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Abstract

Within the ultrasonic non-destructive community the benchmark imaging algo-

rithm assumes that the host material is homogeneous. This can lead to poor

flaw detection, location, and characterisation. However, when the heterogeneous

nature is accounted for within an imaging algorithm there is a significant im-

provement in the flaw images.

This work builds upon that work by creating a full waveform inversion frame-

work to build a tomography method that reconstructs spatially heterogeneous

wave speeds maps from simulated ultrasonic phased array data. This framework

consists of: a Voronoi tessellation to spatially parametrise the wave speed map;

a bespoke semi-analytical model that encompasses the data within an ultrasonic

A-scan while being computationally efficient; a bespoke objective function to

quantify how well the semi-analytical model compares to the observed data; and

a Bayesian framework, namely the reversible jump Marko chain Monte Carlo

method (rj-MCMC), to perform the tomographic reconstruction in the form of a

posterior distribution. The reconstructed wave speed maps are then used in con-
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junction with an imaging algorithm (TFM), to provide enhanced flaw imaging.

The quality of the imaged flaws are then quantified by calculating the signal-to-

noise ratio, the flaw location error, and probability of detection via ROC curves.

This framework is first applied to a synthetic randomly heterogeneous ma-

terial with a side drilled hole present. It is then applied to a layered medium

that contains three inclusions contained in different layers. The latter case being

studied extensively in different scenarios and phased array set-ups. A new ob-

jective function is then proposed (a time windowed Hilbert transform) which is

applied to the layered medium allowing for the comparison of different objective

functions.
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Chapter 1

Background

1.1 Background

The work done in this thesis aims to build a framework, based on a Full Waveform

Inversion (FWI) method which uses ultrasonic phased array data, to obtain a

wave speed map that approximates the heterogeneous microstructure found in

material of interest in non-destructive testing. With the approximation of the

wave speed map being used in conjunction with an imaging algorithm, it is hoped

that flaw detection and characterisation will be improved. This work is an inverse

problem within a non-destructive testing (NDT) context. This chapter provides a

review of current literature on NDT, flaw detection and characterisation methods,

inverse problems, and full waveform inversion.

1



1.

1.2 Non-Destructive Testing

Non-destructive testing (NDT) is a general term for a wide range of techniques

industry use to obtain information of structural integrity of an object, without

impairing its usefulness [1, 2]. It is also commonly known as non-destructive

evaluation (NDE) or non-destructive inspection (NDI). The most common NDT

techniques are visual inspection [3], radiography [4], liquid penetrant inspection

[5], eddy current [6], and ultrasonic testing [7], all of which have their strengths

and weaknesses. For example, while visual inspections are low cost they are

limited to finding defects that break the surface, or those which create surface

roughness and texture changes [1]. Visual inspection can be aided with liquid

penetrants that work by penetrating the crack to increase its visibility. Eddy

currents and other magnetic methods operate on the principle of detecting dis-

tortion of magnetic fields. In an NDE context, surface breaking and subsurface

flaws generate local magnetic flux leakage which can be detected to infer their

location and size in a component [1]. Radiography relies on the generation of

electromagnetic radiating waves, commonly known as X-rays, to internally in-

spect a component [3]. Although highly successful, it is an expensive form of

NDE due to required facilities and safety regulations to protect the operators [8].

Ultrasonic testing is one of the most popular NDT techniques [2] as it is relatively

cheap, portable, offers potential for real-time and in-situ measurements, and is

not restricted to surface defects [9]. This is the technique that forms the focus of

this thesis.
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1.

1.2.1 Ultrasonic NDT

Ultrasound is the branch of acoustics which considers sound waves with frequen-

cies which lie above the audible limit for humans (about 20kHz [10, 11]) and it has

important applications within the fields of physics [12, 13], industrial technology

[7], medicine [14, 15], and bioacoustics [16, 17]. The application of ultrasound to

non-destructive testing was made possible in 1880 by the discovery of the piezo-

electric effect by Pierre and Jacques Curie [18]. Then during World War II, after

the discovery of radar, there was significant progress in imaging systems and led

to an increase in ultrasonic research [1]. It was then that the pulse-echo ultra-

sonic flaw detector was developed, independently, by Firestone in the USA [19]

and Sproule [20] in the UK. Ultrasonic NDT is now currently the most widely

used method of NDT, excluding the simple tests of visual inspection and weighing

[21].

