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ABSTRACT 
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The behaviour of symmetrical single and double storey frameworks, constructed 

with cold-formed thin-walled plain channel members and semi-rigid connections, 

is investigated both analytically and experimentally in this thesis. '' 

A method of analysis, which is based on the matrix stiffness method, is developed 

and written into a computer programme. Generalized relationships between forces 

and displacements at the ends of an element with semi-rigid connections are derived 

and presented in a matrix form. The analysis takes account of local and torsional 

flexural buckling, connection strength and full moment-rotation behaviour, axial 

load effects, member plasticity, initial imperfection and shortening due to flexure. 

Using the theoretical analysis, the full loading history of the framework can be 

traced up to the final failure load. Results are finally presented graphically and in 

tabulated form. 

Details of an experimental investigation, which was undertaken to obtain the 

moment-rotation relationship of connections of various stiffnesses, are given. From 

the experimental data, a standardized theoretical model capable of representing the 

full moment-rotation behaviour of the connections is developed. Results from the 

model are compared with the experimental data and the agreement is generally very 

good. The theoretical model is incorporated into the theoretical analysis to account 

for the change in stiffness of the connection during loading. 

For the frameworks, an extensive experimental investigation was undertaken to 

ascertain the accuracy of the theoretical analysis. Details of the fabrication of the 

specimens, construction of the frameworks, testing equipment and procedures are 

also presented. 



Results of the framework experimental investigation are compared with the 

theoretical predictions. The agreement between theory and experiment is shown to 

be very close in general. Some wholly theoretical numerical results are also 

presented and discussed. 

The findings of the investigation are summarized and the main conclusions are 

listed. 
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1.1 INTRODUCTION 

The determination , of the actual behaviour of even a simple structure is extremely 

complex and also time consuming even in this modem age of computerization. This 

is due to the complex interaction of loading on the actual structure. There will also 

be interaction between individual members of the structure. The actual loading on 

individual members will always be highly variable and difficult to predict in 

advance. 

For analysis purposes, the actual structure will in most cases be idealized as a two 

dimensional framework structure. The members of the structure are furthermore 

assumed to be connected either by ftictionless pins or by fully rigid connections. 

Such framed structures are usually known as plane trusses and plane or rigid 

frameworks respectively. 

Like plane trusses, rigid frameworks are loaded only in their own plane and are 

extensively used in the civil industry. Examples include storage racks, offshore 

structures and all types of building frameworks. For a framework where the 

members are assumed to be rigidly connected at the joints, the angles between 

members meeting at a joint remain unchanged as the framework deforms under 

loading. Consequently, the members of rigid frameworks transmit load, not only 

axially, but also by bending and shear. Rigid frameworks are also often designed 

to carry loads both at the joints and along the lengths of the members. 

Although the above two idealized models corresponding to the two extreme cases 

are simple to use and easy to implement in analysis and design, their validities are 

not corroborated by experiments. Experiments carried out over the past decades 

have shown convincingly that actual joint behaviour generally falls between the 

two extremes of perfectly pinned and fully rigid. In addition, the moment-rotational 

deformation behaviour of the connections is usually non-linear and always 

irreversible almost for the entire range of rotations. This effect will alter the internal 
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force distribution in the members of the framework and the framework overall 

behaviour. The above, type of joint is known as semi-rigid connection and 
frameworks having such connections are known as semi-rigid frameworks. 

In the elastic-linear analysis of plane frameworks, both rigid and semi-rigid, the 

material properties are assumed to be constant and displacements are assumed to 

be small. This type of analysis is usually straightforward and quite simple. However, 

when non-linear effects are present, the analysis can be very complex. Non-linearity 

is caused by geometrical and material effects. The main factor that contributes to 

the former effect is the influence of axial force on member flexural stiffness. 

Another major cause is the horizontal displacements, commonly known as the 

P-Delta effect. Changes in members chord length and initial imperfections also 

cause non-linearity. The non-linear stress-strain relationship of the material and 

residual stresses present in members prior to loading are the main causes of material 

effects. 

As mentioned above, the most significant non-linear influence in the elastic 

behaviour of frameworks is the influence of the axial forces on the flexural stiffness 

of the members. Tensile forces can be considered as increasing the flexural stiffness 

while compressive forces decrease the flexural stiffness. If a set of compressive 

forces is increased to the extent that the bending stiffness of the framework as a 

whole reduces to zero, the framework becomes unstable. This is known as the elastic 

critical load. 

When the material of the framework is stressed beyond the limit of proportionality, 

the elastic critical load does not give an accurate representation of the actual failure 

load. At collapse, large regions of the framework may be inelastic. Hence, a collapse 

load analysis is required, i. e., plastic hinges can developed wherever the bending 

moment is sufficiently large. In a collapse load analysis, the load may be obtained 

through rigid - plastic, elastic - Perfectly - plastic or elasto - plastic analysis. 
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With the widespread and increaging use of cold-fornied, thin-walled structures as, 

main components of plane frameworks, the tendency for local buckling to occur is 

inevitable, especially when the walls of the section are very thin compared with 

their widths. 

Local buckling is characterised by distortion of the shape of the cross'section. The 

walls depart from their original plane and form waves, or buckles, along the length 

of the member. After local buckling, there is a radical alteration of the stress system 

within the section, causing a reduction in the stiffness of the member and a 

subsequent lowering of the ultimate moment carrying capacity. 

The problem of local buckling., coupled with the non-linear behaviour of the 

connections and other non-linear effects lead to a rather complex but nevertheless 

much required analysis. In the investigation of the behaviour of such frameworks, 

a knowledge of several relevant topics are essential. 

The following review of the literature, therefore consists of the following sections: 

1.2 Rigid frameworks 

1.3 Connections 

1.4 Semi-rigid frameworks 

Due to the wealth of literature, especially on the first subject mentioned above, only 

those papers considered by the author to be most relevant are reviewed in this thesis 

and are listed in part one of the bibliography. Part two of the bibliography contains 

references which have not been mentioned in the review but are nevertheless 

informative in this and allied field. 

1.2 RIGID FRAMEWORKS 

In a survey conducted by Lu (1), it was mentioned that the fast systematic method 

of analysis of plane frameworks was presented by Bleich (2,3). Although further 
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investigations followed, it was not until in the mid fifties that Merchant and his 

associates (4,5,6,7) made a significant contribution. They proposed an analytical 

method of stability analysis suitable for the examination of tall buildings. 

Lundquist (8) applied the principles of the moment distribution method to stability 

computations and devised the fundamental stiffness criteria for structures. A 

rigorous proof of the uniqueness of the results was given by Hoff (9,10,11). 

Modifications of the basic moment distribution method have been proposed by 

Masur and Cukurs (12) and Livesley and Chandler (13). The modifications included 

the use of stability functions as illustrated in figure 1.2.1. 

Ile above mentioned methods involved the setting up of a system of simulianeous 

equations and solving them manually. For complex structures the numerical 

computations required in the analysis is sometimes prohibitive. However, with the 

advent of computers, more factors affecting the stability of frameworks could be 

added. 

Zweig (14) generalized the slope-deflection method used by Bleich (3). He applied 

the method to muld-storey frameworks. A design met hod and tables were also 

presented permitting a simplified solution for some intricate framework problems. 

The moment distribution method of solution was further developed by Porter (15) 

in 1970. His modification involved the introduction of the successive over-re- 

laxation method whereby convergence is never a problem. Limiting conditions for 

the critical load of a framework with identical storeys were obtained and shown in 

figure 1.2.2. 

The displacement matrix method of analysing the stability of frameworks has 

received attention in recent years. This method involves the solving of the equation 

KD= 
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Numerically, this requires the determination of the load, such that K becomes 

singular. Using this principle, Kom (16) devised a method for converting framework 

stability calculations into a form of a low order, non-linear eigenvalue problem. 

The solution to this problem was obtained by repetitive solutions of tentatively 

linearized eigenvalue problems. 

In 1984, Zweig (17) presented the force matrix method for stability analysis, which 

was not very popular among researchers. He outlined the advantages and 

disadvantages of both the displacement and force matrix methods. A detailed design 

procedure was included to facilitate the practical application of this method. 

Numerical examples also showed that the results agreed very well with those 

obtained using the displacement method. 

The finite element approach became very popular due to the advance in computer 

technology. It was proposed by Gallagher and Padlog (18) in 1963. Beskos (19) 

analysed various framework stability problems using the above method. He pointed 

out that the error of the critical load computed may be greater than about 80% if 

each member of the framework is taken as a single element. In 1986, Long (20) 

used a high precision element to analyse various framework stability problems, 

including those analysed by Beskos (19). It was found that the accuracy obtained 

was very much higher when compared with those obtained from conventional finite 

element method. 

The theoretical developments in the stability analysis outlined above are limited to 

frameworks whose members are stressed primarily by axial forces at the instant of 

instability. Several investigators have studied the effects of primary bending 

moment in the members on the instability of rigid frameworks. 

Chwalla (21) was the first researcher to investigate the effects of primary bending 

moment on framework stability. He considered a portal framework with 
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symmetrical loads applied transversely on the beam and used the classical approach 

of integrating a system of differential equations which defined the equilibrium of 

various members in the buckled state. The bending moments present in the members 

and their increments after buckling were taken into account in establishing the basic 

equations. From the results, he showed theoretically the existence of the point of 

bifurcation on the load- deformation curve of the framework. He also determined 

the exact buckling load of several frameworks with uniform member sizes and 

subjected to two concentrated loads at various points on the beam. His results 

indicated that the presence of bending deformation causes only a small reduction 

of the elastic buckling loads and for simple frameworks the deformation effect may 

be disregarded. 

Masur et al (22) succeeded in modifying Bleich's sloPe deflection and moment 

distribution methods (3) so as to include the effects of bending moment and the 

associated deformations. By using this modification, various instability problems 

of this type could be investigated in a systematic manner. A limited number of 

experiments on model frameworks have been conducted by Lu (23) for the 

verification of the theoretical solutions mentioned above. 

In late 1964,, Moses (24) modified the method used by Lu (23). He applied an 

iterative numerical procedure to find the load verses deflection curve, and hence, 

the buckling load of inelastic frameworks subject to primary bending moments and 

lateral forces. To use this procedure, it is necessary to have experimental or 

analytical expressions for the curvature of the cross section of the framework 

members as a function of bending moment and axial force. 

The displacement matrix method of solving a series of equations became very 

popular and received plenty of attention since the early sixties because of the rapid 

formulation of stiffness matrices using computers. Hartz (25) applied this method 

to perform elastic analysis on various frameworks. Krueger et al (26) proposed a 

7 



design programme for multi-storey frameworks whereby'member sizes can . be 

computed. Connor et al (27) presented a non-linear analysisO'f elastic frameworks. 

They'employed the Newton-Raphson iteration process for convergence. This 

method can detect the equilibrium position in very few cycles of iterations. The 

matrix method leading to an eigenvalue problem of solution was employed by 

Awadalla (28) to study multi-storey frameworks. Numerical results obtained were 

found to be very close to those obtained from stability function solutions. 

Chu and Rampetsreiter (29) used the matrix method to take into account large 

deflection. Toridis and Khozeimeh (30) and Mahendra (31) developed a general 

method of inelastic analysis of plane and space frameworks. The method employed 

by the former investigators could also cater for dynamic analysis. 

In 1986, Rankovic and Kanjeric (32) presented a non-linear stability analysis of 

frameworks, taking into account the non-linear stress-strain relationship of the 

material. The flexibility method of solution was used in place of the displacement 

matrix method. The criterion used in establishing the critical load was by equating 

the determinant of the structure stiffness Matrix to zero. Only theoretical results for 

a portal framework loaded by uniform'distributed load on the beam and a horizontal 

concentrated load on the side were obtained., ' 

Simitses and his associates (33,34) investigated stability problems of 

asymmetrically loaded portal framework and symmetrically loaded multi-storey 

framework. The former study was a non-linear analysis taking into account the 

effects of member slenderness ratio, load eccentricities and the support rotational 

restraint stiffness. It was established that the effect of member slenderness ratio on 

the load verses displacement characteristic was negligible. The portal framework 

is not imperfection- sensitive for the load eccentricity type of imperfection. 
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Rotational restraint at the support increases the buckling load. In the latter 

investigation, the parameters considered were similar to the former except that 

loading was symmetrical. Rather similar findings were established. 

Again, because of the rapid computation of solutions by computers, the finite 

element method of approach was proposed by several inveitigators. Akkoush ei al' 

(35) included incremental numerical solution techniques to analyse the non-linear 

behaviour of plane and space frameworks. Remseth (36) also studied the non-linear 

behaviour of space frameworks but he included initial imperfections and dynamic 

effects. Wen and Rahirnzadeh (37) also studied plane and space frameworks. 71ey 

took into account the effects of large translation and rotation of the chord. In all the 

above investigations, it was concluded that the accuracy of the results increases as 

the number of elements was increased. Large errors may occur if a one element 

one member analysis is adopted. 

The P-Delta effect, which reduces the load carrying capacity of sway frameworks, 

have received a great deal of attention. In 1986, Scholz (38) presented an 

approximate method to account for the P-Delta effect coupled with the Load and 

Resistance Factor Design of various frameworks in general. He proposed that the 

method be used as a check against the other conventional designs. In the same year, 

Kanchanalai (39) made a theoretical investigation to determine the strength of 

columns in symmetrical portal frameworks and frameworks with some columns 

having pinned connections. Besides the P-Delta effect, he also considered the 

slenderness ratio and relative column to beam stiffnesses. He proposed a 

modification to the column design according to the allowable stress. The 

applicability of the modification was verified 6y experiments. 

Gaiotti and Smith (40) investigated the P-Delta effect on multi-storey frameworks 

using a new method which was rather similar to the iterative method, but based on 

analyses using the actual gravity loading applied to successive deflected shapes. 
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They also compared the results with several other methods used by Previous 

researchers. It was found that the results obtained were identical to those given by 

the iterative method but the new analysis took only about one third of the time. 

In 1989, Ekhande et al (41) applied the stability functions type of solution to derive 

the stiffness matrix of three dimensional element. Although several numerical 

examples were presented, no experimental verification were undertaken. 

In recent years, the plastic method of structural analysis has been rapidly developed 

and extensive applications have been made in the design of building frameworks. 

Much of design was based on the major contribution made by Merchant (42) as 

early as 1954. In that year, he pointed ouf the effects of overall instability on the 

load-carrying capacity of rigid frameworks. Although his paper dealt only with 

some fundamental concepts of instability, it has stimulated many investigators to 

study various plastic instability problems, particularly those related to multi-storey 

building frameworks. Among his findings, it was shown that for columns of 

intermediate length, the failure load may be expressed empirically in terms of the 

Euler load, the yield load and some arbitrary parameters representing the initial 

imperfections. He also suggested that it might be possible to consider the elastic 

critical load and the simple plastic load of a framework as the basic parameters for 

the determination of its true ultimate load. 

A few years later, Merchant et al (43) presented a summary of the results obtained 

from a large number of experiments conducted on model triangular trusses and 

rigid portal frameworks. The tests were performed for obtaining experimental 

evidence of the empirical approach proposed by Merchant (42). The investigators 

made statistical analyses on the test results with the hope that some simple 

relationship might be obtained for expressing the observed ultimate load in terms 

of a few theoretical parameters mentioned above. Unfortunately, after testing 

numerous combinations of the parameters in the regression analyses, it was not 
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possible to find a definite relationship which might be used to compute the inelastic 

instability load with a known degree of accuracy. The authors' also presented 

statistical correlations of a large number of theoretically calculated instability loads 

with some selected parameters. The theoretical loads were determined for one and 

two storey frameworks using the idealized elastic-plastic moment-curvature 

relations so that all yielding was concentrated at the hinges. It was found that nearly 

all the theoretical points fell within the bounds established by the analysis of the 

experimental results. 

Low, (44) tested several series of model steel. frameworks to investigate the 

magnitude. of the framework instability effect on the load-carrying capacity. 'Me 

results obtained from the experiments were plotted non-dimensionally in the form 

suggested by Merchant (42). The plots, seem to indicate that, for most cases, 

Merchant's simple formula 

III 

TI, --ý Tp- + T, (1.2.2) 

for estimating the inelastic instability load of frameworks is rather conservative. 

The above equation is known as the Merchant-Rankine formula. The tests also 

indicated that the reduction of the ultimate load due to instability was higher for 

taller frameworks. The average reductions for three, five and seven storeys 

frameworks were found to be around 10%, 30% and 35% of the simple- load 

respectively. 

In 1958, Salem (45)carriedout experimental testforoneandtwo storey frameworks. 

One of his objectives was to verify the Merchant-Rankine formula. Ilie results 

obtained were plotted as points as illustrated in figure 1.2.3. Lines corresponding 

to various ratios of Xp/%, have been drawn, and it can readily be seen that the 

Merchant-Rankine formula is most successful when X, /X, is small and the collapse 
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load is close to the rigid-plastic collapse value. When X. /k, > 0.3, the scattering of C. 
the points away from the Merchant-Rankine formula is considerable. Merchant 

suggested the formula as a safe limit for the collapse load as pointed out by Low 

(44) 

In 1960, Lu (23) presented an analyti'Cal solution to the bucklingý of portal 

frameworks in the plastic range. The method takes into account the effects of axial 

force, yielding, deformation and residual stresses. Tests conducted by Yen et al 

(46) have verified the theoretical solution. 

Morris and Fenves (47) used an elastic-plastic analysis to study the load verses 

displacement behaviour of a fixed base symmetrically portal framework loaded 

beyond the elastic range up to the ultimate load. An incremental analysis procedure 

was employed and structural forces, displacement and reactions were determined 

at various load levels. The concept of the classical yield hinge was extended to 

included cross sections deforming plastically under combinations of flexural and 

torsional moment and axial force. 

Due to the great demand and popularity of high-rise buildings, the period beginning 

from the sixties saw a rapid increase in the investigation into this class of buildings. 

Kom and Galambos (48) investigaled the full load verses displacement path of 

several multi-storey frameworks by means of first order and second order 

elastic-plastic theory. They concluded that frameworks lacking sufficient working 

load deflection and stability controls are subject to a catast rophic early instability 

at large losses in potential load-carrying capacity. Such frameworks are also highly 

non-linear at working loads due to the second order amplification of sway. For 

frameworks having reasonably linear behaviour at working loads, at least 86% of 

the first order load-carrying capacity was obtained. 
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About-two years later in England, Wood (49) made an important contribution to 

the design of framework. He suggested a modification of the Merchant-Rankine 

load to allow for the minimum beneficial effects that must always be present from 

strain-hardening and restraint provided by cladding. He suggested that provided 

> 10 

then 

xf = X, 

and when 

10 > 
"' 

:,. 4 ;;, XP > 

then 

%pX, 

+ 0.9k, 
(1.2.4) 

When ex ressed graphically, these proposals are represented by the lines ACD of pd 

figure 1.2.4, and may be compared with the Merchant-Rankine formula given by 

the straight line AB. When applying condition (1.2.3) to derive the design 

requirements, it can be seen that the required minimum value of Xf is that 

corresponding to the required factored loading. XPcan be derivedby using thedesign 

strength., Py, of the steel. Supposing the required minimum final load factor of the 

structure, Xf, is expressed as a plastic load factor, using, instead of the specified 

design strength, Py, an effective design strength P' Y, so that 

p Apy 

kp py 
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whence 

21.1 p lf y 

kp vý py 

where 

%I: 
Xf 

On substituting the above value of 

Xf 
XP 

A 
xi, 

where A is Xf of equation (1.2.2), and X, /X, into equation (1.2.3), it is found that, 

in design, it can be assumed that 

ppy=y 

when 

%, Ixf > 10 

and 

0y- p 
0.9cc Y(C, 

(1.2.5) 

when 

10 >;, X, / Xf 4.6 
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This proposal is the basis for the adoption of plastic design for continuous low-rise 

framework in the BS 5950: Part 1. When XIkf < 4.6, it is recommended that, if 

elastic- plastic methods of ultimate load design are to be employed, then a special 

analysis allowing for elastic-plastic behaviour and change of geometry effects 

should be undertaken. It will, of course, also be necessary to satisfy the deflection 

limits imposed by the provisions of the appropriate clauses in the standard. It should 

be noted that, if the more conservative modified Merchant-Rankine load, equation 

(1.2.2), is used in design rather than equations (1.2.3) and (1.2.4), th--n a modified 

yield stress must always be used, i. e., 

Pf 
y PY 

Chi and Lin (50) presented'a paper on the elastic-plastic analysis of, multi-storey 

frameworks. The elastic slope defection method was modified and generalized. The 

plastic strain was treated as a set of additional moments. The method was applicable 

to frameworks of work hardening as well as ideally plastic materials. The method 

employed reduces the problem to the solution of a system of simultaneous equations 

and no iteration was required. 

A numerical procedure for large deformation analysis of elastic-plastic framew6rks 

was presented by Kassimali (51). The procedure utilised an incremental load 

approach with Newton-Raphson iteration to satisfy joint equilibrium equations. 

Changes in member chord length due to axial strains and flexural bowing was 

considered. Analysis was performed on the frameworks used by Kom and Galambos 

(48) whereby bowing effect was neglected. The results obtained were very similar 

and thus it was concluded that the consideration of large deformation and flexural 

bowing effects complicates the problem of non-linear analysis of frameworks 

considerably. 
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With the recent introduction of cold-formed thin-walled structures, more building 

frameworks are using these members as main components. The following reviews 

are on frameworks composed of thin-walled members. 

In 1977, McIvor et al (52) presented a structural theory for the large plastic 

deformation of space frameworks composed of thin-walled members. The 

framework, which was composed of several square tubings, was considered to 

consist of an arbitrary number of beam elements connected at node points. The 

analysis assumed that plastic deformation is confined to idealized hinges located 

at node points. To generalize; i the analysis for computer programming, the 

equations of a beam element were derived as a relationship between generalized 

force and deformation rates. The structural theory employed for the plastic hinges 

included bi-axial bending, torsion and axial extension. Reduction in the load 

carrying capacity of the hinge due to local deformation was accounted for. An 

experiment was carried out on a space framework which was constructed by welding 

thin square tubings together. The predicted force-deformation curve was found to 

be in good agreement with the experimental results. 

The effects on the member end moment of a framework due to local buckling was 

investigated by Wang (53). In the analysis, the matrix stiffness method was adopted. 

Tle effective width concept was used to account for local buckling. The expression, 

which was introduced by Winter (54), is as follows: 

When 

then 

b 
2,1.288( 

E) 112 

t CF. X cr. x 
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When 

then 

I 

b<1.288( E) 112 

t CY. AX 

b, =b 

(1.2.7) 

(1.2.8) 

As the compressive edge stress, c;.,,, is not uniform along the member, application 

of equation (1.2.7) will result in a non-prismatic member. This was accounted for 

by dividing individual member into several segments. 

As a follow-up, Wang and Blandford (55) proposed a method of stability analysis 

of locally buckled frameworks. The procedure was based on the finite element 

approach and the method of solution was by equating the stiffness matrix of the 

framework to zero. To take into the account of local buckling, the following 

expression (56) was used: 

When 

then 

b 
ý: 0.64A 

t 

b' 
= 0.95A I-0.95A Ct 

tI 

(b 

: ii (1.2.9) 
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where A'= 4K-E-lcy.,, and 'C'is a modification factor 6ased. on' experimental 

evidence and engineering judgement. 

When 

< 0.64A 

then 

b=b (1.2.10) 

T'heoretical analyses, with and without local buckling, were performed on various 

frameworks and it was found that the critical load with local buckling taken into 

consideration was always lower than if local buckling is neglected. Unfortunately, 

no experimental verification was undertaken. 

Baigent and Hancock (57,58,59,60) and Hancock (61) investigated the behaviour 

of low-rise portal frameworks composed of cold-formed members extensively used 

in the recent years. The analysis method was based on the matrix stiffness approach. 

Effects such as warping torsion, cross section monosymmetry, progressive yielding, 

inelastic local buckling in the thin-Walled sections and cross section distortion were, 

consideredL The collapse load was predicted using an inelastic finite strip local 

buckling analysis. Experimental investigations were carried out on several 

pitched-roof portal frameworks constructed from cold-formed channels. The 

frameworks were loaded to failure in three different patterns as shown in figure 

1.2.5. Although the theoretical and experimental failure loads were in good 

agreement, it was found that all the experimental apex deflection indicated a more 

flexible response from the frameworks as shown in figure 1.2.6. The explanation 

given was that the greater flexibility could lie in the behaviour of the joint, which 
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was assumed to be rigid. Another conclusion drawn was that all the frameworks 

have a considerable inelastic reserve capacity as the collapse load was about twenty 

percent higher than the load at first yield. 

The torsional flexural buckling of rigid plane frameworks composed of I section 

members and subjected to planar loading was investigated theoretically by 

Vacharajittiphan and Trahair (62). The generalized method, which can be used for 

planar rigid frameworks with various planar loading, was based on the formation 

of differential equations for bending and torsional flexural buckling. These 

equations were solved using the finite integral method with the aid of computers. 

The accuracy of the method was studied by comparing the results for beams and 

simple portal frameworks with known solutions. It was established that to achieve 

accuracy sufficient for engineering purposes, nine nodes were required for each 

member. Solutions for various low-rise frameworks were also obtained but no 

comparison of results were made. 

In 1985, Nethercot (63) presented a paper on the analysis of portal frameworks with 

the effýcts of torsional flexural buckling. The method comprised of the formulation 

of stiffness matrices, the coefficients of which were obtained using the energy 

method proposed by Barsourn and Gallagher (64). In the analysis, the element ends 

were assumed to be restrai6ted from warping. The eigenvalue of sol6tion was used 

to obtain the critical load of isolated members. Two numerical examples on portal 

frameworks were given. It was concluded that careful use of the results of isolated 

members will lead to acceptable estimate of the framework critical load. In cases 

where published results of isolated members are inadequate, it was suggested that 

a finite element programme be used. 

Alwis and Usami (65) proposed a finite element method of analysis to determine 

the elastic lateral torsional buckling of rigid frameworks. The effects of in-pl ane 

deformations on lateral torsional buckling were included in the analysis, where 
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in-plane and out of plane deformations were treated separately. The critical load 

was obtained by equating the determinant of the overall stiffness matrix to zero. 

Numerous examples were performed on simple frameworks and from the results 

obtained, it was shown that the number of elements needed to produce a desired 

accuracy increases with increasing length of the members. 

1.3 CONNECTIONS 

Research into the behaviour of connections and their moment-rotation 

characteristics was first carried out in 1917 by Wilson and Moore (66). Although 

some interesting results were obtained, the paper only touched on the fringes of the 

subject. 

In 1929, the'Steel Structures Committee of Great Britain initiated a programme of 

theoretical and extensive experimental research (67) in various aspects of building 

behaviour that had a great influence on later studies. Under the combined leadership 

of J. F. Baker and C. Batho, the committee advanced understanding as to how 

building frameworks actually behave under load and it set forth principles whereby 

the influence of connection flexibility and framework behaviour could be studied 

and analysed. After various tests on riveted connections, a linear expression was 

proposed to model the connection behaviour. The connection factor, Z, which is 

the inverse of the initial tangent of the connection moment-rotation plot, takes the 

form 

z M 
(1.3.1) 

The above expression was also employed to model the connection behaviour by 

Rathbun (68) about the same period in America. 
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In, 1951, Lothers (69) proposed a method of representing the moment-rotation 

relationship of angle-plate connection, which was very popular during that period, 
in a linear form. The stiffness was expressed in terms of the connection critical 
bending moment and rotation, which through elastic analysis, could be computed 

using size parameters of the angle-plate connection., From tables provided, the 

approximate linear stiffness of various sizes of angle-plate connections investigated 

could be established. 

Munse et al (70) studied the behaviour of standard double web angle flexible 

connection which was very popular during that period. The connections were 

assembledwith rivets and high strength bolts and completely with rivets in order 

to study the behaviour of the effect of the type of fasteners upon the behaviour of 

the connections. The main findings arrived at were that although assumed for design 

purposes to behave as simple supports, the connections provided some end restraint. 

This restraint increases when high strength bolts were used. 

To further improve the representation of the connection behaviour, Sommer (71) 

fitted experimental mOment-rotation data to standardized moment-rotation curves 

in'the form of non dimensional polynomial series. The form of the polynomial 

function is 

ý=Cj (KM) +C 
2(KM)3 +C 3(KM)5 

where K is the standardization factor dependent on the connection type and 

geometry, and C,, C2and C3 are curve fitting constants. The standardized 

moment-rotation function is applicable to all connections of the same type, the 

influence of different sizes and dimensions is accounted for by the factors. The 

above model can only be used provided sufficient experimental data are available. 
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To improve the model used by previous investigators, komstad and Subramanian 

(72) developed a method of representing the moment-rotation curve of double- 

angle connections. Using this method, the actual curve is bi-linearised as shown in 

figure 1.3.1. By using the connection size parameters, the slopes of the bi-linear 

approximation could be obtained as illustrated in figure 1.3.2. This information 

could then be used to account for semi-rigid joints. 

