. Hence, 

upsampling was also explored to find out whether it aids with developing a better 

performing prediction model. This approach was not experimented with in the other 

studies. 

This chapter aims to answer the following questions: 
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• Which classification method has the best performance when predicting 

outcomes following cardiac surgery, based on preoperative data? 

• What is the optimal number of preoperative variables for predicting the 

outcome? 

• How do balancing methods affect the performance of preoperative models’ 

performance?  

The full information about the methods used in this chapter, including description of 

databases, description of variables, definition of outcomes, methods for descriptive 

statistics, classification methods and performance measures, can be found from 

Chapter 5. 

6.2. Study 1.1 Results: Predicting Severe 

Postoperative Complications Based on 

Preoperative Data 

6.2.1. Variables Associated with Severe Postoperative 

Complications 

Based on the CaTHI database, out of 6839 patients, the prevalence of severe 

postoperative complications overall in this patient population was 5.91% (95% CI 

5.37-6.49%). The descriptive statistics of how the patient population was spread 

amongst variables in the dataset can be found from Appendix 6.2, where the patients 

with severe complications were also compared with patients without severe 

complications, using Chi-Squared Tests of Independence. 

Based on this, patients with severe complications were significantly different (p<0.05) 

from patients without severe complications based on age category, sex, whether they 

had type II diabetes, what surgical procedure they had, their surgical priority, whether 

they were in a critical preoperative state, and whether they had had a cardiac surgery 

or a percutaneous coronary intervention (PCI) before. There were also significant 

differences within patients with or without severe complications in terms of whether 
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they had extracardiac arteriopathy, left ventricular (LV) function, New York Heart 

Association (NYHA) grade, angina status, rhythm of the heart, renal function, 

preoperative creatinine levels, congestive cardiac failure, and active endocarditis. 

The Table 6.1 shows which variables were associated with severe postoperative 

complications based on unadjusted and adjusted odds ratios. Following covariate 

adjustment, twelve variables were associated with a patient having severe 

complications. Namely, patients who were 75 or older were 1.54 (95% CI 1.10-2.15) 

times more likely to have severe complications than patients who were 60 years old or 

younger. Female patients were 1.37 (95% CI 1.08-1.75) times more likely to have 

severe complications than male patients. With type II diabetes, patients were 1.52 

(95% CI 1.20-1.90) times more likely to have severe complications than patients 

without type II diabetes. Procedures-wise, patients were more likely to have severe 

complications if they had combined CABG and valve surgery (OR = 1.56, 95% CI 

1.14-2.12). With preoperative creatinine levels of 100µmol/l or higher, patients were 

1.63 (95% CI 1.26-2.10) times more likely to have severe complications than patients 

with creatinine levels of less than 100µmol/l. Patients were also more likely to have 

severe complications if they had an emergency surgery (OR = 5.19, 95% CI 2.79-

9.40), if they had had a previous cardiac surgery (OR = 3.22, 95% CI 2.12 - 4.80), 

NYHA grade level IV (OR = 1.81, 95% CI 1.10 - 2.95), and active endocarditis (OR 

= 3.15, 95% CI 1.65 - 5.83). Also having abnormal rhythm (OR = 1.42, 95% CI 1.06 

- 1.88) and congestive cardiac failure (OR = 1.45, 95% CI 1.07 - 1.95) increased the 

likelihood of having severe postoperative complications. Interestingly, patients with 

angina status level I were less likely to have severe postoperative complications than 

patients with level 0 (OR = 0.59, 95% CI 0.39 - 0.87). This could be due to the fact 

that angina status is a very subjective measure, where the patients are categorised based 

on their ability to carry out any physical movement based on a clinician’s observation 

[334]. 
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Table 6.1. Variables associated with severe postoperative complications, based on unadjusted and 

adjusted odds ratios. Only variables that are significant based on unadjusted odds ratios are included in 

this table. 

  Unadjusted   Adjusted  

Variable Level OR (95% CI) P-value OR (95% CI) P-value 

Age Category 60 or under 1.00   1.00   

  61 to 67 1.17 (0.85 - 1.59) 0.3360 1.23 (0.88 - 1.72) 0.2143 

  68 to 74 1.18 (0.87 - 1.59) 0.2800 1.04 (0.75 - 1.45) 0.8194 

  75 to 99 1.93 (1.47 - 2.55) <0.0001 1.54 (1.10 - 2.15) 0.0119 

Sex Male 1.00   1.00   

  Female 1.49 (1.20 - 1.84) 0.0002 1.37 (1.08 - 1.75) 0.0104 

Type II 

Diabetes 

No 1.00   1.00   

  Yes 1.49 (1.20 - 1.84) 0.0003 1.52 (1.20 - 1.90) 0.0004 

Procedure CABG 1.00   1.00   

  Valve 2.05 (1.63 - 2.57) <0.0001 1.24 (0.90 - 1.70) 0.1920 

  CABG and 

Valve 

2.26 (1.72 - 2.96) <0.0001 1.56 (1.14 - 2.12) 0.0054 

Renal 

Function 

Before 

Surgery 

Normal 1.00   1.00   

  Moderately 

Impaired 

1.64 (1.27 - 2.10) 0.0001 1.12 (0.84 - 1.49) 0.4554 

  Severely 

Impaired 

3.20 (2.31 - 4.40) <0.0001 1.26 (0.83 - 1.89) 0.2810 

  Unknown 1.15 (0.86 - 1.53) 0.3280 0.90 (0.65 - 1.24) 0.5194 

Preoperative 

Creatinine 

<100µmol/

l 

1.00   1.00   

  100 or 

higher 

2.33 (1.89 - 2.86) <0.0001 1.63 (1.26 - 2.10) 0.0002 

Priority Elective 1.00   1.00   

  Emergency 8.32 (4.91 - 

13.72) 

<0.0001 5.19 (2.79 - 9.40) <0.0001 

  Priority 0.89 (0.65 - 1.20) 0.4498 0.83 (0.60 - 1.13) 0.2516 

  Urgent 1.54 (1.20 - 1.96) 0.0005 0.93 (0.68 - 1.26) 0.6311 

Critical Pre-

op. State 

No 1.00   1.00   

  Yes 3.86 (2.42 - 5.94) <0.0001 1.12 (0.62 - 1.94) 0.7046 

Previous 

Cardiac 

Surgery 

No 1.00   1.00   

  Yes 4.49 (3.10 - 6.37) <0.0001 3.22 (2.12 - 4.80) <0.0001 

Extracardiac 

Arteriopathy 

No 1.00   1.00   

  Yes 1.48 (1.12 - 1.94) 0.0050 1.32 (0.98 - 1.76) 0.0610 

Left 

Ventricular 

Function 

Good 1.00   1.00   

  Moderate 1.40 (1.08 - 1.78) 0.0081 1.13 (0.86 - 1.47) 0.3686 

  Poor 2.56 (1.62 - 3.88) <0.0001 1.61 (0.97 - 2.59) 0.0557 

NYHA Grade I 1.00   1.00   

  II 1.06 (0.78 - 1.45) 0.7330 0.95 (0.69 - 1.32) 0.7534 

  III 2.05 (1.51 - 2.82) <0.0001 1.34 (0.96 - 1.89) 0.0947 

  IV 5.30 (3.49 - 8.03) <0.0001 1.81 (1.10 - 2.95) 0.0189 
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  Unadjusted   Adjusted  

Variable Level OR (95% CI) P-value OR (95% CI) P-value 

Angina Status 0 1.00   1.00   

  I 0.43 (0.29 - 0.62) <0.0001 0.59 (0.39 - 0.87) 0.0103 

  II 0.61 (0.48 - 0.78) 0.0001 1.00 (0.74 - 1.35) 0.9950 

  III 0.70 (0.51 - 0.95) 0.0260 1.04 (0.71 - 1.51) 0.8281 

  IV 1.44 (0.98 - 2.07) 0.0538 1.58 (0.98 - 2.52) 0.0575 

Active 

Endocarditis 

No 1.00   1.00   

  Yes 5.73 (3.33 - 9.45) <0.0001 3.15 (1.65 - 5.83) 0.0004 

Rhythm Normal 1.00   1.00   

  Abnormal 2.23 (1.72 - 2.87) <0.0001 1.42 (1.06 - 1.88) 0.0155 

  Unknown 1.45 (0.96 - 2.12) 0.0665 1.13 (0.72 - 1.70) 0.5842 

Congestive 

Cardiac 

Failure 

No 1.00   1.00   

  Yes 3.13 (2.45 - 3.97) <0.0001 1.45 (1.07 - 1.95) 0.0161 

 

6.2.2. Models Predicting Severe Postoperative Complications 

In this section the results of the three experiments are reported: 

Experiment 1: Predicting severe postoperative complications, using 

only variables that are significantly associated with the outcome, based 

on adjusted odds ratios. In this case these variables are age, sex, type II 

diabetes, surgical procedure, preoperative creatinine, surgical priority, 

previous cardiac surgery, NYHA grade, angina status, active 

endocarditis, rhythm and congestive cardiac failure (12 variables). 

Experiment 2: Predicting severe postoperative complications, using 

only variables that are part of the logistic EuroSCORE (15 variables). 

These variables are listed in Section 5.8.1.2. 

Experiment 3: Predicting severe postoperative complications, using all 

preoperative variables in the CaTHI database. These variables are listed 

in the Appendix 6.2. 

The patient demographics in training and testing data are shown in Appendix 6.3. 

6.2.2.1. Models’ Discrimination 

As seen from Table 6.2, random forest using all preoperative variables had the highest 

AUC of 0.713. Based on sensitivity, stacked model with generalised linear model 

using all preoperative variables and logistic EuroSCORE variables achieved both the 
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highest performance (Sens = 0.772 for both). In terms of specificity, support vector 

machine with logistic EuroSCORE variables had the highest performance (Spec = 

0.931). Because the prevalence of severe postoperative complications was very low 

(5.91%) all models had very low positive predictive values. Hence, as expected, 

negative predictive values were relatively high, stacked model with generalised linear 

model developed with all preoperative variables having the highest (NPV = 0.909). 

Looking at the models’ performance after upsampling the training data (Table 6.3), 

AdaBoost with 24 variables had the highest AUC of 0.706. Random forest with 24 

variables had the highest sensitivity of 0.781. Stacked model with generalised linear 

model using 15 variables had the highest specificity of 0.889. Similarly to the models 

developed with original training data, here also the positive predictive values were 

very low due to low prevalence of severe postoperative complications. Negative 

predictive values, however, were quite high, BCART with all preoperative variables 

having the highest (NPV = 0.912). 
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Table 6.2. Models’ performance predicting severe postoperative complications with the optimal cut-off points where the sensitivity (Sens), specificity (Spec), positive 

and negative predictive values (PPV and NPV) were calculated from. For each performance measure, 95% confidence intervals (CI) are shown. The highest result for 

each performance measure is marked in bold. 

Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Experiment 1 (12 variables) 

AB 0.650 (0.573 - 0.727) 0.712 (0.639 - 0.785) 0.513 (0.432 - 0.594) 0.037 (0.006 - 0.068) 0.908 (0.861 - 0.955) 0.134 

BCART 0.659 (0.582 - 0.736) 0.377 (0.298 - 0.456) 0.901 (0.853 - 0.949) 0.046 (0.012 - 0.080) 0.791 (0.725 - 0.857) 0.120 

GBM 0.675 (0.599 - 0.751) 0.678 (0.602 - 0.754) 0.601 (0.522 - 0.680) 0.036 (0.006 - 0.066) 0.895 (0.845 - 0.945) 0.048 

LR 0.668 (0.592 - 0.744) 0.603 (0.524 - 0.682) 0.678 (0.602 - 0.754) 0.039 (0.008 - 0.070) 0.885 (0.833 - 0.937) 0.051 

NB 0.662 (0.585 - 0.739) 0.486 (0.405 - 0.567) 0.795 (0.730 - 0.860) 0.043 (0.010 - 0.076) 0.859 (0.803 - 0.915) 0.001 

RF 0.654 (0.577 - 0.731) 0.445 (0.364 - 0.526) 0.815 (0.752 - 0.878) 0.045 (0.011 - 0.079) 0.857 (0.800 - 0.914) 0.005 

Stack GLM 0.667 (0.591 - 0.743) 0.634 (0.556 - 0.712) 0.634 (0.556 - 0.712) 0.035 (0.005 - 0.065) 0.902 (0.854 - 0.950) 0.100 

Stack RF 0.671 (0.595 - 0.747) 0.515 (0.434 - 0.596) 0.786 (0.719 - 0.853) 0.037 (0.006 - 0.068) 0.869 (0.814 - 0.924) 0.068 

SVM 0.534 (0.453 - 0.615) 0.404 (0.324 - 0.484) 0.746 (0.675 - 0.817) 0.052 (0.016 - 0.088) 0.901 (0.853 - 0.949) 0.057 

Experiment 2 (15 variables) 

AB 0.648 (0.571 - 0.725) 0.651 (0.574 - 0.728) 0.584 (0.504 - 0.664) 0.040 (0.008 - 0.072) 0.902 (0.854 - 0.950) 0.161 

BCART 0.645 (0.567 - 0.723) 0.534 (0.453 - 0.615) 0.734 (0.662 - 0.806) 0.042 (0.009 - 0.075) 0.878 (0.825 - 0.931) 0.001 

GBM 0.668 (0.592 - 0.744) 0.534 (0.453 - 0.615) 0.754 (0.684 - 0.824) 0.041 (0.009 - 0.073) 0.869 (0.814 - 0.924) 0.072 

LR 0.662 (0.585 - 0.739) 0.596 (0.516 - 0.676) 0.689 (0.614 - 0.764) 0.039 (0.008 - 0.070) 0.883 (0.831 - 0.935) 0.055 

NB 0.643 (0.565 - 0.721) 0.473 (0.392 - 0.554) 0.763 (0.694 - 0.832) 0.046 (0.012 - 0.080) 0.879 (0.826 - 0.932) 0.001 

RF 0.659 (0.582 - 0.736) 0.507 (0.426 - 0.588) 0.768 (0.700 - 0.836) 0.043 (0.010 - 0.076) 0.869 (0.814 - 0.924) 0.010 

Stack GLM 0.682 (0.606 - 0.758) 0.772 (0.704 - 0.840) 0.549 (0.468 - 0.630) 0.025 (0.000 - 0.050) 0.903 (0.855 - 0.951) 0.060 

Stack RF 0.648 (0.571 - 0.725) 0.644 (0.566 - 0.722) 0.608 (0.529 - 0.687) 0.036 (0.006 - 0.066) 0.907 (0.860 - 0.954) 0.052 

SVM 0.568 (0.488 - 0.648) 0.247 (0.177 - 0.317) 0.931 (0.890 - 0.972) 0.053 (0.017 - 0.089) 0.801 (0.736 - 0.866) 0.060 

Experiment 3 (24 variables) 

AB 0.691 (0.616 - 0.766) 0.658 (0.581 - 0.735) 0.617 (0.538 - 0.696) 0.037 (0.006 - 0.068) 0.894 (0.844 - 0.944) 0.183 

BCART 0.704 (0.630 - 0.778) 0.575 (0.495 - 0.655) 0.732 (0.660 - 0.804) 0.039 (0.008 - 0.070) 0.871 (0.817 - 0.925) 0.080 
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Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

GBM 0.680 (0.604 - 0.756) 0.500 (0.419 - 0.581) 0.775 (0.707 - 0.843) 0.043 (0.010 - 0.076) 0.867 (0.812 - 0.922) 0.073 

LR 0.670 (0.594 - 0.746) 0.500 (0.419 - 0.581) 0.779 (0.712 - 0.846) 0.043 (0.010 - 0.076) 0.865 (0.810 - 0.920) 0.071 

NB 0.663 (0.586 - 0.740) 0.425 (0.345 - 0.505) 0.825 (0.763 - 0.887) 0.046 (0.012 - 0.080) 0.856 (0.799 - 0.913) 0.001 

RF 0.713 (0.640 - 0.786) 0.562 (0.482 - 0.642) 0.748 (0.678 - 0.818) 0.039 (0.008 - 0.070) 0.866 (0.811 - 0.921) 0.085 

Stack GLM 0.685 (0.610 - 0.760) 0.772 (0.704 - 0.840) 0.516 (0.435 - 0.597) 0.027 (0.001 - 0.053) 0.909 (0.862 - 0.956) 0.066 

Stack RF 0.681 (0.605 - 0.757) 0.356 (0.278 - 0.434) 0.912 (0.866 - 0.958) 0.042 (0.009 - 0.075) 0.798 (0.733 - 0.863) 0.060 

SVM 0.607 (0.528 - 0.686) 0.507 (0.426 - 0.588) 0.687 (0.612 - 0.762) 0.047 (0.013 - 0.081) 0.899 (0.850 - 0.948) 0.059 
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Table 6.3. Models predicting severe postoperative complications, using upsampling in training data, with the optimal cut-off points where the sensitivity (Sens), 

specificity (Spec), positive and negative predictive values (PPV and NPV) were calculated from. For each performance measure, 95% confidence intervals (CI) are 

shown. The highest result for each performance measure is marked in bold. 

Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Experiment 1 (12 variables) 

AB 0.661 (0.584 - 0.738) 0.678 (0.602 - 0.754) 0.568 (0.488 - 0.648) 0.038 (0.007 - 0.069) 0.902 (0.854 - 0.950) 0.130 

BCART 0.640 (0.562 - 0.718) 0.534 (0.453 - 0.615) 0.729 (0.657 - 0.801) 0.042 (0.009 - 0.075) 0.880 (0.827 - 0.933) 0.080 

GBM 0.662 (0.585 - 0.739) 0.493 (0.412 - 0.574) 0.769 (0.701 - 0.837) 0.044 (0.011 - 0.077) 0.871 (0.817 - 0.925) 0.537 

LR 0.663 (0.586 - 0.740) 0.589 (0.509 - 0.669) 0.669 (0.593 - 0.745) 0.041 (0.009 - 0.073) 0.890 (0.839 - 0.941) 0.109 

NB 0.663 (0.586 - 0.740) 0.500 (0.419 - 0.581) 0.768 (0.700 - 0.836) 0.043 (0.010 - 0.076) 0.870 (0.815 - 0.925) 0.109 

RF 0.659 (0.582 - 0.736) 0.589 (0.509 - 0.669) 0.663 (0.586 - 0.740) 0.041 (0.009 - 0.073) 0.892 (0.842 - 0.942) 0.240 

Stack GLM 0.673 (0.597 - 0.749) 0.579 (0.499 - 0.659) 0.728 (0.656 - 0.800) 0.040 (0.008 - 0.072) 0.868 (0.813 - 0.923) 0.070 

Stack RF 0.644 (0.566 - 0.722) 0.404 (0.324 - 0.484) 0.807 (0.743 - 0.871) 0.050 (0.015 - 0.085) 0.870 (0.815 - 0.925) 0.096 

SVM 0.654 (0.577 - 0.731) 0.705 (0.631 - 0.779) 0.559 (0.478 - 0.640) 0.035 (0.005 - 0.065) 0.900 (0.851 - 0.949) 0.385 

Experiment 2 (15 variables) 

AB 0.648 (0.571 - 0.725) 0.767 (0.698 - 0.836) 0.475 (0.394 - 0.556) 0.033 (0.004 - 0.062) 0.908 (0.861 - 0.955) 0.066 

BCART 0.632 (0.554 - 0.710) 0.493 (0.412 - 0.574) 0.742 (0.671 - 0.813) 0.045 (0.011 - 0.079) 0.883 (0.831 - 0.935) 0.120 

GBM 0.647 (0.569 - 0.725) 0.493 (0.412 - 0.574) 0.739 (0.668 - 0.810) 0.045 (0.011 - 0.079) 0.884 (0.832 - 0.936) 0.537 

LR 0.660 (0.583 - 0.737) 0.445 (0.364 - 0.526) 0.814 (0.751 - 0.877) 0.045 (0.011 - 0.079) 0.858 (0.801 - 0.915) 0.602 

NB 0.658 (0.581 - 0.735) 0.527 (0.446 - 0.608) 0.740 (0.669 - 0.811) 0.042 (0.009 - 0.075) 0.877 (0.824 - 0.930) 0.071 

RF 0.639 (0.561 - 0.717) 0.705 (0.631 - 0.779) 0.502 (0.421 - 0.583) 0.039 (0.008 - 0.070) 0.911 (0.865 - 0.957) 0.120 

Stack GLM 0.661 (0.584 - 0.738) 0.351 (0.274 - 0.428) 0.889 (0.838 - 0.940) 0.050 (0.015 - 0.085) 0.816 (0.753 - 0.879) 0.055 

Stack RF 0.652 (0.575 - 0.729) 0.553 (0.472 - 0.634) 0.692 (0.617 - 0.767) 0.044 (0.011 - 0.077) 0.886 (0.834 - 0.938) 0.118 

SVM 0.658 (0.581 - 0.735) 0.651 (0.574 - 0.728) 0.596 (0.516 - 0.676) 0.039 (0.008 - 0.070) 0.900 (0.851 - 0.949) 0.406 

Experiment 3 (24 variables) 

AB 0.706 (0.632 - 0.780) 0.534 (0.453 - 0.615) 0.756 (0.686 - 0.826) 0.041 (0.009 - 0.073) 0.868 (0.813 - 0.923) 0.166 

BCART 0.651 (0.574 - 0.728) 0.747 (0.676 - 0.818) 0.467 (0.386 - 0.548) 0.036 (0.006 - 0.066) 0.912 (0.866 - 0.958) 0.040 
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Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

GBM 0.653 (0.576 - 0.730) 0.397 (0.318 - 0.476) 0.836 (0.776 - 0.896) 0.048 (0.013 - 0.083) 0.857 (0.800 - 0.914) 0.549 

LR 0.662 (0.585 - 0.739) 0.616 (0.537 - 0.695) 0.633 (0.555 - 0.711) 0.040 (0.008 - 0.072) 0.896 (0.846 - 0.946) 0.491 

NB 0.677 (0.601 - 0.753) 0.479 (0.398 - 0.560) 0.818 (0.755 - 0.881) 0.042 (0.009 - 0.075) 0.846 (0.787 - 0.905) 0.154 

RF 0.689 (0.614 - 0.764) 0.781 (0.714 - 0.848) 0.482 (0.401 - 0.563) 0.030 (0.002 - 0.058) 0.905 (0.857 - 0.953) 0.065 

Stack GLM 0.675 (0.599 - 0.751) 0.658 (0.581 - 0.735) 0.651 (0.574 - 0.728) 0.036 (0.006 - 0.066) 0.881 (0.828 - 0.934) 0.093 

Stack RF 0.665 (0.588 - 0.742) 0.482 (0.401 - 0.563) 0.752 (0.682 - 0.822) 0.047 (0.013 - 0.081) 0.878 (0.825 - 0.931) 0.052 

SVM 0.663 (0.586 - 0.740) 0.534 (0.453 - 0.615) 0.723 (0.650 - 0.796) 0.043 (0.010 - 0.076) 0.882 (0.830 - 0.934) 0.557 
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The Figure 6.1 shows that in general the performance, as the number of variables 

changed, stayed quite similar. When using the original training data, support vector 

machine’s performance was visibly the lowest, regardless of the number of variables 

used. Apart from the support vector machine, the AUC varied very little, the maximum 

being 0.713 (random forest, 24 variables, original data) and minimum of 0.632 

(BCART, 15 variables, upsampled data). 

The Figure 6.2 shows the sensitivity and specificity for each model and experiment. 

Even though the models’ performance did not seem to change drastically as the 

number of variables changed, there seemed to be quite high variability of sensitivity 

and specificity across models. The sensitivity ranged from 0.781 (random forest, 24 

variables, upsampled data) to 0.247 (support vector machine 15 variables, original 

data). The specificity ranged from 0.931 (support vector machine, 15 variables, 

original data) to 0.467 (BCART, 24 variables, upsampled data). Visually it was quite 

clear that models with very high specificity tended to have lower sensitivity and vice 

versa. 

Figure 6.3 confirms that the PPV for all models, regardless of experiment, were very 

low, which was expected due to low prevalence of severe complications. Conversely, 

NPV for all models was considerably high and similar across models and experiments, 

the highest being 0.912 (BCART, 24 variables, upsampled data) and lowest being 

0.791 (BCART, 12 variables, original data). 
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Figure 6.2. Area Under the Receiver Operating Characteristic Curve for each model, based on the 

number of variables used and whether upsampling was used. 

 

Figure 6.2. Sensitivity and specificity for each model based on the number of variables and whether 

upsampling was used. 
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Figure 6.3. Positive and negative predictive values for each model based on the number of variables 

and whether upsampling was used.  

 

6.2.2.2. Calibration and Variable Importance of the Best Performing 

Model 

Since the random forest model using 24 preoperative variables and original data had 

the best discriminative performance, calibration for this model was assessed. The 

calibration plot (Figure 6.4) shows that for patients who had low true probability, the 

predicted probability for these people was higher. This means that for these patients 

the model overestimated their risk of having severe complications. For patients who 

had high true probability, however, the predicted probability was closer to the true 

probability, but in most cases stayed slightly on the lower side. This means that the 

model was better at estimating the risk for patients who had higher true probability for 

severe complications. The mean predicted probability for this model was 7.74% (SD 

= 11.26%), which is slightly higher than the prevalence of 5.91% severe complications. 

This means that the model in general overestimated patients’ risk for severe 

postoperative complications. In addition, the high standard deviation reflects the 

uncertainty about the estimated predicted probabilities, as also seen in Figure 6.4. 
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Figure 6.4. Calibration of the random forest model predicting “Severe” complications using 24 

preoperatively available variables and original training data. The light-green and dark-green areas 

indicate the 95% CI and IQR for the predicted probabilities, respectively. 

 

Since the random forest using 24 variables and original training data had the highest 

performance based on AUC, variable importance for this model is shown in Figure 

6.5.  The top 3 variables were surgical priority, previous cardiac surgery and 

congestive cardiac failure, all of which were also significantly associated with severe 

postoperative complications based on logistic regression. Interestingly, the random 

forest model also deemed BMI (top 7) and preoperative renal function (top 9) to be 

important, whereas based on adjusted odds ratios, these two variables were not 

significantly associated with severe complications. Due to the nature of the random 

forest model, the model coefficients for random forest were not available. 
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Figure 6.5. Variable importance for random forest using 24 variables and original training data. 

 

Looking at the confusion matrices, (Figures 6.6 to 6.8), in general the models were not 

very good at classifying patients to have severe complications correctly. In terms of 

correctly classifying positive cases for severe complications, random forest with all 

preoperative variables and upsampled training data had the highest percentage 

classified correctly (78%). 
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Figure 6.6. Confusion matrices for models predicting severe postoperative complications, using only significant variables associated with the predicted outcome, 

using original training data (A) and upsampled training data (B). 
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Figure 6.7. Confusion matrices for models predicting severe postoperative complications, using only logistic EuroSCORE variables, developed with original 

training data (A) and upsampled training data (B). 
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Figure 6.8. Confusion matrices for models predicting severe postoperative complications, using all preoperatively available variables, developed with original 

training data (A) and upsampled training data (B). 
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6.3. Study 1.2 Results: Models Predicting 

Acute Kidney Injury Preoperatively 

Based on the complications recorded in the CaTHI database, 5.22% of the patients had 

renal complications (“acute renal failure”, “acute renal dysfunction”, “acute kidney 

injury”, “other renal complication” and “postoperative elevated creatinine”). However, 

in this thesis, as explained in Chapter 5, Section 5.6, AKI is defined based on KDIGO 

guidelines, which follow the laboratory results of serum creatinine entered 

preoperatively in the CaTHI database and in the ICU in the CentricityTM CIS database. 

Based on KDIGO guidelines, which are an internationally recognised way of 

diagnosing AKI [106], the prevalence of postoperative AKI in this patient population 

is 18.93% (95% CI 18.02 - 19.88). This shows that renal complications, including AKI, 

are underreported in the CaTHI database.  

As done in previous section, here also the patient population with AKI was compared 

with the patient population without AKI, using the preoperatively available variables 

and Chi-Squared Test of Independence (Appendix 6.2). The patients with AKI were 

significantly different from patients with no postoperative AKI based on age group, 

sex, BMI, type II diabetes, surgical procedure, surgical priority, critical preoperative 

state, previous cardiac surgery, extracardiac arteriopathy, LV function, NYHA grade, 

angina status, rhythm, preoperative renal function, preoperative creatinine levels, 

pulmonary disease, hypertension history, congestive cardiac failure, and active 

endocarditis. The descriptive statistics of how patients with AKI are spread in the 

population can be seen from Appendix 6.2. 

6.3.1. Preoperative Variables Associated with AKI  

The Table 6.4 shows the variables that are associated with AKI based on unadjusted 

and adjusted odds ratios. Following covariate adjustment, 10 variables were associated 

with AKI. Patients who were between 75 and 99 years old are 1.53 (95% CI 1.17-1.99) 

times more likely to have postoperative AKI than patients who were 60 or younger. 

Patients who had a valve surgery were 1.53 (95% CI 1.23-1.99) times and patients 
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undergoing combined CABG and valve surgery were 1.78 (95% CI 1.39-2.26) times 

more likely to have AKI than patients with CABG surgery. 

As expected, patients who had severely impaired renal function preoperatively were 

1.43 (95% CI 1.08-1.87) times more likely to have postoperative AKI than patients 

with normal renal function. This was also reflected in preoperative creatinine, which 

showed that patients with preoperative creatinine higher than 100 µmol/l were 2.10 

(95% CI 1.73-2.55) times more likely to have AKI after surgery than patients with 

lower creatinine levels. 

Patients who had emergency surgery (OR = 3.53, 95% CI 1.90-6.41) or urgent surgery 

(OR = 1.29, 95% CI 1.02-1.63) were more likely to have AKI than patients with 

elective surgery. Patients who had had a previous cardiac surgery were 1.70 (95% CI 

1.12-2.55) times more likely to have AKI after surgery than patients who had a cardiac 

surgery for the first time. 

When having extracardiac arteriopathy, patients were 1.39 (95% CI 1.09-1.75) times 

more likely to have AKI than with no extracardiac arteriopathy. Patients with 

hypertension history were 1.32 (95% CI 1.08-1.61) times more likely to have AKI than 

patients with no hypertension.  

Interestingly, patients with level III angina status and with unknown left main stem 

status were less likely to have postoperative AKI than patients with no angina or with 

no left main stem problems. In terms of angina, the angina status is a highly subjective 

measure, where the patients are categorised based on their ability to carry out any 

physical movement based on a clinician’s observation [334]. The fact that patients with 

unknown left main stem status were significantly associated with the outcome shows 

the importance of the improvement in data quality in clinical databases. 
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Table 6.4. How variables were associated with postoperative AKI based on unadjusted and adjusted 

odds ratios. Only variables significant based on unadjusted odds ratios are included in the table. 

  Unadjusted  Adjusted  

Variable Level OR (95% CI) P-value OR (95% CI) P-value 

Age Category 60 or under 1.00 
 

1.00 
 

 
61 to 67 1.24 (0.97 - 1.58) 0.0862 1.14 (0.88 - 1.48) 0.3087  
68 to 74 1.44 (1.15 - 1.81) 0.0017 1.13 (0.87 - 1.45) 0.3615  
75 to 99 2.42 (1.96 - 3.01) <0.0001 1.53 (1.17 - 1.99) 0.0017 

Sex Male 1.00 
 

1.00 
 

 
Female 1.39 (1.18 - 1.63) <0.0001 1.20 (0.99 - 1.45) 0.0560 

Type II Diabetes No 1.00 
 

1.00 
 

 
Yes 1.21 (1.02 - 1.44) 0.0252 1.17 (0.98 - 1.41) 0.0881 

Smoking Status Never 

smoked 

1.00 
 

1.00 
 

 
Ex-smoker 0.86 (0.71 - 1.05) 0.1356 0.92 (0.75 - 1.12) 0.4009  
Current 

smoker 

0.66 (0.50 - 0.86) 0.0021 0.81 (0.61 - 1.08) 0.1543 

 
Unknown 0.85 (0.69 - 1.04) 0.1160 0.88 (0.70 - 1.10) 0.2612 

Procedure CABG 1.00 
 

1.00 
 

 
Valve 2.17 (1.82 - 2.57) <0.0001 1.56 (1.23 - 1.99) 0.0003  
CABG and 

Valve 

2.52 (2.04 - 3.11) <0.0001 1.78 (1.39 - 2.26) <0.0001 

Renal Function 

Before Surgery 

Normal 1.00 
 

1.00 
 

 
Moderately 

Impaired 

0.61 (0.51 - 0.74) <0.0001 0.98 (0.79 - 1.23) 0.8901 

 
Severely 

Impaired 

2.49 (1.95 - 3.19) <0.0001 1.43 (1.08 - 1.87) 0.0106 

 
Unknown 0.74 (0.59 - 0.91) 0.0055 0.94 (0.74 - 1.18) 0.5914 

Preoperative 

Creatinine 

<100µmol/l 1.00 
 

1.00 
 

 
100 or 

higher 

2.73 (2.33 - 3.20) <0.0001 2.10 (1.73 - 2.55) <0.0001 

Priority Elective 1.00 
 

1.00 
 

 
Emergency 4.15 (2.42 - 6.94) <0.0001 3.53 (1.90 - 6.41) <0.0001  
Priority 0.90 (0.71 - 1.12) 0.3319 0.87 (0.68 - 1.10) 0.2475  
Urgent 1.37 (1.13 - 1.65) 0.0012 1.29 (1.02 - 1.63) 0.0323 

Critical Pre-op. 

State 

No 1.00 
 

1.00 
 

 
Yes 2.33 (1.47 - 3.60) 0.0002 1.14 (0.65 - 1.93) 0.6435 

Previous 

Cardiac Surgery 

No 1.00 
 

1.00 
 

 
Yes 2.35 (1.60 - 3.38) <0.0001 1.70 (1.12 - 2.55) 0.0114 

Extracardiac 

Arteriopathy 

No 1.00 
 

1.00 
 

 
Yes 1.38 (1.11 - 1.71) 0.0037 1.39 (1.09 - 1.75) 0.0062 

Left Ventricular 

Function 

Good 1.00 
 

1.00 
 

 
Moderate 1.24 (1.02 - 1.50) 0.0269 1.11 (0.90 - 1.37) 0.3091  
Poor 1.79 (1.19 - 2.60) 0.0034 1.22 (0.78 - 1.85) 0.3766 

NYHA Grade I 1.00 
 

1.00 
 

 
II 0.92 (0.74 - 1.14) 0.4305 0.85 (0.68 - 1.07) 0.1652  
III 1.45 (1.16 - 1.82) 0.0012 1.03 (0.81 - 1.32) 0.8067  
IV 2.97 (2.08 - 4.22) <0.0001 1.46 (0.95 - 2.21) 0.0801 

Angina Status 0 1.00 
 

1.00 
 

 
I 0.70 (0.55 - 0.89) 0.0035 0.87 (0.67 - 1.12) 0.2801 
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  Unadjusted  Adjusted  

Variable Level OR (95% CI) P-value OR (95% CI) P-value  
II 0.59 (0.49 - 0.71) <0.0001 0.85 (0.68 - 1.06) 0.1552  
III 0.48 (0.37 - 0.62) <0.0001 0.66 (0.48 - 0.89) 0.0073  
IV 0.69 (0.47 - 0.98) 0.0457 0.66 (0.42 - 1.01) 0.0597 

Active 

Endocarditis 

No 
  

1.00 
 

 
Yes 2.86 (1.64 - 4.79) 0.0001 1.45 (0.77 - 2.64) 0.2337 

Rhythm Normal 1.00 
 

1.00 
 

 
Abnormal 1.86 (1.51 - 2.28) <0.0001 1.12 (0.89 - 1.40) 0.3464  
Unknown 0.88 (0.61 - 1.24) 0.4750 0.88 (0.59 - 1.27) 0.4979 

Left Main Stem 

Disease 

No 1.00 
 

1.00 
 

 
Yes 0.77 (0.60 - 0.97) 0.0329 1.01 (0.77 - 1.32) 0.9305  
Unknown 0.76 (0.64 - 0.90) 0.0012 0.79 (0.66 - 0.95) 0.0122 

Hypertension 

History 

No 1.00 
 

1.00 
 

 
Yes 1.31 (1.09 - 1.56) 0.0036 1.32 (1.08 - 1.61) 0.0059 

Congestive 

Cardiac Failure 

No 1.00 
 

1.00 
 

 
Yes 2.15 (1.74 - 2.65) <0.0001 1.09 (0.84 - 1.41) 0.5072 

 

6.3.2. Models Predicting AKI Using Preoperative Data 

In this section, classification methods were compared at predicting AKI, when using 

different number of variables. Since this was an imbalanced classification problem, 

upsampling was also experimented with. 

The experiments in terms of the variables include the following: 

Experiment 1: Predicting AKI, using only the variables that were 

significantly associated with AKI based adjusted odds ratios. These 

variables are age category, surgical procedure, preoperative renal function, 

preoperative creatinine, surgical priority, previous cardiac surgery, 

extracardiac arteriopathy, angina status, left main stem status and 

hypertension history (10 variables). 

Experiment 2: Predicting AKI, using only the variables that are used to 

calculate logistic EuroSCORE (15 variables). These variables are listed in 

Section 5.8.1.2. 

Experiment 3: Predicting AKI, using all variables available in the dataset 

(24 variables). These variables are listed in Appendix 6.2. 
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The patient demographics in training and testing data are shown in Appendix 6.3. 

6.3.2.1. Models’ Discrimination 

As seen from Table 6.5, gradient boosting developed with all preoperative variables 

had the highest performance in terms of AUC (0.666), closely followed by random 

forest (AUC = 0.665). In terms of sensitivity, stacked model with random forest using 

all variables achieved the highest performance (Sens = 0.671). Overall, models had 

higher specificity than sensitivity, support vector machine developed with 10 variables 

having had the highest (Spec = 0.876). For all models the positive predictive value 

(PPV) was very low, even though the prevalence of AKI was not very low (ca. 19%). 

This shows that the models were not very good at recognising patients with AKI, as 

also shown by sensitivity. The negative predictive values were considerably higher 

than positive predictive values, the stacked model with random forest using the logistic 

EuroSCORE variables (15 variables) having had the highest (NPV = 0.753). 

Looking at the Table 6.6, where the performance of models using upsampled training 

data is shown, stacked model with generalised linear model had the highest 

performance of AUC = 0.667. This model used all preoperative variables. Based on 

sensitivity, random forest using 10 variables had the highest performance (Sens = 

0.746).  BCART with all preoperative variables had the highest specificity of 0.858. 

Even though the training set used upsampled data, using these models on the testing 

data that had the original imbalanced outcome resulted in very low positive predictive 

values for all models. The highest NPV, however, belonged to random forest using 10 

variables (NPV = 0.774). 
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Table 6.5. Models predicting AKI based on different number of variables, using the original data with the optimal cut-off points where the sensitivity (Sens), specificity 

(Spec), positive and negative predictive values (PPV and NPV) were calculated from. For each performance measure, 95% confidence intervals (CI) are shown. The 

highest result for each performance measure is marked in bold. 

Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Experiment 1 (10 variables) 

AB 0.562 (0.516 - 0.608) 0.370 (0.325 - 0.415) 0.739 (0.698 - 0.780) 0.175 (0.140 - 0.210) 0.739 (0.698 - 0.780) 0.391 

BCART 0.597 (0.552 - 0.642) 0.561 (0.515 - 0.607) 0.589 (0.543 - 0.635) 0.156 (0.122 - 0.190) 0.747 (0.707 - 0.787) 0.001 

GBM 0.634 (0.589 - 0.679) 0.468 (0.422 - 0.514) 0.769 (0.730 - 0.808) 0.147 (0.114 - 0.180) 0.666 (0.622 - 0.710) 0.212 

LR 0.644 (0.600 - 0.688) 0.508 (0.462 - 0.554) 0.733 (0.692 - 0.774) 0.143 (0.111 - 0.175) 0.679 (0.636 - 0.722) 0.203 

NB 0.632 (0.587 - 0.677) 0.541 (0.495 - 0.587) 0.701 (0.659 - 0.743) 0.140 (0.108 - 0.172) 0.690 (0.647 - 0.733) 0.001 

RF 0.635 (0.590 - 0.680) 0.526 (0.480 - 0.572) 0.713 (0.671 - 0.755) 0.142 (0.110 - 0.174) 0.687 (0.644 - 0.730) 0.025 

Stack GLM 0.625 (0.580 - 0.670) 0.401 (0.356 - 0.446) 0.794 (0.757 - 0.831) 0.155 (0.122 - 0.188) 0.679 (0.636 - 0.722) 0.211 

Stack RF 0.589 (0.543 - 0.635) 0.506 (0.460 - 0.552) 0.649 (0.605 - 0.693) 0.156 (0.122 - 0.190) 0.741 (0.700 - 0.782) 0.066 

SVM 0.564 (0.518 - 0.610) 0.283 (0.241 - 0.325) 0.876 (0.846 - 0.906) 0.169 (0.134 - 0.204) 0.638 (0.594 - 0.682) 0.181 

Experiment 2 (15 variables) 

AB 0.563 (0.517 - 0.609) 0.254 (0.214 - 0.294) 0.868 (0.837 - 0.899) 0.176 (0.141 - 0.211) 0.676 (0.633 - 0.719) 0.469 

BCART 0.602 (0.557 - 0.647) 0.624 (0.579 - 0.669) 0.551 (0.505 - 0.597) 0.145 (0.112 - 0.178) 0.744 (0.704 - 0.784) 0.040 

GBM 0.636 (0.591 - 0.681) 0.586 (0.540 - 0.632) 0.638 (0.594 - 0.682) 0.139 (0.107 - 0.171) 0.713 (0.671 - 0.755) 0.176 

LR 0.637 (0.593 - 0.681) 0.630 (0.585 - 0.675) 0.597 (0.552 - 0.642) 0.133 (0.102 - 0.164) 0.720 (0.678 - 0.762) 0.173 

NB 0.628 (0.583 - 0.673) 0.559 (0.513 - 0.605) 0.654 (0.610 - 0.698) 0.143 (0.111 - 0.175) 0.713 (0.671 - 0.755) 0.001 

RF 0.626 (0.581 - 0.671) 0.612 (0.567 - 0.657) 0.597 (0.552 - 0.642) 0.139 (0.107 - 0.171) 0.726 (0.685 - 0.767) 0.005 

Stack GLM 0.618 (0.573 - 0.663) 0.419 (0.373 - 0.465) 0.782 (0.744 - 0.820) 0.153 (0.120 - 0.186) 0.682 (0.639 - 0.725) 0.156 

Stack RF 0.587 (0.541 - 0.633) 0.539 (0.493 - 0.585) 0.601 (0.556 - 0.646) 0.157 (0.123 - 0.191) 0.753 (0.713 - 0.793) 0.294 

SVM 0.551 (0.505 - 0.597) 0.296 (0.254 - 0.338) 0.832 (0.797 - 0.867) 0.174 (0.139 - 0.209) 0.696 (0.653 - 0.739) 0.181 

Experiment 3 (24 variables) 

AB 0.625 (0.580 - 0.670) 0.481 (0.435 - 0.527) 0.706 (0.664 - 0.748) 0.155 (0.122 - 0.188) 0.711 (0.669 - 0.753) 0.370 

BCART 0.630 (0.585 - 0.675) 0.499 (0.453 - 0.545) 0.687 (0.644 - 0.730) 0.153 (0.120 - 0.186) 0.716 (0.674 - 0.758) 0.240 
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Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

GBM 0.666 (0.622 - 0.710) 0.606 (0.561 - 0.651) 0.656 (0.612 - 0.700) 0.130 (0.099 - 0.161) 0.695 (0.652 - 0.738) 0.185 

LR 0.658 (0.614 - 0.702) 0.590 (0.545 - 0.635) 0.648 (0.604 - 0.692) 0.136 (0.104 - 0.168) 0.706 (0.664 - 0.748) 0.177 

NB 0.650 (0.606 - 0.694) 0.646 (0.602 - 0.690) 0.573 (0.527 - 0.619) 0.133 (0.102 - 0.164) 0.727 (0.686 - 0.768) 0.001 

RF 0.665 (0.621 - 0.709) 0.626 (0.581 - 0.671) 0.630 (0.585 - 0.675) 0.129 (0.098 - 0.160) 0.704 (0.662 - 0.746) 0.050 

Stack GLM 0.639 (0.595 - 0.683) 0.539 (0.493 - 0.585) 0.685 (0.642 - 0.728) 0.141 (0.109 - 0.173) 0.706 (0.664 - 0.748) 0.195 

Stack RF 0.617 (0.572 - 0.662) 0.671 (0.628 - 0.714) 0.505 (0.459 - 0.551) 0.137 (0.105 - 0.169) 0.752 (0.712 - 0.792) 0.156 

SVM 0.594 (0.549 - 0.639) 0.325 (0.282 - 0.368) 0.844 (0.810 - 0.878) 0.166 (0.132 - 0.200) 0.659 (0.615 - 0.703) 0.195 
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Table 6.6. Models predicting AKI based on different number of variables, using upsampled training data with the optimal cut-off points where the sensitivity (Sens), 

specificity (Spec), positive and negative predictive values (PPV and NPV) were calculated from. For each performance measure, 95% confidence intervals (CI) are 

shown. The highest result for each performance measure is marked in bold. 

Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Experiment 1 (10 variables) 

AB 0.546 (0.500 - 0.592) 0.274 (0.233 - 0.315) 0.822 (0.787 - 0.857) 0.180 (0.144 - 0.216) 0.724 (0.683 - 0.765) 0.554 

BCART 0.561 (0.515 - 0.607) 0.561 (0.515 - 0.607) 0.542 (0.496 - 0.588) 0.167 (0.133 - 0.201) 0.766 (0.727 - 0.805) 0.160 

GBM 0.628 (0.583 - 0.673) 0.445 (0.399 - 0.491) 0.768 (0.729 - 0.807) 0.152 (0.119 - 0.185) 0.677 (0.634 - 0.720) 0.534 

LR 0.642 (0.598 - 0.686) 0.595 (0.550 - 0.640) 0.639 (0.595 - 0.683) 0.136 (0.104 - 0.168) 0.709 (0.667 - 0.751) 0.493 

NB 0.641 (0.597 - 0.685) 0.468 (0.422 - 0.514) 0.781 (0.743 - 0.819) 0.145 (0.112 - 0.178) 0.653 (0.609 - 0.697) 0.304 

RF 0.567 (0.521 - 0.613) 0.746 (0.706 - 0.786) 0.366 (0.321 - 0.411) 0.147 (0.114 - 0.180) 0.774 (0.735 - 0.813) 0.050 

Stack GLM 0.646 (0.602 - 0.690) 0.538 (0.492 - 0.584) 0.714 (0.672 - 0.756) 0.136 (0.104 - 0.168) 0.688 (0.645 - 0.731) 0.212 

Stack RF 0.594 (0.549 - 0.639) 0.423 (0.377 - 0.469) 0.747 (0.707 - 0.787) 0.157 (0.123 - 0.191) 0.712 (0.670 - 0.754) 0.050 

SVM 0.621 (0.576 - 0.666) 0.494 (0.448 - 0.540) 0.730 (0.689 - 0.771) 0.147 (0.114 - 0.180) 0.687 (0.644 - 0.730) 0.530 

Experiment 2 (15 variables) 

AB - 0.558 (0.512 - 0.604) 0.252 (0.212 - 0.292) 0.842 (0.808 - 0.876) 0.181 (0.145 - 0.217) 0.716 (0.674 - 0.758) 0.526 

BCART 0.558 (0.512 - 0.604) 0.637 (0.593 - 0.681) 0.465 (0.419 - 0.511) 0.163 (0.129 - 0.197) 0.772 (0.733 - 0.811) 0.120 

GBM 0.632 (0.587 - 0.677) 0.550 (0.504 - 0.596) 0.674 (0.631 - 0.717) 0.142 (0.110 - 0.174) 0.705 (0.663 - 0.747) 0.493 

LR 0.636 (0.591 - 0.681) 0.581 (0.535 - 0.627) 0.638 (0.594 - 0.682) 0.140 (0.108 - 0.172) 0.715 (0.673 - 0.757) 0.502 

NB 0.640 (0.596 - 0.684) 0.528 (0.482 - 0.574) 0.705 (0.663 - 0.747) 0.143 (0.111 - 0.175) 0.692 (0.649 - 0.735) 0.146 

RF 0.572 (0.526 - 0.618) 0.699 (0.657 - 0.741) 0.425 (0.379 - 0.471) 0.150 (0.117 - 0.183) 0.768 (0.729 - 0.807) 0.180 

Stack GLM 0.638 (0.594 - 0.682) 0.601 (0.556 - 0.646) 0.638 (0.594 - 0.682) 0.132 (0.101 - 0.163) 0.713 (0.671 - 0.755) 0.183 

Stack RF 0.598 (0.553 - 0.643) 0.703 (0.661 - 0.745) 0.464 (0.418 - 0.510) 0.134 (0.102 - 0.166) 0.759 (0.719 - 0.799) 0.202 

SVM 0.626 (0.581 - 0.671) 0.528 (0.482 - 0.574) 0.693 (0.650 - 0.736) 0.145 (0.112 - 0.178) 0.700 (0.658 - 0.742) 0.497 

AB 0.619 (0.574 - 0.664) 0.419 (0.373 - 0.465) 0.763 (0.724 - 0.802) 0.159 (0.125 - 0.193) 0.695 (0.652 - 0.738) 0.388 

Experiment 3 (24 variables) 

BCART 0.599 (0.554 - 0.644) 0.272 (0.231 - 0.313) 0.858 (0.826 - 0.890) 0.174 (0.139 - 0.209) 0.678 (0.635 - 0.721) 0.440 
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Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

GBM 0.662 (0.618 - 0.706) 0.731 (0.690 - 0.772) 0.509 (0.463 - 0.555) 0.116 (0.086 - 0.146) 0.730 (0.689 - 0.771) 0.524 

LR 0.657 (0.613 - 0.701) 0.599 (0.554 - 0.644) 0.643 (0.599 - 0.687) 0.134 (0.102 - 0.166) 0.706 (0.664 - 0.748) 0.489 

NB 0.656 (0.612 - 0.700) 0.688 (0.645 - 0.731) 0.555 (0.509 - 0.601) 0.123 (0.093 - 0.153) 0.723 (0.682 - 0.764) 0.047 

RF 0.622 (0.577 - 0.667) 0.425 (0.379 - 0.471) 0.768 (0.729 - 0.807) 0.157 (0.123 - 0.191) 0.687 (0.644 - 0.730) 0.335 

Stack GLM 0.667 (0.623 - 0.711) 0.592 (0.547 - 0.637) 0.657 (0.613 - 0.701) 0.131 (0.100 - 0.162) 0.706 (0.664 - 0.748) 0.195 

Stack RF 0.616 (0.571 - 0.661) 0.414 (0.368 - 0.460) 0.761 (0.722 - 0.800) 0.157 (0.123 - 0.191) 0.704 (0.662 - 0.746) 0.252 

SVM 0.650 (0.606 - 0.694) 0.624 (0.579 - 0.669) 0.629 (0.584 - 0.674) 0.130 (0.099 - 0.161) 0.706 (0.664 - 0.748) 0.468 
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Overall, regardless of using upsampling or original training data, models had a 

moderate performance when predicting AKI, with AUC ranging from 0.546 to 0.667. 

The models were slightly better at recognising patients without AKI than patients with 

AKI, as shown by higher specificity and negative predictive values. 

Looking at the Figure 6.9, for both original and upsampling models, when using a 

larger number of variables, the models tended to have slightly higher overall 

performance. However, the changes in performance were very small, where the highest 

performance goes from 0.646 to 0.667 when the number of variables changes from 10 

to 24.  

Figure 6.9. AUC for models predicting postoperative acute kidney injury (AKI), using different 

number of variables and original training data (left) or upsampled training data (right). 

 

The Figure 6.10 shows that for some models the sensitivity improved slightly as the 

number of variables increased, however for random forest using upsampled training 

data the performance decreased recognisably (sensitivity from 0.746 at 10 variables to 

0.425 at 24 variables). This could be due to random forest in this case not being able 

to handle the noise that higher number of variables can add, especially with upsampled 

training data. 

With original data, the specificity seemed to stay more stagnant for each model as the 

number of variables changed, however, the changes with upsampled training data were 

more visible. As models tended to have a trade-off between sensitivity and specificity, 
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the random forest model’s specificity increased noticeably as the number of variables 

increased (specificity from 0.366 with 10 variables and 0.768 with 24 variables). 

Figure 6.10. Sensitivity and specificity for models predicting postoperative acute kidney injury based 

on different number of variables, using original training data (left) or upsampled training data (right). 

 

Finally, looking at the Figure 6.11, the positive predictive values tended to stay 

constantly low for all models, regardless of using original or upsampled training data. 

Based on negative predictive values, there were more changes as the number of 

variables changed, especially for when using upsampled training data.  
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Figure 6.11. Positive and negative predictive values (PPV and NPV) for models predicting 

postoperative acute kidney injury based on different number of variables, using original training data 

(left) or upsampled training data (right). 

 

6.3.2.2. Calibration and Variable Importance of the Best Performing 

Models 

As the stacked generalised linear model with upsampled training data and 24 

preoperatively available variables had the highest overall performance when 

predicting AKI (AUC = 0.667), calibration of this model was assessed. As seen from 

Figure 6.12, the predicted probabilities for patients with lower true probabilities were 

quite exact. This means that for these patients, the model estimated risk very well. As 

the true probabilities got higher, the model became less certain about the predicted 

probabilities. This could be explained by the use of upsampled training data, where the 

prevalence of AKI was 50%. In testing data, however, the prevalence of AKI was 

19.50%, which is considerably lower than the prevalence of training data. The model’s 

mean predicted probability of AKI was 19.68% (SD = 8.79%), which is very close to 

the prevalence of AKI (19.50%), meaning that the model was largely estimating the 

risk of AKI correctly. 
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Figure 6.12. Calibration plot for the stacked generalised linear model using 24 preoperatively 

available variables, developed with upsampled training data. The light-green and dark-green areas 

indicate the 95% CI and IQR for the predicted probabilities, respectively. 

 

Figure 6.13. Variable importance for the gradient boosting model, using all preoperatively available 

variables and original training data. 
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Even though the stacked generalised linear model using all variables and upsampled 

training data had the highest performance (AUC = 0.667), the stacked models did not 

reveal the model coefficients and variable importance due to the complex nature of the 

method. Hence, the second-best performing model’s variable importance is shown. 

Figure 6.13 shows which variables were important for the gradient boosting model 

using all variables and original training data (AUC = 0.666). The most important 

variables according to gradient boosting model were procedure, priority, age group 

and preoperative renal function. These four variables were also significantly associated 

with postoperative AKI according to adjusted odds ratios (see Section 6.3.1). It is 

important to note that gradient boosting model by its nature does not produce model 

coefficients, but only variables’ relative influence. 

Looking at the confusion matrices below (Figures 6.14 to 6.16), regardless of the 

number of variables or the training dataset used, models in general were not very good 

at classifying patients correctly to have postoperative AKI. Stacked random forest 

model using upsampled training data with logistic EuroSCORE variables had the 

highest percentage of AKI patients classified correctly (70% of the cases). As shown 

by moderately high specificity and negative predictive value, models were in general 

better at classifying patients not to have AKI correctly more often. Usually around 

70% of the non-AKI patients were classified correctly. Support vector machine using 

the significant variables only and original training data classified 91% of non-AKI 

patients correctly. When using 15 or 24 variables, naïve Bayes tended to classify all 

patients as non-AKI patients when using the original training data. This highlights that 

if using accuracy as a performance measure, as opposed to AUC, sensitivity, 

specificity, PPV and NPV, then the understanding of the naïve Bayes’ model 

performance would be easily misrepresented. 
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Figure 6.14. Confusion matrices for models predicting postoperative acute kidney injury, based on only variables that are significantly associated with the 

predicted outcome, using original training data (A) or upsampled training data (B). 
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Figure 6.15. Confusion matrices for models predicting postoperative acute kidney injury, based on logistic EuroSCORE variables, using original training data (A) 

or upsampled training data (B). 
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Figure 6.16. Confusion matrices for models predicting postoperative acute kidney injury, based on all preoperatively available variables, using original training 

data (A) or upsampled training data (B). 
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6.4. Study 1.3 Results: Preoperative Models 

Predicting Postoperative Delirium 

As explained in Chapter 5, delirium is identified based on CAM-ICU assessment, 

which was recorded in the CentricityTM CIS database together with the time of 

assessment. In this section, 3344 patient records were included in the analysis, where 

the prevalence of delirium according to CAM-ICU assessment was 12.47% (95% CI 

11.39% – 13.63%). As seen with renal complications, delirium in the CaTHI database 

was also heavily underreported, only 1 person (0.01%, Appendix 6.1) being recorded 

to have delirium after surgery. Hence, the analysis in this thesis concerned delirium 

defined by CAM-ICU assessment as the predicted outcome.  

The patients with delirium were compared to non-delirium patients, using the 

preoperative variables reported in the CaTHI database and Chi-Squared Test of 

Independence. The descriptive statistics of how the patient population overall, and 

patients with delirium were spread in the dataset can be found from Appendix 6.2. 

The patients with postoperative delirium were significantly different from non-

delirium patients based on age group, sex, surgical procedure, surgical priority, critical 

preoperative state, NYHA grade, rhythm, preoperative renal function, preoperative 

creatinine levels, left main stem disease and congestive cardiac failure. 

6.4.1. Preoperative Variables Associated with Delirium 

Table 6.7 shows the unadjusted and adjusted odds ratios for each variable that were 

significantly associated with postoperative delirium. Based on adjusted odds ratios, 

patients who were between 68 to 74 years old or older than 75 years were more likely 

to have postoperative delirium than patients who were 60 or under (OR = 1.44, 95% 

CI 1.03-20.3 and OR = 1.94, 95% CI 1.37-2.76, respectively). Patients who underwent 

combined CABG and valve surgery were 2.63 (95% CI 1.95-3.57) times more likely 

to have delirium in the ICU than patients who had only CABG surgery. With severely 

impaired preoperative renal function, patients were 1.85 (95% CI 1.22-2.80) times 

more likely to have delirium than patients with normal renal function. Emergency 

patients were 3.06 (95% CI 1.50-6.06) times more likely to have postoperative 
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delirium than patients with elective surgery. Furthermore, patients with NYHA grade 

III and IV were more likely to have delirium than patients with NYHA grade I (OR = 

1.55, 95% CI 1.10 - 2.20, OR = 1.89, 95% CI 1.12 - 3.18, respectively). 

Table 6.7. How variables are associated with delirium, based on unadjusted and adjusted odds ratios 

(OR). The table includes only variables that are significant based on unadjusted odds ratios. 

  Unadjusted Adjusted 

Variable Level OR (95% CI) P-value OR (95% CI) P-value 

Age Category 60 or under 1.00 
 

1.00 
 

 
61 to 67 1.20 (0.85 - 1.70) 0.2872 1.11 (0.77 - 1.58) 0.5734  
68 to 74 1.72 (1.26 - 2.34) 0.0006 1.44 (1.03 - 2.03) 0.0343  
75 to 99 3.07 (2.30 - 4.12) <0.0001 1.94 (1.37 - 2.76) 0.0002 

Sex Male 1.00 
 

1.00 
 

 
Female 1.46 (1.18 - 1.81) 0.0005 1.19 (0.93 - 1.52) 0.1679 

Procedure CABG 1.00 
 

1.00 
 

 
Valve 1.83 (1.43 - 2.33) <0.0001 1.36 (0.98 - 1.88) 0.0658  
CABG and 

Valve 

3.78 (2.90 - 4.94) <0.0001 2.63 (1.95 - 3.57) <0.0001 

Renal Function 

Before Surgery 

Normal 1.00 
 

1.00 
 

 
Moderately 

Impaired 

1.71 (1.36 - 2.15) <0.0001 1.14 (0.87 - 1.51) 0.3400 

 
Severely 

Impaired 

3.76 (2.78 - 5.06) <0.0001 1.85 (1.22 - 2.80) 0.0038 

Preoperative 

Creatinine 

<100 1.00 
 

1.00 
 

 
100 or higher 1.81 (1.45 - 2.26) <0.0001 1.18 (0.88 - 1.57) 0.2584 

Priority Elective 1.00 
 

1.00 
 

 
Emergency 3.60 (1.93 - 6.46) <0.0001 3.06 (1.50 - 6.06) 0.0016  
Priority 1.00 (0.77 - 1.28) 0.9720 1.00 (0.76 - 1.29) 0.9730  
Urgent 1.11 (0.86 - 1.44) 0.4190 0.99 (0.72 - 1.34) 0.9264 

Critical Pre-op. 

State 

No 1.00 
 

1.00 
 

 
Yes 2.85 (1.75 - 4.53) <0.0001 1.68 (0.93 - 2.98) 0.0805 

NYHA Grade I 1.00 
 

1.00 
 

 
II 1.37 (1.02 - 1.88) 0.0435 1.22 (0.89 - 1.70) 0.2142  
III 2.10 (1.53 - 2.91) <0.0001 1.55 (1.10 - 2.20) 0.0127  
IV 3.59 (2.28 - 5.60) <0.0001 1.89 (1.12 - 3.18) 0.0166 

Angina Status 0 1.00 
 

1.00 
 

 
I 0.71 (0.50 - 0.99) 0.0496 0.88 (0.60 - 1.25) 0.4747  
II 0.76 (0.59 - 0.98) 0.0388 1.04 (0.77 - 1.40) 0.7939  
III 0.84 (0.61 - 1.15) 0.2973 1.14 (0.77 - 1.67) 0.4951  
IV 1.00 (0.63 - 1.52) 0.9938 1.05 (0.61 - 1.77) 0.8443 

Rhythm Normal 1.00 
 

1.00 
 

 
Abnormal 1.58 (1.21 - 2.04) 0.0007 0.95 (0.70 - 1.26) 0.7168  
Unknown 1.13 (0.67 - 1.81) 0.6261 0.99 (0.56 - 1.66) 0.9710 

Left Main Stem 

Disease 

No 1.00 
 

1.00 
 

 
Yes 0.70 (0.50 - 0.96) 0.0336 0.84 (0.58 - 1.20) 0.3434  
Unknown 0.79 (0.63 - 1.00) 0.0529 0.82 (0.64 - 1.05) 0.1276 

Congestive 

Cardiac Failure 

No 1.00 
 

1.00 
 

 
Yes 1.84 (1.41 - 2.38) <0.0001 1.19 (0.87 - 1.62) 0.2778 
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6.4.2. Models Predicting Delirium 

In this section the results from three experiments are reported: 

Experiment 1: Predicting delirium, using only the preoperative variables 

that were significantly associated with delirium based adjusted odds ratios 

(5 variables). These variables are age, surgical procedure, preoperative 

renal function, surgical priority, and NYHA grade. 

Experiment 2: Predicting delirium, using only the variables that are used 

to calculate logistic EuroSCORE (15 variables). These variables are listed 

in Section 5.8.1.2. 

Experiment 3: Predicting delirium, using all variables available in the 

dataset (24 variables). These variables are listed in Appendix 6.2. 

The patient demographics in training and testing data are shown in Appendix 6.3. 

6.4.2.1. Models’ Discrimination 

As shown in Table 6.8, logistic regression using all preoperative variables had the 

highest performance (AUC = 0.675), followed closely by naïve Bayes with also all 

preoperative variables (AUC = 0.674). Based on sensitivity, AdaBoost with 15 

variables had the highest sensitivity of 0.832. Support vector machine developed with 

15 variables, however, had the highest specificity of 0.900. Even though the prevalence 

of delirium was not very low (12.47%), the positive predictive values were very low. 

On the other hand, negative predictive values were relatively high, AdaBoost 

developed with 15 variables having had the highest (NPV = 0.863). This was, because 

the models were in general better at predicting patients with no delirium, rather than 

patients with delirium, as shown also by confusion matrices (Figure 6.21). 

The Table 6.9 shows that when using balanced training data, logistic regression using 

5 variables had the highest AUC of 0.671. BCART using 15 variables had the highest 

sensitivity of 0.748 and stacked random forest model with all preoperative variables 

had the highest specificity of 0.771. Because only the training data were upsampled, 

and the testing data were left imbalanced to reflect the real-world prevalence of 
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delirium, all models had very low positive predictive values. Random forest developed 

with 15 variables, however, had the highest NPV of 0.869.  
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Table 6.8. Models predicting delirium based on different number of variables, using original training data with the optimal cut-off points where the sensitivity (Sens), 

specificity (Spec), positive and negative predictive values (PPV and NPV) were calculated from. For each performance measure, 95% confidence intervals (CI) are 

shown. The highest result for each performance measure is marked in bold. 

Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Experiment 1 (5 variables) 

AB 0.582 (0.498 - 0.666) 0.473 (0.388 - 0.558) 0.707 (0.629 - 0.785) 0.091 (0.042 - 0.140) 0.821 (0.755 - 0.887) 0.321 

BCART 0.583 (0.499 - 0.667) 0.420 (0.335 - 0.505) 0.739 (0.664 - 0.814) 0.096 (0.046 - 0.146) 0.822 (0.756 - 0.888) 0.001 

GBM 0.655 (0.574 - 0.736) 0.710 (0.632 - 0.788) 0.598 (0.514 - 0.682) 0.061 (0.020 - 0.102) 0.808 (0.741 - 0.875) 0.109 

LR 0.672 (0.592 - 0.752) 0.687 (0.608 - 0.766) 0.629 (0.546 - 0.712) 0.063 (0.021 - 0.105) 0.800 (0.732 - 0.868) 0.108 

NB 0.666 (0.585 - 0.747) 0.725 (0.649 - 0.801) 0.571 (0.486 - 0.656) 0.061 (0.020 - 0.102) 0.814 (0.747 - 0.881) 0.001 

RF 0.608 (0.524 - 0.692) 0.450 (0.365 - 0.535) 0.751 (0.677 - 0.825) 0.090 (0.041 - 0.139) 0.804 (0.736 - 0.872) 0.001 

Stack GLM 0.668 (0.587 - 0.749) 0.680 (0.600 - 0.760) 0.628 (0.545 - 0.711) 0.065 (0.023 - 0.107) 0.801 (0.733 - 0.869) 0.098 

Stack RF 0.619 (0.536 - 0.702) 0.530 (0.445 - 0.615) 0.662 (0.581 - 0.743) 0.088 (0.039 - 0.137) 0.825 (0.760 - 0.890) 0.022 

SVM 0.548 (0.463 - 0.633) 0.252 (0.178 - 0.326) 0.886 (0.832 - 0.940) 0.102 (0.050 - 0.154) 0.771 (0.699 - 0.843) 0.125 

Experiment 2 (15 variables) 

AB 0.554 (0.469 - 0.639) 0.832 (0.768 - 0.896) 0.295 (0.217 - 0.373) 0.071 (0.027 - 0.115) 0.863 (0.804 - 0.922) 0.152 

BCART 0.539 (0.454 - 0.624) 0.389 (0.306 - 0.472) 0.700 (0.622 - 0.778) 0.105 (0.053 - 0.157) 0.851 (0.790 - 0.912) 0.120 

GBM 0.628 (0.545 - 0.711) 0.489 (0.403 - 0.575) 0.718 (0.641 - 0.795) 0.088 (0.039 - 0.137) 0.811 (0.744 - 0.878) 0.143 

LR 0.664 (0.583 - 0.745) 0.725 (0.649 - 0.801) 0.549 (0.464 - 0.634) 0.063 (0.021 - 0.105) 0.822 (0.756 - 0.888) 0.100 

NB 0.666 (0.585 - 0.747) 0.626 (0.543 - 0.709) 0.638 (0.556 - 0.720) 0.073 (0.028 - 0.118) 0.811 (0.744 - 0.878) 0.001 

RF 0.593 (0.509 - 0.677) 0.573 (0.488 - 0.658) 0.581 (0.497 - 0.665) 0.090 (0.041 - 0.139) 0.844 (0.782 - 0.906) 0.005 

Stack GLM 0.663 (0.582 - 0.744) 0.550 (0.465 - 0.635) 0.726 (0.650 - 0.802) 0.078 (0.032 - 0.124) 0.786 (0.716 - 0.856) 0.088 

Stack RF 0.633 (0.550 - 0.716) 0.780 (0.709 - 0.851) 0.469 (0.384 - 0.554) 0.060 (0.019 - 0.101) 0.834 (0.770 - 0.898) 0.048 

SVM 0.539 (0.454 - 0.624) 0.206 (0.137 - 0.275) 0.900 (0.849 - 0.951) 0.106 (0.053 - 0.159) 0.782 (0.711 - 0.853) 0.135 

Experiment 3 (24 variables) 

AB 0.598 (0.514 - 0.682) 0.542 (0.457 - 0.627) 0.614 (0.531 - 0.697) 0.091 (0.042 - 0.140) 0.841 (0.778 - 0.904) 0.282 

BCART 0.628 (0.545 - 0.711) 0.534 (0.449 - 0.619) 0.679 (0.599 - 0.759) 0.085 (0.037 - 0.133) 0.817 (0.751 - 0.883) 0.160 
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Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

GBM 0.658 (0.577 - 0.739) 0.595 (0.511 - 0.679) 0.690 (0.611 - 0.769) 0.073 (0.028 - 0.118) 0.794 (0.725 - 0.863) 0.138 

LR 0.675 (0.595 - 0.755) 0.672 (0.592 - 0.752) 0.611 (0.528 - 0.694) 0.068 (0.025 - 0.111) 0.811 (0.744 - 0.878) 0.107 

NB 0.674 (0.594 - 0.754) 0.641 (0.559 - 0.723) 0.654 (0.573 - 0.735) 0.069 (0.026 - 0.112) 0.800 (0.732 - 0.868) 0.001 

RF 0.645 (0.563 - 0.727) 0.466 (0.381 - 0.551) 0.748 (0.674 - 0.822) 0.088 (0.039 - 0.137) 0.801 (0.733 - 0.869) 0.055 

Stack GLM 0.634 (0.552 - 0.716) 0.520 (0.434 - 0.606) 0.774 (0.702 - 0.846) 0.078 (0.032 - 0.124) 0.761 (0.688 - 0.834) 0.091 

Stack RF 0.578 (0.493 - 0.663) 0.330 (0.249 - 0.411) 0.815 (0.749 - 0.881) 0.100 (0.049 - 0.151) 0.805 (0.737 - 0.873) 0.172 

SVM 0.562 (0.477 - 0.647) 0.443 (0.358 - 0.528) 0.673 (0.593 - 0.753) 0.100 (0.049 - 0.151) 0.846 (0.784 - 0.908) 0.130 
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Table 6.9. Models predicting delirium based on different number of variables, using upsampled training data with the optimal cut-off points where the sensitivity (Sens), 

specificity (Spec), positive and negative predictive values (PPV and NPV) were calculated from. For each performance measure, 95% confidence intervals (CI) are 

shown. The highest result for each performance measure is marked in bold. 

Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Experiment 1 (5 variables) 

AB 0.569 (0.484 - 0.654) 0.511 (0.425 - 0.597) 0.630 (0.547 - 0.713) 0.095 (0.045 - 0.145) 0.843 (0.781 - 0.905) 0.442 

BCART 0.593 (0.509 - 0.677) 0.527 (0.442 - 0.612) 0.644 (0.562 - 0.726) 0.090 (0.041 - 0.139) 0.834 (0.770 - 0.898) 0.160 

GBM 0.651 (0.569 - 0.733) 0.687 (0.608 - 0.766) 0.613 (0.530 - 0.696) 0.064 (0.022 - 0.106) 0.807 (0.739 - 0.875) 0.447 

LR 0.671 (0.591 - 0.751) 0.672 (0.592 - 0.752) 0.631 (0.548 - 0.714) 0.066 (0.023 - 0.109) 0.803 (0.735 - 0.871) 0.457 

NB 0.664 (0.583 - 0.745) 0.679 (0.599 - 0.759) 0.623 (0.540 - 0.706) 0.065 (0.023 - 0.107) 0.804 (0.736 - 0.872) 0.147 

RF 0.599 (0.515 - 0.683) 0.710 (0.632 - 0.788) 0.467 (0.382 - 0.552) 0.077 (0.031 - 0.123) 0.848 (0.787 - 0.909) 0.025 

Stack GLM 0.660 (0.579 - 0.741) 0.543 (0.458 - 0.628) 0.726 (0.650 - 0.802) 0.074 (0.029 - 0.119) 0.799 (0.730 - 0.868) 0.145 

Stack RF 0.629 (0.546 - 0.712) 0.564 (0.479 - 0.649) 0.690 (0.611 - 0.769) 0.074 (0.029 - 0.119) 0.813 (0.746 - 0.880) 0.042 

SVM 0.657 (0.576 - 0.738) 0.679 (0.599 - 0.759) 0.619 (0.536 - 0.702) 0.065 (0.023 - 0.107) 0.806 (0.738 - 0.874) 0.434 

Experiment 2 (15 variables) 

AB 0.541 (0.456 - 0.626) 0.595 (0.511 - 0.679) 0.526 (0.440 - 0.612) 0.094 (0.044 - 0.144) 0.855 (0.795 - 0.915) 0.233 

BCART 0.526 (0.440 - 0.612) 0.748 (0.674 - 0.822) 0.345 (0.264 - 0.426) 0.090 (0.041 - 0.139) 0.867 (0.809 - 0.925) 0.001 

GBM 0.633 (0.550 - 0.716) 0.565 (0.480 - 0.650) 0.660 (0.579 - 0.741) 0.082 (0.035 - 0.129) 0.817 (0.751 - 0.883) 0.493 

LR 0.658 (0.577 - 0.739) 0.618 (0.535 - 0.701) 0.649 (0.567 - 0.731) 0.073 (0.028 - 0.118) 0.808 (0.741 - 0.875) 0.478 

NB 0.650 (0.568 - 0.732) 0.718 (0.641 - 0.795) 0.534 (0.449 - 0.619) 0.067 (0.024 - 0.110) 0.828 (0.763 - 0.893) 0.159 

RF 0.527 (0.442 - 0.612) 0.679 (0.599 - 0.759) 0.393 (0.309 - 0.477) 0.099 (0.048 - 0.150) 0.869 (0.811 - 0.927) 0.085 

Stack GLM 0.659 (0.578 - 0.740) 0.638 (0.556 - 0.720) 0.625 (0.542 - 0.708) 0.068 (0.025 - 0.111) 0.822 (0.756 - 0.888) 0.121 

Stack RF 0.606 (0.522 - 0.690) 0.457 (0.372 - 0.542) 0.730 (0.654 - 0.806) 0.086 (0.038 - 0.134) 0.823 (0.758 - 0.888) 0.132 

SVM 0.643 (0.561 - 0.725) 0.573 (0.488 - 0.658) 0.658 (0.577 - 0.739) 0.080 (0.034 - 0.126) 0.816 (0.750 - 0.882) 0.458 

Experiment 3 (24 variables) 

AB 0.588 (0.504 - 0.672) 0.534 (0.449 - 0.619) 0.664 (0.583 - 0.745) 0.086 (0.038 - 0.134) 0.824 (0.759 - 0.889) 0.283 

BCART 0.570 (0.485 - 0.655) 0.435 (0.350 - 0.520) 0.707 (0.629 - 0.785) 0.097 (0.046 - 0.148) 0.833 (0.769 - 0.897) 0.240 
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Model AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

GBM 0.644 (0.562 - 0.726) 0.679 (0.599 - 0.759) 0.597 (0.513 - 0.681) 0.068 (0.025 - 0.111) 0.815 (0.749 - 0.881) 0.490 

LR 0.665 (0.584 - 0.746) 0.702 (0.624 - 0.780) 0.588 (0.504 - 0.672) 0.064 (0.022 - 0.106) 0.813 (0.746 - 0.880) 0.437 

NB 0.666 (0.585 - 0.747) 0.733 (0.657 - 0.809) 0.543 (0.458 - 0.628) 0.062 (0.021 - 0.103) 0.822 (0.756 - 0.888) 0.075 

RF 0.589 (0.505 - 0.673) 0.626 (0.543 - 0.709) 0.526 (0.440 - 0.612) 0.088 (0.039 - 0.137) 0.849 (0.788 - 0.910) 0.155 

Stack GLM 0.652 (0.570 - 0.734) 0.596 (0.512 - 0.680) 0.701 (0.623 - 0.779) 0.068 (0.025 - 0.111) 0.799 (0.730 - 0.868) 0.136 

Stack RF 0.621 (0.538 - 0.704) 0.447 (0.362 - 0.532) 0.771 (0.699 - 0.843) 0.083 (0.036 - 0.130) 0.802 (0.734 - 0.870) 0.186 

SVM 0.654 (0.573 - 0.735) 0.641 (0.559 - 0.723) 0.627 (0.544 - 0.710) 0.072 (0.028 - 0.116) 0.812 (0.745 - 0.879) 0.431 
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The Figure 6.17 shows that regardless of the balance of the outcome in the training 

data, the AUC for models varied quite visibly. The highest AUC overall was 0.675 for 

logistic regression, and lowest for BCART (AUC = 0.526). The changes of AUC as 

the number of variables increased were not that remarkable for original data. 

Interestingly, with upsampled training data, the AUC reduced notably for BCART and 

random forest when changing from 5 variables to 15 variables. This could be because 

the logistic EuroSCORE variables did not include NYHA grade and preoperative renal 

function that were deemed to be significantly associated with delirium. 

Figure 6.17. AUC of models predicting postoperative delirium, based on different number of 

preoperatively available variables, using original training data (left) or upsampled training data (right). 

 

The Figure 6.18 shows that when comparing models amongst each other, the 

sensitivity and specificity varied visibly, especially for models developed with the 

original training data. The highest sensitivity was 0.832 (AB, 15 variables, original 

data) and the lowest was 0.206 (SVM, 15 variables, original data). For upsampled data, 

the variation was slightly lower, however the difference in sensitivity amongst models 

was noticeable, with the highest having been 0.748 (BCART, 15 variables, upsampled 

data), and lowest having been 0.435 (BCARTm 24 variables, upsampled data). The 

specificity varied from 0.771 (Stack RF, 24 variables, upsampled data) to 0.345 

(BCART, 15 variables, upsampled data) for upsampling experiments and from 0.900 

(SVM, 15 variables, original data) to 0.295 (AB, 15 variables, original data) for 

original data experiments. 
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Finally, the changes in PPV and NPV amongst models as the number of variables 

changed were not very visually noticeable (Figure 6.19). For all models the PPV stayed 

very low across the experiments, indicating that the models were not particularly 

confident at predicting patients with delirium correctly. NPV, however, stayed 

moderately high across the experiments with not much variation, ranging from 0.869 

(RF, 15 variables, upsampled data) to 0.761 (Stack GLM, 24 variables, original data). 

Figure 6.18. Sensitivity and specificity for models predicting postoperative delirium, based on 

different number of preoperatively available variables, using original training data (left) or upsampled 

training data (right).  

 

  



 

 

191 

 

Figure 6.19. Positive and negative predictive values (PPV and NPV) for models predicting 

postoperative delirium, with different number of preoperatively available variables, using original 

training data (left) or upsampled training data (right). 

 

6.4.2.2. Calibration and Variable Importance of the Best Performing 

Model 

The logistic regression model that used 24 preoperatively available variables and 

original training data had the highest overall performance (AUC = 0.675). As seen 

from the calibration plot (Figure 6.20), the model was largely estimating the risk of 

delirium correctly for patients who had low true probability for the complication. As 

the true probability of delirium got higher than ca. 65%, the model’s predicted 

probabilities become more uncertain, and the model largely overestimated risk for 

delirium for these patients. This can be explained by the very low positive predictive 

values of the model (NPV = 0.068). The mean predicted probability was 12.59% (SD 

= 9.27%), which is close to the prevalence of delirium (12.47%), however, the standard 

deviation also showed considerably low certainty, as was seen from the calibration 

plot. 
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Figure 6.20. Calibration plot for logistic regression model predicting delirium, using 24 

preoperatively available variables and original training data. The light-green and dark-green areas 

indicate the 95% CI and IQR for the predicted probabilities, respectively. 

 

In addition to the calibration, the model estimates with standard errors and p-values 

are shown (Table 6.10). Since this is a logistic regression model, to make estimates 

(log odds) easier to interpret, odds ratios with 95% confidence intervals are also 

shown. According to the p-values and odds ratios, based on this prediction model, 

patients with emergency surgery, combined CABG and valve surgery, having 

preoperatively severely impaired renal function and being older than 75 were 

significantly more likely to have postoperative delirium. It is worth noting that the 

confidence interval for odds ratios was quite wide for the emergency priority due to 

considerably small number of patients reported to undergo emergency surgery in this 

dataset (1.6%, Appendix 6.2). This means that this estimate should be interpreted with 

caution as the model was not very confident in this estimate. 
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Table 6.10. Model estimates with standard errors, p-values and odds ratios for the logistic regression 

model that used 24 preoperative variables and original training data. 

Variable Level Estimate Standard 

Error 

P-value OR (95% CI) 

Intercept 
 

-3.2866 0.34 <0.0001 0.04 (0.02 - 0.07) 

Sex Female 0.0816 0.16 0.5999 1.09 (0.80 - 1.47) 

Priority Emergency 1.4196 0.45 0.0014 4.14 (1.69 - 9.78)  
Priority 0.0718 0.16 0.6580 1.07 (0.78 - 1.47)  
Urgent -0.0244 0.20 0.9050 0.98 (0.65 - 1.45) 

Procedure Valve 0.4187 0.22 0.0583 1.52 (0.99 - 2.35)  
CABG and 

valve 

1.1182 0.20 <0.0001 3.06 (2.07 - 4.53) 

LV Function Moderate -0.2191 0.18 0.2214 0.80 (0.56 - 1.13)  
Poor -0.2115 0.36 0.5563 0.81 (0.39 - 1.59) 

NYHA Grade II 0.0760 0.20 0.6966 1.08 (0.74 - 1.59)  
III 0.3159 0.21 0.1331 1.37 (0.91 - 2.08)  
IV 0.5985 0.32 0.0637 1.82 (0.96 - 3.41) 

Angina Status I -0.0348 0.23 0.8780 0.97 (0.61 - 1.49)  
II 0.0019 0.19 0.9921 1.00 (0.69 - 1.45)  
III 0.2583 0.24 0.2808 1.29 (0.80 - 2.06)  
IV 0.0097 0.35 0.9778 1.01 (0.50 - 1.96) 

Renal Function Moderately 

impaired 

0.3292 0.18 0.0676 1.39 (0.98 - 1.98) 

 
Severely 

impaired 

0.8675 0.28 0.0018 2.38 (1.38 - 4.11) 

Rhythm Abnormal -0.0229 0.18 0.8998 0.98 (0.68 - 1.39)  
Unknown -0.1493 0.36 0.6750 0.86 (0.41 - 1.67) 

Previous Cardiac 

Surgery 

Yes 0.4571 0.35 0.1899 1.58 (0.77 - 3.05) 

Neurological 

Dysfunction 

Yes -0.2986 1.10 0.7855 0.74 (0.04 - 4.38) 

Smoking Status Ex-smoker 0.0048 0.16 0.9766 1.00 (0.73 - 1.39)  
Current 

smoker 

0.2916 0.22 0.1862 1.34 (0.86 - 2.05) 

 
Unknown 0.1880 0.22 0.3921 1.21 (0.78 - 1.85) 

Previous MI Yes 0.2657 0.17 0.1198 1.30 (0.93 - 1.82) 

Left Main Stem 

Disease 

Yes -0.1718 0.23 0.4593 0.84 (0.53 - 1.32) 

 
Unknown -0.2872 0.17 0.0880 0.75 (0.54 - 1.04) 

Pulmonary Disease Yes -0.0959 0.19 0.6155 0.91 (0.62 - 1.31) 

Hypertension 

History 

Yes 0.0775 0.16 0.6314 1.08 (0.79 - 1.49) 

Congestive Cardiac 

Failure 

Yes 0.0747 0.20 0.7094 1.08 (0.72 - 1.59) 

Previous PCI Yes -0.1782 0.21 0.4012 0.84 (0.54 - 1.25) 

Extracardiac 

Arteriopathy 

Yes 0.0799 0.22 0.7116 1.08 (0.70 - 1.64) 

Critical 

Preoperative State 

Yes 0.2899 0.40 0.4630 1.34 (0.60 - 2.84) 

Type II Diabetes Yes 0.0706 0.16 0.6573 1.07 (0.78 - 1.46) 

BMI Category 25.1-30.0 0.2264 0.20 0.2590 1.25 (0.85 - 1.87)  
Over 30.0 0.0712 0.18 0.6998 1.07 (0.75 - 1.55) 

Age Group 61 to 67 0.0524 0.22 0.8158 1.05 (0.68 - 1.64)  
68 to 74 0.1788 0.22 0.4127 1.20 (0.78 - 1.84)  
75 to 99 0.5704 0.23 0.0119 1.77 (1.14 - 2.77) 
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Variable Level Estimate Standard 

Error 

P-value OR (95% CI) 

Preoperative 

Creatinine 

≥ 100 0.1309 0.18 0.4686 1.14 (0.80 - 1.62) 

Active Endocarditis Yes -0.3016 0.54 0.5744 0.74 (0.24 - 2.00) 

 

Looking at the confusion matrices (Figures 6.21 to 6.23), the models were not very 

good at classifying patients with delirium. BCART using 15 variables and upsampling 

classified 75% of the patients with delirium correctly. Similarly when predicting AKI 

preoperatively, models were better at classifying non-delirium patients correctly than 

delirium patients. SVM, using original data and significant variables classified 93% of 

the non-delirium patients correctly. Just like when predicting AKI, naïve Bayes here 

also classified all patients to not have delirium when using 15 or 24 variables and 

original data.  
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Figure 6.21. Confusion matrices for models predicting postoperative delirium, based on variables significantly associated with the predicted outcome, using 

original training data (A) or upsampled training data (B). 
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Figure 6.22. Confusion matrices for models predicting postoperative delirium, using logistic EuroSCORE variables and original training data (A) or upsampled 

training data (B). 
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Figure 6.23. Confusion matrices for models predicting postoperative delirium, using all preoperatively available variables and original training data (A) or 

upsampled training data (B). 
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6.5. Discussion 

6.5.1. Summary of Results 

6.5.1.1. Classification Method with the Best Performance when 

Predicting Outcomes Following Cardiac Surgery, Based on 

Preoperative Data 

When predicting severe postoperative complications, random forest using all 

preoperative variables (24 variables) and original training data achieved the highest 

overall performance (AUC = 0.713). Random forest using all variables, but upsampled 

training data had the highest sensitivity of 0.781, and support vector machine using 

logistic EuroSCORE variables (15 variables) and original training data had the highest 

specificity of 0.931. BCART using all variables and upsampled training data had the 

highest negative predictive value of 0.912. 

When predicting AKI, the stacked model using generalised linear model, all variables 

and upsampled training data had the highest overall performance (AUC = 0.667). 

Random forest with only significant variables (10 variables) and upsampled training 

data had the highest sensitivity of 0.746. Support vector machine using significant 

variables and original training data had the highest specificity of 0.876. The highest 

negative predictive value belonged to random forest using 10 variables and upsampled 

training data (NPV = 0.774). 

When predicting delirium, logistic regression using all variables and original training 

data had the highest AUC of 0.675. AdaBoost with 15 variables and original training 

data had the highest sensitivity of 0.832 and support vector machine using the same 

data had the highest specificity of 0.900. Random forest with 15 variables and 

upsampled training data had the highest NPV of 0.869. 

In general, the models predicting severe complications and delirium had a slightly 

better performance than models predicting AKI, however the differences are 

negligible. None of the models had a particularly outstanding performance, meaning 

further work is needed to find a better performing model. That being said, the models 

with high negative predictive values give certainty that if the patient is not predicted 
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to have delirium, then in reality they will not have delirium postoperatively, which can 

be helpful when making decisions about the patient’s treatment plan before surgery.  

Based on calibration plots, none of the models had perfect calibration, and all models 

tended to overestimate risk of the predicted outcome when the true probability was 

higher than 50%. 

6.5.1.2. The Optimal Number of Preoperative Variables for Predicting 

the Outcomes 

As per the results shown in this chapter, the models seemed to have a slightly higher 

performance when including all preoperative variables (24 variables), compared to 

when including only significant or logistic EuroSCORE variables. However, the 

differences in performance were very small, and depended more on the classification 

method than on the number of variables. Even though the performance measures of 

the models were modest, knowing that using a smaller number of variables can be 

beneficial in clinical practice – the fewer variables the model requires, the more user-

friendly the model becomes by being quicker to gather the data and to calculate [335]. 

As shown in Table 6.11, age, procedure and priority were used in all experiments, 

regardless of whether only significant variables, logistic EuroSCORE variables or all 

variables were used in the model. Previous cardiac surgery, angina status and 

preoperative creatinine were also commonly used (all, apart from the significant 

variables for delirium). Three variables (BMI, smoking status and previous PCI) were 

not included in logistic EuroSCORE, nor were they significantly associated with any 

of the three predicted outcomes. 

Logistic EuroSCORE variables are likely to be collected at most cardiac centres, 

especially in the UK, as logistic EuroSCORE is used to audit the performance of 

cardiac centres [6], [324]. This means that these data are readily available in most 

cardiac centres, meaning the models using these variables are easier to put into use in 

practice. There were some variables that were significantly associated with outcomes 

but were not part of logistic EuroSCORE. These variables were type II diabetes, 

rhythm, congestive cardiac failure, renal function, left main stem disease and NYHA 

grade. Even though these are commonly recorded data about cardiac patients, it is 
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evident from the earlier data recorded in CaTHI dataset, that these variables were not 

recorded very well, especially as seen from Appendix 6.2, that rhythm, left main stem 

and renal function have several “unknowns”. For the patients recorded in the dataset 

from 2016, however, there were no “unknowns” for the preoperative renal function. 

Table 6.11. Comparison of which variables were included in each model.   

Variable Logistic 

EuroSCORE 

Severe 

Complications 

Acute Kidney 

Injury 

Delirium 

24 variables 15 variables 12 variables 10 variables 5 variables 

Age x x x x 

Sex x x 
  

BMI         

Type II Diabetes x 
  

Smoking Status       

Procedure x x x x 

Priority x x x x 

Critical Pre-op. State x 
   

Previous Cardiac 

Surgery 

x x x   

Previous PCI 
   

Extracardiac 

Arteriopathy 

x   x   

LV Function x 
   

NYHA Grade x   x 

Angina Status x x x 
 

Rhythm   x     

Renal Function 
 

x x 

Preoperative 

Creatinine 

x x x   

Neurological 

Dysfunction 

x 
   

Previous MI x       

Left Main Stem Disease x 
 

Pulmonary Disease x       

Hypertension History x 
 

x 
 

Congestive Cardiac Failure x     

Active Endocarditis x x     

 

6.5.1.3. The Effect of Balancing Methods on the Performance of 

Preoperative Models 

Through developing predictive models of postoperative outcomes, this chapter was 

faced with an imbalanced classification problem. The prevalence of severe 

complications was found to be 5.91%, and the prevalence of AKI and delirium was 

found to be 18.93% and 12.47%, respectively. Even though, the prevalence of severe 

complications was especially low, the performance measures for the models appeared 
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to be similar, regardless of whether original or upsampled training data were used. This 

result has also been shown elsewhere [135], and shows that the classification methods 

are robust enough to handle class imbalance, as shown in the literature [147], [148] . 

In addition, when using performance measures, such as AUC, sensitivity, specificity, 

PPV and NPV, the accuracy paradox is avoided, meaning that class imbalance is taken 

into account by these performance measures [136]. In general, upsampling is not 

widely encouraged when developing clinical prediction models because the 

classification threshold for predicted probabilities can be misleading [135]. 

Upsampling can lead to poor calibration, meaning that the model can either over- or 

underestimate patients’ risk for the predicted outcome, if applied to a population that 

the model was not trained on [135]. This is also evident in this chapter, where the 

model with the highest discriminatory ability predicting acute kidney injury showed 

very poor discrimination, especially for patients who had true probability for AKI 

above 50%. Hence, as the results were similar to the models using original training 

data, in the next chapters, balancing methods will not be used. 

6.5.2. Comparison with the Literature 

6.5.2.1. Prediction of Severe Postoperative Complications 

There are various papers developing prediction models for certain postoperative 

complications, such as renal complications [336], postoperative bleeding [337], and 

cardiac complications [338], to name a few, however the commonly used preoperative 

risk stratification tools were developed, and are still used, to predominantly predict 

mortality [14]. These known risk prediction tools include logistic EuroSCORE, [164] 

EuroSCORE II [193], the Initial Parsonnet Score [214], the Society of Thoracic 

Surgeons score [329], [339], and the Cleveland Clinic Score [328]. The first three were 

developed to predict 30-day mortality, and the latter two were developed to predict 

mortality as well as some complications. Even though these models are used to mostly 

predict mortality, some studies have assessed the use of these scoring systems to 

predict combinations of postoperative complications [340]–[347]. The findings of 

these studies were discussed in previous work as part of the MPhil [17], however the 

AUC ranged from 0.590 to 0.730.  
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These studies should be compared with the study undertaken in this chapter with 

caution. Firstly, all of these studies predict different complications as a combined 

outcome, ranging from prolonged hospital stay to stroke, and from a combination of 

four complications to a combination of twelve complications. As stated in previous 

work, the rationale behind choosing these particular complications as the predicted 

outcome is unclear and subjective, as studies have a different definition for 

“morbidity”. In this chapter, severe postoperative complications were defined based 

on the results of Chapter 4, where postoperative complications in cardiac surgery were 

defined and classified, using the Delphi method. Hence, the outcome of “severe 

complications” consisted of reported complications that fitted the criteria of a “severe” 

complication based on the Chapter 4. Having a specific criterion to group 

complications makes studies more comparable and objective.  

Furthermore, all these aforementioned models were developed using logistic 

regression. Even though logistic regression has been shown to perform competitively, 

compared to various machine learning methods [150]–[152], the findings from this 

chapter show that logistic regression has the 15th place in terms of overall performance 

(AUC = 0.670), whereas random forest achieved the top performance of AUC = 0.713, 

followed by AdaBoost (AUC = 0.706) and BCART (AUC = 0.704). These results 

show that, even though logistic regression can have a competitive performance, it is 

still important to test different classification methods to achieve the best possible 

results. 

6.5.2.2. Prediction of Acute Kidney Injury 

The risk factors of female sex, advanced age, renal impairment, previous cardiac 

surgery, pulmonary problems, diabetes, hypertension history, congestive cardiac 

failure, reduced left ventricular function are known risk factors for AKI following 

cardiac surgery [348]. Also, patients undergoing emergency surgery [349] and more 

complicated surgical procedures than CABG [281], [350] are also associated with AKI 

following cardiac surgery. The variables found to be associated with AKI in this 

chapter are in accordance with these findings. 

There are other risk prediction models developed to predict AKI based on information 

about patient demographics and co-morbidities. Well-known validated models are the 
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Cleveland Clinic Score [351], Mehta score [352] and Simplified Renal Index Score 

[353]. These three scores, however, predict AKI specifically requiring dialysis, which 

is considerably rare (1%-7% of patients [354]), and hence the usability of these 

prediction scores can be limited.  

A newer prediction model, developed by Birnie et al., however uses KDIGO 

guidelines to predict different stages of AKI in a cardiac surgery population [279]. The 

model by Birnie et al. achieved AUC of 0.74 when predicting AKI in general, which 

is noticeably higher than the highest AUC achieved to predict AKI in this chapter 

(AUC = 0.667, Stack GLM, 24 variables, upsampled training data). The study by 

Birnie et al, however, was a multi-centre study (3 hospitals), using just under 40,000 

patient records. In their data, in addition to the variables reported in the CaTHI 

database, haemoglobin, glomerular filtration rate, administration of heparin or nitrates 

and catheter to surgery were also reported [279]. These variables are shown to be 

associated with AKI [279], however were not available in the CaTHI dataset, 

explaining why Birnie et al. achieved a higher performance.  

There are also other prediction models developed for AKI following cardiac surgery 

[355]–[357], but the number of models developed that use preoperative data only (no 

intraoperative or postoperative data) is limited. The reason why only preoperative data 

were included in this chapter, is that knowing the risk of AKI before surgery, in 

preoperative clinic could help clinicians to make an informed decision about the 

treatments, and also to communicate risk to the patient appropriately. 

6.5.2.3. Prediction of Delirium 

Delirium has been attempted to be predicted for decades [358]. Various studies have 

been undertaken to understand the risk factors associated with delirium [359]–[365], 

however only one study at the time of writing had been published that attempt 

predicting postoperative delirium, using preoperative data only [331]. Studies often 

include pre- and intraoperative data, including types of anaesthesia and length of 

surgery [359], [361], which could be beneficial when predicting delirium once the 

patient is admitted to the ICU. However, in order to make decisions about the 

medicines given (e.g., preoperative administration of beta blockers, statins [366]  and 

benzodiazepine [367]) before, during and right after the surgery, predicting delirium, 
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using preoperatively available variables could be beneficial. This could be especially 

useful in cardiac surgery patients, where the prevalence of delirium in this study was 

reported 12.47%, but has been reported to be as high as 52% [286].  

Rudolph et al.’s preoperative prediction rule for delirium following cardiac surgery 

achieved AUC of 0.750 [331], which is considerably higher than the highest overall 

performance in this chapter (AUC = 0.675). However, it is worth noting that the 

methods of participant recruitment, data collection and analysis are very different from 

the study undertaken in this chapter, making it difficult to compare Rudolph et al.’s 

results with those found in this chapter. Firstly, Rudolph et al. carried out a prospective 

study, where the derivation and validation cohort patients were recruited 

prospectively. This means that the data that were collected was more likely to be 

relevant to delirium, unlike the data used in this study, which is commonly collected 

information in preoperative assessment clinic and auditing database. In addition, 

Rudolph et al.’s patient cohort had a very large number of patients with delirium - 52% 

in derivation and 44% in validation cohort – which is a considerably higher prevalence 

than it was in this chapter’s patient population. The high prevalence in Rudolph et al’s 

work with prospective data collection can also indicate some possibility for selection 

bias. Finally, Rudolph et al. used multiple imputation in both training and testing data, 

which can affect the overall results and applicability of their model in practice [368].  

In this study, five preoperatively available variables were found to be significantly 

associated with postoperative delirium: age, surgical procedure, preoperative renal 

function, surgical priority, and NYHA grade. Age is a common risk factor for delirium 

[369], especially affecting patients who are over the age of 65 years [285]. Since most 

patients in this patient population are older than 65, age is an expected risk factor. The 

type of surgery has been shown to be associated with postoperative delirium in other 

studies [366], [370]. Surgical priority also matters if a patient is likely to have delirium, 

especially if undergoing emergency surgery [371], [372]. Abnormal preoperative renal 

function has also been shown to be associated with delirium elsewhere [367]. NYHA 

grade has been also shown to be associated with delirium in other studies [373], [374]. 

Other studies assessing delirium risk factors have also included information on 

patient’s mental health, such as whether a patient has depression [366], [375], [376] or 
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is on psychoactive medications [377]. This information is currently not recorded in the 

CaTHI database. 

6.5.3. Limitations  

Even though the predicted outcome “severe” postoperative complications was defined 

based on the study shown in Chapter 4, there are limitations associated with this 

outcome due to the reporting of complications in medical databases. As mentioned in 

Section 6.3, 5.22% of patients were reported to have renal complications in CaTHI 

database, however, when using the KDIGO classification to diagnose AKI alone, 

18.93% of the patient population had postoperative AKI. This shows that renal 

complications are heavily underreported in the CaTHI database. In addition, as seen 

from Appendix 6.1, delirium has been reported for only 1 patient in the CaTHI 

database (0.01%). This is because in the CaTHI database delirium as a postoperative 

complication is not generally reported. This is a strong limitation to the “severe” 

postoperative complications as the outcome and shows that the reporting of 

postoperative complications needs to be improved for future analysis of complications. 

As stated in Chapter 4 “If we do not know what is going wrong, we cannot work out 

how to stop it happening”, meaning that audit databases especially, such as CaTHI 

should include higher quality reporting of complications to help research 

complications, and therefore mitigate the risks of adverse outcomes and to treat and 

recognise the complications early. 

A reason why the models had only moderate performance when predicting the three 

outcomes could be missing data. A strategy to avoid AKI before surgery is to optimise 

preoperative haemoglobin levels. Low preoperative haemoglobin has been shown to 

be associated with postoperative AKI [378]. A limitation in this study, however, is that 

preoperative haemoglobin has not been collected very well in our patient population, 

and due to a large number of missing values, was removed from the analysis in this 

chapter.  

Another variable that had many “unknowns” in patients who had surgery in earlier 

years (2012-2015), is renal impairment. It has been shown that knowing renal function 

preoperatively is an indicator whether a patient has postoperative acute kidney injury 
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[379]. However, since delirium analysis was done using a slightly newer dataset (2016-

2018), there are no "unknowns" in the preoperative renal function variable. This shows 

that since 2016, the recording of data has slightly improved. 

6.6. Conclusion 

Overall, the performance of the models was very similar, however neither of these had 

remarkably high performance, most probably due to delirium and AKI being difficult 

to predict based on the available preoperative data. There was no notable difference in 

performance based on whether the models were developed using the original training 

data or upsampled training data. This shows that the classification methods were quite 

robust at handling imbalanced classification problems. Hence, going forward, only the 

original training data, without any balancing methods, are used in Chapters 7 and 8.  

To improve the models’ predictive ability for AKI and delirium, more granular data 

about the patient’s condition, i.e., laboratory variables measured in the ICU, are 

included to predict AKI (Chapter 7) and delirium (Chapter 8). 
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Chapter 7. Study 2.1: Predicting the 

Onset of Acute Kidney Injury on an 

Hourly Basis in Intensive Care 

7.1. Introduction 

This chapter aims to carry out experiments to predict acute kidney injury (AKI) 

following cardiac surgery within 25 hours since ICU admission on an hourly basis, 

using static preoperatively recorded and dynamic ICU data. 

In this chapter a binary classification problem is investigated: “Does a patient have an 

AKI or not?” 

Three main experiments were undertaken to find the most optimal model for predicting 

AKI: 

1. Predicting AKI using complete data only. 

2. Predicting AKI, using complete training data and missing values in testing 

data. Patient records missing more than 40% of the variables were excluded 

from the analysis, as done elsewhere [300], [302]. 

3. Predicting AKI, using complete training data and imputation methods to 

replace missing values in testing data. Again, patient records with more than 

40% of the variables missing were excluded from the analysis. 

All model development methods are described in detail in Chapter 5.  

7.2. Related Work 

Even though AKI is a persistent and wide-spread problem in cardiac surgery, there are 

numerous preoperative prediction models for AKI [281], however not many dynamic 

models, suitable for ICU use, have been developed. In the literature review, presented 
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in Chapter 2, only one paper developing dynamic classification prediction models for 

renal complications was found – paper by Meyer et al. [74] 

Meyer et al. predicted various postoperative complications, such as postoperative 

bleeding, renal failure requiring renal replacement therapy and in-hospital mortality. 

The study achieved AUC of 0.96, sensitivity of 0.94 and negative predictive value of 

0.94 when predicting renal failure in the original cohort. In external validation on 

MIMIC-III dataset, the study achieved AUC of 0.91, Sensitivity of 0.79 and NPV of 

0.80. It is also important to note that the study used a balanced dataset for both 

developing and testing their model [74], which was further discussed in Chapter 2. 

Overall, the study used a very large sample size: 47,559 admissions. Even though 

Meyer et al. used the KDIGO guidelines to define renal failure, the study lacked in 

specific information about when AKI occurred. If the time of complication occurrence 

is unknown, there is a high risk that the complication that is predicted has already 

happened, meaning the prediction task undertaken is irrelevant. This issue is especially 

likely to happen in Meyer et al.’s paper where AKI is predicted within the first 24 

hours of ICU admission. It is, however, unrealistic that all patients have AKI occurring 

in the same time window. 

Therefore, to improve upon the currently existing dynamic classification prediction 

model for AKI, the following was undertaken in this chapter: 

• AKI was defined using KDIGO criteria, using preoperative creatinine as the 

baseline and subsequent creatinine measurements taken in ICU. 

• Experiments were undertaken to predict AKI on an hourly basis within 25 

hours since ICU admission. 

• Experiments were undertaken using complete data, missing data and 

imputation methods to achieve the best possible prediction model to predict 

AKI. 
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7.3. Patient Population and Acute Kidney 

Injury 

7.3.1. Patient Demographics 

Of all patients included in the analysis, 750 had AKI, with the prevalence of 11.92% 

(95% CI 11.14-12.74%). As shown in Appendix 7.1, Table 7.1.A, overall, the mean 

age for the total population was 66.09 years, the majority being male (72.34%). The 

most common procedure was coronary artery bypass graft (CABG) (56.93%). The 

mean logistic EuroSCORE for patients was 5.16. Of all patients, 7.10% had a severe 

renal impairment and 28.28% had moderate renal impairment before surgery. For 

23.68% of the patients the renal function was not recorded at the preoperative clinic. 

The mean preoperative creatinine was 91.18, which is in the higher side of the normal 

range. The mean hospital stay was 11.20 days, and the mean ICU hours was 44.05. 

Overall, 0.91% of the patients died in the hospital. 

Figure 7.1. Histogram of age distribution among patients with no acute kidney injury (light-green) vs 

with acute kidney injury (dark-green). 
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When comparing the patients with AKI and patients without AKI, these two groups of 

patients were significantly different from one another based on the variables shown in 

Table 7.1.A. The patients who had AKI in the ICU had a higher mean age (Figure 7.1) 

(69.52 years vs 65.74 years), a higher proportion was female (33.73% vs 26.84%) and 

a higher proportion of patients had a more complicated surgery (40.13% vs 28.14% 

for valve surgery and 20.80% vs 12.52% for combined CABG and valve surgery) than 

patients who did not develop AKI in the ICU. Interestingly, patients with AKI 

postoperatively had a higher mean logistic EuroSCORE (Figure 7.2) (8.10 vs 4.76), 

but a higher proportion of patients had preoperative renal complications than patients 

with no AKI (16.80% vs 5.79% with severe preoperative renal function). 

Patients with AKI had higher mean preoperative creatinine levels (Figure 7.3) (101.58 

vs 89.77), and stayed in the ICU for approximately 3 days longer (Figure 7.4) (112.26 

hours vs 34.82) and hence also stayed in the hospital for longer (Figure 7.5) (16.12 

days vs 10.54 days) than patients without AKI. Almost 4% more patients died in 

hospital if they had AKI than if they did not (4.40% died vs 0.43% died). 

Figure 7.2. Histogram of logistic EuroSCORE distribution among patients without acute kidney 

injury (light-green) vs with acute kidney injury (dark-green). 
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Figure 7.3. Histogram of preoperative creatinine distribution among patients without acute kidney 

injury (light-green) vs with acute kidney injury (dark-green). 

 

Figure 7.4. Histogram of hours spent in intensive care unit for patients without acute kidney injury 

(light-green) vs with acute kidney injury (dark-green). 
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Figure 7.5. Histogram of total days spent in hospital for patients without acute kidney injury (light-

green) vs with acute kidney injury (dark-green). 

 

Figure 7.6. Histogram of the time when acute kidney injury occurs in ICU based on KDIGO criteria. 

 

As shown in Figure 7.6, most patients had AKI between 20 and 25 hours since ICU 

admission, more specifically at median hours of 24.28, IQR 4.21. The reason for this 

timing of AKI was most likely due to when creatinine was measured in ICU, as shown 
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in Chapter 5, which was in median of 23.67 hours since ICU admission. Hence, the 

creatinine changes were also captured in these median hours, showing the majority of 

patients to have AKI at this time window. 

7.3.2. Descriptive Statistics 

7.3.2.1. Preoperative Data 

As shown in Appendix 7.1, Table 7.1.B, of all patients, the majority had an elective 

surgery (64.08%). Only 1.02% of patients had an emergency surgery. A very small 

number of patients were in a critical preoperative state (1.75%) and had had a previous 

cardiac surgery (2.56%). Slightly over a tenth of patients had had a previous 

percutaneous coronary intervention (13.35%) and had extracardiac arteriopathy 

(11.49%). About a fifth of the patients had either a moderate (17.43%) or poor (2.83%) 

left ventricular function. In terms of rhythm, 11.38% of the patients had an abnormal 

rhythm and for 5.78% it was unknown. Only 1.38% of the patients had a neurological 

dysfunction before surgery. Overall, 37.05% of the patients had had a previous 

myocardial infarction. Just over a tenth of the patients had a recorded left main stem 

disease (13.98%). For 38.91% of the patients, however, the left main stem status is 

unknown. Pulmonary disease was recorded for 16.40% of the patients. The large 

majority of patients (72.18%) had a hypertension history. Just under ten percent of the 

patients (9.72%) had congestive cardiac failure and only 1.10% of the patients had 

active endocarditis before surgery. 

The table also shows these aforementioned characteristics for patients based on 

whether they had postoperative acute kidney injury. There was a statistically 

significant difference in these two patient populations preoperatively based on all 

variables, apart from previous percutaneous coronary intervention, neurological 

dysfunction, previous myocardial infarction and pulmonary disease. The population 

with postoperative AKI had higher amounts of emergency surgery (2.93% vs 0.76%) 

than patients without AKI. More patients who developed AKI had also factors that 

increased the overall surgical risk, such as critical preoperative state (3.47% vs 1.52%),  

previous cardiac surgery (5.07% vs 2.22%), extracardiac arteriopathy (14.67% vs 

11.06%), poor left ventricular function (4.40% vs 2.62%), higher NYHA grade (7.47% 

vs 2.83% for grade IV), abnormal rhythm (18.00% vs 10.48%), hypertension history 
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(76.67% vs 71.57%), congestive cardiac failure (17.07% vs 8.73%) and active 

endocarditis (2.53% vs 0.90%). Interestingly, the patient population with postoperative 

AKI had better preoperative angina status and left main stem status than patients 

without AKI.  

7.3.2.2. Laboratory Data 

The Appendix 7.1, Table 7.1.C shows overall mean, standard deviation, median and 

range for each laboratory variable. The p-values are calculated based on t-tests for 

numerical variables and Chi-Squared test of independence for categorical variables 

(medicines only).  

All variables, apart from dopamine have statistically significantly different levels for 

patients with AKI and without AKI. When looking at the dopamine dose, there is no 

statistically significant difference between patients with and without AKI. The 

literature shows dopamine administration to be controversial. Historically, dopamine 

has been used as a vasopressor to avoid AKI, and many countries still use it in practice. 

However, in the early 2000’s, the literature has shown that dopamine does not benefit 

in terms of preventing mortality or dialysis [380], [381] and the evidence of the 

benefits of dopamine is inconclusive [382].  

Patients with postoperative AKI had notably lower mean arterial base excess (-0.43 vs 

-0.20) than patients without AKI. They also had lower arterial haematocrit (27.71 vs 

29.34), daily fluid balance (255.50 vs 322.60), haemoglobin (94.19 vs 99.64) and urine 

output (85.91 vs 97.50) levels. The patients with AKI had clearly higher mean C-

reactive protein (140.40 vs 135.00), creatinine (143.60 vs 89.54), and urea (13.37 vs 

6.78) levels. 
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7.4. Experiment 1 Results: Models 

Predicting Acute Kidney Injury in ICU 

on an Hourly Basis, Using Complete 

Data 

7.4.1. Data Preparation 

As shown in Table 7.1, for each lead time for AKI within 25 hours since ICU 

admission, the number of patients varied between 3606 and 3723, with the mean 

number of patients across each lead time of 3676 (SD = 38.43). The prevalence of AKI 

was considerably low, staying between 6.49% and 8.97%, (mean = 8.02%, SD = 0.84) 

with more patients with AKI at lead times closer to the event and less patients further 

away from the event. This was because, as shown in Section 7.3.1, most patients had 

AKI between 20-25 hours since ICU admission. More specifically, the median time of 

AKI occurrence was 24.28 hours since the admission to ICU.  

As explained in the Methods chapter (Chapter 5), the training set consisted of 2/3 of 

the included patient records, and the testing data consisted of 1/3 of the records. This 

is reflected in Table 7.1. If the patient did not have AKI at all during the ICU stay, 

their time window was marked as the time window of the experiment. This means that 

in this experiment, these patients had the end time window marked as 25 hours.  
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Table 7.1. Number of patients and proportion of patients with AKI in each training and testing data, 

depending on lead time, if predicting AKI within 25 hours of ICU stay. 

 Total Data Training Data Testing Data 

Lead 

Time 

Number of 

Patients 
AKI (%) 

Number of 

Patients 
AKI (%) 

Number of 

Patients 
AKI (%) 

-24 3606 6.49 2417 6.33 1189 6.81 

-23 3622 6.79 2427 6.88 1195 6.61 

-22 3628 6.95 2431 7.03 1197 6.77 

-21 3630 7.00 2433 6.86 1197 7.27 

-20 3636 7.12 2437 7.18 1199 7.01 

-19 3638 7.17 2438 6.97 1200 7.58 

-18 3640 7.22 2439 7.18 1201 7.33 

-17 3645 7.35 2443 7.29 1202 7.49 

-16 3648 7.43 2445 7.69 1203 6.90 

-15 3656 7.63 2450 7.55 1206 7.79 

-14 3665 7.86 2456 7.9 1209 7.78 

-13 3674 8.03 2462 7.88 1212 8.33 

-12 3683 8.20 2468 8.14 1215 8.31 

-11 3693 8.42 2475 8.36 1218 8.54 

-10 3703 8.67 2482 8.78 1221 8.44 

-9 3708 8.74 2485 9.01 1223 8.18 

-8 3712 8.84 2488 8.68 1224 9.15 

-7 3718 8.93 2492 8.87 1226 9.05 

-6 3718 8.93 2492 8.87 1226 9.05 

-5 3719 8.95 2492 8.79 1227 9.29 

-4 3719 8.95 2492 8.79 1227 9.29 

-3 3719 8.95 2492 8.79 1227 9.29 

-2 3720 8.98 2493 8.78 1227 9.37 

-1 3723 8.97 2495 9.26 1228 8.39 

Mean ± 

SD 

3676 ± 38.43 8.02 ± 0.84 2464 ± 25.75 7.99 ± 0.85 1212 ± 12.69 8.08 ± 0.91 

 

7.4.2. Models’ Discriminative Performance 

As seen from Figure 7.7, most models, apart from logistic regression at lead times -21 

to -19, had a similar pattern of how the overall performance changed as the lead time 

changed. All models tended to have a slightly better performance as the lead time got 

closer to AKI. From the figure it can also be seen that BARTm had the highest 

performance at most times. The differences between the models’ overall performance, 

however, did not seem to be visually very large. The models had a relatively good 

performance, staying above 0.750 at most lead times. 
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Figure 7.7. AUC for each model for each lead time when predicting acute kidney injury on an hourly 

basis, using complete data. 

 

The Table 7.2 shows the mean and standard deviation performance measures across 

each lead time for each model. BARTm had the highest overall performance based on 

mean AUC of 0.850. Most models, apart from C5.0 and SVM had a mean AUC higher 

than 0.800, meaning most models had moderately high overall performance.  

In terms of sensitivity, BARTm also had the highest mean sensitivity across all lead 

times (Sens = 0.821). Logistic regression had the highest mean specificity of 0.824. 

All models had very low positive predictive values, which was expected due to the 

relatively low proportion of patients having AKI in each lead time. Negative predictive 

values, however, were moderately high, the mean NPV staying above 0.700 for all 

models. C5.0 and random forest had the highest mean NPV of 0.793 across all lead 

times. 

The sensitivity, specificity, positive and negative predictive values for each lead time 

are visualised in Figures 7.8 and 7.9, respectively. The changes in sensitivity and 

specificity for models were quite volatile as the lead times changed. The positive and 
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negative predictive values were quite similar for all models. Interestingly, logistic 

regression had slightly higher positive predictive values than other models at lead 

times -20 and -10. 

Table 7.2. Mean and standard deviation model performance measures for each model across each lead 

time before delirium when predicting AKI within 25h since ICU admission, using complete data. The 

highest result for each performance measure is marked in bold. 

 AUC Sensitivity Specificity PPV NPV 

Model Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

AB 0.810 ± 0.037 0.752 ± 0.072 0.745 ± 0.069 0.028 ± 0.005 0.786 ± 0.052 

BARTm 0.850 ± 0.026 0.821 ± 0.053 0.741 ± 0.057 0.021 ± 0.006 0.775 ± 0.054 

C5.0 0.787 ± 0.034 0.742 ± 0.052 0.738 ± 0.058 0.030 ± 0.005 0.793 ± 0.045 

GBM 0.838 ± 0.031 0.786 ± 0.067 0.755 ± 0.072 0.024 ± 0.006 0.770 ± 0.056 

LR 0.802 ± 0.100 0.668 ± 0.216 0.824 ± 0.080 0.038 ± 0.037 0.742 ± 0.076 

RF 0.810 ± 0.034 0.754 ± 0.079 0.739 ± 0.057 0.034 ± 0.028 0.793 ± 0.040 

SVM 0.790 ± 0.035 0.719 ± 0.071 0.761 ± 0.071 0.031 ± 0.006 0.781 ± 0.054 

 

Figure 7.8. Sensitivity and specificity, positive and negative predictive values (PPV and NPV) for all 

models for each lead time when predicting acute kidney injury on an hourly basis in the ICU, using 

complete data. 
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Figure 7.9. Positive and negative predictive values (PPV and NPV) for all models for each lead time 

when predicting acute kidney injury on an hourly basis in the ICU, using complete data. 

 

The exact performance measures for each lead time and their respective cut-off values 

can be found from Appendix 7.3. The Table 7.3.A in Appendix 7.3 shows that when 

predicting AKI 24 hours in advance, logistic regression had the highest AUC of 0.838. 

BARTm had the highest sensitivity of 0.914 and support vector machine had the 

highest specificity of 0.783.  

At 12 hours before AKI, BARTm had the highest AUC of 0.823. Gradient boosting 

model had the highest sensitivity of 0.842 and random forest had the highest specificity 

of 0.843. When predicting AKI 4 hours in advance, BARTm again had the highest 

AUC of 0.887, and also the highest sensitivity of 0.868. C5.0, however, had the highest 

specificity if 0.827. 

When looking at the confusion matrices (Figure 7.10), all models were better at 

predicting AKI 1 hour in advance than 12 hours in advance. Random forest had the 

worst performance, predicting only 59% of the cases of AKI correctly at 12 hours 

before AKI. BARTm, however, had particularly good performance at 1 hour before 

AKI as it predicted AKI correctly for 92% of the cases. 
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Figure 7.10. Confusion matrices for all models predicting acute kidney injury 12 hours in advance 

and 1 hour in advance, using complete data. 
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7.4.3. Models’ Calibration and Variable Importance 

As BARTm model using complete data achieved the highest mean AUC of 0.850 

across all lead times, calibration for this model for -24-, -12- and -1-hour lead times is 

shown (Figure 7.11). The model had a better calibration when it predicted AKI fewer 

hours in advance, i.e., the calibration was overall better when predicting AKI 1 hour 

in advance, as opposed to 24 hours in advance. That being said, for all three cases, the 

predicted probability estimations were more certain for patients who had lower true 

probability of having AKI. The certainty, as shown by confidence intervals, was 

especially low when predicting AKI 24 hours in advance due to small number of 

patients having had AKI at this lead time. 

According to the BARTm model, the mean predicted probabilities (Table 7.3) were in 

general slightly lower than the proportion of patients with AKI in each respective lead 

time dataset. This means that in general, the model slightly underestimated the risk of 

patients having AKI. The difference in the mean predicted probability and proportion 

of AKI was especially noticeable when predicting AKI 12 hours in advance. The table 

also shows that the proportion of patients with AKI was considerably lower in -24-

hour lead time, which explains the higher uncertainty in predicted probabilities in 

Figure 7.11 at this lead time. 
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Figure 7.11. Calibration plots for BARTm model predicting acute kidney injury 1 hours (top-left), 12 

hours (top-right), and 24 hours (bottom-centre) in advance. The light-green and dark-green areas 

indicate the 95% CI and IQR for the predicted probabilities, respectively. 

  

 

 

Table 7.3. Number of patients, the proportion of patients with AKI and mean predicted probability with 

standard deviation (SD) for lead times of -1, -12 and -24. 

Lead Time Number of Patients AKI (%) Mean Predicted Probability 

(%) ± SD (%)  

-24 3606 6.49 6.06 ± 8.55 

-12 3683 8.2 7.32 ± 11.46 

-1 3723 8.97 8.60 ± 13.62 

 

To investigate variable importance, for each model developed for each lead time, the 

top 20 variables were extracted from models. In Figure 7.12, the most commonly used 

variables are shown that were used by models for at least 10 times. All five models 

used creatinine, urea, lactate and potassium in their models. Daily fluid balance, 
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hydrogen ion, urine output and c-reactive protein were also very commonly used. 

Creatinine and urea, however, were by far the most used variables by the five models. 

Figure 7.12. Most important variables used at least 10 times in prediction models. 

 

7.5. Experiment 2 and 3 Results: Predicting 

Acute Kidney Injury in ICU on an 

Hourly Basis, Using Complete Training 

Data and Incomplete Testing Data 

7.5.1. Data Preparation 

7.5.1.1. Missing Data 

As found in the literature review in this thesis (Chapter 2), some studies, while dealing 

with missing values overall, removed patients with more than a certain number of 

missing features. Following the studies by Hug et al. [300] and Ho et al. [302], further 
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explained in the Chapter 5, patients with more than 40% missing features were 

removed from this study. 

Figure 7.13. Distribution of proportion of missing data in patient records for full data (A) vs when 

records with >40% missing values have been removed (B), where patients with acute kidney injury 

(AKI) are marked as dark-green and without AKI are light-green. 

 

When predicting AKI within 25 hours in ICU, including all missing data, for 6056 

patients the mean percentage of missing data was 24.40% (SD=35.63%). After 

removing patients with 40% or more missing data, there were 4244 patient records 

available for analysis (ca. 30% of patient records removed), where the mean 

percentage of missing data was 1.21% (SD=3.78%). The histograms in Figure 7.13 

show the distribution for the percentage of missing data for the total population (A) 

and after records with more than 40% of missing variables are removed (B). When 

removing patients with more than 40% of missing values, 144 patients with AKI were 

removed from the analysis. 

7.5.1.2. Descriptive Statistics 

The Table 7.2.A from Appendix 7.2 shows the descriptive statistics for the laboratory 

values used in the prediction models, and how these statistics changed when using 

different imputation methods. The comparisons were made with each imputation 

method and the original data, using Welch Two-Sample t-tests [291].  
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When comparing the median imputation experiment with original data, there was no 

statistically significant difference in the distribution of the original dataset and imputed 

dataset. When applying 0 imputation, there was a significant different between the 

original dataset and the imputed dataset in terms of minimum, maximum, first and last 

creatinine, daily fluid balance, bicarbonate, hydrogen ion, and lactate. When applying 

missForest imputation to the original dataset, there was a significant difference only 

between maximum daily fluid balance. 

7.5.1.3. Training and Testing Data 

As seen from Table 7.4, similarly to previous experiments, when predicting AKI 

within 25 hours of ICU stay, as the lead time got closer to the event of AKI, the 

percentage of patients with AKI and the number of patients in the total dataset 

increased. The mean percentage of patients with AKI in total dataset was 7.80% (SD 

= 0.78). The mean number of patients in the training set was 2802 (SD = 23.43) and 

testing set was 1393 (SD = 14.78). The completeness in testing datasets varied from 

60.66% to 62.54%. 
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Table 7.4. Number of patients in each training and testing data based on the lead time until AKI within 25 hours in ICU, completeness of data and percentage of patients 

with AKI. 

 Total Data Training data 

(100% complete) 

Testing data 

Lead Time Number of 

patients 

Completeness 

(%) 

AKI (%) Number of 

Patients 

AKI (%) Number of Patients Completeness (%) AKI (%) 

-24 4139 87.12 6.35 2758 6.74 1355 60.66 5.39 

-23 4154 87.20 6.69 2769 6.90 1385 61.60 6.28 

-22 4159 87.20 6.80 2772 7.11 1387 61.70 6.20 

-21 4162 87.20 6.87 2774 7.14 1388 61.70 6.34 

-20 4166 87.28 6.96 2776 7.49 1368 61.26 5.85 

-19 4167 87.30 6.98 2777 7.20 1390 61.90 6.55 

-18 4171 87.30 7.07 2780 7.55 1391 61.80 6.11 

-17 4177 87.30 7.21 2784 7.18 1393 61.80 7.25 

-16 4180 87.27 7.27 2786 7.21 1375 61.62 7.27 

-15 4188 87.30 7.45 2791 7.70 1397 61.90 6.94 

-14 4197 87.30 7.65 2797 7.94 1400 62.00 7.07 

-13 4204 87.40 7.80 2802 8.07 1402 62.20 7.28 

-12 4211 87.46 7.95 2806 8.27 1380 61.74 7.25 

-11 4220 87.50 8.15 2812 8.25 1408 62.60 7.95 

-10 4231 87.50 8.39 2820 8.69 1411 62.60 7.80 

-9 4234 87.60 8.46 2822 8.50 1412 62.70 8.36 

-8 4238 87.59 8.54 2824 8.99 1392 62.21 7.69 

-7 4242 87.60 8.63 2827 9.02 1415 63.00 7.84 

-6 4242 87.60 8.63 2827 9.02 1415 63.00 7.84 

-5 4243 87.70 8.65 2828 8.70 1415 63.00 8.55 

-4 4243 87.65 8.65 2828 8.70 1389 62.27 8.42 

-3 4243 87.65 8.65 2828 8.70 1389 62.27 8.42 

-2 4244 87.65 8.67 2827 8.74 1392 62.36 8.48 

-1 4244 87.72 8.67 2829 8.77 1391 62.54 8.34 

Mean ± SD 4204 ± 35.22 87.43 ± 0.18 7.80 ± 0.78 2802 ± 23.43 8.02 ± 0.75 1393 ± 14.78 62.10 ± 0.56 7.31 ± 0.92 
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7.5.2. Experiment 2: Models’ Performance 

7.5.2.1. Discriminative Performance 

Based on AUC, shown in Figure 7.14, BARTm seemed to have a better performance 

overall than C5.0. The pattern of how the AUC changed with lead time was very 

similar for both models. According to the Table 7.8, BARTm had a considerably 

higher mean AUC than C5.0 (0.830 vs 0.794).  

Figure 7.14. AUC for both models predicting acute kidney injury for each lead time, using complete 

training data and missing values in testing data. 

 

Table 7.5. Mean and standard deviation model performance measures for each model across each lead 

time before AKI when predicting AKI within 25h since ICU admission, using complete training data 

and missing values in testing data. The highest result for each performance measure is marked in bold. 

 AUC Sensitivity Specificity PPV NPV 

Model Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

BARTm - NA 0.830 ± 0.020 0.780 ± 0.074 0.741 ± 0.070 0.023 ± 0.007 0.800 ± 0.046 

C5.0 - NA 0.794 ± 0.023 0.724 ± 0.064 0.764 ± 0.051 0.027 ± 0.005 0.800 ± 0.037 

 

According to Table 7.5, BARTm also had a higher mean sensitivity of 0.780 (vs 

0.724), however, C5.0 had a higher mean specificity of 0.764 (vs 0.741). Similarly to 

Experiment 1, the positive predictive values for both models were very low due to low 
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prevalence of AKI in each lead time dataset. The negative predictive values, however, 

were moderately high, both models having had equal mean NPV of 0.800. C5.0 had 

slightly less variation in its NPV values than BARTm. 

Figure 7.15. Sensitivity and specificity, positive and negative predictive values (PPV and NPV) for 

both models for each lead time when predicting acute kidney injury on an hourly basis in the ICU, 

using complete training data and missing values in testing data. 

 

The plots in Figure 7.15 reflect the mean sensitivity, specificity, PPV and NPV in 

Table 7.8, where BARTm had visibly higher sensitivity at most lead times. There 

appeared to be more variation in BARTm specificity values than in C5.0 values. The 

NPV values were moderately high, staying above 0.750 at most lead times, apart from 

5 hours before AKI. 

The exact performance measures for each lead time for both models can be found from 

Appendix 7.3, Table 7.3.B. When predicting AKI 24 hours in advance, using missing 

values in testing set, BARTm had a higher AUC than C5.0 (0.844 vs 0.784) and also 

higher sensitivity (0.87 vs 0.675). C5.0, however, had considerably higher specificity 

(0.781 vs 0.699) than BARTm. At 12 hours in advance, the AUC values were closer, 

BARTm performing slightly better than C5.0 (0.845 vs 0.824). Both models had an 

equal sensitivity of 0.757 and BARTm had a higher specificity of 0.811 (vs 0.790). 
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When predicting AKI 4 hours in advance, BARTm again had a higher AUC of 0.840 

(vs 0.814). Both models again had the same sensitivity of 0.777, and BARTm had a 

higher specificity (0.753 vs 0.743). 

The confusion matrices (Figure 7.16) show that the models recognised patients with 

and without AKI correctly similarly when predicting AKI 12 hours in advance. At 1 

hour in advance, BARTm classified patients with AKI correctly slightly more than 

C5.0 (83% vs 76%). 

Figure 7.16. Confusion matrices for the two models predicting acute kidney injury, using complete 

training data and missing values in testing data, 12 hours vs 1 hour in advance. 

 

7.5.2.2. Calibration and Variable Importance 

As the BARTm model achieved the highest mean AUC of 0.830, the calibration plots 

for this model for the lead times of -1, -12 and -24 hours were examined (Figure 7.17). 
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Similarly to the Experiment 1, here also the models had better calibration if the 

prediction was made closer to the onset of AKI, i.e., 1 hour before AKI, as opposed to 

24 hours before AKI. This was most likely due to the number of patients with AKI 

being higher when making the -1-hour lead time prediction than when making the 

prediction 24 hours in advance, as shown in Table 7.6.  

The mean predicted probability (Table 7.6) shows that when predicting AKI 24 or 12 

hours in advance, the model tended to overestimate risk of AKI in this patient 

population, however, slightly underestimate risk of AKI when predicting it 1 hour in 

advance. 

Figure 7.17. Calibration plots for BARTm model predicting acute kidney injury 1 hour (top-left), 12 

hours (top-right), and 24 hours (bottom-centre) in advance, developed with complete training data and 

evaluated with incomplete testing data. The light-green and dark-green areas indicate the 95% CI and 

IQR for the predicted probabilities, respectively. 
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Table 7.6. Number of patients, the proportion of patients with AKI and mean predicted probability with 

standard deviation (SD) for lead times of -1, -12 and -24. 

Lead Time Number of 

patients 

Completeness (%) AKI (%) Mean Predicted 

Probability (%) ± SD (%) 

-24 4139 87.12 6.35 6.38 ± 8.83 

-12 4211 87.46 7.95 8.71 ± 11.53 

-1 4244 87.72 8.67 8.46 ± 13.37 

 

Figure 7.18. Most important variables used by both models for at least 10 times. 

 

Looking at the variable importance, similarly to the previous experiment, from each 

model developed for each lead time, the top 20 variables were extracted. The Figure 

7.18 shows the variables that were most used by models. Most variables were used by 

both models, especially the ones that are at the top. As expected, creatinine was by far 

the most used variable, followed by urine output, urea and hydrogen ion. Daily fluid 

balance, lactate, potassium, and preoperative creatinine were also deemed important 

by the models. 
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7.5.3. Experiment 3: Models’ Performance 

7.5.3.1. Discriminative Performance 

The Figure 7.19 shows how AUC changed for each model as the lead time got close 

to AKI. In general, the AdaBoost, BARTm, C5.0 and gradient boosting models with 

all three imputation methods performed better than logistic regression, random forest 

and support vector machine models. At 15 hours before AKI the AdaBoost, BARTm, 

C5.0 and gradient boosting with median imputation had a noticeably lower 

performance than at other lead times. This could be because, as shown in Appendix 

7.4, there was a rise in creatinine for patients with AKI from lead time of -15h onwards. 

In addition, for daily fluid balance, from -15h onwards, there was a higher variability 

in mean values for both patients with AKI and without AKI. Furthermore, for lactate 

levels, there was a jump in values and also increased in variation for both maximum 

and last lactate value for AKI and non-AKI patients. These three variables were 

amongst top 5 most important variables used by models, as shown later in Figure 7.27. 

The Table 7.7 shows the mean and standard deviation of each performance measure 

across all lead times. BARTm models had the highest mean AUC, the model with 0 

imputation in test set having the highest overall mean AUC of 0.849. BARTm with 0 

imputation also had the highest mean sensitivity of 0.807. Gradient boosting with 

median imputation had the highest mean specificity of 0.792. Overall, as seen in 

previous experiments, all models had very low mean positive predictive values. This 

was due to low percentage of patients with AKI at each lead time. The negative 

predictive values, however, were considerably high. Support vector machine with 0 

imputation had the highest negative predictive value of 0.838. 

In general, BARTm models did very well, regardless of the imputation method. The 

C5.0, logistic regression and support vector machine models with all imputation 

methods did the least well in terms of overall performance. 
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Figure 7.19. AUC for all models predicting acute kidney injury for each lead time, using complete 

training data and 0, median and missForest imputation methods in testing set. 
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Table 7.7. Mean and standard deviation model performance measures for each model across each lead 

time before AKI when predicting AKI within 25h since ICU admission, using complete training data 

and imputation methods to replace missing values in testing data. The highest result for each 

performance measure is marked in bold. 

 AUC Sensitivity Specificity PPV NPV 

Model Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

BARTm - 0 0.849 ± 0.018 0.807 ± 0.048 0.758 ± 0.047 0.020 ± 0.005 0.787 ± 0.037 

BARTm - 

missForest 

0.845 ± 0.018 0.785 ± 0.065 0.760 ± 0.057 0.022 ± 0.006 0.789 ± 0.040 

BARTm - 

Median 

0.840 ± 0.052 0.760 ± 0.103 0.777 ± 0.076 0.024 ± 0.011 0.777 ± 0.048 

GBM - 

missForest 

0.840 ± 0.020 0.766 ± 0.070 0.774 ± 0.069 0.023 ± 0.007 0.779 ± 0.052 

GBM - 0 0.833 ± 0.021 0.760 ± 0.074 0.774 ± 0.074 0.024 ± 0.008 0.775 ± 0.055 

GBM - 

Median 

0.833 ± 0.056 0.741 ± 0.107 0.792 ± 0.055 0.025 ± 0.011 0.773 ± 0.045 

RF - 

missForest 

0.818 ± 0.015 0.738 ± 0.059 0.765 ± 0.051 0.026 ± 0.006 0.796 ± 0.035 

RF - Median 0.813 ± 0.047 0.744 ± 0.088 0.752 ± 0.053 0.026 ± 0.011 0.804 ± 0.039 

AB - 

missForest 

0.811 ± 0.024 0.740 ± 0.081 0.760 ± 0.076 0.026 ± 0.008 0.794 ± 0.052 

AB - 0 0.803 ± 0.024 0.722 ± 0.069 0.759 ± 0.053 0.028 ± 0.008 0.803 ± 0.038 

AB - Median 0.803 ± 0.055 0.732 ± 0.104 0.761 ± 0.066 0.027 ± 0.011 0.798 ± 0.046 

LR - 0 0.803 ± 0.085 0.729 ± 0.199 0.777 ± 0.090 0.025 ± 0.011 0.777 ± 0.062 

RF - 0 0.795 ± 0.020 0.747 ± 0.064 0.724 ± 0.063 0.027 ± 0.007 0.819 ± 0.034 

SVM - 

missForest 

0.795 ± 0.026 0.709 ± 0.075 0.765 ± 0.078 0.029 ± 0.007 0.797 ± 0.051 

SVM - 

Median 

0.792 ± 0.049 0.707 ± 0.078 0.761 ± 0.072 0.030 ± 0.010 0.800 ± 0.053 

C5.0 - 

missForest 

0.791 ± 0.021 0.717 ± 0.066 0.765 ± 0.052 0.028 ± 0.005 0.801 ± 0.034 

C5.0 - 

Median 

0.789 ± 0.036 0.719 ± 0.069 0.762 ± 0.046 0.028 ± 0.008 0.803 ± 0.033 

C5.0 - 0 0.788 ± 0.023 0.703 ± 0.079 0.776 ± 0.073 0.029 ± 0.006 0.792 ± 0.039 

LR - Median 0.761 ± 0.091 0.692 ± 0.200 0.767 ± 0.122 0.028 ± 0.012 0.782 ± 0.071 

SVM - 0 0.750 ± 0.024 0.740 ± 0.070 0.670 ± 0.063 0.029 ± 0.007 0.838 ± 0.048 

LR - 

missForest 

0.742 ± 0.101 0.683 ± 0.185 0.754 ± 0.100 0.030 ± 0.010 0.797 ± 0.072 

 

The Figures 7.20 and 7.21 show how sensitivity and specificity changed as the lead 

time got closer to AKI. With each lead time the models’ performance varied 

remarkably, making it difficult to point out visually which models had the best 

performance. C5.0 with 0 and median imputation had a noticeably lower sensitivity at 

lead times around -15 and -14 than in other lead times. The logistic regression models 

with all three imputation methods had noticeably higher specificities from lead times 

of -21 to -19. SVM with 0 imputation and missForest had a substantial drop in 

specificity at lead times of -6 and -7. 
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The Figures 7.22 and 7.23 show the changes in positive and negative predictive values 

for each model as the lead time got closer to AKI. As seen in previous experiments, 

here also the positive predictive values were very low for all models at all lead times. 