Ultrasonic methods have their advantages in that they can accurately position,

size and shape defects, using relatively inexpensive technology. They can also be

used to estimate material properties. The main disadvantage of ultrasound is

that complex shapes, such as elbows, nozzles, rough profile welds, create complex

signals which are difficult to process as these shapes create beam profiles that

have distortions [22]. Materials with highly scattering properties are also difficult

to test, for example, within an NDT context, inspection of austenitic welds and

composite laminates pose an ongoing challenge [23, 24].

3



1.

There are several ways that sound waves can propagate in solid media and

these can be differentiated by the direction of particle vibration. These waves in-

clude longitudinal, transverse or shear, Rayleigh, Lamb, and Love waves [11].

In the case of longitudinal waves (also known as compressional or dilational

waves)[11, 25], the particles move in the direction of the wave propagation. In

the case of shear waves, the particles vibrate in the perpendicular direction to the

wave propagation direction, and are therefore only present in solid media [11, 26].

Rayleigh, or surface waves, are waves that travel along the surface of a relatively

thick medium propagating to about the depth of one wavelength [11, 27]. Lamb

and Love waves are different forms of plate waves which propagate within ma-

terials that are a few wavelengths in thickness. In the case of Lamb waves the

particles vibrate in the direction of wave propagation [11, 28], and in the case of

Love waves the particles vibrate in the plane perpendicular to the direction of

the wave [11, 29]. It is possible for a wave of one type to be transformed into

another when it interacts with an interface or inhomogeneity and this is known

as mode conversion [11]. One key example of this is when a longitudinal wave

hits an interface at an angle, which is not normal to the interface, then some of

the energy will be transformed into creating a shear wave.

The main way of producing ultrasonic waves for NDT is with an ultrasonic

transducer, which is a device that converts electrical energy into mechanical en-

ergy and vice versa. Typically these will be piezoelectric or capacitive transducers

however there is some recent developments in the area of laser induced ultrasonics

[30, 31]. Piezoelectric transducers utilise the piezoelectric effect where an elec-
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trical charge is generated by changing the shape of certain crystals by means of

a mechanical force, and conversely applying an electrical charge to the crystal

changes its shape. Capacitive transducers use electrostatic fields between a con-

ductible diaphragm and a backing plate. The use of a driving AC current then

causes the diaphragm to oscillate in transmission mode [10]. Laser transduction

works by generating ultrasonic waves using a pulsed laser, which induces ther-

mal stress and strain in the solid material which in turn generates elastic waves.

These can then be detected by a laser interferometer [32].

The production and implementation of phased array transducers surged in the

early 2000’s [7]. These multi-element transducers allow for a range of different

dynamic inspections from a single location, such as steering and/or focusing of

ultrasonic beams. A phased array with N elements (typically between 64 and

256) can generate (from a single fixed position) N2 time traces arising from each

transmit/receive pair of elements; this data acquisition strategy is called Full

Matrix Capture [9].

1.2.2 Flaw Detection, Positioning, and Characterisation

One of the main objectives of NDT is to detect interior flaws and remove affected

components from service before their failure. These flaw detection methods can

use time-domain, frequency, or time and frequency information and although ul-

trasonic NDT data is typically collected in the time domain, the Fourier transform

facilitates examination across both domains [33, 34].
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Within ultrasonics two of the primary visualisation techniques are A-scans,

and B-scans [35]. A-scans (amplitude scans) display the amplitude (energy) of a

one-dimensional ultrasonic signal against time. The B-scan (brightness scan) is a

cross-section of the test material through which individual A-scans are collected.

There are various types of B-Scans such as plane B-scans, focused B-scans, and

sector B-scans [9].

With an ultrasonic array, it is possible to gather a complete set of A-scans

from all combinations of transmit-receive pairs, an approach called Full Matrix

Capture (FMC). This data can be utilised in an offline post-processing technique

called the Total Focusing Method (TFM) (also known as delay-and-sum beam-

forming [36] or Kirchoff migration [37]). It is the gold standard in delay-and-sum

beamforming imaging. It can provide much better images than other techniques

such as SAFT, CSM, and time reversal MUSIC, which will be discussed later.