Frye and Morris (73) extended Sommer's method (72) to seven different connection 

types shown in figure 1.3.3. The standardized polynomial expression of these 

connections are tabulated and shown in table 1.3.1 and typical moment-rotation 

curves are illustrated in figure 1.3.4. The accuracy of the standardization procedure 

can be seen in figure 1.3.5, which shows the moment-rotation curves generated by 

the standardized equation and the corresponding experimentally obtained curves 

for two double web angle connections. The main drawback of this method is that 

the nature of a polynomial is to peak and trough within a certain range. Tle 

connection stiffness, which is represented by the slope of the moment-rotation 

curve, may become negative at some values of moment and this is physically 

unacceptable. 

To overcome this, Jones et al (74,75,76,77) developed a method of representing 

the actual moment-rotation curves of connections more accurately. This method is 

known as the B-spline method. The method requires the division of the range of 

connection rotations into a finite number of smaller ranges. Within each range, a 

cubic function is fitted in turn with the first and second derTyd; yes, continuity being 

maintained between adjacent ranges. Numerical description resulting from the 

curve fitting can then be used directly within numerical differentiation procedures. 

This method has been found to produce close and smooth representation of 
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experimental results as illustrated in figure 1.3.6, which also shows the comparison 

of the polynomial fit. The disadvantage of the B-spline model is the large number 

of data required for the curve fitting process. 

Richard et al (78) presented a method of modelling the moment-rotation 

characteristics of single plate connections. This method involves the experimental 

determination of the load-displacement relationship for a single bolt connecting 

two plates in shear. In this manner, all linear and non-linear deformations occurring 

in the bolt and the connected plates were lumped together. The connection was then 

analysed using finite element method whereby the non-linear behaviour of the bolts 

and connected plates was modelled as a shear connector with load-deformation 

properties obtained previously. The moment-rotation curves obtained were then 

compared with experimental data and reasonable agreements were achieved. 

In the early seventies, a series of tests on various beam-to-column connections were 

carried out by Chen and his associates (79,80,81). The connections consisted of 

various commonly used type and were either welded or bolted with high strength 

bolts. The results obtained were intended to be used as a basis for the design of 

beam-to-column connections for multi-storey buildings. 

In order to enable the designer to anticipate the connection stiffness during the 

designing phase, Ackroyd and Gerstle (82) proposed a method of relating the 

connection stiffness to the required connection strength. This relation takes the 

form: 

cc Gy 
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This relationship between the strength and stiffness, as inferred from available 

experimental results for several connection types, is shown in figure 1.3.7, which 

allows estimation of connection stiffness once the required moment and girder 

depth, d, are known. 

In the year 1983, Colson and Louveau (83) presented a model which uses a power 

function of the form : 

imi 
- 

M, 111-0 
M. IT 

(1.3.4) 

The curvature of the moment-rotation relationship is accounted for by the parameter 

n. Since the model has only three parameters R., M,. and n, as illustrated in figure 

1.3.8, it is not as accurate as the B-spline model. However, the number of data 

required is drastically reduced. 

Ang and Morris (84) replaced the polynomial function by a form of the function 

given by Ramberg and Osgood (85) in the development of standardized 

moment-rotation expression for connection types shown in figure 1.3.9. The latter 

function, which is illustrated in figure 1.3.10, has the form : 

KM 
, +( 

KM -1 
0. (KM)o' (KM)o 

1 

where ý., (KM),, and n are coefficients evaluated in the curve fitting process and 

K is defined in equation (1.3.2). Depending on the value of the coefficient n, 

equation (1.3.5) can represent any of a family of curves passing through point 1 of 

figure 1.3.10. Thus, it can model a moment-rotation curve with a sharp "knee", or 

one with a long gradual decrease in slope. Standardized expression of the 
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connections can be found in table 1.3.2. The Ramberg-Osgood function has the 

advantage that its derivative, hence the slope of the moment-rotation curve, does 

not fluctuate. 

In order to reduce the costs of carrying out experiments to determine the 
I 

moment-rotation characteristics of connections, Yee (86) developed a new 

approximate method to model the connection behaviour. The expression used in 

the method, which is known as the exponential and correction model, is expressed 

in terms of certain functions as shown in equation (1.3.6). 

M=M,. II-CXP 
(Ki - K, + CO)O 

}+Kpo 
I- 

. 

where Ki and KP are constants dependent on the connection stiffening and failure 

mode as can be seen from tables 1.3.3 and 1.3.4. The value of C is obtained 

empirically from the test data. It should be noted that the model is valid only for 

bolted extended end-plate eave connection as shown in figure 1.3.11. When 

compared with available experimental results, the model predicted the curves within 

acceptable limits. Some of the comparisons are shown in figures 1.3.12 and 1.3.13. 

In 1985, Nethercot (87) discussed the various connection moment-rotation curves 

obtained by previous investigators using experimental rigs as shown in figure 

1.3.14. After careful examination, he commented *that only about 50% of the 700 

individual test were considered to be useful. Comments were also made on the 

various models used to represent the connection moment-rotation curve. A 

summary of the comments is listed in table 1.3.5. The feasibil. ity of organising the 

available momen't-rotation curves of various confiections into a computerized data 

bank system was also demonstrated and found to be encouraging. 
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Due to the advancement in computer technology, the finite-element approach of 

analysis became very popular with researchers. Among them, Krishnamurthy and 

Battles (88), Krishnamurthy (89), Maxwell et al (90), Jenkins et al (9 1) and Kukreti 

et al (92) employed the method to study the behaviour of connections. The 

connections studied by them included top-angle, tee-stub and end-plate 

-connections. 

To overcome the disadvantage of requiring large amount of data as in the B-spline 

model, Lui and Chen (93) presented a method to model the non-linear 

moment-rotation relationship of connections. The model is expressed in an 

exponential function of the form : 

m M=y , 
C, [l-exp(- I fll2ja)]+RV +M. 

j. 1 

where 

R, j is the strain hardening stiffness of the connection. 

M. is the initial moment at which the curve is fitted. 

(x is a scaling factor. 

Cj is a curve fitting constant. 

The model, which is known as the exponential model, is a multi-parameter model. 

The number of parameter required is (m + 3), where m is the number of curve fitting 

constants, Cj. The above model has been shown to represent the non-linear 

behaviour of connections very well. The limitation of this model is that it may not 

completely represent the moment-rotation curve that consists of a few linear 

components. 

Kishi and Chen (94,95) refined the exponential model to accomodate linear 

components of moment-rotation curves of connections. This model is represented 

by the form : 
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M =M. + 
i 
7,1 Cj[l-exp(-Ioll2ja)] 

R X DA(I 0 1-1 Ok J)H [10 1-1 ok 11 
kal 

(1.3.8) 

where 

Dk is a curve fitting constant. 

Ok is the starting rotation of kth linear component taken from experimental 

moment-rotation curve. 

H[ ]is the Heaviside's step function given by: 

for 0 ý: 

H[ol =0 for 0<0 

Like the exponential model, also known as the Chen-Lui model, this modified 

exponential model deals with connection loading and unloading for the full range 

of rotation in a second order analysis. The comparison between the Chen-Lui 

exponential model and the modified exponential model for numerical example test 

data including a linear component is shown in figure 1.3.15. 

While the modified exponential model is a curve fitting equation obtained by using 

the least, mean square technique for the test data, Kishni and Chen (96,97) and, 
Kishni et al (98) developed the power model from a different point of view. In this 

procedure, the initial elastic stiffness - and ultimate moment capacity of the 

connection are determined by a simple analytical model. Using those values so 

obtained, a three parameter power model given by Richard and Abbot (99) was 

adopted to represent the connection behaviour. The generalized form of this model 

is : 

27 



(1.3.11) 

where 

is a reference plastic rotation 

n is the shape parameter. 

Figure 1.3.16 shows the comparison of the power model with various values of n 

to the experimental data. A comparison of the Chen-Lui model and the power 

model can be seen in figure 1.3.17. 

Morris and Packer (100) presented a paper which described the factors influencing 

the force-deformation behaviour of various connections. Procedures for modelling 

various connection moment-rotation characteristics were discussed, a summary of 

which is tabulated and shown in table 1.3.6. The effects of connections were also 

described generally and illustrated with examples. 

The normal approach in static calculation and analysis is to assume that the joint, 

which has defined dimensions, of a structure is contracted to a point at the 

intersection of the member lines. Tschernmernegg and Hunter (101) proposed a 

new method of representing the moment-rotation curve of connection, whereby the 

joint is looked at in a macroscopic view and a distinction is made between the panel 

zone and the connection as illustrated in figure 1.3.18. In this approach, the panel 

zone is modelled as a load introduction spring and a shear spring, which accounts 

for the panel shear deformation. The connection itself is represented by the 

connection spring. The final connection moment-rotation curve is obtained by 

totalling the individual spring model moment. This is illustrated in figure 1.3.19, 

which also shows the schematic diagram of the spring models. 
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1.4 SEMI-RIGID FRAMEWORKS 

Modifications to the slope deflection and moment distribution methods were both 

applied to frameworks with semi-rigid connections in the 1930's by Baker (67,103) 

and Pippard and Baker (102) in England and Rathbun (68) in United States. In their 

analysis, the linear connection factor, Z, was employed. According to the final 

report (67), savings as much as 20% could be achieved on the design of beams in 

frameworks by taking advantage of end restraints, which could be predicted by the 

beam-line method proposed by Batho and Rowan (67) and later developed by Batho 

(67). 

To increase the accuracy of the analysis, Johnston and Mount (104) refined Baker's 

method by considering the effect due to the widths of the members. The various 

joint moments computed were found to be in good agreement with results from 

experimental tests. I 

In 1947, Stewart (105) applied the traverse method to analyse frameworks with 

semi-rigid connections. The traverse, which expresses the joint rotation and the 

flexure angle due to the moment at each end of a member, is basically a 

representation of the deflected framework. In the analysis, the rotation of a joint 

due to a moment was expressed as a percentage of the elastic curvature caused by 

the same moment in a connecting member. The disadvantage of this method lies 

in the fact that numerous traverse lines are required to be drawn when a complex 

framework is to be analysed. 

Instead of using the connection factor, Maugh (106) represented the stiffness of the 

connection by the initial slope of the moment-rotation curve in his analysis of 

semi-rigid frameworks. Using this approach, analyses were performed on 

frameworks studied by previous researchers. Comparison of the results showed 

very little difference in solutions. 
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In 1961, Lightfoot and Baker (107) refined the method of analysis employed by 

Johnston and Mount (104). The refinement came in the form of a computer solution 

to the problem of plane frameworks with elastic connections, using the generalized 

slope deflection equations in matrix form. The semi-rigid connection restraint was 

incorporated into the analysis by the use of correction matrices to amend the initial 

assumption of fully rigid connections. 

Monforton and Wu (108) incorporated the effects of semi-rigid connections into 

the matrix stiffness analysis in a general manner in 1963. Similar procedures were 

proposed by Livesley (109) and Gere and Weaver (110) at about the same time. 

The linear semi-rigid connection factor was used to modify the member stiffness 

matrices and the fixed end force vector. The stiffness matrices were modified by 

correction matrices and the resulting linear equations were solved as in normal 

stiffness method. The advantages of this method are thatrelatively large frameworks 

can be analysed with ease and the interactive techniques employed would permit 

the inclusion of improvements in the end restraint representation. 

Although the twisting degree of freedom was introduced into Monforton and Wu's 

analysis (108), a linear torque-twist relationship was assumed and axial deformation 

was neglected. These were taken into account by Lightfoot and Le Messurier 

(11 1). Several numerical examples were performed on three dimensional problems. 

However, due to the lack of experimental results available, no comparison was 

carried out. 

Frye and Morris (73) presented an iterative analysis procedure for planar rectangular 

steel frameworks incorporating the non-linear behaviour of any of the seven 

beam-to-column connection types shown in figure 1.3.3. The analysis procedure 

involved repeated cycles of analysis to determine a set of connection secant stiffness 

that could then be used to predict the displacements and internal forces in the real 
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non-linear structure. In a numerical example, it was found that using an analysis 

which assumed pinned beam-to-column connections, a reduction of up to 20% in 

the column axial load capacity would be ignored. 

To shed more light on the subject, Moncarz and Gerstle (112) employed the matrix 

displacement method of analysis to several semi-rigid frameworks. To represent 

the connection moment-rotation behaviour, a tri-linearized model was used. In their 

investigation, it was established that the assumption of fully rigid joints is 

inadvisable for frameworks with field-bolted or lightly welded connections. It will 

result in an under estimation of the bare-frame drift and may lead to inaccurate 

prediction of critical member forces. 

With rather similar objectives, especially on the design aspects, Ackroyd and 

Gerstle (82) used a purely elastic analysis to study semi-rigid frameworks. The 

connection was modelled using the expression shown in equation (1.3.3). Several 

frameworks were analysed numerically and general outlines pertaining to design 

procedures were suggested. 

Ang and Morris (84) generalized the Frye and Morris procedure (73) to permit the 

analysis of three dimensional rectangular frameworks with non-linear connections. 

They assumed all floors to act as rigid in-plane diaphragms, thus eliminating the 

in-plane degrees of freedom at all columns. Accordingly, they considered only one 

non-linear connection moment-rotation relationship which took the form of 

equation (1.3.5). Examples carried out demonstrated that connection deformation 

sometimes has a very significant effect on the internal force distribution in, or the 

deflection of, a structure. 

Employing the tri-linearized, connection model of Moncarz and Gerstle (112), 

Stelmack et al (113) provided an analysis which also included the connection 
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stiffness during unloading. From the verifications through experimental works, the 

shakedown of the connections to their elastic state was evident and a linear analysis 

was sufficient to predict framework behaviour under service conditions. 

The papers reviewed above dealt mainly with the analysing of semi-rigid 

frameworks for displacement and member internal forces only. In 1970, kornstad 

and Subramanian (72) assumed a bi-linearmodel of the connection moment-rotation 

curve (figure 1.3.1) in their elastic critical load analysis, which used computational 

procedures for locating eigenvalues and eigenvectors. They analysed the stability 

problem using a bifurcation approach and so were unable to find the effect of a 

non-linear moment-rotation curve on the buckling capacity of frames. 

In a paper by Gerstle (114), detailed descriptions and discussions on connection 

behaviour, linear and non-linear approach to semi-rigid framework analysis were 

presented. The elastic stability analysis, which assumed linear connection 

behaviour, was employed by Ackroyd and Gerstle (115). Modified slope deflection 

equations were used to account for the effects of the flexible end connections on 

girders. From numeral examples on a simple portal framework, it was found that 

as the connection stiffness increases, the drift decreases for a given load, and the 

buckling capacity of the framework is increased. Furthermore, a small increase in 

connection stiffness results in a substantial increase in framework capacity, while 

forvery stiff connections, extraconnection stiffness results in only nominal increase 

in framework capacity. 

The non-linear approach was employed by Ackroyd and Gerstle (116). Material 

effects such as residual stress and elasto-plastic member behaviour were accounted 

for. Geometric non-linearities of members and connections were also included in 

their analysis. The Frye and Morris polynomial function of equation (1.3.2) was 

used to represent connections non-linear behaviour. A number of subassemblages 

representing existing portions of typical multi-storey frameworks, each with three 
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different flexible connections, were analysed. Results showed that in most cases, 

increased connection stiffness leads to an increase of framework strength, but in 

exceptional cases of low-rise buildings, it may result in a slight loss of strength. 

This finding removed the usual assumption or expectation that increase in stiffness 

of connections in a framework always lead to an increase in the framework strength. 

In 1983, Melchers and Yee (117) studied the effects of connection behaviour on 

the deflections of practical frameworks. Numerical analysis of rigid and near-rigid 

(assumed to be rigid in design) portal frameworks were carried out, the connection 

behaviour of the latter being modelled by a quad-linear curve. It was established 

that the maximum increase in deflection due to connection flexibility was of the 

6rder of 20% at service load. The amount of increase was proportional to the degree 

of flexibility of the connections. 

Numerous numerical studies on semi-rigid frameworks were conducted very 

recently by Simitses and his associates (118,119,120,121). The types of framework 

studied were two-bar, simple portal and gabled frameworks. The non-linear analysis 

involved the formation of equilibrium and buckling equations and satisfaction of 

boundary and joint conditions. Both linear and non-linear connection behaviour 

were considered , the former being represented by the connection factor and the 

latter by polynomial function. Included in the intensive study were parameters such 

as slenderness ratio and effects of load eccentricities. With the intention of shedding 

more light into the subject, many general conclusions were drawn. 

In 1985, Poggi and Zandonini (122) presented a non-linear analYsis which 

accounted for geometrical changes and spreading of plastic zones in members. 

Connection non-linear relationship was tri-linearized and stiffness during unloading 

was also considered. To account for the finite dimensions of the joints, the normal 

beam element was considered to be composed of three sub- elements. Various 

33 



parameters, including modelling *the connection behaviour by bi-linear dtid 

piecewise linear models, were employed in several analyses carried out. The 

findings were to be used as preliminary studies for a major research. 

Yu and Shanmugam. (123) proposed a modified stiffness matrix method for finding 

the elastic critical load of simple semi-rigid frameworks. Besides accounting for 

the partial rigidity of the joints, the method also considered the effects of flexure 

on axial stiffness and geometric changes. A linear connection behaviour was 

assumecL Including the computation of the elastic critical load, a parametric study 

was also undertaken to study the effects of rigidity of various joints on single bay 

double storey frameworks. 

In very recent years, intensive investigations on the behaviour of semi-rigid 

frameworks were performed in the United States by Chen and his associates 

(93,124,125,126,127). Their studies covered T and I shaped assemblage, two-bar, 

simple portal and multi-storey frameworks. In all the cases, the analysis employed 

was non-linear and except for the investigation by (127), the true non-linear 

connection behaviour modelled in the form of equation (1.3.7) was employed. This 

model can cater for the connection stiffness during its unloading. Ile formation of 

plastic hinges in the member was included in thp analysis by both (126) and (127). 

The effects of loading pattern was also accounted for by the latter. The extensive 

research was undertaken in view of the AlSC/LRFD Specification (128), Which 

specifically identifies the need for the inclusion of connection behaviour in the 

analysis and design procedures. 

Driscoll (129) presented an elastic-plastic analysis of frameworks with seat and 

top-angle semi-rigid connections. In this method, the connection was modelled as 

a series of fictitious rigid beam elements. The whole framework was then analysed 

as a rigid fi-amework. An elastic analysis identifies the locations where stress is 

greatest and therefore plastic hinges may form. After changes in boundary 
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conditions, additional steps of elastic analysis can give increments in the 

elastic-plastic load-deformation curve of the entire framework up to the point where 

a mechanism defining ultimate load is defined. 

Most non-linear analysis of semi-rigid frameworks are either too complex or 

time-consuming to be considered for deýign use. With the aim of providing a tool 

for designers, Goto and Chen (130) presented a computer-based method that can 

be easily applied to design practice for steel building frameworks with flexible 

connections using computers. Real connection behaviour along with various types 

of available analytical curves or simplifications were included in the analysis. In 

the development, special attention was paidto the efficient use of computer capacity, 

and to the simplicity in formulation of the analytical procedures without losing the 

numerical stability and accuracy of a rigorous solution. 

After thoroughly evaluating the normal procedures used in the design of semi-rigid 

frameworks, Ackroyd (13 1) suggested modification to the limit of drift of buildings. 

A modified design procedure was included in his proposal. This procedure 

approximates the influence of connection flexibility on force distributions within 

the framework, so that girders size could be reduced at the expense of increases in 

the exterior columns. It was demonstrated that the net effect is an overall reduction 

in steel tonnage for members on the order of 4% to 11 %. 

In 1988, Jaspart (132) proposed a hand calculation procedure for the evaluation of 

the collapse load of semi-rigid frameworks based on the. generalization of the 

modified Merchant-Rankine formula (42). Numerical examples were performed 

and the results compared with those from a conventional non-linear analysis. The 

agreement was found to be excellent. At the time of writing, further calculations 

and comparisons were being made at the main research centre to verify the validity 

of the proposed method. 
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Conventional structural analysis of frameworks are usually carried out with the 

postulation that the joint panel zone deformation is negligible. In actual structures, 

the joint panel may deform to such an extent as to affect the overall behaviour of 

a framework. This effect has received attention only very recently by Lui and Chen 

(93), Kato et al (133) and Tschemmernegg and Hunter (101). The effects of joint 

panel deformation on the seismic response were investigated by Popov (134) and 

Krawinkler and Mohasseb (135) 

1.5 SUMMARY 

The literature showed that there is an immense wealth of information available and 

a great deal of work has been done concerning the analysis of rigid frameworks. A 

great amount of effort has also been concentrated on the inclusion of the various 

non-linear effects. The introduction of the limit state design saw a sudden rise in 

the plastic analysis of rigid frameworks. 

Realising the non-linear connection stiffness effects on the behaviour of 

frameworks, numerous experimental investigations were carried out on commonly 

used connections. Both linear and non-linear models of the connection 

moment-rotation characteristics were obtained. These models were then 

incorporated into the analysis of frame%ýorks with the objective of obtaining more 

information as to the effects of semi-ngid connections. 

Before the development of the computer-based stiffness matrix method of analysis 

, designers would not even consider the use of semi-rigid connections due to the 

tedious and complex analysis involved, not to mention the insufficient 

investigations and validified data on connections. Intensive studies, both theoretical 

and experimental, were undertaken only rather recently, especially in the United 

States, in order to arrive at expressions simple and yet safe enough for design use. 
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In the design of cold-formed thin-walled structures, the behaviour of the individual 

members under load has been the subject of much research. The overall structural 

behaviour depends not only on the member behaviour in isolation, but also on how 

the members interact. Although some work has been carried out on frameworks 

composed of cold-formed thin-walled members, the study of the combined effects 

of semi-rigid connections and the problems associated with thin-walled members 

on their behaviour is relatively very little compared to frameworks constructed from 

hot-rolled members. Hence, it is felt that there is a need to provide farther insight 

into the study of cold-formed thin-walled framework with semi-rigid connections. 

The work carried out and compiled in this thesis has been performed to fulfil this 

need. 

In this thesis the behaviour of symmetrical single and double storey frameworks, 

constructed with cold-formed thin-walled plain channel members and semi-rigid 

connections, as shown in general form in figure 1.5.1, is investigated both 

analytically and experimentally. 
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Equation for: 

Connection 
type 
(1) 

Stiffened 

Unstiffened 

Y-: 
.. 

EA, 

(2) 
(D. - t,, )'E 

Elm 
+ 

EAt EA. 
FFF 

(D& - t&f)'E 

or (31)P 

EA, 
F 
(3) 

(28)S or (32)P 

(28)S or (32)P 
EArp 

+ 
EAf 

+ 
EA, 

+ 
E-%,,,,, 

FFFF 

or (31)P 
Note (34); (35) and (37) Note (34); (51) 

and (37) 

Note: S= Snug tightened bolts; P= Pretensioned bolts. 

Table 1.3.3 Expressions for Ki. 

Equation for: 

EA, 
F 
(4) 

(20)S 
(43) 

(29)S 
(39) 

EAý 
F 
(5) 

(44) 

E. %,, Elcf E. %,, E. 1, EA., 

Failure mode K, F F F F F 

(1) (2) (3) (4) (5) (7) 

Shear yieldinl; 
(Dj - 1w)'E 

or (31)P (28)S or (32)P (29)S (47) 
E. Im E3,, E. %w E. 1, Note (34); (35) (44) 

F 
-. 

FFF and (37) 

Nute (34); (35) and (37) 

Web buckBng in 
(Dh - I,. )-'E (47) (51) 

compression E. Im 
". 

", 
'. + 

E. I, 

nange level) FFFF I 

Note: S- Snug tightened bolts: P- Pretensioned bolts. 

Table 1.3.4 Expressions for K. for Unstiffened Connections. 
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Type of MCAOL References Year Advantages 

1. Linear 

2. allinear 

3. Polynomial 

Cubic B-Splinp 

S. ExponentI&I 

Rmker 1911 

Rathbun 

Simple to use 

Stiffness 
matrix only 
9 equ it 03 
In it L-1 I 
nk-fli f Icat ion 

Llonberqer 1069 Simple to use 
& Weaver 

Romstad a 117o 

Curvo. follows 
M-t curve morft 
closely than 
line., or mwlýl 

Sortnev 1970 Prckjuces a close 
arproximation to 
th- Shav# of the 

rryo- 197S M-f r3ata 
Morris 

Padzimi n-tk 1 11182 
et &I 

Produces a 

vory clod%e 

approximation 
to any M-0 
data spt 

Jones. Kirby Inno Pre-lucrs 
a Nýthrrcot accurate 

valupq of 
connection 
stiffness 

Produces a good 
fit to the test 
data for single 
angle connecec- 
tionss 

Richard et al 1980 untried for other 
types but should 
be suitable 

Ranvorg-Os-pod Producýs a lood 
(-xrnnontiall 

Ang 6 Morris 1984 
fit to a varipty 
of to-qt data. 

Similar to typst 

7. Expinential 
correction 

19n4 Producr" a joc-d 
fit to Allthnrls 
own date 

Has a semi- 
analytLcal 

DisadvAntal-s 

Inaccurate at high 
rotation values 

inaccurate at 
some rotation 
values 

Can produce 
inaccurate leven 
flogative) 
colillectivi t3nl--t 
stiffnf. -Is va"Jos 

NonLinear 
requires iterative 
evaluation 

Nonlln"4r . 
*. 

rpl, iirps 
- -- I tprat ive 

eva luat ion 

Requ I cc q 
S poc 1 .31 
. umec Ica I 
procp, iurei 
for 
#wA I U4 t Ion 

Nonlinear 
requires 
Iterative 

evaluation 

Rejuires 

weiqhted 
least squares 
Owl I'm ti oil 

Non I ifwar 
rrI'llfr-I 
Ltrr., kt ive 

evaLUdtion. 
Requires 
weight" 

evalu4tion. 

Plon II no ir 
re, ptiren itt-rattv* 
avaLuation 

Untried outside range. 
of orijin&L data 

Table 1.3.5 Representation of Connection Moment-Rotation Curves. 
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Connection Reference Description of model M- (ý curve 

Single web 
anele 

Web side Richard et al. Dimensionless. 
angle (1980) equation based upon 

nonlinear finite- 
element analysis of 
several connections 

Double Lothers ( 195 1) Linear equations for 
web initial stiffness and 
angle connection moment 

capacity, based upon 
elastic analysis of 
web angles 

Lewitt et al. Two equations based 
(1969) upon elastic and 

plastic analyses. 
with intermediate 
transition. Equations 
contain factor evalu- 
ated empirically 

Header 
place 

End plate Tarpy and Equations for initial 
Cardinal M-(ý curve (almost 
(1981) linear) and ultimate 

moment capacity. 
'based on Para- 
metric study using 
finitc-elemýnt 
program 0 

Krishnamurthy Equation for initial 
ef al. ( 1979) U-4) curve (almost 

linear). based on 
parametric study 
usiniz two- 
dimensional elastic- 
plastic finite-element 
program 

Johnson and Linear equations for 
Law (1981) initial stiffness and 

plastic moment capa- 
city, based upon 
elastic and yield line 
analyses. respectively 

Top and Lothers ( 195 1) Linear equations for 
seat initial stiffness and 
anele connection moment 

capacity. based on 
elastic analysis 

Maxwell Linear equations for 
er al. (198 1) initial stiffness and 

ultimate moment. 
based on finite. 
element analysis of 
several connections 

v--- 

/ 

/ 

1 

Table 1.3.6 Mathematical Modelling of Connection Moment-Rotation 

Behaviour. 
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CHAPTER 2 

STIFFNESS MATRIX 
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2.1 INTRODUCTION 

The advent of electronic computer has removed the problem of forming and solving 

large sets of equations. In the stiffness matrix method of analysis, which is solely 

a computer based method, the structure is represented as an assemblage of discrete 

elements interconnected atjoints or nodes i. e., points at which two or more members 

meet. The relaxation of this definition will be discussed later. 

In the stiffness matrix method, the nodal displacements are selected as unknowns. 

The elements are represented by stiffness matrices that relate the element end 

displacements to element end forces. The element models are assembled into a 

system model by imposing conditions of compatibility and equilibrium. The system 

model relates the nodal displacements to applied nodal forces through the system 

stiffness matrix. Once the system model is solved for the nodal displacements, any 

measure of response can be determined. In this study, the structure is idealized as 

a two dimensional or plane framework. 

2.2 NOTATION AND AXES 

A typical element is shown in figure 2.2.1. Associated with the element is a set of 

element axes, which will not, in general, coincide with the axes of other elements 

of the structure. The right-handed element axis system is adopted and the x-y 

plane coincides with the plane of the structure. 

There is a possibility of two linear displacements and one rotation at the each end 

of the element as illustrated in figure 2.2.1. Associated with each displacement there 

is a corresponding force or moment and these are shown in figure 2.2.2. The above 

mentioned figures also show the positive sense of displacements and forces. 