The negative predictive values tended to stay above 0.700 for all models at most lead 

times. 

The specific performance measures for each lead time for all models are shown in 

Appendix 7.3 Tables 7.3.C, 7.3.D and 7.3.E. When predicting AKI 24 hours in 

advance, using imputation methods in testing set, BARTm with 0 imputation had the 

highest AUC of 0.874. The same model also had the highest sensitivity of 0.870. C5.0 

with 0 imputation had the highest specificity of 0.854. 

When predicting AKI 12 hours in advance, BARTm with median imputation had the 

highest AUC of 0.863, followed by gradient boosting model with median imputation 

(AUC = 0.860). Random forest with 0 imputation had the highest sensitivity of 0.864 

and BARTm with median imputation had the highest specificity of 0.869. 

When predicting AKI 4 hours in advance, the three BARTm models took the first three 

places in terms of highest AUC of 0.862 for 0 imputation, and 0.859 equally for median 

and missForest imputation. The BARTm model with 0 imputation also had the highest 

sensitivity of 0.843 and the gradient boosting model with 0 imputation had the highest 

specificity of 0.861. 
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Figure 7.20. Sensitivity and specificity for AdaBoost, BARTm, C5.0 and gradient boosting models 

for each lead time when predicting acute kidney injury on an hourly basis in the ICU, using complete 

training data and imputation methods in testing data. 
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Figure 7.21. Sensitivity and specificity for logistic regression, random forest and support vector 

machine models for each lead time when predicting acute kidney injury on an hourly basis in the ICU, 

using complete training data and imputation methods in testing data. 
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Figure 7.22. Positive predictive values (PPV) for all models for each lead time when predicting acute 

kidney injury on an hourly basis in the ICU, using complete training data and imputation methods in 

testing data.  
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Figure 7.23. Negative predictive values (NPV) for all models for each lead time when predicting 

acute kidney injury on an hourly basis in the ICU, using complete training data and imputation 

methods in testing data. 
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Figure 7.24. Confusion matrices for all models predicting acute kidney injury 12 hours vs 1 hour in advance, using median imputation (A) and 0 imputation (B) in 

testing data. 
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Figure 7.25. Confusion matrices for all models predicting acute kidney injury 12 hours vs 1 hour in 

advance, using missForest imputation in testing data. 

 

The Figures 7.24 and 7.25. show the confusion matrices for each model developed to 

predict AKI 12 hours and 1 hour in advance. In general, the models predicted a similar 

number of patients with AKI correctly for both lead times. Support vector machine, 

however, tended to be better at predicting patients without AKI with the three 

imputation methods than patients with AKI. 

7.5.3.2. Calibration and Variable Importance 

Since the BARTm model evaluated with 0 imputation in test set had the best mean 

performance (AUC = 0.849), the calibration for this model was assessed. As seen from 

Figure 7.26, the model calibration when predicting AKI 1 hour in advance largely 

overestimated risk of AKI for patients who had true probability for AKI lower than ca. 
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75%. Similarly to previous experiments, due to considerably small number of patients 

with AKI in the patient population, the confidence intervals for the estimated predicted 

probabilities were very wide for patients who actually had AKI. This indicates the 

model’s uncertainty about recognising patients with AKI. 

Figure 7.26. Calibration plots for BARTm model predicting acute kidney injury 1 hour (top-left), 12 

hours (top-right), and 24 hours (bottom-centre) in advance, developed with complete training data and 

evaluated with testing data, where missing values were replaced with 0. The light-green and dark-

green areas indicate the 95% CI and IQR for the predicted probabilities, respectively. 

  

 

However, according to the mean predicted probability (Table 7.8), in all cases, the 

model underestimated risk of AKI based on the comparison between the mean 

probability and the proportion of AKI patients in each respective dataset for each lead 
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time. The underestimation of risk for AKI was especially clear for the lead times of -

1 and -24 hours. 

Table 7.8. Number of patients, the proportion of patients with AKI and mean predicted probability with 

standard deviation (SD) for lead times of -1, -12 and -24. 

Lead Time Number of 

patients 

Completeness (%) AKI (%) Mean Predicted 

Probability (%) 

+- SD (%) 

-24 4139 87.12 6.35 5.53 +- 8.35 

-12 4211 87.46 7.95 7.28 +- 10.28 

-1 4244 87.72 8.67 6.89 +- 12.35 

 

When looking at variable importance (Figure 7.27), the results were very similar to the 

previous experiments, where creatinine, urea, daily fluid balance, urine output, lactate 

and hydrogen ion were the most commonly used variables by models. 

Figure 7.27. Top variables used by models for at least 10 times. 
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7.6. Discussion 

7.6.1. Summary of Results 

As shown in Table 7.9, based on AUC, BARTm had the highest performance at most 

lead times before AKI. There was less clarity in terms of sensitivity and negative 

predictive values to say which model was the best at predicting AKI within 25 hours 

of ICU stay. However, all models seemed to have similarly moderately high 

performance. 

Table 7.9. Highest performance measures for lead times in every 4 hours when predicting AKI within 

25 hours of ICU stay. 

Lead Time AUC (Model) Sensitivity (Model) Specificity (Model) 

-24 0.874 (BARTm – 0) 0.914 (BARTm) 0.854 (C5.0 – 0) 

-20 0.831 (BARTm) 0.902 (C5.0 – 0) 0.975 (LR) 

-16 0.841 (BARTm – 0) 0.874 (BARTm – 0) 0.878 (RF – Median) 

-12 0.863 (BARTm – Median) 0.864 (RF – 0) 0.869 (BARTm – Median) 

-8 0.849 (LR) 0.926 (AB – missForest) 0.863 (LR) 

-4 0.887 (BARTm) 0.868 (BARTm) 0.861 (GBM – 0) 

-1 0.918 (BARTm) 0.932 (BARTm) 0.911 (LR – 0) 

 

When looking at the overall mean performance measures for each model across all 

lead times (Table 7.10), BARTm with complete data had the highest overall mean 

AUC (0.850) and sensitivity (0.821). This was lower than Meyer et al.’s AUC of 0.91, 

however higher than their sensitivity of 0.79 [74]. The highest specificity belonged to 

the logistic regression model developed with complete data (Spec = 0.824), which is 

slightly lower than the specificity achieved by Meyer et al. (Spec = 0.86) [74].  

Although Meyer et al.’s study was the only one found in the literature review to 

develop dynamic prediction models for AKI, the results by Meyer et al., however, 

should be taken with a pinch of salt as their model was developed and evaluated on a 

balanced test set. In case of an imbalanced classification problem, if any balancing 

methods are used, these methods should be applied to training data only, and never to 

testing data [134]. This is, because, when evaluating models’ performance, the testing 

data should be as close to the real-world data as possible. When using a balanced 

testing data, the model results are not applicable to the real-world cardiac patients. 
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In general, all models in this chapter showed a moderately high performance based on 

AUC, sensitivity and specificity, many staying above 0.700 in terms of mean AUC. 

Table 7.10. Overall mean and standard deviation performance measures across all lead times for all 

models and experiments when predicting AKI within 25 hours in the ICU. 

Model AUC Sensitivity Specificity 

 Mean ± SD Mean ± SD Mean ± SD 

BARTm 0.850 ± 0.026 0.821 ± 0.053 0.741 ± 0.057 

BARTm - 0 0.849 ± 0.018 0.807 ± 0.048 0.758 ± 0.047 

BARTm - missForest 0.845 ± 0.018 0.785 ± 0.065 0.760 ± 0.057 

GBM - missForest 0.840 ± 0.020 0.766 ± 0.070 0.774 ± 0.069 

BARTm - Median 0.840 ± 0.052 0.760 ± 0.103 0.777 ± 0.076 

GBM 0.838 ± 0.031 0.786 ± 0.067 0.755 ± 0.072 

GBM - 0 0.833 ± 0.021 0.760 ± 0.074 0.774 ± 0.074 

GBM - Median 0.833 ± 0.056 0.741 ± 0.107 0.792 ± 0.055 

BARTm - NA 0.830 ± 0.020 0.780 ± 0.074 0.741 ± 0.070 

RF - missForest 0.818 ± 0.015 0.738 ± 0.059 0.765 ± 0.051 

RF - Median 0.813 ± 0.047 0.744 ± 0.088 0.752 ± 0.053 

AB - missForest 0.811 ± 0.024 0.740 ± 0.081 0.760 ± 0.076 

AB 0.810 ± 0.037 0.752 ± 0.072 0.745 ± 0.069 

RF 0.810 ± 0.034 0.754 ± 0.079 0.739 ± 0.057 

AB - 0 0.803 ± 0.024 0.722 ± 0.069 0.759 ± 0.053 

AB - Median 0.803 ± 0.055 0.732 ± 0.104 0.761 ± 0.066 

LR - 0 0.803 ± 0.085 0.729 ± 0.199 0.777 ± 0.090 

LR 0.802 ± 0.100 0.668 ± 0.216 0.824 ± 0.080 

RF - 0 0.795 ± 0.020 0.747 ± 0.064 0.724 ± 0.063 

SVM - missForest 0.795 ± 0.026 0.709 ± 0.075 0.765 ± 0.078 

C5.0 - NA 0.794 ± 0.023 0.724 ± 0.064 0.764 ± 0.051 

SVM - Median 0.792 ± 0.049 0.707 ± 0.078 0.761 ± 0.072 

C5.0 - missForest 0.791 ± 0.021 0.717 ± 0.066 0.765 ± 0.052 

SVM 0.790 ± 0.035 0.719 ± 0.071 0.761 ± 0.071 

C5.0 - Median 0.789 ± 0.036 0.719 ± 0.069 0.762 ± 0.046 

C5.0 - 0 0.788 ± 0.023 0.703 ± 0.079 0.776 ± 0.073 

C5.0 0.787 ± 0.034 0.742 ± 0.052 0.738 ± 0.058 

LR - Median 0.761 ± 0.091 0.692 ± 0.200 0.767 ± 0.122 

SVM - 0 0.750 ± 0.024 0.740 ± 0.070 0.670 ± 0.063 

LR - missForest 0.742 ± 0.101 0.683 ± 0.185 0.754 ± 0.100 

 

Interestingly, all BARTm and gradient boosting model experiments took the top places 

based on mean AUC. In general, the models with imputation methods had higher 

performance overall. However, BARTm with missing values in test set was at the 9th 

place in terms of mean AUC, and 5th place in terms of sensitivity, and the AUC values 

compared to the top models were not noticeably different (AUC of 0.830 for BARTm 

with NA in test vs 0.850 for the top model). The BARTm model with missing values 

also had one of the highest NPV of 0.800 (Appendix 7.3 Table 7.3.B) This 

performance is promising as missing data in electronic health records is a major 
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obstacle predictive modelling in healthcare [110]. Being able to make a prediction for 

a patient who does not have all the necessary data available allows for clinicians to 

make a decision with the aid of prediction model for all patients. 

The top-performing models for each experiment had similar calibration, where the 

certainty about predicted probabilities was high when true probabilities for AKI were 

low, and the certainty about predicted probabilities was low when true probabilities 

for AKI were high. This is due to the number of patients with AKI being very low 

compared to the number of patients without AKI, also reflected in very low PPV for 

all models. Based on mean predicted probabilities for each top-performing model in 

the three experiments, the models tended to slightly underestimate the risk of AKI. 

Figure 7.28. Most important variables that are used by models for at least 10 times overall. 

 

The Figure 7.28 shows the most commonly used variables across all lead times for all 

experiments in this chapter. As seen from the individual experiments, the models 

tended to use the same variables as top variables. These variables are creatinine, urea, 

daily fluid balance, urine output, lactate and hydrogen ion, all of which have been 

shown to be associated with AKI in other studies [270], [271], [383], [384].  
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The variable importance is not often reported in the other paper predicting AKI in a 

dynamic manner. Meyer et al. do not report variable importance [74] presumably due 

to using recurrent deep neural network, which is a complex method that does not allow 

for measuring variable importance. Knowing variable importance, however, can be a 

key aspect to adopting the model in clinical practice. If the clinician knows which 

factors are associated to the probability of AKI to be high, the clinicians can pay closer 

attention to these factors and apply relevant clinical interventions. 

To sum up, the models predicting AKI, developed in this chapter, had in general 

moderately high performance in terms of AUC, sensitivity, and specificity. It is also 

promising that the models developed in this chapter achieved all moderately high 

negative predictive values, which offers certainty that if a patient is predicted to not 

have AKI, then in reality the patient actually will not have AKI (shown by NPV).  

7.7. Conclusion 

In this chapter the onset of AKI was predicted on an hourly basis, using preoperatively 

variables and laboratory variables available in the ICU. Overall, most models had 

considerably good performance based on AUC. The overall best performance was 

achieved by BARTm model that used complete training and complete testing data. 

However, the models that were evaluated on testing sets with missing values or where 

missing values were replaced, also achieved comparable results. 

  



248 

 

Chapter 8. Study 2.2: Predicting the 

Onset of Delirium on an Hourly Basis in 

Intensive Care 

8.1. Introduction 

This chapter aims to experiment with different predictive modelling methods to predict 

the onset of delirium following cardiac surgery within 21 hours since ICU admission 

on an hourly basis, using static preoperatively recorded and dynamic ICU data. 

In this chapter a binary classification problem was investigated: “Does a patient have 

delirium or not?” 

As done in Chapter 7, three main experiments were undertaken to find the most 

optimal model for predicting delirium: 

1. Predicting delirium using complete data only. 

2. Predicting delirium, using complete training data and missing values in testing 

data. Patient records missing more than 40% of the variables were excluded 

from the analysis, as done elsewhere [300], [302]. 

3. Predicting delirium, using complete training data and imputation methods to 

replace missing values in testing data. Again, patient records with more than 

40% of the variables missing were excluded from the analysis. 

Detailed information about the methods and experiments in this chapter can be found 

from Chapter 5. 

8.2. Related Work 

There are various models developed to predict delirium following cardiac surgery. 

Three recent systematic reviews found 26 unique prediction models for predicting 

delirium in ICU [362]–[364]. Of these models, 4 were identified by the review papers 
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to be “dynamic” models: DYNAMIC-ICU [385], Auto-DelRAS [386], ABD-pm 

[387], and a model developed by Oh et al. [388]. As explained in Chapter 2, a model 

is considered dynamic if its prediction is updated as the time changes, based on the 

renewed input information [389]. Predicting clinical outcomes in a dynamic manner 

helps clinicians to be informed of patient’s risk for delirium on near real-time basis. 

It is worth noting that none of these studies were included in the literature review 

(Chapter 2) due to not meeting the eligibility criteria. Namely, while Oh et al. used 

patients’ heart rate for their analysis, they did not include any laboratory data in their 

model [388]. The ABD-pm [387] and the DYNAMIC-ICU did not include any 

variables that are repeatedly measured in the ICU, like laboratory variables or vital 

signs [385]. Auto-DelRAS included blood urea nitrogen as a dynamic variable [386], 

however, it was not specified how exactly this variable was treated to make a 

prediction as laboratory variables are recorded in the ICU several times for each 

patient. Hence, it is also unclear how exactly this model is deemed to be a “dynamic” 

prediction model. 

For DYNAMIC-ICU, it is unknown how often the model is calculated and how much 

time in advance delirium is predicted [385]. For Auto-DelRAS, it is known that the 

model is calculated once a day, however, again it is not reported at what time point 

before delirium the prediction is made [386]. ABD-pm is calculated once a day to 

predict the next day probability for delirium (and other outcomes), however, it is 

unknown at what time in the next day delirium could happen [387]. As delirium can 

manifest itself in a matter of hours [390], a daily prediction is too infrequent. 

Out of the four models, based on the information published by papers, the model 

developed by Oh et al, is the only truly dynamic prediction model for delirium in the 

ICU. It reports CAM-ICU assessment in every 8 hours, and it uses heart rate variability 

to predict delirium every 3 hours. By predicting delirium on a real-time basis using 

heart-rate variability only, Oh et al. achieve the highest performance when predicting 

delirium using linear extreme learning machine (Accuracy = 0.6389, Sens = 0.8797, 

Spec = 0.2776, PPV = 0.6485 and NPV = 0.5286). AUC is not reported. Even though 

this model shows some promising results, it was developed using 94 patient records 

only. [388] 
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Overall, none of the 26 studies report at what time specifically delirium occurs in their 

patient population. Pisani et al., however, state that 70.4% of their patient population 

had delirium within 48 hours of ICU admission [391]. This means that these models 

could attempt to predict delirium when it has already happened, which is a serious 

limitation to these models.   

To improve upon delirium prediction in ICU, in this chapter various steps were taken: 

• Experiments were undertaken to predict delirium, using preoperative data. This 

was done to understand which preoperative variables were associated with 

postoperative delirium. 

• Experiments were undertaken to predict delirium on an hourly basis, using 

CAM-ICU status with their timestamps. 

• As opposed to static variables used in models found in the review papers [362]–

[364], dynamic laboratory variables were used to use more up-to-date data for 

prediction. 

• The analysis was undertaken using data recorded within the first 21 hours since 

ICU admission. This was due to delirium happening within the first 21 hours 

of ICU admission in this dataset, as shown in Section 8.3.1. 

• Experiments were undertaken using complete data, missing data and 

imputation methods in order to understand whether the models using only 

complete data could be improved upon. 

As said by the developers of the CAM-ICU [285],  

“Predictive models for delirium are useful to identify high risk patients for proactive 

implementation of preventive strategies, for identifying patients who need closer 

monitoring, for identifying vulnerability factors for intervention, for prognostic 

decision-making, and for determining clinical trial eligibility. The ability to stratify 

risk can assist physicians in explaining risks to patients and families and can help 

families to better understand the recovery process and potential outcomes.” 

8.3. Patient Population and Delirium 

Delirium was recorded at GJNH for patients from 2016 onwards. Hence, patients’ data 

who had a procedure from 2016 to 2018 were included in the analysis. The patients 
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who had delirium within the first hour since being admitted to the ICU were excluded 

from the analysis. This is because the event at time = 0 would be impossible to predict 

in the ICU, and more information would be needed about the surgery itself. Hence, the 

total number of patients included in the analysis was 3322. 

8.3.1. Patient Demographics  

The prevalence of delirium was found to be 12.47% (95% CI 11.39% – 13.63%) out 

of 3322 patients. As seen from Appendix 8.1. Table 8.1.A, the overall mean age for 

patients was 65.82 years. The majority of patients were male (71.44%). Most patients 

did not have type II diabetes (74.85%) and about a third of the patients had never 

smoked (34.00%) or were ex-smokers (34.27%).  

The most common surgery was CABG (51.97%), followed by valve surgery (33.13%). 

The mean logistic EuroSCORE calculated for patients was 5.58. Patients usually 

stayed in the ICU for slightly more than two days (mean hours = 51.77) and in the 

hospital for just under 12 days. Following surgery, 1.20% of the patients died. 

When comparing these demographics between patients with delirium and without 

delirium, there were statistically significant differences between these two populations 

based on age, sex, type of procedure, logistic EuroSCORE, ICU hours, and total days 

in hospital. Patients with delirium were significantly older than patients without 

delirium. More patients were also females and more patients had higher risk surgery, 

such as valve, or combined CABG and valve surgery. Patients with delirium had 

higher preoperatively calculated logistic EuroSCORE, which shows there is a potential 

that logistic EuroSCORE could also indicate risk of postoperative delirium. On 

average, patients without delirium stayed in the ICU for slightly less than 2 days (mean 

= 38.01 hours), whereas patients with delirium stayed in the ICU for almost four days 

(mean = 148.36 hours). Patients with delirium stayed in the hospital, on average, 7 

days longer than patients without delirium. 

The Figures 8.1 to 8.4 show the distribution of age, logistic EuroSCORE, ICU hours 

and total days in hospital for patients without delirium and with delirium. 
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Figure 8.1. Histogram of age for patients without delirium (light-green) vs with delirium (dark-

green). 

 

Figure 8.2. Histogram of logistic EuroSCORE for patients without delirium (light-green) vs with 

delirium (dark-green). 
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Figure 8.3. Histogram of intensive care unit hours for patients without delirium (light-green) vs with 

delirium (dark-green). 

 

Figure 8.4. Histogram of total days in hospital for patients without delirium (light-green) vs with 

delirium (dark-green). 
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As seen from the Figure 8.5, the majority of patients had delirium between 10 – 13 

hours since the admission to ICU. More specifically, the mean time of delirium 

occurrence was 11.21 hours (SD = 2.84), and median time was 12.02 (IQR = 1.1). The 

maximum time of the first delirium occurrence was at 20.6 hours since ICU admission. 

The distribution of the time of delirium onset determines how often and how many 

hours in advance delirium can be predicted.  

Figure 8.5. Time of delirium onset in ICU, based on CAM-ICU assessments. 

 

It is also important to note that CAM-ICU score was measured in mean time of every 

10.52 hours (SD = 4.02), with median time of every 11.90 hours (IQR = 0.95). This 

also explains why suddenly such a large number of patients had delirium diagnosis at 

these hours. This will be further discussed as a limitation in Section 9.2 in Chapter 9. 

8.3.2. Descriptive Statistics 

Along with the demographic variables presented in Section 8.3.1, other preoperative 

variables and laboratory variables (collected in ICU) were used in the analysis. These 

comprise of six demographic variables (age, sex, BMI, type II diabetes, smoking status 

and procedure), 19 preoperative variables (priority, critical preoperative state, previous 

cardiac surgery, previous percutaneous coronary intervention, extracardiac 
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arteriopathy, left ventricular function, New York Heart Association (NYHA) grade, 

angina status, rhythm of the heart, preoperative renal function, preoperative creatinine, 

neurological dysfunction, previous myocardial infarction, left main stem disease, 

pulmonary disease, hypertension history, congestive cardiac failure and active 

endocarditis), and 17 laboratory variables (arterial base excess, arterial haematocrit, 

bicarbonate, c-reactive protein, creatinine, daily fluid balance, haemoglobin, hydrogen 

ion, lactate, potassium, sodium, urea, urine output, dobutamine, dopamine, 

noradrenaline and vasopressin). 

8.3.2.1. Preoperative Data 

The Appendix 8.1, Table 8.1.B shows patient characteristics for the preoperatively 

recorded data. Overall, the most common surgery was elective surgery (48.53%). The 

majority of patients were not at critical preoperative state (97.34%) and had not had a 

previous cardiac surgery (96.56%) or percutaneous coronary intervention (86.21%). 

Most patients did not have extracardiac arteriopathy (89.77%), and the majority of 

patients had also good left ventricular function (76.61%). The most common NYHA 

grade level was II (47.82%). Most patients had normal heart rhythm (80.95%). 

Just over a half of the patients had normal renal function before surgery (53.11%) and 

normal creatinine levels (mean = 90.79). The majority of patients had no neurological 

problems (99.28%), previous myocardial infarction (64.21%) and left main stem 

disease (53.74%). It was also common not to have pulmonary disease (85.02%), 

congestive cardiac failure (86.93%) or active endocarditis (98.32%). The majority of 

patients, however, had hypertension history (72.40%). This was expected, as these 

patients were going to have an open-heart surgery. 

When comparing patients with delirium versus without delirium, there were 

statistically significant differences in these two patient populations in terms of surgical 

priority, critical preoperative state, NYHA grade, heart rhythm, renal function and 

preoperative creatinine, left main stem disease and congestive cardiac failure.  

Patients with delirium had a higher proportion of emergency surgery (4.08% vs 1.20%) 

than patients without delirium. More patients with delirium were in a critical 

preoperative state (5.99% vs 2.19%). With delirium, more patients had higher levels 
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of NYHA grades, especially level III (33.57% vs 24.94%) and level IV (9.35% vs 

4.07%). Preoperative abnormal rhythm was more common for patients who had 

postoperative delirium (20.14% vs 13.87%). In addition, the renal function was 

significantly worse for patients with delirium (20.14% vs 7.93% for severely impaired 

function) and preoperative creatinine levels were above normal (mean = 101.17). 

Fewer patients, however, had left main stem disease if they belonged to the population 

with delirium (65.47% vs 52.92%). More patients, however, had congestive cardiac 

failure (20.14% vs 12.06%) if they had delirium. 

8.3.2.2. Laboratory Data 

As seen from Appendix 8.1, Table 8.1.C, the patient population with delirium was 

significantly different from the patient population without delirium based on all 

laboratory variables, apart from the vasopressin dose. This indicates that using these 

laboratory variables can help with predicting delirium in the ICU. 

8.4. Experiment 1 Results: Models 

Predicting Delirium in ICU on a Real 

Time Basis, Using Complete Data 

8.4.1. Data Preparation 

As seen from Table 8.1, the number of patients in each lead time dataset ranged from 

2149 to 2307 in total. The percentage of patients with delirium ranged from 6.51% to 

12.60%. There were remarkably fewer patients with delirium in the -13-hour lead time 

dataset than there were in the other lead time datasets. This was, because most patients 

had delirium for the first time between 10 and 13 hours (mean = 11.21 ± 2.84). The 

mean number of patients across all lead times was 2266 (SD = 40.74) and the mean 

proportion of patients with delirium was 11.08% (SD = 1.59). This was slightly lower 

than the overall prevalence of delirium for patients who experienced it within the first 

21 hours since ICU admission, without accounting for patients who had the onset of 

delirium within the first hour. Even though there was quite a large difference in the 

proportion of patients with delirium in testing and training dataset at the lead time of -
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10, the mean proportion of patients with delirium across all lead times for these 

datasets were quite similar (10.87% ± 1.82 for training and 11.73% ± 1.89 for testing). 

Table 8.1. Number of patients and proportion of patients with delirium in each training and testing data, 

depending on lead time, if predicting delirium within 21 hours of ICU stay. 

 Total Data Training Data Testing Data 

Lead Time 
Number 

of Patients 

Delirium 

(%) 

Number 

of Patients 

Delirium 

(%) 

Number 

of Patients 

Delirium 

(%) 

-13 2149 6.51 1440 6.39 709 6.77 

-12 2233 10.00 1497 9.22 736 11.70 

-11 2245 10.05 1505 10.00 740 11.50 

-10 2250 10.07 1508 8.75 742 14.70 

-9 2263 11.20 1517 10.50 746 12.60 

-8 2269 11.40 1521 11.80 748 10.40 

-7 2273 11.50 1523 11.40 750 11.60 

-6 2281 11.70 1529 10.90 752 13.40 

-5 2287 11.90 1533 12.10 754 11.70 

-4 2294 12.20 1537 13.10 757 10.20 

-3 2301 12.30 1542 12.80 759 11.30 

-2 2307 12.60 1546 12.20 761 13.30 

-1 2307 12.60 1546 12.20 761 13.30 

Mean ± SD 
2266 ± 

40.74 

11.08 ± 

1.59 

1519 ± 

27.28 

10.87 ± 

1.82 

747 ± 

13.47 

11.73 ± 

1.89 

 

8.4.2. Models’ Discriminative Performance 

Figure 8.6 shows that all models had moderately good to very good performance at all 

lead times. Most models stayed above AUC of 0.850 throughout. Visually, logistic 

regression, random forest and C5.0 had the lowest overall performance. The other 

models had visually similar performance. Interestingly, all models’ performance 

decreased slightly as the lead time got closer to the predicted event. This is further 

discussed in Section 8.6. 
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Figure 8.6. AUC for all models for each lead time when predicting delirium on an hourly basis in the 

ICU, using complete data. 

 

The Table 8.2 shows that overall, all models had mean AUC above 0.900. Support 

vector machine, however, had the highest mean AUC across all lead times (mean AUC 

= 0.941, SD = 0.038) and also the highest mean sensitivity (mean Sens = 0.907, SD = 

0.048). C5.0 had the highest mean specificity of 0.885 (SD = 0.067). Overall, all 

models had moderately high to very high mean sensitivity and specificity, all staying 

above 0.800. All models had very low positive predictive values and also quite low 

negative predictive values, random forest having had the highest mean NPV of 0.563 

(SD = 0.133).   

The Figures 8.7 and 8.8 show how sensitivity, specificity, positive and negative 

predictive values changed for each model as the lead time changed. When looking at 

sensitivity, all models decreased in performance as the lead time got closer to delirium. 

However, sensitivity appeared to be moderately high at most lead times, staying above 

0.700 for most models. Specificity appeared to be in general slightly higher than 

sensitivity at all lead times. All models stay above 0.700 at all lead times.  



 

 

259 

 

Table 8.2. Mean and standard deviation model performance measures for each model across each lead 

time before delirium when predicting delirium within 21h since ICU admission, using complete data. 

The highest result for each performance measure is marked in bold. 

 AUC Sensitivity Specificity PPV NPV 

Model Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

AB 0.929 ± 0.043 0.863 ± 0.060 0.877 ± 0.078 0.027 ± 0.015 0.453 ± 0.186 

BARTm 0.937 ± 0.036 0.875 ± 0.062 0.884 ± 0.069 0.019 ± 0.010 0.449 ± 0.188 

C5.0 0.915 ± 0.047 0.822 ± 0.097 0.885 ± 0.067 0.027 ± 0.015 0.473 ± 0.162 

GBM 0.939 ± 0.035 0.875 ± 0.070 0.875 ± 0.064 0.019 ± 0.010 0.489 ± 0.125 

LR 0.901 ± 0.033 0.848 ± 0.054 0.884 ± 0.050 0.023 ± 0.008 0.485 ± 0.119 

RF 0.907 ± 0.050 0.850 ± 0.084 0.832 ± 0.083 0.024 ± 0.013 0.563 ± 0.133 

SVM 0.941 ± 0.038 0.907 ± 0.048 0.870 ± 0.066 0.015 ± 0.007 0.488 ± 0.150 

 

All models had very low positive predictive values at all lead times. This is because 

the prevalence of delirium is relatively low. This means that if a model predicts that 

the patient will have delirium, the probability for the patient actually to have a delirium 

is very low. Negative predictive values increase as the prediction is done nearer the 

onset of delirium. However, the values are not high enough to offer certainty that if a 

model predicts that the patient will not have delirium, then the patient actually will not 

have delirium. This is interesting as the prevalence of delirium was not very low (ca. 

11%), meaning a slightly higher positive predictive value was expected. The PPV and 

NPV here show that the models are not particularly confident in their estimated 

predicted probabilities in relation to whether a patient will or will not have delirium, 

as will be further shown with models’ calibration in Section 8.4.3. 
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Figure 8.7. Sensitivity and specificity for all models for each lead time when predicting delirium on 

an hourly basis in the ICU, using complete data. 

 

Figure 8.8 Positive and negative predictive values (PPV and NPV) for all models for each lead time 

when predicting delirium on an hourly basis in the ICU, using complete data. 

 

Looking at the Table 8.3.A. from Appendix 8.3, BARTm had the highest performance 

when predicting delirium 13 hours in advance (AUC = 0.997). That being said, all 

models had very high AUC at this lead time, the lowest having been 0.959 for logistic 

regression. The highest sensitivity when predicting delirium 13 hours in advance 

belonged to gradient boosting model, support vector machine and C5.0 equally (Sens 
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= 0.979). BARTm also had the highest specificity of 0.989 at 13 hours before the onset 

of delirium. 

All models were still performing very highly when predicting delirium 8 hours in 

advance. The AUC ranged from 0.920 (random forest) to 0.942 (gradient boosting 

model). Random forest also had the highest sensitivity of 0.936 and support vector 

machine had the highest specificity of 0.907 when predicting delirium 8 hours in 

advance. 

At 4 hours before the onset of delirium, the models had slightly lower performance 

overall, but was still moderately high. The performance ranged from 0.850 (random 

forest) to 0.905 (BARTm). Gradient boosting model had the highest sensitivity of 

0.870 and support vector machine had the highest specificity of 0.832 when predicting 

delirium 4 hours in advance. 

When looking at confusion matrices (Figure 8.9), all models were very good at 

predicting patients to not have delirium, regardless whether they were predicting 

delirium 13 hours in advance or 1 hour in advance. The proportion of predicting no 

delirium for 1 hour in advance was slightly lower than it was for 13 hours in advance. 

This was most likely because the prevalence of delirium increased as the lead times 

got closer to the event. Hence, due to slightly higher prevalence at 1 hour before 

delirium, the models were less confident about their prediction than they were at 13 

hours in advance. Furthermore, due to larger number of patients at lead times closer to 

delirium, there was more variance within the laboratory measures (shown in Appendix 

8.2), which might affect why models performed less well at lead times closer to 

delirium. 
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Figure 8.9. Confusion matrices for all models predicting delirium using complete data 13 hours vs 1 

hour in advance. 

 

8.4.3. Models’ Calibration and Variable Importance 

Since the support vector machine model had the highest overall mean performance 

(AUC = 0.941), calibration for this model was assessed. Figure 8.10 shows the 

calibration plots for the SVM model at lead times of -1, -8 and -13 hours before 

delirium. Visually, the model predicting delirium 8 hours in advance seemed to have 

the best calibration, where the predicted probabilities appeared to be more in 

accordance with the lower true probabilities. When predicting delirium 13 hours in 

advance, the estimated predicted probabilities had very high uncertainty, as shown by 
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wide confidence intervals. This was because of the prevalence of delirium having been 

considerably low in this patient population, as shown in Table 8.3.  

Figrue 8.10. Calibration plots for SVM predicting the onset of delirium 1 hour (top-left), 8 (top-right) 

and 13 (bottom-centre) hours in advance. The light-green and dark-green areas indicate the 95% CI 

and IQR for the predicted probabilities, respectively. 

  

 

Table 8.3. Number of patients, the proportion of patients with delirium and mean predicted probability 

with standard deviation (SD) for the lead times of -13h, -8h and -1h for the SVM model. 

Lead Time Number of Patients Delirium (%) Mean Predicted Probability 

(%) +- SD (%) 

-13 2149 6.51 7.20 +- 23.26 

-8 2269 11.40 11.55 +- 22.59 

-1 2307 12.60 13.01 +- 20.92 
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The Table 8.3 shows that the SVM model tended to overestimate risk for delirium 

when predicting it 13, 8 or 1 hour in advance. In addition, as also seen in calibration 

plots, the predicted probabilities were highly variable, as shown by standard deviation. 

The Figure 8.11 shows which variables the models used the most to predict delirium 

across all lead times. For each lead time the top 20 variables were extracted, and then 

combined for all models and lead times to understand which variables were most 

commonly used overall. When using complete data for delirium prediction, the most 

common variables used by models were lactate, urine output, potassium, and hydrogen 

ion. All models used lactate and potassium in their prediction. Most models, apart from 

logistic regression, used urine output, hydrogen ion, arterial haematocrit, 

haemoglobin, arterial base excess and bicarbonate. 

Figure 8.11. Most important variables used by models for at least 10 times. 
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8.5. Experiment 2 and 3 Results: Predicting 

Delirium, Using Complete Training 

Data and Incomplete Testing Data 

In this section, the results of Experiment 2 and 3 are presented. These experiments are: 

Experiment 2: Predicting delirium on an hourly basis, using complete training 

data and missing values in testing data. 

Experiment 3: Predicting delirium on an hourly basis, using complete training 

data and imputation methods to replace missing values in testing data.  

In Experiment 2, two methods that handle missing data were used to predict delirium, 

using complete training data and incomplete testing data. These two methods are 

BARTm and C5.0. 

In Experiment 3, the following imputation methods were used to replace missing 

values in testing data: median imputation, 0 imputation, and missForest imputation. 

For the model development, same methods were used as in Experiment 1. 

All methods used in this section are further described in Chapter 5. 

8.5.1. Data Preparation 

For both experiments, to avoid excessive number of missing values, patient records 

with more than 40% of missing values were excluded from the analysis, as done in 

other studies in the literature [300], [302].  

The histograms (Figure 8.12) show that the majority of patients had very little or no 

missing data, however a considerable number of patients also had more than 60% of 

missing values. A similar proportion of patients who were diagnosed with delirium, 

compared to the total patient population, had missing values. After removing patients 

with >40% of missing variables, 122 patients with delirium were excluded from the 

analysis. 
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The completeness of data was relatively high, following the removal of patient records 

with more than 40% of missing values.  

Figure 8.12. Histogram of proportion of missing data for all patient records (A) vs for patient records 

when records with >40% of missing values were removed (B), where light-green and dark-green 

indicate patients without and with delirium, respectively.  

 

8.5.1.1. Descriptive Statistics 

In the Table 8.2.A from Appendix 8.2 descriptive statistics are shown for each 

laboratory variable to show how the imputation methods affected the distribution of 

the data. As the laboratory variables in the modelling experiments were used as 

minimum, maximum, first and last per time window, the mean and standard deviation 

values were derived for each variable. In addition, paired t-tests were used to assess 

whether the records with imputation methods were significantly different from the 

original complete dataset.  

In most cases, neither of the imputation methods affected the distribution of the 

variables. This might be because the completeness of data was relatively high (see 

Table 8.4). The only statistically significant difference was found between the original 

maximum and last serum bicarbonate compared to these variables with 0 imputation.  

8.5.1.2. Training and Testing Datasets 

As shown in Table 8.4, the mean number of patients across all lead times was 2290 

(SD = 37.93), completeness was 98.94% (SD = 0.14) and the proportion of patients 
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with delirium was 11.25% (SD = 1.52). In the test set the overall completeness of data 

was 96.82% (SD = 0.48), which means that the BARTm and C5.0 algorithms had to 

handle around 4% of the patients’ missing data. 

The completeness of data increased and the percentage of patients with delirium 

increased as the lead time got closer to delirium. This was because the majority of 

patients have delirium between 10-13 hours since ICU admission. 

Table 8.4. Number of patients in each training and testing data based on the lead time until delirium 

within 21 hours in ICU, completeness of data and percentage of patients with delirium. 

 Total Data 
Training data  

(100% complete) 
Testing data 

Lead 

Time 

Patient

s (n) 

Compl

eteness 

(%) 

Delirium 

(%) 

Patient

s (n) 

Delirium 

(%) 

Patient

s (n) 

Complete-

ness (%) 

Delirium 

(%) 

-13 2178 98.70 6.70 1451 7.10 727 96.00 5.91 

-12 2262 98.70 10.20 1507 11.00 755 96.20 8.48 

-11 2273 98.80 10.60 1514 11.20 759 96.30 9.49 

-10 2278 98.80 10.80 1518 11.50 760 96.30 9.47 

-9 2289 98.90 11.20 1525 11.00 764 96.60 11.60 

-8 2294 98.90 11.40 1529 10.30 765 96.70 13.60 

-7 2297 99.00 11.50 1531 11.20 766 96.90 12.30 

-6 2304 99.00 11.80 1535 11.70 769 97.00 12.00 

-5 2309 99.00 12.00 1539 11.20 770 97.10 13.50 

-4 2315 99.10 12.20 1542 12.20 773 97.30 12.30 

-3 2321 99.10 12.50 1547 11.80 774 97.40 13.70 

-2 2327 99.10 12.70 1550 12.60 777 97.40 12.90 

-1 2327 99.10 12.70 1550 12.60 777 97.40 12.90 

Mean 

± SD 

2290 ± 

37.93 

98.94 ± 

0.14 

11.25 ± 

1.52 

1526 ± 

25.31 

11.18 ± 

1.34 

764 ± 

12.63 

96.82 ± 

0.48 

11.40 ± 

2.27 

 

8.5.2. Experiment 2: Models’ Performance 

8.5.2.1. Discriminative Performance 

From Figure 8.13 it can be seen that BARTm had a higher overall performance at all 

lead times, compared to C5.0. Interestingly, the models had a very similar pattern of 

changing the performance as the lead time changed. Both models had quite high AUC, 

staying above 0.800 at all lead times. Similarly to the Experiment 1, here also the 

performance of models reduced as the lead time got closer to the onset of delirium. 

The Table 8.5 shows the mean and standard deviation performance measures for both 

models across all lead times. As seen from Figure 8.13, BARTm had a higher mean 

AUC than C5.0 (AUC = 0.930 vs 0.898). BARTm also had a higher sensitivity than 
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C5.0 (Sens = 0.885 vs 0.822), however lower specificity than C5.0 (Spec = 0.851 vs 

0.854). As seen in the Experiment 1, here also the positive and negative predictive 

values were generally low for both models.  

Figure 8.13. AUC for both models for each lead time when predicting delirium on an hourly basis in 

the ICU, using complete training data and missing values in testing data.  

 

Table 8.5. Mean and standard deviation model performance measures for each model across each lead 

time before delirium when predicting delirium within 21h since ICU admission, using complete training 

data and missing values in testing data. The highest result for each performance measure is marked in 

bold. 

 AUC Sensitivity Specificity PPV NPV 

Model Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

BARTm - NA 0.930 ± 0.041 0.885 ± 0.047 0.851 ± 0.087 0.019 ± 0.010 0.519 ± 0.133 

C5.0 - NA 0.898 ± 0.056 0.822 ± 0.089 0.854 ± 0.098 0.028 ± 0.016 0.517 ± 0.165 

 

The Figure 8.14 shows how the sensitivity, specificity, positive and negative predictive 

values for both models changed with each lead time as the prediction got closer to the 

event of delirium. Similarly to AUC, BARTm appeared to have a higher sensitivity at 

most lead times, compared to C5.0. The specificity appeared to be quite similar for 

both models, and so do PPV and NPV. 
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Figure 8.14. Sensitivity and specificity, positive and negative predictive values (PPV and NPV) for 

both models for each lead time when predicting delirium on an hourly basis in the ICU, using 

complete training data and missing values in testing data. 

 

Looking at the Table 8.3.B from Appendix 8.3, when predicting delirium 13 hours in 

advance, the models had a very similar performance: AUC = 0.989 and 0.988 for 

BARTm and C5.0, respectively. Both models had an equal sensitivity of 0.953, 

however C5.0 had a higher specificity of 0.977 (vs 0.968). 

When predicting delirium 8 hours in advance, the differences in overall model 

performances become clearer: BARTm had a substantially higher AUC than C5.0 

(AUC = 0.935 vs 0.891), slightly higher sensitivity (0.875 vs 0.856) and remarkably 

higher specificity than C5.0 (0.861 vs 0.776). 

At 1 hour before the occurrence of delirium, BARTm had a very high AUC of 0.900 

(vs 0.842 for C5.0) and higher sensitivity than C5.0 (0.895 vs 0.779). C5.0, however, 

had a higher specificity of 0.777 (vs 0.736).  



270 

 

When looking at confusion matrices (Figure 8.15), the results were very similar to 

what they were when predicting delirium with complete data only within respective 

lead times. Similarly to Experiment 1, the models predicted a higher proportion of 

patients into correct classes 13 hours before delirium than they do at 1 hour before 

delirium. This also is in accordance with the Figure 8.13, where the overall 

performance of the models decreased as the lead times got closer to the event of 

delirium. This can be explained by a higher variability of the laboratory values at later 

lead times, as shown in Appendix 8.4. 

Figure 8.15. Confusion matrices for both models predicting delirium 13 hours vs 1 hour in advance, 

using complete training data and missing values in testing data. 

 

8.5.2.2. Calibration and Variable Importance 

Since BARTm model had the highest mean AUC of 0.930, calibration for this model 

was assessed (Figure 8.16). The calibration when predicting delirium for this model 

was visibly better than it was for the best-performing model (SVM) using complete 

data only. The estimated values of predicted probabilities were with considerably 

narrow confidence intervals, indicating some certainty of the model when predicting 

the outcome, especially when predicting delirium 1 hour or 8 hours in advance. The 
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model was considerably less certain about the predicted probabilities when predicting 

delirium 13 hours in advance due to smaller number of patients with delirium at this 

lead time. 

According to the mean predicted probability (Table 8.6), the model considerably 

underestimated overall risk for delirium in the patient population when predicting 

delirium 13 hours in advance. The estimation of risk was considerably accurate when 

predicting delirium 8 hours or 1 hour in advance. The standard deviation for each mean 

predicted probability, however, was very high, indicating variation in predicted 

probabilities. 
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Figure 8.16. Calibration plots for BARTm evaluated on testing data that contains missing values, 

predicting delirium 1 hour (top-left), 8 hours (top-right) and 13 hours (bottom-centre) in advance. The 

light-green and dark-green areas indicate the 95% CI and IQR for the predicted probabilities, 

respectively. 

  

 

Table 8.6. Number of patients, proportion of patients with delirium and mean predicted probability with 

standard deviation (SD) for the BARTm model predicting delirium at lead times of -13, -8, and -1 hours.  

Lead Time Number of 

patients 

Completeness (%) Delirium (%) Mean Predicted 

Probability (%) ± 

SD (%) 

-13 2178 98.7 6.7 5.98 ± 18.53 

-8 2294 98.9 11.4 11.82 ± 20.34 

-1 2327 99.1 12.7 12.23 ± 18.96 
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The Figure 8.17 shows the 10 most important variables used by the two models. Both 

models used each of these top variables, urine output and lactate being the most 

popular. 

Figure 8.17. Most important variables that are used in models for at least 10 times. 

 

8.5.3. Experiment 3: Models’ Performance 

8.5.3.1. Discriminative Performance 

The Figure 8.18 shows how the overall performance for each model changed with the 

lead time getting closer to the onset of delirium. Visually, all models, regardless of 

imputation method, had moderately good to very good performance. At all lead times, 

all models stayed above 0.800 in terms of AUC. As seen in Experiments 1 and 2, the 

models here also reduced in performance as the lead time got closer to delirium. As 

explained in earlier experiments, this is most likely due to the laboratory variables’ 

variation increasing as the lead time got closer to delirium (shown in Appendix 8.4). 
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Figure 8.18. AUC for all models for each lead time when predicting delirium on an hourly basis in 

the ICU, using complete training data and imputation methods in testing data. 

 

The Table 8.7 shows the mean performance measures for each model across all lead 

times. Most models tended to have mean AUC above 0.900, apart from C5.0 with 0 

imputation, and logistic regression models. Gradient boosting model with all 

imputation methods and support vector machine with median and missForest 

imputation had equally the highest mean AUC of 0.931. In terms of sensitivity, 

BARTm with 0 imputation had the highest mean sensitivity of 0.876. BARTm with 

missForest imputation had the highest mean specificity of 0.892, directly followed by 

C5.0 (mean Spec = 0.890). 
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As seen in previous experiments, the positive and negative predictive values were very 

low for all models. This was most likely due to the low prevalence of delirium in the 

dataset, but also due to the models having been uncertain about the predicted 

probabilities corresponding to whether a patient had a delirium. 

Table 8.7. Mean and standard deviation model performance measures for each model across each lead 

time before delirium when predicting delirium within 21h since ICU admission, using complete training 

data and imputation methods to replace missing values in testing data. The highest result for each 

performance measure is marked in bold. 

 AUC Sensitivity Specificity PPV NPV 

Model Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

AB - 0 0.926 ± 0.046 0.860 ± 0.084 0.876 ± 0.070 0.022 ± 0.015 0.468 ± 0.178 

AB - Median 0.926 ± 0.046 0.865 ± 0.083 0.871 ± 0.076 0.022 ± 0.015 0.490 ± 0.143 

AB - 

missForest 

0.926 ± 0.046 0.865 ± 0.083 0.870 ± 0.076 0.022 ± 0.015 0.491 ± 0.141 

BARTm - 0 0.929 ± 0.045 0.876 ± 0.062 0.869 ± 0.070 0.020 ± 0.012 0.502 ± 0.122 

BARTm - 

Median 

0.929 ± 0.042 0.856 ± 0.081 0.882 ± 0.072 0.022 ± 0.014 0.463 ± 0.161 

BARTm - 

missForest 

0.929 ± 0.044 0.850 ± 0.080 0.892 ± 0.061 0.023 ± 0.015 0.453 ± 0.144 

C5.0 - 0 0.887 ± 0.050 0.815 ± 0.075 0.830 ± 0.109 0.030 ± 0.013 0.543 ± 0.170 

C5.0 - 

Median 

0.904 ± 0.055 0.807 ± 0.106 0.889 ± 0.057 0.030 ± 0.019 0.484 ± 0.135 

C5.0 - 

missForest 

0.903 ± 0.054 0.803 ± 0.099 0.890 ± 0.059 0.030 ± 0.018 0.477 ± 0.144 

GBM - 0 0.931 ± 0.041 0.858 ± 0.061 0.880 ± 0.068 0.022 ± 0.012 0.481 ± 0.134 

GBM - 

Median 

0.931 ± 0.041 0.860 ± 0.057 0.876 ± 0.071 0.022 ± 0.011 0.487 ± 0.144 

GBM - 

missForest 

0.931 ± 0.041 0.861 ± 0.057 0.875 ± 0.071 0.022 ± 0.011 0.487 ± 0.143 

LR - 0 0.871 ± 0.037 0.807 ± 0.057 0.873 ± 0.057 0.029 ± 0.013 0.518 ± 0.115 

LR - Median 0.880 ± 0.044 0.815 ± 0.068 0.875 ± 0.054 0.028 ± 0.014 0.518 ± 0.104 

LR - 

missForest 

0.879 ± 0.044 0.814 ± 0.066 0.878 ± 0.056 0.028 ± 0.014 0.504 ± 0.128 

RF - 0 0.909 ± 0.049 0.840 ± 0.086 0.852 ± 0.083 0.026 ± 0.015 0.535 ± 0.139 

RF - Median 0.910 ± 0.049 0.852 ± 0.076 0.845 ± 0.077 0.025 ± 0.015 0.551 ± 0.134 

RF - 

missForest 

0.910 ± 0.049 0.852 ± 0.076 0.844 ± 0.076 0.025 ± 0.015 0.552 ± 0.131 

SVM - 0 0.927 ± 0.043 0.874 ± 0.075 0.869 ± 0.057 0.021 ± 0.014 0.519 ± 0.092 

SVM - 

Median 

0.931 ± 0.043 0.874 ± 0.075 0.880 ± 0.058 0.020 ± 0.014 0.491 ± 0.109 

SVM - 

missForest 

0.931 ± 0.043 0.874 ± 0.075 0.880 ± 0.057 0.020 ± 0.014 0.493 ± 0.105 

 

The Figures 8.19 and 8.20 show how the sensitivity and specificity changed for the 

models as the lead time got closer to delirium. In general, for both sensitivity and 

specificity, the performance got lower as the onset of delirium got closer. Visually, 

C5.0 with 0 imputation and gradient boosting model with median imputation seemed 
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to have the lowest sensitivity at most lead times. C5.0 with 0 imputation also had 

visually the lowest specificity at most lead times. That being said, for most lead times, 

models tended to stay above 0.700 for sensitivity and above 0.750 for specificity. 

Looking at the Tables 8.3.C, 8.3.D and 8.3.E from Appendix 8.3, when predicting 

delirium 13 hours in advance, all models had very high AUC, all being above 0.950, 

apart from the logistic regression model with 0 imputation. The highest AUC of 0.997 

belonged to four models: C5.0 with median imputation and gradient boosting model 

with all three imputation methods. Nine models had the highest sensitivity of 0.999: 

C5.0 with median imputation, gradient boosting model with median and missForest 

imputation, support vector machine with all three imputation methods, and random 

forest with all three imputation methods. All models also had very high specificity at 

this lead time, staying above 0.940. The highest specificity belonged to BARTm with 

median imputation (0.987). 

When predicting delirium 8 hours in advance, BARTm had the highest AUC of 0.943. 

Six models had equally the highest sensitivity of 0.894: support vector machine with 

all three imputation methods and AdaBoost with all three imputation methods. 

Random forest with median and missForest imputation had the highest specificity of 

0.908 when predicting delirium 8 hours in advance. 

As seen in previous experiments, as the lead time got closer to the event of delirium, 

the performance measures got slightly lower. When predicting delirium 4 hours in 

advance, the AUC ranged from 0.815 (C5.0 with median and missForest) to 0.910 

(AdaBoost with median and missForest). AdaBoost and support vector machine with 

all three imputation methods again had the highest sensitivity of 0.853. BARTm with 

median imputation, however, had the highest specificity of 0.898 when predicting 

delirium 4 hours in advance. 
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Figure 8.19. Sensitivity and specificity for AdaBoost, BARTm, C5.0 and gradient boosting models 

for each lead time when predicting delirium on an hourly basis in the ICU, using complete training 

data and imputation methods in testing data. 
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Figure 8.20. Sensitivity and specificity for logistic regression, random forest and support vector 

machine models for each lead time when predicting delirium on an hourly basis in the ICU, using 

complete training data and imputation methods in testing data. 
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Figure 8.21. Positive predictive values (PPV) for all models for each lead time when predicting 

delirium on an hourly basis in the ICU, using complete training data and imputation methods in 

testing data. 
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Figure 8.22. Negative predictive values (NPV) for all models for each lead time when predicting 

delirium on an hourly basis in the ICU, using complete training data and imputation methods in 

testing data. 

 

The Figures 8.21 and 8.22 show how positive and negative predictive values changed 

for each model as the lead times got closer to the event of delirium. In general, for all 

models, as also seen in previous experiments, positive predictive values were very low. 

In addition to being related to relatively low prevalence of delirium, as explained 

before, it also indicates the models’ low certainty about predicted probabilities related 

to patients who actually had delirium. For negative predictive value, the performance 

got higher as the lead time got closer to delirium, however, in general, the negative 

predictive values are as good as flipping a coin at their highest. 



 

 

281 

 

Figure 8.23. Confusion matrices for all models predicting delirium 13 hours vs 1 hour in advance, using complete training data and median imputation (A) and 0 

imputation (B) in testing data. 
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Figure 8.24. Confusion matrices for all models predicting delirium 13 hours vs 1 hour in advance, 

using complete training data and missForest imputation in testing data. 

 

The Figures 8.23 and 8.24 show confusion matrices for each method predicting 

delirium 13 hours and 1 hour in advance. In general, all models did very well at 

grouping patients to have or not have delirium correctly when making the prediction 

13 hours in advance. The models were substantially less capable at predicting the 

categories correctly when predicting delirium 1 hour in advance. This is also reflected 

in the reduction in overall performance of all models as the lead times got closer to 

delirium. Across all three imputation methods the models had very similar 

performance. The best performing models appeared to be BARTm with median and 0 

imputation due to being able to predict patients with delirium well for both 13 and 1 
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hour in advance. Interestingly, with missForest imputation at 1 hour in advance, 

BARTm was not very good at categorising patients with delirium correctly. AdaBoost 

and C5.0 for all three imputation methods tended to be better at predicting patients 

without delirium than patients with delirium.  

8.5.3.2. Calibration and Variable Importance 

As the gradient boosting model with 0 imputation in testing set achieved the highest 

mean overall performance (AUC = 0.931), calibration for this model was assessed 

(Figure 8.25). For the three lead times, when the true probability of delirium was less 

than 50%, the model visibly underestimated risk of delirium. As the true probability 

went over 50%, the predicted probabilities became highly variable, and mostly showed 

overestimation of risk of delirium. 

The variability of the predicted probabilities can be explained by considerably small 

number of patients with delirium in the patient population in -13h lead time. However, 

unlike in previous experiments, in this experiment, at lead times close to delirium, the 

probabilities were unexpectedly variable, which might be explained by the 0 

imputation, which can affect the predicted probabilities in the patient population. 

According to the mean predicted probabilities (Table 8.8), the model underestimated 

the risk of delirium at 13 hours before delirium (mean probability = 5.98% vs 6.70% 

prevalence of delirium) and at 1 hour before delirium (mean probability = 12.23% vs 

11.40% prevalence of delirium), which is also in accordance with the Figure 8.25. 
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Figure 8.25. Calibration plots for gradient boosting model predicting delirium 1 hour (top-left), 8 

hours (top-right) and 13 hours (bottom-centre) in advance, evaluated on testing set where missing 

values are replaced with 0. The light-green and dark-green areas indicate the 95% CI and IQR for the 

predicted probabilities, respectively. 

  

 

Table 8.8. Prevalence and predicted probability 

Lead Time Number of 

patients 

Completeness (%) Delirium (%) Mean Predicted 

Probability (%) +- 

SD (%) 

-13 2178 98.70 6.70 5.98 +- 18.53 

-8 2294 98.90 11.40 11.82 +- 20.34 

-1 2327 99.10 12.70 12.23 +- 18.96 

 

The Figure 8.26 shows the most important variables in the models developed, using 

complete training data and imputation methods to replace missing values in testing 

data. All models used lactate, potassium, arterial base excess and bicarbonate in their 
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models. Urine output, hydrogen ion, arterial haematocrit and haemoglobin were used 

by all models, apart from logistic regression. 

Figure 8.26. Most important variables that are used by models for at least 10 times. 

 

8.6. Discussion 

8.6.1. Summary of Results 

Overall, with all experiments, all models had relatively good performance in terms of 

AUC, sensitivity, and specificity. In terms of positive and negative predictive values, 

however, the performance for all models was low. 

As shown in Table 8.9, based on AUC, BARTm, developed with complete data only, 

had the highest performance when predicting delirium 13 hours in advance (AUC = 

0.997). The same model also had the highest specificity of 0.989. BARTm models in 

general appeared to do quite well based on AUC and sensitivity. C5.0 models tended 

to do well based on specificity. At 8 hours before delirium, BARTm with missForest 

imputation had the highest AUC (0.943). Random forest with complete data had the 



286 

 

highest sensitivity (0.936) and random forest with median imputation had the highest 

specificity (0.908).  

Table 8.9. Highest performance measures for each lead time if delirium occurs within 21 hours in the 

ICU. 

Lead 

Time 

AUC - Model Sensitivity - Model Specificity - Model 

Highest 0.997 (-13h) 0.999 (-13h) 0.997 (-12h) 

-13 0.997 - BARTm 0.999 - C5.0 – Median,  

GBM – Median, GBM – 

missForest, SVM – Median, SVM 

– missForest, RF – 0, RF – Median, 

RF – missForest, SVM - 0 

0.989 - BARTm 

-12 0.988 - AB 0.953 - SVM – Median,  

SVM – missForest, SVM - 0 

0.997 - AB 

-11 0.995 - SVM 0.988 - SVM 0.981 - C5.0 - NA 

-10 0.984 - BARTm - 0 0.958 - BARTm - Median 0.967 - SVM - Median 

-9 0.965 - BARTm – 

missForest, BARTm - 

NA 

0.944 - BARTm - Median 0.940 - LR 

-8 0.943 - BARTm - 

missForest 

0.936 - RF 0.908 - RF - Median 

-7 0.936 - AB 0.920 – SVM, BARTm 0.905 - C5.0 

-6 0.937 - BARTm 0.933 - C5.0 - 0 0.907 - BARTm - 

Median 

-5 0.913 - BARTm - 0 0.904 - BARTm - NA 0.920 - C5.0 – Median, 

C5.0 – missForest, C5.0 

- NA 

-4 0.910 - AB – Median,  

AB - missForest 

0.895 - BARTm - NA 0.898 - BARTm - 

Median 

-3 0.914 - GBM 0.872 - BARTm 0.951 - C5.0 

-2 0.916 - SVM 0.901 – SVM, GBM 0.882 - BARTm - 

Median 

-1 0.914 - SVM 0.891 - SVM 0.900 – AB – Median,  

AB - missForest 

 

For all three experiments, as the lead time got closer to the event of delirium, the 

performance measures in general decreased. This is also noticeable in Table 8.9, where 

at, for example, when predicting delirium 1 hour in advance, the highest AUC is 0.914 

for support vector machine with complete data. This is substantially lower than AUC 

for 13 hours before delirium. The same support vector machine model also had the 

highest sensitivity of 0.891, and AdaBoost with median and missForest imputation had 

equally the highest specificity of 0.900 when predicting delirium 1 hour in advance.  

The decrease in models’ performance as the lead time got closer to delirium was most 

likely due to the proportion of patients with delirium increasing, which increased the 
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variance of the observations, and reducing the certainty of the models’ predictive 

ability at later lead times. The changing variance of the observations as more patients 

are included in the prediction is evident in Appendix 8.4, where minimum, maximum, 

first and last laboratory values are shown as the lead time changes. The figures show 

a very small variation at earlier lead times, where less patients had delirium. As the 

lead time changed, the variance in laboratory values increased. 

Table 8.10. Overall mean performance measures across all lead times for all models and experiments 

when predicting delirium within 21 hours in the ICU, ordered based on the highest mean AUC. 

Model AUC  

(mean ± SD) 

Sens  

(mean ± SD) 

Spec  

(mean ± SD) 

Highest Overall (Model) 0.941 (SVM) 0.907 (SVM) 0.892 (BARTm – missForest) 

SVM 0.941 ± 0.038 0.907 ± 0.048 0.870 ± 0.066 

GBM 0.939 ± 0.035 0.875 ± 0.070 0.875 ± 0.064 

BARTm 0.937 ± 0.036 0.875 ± 0.062 0.884 ± 0.069 

GBM - 0 0.931 ± 0.041 0.858 ± 0.061 0.880 ± 0.068 

GBM - Median 0.931 ± 0.041 0.860 ± 0.057 0.876 ± 0.071 

GBM - missForest 0.931 ± 0.041 0.861 ± 0.057 0.875 ± 0.071 

SVM - Median 0.931 ± 0.043 0.874 ± 0.075 0.880 ± 0.058 

SVM - missForest 0.931 ± 0.043 0.874 ± 0.075 0.880 ± 0.057 

BARTm - NA 0.930 ± 0.041 0.885 ± 0.047 0.851 ± 0.087 

AB 0.929 ± 0.043 0.863 ± 0.060 0.877 ± 0.078 

BARTm - 0 0.929 ± 0.045 0.876 ± 0.062 0.869 ± 0.070 

BARTm - Median 0.929 ± 0.042 0.856 ± 0.081 0.882 ± 0.072 

BARTm - missForest 0.929 ± 0.044 0.850 ± 0.080 0.892 ± 0.061 

SVM - 0 0.927 ± 0.043 0.874 ± 0.075 0.869 ± 0.057 

AB - 0 0.926 ± 0.046 0.860 ± 0.084 0.876 ± 0.070 

AB - Median 0.926 ± 0.046 0.865 ± 0.083 0.871 ± 0.076 

AB - missForest 0.926 ± 0.046 0.865 ± 0.083 0.870 ± 0.076 

C5.0 0.915 ± 0.047 0.822 ± 0.097 0.885 ± 0.067 

RF - Median 0.910 ± 0.049 0.852 ± 0.076 0.845 ± 0.077 

RF - missForest 0.910 ± 0.049 0.852 ± 0.076 0.844 ± 0.076 

RF - 0 0.909 ± 0.049 0.840 ± 0.086 0.852 ± 0.083 

RF 0.907 ± 0.050 0.850 ± 0.084 0.832 ± 0.083 

C5.0 - Median 0.904 ± 0.055 0.807 ± 0.106 0.889 ± 0.057 

C5.0 - missForest 0.903 ± 0.054 0.803 ± 0.099 0.890 ± 0.059 

LR 0.901 ± 0.033 0.848 ± 0.054 0.884 ± 0.050 

C5.0 - NA 0.898 ± 0.056 0.822 ± 0.089 0.854 ± 0.098 

C5.0 - 0 0.887 ± 0.050 0.815 ± 0.075 0.830 ± 0.109 

LR - Median 0.880 ± 0.044 0.815 ± 0.068 0.875 ± 0.054 

LR - missForest 0.879 ± 0.044 0.814 ± 0.066 0.878 ± 0.056 

LR - 0 0.871 ± 0.037 0.807 ± 0.057 0.873 ± 0.057 

 

As shown in Table 8.10, SVM with complete data had the highest mean AUC across 

all lead times (AUC = 0.946), compared to the other models. BARTm with 0 

imputation to testing data had the highest mean sensitivity (Sens = 0.901) compared 
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to the other models. AdaBoost with 0 imputation to test set had the highest mean NPV 

of 0.570. 

Overall, none of the models have particularly high negative predictive value at all lead 

times. Even though these values are important to determine the certainty of the models, 

as the prediction models developed in this thesis are not clinical interventions, the 

AUC, sensitivity and specificity have a higher importance. 

As described in Section 8.2, the only existing dynamic model predicting delirium in 

the ICU was found to be the model by Oh et al. [388], which used heart rate variability 

to predict delirium and its stages. Oh et al.’s best model reached a sensitivity of 0.880 

and specificity of 0.278 [388]. This is considerably lower than the support vector 

machine model developed in this study with mean sensitivity of 0.907 and mean 

specificity of 0.870. This means that the SVM model recognises patients with delirium 

90.7% of the time (vs Oh et al.’s 88.0%), and patients without delirium 87.0% of the 

time (vs Oh et al.’s 27.8%). 

Models developed with complete data performed slightly better than models with 

missing values or missForest imputation. However, the BARTm model with missing 

values in test set was the 9th best performing model based on AUC (0.930 vs SVM’s 

0.941) and 2nd best model based on sensitivity (0.885 vs SVM’s 0.907). This is a very 

promising result as missing data are a vast problem in healthcare databases [110]. 

Ideally, more effort should be directed towards developing higher quality databases, 

however, in the meantime, being able to use methods that handle missing data, is a 

great solution. Hence, if a patient has some missing data, the clinician can still be 

informed whether a patient is likely to develop delirium due to the well-performing 

prediction model that includes missing values. 

Calibration of the top-performing models in each experiment were quite similar, where 

the models were more certain about predicting patients without delirium, as opposed 

to predicting patients with delirium. That being said, based on the mean predicted 

probability, models in Experiment 2 and 3 tended to underestimate the risk of delirium, 

whereas the top-performing model in Experiment 1 tended to slightly overestimate the 

risk of delirium. 
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Figure 8.27. Most important variables for all models that are used for at least 10 times. 

 

As shown in Figure 8.27, the most important variables in the models overall were 

lactate, urine output, potassium and hydrogen ion. Lactate, potassium and hydrogen 

ion have been confirmed to be associated with postoperative delirium elsewhere [92], 

[391], [392]. There is less confirmation whether urine output is associated with 

delirium in other studies. There is some evidence of the relationship between acute 

kidney injury (AKI), often defined by urine output, and delirium in the ICU, which 

might explain why urine output was the second-most important variable chosen by the 

models [393]. 

8.7. Conclusion 

Most of the models currently predicting delirium in the ICU are static models. This 

chapter demonstrated that it is possible to predict delirium on an hourly basis 13 hours 

in advance, with the mean AUC of 0.941 (SVM), using complete data and mean AUC 

of 0.930 (BARTm) with missing data. The models developed in this study could help 

clinicians optimise treatments for patients who are at risk of developing delirium hours 

in advance.   
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Chapter 9. Overall Discussion and 

Conclusion 

This thesis aimed to develop models predicting postoperative complications, using 

preoperative data and laboratory results in an intensive care unit. In order to develop 

these predictive models, the following research questions were answered: 

RQ1: What is the current landscape of dynamic prediction models in critical 

care in terms of prediction modelling methods? 

RQ2: What are cardiac surgery experts’ challenges in cardiac surgery and 

priorities for a new prediction model predicting patient outcomes? 

RQ3: How can postoperative complications be classified using routinely 

collected medical data? 

In this chapter, the research questions are answered and discussed based on the 

findings in this thesis. In addition, the strengths and limitations of the research 

presented in this thesis are discussed, and the clinical relevance of the developed 

prediction models are explained. 

9.1. Response to Research Questions 

9.1.1. What is the Current Landscape of Dynamic Prediction 

Models in Critical Care in Terms of Prediction 

Modelling Methods? (RQ1) 

While there are numerous prediction models developed to predict patient outcomes in 

an intensive care unit, the findings from the literature review (Chapter 2) indicate that 

the majority of these models have been developed to predict mortality. Together with 

the findings from Chapter 3 and 4, this emphasises the lack of focus on postoperative 

complications in the literature and the need for prediction models for severe 

complications, such as acute kidney injury and delirium, as was done in Chapters 6, 7 

and 8.  
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In terms of methods of how dynamic ICU prediction models have been developed, 

there is a lack of clarity in terms of how missing data are handled or how imbalanced 

classification problems are addressed. 