Compared to these techniques TFM can image closely spaced scatterers and is

less susceptible to interference [38, 39]. It works by discretising the region of

interest into a grid and each point is then given an intensity value calculated by

summing each signal from all of the elements in the array [9]. It is known as the

gold standard of NDT imaging and, with modern computational architectures,

can produce real time results [40]. One of the central assumptions of the standard

TFM algorithm which is that the region of inspection is homogeneous. In cases

where the component has a complex microstructure this can lead to errors in the

calculation of delay laws on which the method is based. This has been improved

in [41] which takes into account the variations in wave speed within the region of
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inspection in an algorithm known as TFM+. The work presented in [24] modi-

fies the standard TFM to take into account anisotropic materials, increasing its

applications to composite materials; an increasingly used material in aerospace

and marine structures. Another adaptation is the halfskip TFM (HSTFM) which

was developed by [42, 43] and uses the ray paths that reflect off the back wall

to enhance the reflectivity amplitude of any embedded flaws. This improved the

measurement of the depth of cracks compared to TFM.

The Synthetic Aperture Focusing Technique (SAFT) is another method for

detection and characterisation of defects embedded in the bulk of the compo-

nent [44]. The method also combines pulse-echo measurements made at multiple

transmitter/receiver locations [45] but creates this synthetically using a single

transmit-receive pair of sensors. Early versions of SAFT used delay-and-sum

beamforming which was then followed by frequency based SAFT (FD-SAFT)

[46]. In recent years FD-SAFT has been expanded on research for applications in

layered media [47]. Another modern ultrasonic imaging technique is Planewave

Imaging (PWI) which was introduced at the beginning of the decade (2010) [48].

This transmits planewaves by exciting a number of array elements simultaneously

and this can increase the frame-rate and decrease the scanning time in comparison

to FMC TFM [49]. This technique is also used in medical ultrasound [50, 48, 51].

Time reversal (TR) is another imaging method that was proposed in acoustics

[52, 53]. A signal is recorded by a transducer and then re-transmitted back

into the medium using a ‘last in first out’ strategy to focus on the signal source

(which could be an embedded scatterer). It has applications in acoustic imaging,
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nondestructive testing, medicine, and communication. The work done in [28] uses

Time-Reversal of Lamb waves to classify defects. Another TR technique is TR

imaging with multiple signal classification (TR-MUSIC) which has the potential

to locate multiple defects with scatterers between them [54].

A final class of defect imaging algorithms are the Sampling methods which

are numerical methods used to solve the inverse scattering problem to accurately

locate and characterise defects [55]. These include the linear sampling method

[55] which has the drawback of requiring a large amount of data. This issue can

be solved with the Multi-frequency Sampling Method, the Time Domain Sam-

pling Method (TDSM) [55], the Factorisation Method (FM), orthogonal sampling

method [56], or the direct sampling method [57]. These qualitative inverse scat-

tering methods are non-iterative and have been shown to achieve super resolution

in ultrasonic phased array imaging applications (able to detect and characterise

defects smaller than the wavelength) [43].

1.2.3 Material Reconstruction

In recent years, much effort has been devoted by the ultrasonic NDT community

to develop capability in characterising the spatially varying material properties

of a component [41]. This can be done destructively on a small scale using

a method called electron backscatter diffraction (EBSD) which is a technique

that allows for the characterisation of sub-micrometer grain structure [58]. This

technique uses diffraction patterns acquired by a scanning electron microscope.
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Current research in this area focuses on deployment of EBSD in situ to gain

insight into characterisation of the micro-structure and the orientation of the

crystalline structure [59, 60, 61]. It is also used within additive manufacturing

(AM) frameworks to assess changes in the micro-structure of materials during

the manufacturing stage [62, 63]

An alternative to EBSD is spatially resolved acoustic spectroscopy (SRAS),

a non-contact laser ultrasonic technique, which utilises surface acoustic waves

(SAW) generated by a laser pulse to map the grain structure of a material [64,

65, 66, 67, 68]. Similarly to EBSD, SRAS has been used to image material texture

during additive manufacturing processes.