The forces and associated displacements at the ends of the element, in the element 

axes system, are related by the well known element stiffness matrix equation 
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kd 

where 

P : '-- [Pxl 
P Pyl I Mg] v Px2 s Py2 ý Mz2 ]T 

[d.,,,, d3,1 t osl I 
dx2ý dy2 

9 
oz2 ]T 

and k is a six by six element stiffness matrix. 

2.3 COORDINATE TRANSFORMATION 

Equation (2.2.1) shows how the element end forces are related to the end 

displacements, both in the element axes system. Elements meeting at a node will 
in general lie at different angles. Consequently, the element axes will be 

inconveniently oriented, which precludes their use when considering equilibrium 

and compatibility. This can be overcome by transforming the element force and 

displacement vectors to the structure or global axes system using the transformation 

matrix, 

R0 
0 R] 

where the rotation matrix is 

- Cos 0 sin 00 
R= -sinO cosO 0 

001 
(2.3.2) 

where 0 is the clockwise rotation of the element about node I that will make the 

element axes coincide with the structure axes. 

By expressing the force and displacement vectors in the structure axes system, 

equation (2.2.1) becomes 

kT 

60 



The prime denotes reference to the structure axes system. Premultiplying both sides 

by TT gives 

or 

= (T TkT) 

pp = k' d' 

k' is the element stiffness matrix in the structure axes system, and 

(2.3.3) 

k'v =TTkT (2.3.4) 

2.4 LOAD BETWEEN JOINTS OR NODES. 

When an element carries load along its span, the forces developed must be taken 

into account. Such forces can be dealt with using the concept of fixed end forces, 

equivalent joint forces and superposition. As the name implies, fixed end forces 

are forces developed at the ends of the element when fully fixed. Equivalent joint 

forces are the negative of the fixed end forces. The fixed end forces are an artificial 

system of applied loads that serve to hold the nodal displacements to zero. To return 

to the true structural behaviour, it is necessary to superimpose the equivalent joint 

forces. The element end forces and the structural displacements are obtained by the 

superposition of the effects of the fixed end forces and the final nodal forces, which 

will include any nodal loads. 

For an element carrying point loads along its span, the fixed end forces concept can 

be discarded by putting nodes at the loading points. Hence, the fixed end forces are 

only required when the element is carrying distributed loading. 
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2.5 STRUCTURE STIFFNESS MATRIX 

Once the individual element stiffness matrix in the structure axes system of a 

structure has been formed according to equation (2.3.4), the stiffness matrix of the 

structure, H, can be obtained by assembling of the element stiffness matrices in the 

conventional manner. The structure nodal load vector, P, consists of the nodal 

applied forces and equivalent joint forces, if any. 'Hence, the final form of equation 

(2.3.3) is -, 

KD 

To solve for the structure nodal displacements, there are several standardized 

procedures available. The procedure employed here is the Choleski Triangular 

Decomposition method of solution. A detailed description can be found in Appendix 

I. 

Once the structural displacements are known, as stated before, the element end 

forces can be determined from 

p0= k' d' + pflf (2.5.2) 

where pf' is the element fixed end force vector in the structure axes system. 
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Fig. ý. 2.1 

General Element Axes System"and Associated Displacements. 

z F g. 2.2.2 

General Element Axes System and Associated Forces. 
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CHAPTER 3 

ELEMENT STIFFNESS MATRIX 

AND 

FIXED END FORCES 
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3.1 INTRODUCTION 

It has been shown in the previous chapter that once the individual element stiffness 

matrix is known, the structure stiffness matrix can be formed. This chapter deals 

with the derivation of the element stiffness matrix and fixed end forces for both the 

rigid jointed and semi-rigid jointed element. In the derivation, the following 

assumptions are made. 

1) Displacements are small. 

2) Plane cross sections remain plane after bending. 

3) The element material behaves in a linear elastic manner. 

4) The element is straight and prismatic. 

5) All loads act in the plane of the structure i. e. planar loading. 

6) Shear deformation is neglected. 

7) Effects of axial load are neglected. 

3.2 RIGID JOINTED ELEMENT 

3.2.1 ELEMENT STIFFNESS MATRIX 

The element stiffness matrix consists of stiffness influence coefficients. These are 

the actions imposed by the supporting medium when unit displacements occur in 

isolation at each end of the element in turn. These imit displacements are assumed 

to occur one at a time, while all other displacements are held zero. They are indicated 

in figure 3.2.1. The resulting forces are always in equilibrium, and therefore three 

general equations may be drawn up : 

P. 1 +Px2 "1 0 

Pyl+PyV'ýo 

M. I+Ms2=py, 
L 

(3.2.1a) 

(3.2.1b) 

(3.2.1c) 

65 



Consider displacement d,,, of figure 3.2.1 a, 

EA 
p., = Z- da 

From equation (3.2.1 a), 

EA . 
Px2 =- T- dd 

By treating in a similar manner for displacement d4 of figure 3.2.1 b, 

EA 
P., =- T- dx2 

and 

Px2 = 
EA d, 

ý2 L 

(3.2.2) 

The influence coefficients involving 0, 'and dy will be determined using the strain 

energy method according to Castigliano's Theorem which is detailed in Appendix 

11. 

Considering the rotation 0, of figure 3.2.2, the element is given an end rotation 0.2. 

The moment at a section of distance x from end I ý'is 

M= -M. 1 + PYIX 

The strain energy due to bending is 

(3.2.3) 

SE 
L M2 

dx (3.2.4) 
2EI 

66 



Substituting equation (3.2.1c) into equation (3.2.3) and then into equation (3.2.4) 

and using Castigliano's theorem 

yields 

Again using Castigliano's theorem, 

yields 

and 

DSE 
=dy, =0 apyl 

3m, 2 Pyl = 2L 

=A- 
DSE 
OM&2 - I' 

4EI 
Mj2 =L ox2 

Pyl = 
6EI 0 x2 = -Py2 
L2 

From equation (3.2.1c), 

M. I ý-- 
2EI oz2 = 

Mz2 
T- 

2 

(3.2.5) 

(3.2.6) 

(3.2.7) 

Similar expressions to equations (3.2.5) to (3.2.7)'can be set up for rotation 0,1 by 

careful transposition of the suffices. 

Now, considering displacement dY2 of figure 3.2.3, the bending moment at x is 

m` -m'I + PYIX 

= -Mzl - Py2X 

Substituting into equation (3.2.4) and using 

(3.2.8) 
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DSE 
=031 =0 amil 

yields 

and 

yields 

From equation (3.2.1 c), 

hence, 

and 

2m, l Py2 =-- L 

=fl - DPy2 - yz 
DSE 

6EI 
Mil ZTdy2 

6EI 
ll&s2 L 

Fdy2 

12EI 
Py2 = ZTdy2 

12EI 
Pyl ýdy2 

(3.2.9) 

(3.2.10) 

(3.2.11) 

(3.2.12) 

Again, similar expressions to equations (3.2.9) ýo (3.2.12) can be set up for a 

displacement dy, by careful transposition of the suffices. 

From the above, the full element stiffness matrix can be set up as shown in equation 

(3.2.13) below : 
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EA -EA 
L 

uU -T- Uu 

12EI 6EI 
0 -12EI 6EI 

L37L3L2 

4EI 
0 -6EI 2EI 

T- L2L 

EA 
L 

00 

sym 
12EI -6EI 

L3 L' 

4EI 
L 

.......... (3.2.13) 

Note that the matrix is symmetric as required by the Betti-Maxwell's Theorem, a 

detail of which is given in Appendix III. Equation (3.2.13) can be expressed in a 

more general form which will be used later in the derivation of the stiffness matrix 

of a semi-rigid jointed element. 

Figure 3.2.4 shows the independent bending displacements at the ends of an element 

and the associated forces. S, I, S12 and S2.2 are pure rotation coefficients, Tj I, T12 and 

T22 are pure translation coefficients and Q11, Q129 

rotation-tranilation coefficients. 

Q2, and Q22 are cross 

The generized element stiffness matrix expressed in terms of the above coefficients 

is shown in equation (3.2.14). 
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EA 
L 

00 -EA 
L 

00 

TIIEI QIIEI _T12EI 
Q21EI 

L3L20L3L2 

SIIEI 
0 -Ql2EI S12EI 

LL2L 

EA 

sym 

L 
00 

T22EI -Q22EI 
L3L 

T- 

S22EI 

L 

(3.2.14) 

From figure 3.2.4, equilibrium gives 

Q1 I= Q12 ýSl I+ S12 

Q22 = Q21 = S22 + S12 

T11 = T12 = Q11 + Q21 

T22 ": T12 "": Q22 + Q12 

(3.2.15a) 

(3.2.15b) 

(3.2.15c) 

(3.2.15d) 

For a rigid jointed element, because of "symmetry" of the two ends, the properties 

at the two ends must be the same. Therefore 

and 

Hence, from equation (3.2.15), 

S11 ý-- S22 

TII=T22 
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Qll Q12 )21 Q22 ýSll +S12= Q (3.2.16a) 

Tll 2- T12= T22=2Q (3.2.16b) 

Thus, it can be seen that the stiffness influence coefficients can be expressed in 

tenns of SI, andS129which are given by : 

S11=4 and S12 =2 

Substitution into equation (3.2.14) will produce a matrix similar to that of equation 

(3.2.13), i. e., for a rigid jointed element. 

The element stiffness matrix in the structure axes system can easily be obtained by 

using equation (2.3.4) of Chapter 2. The f inal result is as shown in equation (3.2.17). 

where 

m =coso 

All= ---+- L3L 

T IlEjn2 _ 
EAM2 

A.. =- 
QIIEIn 

.. 13 

= 
(TI2E1 EA 

A, 5 L3L 

1% 

i 
mn 

All A12 

A22 

A13 A14 

A23 A24 

A33 A34 

sym A44 

A15 

A25 

A35 

A45 

A55 

n= sinO 

A16- 

A26 

A36 

A46 

A56 

A66J 

TIIEI 
+ 

EA 
12 ý 

(- 

L3L vnn 
/ 

T12 EIn 2 EAM2 
A14 =4L3+L 

Q21EIn 
L2 

(3.2.17) 
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A 
TI, Elm 2 

EAn 2A-Q, 
jElm 

22 LLýl 
+' 

L 23 L2 

A24=( 
T12EI 

- 
EA 

n A25 =4+ 
EAn 2 

L3LL3L 

Q21EIM 
26 L2 

A.. = 
Q, 2EIn 

-. m 

S12EI 
A36 ý- L 

T22EI EA A45'ý 
3+- 

(- 

LL mn 
i 

A55 = 
T22EIm 2 EAn 2 

L3 
+L 

S22EI 

"66 - 

A33 44 
L 

Q12EIM 
A35 =L2 

A44= T 22 EIn 2 EAM2 

L3'L 

A46 =L2 

A--=- 

SIIEI 

Q22EIn 

Q22EIm 
.. -Irj 

3.2.2 ELEMENT FIXED END FORCE9 

Figure 3.2.5 shows a typical rigid jointed element with both ends fully fixed and 

the span subjected to distributed loading W, at node I and increasing proportionally 

to W2at node 2. At the section of distance x from the origin, the bending moment 

is 

a£ M- = VIX -M. - 

WX2 (W _W)X3 121 

12 6L 
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Applying simple bending theory and integration gives 

EI 
dy V1 X2 1171X3 (IV2 - WI)x 4 

+A dxý-- 2 +M'x+ 6+ 24L 

Integrafing again results in 

V1 X3 Ix 
2 IV) X4 W2 - wl )X5 

Ely =- +ýý-+ +( +Ax +B 62 24 120L 

Applying the boundary conditions 

Y=O and 
dy 

0 
dx at X=o and x=L 

yields 

From equilibrium, 

vi =7L IV, +3L IV2 

20 20 

37 V2= L Wl+y-L 
2 20 0 

(3.2.18) 

(3.2.19) 

mi =L2 
LVI 

+ 
W2 

(3.2.20) 
(20 

30) 

M2 =_L2 
WI+W2 (30 

20) 
(3.2.21) 

Equations (3.2.18) to (3.2.2 1) are also valid when W, is greater than W2. Expressions 

for cases when W, =0 or W2=0 or WI=W2can easily be obtained by substitution 

into the above equations and these are tabulated and shown in table 3.2.1. 
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3.3 SEMI-RIGID JOINTED ELEMENT 

3.3.1 ELEMENT STIFFNESS MATRIX 

This type of element is often used to simulate the deformations at the joints in bolted 

steel structures. The flexibility of joints is modelled by including rotational springs 

at the ends of the element. In addition to the general assumptions mentioned earlier, 

it is also assumed that the joint is contracted to a point at the intersection of the 

element centre lines and panel zone deformation is neglected. 

The stiffness coefficients relationships from equation (3.2.15) are still applicable 

to the stiffness matrix in the structure axds system (equation 3.2.17). 'Beciuse the 

springs at the two ends of the semi-rigid jointed element may not be the same, the 

element lacks "symmetry' Le., S11 is not equal to S22. It can be seen from equation 

(3.2.15) that once the coefficientsSI1, Sl2and S22are determined, all the stiffness 

influence coefficients can be obtained. 

Consider the semi-rigid jointed element shown in figure 3.3.1. When moments M, 

andM2are applied at the two ends, thejoint at land 2rotate by 01 and02respectively. 

For the element, the moments at ends I and 2 respectively are 

mi -ý 
EI (S 

1171 +S1 AD 

M22-- EI (S12Y1 + S227D 

where SI, = =4 andS, 2= 2. 

(3.3.1) 

(3.3.2) 

If the rotational stiffness at the ends land 2areR, and R2respectively, and assuming 

that they behave in a linear elastic manner, then 
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M, =R, (Ol -, Jl) 

M2 = R2(02 - 72) 

(3.3.3) 

(3.3.4) 

By eliminatingy, and y2 from the above equations, the stiffness relationship between 

M, and M2 and thejoint rotations 0, and 02 are 

EI - mi 7--- 
L 

(SIIOI+SI202) 

EI - M2 ý Z- (S 
1201 +S 2202) 

where 

(4 + 12ot2) 

F 

(4 + l2al) 3r22 
=F 

2 S12 "2 T 
F 

where 

F= 1+4(a, +oc2) + 12ccl(x2 

cci = 
EI 
LRI 

EI 
(X2 ý-- 

LR2 

(3.3.5) 

(3.3.6) 
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Hence, by treatingS, I, S12 and S22 of equation (3.2.15) as S U, S, 2 and S= respectively, 

and then substituting into equation (3.2.17), the element stiffness matrix of the 

semi-rigid jointed element in the structure axes system can be determined. 

3.3.2 ELEMENT FIXED END FOkCES 

Consider the element shown in figure 3.3.2. The span is subjected to distributed 

loading IV, at joint I and increasing proportionally to W2 at joint 2. The stiffness of 

the springs are R, and R2 as before. Because of the action of the distributed loading 

and the end moments, the net rotation of the beam are y, and y. at ends I and 2 

respectively. For the element, using the slope and deflection expressions from 

Section 3.2.2 and applying the boundary conditions 

Y=O at x=O ' and x=L 

results in 

yl=. 
L(MI+M2 

EI 36 360 360 

) 

72 = 
L (M, M2 7W1L 2_ 8W2L2) 

EI 63 360 360 

For the two springs, the moment-rotation relationship is given by 

(3.3.7) 

(3.3.8) 

M, = Rly, (3.3.9) 

M2=R2y2 (3.3.10) 

Eliminating yj andy2from the above equations, the expressions for M, and M2are 

of the fbim : 
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ml =L IWI(3+16%)+2W2(l + 7%)} (3.3.11) 
60F 

M2= 
--L j2W, (I + 7al) + W2(3 + 16(x, )} (3.3.12) 

60F 

From equilibrium, 

L 
V, =ý (2W, +w 2)+ 

V2 =L (WI + 2W2) 
MI +M2 

6L 

(3.3.13) 

(3.3.14) 

Expressions for various cases of W value can easily be obtained by substitution and 

these are shown in table 3.3.1. By substituting (xI = a2= 0, i. e., R, = R2 = ", which 

is the case of a rigid jointed element, expressions for the fixed end forces will be 

similar to those as shown in table 3.2.1. 
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Fig. 3.2.1 

Independent Displacements at the Ends of a Rigid Jointed 
Element and the Associated Forces. 
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Jý 
I 

PA 

Fig. 3.2.3 

Fig. 3.2.2 
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Py2 
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Independent Displacements at the Ends of an 
Element and the Associated Forces. 
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-Ql, EI/O Q.,, EI/Lý 
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Fig. 3.2.4 
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V2 

xH 

Fig. 3.2.5 

Rigid Jointed Element with Linearly Varying Distributed Load. 

el 

Fig. 3.3.1 

Semi-rigid Jointed E; ement. 
W2 

M1 

/ 

vi 

WI 

1 

I 

2 

L 

M2 

4x 

Fig. 3.3.2 

-0" V2 

Semi-Rigid Jointed Element with Linearly Varying Distributed Load. 
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wl W2 mi M2 vi V2 

0 W2 w. L2 w. L2 3W2L 7W2L 

30 20 20 20 

W, 0 TVIL 2 TVIL 2 7WIL 
- 

3WIL 
20 30 ý0 20 

w w wL2 WL 2 WL WL 

12 12 2 2 

Table 3.2.1 Fixed End Forces of a Rigid Jointed Element 

due to Distributed Loading 

wl W2 M, M2 V, V2 

0 W2 IV 
2L 

2(l 
+7a2) W2L 2 (3 +16al) W2L MI + M2 IV2L MI+M2 

30F 60F 
+ 

6L 3L 

W1 0 WIL 2 (3 + l6ct2) WIL 2(l 
+ 7(x, ) M, + M2 WIL WIL MI+M2 

60F 30F 
+ 

3L 6L 

w W WL2(l + 6%) WL 2(l 
+6ccl) WL MI+M2 WL MI+M2 

I 12F 12F 2L 2L 

Table 3.3.1 Fixed End Forces of a Semi-kigid Jointed Element 

due to Distributed Loading 
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CHAPTER 4 

ELEMENT STIFFNESS MATRIX 

AND 

FIXED END FORCES 

(WITH AXIAL LOAD EFFECT) 
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4.1 INTRODUCTION 

The derivations of the element stiffness matrix and fixed end forces performed in 

Chapter 3 were based on the assumption of no axial force acting on the element. 

As such, they are only applicable in analysis where axial loading is very small or 

negligible. In the study of stability, the axial loading plays an important role. 

This chapter deals with the derivation of the element stiffness matrix and fixed end 

forces of both the rigid and semi-rigid jointed element taking into account axial 

loading on the element. The assumptions are similar to those mentioned in the 

previous chapter, except for the axial loading. 

4.2 RIGID JOINTED ELEMENT 

4.2.1 ELEMENT STIFFNESS MATRIX 

Figure 4.2.1 shows a prismatic element 1-2 of constant flexural rigidity El and of 

span L. End 1 is acted upon by moment M, and rotates through an angle 01, while 

end 2 is rigidly held in position and direction. The restraining moment at end 2 is 

M2. The element carries an axial compressive load P. When the influence of axial 

load is considered, 

EI 
mi =s 

and 
M2 

ml 

Substituting the fust equation into the second gives 

M2=S C 
EI (4.2.1) 
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s is a factor modifying stiffness EIIL while c is a carry-over factor. s and c are 

called stability functions and depend on the axial load. Taking moment about end 

2, 

V, 
(MI + M2) 

L (4.2.2) 

At the section of distance x from the origin, the bending moment is 

M. = -PY + VIX - M, 

Using simple bending theory and substitution of the bending moment equation 

result in the differential equation of the fonn : 

d2Y21 
- dX2 ' tý J EI , 

(VIX - Ml) =0 (4.2.3) 

The solution of the above equation is 

y =A sin px+Bcospx+. 
I (MI + M2)X 

-ml L 

Applying the boundary conditions 

Y=O at X=o and x=L 

the integation constants obtained are 

A=- 
1 

(M, cot gL + M2cosec gL) 7EI 

- 
g2 EI 
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Differentiating equation (4.2.4) gives the slope 

dy 
ýý= A gcospx -Bg sin px + WEIL (4.2.5) 

Applying the boundary condition 

dy 
dx 

results in 

at x=L 

M2 
gL - sin gL 

C M, sin gL - pL cos gL 

Applying the boundary condition 

and using 

from equation (4.2.1) results in 

at X=o 
dy 

= ol 
dx 

MIL 
EIOI 

S =gL(l-gL cot PL) 
2 tan!! L 

- pL 2 

From equations (4-2.1) and (4.2.2), 
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(4.2.7) 



=EIS (1 + c)el V, 
L2 

(4.2.8) 

Expressions equivalent to the above can be set up for the moments and shears arising 

when end 1 is held and end 2 rotates. 

Now, considering the disPlacement dy, figure 4.2.2 shows the element 1-2 initially 

I 
carrying end loads P, deflected to position V-2' without end rotations. The 

deflections can be conveniently thought of as having taken place in two stages: 

a) A rigid body movement of 1-2 to the position V-2' indicated by the thinner 

line. No end moments result from this movement. 

b) Equal rotations through angles -0 at each end to bring 1-2 to its final 

configuration. 

Provided that P is constant during the two stages, the final result can be obtained 

by superposition. Hence, 

MI = M2 = -S 
EIo_s 

CEIO LL 

or 

EI MI 
«": 

M2 
' '2 -iiS (1 + C) (dy2 - dyl) 

Taking moments about 2', 

+ 
ý! (dY2 - dyl) 

LL 

or 
I 

V, =I-A-s(I +c)+P L2 

11 

(4.2.9) 

(4.2.10) 
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When P=0 then M, = M2 = VIL/2. 

Considering the axial displacement, d., , 

P= EA 
(d,,, - d., 2) L (4.2.11) 

The element stiffness matrix in the element axes system (equation (3.2.14)) and in 

the structure axes system ( equation (3.2.17)) are still valid except that the 

coefficients Sip Tij and Qjj must be redefined. 

Figure 3.2.4 of Chapter 3 shows the independent displacements at the ends of the 

rigid jointed element and the associated forces at the ends (neglecting axial effect). 

Figure 3.2.4a is substituted by figure 4.2.3 when axial effect is considered. From 

figures 3.2.4b and 4.2.3, 

Qll = Q12=--Sll +S12 

Q21"":! 222 -"ý 
S12 + S22 

TII ý-- T12 ý-- Qll + Q21 - 
pL2 
EI 

": Q12 + Q22 - 
pL2 

T *' T22 
12 « EI 

(4.2.12a) 

(4.2.12b) 

(4.2.12c) 

(4.2.12d) 

Again, for a rigid jointed element, because of "symmetry" of the two ends, the 

properties at the two ends must be the same. Therefore 

Sll ý-- S22 

and 

TII=T22 

Hence, equation (4.2.12) becomes 
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Q11 ý-- Q12 ý- Q21 ý Q22 = Sl I+ S12 =Q (4.2.13a) 

Tll'= T12: -- T22 = 2Q _ ý? L2 

where 

92=L 
EI 

sil ý-- 

S12=s c 

(4.2.13b) 

If the axial load is tensile, the term y in equation (4.2.3) becomes negative. This 

leads to a solution in terms of hyperbolic functions, i. e. 

S= 
jiL (I - pL coth pL) (4.2.14a) 

2 tanhLL - pL 2 

and 

C= 
sinh gL - IiL cosh gL 

(4.2.14b) 

4.2.2 ELEMENT FIXED END FORCES 

Figure 4.2.4 shows an element with both ends fully fixed and the span subjected to 

uniform distributed loading W. The bending moment at the section of distance x 

from the origin is 

M, =V, X+PY-Ml- 
wx2 

2 

Using simple bending theory and substitution of the moment gives 

W2 WIýX d2y+fy_ 1x 
=o (4.2.15) 27' EI EI 

(M' 
'22ý 

gL - sinh jiL 
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The solution is 

I 
MI+W 

2 WLX W x 

=A sin px+B cospx+ -A ---- w -TE-I 
(22- 

Applying the boundary conditions 

dy 
y=O andT=O atx=O gives 

x x 

A 
WL 

2WEI 

WEI 

Applying the boundary condition y=0 at x=L gives 

w 
mi =- 

PL 
cot!! 

L 
-M2 W(l 22 

(4.2.16) 

(4.2.17) 

If the axial load is tensile, the trigonometry function of equation (4.2.17) should be 

replaced by the hyperbolic function. 

4.3 SEMI-RIGID JOINTED ELEMENT 

4.3.1 ELEMENT STIFFNESS MATRIX - 

The approach used in deriving the element stiffness matrix is similar to the case 

without axial load. From figure 3.3.1 of the previous chapter, the moments for the 

element at ends 1 and 2 respectively are 

mi = 
EI 

(SI IYI + SIAD (4.3.1) 
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I 
M2 "ý 

E- 
(S 

1271 + S22Y2) 
L 

where 

and 

For the springs, 

Sl 
I' '"ý S22 ý-- S 

S12ýS C 

MI=RI(01-^Il) 

M2=R2(02-y) 

Eliminatingy, and y2 from the above equations results in 

MI 
L- 

(S1101+S1202) 

M2 (S 
1201 + 372202) 

L 

where 

S+ S2(1 _ C2)CX2 
= 

F 

S+ S2(1 _ C2)(Xl 
S22 =- - F 

sc 
S 

12 ý-- T 

1+s(a, + 09 + S2(1 _ C2)CCI Cý 

(4.3.2) 

(4.3.3) 

(4.3.4) 

(4.3.5) 

(4.3.6) 

(4.3.7a) * 

(4.3.7b) 

(4.3.7c) 

(4.3.7d) 
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Hence, by treating SI I, S12 and S22 of equation (4.2.12) asY,,, 
3712 

and3722 respectively, 

and then substituting into equation (3.2.17), the element stiffness matrix of a 

semi-rigid jointed element in the structure axes system can be established. 

It is worth mentioning that when both o(l andcý tend to zero, i. e., a rigid jointed 

element, then 

F=l 

From equations ( 4.3.7 a, b, c), 

S 
11 ý-- S22 = 

and 

S12=S C 

These are exactly similar to the pure rotation coefficients for a rigidjointed element 

with axial loading. 

Furthermore, when the axial effect is neglected, i. e., P=0, then figure 1.2.1 of 

Chapter I gives s=4 and c=0.5 . These are in fact the values similar to, and for 

determining, the coefficients of the rigid jointed element without axial effect. 

If only P=0 and then the pure rotation coefficients of equations (4.3.7 a, b, c) will 

be similar to those of the semi-rigid jointed element without axial loading. 

4.3.2 ELEMENT FIXED END FORCES 

Figure 4.3.1 shows a semi-rigid jointed element subjected to an uniform distributed 

load W. The stiffness of the springs at ends I and 2 are R, and R2 respectively. 

Because of the distributed loading, axial load and the end moments, the net rotations 

at the ends are y, and y2 respectively. 
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For the element, from equation (4.2.15), 

W2 IVLX x dY+PY- 1 
M, +- =o W EI -EI 

(22) 

The solution of the differential equation is 

y =A sin px+B cospx+ 
i (Mý+Lx! WLX W) (4.2.16) -WEI 22W 

Applying the boundary conditions 

y =0 at ýx =0 and x =L gives 

A= -B tan pL -- 
M, 

PsinpL ' PWsinpL 

w M, 

pw p 

By differentiating equation (4.2.16), the slope at the ends are 

M, M2 
ý- 

(pL cos p. L - sin PL) + 
si 

(pL - sin IjL) 
PL sin ýtL PL n pL 

WL 
(2 -2 cos pL - gL sin gL) (4.3.8) +ýIiPL- 

sin pL 

M, M2 

Y2 =- (pL sin gL) + (pL cos gL - sin gL) 
PL sin gL 

WL 
2gL sin pL 

(2 -2 cos jiL - gL sin gL) (4.3.9) 
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For the springs 

M, = Rly, 

M2 = R2y 
,2 

(4.3.10) 

(4.3.11) 

Eliminating yj andy2results in 

W(2MnE_ ) (WL2 ý+2) 

2 
PL a2 - 9L Cot 

1ý2 

(4.3.12) 
2WFI 

If 
-= 

-W(2tan!! 
L_pL) (WL2(Xj_pLCot! ýE+2) 
22 

2WFI 

where 

F, =2 tan PL 
-pL -pL (cc, +o(2) (gL cot gL - 1)+(cc, oýgl) 

2 

The shear forces are 

V, WL 

.22 

WL MI + M2 
V2 =- 

22 

(4.3.13) 

(4.3.14) 

When the spring stiffnesses are equal to infinity, i. e., rigid jointed ends, equations 

(4.3.12) and (4.3.13) become 

W(l - 
llý 

cot OL 
2 2) 

(4.3.16) 
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M2 = --: -Ml (4.3.17) 

respectively. Notice that they are similar to equation (4.2.17). 