Finally, while the use of publicly available datasets helps with accessibility of 

healthcare data to improve digital innovation, but also with reproducibility of studies, 

the majority of studies using the MIMIC databases developed and/or tested their 

models on datasets that include surgeries between 2001 and 2012 (MIMIC-III). This 

can be a problem due to the changing patient population, surgical procedures, and 

policies, meaning that these prediction models might not be applicable in current 

practice.  

9.1.2. What are cardiac surgery experts’ challenges in cardiac 

surgery and priorities for a new prediction model 

predicting patient outcomes? (RQ2) 

This research question aimed to involve potential users of the prediction models 

developed in this thesis in the development process. Exploratory interviews with 

cardiac anaesthetists and cardiac surgeons were carried out (Chapter 3) to understand 

the current challenges in cardiac surgery, how clinicians in cardiac surgery currently 

use perioperative risk prediction models and what their current priorities are for a 

prediction model. It was found that the main challenges in cardiac surgery are adverse 

outcomes, changing population in terms of age and pre-existing conditions, and 

changing procedures, all of which are connected to one another. It was identified that 

common serious complications that occur in cardiac patients are bleeding, infections, 

pulmonary complications, renal complications, stroke and delirium. It was also found 

that adverse outcomes are mostly attempted to be avoided at the preoperative phase, 

where decisions about suitable treatments are made. Perioperative risk prediction 

models were known to the interviewed clinicians, however, surprisingly, these were 

not used for decision making, but rather for documentation and audit purposes. 

However, following from the explorative interviews, it was evident that there is a need 

and a place for preoperative and intensive care unit risk prediction models that could 

help with decision making regarding the risk of postoperative complications. 
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Secondly, a Delphi study (Chapter 4) was conducted to understand whether cardiac 

clinicians would find defining and classifying postoperative complications in cardiac 

surgery useful, and subsequently, how they would define and classify postoperative 

complications specifically following cardiac surgery. This study was undertaken due 

to the lack of a currently available complication classification system in cardiac 

surgery, which could enable more structured reporting of complications, and increased 

transparency of developed prediction models for combined complications. In this 

study consensus was reached that defining and classifying complications in cardiac 

surgery is useful. Consensus was also reached on the characteristics of postoperative 

complications in cardiac surgery, which resulted in the following definition: 

A complication following cardiac surgery is an unplanned adverse event that occurs 

following cardiac surgery that can cause delay in recovery, delay in hospital discharge 

and affect patient’s quality of life and is likely to happen due to surgical process. 

The experts agreed that the categories for complications following cardiac surgery 

should be “Mild”, “Moderate”, “Severe” and “Death”. Concerning postoperative 

complications, consensus for characteristics of “Mild” and “Severe” complications 

was reached.  

9.1.3. How can postoperative complications be classified 

using routinely collected medical data? (RQ3) 

Chapter 6 showed the results of models predicting “Severe” postoperative 

complications, acute kidney injury and delirium, using preoperatively available data. 

Overall, the models produced moderate results, the highest performance belonging to 

random forest predicting “Severe” complications, using 24 variables (AUC = 0.713, 

sensitivity = 0.562, specificity = 0.748, PPV = 0.039, NPV = 0.866). When predicting 

delirium, logistic regression using 24 variables had the highest performance (AUC = 

0.675, sensitivity = 0.672, specificity = 0.611, PPV = 0.068, NPV = 0.811). Finally, 

when predicting acute kidney injury, stacked model with generalised linear model, 

using 24 variables and upsampled training data had the best performance (AUC = 

0.667, sensitivity = 0.592, specificity = 0.657, PPV = 0.131, NPV = 0.706).  
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It was clear that the models developed to predict “Severe” postoperative complications 

had better performance measures than when predicting delirium or acute kidney injury. 

In addition, the models’ performances benefitted from using a larger number of 

available variables. Also, in general, upsampling of the training data did not result in 

higher performance of the models. 

This chapter showed that in order to predict postoperative outcomes, the models could 

benefit from more granular data, such as laboratory values, which were explored in 

Chapters 7 and 8.  

When predicting acute kidney injury, all models had similarly moderately high 

performance. Based on AUC, BARTm had the highest mean performance across all 

lead times from 24 hours to 1 hour in advance (AUC = 0.850, sensitivity = 0.821, 

specificity = 0.741, PPV = 0.021, NPV = 0.775). Interestingly, the BARTm model that 

was evaluated on testing data that contained missing values achieved also a notably 

high mean performance (AUC = 0.830, sensitivity = 0.780, specificity = 0.741, PPV 

= 0.023, NPV = 0.800). As missing data are a problem for developing usable predictive 

models in healthcare [110], it is promising that a model, such as BARTm is robust 

enough to make a prediction, even when missing data are included.  

When predicting delirium, all models had very high overall performance, mostly with 

AUC staying above 0.900. Support vector machine had the highest mean performance 

across lead times of 13 hours to 1 hour in advance (AUC = 0.941, sensitivity = 0.907, 

specificity = 0.870, PPV = 0.015, NPV = 0.488). Interestingly, the gradient boosting 

machine model that was evaluated on testing set which had missing values replaced 

with 0 had the 4th highest mean performance (AUC = 0.931, sensitivity = 0.858, 

specificity = 0.880, PPV = 0.022, NPV = 0.481). This is useful since it indicates that 

the model could also be used if a patient has missing values, where the values are 

simply replaced with 0. 
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9.2. Strengths and Limitations 

9.2.1. Study Data 

As seen from Chapter 2, many studies that developed dynamic prediction models for 

patient outcomes in ICU used MIMIC databases. Chapter 3 identified that the cardiac 

population and procedures have changed within the last decade, which is also 

confirmed by the literature [138], [155], [157]. This means the earlier versions of the 

MIMIC databases, such as MIMIC-II and MIMIC-III are no longer applicable for 

current patient population, making the currently available ICU prediction models that 

were developed and validated using these datasets, potentially out of date. 

Using cardiac patients’ data that is relevant to Scottish cardiac population can be a 

strength of the experiments shown in this thesis. The specific data from Golden Jubilee 

National Hospital was used to develop prediction models that are tailored to this 

institution’s needs and are up to date for to the hospital’s cardiac patient population.  

There is an argument to be made about whether numerous prediction models for each 

different population are needed. On one hand, having widely used international 

prediction models could help with general quality improvement in cardiac centres 

internationally, if such a model is used for auditing. On the other hand, prediction 

models that are developed, using more cardiac centres’ data, have to deal with too 

much variability that it loses its ability to make an accurate individual prediction. In 

addition, the nuances of a certain cardiac centre can be lost. One example of widely 

used preoperative risk model is logistic EuroSCORE. Since it is widely validated, it is 

used in many cardiac centres internationally [191]. However, EuroSCORE is criticised 

widely for its overestimation of risk of mortality and hence being no longer applicable 

for today’s cardiac population [192].  

This highlights the importance of updating and re-calibration of risk prediction models 

to capture the cardiac centre’s patient population on which these models are intended 

to be used [321]. 

A limitation to the experiments undertaken in this thesis is the involvement of 

preoperative and postoperative laboratory data only. While both datasets included 
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valuable information to develop predictive models for complications, inclusion of vital 

signs recorded in the ICU could have benefitted the predictive ability of the models. 

Furthermore, an inclusion of intra-operative data, such as time of surgery and 

anaesthetic data could have improved the performance for the hourly prediction 

models. 

9.2.2. Predicted Outcomes 

Another strength of this thesis is the objectivity of the predicted outcomes. Firstly, 

when looking at other studies predicting combined postoperative complications using 

preoperative data, there is no transparency in why these particular complications were 

chosen to be predicted [342]–[344], [347], [394]. Hence, the Delphi study was 

undertaken to take the first steps to define and classify postoperative complications in 

cardiac surgery (Chapter 4). Based on the characteristics found in that study, the 

“severe” postoperative complications were chosen as the outcome of the prediction 

models in Chapter 6. Knowing the exact characteristics that a “severe” complication 

has enables comparison between studies and makes the development of these 

prediction models more transparent.  

A limitation to using the complication characteristics from Chapter 4 is that this was a 

study, including cardiac anaesthetists and intensivists only, and no cardiac surgeons 

took part. In addition, the experts were mainly based in the UK. While using the results 

of the study is a more transparent and structured approach than not using any agreed-

upon definition about postoperative complications, there is also a possibility that the 

results might not transfer to the individual patient due to complications can have a 

varying severity from patient to patient. Hence, further investigation and validation of 

this classification needs to be undertaken. 

Secondly, this study has two great advantages in terms of objectivity when predicting 

AKI: AKI is defined, using a widely recognised criterium (KDIGO), and with each 

AKI diagnosis, a timestamp is recorded with it. In the literature review (Chapter 2) 

only one study predicted renal complications in a dynamic manner in ICU, which was 

also defined based on the KDIGO criterium [74]. However, this study had various 
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limitations, such as using a balanced dataset for both training and testing data, further 

explained in Chapter 2. 

Different criteria for diagnosing AKI exist. Most well-known examples, other than 

KDIGO, are Acute Kidney Injury Network (AKIN) and Risk, Injury, Failure, Loss of 

kidney function, and End-stage kidney disease (RIFLE) criteria, however, KDIGO has 

been shown to have greater sensitivity to detect AKI than RIFLE or AKIN criteria 

[281], [395]. There are a number of advantages for using the KDIGO guidelines to 

diagnose AKI retrospectively. As described in Chapter 5, the CaTHI dataset records 

postoperative complications, which means that this data could have been used for 

understanding which patients had postoperative complications, and more specifically 

AKI. However, the CaTHI database does not include the timestamps when the 

complications occurred, which makes the hourly prediction impossible. In addition, 

the CaTHI database relies on the discharge information recorded by ICU staff to enter 

the patient outcomes into the database. Because the discharge information is entered 

into the ICU system retrospectively, the information can be subjective and incomplete. 

In addition, clinicians’ notes can be difficult to understand when not knowing 

individual patients and not understanding the whole patient journey.  

A limitation to AKI as a predicted outcome is the fact that currently available AKI 

diagnosis criteria involve using serum creatinine laboratory results. As seen from 

Chapter 5, the creatinine tests are taken in every median 23.67 hours. This means that 

there is a limitation to the dynamic hourly prediction, and some cases of AKI can be 

missed due to low frequency of creatinine tests. However, it is evident that for a small 

number of patients the creatinine tests are more regular, done in an ad-hoc basis, 

mostly because of higher previously recorded creatinine level. Hence, as the majority 

of patients did not have AKI, it is understandable why their creatinine tests were taken 

less often. 

Thirdly, using the CAM-ICU diagnosis as the predicted outcome is currently the most 

objective way to develop prediction models for delirium due to its accuracy at 

diagnosing delirium patients in critical care [396]. Due to repeated assessments of 

delirium, this thesis showed that it is possible to predict delirium on an hourly basis. 
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However, there are a few limitations to defining the CAM-ICU diagnosis as the 

predicted outcome. 

Because delirium assessment with CAM-ICU is undertaken by clinical staff, the 

regularity of when the assessment is done can vary from patient to patient. On average, 

CAM-ICU assessments were undertaken every 10.52 hours. This means that there is a 

possibility of under reporting of delirium due to the relatively infrequent assessments 

of delirium. As delirium can develop rapidly [397], the actual occurrence of it can be 

earlier than when delirium is assessed.  

Another limitation, when analysing CAM-ICU diagnoses, is the possibility for 

observer bias. The score is measured by different clinical staff, which means that there 

can be variation in training and the results can be subjective [397]. Oh et al. minimise 

this problem by having the CAM-ICU scoring done both by psychiatrists and nurses 

[388]. However, as this thesis analyses the data retrospectively, it is unknown who 

exactly undertook the assessment and what their level of training was. 

Even though the CAM-ICU could be recorded more often, being able to clearly state 

when exactly CAM-ICU was diagnosed for each patient is a strength to this study by 

offering transparency on how the models were developed. None of the studies 

discussed in Section 8.2 in Chapter 8 reported at what time delirium occurred in their 

patient population. Besides, if delirium was predicted in a static manner (Appendix 

8.5), the hourly prediction models still achieved better performance in terms of AUC, 

sensitivity and specificity. 

Overall, even though the outcomes predicted in this thesis were defined based on 

expert consensus (“severe” complications) or on internationally recognised diagnosis 

criteria (KDIGO, CAM-ICU), limitations to these criteria exist also for other 

conditions. The limitations to sepsis diagnosis criteria were discussed in Section 2.4.1 

in Chapter 2. Since the focus from predicting mortality is moving more towards 

predicting complications, objective, and reliable definitions of diagnoses for 

complications are ever-changing [97]. Due to changing patient population, and 

postoperative complications becoming more prevalent, new definitions are developed 

frequently [54] and some institutions can be also slow to adopt new guidelines [398]. 
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This further highlights the need for a prediction model to be regularly re-calibrated 

and updated to avoid it becoming obsolete [321]. 

9.2.3. Classification Methods Used 

A range of methods was used to predict the outcomes, all suitable for numerical and 

categorical variables. These methods include logistic regression, which is a classic 

statistical method, tree-based methods (BCART, BARTm, C5.0), ensemble methods 

(random forest and stacking methods), boosting methods (AdaBoost, GBM) and 

others, such as naïve Bayes and SVM. Using a wide variety of methods enables the 

comparison of different approaches and provides an overview on not only which 

models have the best performance, but also on how usable they are in practice. 

As shown in Chapter 6, the models chosen in this thesis are robust enough to handle 

the imbalanced classification problem, which was a case in this thesis, where the 

highest prevalence of the predicted outcome was 18.93% (AKI) and lowest prevalence 

was 5.91% (severe complications). In the literature review (Chapter 2) it was found 

that many studies used balancing methods, even though numerous classification 

methods have been shown to be robust when handling imbalanced classes [147]–[149]. 

The models being able to handle class imbalance is a strength to this thesis as models 

developed using balanced training data can have poor calibration when evaluated on a 

real-world imbalanced data due to overestimating the predicted probabilities [135]. 

This was also evident in Section 6.4.2.2 in Chapter 6 where the best-performing model 

predicting AKI, developed with upsampled training data had noticeably poor 

calibration. 

In addition, various approaches were taken to handle missing data in the ICU dataset. 

Models, such as C5.0 and BARTm, that are able to make a prediction even with the 

presence of missing data, were used. This kind of approach was only taken by one 

study in the literature review (Chapter 2) [88]. Furthermore, imputation methods were 

experimented with, including median imputation, missForest imputation, and 

replacing missing values with 0 in the testing set. Even though imputation methods 

were shown to be a popular approach for missing data in Chapter 2 by other studies, 

imputation methods are suggested to be handled with caution due to the danger of  
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introducing some bias to the results [144]. However, the results in Chapters 7 and 8 

indicate similar model performance regardless of whether the models were tested on 

complete data, testing data with missing values, or testing data treated with imputation 

methods. As missing data in electronic health records are very common, and are a 

barrier to development of accurate and usable clinical prediction models [110], further 

efforts should be directed towards producing medical records that are of high quality. 

However, experimenting and developing classification methods that handle missing 

values could be a viable option in the meanwhile.While the chosen approach for hourly 

prediction models was simple, and therefore would be easily understandable for 

clinicians, there are various other ways these prediction tasks could have been 

approached. As seen from the literature review (Chapter 2), there are a number of 

methods that other papers have used to predict patient outcomes in the ICU that this 

thesis did not explore. For example, in the future a base model could be developed, 

which could be updated as the new information is added to the database, as was done 

by Feng et al. [60] and Deasy et al. [58], both using neural networks, and Gultepe et 

al. [62] and Yee et al. [86], both using Bayesian networks. Also, survival models could 

be explored in the future, as was done by Henry et al, using Cox proportional hazards 

[63]. However, the analyses in this thesis did not include vital signs, unlike these 

above-mentioned studies. Using less frequently measured data means that there was 

less data available for each patient, and therefore the number of data points available 

for developing a deep neural network were insufficient.  Hence, the methods chosen 

in this thesis were less complicated, but still with adequate performance. However, 

exploration of methods like neural networks predicting patient outcomes should be 

continued, as explained in Future Work (Section 9.4). 

9.2.4. Interpretability of the Models 

Because the models are all performing quite well, based on the results shown in this 

thesis, it is difficult to say which model should be the ultimate chosen model to further 

develop a clinical decision support tool. On one hand, the model with the highest AUC, 

sensitivity and NPV should be chosen, but on the other hand, the interpretability and 

usability of the models should be considered.  
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In medicine, it is especially important to understand why a model predicts a patient to 

have high probability for, say, delirium. If the clinician knows what factors have 

contributed to the probability to be high, then the clinicians can investigate which 

factors to pay closer attention to and improve with medical interventions.  

A limitation to most of the models developed in this thesis is the lack of interpretability 

due to the “black-box” nature of most machine learning methods. In addition to helping 

to understand how the models make their risk calculations, reporting the model 

coefficients helps the models to be applied for individual use as it enables calculating 

the probability for the predicted outcome based on patient-specific laboratory test 

results. Where logistic regression had the highest performance, the coefficients of the 

model were presented. However, for other prediction experiments, machine learning 

methods, such as random forest, support vector machine and BARTm often had the 

best performance, and for these models, where possible, variable importance was 

reported due to the unavailability of regression coefficients. This helps the users to 

understand which variables are having the biggest impact on the predicted outcome, 

however does not give the specifics of how the predicted probabilities are calculated, 

which can be a limitation in uptake of such prediction model in practice [368]. 

Even though the importance of the variables is known and can be obtained for most of 

the methods used in this thesis, logistic regression is a highly explainable classification 

method due to its built-in estimates that can be converted into odds ratios. Even though 

logistic regression’s performance for hourly prediction models was rather on the lower 

side, compared to the other models, it is highly understandable to its intended users, 

which can be an important aspect for successful implementation [399]. Logistic 

regression has also been shown to be competitive with other machine learning 

algorithms in other studies [150], [301], [332]. 

9.3. Clinical Relevance  

The prediction models developed in this thesis have a few potential usages. The 

preoperative prediction models could be applied to preoperative assessment and 

decision-making regarding the type of treatment plan the patient is receiving.  
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If a clinician knows, using a preoperative prediction model for AKI, that a patient is at 

risk of having postoperative AKI, then the renal recovery period before surgery could 

be applied (i.e., cardiac surgery is delayed due to using certain medicines, such as 

contrast agents that can have an adverse effect on kidneys) [400]. In case of a patient 

being at risk for AKI or delirium, certain medications, such as preoperative 

antipsychotics or postoperative inotropes, associated with delirium [401] and 

nephrotoxins, associated with AKI [402], could be avoided. 

Furthermore, before surgery, the preoperative prediction models could aid the clinician 

at communicating risk about potential complications the patient might have. This will 

help managing patients’ and their families’ expectations regarding the outcomes of the 

surgery. 

The hourly ICU prediction models could be developed into a clinical system that is 

integrated with electronic health records. These hourly prediction models could predict 

AKI and delirium hours in advance, so that clinicians can direct more resources 

towards patients at risk and make an informed decision about safe treatments for the 

patient.  

Besides helping with clinician’s decision-making and risk communication, the 

prediction models could be used for surgical planning and bed planning, as patients 

with postoperative complications are known to stay in the hospital for longer [4], [5]. 

Using such prediction models to manage bed spaces could help reduce cancellations 

of surgery [403]. 

9.4. Future Work 

The research presented in this thesis leads to various avenues of future work needed 

for developing accurate and usable prediction models for postoperative complications 

that would enable their uptake in everyday clinical practice. 

Firstly, as the study presented in Chapter 3 was not an in-depth analysis of clinicians’ 

requirements for a clinical prediction model, further research is needed to understand 

the requirements for such a model, and to understand how it could fit into practical 

context. Furthermore, once a prototype of a system involving the developed prediction 
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models is developed, a system evaluation study needs to be undertaken to understand 

the clinicians’ perspectives on the performance and the utility of the models. 

Secondly, the consensus about the usefulness of defining and classifying surgical 

complications following cardiac surgery provides a rationale for continuing the work 

towards developing an internationally recognised definition and classification system 

for such complications (Chapter 4). Hence, further study is needed that involves 

international participants, including cardiac surgeons, in addition to cardiac 

anaesthetists, to develop a definition and a classification system for postoperative 

complications following cardiac surgery. 

Thirdly, to improve the predictive ability of the ICU models, vital signs should be 

included to provide more granular information that is recorded far more regularly than 

laboratory results. Furthermore, to improve the prediction of AKI, in addition to 

collecting serum creatinine more regularly in the ICU, the use of biomarkers should 

be further investigated and applied to practice. Because acute kidney injury is a 

complex, multi-factorial complication, there is currently no single biomarker that is a 

“kidney troponin” [404]. Currently, the most promising biomarkers for acute kidney 

injury diagnosis are NGAL, IL-18, kidney injury molecule-1 and cell-cycle arrest 

biomarkers. Using biomarkers as variables in clinical prediction models have shown 

to improve the accuracy of models [281]. 

In addition to the methods used to develop predictive models, with the addition of vital 

signs data, deep learning methods, such as deep neural networks should be 

experimented with in the future.  

In addition to internal validation of the developed prediction models developed in this 

thesis, to ensure reproducibility, risk prediction models should also undergo external 

validation to support generalisability before implementation into clinical practice 

[405]. Following successful external validation, a continuous updating strategy needs 

to be developed to allow for changes in the cardiac population over time. In addition, 

to allow for wide-spread uptake of the developed prediction models, a system 

including these models needs to be developed that is integrated with electronic health 

records. 
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Finally, to help mitigate the effects of other adverse postoperative outcomes, other 

postoperative complications in the ICU, such as stroke, respiratory complications and 

various infections should be investigated. This, however, is possible once agreed-upon 

diagnosis criteria based on laboratory results and vital signs are developed, aiding 

dynamic prediction of such complications. 

9.5. Final Conclusions 

The results from this thesis show that there is an appetite for improving the recording 

and prediction of postoperative complications in cardiac surgery. Using routinely 

collected medical data can be used to develop both preoperative and hourly ICU 

predictive models for postoperative complications, such as acute kidney injury and 

delirium. Such prediction models could help with not only clinical decision making, 

but also communication about risk, research in complications and auditing. 
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Appendix 3.1: Interview Schedule 

Introduction 

• What is your job title and expertise? 

• Could you please describe your role? 

• What are the main challenges in your day-to-day practice? 

• What are the main challenges in cardio-thoracic surgery? 

Perioperative medicine 

• What could be done to improve cardiac perioperative medicine? 

• What should be in priority for improvement? 

• What could improve the care of your patients? 

• What in your opinion is perioperative medicine? What perioperative medicine 

entails? 

Risk scoring 

• What is your opinion on risk scoring tools? 

• Why do you find the risk stratification systems to be important / not important? 

• Do you use risk prediction tools? Which ones? 

• At which stage are you using the risk prediction system (before surgery, during, 

after)? 

• What information are you using from these risk prediction systems? 

• How do you use that information? Do you have an example? 

• What kind of information do you find the most helpful from risk prediction 

models (e.g. probability of the outcome, a certain threshold or score, alert)? 

• What are the advantages of the risk prediction systems you are using? 

• What are the disadvantages of the risk prediction systems you are using? 

• Are there any problems that the currently available predictions systems don’t 

address? Which problems? 

• For what problem would you want a new risk prediction system? 

• What kind of decision support do you need?  
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Surgical complications 

• What is your take on surgical complications? Are they a problem? Do they 

happen often? Are they recorded well enough? Do you look at complications 

as a measure of outcome after surgery? 

• Do you perceive complications to be an issue for patients?  

• If yes, which complications do you think are the most common for patients? 

• What could be done to prevent complications? Using a risk tool? Decision 

support? Better patient management? How? 

• Do you think complications can be prevented or managed by using a risk 

prediction tool? 

• If yes, what kind of complications should that tool predict? 

 

Is there anything else you would like to say? 
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Appendix 4.1: Delphi Study Round 1 

Questionnaire 

Demographics and Expertise 

1. Are you in any way involved with cardiac surgery patients? (Can be 

preoperatively, intraoperatively, and/or postoperatively.) 

• Yes 

• No 

2. What is your country of residence? 

3. What is your speciality? 

• Cardiac Anaesthetist 

• Cardiac Surgeon 

• Cardiac Critical Care 

• Other (Please specify) 

4. How long have you worked in this field (in years)? 

5. What stages of cardiac surgery are you involved in? 

• Preoperative assessment 

• Decision making (e.g., if patient is fit for surgery) 

• The surgery itself 

• ICU 

• Long-term follow-up of the patient 

• Other (Please explain) 

Defining Postoperative Complications 

6. How would you define the term “postoperative complication” in cardiac 

surgery? Please bring examples to explain. 
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7. How useful do you think it is to classify postoperative complications for 

cardiac surgery? Please explain your answer. 

• Extremely useful 

• Very useful 

• Moderately useful 

• Slightly useful 

• Not at all useful 

Classification of Postoperative Complications 

8. In order to classify postoperative complication in cardiac surgery, how many 

grades should there be? 

9. Based on the number of grades suggested, how would you define each of 

these grades? 

10. Please provide an example of a complication for each of the suggested levels. 

11. Is there anything else you would like to comment on the topic of 

postoperative complications?  
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Appendix 4.2: Delphi Study Round 2 

Questionnaire 

1. Are you in any way involved with cardiac surgery patients? (Can be 

preoperatively, intraoperatively and/or postoperatively.) 

2. From the selection below, please choose how postoperative complications 

after cardiac surgery should be defined. Multiple options are possible if 

combination of definitions is deemed important. 

• An unplanned adverse event occurring after cardiac surgery that 

may be caused or compounded by the surgical process. 

• An unplanned adverse event arising as a result of cardiac surgery, 

which was otherwise unlikely to have occurred in the same period. 

• Any adverse event that impairs a patient’s physical, cognitive, 

psychological, or emotional function and quality of life. 

• Any deviation from the ideal recovery pattern after cardiac surgery. 

• Unexpected, or expected but unwanted, outcome of cardiac surgery 

which notably delays recovery from the procedure compared to the 

desired outcome or leads to the patient failing to derive the intended 

benefits of surgery. 

• Any event resulting from surgery which lengthens the patient’s stay 

in hospital or reduces their quality of life beyond normal. 

• Any unplanned clinical event that leads to a delay in hospital 

discharge or requires additional treatment or intervention to 

mitigate or reverse the event. 

• Any deviation of any physiological system which adversely affects 

rapid recovery to good health. 
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• An event which may have an impact on patient’s survival or quality 

and longevity. 

3. Based on your opinion, should death be included in the grading of 

postoperative complications? Please explain your answer. 

• Yes 

• No 

4. For Mild Complication the definition should be (multiple options are 

possible): 

• No notable effect on overall length of stay 

• No notable effect on final outcome 

• Lasting 1 week – 1 month 

• No or only short-term clinical relevance 

• Mildly debilitating 

• Common 

• No or small amount of intervention required 

• Minimal impact on patient 

• Minimal impact on institution 

5. For Moderate Complication the definition should be (multiple options are 

possible): 

• Some effect on overall length of stay 

• Some effect on final outcome 

• Lasting 1-3 months 

• Acutely important, but less clinical consequence long term 

• Moderately debilitating 

• Less common 
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• Some intervention required 

• Limited impact on patient 

• Limited impact on institution 

6. For Severe Complication the definition should be (multiple options are 

possible): 

• Extended length of stay 

• Potentially life-threatening 

• Lasting 3 months – 1 year 

• With sustained relevance and life-limiting 

• Severely debilitating 

• Uncommon 

• Notable amount of intervention required 

• Notable or long-standing impact on the patient 

• Notable or long-standing impact on institution 

7. If you have any comments regarding the topic of postoperative complications 

following cardiac surgery, please write them below. 
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Appendix 4.3: Examples for Each Proposed 

Complication Level 

 

Complication 

level 

Example of Complication 

Mild Atrial Fibrillation 
 

Leg wound breakdown 
 

Surgical bleeding tamponade and discharge from ICU and hospital at usual 

time point  
Minor bleeding following nasal temperature probe insertion 

 
Residual pneumothorax 

 
Hypoxia 

 
High oxygen concentration via face mask to maintain adequate oxygenation 

 
Mild acute kidney injury 

 
Blood transfusion 

 
Uncontrolled pain 

 
More than one inotrope 

 
Coagulopathy requiring products 

 
Bleeding resulting in blood transfusion but no other measurable pathology 

 
Lower respiratory tract infection delaying but not preventing full recovery 

 
Constipation 

 
Minor adverse drug reactions 

 
Pain that is resolved with analgesia 

 
Simple wound infections 

 
Bleeding 

 
Acute kidney injury not needing renal replacement therapy 

 
Chest infection requiring antibiotics and two days extra in hospital 

 
Minimal bleeding from a wound requiring redressing 

 
Torn skin from tape, etc 

 
Bilateral basal collapse 

 
Bild inotropic support 

 
Minor chest infection 

 
Postoperative fever 

 
Reduced mobility 

 
Dental damage 

 
Mild postoperative pain 

 
Mild respiratory tract infection 

 
Mild urinary tract infection 

 
Bruising 

 
Drug reaction causing a short-lived skin rash 

 
Simple chest infection 
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Complication 

level 

Example of Complication 

Moderate Pneumonia needing prolonged ventilation and tracheostomy 
 

Cognitive impairments 
 

Wound infection leading to increased length of stay 
 

Seizures 
 

Prolonged sedation 
 

Bleeding 
 

Acute kidney injury not needing renal replacement therapy 
 

Atrial Fibrillation 
 

Acute renal failure requiring renal replacement therapy for several days 
 

Moderate respiratory impairment 
 

Severe cardiovascular compromise 
 

Postoperative chest infection 
 

Myocardial infarction 
 

More than tyhree drugs for cardiovascular support 
 

Postoperative delirium 
 

Persisting atrial fibrillation 
 

Chest infection 
 

Prolonged ventilation 
 

Sternal wound infection 
 

Pneumonia 
 

Bleeding 
 

Renal failure needing temporary dialysis 

Severe Reopening 
 

Stroke 
 

Catastrophic cardiac dysfunction 
 

Death or severe disability 
 

Cardiac arrest 
 

Renal failure requiring ongoing support 
 

Respiratory arrest 
 

Severe acute kidney injury 
 

Renal replacement therapy in previous normal renal function 
 

Deep wound infection 
 

Delirium 
 

Sternal dehiscence 
 

Unable to extubate 
 

Bleeding resulting in death 
 

Neurological injury leading to long-term hospitalisation 
 

Renal failure requiring dialysis 
 

Significant injury to patient which does not allow independent living at 

discharge  
Limb loss 

 
Permanent cognitive deficit 

 
Permanent frailty 
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Complication 

level 

Example of Complication 

 
Aortic dissection 

 
Sepsis 

 
Multiorgan failure 

 
Bleeding requiring products and re-opening 

 
Major haemorrhage 

 
Cardiogenic shock 

 
Pneumonia 
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Appendix 5.1: TRIPOD Checklist: Prediction 

Model Development and Validation 

Section/Topic Checklist Item Section No 

Background 
and objectives 

Explain the medical context (including whether diagnostic or prognostic) 
and rationale for developing or validating the multivariable prediction 

model, including references to existing models. 

6.1 & 7.2 & 
8.2 

Specify the objectives, including whether the study describes the 
development or validation of the model or both. 

6.1 & 7.1 & 
8.1 

Source of data Describe the study design or source of data (e.g., randomized trial, 

cohort, or registry data), separately for the development and validation 
data sets, if applicable. 

5.5 

Specify the key study dates, including start of accrual; end of accrual; 

and, if applicable, end of follow-up.  

5.4 

Participants Specify key elements of the study setting (e.g., primary care, secondary 
care, general population) including number and location of centres. 

5.3 

Describe eligibility criteria for participants.  5.4 

Give details of treatments received, if relevant.  5.4 

Outcome Clearly define the outcome that is predicted by the prediction model, 
including how and when assessed.  

5.6 & 5.9.1 & 
6.2.1 

Report any actions to blind assessment of the outcome to be predicted.  N/A 

Predictors Clearly define all predictors used in developing or validating the 

multivariable prediction model, including how and when they were 
measured. 

5.5.1.2 & 

5.5.2.1 

Report any actions to blind assessment of predictors for the outcome and 

other predictors.  

N/A 

Sample size Explain how the study size was arrived at. 5.4 & 6.2.1.3, 
6.2.2 

Missing data Describe how missing data were handled (e.g., complete-case analysis, 

single imputation, multiple imputation) with details of any imputation 
method.  

5.5.1.1. & 

5.5.2.2. 

Statistical 

analysis 

methods 

Describe how predictors were handled in the analyses.  5.7 & 5.8 & 

5.9.2 & 6.2.3 

Specify type of model, all model-building procedures (including any 

predictor selection), and method for internal validation. 

5.8.1. 

For validation, describe how the predictions were calculated.  5.8 & 5.9.3 

Specify all measures used to assess model performance and, if relevant, 

to compare multiple models.  

5.8.2. 

Describe any model updating (e.g., recalibration) arising from the 

validation, if done. 

N/A 

Risk groups Provide details on how risk groups were created, if done.  N/A 

Development 
vs. validation 

For validation, identify any differences from the development data in 
setting, eligibility criteria, outcome, and predictors.  

N/A 

Participants Describe the flow of participants through the study, including the number 

of participants with and without the outcome and, if applicable, a 

summary of the follow-up time. A diagram may be helpful.  

Appendix 6.2 

Describe the characteristics of the participants (basic demographics, 

clinical features, available predictors), including the number of 

participants with missing data for predictors and outcome.  

5.5.2.2 & 

Appendix 6.2  

& 7.1 & 8.1 

For validation, show a comparison with the development data of the 
distribution of important variables (demographics, predictors and 

outcome).  

Appendix 6.3 

Model 

development  

Specify the number of participants and outcome events in each analysis.  6.3.1 & 7.4.1 

& 8.4.1 

If done, report the unadjusted association between each candidate 

predictor and outcome. 

6.3.1 & 6.4.1 

& 6.5.1 

Model 
specification 

Present the full prediction model to allow predictions for individuals 
(i.e., all regression coefficients, and model intercept or baseline survival 

at a given time point). 

Done where 
possible:6.5.2 

Explain how to the use the prediction model. 9.3 

Model 
performance 

Report performance measures (with CIs) for the prediction model. 6.3.2 & 6.4.2 
& 6.5.2 

Model-

updating 

If done, report the results from any model updating (i.e., model 

specification, model performance). 

7.5 & 7.6 & 

8.5 & 8.6 
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Section/Topic Checklist Item Section No 

Limitations Discuss any limitations of the study (such as nonrepresentative sample, 

few events per predictor, missing data).  

9.2 

Interpretation For validation, discuss the results with reference to performance in the 

development data, and any other validation data.  

N/A 

Give an overall interpretation of the results, considering objectives, 

limitations, results from similar studies, and other relevant evidence.  

6.6 & 7.7 & 

8.7 

Implications Discuss the potential clinical use of the model and implications for future 

research.  

9.3 & 9.4 
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Appendix 6.1: Prevalence of Each Severe 

Postoperative Complication Recorded in the 

CaTHI Database 

Complication Prevalence 

Acute renal failure 1.71 (1.43 - 2.05) 

Acute renal dysfunction 0.01 (0.00 - 0.08) 

Acute kidney injury 0.04 (0.01 - 0.13) 

Cardiac arrest 0.82 (0.63 - 1.06) 

Left ventricular wall dissection 0.03 (0.01 - 0.11) 

Reopening requiring cardiopulmonary bypass 0.04 (0.01 - 0.13) 

Severe heart failure 0.35 (0.24 - 0.52) 

Biventricular failure 0.01 (0.00 - 0.08) 

Cardiogenic shock 0.03 (0.01 - 0.11) 

Deterioration in LV function 0.03 (0.01 - 0.11) 

Pericardial effusion 0.12 (0.06 - 0.23) 

Paraparesis 0.01 (0.00 - 0.08) 

Stroke 0.80 (0.62 - 1.05) 

Acute delirium 0.01 (0.00 - 0.08) 

Haemorrhagic stroke 0.01 (0.00 - 0.08) 

Biventricular failure 0.01 (0.00 - 0.08) 

Adult respiratory distress syndrome 0.32 (0.21 - 0.49) 

Percutaneous tracheostomy 0.98 (0.77 - 1.24) 

Respiratory arrest 0.03 (0.01 - 0.11) 

Respiratory failure 0.69 (0.52 - 0.91) 

Hepatic failure 0.10 (0.05 - 0.21) 

Laparotomy 0.28 (0.18 - 0.43) 

Amputation 0.01 (0.00 - 0.08) 

Multiorgan failure 0.35 (0.24 - 0.52) 

Deep sternal wound infection 0.79 (0.61 - 1.03) 

Septicaemia 2.02 (1.71 - 2.38) 

Sepsis 0.12 (0.06 - 0.23) 
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Appendix 6.2: Descriptive Statistics for Preoperative Prediction Data 
  

Severe Complication and AKI Prediction Population (2012-

2018) 

Delirium Population (2016-2018) 

  Total 

Population 

Severe Complication = 

Yes 

AKI = Yes Total 

Population 

Delirium = Yes 

  N = 6839 N = 404 (5.91%) N=1295 (18.93%) N=3344 N=417 (12.47%) 

Variable Level n (%) n (%) P-value n (%) P-value n (%) n (%) P-value 

Age Group 16 to 60 1894 (27.7) 87 (21.5) <0.0001 297 (22.9) <0.0001 967 (28.9) 76 (18.2) <0.0001  
61 to 67 1506 (22.0) 80 (19.8) 

 
251 (19.4) 

 
730 (21.8) 68 (16.3) 

 

 
68 to 74 1769 (25.9) 95 (23.5) 

 
332 (25.6) 

 
861 (25.7) 110 (26.4) 

 

 
75 to 99 1670 (24.4) 142 (35.1) 

 
415 (32.0) 

 
786 (23.5) 163 (39.1) 

 

Sex Male 4965 (72.6) 261 (64.6) 0.0003 909 (70.2) 0.0339 2389 (71.4) 268 (64.3) 0.0007  
Female 1874 (27.4) 143 (35.4) 

 
386 (29.8) 

 
955 (28.6) 149 (35.7) 

 

BMI 18.5-25.0 1255 (18.4) 86 (21.3) 0.0740 215 (16.6) <0.0001 701 (21.0) 91 (21.8) 0.7988  
25.1-30.0 2782 (40.7) 173 (42.8) 

 
620 (47.9) 

 
1288 (38.5) 163 (39.1) 

 

 
Over 30.0 2802 (41.0) 145 (35.9) 

 
460 (35.5) 

 
1355 (40.5) 163 (39.1) 

 

Type II Diabetes No 5080 (74.3) 269 (66.6) 0.0003 894 (69.0) <0.0001 2503 (74.9) 298 (71.5) 0.1002  
Yes 1759 (25.7) 135 (33.4) 

 
401 (31.0) 

 
841 (25.1) 119 (28.5) 

 

Smoking Status Never smoked 1932 (28.2) 119 (29.5) 0.8991 377 (29.1) 0.0926 1137 (34.0) 142 (34.1) 0.8382  
Ex-smoker 2191 (32.0) 129 (31.9) 

 
436 (33.7) 

 
1146 (34.3) 139 (33.3) 

 

 
Current smoker 943 (13.8) 57 (14.1) 

 
153 (11.8) 

 
532 (15.9) 64 (15.3) 

 

 
Unknown 1773 (25.9) 99 (24.5) 

 
329 (25.4) 

 
529 (15.8) 72 (17.3) 

 

Procedure CABG 3849 (56.3) 157 (38.9) <0.0001 559 (43.2) <0.0001 1738 (52.0) 140 (33.6) <0.0001  
Valve 2010 (29.4) 161 (39.9) 

 
450 (34.7) 

 
1108 (33.1) 153 (36.7) 

 

 
CABG and 

Valve 

980 (14.3) 86 (21.3) 
 

286 (22.1) 
 

498 (14.9) 124 (29.7) 
 

Priority Elective 4372 (63.9) 229 (56.7) <0.0001 791 (61.1) <0.0001 1623 (48.5) 193 (46.3) 0.0001  
Emergency 73 (1.1) 23 (5.7) 

 
31 (2.4) 

 
52 (1.6) 17 (4.1) 

 

 
Priority 1132 (16.6) 53 (13.1) 

 
194 (15.0) 

 
895 (26.8) 106 (25.4) 

 

 
Urgent 1262 (18.5) 99 (24.5) 

 
279 (21.5) 

 
774 (23.1) 101 (24.2) 

 

Critical Pre-op. State No 6706 (98.1) 379 (93.8) <0.0001 1246 (96.2) <0.0001 3255 (97.3) 392 (94.0) <0.0001 
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Severe Complication and AKI Prediction Population (2012-

2018) 

Delirium Population (2016-2018) 

  Total 

Population 

Severe Complication = 

Yes 

AKI = Yes Total 

Population 

Delirium = Yes 

  N = 6839 N = 404 (5.91%) N=1295 (18.93%) N=3344 N=417 (12.47%) 

Variable Level n (%) n (%) P-value n (%) P-value n (%) n (%) P-value  
Yes 133 (1.9) 25 (6.2) 

 
49 (3.8) 

 
89 (2.7) 25 (6.0) 

 

Previous Cardiac Surgery No 6640 (97.1) 363 (89.9) <0.0001 1219 (94.1) <0.0001 3228 (96.5) 398 (95.4) 0.2485  
Yes 199 (2.9) 41 (10.1) 

 
76 (5.9) 

 
116 (3.5) 19 (4.6) 

 

Previous Percutaneous 

Coronary Intervention 

No 5920 (86.6) 330 (81.7) 0.0039 1122 (86.6) 0.9627 2883 (86.2) 368 (88.2) 0.2253 

 
Yes 919 (13.4) 74 (18.3) 

 
173 (13.4) 

 
461 (13.8) 49 (11.8) 

 

Extracardiac Arteriopathy No 6024 (88.1) 338 (83.7) 0.0060 1093 (84.4) <0.0001 3002 (89.8) 372 (89.2) 0.7490  
Yes 815 (11.9) 66 (16.3) 

 
202 (15.6) 

 
342 (10.2) 45 (10.8) 

 

Left Ventricular Function Good 5438 (79.5) 291 (72.0) <0.0001 986 (76.1) 0.0007 2562 (76.6) 316 (75.8) 0.2112  
Moderate 1203 (17.6) 88 (21.8) 

 
256 (19.8) 

 
670 (20.0) 81 (19.4) 

 

 
Poor 198 (2.9) 25 (6.2) 

 
53 (4.1) 

 
112 (3.3) 20 (4.8) 

 

NYHA Grade I 1358 (19.9) 57 (14.1) <0.0001 224 (17.3) <0.0001 717 (21.4) 60 (14.4) <0.0001  
II 3416 (49.9) 151 (37.4) 

 
573 (44.2) 

 
1599 (47.8) 178 (42.7) 

 

 
III 1821 (26.6) 150 (37.1) 

 
411 (31.7) 

 
870 (26.0) 140 (33.6) 

 

 
IV 244 (3.6) 46 (11.4) 

 
87 (6.7) 

 
158 (4.7) 39 (9.4) 

 

Angina Status 0 2200 (32.2) 167 (41.3) <0.0001 497 (38.4) <0.0001 1271 (38.0) 179 (42.9) 0.1452  
I 937 (13.7) 32 (7.9) 

 
176 (13.6) 

 
442 (13.2) 46 (11.0) 

 

 
II 2299 (33.6) 110 (27.2) 

 
384 (29.7) 

 
970 (29.0) 108 (25.9) 

 

 
III 1044 (15.3) 57 (14.1) 

 
164 (12.7) 

 
469 (14.0) 57 (13.7) 

 

 
IV 359 (5.2) 38 (9.4) 

 
74 (5.7) 

 
192 (5.7) 27 (6.5) 

 

Rhythm Normal 5651 (82.6) 290 (71.8) <0.0001 1016 (78.5) <0.0001 2707 (81.0) 314 (75.3) 0.0029  
Abnormal 789 (11.5) 85 (21.0) 

 
208 (16.1) 

 
490 (14.7) 84 (20.1) 

 

 
Unknown 399 (5.8) 29 (7.2) 

 
71 (5.5) 

 
147 (14.4) 19 (4.6) 

 

Renal Function Before Surgery Normal 2825 (41.3) 125 (30.9) <0.0001 475 (36.7) <0.0001 1776 (53.1) 156 (37.4) <0.0001  
Moderately 

Impaired 

1916 (28.0) 135 (33.4) 
 

378 (29.2) 
 

1252 (37.4) 177 (42.4) 
 

 
Severely 

Impaired 

480 (7.0) 62 (15.3) 
 

159 (12.3) 
 

316 (9.4) 84 (20.1) 
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Severe Complication and AKI Prediction Population (2012-

2018) 

Delirium Population (2016-2018) 

  Total 

Population 

Severe Complication = 

Yes 

AKI = Yes Total 

Population 

Delirium = Yes 

  N = 6839 N = 404 (5.91%) N=1295 (18.93%) N=3344 N=417 (12.47%) 

Variable Level n (%) n (%) P-value n (%) P-value n (%) n (%) P-value  
Unknown 1618 (23.7) 82 (20.3) 

 
283 (21.9) 

 
0 (0.0) 0 (0.0) 

 

Preoperative Creatinine <100 5252 (76.8) 243 (60.1) <0.0001 864 (66.7) <0.0001 2572 (76.9) 278 (66.7) <0.0001  
100 or higher 1587 (23.2) 161 (39.9) 

 
431 (33.3) 

 
772 (23.1) 139 (33.3) 

 

Neurological Dysfunction No 6746 (98.6) 398 (98.5) 0.9978 1276 (98.5) 0.8125 3330 (99.6) 416 (99.8) 0.8421  
Yes 93 (1.4) 6 (1.5) 

 
19 (1.5) 

 
14 (0.4) 1 (0.2) 

 

Previous Myocardial Infarction No 4317 (63.1) 246 (60.9) 0.3652 834 (64.4) 0.3044 2147 (64.2) 279 (66.9) 0.2398  
Yes 2522 (36.9) 158 (39.1) 

 
461 (35.6) 

 
1197 (35.8) 138 (33.1) 

 

Left Main Stem Disease No 3210 (46.9) 202 (50.0) 0.4265 643 (49.7) 0.0911 1797 (53.7) 248 (59.5) 0.0348  
Yes 955 (14.0) 55 (13.6) 

 
169 (13.1) 

 
484 (14.5) 49 (11.8) 

 

 
Unknown 2674 (39.1) 147 (36.4) 

 
483 (37.3) 

 
1063 (31.8) 120 (28.8) 

 

Pulmonary Disease No 5693 (83.2) 329 (81.4) 0.3502 1046 (80.8) 0.0092 2843 (85.0) 349 (83.7) 0.4612  
Yes 1146 (16.8) 75 (18.6) 

 
249 (19.2) 

 
501 (15.0) 68 (16.3) 

 

Hypertension History No 1864 (27.3) 95 (23.5) 0.0924 288 (22.2) <0.0001 923 (27.6) 111 (26.6) 0.6735  
Yes 4975 (72.7) 309 (76.5) 

 
1007 (77.8) 

 
2421 (72.4) 306 (73.4) 

 

Congestive Cardiac Failure No 6135 (89.7) 305 (75.5) <0.0001 1075 (83.0) <0.0001 2907 (86.9) 333 (79.9) <0.0001  
Yes 704 (10.3) 99 (24.5) 

 
220 (17.0) 

 
437 (13.1) 84 (20.1) 

 

Active Endocarditis No 6761 (98.9) 384 (95.0) <0.0001 1267 (97.8) 0.0002 3288 (98.3) 409 (98.1) 0.8331  
Yes 78 (1.1) 20 (5.0) 

 
28 (2.2) 

 
56 (1.7) 8 (1.9) 
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Appendix 6.3: Training and Testing Datasets for Preoperative Models 
 

Severe complication and AKI experiments (2012-2018 data) Delirium experiments (2016 to 2018 data) 

Demographic Train (n = 4583) Test (n = 2256) P-value Train (n = 2241) Test (n = 1103) P-value 

Severe Complication 258 (5.63) 146 (6.47) 0.1821 - - - 

Acute Kidney Injury 846 (18.46) 449 (19.90) 0.1618 - - - 

Delirium - - - 286 (12.76) 131 (11.88) 0.5009 

Age 
  

0.6737 
  

0.6990 

16 to 60 1261 (27.51) 633 (28.06) 
 

652 (29.09) 315 (28.56) 
 

61 to 67 1019 (22.23) 487 (21.59) 
 

476 (21.24) 254 (23.03) 
 

68 to 74 1199 (26.16) 570 (25.27) 
 

580 (25.88) 281 (25.48) 
 

75 to 99 1104 (24.09) 566 (25.09) 
 

533 (23.78) 253 (22.94) 
 

Sex 
  

0.6730 
  

0.1541 

Female 1248 (27.23) 626 (27.75) 
 

658 (70.64) 297 (26.93) 
 

Male 3335 (72.77) 1630 (72.25) 
 

658 (29.36) 806 (73.07) 
 

BMI 
  

0.9412 
  

0.4821 

18.5-25.0 836 (18.24) 419 (18.57) 
 

466 (20.79) 235 (21.31) 
 

25.1-30.0 1865 (40.69) 917 (40.65) 
 

879 (39.22) 409 (37.08) 
 

Over 30.1 1882 (41.06) 920 (40.78) 
 

896 (39.98) 459 (41.61) 
 

Type II Diabetes 
  

0.2573 
  

0.3555 

No 3424 (74.71) 1656 (73.40) 
 

1666 (74.34) 837 (75.88) 
 

Yes 1159 (25.29) 600 (26.60) 
 

575 (25.66) 266 (24.12) 
 

Smoking Status 
  

0.1148 
  

0.2220 

Never smoked 1337 (29.17) 595 (26.37) 
 

762 (34.00) 375 (34.00) 
 

Ex-smoker 1445 (31.53) 746 (33.07) 
 

774 (34.54) 372 (33.73) 
 

Current smoker 627 (13.68) 316 (14.01) 
 

338 (15.08) 194 (17.59) 
 

Unknown 1174 (25.62) 599 (26.55) 
 

367 (16.38) 162 (14.69) 
 

Procedure 
  

0.6513 
  

0.0486 

CABG 2564 (55.95) 1285 (56.96) 
 

1140 (50.87) 598 (54.22) 
 

Valve 1363 (29.74) 647 (28.68) 
 

774 (34.54) 334 (30.28) 
 

CABG and Valve 656 (14.31) 324 (14.36) 
 

327 (14.59) 171 (15.50) 
 

Surgical Priority 
  

0.4438 
  

0.6969 

Elective 2922 (63.76) 1450 (64.27) 
 

1080 (48.19) 543 (49.23) 
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Severe complication and AKI experiments (2012-2018 data) Delirium experiments (2016 to 2018 data) 

Demographic Train (n = 4583) Test (n = 2256) P-value Train (n = 2241) Test (n = 1103) P-value 

Emergency 52 (1.13) 21 (0.93) 
 

34 (1.52) 18 (1.63) 
 

Priority 777 (16.95) 355 (15.74) 
 

614 (27.40) 281 (25.48) 
 

Urgent 832 (18.15) 430 (19.06) 
 

513 (22.89) 261 (23.66) 
 

Critical Pre-op. State 
  

0.9446 
  

0.9738 

No 4493 (98.04) 2213 (98.09) 
 

2182 (97.37) 1073 (97.28) 
 

Yes 90 (1.96) 43 (1.91) 
 

59 (2.63) 30 (2.72) 
 

Previous Cardiac Surgery 
 

0.8610 
  

0.9618 

No 4448 (97.05) 2192 (97.16) 
 

2164 (96.56) 1064 (96.46) 
 

Yes 135 (2.95) 64 (2.84) 
 

77 (3.44) 39 (3.54) 
 

Previous PCI 
  

0.8595 
  

0.2175 

No 3970 (86.62) 1950 (86.44) 
 

1920 (85.68) 963 87.31) 
 

Yes 613 (13.38) 306 (13.56) 
 

321 (14.32) 140 (12.69) 
 

Extracardiac Arteriopathy 
 

0.5974 
  

0.6881 

No 4044 (88.24) 1980 (87.77) 
 

2008 (89.60) 994 (90.12) 
 

Yes 539 (11.76) 276 (12.23) 
 

233 (10.40) 109 (9.88) 
 

LV Function 
  

0.5553 
  

0.7011 

Good 3636 (79.34) 1802 (79.88) 
 

1721 (76.80) 841 (76.25) 
 

Moderate 819 (17.87) 384 (17.02) 
 

442 (19.72) 228 (20.67) 
 

Poor 128 (2.79) 70 (3.10) 
 

78 (3.48) 34 (3.08) 
 

NYHA Grade 
  

0.2661 
  

0.1152 

I 940 (20.51) 418 (18.53%) 
 

490 (21.87) 227 (20.58) 
 

II 2266 (49.44) 1150 (50.98) 
 

1039 (46.36) 560 (50.77) 
 

III 1217 (26.55) 604 (26.77) 
 

602 (26.86) 268 (24.30) 
 

IV 160 (3.49) 84 (3.72) 
 

110 (4.91) 48 (4.35) 
 

Angina Status 
  

0.1273 
  

0.7680 

0 1479 (32.27) 721 (31.96) 
 

869 (38.78) 402 (36.45) 
 

I 650 (14.18) 287 (12.72) 
 

291 (12.99) 151 (13.69) 
 

II 1520 (33.17) 779 (34.53) 
 

641 (28.60) 329 (29.83) 
 

III 710 (15.49) 334 (14.80) 
 

311 (13.88) 158 (14.32) 
 

IV 224 (4.89) 135 (5.98) 
 

129 (5.76) 63 (5.71) 
 

Rhythm 
  

0.6357 
  

0.8676 

Normal 3778 (82.44) 1873 (83.02) 
 

1811 (80.81) 896 (81.23) 
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Severe complication and AKI experiments (2012-2018 data) Delirium experiments (2016 to 2018 data) 

Demographic Train (n = 4583) Test (n = 2256) P-value Train (n = 2241) Test (n = 1103) P-value 

Abnormal 529 (11.54) 260 (11.52) 
 

333 (14.86) 157 (14.23) 
 

Unknown 276 (6.02) 123 (5.45) 
 

97 (4.33) 50 (4.53) 
 

Renal Function Before Surgery 
 

0.0081 
  

0.5138 

Normal 1942 (42.37) 883 (39.14) 
 

1179 (52.61) 597 (54.13) 
 

Moderately Impaired 1247 (27.21) 669 (29.65) 
 

854 (38.11) 398 (36.08) 
 

Severely Impaired 338 (7.38) 142 (6.29) 
 

208 (9.28) 108 (9.79) 
 

Unknown 1056 (23.04) 562 (24.91) 
 

0 (0) 0 (0) 
 

Preoperative Creatinine 
 

0.3294 
  

0.5493 

<100 µmol/l 3503 (76.43) 1749 (77.53) 
 

1731 (77.24) 841 (76.25) 
 

>= 100 µmol/l 1080 (23.57) 507 (22.47) 
 

510 (22.76) 262 (23.75) 
 

Neurological Dysfunction 
  

0.0824 
  

0.5243 

No 4529 (98.82) 2217 (98.27) 
 

2230 (99.51) 1100 (99.73) 
 

Yes 54 (1.18) 39 (1.73) 
 

11 (0.49) 3 (0.27) 
 

Previous Myocardial Infarction 
 

0.8914 
  

0.1750 

No 2896 (63.19) 1421 (62.99) 
 

1457 (65.02) 690 (62.56) 
 

Yes 1687 (36.81) 835 (37.01) 
 

784 (34.98) 413 (37.44) 
 

Left Main Stem Disease 
  

0.9778 
  

0.8988 

No 2147 (46.85) 1063 (47.12) 
 

1201 (53.59) 596 (54.03) 
 

Yes 641 (13.99) 314 (13.92) 
 

322 (14.37) 162 (14.69) 
 

Unknown 1795 (39.17) 879 (38.96) 
 

718 (32.04) 345 (31.28) 
 

Pulmonary Disease 
  

0.6561 
  

0.8567 

No 3822 (83.40) 1871 (82.93) 
 

1903 (84.92) 940 (85.22) 
 

Yes 761 (16.60) 385 (17.07) 
 

338 (15.08) 163 (14.78) 
 

Hypertension History 
  

0.5022 
  

0.6184 

No 1237 (26.99) 627 (27.79) 
 

612 (27.31) 311 (28.20) 
 

Yes 3346 (73.01) 1629 (72.21) 
 

1629 (72.69) 792 (71.80) 
 

Congestive Cardiac Failure 
  

0.9144 
  

0.4686 

No 4113 (89.74) 2022 (89.63) 
 

1941 (86.61) 966 (87.58) 
 

Yes 470 (10.26) 234 (10.37) 
 

300 (13.39) 137 (12.42) 
 

Active Endocarditis 
  

0.7658 
  

0.5720 

No 4529 (98.82) 2232 (98.94) 
 

2201 (98.22) 1087 (98.55) 
 

Yes 54 (1.18) 24 (1.06) 
 

40 (1.78) 16 (1.45) 
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Appendix 7.1: Descriptive Statistics when Predicting Acute Kidney Injury 

using Preoperative and ICU Data 

Table 7.1.A Patient demographics and comparison between patients with and without AKI, based on chi-square test of independence for categorical variables and t-tests 

for numerical variables. 

 Total Population  

N=6294 

AKI=No 

N=5544 (88.08%) 

AKI=Yes 

N=750 (11.92%) 

AKI=Yes vs No 

Demographic Mean ± SD or % Mean ± SD or % Mean ± SD or % P-value 

Age 66.09 ± 10.96 65.74 ± 10.92 69.52 ± 10.68 <0.0001 

Sex    <0.0001 

Female 27.66% 26.84% 33.73%  

Male 72.34% 73.16% 66.27%  

BMI     

18.5-25.0 18.94% 20.27% 18.76% 0.1507 

25.1-30.0 39.26% 41.20% 39.00%  

Over 30.1 41.80% 38.53% 42.24%  

Type II Diabetes    0.0281 

No 75.06% 71.73% 75.51%  

Yes 24.94% 28.27% 24.49%  

Smoking Status     

Never smoked 28.55% 32.27% 28.05% 0.0195 

Ex-smoker 31.63% 31.47% 31.66%  

Current smoker 13.84% 10.80% 14.25%  

Unknown 25.98% 25.47% 26.05%  

Procedure    <0.0001 

CABG 56.93% 59.34% 39.07%  

Valve 29.57% 28.14% 40.13%  

CABG and Valve 13.5% 12.52% 20.80%  

Logistic EuroSCORE 5.16 ± 5.91 4.76 ± 5.24 8.10 ± 8.96 <0.0001 
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 Total Population  

N=6294 

AKI=No 

N=5544 (88.08%) 

AKI=Yes 

N=750 (11.92%) 

AKI=Yes vs No 

Demographic Mean ± SD or % Mean ± SD or % Mean ± SD or % P-value 

Renal Function Before Surgery    <0.0001 

Normal 40.94% 42.39% 30.27%  

Moderately Impaired 28.28% 27.74% 32.27%  

Severely Impaired 7.10% 5.79% 16.80%  

Unknown 23.68% 24.08% 20.66%  

Preoperative Creatinine 91.18 ± 50.24 89.77 ± 50.88 101.58 ± 43.85 <0.0001 

ICU Hours 44.05 ± 91.46 34.82 ± 57.24 112.26 ± 201.83 <0.0001 

Total Days in Hospital 11.20 ± 8.78 10.54 ± 7.78 16.12 ± 13.09 <0.0001 

Outcome    <0.0001 

Alive 99.09% 99.57% 95.60%  

Dead 0.91% 0.43% 4.40%  
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Table 7.1.B. Descriptive statistics for the total study population and for patients with and without AKI, where the two groups were compared with chi-square tests for 

categorical and t-tests for numerical variables. 

 
Total Population  

N=6294 

AKI=No 

N=5544 (88.08%) 

AKI=Yes 

N=750 (11.92%) 

AKI=Yes vs No 

Preoperative Variable Percentage Percentage Percentage P-value 

Priority    <0.0001 

Elective 64.08% 60.27% 64.59%  

Emergency 1.02% 2.93% 0.76%  

Priority 16.59% 14.13% 16.92%  

Urgent 18.32% 22.67% 17.73%  

Critical Pre-op. State    0.0002 

No 98.25% 96.53% 98.48%  

Yes 1.75% 3.47% 1.52%  

Previous Cardiac Surgery     

No 97.44% 94.93% 97.78% <0.0001 

Yes 2.56% 5.07 2.22%  

Previous Percutaneous Coronary Intervention    0.5221 

No 86.65% 87.47% 86.54%  

Yes 13.35% 12.53% 13.46%  

Extracardiac Arteriopathy    0.0044 

No 88.51% 54.33% 88.94%  

Yes 11.49% 14.67% 11.06  

Left Ventricular Function    0.0019 

Good 79.74% 75.60% 80.30%  

Moderate 17.43% 20.00% 17.08%  

Poor 2.83% 4.40% 2.62%  

NYHA Grade    <0.0001 

I 20.18% 18.13% 20.45%  

II 50.14% 41.73% 51.28%  

III 26.29% 32.67% 25.43%  

IV 3.38% 7.47% 2.83%  

Angina Status    <0.0001 

0 32.14% 42.67% 30.72%  
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Total Population  

N=6294 

AKI=No 

N=5544 (88.08%) 

AKI=Yes 

N=750 (11.92%) 

AKI=Yes vs No 

Preoperative Variable Percentage Percentage Percentage P-value 

I 13.68% 13.33% 13.73%  

II 33.81% 28.40% 34.54%  

III 15.25% 10.67% 15.87%  

IV 5.12% 4.93% 5.14%  

Rhythm    <0.0001 

Normal 82.84% 77.20% 83.60%  

Abnormal 11.38% 18.00% 10.48%  

Unknown 5.78% 4.80% 5.92%  

Neurological Dysfunction    0.4772 

No 98.62% 98.27% 98.67%  

Yes 1.38% 1.73% 1.33%  

Previous Myocardial Infarction    0.6071 

No 62.95% 63.87% 62.82%  

Yes 37.05% 36.13% 37.18%  

Left Main Stem Disease    0.0023 

No 47.11% 53.07% 46.30%  

Yes 13.98% 12.53% 14.18%  

Unknown 38.91% 34.40% 39.52%  

Pulmonary Disease    0.2258 

No 83.60% 82.00% 83.82%  

Yes 16.40% 18.00% 16.18%  

Hypertension History    0.0040 

No 27.82% 23.33% 28.43%  

Yes 72.18% 76.67% 71.57%  

Congestive Cardiac Failure    <0.0001 

No 90.28% 82.93% 91.27%  

Yes 9.72% 17.07% 8.73%  

Active Endocarditis    0.0001 

No 98.90% 97.47% 99.10%  

Yes 1.10% 2.53% 0.90%  
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Table 7.1.C. Descriptive statistics for laboratory variables for the total population and for patients with and without AKI, where the two groups are compared, using chi-

squared tests for categorical and t-tests for numerical variables. 

 
Total Population 

N=6294 

AKI=No 

N=5544 (88.08%) 

AKI=Yes 

N=750 (11.92%) 
 

Laboratory Variable (Unit) Mean ± SD Mean ± SD Mean ± SD P-value 

Arterial Base Excess (mmol/l) -0.34 ± 3.29 -0.20 ± 2.85 -0.43 ± 3.79 <0.0001 

Arterial Haematocrit (%) 28.82 ± 4.51 29.34 ± 4.65 27.71 ± 4.12 <0.0001 

Bicarbonate (mEq/l) 24.20 ± 3.35 24.34 ± 2.98 24.08 ± 3.82 <0.0001 

C-Reactive Protein (µmol/L)  137.60 ± 94.28 135.00 ± 88.34 140.40 ± 100.51 0.0009 

Creatinine (µmol/L) 112.10 ± 76.73 89.54 ± 49.17 143.60 ± 92.58 <0.0001 

Daily Fluid Balance 300.90 ± 265.00 322.60 ± 886.34 255.50 ± 965.38 <0.0001 

Haemoglobin (g/l) 97.97 ± 15.31 99.64 ± 15.82 94.19 ± 13.65 <0.0001 

Hydrogen Ion (mmol/l) 39.32 ± 6.68 39.12 ± 5.98 39.28 ± 6.71 <0.0001 

Lactate (mmol/l) 1.60 ± 1.03 1.55 ± 0.86 1.60 ± 1.07 <0.0001 

Potassium (mmol/l) 4.52 ± 0.68 4.52 ± 0.56 4.54 ± 0.66 <0.0001 

Sodium (mmol/l) 135.40 ± 4.71 135.30 ± 4.11 135.20 ± 5.83 0.0062 

Urea (mmol/l) 9.28 ± 6.10 6.78 ± 3.12 13.37 ± 7.35 <0.0001 

Urine Output (l per day) 92.99 ± 87.90 97.50 ± 92.03 85.91 ± 80.48 <0.0001 

Medicines     

Dobutamine (dose) 3.52 ± 5.76 3.04 ± 5.65 4.08 ± 5.91 <0.0001 

N 1860 (29.55%) 1509 (27.22%) 351 (46.80%) <0.0001 

Dopamine (dose) 3.84 ± 6.80 3.58 ± 7.82 3.77 ± 6.35 0.1522 

N 362 (5.75%) 274 (4.94%) 88 (11.73%) <0.0001 

Noradrenaline (dose) 4.05 ± 6.88 3.33 ± 5.06 4.73 ± 6.31 <0.0001 

N 2491 (39.58%) 2087 (37.64%) 404 (53.87%) <0.0001 

Vasopressin (dose) 4.89 ± 2.63 4.62 ± 2.61 4.93 ± 2.69 <0.0001 

N 146 (2.32%) 69 (1.24%) 77 (10.27%) <0.0001 
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Appendix 7.2: Comparison of Laboratory Variables in Test Data Based on 

Imputation Methods 

Table 7.2.A Mean and standard deviation (SD) for each laboratory variable in the test data when predicting AKI within 25 hours since ICU admission. The p-values are 

calculated based on t-test where the comparison is made in variable means based on the original data (without imputation) and the corresponding imputation method. 