For a non-destructive method of material reconstruction there are various

methods. In the weld specific case, MINA (modelling of anisotropy based on

notebook of arcwelding) uses information from the welding procedure such as di-

mensions of the weld, number, inclination, order of weld passes, and the remelting

rates to create a model of the welds anisotropy [69]. This model has facilitated

numerical studies of how the ultrasound wave travels through the weld and this

can be use to improve the ultrasonic testing of the weld [70, 71, 72].

In recent years stochastic methods have been employed to solve the inverse

problem of reconstructing the spatially varying material properties of a compo-

nent from non-destructive ultrasonic testing data. In the work presented in [73] a

Markov chain Monte Carlo (MCMC) approach is used to extract an approxima-

tion of the locally anisotropic grain structure of a weld from time of flight data.
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Using Dijkstra’s algorithm as the forward model, and initialising the algorithm

from an approximation of the weld structure, an approximation of the weld’s

grain map is obtained. This information is then used in conjunction with the

TFM imaging algorithm and an improvement of 2mm in flaw location is achieved.

An alternative stochastic approach is taken in [41, 74] where the reversible-jump

Markov chain Monte Carlo (rj-MCMC) method is used to estimate the spatially

varying material properties in a component. Unlike [73] this work uses no prior

information on the distribution of material properties throughout the domain.

However, these time of flight tomography approaches are based on ray theory

which only estimates wave propagation in the high frequency regime, and so the

resolution of the reconstructions is limited to approximately the wavelength. Fur-

thermore, in the case where full aperture inspection is not possible (as is typical

in NDT applications), these approaches suffer from non-uniqueness, even when

the underlying geometry is simple (for example, layered isotropic media).

One way to overcome these limitations is to exploit more of the acquired data

using a full waveform inversion approach. Full waveform Inversion (FWI) is an

approach which aims to match the full reflected waveform observed in the phased

array inspection with those generated using a model through some approximation

of the material map. It forms the basis for the work presented in this thesis and

is discussed further in Subsection 1.3.3.
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1.3 Inverse Problems

Inverse problems describe the challenge of working backwards from some observed

data to determine what gave rise to it. Since inverse problems are data by na-

ture, they often require the minimisation of the difference between the observed

data and the mathematically modelled data over the parameter space. Unlike

in mathematical modelling (forward problems), where for a given set of inputs

one can predict the behaviour of some system, inverse problems are usually ill

posed; that is their solution is very sensitive to small changes in the observed data

and may not be unique [75]. Strategies for coping with these difficulties include

regularisation [76] and use of global optimisation schemes to avoid being trapped

in local minima [77]. Inverse problems appear frequently in engineering, science

and data analysis applications. For example they are fundamental in medical

imaging [14, 20], seismology [78, 79], astronomy [80], non-destructive testing [32]

and security [81].

In the context of this thesis, we are concerned with the inverse problem of

reconstructing spatially varying material properties of solid objects from observed

scattered wave data. [78, 82, 83, 84, 85, 86, 87].
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1.3.1 Optimisation Techniques

A key component of many inversion frameworks is optimisation. The optimisation

attempts to find the global minimum (or maxima) within an objective function

landscape often contains many local minima and these can be numerous; partic-

ularly in the situation where only partial data is available as found in the limited

aperture case. It can then arise that some of these minima generate identical

values for the objective function and hence a number of material configurations

arise that satisfy the problem constraints. This non-uniqueness of the problem

can be alleviated somewhat by the use of suitable priors which constrain the

search space to increase the probability of the correct material map reconstruc-

tion being achieved. The purpose of the objective function (also known as a misfit

or cost function) is to quantify the difference between the modelled predicted and

experimental data being minimised [88, 89, 90]. Typically, the inversion scheme

will be initialised with some set of parameters selected subject to any a priori

information and constraints. This objective function will be evaluated for this

initial model and, dependent on the nature of the optimisation method (whether

it be stochastic or deterministic), the model will be perturbed. The optimisation

method will dictate how the perturbations are made and how the model space is

explored, and will continue until some stopping criteria is met [89, 90].

Optimisation methods can be separated into two different categories: deter-

ministic or stochastic [91]. Deterministic methods use the analytical properties

of a problem to generate a sequence of points which converges to a global solu-
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tion. However, these methods can fail to converge when the objective function is

non-convex [92]. Stochastic methods, also called, optimisation under uncertainty,

when applied in the context of a deterministic problem, describe optimisation

frameworks which allow random perturbations to the model which allows more

efficient exploration of the parameter space and escape from local minima [90].