As before, if the axial load is tensile, all trigonometric functions are replaced by 

hyperbolic equivalents. 

- 95 



I M 

x 

L 

Fig. 4.2.1 

Fig. 4.2.2 

2 

M2 

V2 

M2 

96 



Ti, DIC 

Q2j El/ý -Q, 2 EI/L! 

r-"ý r-ý 

-T-u Elle -T.. EI/L? 

Fig. 4.2.3 

M1 
L 

w 
111 

VI 

y 

H1 
/ 

vi 

y4 

x 

Fig. 4.2.4 
Rigid Bement with UDL 

L 

x 

Fig. 4.3.1 
Semi-Rigid Element wilh UDL 

Q z2 EJ/L! 
l'-"N. 1 11 p 

T.,, E1112 

M2 

2ý 
v 

ý? -1) 

M2 

97 



CHAPTER5 

LOCAL BUCKLING 
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5.1 INTRODUCTION 

Cold-formed steel sections have been used as structural members for a great many 

years now. The wide variety of different shapes and the high strength- to- weight 

ratios combine to make cold-formed steel sections highly competitive for a range 

of structural applications. One major factor which often gives such sections 

significant advantages over their hot-rolled counterparts is to be found in the wall 

thicknesses which can be used. The thickness of the material from which 

cold-formed sections are manufactured can be very small, and this permits much 

more economical use of material in many cases than can be obtained using 

corresponding hot-rolled sections. However, the relative thinness of cold-formed 

sections, which can be so beneficial to economic range, is also the source of many 

phenomena which must be considered if advantage is to be taken of the potential 

economies. Perhaps the most important of these phenomena is local buckling. 

Local buckling in a structural member is characterised by a number of ripples or 

buckles along the walls of a section as illustrated in figure 5.1.1 (a). The buckled 

shape of the cross section is shown in figure 5.1.1 (b). It is well known that the 

occurrence of local buckling in a compressed thin-walled structural member, while 

not necessarily causing immediate failure, radically reduces the stiffness of the 

member against further compression and hastens the ultimate failure. 

Although the, effects of local buckling have been extensively investigated, 

performing the post-buckling in a rigorous manner is extremely complex and 

tedious. The complication of large deformations combined with inelastic behaviour 

in the later stages of post-buckling makes a widely applicable solution difficulL 

Most solutions which do exist are limited to specific sections or are limited to the 

earlier stages of post-buckling. Fortunately, a much simpler, generally applicable 

means exists for incorporating the effects of local buckling. This is the effective 

width concept. 
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5.2 EFFECTIVE WIDTH CONCEPT 

In the use of the effective width concept, it is necessary'to differentiate the plate 

elements of the structural member. Stiffened elements are flat elements with both 

edges parallel to the direction of stress stiffened by a web, flange or stiffener which 

supplies sufficient rigidity to prevent outof plane distortion at the edges. Unstiffened 

elements are flat elements with only one edge stiffened and the other free. These 

elements are illustrated in figure 5.2.1. 

In the effective width approach, the most severely buckled portions of an element 

are assumed to be ineffective in resisting load, and the applied compression is 

resisted by effective portions situated adjacent to the supported edges. This is 

illustrated in figure 5.2.2, which shows a typical buckled plain channel section 

under an axial load. The compressive stress distributions in both the stiffened and 

unstiffened elements is non-uniform. This is idealized by an uniform stress 

distribution which acts only on the effective portion of the buckled plate element 

based on the effective width concept. Also shown in the figure are parts of the 

buckled plate elements that have been deleted. Depending upon the 

width-to-thickness ratios of the individual elements, typical buckled channel 

sections columns are illustrated in figure 5.2.3. 

After the evaluation of the effective ývidths, the new sectional properties like area, 

second moment of area, neutral axis position, etc., ýxe used for further computation. 

A detailed description is given in Chapter 9. Figure 5.2.4 shows a typical effective 

section of a plain channel with the new neutral axis position. 

For the works reported herein, the computation of the effective width is based on 

the design specifications onlocal bucklingof BS 5950, Part5. Only sections relevant 

to and required for the determination of effective width of the elements of plain 
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channel are extracted and detailed. For cases not covered by the design 

specifications, approximations are made and will be mentioned as and when 

encountered. 

5.3 ELEMENT UNDER UNIFORM COMPRESSION 

5.3.1 STIFFENED ELEMENT 

The effective width, b, of a stiffened element under uniform compression is as 

follows : 

For 

(Y'r 

then 

b1 
b 

For 

a' ý: 0.123 
all 

then be 
1+14 0.35]41-0.2 

b 
(5.3.2) 

Equation (5.3.2) is the basic effective width expression. cr, is the local buckling 

stress of the element given by 

185000K - (5.3.3) 
b 

(I I 

For this case, the local buckling coefficient is given by: 
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2' 2+4.8h 
K =ý+ w 

where 

P= (I+ 15h 3)112 

b2 

bi 

For a beam element, 

K=7- 
1.8h 

_ 0.091h 
0.15+h 

1 (5.3.4) 

(5.3.5) 

The value of K for the column and beam element can also be obtained graphically 

from figures 5.3.1 and 5.3.2 respectively. Note that if K is less than 4, then a value 

of 4 can be used and this applies to any case of stiffened element. 

5.3.2 UNSTIFFENED ELEMENT 

The effective width, b,., of an unstiffened element under uniform compression is: 

bou = 0.89b, + 0.11 b (5.3.6) 

where b, is determined from Section 5.3.1. 

For this case, assuming constant thickness for b, and b2 

222+4.8h K=h 
( 

ý+ P2 

) 

(5.3.7) 

If K is less than 0.425, then a value of 0.425 may be used. This applies to any case 

of unstiffened element. 
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5.4 ELEMENT UNDER COMBINED BENDING AND AXIAL 

LOAD 

Only the unstiffened element is mentioned here as this is the only relevant case for 

the members examined here. If the loading is such as to cause compression of the 

fire edge, the effective width may be determined from Section 5.3.2 with q, 

replaced by the stress at the free edge and the buckling coefficient for this case is 

3.4 (5.4.1) £ 

where h=b, /b2in this case. 

The buckling coefficient can also be determined graphically from figure 5.7.1. 

If the loading is such as to cause tension of the free edge, the effective width is 

taken as the full flat width. 

5.5 BEAM-COLUMN ELEMENT (IST APPROXIMATION) 

For a beam-column element, the moments at the ends are not uniform. Hence, the 

stresses at the ends of both the stiffened and unstiffened elements are not equal in 

both magnitude and direction. This is illustrated in figure 5.5.1 and it should be 

noted that all the stresses c;,, c; 2, c; 3 and cr4 can either be tensile or compressive, 

depending on the end forces. The effýctive width of such an element is not covered 

by the design specifications. Therefore, an approximation is made by assuming the 

element to be a beam element. 

5.5.1 STIFFENED ELEMENT 

If both a, and q3 are compressive, the effective width is determined from Section 

5.3.1 treating the element as a beam element and replacing cr, with the larger of the 

cr, and cr3. The buckling coefficient is determined from equation (5.3.5) 
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If either a, or u3 is compressive, the effective width is deterniined from Section 

5.3.1 treating the element as a beam element and replacing cr, with the compressive 

stress. The buckling coefficient is determined from equation (5.3.5) 
-- 

If both a, and a3are tensile, the effective width is taken as the full flat Nyidth. 

In the first two cases, the buckling coefficient can also be determined graphically 

from figure 5.3.2. If the value is less than 4, then a value of 4 may be used. 

5.5.2 UNSTIFFENED ELEMIýNT 

If both cy2and a4are compressive, the effective width is determined from Section 

5.3.2 and replacing cy, with the larger of the a2and cY4. The buckling coefficient is 

determined from equation (5.4.1) 

If either a2or a, is compressive, the effective width is determined from Section 

5.3.2 and replacing q, with the compressive stress. The buckling coefficient is 

determined from equation (5.4.1) 

If both cr2and cy4are tensile, the effective width is taken as the full flat width. 

In the first two cases, the buckling coefficient can also be determined graphically 

from figure 5.4.1. If the value is less than 0.425, then a value of 0.425 may be used. 

5.6 BEAM-COLUMN ELEMENT (2ND APPROXIMATION) 

In the previous section, the computation of the buckling coefficient was based on 

the assumption that the element is treated as a beam element. In this second 

approximation, the buckling coefficient is determined by assuming uniform 

compression. 
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5.6.1 STIFFENED ELEMENT 

If both cr, and cY3 are compressive, the effective width is determined from Section 

5.3.1 and replacing cr, with the larger of the a, and c; 3. The buckling coefficient is 

determined from equation (5.3.4) 

If either a, or a3 is compressive, the effective width is determined from Section 

5.3.1 and replacing a, with the compressive stress. The buckling coefficient is 

determined fi-om equation (5.3.4) 

If both cr, and a3are tensile, the effective width is taken as the full flat width. 

In the fkst two cases, the buckling coefficient can also be determined graphically 

from figure 5.3.1. If the value is less than 4, then a value of 4 may be used. 

5.6.2 UNSTIFFENED ELEMENT 

If both cr2 and a4 are compressive, the effective width is determined from Section 

5.3.2 and replacing cy, with the larger of the cr2 and cr, The buckling coefficient is 

determined from equation (5.3.7) 

If either q2 or a4is compressive, the effective width is determined from Section 

5.3.2 and replacing cy, with the compressive stress. The buckling coefficient is 

determined from equation (5.3.7) 

If both a2and cr4are tensile, the effective width is taken as the full flat width. 

In the first two cases, the buckling coefficient can also be determined graphically 

from figure 5.3.1. If the value is less than 0.425, then a value of 0.425 may be used. 
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Fig. 5.1.1 

Locally Buckled Plain Channel and Cross Section Shape. 
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Kfactors for some bending 
and compression elements 
Values for buckling coefficients for elements of some 
common structural members are plotted in figures 13 to 15 
and approximate equations are included to aid calculation. 
The K factors given refer to the element of width B, in all 
cases and are thus termed K1. Where K, is less than 4 
in the case of a stiffened element and 0.425 in the case of 
an unstiffened element, the value 4 or 0.425 may be used. 
In the case of uniformly compressed members the 
corresponding K factor for elements of width 82, which is 
thus termed K2, may be obtained as follows: 

K2 -K, h2 
11 ( 

t2 

K1 

Curve I Lipped channel K, st: 7- 
1*8 h-1.43 

h3 
(). 15 +h 

87 

a, L 0 
, el 

8,1 10 

eL G) 

(D 

Curve 2 Box with equal thickness sides K, -7-2h-1.2 h3 
0.11 +h 

Curve 3 Box with unequal thickness sides I ý, 
K, -7-5.4 h+ 50 h (h - 0.55) (h - 0.75) (h - 1) 

22+4.8 h 3)112 Curve 4 Plain channel K, so 7+ where (I + 15 h 

Curve 5 I-section made from two plain channels fixed back to back 

K, + 
2+h 

. where (1 + 90 h')"2 

Figure 13. K factors for uniformly compressed members 

Fig. 5.3.1 K Factors for Uniformly Compressed Members 

where 
h- B21B, 

ri, t2 are the thicknesses of element widths 81 and 82 
respectively. 

Normally tj and t2 are equal, but there arq cases where 
* 
the 

element has double thickness, e. g. element B, in case 3 of 
figure 13 where tj -2 t2. 
Where K2 is less than 4 or 0.425 as the case may be 
then the values 4 or 0.425 may be used. 
In the case of beams the K, factor refers to the element 
of width 81, which is taken as the compression element 
except in the case of curve 4 in figure 13 and curve 2 in 
figure 15, in which cases the K, factor refers to the tip 
stress of the unstiffened bending element. 
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CHAPTER 6 

EVALUATION OF PLASTIC MOMENT 
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6.1 INTRODUCTION 

In the ultimate or collapse load analysis of structural framework, the plastic hinge 

idealization is often used. When a member is subjected to loading, especially 

bending, yielding begins at the most stressed section. When full yielding has taken 

place at a section and unrestrained plastic flow occurs, an idealized plastic hinge 

is formed. The maximum bending that the section can withstand is the plastic 

moment. The plastic moment is a geometric property of the section. Both the plastic 

hinge and moment concepts are idealizations of the true section behaviour. The 

plastic hinge, which is assumed to occur over an infinitely short length of the 

member, can undergo rotation while the plastic moment remains constant. 

In the derivation of the plastic moment detailed below, the material is assumed to 

behave in an elastic-perfectly-plastic manner. The usual assumption of small 

deformation and original plane sections remaining plane are also employed. The 

effect of shear is neglected and the section is also assumed to be of constant 

thickness. 

In the theoretical critical load analysis detailed in Chapter 9, the computation of 

the individual member plastic moment is based on the current effective geometry 

and axial load, if desired. This is to account for the reduced plastic moment capacity 

of the member due to both local buckling and axial load effects. 

6.2 PLASTIC MOMENT WITHOUT AXIAL LOADING 

When a plain channel is subjected to bending about the axis parallel to the stiffened 

element, the stress across the unstiffened element varies linearly until the yield 

stress is reached. Further increased in the moment due to bending will cause partial 

plasticity and then finally to full plasticity as illustrated in figure 6.2.1. The direction 

of the bending moment is shown to cause compression of the free edge of the 

unstiffened element. As the section is not symmetrical about the neutral axis, this 

113 



causes the zero strain axis to move from the centroid at full plasticity. The term 

zero strain axis is used deliberately to avoid confusion with the neutral axis, which 

is associated by common usage with the centroid. As the zero strain axis can either 

lie within the stiffened or unstiffened element, there are two cases to consider. 

6.2.1 ZERO STRAIN AXIS WITHIN UNSTIFFENED 

ELEMENT (H > 

Figure 6.2.1 shows a plain channel section at full plasticity. The zero strain axis 

lies within the unstiffened element and its position, H is measured from the base 

of the stiffened element. 

From equilibrium of the normal forces, 

a, t[2(b2-H)-2(H -t)-bl] = 0, 

The zero strain axis position is then 

11= 
2% + t) - b, 

(6.2.1) -- 

4 

For H>t, 

2(b2+t) - b, > 4t 

Taking moments about 0 gives 

(b2-H)2+ (H _ t)2 + bj(H -t MP = cyytl 2 

Substituting of equation (6.2.1) and simplifying result in 

MP = CFYzP 

where Z. is the plastic section modulus given by 
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22 bib2 
ZP=t 

! L2+Lbl-b2t+ (6.2.4) 
(22821 

Equation (6.2.3) is also valid when the direction of the bending moment is reversed, 

provided equation (6.2.2) is satisfied, i. e., for H>t. 

6.2.2 ZERO STRAIN AXIS WITHIN STIFFENED ELEMENT 

(H: 5 t) 

Figure 6.2.2 shows the zero strain axis position within the stiffened element, i. e., 

H :5. t, for the bending moment applied in the same direction as before, causing 

compression at the free edge of the unstiffened element. 

From equilibrium, 

or 

For H :5t, 

cyy[2t(b2-t)+bl(t -H)-b, Hl = 

H=t 
b2 -t+I ( 

bi 2) 

b2 -t+1) 
:5 

b, 2 

or 

b2-t 
<1 

b, 2 

Taking moments about 0, 

c 2t(b2- t) 
b2- t 

+t-H + +bH 
2 

Jý = Fy 
I(222] 

Substitution of equation (6.2.5) gives 

(6.2.5) 

(6.2.6) 
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mp = (Yyz" 
where 

ZP=l b 2_b22t_ b 
2b2 12_ t, + 

b1t 
2 2t + 

bi b, b, 4 

(6.2.7) 

(6.2.8) 

Equation (6.2.7) also applies when the bending moment is reversed, provided 

equation (6.2.6) is satisfied. 

6.3 PLASTIC MOMENT WITH AXIAL LOAD 

When an axial load is present in addition to bending moment, the determination of 

the plastic moment, Mp,,, is more complex. Furthermore, more different cases have 

to be considered. This is due to the fact that the axial load can either be compressive 

or tensile and the bending moment can also be reversed too. For each individual 

case of loading, the position of the zero strain axis at full plasticity must also be 

taken into account. In the following evaluation of Mp., the axial load is assumed to 

act at the centroid of the section. 

Before the determination of the full plastic moment, it is necessary to know the 

position of the centroid, Y, of the cross section. Referring to figure 6.3.1, - 

Y= 
JAy 
7, A 

From the above equation, the position of the centroid is given by: 

b2 - t2 + 
b" 

22 
I= 

2(b2-t)+bl 
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6.3.1 COMPRESSIVE AXIAL LOAD , AND MOMENT 

CAUSING COMPRESSION ON FREE EDGE OF 

UNSTIEFFENED ELEMENT 

6.3.1.1 ZERO STRAIN AXIS WITHIN UNSTIFFENED 

ELEMENT (H > t) 

Figure 6.3.2 shows a fully plasticised section with a compressive axial load and 
bending moment causing compression above the zero strain axis. The zero strain 

axis lies within the unstiffened element. 

For equilibrium, 

P= ayt[2(b2-H)-2(H-t)-bl] 

or 

H=I 2(b2+t)-bl- 
4[ oyt 

pI 
(6.3.2) 

Note that when there is no axial load, i. e., P=0, equation (6.3.2) is similar to 

equation (6.2.1), which is for the case without axial load. 

For H>t, equation (6.3.2) becomes 

P< cyvt[2(b2-t) - bj] 

From summation of moments about 0, 

M,. +P(Y-H)=a, t 02- H)2 + (H_ t)2 + bj(H - 
1)] 12 

Simplifying and substitution of equation (6.3.2) give 
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22 bjb2 P2 

M,. +P(Y-H)=Cryt 
L2-+ý-b-b2t 

+ (6.3.4) 
A [2282 

8cryt 

By careful examination of equation (6.3.4), it can be noticed that the first term of 

the right hand side equation is similar to equation (6.2.3), which is the plastic 

moment, Mp, without axial load. This can be verified by substituting P=0 into 

equation (6.3.4). 

From the above, 

P2 

Mp. =M, +T7-P(Y-H) 
Cary t 

Substitution of equations (6.3.1) and (6.3.2) leads to 

2 Pbl(bl-2t) 
Mi. = mp - 

P, 
8ayt 4[2(b2-t)+bll 

The squash load is given by 

P, = (; yt 
[2(b2 -t) + bl) 

Substituting results in 

M= 
Up 

B2+ BC- 
P, 

MPI IA2 

where 

M. is from equation (6.2.3) 

Z. is from equation (6.2.4) 

A =2(b2-t)+bl 

B=f 

C= 2bl(b, - 2t) 

(6.3.5) 
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It is interesting to note that when b, -iV, equation (6.3.5) becomes 

Mp. = MP(l -B 2) 

which is the plastic moment for a rectangular cross section with compressive axial 

load. 

When both the axial load and bending moment are reversed, causing tension above 

the zero strain axis, it can be easily shown that the plastic moment is similar to that 

of equation (6.3.5), provided that equation (6.3.3) is satisfied. 

6.3.1.2 ZERO STRAIN AXIS WITHIN STIFFENED 

ELEMENT (H: 5 t) 

Figure 6.3.3 shows the same previous condition discussed except that the position 

of the zero strain axis now lies within the stiffened element during full plasticity. 

From equilibrium, 

P= cry [2t (b2 -t) + bl(t - H) - b, H] 

or 

H=l 
b2-t+l p ( 

b, 2) 2ýyybj 
(6.3.6) 

Again, it can be seen that when P=0, equation (6. j. 6) is similar to equation (6.2.5). 

For H: 5 t, 

b2-t+l P 
.: c t 

b, 2) 2crybl - 

or 
P ý: cyyt[2(b2-t) - b1l (6.3.7) 
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Takings moments about 0, 

M,. +P(Y-H)=(Yy 2t(b2-t) 
ýýt+t-H 

+ +LIH 
2 1(222] 

Substituting equation (6.3.6) and simplifying give 

Mp, +P(Y-H) 
P2 

= MP + Tc-ryb 

where M,. is similar to equation (6.2.7). 

As before, when P=0, the plastic moment is for the same case without axial load. 

Substituting P, and equation (6.3.6) result in 

Mpa =Mpf I_ (Atf 
B 2+ 2B C(b2- t)2 

4ZPbl 

IA2 

bit 

where 

M. is from equation (6.2.7) 

Z. is from equation (6.2.8) 

A =2(b2-t)+bl 

B=p 
P, 

C= 2bl(b, - 2t) 

(6.3.8) 

By observing equation (6.3.7), it can be seen that the plastic moment -given by 

equation (6.3.8) is still valid when P=P, Hence, by substituting P=P, into 

equation (6.3.8), it can be shown that MP. = 0, i. e., failure is due to squashing. 
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When b, -* t, equation (6.3.8) will become the expression for a rectangular cross 

section as before. 

Similar to the previous case, when both the axial load and bending moment are 

reversed, thus causing tension above the zero strain axis, equation (6.3.8) is still 

valid provided that equation (6.3.7) is satisfied. 

6.3.2 COMPRESSIVE AXIAL LOAD AND MOMENT 

CAUSING COMPRESSION ON SUPPORTED EDGE OF 

UNSTIFFENED ELEMENT 

6.3.2.1 ZERO STRAIN AXIS WITHIN UNSTIFFENED 

ELEMENT (H > t) 

This case is exactly similar to that of Section 6.3.1.1 except that the direction of 

the bending moment is reversed. By going through the same procedure, the 

followings are obtained. 

H =1[2(b2+ t)-bl+ 4 Gyt 

For H>r, 

P> cryt[2(t - b) + ý, ] 

Finally, 

, _A 
2t 

B 2_BC Mi. = M. 
-I Up 

[A2 11 

where M,,, Z,,, A, B, and C are from equation (6.3.5) 

(6.3.9) 

(6.3.10) 

1) * 
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A close examination shows that the above equation can be obtained very easily by 

changing the sign of P of equations (6.3.2) and (6.3.5). As before, when both the 

axial load and bending moment are reversed in direction, causing tension on the 

supported edge of the unstiffened, equation (6.3.11) can be used provided that 

equation (6.3.10) is satisfied. 

6.3.2.2 ZERO STRAIN AXIS WITHIN STIFFENED 

ELEMENT (H: 5 t) 

By changing the sign of P of equations (6.3.6) and (6.3.8), the following are 

obtained. 

H=l 
b2 -t+I+p ( 

b, 2) 2aybi 
(6.3.12) 

:5 ayt [2(t - b2)+bl] (6.3.13) 

m =m 11 _ 
(Atf 

B2_ 
2B C(b2- t)2 

(6.3.14) 
P* P 4ZPbl 

IA2 

b1t 

Equations (6.3.12) and (6.3.14) are also valid when both the axial load and moment 

are reversed, provided that equation (6.3.13) is satisfied. 

A summary of the various plastic moment expressions and their related condition 

is tabulated and listed in Appendix IV. 
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CHAPTER 7 

OTHER CONSIDERATIONS 
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7.1 INTRODUCTION 

Besides local buckling, which is a majorphenomenon to be considered in the design 

and analysis of cold-formed thin-walled structures, the following factors are also 

included in the theoretical analysis reported herein. These are : 

1) Initial imperfections 

2) Shortening due to bending 

3) Local deformation at the loading point 

4) Torsional flexural buckling 

This chapter is thus dedicated to the accounting of the above mentioned factors on 

a single member, separately. The incorporation of the effects into the theoretical 

analysis is briefly described. A detailed description can be found in Chapter 9. 

7.2 INITIAL IMPERFECTIONS 

Figure 7.2.1 shows an axially loaded column with one end pinned and the other 

fully fixed. These boundary conditions are chosen because they closely represent 

the actual condition of the framework experimental setup. The initial form of 

imperfection has the approximated deflection of the form : 

nx I. 2mx 
C, 

(s. 
in L -ýsin-f- 

The additional deflection form is approximated to be 

xx 1.27rx 
y= C(sin 

L-2 sin 

Equation (7.2.2) satisfie's the displacement boundary conditions 

y=O at x=O and x=L 

(7.2.1) 

(7.2.2) ' 
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Using the Rayleigh Ritz's energy method, the strain energy stored is 

SE =L 
EI 

dx 2 (7.2.3) fo 2( ýýy 
Differentiation equation (7.2.2) and performing the integration result in 

SE = 
5EIC27t4 

4L3 

The potential energy lost by the load from the imperfect position is 

fL(dy+dyoTdX_fL(dy. 
d PE X1 20 dx dx 0 dx 

Performing the differentiation and integration give 

PE = 

The change in energy is 

or 

U=SE-PE (7.2.7) 

.1 
5EIC2k4 pn2(C2 +2CC. ) 

p7e(C2 + 2CC,, ) 

(7.2.4) 

(7.2.5) 

(7.2.6) 2L 

40 2L (7.2.8) 

Differentiating and equating dUldC =0 result in 

-C' (7.2.9) 2.5P_. 

P 

The axial shortening is given by 
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L( 
-1 

L(d 
Sa =i dx Y* dx 2 dx 2 dx 

Performing the differentiation and integration give 

S. =! 
(-E 

C(C+2C. ) 
2 LT 

I 

2L 
15PE 

p 

+2 

(7.2.10) 

(7.2.11) 

In the framework analysis, the computed individual member axial load is used to 

calculate the axial shortening due to initial imperfections., using equation (7.2.11). 

In the next iteration, the already computed shortening is "added" to the respective 

member axial displacement, which will then be used to compute the member end 

forces. The whole process, which includes other operations, is repeated and finally 

terminated when convergence at a particular load level is achieved. A detailed 

step-by-step procedure is given in Chapter 9. 

The above method, which uses equation (7.2.11) to account for the member initial 

imperfection is only employed when'the actual member is treated as a single 

element, i. e., one member one element, as illustrated in figure 7.2.2. This method 

of node assigning will be called the basic element model from here henceforth for 

convenience. If the actual member is modelled by two or more elements as 

illustrated in figure 7.2.3, then initial imperfection is accounted for by specifying 

the actual imperfect framework geometry during the data input stage of the 

theoretical analysis. This alternative is adopted because of its simplicity. 

Furthermore, equation (7.2.11) is only valid for a fully fixed -pinned member. 

Another reason, which will be discussed in detail in Chapter 9, has to do with the 

accuracy of the results when local buckling is considered. 
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7.3 SHORTENING DUE TO BENDING 

In addition to the shortening of a member due to the initial imperfections and axial 

strains in the member, bending also causes axial shortening. This shortening can 

be significant when the bending moment is relatively large and the flexural stiffness 

of the member is low. 

Shown in figure 7.3.1 is an isolated typical beam-column element of a framework 

carrying its axial loads, bending moments and associated shear forces. The 

governing differential equation is 

d 2y 
+ (ml + M2)x - 

! ýMl 

, dX2 PL p 

and the solution is 

irW. +M2) 

y =A sinpx+B cos Px +TL -Lx - M, 

Applying the boundary conditions 

y=O at x=O and x=L give 

A =_(McospL+M2) 
.-P 

sin pL 

M1 
B 

Differentiating equation (7.3.2) gives 

dý 
=A licospx -Bg sin px + dx PL 

The axial shortening is given by 

(7.3.1) 

(7.3.2) 

(7.3.3) 
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Performing the integration results in 

M2 2 

S =WL 1+2MIM2 
cos gL + M2 (MI +W 

b 4p2 sin 
2 IiL 2p2L 

g cot pL (M2 +WIM2sec pL + A122) 
4p2 I (7.3.4) 

In the case of a tension member, the sip of P in equation (7.3.4) is reversed, and 

the trigonometric functions must be replaced by the corresponding hyperbolic 

functions. 

The method of incorporating the element axial shortening due to bending into the 

theoretical framework analysis is similar to that as mentioned in the previous 

section. However, because of the generality of the derivation, equation (7.3.4) can 

be used regardless of the number of elements used to model a single member. 

7.4 LOCAL DEFORMATION AT LOADING POINT 

In the experimental investigation carried out on the framework specimens, the two 

concentrated loads acting downward on the top beam of the framework was 

performed through the arrangement illustrated in figure 7.4.1. The load spreader, 

which consists of a4 mm thick rectangular steel plate, was used to prevent local 

stress concentration effects. However, because of the thinness of the framework 

members, it was observed that local deformation occurred during loading. A typical 

permanent deformation, which is in the form of a kink, is illustrated in figure 10.7.5 

of Chapter 10. 
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To account for this local deformation, the portion of the beam under the load 

spreader is assumed to be a rectangular plate simply supported at all edges and 

subjected to uniform distributed loading. From the theory of plates, the deflection 

at any point on the rectangular plate is : 

16W sin2lu sin "'t" b 
y 12 TD 

mn +(! 
bfj 

where 

a and b are the dimensions of the sides of the plate. 

m=1,3,5... and n=1,3,5.... 

(7.4.1) 

By substituting x= a12 and y= b/2 and taking only the first term of the series, the 

deflection at the centre of the plate is 

16W 
-Y =- 

n6 D(1+12 
a2b 

(7.4.2) 

In the framework theoretical analysis, it is assumed that the local deflection at the 

loading point, computed from equation (7.4.2), does not affect the frame stiffness. 