 Without imputation With median imputation With 0 imputation With missForest imputation 

Variable mean ± SD mean ± SD P-value mean ± SD P-value  mean ± SD P-value 

Arterial Base Excess 
  

  
  

Min -3.78 ± 2.17 -3.78 ± 2.17 1.0000 -3.78 ± 2.17 1.0000 -3.78 ± 2.17 1.0000 

Max 1.45 ± 2.07 1.45 ± 2.07 1.0000 1.45 ± 2.07 1.0000 1.45 ± 2.07 1.0000 

First  0.23 ± 2.36 0.23 ± 2.36 1.0000 0.23 ± 2.36 1.0000 0.23 ± 2.36 1.0000 

Last -1.04 ± 2.00 -1.04 ± 2.00 1.0000 -1.04 ± 2.00 1.0000 -1.04 ± 2.00 1.0000 

Arterial Haematocrit 
  

  
  

Min 24.76 ± 4.67 24.76 ± 4.67 0.9975 24.75 ± 4.72 0.9211 24.77 ± 4.67 0.9934 

Max 37.51 ± 5.22 37.51 ± 5.22 0.9986 37.48 ± 5.32 0.8936 37.51 ± 5.22 0.9897 

First  35.92 ± 6.70 35.92 ± 6.70 0.9976 35.90 ± 6.77 0.9202 35.92 ± 6.70 0.9895 

Last 30.39 ± 4.47 30.39 ± 4.46 0.9987 30.37 ± 4.54 0.8990 30.39 ± 4.46 0.9978 

Creatinine 
  

  
  

Min 89.80 ± 45.14 89.44 ± 43.75 0.8338 84.28 ± 48.76 0.0021 90.03 ± 43.90 0.8928 

Max 103.33 ± 59.17 102.64 ± 57.39 0.7545 96.98 ± 62.47 0.0063 103.38 ± 57.57 0.9847 

First  96.28 ± 48.60 95.90 ± 47.10 0.8328 90.36 ± 52.46 0.0022 96.46 ± 47.26 0.9228 

Last 96.69 ± 55.90 96.03 ± 54.21 0.7549 90.74 ± 58.93 0.0067 96.78 ± 54.47 0.9642 

C-Reactive Protein 
  

  
  

Min 62.85 ± 38.75 62.75 ± 38.47 0.9444 61.92 ± 39.20 0.5260 62.89 ± 38.57 0.9814 

Max 157.08 ± 77.30 157.08 ± 76.73 0.9997 154.75 ± 79.05 0.4294 157.15 ± 76.87 0.9814 

First  62.98 ± 39.34 62.88 ± 39.06 0.9441 62.05 ± 39.78 0.5313 63.02 ± 39.16 0.9797 

Last 156.98 ± 77.13 156.98 ± 76.56 0.9999 154.65 ± 78.88 0.4287 157.05 ± 76.70 0.9801 

Daily Fluid Balance 
  

  
  

Min 346.48 ± 785.89 337.21 ± 667.64 0.7599 250.00 ± 685.32 0.0016 400.08 ± 685.53 0.0801 
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 Without imputation With median imputation With 0 imputation With missForest imputation 

Variable mean ± SD mean ± SD P-value mean ± SD P-value  mean ± SD P-value 

Max 1266.41 ± 649.52 1273.02 ± 551.76 0.7920 913.79 ± 791.69 <0.0001 1213.84 ± 573.25 0.0386 

First  1108.41 ± 749.59 1124.73 ± 637.19 0.5730 799.78 ± 807.67 <0.0001 1065.58 ± 656.12 0.1430 

Last 513.58 ± 839.76 521.04 ± 713.33 0.8180 370.58 ± 749.48 <0.0001 553.24 ± 727.87 0.2244 

Bicarbonate 
  

  
  

Min 20.77 ± 2.03 20.78 ± 1.98 0.9331 19.74 ± 4.92 <0.0001 20.79 ± 2.01 0.8446 

Max 26.18 ± 2.11 26.17 ± 2.05 0.9626 24.88 ± 6.04 <0.0001 26.14 ± 2.08 0.6752 

First  24.70 ± 2.43 24.70 ± 2.37 0.9563 23.48 ± 5.86 <0.0001 24.64 ± 2.41 0.5483 

Last 23.66 ± 2.20 23.66 ± 2.14 0.9818 22.49 ± 5.56 <0.0001 23.65 ± 2.17 0.9203 

Haemoglobin 
  

  
  

Min 83.82 ± 15.95 83.82 ± 15.95 1.0000 83.82 ± 15.95 1.0000 83.82 ± 15.95 1.0000 

Max 128.18 ± 17.03 128.18 ± 17.03 1.0000 128.18 ± 17.03 1.0000 128.18 ± 17.03 1.0000 

First  123.24 ± 22.41 123.24 ± 22.41 1.0000 123.24 ± 22.41 1.0000 123.24 ± 22.41 1.0000 

Last 103.08 ± 14.04 103.08 ± 14.04 1.0000 103.08 ± 14.04 1.0000 103.08 ± 14.04 1.0000 

Hydrogen Ion 
  

  
  

Min 34.10 ± 3.67 34.12 ± 3.58 0.8574 32.41 ± 8.22 <0.0001 34.11 ± 3.59 0.9431 

Max 47.89 ± 16.34 47.82 ± 15.93 0.9109 45.52 ± 19.01 0.0004 47.85 ± 15.94 0.9482 

First  38.55 ± 4.41 38.53 ± 4.30 0.8937 36.64 ± 9.40 <0.0001 38.53 ± 4.32 0.9161 

Last 40.11 ± 4.13 40.09 ± 4.03 0.8956 38.13 ± 9.59 <0.0001 40.11 ± 4.04 0.9710 

Lactate 
     

  
  

Min 1.08 ± 0.43 1.08 ± 0.42 0.8643 1.03 ± 0.47 0.0030 1.09 ± 0.42 0.6550 

Max 2.68 ± 1.28 2.67 ± 1.26 0.7907 2.55 ± 1.38 0.0123 2.69 ± 1.26 0.8689 

First  1.65 ± 0.90 1.64 ± 0.88 0.7585 1.57 ± 0.94 0.0258 1.66 ± 0.88 0.8447 

Last 1.51 ± 0.64 1.50 ± 0.62 0.8617 1.44 ± 0.70 0.0050 1.51 ± 0.62 0.7951 

Potassium 
  

  
  

Min 3.90 ± 0.35 3.90 ± 0.35 1.0000 3.90 ± 0.35 1.0000 3.90 ± 0.35 1.0000 

Max 5.49 ± 0.64 5.49 ± 0.64 1.0000 5.49 ± 0.64 1.0000 5.49 ± 0.64 1.0000 

First  4.18 ± 0.54 4.18 ± 0.54 1.0000 4.18 ± 0.54 1.0000 4.18 ± 0.54 1.0000 

Last 4.62 ± 0.38 4.62 ± 0.38 1.0000 4.62 ± 0.38 1.0000 4.62 ± 0.38 1.0000 

Sodium 
     

  
  

Min 133.31 ± 4.22 133.31 ± 4.22 1.0000 133.31 ± 4.22 1.0000 133.31 ± 4.22 1.0000 

Max 139.86 ± 2.95 139.86 ± 2.95 1.0000 139.86 ± 2.95 1.0000 139.86 ± 2.95 1.0000 

First  138.46 ± 4.57 138.46 ± 4.57 1.0000 138.46 ± 4.57 1.0000 138.46 ± 4.57 1.0000 
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 Without imputation With median imputation With 0 imputation With missForest imputation 

Variable mean ± SD mean ± SD P-value mean ± SD P-value  mean ± SD P-value 

Last 134.61 ± 2.91 134.61 ± 2.91 1.0000 134.61 ± 2.91 1.0000 134.61 ± 2.91 1.0000 

Urea 
   

  
  

Min 5.79 ± 2.01 5.79 ± 2.01 0.9682 5.74 ± 2.07 0.5586 5.79 ± 2.01 0.9650 

Max 6.90 ± 2.78 6.89 ± 2.77 0.9646 6.84 ± 2.83 0.6121 6.90 ± 2.77 0.9902 

First  6.06 ± 2.02 6.06 ± 2.01 0.9706 6.01 ± 2.08 0.5416 6.06 ± 2.01 0.9661 

Last 6.62 ± 2.84 6.61 ± 2.83 0.9642 6.57 ± 2.89 0.6333 6.62 ± 2.83 0.9920 

Urine 
   

  
  

Min 24.28 ± 15.05 24.28 ± 15.05 1.0000 24.28 ± 15.05 1.0000 24.28 ± 15.05 1.0000 

Max 306.25 ± 211.29 306.25 ± 211.29 1.0000 306.25 ± 211.29 1.0000 306.25 ± 211.29 1.0000 

First  187.54 ± 131.77 187.54 ± 131.77 1.0000 187.54 ± 131.77 1.0000 187.54 ± 131.77 1.0000 

Last 66.90 ± 61.28 66.90 ± 61.28 1.0000 66.90 ± 61.28 1.0000 66.90 ± 61.28 1.0000 
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Appendix 7.3: Performance Measures for Each Model Predicting AKI at 

Each Lead Time 

Table 7.3.A. Performance measures for each model at each lead time when predicting AKI within 25h since ICU admission, using complete data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AB      

-24 0.770 (0.678 - 0.862) 0.802 (0.715 - 0.889) 0.652 (0.548 - 0.756) 0.022 (0.000 - 0.054) 0.856 (0.780 - 0.932) 0.146 

-23 0.785 (0.694 - 0.876) 0.709 (0.609 - 0.809) 0.750 (0.655 - 0.845) 0.027 (0.000 - 0.063) 0.833 (0.751 - 0.915) 0.181 

-22 0.812 (0.727 - 0.897) 0.691 (0.590 - 0.792) 0.782 (0.692 - 0.872) 0.028 (0.000 - 0.064) 0.813 (0.728 - 0.898) 0.197 

-21 0.778 (0.691 - 0.865) 0.828 (0.749 - 0.907) 0.623 (0.521 - 0.725) 0.021 (0.000 - 0.051) 0.853 (0.779 - 0.927) 0.143 

-20 0.770 (0.680 - 0.860) 0.643 (0.541 - 0.745) 0.756 (0.664 - 0.848) 0.034 (0.000 - 0.073) 0.834 (0.754 - 0.914) 0.197 

-19 0.792 (0.709 - 0.875) 0.582 (0.481 - 0.683) 0.837 (0.761 - 0.913) 0.039 (0.000 - 0.079) 0.774 (0.688 - 0.860) 0.231 

-18 0.793 (0.708 - 0.878) 0.761 (0.672 - 0.850) 0.686 (0.589 - 0.783) 0.027 (0.000 - 0.061) 0.839 (0.762 - 0.916) 0.171 

-17 0.811 (0.730 - 0.892) 0.689 (0.593 - 0.785) 0.808 (0.727 - 0.889) 0.030 (0.000 - 0.065) 0.775 (0.689 - 0.861) 0.224 

-16 0.773 (0.683 - 0.863) 0.759 (0.667 - 0.851) 0.703 (0.605 - 0.801) 0.025 (0.000 - 0.059) 0.841 (0.762 - 0.920) 0.177 

-15 0.743 (0.655 - 0.831) 0.628 (0.530 - 0.726) 0.788 (0.705 - 0.871) 0.038 (0.000 - 0.077) 0.800 (0.719 - 0.881) 0.222 

-14 0.743 (0.655 - 0.831) 0.840 (0.766 - 0.914) 0.576 (0.476 - 0.676) 0.023 (0.000 - 0.053) 0.857 (0.786 - 0.928) 0.143 

-13 0.815 (0.739 - 0.891) 0.772 (0.690 - 0.854) 0.738 (0.652 - 0.824) 0.027 (0.000 - 0.059) 0.789 (0.709 - 0.869) 0.199 

-12 0.792 (0.713 - 0.871) 0.743 (0.658 - 0.828) 0.714 (0.626 - 0.802) 0.032 (0.000 - 0.066) 0.810 (0.733 - 0.887) 0.177 

-11 0.813 (0.738 - 0.888) 0.740 (0.656 - 0.824) 0.745 (0.661 - 0.829) 0.032 (0.000 - 0.066) 0.787 (0.708 - 0.866) 0.200 

-10 0.832 (0.760 - 0.904) 0.670 (0.579 - 0.761) 0.860 (0.793 - 0.927) 0.034 (0.000 - 0.069) 0.693 (0.604 - 0.782) 0.275 

-9 0.817 (0.741 - 0.893) 0.810 (0.733 - 0.887) 0.700 (0.610 - 0.790) 0.024 (0.000 - 0.054) 0.805 (0.727 - 0.883) 0.178 

-8 0.834 (0.765 - 0.903) 0.804 (0.730 - 0.878) 0.766 (0.688 - 0.844) 0.025 (0.000 - 0.054) 0.743 (0.662 - 0.824) 0.220 

-7 0.830 (0.760 - 0.900) 0.829 (0.759 - 0.899) 0.701 (0.616 - 0.786) 0.024 (0.000 - 0.052) 0.784 (0.707 - 0.861) 0.177 

-6 0.869 (0.806 - 0.932) 0.775 (0.697 - 0.853) 0.831 (0.761 - 0.901) 0.026 (0.000 - 0.056) 0.686 (0.600 - 0.772) 0.250 

-5 0.852 (0.787 - 0.917) 0.816 (0.745 - 0.887) 0.732 (0.651 - 0.813) 0.025 (0.000 - 0.054) 0.762 (0.684 - 0.840) 0.195 

-4 0.844 (0.777 - 0.911) 0.842 (0.775 - 0.909) 0.738 (0.657 - 0.819) 0.021 (0.000 - 0.047) 0.753 (0.674 - 0.832) 0.182 

-3 0.847 (0.781 - 0.913) 0.798 (0.724 - 0.872) 0.748 (0.668 - 0.828) 0.027 (0.000 - 0.057) 0.755 (0.676 - 0.834) 0.199 

-2 0.838 (0.771 - 0.905) 0.713 (0.630 - 0.796) 0.835 (0.767 - 0.903) 0.034 (0.001 - 0.067) 0.691 (0.607 - 0.775) 0.230 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-1 0.888 (0.827 - 0.949) 0.806 (0.730 - 0.882) 0.802 (0.725 - 0.879) 0.022 (0.000 - 0.050) 0.729 (0.643 - 0.815) 0.229 

Mean ± SD 0.810 ± 0.037 0.752 ± 0.072 0.745 ± 0.069 0.028 ± 0.005 0.786 ± 0.052  

Model BARTm           

-24 0.832 (0.751 - 0.913) 0.914 (0.853 - 0.975) 0.601 (0.494 - 0.708) 0.010 (0.000 - 0.032) 0.857 (0.781 - 0.933) 0.036 

-23 0.843 (0.763 - 0.923) 0.886 (0.816 - 0.956) 0.651 (0.546 - 0.756) 0.012 (0.000 - 0.036) 0.847 (0.768 - 0.926) 0.043 

-22 0.841 (0.761 - 0.921) 0.840 (0.760 - 0.920) 0.698 (0.598 - 0.798) 0.016 (0.000 - 0.043) 0.832 (0.751 - 0.913) 0.063 

-21 0.817 (0.736 - 0.898) 0.793 (0.708 - 0.878) 0.719 (0.625 - 0.813) 0.022 (0.000 - 0.053) 0.819 (0.738 - 0.900) 0.054 

-20 0.831 (0.751 - 0.911) 0.857 (0.782 - 0.932) 0.693 (0.594 - 0.792) 0.015 (0.000 - 0.041) 0.826 (0.745 - 0.907) 0.059 

-19 0.837 (0.761 - 0.913) 0.813 (0.733 - 0.893) 0.729 (0.638 - 0.820) 0.021 (0.000 - 0.050) 0.803 (0.721 - 0.885) 0.066 

-18 0.843 (0.767 - 0.919) 0.795 (0.711 - 0.879) 0.739 (0.647 - 0.831) 0.021 (0.000 - 0.051) 0.806 (0.723 - 0.889) 0.069 

-17 0.856 (0.783 - 0.929) 0.789 (0.705 - 0.873) 0.749 (0.659 - 0.839) 0.022 (0.000 - 0.052) 0.797 (0.714 - 0.880) 0.077 

-16 0.837 (0.758 - 0.916) 0.855 (0.779 - 0.931) 0.693 (0.594 - 0.792) 0.015 (0.000 - 0.041) 0.829 (0.748 - 0.910) 0.061 

-15 0.814 (0.735 - 0.893) 0.723 (0.633 - 0.813) 0.753 (0.666 - 0.840) 0.030 (0.000 - 0.064) 0.802 (0.721 - 0.883) 0.084 

-14 0.830 (0.754 - 0.906) 0.840 (0.766 - 0.914) 0.700 (0.607 - 0.793) 0.019 (0.000 - 0.047) 0.809 (0.730 - 0.888) 0.063 

-13 0.832 (0.759 - 0.905) 0.743 (0.658 - 0.828) 0.769 (0.687 - 0.851) 0.030 (0.000 - 0.063) 0.774 (0.692 - 0.856) 0.092 

-12 0.823 (0.749 - 0.897) 0.832 (0.759 - 0.905) 0.686 (0.595 - 0.777) 0.022 (0.000 - 0.051) 0.806 (0.729 - 0.883) 0.053 

-11 0.837 (0.766 - 0.908) 0.837 (0.766 - 0.908) 0.723 (0.637 - 0.809) 0.021 (0.000 - 0.049) 0.780 (0.700 - 0.860) 0.069 

-10 0.848 (0.779 - 0.917) 0.767 (0.685 - 0.849) 0.788 (0.709 - 0.867) 0.027 (0.000 - 0.058) 0.750 (0.666 - 0.834) 0.105 

-9 0.838 (0.766 - 0.910) 0.730 (0.643 - 0.817) 0.801 (0.723 - 0.879) 0.029 (0.000 - 0.062) 0.754 (0.670 - 0.838) 0.110 

-8 0.851 (0.785 - 0.917) 0.812 (0.740 - 0.884) 0.756 (0.676 - 0.836) 0.024 (0.000 - 0.052) 0.749 (0.669 - 0.829) 0.084 

-7 0.876 (0.815 - 0.937) 0.811 (0.738 - 0.884) 0.789 (0.713 - 0.865) 0.023 (0.000 - 0.051) 0.723 (0.640 - 0.806) 0.101 

-6 0.871 (0.809 - 0.933) 0.865 (0.801 - 0.929) 0.726 (0.643 - 0.809) 0.018 (0.000 - 0.043) 0.761 (0.682 - 0.840) 0.081 

-5 0.887 (0.829 - 0.945) 0.798 (0.724 - 0.872) 0.837 (0.769 - 0.905) 0.024 (0.000 - 0.052) 0.665 (0.578 - 0.752) 0.121 

-4 0.887 (0.829 - 0.945) 0.868 (0.806 - 0.930) 0.765 (0.687 - 0.843) 0.017 (0.000 - 0.041) 0.726 (0.644 - 0.808) 0.088 

-3 0.881 (0.822 - 0.940) 0.816 (0.745 - 0.887) 0.814 (0.743 - 0.885) 0.023 (0.000 - 0.051) 0.690 (0.605 - 0.775) 0.104 

-2 0.876 (0.816 - 0.936) 0.791 (0.717 - 0.865) 0.833 (0.765 - 0.901) 0.025 (0.000 - 0.054) 0.671 (0.585 - 0.757) 0.115 

-1 0.918 (0.865 - 0.971) 0.932 (0.883 - 0.981) 0.764 (0.682 - 0.846) 0.008 (0.000 - 0.025) 0.734 (0.649 - 0.819) 0.082 

Mean ± SD 0.850 ± 0.026 0.821 ± 0.053 0.741 ± 0.057 0.021 ± 0.006 0.775 ± 0.054   

Model C5.0 
     

-23 0.763 (0.669 - 0.857) 0.734 (0.637 - 0.831) 0.747 (0.651 - 0.843) 0.025 (0.000 - 0.059) 0.829 (0.746 - 0.912) 0.087 

-22 0.763 (0.670 - 0.856) 0.716 (0.618 - 0.814) 0.702 (0.602 - 0.802) 0.029 (0.000 - 0.066) 0.852 (0.775 - 0.929) 0.083 

-21 0.748 (0.657 - 0.839) 0.713 (0.618 - 0.808) 0.692 (0.595 - 0.789) 0.032 (0.000 - 0.069) 0.847 (0.771 - 0.923) 0.077 

-20 0.806 (0.721 - 0.891) 0.774 (0.685 - 0.863) 0.753 (0.661 - 0.845) 0.022 (0.000 - 0.053) 0.809 (0.725 - 0.893) 0.133 



 

 

375 

 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-19 0.754 (0.666 - 0.842) 0.703 (0.609 - 0.797) 0.762 (0.675 - 0.849) 0.031 (0.000 - 0.067) 0.805 (0.724 - 0.886) 0.136 

-18 0.787 (0.701 - 0.873) 0.625 (0.524 - 0.726) 0.856 (0.783 - 0.929) 0.033 (0.000 - 0.070) 0.744 (0.653 - 0.835) 0.169 

-17 0.780 (0.694 - 0.866) 0.789 (0.705 - 0.873) 0.706 (0.612 - 0.800) 0.024 (0.000 - 0.056) 0.822 (0.743 - 0.901) 0.078 

-16 0.750 (0.657 - 0.843) 0.699 (0.600 - 0.798) 0.720 (0.623 - 0.817) 0.030 (0.000 - 0.067) 0.844 (0.766 - 0.922) 0.086 

-15 0.729 (0.639 - 0.819) 0.745 (0.657 - 0.833) 0.646 (0.549 - 0.743) 0.032 (0.000 - 0.068) 0.849 (0.777 - 0.921) 0.078 

-14 0.773 (0.688 - 0.858) 0.777 (0.693 - 0.861) 0.668 (0.573 - 0.763) 0.027 (0.000 - 0.060) 0.835 (0.760 - 0.910) 0.079 

-13 0.798 (0.720 - 0.876) 0.822 (0.747 - 0.897) 0.685 (0.594 - 0.776) 0.023 (0.000 - 0.052) 0.808 (0.731 - 0.885) 0.083 

-12 0.767 (0.685 - 0.849) 0.683 (0.592 - 0.774) 0.801 (0.723 - 0.879) 0.035 (0.000 - 0.071) 0.763 (0.680 - 0.846) 0.150 

-11 0.769 (0.688 - 0.850) 0.798 (0.721 - 0.875) 0.634 (0.541 - 0.727) 0.029 (0.000 - 0.061) 0.831 (0.759 - 0.903) 0.083 

-10 0.763 (0.681 - 0.845) 0.728 (0.642 - 0.814) 0.691 (0.602 - 0.780) 0.035 (0.000 - 0.070) 0.822 (0.748 - 0.896) 0.086 

-9 0.786 (0.706 - 0.866) 0.740 (0.654 - 0.826) 0.739 (0.653 - 0.825) 0.030 (0.000 - 0.063) 0.798 (0.719 - 0.877) 0.088 

-8 0.806 (0.733 - 0.879) 0.768 (0.690 - 0.846) 0.725 (0.642 - 0.808) 0.031 (0.000 - 0.063) 0.781 (0.704 - 0.858) 0.142 

-7 0.800 (0.726 - 0.874) 0.766 (0.687 - 0.845) 0.719 (0.635 - 0.803) 0.031 (0.000 - 0.063) 0.786 (0.710 - 0.862) 0.097 

-6 0.853 (0.787 - 0.919) 0.856 (0.791 - 0.921) 0.732 (0.650 - 0.814) 0.019 (0.000 - 0.044) 0.759 (0.679 - 0.839) 0.148 

-5 0.792 (0.717 - 0.867) 0.667 (0.580 - 0.754) 0.792 (0.717 - 0.867) 0.041 (0.005 - 0.077) 0.752 (0.673 - 0.831) 0.159 

-4 0.817 (0.746 - 0.888) 0.719 (0.636 - 0.802) 0.827 (0.758 - 0.896) 0.034 (0.001 - 0.067) 0.702 (0.618 - 0.786) 0.172 

-3 0.809 (0.737 - 0.881) 0.746 (0.666 - 0.826) 0.765 (0.687 - 0.843) 0.033 (0.000 - 0.066) 0.754 (0.675 - 0.833) 0.161 

-2 0.807 (0.735 - 0.879) 0.722 (0.640 - 0.804) 0.776 (0.700 - 0.852) 0.036 (0.002 - 0.070) 0.750 (0.671 - 0.829) 0.158 

-1 0.874 (0.810 - 0.938) 0.786 (0.707 - 0.865) 0.829 (0.756 - 0.902) 0.023 (0.000 - 0.052) 0.703 (0.615 - 0.791) 0.162 

Mean ± SD 0.787 ± 0.034 0.742 ± 0.052 0.738 ± 0.058 0.030 ± 0.005 0.793 ± 0.045   

Model GBM 
     

-24 0.816 (0.732 - 0.900) 0.877 (0.805 - 0.949) 0.602 (0.495 - 0.709) 0.015 (0.000 - 0.041) 0.861 (0.786 - 0.936) 0.072 

-23 0.813 (0.727 - 0.899) 0.722 (0.623 - 0.821) 0.789 (0.699 - 0.879) 0.024 (0.000 - 0.058) 0.805 (0.718 - 0.892) 0.097 

-22 0.841 (0.761 - 0.921) 0.765 (0.673 - 0.857) 0.777 (0.686 - 0.868) 0.021 (0.000 - 0.052) 0.801 (0.714 - 0.888) 0.086 

-21 0.826 (0.746 - 0.906) 0.862 (0.790 - 0.934) 0.656 (0.556 - 0.756) 0.016 (0.000 - 0.042) 0.836 (0.758 - 0.914) 0.039 

-20 0.800 (0.714 - 0.886) 0.738 (0.644 - 0.832) 0.747 (0.654 - 0.840) 0.026 (0.000 - 0.060) 0.820 (0.738 - 0.902) 0.082 

-19 0.795 (0.712 - 0.878) 0.637 (0.538 - 0.736) 0.806 (0.725 - 0.887) 0.036 (0.000 - 0.074) 0.788 (0.704 - 0.872) 0.088 

-18 0.820 (0.740 - 0.900) 0.807 (0.725 - 0.889) 0.733 (0.641 - 0.825) 0.020 (0.000 - 0.049) 0.807 (0.725 - 0.889) 0.071 

-17 0.848 (0.774 - 0.922) 0.767 (0.680 - 0.854) 0.772 (0.685 - 0.859) 0.024 (0.000 - 0.056) 0.786 (0.701 - 0.871) 0.108 

-16 0.819 (0.736 - 0.902) 0.735 (0.640 - 0.830) 0.777 (0.687 - 0.867) 0.025 (0.000 - 0.059) 0.804 (0.719 - 0.889) 0.090 

-15 0.787 (0.704 - 0.870) 0.734 (0.645 - 0.823) 0.754 (0.667 - 0.841) 0.029 (0.000 - 0.063) 0.799 (0.718 - 0.880) 0.081 

-14 0.804 (0.724 - 0.884) 0.851 (0.779 - 0.923) 0.625 (0.527 - 0.723) 0.020 (0.000 - 0.048) 0.839 (0.765 - 0.913) 0.073 

-13 0.831 (0.758 - 0.904) 0.851 (0.782 - 0.920) 0.653 (0.560 - 0.746) 0.020 (0.000 - 0.047) 0.818 (0.743 - 0.893) 0.064 



376 

 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-12 0.801 (0.723 - 0.879) 0.842 (0.771 - 0.913) 0.621 (0.526 - 0.716) 0.023 (0.000 - 0.052) 0.832 (0.759 - 0.905) 0.061 

-11 0.832 (0.760 - 0.904) 0.721 (0.635 - 0.807) 0.797 (0.720 - 0.874) 0.032 (0.000 - 0.066) 0.751 (0.668 - 0.834) 0.110 

-10 0.861 (0.794 - 0.928) 0.825 (0.752 - 0.898) 0.736 (0.651 - 0.821) 0.021 (0.000 - 0.049) 0.776 (0.695 - 0.857) 0.063 

-9 0.832 (0.759 - 0.905) 0.650 (0.557 - 0.743) 0.857 (0.788 - 0.926) 0.035 (0.000 - 0.071) 0.712 (0.623 - 0.801) 0.156 

-8 0.842 (0.774 - 0.910) 0.777 (0.700 - 0.854) 0.758 (0.679 - 0.837) 0.029 (0.000 - 0.060) 0.756 (0.676 - 0.836) 0.084 

-7 0.867 (0.804 - 0.930) 0.856 (0.791 - 0.921) 0.787 (0.711 - 0.863) 0.018 (0.000 - 0.043) 0.714 (0.630 - 0.798) 0.102 

-6 0.874 (0.812 - 0.936) 0.802 (0.728 - 0.876) 0.834 (0.765 - 0.903) 0.023 (0.000 - 0.051) 0.675 (0.588 - 0.762) 0.133 

-5 0.879 (0.819 - 0.939) 0.798 (0.724 - 0.872) 0.804 (0.731 - 0.877) 0.025 (0.000 - 0.054) 0.706 (0.622 - 0.790) 0.105 

-4 0.871 (0.809 - 0.933) 0.772 (0.695 - 0.849) 0.822 (0.752 - 0.892) 0.028 (0.000 - 0.058) 0.692 (0.607 - 0.777) 0.107 

-3 0.873 (0.812 - 0.934) 0.754 (0.675 - 0.833) 0.841 (0.774 - 0.908) 0.029 (0.000 - 0.060) 0.673 (0.587 - 0.759) 0.136 

-2 0.867 (0.805 - 0.929) 0.817 (0.746 - 0.888) 0.788 (0.713 - 0.863) 0.023 (0.000 - 0.050) 0.715 (0.632 - 0.798) 0.107 

-1 0.906 (0.850 - 0.962) 0.893 (0.833 - 0.953) 0.788 (0.709 - 0.867) 0.012 (0.000 - 0.033) 0.721 (0.634 - 0.808) 0.104 

Mean ± SD 0.838 ± 0.031 0.786 ± 0.067 0.755 ± 0.072 0.024 ± 0.006 0.770 ± 0.056  

Model LR           

-24 0.838 (0.758 - 0.918) 0.802 (0.715 - 0.889) 0.769 (0.677 - 0.861) 0.018 (0.000 - 0.047) 0.798 (0.711 - 0.885) 0.057 

-23 0.830 (0.747 - 0.913) 0.759 (0.665 - 0.853) 0.789 (0.699 - 0.879) 0.021 (0.000 - 0.053) 0.797 (0.708 - 0.886) 0.064 

-22 0.839 (0.759 - 0.919) 0.728 (0.631 - 0.825) 0.823 (0.740 - 0.906) 0.023 (0.000 - 0.056) 0.770 (0.678 - 0.862) 0.080 

-21 0.552 (0.448 - 0.656) 0.138 (0.066 - 0.210) 0.966 (0.928 - 1.000) 0.065 (0.013 - 0.117) 0.760 (0.670 - 0.850) 0.001 

-20 0.529 (0.422 - 0.636) 0.083 (0.024 - 0.142) 0.975 (0.942 - 1.000) 0.200 (0.114 - 0.286) 0.934 (0.881 - 0.987) 0.001 

-19 0.585 (0.484 - 0.686) 0.209 (0.125 - 0.293) 0.961 (0.921 - 1.000) 0.063 (0.013 - 0.113) 0.694 (0.599 - 0.789) 0.001 

-18 0.796 (0.712 - 0.880) 0.648 (0.548 - 0.748) 0.801 (0.718 - 0.884) 0.034 (0.000 - 0.072) 0.795 (0.711 - 0.879) 0.076 

-17 0.824 (0.745 - 0.903) 0.556 (0.453 - 0.659) 0.940 (0.891 - 0.989) 0.037 (0.000 - 0.076) 0.573 (0.471 - 0.675) 0.190 

-16 0.802 (0.716 - 0.888) 0.807 (0.722 - 0.892) 0.654 (0.552 - 0.756) 0.021 (0.000 - 0.052) 0.852 (0.776 - 0.928) 0.037 

-15 0.800 (0.719 - 0.881) 0.766 (0.680 - 0.852) 0.710 (0.618 - 0.802) 0.027 (0.000 - 0.060) 0.818 (0.740 - 0.896) 0.050 

-14 0.810 (0.731 - 0.889) 0.670 (0.575 - 0.765) 0.821 (0.744 - 0.898) 0.033 (0.000 - 0.069) 0.760 (0.674 - 0.846) 0.094 

-13 0.827 (0.753 - 0.901) 0.663 (0.571 - 0.755) 0.872 (0.807 - 0.937) 0.034 (0.000 - 0.069) 0.679 (0.588 - 0.770) 0.125 

-12 0.761 (0.678 - 0.844) 0.624 (0.530 - 0.718) 0.765 (0.682 - 0.848) 0.043 (0.003 - 0.083) 0.806 (0.729 - 0.883) 0.055 

-11 0.840 (0.770 - 0.910) 0.817 (0.743 - 0.891) 0.708 (0.621 - 0.795) 0.024 (0.000 - 0.053) 0.793 (0.715 - 0.871) 0.051 

-10 0.856 (0.788 - 0.924) 0.786 (0.707 - 0.865) 0.792 (0.714 - 0.870) 0.024 (0.000 - 0.054) 0.741 (0.656 - 0.826) 0.077 

-9 0.857 (0.788 - 0.926) 0.720 (0.632 - 0.808) 0.838 (0.766 - 0.910) 0.029 (0.000 - 0.062) 0.717 (0.629 - 0.805) 0.107 

-8 0.841 (0.773 - 0.909) 0.679 (0.593 - 0.765) 0.863 (0.799 - 0.927) 0.036 (0.001 - 0.071) 0.667 (0.580 - 0.754) 0.125 

-7 0.867 (0.804 - 0.930) 0.793 (0.718 - 0.868) 0.813 (0.740 - 0.886) 0.025 (0.000 - 0.054) 0.704 (0.619 - 0.789) 0.093 

-6 0.887 (0.828 - 0.946) 0.766 (0.687 - 0.845) 0.854 (0.788 - 0.920) 0.027 (0.000 - 0.057) 0.657 (0.569 - 0.745) 0.120 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-5 0.855 (0.790 - 0.920) 0.781 (0.705 - 0.857) 0.814 (0.743 - 0.885) 0.027 (0.000 - 0.057) 0.699 (0.615 - 0.783) 0.089 

-4 0.858 (0.794 - 0.922) 0.798 (0.724 - 0.872) 0.793 (0.719 - 0.867) 0.025 (0.000 - 0.054) 0.717 (0.634 - 0.800) 0.080 

-3 0.862 (0.799 - 0.925) 0.860 (0.796 - 0.924) 0.789 (0.714 - 0.864) 0.018 (0.000 - 0.042) 0.706 (0.622 - 0.790) 0.075 

-2 0.847 (0.781 - 0.913) 0.757 (0.679 - 0.835) 0.822 (0.752 - 0.892) 0.030 (0.000 - 0.061) 0.695 (0.611 - 0.779) 0.085 

-1 0.896 (0.837 - 0.955) 0.825 (0.752 - 0.898) 0.841 (0.770 - 0.912) 0.019 (0.000 - 0.045) 0.678 (0.588 - 0.768) 0.078 

Mean ± SD 0.802 ± 0.100 0.668 ± 0.216 0.824 ± 0.080 0.038 ± 0.037 0.742 ± 0.076   

Model RF 
     

-24 0.750 (0.656 - 0.844) 0.630 (0.525 - 0.735) 0.777 (0.686 - 0.868) 0.034 (0.000 - 0.073) 0.829 (0.747 - 0.911) 0.080 

-23 0.770 (0.677 - 0.863) 0.734 (0.637 - 0.831) 0.718 (0.619 - 0.817) 0.026 (0.000 - 0.061) 0.845 (0.765 - 0.925) 0.070 

-22 0.811 (0.726 - 0.896) 0.728 (0.631 - 0.825) 0.739 (0.643 - 0.835) 0.026 (0.000 - 0.061) 0.831 (0.749 - 0.913) 0.080 

-21 0.780 (0.693 - 0.867) 0.690 (0.593 - 0.787) 0.737 (0.644 - 0.830) 0.032 (0.000 - 0.069) 0.830 (0.751 - 0.909) 0.080 

-20 0.776 (0.687 - 0.865) 0.786 (0.698 - 0.874) 0.660 (0.559 - 0.761) 0.024 (0.000 - 0.057) 0.852 (0.776 - 0.928) 0.065 

-19 0.784 (0.699 - 0.869) 0.615 (0.515 - 0.715) 0.806 (0.725 - 0.887) 0.038 (0.000 - 0.077) 0.793 (0.710 - 0.876) 0.095 

-18 0.781 (0.695 - 0.867) 0.784 (0.698 - 0.870) 0.667 (0.569 - 0.765) 0.025 (0.000 - 0.058) 0.843 (0.767 - 0.919) 0.060 

-17 0.819 (0.739 - 0.899) 0.744 (0.654 - 0.834) 0.759 (0.671 - 0.847) 0.027 (0.000 - 0.060) 0.800 (0.717 - 0.883) 0.085 

-16 0.816 (0.733 - 0.899) 0.711 (0.613 - 0.809) 0.779 (0.690 - 0.868) 0.027 (0.000 - 0.062) 0.808 (0.723 - 0.893) 0.095 

-15 0.773 (0.688 - 0.858) 0.819 (0.741 - 0.897) 0.603 (0.504 - 0.702) 0.025 (0.000 - 0.057) 0.852 (0.780 - 0.924) 0.055 

-14 0.759 (0.673 - 0.845) 0.734 (0.645 - 0.823) 0.691 (0.598 - 0.784) 0.031 (0.000 - 0.066) 0.833 (0.758 - 0.908) 0.075 

-13 0.812 (0.736 - 0.888) 0.653 (0.560 - 0.746) 0.836 (0.764 - 0.908) 0.036 (0.000 - 0.072) 0.734 (0.648 - 0.820) 0.130 

-12 0.792 (0.713 - 0.871) 0.594 (0.498 - 0.690) 0.843 (0.772 - 0.914) 0.042 (0.003 - 0.081) 0.745 (0.660 - 0.830) 0.160 

-11 0.804 (0.728 - 0.880) 0.740 (0.656 - 0.824) 0.727 (0.641 - 0.813) 0.032 (0.000 - 0.066) 0.798 (0.721 - 0.875) 0.100 

-10 0.842 (0.772 - 0.912) 0.883 (0.821 - 0.945) 0.642 (0.549 - 0.735) 0.160 (0.089 - 0.231) 0.815 (0.740 - 0.890) 0.070 

-9 0.815 (0.739 - 0.891) 0.720 (0.632 - 0.808) 0.780 (0.699 - 0.861) 0.031 (0.000 - 0.065) 0.774 (0.692 - 0.856) 0.130 

-8 0.816 (0.744 - 0.888) 0.768 (0.690 - 0.846) 0.746 (0.665 - 0.827) 0.030 (0.000 - 0.062) 0.766 (0.688 - 0.844) 0.110 

-7 0.832 (0.762 - 0.902) 0.766 (0.687 - 0.845) 0.746 (0.665 - 0.827) 0.030 (0.000 - 0.062) 0.769 (0.691 - 0.847) 0.095 

-6 0.847 (0.780 - 0.914) 0.811 (0.738 - 0.884) 0.734 (0.652 - 0.816) 0.025 (0.000 - 0.054) 0.767 (0.688 - 0.846) 0.095 

-5 0.854 (0.789 - 0.919) 0.807 (0.735 - 0.879) 0.777 (0.701 - 0.853) 0.025 (0.000 - 0.054) 0.729 (0.647 - 0.811) 0.110 

-4 0.845 (0.779 - 0.911) 0.789 (0.714 - 0.864) 0.776 (0.699 - 0.853) 0.027 (0.000 - 0.057) 0.735 (0.654 - 0.816) 0.115 

-3 0.838 (0.770 - 0.906) 0.833 (0.765 - 0.901) 0.718 (0.635 - 0.801) 0.023 (0.000 - 0.051) 0.768 (0.691 - 0.845) 0.085 

-2 0.848 (0.782 - 0.914) 0.852 (0.787 - 0.917) 0.718 (0.636 - 0.800) 0.021 (0.000 - 0.047) 0.762 (0.684 - 0.840) 0.085 

-1 0.881 (0.818 - 0.944) 0.893 (0.833 - 0.953) 0.750 (0.666 - 0.834) 0.013 (0.000 - 0.035) 0.753 (0.670 - 0.836) 0.095 

Mean ± SD 0.810 ± 0.034 0.754 ± 0.079 0.739 ± 0.057 0.034 ± 0.028 0.793 ± 0.040  

Model SVM           
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-24 0.761 (0.668 - 0.854) 0.642 (0.538 - 0.746) 0.783 (0.693 - 0.873) 0.032 (0.000 - 0.070) 0.822 (0.739 - 0.905) 0.065 

-23 0.803 (0.715 - 0.891) 0.671 (0.567 - 0.775) 0.833 (0.751 - 0.915) 0.027 (0.000 - 0.063) 0.778 (0.686 - 0.870) 0.081 

-22 0.810 (0.725 - 0.895) 0.790 (0.701 - 0.879) 0.728 (0.631 - 0.825) 0.021 (0.000 - 0.052) 0.826 (0.743 - 0.909) 0.061 

-21 0.752 (0.661 - 0.843) 0.793 (0.708 - 0.878) 0.625 (0.523 - 0.727) 0.025 (0.000 - 0.058) 0.858 (0.785 - 0.931) 0.050 

-20 0.747 (0.654 - 0.840) 0.750 (0.657 - 0.843) 0.679 (0.579 - 0.779) 0.027 (0.000 - 0.062) 0.850 (0.774 - 0.926) 0.060 

-19 0.741 (0.651 - 0.831) 0.670 (0.573 - 0.767) 0.733 (0.642 - 0.824) 0.036 (0.000 - 0.074) 0.829 (0.752 - 0.906) 0.064 

-18 0.790 (0.705 - 0.875) 0.727 (0.634 - 0.820) 0.746 (0.655 - 0.837) 0.028 (0.000 - 0.062) 0.816 (0.735 - 0.897) 0.070 

-17 0.753 (0.664 - 0.842) 0.622 (0.522 - 0.722) 0.825 (0.746 - 0.904) 0.036 (0.000 - 0.074) 0.777 (0.691 - 0.863) 0.086 

-16 0.761 (0.669 - 0.853) 0.675 (0.574 - 0.776) 0.743 (0.649 - 0.837) 0.031 (0.000 - 0.068) 0.837 (0.758 - 0.916) 0.071 

-15 0.779 (0.695 - 0.863) 0.681 (0.587 - 0.775) 0.796 (0.715 - 0.877) 0.033 (0.000 - 0.069) 0.780 (0.696 - 0.864) 0.078 

-14 0.758 (0.671 - 0.845) 0.777 (0.693 - 0.861) 0.637 (0.540 - 0.734) 0.029 (0.000 - 0.063) 0.847 (0.774 - 0.920) 0.054 

-13 0.759 (0.676 - 0.842) 0.772 (0.690 - 0.854) 0.629 (0.535 - 0.723) 0.032 (0.000 - 0.066) 0.841 (0.770 - 0.912) 0.056 

-12 0.758 (0.674 - 0.842) 0.693 (0.603 - 0.783) 0.730 (0.643 - 0.817) 0.037 (0.000 - 0.074) 0.811 (0.735 - 0.887) 0.065 

-11 0.761 (0.679 - 0.843) 0.577 (0.482 - 0.672) 0.842 (0.772 - 0.912) 0.045 (0.005 - 0.085) 0.746 (0.662 - 0.830) 0.092 

-10 0.814 (0.739 - 0.889) 0.738 (0.653 - 0.823) 0.760 (0.678 - 0.842) 0.031 (0.000 - 0.064) 0.779 (0.699 - 0.859) 0.083 

-9 0.795 (0.716 - 0.874) 0.610 (0.514 - 0.706) 0.850 (0.780 - 0.920) 0.039 (0.001 - 0.077) 0.735 (0.649 - 0.821) 0.112 

-8 0.809 (0.736 - 0.882) 0.661 (0.573 - 0.749) 0.852 (0.786 - 0.918) 0.039 (0.003 - 0.075) 0.690 (0.604 - 0.776) 0.101 

-7 0.816 (0.744 - 0.888) 0.667 (0.579 - 0.755) 0.849 (0.782 - 0.916) 0.038 (0.002 - 0.074) 0.694 (0.608 - 0.780) 0.105 

-6 0.826 (0.755 - 0.897) 0.757 (0.677 - 0.837) 0.787 (0.711 - 0.863) 0.030 (0.000 - 0.062) 0.738 (0.656 - 0.820) 0.083 

-5 0.805 (0.732 - 0.878) 0.772 (0.695 - 0.849) 0.742 (0.662 - 0.822) 0.031 (0.000 - 0.063) 0.765 (0.687 - 0.843) 0.070 

-4 0.821 (0.751 - 0.891) 0.842 (0.775 - 0.909) 0.712 (0.629 - 0.795) 0.022 (0.000 - 0.049) 0.769 (0.692 - 0.846) 0.069 

-3 0.825 (0.755 - 0.895) 0.825 (0.755 - 0.895) 0.725 (0.643 - 0.807) 0.024 (0.000 - 0.052) 0.765 (0.687 - 0.843) 0.071 

-2 0.831 (0.763 - 0.899) 0.748 (0.669 - 0.827) 0.826 (0.757 - 0.895) 0.031 (0.000 - 0.063) 0.693 (0.609 - 0.777) 0.089 

-1 0.878 (0.815 - 0.941) 0.786 (0.707 - 0.865) 0.833 (0.761 - 0.905) 0.023 (0.000 - 0.052) 0.699 (0.610 - 0.788) 0.091 

Mean ± SD 0.790 ± 0.035 0.719 ± 0.071 0.761 ± 0.071 0.031 ± 0.006 0.781 ± 0.054   
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Table 7.3.B Performance measures for each model at each lead time when predicting AKI within 25h since ICU admission, using missing values in testing data. 

Lead 

Time 

AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model BARTm      

-24 0.844 (0.761 - 0.927) 0.870 (0.793 - 0.947) 0.699 (0.594 - 0.804) 0.011 (0.000 - 0.035) 0.854 (0.773 - 0.935) 0.061 

-23 0.860 (0.787 - 0.933) 0.759 (0.669 - 0.849) 0.797 (0.712 - 0.882) 0.020 (0.000 - 0.049) 0.800 (0.716 - 0.884) 0.096 

-22 0.851 (0.776 - 0.926) 0.791 (0.705 - 0.877) 0.738 (0.645 - 0.831) 0.018 (0.000 - 0.046) 0.834 (0.755 - 0.913) 0.094 

-21 0.823 (0.743 - 0.903) 0.682 (0.585 - 0.779) 0.829 (0.750 - 0.908) 0.025 (0.000 - 0.058) 0.787 (0.701 - 0.873) 0.140 

-20 0.821 (0.737 - 0.905) 0.793 (0.704 - 0.882) 0.718 (0.619 - 0.817) 0.018 (0.000 - 0.047) 0.850 (0.772 - 0.928) 0.070 

-19 0.828 (0.750 - 0.906) 0.780 (0.695 - 0.865) 0.715 (0.622 - 0.808) 0.021 (0.000 - 0.050) 0.839 (0.763 - 0.915) 0.078 

-18 0.830 (0.750 - 0.910) 0.824 (0.743 - 0.905) 0.714 (0.618 - 0.810) 0.016 (0.000 - 0.043) 0.842 (0.764 - 0.920) 0.078 

-17 0.832 (0.759 - 0.905) 0.861 (0.794 - 0.928) 0.695 (0.605 - 0.785) 0.015 (0.000 - 0.039) 0.819 (0.744 - 0.894) 0.066 

-16 0.837 (0.765 - 0.909) 0.777 (0.695 - 0.859) 0.775 (0.693 - 0.857) 0.022 (0.000 - 0.051) 0.784 (0.703 - 0.865) 0.084 

-15 0.797 (0.717 - 0.877) 0.680 (0.587 - 0.773) 0.795 (0.715 - 0.875) 0.029 (0.000 - 0.062) 0.802 (0.723 - 0.881) 0.101 

-14 0.816 (0.740 - 0.892) 0.747 (0.661 - 0.833) 0.779 (0.697 - 0.861) 0.024 (0.000 - 0.054) 0.796 (0.717 - 0.875) 0.115 

-13 0.841 (0.770 - 0.912) 0.745 (0.660 - 0.830) 0.766 (0.684 - 0.848) 0.025 (0.000 - 0.055) 0.800 (0.722 - 0.878) 0.113 

-12 0.845 (0.774 - 0.916) 0.757 (0.673 - 0.841) 0.811 (0.734 - 0.888) 0.023 (0.000 - 0.052) 0.759 (0.675 - 0.843) 0.115 

-11 0.842 (0.774 - 0.910) 0.848 (0.782 - 0.914) 0.679 (0.593 - 0.765) 0.019 (0.000 - 0.044) 0.814 (0.742 - 0.886) 0.067 

-10 0.819 (0.747 - 0.891) 0.909 (0.855 - 0.963) 0.583 (0.491 - 0.675) 0.013 (0.000 - 0.034) 0.844 (0.776 - 0.912) 0.050 

-9 0.799 (0.727 - 0.871) 0.720 (0.639 - 0.801) 0.743 (0.664 - 0.822) 0.033 (0.001 - 0.065) 0.797 (0.724 - 0.870) 0.105 

-8 0.788 (0.711 - 0.865) 0.685 (0.597 - 0.773) 0.753 (0.671 - 0.835) 0.033 (0.000 - 0.067) 0.814 (0.740 - 0.888) 0.110 

-7 0.829 (0.759 - 0.899) 0.757 (0.677 - 0.837) 0.746 (0.665 - 0.827) 0.027 (0.000 - 0.057) 0.798 (0.723 - 0.873) 0.088 

-6 0.820 (0.749 - 0.891) 0.874 (0.812 - 0.936) 0.636 (0.546 - 0.726) 0.017 (0.000 - 0.041) 0.830 (0.760 - 0.900) 0.052 

-5 0.826 (0.758 - 0.894) 0.603 (0.516 - 0.690) 0.900 (0.847 - 0.953) 0.040 (0.005 - 0.075) 0.639 (0.553 - 0.725) 0.206 

-4 0.840 (0.784 - 0.896) 0.777 (0.714 - 0.840) 0.753 (0.688 - 0.818) 0.027 (0.002 - 0.052) 0.773 (0.709 - 0.837) 0.098 

-3 0.818 (0.759 - 0.877) 0.868 (0.817 - 0.919) 0.607 (0.533 - 0.681) 0.020 (0.000 - 0.041) 0.829 (0.772 - 0.886) 0.051 

-2 0.837 (0.770 - 0.904) 0.785 (0.711 - 0.859) 0.758 (0.681 - 0.835) 0.026 (0.000 - 0.055) 0.767 (0.691 - 0.843) 0.074 

-1 0.883 (0.825 - 0.941) 0.833 (0.765 - 0.901) 0.785 (0.710 - 0.860) 0.019 (0.000 - 0.044) 0.736 (0.656 - 0.816) 0.088 

Mean ± 

SD 

0.830 ± 0.020 0.780 ± 0.074 0.741 ± 0.070 0.023 ± 0.007 0.800 ± 0.046 
 

Model C5.0           

-24 0.784 (0.690 - 0.878) 0.675 (0.568 - 0.782) 0.781 (0.686 - 0.876) 0.024 (0.000 - 0.059) 0.846 (0.763 - 0.929) 0.147 

-23 0.796 (0.711 - 0.881) 0.655 (0.555 - 0.755) 0.814 (0.732 - 0.896) 0.028 (0.000 - 0.063) 0.809 (0.726 - 0.892) 0.154 
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Lead 

Time 

AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-22 0.808 (0.725 - 0.891) 0.791 (0.705 - 0.877) 0.706 (0.610 - 0.802) 0.019 (0.000 - 0.048) 0.849 (0.773 - 0.925) 0.084 

-21 0.812 (0.730 - 0.894) 0.773 (0.685 - 0.861) 0.745 (0.654 - 0.836) 0.020 (0.000 - 0.049) 0.830 (0.752 - 0.908) 0.136 

-20 0.777 (0.686 - 0.868) 0.695 (0.594 - 0.796) 0.760 (0.666 - 0.854) 0.025 (0.000 - 0.059) 0.846 (0.767 - 0.925) 0.137 

-19 0.773 (0.687 - 0.859) 0.681 (0.585 - 0.777) 0.798 (0.716 - 0.880) 0.027 (0.000 - 0.060) 0.809 (0.728 - 0.890) 0.163 

-18 0.769 (0.679 - 0.859) 0.776 (0.687 - 0.865) 0.676 (0.577 - 0.775) 0.021 (0.000 - 0.051) 0.865 (0.792 - 0.938) 0.081 

-17 0.799 (0.721 - 0.877) 0.802 (0.724 - 0.880) 0.683 (0.592 - 0.774) 0.022 (0.000 - 0.051) 0.835 (0.763 - 0.907) 0.076 

-16 0.786 (0.706 - 0.866) 0.728 (0.641 - 0.815) 0.759 (0.675 - 0.843) 0.028 (0.000 - 0.060) 0.806 (0.728 - 0.884) 0.135 

-15 0.768 (0.684 - 0.852) 0.649 (0.554 - 0.744) 0.799 (0.719 - 0.879) 0.032 (0.000 - 0.067) 0.806 (0.727 - 0.885) 0.134 

-14 0.739 (0.652 - 0.826) 0.566 (0.468 - 0.664) 0.875 (0.810 - 0.940) 0.036 (0.000 - 0.073) 0.743 (0.657 - 0.829) 0.251 

-13 0.779 (0.698 - 0.860) 0.686 (0.596 - 0.776) 0.758 (0.675 - 0.841) 0.031 (0.000 - 0.065) 0.818 (0.743 - 0.893) 0.161 

-12 0.824 (0.749 - 0.899) 0.757 (0.673 - 0.841) 0.790 (0.710 - 0.870) 0.024 (0.000 - 0.054) 0.778 (0.697 - 0.859) 0.147 

-11 0.775 (0.698 - 0.852) 0.732 (0.650 - 0.814) 0.728 (0.646 - 0.810) 0.031 (0.000 - 0.063) 0.811 (0.738 - 0.884) 0.137 

-10 0.801 (0.726 - 0.876) 0.736 (0.654 - 0.818) 0.776 (0.698 - 0.854) 0.028 (0.000 - 0.059) 0.782 (0.705 - 0.859) 0.156 

-9 0.808 (0.737 - 0.879) 0.788 (0.714 - 0.862) 0.748 (0.670 - 0.826) 0.025 (0.000 - 0.053) 0.778 (0.703 - 0.853) 0.145 

-8 0.799 (0.723 - 0.875) 0.667 (0.578 - 0.756) 0.831 (0.760 - 0.902) 0.032 (0.000 - 0.065) 0.754 (0.672 - 0.836) 0.176 

-7 0.783 (0.706 - 0.860) 0.757 (0.677 - 0.837) 0.708 (0.623 - 0.793) 0.028 (0.000 - 0.059) 0.819 (0.747 - 0.891) 0.104 

-6 0.789 (0.713 - 0.865) 0.712 (0.628 - 0.796) 0.764 (0.685 - 0.843) 0.031 (0.000 - 0.063) 0.796 (0.721 - 0.871) 0.150 

-5 0.801 (0.730 - 0.872) 0.628 (0.542 - 0.714) 0.845 (0.781 - 0.909) 0.040 (0.005 - 0.075) 0.725 (0.645 - 0.805) 0.188 

-4 0.814 (0.755 - 0.873) 0.777 (0.714 - 0.840) 0.743 (0.677 - 0.809) 0.027 (0.002 - 0.052) 0.779 (0.716 - 0.842) 0.145 

-3 0.824 (0.766 - 0.882) 0.835 (0.779 - 0.891) 0.701 (0.632 - 0.770) 0.022 (0.000 - 0.044) 0.793 (0.732 - 0.854) 0.091 

-2 0.806 (0.735 - 0.877) 0.752 (0.674 - 0.830) 0.735 (0.655 - 0.815) 0.031 (0.000 - 0.062) 0.790 (0.717 - 0.863) 0.128 

-1 0.847 (0.781 - 0.913) 0.758 (0.680 - 0.836) 0.813 (0.742 - 0.884) 0.027 (0.000 - 0.056) 0.727 (0.646 - 0.808) 0.156 

Mean ± 

SD 

0.794 ± 0.023 0.724 ± 0.064 0.764 ± 0.051 0.027 ± 0.005 0.800 ± 0.037   

 

 

  



 

 

381 

 

Table 7.3.C. Performance measures for each model at each lead time when predicting AKI within 25h since ICU admission, using median imputation in testing data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AdaBoost      

-24 0.796 (0.704 - 0.888) 0.857 (0.777 - 0.937) 0.600 (0.488 - 0.712) 0.014 (0.000 - 0.041) 0.888 (0.816 - 0.960) 0.145 

-23 0.806 (0.723 - 0.889) 0.701 (0.605 - 0.797) 0.807 (0.724 - 0.890) 0.024 (0.000 - 0.056) 0.804 (0.721 - 0.887) 0.220 

-22 0.839 (0.761 - 0.917) 0.860 (0.787 - 0.933) 0.684 (0.586 - 0.782) 0.013 (0.000 - 0.037) 0.847 (0.771 - 0.923) 0.172 

-21 0.823 (0.743 - 0.903) 0.739 (0.647 - 0.831) 0.755 (0.665 - 0.845) 0.023 (0.000 - 0.054) 0.831 (0.753 - 0.909) 0.196 

-20 0.771 (0.679 - 0.863) 0.768 (0.676 - 0.860) 0.686 (0.584 - 0.788) 0.021 (0.000 - 0.052) 0.867 (0.793 - 0.941) 0.172 

-19 0.783 (0.698 - 0.868) 0.714 (0.621 - 0.807) 0.732 (0.641 - 0.823) 0.027 (0.000 - 0.060) 0.843 (0.768 - 0.918) 0.195 

-18 0.795 (0.709 - 0.881) 0.741 (0.648 - 0.834) 0.754 (0.662 - 0.846) 0.022 (0.000 - 0.053) 0.836 (0.757 - 0.915) 0.200 

-17 0.820 (0.745 - 0.895) 0.782 (0.701 - 0.863) 0.744 (0.659 - 0.829) 0.022 (0.000 - 0.051) 0.807 (0.730 - 0.884) 0.198 

-16 0.781 (0.700 - 0.862) 0.709 (0.620 - 0.798) 0.748 (0.663 - 0.833) 0.030 (0.000 - 0.063) 0.817 (0.741 - 0.893) 0.196 

-15 0.572 (0.474 - 0.670) 0.354 (0.259 - 0.449) 0.830 (0.755 - 0.905) 0.072 (0.000 - 0.123) 0.828 (0.753 - 0.903) 0.172 

-14 0.821 (0.745 - 0.897) 0.737 (0.650 - 0.824) 0.835 (0.762 - 0.908) 0.023 (0.000 - 0.053) 0.747 (0.661 - 0.833) 0.228 

-13 0.810 (0.734 - 0.886) 0.706 (0.618 - 0.794) 0.774 (0.693 - 0.855) 0.029 (0.000 - 0.062) 0.803 (0.726 - 0.880) 0.219 

-12 0.847 (0.776 - 0.918) 0.796 (0.717 - 0.875) 0.766 (0.683 - 0.849) 0.021 (0.000 - 0.049) 0.788 (0.708 - 0.868) 0.221 

-11 0.824 (0.753 - 0.895) 0.723 (0.640 - 0.806) 0.790 (0.715 - 0.865) 0.029 (0.000 - 0.060) 0.771 (0.693 - 0.849) 0.228 

-10 0.834 (0.764 - 0.904) 0.827 (0.756 - 0.898) 0.694 (0.608 - 0.780) 0.021 (0.000 - 0.048) 0.814 (0.741 - 0.887) 0.182 

-9 0.789 (0.715 - 0.863) 0.636 (0.549 - 0.723) 0.834 (0.767 - 0.901) 0.038 (0.004 - 0.072) 0.741 (0.662 - 0.820) 0.250 

-8 0.819 (0.746 - 0.892) 0.833 (0.762 - 0.904) 0.638 (0.547 - 0.729) 0.021 (0.000 - 0.048) 0.840 (0.771 - 0.909) 0.151 

-7 0.824 (0.753 - 0.895) 0.766 (0.687 - 0.845) 0.776 (0.698 - 0.854) 0.025 (0.000 - 0.054) 0.775 (0.697 - 0.853) 0.222 

-6 0.803 (0.729 - 0.877) 0.640 (0.551 - 0.729) 0.827 (0.757 - 0.897) 0.036 (0.001 - 0.071) 0.760 (0.681 - 0.839) 0.245 

-5 0.792 (0.720 - 0.864) 0.630 (0.544 - 0.716) 0.852 (0.789 - 0.915) 0.032 (0.001 - 0.063) 0.754 (0.677 - 0.831) 0.249 

-4 0.814 (0.755 - 0.873) 0.777 (0.714 - 0.840) 0.710 (0.641 - 0.779) 0.029 (0.004 - 0.054) 0.800 (0.739 - 0.861) 0.180 

-3 0.814 (0.755 - 0.873) 0.702 (0.633 - 0.771) 0.804 (0.744 - 0.864) 0.033 (0.006 - 0.060) 0.749 (0.683 - 0.815) 0.237 

-2 0.821 (0.752 - 0.890) 0.719 (0.638 - 0.800) 0.816 (0.746 - 0.886) 0.031 (0.000 - 0.062) 0.732 (0.652 - 0.812) 0.242 

-1 0.882 (0.823 - 0.941) 0.850 (0.785 - 0.915) 0.812 (0.741 - 0.883) 0.017 (0.000 - 0.041) 0.704 (0.621 - 0.787) 0.205 

Mean ± SD 0.803 ± 0.055 0.732 ± 0.104 0.761 ± 0.066 0.027 ± 0.011 0.798 ± 0.046 
 

Model BARTm           

-24 0.860 (0.780 - 0.940) 0.779 (0.684 - 0.874) 0.815 (0.726 - 0.904) 0.016 (0.000 - 0.045) 0.801 (0.709 - 0.893) 0.081 

-23 0.868 (0.797 - 0.939) 0.655 (0.555 - 0.755) 0.904 (0.842 - 0.966) 0.025 (0.000 - 0.058) 0.687 (0.590 - 0.784) 0.155 

-22 0.866 (0.794 - 0.938) 0.756 (0.665 - 0.847) 0.835 (0.757 - 0.913) 0.019 (0.000 - 0.048) 0.768 (0.679 - 0.857) 0.117 

-21 0.851 (0.777 - 0.925) 0.784 (0.698 - 0.870) 0.787 (0.701 - 0.873) 0.018 (0.000 - 0.046) 0.801 (0.718 - 0.884) 0.095 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-20 0.824 (0.741 - 0.907) 0.878 (0.806 - 0.950) 0.625 (0.519 - 0.731) 0.012 (0.000 - 0.036) 0.872 (0.799 - 0.945) 0.039 

-19 0.840 (0.765 - 0.915) 0.648 (0.550 - 0.746) 0.872 (0.803 - 0.941) 0.027 (0.000 - 0.060) 0.738 (0.648 - 0.828) 0.140 

-18 0.853 (0.778 - 0.928) 0.882 (0.813 - 0.951) 0.704 (0.607 - 0.801) 0.011 (0.000 - 0.033) 0.838 (0.760 - 0.916) 0.062 

-17 0.842 (0.771 - 0.913) 0.881 (0.818 - 0.944) 0.695 (0.605 - 0.785) 0.013 (0.000 - 0.035) 0.816 (0.740 - 0.892) 0.057 

-16 0.838 (0.766 - 0.910) 0.825 (0.751 - 0.899) 0.716 (0.628 - 0.804) 0.019 (0.000 - 0.046) 0.812 (0.735 - 0.889) 0.060 

-15 0.609 (0.512 - 0.706) 0.421 (0.323 - 0.519) 0.804 (0.725 - 0.883) 0.067 (0.017 - 0.117) 0.823 (0.747 - 0.899) 0.049 

-14 0.836 (0.763 - 0.909) 0.788 (0.707 - 0.869) 0.781 (0.700 - 0.862) 0.020 (0.000 - 0.048) 0.785 (0.704 - 0.866) 0.091 

-13 0.862 (0.795 - 0.929) 0.716 (0.628 - 0.804) 0.843 (0.772 - 0.914) 0.026 (0.000 - 0.057) 0.736 (0.650 - 0.822) 0.123 

-12 0.863 (0.796 - 0.930) 0.709 (0.620 - 0.798) 0.869 (0.803 - 0.935) 0.026 (0.000 - 0.057) 0.700 (0.610 - 0.790) 0.147 

-11 0.858 (0.793 - 0.923) 0.759 (0.680 - 0.838) 0.816 (0.744 - 0.888) 0.025 (0.000 - 0.054) 0.737 (0.655 - 0.819) 0.108 

-10 0.856 (0.790 - 0.922) 0.845 (0.777 - 0.913) 0.706 (0.621 - 0.791) 0.018 (0.000 - 0.043) 0.805 (0.731 - 0.879) 0.069 

-9 0.856 (0.793 - 0.919) 0.831 (0.763 - 0.899) 0.736 (0.656 - 0.816) 0.021 (0.000 - 0.047) 0.777 (0.702 - 0.852) 0.078 

-8 0.837 (0.767 - 0.907) 0.667 (0.578 - 0.756) 0.834 (0.763 - 0.905) 0.032 (0.000 - 0.065) 0.751 (0.669 - 0.833) 0.116 

-7 0.840 (0.772 - 0.908) 0.892 (0.834 - 0.950) 0.613 (0.522 - 0.704) 0.015 (0.000 - 0.038) 0.836 (0.767 - 0.905) 0.042 

-6 0.842 (0.774 - 0.910) 0.793 (0.718 - 0.868) 0.721 (0.638 - 0.804) 0.024 (0.000 - 0.052) 0.805 (0.731 - 0.879) 0.070 

-5 0.819 (0.750 - 0.888) 0.710 (0.629 - 0.791) 0.791 (0.719 - 0.863) 0.027 (0.000 - 0.056) 0.793 (0.721 - 0.865) 0.095 

-4 0.859 (0.806 - 0.912) 0.711 (0.642 - 0.780) 0.843 (0.788 - 0.898) 0.031 (0.005 - 0.057) 0.702 (0.633 - 0.771) 0.124 

-3 0.845 (0.790 - 0.900) 0.785 (0.723 - 0.847) 0.733 (0.666 - 0.800) 0.027 (0.002 - 0.052) 0.785 (0.723 - 0.847) 0.069 

-2 0.846 (0.781 - 0.911) 0.694 (0.611 - 0.777) 0.819 (0.750 - 0.888) 0.034 (0.001 - 0.067) 0.736 (0.656 - 0.816) 0.117 

-1 0.892 (0.836 - 0.948) 0.825 (0.756 - 0.894) 0.791 (0.717 - 0.865) 0.020 (0.000 - 0.045) 0.732 (0.651 - 0.813) 0.075 

Mean ± SD 0.840 ± 0.052 0.760 ± 0.103 0.777 ± 0.076 0.024 ± 0.011 0.777 ± 0.048   

Model C5.0 
     

-24 0.785 (0.691 - 0.879) 0.688 (0.582 - 0.794) 0.768 (0.671 - 0.865) 0.023 (0.000 - 0.057) 0.851 (0.769 - 0.933) 0.146 

-23 0.798 (0.714 - 0.882) 0.667 (0.568 - 0.766) 0.824 (0.744 - 0.904) 0.026 (0.000 - 0.059) 0.798 (0.714 - 0.882) 0.154 

-22 0.807 (0.724 - 0.890) 0.791 (0.705 - 0.877) 0.704 (0.608 - 0.800) 0.019 (0.000 - 0.048) 0.850 (0.775 - 0.925) 0.084 

-21 0.815 (0.734 - 0.896) 0.784 (0.698 - 0.870) 0.739 (0.647 - 0.831) 0.019 (0.000 - 0.048) 0.831 (0.753 - 0.909) 0.136 

-20 0.777 (0.686 - 0.868) 0.695 (0.594 - 0.796) 0.765 (0.672 - 0.858) 0.024 (0.000 - 0.058) 0.843 (0.763 - 0.923) 0.137 

-19 0.772 (0.686 - 0.858) 0.692 (0.597 - 0.787) 0.788 (0.704 - 0.872) 0.027 (0.000 - 0.060) 0.814 (0.734 - 0.894) 0.161 

-18 0.767 (0.677 - 0.857) 0.671 (0.571 - 0.771) 0.780 (0.692 - 0.868) 0.027 (0.000 - 0.061) 0.834 (0.755 - 0.913) 0.157 

-17 0.795 (0.716 - 0.874) 0.802 (0.724 - 0.880) 0.673 (0.582 - 0.764) 0.022 (0.000 - 0.051) 0.839 (0.767 - 0.911) 0.076 

-16 0.783 (0.702 - 0.864) 0.728 (0.641 - 0.815) 0.758 (0.674 - 0.842) 0.028 (0.000 - 0.060) 0.807 (0.730 - 0.884) 0.134 

-15 0.649 (0.554 - 0.744) 0.525 (0.426 - 0.624) 0.729 (0.641 - 0.817) 0.061 (0.013 - 0.109) 0.838 (0.765 - 0.911) 0.072 

-14 0.761 (0.677 - 0.845) 0.586 (0.489 - 0.683) 0.860 (0.792 - 0.928) 0.035 (0.000 - 0.071) 0.758 (0.674 - 0.842) 0.238 



 

 

383 

 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-13 0.772 (0.691 - 0.853) 0.686 (0.596 - 0.776) 0.749 (0.665 - 0.833) 0.032 (0.000 - 0.066) 0.823 (0.749 - 0.897) 0.161 

-12 0.823 (0.748 - 0.898) 0.728 (0.641 - 0.815) 0.815 (0.739 - 0.891) 0.026 (0.000 - 0.057) 0.763 (0.680 - 0.846) 0.163 

-11 0.779 (0.702 - 0.856) 0.750 (0.670 - 0.830) 0.716 (0.632 - 0.800) 0.029 (0.000 - 0.060) 0.814 (0.742 - 0.886) 0.136 

-10 0.796 (0.721 - 0.871) 0.736 (0.654 - 0.818) 0.771 (0.692 - 0.850) 0.028 (0.000 - 0.059) 0.786 (0.709 - 0.863) 0.157 

-9 0.801 (0.729 - 0.873) 0.763 (0.686 - 0.840) 0.750 (0.672 - 0.828) 0.028 (0.000 - 0.058) 0.782 (0.708 - 0.856) 0.154 

-8 0.799 (0.723 - 0.875) 0.667 (0.578 - 0.756) 0.825 (0.753 - 0.897) 0.032 (0.000 - 0.065) 0.760 (0.679 - 0.841) 0.176 