Hence, this deflection is added to the deflection of the loading points, only after 

convergence of each load step. 

7.5 TORSIONAL FLEXURAL BUCKLING 

For a centrally loaded closed section column, torsional flexural buckling will not 

occur because of the large torsional rigidity. However, for thin-walled open section, 

the column may buckle in three possible modes, i. e., flexural, torsional or torsional 

flexural buckling. 
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When an open section column buckles in the torsional flexural mode, bending and 

twisting of the section occur simultaneously. As shown in figure 7.5.1, the section 

translates u and v in the x and y directions respectively and rotates an angle 0 about 

the shear centre. 

The equilibrium of a column subjected to an axial load P lends to the following 

differential equations : 

EIx 
d 4V 

+P ! 
Lv 

_ Pxo 
d 20 

=0 Td2d2 zzz 

EIY d 4U 

+p 
d2u+ py, 

d20=0 
dZ4 dZ2 dZ2 

(7.5.1) 

(7.5.2) 

d402d202u2v EC. dZ4 -(GJ Pr. -)Ty+Py. -T7-PX,, -Y-! =0 (7.5.3) 
zz2 

where 

J =! Ybjrj3 
3 

r, = ýd + r, ' + X., + Y., 

and z is the direction along the axis of the membek. 

Considering the boundary conditions for a member with completely fixed ends, i. e., 

at z=0 and L, 

U=V=ý=0 (7.5.4a) 

du dv de 
77 dz dz 

(7.5.4b) 
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For a member with hinged ends, i. e., at z=0 and L, 

U=V=0=0 (7.5.5a) 

d2u d 2v 2 

7z = jzl=-d ýo (7.5.5b) 

Equations (7.5.1) to (7.5.3) result in the following characteristic equations : 

2 
(P,, - 

P. ) (PI, - py) (P,, - P. ) 

_ (p". Y. )2 (p., _ p. ) _ (p"X. )2 (p" _ py) = (7.5.6) 

whose roots, P, are the three possible buckling loads of the column. The critical 

buckling load is the smallest value of the roots. The parameters P,, Py and P, have 

the form, respectively, of the two pure flexural buckling loads about the principal 

axes and a purely torsional buckling load about the shear centre axis. They are given 

by 

71 2x 
(7.5.7a) - 

71 2 
py =P (7.5.7b) 

P. =-L + GJ (7.5.7c) 
r02 

(P 

For a plain channel section, which is symmetrical about the x axis as illustrated in 

figure 7.5.2, the distance, y., between the shear centre and the centroid in the 

direction of the y axis is equal to zero. Equation (7.5.6) then reduces to 

(P 
'r _ py) jr. 2(p., 

_ px) (pc" _ ps) _ (Xopcr )2} =0 (7.5.8) 
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There are again three solutions, one of which is 

Pcr =p 

and represents purely flexural buckling about the y axis. The other two solutions 

can be obtained by solving the following quadratic equation : 

22 
r., - (P,, - 

P. ) (PI, - P. ) (7.5.9) 

This equation will produce two torsional flexural buckling load. However, the 

smaller of the two loads is : 

P, r= 
I {(P. +P. )-Nr(P, +P, ý-4,, PX, (7.5.10) 

2co 

where 

Co= 1- 
ro 
x0 

This load will always be below P., and P,. However, it may be above or below Py. 

Therefore, the section can buckle in either of the two modes, by bending. - or in 

torsional flexural buckling. Which of these two actually occur depends on the 

dimensions of the section and the effective length, 1. 

Although equation (7.5.8) can be used to determine the buckling load of a singly 

symmetric section, the process is rather lengthy and tedious compared to the 

calculation of the Euler load. Fortunately a simple and efficient procedure using 

design chart based on analytical and experimental investigations has beendeveloped 

for plain channel section by Chajes and Winter (7 of Part 2), from which it can be 

determined whether a section will buckle in the torsional flexural mode. Such a 

typical chart is shown in figure 7.5.3 for a plain channel. 
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As indicated in the figure, the buckling domain can be visualised as being composed 

of three regions. Region 1 is for torsional flexural buckling only. This particular 

case is characterised by sections for which IY > I, When IY < 1, the section will fail 

either in region 2 or 3. In region 2, the channel will buckle in either flexural or 

torsional flexural mode, depending on the specific ratio of bla and the parameter 

t1la 2. For a given channel section and column length, if the value of t1la 2 is above 

the (t1la 2)iim curve, the section will fail in flexural mode. Otherwise, it will fail in 

torsional flexural buckling mode. In region 3, the section will always fail in the 

flexural mode regardless of the parameter illa 2. 

The buckling mode design curves for lipped and plain channels are shown in figure 

7.5.4. These curves apply only to compatible end conditions, i. e., equal effective 

lengths, 

Ix=Iy =1 I 

The conditions of restraint existing at the ends of actual columns will, in general, 

not be compatible. In most cases, however, the values of 1, ly and 1, will be fairly 

near one another. When this is the case, compatible boundary conditions may be 

assumed to exist without introducing unduly large errors. 

In the theoretical framework analysis reported herein, by using the design chart of 

figure 7.5.4, the particular section is checked to determined whether torsional 

flexural buckling will occur. If it does, then the phenomenon is accounted for by 

employing the a factor or length multiplier. This method is also adopted by the BS 

5950, Part 5. 

Equation (7.5.7 c) may also be written as 

Pg= 
,(+ 

GJ 
r, 2 12 

(7.5.11) 
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The constant k is dependent on the degree of warping restraint afforded by the end 

connections of the column. If warping is completely prevented, then the value of 

k is 4, i. e., the ends of the member are fixed with respect to warping. On the other 

hand, if warping is completely unrestrained, then the value of k is 1. By using the 

appropriate value of 4 or 1 fork andusing equation (7.5.10) to calculate the torsional 

flexural buckling load, the a factor can be determined as follows : 

For Py :ý Pr * 

cc= I 

For Py > P, , 

(7.5.12) 

(7.5.13) 

The a factor obtained is then multiplied by the actual framework column length. 

Analysis of the framework is then performed based on this factored length. 

While the assumption of full warping restraint is undoubtedly unsafe for design 

purposes, the assumption of zero warping restraint is very conservative in most 

practical cases. This situation led the BS 5950, Part 5, to incorporate a factor of 

k=2 in the relevant design analysis. Based on this, cc factor for some commonly 

used sections can be obtained from a design table listed in Appendix V. 
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CHAPTER 8 

CONNECTION MOMENT-ROTATION RELATIONSHIP 
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8.1 INTRODUCTION 

In the conventional analysis and design of frameworks, it is customary to represent 

joint behaviour by idealizedjoint models. Two of the most commonly used idealized 

models are the rigid model and the pinned joint model. In the former, it is assumed 

that the rotational continuity between adjoining members is fully realized. As a 

result of this assumption, the angle between adjacent members remains virtually 

unchanged as the framework deforms and the full moment of the beam is transmitted 

to the column. For the pinned model, it is assumed that the rotational continuity 

between adjoining members is non-existent. Consequently, no moment is 

transmitted to the column by the beam. 

Although the use of either of the idealizedjoint behaviour simplifies drastically the 

analysis and design procedure, the predicted response of the framework may not 

be realistic as most connections used in actual practice transmit some moment and 

experience some deformafion upon loading. Before an analysis, which accounts 

for the connection flexibility, can be carried out, it is necessary to know in advance 

the connection stiffness or moment-rotation behaviour. This chapter is thus devoted 

to the obtaining of the moment-rotation data of connections experimentally, after 

which a theoretical model is developed, based on the experimental data, in order 

to represent the moment-rotation behaviour in an approximate form. The model is 

then incorporated into the main framework programme to account for the 

moment-rotation behaviour of the connections. 

8.2 CONNECTION EXPERIMENTAL INVESTIGATION 

A rather simple experimental test was undertaken in order to obtain the 

moment-rotation data of individual connection. These data were then used for the 

theoretical modelling of the connection moment-rotation characteristic. A point 

that needs special mention regarding the connection tests reported herein is that 
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although two connections are similar, they are tested individually for their stiffness 

as long as they are to be used in different frameworks. The overall geometry of the 

frameworks may be similar but the members (all plain channels) are of different 

cross sectional geometry. Furthermore, the channels that are used for a connection 

test are of the same cross sectional geometry as those of the framework that is to 

be constructed with the same type of connection. 

8.2.1 TEST SPECIMENS AND FABRICATION - 
For economic and simplicity reasons, the type of connection chosen for the 

frameworks is as shown in figure 8.2.1. In order to acquire'a variety of connection 

stiffnesses and moment-rotation behaviour, the thickness of the connection was 

varied from 3 mm to 7 mm with an increment of I mm. 

Four series of connections each consisting of five different thickness as mentioned 

above, were fabricated from mild steel bars. All the 7 mm thick connections were 

machined to size because they were too thick to form by bending with the equipment 

available. The rest of the connections were fabricated by bending and then 

machining to size. A typical series of connections of various thickness is shown in 

figure 8.2.2. The dimensional details of a typical connection can be found in figure 

8.2.3. 

A joint model, which consists of the connection* and the connecting beam and 

column is illustrated in figure 8.2.4. The cross sectional dimensions of the 

connecting beam and column and the respective connection are tabulated and listed 

in table 8.2.1. From table 10.2.1 of Chapter 10, it can be noted that the cross sectional 

dimensions of the connecting beam and column of a particular ýbnneýtion are 

similar to those of the framework that uses that same type of connection. 
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The beams and columns were fabricated from galvanised steel sheetings,, which 

were initially marked out and cut into strips. The width of the strips were sized to 

give a comer radius of about two times the thickness of the specimen. Bending of 

the strips into the final shape was performed on a manual bending machine. 

Although a few trials were required, the final shape was achieved without much 

difficulties because of the short length of the specimens. 

8.2.2 TEST RIG, AND EQLUMENT, 

The cantilever type of arrangement was selected for the joint model test because it 

was a close representation of the exterior column of the actual framework. 

Furthermore, by using this arrangement, the connection can be subjected to both 

shear and bending. 

Thejoint model was constructed by bolting the connection onto the respective beam 

and column specimens as illustrated in figure 8.2.6. During the construction, extra 

precaution was taken to prevent the connection or connecting members from 

becoming twisted out of plane. On the other hand, the bolts must be fastened tight 

enough to prevent any slipping during loading. 

The bottom end of the column was then clamped onto the base plate by means of 

the jigs as illustrated in figure 8.2.7. The base plate was fabricated from a large 

piece of mild steel plate by machining. Detail drawings of the base plate and jigs 

are shown in Appendix VI. To prevent horizontal movement, the top end of the 

column was held in position by a screw rod. As shown in figure 8.2.5, the other 

end of the screw rod was bolted onto a rigid support stand, which was in turn bolted 

onto the base plate. As detailed in figure 8.2.8, the rigid support sta nd was fabricated 

by welding the angle channel onto the base support. 
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An eye-bolt was fitted onto the free end of the beam. Loading was achieved by 

putting weights onto the hanger which was in turn hooked onto the eye-bolt. The 

vertical deflection of the loaded end of the beam was measured with the means of 

a 50 mm range dial gauge. 

8.23 TEST PROCEDURE 

The base plate was placed on a strong and flat working bench with a slight overhang 

to allow the hanging of weights. The already constructed joint model was clamped 

onto the base plate at the column base. The top end was then held in position with 

the help of the screw rod and support stand. Precaution was taken to ensure that all 

nuts were fully tightened, except those at the top of the column. These were only 

hand-tightened to prevent significant moment from developing during loading. 

After the weight hanger has been hooked in position, the dial gauge was aligned to 

measure the vertical deflection of the loading point. Before commencing loading, 

heavy weights were placed onto the other end of the base plate. The purpose was 

to prevent any movement of the base plate. Figure 8.2.9 shows the test set-up just 

before loading. 

The joint model was loaded with equal weight at suitable interval and the 

corresponding deflection vhs recorded. Recording was carried out only when the 

dial gauge pointer stopped moving. When it was noticed that the deflection started 

to become non-linear, smaller weights were used to ensure that the non-linearity 

could be recorded more accurately. The model was loaded to failure as illustrated 

in figure 8.2.10. 

A total of four series of connections were tested, each series consisting of five 

connections of thickness, T, varying from 3 mm to 7 mm as mentioned earlier. 

The thickness of the connection can be easily identified by the alphabet designation 

given. The alphabet "A" represents a connection of thickness 3 mm. Increasing the 
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connection thickness by 1 mm is represented by the next alphabet "B". Hence, "E" 

represents a7 mm thick connection. There are four series because as can be seen 

from table 8.2.1, there are four different sets of channel (beam and column) cross 

sectional dimensions. It should be noted that for each individual joint model test, 

new beam, column and connection were used. 

8.2.4 EXPERIMENTAL MOMENT-ROTATION DATA 

The experimental deflection of the ftee end of the beam includes the effects of the 

connection flexibility and local distortions of the beam and column. To determine 

the relative change in deflection, the experimentally obtained deflection must be 

deducted by the deflection when the connection is fully rigid. 'Hence, as illustrated" 

in figure 8.2.11, the relative change in rotation of the connection at the connecting 

point is: 

d,, - d, 
L 

and the corresponding moment is 

M= PL (8.2.2) 

where L is the length of the beam in this case. 

Thus, once d, which is the deflection of the loaded end of the beamwhen the 

connection is fully rigid, is known, equations (8.2.1) and (8.2.2) can be used to 

compute the connection moment-rotation data. 

The deflection, d, is derived theoretically using simple elastic theory as follows. 

The joint model can be represented schematically as illustrated in figure 8.2.12. 
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The column, which is of length 2L, is assumed to be fully fixed at C and simply 

supported at A. The moment, M, due to the applied load at the free end of the beam, 

acts at B of the column. 

From MaCaulay's method, the moment at a distance, x, fi-orn A is: 

M =M[x-LIO-Vx (8.2.3) z 

From simple beam theory, 

El d 2y 
=_M 

dx2 x 

Substituting and integrating give 

dy x2 EI 
JýX-M[x-L]+A 

dx 2 

and 

Vx 3 M[x -L]2 
Vy =6 -- 2 +AX+B 

Applying the boundary conditions 

y=O at x=O and ýý=O at x=2L dx 

to equations (8.2.5) and (8.2.6) results in 

B=O and A =L(M-2VL) 

Applying the boundary condition 

Y=O at x= 2L 
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and substituting the constants give 

Hence, the slope at B is 

OB -'- 

32EI 

The deflection at the end of the beam due to column rotation at B is 

0, BL 
5PL' 
1) 0% EI T (8.2.7) 

V= 9m 
16L 

5ML 

. D. Lr-lc 

The deflection at the end of the beam due to the load P is 

PL3 

3EIb (8.2.8) 

Therefore, the total deflection at the loading point of the beam when the connection 

is fully rigid is 

d, =d, +d, 

or 

d, 
PL 3(15lb 

+ 32IJ 
96EIbI, (8.2.9) 
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8.2.5 EXPERIMENTAL RESULTS AND OBSERVATION 

Figures 8.2.13 to 8.2.16 show the plot of the applied loads and the corresponding 

deflections at the fi-ee end of the beam for the four 'series of connection" tests 

respectively. The theoretical 6flection, assuming fully rigid 6onnýction', obtained 

from equation (8.2.9) was also plotted. 

In the experimental investigation, the top end of the column was held in position 

by a screw rod. Although the nut was only hand tightened, there will still be some 

bending moment induced. In the theoretical derivation of the deflection , the top 

end of the'column was assumed to be simply supported. This will result in a larger 

deflection which will in turn lead to a stiffer connection moment- rotation curve. 

From the experimental load-deflection results, the co=sponding moment- rotation 

data, computed from the procedures outlined earlier, were plotted and shown in 

figures 8.2.17't'O 8.2.20 respectively. As expected, the stiffness of the connection 

increase's with respect -to the connection thickness. This is due to the increase in 

flexural rigidity of the connection. The results also show that the moment-rotation 

relationship of all the connections tested is non-linear. In some cases, this 

non-linearity begins at a load as low as half the failure load. 

A summary of all the joint model test failure mode and observation is tabulated in 

table 8.2.2. When failure was due purely to full plasticity of the connection, as 

illustrated in figure 8.2.21, there was no visible distortion of the column except for 

tests J3-lB andJ3-lC. Forthese two cases, because of the large width-to thickness 

ratio of the unstiffened element of the column, local distortion of the form shown 

in figure 8.2.22 was observed. It was'also noticed that the column distortion'became 

more'obvious when the applied load was increased. The increase in the column 

distortion was also present when the width-to thickness ratio of the unstiffened 

element was increased. For the other two failure modes, namely beam failure and 

the combination of beam and connection failure, distortion of the column was also 
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observed to occur. For the former failure mode, a plastic hinge formed at the 

compression portion of the channel immediately after the edge of the connection, 

where local stress concentration was greatest. Severe local beam distortion was also 

observed to occur in the vicinity of the bolt, especially in the area next to the column. 

The edges of the unstiffened element of the beam, towards the column side, bent 

outwards. All the above observations are shown in figure 8.2.23.7lie figure also 

shows the undeformed beam (furthest left on the picture) for the case when failure 

occurred purely due to connection deformation. 

When a combination of both beam and connection deformation was the cause of 

failure, either the connection orthebeam yielded first, depending on theirindividual 

strength. When the connection played a more significant role in the failure, partial 

deformation of the beam was found to have occurred and vice-versa. 

The experimental moment-rotation relationship of connections of the same 

thickness, but connected to different sets of beam and column as tabulated in table 

8.2.1, are shown in figures 8.2.24 to 8.2.28. It can be seen that for a connection 

thickness of 3 mm, the variation in the stiffness is very marginal. This is not true 

when the connection thickness is increased. In fact, the variation in the connection 

stiffness was found to increase even more as the connection thickness was further 

increased. Furthermore, for a particular connection thickness, T, the variation 

becomes larger as the specimen (beam and column) thickness, t, increases. This 

shows that the moment-rotation behaviour of a particular connection is affected by 

the local distortion and thickness of the connected members. 

In an attempt to justify the above behaviour of the connection, an empirical 

expression of the form 

R. = 
(9.1811 x IV_ 0.002073* 

0.016417 0.016575 
3 T3 T tcc 

(8.2.10) 
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was used tocompute the initial connection stiffness. The above expression was 

obtained through curve fitting techniques. The terms associated with t and T, can 

be taken as the factors affecting the connection stiffness due to the connected 

members and connection respectively. 

The initial connection stiffness of all the connections tested was computed from 

equation (8.2.10) and then plotted against the corresponding experimentally 

obtained initial stiffness. This is shown in figure 8.2.29. If the equation is completely 

correct, then all the points will lie along the straight line. Nevertheless, it can be 

seen that the scatter of the points is not very significant. Hence, equation (8.2.10) 

can be used as a good estimation of the connection initial stiffness, taking into 

account of the factors attributed by both the connection itself and, the connected 

members. 

Figure 8.2.30 shows a plot of the connection stiffness against the thickness of the 

connected member or specimen. The full lines represent the stiffness calculated 

from equation (8.2.10). It can be seen that for a particular connection thickness, the 

stiffness increases with respect to the specimen thickness. The rate of this increase 

changes from an almost linear to a non-linear form'when the connection thickness 

is increased from 3mm to 7 mm. Furthermore, for a particular specimen thickness, 

the connection stiffness also increases with respect to its thickness. The greatest 

increase occurs when the thickest specimen is used. 
. 

For the range of connection and specimen thicknesses and the types of connection 

studied, figure 8.2.30 indicates that the connection stiffness is affected by the 

thickness of the connection and the connecting members and also the local 

distortions of the latter. This effect is most prominent when the thickest connection 

and members were used. 
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8.3 MODELLING OF CONNECTION MOMENT-ROTATION 

CURVE. 

8.3.1 INTRODUCTION 

In the analysis of frameworks with semi-rigid connections, it is necessary to know 

the connection moment-rotation relationship. Although this relationship can be 

found experimentally, it is extremely time consuming and costly at times, especially 

when different and complicated types of connections are to be used in the 

framework. The main purpose of connection modelling is thus to obtain the 

connection moment-rotation relationship using a theoretically derived standardized 

model. However, it should be pointed out that , if possible, the theoretical model 

obtained should only be applied to connections working under the same 

experimental conditions from which the model was initially derived. 

8.3.2 THEORETICAL MODELLING 

Although the modelling of the connection moment-rotation behaviour is of 

significant importance, the procedure adopted here is only an approximate one 

because it is beyond the scope of the this research to perform an extensive study 

on the connection behaviour independently. 

The theoretical model reported herein is based entirely on the experimental 

moment-rotation data obtained. For a given moment-rotation curve of a connection, 

the stiffness, R, at a particular moment, M, can be expressed in the form 
. 

R =R4, -CM (8.3.1) 

Substituting the inverse of the connection factor 
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into equation (8.3.1) results in 

1+co (8.3.2) 

By feeding the experimentally obtained moment and corresponding relative angle 

change into a curve fitting programme, the constants R. and C can be obtained. 

Although R., which is the initial connection stiffness, can be calculated from the 

experimental data directly, the value obtained from the curve fitting technique 

results in a better curve fit. These constants are then substituted back into equation 

(8.3.2) and the approximate moments are computed using the corresponding 

experimental relative angle change values. The experimental and modelled 

moment-rotation curves are then plotted and compared as illustrated in figures 8.3.1 

to 8.3.20. The constants obtained from the curve fitting technique for the respective 

connections are shown in table 8.3.1. It should be mentioned that the moment of 

equation (8.3.1) must be in Nnun and the computed stiffness is in Nmmlrad. 

Although equation (8.3.2) is used to model the connection moment-rotation curve, 

equation (8.3.1) represents the secant stiffness directly and depends only on the 

moment at the connection. This expression is implemented into the framework 

analysis computer programme. At each load level, the calculated moment at the 

connection is substituted into, the model equation to compute the, connection 

stiffness which will in turn be used to compute the coefficients of the element matrix. 

This procedure is repeated at every load level. Hence, the full moment-rotation 

relationship of the connection is taken into account in the framework analysis with 

the use of equation (8.3.1). 

. pR0 
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8.3.3 COMPARISON OF THEORETICAL MODEL AND 

EXPERIMENTAL RESULTS. 

The individual connection experimental and modelled moment-rotation curves are 

plotted and shown in figures 8.3.1 to 8.3.20. It can be seen that the theoretical model 

represents the connection moment-rotation relationship rather well in all cases 

Although still considered as acceptable, figure 8.3.13 illustrates one of the "worst" 

representation of the model. The connection stiffness below and above a moment 

of about 11.5 KNmm is slightly over and under estimated respectively. Since 

equation (8.3.1) represents the secant stiffness of the connection corresponding to 

a particular moment, the error in the connection stiffness will be amplified when 

the moment is below 11.5 KNmm. Ilis means that a higher connection stiffness 

than actual is used for computation. When the moment is above 11.5 Mmm, the 

higher secant stiffneis from equation (8.3.1) is compensated by the under estimation 

of the theoretical model. 

The error in the representation of the connection stiffness mentioned above is due 

to the approximate theoretical model employed. There are other factors that may 

also affect the experimentally obtained moment-rotation data. One of these is the 

assumption of the boundary condition as in the case of the assumed simply supported 

top end of the column. Other significant factors not considered are local buckling 

of the members and panel zone deformation. 

Having said that, it is assumed that for practical purpose, the theoretical model 

derived herein represents the connection moment-rotation relationship within 

engineering accuracy. 
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8.4 CONCLUSIONS 

Due to the constraint of time and cost, a rather simple but reliable method was 

employed to determine the moment-rotation relationship of the various connections 

studied. An approximate and standardized theoretical model was developed and 

used to represent the connection behaviour. For the particular type of connections 

investigated and also within the range of the connection and members geometries, 

the following are concluded. 

1) The flexibility of all the connections investigated was found to be between 

the two extreme idealized cases normally assumed, i. e., fully pinned or fully 

fixed. All the connections ' exhibited a non-linear moment-rotation 

relationship. 

2) The moment-rotation curve of a particular connection is affected by the local 

distortions of the connected members. The degree of variation increases with 

both the thickness of the connection and the connecting members. 

3) It has been demonstrated that the standardized theoretical model represented 

the experimentally obtained connection moment-rotation curves rather 

accurately. 
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Fig. 8.2.1 A Typical Connection 

Fig. 8.2.2 Connections of Various Tliickness 
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Fig. 8.2.5 Cantilever Type Arrangement 
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Fig. 8.2.6 A Typical Bolted Connection 

Fig. 8.2.7 Clamped End of Column 
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Fig. 8.2.10 Typical Joint Model at Failure 

Fig. 8.2.9 Joint Model Test Setup Before Loading 
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Fig. 8.3.16 Connection 13-1 A Moment/Rotation plot 
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Joint T, Column Column Beam Beam t 
Model b, b2 b, b2 

Jl-lA 3 29 14 27 14 1.000 

Jl-lB 4 29 14 27 14 1.000 

ii-ic 5 29 14 27 14 1.000 

Jl-lD 6 29 14 27 14 1.000 

JI-IE 7 29 14 27 14 1.000 

J2-lA 3 27 15 25 15 0.700 

J2-IB 4 27 15 25 15 0.700 

J2-lC 5 27 15 25 15 0.700 

J2-lD 6 27 15 25 15 0.700 

J2-lE 7 27 15 25 15 0.700 

J2-2A 3 28 15 25 15 0.590 

J2-2B 4 28 15 25 15 0.590 

J2-2C 5 28 15 25 15 0.590 

J2-2D 6 28 15 25 15 0.590 

J2-2E 7 28 15 25 15 0.590 

J3-lA 3 27 25 25 25 0.835 

J3-lB 4 27 25 25 25 0.835 

J3-lC 5 27 25 25 25 0.83 5 

J3-lD 6 27 25 25 25 0.835 

J3-lE 7 27 25 25 25 0.835 

All units in mm 

Table 8.2.1 Connection and Connected Members Sectional Dimensions 
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Joint T, Failure Distortion 

Model (mm) Mode 

Jl-lA 3 c No 
Jl-lB 4 B+C Yes 

JI-Ic 5 B+C Yes 

JI-ID 6 B Yes 

JI-IE 7 B Yes 

J24A 3 c No 

J2-lB 4 B+C Yes 

J2-lC 5 B Yes 

J2-lD 6 B Yes 

J2-lE 7 B Yes 

J2-2A 3 c No 

J2-2B 4 B+C Yes 

J2-2C 5 B Yes 

J2-2D 6 B Yes 

J2-2E 7 B Yes 

J3-lA 3 c No 

J3-lB 4 c Yes 

J3-lC 5 c Yes 

J3-lD 6 B+C Yes 

J3-lE 7 B Yes 

B: Beam failure as shown in Fig. 8.2.23 

C: Connection failure as shown in Fig. 8.2.21 

B+C: Combination of beam and connection failure. 

Local distortion of unstiffened element of column as shown in Fig. 8.2.22 

Table 8.2.2 Joint Model Test Failure Mode 
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Joint T, RO c 

Model (mm) (xlOsNmmlrad) (rad-) 

Jl-lA 3 2.89 10.480 

Jl-lB 4 8.15 16.855 

ii-ic 5 9.15 12.162 

JI-ID 6 10.5 10.418 

Jl-1E 7 40.3 70.500 

J2-1A 3 3.10 9.631 

J2-lB 4 4.55 9.922 

J2-lC 5 7.35 13.238 

J2-lD 6 9.65 19.237 

J2-lE 7 14.0 25.005 

J2-2A 3 2.65 6.900 

J2-2B 4 3.47 9.950 

J2-2C 5 3.95 9.985 

J2-2D 6 4.45 10.55 

J2-2E 7 7.73 19.30 

J3-lA 3 3.15 9.585 

J3-lB 4 5.40 11.967 

J3-lC 5 9.50 16.505 

J3-lD 6 9.75 9.687 

J3-lE 7 9.87 8.192 

Table 8.3.1 Connection Modelling Parameters 
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CHAPTER 9 

THEORETICAL ANALYSIS PROCEDURE 
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9.1 ELASTIC INSTABILITY ANALYSI& 

The stiffness matrix method of analysis as discussed in Chapter 2 leads to an 

equation which relates the load, stiffness and resultant nodal displacements of a 

framework, i. e., 

P=KD 

The above equation can be rewritten as 

D= K-' P 

Providing K is non-singular, its inverse exists. Equation (9.1.1) can then beused 

to determine the framework nodal displacements. When the axial force is neglected 

or well below the Euler load, the element stiffness coefficients derived in Chapter 

3 can be used to compute the element end forces or displacements. 

In Chapter 4, it has been shown that the element stiffness matrices are dependent 

on the axial forces, which are in turn functions of the applied loads. Equation (2.5.1) 

can thus be rewritten as 

K(P) D 

Strictly speaking, the structure stiffness coefficients are also a function of the cross 

sectional area and second moment of area of the respective elements when local 

buckling is taken into account. However, since the computation of the effective 

cross section properties depends on the stresses, which in tum depend on the axial 

load, equation (9.1.2) may be written as it is, generally. t 

In order to obtain the critical load factor, X, , to cause elastic instability, equation 

(9.1.2) can be expressed in the form 
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XP *= K(% P) D 

The use of K(, % P) implies that K is a function of the applied load %P. Equation 

(9.1.3) is thus non-linear due to the axial load and local buckling of the members. 

Even if the latter is excluded in the analysis, the effect of the axial load alone will 

still result in equation (9.1.3) being non-linear. 

To determine the elastic critical load factor, the problem is performed using a doubly 

iterative process as illustrated in figure 9.4.1. The value of X is increased in a 

step-by-step manner and at each load level the singularity of K(, % P) is checked. 

At each load level, an inner iteration is performed to find the correct values of the 

various element axial forces and effective cross sectional properties, if local 

buckling is considered. Equation (9.1.3) is solved repeatedly until a consistent set 

of displacements is obtained. In this analysis, complete convergence is assumed to 

have been achieved when the proportionate change in the determinant of K( XP 

is less than 0.1%, which is rather reasonable in practice. As soon as a load factor 

for K( XP) becomes singular, it is known that the critical load has been reached. 

The singularity of K( XP) is equivalent to the structure stiffness being zero. The 

test used to detect singularity is to the determinant of the structure stiffness matrix, 

which should be positive until singularity when it becomes zero. In practice, exact 

singularity cannot be achieved and the sign of the determinant becomes negative, 

corresponding to a state of singularity. 

9.2 COLLAPSE LOAD ANALYSIS 

In the elastic instability analysis, it is assumed that the stresses in the members of 

the structure remain linearly elastic throughout the entire loading range and there 

is no yielding of the material. This method of analysis, although useful as a guide 

or reference, becomes increasingly less valid as the material of the members is 
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pushed past the limit of proportionality in the stress-strain curve. At actual collapse, 

large regions of the structure may be inelastic. Hence, a purely elastic analysis is 

insufficient. 

In the collapse load analysis, it is assumed that the material of the members behaves 

in an elastic-perfectly-plastic manner so that plastic hinges can develop wherever 

the bending moment reaches the plastic moment capacity. It is further assumed that 

the hinge is concentrated to a point and spread of yielding is neglected. 

The elastic analysis of the previous section is modified to cater for plastic effects 

as follows. Repeated analyses are performed at a series of gradually increasing load 

factors. At each load level, the plastic moment at the nodes of respective elements 

are calculated after convergence using the relevant plastic moment expressions 

derived in Chapter 6. If local buckling is considered, then the effective cross 

sectional properties are used. The nodal bending moments are then compared with 

the computed plastic moments of the respective elements in a systematic manner. 

When a bending moment is found to have reached the plastic moment level, a plastic 

hinge is formed. The individual element stiffness matrix involved is modified to 

maintain the moment at the hinge at a constant level, and to allow continuous 

rotation, and the loading is increased again. Hence, the development of hinges is 

traced with increasing load. At each stage, the singularity of the structure stiffness 

is checked, until eventually, singularity is reached. 

In the check for the formation of plastic hinges, a tolerance of ±5% is given. This 

means that a hinge will develop when 

0.95MP: 5M! ý 1.05MP (9.1.4) 
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The reason behind this is because of the difficulty in achieving a condition whereby 

the bending moment is exactly equal to the plastic moment. At times, even a very 

smaU increase in load leads to a substantial increase in the bending moment. 

9.3 NOTES ON ANALYSIS 

1 
9.3.1 SNAGS 

In using the sign of the determinant to check for the critical load, the following 

points need to be observed. 

1) If the determinant of the stiffness matrix K( XP) of order nxn is expanded, 

a polynomial of the n th order in XP is obtained. There are, therefore, n possible 

values of XP for which K(% P) is singular. In general, only the smallest value 

of X, is of interest but there may be other values close by as illustrated in figure 

9.3.1.1f the initial value of X used is too near the first critical value, or the 

increment used is too large, there is a danger that the lowest X, will be missed 

altogether. From figure 9.3.1, it can be seen that the third smallest value of X, 

might be picked up as the smallest (point T). There seems no way of predicting 

in advance the form of the curve. The only safe solution is to keep the initial 

value of X low and the increment small. 

2) The determinant of a matrix is particularly sensitive to the magnitude of the 

terms of the matrix. For instance, an alteration in the magnitude of the terms by 

a factor of 100 (by a change of units u sed for instance) would alter the determinant 

by a factor of 100' for an by n matrix. This could well take the determinant 

outside the range of positive numbers which a computer can hold. To remove 

this difficulty, scaling of the matrix is carried out and this is discussed in detail 

in Appendix 1. 
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3) As equation (9.3.1) approaches singularity, it becomes- increasingly 

ill-conditioned and convergence is extremely difficult. A counter is used to check 

the number of iterations and when a preset value is exceeded, the critical load 

is assumed to have been reached. The error evolved will be small and acceptable 

in engineering practice. 

9.3.2 FRAME ELEMENT CONFIGURATION 

In the theoretical analysis of the framework , the members of the framework are 

modelled using elements. The various framework element configuration for the 

double and single storey frameworks are shown in figures 9.3.2 and 9.3.3 

respectively. From figures 9.3.2a and 9.3.3a, the frameworks are modelled using 

the minimum or basic number of elements. For these frameworks, the initial 

imperfections are accounted for by using the expressions derived in Chapter 7. For 

frameworks where the number of elements are greater than the basic number of 

elements, for instance 14 or 18 elements as illustrated in figures 9.3.2b and 9.3.2c 

respectively, initial imperfections are accounted for directly by using the actual 

framework geometry during analysis. 

Although increasing the number of elements increases the computation time, an 

advantage to be gained is that the results obtained will be more accurate when local 

buckling is considered in the analysis. As the moments at the ends of a beam-column 

element are normally not uniform, the element end stresses, which are used to 

calculate the effective widths using the effective width concept, are also not uniform. 

This will result in a non-prismatic element if the effective width concept is followed 

strictly. However, as mentioned in Chapter 5, '*the largesf6f the compressive strdss7 

is used to compute the effective width. This will lead to a smaller effective width 

as illustrated in figure 9.3.4b. On the other hand, the use of more elements will 

200 



induce less errors. This is illustrated in figure 9.3.4a, where three elements are used. 

Hence, by increasing the number of elements, a closer representation of the actual 

effective element can be achieved 

9.4 DESCRIPTION OF COMPUTER FLOW CHART 

The theoretical analysis was written into a computer programme, the flow chart of 

which is shown in figure 9.4.1. Listed below is a step-by-step description of the 

flow chart. 

There is an option of perfonning an elastic critical load analysis or collapse 

load analysis. 

2) The data input consists of the following : 

a) Number of nodes. 

b) Number of elements. 

C) Nodal coordinates. 

d) Element material properties, element section geometry, element number 

and nodal designations. 

e) Boundary conditions. 

f) Initial applied loads. 

g) Connection theoretical model constants. 

h) Initial load factor (LF), the increment to be applied to it (INC) and the 

accuracy in the final results (ACC). 

i) Amplitude of initial imperfections (only when the basic number of 

elements are used) 

3) The analysis can be performed with or without local buckling. For the former, 

either the first or second approximation method can be used. 
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4) Nis used to count the number of loading cycles. The axial forces in the elements 

are generally unknown before the analysis begins and are all assumed to be 

zero. Initial guesses might be read in as input data but this is unlikely to reduce 

the computing time. 

5) The loading cycle is increased by one. As the axial forces at each load level 

are initially only known approximately, a number of solutions, counted by 1, 

are performed. 

6) Individual element stiffness Matrix in the structure axes system is formed. The 

stiffness coefficients are calculated using the current effective geometry (if 

local buckling is considered), connection stiffness and the axial forces of the 

respective elements 

7) The element stiffness matrices are assembled to form the overall stiffness of 

the structure. 

The determinant, DET2, of the reduced structure stiffness matrix is calculated. 

9) If DE712 is singular, and if the load cycle is one, it means that the initial applied 

load is too high'or some unrealistic data was used. The analysis is terminated 

and returned to the step 2. If the load cycle is greater than one, then the critical 

load has been reached. An accuracy check is then performed to decide if better 

accuracy is required. If the desired accuracy is achieved, the critical load is 

given and from there, there is an option of performing another analysis or 

terminating the programme. The load is decreased and the process repeated if 

the desired accuracy is not obtained. 

10) The structure load vector is formed if DET2 is not singular. 

1) The nodal displacements are computed using the Choleski Triangular 

Decomposition method as detailed in Appendix 1. 
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12) The shortenings due to both initial imperfections and bending are "added" to 

the respective nodal displacements. 

13) Element nodal forces are computed. 

14) The shortening due to initial imperfections and bending are calculated using 

the current element effective section properties if local buckling is accounted 

for. In steps 12 and 14, the shortening due to initial imperfections is only 

activated when the basic number of elements is used. If more elements are 

used, initial imperfections are taken care of by the actual framework geometry 

input. 

15) Nodal stresses are calculated, again using the current effective section 

geometries if local buckling is considered. 

16) If there is local buckling, the effective widths computed are used to determine 

the new effective section properties of each element. 

17) The repetition of the analysis performed at each load level is ten-ninated when 

the terms of the assembled stiffness matrix converge to a steady state at 

successive cycles. DET2 is used as aconvenient quantity, whose value depends 

on the stiffness coefficients. If DFI2 has reached a steady state, it is likely 

that the stiffness coefficients of the matrix have done so i. e., convergence of 

individual displacements. When the loading approaches the critical level, the 

assembled stiffness matrix becomes increasingly ill-conditioned and 

successive values of DET2 may vary widely. In this case, the repeated analysis 

is terminated at I= 200, i. e., if local buckling is considered. With no local 

buckling, the termination is at I= 10. 

18) If a collapse load analysis is performed, the nodal plastic moment of individual 

element end nodes is calculated and compared against the respective nodal 
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moment. When M>1.05MP, the load is decreased and the analysis repeated 

till the required tolerance is met. For an elastic critical load analysis, the load 

is increased after convergence and the analysis repeated till the critical load 

is reached. 

19) For semi-rigid connections, the stiffness changes with each load level 

according to the end moment. This change is accounted for with the use of 

equation (8.3.1) of Chapter 8. This step is only activated when a collapse load 

analysis is required. For the elastic instability analysis, the stiffness of the 

connection is assumed constant throughout and takes the value of the initial 

tangent stiffness obtained from the curve fitting technique. 
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Fig. 9.3.1 Possible X, Values 
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(a) 8 Elements 

Bcsic Number of Elements 

(c) 18 Elements 
16 

Fig. 9.3.2 
Various Element Configuration for Double Storey Framework. 
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(b) 14 Elements 

579 101 12 14 



11 .1 

(a) 5 Elements 

(Basic Number of Elements) 

(c) 13 Elements 

9 Elements 

(d) 23 Elements 

Fig. 9.3.3 a, b, c, d 

Various Element Configuration for Single Storey Framework. 
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Improved Effecti-ve Element 

Element I Element 2 Element 3 

(0 ) 

Original Element Actual Effective Element 

(b) 

Element 

-- 
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Fig. 9.3.4 

Comparison of Effective Wid-ths Using 3 Elements 

and I Element 
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CHAPTERIO 

FRAMEWORK EXPERIMENTAL 

INVESTIGATION 
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10.1 OBJECTS OF INVESTIGATION 

An intensive' experimental investigation was undertaken in order to obtain 

information on the behaviour of cold-formed thin-walled singleand'double storey 

frameworks, under concentrated loadings on the beam. The beams are connected 

to the column with semi-rigid connections. Theoretical solutions obtained from the 

analysis described in Chapter 9 were used to compare with the experimental results 

obtained. The main objects of the investigation are as follows: 

1) To obtain experimental values of the load to cause collapse of the frameworks. 

2) To examine the load-displacement behaviour at the loading' point of the 

frameworks at all stages of loading. 

3) To observe the growth and formation of plastic hinges and local buckles during 

loading. 

10.2 TEST SPECIMENS AND, FABRICATION 

A total of six series of frameworks, half of which were single storey and the other 

half double storey, were tested to collapse. Each series consisted of five frameworks, 

all of which were constructed with similar plain channel members. However, the 

connections for each framework in a series were of different thickness or stiffness. 

A complete table showing all the frameworks with their respective connection type 

and members cross sectional geometry is listed in table 10.2.1. As shown in the 

table, a particular framework can be recognised by the specific designation given. 

The relevance of the designation is illustrated below with an example: 

I-1A 
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The first letter T" means that it is a framework test. The number after the first 

alphabet refers to the members cross sectional geometry as detailed in table 10.2.1. 

Frameworks Fl -2A toFl-2E were supposed to have been constructed with members 

of cross sectional geometry similar to those of frameworks FMA to Fl-lE, but 

because of fabrication, there were slight discrepancy. If the second number is "I" 

then the framework isdouble storey. "2" refers to a-! G; nq1e storey framework. The 

last letter indicates the thickness of the connection and this was already explained 

in Chapter 8. 

The framework overall and members dimension is shown in figure 10.2.1. The 

dimensions apply to all the frameworks. However, for a single storey framework, 

the lower beam and two holes located about mid height of each column do not 

apply. 

The members were fabricated from flat galvanised steel sheetings. Flat strips were 

cut to the correct size from the sheetings. The width of the strips was sized to give 

a comer radius of about twice the thickness of the respective specimen. Before 

marking out, it was ensured that the same sheeting, which was used earlier for 

fabricating the connecting members of the connection during the joint model test, 

was used for fabricating the framework members which were of the same cross 

sectional geometry as the connecting members of the connection. 

The holes on the strips were drilled before bending was carried out. Because of the 

thinness of the material, it was much easier to drill about ten strips at a time. To 

prevent deformation around the hole, which was to be drilled, due to the twisting 

action of the drill, clamps were positioned as close to the hole as possible. The burrs 

around the drilled holes were then filed away to facilitate the bending process. 

For the beams, cold bending on a manual bending machine was relatively easy 

because of the short length. On the other hand, forming the columns posed some 
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difficulties because of the length and several trials were necessary. This accounted 

for the slight difference in the cross sectional geometry. Because of the 25 mm 

width of the unstiffened elements of the columns of framework series FM and 

173-2, bending was carried out on a very simple and old bending machine. In addition 

to the length of the columns, many problems were encountered during bending. As 

aresult, besides the lack of straightness, sinuisoidal camber orout of plane distortion 

of the unstiffened element were inevitable. These are illustrated in figure 10.2.2 

and the average lack of straightness and camber are listed in table 10.2.2. 

The final frameworks were constructed by bolting the beams and columns to the 

respective connections. A typical fully constructed framework is illustrated in figure 

10.5.2. Because of the length of the columns causing the framework to be rather 

flimsy, and the possibility of the connections slipping out of position, extra 

precautions were undertaken to prevent the framework from becoming twisted out 

of plane during the construction. 

10.3 DESIGN OF BOLTED CONNECTION 

The bolted connections used in the frameworks were designed in accordance with 

BS 5950, Part 5. Based on a bolt diameter, d, of 8 mm, the procedures outlined in 

the specification were checked and detailed below. 

From figure 10.2.1, the pitch or distance betweexi the centres of adjacent bolts in 

the line of stress is 3d. The minimum distance between the centre of the bolt and 

the edge is 2.75d. 

The shear capacity of a bolt is 

P, h = pA (10.3.1) 
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From table 11 of BS 5950, Part 5, p, is 160 NIMn, 2 for grade 4.6 bolt. 

Therefore 

, Ph = 8.042 KN 

As washers were used under both the bolt head and the nut, the bearing capacity 

for each bolt in the line of force is 

- Pj,, = 2. ldtcyy (10.3.2) 

To be on the safe side, the smallest product of tcyy of framework series F2-2 was 

taken from table 10.2.1. This results in 

Pb,, = 3.132 KN 

From table 11.1 of Chapter 11, the maximum theoretical collapse load acting on 

one loading point of the beam is 5.3 KN for framework F3-lE. As this load was 

obtained without consideration of local buckling, it will be conservative. Since there 

are two bolts connecting the connection to the top end of the column, the shear and 

bearing load on each bolt is 2.65 KN, which is less than the calculated shear or 

bearing capacity. 

10.4 MATERIAL PROPERTIES 

In order to obtain the yield stress of the material of the members used for the 

construction of the frameworks, four tensile coupons were produced from each 

piece of sheeting of different thicknesses and then tested in accordance with BS 

18, Part 3. A typical tensile coupon is shown in figure 10.4.1. 

The tensile test was carried out on the Tinius Olsen electro-mechanical testing 

machine, a description of which will be given later. An electronic extensometer 

was attached over a 50 mm gauge length of the coupon in order to measure the 
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strain. The load-strain curve was automatically plotted onto the recorder of the 

testing machine. For a material that depicts a sharp yielding stress-strain curve, the 

yield point is defined by the level at which the curve becomes horizontal. The yield 

point for a gradual yielding curve is determined by the offset method with 0.2% 

proof stress as specified by the specification. The average values of the yield stress 

of each thickness of the sheetings used are tabulated as below : 

(mm) Cy, (NIMM2) 

0.590 316 

0.700 295 

0.835 298 

1.000 295* 

* 0.2% proof stress 

As it is known that the Young's modulus, E, and the Poisson's ratio, V, varied very 

little in commercial grade mild steel, these values assumed in the theoretical 

analYses are 

E= 205 KNIMM 2ý0.3, 

10.5 TEST RIG AND EQUIPMENT 

The test rig was designed to provide a fully fixed condition for the base of the 

framework. Moreover, it was also designed so that it could be used on the Tinius 

Olsen testing machine. 

The test rig consists of -a base plate and two sets of fixture. The detail drawings of 

these are shown in Appendix VI. The base plate and one set of fixture were used 
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during the joint model experimental investigation. The base plate was designed 

with the thought of future use. The slot at each end of the base plate is for bolting 

down onto the Tinius Olsen machine. The five slots running along the length of the 

base plate are for the sliding of the fixtures along the plate. The fixtures can also 

be bolted onto the base plate through the slots. Another purpose of the slots is that 

columns of bigger cross section, not necessarily only plain channel, can be 

accomodated and clamped onto the base plate. Each set of fixture consists of four 

jigs as shown in figure 8.2.7 of Chapter 8. The figure also shows how the fully fixed 

condition can be achieved. 

Loading of the framework was achieved by the setup shown in figure 10.5.1. The 

loading bar was attached onto the machine crosshead by means of a large bolt. The 

purpose of the spacer was to facilitate bolting of the loading arm onto the loading 

bar. The tip of the loading arms was rounded off and load spreaders were used to 

prevent local stress concentration at the loading points. 

The vertical deflection at the loaded point of the framework was measured with a 

deflectometer, which was placed on a support as shown in figure 10.5.2. The support 

was clamped onto the rod of the machine. The deflectometer has a maximum 

measuring range of about 50 mm. The measured deflection, together with the 

corresponding load, were plotted onto the machine recorder automatically. 

The Tinius Olsen electro-mechanical testing machine was used to provide the 

loading in the framework experimental investigation. The machine is equipped with 

four load ranges and has a maximum capacity of 200,000 lbf. The crosshead of the 

machine can be raised and lowered by means of the four screws as shown in figure 

10.5.2. These screws are sYnchronised to rotate in opposite directions which 

effectively eliminate any torsional effects on the test framework. 
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Figure 10.5.3 shows the machine load indicator and control unit. The range selector 

switch changes the capacity of the indicating system and the value of each scale 

division. Zeroing of the appropriate zeroing knobs correspond to the required load 

range. 

The rate of loading is electronically controlled by the speed controller dial. The 

unit is used for plotting the load-deflection curve automatically during loading. The 

rotation of the recorder drum is in direct proportion to the measured deflection while 

the recorder pen moves across the drum in direct proportion to the applied load. 

10.6 TEST PROCEDURE 

Firstly, the loading arms were bolted onto the loading bar. Using the slot on the 

loading arm and the various holes along the loading bar, the loading arms were 

adjustedto give the correct distance between the tips of the loading arms. Thewhole 

assembly was then bolted centrally onto the machine crosshead as shown in figure 

10.5.1. The bolt was only hand tightened because finer adjustments would be 

required later. 

The base plate was bolted onto the rails of the machine working surface. The 

framework to be tested was then supported to stand on the base plate in a position 

such that the tips of the loading arms were in line with the markings (for loading) 

on the beam. The lower ends of the columns were then clamped using the fixtures 

as shown in figure 8.2.7. Before clamping, a beam, which is of the same length as 

the one used on the framework, was placed between the two lower ends of the 

column. This was to ensure that the top and bottom distance between the columns 

was equal. 

The erected framework was checked to ensure that it was standing upright and erect. 

This was done by looking at the framework from the side. Corrections could be 

accomplished by loosening the base plate from the machine rails and inserting flat 
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pieces of metal plates in the correct position between the base plate and the rails. 

In some cases, several repetition of the above procedure were required before the 

framework was upright and erect. 

The loading setup, which was only hand tightened initially, was adjusted till the 

tips of the loading arms were exactly in line with the markings on the beam and at 

the same time square with the framework. Checking was carried out by looking at 

the framework from both the front and the side. 

Before loading, the load spreaders were placed in position on the beam. The load 

indicator and recorder pen were zeroed and the deflectometer was set up in position 

and adjusted such that the full range could be used. The framework was given an 

initial loading of about one third of the predicted collapse load. The purpose was 

to remove any slack present in the system. The framework was unloaded to zero 

load and the recorder pen was readjusted back to zero. Figure 10.5.2 shows a 

frameworkjust before the actual loading. Loading was carried out gradually till the 

framework collapsed. The full load-deflection was automatically plotted on the 

machine recorder. 

10.7 EXPERIMENTAL RESULTS AND OBSERVATION 

From the framework experimental investigation, four different failure modes were 

observed. These are illustrated schematically in figure 10.7.1, which also shows 

the location and order of hinge formation. For frameworks with a dashed line, which 

represents a beam, the failure mode associated is applicable to both single and 

double storey frameworks. 

Table 10.7.1 lists the failure mode of all the frameworks tested. It can be seen that 

, including framework 173- 1B, all the frameworks with the thinnest connection, type 

A, failed in mode L After the simultaneous formation of hinges at the loading points, 

further increase in load resulted in the failure of the connections.. At this point, a 
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mechanism was formed and the fmmework collapsed. FmmeworkF3-IB also failed 

in mode I because of the lower flexural stiffness of the connection, compared to 

that of the column. An actual typical mode I failure is illustrated in figure 10.7.2 

and a magnified picture of the hinge formation at the loading points of the beam 

and the full plastic deformation of the connections is shown in figure 10.7.3. 

For mode II failure, full plastic deformation occurred at the loading points initially. 

Further increase in the load resulted in the formation of hinges at the top end of the 

columns. This is due to the fact that by using stiffer connections, the bending moment 

along the beam is more distributed. Hence, the hinges at the loading points will 

occur at aVer load compared to the same framework with connections of lower 

stiffness. However, although the bending moment at the ends of the loaded beam 

is higher, the connections did not fail because of the higher moment capacity due 

to the increase in thickness. The reduction of the column's moment capacity due 

to the rather large compressive axial load and local buckling, if any, will cause the 

top end of the column to plasticise. The location of the hinges on the column was 

observed to have occurred just after the edge of the connection due to local stress 

concentration. A typical mode II failure is illustrated in figure 10.7.4. The hinges 

at the loading points of the beam and column can be seen from figure 10.7.5. 

The two types of failure mode discussed above are symmetrical. Failure mode III 

is an unsymmetrical case. This manner of failure could be due to several factors. 

The connections or columns might be of slightly different geometrical dimensions. 

During the framework construction and testing setup, unsymmetry could have Veen 

introduced. For the three cases with mode III failure as shown in table 10.7.1, the 

hinges at the loading points formed almost simultaneously, followed by the 

formation of the third hinge at the column nearest the first hinge formed at the beam. 

At this stage, the framework collapsed. An example of mode III failure is illustrated 

in figure 10.7.6 and the middle framework of figure 10.7.7, which also shows the 
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collapsed frameworks of series F3-1. Notice that whatever the failure mode, the 

lower beam was virtually undeformed. This was true for all double storey 

frameworks, regardless of the failure mode. 

For framework series F3-2, except for framework F3-2A which failed in mode 1, 

the rest of the frameworks were observed to fail in mode IV. As with all the other 

failure modes, except mode III, the initial set of hinges formed at the loaded points 

simultaneously. Because of the cross sectional geometry and length of the column, 

torsional flexural buckling occurred upon further increase in applied load. The 

framework finally failed in a twisted manner as illustrated in figures 10.7.8 and 

10.7.9. 

The experimental load-displacement plots of the six series of framework, the details 

of which are tabulated and shown in table 10.2.1, are shown in figures 10.7.10 to 

10.7.15. The load represents the loading at one loaded point of the beam and the 

displacement is the corresponding vertical deflection at that point. 

From fig 10.7.10, it is shown that the framework stiffness increases with respect to 

the thickness or stiffness of the respective connections used. This is also true for 

the rest of the series of tests. For frameworks that failed in mode L there is 

considerable increase in deflection or decrease in framework stiffness after the 

formation of the first set of hinges at the beam. This may be attributed to the low 

moment-rotation behaviour of the connections. For framework FMB, the drop in 

framework stiffness was due to the partial deformation of the top connections. 

Frameworks F3- 1 C, F2-2C and F2-21) , all of which failed in mode III, exhibited 

a sudden drop in stiffness because of the low plastic reserve of the columns. For 

framework series F3-2, except for framework F3-2A, the stiffness between the 

formation of hinges at the beam and final failure could not be compared because 

of the torsional flexural effect. For frameworks that failed purely in mode 11 with 

no other side effects, there was very little reserve strength left in the framework 
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after formation of the first set of hinges at the beam and total collapsed occurred 

rather suddenly. From table 10.7.1, it is shown that the collapse load increases with 

respect to the connection stiffness up to a point. When connection type E was used, 

the collapse load reduces. The experimental plots for these series, as shown in 

figures 10.7.10,10.7.11 and 10.7.13, exhibit a very similar pattern in both stiffness 

and collapse load. On the other hand, framework series FM indicated an increase 

in the collapse load with respect to the increase in connection stiffness and 

framework F3-lE gave the highest collapse load. Although the unsymmetrical 

failure of frameworks F2-2C and F2-2D prevented a definite comparison, an 

estimation of the values of the collapse load shown in table 10.7.1 seemed to indicate 

the similarity with the former collapse load-connection stiffness behaviour 

discussed earlier. The results of framework series Fl-2 and F3-2 cannot be discussed 

conclusively due to the significant out of plane distortion of the framework and 

torsional flexural effects respectively. 
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Fig. 10.7.2 Mode I Failure 

Fig. 10.7.3 Hinge Formation at Beam and Connections 
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Fig. 10.7.4 Mode 11 Failure 

Fig. 10.7.5 Hinge Formation at Beam and Column 
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Fig. 10.7.6 Mode III Failure 

Fig. 10.7.7 CoRapsed Frameworks 
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Framework Column Column Beam Beam Connection lay 
No. b, b2 b, b2 Typ'- (N/MM2) 

FMA 29 14 27 14 '1.000 Jl-IA 295 

Fl-IB 29 14 27 14 1.000 JI-IB 295 

FMC 29 14 27 14 1.000 JMC 295 

Fl-ID 29 14 27 14 1.000 JI-ID 295 

FI-IE 29 14 27 14 1.000 JI-lE 295 

FI-2A 29 14 27 14 1.000 Jl-IA 295 

FI-2B 29 13 27 13 1.000 JMB 295 

FI-2C 29 13 27 13 1.000 JI-IC 295 

Fl-2D 29 13 27 13 1.000 JI-ID 295 

Fl-2E 29 13 27 13 1.000 JI-IE 295 

F2-IA 27 15 25 15 0.700 J2-IA 295 

F2-IB 27 15 25 15 0.700 J2-IB 295 

F2-IC 27 15 25 15 0.700 J2-IC 295 

F2-ID 27 15 25 15 0.700 J2-ID 295 

F2-IE 27 15 25 15 0.700 J2-IE 295 

F2-2A 28 14 25 15 0.590 J2-2A 316 

F2-2B 28 14 25 15 0.590 J2-2B 316 

F2-2C 28 14 25 15 0.590 J2-2C 316 

F2-2D 28 14 25 15 0.590 J2-2D 316 

F2-2E 28 15 25 15 0.590 J2-2E 316 

F3-IA 27 25 25 25 0.835 J3-IA 298 

F3-IB 27 25 25 25 0.835 J3-IB 298 

F3-IC 27 25 25 25 0.835 J3-IC 298 

F3-ID 27 25 25 25 Oý835 J3-1D 298 

F3-1E 27 26 25 25 0.835 J3-lE 298 

F3-2A 27 25 25 25 0.835 J3-IA 298 

F3-2B 27 25 25 25 0.835 J3-IB 298 

F3-2C 27 25 25 25 0.835 J3-IC 298 

F3-2D 27 25 25 25 0.835 J3-ID 298 

F3-2E 27 1 25 1 25 1 25 0.835 J3-IE 298 

All dimensions in mm unless otherwise stated. 