-7 0.787 (0.711 - 0.863) 0.757 (0.677 - 0.837) 0.711 (0.627 - 0.795) 0.028 (0.000 - 0.059) 0.818 (0.746 - 0.890) 0.104 

-6 0.788 (0.712 - 0.864) 0.667 (0.579 - 0.755) 0.814 (0.742 - 0.886) 0.034 (0.000 - 0.068) 0.767 (0.688 - 0.846) 0.171 

-5 0.777 (0.703 - 0.851) 0.740 (0.662 - 0.818) 0.746 (0.668 - 0.824) 0.026 (0.000 - 0.054) 0.817 (0.748 - 0.886) 0.132 

-4 0.811 (0.752 - 0.870) 0.760 (0.695 - 0.825) 0.756 (0.691 - 0.821) 0.029 (0.004 - 0.054) 0.775 (0.712 - 0.838) 0.152 

-3 0.824 (0.766 - 0.882) 0.835 (0.779 - 0.891) 0.706 (0.637 - 0.775) 0.021 (0.000 - 0.043) 0.790 (0.728 - 0.852) 0.092 

-2 0.808 (0.737 - 0.879) 0.752 (0.674 - 0.830) 0.730 (0.650 - 0.810) 0.031 (0.000 - 0.062) 0.794 (0.721 - 0.867) 0.116 

-1 0.850 (0.785 - 0.915) 0.783 (0.708 - 0.858) 0.805 (0.733 - 0.877) 0.024 (0.000 - 0.052) 0.728 (0.647 - 0.809) 0.156 

Mean ± SD 0.789 ± 0.036 0.719 ± 0.069 0.762 ± 0.046 0.028 ± 0.008 0.803 ± 0.033 
 

Model GBM           

-24 0.847 (0.764 - 0.930) 0.805 (0.714 - 0.896) 0.785 (0.691 - 0.879) 0.014 (0.000 - 0.041) 0.819 (0.731 - 0.907) 0.072 

-23 0.860 (0.787 - 0.933) 0.747 (0.656 - 0.838) 0.827 (0.748 - 0.906) 0.020 (0.000 - 0.049) 0.776 (0.688 - 0.864) 0.107 

-22 0.862 (0.789 - 0.935) 0.849 (0.773 - 0.925) 0.747 (0.655 - 0.839) 0.013 (0.000 - 0.037) 0.818 (0.736 - 0.900) 0.087 

-21 0.846 (0.771 - 0.921) 0.784 (0.698 - 0.870) 0.784 (0.698 - 0.870) 0.018 (0.000 - 0.046) 0.803 (0.720 - 0.886) 0.093 

-20 0.821 (0.737 - 0.905) 0.854 (0.777 - 0.931) 0.665 (0.562 - 0.768) 0.014 (0.000 - 0.040) 0.862 (0.786 - 0.938) 0.053 

-19 0.790 (0.706 - 0.874) 0.626 (0.527 - 0.725) 0.829 (0.752 - 0.906) 0.031 (0.000 - 0.067) 0.796 (0.713 - 0.879) 0.132 

-18 0.827 (0.747 - 0.907) 0.788 (0.701 - 0.875) 0.745 (0.652 - 0.838) 0.018 (0.000 - 0.046) 0.832 (0.753 - 0.911) 0.069 

-17 0.842 (0.771 - 0.913) 0.822 (0.747 - 0.897) 0.720 (0.632 - 0.808) 0.019 (0.000 - 0.046) 0.813 (0.737 - 0.889) 0.066 

-16 0.832 (0.759 - 0.905) 0.796 (0.717 - 0.875) 0.727 (0.640 - 0.814) 0.022 (0.000 - 0.051) 0.811 (0.734 - 0.888) 0.059 

-15 0.584 (0.486 - 0.682) 0.333 (0.239 - 0.427) 0.888 (0.825 - 0.951) 0.070 (0.019 - 0.121) 0.770 (0.686 - 0.854) 0.116 

-14 0.851 (0.781 - 0.921) 0.727 (0.639 - 0.815) 0.836 (0.763 - 0.909) 0.024 (0.000 - 0.054) 0.748 (0.662 - 0.834) 0.117 

-13 0.853 (0.784 - 0.922) 0.725 (0.638 - 0.812) 0.821 (0.747 - 0.895) 0.026 (0.000 - 0.057) 0.759 (0.676 - 0.842) 0.107 

-12 0.860 (0.792 - 0.928) 0.709 (0.620 - 0.798) 0.849 (0.779 - 0.919) 0.026 (0.000 - 0.057) 0.730 (0.643 - 0.817) 0.153 

-11 0.854 (0.789 - 0.919) 0.786 (0.710 - 0.862) 0.772 (0.694 - 0.850) 0.023 (0.000 - 0.051) 0.770 (0.692 - 0.848) 0.129 

-10 0.850 (0.783 - 0.917) 0.755 (0.675 - 0.835) 0.803 (0.729 - 0.877) 0.025 (0.000 - 0.054) 0.755 (0.675 - 0.835) 0.104 

-9 0.829 (0.761 - 0.897) 0.729 (0.649 - 0.809) 0.824 (0.755 - 0.893) 0.029 (0.000 - 0.059) 0.726 (0.646 - 0.806) 0.110 

-8 0.834 (0.763 - 0.905) 0.769 (0.689 - 0.849) 0.750 (0.668 - 0.832) 0.025 (0.000 - 0.055) 0.797 (0.721 - 0.873) 0.107 

-7 0.845 (0.778 - 0.912) 0.820 (0.749 - 0.891) 0.714 (0.630 - 0.798) 0.021 (0.000 - 0.048) 0.804 (0.730 - 0.878) 0.072 



384 

 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-6 0.843 (0.775 - 0.911) 0.694 (0.608 - 0.780) 0.841 (0.773 - 0.909) 0.030 (0.000 - 0.062) 0.729 (0.646 - 0.812) 0.143 

-5 0.835 (0.769 - 0.901) 0.740 (0.662 - 0.818) 0.786 (0.713 - 0.859) 0.025 (0.000 - 0.053) 0.790 (0.717 - 0.863) 0.163 

-4 0.842 (0.787 - 0.897) 0.661 (0.589 - 0.733) 0.849 (0.795 - 0.903) 0.036 (0.008 - 0.064) 0.710 (0.641 - 0.779) 0.091 

-3 0.841 (0.786 - 0.896) 0.736 (0.669 - 0.803) 0.796 (0.735 - 0.857) 0.030 (0.004 - 0.056) 0.748 (0.682 - 0.814) 0.113 

-2 0.849 (0.784 - 0.914) 0.661 (0.576 - 0.746) 0.880 (0.821 - 0.939) 0.035 (0.002 - 0.068) 0.661 (0.576 - 0.746) 0.188 

-1 0.888 (0.831 - 0.945) 0.858 (0.794 - 0.922) 0.778 (0.702 - 0.854) 0.017 (0.000 - 0.041) 0.736 (0.656 - 0.816) 0.889 

Mean ± SD 0.833 ± 0.056 0.741 ± 0.107 0.792 ± 0.055 0.025 ± 0.011 0.773 ± 0.045   

Model LR 
     

-24 0.787 (0.693 - 0.881) 0.636 (0.526 - 0.746) 0.825 (0.738 - 0.912) 0.025 (0.000 - 0.061) 0.823 (0.735 - 0.911) 0.058 

-23 0.827 (0.748 - 0.906) 0.839 (0.762 - 0.916) 0.716 (0.621 - 0.811) 0.015 (0.000 - 0.041) 0.835 (0.757 - 0.913) 0.040 

-22 0.679 (0.580 - 0.778) 0.558 (0.453 - 0.663) 0.812 (0.729 - 0.895) 0.035 (0.000 - 0.074) 0.836 (0.758 - 0.914) 0.055 

-21 0.622 (0.521 - 0.723) 0.284 (0.190 - 0.378) 0.960 (0.919 - 1.001) 0.048 (0.003 - 0.093) 0.675 (0.577 - 0.773) 0.001 

-20 0.589 (0.481 - 0.697) 0.207 (0.118 - 0.296) 0.971 (0.934 - 1.008) 0.049 (0.002 - 0.096) 0.691 (0.590 - 0.792) 0.001 

-19 0.620 (0.520 - 0.720) 0.286 (0.193 - 0.379) 0.955 (0.912 - 0.998) 0.050 (0.005 - 0.095) 0.694 (0.599 - 0.789) 0.001 

-18 0.637 (0.535 - 0.739) 0.482 (0.376 - 0.588) 0.837 (0.758 - 0.916) 0.039 (0.000 - 0.080) 0.839 (0.761 - 0.917) 0.070 

-17 0.663 (0.571 - 0.755) 0.911 (0.855 - 0.967) 0.478 (0.381 - 0.575) 0.014 (0.000 - 0.037) 0.880 (0.817 - 0.943) 0.034 

-16 0.765 (0.682 - 0.848) 0.816 (0.740 - 0.892) 0.676 (0.584 - 0.768) 0.021 (0.000 - 0.049) 0.833 (0.760 - 0.906) 0.044 

-15 0.661 (0.567 - 0.755) 0.498 (0.398 - 0.598) 0.811 (0.733 - 0.889) 0.058 (0.011 - 0.105) 0.791 (0.710 - 0.872) 0.050 

-14 0.833 (0.760 - 0.906) 0.838 (0.765 - 0.911) 0.724 (0.636 - 0.812) 0.017 (0.000 - 0.042) 0.812 (0.735 - 0.889) 0.050 

-13 0.718 (0.631 - 0.805) 0.863 (0.796 - 0.930) 0.552 (0.455 - 0.649) 0.019 (0.000 - 0.045) 0.869 (0.804 - 0.934) 0.069 

-12 0.857 (0.788 - 0.926) 0.777 (0.695 - 0.859) 0.848 (0.778 - 0.918) 0.020 (0.000 - 0.047) 0.712 (0.623 - 0.801) 0.094 

-11 0.762 (0.683 - 0.841) 0.714 (0.630 - 0.798) 0.753 (0.673 - 0.833) 0.032 (0.000 - 0.065) 0.800 (0.726 - 0.874) 0.073 

-10 0.857 (0.792 - 0.922) 0.727 (0.644 - 0.810) 0.836 (0.767 - 0.905) 0.027 (0.000 - 0.057) 0.728 (0.645 - 0.811) 0.098 

-9 0.857 (0.794 - 0.920) 0.839 (0.773 - 0.905) 0.738 (0.659 - 0.817) 0.020 (0.000 - 0.045) 0.774 (0.699 - 0.849) 0.053 

-8 0.829 (0.758 - 0.900) 0.806 (0.731 - 0.881) 0.715 (0.629 - 0.801) 0.022 (0.000 - 0.050) 0.810 (0.736 - 0.884) 0.045 

-7 0.753 (0.673 - 0.833) 0.784 (0.707 - 0.861) 0.679 (0.592 - 0.766) 0.026 (0.000 - 0.056) 0.828 (0.758 - 0.898) 0.045 

-6 0.755 (0.675 - 0.835) 0.847 (0.780 - 0.914) 0.624 (0.534 - 0.714) 0.020 (0.000 - 0.046) 0.839 (0.771 - 0.907) 0.030 

-5 0.839 (0.774 - 0.904) 0.730 (0.651 - 0.809) 0.796 (0.724 - 0.868) 0.025 (0.000 - 0.053) 0.784 (0.711 - 0.857) 0.073 

-4 0.791 (0.729 - 0.853) 0.810 (0.751 - 0.869) 0.700 (0.630 - 0.770) 0.025 (0.001 - 0.049) 0.798 (0.737 - 0.859) 0.063 

-3 0.809 (0.749 - 0.869) 0.810 (0.751 - 0.869) 0.710 (0.641 - 0.779) 0.024 (0.001 - 0.047) 0.793 (0.732 - 0.854) 0.063 

-2 0.853 (0.789 - 0.917) 0.752 (0.674 - 0.830) 0.802 (0.730 - 0.874) 0.028 (0.000 - 0.058) 0.738 (0.659 - 0.817) 0.079 

-1 0.901 (0.847 - 0.955) 0.783 (0.708 - 0.858) 0.900 (0.845 - 0.955) 0.022 (0.000 - 0.049) 0.580 (0.490 - 0.670) 0.109 

Mean ± SD 0.761 ± 0.091 0.692 ± 0.200 0.767 ± 0.122 0.028 ± 0.012 0.782 ± 0.071 
 



 

 

385 

 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model RF           

-24 0.816 (0.727 - 0.905) 0.662 (0.553 - 0.771) 0.804 (0.713 - 0.895) 0.024 (0.000 - 0.059) 0.834 (0.749 - 0.919) 0.110 

-23 0.834 (0.756 - 0.912) 0.770 (0.682 - 0.858) 0.775 (0.687 - 0.863) 0.019 (0.000 - 0.048) 0.813 (0.731 - 0.895) 0.095 

-22 0.833 (0.754 - 0.912) 0.779 (0.691 - 0.867) 0.753 (0.662 - 0.844) 0.019 (0.000 - 0.048) 0.827 (0.747 - 0.907) 0.105 

-21 0.833 (0.755 - 0.911) 0.795 (0.711 - 0.879) 0.689 (0.592 - 0.786) 0.020 (0.000 - 0.049) 0.852 (0.778 - 0.926) 0.070 

-20 0.808 (0.722 - 0.894) 0.780 (0.689 - 0.871) 0.698 (0.597 - 0.799) 0.019 (0.000 - 0.049) 0.861 (0.785 - 0.937) 0.070 

-19 0.816 (0.736 - 0.896) 0.769 (0.682 - 0.856) 0.720 (0.628 - 0.812) 0.022 (0.000 - 0.052) 0.839 (0.763 - 0.915) 0.075 

-18 0.830 (0.750 - 0.910) 0.753 (0.661 - 0.845) 0.773 (0.684 - 0.862) 0.020 (0.000 - 0.050) 0.823 (0.742 - 0.904) 0.090 

-17 0.819 (0.744 - 0.894) 0.802 (0.724 - 0.880) 0.672 (0.580 - 0.764) 0.023 (0.000 - 0.052) 0.840 (0.769 - 0.911) 0.065 

-16 0.819 (0.744 - 0.894) 0.621 (0.526 - 0.716) 0.878 (0.814 - 0.942) 0.033 (0.000 - 0.068) 0.712 (0.623 - 0.801) 0.125 

-15 0.601 (0.504 - 0.698) 0.428 (0.330 - 0.526) 0.776 (0.693 - 0.859) 0.069 (0.019 - 0.119) 0.839 (0.766 - 0.912) 0.055 

-14 0.820 (0.744 - 0.896) 0.747 (0.661 - 0.833) 0.773 (0.690 - 0.856) 0.024 (0.000 - 0.054) 0.799 (0.720 - 0.878) 0.110 

-13 0.848 (0.778 - 0.918) 0.814 (0.738 - 0.890) 0.723 (0.636 - 0.810) 0.020 (0.000 - 0.047) 0.813 (0.737 - 0.889) 0.080 

-12 0.841 (0.769 - 0.913) 0.825 (0.751 - 0.899) 0.748 (0.663 - 0.833) 0.018 (0.000 - 0.044) 0.794 (0.715 - 0.873) 0.110 

-11 0.829 (0.759 - 0.899) 0.750 (0.670 - 0.830) 0.797 (0.723 - 0.871) 0.026 (0.000 - 0.055) 0.758 (0.679 - 0.837) 0.130 

-10 0.812 (0.739 - 0.885) 0.664 (0.576 - 0.752) 0.820 (0.748 - 0.892) 0.034 (0.000 - 0.068) 0.762 (0.682 - 0.842) 0.145 

-9 0.811 (0.740 - 0.882) 0.780 (0.705 - 0.855) 0.730 (0.650 - 0.810) 0.027 (0.000 - 0.056) 0.792 (0.719 - 0.865) 0.105 

-8 0.796 (0.720 - 0.872) 0.741 (0.658 - 0.824) 0.724 (0.639 - 0.809) 0.029 (0.000 - 0.061) 0.819 (0.746 - 0.892) 0.095 

-7 0.818 (0.746 - 0.890) 0.802 (0.728 - 0.876) 0.720 (0.636 - 0.804) 0.023 (0.000 - 0.051) 0.804 (0.730 - 0.878) 0.100 

-6 0.811 (0.738 - 0.884) 0.793 (0.718 - 0.868) 0.711 (0.627 - 0.795) 0.024 (0.000 - 0.052) 0.811 (0.738 - 0.884) 0.095 

-5 0.830 (0.763 - 0.897) 0.870 (0.810 - 0.930) 0.641 (0.556 - 0.726) 0.015 (0.000 - 0.037) 0.843 (0.778 - 0.908) 0.060 

-4 0.808 (0.748 - 0.868) 0.736 (0.669 - 0.803) 0.739 (0.672 - 0.806) 0.032 (0.005 - 0.059) 0.792 (0.730 - 0.854) 0.110 

-3 0.810 (0.751 - 0.869) 0.694 (0.624 - 0.764) 0.779 (0.716 - 0.842) 0.035 (0.007 - 0.063) 0.773 (0.709 - 0.837) 0.135 

-2 0.805 (0.734 - 0.876) 0.694 (0.611 - 0.777) 0.822 (0.753 - 0.891) 0.034 (0.001 - 0.067) 0.733 (0.653 - 0.813) 0.170 

-1 0.853 (0.789 - 0.917) 0.792 (0.718 - 0.866) 0.779 (0.703 - 0.855) 0.024 (0.000 - 0.052) 0.751 (0.672 - 0.830) 0.095 

Mean ± SD  0.813 ± 0.047 0.744 ± 0.088 0.752 ± 0.053 0.026 ± 0.011 0.804 ± 0.039   

Model SVM 
     

-24 0.762 (0.664 - 0.860) 0.688 (0.582 - 0.794) 0.760 (0.662 - 0.858) 0.024 (0.000 - 0.059) 0.855 (0.774 - 0.936) 0.066 

-23 0.818 (0.737 - 0.899) 0.667 (0.568 - 0.766) 0.877 (0.808 - 0.946) 0.025 (0.000 - 0.058) 0.734 (0.641 - 0.827) 0.095 

-22 0.804 (0.720 - 0.888) 0.709 (0.613 - 0.805) 0.796 (0.711 - 0.881) 0.024 (0.000 - 0.056) 0.813 (0.731 - 0.895) 0.075 

-21 0.792 (0.707 - 0.877) 0.693 (0.597 - 0.789) 0.773 (0.685 - 0.861) 0.026 (0.000 - 0.059) 0.829 (0.750 - 0.908) 0.075 

-20 0.777 (0.686 - 0.868) 0.695 (0.594 - 0.796) 0.751 (0.656 - 0.846) 0.025 (0.000 - 0.059) 0.851 (0.773 - 0.929) 0.074 

-19 0.774 (0.688 - 0.860) 0.769 (0.682 - 0.856) 0.717 (0.624 - 0.810) 0.022 (0.000 - 0.052) 0.840 (0.765 - 0.915) 0.065 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-18 0.774 (0.685 - 0.863) 0.706 (0.609 - 0.803) 0.724 (0.629 - 0.819) 0.026 (0.000 - 0.060) 0.857 (0.783 - 0.931) 0.071 

-17 0.799 (0.721 - 0.877) 0.782 (0.701 - 0.863) 0.700 (0.611 - 0.789) 0.024 (0.000 - 0.054) 0.830 (0.757 - 0.903) 0.063 

-16 0.787 (0.707 - 0.867) 0.670 (0.578 - 0.762) 0.799 (0.720 - 0.878) 0.032 (0.000 - 0.066) 0.790 (0.710 - 0.870) 0.079 

-15 0.592 (0.494 - 0.690) 0.451 (0.352 - 0.550) 0.728 (0.639 - 0.817) 0.070 (0.019 - 0.121) 0.858 (0.789 - 0.927) 0.048 

-14 0.808 (0.730 - 0.886) 0.758 (0.674 - 0.842) 0.726 (0.638 - 0.814) 0.025 (0.000 - 0.056) 0.826 (0.751 - 0.901) 0.065 

-13 0.808 (0.732 - 0.884) 0.716 (0.628 - 0.804) 0.771 (0.689 - 0.853) 0.028 (0.000 - 0.060) 0.803 (0.726 - 0.880) 0.075 

-12 0.785 (0.704 - 0.866) 0.660 (0.567 - 0.753) 0.829 (0.755 - 0.903) 0.031 (0.000 - 0.065) 0.766 (0.683 - 0.849) 0.091 

-11 0.812 (0.740 - 0.884) 0.777 (0.700 - 0.854) 0.701 (0.616 - 0.786) 0.027 (0.000 - 0.057) 0.817 (0.745 - 0.889) 0.063 

-10 0.802 (0.728 - 0.876) 0.700 (0.614 - 0.786) 0.786 (0.709 - 0.863) 0.031 (0.000 - 0.063) 0.784 (0.707 - 0.861) 0.081 

-9 0.798 (0.726 - 0.870) 0.644 (0.558 - 0.730) 0.811 (0.740 - 0.882) 0.038 (0.004 - 0.072) 0.763 (0.686 - 0.840) 0.091 

-8 0.775 (0.696 - 0.854) 0.787 (0.709 - 0.865) 0.607 (0.514 - 0.700) 0.028 (0.000 - 0.059) 0.858 (0.792 - 0.924) 0.050 

-7 0.809 (0.736 - 0.882) 0.631 (0.541 - 0.721) 0.813 (0.740 - 0.886) 0.037 (0.002 - 0.072) 0.777 (0.700 - 0.854) 0.089 

-6 0.803 (0.729 - 0.877) 0.874 (0.812 - 0.936) 0.577 (0.485 - 0.669) 0.018 (0.000 - 0.043) 0.850 (0.784 - 0.916) 0.051 

-5 0.805 (0.734 - 0.876) 0.750 (0.673 - 0.827) 0.724 (0.644 - 0.804) 0.026 (0.000 - 0.054) 0.827 (0.760 - 0.894) 0.068 

-4 0.798 (0.737 - 0.859) 0.653 (0.581 - 0.725) 0.825 (0.767 - 0.883) 0.038 (0.009 - 0.067) 0.741 (0.675 - 0.807) 0.090 

-3 0.807 (0.747 - 0.867) 0.736 (0.669 - 0.803) 0.774 (0.711 - 0.837) 0.031 (0.005 - 0.057) 0.767 (0.703 - 0.831) 0.075 

-2 0.824 (0.755 - 0.893) 0.694 (0.611 - 0.777) 0.826 (0.758 - 0.894) 0.033 (0.001 - 0.065) 0.729 (0.649 - 0.809) 0.083 

-1 0.886 (0.828 - 0.944) 0.750 (0.671 - 0.829) 0.873 (0.812 - 0.934) 0.026 (0.000 - 0.055) 0.646 (0.559 - 0.733) 0.098 

Mean ± SD 0.792 ± 0.049 0.707 ± 0.078 0.761 ± 0.072 0.030 ± 0.010 0.800 ± 0.053   
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Table 7.3.D. Performance measures for each model at each lead time when predicting AKI within 25h since ICU admission, using 0 imputation in testing data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AdaBoost      

-24 0.782 (0.687 - 0.877) 0.740 (0.639 - 0.841) 0.685 (0.578 - 0.792) 0.022 (0.000 - 0.056) 0.878 (0.803 - 0.953) 0.170 

-23 0.807 (0.724 - 0.890) 0.713 (0.618 - 0.808) 0.812 (0.730 - 0.894) 0.023 (0.000 - 0.054) 0.797 (0.712 - 0.882) 0.220 

-22 0.839 (0.761 - 0.917) 0.872 (0.801 - 0.943) 0.668 (0.568 - 0.768) 0.012 (0.000 - 0.035) 0.852 (0.777 - 0.927) 0.172 

-21 0.812 (0.730 - 0.894) 0.648 (0.548 - 0.748) 0.839 (0.762 - 0.916) 0.028 (0.000 - 0.062) 0.786 (0.700 - 0.872) 0.231 

-20 0.771 (0.679 - 0.863) 0.768 (0.676 - 0.860) 0.682 (0.580 - 0.784) 0.021 (0.000 - 0.052) 0.868 (0.794 - 0.942) 0.172 

-19 0.792 (0.709 - 0.875) 0.714 (0.621 - 0.807) 0.735 (0.644 - 0.826) 0.027 (0.000 - 0.060) 0.841 (0.766 - 0.916) 0.195 

-18 0.789 (0.702 - 0.876) 0.765 (0.675 - 0.855) 0.714 (0.618 - 0.810) 0.021 (0.000 - 0.051) 0.852 (0.777 - 0.927) 0.200 

-17 0.813 (0.737 - 0.889) 0.782 (0.701 - 0.863) 0.745 (0.660 - 0.830) 0.022 (0.000 - 0.051) 0.807 (0.730 - 0.884) 0.198 

-16 0.781 (0.700 - 0.862) 0.767 (0.684 - 0.850) 0.690 (0.599 - 0.781) 0.026 (0.000 - 0.057) 0.835 (0.762 - 0.908) 0.175 

-15 0.770 (0.686 - 0.854) 0.649 (0.554 - 0.744) 0.769 (0.685 - 0.853) 0.033 (0.000 - 0.069) 0.826 (0.751 - 0.901) 0.203 

-14 0.813 (0.736 - 0.890) 0.727 (0.639 - 0.815) 0.810 (0.733 - 0.887) 0.025 (0.000 - 0.056) 0.774 (0.692 - 0.856) 0.225 

-13 0.807 (0.730 - 0.884) 0.686 (0.596 - 0.776) 0.780 (0.700 - 0.860) 0.031 (0.000 - 0.065) 0.803 (0.726 - 0.880) 0.220 

-12 0.836 (0.763 - 0.909) 0.738 (0.652 - 0.824) 0.793 (0.714 - 0.872) 0.025 (0.000 - 0.056) 0.780 (0.699 - 0.861) 0.227 

-11 0.814 (0.742 - 0.886) 0.714 (0.630 - 0.798) 0.785 (0.709 - 0.861) 0.030 (0.000 - 0.062) 0.777 (0.700 - 0.854) 0.227 

-10 0.814 (0.741 - 0.887) 0.818 (0.746 - 0.890) 0.674 (0.586 - 0.762) 0.022 (0.000 - 0.049) 0.825 (0.754 - 0.896) 0.192 

-9 0.774 (0.699 - 0.849) 0.712 (0.630 - 0.794) 0.725 (0.644 - 0.806) 0.035 (0.002 - 0.068) 0.809 (0.738 - 0.880) 0.219 

-8 0.807 (0.732 - 0.882) 0.667 (0.578 - 0.756) 0.783 (0.705 - 0.861) 0.034 (0.000 - 0.068) 0.797 (0.721 - 0.873) 0.223 

-7 0.814 (0.742 - 0.886) 0.748 (0.667 - 0.829) 0.747 (0.666 - 0.828) 0.028 (0.000 - 0.059) 0.799 (0.724 - 0.874) 0.222 

-6 0.782 (0.705 - 0.859) 0.559 (0.467 - 0.651) 0.860 (0.795 - 0.925) 0.042 (0.005 - 0.079) 0.747 (0.666 - 0.828) 0.281 

-5 0.795 (0.723 - 0.867) 0.653 (0.568 - 0.738) 0.801 (0.730 - 0.872) 0.039 (0.005 - 0.073) 0.765 (0.689 - 0.841) 0.253 

-4 0.785 (0.723 - 0.847) 0.645 (0.572 - 0.718) 0.784 (0.722 - 0.846) 0.041 (0.011 - 0.071) 0.782 (0.719 - 0.845) 0.247 

-3 0.795 (0.734 - 0.856) 0.694 (0.624 - 0.764) 0.756 (0.691 - 0.821) 0.036 (0.008 - 0.064) 0.790 (0.728 - 0.852) 0.237 

-2 0.805 (0.734 - 0.876) 0.711 (0.629 - 0.793) 0.792 (0.719 - 0.865) 0.033 (0.001 - 0.065) 0.758 (0.681 - 0.835) 0.242 

-1 0.873 (0.812 - 0.934) 0.842 (0.776 - 0.908) 0.795 (0.722 - 0.868) 0.018 (0.000 - 0.042) 0.725 (0.644 - 0.806) 0.206 

Mean ± SD 0.803 ± 0.024 0.722 ± 0.069 0.759 ± 0.053 0.028 ± 0.008 0.803 ± 0.038 
 

Model BARTm           

-24 0.874 (0.798 - 0.950) 0.870 (0.793 - 0.947) 0.766 (0.669 - 0.863) 0.010 (0.000 - 0.033) 0.820 (0.732 - 0.908) 0.062 

-23 0.867 (0.796 - 0.938) 0.759 (0.669 - 0.849) 0.818 (0.737 - 0.899) 0.019 (0.000 - 0.048) 0.781 (0.694 - 0.868) 0.085 

-22 0.868 (0.796 - 0.940) 0.860 (0.787 - 0.933) 0.719 (0.624 - 0.814) 0.013 (0.000 - 0.037) 0.831 (0.752 - 0.910) 0.057 

-21 0.846 (0.771 - 0.921) 0.818 (0.737 - 0.899) 0.732 (0.639 - 0.825) 0.017 (0.000 - 0.044) 0.829 (0.750 - 0.908) 0.058 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-20 0.828 (0.745 - 0.911) 0.854 (0.777 - 0.931) 0.700 (0.600 - 0.800) 0.013 (0.000 - 0.038) 0.848 (0.769 - 0.927) 0.048 

-19 0.838 (0.762 - 0.914) 0.813 (0.733 - 0.893) 0.733 (0.642 - 0.824) 0.018 (0.000 - 0.045) 0.824 (0.746 - 0.902) 0.064 

-18 0.842 (0.764 - 0.920) 0.812 (0.729 - 0.895) 0.770 (0.681 - 0.859) 0.016 (0.000 - 0.043) 0.814 (0.731 - 0.897) 0.078 

-17 0.845 (0.774 - 0.916) 0.832 (0.759 - 0.905) 0.768 (0.686 - 0.850) 0.017 (0.000 - 0.042) 0.781 (0.700 - 0.862) 0.065 

-16 0.841 (0.769 - 0.913) 0.874 (0.809 - 0.939) 0.689 (0.598 - 0.780) 0.014 (0.000 - 0.037) 0.817 (0.741 - 0.893) 0.047 

-15 0.816 (0.739 - 0.893) 0.773 (0.690 - 0.856) 0.748 (0.662 - 0.834) 0.022 (0.000 - 0.051) 0.814 (0.737 - 0.891) 0.058 

-14 0.848 (0.777 - 0.919) 0.717 (0.628 - 0.806) 0.850 (0.780 - 0.920) 0.025 (0.000 - 0.056) 0.733 (0.646 - 0.820) 0.115 

-13 0.868 (0.802 - 0.934) 0.863 (0.796 - 0.930) 0.721 (0.634 - 0.808) 0.015 (0.000 - 0.039) 0.805 (0.728 - 0.882) 0.069 

-12 0.852 (0.782 - 0.922) 0.746 (0.661 - 0.831) 0.838 (0.766 - 0.910) 0.023 (0.000 - 0.052) 0.733 (0.646 - 0.820) 0.108 

-11 0.855 (0.790 - 0.920) 0.768 (0.690 - 0.846) 0.803 (0.729 - 0.877) 0.024 (0.000 - 0.052) 0.748 (0.668 - 0.828) 0.088 

-10 0.850 (0.783 - 0.917) 0.773 (0.695 - 0.851) 0.792 (0.716 - 0.868) 0.024 (0.000 - 0.053) 0.761 (0.681 - 0.841) 0.089 

-9 0.841 (0.775 - 0.907) 0.763 (0.686 - 0.840) 0.777 (0.702 - 0.852) 0.027 (0.000 - 0.056) 0.762 (0.685 - 0.839) 0.090 

-8 0.818 (0.745 - 0.891) 0.769 (0.689 - 0.849) 0.726 (0.641 - 0.811) 0.026 (0.000 - 0.056) 0.812 (0.738 - 0.886) 0.063 

-7 0.843 (0.775 - 0.911) 0.820 (0.749 - 0.891) 0.725 (0.642 - 0.808) 0.021 (0.000 - 0.048) 0.798 (0.723 - 0.873) 0.061 

-6 0.848 (0.781 - 0.915) 0.847 (0.780 - 0.914) 0.701 (0.616 - 0.786) 0.018 (0.000 - 0.043) 0.806 (0.732 - 0.880) 0.052 

-5 0.841 (0.776 - 0.906) 0.744 (0.666 - 0.822) 0.784 (0.711 - 0.857) 0.030 (0.000 - 0.060) 0.756 (0.679 - 0.833) 0.089 

-4 0.862 (0.810 - 0.914) 0.843 (0.788 - 0.898) 0.716 (0.648 - 0.784) 0.020 (0.000 - 0.041) 0.783 (0.720 - 0.846) 0.058 

-3 0.846 (0.791 - 0.901) 0.843 (0.788 - 0.898) 0.691 (0.621 - 0.761) 0.021 (0.000 - 0.043) 0.797 (0.736 - 0.858) 0.054 

-2 0.844 (0.779 - 0.909) 0.752 (0.674 - 0.830) 0.807 (0.736 - 0.878) 0.028 (0.000 - 0.058) 0.733 (0.653 - 0.813) 0.085 

-1 0.899 (0.844 - 0.954) 0.850 (0.785 - 0.915) 0.807 (0.735 - 0.879) 0.017 (0.000 - 0.041) 0.710 (0.627 - 0.793) 0.069 

Mean ± SD 0.849 ± 0.018 0.807 ± 0.048 0.758 ± 0.047 0.020 ± 0.005 0.787 ± 0.037   

Model C5.0 
     

-24 0.787 (0.693 - 0.881) 0.610 (0.498 - 0.722) 0.854 (0.773 - 0.935) 0.026 (0.000 - 0.063) 0.803 (0.712 - 0.894) 0.159 

-23 0.797 (0.712 - 0.882) 0.667 (0.568 - 0.766) 0.820 (0.739 - 0.901) 0.027 (0.000 - 0.061) 0.801 (0.717 - 0.885) 0.154 

-22 0.792 (0.706 - 0.878) 0.756 (0.665 - 0.847) 0.701 (0.604 - 0.798) 0.023 (0.000 - 0.055) 0.857 (0.783 - 0.931) 0.083 

-21 0.808 (0.726 - 0.890) 0.636 (0.535 - 0.737) 0.859 (0.786 - 0.932) 0.028 (0.000 - 0.062) 0.766 (0.678 - 0.854) 0.180 

-20 0.786 (0.696 - 0.876) 0.902 (0.837 - 0.967) 0.560 (0.451 - 0.669) 0.011 (0.000 - 0.034) 0.886 (0.816 - 0.956) 0.066 

-19 0.780 (0.695 - 0.865) 0.681 (0.585 - 0.777) 0.814 (0.734 - 0.894) 0.027 (0.000 - 0.060) 0.795 (0.712 - 0.878) 0.163 

-18 0.774 (0.685 - 0.863) 0.682 (0.583 - 0.781) 0.792 (0.706 - 0.878) 0.025 (0.000 - 0.058) 0.824 (0.743 - 0.905) 0.157 

-17 0.805 (0.728 - 0.882) 0.792 (0.713 - 0.871) 0.694 (0.604 - 0.784) 0.023 (0.000 - 0.052) 0.832 (0.759 - 0.905) 0.076 

-16 0.790 (0.710 - 0.870) 0.748 (0.663 - 0.833) 0.758 (0.674 - 0.842) 0.026 (0.000 - 0.057) 0.803 (0.725 - 0.881) 0.095 

-15 0.755 (0.669 - 0.841) 0.577 (0.479 - 0.675) 0.854 (0.784 - 0.924) 0.036 (0.000 - 0.073) 0.772 (0.689 - 0.855) 0.157 

-14 0.716 (0.627 - 0.805) 0.515 (0.417 - 0.613) 0.881 (0.817 - 0.945) 0.040 (0.001 - 0.079) 0.752 (0.667 - 0.837) 0.238 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-13 0.786 (0.706 - 0.866) 0.696 (0.607 - 0.785) 0.775 (0.694 - 0.856) 0.030 (0.000 - 0.063) 0.805 (0.728 - 0.882) 0.161 

-12 0.824 (0.749 - 0.899) 0.738 (0.652 - 0.824) 0.803 (0.725 - 0.881) 0.025 (0.000 - 0.056) 0.771 (0.689 - 0.853) 0.147 

-11 0.783 (0.707 - 0.859) 0.732 (0.650 - 0.814) 0.756 (0.676 - 0.836) 0.030 (0.000 - 0.062) 0.794 (0.719 - 0.869) 0.133 

-10 0.795 (0.720 - 0.870) 0.664 (0.576 - 0.752) 0.816 (0.744 - 0.888) 0.034 (0.000 - 0.068) 0.767 (0.688 - 0.846) 0.157 

-9 0.771 (0.695 - 0.847) 0.771 (0.695 - 0.847) 0.682 (0.598 - 0.766) 0.030 (0.000 - 0.061) 0.819 (0.750 - 0.888) 0.086 

-8 0.774 (0.695 - 0.853) 0.704 (0.618 - 0.790) 0.755 (0.674 - 0.836) 0.031 (0.000 - 0.064) 0.808 (0.733 - 0.883) 0.149 

-7 0.781 (0.704 - 0.858) 0.748 (0.667 - 0.829) 0.722 (0.639 - 0.805) 0.029 (0.000 - 0.060) 0.814 (0.742 - 0.886) 0.098 

-6 0.783 (0.706 - 0.860) 0.649 (0.560 - 0.738) 0.827 (0.757 - 0.897) 0.035 (0.001 - 0.069) 0.758 (0.678 - 0.838) 0.171 

-5 0.792 (0.720 - 0.864) 0.636 (0.550 - 0.722) 0.865 (0.804 - 0.926) 0.038 (0.004 - 0.072) 0.694 (0.612 - 0.776) 0.188 

-4 0.797 (0.736 - 0.858) 0.727 (0.659 - 0.795) 0.747 (0.681 - 0.813) 0.033 (0.006 - 0.060) 0.788 (0.726 - 0.850) 0.152 

-3 0.807 (0.747 - 0.867) 0.727 (0.659 - 0.795) 0.784 (0.722 - 0.846) 0.031 (0.005 - 0.057) 0.760 (0.695 - 0.825) 0.164 

-2 0.792 (0.719 - 0.865) 0.752 (0.674 - 0.830) 0.715 (0.634 - 0.796) 0.031 (0.000 - 0.062) 0.802 (0.730 - 0.874) 0.095 

-1 0.833 (0.765 - 0.901) 0.767 (0.690 - 0.844) 0.791 (0.717 - 0.865) 0.027 (0.000 - 0.056) 0.747 (0.668 - 0.826) 0.156 

Mean ± SD 0.788 ± 0.023 0.703 ± 0.079 0.776 ± 0.073 0.029 ± 0.006 0.792 ± 0.039 
 

Model GBM           

-24 0.846 (0.763 - 0.929) 0.805 (0.714 - 0.896) 0.782 (0.687 - 0.877) 0.014 (0.000 - 0.041) 0.821 (0.733 - 0.909) 0.072 

-23 0.860 (0.787 - 0.933) 0.759 (0.669 - 0.849) 0.834 (0.756 - 0.912) 0.019 (0.000 - 0.048) 0.766 (0.677 - 0.855) 0.103 

-22 0.862 (0.789 - 0.935) 0.849 (0.773 - 0.925) 0.749 (0.657 - 0.841) 0.013 (0.000 - 0.037) 0.817 (0.735 - 0.899) 0.087 

-21 0.843 (0.767 - 0.919) 0.864 (0.792 - 0.936) 0.705 (0.610 - 0.800) 0.013 (0.000 - 0.037) 0.835 (0.757 - 0.913) 0.073 

-20 0.817 (0.732 - 0.902) 0.866 (0.791 - 0.941) 0.651 (0.547 - 0.755) 0.013 (0.000 - 0.038) 0.865 (0.790 - 0.940) 0.079 

-19 0.788 (0.704 - 0.872) 0.681 (0.585 - 0.777) 0.788 (0.704 - 0.872) 0.028 (0.000 - 0.062) 0.816 (0.736 - 0.896) 0.101 

-18 0.815 (0.732 - 0.898) 0.812 (0.729 - 0.895) 0.692 (0.594 - 0.790) 0.017 (0.000 - 0.044) 0.854 (0.779 - 0.929) 0.151 

-17 0.833 (0.760 - 0.906) 0.842 (0.771 - 0.913) 0.676 (0.585 - 0.767) 0.018 (0.000 - 0.044) 0.831 (0.758 - 0.904) 0.066 

-16 0.818 (0.742 - 0.894) 0.816 (0.740 - 0.892) 0.690 (0.599 - 0.781) 0.021 (0.000 - 0.049) 0.826 (0.752 - 0.900) 0.061 

-15 0.802 (0.723 - 0.881) 0.825 (0.749 - 0.901) 0.627 (0.531 - 0.723) 0.020 (0.000 - 0.048) 0.858 (0.789 - 0.927) 0.081 

-14 0.842 (0.770 - 0.914) 0.737 (0.650 - 0.824) 0.818 (0.742 - 0.894) 0.024 (0.000 - 0.054) 0.765 (0.681 - 0.849) 0.121 

-13 0.844 (0.774 - 0.914) 0.676 (0.585 - 0.767) 0.863 (0.796 - 0.930) 0.029 (0.000 - 0.062) 0.721 (0.634 - 0.808) 0.154 

-12 0.846 (0.775 - 0.917) 0.709 (0.620 - 0.798) 0.831 (0.758 - 0.904) 0.027 (0.000 - 0.059) 0.751 (0.666 - 0.836) 0.158 

-11 0.854 (0.789 - 0.919) 0.732 (0.650 - 0.814) 0.835 (0.766 - 0.904) 0.027 (0.000 - 0.057) 0.723 (0.640 - 0.806) 0.129 

-10 0.842 (0.774 - 0.910) 0.700 (0.614 - 0.786) 0.849 (0.782 - 0.916) 0.029 (0.000 - 0.060) 0.719 (0.635 - 0.803) 0.138 

-9 0.805 (0.734 - 0.876) 0.780 (0.705 - 0.855) 0.722 (0.641 - 0.803) 0.027 (0.000 - 0.056) 0.796 (0.723 - 0.869) 0.104 

-8 0.821 (0.748 - 0.894) 0.778 (0.699 - 0.857) 0.717 (0.632 - 0.802) 0.025 (0.000 - 0.055) 0.715 (0.629 - 0.801) 0.106 

-7 0.842 (0.774 - 0.910) 0.802 (0.728 - 0.876) 0.741 (0.660 - 0.822) 0.022 (0.000 - 0.049) 0.792 (0.716 - 0.868) 0.093 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-6 0.828 (0.758 - 0.898) 0.694 (0.608 - 0.780) 0.826 (0.755 - 0.897) 0.031 (0.000 - 0.063) 0.747 (0.666 - 0.828) 0.143 

-5 0.821 (0.753 - 0.889) 0.669 (0.585 - 0.753) 0.837 (0.771 - 0.903) 0.036 (0.003 - 0.069) 0.723 (0.643 - 0.803) 0.146 

-4 0.824 (0.766 - 0.882) 0.628 (0.555 - 0.701) 0.861 (0.809 - 0.913) 0.039 (0.010 - 0.068) 0.703 (0.634 - 0.772) 0.153 

-3 0.827 (0.770 - 0.884) 0.669 (0.598 - 0.740) 0.846 (0.791 - 0.901) 0.035 (0.007 - 0.063) 0.711 (0.642 - 0.780) 0.139 

-2 0.833 (0.766 - 0.900) 0.678 (0.594 - 0.762) 0.853 (0.789 - 0.917) 0.034 (0.001 - 0.067) 0.700 (0.617 - 0.783) 0.178 

-1 0.885 (0.827 - 0.943) 0.858 (0.794 - 0.922) 0.775 (0.699 - 0.851) 0.017 (0.000 - 0.041) 0.739 (0.659 - 0.819) 0.099 

Mean ± SD 0.833 ± 0.021 0.760 ± 0.074 0.774 ± 0.074 0.024 ± 0.008 0.775 ± 0.055   

Model LR 
     

-24 0.806 (0.715 - 0.897) 0.649 (0.540 - 0.758) 0.826 (0.739 - 0.913) 0.024 (0.000 - 0.059) 0.819 (0.731 - 0.907) 0.072 

-23 0.844 (0.768 - 0.920) 0.851 (0.776 - 0.926) 0.745 (0.653 - 0.837) 0.013 (0.000 - 0.037) 0.817 (0.736 - 0.898) 0.048 

-22 0.801 (0.717 - 0.885) 0.756 (0.665 - 0.847) 0.772 (0.683 - 0.861) 0.020 (0.000 - 0.050) 0.820 (0.739 - 0.901) 0.048 

-21 0.602 (0.500 - 0.704) 0.239 (0.150 - 0.328) 0.966 (0.928 - 1.004) 0.051 (0.005 - 0.097) 0.677 (0.579 - 0.775) 0.001 

-20 0.570 (0.462 - 0.678) 0.171 (0.088 - 0.254) 0.970 (0.933 - 1.007) 0.051 (0.003 - 0.099) 0.736 (0.639 - 0.833) 0.001 

-19 0.613 (0.513 - 0.713) 0.308 (0.213 - 0.403) 0.918 (0.862 - 0.974) 0.050 (0.005 - 0.095) 0.791 (0.707 - 0.875) 0.001 

-18 0.778 (0.690 - 0.866) 0.776 (0.687 - 0.865) 0.722 (0.627 - 0.817) 0.020 (0.000 - 0.050) 0.846 (0.769 - 0.923) 0.040 

-17 0.823 (0.749 - 0.897) 0.842 (0.771 - 0.913) 0.721 (0.634 - 0.808) 0.017 (0.000 - 0.042) 0.809 (0.732 - 0.886) 0.039 

-16 0.825 (0.751 - 0.899) 0.777 (0.695 - 0.859) 0.767 (0.684 - 0.850) 0.023 (0.000 - 0.052) 0.790 (0.710 - 0.870) 0.049 

-15 0.781 (0.699 - 0.863) 0.732 (0.644 - 0.820) 0.725 (0.636 - 0.814) 0.027 (0.000 - 0.059) 0.834 (0.760 - 0.908) 0.040 

-14 0.837 (0.764 - 0.910) 0.828 (0.754 - 0.902) 0.747 (0.661 - 0.833) 0.017 (0.000 - 0.042) 0.800 (0.721 - 0.879) 0.050 

-13 0.851 (0.782 - 0.920) 0.882 (0.819 - 0.945) 0.695 (0.606 - 0.784) 0.013 (0.000 - 0.035) 0.815 (0.740 - 0.890) 0.039 

-12 0.849 (0.779 - 0.919) 0.718 (0.630 - 0.806) 0.863 (0.796 - 0.930) 0.025 (0.000 - 0.056) 0.708 (0.619 - 0.797) 0.094 

-11 0.843 (0.776 - 0.910) 0.741 (0.660 - 0.822) 0.782 (0.706 - 0.858) 0.028 (0.000 - 0.059) 0.773 (0.695 - 0.851) 0.051 

-10 0.845 (0.777 - 0.913) 0.845 (0.777 - 0.913) 0.724 (0.640 - 0.808) 0.018 (0.000 - 0.043) 0.794 (0.718 - 0.870) 0.040 

-9 0.865 (0.803 - 0.927) 0.814 (0.744 - 0.884) 0.770 (0.694 - 0.846) 0.022 (0.000 - 0.048) 0.756 (0.679 - 0.833) 0.055 

-8 0.830 (0.759 - 0.901) 0.889 (0.829 - 0.949) 0.637 (0.546 - 0.728) 0.014 (0.000 - 0.036) 0.832 (0.761 - 0.903) 0.026 

-7 0.812 (0.739 - 0.885) 0.874 (0.812 - 0.936) 0.653 (0.564 - 0.742) 0.016 (0.000 - 0.039) 0.823 (0.752 - 0.894) 0.024 

-6 0.824 (0.753 - 0.895) 0.820 (0.749 - 0.891) 0.715 (0.631 - 0.799) 0.021 (0.000 - 0.048) 0.803 (0.729 - 0.877) 0.037 

-5 0.830 (0.763 - 0.897) 0.785 (0.712 - 0.858) 0.761 (0.685 - 0.837) 0.026 (0.000 - 0.054) 0.765 (0.689 - 0.841) 0.069 

-4 0.848 (0.794 - 0.902) 0.769 (0.705 - 0.833) 0.801 (0.740 - 0.862) 0.026 (0.002 - 0.050) 0.734 (0.667 - 0.801) 0.075 

-3 0.856 (0.803 - 0.909) 0.868 (0.817 - 0.919) 0.716 (0.648 - 0.784) 0.017 (0.000 - 0.037) 0.778 (0.715 - 0.841) 0.042 

-2 0.854 (0.790 - 0.918) 0.810 (0.739 - 0.881) 0.751 (0.673 - 0.829) 0.023 (0.000 - 0.050) 0.767 (0.691 - 0.843) 0.044 

-1 0.893 (0.837 - 0.949) 0.742 (0.662 - 0.822) 0.911 (0.859 - 0.963) 0.026 (0.000 - 0.055) 0.564 (0.474 - 0.654) 0.098 

Mean ± SD 0.803 ± 0.085 0.729 ± 0.199 0.777 ± 0.090 0.025 ± 0.011 0.777 ± 0.062 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model RF           

-24 0.803 (0.712 - 0.894) 0.688 (0.582 - 0.794) 0.788 (0.694 - 0.882) 0.023 (0.000 - 0.057) 0.839 (0.755 - 0.923) 0.115 

-23 0.819 (0.738 - 0.900) 0.828 (0.749 - 0.907) 0.702 (0.606 - 0.798) 0.016 (0.000 - 0.042) 0.843 (0.767 - 0.919) 0.085 

-22 0.800 (0.715 - 0.885) 0.802 (0.718 - 0.886) 0.688 (0.590 - 0.786) 0.019 (0.000 - 0.048) 0.855 (0.781 - 0.929) 0.105 

-21 0.813 (0.732 - 0.894) 0.659 (0.560 - 0.758) 0.823 (0.743 - 0.903) 0.027 (0.000 - 0.061) 0.799 (0.715 - 0.883) 0.115 

-20 0.791 (0.702 - 0.880) 0.756 (0.662 - 0.850) 0.702 (0.602 - 0.802) 0.021 (0.000 - 0.052) 0.863 (0.788 - 0.938) 0.085 

-19 0.790 (0.706 - 0.874) 0.802 (0.720 - 0.884) 0.647 (0.549 - 0.745) 0.021 (0.000 - 0.050) 0.863 (0.792 - 0.934) 0.075 

-18 0.804 (0.720 - 0.888) 0.753 (0.661 - 0.845) 0.704 (0.607 - 0.801) 0.022 (0.000 - 0.053) 0.858 (0.784 - 0.932) 0.090 

-17 0.807 (0.730 - 0.884) 0.634 (0.540 - 0.728) 0.850 (0.780 - 0.920) 0.033 (0.000 - 0.068) 0.752 (0.668 - 0.836) 0.130 

-16 0.804 (0.726 - 0.882) 0.670 (0.578 - 0.762) 0.812 (0.735 - 0.889) 0.031 (0.000 - 0.065) 0.779 (0.698 - 0.860) 0.115 

-15 0.801 (0.722 - 0.880) 0.825 (0.749 - 0.901) 0.611 (0.514 - 0.708) 0.021 (0.000 - 0.050) 0.863 (0.795 - 0.931) 0.065 

-14 0.798 (0.719 - 0.877) 0.768 (0.685 - 0.851) 0.712 (0.623 - 0.801) 0.024 (0.000 - 0.054) 0.831 (0.757 - 0.905) 0.110 

-13 0.825 (0.751 - 0.899) 0.833 (0.761 - 0.905) 0.653 (0.561 - 0.745) 0.020 (0.000 - 0.047) 0.841 (0.770 - 0.912) 0.080 

-12 0.830 (0.756 - 0.904) 0.864 (0.797 - 0.931) 0.676 (0.584 - 0.768) 0.016 (0.000 - 0.041) 0.826 (0.752 - 0.900) 0.105 

-11 0.817 (0.745 - 0.889) 0.696 (0.611 - 0.781) 0.827 (0.757 - 0.897) 0.031 (0.000 - 0.063) 0.742 (0.661 - 0.823) 0.170 

-10 0.798 (0.723 - 0.873) 0.691 (0.605 - 0.777) 0.796 (0.721 - 0.871) 0.032 (0.000 - 0.065) 0.777 (0.699 - 0.855) 0.160 

-9 0.775 (0.700 - 0.850) 0.746 (0.667 - 0.825) 0.705 (0.623 - 0.787) 0.032 (0.000 - 0.064) 0.813 (0.743 - 0.883) 0.130 

-8 0.761 (0.680 - 0.842) 0.759 (0.678 - 0.840) 0.675 (0.586 - 0.764) 0.029 (0.000 - 0.061) 0.838 (0.768 - 0.908) 0.105 

-7 0.780 (0.703 - 0.857) 0.775 (0.697 - 0.853) 0.706 (0.621 - 0.791) 0.026 (0.000 - 0.056) 0.817 (0.745 - 0.889) 0.125 

-6 0.774 (0.696 - 0.852) 0.757 (0.677 - 0.837) 0.695 (0.609 - 0.781) 0.029 (0.000 - 0.060) 0.826 (0.755 - 0.897) 0.125 

-5 0.779 (0.705 - 0.853) 0.702 (0.621 - 0.783) 0.735 (0.656 - 0.814) 0.036 (0.003 - 0.069) 0.801 (0.730 - 0.872) 0.145 

-4 0.769 (0.705 - 0.833) 0.752 (0.687 - 0.817) 0.673 (0.602 - 0.744) 0.033 (0.006 - 0.060) 0.823 (0.765 - 0.881) 0.115 

-3 0.765 (0.701 - 0.829) 0.653 (0.581 - 0.725) 0.762 (0.697 - 0.827) 0.041 (0.011 - 0.071) 0.796 (0.735 - 0.857) 0.165 

-2 0.763 (0.686 - 0.840) 0.711 (0.629 - 0.793) 0.740 (0.661 - 0.819) 0.035 (0.002 - 0.068) 0.797 (0.724 - 0.870) 0.160 

-1 0.816 (0.745 - 0.887) 0.808 (0.736 - 0.880) 0.683 (0.598 - 0.768) 0.025 (0.000 - 0.053) 0.809 (0.737 - 0.881) 0.095 

Mean ± SD 0.795 ± 0.020 0.747 ± 0.064 0.724 ± 0.063 0.027 ± 0.007 0.819 ± 0.034   

Model SVM 
     

-24 0.718 (0.615 - 0.821) 0.675 (0.568 - 0.782) 0.676 (0.569 - 0.783) 0.028 (0.000 - 0.066) 0.890 (0.818 - 0.962) 0.066 

-23 0.776 (0.688 - 0.864) 0.770 (0.682 - 0.858) 0.696 (0.599 - 0.793) 0.022 (0.000 - 0.053) 0.855 (0.781 - 0.929) 0.072 

-22 0.754 (0.663 - 0.845) 0.802 (0.718 - 0.886) 0.616 (0.513 - 0.719) 0.021 (0.000 - 0.051) 0.879 (0.810 - 0.948) 0.060 

-21 0.755 (0.665 - 0.845) 0.716 (0.622 - 0.810) 0.688 (0.591 - 0.785) 0.027 (0.000 - 0.061) 0.865 (0.794 - 0.936) 0.071 

-20 0.731 (0.634 - 0.828) 0.683 (0.581 - 0.785) 0.687 (0.585 - 0.789) 0.028 (0.000 - 0.064) 0.880 (0.809 - 0.951) 0.074 

-19 0.730 (0.639 - 0.821) 0.736 (0.645 - 0.827) 0.677 (0.581 - 0.773) 0.027 (0.000 - 0.060) 0.862 (0.791 - 0.933) 0.072 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-18 0.747 (0.655 - 0.839) 0.765 (0.675 - 0.855) 0.632 (0.529 - 0.735) 0.024 (0.000 - 0.057) 0.881 (0.812 - 0.950) 0.067 

-17 0.768 (0.686 - 0.850) 0.812 (0.736 - 0.888) 0.635 (0.541 - 0.729) 0.023 (0.000 - 0.052) 0.852 (0.783 - 0.921) 0.063 

-16 0.740 (0.654 - 0.826) 0.650 (0.557 - 0.743) 0.741 (0.655 - 0.827) 0.036 (0.000 - 0.073) 0.833 (0.760 - 0.906) 0.081 

-15 0.721 (0.632 - 0.810) 0.619 (0.522 - 0.716) 0.725 (0.636 - 0.814) 0.038 (0.000 - 0.076) 0.856 (0.786 - 0.926) 0.077 

-14 0.767 (0.684 - 0.850) 0.788 (0.707 - 0.869) 0.657 (0.563 - 0.751) 0.024 (0.000 - 0.054) 0.851 (0.781 - 0.921) 0.065 

-13 0.759 (0.676 - 0.842) 0.735 (0.649 - 0.821) 0.694 (0.605 - 0.783) 0.029 (0.000 - 0.062) 0.841 (0.770 - 0.912) 0.075 

-12 0.732 (0.645 - 0.819) 0.777 (0.695 - 0.859) 0.645 (0.551 - 0.739) 0.027 (0.000 - 0.059) 0.852 (0.782 - 0.922) 0.067 

-11 0.765 (0.686 - 0.844) 0.795 (0.720 - 0.870) 0.622 (0.532 - 0.712) 0.028 (0.000 - 0.059) 0.846 (0.779 - 0.913) 0.063 

-10 0.745 (0.664 - 0.826) 0.755 (0.675 - 0.835) 0.653 (0.564 - 0.742) 0.031 (0.000 - 0.063) 0.845 (0.777 - 0.913) 0.073 

-9 0.749 (0.671 - 0.827) 0.678 (0.594 - 0.762) 0.728 (0.648 - 0.808) 0.039 (0.004 - 0.074) 0.815 (0.745 - 0.885) 0.090 

-8 0.714 (0.628 - 0.800) 0.657 (0.567 - 0.747) 0.676 (0.587 - 0.765) 0.040 (0.003 - 0.077) 0.656 (0.566 - 0.746) 0.068 

-7 0.755 (0.675 - 0.835) 0.892 (0.834 - 0.950) 0.512 (0.419 - 0.605) 0.018 (0.000 - 0.043) 0.865 (0.801 - 0.929) 0.050 

-6 0.742 (0.661 - 0.823) 0.874 (0.812 - 0.936) 0.513 (0.420 - 0.606) 0.020 (0.000 - 0.046) 0.867 (0.804 - 0.930) 0.051 

-5 0.737 (0.659 - 0.815) 0.653 (0.568 - 0.738) 0.725 (0.645 - 0.805) 0.043 (0.007 - 0.079) 0.818 (0.749 - 0.887) 0.087 

-4 0.744 (0.678 - 0.810) 0.727 (0.659 - 0.795) 0.665 (0.593 - 0.737) 0.037 (0.008 - 0.066) 0.831 (0.774 - 0.888) 0.070 

-3 0.753 (0.688 - 0.818) 0.760 (0.695 - 0.825) 0.690 (0.620 - 0.760) 0.031 (0.005 - 0.057) 0.813 (0.754 - 0.872) 0.075 

-2 0.766 (0.690 - 0.842) 0.686 (0.602 - 0.770) 0.742 (0.663 - 0.821) 0.038 (0.004 - 0.072) 0.801 (0.729 - 0.873) 0.083 

-1 0.832 (0.764 - 0.900) 0.758 (0.680 - 0.836) 0.775 (0.699 - 0.851) 0.028 (0.000 - 0.058) 0.762 (0.685 - 0.839) 0.092 

Mean ± SD 0.750 ± 0.024 0.740 ± 0.070 0.670 ± 0.063 0.029 ± 0.007 0.838 ± 0.048   
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Table 7.3.E. Performance measures for each model at each lead time when predicting AKI within 25h since ICU admission, using missForest imputation in testing data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AdaBoost      

-24 0.793 (0.700 - 0.886) 0.740 (0.639 - 0.841) 0.707 (0.603 - 0.811) 0.021 (0.000 - 0.054) 0.870 (0.793 - 0.947) 0.174 

-23 0.812 (0.730 - 0.894) 0.736 (0.643 - 0.829) 0.776 (0.688 - 0.864) 0.022 (0.000 - 0.053) 0.820 (0.739 - 0.901) 0.204 

-22 0.834 (0.755 - 0.913) 0.884 (0.816 - 0.952) 0.664 (0.564 - 0.764) 0.011 (0.000 - 0.033) 0.852 (0.777 - 0.927) 0.172 

-21 0.818 (0.737 - 0.899) 0.636 (0.535 - 0.737) 0.842 (0.766 - 0.918) 0.028 (0.000 - 0.062) 0.786 (0.700 - 0.872) 0.243 

-20 0.783 (0.693 - 0.873) 0.780 (0.689 - 0.871) 0.682 (0.580 - 0.784) 0.020 (0.000 - 0.051) 0.867 (0.793 - 0.941) 0.173 

-19 0.782 (0.697 - 0.867) 0.769 (0.682 - 0.856) 0.677 (0.581 - 0.773) 0.023 (0.000 - 0.054) 0.857 (0.785 - 0.929) 0.172 

-18 0.788 (0.701 - 0.875) 0.729 (0.635 - 0.823) 0.748 (0.656 - 0.840) 0.023 (0.000 - 0.055) 0.841 (0.763 - 0.919) 0.200 

-17 0.814 (0.738 - 0.890) 0.832 (0.759 - 0.905) 0.693 (0.603 - 0.783) 0.019 (0.000 - 0.046) 0.825 (0.751 - 0.899) 0.175 

-16 0.781 (0.700 - 0.862) 0.718 (0.630 - 0.806) 0.748 (0.663 - 0.833) 0.029 (0.000 - 0.062) 0.815 (0.739 - 0.891) 0.196 

-15 0.778 (0.695 - 0.861) 0.691 (0.599 - 0.783) 0.762 (0.677 - 0.847) 0.029 (0.000 - 0.062) 0.822 (0.746 - 0.898) 0.200 

-14 0.819 (0.743 - 0.895) 0.737 (0.650 - 0.824) 0.829 (0.755 - 0.903) 0.024 (0.000 - 0.054) 0.753 (0.668 - 0.838) 0.228 

-13 0.809 (0.733 - 0.885) 0.706 (0.618 - 0.794) 0.768 (0.686 - 0.850) 0.029 (0.000 - 0.062) 0.807 (0.730 - 0.884) 0.219 

-12 0.842 (0.771 - 0.913) 0.748 (0.663 - 0.833) 0.794 (0.715 - 0.873) 0.025 (0.000 - 0.056) 0.777 (0.695 - 0.859) 0.227 

-11 0.818 (0.747 - 0.889) 0.723 (0.640 - 0.806) 0.782 (0.706 - 0.858) 0.030 (0.000 - 0.062) 0.777 (0.700 - 0.854) 0.228 

-10 0.831 (0.761 - 0.901) 0.827 (0.756 - 0.898) 0.691 (0.605 - 0.777) 0.021 (0.000 - 0.048) 0.815 (0.742 - 0.888) 0.182 

-9 0.784 (0.710 - 0.858) 0.627 (0.540 - 0.714) 0.832 (0.765 - 0.899) 0.039 (0.004 - 0.074) 0.747 (0.669 - 0.825) 0.250 

-8 0.813 (0.739 - 0.887) 0.926 (0.876 - 0.976) 0.536 (0.442 - 0.630) 0.011 (0.000 - 0.031) 0.858 (0.792 - 0.924) 0.126 

-7 0.820 (0.749 - 0.891) 0.766 (0.687 - 0.845) 0.771 (0.693 - 0.849) 0.025 (0.000 - 0.054) 0.778 (0.701 - 0.855) 0.222 

-6 0.799 (0.724 - 0.874) 0.640 (0.551 - 0.729) 0.822 (0.751 - 0.893) 0.036 (0.001 - 0.071) 0.766 (0.687 - 0.845) 0.245 

-5 0.804 (0.733 - 0.875) 0.612 (0.525 - 0.699) 0.863 (0.802 - 0.924) 0.040 (0.005 - 0.075) 0.705 (0.624 - 0.786) 0.297 

-4 0.812 (0.753 - 0.871) 0.686 (0.616 - 0.756) 0.798 (0.737 - 0.859) 0.035 (0.007 - 0.063) 0.759 (0.694 - 0.824) 0.224 

-3 0.813 (0.754 - 0.872) 0.711 (0.642 - 0.780) 0.803 (0.743 - 0.863) 0.033 (0.006 - 0.060) 0.748 (0.682 - 0.814) 0.237 

-2 0.824 (0.755 - 0.893) 0.678 (0.594 - 0.762) 0.853 (0.789 - 0.917) 0.034 (0.001 - 0.067) 0.700 (0.617 - 0.783) 0.272 

-1 0.883 (0.825 - 0.941) 0.858 (0.794 - 0.922) 0.807 (0.735 - 0.879) 0.016 (0.000 - 0.039) 0.708 (0.625 - 0.791) 0.205 

Mean ± SD 0.811 ± 0.024 0.740 ± 0.081 0.760 ± 0.076 0.026 ± 0.008 0.794 ± 0.052   

Model BARTm           

-24 0.867 (0.789 - 0.945) 0.857 (0.777 - 0.937) 0.728 (0.626 - 0.830) 0.011 (0.000 - 0.035) 0.843 (0.760 - 0.926) 0.061 

-23 0.864 (0.792 - 0.936) 0.793 (0.708 - 0.878) 0.772 (0.684 - 0.860) 0.018 (0.000 - 0.046) 0.811 (0.729 - 0.893) 0.085 

-22 0.866 (0.794 - 0.938) 0.907 (0.846 - 0.968) 0.669 (0.570 - 0.768) 0.009 (0.000 - 0.029) 0.847 (0.771 - 0.923) 0.057 

-21 0.843 (0.767 - 0.919) 0.670 (0.572 - 0.768) 0.861 (0.789 - 0.933) 0.025 (0.000 - 0.058) 0.754 (0.664 - 0.844) 0.144 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-20 0.826 (0.743 - 0.909) 0.817 (0.732 - 0.902) 0.721 (0.623 - 0.819) 0.016 (0.000 - 0.043) 0.845 (0.766 - 0.924) 0.065 

-19 0.836 (0.760 - 0.912) 0.813 (0.733 - 0.893) 0.712 (0.619 - 0.805) 0.018 (0.000 - 0.045) 0.835 (0.759 - 0.911) 0.064 

-18 0.842 (0.764 - 0.920) 0.824 (0.743 - 0.905) 0.742 (0.649 - 0.835) 0.015 (0.000 - 0.041) 0.828 (0.748 - 0.908) 0.074 

-17 0.841 (0.770 - 0.912) 0.851 (0.782 - 0.920) 0.727 (0.640 - 0.814) 0.016 (0.000 - 0.040) 0.804 (0.727 - 0.881) 0.066 

-16 0.839 (0.767 - 0.911) 0.825 (0.751 - 0.899) 0.738 (0.652 - 0.824) 0.019 (0.000 - 0.046) 0.799 (0.720 - 0.878) 0.066 

-15 0.808 (0.730 - 0.886) 0.691 (0.599 - 0.783) 0.799 (0.719 - 0.879) 0.028 (0.000 - 0.061) 0.796 (0.716 - 0.876) 0.089 

-14 0.843 (0.771 - 0.915) 0.747 (0.661 - 0.833) 0.829 (0.755 - 0.903) 0.023 (0.000 - 0.053) 0.751 (0.666 - 0.836) 0.115 

-13 0.862 (0.795 - 0.929) 0.745 (0.660 - 0.830) 0.805 (0.728 - 0.882) 0.024 (0.000 - 0.054) 0.770 (0.688 - 0.852) 0.133 

-12 0.851 (0.781 - 0.921) 0.777 (0.695 - 0.859) 0.806 (0.728 - 0.884) 0.021 (0.000 - 0.049) 0.760 (0.676 - 0.844) 0.108 

-11 0.850 (0.784 - 0.916) 0.839 (0.771 - 0.907) 0.709 (0.625 - 0.793) 0.019 (0.000 - 0.044) 0.800 (0.726 - 0.874) 0.067 

-10 0.841 (0.773 - 0.909) 0.736 (0.654 - 0.818) 0.780 (0.703 - 0.857) 0.028 (0.000 - 0.059) 0.779 (0.701 - 0.857) 0.111 

-9 0.835 (0.768 - 0.902) 0.686 (0.602 - 0.770) 0.825 (0.756 - 0.894) 0.033 (0.001 - 0.065) 0.736 (0.656 - 0.816) 0.127 

-8 0.817 (0.744 - 0.890) 0.731 (0.647 - 0.815) 0.751 (0.669 - 0.833) 0.029 (0.000 - 0.061) 0.804 (0.729 - 0.879) 0.080 

-7 0.835 (0.766 - 0.904) 0.748 (0.667 - 0.829) 0.761 (0.682 - 0.840) 0.027 (0.000 - 0.057) 0.790 (0.714 - 0.866) 0.088 

-6 0.845 (0.778 - 0.912) 0.865 (0.801 - 0.929) 0.665 (0.577 - 0.753) 0.017 (0.000 - 0.041) 0.820 (0.749 - 0.891) 0.052 

-5 0.832 (0.765 - 0.899) 0.686 (0.603 - 0.769) 0.828 (0.761 - 0.895) 0.034 (0.002 - 0.066) 0.729 (0.650 - 0.808) 0.133 

-4 0.859 (0.806 - 0.912) 0.760 (0.695 - 0.825) 0.793 (0.732 - 0.854) 0.027 (0.002 - 0.052) 0.744 (0.678 - 0.810) 0.098 

-3 0.839 (0.783 - 0.895) 0.860 (0.807 - 0.913) 0.652 (0.580 - 0.724) 0.020 (0.000 - 0.041) 0.812 (0.753 - 0.871) 0.054 

-2 0.839 (0.773 - 0.905) 0.793 (0.720 - 0.866) 0.744 (0.665 - 0.823) 0.025 (0.000 - 0.053) 0.776 (0.701 - 0.851) 0.077 

-1 0.897 (0.842 - 0.952) 0.825 (0.756 - 0.894) 0.827 (0.758 - 0.896) 0.019 (0.000 - 0.044) 0.693 (0.609 - 0.777) 0.087 

Mean ± SD 0.845 ± 0.018 0.785 ± 0.065 0.760 ± 0.057 0.022 ± 0.006 0.789 ± 0.040   

Model C5.0 
     

-24 0.777 (0.682 - 0.872) 0.610 (0.498 - 0.722) 0.829 (0.743 - 0.915) 0.027 (0.000 - 0.064) 0.826 (0.739 - 0.913) 0.164 

-23 0.802 (0.718 - 0.886) 0.736 (0.643 - 0.829) 0.789 (0.703 - 0.875) 0.022 (0.000 - 0.053) 0.811 (0.729 - 0.893) 0.153 

-22 0.803 (0.719 - 0.887) 0.791 (0.705 - 0.877) 0.696 (0.599 - 0.793) 0.019 (0.000 - 0.048) 0.853 (0.778 - 0.928) 0.083 

-21 0.811 (0.729 - 0.893) 0.784 (0.698 - 0.870) 0.732 (0.639 - 0.825) 0.020 (0.000 - 0.049) 0.835 (0.757 - 0.913) 0.136 

-20 0.771 (0.679 - 0.863) 0.695 (0.594 - 0.796) 0.745 (0.649 - 0.841) 0.025 (0.000 - 0.059) 0.854 (0.777 - 0.931) 0.136 

-19 0.773 (0.687 - 0.859) 0.692 (0.597 - 0.787) 0.788 (0.704 - 0.872) 0.027 (0.000 - 0.060) 0.814 (0.734 - 0.894) 0.161 

-18 0.765 (0.675 - 0.855) 0.671 (0.571 - 0.771) 0.776 (0.687 - 0.865) 0.027 (0.000 - 0.061) 0.837 (0.758 - 0.916) 0.157 

-17 0.791 (0.712 - 0.870) 0.802 (0.724 - 0.880) 0.666 (0.574 - 0.758) 0.023 (0.000 - 0.052) 0.842 (0.771 - 0.913) 0.076 

-16 0.780 (0.699 - 0.861) 0.728 (0.641 - 0.815) 0.752 (0.667 - 0.837) 0.028 (0.000 - 0.060) 0.810 (0.733 - 0.887) 0.134 

-15 0.764 (0.679 - 0.849) 0.619 (0.522 - 0.716) 0.817 (0.740 - 0.894) 0.034 (0.000 - 0.070) 0.799 (0.719 - 0.879) 0.150 

-14 0.760 (0.676 - 0.844) 0.586 (0.489 - 0.683) 0.859 (0.790 - 0.928) 0.035 (0.000 - 0.071) 0.759 (0.675 - 0.843) 0.238 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-13 0.771 (0.689 - 0.853) 0.686 (0.596 - 0.776) 0.748 (0.664 - 0.832) 0.032 (0.000 - 0.066) 0.824 (0.750 - 0.898) 0.161 

-12 0.819 (0.744 - 0.894) 0.728 (0.641 - 0.815) 0.809 (0.732 - 0.886) 0.026 (0.000 - 0.057) 0.769 (0.686 - 0.852) 0.163 

-11 0.774 (0.697 - 0.851) 0.750 (0.670 - 0.830) 0.707 (0.623 - 0.791) 0.030 (0.000 - 0.062) 0.819 (0.748 - 0.890) 0.136 

-10 0.793 (0.717 - 0.869) 0.745 (0.664 - 0.826) 0.755 (0.675 - 0.835) 0.028 (0.000 - 0.059) 0.796 (0.721 - 0.871) 0.157 

-9 0.799 (0.727 - 0.871) 0.754 (0.676 - 0.832) 0.753 (0.675 - 0.831) 0.029 (0.000 - 0.059) 0.782 (0.708 - 0.856) 0.154 

-8 0.795 (0.719 - 0.871) 0.667 (0.578 - 0.756) 0.821 (0.748 - 0.894) 0.032 (0.000 - 0.065) 0.765 (0.685 - 0.845) 0.176 

-7 0.779 (0.702 - 0.856) 0.757 (0.677 - 0.837) 0.696 (0.610 - 0.782) 0.029 (0.000 - 0.060) 0.825 (0.754 - 0.896) 0.104 

-6 0.779 (0.702 - 0.856) 0.658 (0.570 - 0.746) 0.804 (0.730 - 0.878) 0.035 (0.001 - 0.069) 0.778 (0.701 - 0.855) 0.171 

-5 0.797 (0.725 - 0.869) 0.628 (0.542 - 0.714) 0.839 (0.774 - 0.904) 0.040 (0.005 - 0.075) 0.732 (0.653 - 0.811) 0.188 

-4 0.812 (0.753 - 0.871) 0.760 (0.695 - 0.825) 0.754 (0.689 - 0.819) 0.029 (0.004 - 0.054) 0.776 (0.713 - 0.839) 0.152 

-3 0.817 (0.758 - 0.876) 0.835 (0.779 - 0.891) 0.690 (0.620 - 0.760) 0.022 (0.000 - 0.044) 0.799 (0.738 - 0.860) 0.092 

-2 0.805 (0.734 - 0.876) 0.752 (0.674 - 0.830) 0.725 (0.644 - 0.806) 0.031 (0.000 - 0.062) 0.796 (0.723 - 0.869) 0.116 

-1 0.848 (0.783 - 0.913) 0.783 (0.708 - 0.858) 0.799 (0.726 - 0.872) 0.025 (0.000 - 0.053) 0.734 (0.654 - 0.814) 0.156 

Mean ± SD 0.791 ± 0.021 0.717 ± 0.066 0.765 ± 0.052 0.028 ± 0.005 0.801 ± 0.034   

Model GBM           

-24 0.844 (0.761 - 0.927) 0.805 (0.714 - 0.896) 0.774 (0.678 - 0.870) 0.015 (0.000 - 0.043) 0.826 (0.739 - 0.913) 0.072 

-23 0.860 (0.787 - 0.933) 0.782 (0.695 - 0.869) 0.807 (0.724 - 0.890) 0.018 (0.000 - 0.046) 0.787 (0.701 - 0.873) 0.107 

-22 0.862 (0.789 - 0.935) 0.849 (0.773 - 0.925) 0.743 (0.651 - 0.835) 0.013 (0.000 - 0.037) 0.821 (0.740 - 0.902) 0.087 

-21 0.843 (0.767 - 0.919) 0.784 (0.698 - 0.870) 0.778 (0.691 - 0.865) 0.018 (0.000 - 0.046) 0.807 (0.725 - 0.889) 0.093 

-20 0.817 (0.732 - 0.902) 0.854 (0.777 - 0.931) 0.648 (0.543 - 0.753) 0.014 (0.000 - 0.040) 0.868 (0.794 - 0.942) 0.079 

-19 0.791 (0.707 - 0.875) 0.626 (0.527 - 0.725) 0.829 (0.752 - 0.906) 0.031 (0.000 - 0.067) 0.796 (0.713 - 0.879) 0.133 

-18 0.826 (0.745 - 0.907) 0.788 (0.701 - 0.875) 0.743 (0.650 - 0.836) 0.018 (0.000 - 0.046) 0.834 (0.755 - 0.913) 0.069 

-17 0.839 (0.767 - 0.911) 0.822 (0.747 - 0.897) 0.714 (0.626 - 0.802) 0.019 (0.000 - 0.046) 0.817 (0.742 - 0.892) 0.066 

-16 0.831 (0.758 - 0.904) 0.796 (0.717 - 0.875) 0.726 (0.639 - 0.813) 0.022 (0.000 - 0.051) 0.812 (0.735 - 0.889) 0.092 

-15 0.800 (0.720 - 0.880) 0.866 (0.798 - 0.934) 0.587 (0.489 - 0.685) 0.017 (0.000 - 0.043) 0.865 (0.797 - 0.933) 0.109 

-14 0.848 (0.777 - 0.919) 0.727 (0.639 - 0.815) 0.830 (0.756 - 0.904) 0.024 (0.000 - 0.054) 0.754 (0.669 - 0.839) 0.117 

-13 0.851 (0.782 - 0.920) 0.676 (0.585 - 0.767) 0.871 (0.806 - 0.936) 0.028 (0.000 - 0.060) 0.709 (0.621 - 0.797) 0.154 

-12 0.857 (0.788 - 0.926) 0.825 (0.751 - 0.899) 0.733 (0.646 - 0.820) 0.018 (0.000 - 0.044) 0.803 (0.725 - 0.881) 0.161 

-11 0.850 (0.784 - 0.916) 0.786 (0.710 - 0.862) 0.769 (0.691 - 0.847) 0.024 (0.000 - 0.052) 0.773 (0.695 - 0.851) 0.129 

-10 0.846 (0.779 - 0.913) 0.755 (0.675 - 0.835) 0.799 (0.724 - 0.874) 0.025 (0.000 - 0.054) 0.759 (0.679 - 0.839) 0.104 

-9 0.827 (0.759 - 0.895) 0.788 (0.714 - 0.862) 0.764 (0.687 - 0.841) 0.025 (0.000 - 0.053) 0.767 (0.691 - 0.843) 0.110 

-8 0.830 (0.759 - 0.901) 0.769 (0.689 - 0.849) 0.747 (0.665 - 0.829) 0.025 (0.000 - 0.055) 0.800 (0.724 - 0.876) 0.107 

-7 0.842 (0.774 - 0.910) 0.820 (0.749 - 0.891) 0.712 (0.628 - 0.796) 0.021 (0.000 - 0.048) 0.805 (0.731 - 0.879) 0.071 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-6 0.840 (0.772 - 0.908) 0.694 (0.608 - 0.780) 0.837 (0.768 - 0.906) 0.030 (0.000 - 0.062) 0.734 (0.652 - 0.816) 0.144 

-5 0.835 (0.769 - 0.901) 0.678 (0.595 - 0.761) 0.841 (0.776 - 0.906) 0.035 (0.002 - 0.068) 0.715 (0.635 - 0.795) 0.163 

-4 0.840 (0.784 - 0.896) 0.661 (0.589 - 0.733) 0.852 (0.798 - 0.906) 0.036 (0.008 - 0.064) 0.705 (0.636 - 0.774) 0.153 

-3 0.839 (0.783 - 0.895) 0.719 (0.651 - 0.787) 0.808 (0.748 - 0.868) 0.032 (0.005 - 0.059) 0.741 (0.675 - 0.807) 0.134 

-2 0.846 (0.781 - 0.911) 0.661 (0.576 - 0.746) 0.880 (0.821 - 0.939) 0.035 (0.002 - 0.068) 0.661 (0.576 - 0.746) 0.188 

-1 0.886 (0.828 - 0.944) 0.858 (0.794 - 0.922) 0.773 (0.697 - 0.849) 0.017 (0.000 - 0.041) 0.741 (0.661 - 0.821) 0.093 

Mean ± SD 0.840 ± 0.020 0.766 ± 0.070 0.774 ± 0.069 0.023 ± 0.007 0.779 ± 0.052   

Model LR 
     

-24 0.616 (0.504 - 0.728) 0.571 (0.457 - 0.685) 0.724 (0.621 - 0.827) 0.034 (0.000 - 0.076) 0.891 (0.820 - 0.962) 0.058 

-23 0.664 (0.565 - 0.763) 0.701 (0.605 - 0.797) 0.678 (0.580 - 0.776) 0.029 (0.000 - 0.064) 0.873 (0.803 - 0.943) 0.044 

-22 0.638 (0.536 - 0.740) 0.605 (0.502 - 0.708) 0.754 (0.663 - 0.845) 0.033 (0.000 - 0.071) 0.860 (0.787 - 0.933) 0.064 

-21 0.623 (0.522 - 0.724) 0.284 (0.190 - 0.378) 0.962 (0.922 - 1.000) 0.048 (0.003 - 0.093) 0.667 (0.569 - 0.765) 0.001 

-20 0.580 (0.472 - 0.688) 0.195 (0.108 - 0.282) 0.965 (0.925 - 1.000) 0.050 (0.002 - 0.098) 0.742 (0.646 - 0.838) 0.001 

-19 0.610 (0.510 - 0.710) 0.264 (0.173 - 0.355) 0.956 (0.914 - 0.998) 0.051 (0.006 - 0.096) 0.704 (0.610 - 0.798) 0.001 

-18 0.723 (0.628 - 0.818) 0.753 (0.661 - 0.845) 0.694 (0.596 - 0.792) 0.023 (0.000 - 0.055) 0.862 (0.789 - 0.935) 0.070 

-17 0.620 (0.525 - 0.715) 0.683 (0.592 - 0.774) 0.656 (0.563 - 0.749) 0.036 (0.000 - 0.072) 0.866 (0.800 - 0.932) 0.034 

-16 0.784 (0.703 - 0.865) 0.748 (0.663 - 0.833) 0.724 (0.636 - 0.812) 0.027 (0.000 - 0.059) 0.822 (0.747 - 0.897) 0.063 

-15 0.707 (0.616 - 0.798) 0.649 (0.554 - 0.744) 0.695 (0.603 - 0.787) 0.036 (0.000 - 0.073) 0.863 (0.795 - 0.931) 0.060 

-14 0.796 (0.717 - 0.875) 0.798 (0.719 - 0.877) 0.730 (0.643 - 0.817) 0.021 (0.000 - 0.049) 0.816 (0.740 - 0.892) 0.054 

-13 0.555 (0.459 - 0.651) 0.667 (0.576 - 0.758) 0.590 (0.495 - 0.685) 0.042 (0.003 - 0.081) 0.887 (0.826 - 0.948) 0.059 

-12 0.803 (0.725 - 0.881) 0.728 (0.641 - 0.815) 0.783 (0.702 - 0.864) 0.027 (0.000 - 0.059) 0.791 (0.711 - 0.871) 0.094 

-11 0.807 (0.734 - 0.880) 0.768 (0.690 - 0.846) 0.743 (0.662 - 0.824) 0.026 (0.000 - 0.055) 0.795 (0.720 - 0.870) 0.055 

-10 0.826 (0.755 - 0.897) 0.882 (0.822 - 0.942) 0.661 (0.573 - 0.749) 0.015 (0.000 - 0.038) 0.820 (0.748 - 0.892) 0.040 

-9 0.845 (0.780 - 0.910) 0.822 (0.753 - 0.891) 0.731 (0.651 - 0.811) 0.022 (0.000 - 0.048) 0.782 (0.708 - 0.856) 0.055 

-8 0.822 (0.750 - 0.894) 0.815 (0.741 - 0.889) 0.703 (0.616 - 0.790) 0.021 (0.000 - 0.048) 0.815 (0.741 - 0.889) 0.045 

-7 0.801 (0.727 - 0.875) 0.802 (0.728 - 0.876) 0.713 (0.629 - 0.797) 0.023 (0.000 - 0.051) 0.808 (0.735 - 0.881) 0.045 

-6 0.775 (0.697 - 0.853) 0.811 (0.738 - 0.884) 0.677 (0.590 - 0.764) 0.023 (0.000 - 0.051) 0.824 (0.753 - 0.895) 0.037 

-5 0.826 (0.758 - 0.894) 0.793 (0.721 - 0.865) 0.743 (0.665 - 0.821) 0.025 (0.000 - 0.053) 0.776 (0.702 - 0.850) 0.067 

-4 0.819 (0.761 - 0.877) 0.810 (0.751 - 0.869) 0.732 (0.665 - 0.799) 0.024 (0.001 - 0.047) 0.780 (0.717 - 0.843) 0.063 

-3 0.825 (0.767 - 0.883) 0.810 (0.751 - 0.869) 0.733 (0.666 - 0.800) 0.024 (0.001 - 0.047) 0.779 (0.716 - 0.842) 0.061 

-2 0.837 (0.770 - 0.904) 0.661 (0.576 - 0.746) 0.866 (0.805 - 0.927) 0.035 (0.002 - 0.068) 0.685 (0.601 - 0.769) 0.124 

-1 0.897 (0.842 - 0.952) 0.783 (0.708 - 0.858) 0.886 (0.828 - 0.944) 0.022 (0.000 - 0.049) 0.610 (0.521 - 0.699) 0.100 

Mean ± SD 0.742 ± 0.101 0.683 ± 0.185 0.754 ± 0.100 0.030 ± 0.010 0.797 ± 0.072   
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model RF           

-24 0.815 (0.726 - 0.904) 0.636 (0.526 - 0.746) 0.843 (0.760 - 0.926) 0.025 (0.000 - 0.061) 0.807 (0.716 - 0.898) 0.140 

-23 0.837 (0.759 - 0.915) 0.793 (0.708 - 0.878) 0.751 (0.660 - 0.842) 0.018 (0.000 - 0.046) 0.824 (0.744 - 0.904) 0.095 

-22 0.832 (0.753 - 0.911) 0.791 (0.705 - 0.877) 0.728 (0.634 - 0.822) 0.019 (0.000 - 0.048) 0.839 (0.761 - 0.917) 0.095 

-21 0.829 (0.750 - 0.908) 0.659 (0.560 - 0.758) 0.825 (0.746 - 0.904) 0.027 (0.000 - 0.061) 0.796 (0.712 - 0.880) 0.105 

-20 0.802 (0.715 - 0.889) 0.805 (0.718 - 0.892) 0.676 (0.573 - 0.779) 0.018 (0.000 - 0.047) 0.865 (0.790 - 0.940) 0.070 

-19 0.813 (0.733 - 0.893) 0.758 (0.670 - 0.846) 0.715 (0.622 - 0.808) 0.023 (0.000 - 0.054) 0.843 (0.768 - 0.918) 0.075 

-18 0.826 (0.745 - 0.907) 0.741 (0.648 - 0.834) 0.770 (0.681 - 0.859) 0.021 (0.000 - 0.051) 0.827 (0.747 - 0.907) 0.090 

-17 0.816 (0.740 - 0.892) 0.812 (0.736 - 0.888) 0.669 (0.577 - 0.761) 0.022 (0.000 - 0.051) 0.839 (0.767 - 0.911) 0.065 

-16 0.817 (0.741 - 0.893) 0.621 (0.526 - 0.716) 0.876 (0.811 - 0.941) 0.033 (0.000 - 0.068) 0.714 (0.625 - 0.803) 0.125 

-15 0.814 (0.737 - 0.891) 0.639 (0.543 - 0.735) 0.822 (0.746 - 0.898) 0.032 (0.000 - 0.067) 0.788 (0.707 - 0.869) 0.110 

-14 0.817 (0.741 - 0.893) 0.747 (0.661 - 0.833) 0.769 (0.686 - 0.852) 0.024 (0.000 - 0.054) 0.803 (0.725 - 0.881) 0.110 

-13 0.846 (0.776 - 0.916) 0.814 (0.738 - 0.890) 0.720 (0.633 - 0.807) 0.020 (0.000 - 0.047) 0.814 (0.738 - 0.890) 0.080 

-12 0.838 (0.766 - 0.910) 0.825 (0.751 - 0.899) 0.740 (0.654 - 0.826) 0.018 (0.000 - 0.044) 0.799 (0.720 - 0.878) 0.110 

-11 0.825 (0.755 - 0.895) 0.750 (0.670 - 0.830) 0.792 (0.717 - 0.867) 0.027 (0.000 - 0.057) 0.763 (0.684 - 0.842) 0.130 

-10 0.809 (0.736 - 0.882) 0.664 (0.576 - 0.752) 0.819 (0.747 - 0.891) 0.034 (0.000 - 0.068) 0.764 (0.685 - 0.843) 0.145 

-9 0.809 (0.738 - 0.880) 0.720 (0.639 - 0.801) 0.781 (0.706 - 0.856) 0.032 (0.000 - 0.064) 0.769 (0.693 - 0.845) 0.130 

-8 0.791 (0.714 - 0.868) 0.741 (0.658 - 0.824) 0.726 (0.641 - 0.811) 0.029 (0.000 - 0.061) 0.817 (0.744 - 0.890) 0.100 

-7 0.814 (0.742 - 0.886) 0.757 (0.677 - 0.837) 0.766 (0.687 - 0.845) 0.026 (0.000 - 0.056) 0.784 (0.707 - 0.861) 0.125 

-6 0.809 (0.736 - 0.882) 0.730 (0.647 - 0.813) 0.761 (0.682 - 0.840) 0.029 (0.000 - 0.060) 0.794 (0.719 - 0.869) 0.125 

-5 0.800 (0.729 - 0.871) 0.760 (0.684 - 0.836) 0.720 (0.640 - 0.800) 0.030 (0.000 - 0.060) 0.797 (0.725 - 0.869) 0.095 

-4 0.805 (0.745 - 0.865) 0.736 (0.669 - 0.803) 0.738 (0.671 - 0.805) 0.032 (0.005 - 0.059) 0.792 (0.730 - 0.854) 0.110 

-3 0.807 (0.747 - 0.867) 0.719 (0.651 - 0.787) 0.753 (0.688 - 0.818) 0.034 (0.007 - 0.061) 0.786 (0.724 - 0.848) 0.120 

-2 0.802 (0.730 - 0.874) 0.702 (0.619 - 0.785) 0.813 (0.743 - 0.883) 0.033 (0.001 - 0.065) 0.740 (0.661 - 0.819) 0.160 

-1 0.853 (0.789 - 0.917) 0.792 (0.718 - 0.866) 0.780 (0.705 - 0.855) 0.024 (0.000 - 0.052) 0.750 (0.671 - 0.829) 0.095 

Mean ± SD 0.818 ± 0.015 0.738 ± 0.059 0.765 ± 0.051 0.026 ± 0.006 0.796 ± 0.035   

Model SVM 
     

-24 0.763 (0.665 - 0.861) 0.714 (0.610 - 0.818) 0.754 (0.655 - 0.853) 0.020 (0.000 - 0.052) 0.854 (0.773 - 0.935) 0.066 

-23 0.820 (0.739 - 0.901) 0.667 (0.568 - 0.766) 0.872 (0.802 - 0.942) 0.025 (0.000 - 0.058) 0.741 (0.649 - 0.833) 0.095 

-22 0.800 (0.715 - 0.885) 0.709 (0.613 - 0.805) 0.795 (0.710 - 0.880) 0.024 (0.000 - 0.056) 0.814 (0.732 - 0.896) 0.076 

-21 0.789 (0.704 - 0.874) 0.693 (0.597 - 0.789) 0.765 (0.676 - 0.854) 0.026 (0.000 - 0.059) 0.833 (0.755 - 0.911) 0.075 

-20 0.778 (0.687 - 0.869) 0.756 (0.662 - 0.850) 0.693 (0.592 - 0.794) 0.022 (0.000 - 0.054) 0.866 (0.791 - 0.941) 0.063 

-19 0.773 (0.687 - 0.859) 0.769 (0.682 - 0.856) 0.716 (0.623 - 0.809) 0.022 (0.000 - 0.052) 0.841 (0.766 - 0.916) 0.065 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-18 0.770 (0.681 - 0.859) 0.741 (0.648 - 0.834) 0.683 (0.584 - 0.782) 0.024 (0.000 - 0.057) 0.868 (0.796 - 0.940) 0.067 

-17 0.795 (0.716 - 0.874) 0.782 (0.701 - 0.863) 0.695 (0.605 - 0.785) 0.024 (0.000 - 0.054) 0.833 (0.760 - 0.906) 0.063 

-16 0.785 (0.704 - 0.866) 0.699 (0.609 - 0.789) 0.766 (0.683 - 0.849) 0.030 (0.000 - 0.063) 0.807 (0.730 - 0.884) 0.073 

-15 0.749 (0.663 - 0.835) 0.598 (0.500 - 0.696) 0.811 (0.733 - 0.889) 0.036 (0.000 - 0.073) 0.809 (0.731 - 0.887) 0.077 

-14 0.806 (0.728 - 0.884) 0.758 (0.674 - 0.842) 0.727 (0.639 - 0.815) 0.025 (0.000 - 0.056) 0.826 (0.751 - 0.901) 0.065 

-13 0.806 (0.729 - 0.883) 0.725 (0.638 - 0.812) 0.766 (0.684 - 0.848) 0.027 (0.000 - 0.058) 0.804 (0.727 - 0.881) 0.075 

-12 0.783 (0.702 - 0.864) 0.660 (0.567 - 0.753) 0.826 (0.752 - 0.900) 0.032 (0.000 - 0.066) 0.769 (0.686 - 0.852) 0.091 

-11 0.810 (0.737 - 0.883) 0.777 (0.700 - 0.854) 0.700 (0.615 - 0.785) 0.027 (0.000 - 0.057) 0.817 (0.745 - 0.889) 0.063 

-10 0.800 (0.725 - 0.875) 0.709 (0.624 - 0.794) 0.783 (0.706 - 0.860) 0.030 (0.000 - 0.062) 0.783 (0.706 - 0.860) 0.081 

-9 0.795 (0.722 - 0.868) 0.686 (0.602 - 0.770) 0.766 (0.690 - 0.842) 0.036 (0.002 - 0.070) 0.789 (0.715 - 0.863) 0.079 

-8 0.771 (0.691 - 0.851) 0.630 (0.539 - 0.721) 0.754 (0.672 - 0.836) 0.039 (0.002 - 0.076) 0.825 (0.753 - 0.897) 0.070 

-7 0.805 (0.731 - 0.879) 0.928 (0.880 - 0.976) 0.511 (0.418 - 0.604) 0.012 (0.000 - 0.032) 0.861 (0.797 - 0.925) 0.045 

-6 0.799 (0.724 - 0.874) 0.568 (0.476 - 0.660) 0.873 (0.811 - 0.935) 0.040 (0.004 - 0.076) 0.724 (0.641 - 0.807) 0.113 

-5 0.786 (0.713 - 0.859) 0.603 (0.516 - 0.690) 0.841 (0.776 - 0.906) 0.042 (0.006 - 0.078) 0.738 (0.660 - 0.816) 0.098 

-4 0.794 (0.733 - 0.855) 0.653 (0.581 - 0.725) 0.824 (0.766 - 0.882) 0.038 (0.009 - 0.067) 0.743 (0.677 - 0.809) 0.090 

-3 0.804 (0.744 - 0.864) 0.727 (0.659 - 0.795) 0.773 (0.709 - 0.837) 0.032 (0.005 - 0.059) 0.770 (0.706 - 0.834) 0.075 

-2 0.820 (0.751 - 0.889) 0.694 (0.611 - 0.777) 0.826 (0.758 - 0.894) 0.033 (0.001 - 0.065) 0.729 (0.649 - 0.809) 0.083 

-1 0.887 (0.829 - 0.945) 0.775 (0.699 - 0.851) 0.851 (0.786 - 0.916) 0.024 (0.000 - 0.052) 0.675 (0.590 - 0.760) 0.087 

Mean ± SD 0.795 ± 0.026 0.709 ± 0.075 0.765 ± 0.078 0.029 ± 0.007 0.797 ± 0.051   
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Appendix 7.4: How Laboratory Values 

Change as the Lead Times Change for AKI vs 

non-AKI Patients 

The changing of laboratory variable summary values as the lead time changes for 

patients with acute kidney injury (AKI) (A) and for patients without AKI (B). The 

horizontal lines indicate the normal range for each respective laboratory value. 

Abbreviations: ABE, arterial base excess; AH, arterial haematocrit; CRP, C-Reactive 

Protein; HCO3, bicarbonate; H+, Hydrogen ion. 

 

 



400 

 

 

 

 



 

 

401 

 

 

 

 



402 

 

 

 

 



 

 

403 

 

 

 

  



404 

 

Appendix 8.1: Descriptive Statistics when 

Predicting Delirium using Preoperative and 

Laboratory ICU Variables 

Table 8.1.A. Patient demographics for patients included in the analysis. 

 Total Population  

N=3322 

Delirium = 

No 

N=2905 

(87.53%) 

Delirium = 

Yes 

N=417 

(12.47%) 

Delirium 

Yes vs 

No 

Demographic Mean ± SD or % Mean ± SD 

or % 

Mean ± SD 

or % 

P-value 

Age 65.82 ± 11.19 65.25 ± 

11.29 

69.77 ± 9.61 <0.0001 

Sex    0.0006 

Female 28.56% 27.54% 35.73%  

Male 71.44% 72.46% 64.27%  

BMI    0.7988 

18.5-25.0 20.96% 20.84% 21.82%  

25.1-30.0 38.52% 38.44% 39.09%  

Over 30.1 40.52% 40.72% 39.09%  

Type II Diabetes    0.1002 

No 74.85% 75.33% 71.46%  

Yes 25.15% 24.67% 28.54%  

Smoking Status    0.8382 

Never smoked 34.00% 33.99% 34.05%  

Ex-smoker 34.27% 34.40% 33.33%  

Current smoker 15.91% 15.99% 15.35%  

Unknown 15.82% 15.61% 17.27%  

Procedure    <0.0001 

CABG 51.97% 54.60% 33.57%  

Valve 33.13% 32.63% 36.69%  

CABG and Valve 14.89% 12.78% 29.74%  

Logistic EuroSCORE 5.58 ± 6.62 5.19 ± 6.09 8.32 ± 9.13 <0.0001 

ICU Hours 51.77 ± 109.90 38.01 ± 

66.93 

148.36 ± 

234.21 

<0.0001 

Total Days in Hospital 11.76 ± 9.47 10.99 ± 8.89 17.16 ± 12.95 <0.0001 

Outcome    0.2265 

Alive 98.80% 98.91% 98.08%  

Dead 1.20% 1.09% 1.92%  
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Table 8.1.B. Patient characteristics for the preoperatively recorded data for all patients and patients 

without delirium vs with delirium. 

 
Total 

N=3322 

Delirium = 

No 

N=2905 

(87.53%) 

Delirium = 

Yes 

N=417 

(12.47%) 

Deliriu

m Yes 

vs No 

Preoperative Variable Percentage Percentage Percentage P-value 

Surgical Priority    0.0001 

Elective 48.53% 48.86% 46.28%  

Emergency 1.56% 1.20% 4.08%  

Priority 26.76% 26.96% 25.42%  

Urgent 23.15% 22.99% 24.22%  

Critical Pre-op. State    
<0.000

1 

No 97.34% 97.81% 94.01%  

Yes 2.66% 2.19% 5.99%  

Previous Cardiac Surgery    0.2485 

No 96.53% 96.69% 95.44%  

Yes 3.47% 3.31% 4.56%  

Previous Percutaneous Coronary 

Intervention 
   0.2253 

No 86.21% 85.92% 88.25%  

Yes 13.79% 14.08% 11.75%  

Extracardiac Arteriopathy    0.7490 

No 89.77% 89.85% 89.21%  

Yes 10.23% 10.15% 10.79%  

Left Ventricular Function    0.2112 

Good 76.61% 76.73% 75.78%  

Moderate 20.04% 20.12% 19.42%  

Poor 3.35% 3.14% 4.80%  

NYHA Grade    
<0.000

1 

I 21.44% 22.45% 14.39%  

II 47.82% 48.55% 42.69%  

III 26.02% 24.94% 33.57%  

IV 4.72% 4.07% 9.35%  

Angina Status    0.1452 

0 38.01% 37.31% 42.93%  

I 13.22% 13.53% 11.03%  

II 29.01% 29.45% 25.90%  

III 14.03% 14.08% 13.67%  

IV 5.74% 5.64% 6.47%  

Rhythm    0.0029 

Normal 80.95% 81.76% 75.30%  

Abnormal 14.65% 13.87% 20.14%  

Unknown 4.40% 4.37% 4.56%  

Renal Function Before Surgery    <0.000

1 

Normal 53.11% 55.35% 37.41%  

Moderately Impaired 37.44% 36.73% 42.45%  

Severely Impaired 9.45% 7.93% 20.14%  

Preoperative Creatinine 90.79 ± 

46.34 

89.31 ± 

42.01 

101.17 ± 

68.74 

0.0007 

Neurological Dysfunction    0.8421 

No 99.28% 99.56% 99.76%  
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Total 

N=3322 

Delirium = 

No 

N=2905 

(87.53%) 

Delirium = 

Yes 

N=417 

(12.47%) 

Deliriu

m Yes 

vs No 

Preoperative Variable Percentage Percentage Percentage P-value 

Yes 0.42% 0.44% 0.24%  

Previous Myocardial Infarction    0.2398 

No 64.21% 63.82% 66.91%  

Yes 35.79% 36.18% 33.09%  

Left Main Stem Disease    0.0348 

No 53.74% 52.92% 65.47%  

Yes 14.47% 14.86% 11.75%  

Unknown 31.79% 32.22% 28.78%  

Pulmonary Disease    0.4612 

No 85.02% 85.21% 83.69%  

Yes 14.98% 14.79% 16.31%  

Hypertension History    0.6735 

No 27.60% 72.26% 26.62%  

Yes 72.40% 27.74% 73.38%  

Congestive Cardiac Failure    
<0.000

1 

No 86.93% 87.94% 79.86%  

Yes 13.07% 12.06% 20.14%  

Active Endocarditis    0.8331 

No 98.32% 98.36% 98.08%  

Yes 1.68% 1.64% 1.92%  
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Table 8.1.C. Descriptive statistics for laboratory variables for total data and for patients without delirium vs with delirium. 

 
Total 

N=3322 

Delirium = No 

N=2905 (87.53%) 

Delirium = Yes 

N=417 (12.47%) 

Delirium Yes vs 

No 

Laboratory Variable (Unit) Mean ± SD Mean ± SD Mean ± SD P-value 

Arterial Base Excess (mmol/l) -0.38 ± 3.31 -0.47 ± 3.04 -0.10 ± 3.96 <0.0001 

Arterial Haematocrit (%) 29.16 ± 4.28 29.49 ± 4.44 28.24 ± 3.64 <0.0001 

Bicarbonate (mEq/l) 24.23 ± 3.31 24.18 ± 3.01 24.37 ± 4.06 <0.0001 

C-Reactive Protein (µmol/L)  135.88 ± 96.35 138.56 ± 93.79 129.59 ± 101.85 <0.0001 

Creatinine (µmol/L) 113.02 ± 81.69 109.23 ± 77.12 122.45 ± 91.44 <0.0001 

Daily Fluid Balance 268.09 ± 923.75 294.55 ± 932.83 205.01 ± 898.67 <0.0001 

Haemoglobin (g/l) 98.98 ± 14.67 100.11 ± 15.19 95.54 ± 12.34 <0.0001 

Hydrogen Ion (mmol/l) 39.65 ± 6.44 39.88 ± 6.17 38.96 ± 7.10 <0.0001 

Lactate (mmol/l) 1.64 ± 1.04 1.65 ± 1.03 1.63 ± 1.05 0.0268 

Potassium (mmol/l) 4.52 ± 0.77 4.56 ± 0.81 4.39 ± 0.65 <0.0001 

Sodium (mmol/l) 135.72 ± 4.84 135.24 ± 4.39 137.09 ± 5.73 <0.0001 

Urea (mmol/l) 9.61 ± 6.31 8.53 ± 5.20 12.14 ± 7.79 <0.0001 

Urine Output (l per day) 100.58 ± 1198.79 105.92 ± 1454.53 89.72 ± 237.84 <0.0001 

Medicines     

Dobutamine (dose) 3.36 ± 6.83 3.26 ± 6.03 3.65 ± 8.93 <0.0001 

N (%) 1019 (30.47%) 846 (28.90%) 173 (41.49%) <0.0001 

Dopamine (dose) 3.64 ± 6.96 3.72 ± 7.61 3.29 ± 2.48 0.0085 

N (%) 156 (4.66%) 128 (4.37%) 28 (6.71%) <0.0001 

Noradrenaline (dose) 4.12 ± 6.92 3.72 ± 6.77 5.05 ± 7.16 <0.0001 

N (%) 1460 (43.66%) 1241 (42.40%) 219 (52.52%) <0.0001 

Vasopressin (dose) 5.14 ± 2.57 5.11 ± 2.57 5.17 ± 2.58 0.3464 

N (%) 112 (3.35%) 70 (2.39%) 42 (10.07%) <0.0001 
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Appendix 8.2: Comparison of Laboratory Variables in Test Data Based on 

Imputation Methods 

Table 8.2.A. Mean and standard deviation (SD) for each laboratory variable in the test data when predicting delirium within 21 hours since ICU admission. The p-values 

are calculated based on t-test where the comparison is made in variable means based on the original data (without imputation) and the corresponding imputation method. 

 Without imputation With 0 imputation With median imputation With missForest imputation 

Variable Mean +- SD Mean +- SD P-value Mean +- SD P-value Mean +- SD P-value 

Arterial Base Excess       

Min -3.78 ± 2.57 -3.78 ± 2.57 1.000 -3.78 ± 2.57 1.000 -3.79 ± 2.58 1.000 

Max 1.42 ± 2.54 1.42 ± 2.54 1.000 1.42 ± 2.54 1.000 1.40 ± 2.53 1.000 

First  0.18 ± 2.54 0.18 ± 2.54 1.000 0.18 ± 2.54 1.000 0.16 ± 2.54 1.000 

Last -0.78 ± 2.20 -0.78 ± 2.20 1.000 -0.78 ± 2.20 1.000 -0.78 ± 2.50 1.000 

Arterial Haematocrit 
 

 
 

 
 

 

Min 25.35 ± 4.34 25.35 ± 4.34 1.000 25.35 ± 4.34 1.000 25.38 ± 4.39 1.000 

Max 37.72 ± 5.37 37.72 ± 5.37 1.000 37.72 ± 5.37 1.000 37.73 ± 5.34 1.000 

First  36.51 ± 6.72 36.51 ± 6.72 1.000 36.51 ± 6.72 1.000 36.52 ± 6.69 1.000 

Last 30.16 ± 3.97 30.16 ± 3.97 1.000 30.16 ± 3.97 1.000 30.20 ± 4.01 1.000 

Creatinine 
 

 
 

 
 

 

Min 101.02 ± 44.75 100.98 ± 44.66 0.8641 100.63 ± 45.10 0.9867 100.75 ± 44.34 0.9922 

Max 104.08 ± 49.44 104.04 ± 49.34 0.8731 103.68 ± 49.77 0.9867 103.82 ± 49.00 0.9877 

First  101.50 ± 45.80 101.46 ± 45.72 0.8666 101.10 ± 46.15 0.9864 101.23 ± 45.38 0.9869 

Last 103.60 ± 48.45 103.56 ± 48.36 0.8712 103.19 ± 48.79 0.9858 103.36 ± 48.03 0.9858 

C-Reactive Protein 
 

 
 

 
 

 

Min 59.45 ± 33.76 59.39 ± 33.52 0.6274 58.60 ± 34.26 0.9713 59.31 ± 33.43 0.9783 

Max 63.76 ± 35.37 63.67 ± 35.13 0.6199 62.85 ± 35.93 0.9587 63.54 ± 35.02 0.9861 

First  59.51 ± 33.80 59.45 ± 33.56 0.6275 58.66 ± 34.30 0.9709 59.37 ± 33.48 0.9776 

Last 63.70 ± 35.34 63.61 ± 35.09 0.6199 62.79 ± 35.90 0.9590 63.48 ± 35.02 0.9852 

Daily Fluid Balance 
 

 
 

 
 

 

Min 1094.21 ± 778.58 1094.21 ± 778.58 1.000 1094.21 ± 778.58 1.000 1081.11 ± 782.04 1.000 
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 Without imputation With 0 imputation With median imputation With missForest imputation 

Variable Mean +- SD Mean +- SD P-value Mean +- SD P-value Mean +- SD P-value 

Max 1221.04 ± 715.74 1221.04 ± 715.74 1.000 1221.04 ± 715.74 1.000 1211.96 ± 720.57 1.000 

First  1164.94 ± 753.92 1164.94 ± 753.92 1.000 1164.94 ± 753.92 1.000 1153.47 ± 757.63 1.000 

Last 1151.32 ± 745.39 1151.32 ± 745.39 1.000 1151.32 ± 745.39 1.000 1140.58 ± 750.29 1.000 

Bicarbonate 
 

 
 

 
 

 

Min 20.95 ± 2.25 20.95 ± 2.24 0.0596 20.68 ± 3.27 0.9860 20.95 ± 2.25 0.9538 

Max 26.28 ± 2.61 26.27 ± 2.60 0.0467 25.93 ± 3.96 0.9949 26.26 ± 2.59 0.9768 

First  24.73 ± 2.54 24.73 ± 2.52 0.0522 24.40 ± 3.78 0.9923 24.69 ± 2.53 0.9349 

Last 24.10 ± 2.24 24.10 ± 2.22 0.0387 23.78 ± 3.53 0.9997 24.10 ± 2.22 0.9878 

Haemoglobin 
 

 
 

 
 

 

Min 85.09 ± 14.91 85.09 ± 14.91 1.000 85.09 ± 14.91 1.000 85.22 ± 15.10 1.000 

Max 130.80 ± 17.01 130.80 ± 17.01 1.000 130.80 ± 17.01 1.000 130.81 ± 16.94 1.000 

First  127.73 ± 20.92 127.73 ± 20.92 1.000 127.73 ± 20.92 1.000 127.76 ± 20.83 1.000 

Last 102.03 ± 13.38 102.03 ± 13.38 1.000 102.03 ± 13.38 1.000 102.14 ± 13.56 1.000 

Hydrogen Ion 
 

 
 

 
 

 

Min 34.84 ± 3.46 34.84 ± 3.46 1.000 34.84 ± 3.46 1.000 34.87 ± 3.46 1.000 

Max 48.43 ± 12.12 48.43 ± 12.12 1.000 48.43 ± 12.12 1.000 48.43 ± 12.01 1.000 

First  38.93 ± 4.62 38.93 ± 4.62 1.000 38.93 ± 4.62 1.000 38.95 ± 4.60 1.000 

Last 40.95 ± 4.63 40.95 ± 4.63 1.000 40.95 ± 4.63 1.000 40.93 ± 4.65 1.000 

Lactate 
 

 
 

 
 

 

Min 1.22 ± 0.55 1.22 ± 0.55 1.000 1.22 ± 0.55 1.000 1.22 ± 0.55 1.000 

Max 2.90 ± 1.60 2.90 ± 1.60 1.000 2.90 ± 1.60 1.000 2.90 ± 1.60 1.000 

First  1.75 ± 0.92 1.75 ± 0.92 1.000 1.75 ± 0.92 1.000 1.76 ± 0.92 1.000 

Last 1.75 ± 0.97 1.75 ± 0.97 1.000 1.75 ± 0.97 1.000 1.74 ± 0.97 1.000 

Potassium 
 

 
 

 
 

 

Min 3.93 ± 0.36 3.93 ± 0.36 1.000 3.93 ± 0.36 1.000 3.93 ± 0.36 1.000 

Max 5.52 ± 0.68 5.52 ± 0.68 1.000 5.52 ± 0.68 1.000 5.52 ± 0.68 1.000 

First  4.16 ± 0.56 4.16 ± 0.56 1.000 4.16 ± 0.56 1.000 4.16 ± 0.55 1.000 

Last 4.71 ± 0.48 4.71 ± 0.48 1.000 4.71 ± 0.48 1.000 4.71 ± 0.48 1.000 

Sodium 
 

 
 

 
 

 

Min 134.03 ± 2.77 134.03 ± 2.77 1.000 134.03 ± 2.77 1.000 134.03 ± 2.78 1.000 

Max 140.35 ± 3.28 140.35 ± 3.28 1.000 140.35 ± 3.28 1.000 140.35 ± 3.28 1.000 

First  139.03 ± 2.92 139.03 ± 2.92 1.000 139.03 ± 2.92 1.000 139.01 ± 2.92 1.000 
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 Without imputation With 0 imputation With median imputation With missForest imputation 

Variable Mean +- SD Mean +- SD P-value Mean +- SD P-value Mean +- SD P-value 

Last 135.45 ± 3.37 135.45 ± 3.37 1.000 135.45 ± 3.37 1.000 135.47 ± 3.38 1.000 

Urea 
 

 
 

 
 

 

Min 6.37 ± 2.60 6.37 ± 2.60 0.8529 6.35 ± 2.63 0.9895 6.35 ± 2.58 0.9937 

Max 6.54 ± 2.77 6.54 ± 2.77 0.8584 6.51 ± 2.80 0.9864 6.52 ± 2.75 0.9939 

First  6.39 ± 2.63 6.39 ± 2.63 0.8540 6.37 ± 2.65 0.9891 6.37 ± 2.61 0.9954 

Last 6.52 ± 2.74 6.52 ± 2.74 0.8574 6.49 ± 2.77 0.9868 6.50 ± 2.72 0.9872 

Urine 
 

 
 

 
 

 

Min 27.10 ± 23.38 27.10 ± 23.38 1.000 27.10 ± 23.38 1.000 27.92 ± 28.87 1.000 

Max 318.05 ± 143.39 318.05 ± 143.39 1.000 318.05 ± 143.39 1.000 317.68 ± 142.86 1.000 

First  205.61 ± 144.92 205.61 ± 144.92 1.000 205.61 ± 144.92 1.000 204.20 ± 144.73 1.000 

Last 66.64 ± 62.45 66.64 ± 62.45 1.000 66.64 ± 62.45 1.000 67.53 ± 64.41 1.000 



Appendix 8.3: Performance Measures for Each Model for Each Lead Time 

Table 8.3.A. Performance measures for each model at each lead time before delirium when predicting delirium within 21h since ICU admission, using complete data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AdaBoost      

-13 0.867 (0.771 - 0.963) 0.856 (0.757 - 0.955) 0.713 (0.585 - 0.841) 0.049 (0.000 - 0.110) 0.569 (0.429 - 0.709) 0.265 

-12 0.894 (0.829 - 0.959) 0.812 (0.729 - 0.895) 0.832 (0.753 - 0.911) 0.033 (0.000 - 0.071) 0.575 (0.471 - 0.679) 0.299 

-11 0.883 (0.815 - 0.951) 0.744 (0.651 - 0.837) 0.863 (0.790 - 0.936) 0.036 (0.000 - 0.076) 0.590 (0.485 - 0.695) 0.251 

-10 0.880 (0.819 - 0.941) 0.831 (0.761 - 0.901) 0.797 (0.721 - 0.873) 0.023 (0.000 - 0.051) 0.683 (0.596 - 0.770) 0.231 

-9 0.907 (0.848 - 0.966) 0.852 (0.780 - 0.924) 0.826 (0.749 - 0.903) 0.023 (0.000 - 0.053) 0.607 (0.508 - 0.706) 0.269 

-8 0.909 (0.845 - 0.973) 0.871 (0.797 - 0.945) 0.833 (0.750 - 0.916) 0.023 (0.000 - 0.056) 0.553 (0.443 - 0.663) 0.298 

-7 0.936 (0.885 - 0.987) 0.828 (0.749 - 0.907) 0.903 (0.841 - 0.965) 0.024 (0.000 - 0.056) 0.471 (0.366 - 0.576) 0.308 

-6 0.932 (0.883 - 0.981) 0.821 (0.746 - 0.896) 0.903 (0.845 - 0.961) 0.023 (0.000 - 0.052) 0.504 (0.406 - 0.602) 0.248 

-5 0.949 (0.903 - 0.995) 0.862 (0.790 - 0.934) 0.900 (0.837 - 0.963) 0.022 (0.000 - 0.053) 0.445 (0.341 - 0.549) 0.252 

-4 0.956 (0.910 - 1.000) 0.908 (0.843 - 0.973) 0.908 (0.843 - 0.973) 0.017 (0.000 - 0.046) 0.369 (0.261 - 0.477) 0.245 

-3 0.988 (0.965 - 1.000) 0.953 (0.908 - 0.998) 0.950 (0.904 - 0.996) 0.060 (0.010 - 0.110) 0.289 (0.193 - 0.385) 0.281 

-2 0.988 (0.967 - 1.000) 0.919 (0.866 - 0.972) 0.997 (0.986 - 1.000) 0.011 (0.000 - 0.031) 0.025 (0.000 - 0.055) 0.251 

-1 0.992 (0.975 - 1.000) 0.958 (0.919 - 0.997) 0.982 (0.956 - 1.000) 0.003 (0.000 - 0.014) 0.207 (0.128 - 0.286) 0.297 

Mean ± SD 0.929 ± 0.043 0.863 ± 0.060 0.877 ± 0.078 0.023 ± 0.015 0.453 ± 0.144   

Model BARTm 
     

-13 0.997 (0.982 - 1.000) 0.958 (0.901 - 1.000) 0.989 (0.959 - 1.000) 0.003 (0.000 - 0.018) 0.132 (0.036 - 0.228) 0.168 

-12 0.984 (0.957 - 1.000) 0.930 (0.876 - 0.984) 0.989 (0.967 - 1.000) 0.009 (0.000 - 0.029) 0.080 (0.023 - 0.137) 0.148 

-11 0.987 (0.963 - 1.000) 0.965 (0.926 - 1.000) 0.948 (0.901 - 0.995) 0.005 (0.000 - 0.020) 0.293 (0.196 - 0.390) 0.116 

-10 0.967 (0.933 - 1.000) 0.890 (0.831 - 0.949) 0.923 (0.873 - 0.973) 0.020 (0.000 - 0.046) 0.336 (0.247 - 0.425) 0.135 

-9 0.937 (0.888 - 0.986) 0.862 (0.792 - 0.932) 0.905 (0.846 - 0.964) 0.022 (0.000 - 0.052) 0.434 (0.334 - 0.534) 0.155 

-8 0.934 (0.879 - 0.989) 0.846 (0.766 - 0.926) 0.897 (0.830 - 0.964) 0.020 (0.000 - 0.051) 0.511 (0.400 - 0.622) 0.190 

-7 0.926 (0.871 - 0.981) 0.920 (0.863 - 0.977) 0.827 (0.748 - 0.906) 0.013 (0.000 - 0.037) 0.590 (0.487 - 0.693) 0.115 

-6 0.937 (0.890 - 0.984) 0.891 (0.830 - 0.952) 0.837 (0.765 - 0.909) 0.020 (0.000 - 0.047) 0.541 (0.444 - 0.638) 0.120 

-5 0.904 (0.842 - 0.966) 0.750 (0.660 - 0.840) 0.907 (0.846 - 0.968) 0.035 (0.000 - 0.073) 0.484 (0.380 - 0.588) 0.221 

-4 0.905 (0.840 - 0.970) 0.857 (0.779 - 0.935) 0.829 (0.745 - 0.913) 0.019 (0.000 - 0.049) 0.637 (0.530 - 0.744) 0.145 

-3 0.906 (0.844 - 0.968) 0.872 (0.801 - 0.943) 0.785 (0.698 - 0.872) 0.020 (0.000 - 0.050) 0.659 (0.559 - 0.759) 0.110 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-2 0.896 (0.836 - 0.956) 0.792 (0.713 - 0.871) 0.870 (0.804 - 0.936) 0.035 (0.000 - 0.071) 0.518 (0.421 - 0.615) 0.176 

-1 0.898 (0.839 - 0.957) 0.842 (0.771 - 0.913) 0.785 (0.705 - 0.865) 0.030 (0.000 - 0.063) 0.626 (0.532 - 0.720) 0.117 

Mean ± SD 0.937 ± 0.036 0.875 ± 0.062 0.884 ± 0.069 0.019 ± 0.010 0.449 ± 0.188   

Model C5.0 
     

-13 0.991 (0.964 - 1.000) 0.979 (0.938 - 1.000) 0.971 (0.924 - 1.000) 0.002 (0.000 - 0.015) 0.288 (0.160 - 0.416) 0.262 

-12 0.979 (0.949 - 1.000) 0.907 (0.846 - 0.968) 0.969 (0.932 - 1.000) 0.013 (0.000 - 0.037) 0.204 (0.119 - 0.289) 0.222 

-11 0.980 (0.950 - 1.000) 0.929 (0.874 - 0.984) 0.959 (0.917 - 1.000) 0.009 (0.000 - 0.029) 0.255 (0.162 - 0.348) 0.274 

-10 0.957 (0.919 - 0.995) 0.872 (0.809 - 0.935) 0.916 (0.864 - 0.968) 0.024 (0.000 - 0.053) 0.358 (0.268 - 0.448) 0.200 

-9 0.917 (0.861 - 0.973) 0.809 (0.730 - 0.888) 0.890 (0.827 - 0.953) 0.030 (0.000 - 0.064) 0.486 (0.385 - 0.587) 0.254 

-8 0.922 (0.862 - 0.982) 0.885 (0.814 - 0.956) 0.816 (0.730 - 0.902) 0.016 (0.000 - 0.044) 0.641 (0.535 - 0.747) 0.177 

-7 0.905 (0.843 - 0.967) 0.782 (0.695 - 0.869) 0.905 (0.843 - 0.967) 0.031 (0.000 - 0.067) 0.481 (0.376 - 0.586) 0.286 

-6 0.890 (0.829 - 0.951) 0.832 (0.759 - 0.905) 0.820 (0.745 - 0.895) 0.031 (0.000 - 0.065) 0.582 (0.486 - 0.678) 0.187 

-5 0.873 (0.803 - 0.943) 0.773 (0.685 - 0.861) 0.820 (0.740 - 0.900) 0.035 (0.000 - 0.073) 0.638 (0.538 - 0.738) 0.203 

-4 0.864 (0.787 - 0.941) 0.831 (0.747 - 0.915) 0.769 (0.675 - 0.863) 0.024 (0.000 - 0.058) 0.710 (0.609 - 0.811) 0.192 

-3 0.860 (0.787 - 0.933) 0.616 (0.513 - 0.719) 0.951 (0.905 - 0.997) 0.049 (0.003 - 0.095) 0.384 (0.281 - 0.487) 0.307 

-2 0.872 (0.807 - 0.937) 0.733 (0.647 - 0.819) 0.847 (0.777 - 0.917) 0.046 (0.005 - 0.087) 0.577 (0.481 - 0.673) 0.206 

-1 0.881 (0.818 - 0.944) 0.733 (0.647 - 0.819) 0.868 (0.802 - 0.934) 0.045 (0.005 - 0.085) 0.540 (0.443 - 0.637) 0.244 

Mean ± SD 0.915 ± 0.047 0.822 ± 0.097 0.885 ± 0.067 0.027 ± 0.015 0.473 ± 0.162   

Model GBM 
     

-13 0.993 (0.969 - 1.000) 0.979 (0.938 - 1.000) 0.961 (0.906 - 1.000) 0.002 (0.000 - 0.015) 0.356 (0.221 - 0.491) 0.099 

-12 0.982 (0.954 - 1.000) 0.919 (0.861 - 0.977) 0.958 (0.916 - 1.000) 0.011 (0.000 - 0.033) 0.255 (0.163 - 0.347) 0.070 

-11 0.990 (0.969 - 1.000) 0.976 (0.943 - 1.000) 0.924 (0.868 - 0.980) 0.003 (0.000 - 0.015) 0.376 (0.273 - 0.479) 0.155 

-10 0.969 (0.936 - 1.000) 0.917 (0.865 - 0.969) 0.902 (0.846 - 0.958) 0.016 (0.000 - 0.040) 0.383 (0.292 - 0.474) 0.123 

-9 0.955 (0.913 - 0.997) 0.894 (0.832 - 0.956) 0.882 (0.817 - 0.947) 0.017 (0.000 - 0.043) 0.478 (0.377 - 0.579) 0.184 

-8 0.942 (0.890 - 0.994) 0.846 (0.766 - 0.926) 0.906 (0.841 - 0.971) 0.019 (0.000 - 0.049) 0.488 (0.377 - 0.599) 0.104 

-7 0.924 (0.868 - 0.980) 0.793 (0.708 - 0.878) 0.881 (0.813 - 0.949) 0.030 (0.000 - 0.066) 0.534 (0.429 - 0.639) 0.187 

-6 0.914 (0.859 - 0.969) 0.842 (0.771 - 0.913) 0.868 (0.802 - 0.934) 0.028 (0.000 - 0.060) 0.503 (0.405 - 0.601) 0.181 

-5 0.909 (0.849 - 0.969) 0.841 (0.765 - 0.917) 0.815 (0.734 - 0.896) 0.025 (0.000 - 0.058) 0.624 (0.523 - 0.725) 0.180 

-4 0.899 (0.832 - 0.966) 0.870 (0.795 - 0.945) 0.787 (0.696 - 0.878) 0.018 (0.000 - 0.048) 0.684 (0.580 - 0.788) 0.116 

-3 0.914 (0.855 - 0.973) 0.721 (0.626 - 0.816) 0.924 (0.868 - 0.980) 0.037 (0.000 - 0.077) 0.451 (0.346 - 0.556) 0.247 

-2 0.906 (0.849 - 0.963) 0.901 (0.843 - 0.959) 0.783 (0.703 - 0.863) 0.019 (0.000 - 0.046) 0.611 (0.516 - 0.706) 0.123 

-1 0.909 (0.853 - 0.965) 0.881 (0.818 - 0.944) 0.780 (0.699 - 0.861) 0.023 (0.000 - 0.052) 0.620 (0.525 - 0.715) 0.098 

Mean ± SD 0.939 ± 0.035 0.875 ± 0.070 0.875 ± 0.064 0.019 ± 0.010 0.489 ± 0.125   
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model LR 
     

-13 0.959 (0.903 - 1.000) 0.938 (0.870 - 1.000) 0.955 (0.896 - 1.000) 0.005 (0.000 - 0.025) 0.400 (0.261 - 0.539) 0.001 

-12 0.933 (0.880 - 0.986) 0.884 (0.816 - 0.952) 0.945 (0.897 - 0.993) 0.016 (0.000 - 0.043) 0.321 (0.222 - 0.420) 0.001 

-11 0.884 (0.816 - 0.952) 0.800 (0.715 - 0.885) 0.965 (0.926 - 1.000) 0.026 (0.000 - 0.060) 0.253 (0.161 - 0.345) 0.001 

-10 0.946 (0.904 - 0.988) 0.917 (0.865 - 0.969) 0.858 (0.792 - 0.924) 0.016 (0.000 - 0.040) 0.474 (0.380 - 0.568) 0.001 

-9 0.889 (0.825 - 0.953) 0.787 (0.704 - 0.870) 0.940 (0.892 - 0.988) 0.032 (0.000 - 0.068) 0.345 (0.249 - 0.441) 0.142 

-8 0.921 (0.861 - 0.981) 0.872 (0.798 - 0.946) 0.878 (0.805 - 0.951) 0.017 (0.000 - 0.046) 0.547 (0.437 - 0.657) 0.098 

-7 0.895 (0.831 - 0.959) 0.874 (0.804 - 0.944) 0.866 (0.794 - 0.938) 0.019 (0.000 - 0.048) 0.539 (0.434 - 0.644) 0.058 

-6 0.914 (0.859 - 0.969) 0.891 (0.830 - 0.952) 0.822 (0.747 - 0.897) 0.020 (0.000 - 0.047) 0.563 (0.466 - 0.660) 0.080 

-5 0.850 (0.775 - 0.925) 0.761 (0.672 - 0.850) 0.881 (0.813 - 0.949) 0.035 (0.000 - 0.073) 0.541 (0.437 - 0.645) 0.122 

-4 0.864 (0.787 - 0.941) 0.831 (0.747 - 0.915) 0.831 (0.747 - 0.915) 0.022 (0.000 - 0.055) 0.642 (0.535 - 0.749) 0.094 

-3 0.865 (0.793 - 0.937) 0.791 (0.705 - 0.877) 0.838 (0.760 - 0.916) 0.031 (0.000 - 0.068) 0.616 (0.513 - 0.719) 0.092 

-2 0.900 (0.841 - 0.959) 0.842 (0.771 - 0.913) 0.841 (0.770 - 0.912) 0.028 (0.000 - 0.060) 0.553 (0.456 - 0.650) 0.099 

-1 0.895 (0.835 - 0.955) 0.832 (0.759 - 0.905) 0.867 (0.801 - 0.933) 0.029 (0.000 - 0.062) 0.512 (0.415 - 0.609) 0.140 

Mean ± SD 0.901 ± 0.033 0.848 ± 0.054 0.884 ± 0.050 0.023 ± 0.008 0.485 ± 0.119   

Model RF 
     

-13 0.977 (0.935 - 1.000) 0.917 (0.839 - 0.995) 0.967 (0.916 - 1.000) 0.006 (0.000 - 0.028) 0.333 (0.200 - 0.466) 0.245 

-12 0.973 (0.939 - 1.000) 0.942 (0.893 - 0.991) 0.925 (0.869 - 0.981) 0.008 (0.000 - 0.027) 0.377 (0.275 - 0.479) 0.100 

-11 0.980 (0.950 - 1.000) 0.953 (0.908 - 0.998) 0.910 (0.849 - 0.971) 0.007 (0.000 - 0.025) 0.421 (0.316 - 0.526) 0.140 

-10 0.947 (0.905 - 0.989) 0.917 (0.865 - 0.969) 0.858 (0.792 - 0.924) 0.016 (0.000 - 0.040) 0.474 (0.380 - 0.568) 0.100 

-9 0.935 (0.885 - 0.985) 0.851 (0.779 - 0.923) 0.877 (0.811 - 0.943) 0.024 (0.000 - 0.055) 0.500 (0.399 - 0.601) 0.160 

-8 0.920 (0.860 - 0.980) 0.936 (0.882 - 0.990) 0.775 (0.682 - 0.868) 0.010 (0.000 - 0.032) 0.674 (0.570 - 0.778) 0.105 

-7 0.891 (0.826 - 0.956) 0.724 (0.630 - 0.818) 0.897 (0.833 - 0.961) 0.039 (0.000 - 0.080) 0.519 (0.414 - 0.624) 0.235 

-6 0.867 (0.801 - 0.933) 0.812 (0.736 - 0.888) 0.796 (0.717 - 0.875) 0.035 (0.000 - 0.071) 0.619 (0.524 - 0.714) 0.130 

-5 0.872 (0.802 - 0.942) 0.864 (0.792 - 0.936) 0.710 (0.615 - 0.805) 0.025 (0.000 - 0.058) 0.717 (0.623 - 0.811) 0.105 

-4 0.850 (0.770 - 0.930) 0.740 (0.642 - 0.838) 0.813 (0.726 - 0.900) 0.035 (0.000 - 0.076) 0.690 (0.587 - 0.793) 0.170 

-3 0.853 (0.778 - 0.928) 0.721 (0.626 - 0.816) 0.822 (0.741 - 0.903) 0.042 (0.000 - 0.084) 0.659 (0.559 - 0.759) 0.185 

-2 0.868 (0.802 - 0.934) 0.802 (0.724 - 0.880) 0.777 (0.696 - 0.858) 0.038 (0.001 - 0.075) 0.645 (0.552 - 0.738) 0.125 

-1 0.858 (0.790 - 0.926) 0.871 (0.806 - 0.936) 0.694 (0.604 - 0.784) 0.028 (0.000 - 0.060) 0.697 (0.607 - 0.787) 0.095 

Mean ± SD 0.907 ± 0.050 0.850 ± 0.084 0.832 ± 0.083 0.024 ± 0.013 0.563 ± 0.133   

Model SVM 
     

-13 0.993 (0.969 - 1.000) 0.979 (0.938 - 1.000) 0.943 (0.877 - 1.000) 0.002 (0.000 - 0.015) 0.447 (0.306 - 0.588) 0.040 

-12 0.985 (0.959 - 1.000) 0.942 (0.893 - 0.991) 0.972 (0.937 - 1.000) 0.008 (0.000 - 0.027) 0.182 (0.100 - 0.264) 0.105 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-11 0.995 (0.980 - 1.000) 0.988 (0.965 - 1.000) 0.959 (0.917 - 1.000) 0.002 (0.000 - 0.011) 0.243 (0.152 - 0.334) 0.089 

-10 0.981 (0.955 - 1.000) 0.927 (0.878 - 0.976) 0.921 (0.870 - 0.972) 0.014 (0.000 - 0.036) 0.331 (0.243 - 0.419) 0.083 

-9 0.960 (0.920 - 1.000) 0.926 (0.873 - 0.979) 0.867 (0.798 - 0.936) 0.012 (0.000 - 0.034) 0.500 (0.399 - 0.601) 0.073 

-8 0.934 (0.879 - 0.989) 0.872 (0.798 - 0.946) 0.907 (0.843 - 0.971) 0.016 (0.000 - 0.044) 0.477 (0.366 - 0.588) 0.160 

-7 0.933 (0.880 - 0.986) 0.920 (0.863 - 0.977) 0.827 (0.748 - 0.906) 0.013 (0.000 - 0.037) 0.590 (0.487 - 0.693) 0.085 

-6 0.924 (0.872 - 0.976) 0.891 (0.830 - 0.952) 0.802 (0.724 - 0.880) 0.021 (0.000 - 0.049) 0.589 (0.493 - 0.685) 0.080 

-5 0.897 (0.833 - 0.961) 0.886 (0.820 - 0.952) 0.773 (0.685 - 0.861) 0.019 (0.000 - 0.048) 0.659 (0.560 - 0.758) 0.069 

-4 0.892 (0.823 - 0.961) 0.857 (0.779 - 0.935) 0.832 (0.748 - 0.916) 0.019 (0.000 - 0.049) 0.633 (0.525 - 0.741) 0.110 

-3 0.905 (0.843 - 0.967) 0.814 (0.732 - 0.896) 0.880 (0.811 - 0.949) 0.026 (0.000 - 0.060) 0.536 (0.431 - 0.641) 0.158 

-2 0.916 (0.862 - 0.970) 0.901 (0.843 - 0.959) 0.817 (0.742 - 0.892) 0.018 (0.000 - 0.044) 0.571 (0.474 - 0.668) 0.102 

-1 0.914 (0.859 - 0.969) 0.891 (0.830 - 0.952) 0.805 (0.728 - 0.882) 0.020 (0.000 - 0.047) 0.589 (0.493 - 0.685) 0.102 

Mean ± SD 0.941 ± 0.038 0.907 ± 0.048 0.870 ± 0.066 0.015 ± 0.007 0.488 ± 0.150   
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Table 8.3.B. Performance measures for each model at each lead time before delirium when predicting delirium within 21h since ICU admission, using complete training 

data and missing values in testing data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model BARTm      

-13 0.989 (0.958 - 1.000) 0.953 (0.890 - 1.000) 0.968 (0.915 - 1.000) 0.003 (0.000 - 0.019) 0.349 (0.207 - 0.491) 0.127 

-12 0.979 (0.944 - 1.000) 0.922 (0.856 - 0.988) 0.959 (0.910 - 1.000) 0.007 (0.000 - 0.027) 0.322 (0.208 - 0.436) 0.131 

-11 0.972 (0.934 - 1.000) 0.917 (0.853 - 0.981) 0.953 (0.904 - 1.000) 0.009 (0.000 - 0.031) 0.327 (0.219 - 0.435) 0.148 

-10 0.973 (0.936 - 1.000) 0.917 (0.853 - 0.981) 0.929 (0.870 - 0.988) 0.009 (0.000 - 0.031) 0.426 (0.312 - 0.540) 0.165 

-9 0.965 (0.927 - 1.000) 0.910 (0.851 - 0.969) 0.907 (0.847 - 0.967) 0.013 (0.000 - 0.037) 0.438 (0.335 - 0.541) 0.155 