Table 10.2.1 Frameworks with Their Respective Connections 

and Member Details 
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Framework No. QMM) D, (mm) 

FMA 0.1 

FI-IB 0.1 

FI-IC 0.3 negligible 
FI-ID 0.3 

F1-1E 0.1 

F1-2A 0.5 

FI-2B 0.2 

FI-2C 0.2 negligible 
FI-2D 0.2 

Fl-2E 0.1 

F2-IA 0.1 

F2-lB 0.1 

F2-lC 0.5 negligible 
F2-11) 0.1 

F2-IE 1.0 

F2-2A 1.0 

F2-2B 1.5 

F2-2C 1.0 negligible 
F2-21) 1.0 

F2-2E 0.5 

F3-1A 3.0 2.5 
F3-IB 2.5 2.5 
F3-IC 3.0 3.0 
F3-1D 1.5 3.0 

F3-IE 2.0 2.5 

F3-2A 4.0 3.0 

F3-2B 3.0 3.0 

F3-2C 4.0 2.5 

F3-21) 3.0 2.5 

F3-2E 2.0 3.0 

Table 10.2.2 Initial Imperfection Amplitude of Columns 
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Framework P. Failure 

No. (KN) Mode 

FI-IA 1.800 1 

FI-IB 2.149 11# 

FI-IC 2.184 11 

Fl-1D 2.184 11 

FI-IE 2.064 11 

FI-2A 1.833 1 

FI-2B 1.703 11* 

FI-2C 1.743 11* 

FI-2D 1.833 11* 

FI-2E 1.784 11 

F2-IA 1.449 1 

F2-IB 1.516 11 

F2-IC 1.551 11 

F2-ID 1.603 11 

F2-IE IA20 II 

F2-2A 1.128 1 

F2-213 1.146 Il 

F2-2C 1.113 111 

F2-21) 1.068 111 

F2-2E 1.163 11 

F3-IA 2.765 1 

F3-IB 2.916 1 

F3-IC 3.088 111 

F3-ID 3.277 11 

F3-IE 3.478 11 

F3-2A 2.716 1 

F3-2B 2.943 IV 

F3-2C 3.153 IV 

F3-21) 3.057 IV* 

F3-2E 3.456 IV 

PartW deformation of top connections. 
* Significant twisting of framework. 

Table 10.7.1 Various Framework Failure Modes 
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AND 
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The results of the framework experimental investigation are shown graphically 

and numerically, and compared, where relevant, with the theoretical predictions. 

Before discussing the results, some explanation of the'abbreviations used in the 

graphs and tables are necessary and they are as follows 

LB: Local buckling. 

LB (BE) N ele: Local buckling is accounted for using the first approximation 

method, i. e., treating the element as a beam element (see 

Section 5.5 of Chapter 5). The framework is modelled using 

N elements. The various element configuration of the 

framework can be found in figures 9.3.2 and 9.3.3 of Chapter 

9. 

LB (CE) N ele: As above but treating local buckling using the second 

approximation method, i. e., assuming uniform compression 

(see Section 5.6 of Chapter 5). 

LB (CE2) N ele: As above but the actual length is multiplied by the cc factor to 

account for torsional flexural buckling as detailed in Section 

7.5 of Chapter 7. 

The experimental and various theoretical predictions of the load- displacem'ent 

results for individual framework are shown in figures 11.1 to 11.30. In all'the 

load-displace'ment plots, the y and x axes represent the load at one of the loading 

point and the corresponding vertical displacement of that point respectively. 

Beginning with framework series FI-1, it can be seen from figure 11.1, for 

framework FMA, that although curve 4 gives the best fit, the other curves also 

represent the experimental result rather well. The theoretical prediction obtained 

by treating local buckling using the first approximation method is almost the same 

as that for no local buckling. This is so because for the cross sectional geometry of 

the members, there is very little local buckling. However, by using the second 
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approximation method to account for local buckling, a smaller effective width will 

be obtained. This resulted in the formation of hinges at the loading points of the 

beam at a lower load. From this point onwards, the frame stiffness is reduced and 

failure occurred at a slightly lower load. For framework Fl-1B, it can again be 

observed from figure 11.2 that the difference between curves 1,2 and 3 is marginal. 

However, the displacement at failure is about 75% higher than that of the 

experiment. This is due to the partial deformation of the top connections. As before, 

treating local buckling assuming uniform compression for the elements resulted in 

a slightly lower collapse load. The use of the second approximation method for 

local buckling underestimated the collapse load for frameworks FMC and Fl-ID, 

as illustrated in figures 11.3 and 11.4 respectively. The framework stiffness after 

the simultaneous formation of hinges at the top beam is also lower. For both the 

frameworks, curve 1,2 and 3 represent the experimental result better than curve 4. 

Like the above case, there is only a slight difference between curves 1,2 and 3. 

Although still acceptable, curves 1,2 and 3 predicted a higher collapse load for 

framework Fl-lE as shown in figure 11.5. Curve 4 agrees with the experimental 

result rather well and gives a better prediction of the collapse load. 

Because of the full flat width-to-thickness ratio of both the stiffened and unstiffened 

elements of the members, especially the latter, the theoretical prediction with no 

local buckling over estimated the collapse load for all the frameworks of series 

172-1, as illustrated in figures 11.6 to 11.10. This over estimation averages to about 

20%. When the basic number of elements are used to model the framework and the 

first approximation method is employed to treat local buckling, the average over 

estimation drops to about 4%. Increasing the numberof elements to 18 brought this 

figure up to about 18%. Although increasing the number of elements gives a more 

correct analysis, a higher collapse load, compared to the analysis using the basic 

number of elements, is obtained because as mentioned in Chapter 5, the maximum 

compressive stress of the element is used to compute the effective width. Hence, 
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for a member consisting four elements and with a linearly varying stress, the 

effective'width is computed for each element using the maximum compressive 

stress in that element. This will result in the member comprising of four elements, 

each being prismatic but with different cross sectional properties. On the other hand, 

for the same member subjected to the same loading as above and modelled by a 

single element, using the maximum compressive stress to compute the effective 

width will result in a prismatic element with a cross section property that is equal 

to the smallest of the four elements of the first case. Therefore, the overall framework 

stiffness is reduced and this will lead to a lower failure load for the basic number 

of element analysis. 

As explained earlier, for the same number of elements, in this case 18, using the 

second approximation method to treat local buckling will lead to a lower collapse 

load compared to when the first approximation method was used. This phenomenon 

is demonstrated by curve 4 of figures 11.6 to 11.10. For framework F2-lC and 

F2-lD, besides giving a lower collapse load, the stiffness after formation of the 

fast set of hinges at the top beam is very much lower compared to the experimental 

results. Hence, for framework series F2-1, although predicting an accurate collapse, 

curve 4 underestimates the stiffness at higher loads. Having said that, curve 2, which 

represents the basic number, of elements analysis, also gives a rather reasonable 

representation of the experimental results generally. 

For framework series F3-1, the difference between curves 1 and 2 is very significant 

as illustrated in figures 11.11 to 11.15, due to the effects of local buckling. This 

effect caused the fast set of hinges at the loaded beam to occur at a load of about 

30% lower than when no local buckling was considered. For the same reason, the- 

collapse load predicted by curve 2 dropped drastically to a value closer to the 

experimental collapse load. However, the displacement at collapse is overestimated 

and for framework FMA, this over prediction amounts to about 400%. As 
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explained before, using the more correct model of 18 elements resulted in a higher 

collapse load compared to the 8 element analysis. Except for framework F3-lE, 

using the second approximation method for local buckling did not produce a good 

enough collapse load prediction as indicated by curve 4. 

By adopting the procedures outlined in Section 7.5 of Chapter 7, it was found that 

for the column length and cross sectional geometry, torsional flexural buckling is 

the critical mode for the columns of the 173-1 framework series. Hence, by 

multiplying the appropriate cc factors, which were obtained assuming no warping 

restraint, to the actual column lengths and using them for analysis, the theoretical 

prediction obtained is represented by curve 5 of figures 11.11 to 11.15. It can be 

seen that for all the frameworks, a closer agreement with the experimental results 

is obtained. This is attributed to the overall reduction of the framework stiffness. 

In a general sense, although curve 5 has a better agreement compared with the 

experimental results, the collapse load predicted by curve 2 is slightly better. 

The various theoretical predictions for individual framework of framework series 

FI -2, as illustrated in figures 11.16 to 11.20, is rather similar to those of framework 

series F1 -1 respectively. The reason behind this is due to the almost similar members 

cross sectional geometry, in which there is very little local buckling. With the 

exception of framework FI-2A, curve 4 indicates only a marginal reduction in the 

collapse load for the rest of the frameworks. On the whole, any of the four curves 

can be used to represent the experimental results. 

Similar to framework series F2-1, the large width-to thickness ratio of the elements 

of the members of series F2-2 frameworks caused a considerable reduction in 

collapse load compared to the no local buckling analysis, as illustrated in figures 

11.21 to 11.25. Again, it is shown that increasing the number of elements from 5 

to 13 for the same method of treating local buckling increases the predicted collapse 

load. When the second approximation method was used, the agreement in both 
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stiffness and load between curve 4 and the experimental result is improved. Figure 

11.22 shows the results of seven different theoretical predictions. As before, curve 

I gives the highest stiffness and load prediction. From curves 2 and 3, it is again 

observed that increasing the number of elements will give a more correct but higher 

load prediction. Increasing the number of elements from 9 to 13 resulted in very 

little difference in the theoretical prediction. When the second approximation 

method of treating local buckling was employed, the same behaviour can also be 

observed as illustrated by curves 5,6 and 7. Considering the negligible difference 

between curves 6 and 7, it was hence decided that 13 and 18 elements are accurate 

enough to model the single and double storey framework respectively. Figure 11.22 

also shows an important feature, i. e., the difference in the theoretical predictions 

obtained by using the fust and second method to treat local buckling. This difference 

is clearly indicated by comparing curves 3 and 5 or curves 4 and 6. There is quite 

a significant variation in the collapse load, and the load required to cause formation 

of the first set of hinges on the beam and the stiffness thereafter. 

For framework series F3-2, the various theoretical predictions for individual 

framework, as shown in figures 11.26 to 11.30, are more or less similar to those of 

framework series F3-1. To avoid repetition, only the main features win be 

mentioned. Except for framework F3-2E, curve 5 (with torsional flexural buckling 

included) over estimated the collapse load rather significantly. Ile prediction using 

the basic number of elements actually gave the best load prediction. However, the 

displacement at failure is rather high compared to the experiment. 

Figure 11.28 shows the effects of excluding the torsional flexural buckling in the 

analysis. The best agreement between the theoretical and experimental results is 

reflected by the analysis which employs the second approximation method to treat 

local buckling. However, both the stiffness and collapse load are nowhere near the 

experimental result. The effects of considering torsional flexural buckling is shown 
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in figure 11.28a. For curves 4 and 6, the cc factors were obtained assuming full 

warping restraint at the ends of the column. This will produce an cc factor that is 

smaller compared to the case when no warping restraint is assumed. The resulting 

outcome'can be seen very obviously by comparing curves 4 and 5 or curves 6 and 

7. There is a significant reduction in both the'stiffness and collapse load, when 

assuming no warping restraint. Also shown, increasing the number of elements 
from 13 to 23 did not improve the prediction significantly. In fact, the improvement 

is so little that it can be ignored. Figure 1 1.28a also shows that curve 5 can be used 

as an approximate prediction when there is torsional flexuml buckling of the column. 

Although the comparisons between the various theoretical and experimental failure 

loads have been discussed, they were only touched upon briefly. The following 

gives a more specific comparison. The average values mentioned below were 

computed from table 11.3, which tabulates the ratio of the various theoretical 

collapse load to the experimental collapse load. These loads are in turn tabulated 

and shown in tables 11.1 and 11.2. 

The various predicted and experimental collapse loads for framework series FI-I 

are plotted against the connection initial stiffness of the respective framework as 

shown in figure 11.31. As expected, the analysis without local buckling gave the 

greatest average difference of about 7 %. On the other hand, using the second method 

to account for local buckling resulted in the best prediction. Except for framework 

FMA, where the prediction was exact, the collapse load for the rest of ýthe 

framework were in fact slightly underestimated. The average under estimation is 

only about 1.5%. A point worth mentioning is that both the experiment and the 

theoretical prediction indicated a reduction in the collapse load when the most stiff 

connections, type E, were usedL 
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Ile phenomenon just mentioned is also true for framework series F2-1 as illustrated 

in figure 11.32. On an average basis, the prediction given by the basic number of 

element analysis is around 4% higher. This is only marginally better than the 5% 

obtained from the analysis using 18 elements and the second approximation method 

to treat local buckling. Without local buckling, the predicted average over 

estimation is about 20%. 

For ft-amework series F3-1, because of the greater tendency for the members to 

buckle locally, the analysis without local buckling over predicted by 42% on 

average. This error is reduced to about 8% when torsional flexural buckling of the 

column is accounted for. Not surprisingly, the use of the basic number of elements 

model resulted in an over prediction of about only 1.5%. From figure 11.33, the 

experimental results indicate an increase in the collapse load for framework with 

the thickest connection, i. e., F3-lE. This behaviour is in contrast with that of 

framework series FI-I and F2- 1. 

Illustrated in figure 11.34 and mentioned in Chapter 10, the reduction in the 

experimental failure load for frameworks F1-213, Fl-2C and FI-21) compared to 

F1-2A was due to the severe out of plane distortion or twisting of the framework 

during testing. Nevertheless, the experimental collapse load for F1-2E, when 

compared to framework FI-2A, seems to indicate that the reduction of the collapse 

load when the thickest connection is used is possible. Due to the low full flat 

width-to-thickness ratios, the average over prediction of the collapse load from the 

no local buckling, 5 and 13 elements theoretical predictions are 12.6%, 10.3% and 

6.9% respectively. 

As illustrated in figure 11.35 for framework series F2-2, the unsymmetrical mode 

of failure resulted in a reduction of the experimental failure load for frameworks 

F2-2C and F2-2D. Hence, it is not possible to ascertain experimentally whether 

there is a drop in failure load when the thickest connections were used. However, 
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all the various theoretical results showed a very slight increase in the collapse load 

for framework F2-2E compared to F2-2D. The computed average over prediction 

in the collapse load are 40%, 7.4% and 0.3% for the no local buckling, 5 and 13 

elements theoretical analysis respectively. 

Forframework series F3-2, where failure was affected by torsional flexural buckling 

of the columns, except for framework F3-2A which failed in mode 1, figure 11.36 

shows that the no local buckling collapse loads are very much higher then the 

experimental results. These errors average to about 41%. Because of the 

conservativeness resulting from the basic number of elements model, the average 

over prediction of about 3% is much better than the 11 % obtained from the analysis 

considering torsional flexural buckling of the columns. 

In order to study the effects of initial imperfection on the behaviour of the 

frameworks, theoretical analyses were performed for framework F2-2B. 71is 

framework was chosen because there is significant local buckling of the members. 

Furthermore, the stiffness of the connections used is approximately between fully 

fixed and fully pinned. Moreover, the framework collapsed purely in mode II 

without any other significant or noticeable unaccounted effects. In the theoretical 

analysis, the framework was modelled using 13 elements. Loading of the framework 

was similar as before. Besides initial imperfection, the analysis was carried out with 

(using the first approximation method) and without consideration of local buckling. 

For the latter, the loads at one of the loading point and the corresponding vertical 

deflections are plotted and shown in figure 11.37. The initial imperfection is 

expressed as a ratio of the column length. From the figure, it is shown that as the 

initial imperfection is increased, both the stiffness and collapse load- reduce 

drastically. The reserve strength of the framework also decreases rather significantly 

after the simultaneous formation of hinges at the loading points. When local 

buckling was considered, effects similar to the above were indicated as illustrated 
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in figure 11.38. However, for the same degree of initial imperfection, a lower 

stiffness and collapse load are obtained. The reduction in the collapse load can be 

seen more clearly from figure 11.39, which shows the reduction in collapse load 

with respect to the increase in initial imperfection from the two cases of analysis. 

Table 11.4 shows the percentage change in collapse load for the various degree of 

initial imperfection when local buckling was considered. It varies non-linearly, as 

illustrated in figure 11.40, from about 16% to 38% when the initial imperfection 

ratio is increase from zero to 5% respectively. 

The discussion now concentrates on the elastic critical loads of the frameworks 

studied. As pointed out in Chapter 10, for this analysis, the stresses in the material 

of the framework are assumed to be remain linearly elastic throughout the loading 

range and there is no yielding of the material. As such, the stiffness of the 

connections are assumed to be constant and takes the value of their initial stiffness 

respectively. As before, the analyses were carried out with (using the fast 

approximation method) and without the considerafion of local buckling. 

The elastic critical load, referred to as the critical load from here henceforth for 

convenience, obtained for the six series of framework studied are plotted against 

the respective connection initial stiffness as shown in figures 11.41 to 11.46. These 

figures show that without local buckling, the critical load increases non-linearly 

with respect to the connection initial stiffness. From fully pinned to a stiffness of 

about 10 KNnunlrad, the rate of increase is very low and almost constant in some 

cases. When the connection stiffness is further increased to about 10 Mmmlrad, 

the critical load increases non-linearly till a point where the increase is almost 

negligible. In fact, after about 100 Wmmlrad, the critical load remains constant. 

When local buckling was considered, depending on the local buckling potential of 

the members, the variation of the critical load against the connection stiffness is 

rather different. Firstly, considering the double storey frameworks, it can be seen 
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from figures 11.41,11.43 and 11.45 that the critical load decreases when the 

connection stiffness is increased. For a particular connection stiffness, the amount 

of reduction in the critical load compared to without local buckling is different for 

each framework. This behaviour is illustrated in a clearer manner in figure 11.47, 

which shows the percentage reduction in the critical load, compared to the no local 

buckling case, plotted against -the connection stiffness for the double storey 

frameworks. It is rather obvious that as the local buckling potential of the members 

of the framework increases, the percentage reduction in the critical load increases 

non-linearly with respect to the connection stiffness. ' 

Another interesting'comparison can be made from figure 11.48, which shows the 

percentage change in the critical load compared to the critical load with fully pinned 

connections, plotted against the connection stiffness. Ilie negative sign on the y 

axis indicates a reduction in the critical load. Ilie purpose of this plot is to show, 

in a clearer form, the variation of the reduction of the critical load of the double 

storey framework series when the connection stiffness is increased. 

For the single storey framework series, figures 11.42,11.44 and 11.46 show that, 

compared to the no local buckling case, there is a reduction in the critical load for 

a particular connection stiffness. To compare this reduction, figure 11.49 is used. 

Similar to the double storey framework series, the percentage reduction in the 

critical loadincreases in a non-linear fashion withrespect to the connection stiffness. 

For a particular connection stiffness, when the. local buckling potential of the 

members of the framework is higher, the percentage reduction in the critical load 

is also higher. 

As to the variation of the critical load with the connection stiffness, figure 11.42 

shows that instead of decreasing, the critical load increases very slowly when the 

connection stiffness in increased. This is due to the very slight local buckling of 

the members of the framework. On the other hand, for framework series F2-2 and 
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F3-2, figures 11.44 and 11.46 respectively show that as the connection stiffness is 

increased, the critical load reduces very slowly up to a certain connection stiffness. 

After that, there is a very small increase till a point where the critical load remains 

constant with further increase in the connection stiffness. T'his behaviour can be 

studied more clearly from figure 11.50, which, as in the double storey framework 

series, shows the percentage change in the critical load compared to that when fully 

pinned connections are used, plotted against the connection stiffness. An interesting 

behaviour noted is that depending on the local buckling potential, the critical load 

of the framework can either increase or decrease and then increase again as the 

connection stiffness increases. 

In order to confirm the behaviourjust mentioned, further theoretical analyses were 

carried out on a series of framework having the cross sectional geometry as shown 

in table 11.7. Except for these dimensions, which apply to both the beam and the 

columns, and the same yield stress assumed for all the frameworks, everything else 

remained unchange. The stiffened element width is kept constant but that of the 

unstiffened element is varied. The purpose of this is to vary the local potential of 

the members of the frameworks. As before, the critical load obtained were plotted 

against the connection stiffness as shown in figures 11.51 to 11.57. The critical 

load for no local buckling increases non-linearly with respect to the connection 

stiffness as before. With the consideration of local buckling, except for framework 

FIO-5-1 where there is no local buckling of the members, there is a reduction of 

the critical load for a particular connection stiffness. This reduction is shown in 

figure 11.5 8. It can be seen that the pattern of the reduction of the critical load is 

similar to that of both the single and double storey framework series discussed 

earlier. As to the variation of the change in the critical load, compared to when fully 

pinned connections were used, with the stiffness, figure 11.59 indicates that the 

interesting behaviour discussed earlier is true. For framework 10-5-1, the critical 

load increases with respect to the connection stiffness. Framework F10- 10- 1, whose 
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members have very little local buckling potential, exhibits the same behaviour. 

However, for frameworks FIO-14-1, F10-16-1, FIO-I 8-1 and FIO-20-1, the critical 

load decreases initially and then starts increasing at a certain connection stiffness. 

As for framework FIO-30-1, whoseýmembers have the greatest local buckling 

potential, there is no increase in the critical load when the connection stiffness is 

increased. Ibis behaviour did not occur in any of the original frameworks studied. 

However, from this theoretical investigation, it has been demonstrated that the 

variation of the critical load with the connection stiffness depends on the local 

buckling potential of the members of the framework. 

The final part of this discussion will focus on the comparison of the elastic critical 

loads with the experimentally obtained failure loads of the original frameworks 

studied. I'liese loads are tabulated as shown in table 11.10. Ile fifth column 

compares the critical load of the no local buckling case with that of the local buckling 

case. This comparison has been dealt with earlier and will not be repeated here. 

The ratio of the critical load without local buckling to the experimental failure load 

is given in the sixth column. Due to local buckling, the critical load is always higher 

than the experimental value. Except for framework series FI-2, the average over 

prediction is greater than 100%. However, when local buckling was considered, 

the critical load reduces rather drastically, especially for those frameworks with 

members of high local buckling potential. For framework series F2-2, the maximum 

average over prediction of the analysis is only about 13%, which is rather good. 

The reason for this low value is because of the cross sectional geometry of the 

members, which gives the framework the lowest overall stiffness compared to the 

other framework series. Hence, elastic instability will occur at a lower load. 

Moreover, the rather high local buckling potential of the members resulted in a 

further reduction of the critical load. 
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In order to have an overall picture of the load-displacement curves of the elastic 

instability and collapse load analyses compared with the experimental results, 

framework F2-2A was chosen as an example. Because of the rather low elastic 

critical loads, a more proportional plot can be obtained and this is illustrated in 

figure 11.60. As expected, curve I gives the highest predicted load. Surprising as 

it may seem, curve 3, which was obtained from the collapse load analysis without 

consideration of local buckling, resulted in a higher failure load compared to curve 

2. To compare the various stiffness, a magnified plot is shown in figure 11.61. It 

can be seen that curve 1 predicted the highest stiffness because of the constant initial 

connection stiffness assumed. Curve 2, due to the local buckling effect, indicated 

a rather significant reduction of the stiffness. The use of the theoretical connection 

moment-rotation behaviour resulted in a further drop in the stiffness as indicated 

by curve 3. Curves 4 and 5, which are almost identical, gave the lowest stiffness. 

OPTIMUM ANALYSIS PARAMETERS 

From the various theoretical predictions as illustrated in figures 11.31 to 11.36 and 

tables 11.1 to 11.3, the analysis which uses the second approximation method to 

treat local buckling combined with a sufficient number of elements, 13 and 18 for 

the single and double storey frameworks respectively, produces the best results 

when compared to the experiments. However, when torsional flexural buckling of 

the columns is critical, the effective length multiplier must be used, as in the case 

of framework series FM and F3-2. 
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Fig. 1 1.56 Frame F1 0-20-1 Load/Connection Stiffness plot 
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Fig. 1 1.57 Frame F1 0-30-1 Load/Connection Stiffness plot 
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A B c D E F z 

Framework P,. pl, pl, P11 P., pl, P., 

No. 8 ele 8 ele 18 ele 14 ele 18 ele 18 ele 
(BE) (BE) (CE) (CE) (CE2) 

F3-IA 3.60 2.80 3.42 3.37 3.37 3.05 2.765 

F3-IB 3.90 3.05 3.80 3.64 3.64 3.19 2.916 

F3-IC 4.20 3.25 3.94 3.68 3.68 3.32 3.088 

F3-lD 5.20 3.30 4.25 3.76 3.76 3.59 3.277 

F3-lE 5.30 3.30 4.22 3.75 
1 

3.75 3.61 3.478 

FMA 1.85 1.85 1.85 1.80 1.80 - 1.800 

FI-IB 2.30 2.25 2.29 2.10 2.10 2.149 

FMC 2.35 2.30 2.32, 2.14 2.14 2.184 

FI-ID 2.30 2.30 2.30 2.14 2.14 - 2.184 

Fl-lE 2.30 2.20 2.25 2.03 2.03 - 2.064 

F2-lA 1.75 1.55 1.60 1.37 1.37 - 1.449 

F2-lB 1.80 1.57 1.61 1.42 1.42 - 1.516 

F2-IC 1.85 1.57 1.65 1.45 1.45 - 1.551 

F2-ID 1.85 1.58 1.69 1.49 1.49 - 1.603 

F2-IE 1.80 
1 

1.55 1.59 
1 

1.38 
1 

1.38 - 1.420 

All units in KN 

Table 11.1 Experimental and Various Theoretical Collapse Loads 
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A B C D E F G H Z 

Fmme P', P', P', P', P', P', P', P. 
No. 5 ele 5 ele 13 ele 9 ele 13 ele 13 ele 9 ele 23 ele 

(BE) (BE) (CE) (CE) (CE2) (BE) (CE) 

Fl-2A 1.85 1.85 1.85 1.85 1.85 - - - 1.833 

FI-2B 2.05 2.00 2.00 1.95 1.95 - - - 1.703 

FI-2C 2.05 2.00 2.00 1.95 1.95 - - 1.743 

FI-2D 2.05 2.00 2.00 1.95 1.95 - - - 1.833 

Fl-2E 2.00 1.95 1.95 1.80 1.80 - - - 1.784 

F2-2A 1.56 1.19 1.25 1.110 1.110 - - 1.128 

F2-2B 1.56 1.20 1.30 1.095 1.095 - 1.30 1.115 1.146 

F2-2C 1.57 1.20 1.29 1.115 1.115 - - - 1.113 

Fý-M 1.58 1.21 1.29 1.120 1.120 - - - 1.068 

F2-2E 1.62 1.23 1.28 1.170 1.170 - - - 1.163 

F3-2A 3.60 2.80 3.49 3.35 3.35 3.25 - - 2.716 

F3-2B 3.80 3.10 3.78 3.65 3.65 3.31 - - 2.943 

F3-2C 4.10 3.23 4.06 3.72 3.72 3.40 4.06 3.73 3.153 

F3-2D 5.00 3.28 4.25 3.80 3.80 3.50 - - 3.057 

F3-2E 5.20 3.26 4.17 3.76 3.76 3.49 - - 3.456 

All units in KN 

Table 11.2 Experimental and Various Theoretical Collapse Loads 
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Frame A/Z B/Z C/Z D/Z F/z G/z 11/Z 

No. 

FI-IA 1.028 1.028 1.028 1.000 

FI-IB 1.070 1.047 1.066 0.977 

FI-Ic 1.076 -1.053 1.062 0.980 

FI-ID 1.053 1.053 1.053 0.980 

FI-IE 1.114 1.066 1.090 0.984 

F2-IA 1.208 1.070 1.104 0.946 

F2-IB 1.187 1.036 1.062 0.937 

F2-IC 1.193 1.012 1.064 0.935 

F2-ID 1.154 0.986 1.054 0.930 

F2-IE 1.268 1.092 1.120 0.972 

FMA 1.302, 1.013 1.237 1.219 1.103 

F3-IB 1.338 1.046 1.303 1.248 1.094 

F3-IC 1.360 1.053 1.276 1.192 1.075 

F3-ID 1.587 1.007 1.297 1.147 1.096 

F3-IE 1 1.524 0.949 1.213 1.078 1.038 

FI-2A 1.009 1.009 1.009 1.009 

FI-2B 1.204 1.174 1.174 1.145 

FI-2C 1.176 1.147 1.147 1.119 

FI-2D 1.118 1.091 1.091 1.064 

FI-2E 1.121 1.093 1.093 1.009 

F2-2A 1.383 1.055 1.108 0.984 

F2-2B 1.316 1.047 1.134 0.956 1.134 0.973 

F2-2C IAII 1.078 1.159 1.002 - 
F2-2D IA79 1.133 1.208 1.049 

F2-2E 1.393 1.058 1.101 1.006 - 

F3-2A 1.325 1.031 1.285 1.233 1.197 

F3-2B 1.291 1.053 1.284 1.240 1.125 

F3-2C 1.300 1.024 1.288 1.180 1.078 1.288 1.183 

F3-2D 1.636 1.073 1.390 1.243 1.145 

F3-2E 1.505 0.943 1207 1.088 1.010 j 

7bis table is to be read in conjunction with tables 11.1 and 112. 