-8 0.935 (0.888 - 0.982) 0.875 (0.811 - 0.939) 0.861 (0.795 - 0.927) 0.022 (0.000 - 0.050) 0.503 (0.407 - 0.599) 0.133 

-7 0.920 (0.865 - 0.975) 0.904 (0.844 - 0.964) 0.781 (0.697 - 0.865) 0.017 (0.000 - 0.043) 0.634 (0.537 - 0.731) 0.099 

-6 0.913 (0.855 - 0.971) 0.870 (0.801 - 0.939) 0.823 (0.745 - 0.901) 0.021 (0.000 - 0.050) 0.600 (0.500 - 0.700) 0.104 

-5 0.891 (0.831 - 0.951) 0.904 (0.847 - 0.961) 0.719 (0.633 - 0.805) 0.020 (0.000 - 0.047) 0.665 (0.574 - 0.756) 0.071 

-4 0.900 (0.840 - 0.960) 0.895 (0.833 - 0.957) 0.736 (0.647 - 0.825) 0.020 (0.000 - 0.048) 0.678 (0.584 - 0.772) 0.103 

-3 0.910 (0.856 - 0.964) 0.830 (0.758 - 0.902) 0.841 (0.771 - 0.911) 0.031 (0.000 - 0.064) 0.546 (0.451 - 0.641) 0.161 

-2 0.872 (0.807 - 0.937) 0.780 (0.699 - 0.861) 0.835 (0.762 - 0.908) 0.037 (0.000 - 0.074) 0.589 (0.493 - 0.685) 0.146 

-1 0.873 (0.808 - 0.938) 0.830 (0.756 - 0.904) 0.756 (0.672 - 0.840) 0.032 (0.000 - 0.066) 0.665 (0.572 - 0.758) 0.095 

Mean ± SD 0.930 ± 0.041 0.885 ± 0.047 0.851 ± 0.087 0.023 ± 0.008 0.485 ± 0.119   

Model C5.0 
     

-13 0.988 (0.955 - 1.000) 0.953 (0.890 - 1.000) 0.977 (0.932 - 1.000) 0.003 (0.000 - 0.019) 0.281 (0.147 - 0.415) 0.273 

-12 0.965 (0.920 - 1.000) 0.922 (0.856 - 0.988) 0.938 (0.879 - 0.997) 0.008 (0.000 - 0.030) 0.422 (0.301 - 0.543) 0.186 

-11 0.944 (0.891 - 0.997) 0.792 (0.698 - 0.886) 0.981 (0.949 - 1.000) 0.022 (0.000 - 0.056) 0.186 (0.096 - 0.276) 0.358 

-10 0.971 (0.932 - 1.000) 0.931 (0.872 - 0.990) 0.897 (0.827 - 0.967) 0.008 (0.000 - 0.029) 0.514 (0.399 - 0.629) 0.198 

-9 0.933 (0.881 - 0.985) 0.809 (0.727 - 0.891) 0.932 (0.880 - 0.984) 0.026 (0.000 - 0.059) 0.390 (0.289 - 0.491) 0.277 

-8 0.891 (0.831 - 0.951) 0.856 (0.789 - 0.923) 0.776 (0.696 - 0.856) 0.028 (0.000 - 0.060) 0.624 (0.531 - 0.717) 0.162 

-7 0.876 (0.809 - 0.943) 0.723 (0.633 - 0.813) 0.878 (0.812 - 0.944) 0.042 (0.001 - 0.083) 0.547 (0.446 - 0.648) 0.254 

-6 0.876 (0.809 - 0.943) 0.880 (0.814 - 0.946) 0.734 (0.644 - 0.824) 0.022 (0.000 - 0.052) 0.690 (0.595 - 0.785) 0.154 

-5 0.863 (0.797 - 0.929) 0.635 (0.542 - 0.728) 0.920 (0.868 - 0.972) 0.058 (0.013 - 0.103) 0.445 (0.349 - 0.541) 0.294 

-4 0.842 (0.769 - 0.915) 0.779 (0.696 - 0.862) 0.777 (0.693 - 0.861) 0.038 (0.000 - 0.076) 0.671 (0.577 - 0.765) 0.186 

-3 0.836 (0.766 - 0.906) 0.774 (0.694 - 0.854) 0.807 (0.732 - 0.882) 0.043 (0.004 - 0.082) 0.611 (0.518 - 0.704) 0.189 

-2 0.867 (0.800 - 0.934) 0.800 (0.722 - 0.878) 0.811 (0.734 - 0.888) 0.035 (0.000 - 0.071) 0.615 (0.520 - 0.710) 0.188 

-1 0.819 (0.744 - 0.894) 0.830 (0.756 - 0.904) 0.671 (0.579 - 0.763) 0.036 (0.000 - 0.073) 0.729 (0.642 - 0.816) 0.099 

Mean ± SD 0.898 ± 0.056 0.822 ± 0.089 0.854 ± 0.098 0.030 ± 0.018 0.477 ± 0.144   
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Table 8.3.C. Performance measures for each model at each lead time before delirium when predicting delirium within 21h since ICU admission, using complete training 

data and median imputation in testing data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AdaBoost      

-13 0.860 (0.756 - 0.964) 0.640 (0.497 - 0.783) 0.900 (0.810 - 0.990) 0.056 (0.000 - 0.125) 0.515 (0.366 - 0.664) 0.330 

-12 0.879 (0.799 - 0.959) 0.800 (0.702 - 0.898) 0.823 (0.729 - 0.917) 0.035 (0.000 - 0.080) 0.600 (0.480 - 0.720) 0.270 

-11 0.883 (0.809 - 0.957) 0.830 (0.743 - 0.917) 0.831 (0.744 - 0.918) 0.031 (0.000 - 0.071) 0.562 (0.447 - 0.677) 0.250 

-10 0.910 (0.844 - 0.976) 0.853 (0.771 - 0.935) 0.822 (0.734 - 0.910) 0.025 (0.000 - 0.061) 0.599 (0.486 - 0.712) 0.252 

-9 0.881 (0.814 - 0.948) 0.865 (0.794 - 0.936) 0.742 (0.651 - 0.833) 0.028 (0.000 - 0.062) 0.656 (0.557 - 0.755) 0.203 

-8 0.903 (0.846 - 0.960) 0.870 (0.805 - 0.935) 0.789 (0.711 - 0.867) 0.022 (0.000 - 0.050) 0.641 (0.549 - 0.733) 0.198 

-7 0.907 (0.848 - 0.966) 0.862 (0.792 - 0.932) 0.801 (0.720 - 0.882) 0.024 (0.000 - 0.055) 0.623 (0.525 - 0.721) 0.242 

-6 0.936 (0.886 - 0.986) 0.894 (0.831 - 0.957) 0.858 (0.787 - 0.929) 0.019 (0.000 - 0.047) 0.503 (0.401 - 0.605) 0.248 

-5 0.960 (0.922 - 0.998) 0.888 (0.827 - 0.949) 0.923 (0.872 - 0.974) 0.016 (0.000 - 0.040) 0.397 (0.303 - 0.491) 0.282 

-4 0.975 (0.944 - 1.000) 0.944 (0.898 - 0.990) 0.936 (0.887 - 0.985) 0.006 (0.000 - 0.022) 0.393 (0.295 - 0.491) 0.274 

-3 0.970 (0.938 - 1.000) 0.889 (0.829 - 0.949) 0.967 (0.933 - 1.000) 0.012 (0.000 - 0.033) 0.264 (0.180 - 0.348) 0.307 

-2 0.984 (0.959 - 1.000) 0.938 (0.891 - 0.985) 0.948 (0.904 - 0.992) 0.006 (0.000 - 0.021) 0.375 (0.280 - 0.470) 0.213 

-1 0.994 (0.979 - 1.000) 0.977 (0.948 - 1.000) 0.981 (0.954 - 1.000) 0.001 (0.000 - 0.007) 0.236 (0.153 - 0.319) 0.273 

Mean ± SD 0.926 ± 0.865 0.871 ± 0.022 0.490 ± 0.046 0.083 ± 0.076 0.015 ± 0.143   

Model BARTm 
     

-13 0.986 (0.951 - 1.000) 0.953 (0.890 - 1.000) 0.987 (0.953 - 1.000) 0.003 (0.000 - 0.019) 0.180 (0.065 - 0.295) 0.227 

-12 0.980 (0.946 - 1.000) 0.891 (0.815 - 0.967) 0.990 (0.966 - 1.000) 0.010 (0.000 - 0.034) 0.109 (0.033 - 0.185) 0.264 

-11 0.974 (0.937 - 1.000) 0.931 (0.872 - 0.990) 0.918 (0.855 - 0.981) 0.008 (0.000 - 0.029) 0.455 (0.340 - 0.570) 0.111 

-10 0.980 (0.948 - 1.000) 0.958 (0.912 - 1.000) 0.945 (0.892 - 0.998) 0.005 (0.000 - 0.021) 0.355 (0.244 - 0.466) 0.980 

-9 0.960 (0.919 - 1.000) 0.944 (0.896 - 0.992) 0.887 (0.821 - 0.953) 0.008 (0.000 - 0.027) 0.475 (0.371 - 0.579) 0.131 

-8 0.932 (0.884 - 0.980) 0.865 (0.799 - 0.931) 0.832 (0.760 - 0.904) 0.025 (0.000 - 0.055) 0.552 (0.456 - 0.648) 0.113 

-7 0.920 (0.865 - 0.975) 0.840 (0.766 - 0.914) 0.853 (0.781 - 0.925) 0.023 (0.000 - 0.053) 0.556 (0.456 - 0.656) 0.136 

-6 0.901 (0.840 - 0.962) 0.761 (0.674 - 0.848) 0.907 (0.848 - 0.966) 0.035 (0.000 - 0.073) 0.474 (0.372 - 0.576) 0.185 

-5 0.910 (0.855 - 0.965) 0.846 (0.777 - 0.915) 0.827 (0.754 - 0.900) 0.028 (0.000 - 0.060) 0.567 (0.472 - 0.662) 0.134 

-4 0.884 (0.820 - 0.948) 0.716 (0.625 - 0.807) 0.898 (0.837 - 0.959) 0.042 (0.002 - 0.082) 0.504 (0.403 - 0.605) 0.230 

-3 0.898 (0.840 - 0.956) 0.858 (0.792 - 0.924) 0.805 (0.730 - 0.880) 0.027 (0.000 - 0.058) 0.588 (0.494 - 0.682) 0.115 

-2 0.882 (0.819 - 0.945) 0.730 (0.643 - 0.817) 0.882 (0.819 - 0.945) 0.043 (0.003 - 0.083) 0.523 (0.425 - 0.621) 0.184 

-1 0.870 (0.804 - 0.936) 0.840 (0.768 - 0.912) 0.739 (0.653 - 0.825) 0.031 (0.000 - 0.065) 0.678 (0.586 - 0.770) 0.093 

Mean ± SD 0.929 ± 0.856 0.882 ± 0.022 0.463 ± 0.042 0.081 ± 0.072 0.014 ± 0.161   
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model C5.0 
     

-13 0.997 (0.981 - 1.000) 0.999 (0.990 - 1.000) 0.961 (0.903 - 1.000) 0.000 (0.000 - 0.000) 0.386 (0.240 - 0.532) 0.169 

-12 0.968 (0.925 - 1.000) 0.875 (0.794 - 0.956) 0.984 (0.953 - 1.000) 0.012 (0.000 - 0.039) 0.164 (0.073 - 0.255) 0.340 

-11 0.949 (0.898 - 1.000) 0.889 (0.816 - 0.962) 0.943 (0.889 - 0.997) 0.012 (0.000 - 0.037) 0.379 (0.267 - 0.491) 0.222 

-10 0.959 (0.913 - 1.000) 0.903 (0.835 - 0.971) 0.935 (0.878 - 0.992) 0.011 (0.000 - 0.035) 0.409 (0.295 - 0.523) 0.243 

-9 0.941 (0.892 - 0.990) 0.899 (0.836 - 0.962) 0.886 (0.820 - 0.952) 0.015 (0.000 - 0.040) 0.490 (0.386 - 0.594) 0.214 

-8 0.920 (0.868 - 0.972) 0.837 (0.766 - 0.908) 0.903 (0.846 - 0.960) 0.028 (0.000 - 0.060) 0.424 (0.329 - 0.519) 0.257 

-7 0.874 (0.807 - 0.941) 0.809 (0.730 - 0.888) 0.804 (0.724 - 0.884) 0.032 (0.000 - 0.068) 0.635 (0.538 - 0.732) 0.185 

-6 0.880 (0.814 - 0.946) 0.783 (0.699 - 0.867) 0.840 (0.765 - 0.915) 0.034 (0.000 - 0.071) 0.600 (0.500 - 0.700) 0.208 

-5 0.863 (0.797 - 0.929) 0.635 (0.542 - 0.728) 0.920 (0.868 - 0.972) 0.058 (0.013 - 0.103) 0.445 (0.349 - 0.541) 0.294 

-4 0.815 (0.737 - 0.893) 0.705 (0.613 - 0.797) 0.824 (0.747 - 0.901) 0.048 (0.005 - 0.091) 0.640 (0.543 - 0.737) 0.278 

-3 0.858 (0.792 - 0.924) 0.736 (0.652 - 0.820) 0.847 (0.778 - 0.916) 0.047 (0.007 - 0.087) 0.567 (0.473 - 0.661) 0.237 

-2 0.873 (0.808 - 0.938) 0.750 (0.665 - 0.835) 0.835 (0.762 - 0.908) 0.042 (0.003 - 0.081) 0.599 (0.503 - 0.695) 0.207 

-1 0.849 (0.779 - 0.919) 0.670 (0.578 - 0.762) 0.874 (0.809 - 0.939) 0.053 (0.009 - 0.097) 0.559 (0.462 - 0.656) 0.291 

Mean ± SD 0.904 ± 0.807 0.889 ± 0.030 0.484 ± 0.055 0.106 ± 0.057 0.019 ± 0.135   

Model GBM 
     

-13 0.997 (0.981 - 1.000) 0.999 (0.990 - 1.000) 0.946 (0.878 - 1.000) 0.000 (0.000 - 0.000) 0.462 (0.313 - 0.611) 0.119 

-12 0.976 (0.939 - 1.000) 0.891 (0.815 - 0.967) 0.983 (0.951 - 1.000) 0.010 (0.000 - 0.034) 0.174 (0.081 - 0.267) 0.280 

-11 0.968 (0.927 - 1.000) 0.917 (0.853 - 0.981) 0.927 (0.867 - 0.987) 0.009 (0.000 - 0.031) 0.431 (0.317 - 0.545) 0.158 

-10 0.975 (0.939 - 1.000) 0.889 (0.816 - 0.962) 0.962 (0.918 - 1.000) 0.012 (0.000 - 0.037) 0.289 (0.184 - 0.394) 0.262 

-9 0.962 (0.922 - 1.000) 0.854 (0.781 - 0.927) 0.926 (0.872 - 0.980) 0.020 (0.000 - 0.049) 0.397 (0.295 - 0.499) 0.221 

-8 0.939 (0.893 - 0.985) 0.827 (0.754 - 0.900) 0.906 (0.850 - 0.962) 0.029 (0.000 - 0.061) 0.419 (0.324 - 0.514) 0.108 

-7 0.926 (0.873 - 0.979) 0.851 (0.779 - 0.923) 0.847 (0.774 - 0.920) 0.024 (0.000 - 0.055) 0.563 (0.463 - 0.663) 0.158 

-6 0.902 (0.841 - 0.963) 0.837 (0.762 - 0.912) 0.805 (0.724 - 0.886) 0.027 (0.000 - 0.060) 0.632 (0.533 - 0.731) 0.138 

-5 0.910 (0.855 - 0.965) 0.875 (0.811 - 0.939) 0.799 (0.722 - 0.876) 0.024 (0.000 - 0.053) 0.596 (0.502 - 0.690) 0.141 

-4 0.905 (0.846 - 0.964) 0.800 (0.720 - 0.880) 0.889 (0.826 - 0.952) 0.031 (0.000 - 0.066) 0.497 (0.396 - 0.598) 0.182 

-3 0.891 (0.832 - 0.950) 0.849 (0.781 - 0.917) 0.792 (0.715 - 0.869) 0.029 (0.000 - 0.061) 0.607 (0.514 - 0.700) 0.129 

-2 0.891 (0.830 - 0.952) 0.810 (0.733 - 0.887) 0.814 (0.738 - 0.890) 0.033 (0.000 - 0.068) 0.609 (0.513 - 0.705) 0.158 

-1 0.865 (0.798 - 0.932) 0.780 (0.699 - 0.861) 0.787 (0.707 - 0.867) 0.040 (0.002 - 0.078) 0.649 (0.555 - 0.743) 0.109 

Mean ± SD 0.931 ± 0.860 0.876 ± 0.022 0.487 ± 0.041 0.057 ± 0.071 0.011 ± 0.144   

Model LR 
     

-13 0.957 (0.896 - 1.000) 0.907 (0.820 - 0.994) 0.975 (0.928 - 1.000) 0.006 (0.000 - 0.029) 0.304 (0.167 - 0.441) 0.001 

-12 0.911 (0.841 - 0.981) 0.844 (0.755 - 0.933) 0.959 (0.910 - 1.000) 0.015 (0.000 - 0.045) 0.341 (0.225 - 0.457) 0.001 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-11 0.897 (0.827 - 0.967) 0.833 (0.747 - 0.919) 0.920 (0.857 - 0.983) 0.019 (0.000 - 0.051) 0.478 (0.363 - 0.593) 0.001 

-10 0.944 (0.891 - 0.997) 0.944 (0.891 - 0.997) 0.887 (0.814 - 0.960) 0.007 (0.000 - 0.026) 0.534 (0.419 - 0.649) 0.059 

-9 0.919 (0.862 - 0.976) 0.854 (0.781 - 0.927) 0.907 (0.847 - 0.967) 0.021 (0.000 - 0.051) 0.453 (0.350 - 0.556) 0.085 

-8 0.888 (0.827 - 0.949) 0.827 (0.754 - 0.900) 0.884 (0.822 - 0.946) 0.030 (0.000 - 0.063) 0.472 (0.376 - 0.568) 0.087 

-7 0.870 (0.802 - 0.938) 0.830 (0.754 - 0.906) 0.824 (0.747 - 0.901) 0.028 (0.000 - 0.061) 0.602 (0.503 - 0.701) 0.065 

-6 0.854 (0.782 - 0.926) 0.804 (0.723 - 0.885) 0.843 (0.769 - 0.917) 0.031 (0.000 - 0.066) 0.589 (0.488 - 0.690) 0.067 

-5 0.855 (0.787 - 0.923) 0.808 (0.732 - 0.884) 0.794 (0.716 - 0.872) 0.036 (0.000 - 0.072) 0.620 (0.527 - 0.713) 0.046 

-4 0.853 (0.782 - 0.924) 0.747 (0.660 - 0.834) 0.848 (0.776 - 0.920) 0.040 (0.001 - 0.079) 0.592 (0.493 - 0.691) 0.144 

-3 0.857 (0.790 - 0.924) 0.783 (0.705 - 0.861) 0.862 (0.796 - 0.928) 0.038 (0.002 - 0.074) 0.526 (0.431 - 0.621) 0.142 

-2 0.815 (0.739 - 0.891) 0.720 (0.632 - 0.808) 0.826 (0.752 - 0.900) 0.048 (0.006 - 0.090) 0.621 (0.526 - 0.716) 0.101 

-1 0.820 (0.745 - 0.895) 0.700 (0.610 - 0.790) 0.846 (0.775 - 0.917) 0.050 (0.007 - 0.093) 0.598 (0.502 - 0.694) 0.134 

Mean ± SD 0.880 ± 0.815 0.875 ± 0.028 0.518 ± 0.044 0.068 ± 0.054 0.014 ± 0.104   

Model RF 
     

-13 0.993 (0.968 - 1.000) 0.999 (0.990 - 1.000) 0.950 (0.885 - 1.000) 0.000 (0.000 - 0.000) 0.442 (0.294 - 0.590) 0.145 

-12 0.966 (0.922 - 1.000) 0.875 (0.794 - 0.956) 0.980 (0.946 - 1.000) 0.012 (0.000 - 0.039) 0.200 (0.102 - 0.298) 0.270 

-11 0.956 (0.909 - 1.000) 0.917 (0.853 - 0.981) 0.875 (0.799 - 0.951) 0.010 (0.000 - 0.033) 0.566 (0.452 - 0.680) 0.105 

-10 0.966 (0.924 - 1.000) 0.944 (0.891 - 0.997) 0.901 (0.832 - 0.970) 0.006 (0.000 - 0.024) 0.500 (0.385 - 0.615) 0.170 

-9 0.945 (0.898 - 0.992) 0.876 (0.808 - 0.944) 0.865 (0.794 - 0.936) 0.018 (0.000 - 0.046) 0.538 (0.434 - 0.642) 0.175 

-8 0.915 (0.861 - 0.969) 0.798 (0.721 - 0.875) 0.908 (0.852 - 0.964) 0.034 (0.000 - 0.069) 0.424 (0.329 - 0.519) 0.245 

-7 0.882 (0.817 - 0.947) 0.883 (0.818 - 0.948) 0.738 (0.649 - 0.827) 0.022 (0.000 - 0.052) 0.680 (0.586 - 0.774) 0.110 

-6 0.881 (0.815 - 0.947) 0.815 (0.736 - 0.894) 0.770 (0.684 - 0.856) 0.032 (0.000 - 0.068) 0.675 (0.579 - 0.771) 0.130 

-5 0.859 (0.792 - 0.926) 0.837 (0.766 - 0.908) 0.752 (0.669 - 0.835) 0.033 (0.000 - 0.067) 0.655 (0.564 - 0.746) 0.105 

-4 0.879 (0.813 - 0.945) 0.821 (0.744 - 0.898) 0.819 (0.742 - 0.896) 0.030 (0.000 - 0.064) 0.612 (0.514 - 0.710) 0.170 

-3 0.861 (0.795 - 0.927) 0.802 (0.726 - 0.878) 0.780 (0.701 - 0.859) 0.039 (0.002 - 0.076) 0.634 (0.542 - 0.726) 0.125 

-2 0.880 (0.816 - 0.944) 0.810 (0.733 - 0.887) 0.801 (0.723 - 0.879) 0.034 (0.000 - 0.070) 0.625 (0.530 - 0.720) 0.155 

-1 0.853 (0.784 - 0.922) 0.700 (0.610 - 0.790) 0.840 (0.768 - 0.912) 0.050 (0.007 - 0.093) 0.607 (0.511 - 0.703) 0.195 

Mean ± SD 0.910 ± 0.852 0.845 ± 0.025 0.551 ± 0.049 0.076 ± 0.077 0.015 ± 0.134   

Model SVM 
     

-13 0.996 (0.977 - 1.000) 0.999 (0.990 - 1.000) 0.949 (0.883 - 1.000) 0.000 (0.000 - 0.000) 0.449 (0.300 - 0.598) 0.041 

-12 0.979 (0.944 - 1.000) 0.953 (0.901 - 1.000) 0.945 (0.889 - 1.000) 0.005 (0.000 - 0.022) 0.384 (0.265 - 0.503) 0.042 

-11 0.969 (0.929 - 1.000) 0.944 (0.891 - 0.997) 0.924 (0.863 - 0.985) 0.006 (0.000 - 0.024) 0.433 (0.319 - 0.547) 0.062 

-10 0.981 (0.949 - 1.000) 0.917 (0.853 - 0.981) 0.967 (0.926 - 1.000) 0.009 (0.000 - 0.031) 0.258 (0.157 - 0.359) 0.208 

-9 0.960 (0.919 - 1.000) 0.910 (0.851 - 0.969) 0.926 (0.872 - 0.980) 0.013 (0.000 - 0.037) 0.382 (0.281 - 0.483) 0.155 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-8 0.941 (0.896 - 0.986) 0.894 (0.835 - 0.953) 0.876 (0.813 - 0.939) 0.019 (0.000 - 0.045) 0.469 (0.373 - 0.565) 0.102 

-7 0.931 (0.880 - 0.982) 0.904 (0.844 - 0.964) 0.789 (0.707 - 0.871) 0.017 (0.000 - 0.043) 0.626 (0.528 - 0.724) 0.078 

-6 0.905 (0.845 - 0.965) 0.804 (0.723 - 0.885) 0.886 (0.821 - 0.951) 0.029 (0.000 - 0.063) 0.510 (0.408 - 0.612) 0.135 

-5 0.895 (0.836 - 0.954) 0.846 (0.777 - 0.915) 0.851 (0.783 - 0.919) 0.027 (0.000 - 0.058) 0.529 (0.433 - 0.625) 0.118 

-4 0.901 (0.841 - 0.961) 0.853 (0.782 - 0.924) 0.833 (0.758 - 0.908) 0.024 (0.000 - 0.055) 0.582 (0.483 - 0.681) 0.132 

-3 0.897 (0.839 - 0.955) 0.830 (0.758 - 0.902) 0.832 (0.761 - 0.903) 0.031 (0.000 - 0.064) 0.560 (0.466 - 0.654) 0.104 

-2 0.877 (0.813 - 0.941) 0.770 (0.688 - 0.852) 0.812 (0.735 - 0.889) 0.040 (0.002 - 0.078) 0.623 (0.528 - 0.718) 0.112 

-1 0.873 (0.808 - 0.938) 0.740 (0.654 - 0.826) 0.848 (0.778 - 0.918) 0.043 (0.003 - 0.083) 0.582 (0.485 - 0.679) 0.145 

Mean ± SD 0.931 ± 0.874 0.880 ± 0.020 0.491 ± 0.043 0.075 ± 0.058 0.014 ± 0.109   
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Table 8.3.D. Performance measures for each model at each lead time before delirium when predicting delirium within 21h since ICU admission, using complete training 

data and 0 imputation in testing data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AdaBoost      

-13 0.994 (0.971 - 1.000) 0.977 (0.932 - 1.000) 0.980 (0.938 - 1.000) 0.001 (0.000 - 0.010) 0.025 (0.000 - 0.072) 0.273 

-12 0.984 (0.953 - 1.000) 0.938 (0.879 - 0.997) 0.944 (0.888 - 1.000) 0.006 (0.000 - 0.025) 0.394 (0.274 - 0.514) 0.215 

-11 0.969 (0.929 - 1.000) 0.889 (0.816 - 0.962) 0.962 (0.918 - 1.000) 0.012 (0.000 - 0.037) 0.289 (0.184 - 0.394) 0.307 

-10 0.975 (0.939 - 1.000) 0.931 (0.872 - 0.990) 0.953 (0.904 - 1.000) 0.008 (0.000 - 0.029) 0.323 (0.215 - 0.431) 0.299 

-9 0.959 (0.918 - 1.000) 0.888 (0.822 - 0.954) 0.921 (0.865 - 0.977) 0.016 (0.000 - 0.042) 0.402 (0.300 - 0.504) 0.282 

-8 0.934 (0.886 - 0.982) 0.894 (0.835 - 0.953) 0.850 (0.781 - 0.919) 0.019 (0.000 - 0.045) 0.516 (0.420 - 0.612) 0.248 

-7 0.906 (0.847 - 0.965) 0.872 (0.804 - 0.940) 0.796 (0.715 - 0.877) 0.022 (0.000 - 0.052) 0.626 (0.528 - 0.724) 0.229 

-6 0.902 (0.841 - 0.963) 0.870 (0.801 - 0.939) 0.789 (0.706 - 0.872) 0.022 (0.000 - 0.052) 0.641 (0.543 - 0.739) 0.198 

-5 0.880 (0.818 - 0.942) 0.750 (0.667 - 0.833) 0.854 (0.786 - 0.922) 0.044 (0.005 - 0.083) 0.554 (0.458 - 0.650) 0.280 

-4 0.909 (0.851 - 0.967) 0.853 (0.782 - 0.924) 0.820 (0.743 - 0.897) 0.025 (0.000 - 0.056) 0.601 (0.503 - 0.699) 0.252 

-3 0.883 (0.822 - 0.944) 0.840 (0.770 - 0.910) 0.829 (0.757 - 0.901) 0.030 (0.000 - 0.062) 0.562 (0.468 - 0.656) 0.250 

-2 0.879 (0.815 - 0.943) 0.830 (0.756 - 0.904) 0.789 (0.709 - 0.869) 0.031 (0.000 - 0.065) 0.633 (0.539 - 0.727) 0.250 

-1 0.861 (0.793 - 0.929) 0.650 (0.557 - 0.743) 0.898 (0.839 - 0.957) 0.054 (0.010 - 0.098) 0.515 (0.417 - 0.613) 0.330 

Mean ± SD 0.926 ± 0.046 0.860 ± 0.084 0.876 ± 0.070 0.022 ± 0.015 0.468 ± 0.178   

Model BARTm 
     

-13 0.991 (0.963 - 1.000) 0.977 (0.932 - 1.000) 0.959 (0.900 - 1.000) 0.002 (0.000 - 0.015) 0.400 (0.254 - 0.546) 0.094 

-12 0.979 (0.944 - 1.000) 0.938 (0.879 - 0.997) 0.942 (0.885 - 0.999) 0.006 (0.000 - 0.025) 0.400 (0.280 - 0.520) 0.095 

-11 0.978 (0.944 - 1.000) 0.931 (0.872 - 0.990) 0.946 (0.894 - 0.998) 0.008 (0.000 - 0.029) 0.356 (0.245 - 0.467) 0.125 

-10 0.984 (0.955 - 1.000) 0.931 (0.872 - 0.990) 0.964 (0.921 - 1.000) 0.007 (0.000 - 0.026) 0.272 (0.169 - 0.375) 0.190 

-9 0.963 (0.924 - 1.000) 0.933 (0.881 - 0.985) 0.919 (0.862 - 0.976) 0.010 (0.000 - 0.031) 0.399 (0.297 - 0.501) 0.166 

-8 0.923 (0.872 - 0.974) 0.865 (0.799 - 0.931) 0.843 (0.773 - 0.913) 0.025 (0.000 - 0.055) 0.536 (0.440 - 0.632) 0.123 

-7 0.923 (0.869 - 0.977) 0.840 (0.766 - 0.914) 0.860 (0.790 - 0.930) 0.025 (0.000 - 0.057) 0.543 (0.442 - 0.644) 0.135 

-6 0.903 (0.843 - 0.963) 0.870 (0.801 - 0.939) 0.808 (0.728 - 0.888) 0.021 (0.000 - 0.050) 0.619 (0.520 - 0.718) 0.100 

-5 0.913 (0.859 - 0.967) 0.865 (0.799 - 0.931) 0.817 (0.743 - 0.891) 0.025 (0.000 - 0.055) 0.575 (0.480 - 0.670) 0.128 

-4 0.891 (0.828 - 0.954) 0.800 (0.720 - 0.880) 0.860 (0.790 - 0.930) 0.032 (0.000 - 0.067) 0.556 (0.456 - 0.656) 0.176 

-3 0.904 (0.848 - 0.960) 0.858 (0.792 - 0.924) 0.795 (0.718 - 0.872) 0.027 (0.000 - 0.058) 0.601 (0.508 - 0.694) 0.113 

-2 0.866 (0.799 - 0.933) 0.770 (0.688 - 0.852) 0.838 (0.766 - 0.910) 0.039 (0.001 - 0.077) 0.588 (0.492 - 0.684) 0.136 

-1 0.860 (0.792 - 0.928) 0.810 (0.733 - 0.887) 0.750 (0.665 - 0.835) 0.036 (0.000 - 0.073) 0.676 (0.584 - 0.768) 0.089 

Mean ± SD 0.929 ± 0.045 0.876 ± 0.062 0.869 ± 0.070 0.020 ± 0.012 0.502 ± 0.122   
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model C5.0 
     

-13 0.965 (0.910 - 1.000) 0.891 (0.798 - 0.984) 0.971 (0.921 - 1.000) 0.010 (0.000 - 0.040) 0.260 (0.129 - 0.391) 0.277 

-12 0.943 (0.886 - 1.000) 0.792 (0.693 - 0.891) 0.981 (0.948 - 1.000) 0.022 (0.000 - 0.058) 0.186 (0.091 - 0.281) 0.358 

-11 0.970 (0.931 - 1.000) 0.931 (0.872 - 0.990) 0.897 (0.827 - 0.967) 0.008 (0.000 - 0.029) 0.514 (0.399 - 0.629) 0.198 

-10 0.932 (0.874 - 0.990) 0.809 (0.718 - 0.900) 0.930 (0.871 - 0.989) 0.026 (0.000 - 0.063) 0.395 (0.282 - 0.508) 0.277 

-9 0.893 (0.829 - 0.957) 0.779 (0.693 - 0.865) 0.852 (0.778 - 0.926) 0.039 (0.000 - 0.079) 0.547 (0.444 - 0.650) 0.195 

-8 0.876 (0.813 - 0.939) 0.723 (0.637 - 0.809) 0.876 (0.813 - 0.939) 0.042 (0.003 - 0.081) 0.550 (0.454 - 0.646) 0.254 

-7 0.873 (0.806 - 0.940) 0.870 (0.802 - 0.938) 0.731 (0.641 - 0.821) 0.024 (0.000 - 0.055) 0.695 (0.602 - 0.788) 0.154 

-6 0.864 (0.794 - 0.934) 0.933 (0.882 - 0.984) 0.626 (0.527 - 0.725) 0.017 (0.000 - 0.043) 0.720 (0.628 - 0.812) 0.094 

-5 0.840 (0.770 - 0.910) 0.779 (0.699 - 0.859) 0.774 (0.694 - 0.854) 0.038 (0.001 - 0.075) 0.674 (0.584 - 0.764) 0.186 

-4 0.837 (0.763 - 0.911) 0.783 (0.700 - 0.866) 0.804 (0.724 - 0.884) 0.041 (0.001 - 0.081) 0.612 (0.514 - 0.710) 0.189 

-3 0.869 (0.805 - 0.933) 0.800 (0.724 - 0.876) 0.808 (0.733 - 0.883) 0.035 (0.000 - 0.070) 0.619 (0.527 - 0.711) 0.188 

-2 0.821 (0.746 - 0.896) 0.830 (0.756 - 0.904) 0.668 (0.576 - 0.760) 0.036 (0.000 - 0.073) 0.731 (0.644 - 0.818) 0.099 

-1 0.853 (0.784 - 0.922) 0.680 (0.589 - 0.771) 0.874 (0.809 - 0.939) 0.051 (0.008 - 0.094) 0.556 (0.459 - 0.653) 0.291 

Mean ± SD 0.887 ± 0.050 0.815 ± 0.075 0.830 ± 0.109 0.030 ± 0.013 0.543 ± 0.170   

Model GBM 
     

-13 0.997 (0.981 - 1.000) 0.977 (0.932 - 1.000) 0.966 (0.912 - 1.000) 0.002 (0.000 - 0.015) 0.354 (0.211 - 0.497) 0.119 

-12 0.976 (0.939 - 1.000) 0.891 (0.815 - 0.967) 0.981 (0.948 - 1.000) 0.010 (0.000 - 0.034) 0.186 (0.091 - 0.281) 0.280 

-11 0.968 (0.927 - 1.000) 0.917 (0.853 - 0.981) 0.927 (0.867 - 0.987) 0.009 (0.000 - 0.031) 0.431 (0.317 - 0.545) 0.159 

-10 0.975 (0.939 - 1.000) 0.903 (0.835 - 0.971) 0.945 (0.892 - 0.998) 0.011 (0.000 - 0.035) 0.369 (0.258 - 0.480) 0.252 

-9 0.961 (0.921 - 1.000) 0.854 (0.781 - 0.927) 0.926 (0.872 - 0.980) 0.020 (0.000 - 0.049) 0.397 (0.295 - 0.499) 0.221 

-8 0.939 (0.893 - 0.985) 0.837 (0.766 - 0.908) 0.903 (0.846 - 0.960) 0.028 (0.000 - 0.060) 0.424 (0.329 - 0.519) 0.108 

-7 0.926 (0.873 - 0.979) 0.851 (0.779 - 0.923) 0.847 (0.774 - 0.920) 0.024 (0.000 - 0.055) 0.563 (0.463 - 0.663) 0.158 

-6 0.902 (0.841 - 0.963) 0.848 (0.775 - 0.921) 0.804 (0.723 - 0.885) 0.025 (0.000 - 0.057) 0.630 (0.531 - 0.729) 0.142 

-5 0.909 (0.854 - 0.964) 0.875 (0.811 - 0.939) 0.793 (0.715 - 0.871) 0.024 (0.000 - 0.053) 0.603 (0.509 - 0.697) 0.141 

-4 0.904 (0.845 - 0.963) 0.800 (0.720 - 0.880) 0.888 (0.825 - 0.951) 0.031 (0.000 - 0.066) 0.500 (0.399 - 0.601) 0.182 

-3 0.889 (0.829 - 0.949) 0.849 (0.781 - 0.917) 0.786 (0.708 - 0.864) 0.030 (0.000 - 0.062) 0.614 (0.521 - 0.707) 0.129 

-2 0.894 (0.834 - 0.954) 0.830 (0.756 - 0.904) 0.811 (0.734 - 0.888) 0.030 (0.000 - 0.063) 0.607 (0.511 - 0.703) 0.158 

-1 0.866 (0.799 - 0.933) 0.720 (0.632 - 0.808) 0.858 (0.790 - 0.926) 0.046 (0.005 - 0.087) 0.571 (0.474 - 0.668) 0.109 

Mean ± SD 0.931 ± 0.041 0.858 ± 0.061 0.880 ± 0.068 0.022 ± 0.012 0.481 ± 0.134   

Model LR 
     

-13 0.920 (0.839 - 1.000) 0.837 (0.727 - 0.947) 0.975 (0.928 - 1.000) 0.010 (0.000 - 0.040) 0.321 (0.181 - 0.461) 0.001 

-12 0.905 (0.833 - 0.977) 0.812 (0.716 - 0.908) 0.973 (0.933 - 1.000) 0.018 (0.000 - 0.051) 0.268 (0.159 - 0.377) 0.982 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-11 0.898 (0.828 - 0.968) 0.847 (0.764 - 0.930) 0.911 (0.845 - 0.977) 0.017 (0.000 - 0.047) 0.500 (0.385 - 0.615) 0.001 

-10 0.920 (0.857 - 0.983) 0.917 (0.853 - 0.981) 0.900 (0.831 - 0.969) 0.010 (0.000 - 0.033) 0.511 (0.396 - 0.626) 0.091 

-9 0.914 (0.856 - 0.972) 0.865 (0.794 - 0.936) 0.898 (0.835 - 0.961) 0.019 (0.000 - 0.047) 0.473 (0.369 - 0.577) 0.085 

-8 0.877 (0.814 - 0.940) 0.808 (0.732 - 0.884) 0.887 (0.826 - 0.948) 0.033 (0.000 - 0.067) 0.472 (0.376 - 0.568) 0.087 

-7 0.868 (0.800 - 0.936) 0.819 (0.741 - 0.897) 0.824 (0.747 - 0.901) 0.030 (0.000 - 0.064) 0.605 (0.506 - 0.704) 0.065 

-6 0.849 (0.776 - 0.922) 0.815 (0.736 - 0.894) 0.839 (0.764 - 0.914) 0.029 (0.000 - 0.063) 0.592 (0.492 - 0.692) 0.067 

-5 0.848 (0.779 - 0.917) 0.817 (0.743 - 0.891) 0.787 (0.708 - 0.866) 0.035 (0.000 - 0.070) 0.626 (0.533 - 0.719) 0.046 

-4 0.847 (0.775 - 0.919) 0.747 (0.660 - 0.834) 0.842 (0.769 - 0.915) 0.040 (0.001 - 0.079) 0.601 (0.503 - 0.699) 0.144 

-3 0.850 (0.782 - 0.918) 0.783 (0.705 - 0.861) 0.855 (0.788 - 0.922) 0.039 (0.002 - 0.076) 0.539 (0.444 - 0.634) 0.142 

-2 0.810 (0.733 - 0.887) 0.720 (0.632 - 0.808) 0.820 (0.745 - 0.895) 0.048 (0.006 - 0.090) 0.629 (0.534 - 0.724) 0.101 

-1 0.823 (0.748 - 0.898) 0.710 (0.621 - 0.799) 0.840 (0.768 - 0.912) 0.048 (0.006 - 0.090) 0.603 (0.507 - 0.699) 0.134 

Mean ± SD 0.871 ± 0.037 0.807 ± 0.057 0.873 ± 0.057 0.029 ± 0.013 0.518 ± 0.115   

Model RF 
     

-13 0.993 (0.968 - 1.000) 0.999 (0.990 - 1.000) 0.943 (0.874 - 1.000) 0.000 (0.000 - 0.000) 0.476 (0.327 - 0.625) 0.145 

-12 0.964 (0.918 - 1.000) 0.875 (0.794 - 0.956) 0.978 (0.942 - 1.000) 0.012 (0.000 - 0.039) 0.211 (0.111 - 0.311) 0.285 

-11 0.955 (0.907 - 1.000) 0.833 (0.747 - 0.919) 0.953 (0.904 - 1.000) 0.018 (0.000 - 0.049) 0.348 (0.238 - 0.458) 0.230 

-10 0.966 (0.924 - 1.000) 0.958 (0.912 - 1.000) 0.884 (0.810 - 0.958) 0.005 (0.000 - 0.021) 0.537 (0.422 - 0.652) 0.155 

-9 0.944 (0.896 - 0.992) 0.876 (0.808 - 0.944) 0.856 (0.783 - 0.929) 0.019 (0.000 - 0.047) 0.554 (0.451 - 0.657) 0.175 

-8 0.913 (0.859 - 0.967) 0.808 (0.732 - 0.884) 0.902 (0.845 - 0.959) 0.032 (0.000 - 0.066) 0.436 (0.341 - 0.531) 0.230 

-7 0.881 (0.816 - 0.946) 0.894 (0.832 - 0.956) 0.731 (0.641 - 0.821) 0.020 (0.000 - 0.048) 0.683 (0.589 - 0.777) 0.110 

-6 0.879 (0.812 - 0.946) 0.685 (0.590 - 0.780) 0.903 (0.843 - 0.963) 0.045 (0.003 - 0.087) 0.512 (0.410 - 0.614) 0.235 

-5 0.854 (0.786 - 0.922) 0.837 (0.766 - 0.908) 0.736 (0.651 - 0.821) 0.034 (0.000 - 0.069) 0.669 (0.579 - 0.759) 0.105 

-4 0.875 (0.808 - 0.942) 0.821 (0.744 - 0.898) 0.808 (0.729 - 0.887) 0.030 (0.000 - 0.064) 0.625 (0.528 - 0.722) 0.170 

-3 0.857 (0.790 - 0.924) 0.802 (0.726 - 0.878) 0.765 (0.684 - 0.846) 0.039 (0.002 - 0.076) 0.649 (0.558 - 0.740) 0.125 

-2 0.880 (0.816 - 0.944) 0.820 (0.745 - 0.895) 0.790 (0.710 - 0.870) 0.033 (0.000 - 0.068) 0.634 (0.540 - 0.728) 0.155 

-1 0.852 (0.782 - 0.922) 0.710 (0.621 - 0.799) 0.830 (0.756 - 0.904) 0.049 (0.007 - 0.091) 0.618 (0.523 - 0.713) 0.195 

Mean ± SD 0.909 ± 0.049 0.840 ± 0.086 0.852 ± 0.083 0.026 ± 0.015 0.535 ± 0.139   

Model SVM 
     

-13 0.993 (0.968 - 1.000) 0.999 (0.990 - 1.000) 0.940 (0.869 - 1.000) 0.000 (0.000 - 0.000) 0.488 (0.339 - 0.637) 0.041 

-12 0.977 (0.940 - 1.000) 0.953 (0.901 - 1.000) 0.933 (0.872 - 0.994) 0.005 (0.000 - 0.022) 0.430 (0.309 - 0.551) 0.042 

-11 0.966 (0.924 - 1.000) 0.944 (0.891 - 0.997) 0.913 (0.848 - 0.978) 0.006 (0.000 - 0.024) 0.469 (0.354 - 0.584) 0.062 

-10 0.978 (0.944 - 1.000) 0.917 (0.853 - 0.981) 0.952 (0.903 - 1.000) 0.009 (0.000 - 0.031) 0.333 (0.224 - 0.442) 0.208 

-9 0.957 (0.915 - 0.999) 0.910 (0.851 - 0.969) 0.914 (0.856 - 0.972) 0.013 (0.000 - 0.037) 0.417 (0.315 - 0.519) 0.150 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-8 0.936 (0.889 - 0.983) 0.894 (0.835 - 0.953) 0.865 (0.799 - 0.931) 0.019 (0.000 - 0.045) 0.489 (0.393 - 0.585) 0.102 

-7 0.924 (0.870 - 0.978) 0.904 (0.844 - 0.964) 0.781 (0.697 - 0.865) 0.017 (0.000 - 0.043) 0.634 (0.537 - 0.731) 0.078 

-6 0.898 (0.836 - 0.960) 0.804 (0.723 - 0.885) 0.876 (0.809 - 0.943) 0.029 (0.000 - 0.063) 0.532 (0.430 - 0.634) 0.135 

-5 0.890 (0.830 - 0.950) 0.846 (0.777 - 0.915) 0.841 (0.771 - 0.911) 0.028 (0.000 - 0.060) 0.546 (0.450 - 0.642) 0.118 

-4 0.895 (0.833 - 0.957) 0.853 (0.782 - 0.924) 0.823 (0.746 - 0.900) 0.024 (0.000 - 0.055) 0.597 (0.498 - 0.696) 0.132 

-3 0.891 (0.832 - 0.950) 0.830 (0.758 - 0.902) 0.822 (0.749 - 0.895) 0.032 (0.000 - 0.066) 0.575 (0.481 - 0.669) 0.104 

-2 0.874 (0.809 - 0.939) 0.770 (0.688 - 0.852) 0.798 (0.719 - 0.877) 0.041 (0.002 - 0.080) 0.640 (0.546 - 0.734) 0.112 

-1 0.869 (0.803 - 0.935) 0.740 (0.654 - 0.826) 0.836 (0.763 - 0.909) 0.044 (0.004 - 0.084) 0.600 (0.504 - 0.696) 0.145 

Mean ± SD 0.927 ± 0.043 0.874 ± 0.075 0.869 ± 0.057 0.021 ± 0.014 0.519 ± 0.092   
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Table 8.3.E. Performance measures for each model at each lead time before delirium when predicting delirium within 21h since ICU admission, using complete training 

data and missForest imputation in testing data. 

Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model AdaBoost      

-13 0.994 (0.971 - 1.000) 0.977 (0.932 - 1.000) 0.981 (0.940 - 1.000) 0.001 (0.000 - 0.010) 0.236 (0.109 - 0.363) 0.273 

-12 0.984 (0.953 - 1.000) 0.938 (0.879 - 0.997) 0.946 (0.891 - 1.000) 0.006 (0.000 - 0.025) 0.381 (0.262 - 0.500) 0.213 

-11 0.969 (0.929 - 1.000) 0.889 (0.816 - 0.962) 0.965 (0.923 - 1.000) 0.012 (0.000 - 0.037) 0.273 (0.170 - 0.376) 0.307 

-10 0.975 (0.939 - 1.000) 0.944 (0.891 - 0.997) 0.935 (0.878 - 0.992) 0.006 (0.000 - 0.024) 0.398 (0.285 - 0.511) 0.274 

-9 0.960 (0.919 - 1.000) 0.888 (0.822 - 0.954) 0.923 (0.868 - 0.978) 0.016 (0.000 - 0.042) 0.397 (0.295 - 0.499) 0.282 

-8 0.936 (0.889 - 0.983) 0.894 (0.835 - 0.953) 0.856 (0.789 - 0.923) 0.019 (0.000 - 0.045) 0.505 (0.409 - 0.601) 0.248 

-7 0.907 (0.848 - 0.966) 0.862 (0.792 - 0.932) 0.801 (0.720 - 0.882) 0.024 (0.000 - 0.055) 0.623 (0.525 - 0.721) 0.242 

-6 0.903 (0.843 - 0.963) 0.870 (0.801 - 0.939) 0.789 (0.706 - 0.872) 0.022 (0.000 - 0.052) 0.641 (0.543 - 0.739) 0.198 

-5 0.881 (0.819 - 0.943) 0.865 (0.799 - 0.931) 0.742 (0.658 - 0.826) 0.028 (0.000 - 0.060) 0.656 (0.565 - 0.747) 0.203 

-4 0.910 (0.852 - 0.968) 0.853 (0.782 - 0.924) 0.822 (0.745 - 0.899) 0.025 (0.000 - 0.056) 0.599 (0.500 - 0.698) 0.252 

-3 0.883 (0.822 - 0.944) 0.830 (0.758 - 0.902) 0.831 (0.760 - 0.902) 0.031 (0.000 - 0.064) 0.562 (0.468 - 0.656) 0.250 

-2 0.879 (0.815 - 0.943) 0.800 (0.722 - 0.878) 0.823 (0.748 - 0.898) 0.035 (0.000 - 0.071) 0.600 (0.504 - 0.696) 0.270 

-1 0.860 (0.792 - 0.928) 0.640 (0.546 - 0.734) 0.900 (0.841 - 0.959) 0.056 (0.011 - 0.101) 0.515 (0.417 - 0.613) 0.330 

Mean ± SD 0.926 ± 0.865 0.870 ± 0.022 0.491 ± 0.046 0.083 ± 0.076 0.015 ± 0.141   

Model BARTm 
     

-13 0.990 (0.960 - 1.000) 0.953 (0.890 - 1.000) 0.981 (0.940 - 1.000) 0.003 (0.000 - 0.019) 0.241 (0.113 - 0.369) 0.168 

-12 0.976 (0.939 - 1.000) 0.906 (0.835 - 0.977) 0.980 (0.946 - 1.000) 0.009 (0.000 - 0.032) 0.194 (0.097 - 0.291) 0.153 

-11 0.977 (0.942 - 1.000) 0.903 (0.835 - 0.971) 0.952 (0.903 - 1.000) 0.011 (0.000 - 0.035) 0.337 (0.228 - 0.446) 0.138 

-10 0.982 (0.951 - 1.000) 0.931 (0.872 - 0.990) 0.964 (0.921 - 1.000) 0.007 (0.000 - 0.026) 0.272 (0.169 - 0.375) 0.187 

-9 0.965 (0.927 - 1.000) 0.933 (0.881 - 0.985) 0.898 (0.835 - 0.961) 0.010 (0.000 - 0.031) 0.454 (0.351 - 0.557) 0.143 

-8 0.943 (0.898 - 0.988) 0.885 (0.824 - 0.946) 0.879 (0.816 - 0.942) 0.020 (0.000 - 0.047) 0.465 (0.369 - 0.561) 0.138 

-7 0.913 (0.856 - 0.970) 0.830 (0.754 - 0.906) 0.847 (0.774 - 0.920) 0.027 (0.000 - 0.060) 0.569 (0.469 - 0.669) 0.127 

-6 0.909 (0.850 - 0.968) 0.859 (0.788 - 0.930) 0.811 (0.731 - 0.891) 0.023 (0.000 - 0.054) 0.618 (0.519 - 0.717) 0.101 

-5 0.898 (0.840 - 0.956) 0.827 (0.754 - 0.900) 0.794 (0.716 - 0.872) 0.033 (0.000 - 0.067) 0.614 (0.520 - 0.708) 0.110 

-4 0.885 (0.821 - 0.949) 0.768 (0.683 - 0.853) 0.870 (0.802 - 0.938) 0.036 (0.000 - 0.073) 0.547 (0.447 - 0.647) 0.187 

-3 0.895 (0.837 - 0.953) 0.802 (0.726 - 0.878) 0.867 (0.802 - 0.932) 0.035 (0.000 - 0.070) 0.511 (0.416 - 0.606) 0.895 

-2 0.874 (0.809 - 0.939) 0.770 (0.688 - 0.852) 0.863 (0.796 - 0.930) 0.038 (0.001 - 0.075) 0.547 (0.449 - 0.645) 0.159 

-1 0.870 (0.804 - 0.936) 0.680 (0.589 - 0.771) 0.894 (0.834 - 0.954) 0.050 (0.007 - 0.093) 0.514 (0.416 - 0.612) 0.204 

Mean ± SD 0.929 ± 0.850 0.892 ± 0.023 0.453 ± 0.044 0.080 ± 0.061 0.015 ± 0.144   
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

Model C5.0 
     

-13 0.988 (0.955 - 1.000) 0.953 (0.890 - 1.000) 0.977 (0.932 - 1.000) 0.003 (0.000 - 0.019) 0.281 (0.147 - 0.415) 0.273 

-12 0.968 (0.925 - 1.000) 0.875 (0.794 - 0.956) 0.984 (0.953 - 1.000) 0.012 (0.000 - 0.039) 0.164 (0.073 - 0.255) 0.340 

-11 0.949 (0.898 - 1.000) 0.889 (0.816 - 0.962) 0.943 (0.889 - 0.997) 0.012 (0.000 - 0.037) 0.379 (0.267 - 0.491) 0.222 

-10 0.959 (0.913 - 1.000) 0.903 (0.835 - 0.971) 0.933 (0.875 - 0.991) 0.011 (0.000 - 0.035) 0.414 (0.300 - 0.528) 0.242 

-9 0.941 (0.892 - 0.990) 0.899 (0.836 - 0.962) 0.886 (0.820 - 0.952) 0.015 (0.000 - 0.040) 0.490 (0.386 - 0.594) 0.214 

-8 0.917 (0.864 - 0.970) 0.837 (0.766 - 0.908) 0.903 (0.846 - 0.960) 0.028 (0.000 - 0.060) 0.424 (0.329 - 0.519) 0.257 

-7 0.874 (0.807 - 0.941) 0.809 (0.730 - 0.888) 0.804 (0.724 - 0.884) 0.032 (0.000 - 0.068) 0.635 (0.538 - 0.732) 0.185 

-6 0.880 (0.814 - 0.946) 0.783 (0.699 - 0.867) 0.840 (0.765 - 0.915) 0.034 (0.000 - 0.071) 0.600 (0.500 - 0.700) 0.208 

-5 0.863 (0.797 - 0.929) 0.635 (0.542 - 0.728) 0.920 (0.868 - 0.972) 0.058 (0.013 - 0.103) 0.445 (0.349 - 0.541) 0.294 

-4 0.815 (0.737 - 0.893) 0.705 (0.613 - 0.797) 0.824 (0.747 - 0.901) 0.048 (0.005 - 0.091) 0.640 (0.543 - 0.737) 0.278 

-3 0.858 (0.792 - 0.924) 0.736 (0.652 - 0.820) 0.847 (0.778 - 0.916) 0.047 (0.007 - 0.087) 0.567 (0.473 - 0.661) 0.237 

-2 0.873 (0.808 - 0.938) 0.750 (0.665 - 0.835) 0.835 (0.762 - 0.908) 0.042 (0.003 - 0.081) 0.599 (0.503 - 0.695) 0.207 

-1 0.849 (0.779 - 0.919) 0.670 (0.578 - 0.762) 0.874 (0.809 - 0.939) 0.053 (0.009 - 0.097) 0.559 (0.462 - 0.656) 0.291 

Mean ± SD 0.903 ± 0.803 0.890 ± 0.030 0.477 ± 0.054 0.099 ± 0.059 0.018 ± 0.144   

Model GBM 
     

-13 0.997 (0.981 - 1.000) 0.999 (0.990 - 1.000) 0.946 (0.878 - 1.000) 0.000 (0.000 - 0.000) 0.462 (0.313 - 0.611) 0.119 

-12 0.976 (0.939 - 1.000) 0.891 (0.815 - 0.967) 0.983 (0.951 - 1.000) 0.010 (0.000 - 0.034) 0.174 (0.081 - 0.267) 0.280 

-11 0.968 (0.927 - 1.000) 0.917 (0.853 - 0.981) 0.927 (0.867 - 0.987) 0.009 (0.000 - 0.031) 0.431 (0.317 - 0.545) 0.158 

-10 0.975 (0.939 - 1.000) 0.889 (0.816 - 0.962) 0.961 (0.916 - 1.000) 0.012 (0.000 - 0.037) 0.297 (0.191 - 0.403) 0.270 

-9 0.962 (0.922 - 1.000) 0.854 (0.781 - 0.927) 0.924 (0.869 - 0.979) 0.020 (0.000 - 0.049) 0.402 (0.300 - 0.504) 0.221 

-8 0.939 (0.893 - 0.985) 0.837 (0.766 - 0.908) 0.906 (0.850 - 0.962) 0.028 (0.000 - 0.060) 0.416 (0.321 - 0.511) 0.108 

-7 0.926 (0.873 - 0.979) 0.851 (0.779 - 0.923) 0.847 (0.774 - 0.920) 0.024 (0.000 - 0.055) 0.563 (0.463 - 0.663) 0.158 

-6 0.902 (0.841 - 0.963) 0.837 (0.762 - 0.912) 0.805 (0.724 - 0.886) 0.027 (0.000 - 0.060) 0.632 (0.533 - 0.731) 0.138 

-5 0.910 (0.855 - 0.965) 0.875 (0.811 - 0.939) 0.799 (0.722 - 0.876) 0.024 (0.000 - 0.053) 0.596 (0.502 - 0.690) 0.141 

-4 0.905 (0.846 - 0.964) 0.800 (0.720 - 0.880) 0.889 (0.826 - 0.952) 0.031 (0.000 - 0.066) 0.497 (0.396 - 0.598) 0.182 

-3 0.891 (0.832 - 0.950) 0.849 (0.781 - 0.917) 0.792 (0.715 - 0.869) 0.029 (0.000 - 0.061) 0.607 (0.514 - 0.700) 0.129 

-2 0.891 (0.830 - 0.952) 0.810 (0.733 - 0.887) 0.814 (0.738 - 0.890) 0.033 (0.000 - 0.068) 0.609 (0.513 - 0.705) 0.158 

-1 0.865 (0.798 - 0.932) 0.780 (0.699 - 0.861) 0.787 (0.707 - 0.867) 0.040 (0.002 - 0.078) 0.649 (0.555 - 0.743) 0.109 

Mean ± SD 0.931 ± 0.861 0.875 ± 0.022 0.487 ± 0.041 0.057 ± 0.071 0.011 ± 0.143   

Model LR 
     

-13 0.957 (0.896 - 1.000) 0.907 (0.820 - 0.994) 0.975 (0.928 - 1.000) 0.006 (0.000 - 0.029) 0.304 (0.167 - 0.441) 0.001 

-12 0.911 (0.841 - 0.981) 0.828 (0.736 - 0.920) 0.981 (0.948 - 1.000) 0.016 (0.000 - 0.047) 0.197 (0.100 - 0.294) 0.982 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-11 0.903 (0.835 - 0.971) 0.847 (0.764 - 0.930) 0.920 (0.857 - 0.983) 0.017 (0.000 - 0.047) 0.474 (0.359 - 0.589) 0.001 

-10 0.943 (0.889 - 0.997) 0.931 (0.872 - 0.990) 0.895 (0.824 - 0.966) 0.008 (0.000 - 0.029) 0.518 (0.403 - 0.633) 0.091 

-9 0.920 (0.864 - 0.976) 0.865 (0.794 - 0.936) 0.905 (0.844 - 0.966) 0.019 (0.000 - 0.047) 0.454 (0.351 - 0.557) 0.085 

-8 0.879 (0.816 - 0.942) 0.817 (0.743 - 0.891) 0.884 (0.822 - 0.946) 0.032 (0.000 - 0.066) 0.475 (0.379 - 0.571) 0.087 

-7 0.868 (0.800 - 0.936) 0.830 (0.754 - 0.906) 0.824 (0.747 - 0.901) 0.028 (0.000 - 0.061) 0.602 (0.503 - 0.701) 0.065 

-6 0.853 (0.781 - 0.925) 0.804 (0.723 - 0.885) 0.845 (0.771 - 0.919) 0.031 (0.000 - 0.066) 0.587 (0.486 - 0.688) 0.067 

-5 0.843 (0.773 - 0.913) 0.798 (0.721 - 0.875) 0.796 (0.719 - 0.873) 0.038 (0.001 - 0.075) 0.621 (0.528 - 0.714) 0.046 

-4 0.857 (0.787 - 0.927) 0.758 (0.672 - 0.844) 0.851 (0.779 - 0.923) 0.038 (0.000 - 0.076) 0.584 (0.485 - 0.683) 0.144 

-3 0.860 (0.794 - 0.926) 0.783 (0.705 - 0.861) 0.865 (0.800 - 0.930) 0.038 (0.002 - 0.074) 0.520 (0.425 - 0.615) 0.142 

-2 0.815 (0.739 - 0.891) 0.720 (0.632 - 0.808) 0.827 (0.753 - 0.901) 0.048 (0.006 - 0.090) 0.619 (0.524 - 0.714) 0.101 

-1 0.823 (0.748 - 0.898) 0.700 (0.610 - 0.790) 0.846 (0.775 - 0.917) 0.050 (0.007 - 0.093) 0.598 (0.502 - 0.694) 0.134 

Mean ± SD 0.879 ± 0.814 0.878 ± 0.028 0.504 ± 0.044 0.066 ± 0.056 0.014 ± 0.128   

Model RF 
     

-13 0.993 (0.968 - 1.000) 0.999 (0.990 - 1.000) 0.949 (0.883 - 1.000) 0.000 (0.000 - 0.000) 0.449 (0.300 - 0.598) 0.145 

-12 0.966 (0.922 - 1.000) 0.875 (0.794 - 0.956) 0.978 (0.942 - 1.000) 0.012 (0.000 - 0.039) 0.211 (0.111 - 0.311) 0.265 

-11 0.956 (0.909 - 1.000) 0.917 (0.853 - 0.981) 0.875 (0.799 - 0.951) 0.010 (0.000 - 0.033) 0.566 (0.452 - 0.680) 0.105 

-10 0.966 (0.924 - 1.000) 0.944 (0.891 - 0.997) 0.900 (0.831 - 0.969) 0.006 (0.000 - 0.024) 0.504 (0.389 - 0.619) 0.170 

-9 0.945 (0.898 - 0.992) 0.876 (0.808 - 0.944) 0.865 (0.794 - 0.936) 0.018 (0.000 - 0.046) 0.538 (0.434 - 0.642) 0.175 

-8 0.915 (0.861 - 0.969) 0.798 (0.721 - 0.875) 0.908 (0.852 - 0.964) 0.034 (0.000 - 0.069) 0.424 (0.329 - 0.519) 0.245 

-7 0.882 (0.817 - 0.947) 0.883 (0.818 - 0.948) 0.740 (0.651 - 0.829) 0.022 (0.000 - 0.052) 0.678 (0.584 - 0.772) 0.110 

-6 0.880 (0.814 - 0.946) 0.815 (0.736 - 0.894) 0.768 (0.682 - 0.854) 0.032 (0.000 - 0.068) 0.677 (0.581 - 0.773) 0.130 

-5 0.859 (0.792 - 0.926) 0.837 (0.766 - 0.908) 0.752 (0.669 - 0.835) 0.033 (0.000 - 0.067) 0.655 (0.564 - 0.746) 0.105 

-4 0.878 (0.812 - 0.944) 0.821 (0.744 - 0.898) 0.819 (0.742 - 0.896) 0.030 (0.000 - 0.064) 0.612 (0.514 - 0.710) 0.170 

-3 0.861 (0.795 - 0.927) 0.802 (0.726 - 0.878) 0.780 (0.701 - 0.859) 0.039 (0.002 - 0.076) 0.634 (0.542 - 0.726) 0.125 

-2 0.880 (0.816 - 0.944) 0.810 (0.733 - 0.887) 0.801 (0.723 - 0.879) 0.034 (0.000 - 0.070) 0.625 (0.530 - 0.720) 0.155 

-1 0.853 (0.784 - 0.922) 0.700 (0.610 - 0.790) 0.840 (0.768 - 0.912) 0.050 (0.007 - 0.093) 0.607 (0.511 - 0.703) 0.195 

Mean ± SD 0.910 ± 0.852 0.844 ± 0.025 0.552 ± 0.049 0.076 ± 0.076 0.015 ± 0.131   

Model SVM 
     

-13 0.996 (0.977 - 1.000) 0.999 (0.990 - 1.000) 0.949 (0.883 - 1.000) 0.000 (0.000 - 0.000) 0.449 (0.300 - 0.598) 0.041 

-12 0.979 (0.944 - 1.000) 0.953 (0.901 - 1.000) 0.944 (0.888 - 1.000) 0.005 (0.000 - 0.022) 0.390 (0.271 - 0.509) 0.042 

-11 0.970 (0.931 - 1.000) 0.944 (0.891 - 0.997) 0.924 (0.863 - 0.985) 0.006 (0.000 - 0.024) 0.433 (0.319 - 0.547) 0.062 

-10 0.981 (0.949 - 1.000) 0.917 (0.853 - 0.981) 0.964 (0.921 - 1.000) 0.009 (0.000 - 0.031) 0.275 (0.172 - 0.378) 0.208 

-9 0.960 (0.919 - 1.000) 0.910 (0.851 - 0.969) 0.926 (0.872 - 0.980) 0.013 (0.000 - 0.037) 0.382 (0.281 - 0.483) 0.154 
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Lead Time AUC (95% CI) Sens (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI) Cut-off 

-8 0.941 (0.896 - 0.986) 0.894 (0.835 - 0.953) 0.877 (0.814 - 0.940) 0.019 (0.000 - 0.045) 0.466 (0.370 - 0.562) 0.102 

-7 0.931 (0.880 - 0.982) 0.904 (0.844 - 0.964) 0.790 (0.708 - 0.872) 0.017 (0.000 - 0.043) 0.624 (0.526 - 0.722) 0.078 

-6 0.905 (0.845 - 0.965) 0.804 (0.723 - 0.885) 0.886 (0.821 - 0.951) 0.029 (0.000 - 0.063) 0.510 (0.408 - 0.612) 0.135 

-5 0.896 (0.837 - 0.955) 0.846 (0.777 - 0.915) 0.851 (0.783 - 0.919) 0.027 (0.000 - 0.058) 0.529 (0.433 - 0.625) 0.118 

-4 0.901 (0.841 - 0.961) 0.853 (0.782 - 0.924) 0.833 (0.758 - 0.908) 0.024 (0.000 - 0.055) 0.582 (0.483 - 0.681) 0.132 

-3 0.897 (0.839 - 0.955) 0.830 (0.758 - 0.902) 0.832 (0.761 - 0.903) 0.031 (0.000 - 0.064) 0.560 (0.466 - 0.654) 0.104 

-2 0.877 (0.813 - 0.941) 0.770 (0.688 - 0.852) 0.812 (0.735 - 0.889) 0.040 (0.002 - 0.078) 0.623 (0.528 - 0.718) 0.112 

-1 0.873 (0.808 - 0.938) 0.740 (0.654 - 0.826) 0.848 (0.778 - 0.918) 0.043 (0.003 - 0.083) 0.582 (0.485 - 0.679) 0.145 

Mean ± SD 0.931 ± 0.874 0.880 ± 0.020 0.493 ± 0.043 0.075 ± 0.057 0.014 ± 0.105   
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Appendix 8.4: How Laboratory Values 

Change as the Lead Times Change for 

Delirium vs non-Delirium Patients 

The changing of laboratory variable summary values as the lead time changes for 

patients with delirium (A) and for patients without delirium (B). The horizontal lines 

indicate the normal range for each respective laboratory value. Abbreviations: ABE, 

arterial base excess; AH, arterial haematocrit; CRP, C-Reactive Protein; HCO3, 

bicarbonate; H+, Hydrogen ion. 

 

 



 

 

429 

 

 

 

 



430 

 

 

 

 



 

 

431 

 

 

 

 



432 

 

 

 

 

 

 

 



Appendix 8.5: Performance of Static Models 

Predicting Delirium in ICU 

Here the performance measures of the models predicting delirium in ICU in a static 

manner are presented. Because the prediction was made in a static manner, the time of 

delirium occurrence was not taken into account. In addition, minimum, maximum, first 

and last laboratory values were included for all patients based on the total ICU stay. 

Model AUC Sensitivity Specificity PPV NPV Cut-off 

AB 0.883 0.893 0.726 0.022 0.664 0.204 

BARTm 0.905 0.806 0.852 0.034 0.541 0.151 

C5.0 0.886 0.903 0.745 0.020 0.645 0.153 

GBM 0.897 0.825 0.833 0.032 0.566 0.762 

LR 0.834 0.689 0.846 0.054 0.590 0.123 

RF 0.863 0.874 0.705 0.027 0.685 0.105 

SVM 0.905 0.835 0.825 0.030 0.574 0.105 

 