Table 11.3 Comparison of Theoretical and Experimental Failure Loads. 
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C, 

L 
PCX 

(KN) 

P11 

(KN) 

PCX - Pcl 
x 100 

PCX 

0.000 1.57 1.32 15.92 

0.001 1.56 1.31 16.03 

0.005 1.49 1.25 16.11 

0.010 1.34 1.11 17.16 

0.020 1.15 A. 89 22.61 

0.030 0.97 0.70 27.84 

0.050 0.73 
1 

0.45 
1 

38.36 

Table 11.4 Effects of Initial Imperfection. 
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R P.. P., P.. - P. 
1 Pfl(R 

)-pl(R . O) 
(NmZrad) (KN) (KN) P.. 

x 100 . . x 100 

Framework Series FI-2 

0.0000 2.50 2.40 4.00 0.00 
LOOE2 2.50 2.40 4.00 0.00 
LOOM 2.55 2AO 5.88 0.00 
LOOE4 2.65 2.41 9.06 0.42 
2.89E5 3.00 2A5 18.33 2.08 
8.15E5 3.30 2.53 23.33 5A2 
9.15E5 3AO 2.53 25.59 5A2 
1.05E6 3.50 2.55 27.14 6.25 
4.03E6 3.70 2.62 29.19 9.17 
LOOM 3.78 2.64 30.16 10.00 
LOOE8 3.80 2.65 30.26 IOA2 
LOE20 3.80 2.65 30.26 10.42 

Framework Series F2-2 

0.0000 1.91 1.63 14.66 0.00 
LOOM 1.91 1.63 14.66 0.00 
LOOM 1.93 1.60 17.10 -1.84 LOOE4 1.97 1.50 23.86 -7.98 2.65E5 2.32 1.27 45.26 -22.09 3A7E5 2.41 1.26 47.72 -22.70 3.95E5 2A2 1.26 47.93 -22.70 4A5E6 2.50 1.26 49.60 -22.70 7.73E6 2.60 1.28 50.77 -21 A7 
LOOM 2.85 1.29 54.74 -20.86 LOOE8 2.91 1.30 55.33 -20.25 LOE20 2.91 1.30 55.33 -20.25 

Framework Series F3-2 

0.000 12.70 6.55 48A3 0.00 
LOOE2 12.70 6.55 48.43 0.00 
LOOM 12.75 6AO 49.80 -2.29 LOOE4 12.85 6.00 53.31 -8AO 3.15E5 13.40 4.91 63.36 -25.04 5AOE5 13.70 4.84 64.67 -26.11 9.5OE5 14.30 4.70 67.13 -28.24 9.75E5 14.30 4.68 67.27 -28.55 9.87E5 14AO 4.68 67.50 -28.55 LOOM 18.00 4.80 73.33 -26.72 LOOM 19.20 5.05 73.70 -22.90 
LOE20 19.20 5.05 73.70 -22.90 

Table 11.5 Elastic Critical Loads for Single Storey Frameworks 
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R. P.. - P. 
1 Pol(R 

)-P. I(R . O) 
(Nmmlrad) (KN) 

I" 

(ijý) 

I- 

P.. 
x 100 . . 

pel(R. 
- 0) 

x 100 

Framework Series Fl-1 

0.0000 7.53 7AO 1.730 0.00 
LOOE2 7.53 7AO 1.730 0.00 
LOOM 7.54 7.38 2.120 . 0.270 
LOOE4 7.80 7.00 10.26 -5.410 2.89E5 -8.50 5.65 33.55 -23.65 8.15E5 9AO 5.26 44.04 -28.92 9.15E5 9.50 5.22 45.05 -29A6 1.05E6 9.70 5.20 46.39 -29.73 4.03E6 11.1 5.00 54.95 -32.43 LOOM 11.7 5.00 57.26 -32A3 LOOE8 12.0 5.00 58.33 -32A3 LOE20 12.0 5.00 58.33 -32A3 

Framework Series F2-1 

0.0000 6.40 4.55 28.91 0.00 
LOOE2 6AO 4.55 28.91 0.00 
1.00F. 3 6.50 4.53 30.31 -0.44 LOOE4 6.70 4.00 40.30 -12.09 MOO 7AO 3.21 56.62 -29.45 4.55E5 7.70 3.13 59.35 -31.21 
7.35E5 8.20 3.01 63.29 -33.85 9.65E6 8AO 2.97 64.64 -34.73 IAOE6 8.70 2.92 66.44 -35.82 LOOM 9.77 2.88 70.52 -36.70 LOOE8 10.1 2.86 71.68 -37.14 LOE20 10.1 2.86 71.68 -37.14 

Framework Series FM 

0.0000 30.6 10.5 65.69 0.00 
LOOE2 30.6 10.5 65.69 0.00 
LOOM 30.7 IOA 66.12 -0.95 LOOE4 31.0 9.05 70.81 -13.81 3.15E5 31.7 7.03 77.82 -33.05 5AOE5 32.5 6.80 79.08 -35.24 9.5OE5 34.0 6.58 80.65 -37.33 9.75E5 34.1 6.57 80.73 -37A3 
9.87E5 34.2 6.56 80.82 -37.52 
LOOM 46.5 6AO 86.24 -39.05 
LOOE8 48.0 6.38 86.71 -39.24 
LOE20 48.0 6.38 86.71 -39.24 

Table 11.6 Elastic Critical Loads for Double Storey Frameworks 
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Framework 

Number 

b2 

(MM) 

bi 

t 

b2 

t 

F10-5-1 5 10 5 

FIO-10-1 10 10 10 

F10-14-1 14- 10 14 

FIO-16-1 16 10 16 

FIO-18-1 18 10 18 

FIO-20-1 20 10 20 

FIO-30-1 30 10 30 

Table 11.7 Members Cross Sectional Dimensions 

---I ý- 1 

-o 

10 

gy =280 N/mm 2 

317 



R. P.. P., p -P *xA a! 
PRI(R 

)- 
pel(R 

- 0) 
(Nmmlrad) (KN) (KN) - x 100 

P.. 
. . 
Pol(R,. 

O) 
x 100 

Framework Series F10-5-1 

0 1.19 1.19 0.00 0.000 
IE3 1.21 1.21 0.00 1.680 
IE4 1.38 1.38 0.00 15.97 
IE5 1.71 1.71 0.00 43.70 
IE6 1.81 1.81 0.00 52.10 
IE20 1.81 1.81 0.00 52.10 

Framework Series F10-10-1 

0 0.855 0.853 0.230 0.000 
IE3 0.863 0.854 1.040 0.230 
IE4 0.890 0.863 3.030 1.170 
IE5 1.020 0.948 7.060 11.14 
IE6 1.230 1.070 13.01 25.44 
IE7 1.310 1.100 16.03 28.96 
IE20 1.310 1.100 16.03 28.96 

Framework Series F10-14-1 

0 2.17 2.16 0.460 0.00 
IE3 2.19 2.16 1.370 0.00 
IE4 2.20 2.12 3.640 -1.85 
IE5 2.35 2.13 9.360 -1.39 
IE6 3.01 2.29 23.92 6.02 
IE7 3.30 2.37 28.18 9.72 
IE8 3.32 2.38 28.31 10.19 
IE20 3.32 2.38 28.31 10.19 

Framework Series FIO-16-1 

0 3.15 3.12 0.950 0.00 
IE3 3.16 3.11 1.580 -0.32 
IE4 3.17 3.02 4.730 -3.21 
IE5 3.35 2.96 11.64 -5.13 
IE6 4.20 2.96 29.52 -5.13 
IE7 4.80 3.12 35.00 0.00 
IE8 4.82 3.13 35.06 0.32 
IE20 4.82 3.13 35.06 0.32 

Table 11.8 Elastic Critical Loads 
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R. P. P., P.. - P., Pol(R )-P#I(R . O) 
(Nmmlrad) wý) (KN) P.. 

x 100 . . 
Pet(R,. 

O) 

100 

Framework Series FIO-18-1 

0 4.36 4.29 1.610 0.00 
IE3 4.37 4.27 2.290 -0.470 
IE4 4.39 4.11 6.380 -4.200 
IE5 4.60 3.93 14.57 -8.390 
IE6 5.60 3.70 33.93 -13.75 
IE7 6.40 3.86 39.69 -10.02 
IE8 6.50 3.90 40.00 -9.090 
IE20 6.50 3.90 40.00 -9.090 

Framework Series F10-20-1 

0 5.84 5.67 2.910 0.00 
IE3 5.85 5.64 3.590 -0.530 
lE4 5.87 5.39 8.180 -4.940 
IE5 6.05 5.04 16.69 -11.11 
IE6 7.30 4.38 40.00 -22.75 
IE7 8.40 4.59 45.36 -19.05 
IE8 9.10 4.65 48.90 -17.99 
IE20 9.10 4.65 48.90 -17.99 

Framework Series FIO-30-1 

0 18.08 12.22 32.41 0.00 
IE3 18.08 12.10 33.08 -0.980 
IE4 18.11 11.60 35.95 -5.080 
IE5 18.30 10.09 44.86 -17A6 
IE6 20.10 7.60 62.19 -37.87 
IE7 25.10 6.90 72.51 -43.61 
IE8 27.10 6.90 75.36 -43.61 
IE20 28.00 6.90 75.36 -43.61 

Table 11.9 Elastic Critical Loads 
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Frame P.. P't P.. peft P.. P. 1 
No. (KN) (KN) (KN) P.. 

FI-IA 8.50 5.65 1.800 1.504 4.722 3.139 
FI-IB 9.40 5.26 2.149 1.787 4.374 2.448 
FI-IC 9.50 5.22 2.184 1.820 4.350 2.390 
FI-ID 9.70 5.20 2.184 1.865 4.441 2.381 
FI-IE 11.1 5.00 2.064 2.220 5.441 2.422 

F2-IA 7AO 3.21 1.449 2.305 5.107 2.215 
F24B 7.70 3.13 1.516 2A60 5.079 2.065 
F24C 8.20 3.01 1.551 2.724 5.287 1.941 
F24D 8.40 2.97 1.063 2.828 5.240 1.853 
F2-IE 8.70 2.92 IA20 2.979 6.127 2.056 

F34A 31.7 7.03 2.765 4.509 IIA6 2.542 
F3-IB 32.5 6.80 2.916 4.779 11.15 2.332 
F34C 34.0 6.58 3.088 5.167 11.01 2.131 
F34D 34.1 6.57 3.277 5.190 10.41 2.005 
F3-IE 34.2 6.56 3.478 5.213 9.833 1.886 

FI-2A 3.00 2.45 1.833 1.224 1.637 1.337 
FI-2B 3.30 2.53 1.703 1.304 1.938 lA86 
FI-2C 3AO 2.53 1.743 1.344 1.951 IA52 
FI-2D 3.50 2.55 1.833 1.373 1.909 1.391 
FI-2E 3.70 2.62 1.784 IA12 2.074 1A69 

F2-2A 2.32 1.27 1.128 1.827 2.057 1.126 
F2-2B 2.41 1.26 1.146 1.913 2.103 1.100 
F2-2C 2A2 1.26 1.113 1.921 2.174 1.132 
F2-2D 2.50 1.26 1.068 . 1.984 2.341 1.180 
F2-2E 2.60 1.28 1.163 2.031 2.236 1.101 

F3-2A 13.4 4.91 2.716 2.729 4.934 1.808 
F3-2B 13.7 4.84 2.943 2.831 4.655 1.645 
F3-2C 14.3 4.70 3.153 3.043 4.535 IA91 

F3-2D 14.3 4.68 3.057 
. 
3.056 4.678 1.531 

F3-2E 14.4 4.68 3A56 3.077 4.167 'qA 1.354 

Table 11.10 Elastic Critical and Experimental Loads 
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CHAPTER12 

SUMMARY AND CONCLUSIONS 
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12.1 GENERAL SUMMARY 

The theoretical standardized model developed has been demonstrated to represent 

the full moment-rotation behaviour of the connections studied rather accurately. 

The experimental ý data has revealed that the same type of connection, when 

connected to a different set of connecting members of varying cross sectional 

dimensions, exhibited different moment-rotation behaviour. This difference has 

been shown to vary according to the thickness of both the members and the 

connection. Justification of this behaviour has been achieved through the use of an 

empirical expression. 

For the frameworks, the theoretical analysis using an optimum number of elements 

and the second approximation method to account for local buckling, has been 

demonstrated to predict very accurate collapse load. The optimum number of 

elements for the single and double storey frameworks are 13 and 18 respectively. 

For frameworks where torsional flexural buckling of the column is critical, it has 

been shown that incorporating the (x factors into the above analysis yielded rather 

accurate collapse load. The simple plastic method employed in the theoretical 

analysis resulted in good prediction of the hinge formation. In all the predictions, 

the order and load at which hinges formed agreed very well with the experiments, 

except for cases where unsymmetrical failure or out of plane distortion occurred. 

From the framework experimental investigation, it was found that when very 

flexible connections were used, the plastic deformation of the connections played 

a vital part in the rather gradual collapse of the framework. For frameworks with 

stiffer connections, collapse was rather sudden due the eventual formation of hinges 

at the columns. Except for a few frameworks which failed unsymmetrically or with 

severe twisting, the results obtained were generally satisfactory. 
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12.2 SUGGESTIONS FOR FUTURE WORK 

in the theoretical analysis, the consideration of local buckling has been confined 

to plain channel subjected to compression and bending about the unsymmetrical 

axis. Modifications can be carried out to include bending about the symmetrical 

axis and also to cater for other cross sections. 

Although more complex and complicated, lateral buckling of beam can be 

incorporated into the analysis. This inclusion will further ease the difficulties faced 

when extending the analysis to cater for space frameworks. 

Standard connections for hot-rolled members have been extensively researched 

over the years. Relatively few experimental investigation has been carried out to 

determine the moment-rotation relationship of connections used in the cold-formed 

thin-walled structures. 

12.3 CONCLUSIONS 

1) The theoretical standardized model developed for the connections represent 

the full moment-rotation behaviour rather accurately. 

2) A connection, when connected to a different set of members, exhibits different 

moment-rotation behaviour. This difference vary according to the thickness 

of both the connection and the connecting members. 

The moment-rotation relationship of all the connections studied are found to 

be non-linear. 

4) The behaviour of semi-rigid framework composed of cold-formed thin- walled. 

members is influenced to a large extent by the connection stiffness and the 

local buckling potential of the members. 
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5) The treatment of local buckling using the second approximation method 

combined with the optimum number of elements used to model the framework 

predicts accurate collapse load when there is no torsional flexural buckling of 

the columns. 

6) When incorporated into the above analysis, the length multiplier used to 

account for torsional flexural buckling of the columns yields rather accurate 

collapse load. 

7) For a member with a varying stress along its length, more elements should be 

used to model the member. 

8) The simple plastic method employed gives good prediction of the order and 

load at which the hinges form. 

9) Although rightfully wrong, modelling the framework with the basic number 

of elements combined with the first approximation method of accounting for 

local buckling has been demonstrated to yield rather accurate collapse load. 

This method of analysis can be used as an estimation of the collapse load. 
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I CHOLESKI TRIANGULAR DECOMPOSITION 

Any square matrix A may be factorized or decomposed in the form : 

A=LU V-1) 

where L and U are the lower and upper triangular matrices and in the particular 

case of a symmetric matrix it can be arranged that 

L 

and 

(1.2) 

1! 

The matrix L is unique for any given A and the leading diagonal terms are all 

positive if A is positive definite. The decomposition may be summarized as follows 

A=L LT 

and 

A 

or 

a,, a, 2 *--a,., 
a., a22 

ann 

III 

121 122 

131 132 133 

11.1 imi 

111 121 131 

122 132 

133 

. I., 

innj 
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Multiplying, 

first row by first column: 

second row by first column- 

third row by first column: 

or ith row by fust column: 

Similarly, 

second row by second column: 

third row by second column: 

or ith row by second column: 

III = -ýa--,, 

a2, 121 
- 

131 = 
a3, 

In 

ai, lil = III 

1,, = 
Ta2-2 

-' 121 2 

(a32 - 131121) 

-. 3A 122 Lý = 

122 

From these examples the general term may be deduced as : 

li, 121) 

356 



I 

and 

Fau 

maj-1 (aij 
- ljnlýn 

(i 

It can be seen from these results that no term in A is used more than once and that 

one use is to obtained the 1 term in the same position, and therefoire the storage 

locations in A can be overwritten by the values of I as each is obtained. No additional 

storage is therefore required for L or LT. A computer flow chart for the 

decomposition is given in figure I. I. 

The solution process applied to a structures stiffness matrix, which is both 

symmetric and positive definite is : 

where f= L7' 

Or written in full : 

PKD 

LLTDV. 7) 

LfV. 8) 

pi- -III 

P2 121 122 

P3 
- 

131 132 133 

,, I 

11 
12 

13 V-9) 
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The new unknowns f can now be solved by forward substitution, for: 

f3=, 

Pl 

ill 

(P2 -AI21) 

122 

(P3 -A 131 - f213 
2) 

133 

etc 

(1.10) 

The values of f are obtained in order and can be stored in the vector P as each of 

the original values stored there is used only once. The next step is the back 

substitution : 

LTD (I. 11) 

This may be written in full as: 

fl 111 121 131 

A2 122 123 

A 133 

fl-i 

fn 

In 
- I, n -I 

Hence 

d A7 
'A, ' 

dj 

etc 

1"I - 

ln2 

43 

-1 
inn 

d, 
d2 

d3 

d., 
d. 

(1.12) 

(1.13) 
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The values of the unknown displacements D are found from bottom to top, and can 

be placed in the vector f as they are calculated. Computer flow charts for the forward 

and back substitution are shown if figures 1.2 and 1.3 respectively. 

When the decomposition of K is carried out it may be found that the terms vary 

greatly in size. It is good practice to scale the matrix, and a suitable technique is to 

pre- and post-multiply K by the diagonal matrix E-"2, whose terms are the inverse 

of the square root of the diagonal terms of K. This reduces all leading diagonal 

terms of K to unity. 

Thus 

(E-1/2 KE-1/2 ) E+'12 D= E-1/2 p (1.14) 

where the terms E4"2are the square roots of the diagonal terms of K The unknowns 

solved for are El"'D and hence the required D is obtained by pre-multiplying once 

more by E-"2. Although E-"2is a square matrix, little additional storage is required 

as the terms may be stored in a vector. 

Notes on figure I. 1 

The right hand loop calculates leading diagonal terms of L (equation (1.5)) while 

the left hand loop calculates the off diagonal terms (equation (1.6)). 

Once calculated, the terms of L are stored in K. Some of the terms of K remain in 

the upper triangular part, but they may be left there as these positions are not used 

in the forward or back substitution. 

Notes on figure 1.2 

The pattern is seen in equation (I. 10). 

Once calculated, the f values (1.10) are stored in P. 
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Notes on rigure 1.3 

The pattern is seen in equation (1.13). 

Once calculated, the unknowns D are stored in P. 
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Matrix to be decomposed is K of order N. 

Fig. 1.1 Flow Chart for Choleski Decomposition. 

361 



The equation to be solved is KD= P and the matrix K now holds the lower 

triangular matrix L. 

II=01 

= 

0 S= 

=i 

Yes 

No 

=S+ P(J)* K (1, J) 

Yes 
I P(l) = (P(l) - S)IK (1,1)] 

Is 

Fig. 1.2 Flow Chart for Forward Substitution. 
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The lower triangular matrix L is stored in K and the intermediate values of f are 

stored in P. 

I= N+l 

Fig. 1.3 Flow Chart for Back Substitution. 
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II CASTIGLIANO'S THEOREM OF STRAIN ENERGY 

in a linear elastic structure subjected to loads P, ... P. the corresponding 

displacements will be of the form : 

dl=fllpl +fl2p2+fl3p3 +flnp. (II-1) 

where f. is a flexibility influence coefficient. In such a structure, it is shown in 

Appendix IH that 

f. = f. 

Now the work done by each applied load is ! Pd and hence 2 

1"I 
SE= PD=Y, -Pd 2 12 

I 
=ýPlvllpl +fl2p2+fl3p3 

+IP2(f2lPl +f22p2 +f23p3 f2npx 

2 

+I P3(f3lpl +f32p2 +f33p3, f3npit) 

2 

+2 P, (fIPI +f, 2p2+f, 3p3 *f. p. ) 

lp2+f 
2 2) + (f 

Inpl A) 
fnnpn 

12PIP2 
fP 

2 
(fl 

1 2.2p! 

+(f23P2, P3 ... f2, P2P, ) --- etc 

(11.2) 

(11.3) 

in which the first bracket term arises from the leading diagonal of the flexibility 

matrix, the second from the reciprocal terms containing P, , and the third from 

reciprocal terms which do not contain P, . 
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The rate at which SE increases with P, is given by differentiating equation (11.3) 

with respect to P, and, since the loads are independent variables (any reactions have 

done no work), and since the flexibility coefficients are properties of the structure 

alone, 

DSE 
ýp- ýfllpl +fl2)D 2 +fl3p3 flnPh = d, (11.4) 

Similarly 

DSE 
= 4- --- o-ý tr 

ul- 

and 

DSE 
ap. d,, 
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111.1 BETTI'S THEOREM 

Consider a linearly elastic structure subjected to two force system represented by 

matrices PA and PB respectively. The displacements due to system PA alone will be 

represented by DA, and those due to P 
,, alone by DB- If the system PA is applied first 

followed by the system PB, the work done by external forces is given by 

11 
WDA, 

B =2 PADA +ýPODo + PADq VILI) 

where the subscript A, B with WD indicates the sequence of application of the load 

systems. If the sequence is reversed, the work done by external forces becomes 

WDfi, A =1 PoDfi +I PADA+ PuDA 
22 (111.2) 

In both instances, work is stored as elastic strain energy SEj and the amount of 

energy so stored must be the same, since the final deformed configuration in a linear 

system must be independent of the sequence of load application. Therefore 

SEi = WDA, 
B= 

WDBA 

from which it follows that 

PADB = PBDA * 

(111.3) 

(IIIA) 

Equation (HIA) is usually referred to as the reciprocal theorem of Betti, w ch states 

that "the work done by the system of forces PA over the displacements DB is equal 

to the work done by the system of forces'PB over the displacernefits DA, where DA' 

and DB are the displacements due to PA and PB respectively. " 
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111.2 MAXWELL'S RECIPROCAL THEOREM 

If sYstems of forces P, and PB used in Betti's theorem consist each of one force, 

for example, P, and P2, applied at two different locations, then equation (IIIA) 

becomes 

[PI 0 12 
p2 

= 10 Pil 1: 
P, 

x22 p 
2] 

f2 PII 
2 

(111.5) 

where fij is the displacement in the ithe direction due to a unit force in the jth 

direction. After multiplying out matrices in equation (HI. 5), it follows that 

A2-ýAl 

or, in general 

fij = fi i 

(111.6) 

(111.7) 

The results expressed by equation (111.7) is the well-known Maxwell reciprocal 

theorem. It represents the reciprocal relationship for the influence coefficients 

which form the elements of flexibility matrices. Thus all flexibility matrices, and 

hence stiffness matrices, must be symmetric for linear structures. 
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IV PLASTIC MOMENT 

The following are to be read in conjunction with figure IV. I and table IV. 1. 

Zero strain axis position: 

I 
[2(b2 + t) - bj 

4 

H2 
b2-t 

bi '2 

H3 =Hl- 
p 

T(y-yt 

H4 =H2- - 

2ayb, 
P 

t 

>- 

A 

I 

H5=Hl+ P 
4cryt 

H6=H2+ 
p 

2ayb, 

Centroid position: 

Plastic Moment: 

b1 

Fig. IV. 1 

b2_ t2 + 
bl' 

y=22 
2(b2 - t) + b, 

MPI 
= CIA I 

where 

I 

371 



2 1)2 

ZPI 2 
+12-b-b2l +L- 

b' )I 
2282) 

Iff = o- Z- 
p2 y p2 

where 

where 

Zp2 b 2_ 
b22t 

_ 
b2t + 

2b2t 2_t, 

+ 
b1t 

2 bi bi T, 7 

M =M P, 
[, 

_A2t 
(B2+BC)] 

p3 8zpl A2 

A =2(b2-t)+bl 

Mp4 ý Mp2 1- 
(B 2+ 2B CF I 

4Zp2b, A2 

C= 2b, (b, - 2t) 

where 

t4 = 

P, = cyytA 

- 
(b2- 1)2 

b1t 

2t A, 
(r)2 

Bc MP5 = mp, 

8ZPI A2 
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(B2_2BCF)] 
Mp6 = Mp2 

[1 

- 4Zp2b, A2 

Axial load: 

P3 = ayt [2(b2 - t) - b1l 

P. 5 = cryt[2(t - 
b2)+ b1l 
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Type of Loading H Condition Axial MP 

Load 

MP H, H, >t MPI 

H2 H2: 5 t - Mp2 

Mpa H3 H3>t P 
4*" 

P3 Mp3 

H4 H4: 5 t P 2: P3 Mp4 

H3 H3 >t P <P3 Mp3 

H4 H4: 5 t P ý: P3 Mp4 

Mpa H5 H5 >t P >P5 Mp5 

:; 7- H6 H6: 5 t P 5P5 Mp6 

Mpa H5 H5 >t P >PS MPS 

P H6 H6: 5 t P 5P5 Mp6 

Table IV. 1 Summary of Plastic Moment 
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a factors for members in compression 

Section L Irrrj nX US 

DIB 1 21 3 41 5 6 7 8 9 10 11 12 1 *13 14 1 15 

1.751 1.02 1.00 

1.501 1.15 1.11 1.0ý ý. 02 1.00 

1.251 1.33 1.27 1.21 1.14 1.08 1.02 1.00 

1.00 1.60 1.51 1.41 1.31 1.231 1.15 1.09 1.04 1.00 

0.75 2.04 1.87 1.70 1.56 1.45 1.36 1.30 1.24 1.20 1.17 1.14 1.12 1.10 1.09 

0.50 2.14 1.95 1.77 1.62 1.51 1.41 1.34 1.28 1.24 1.20 1.18 1.15 1.13 1.12 

1.75 1.08 1.06 
, 

1.03, 1.00 

0.2B 1.50 1.21 1.18 1.14 1.10 1.06 1.02 1.00 
7 

1.25 1.39 1.35 1.30 1.24 1.18 1.13 1.08 1.04 1.00 
D 

1.00 1.65 1.58 1.51 1.43 1.36 1.30 1.24 1.19 1.15 1.11 1.08 1.06 1.041 1.02 

-A 4 1 21 1 18 1 161 1 14 0.75 1.81 1.73 1.65 1.57 1.49 1.42 1.36 1.31 1.27 1.2 . . . . 
0.50 1.67 1.62 1.56 1.50 1.45 1.39 1.34 1.30 1.27 1.24 1.21 1.19 1.17 1.15 

2.25 1.01 1.00 

2.00 1.11 1.08 1.05 1.01 1.00 
0.2B 1.75 1.23 1.20 1.15 1.10 1.05 1.00 

1.50 1.40 1.35 1.28 1 1.22 1.15 1 1.08 1 1.03 1.00 

1.25 1.64 1.55 1.46 1.36 1.27 1.19 1 1.12 1.06 1.01 1-00 

1.00 1.98 1.83 1.68 1.55 1.43 1.33 1 1.25 1.18 1.13 
- 

1.09 1.05 1.02 1.00 

0.75 2.39 2.15 1.93 1.74 1.60 1.49 1 1.40 1 . 33 1.28 1 1.24 1.20 1.18 1.15 1.14 

0.50 2.37 2.13 1.91 1.73 1.59 1.48 1 1.4 1.33 1.28 1.24 1.20 1.18 1.15 1.14 

0.25 1.10 1.00 
J 0.33 1.12 1.00 

D[ 
J L 

0-50 1.33 1.00 
0.75 1.8o 1.34 1.17 1.10 1.06 1.05 1.03 1.03 1.02 1 . 02 1.01 1.01 1.01 1.01 

1.00 2.30 1.64 1.36 1.22 1.14 1.10 1.08 1.06 1.05 1.04 1.03 1.03 1.02 1.02 

1.33 3.05 2.11 1.68 1.44 1.30 1.22 1.16 1.13 1.10 1.08 1.07 1.06 1.05 1.04 

ýD 0.001 2.55 1.72 1.31 1.07 1.00 
0.20 2.15 1.72 1.41 1.20 1.04 1.00 

aI For all geometries 

Table V. 1 cc Factors for Members in Compression 
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