Examples of stochastic methods include simulated annealing and genetic algo-

rithms [93]. Simulated annealing is an iterative process that is analogous to the

process of cooling metal or glass [89], where it is possible to accept a model that

is objectively worse according to the objective function so that the algorithm

does not get stuck inside a local minima/maxima [94]. Genetic algorithms are

based on natural selection and survival of the fittest [95]. They work by selecting

the best individuals (models) to reproduce and generate new models. These are

evaluated and old models are replaced with the new ones. This is repeated until

the population converges to an optimal solution [94].

1.3.2 Bayesian Inverse Problems

Formulating an inverse problem in a Bayesian framework (one where the optimi-

sation is based on Bayes rule i.e. information is written in probabilistic terms)

facilitates the study of the posterior distribution on the solution rather than a

point estimate. It allows regularisation of the problem using prior information

and can cope with non-linear inverse problems. Note that by a non-linear inverse

problem I one whereby the objective function landscape is a non-linear function
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of the material map parameters (the parameters to be reconstructed) and so of-

ten this surface contains many local minima as a result. Thus it is a convenient

choice for the high dimensional, non-linear tomographic problem that is the focus

of this thesis [96]. The posterior probability density function is given by Bayes’

rule

p(A|B) =
p(B|A)p(A)

p(B)
, (1.1)

where A is the current model parameters, B is the collected (observed) data,

p(A|B) is therefore the probability that the current model parameters can account

for the observed data. This is equal to the likelihood p(B|A) (how likely it is that

the data B came from the model A), multiplied by the prior p(A) (the probability

distribution of the parameters A in a given iteration), over the evidence term p(B)

(probability of the observed data B). The evidence term p(B) is an integral over

all possible parameters and this is too computationally expensive to compute.

The work around is to set up a Markov chain of models and then examine the

ratio of subsequent versions of Equation (1.1) and in this way p(B) is cancelled

out and doesn’t need to be calculated. The MCMC allows us to sample from

a known probability distribution and allows us to numerically approximate the

posterior distribution. The samples are generated with the Markov chain, a

stochastic process where the current model is only dependent on the previous

iteration (it has the memory-less property) [97]. The model is either accepted or

rejected using the Metropolis-Hastings criteria which allows for the acceptance of

inferior models similar to simulated annealing.
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The MCMC method is used in inverse problems [98, 99] and in NDT to ap-

proximate the material map of weld [73]. There are other variations such as

the Hamiltonian MCMC [88], and reversible jump MCMC (rj-MCMC). The rj-

MCMC method allows for dimensional jumps and is used in Seismology [100],

Geophysics [101], and NDT [41, 74].

1.3.3 Full Waveform Inversion

Full waveform inversion (FWI) is a method to find a high resolution model of

a medium, be it a body part, subsurface of the earth, or a component. This

is achieved by matching waveforms generated by a mathematical model of the

underlying physics to an experimental data set [102]. The aim is to exploit much

more information from the data, than say time of flight methods, and has become

standard practice in seismology [79, 103, 104].

For example, the work done in [102] reconstructs acoustic 3D anisotropic field

data and in a computationally efficient manner. In [105] they used plane wave

FWI (a wave travelling along one spatial dimension) to reconstruct 3D spatially

varying velocity map. The use of a plane wave allows for a decrease in the com-

putational cost however this leads to cross-term artefacts (false artefacts) in the

reconstructions. In [93] they inverted a 1D elastic wave using both synthetic and

field data scenarios to derive the elastic characterisations (p-velocity, s-velocity,

and density) of subsurface seismograms. However, their work cannot be applied

in 2D or 3D due to the high computation cost and this highlights the relationship
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between the number of model parameters to invert and computational time. The

work done in [106] increased the convergence rate of FWI by taking into account

the attenuation of the wave. The work in [107] used FWI on elastic subsurface

waves however they assume a constant density due to the difficulty of reconstruct-

ing the density maps. In [88] a variational FWI approach was applied to a 2D

synthetic dataset which provided accurate uncertainty estimates. They used the

Stein variational gradient descent which was not as efficient as the Hamiltonian

Monte Carlo method for the 2D case however they claim it can be more easily

applied to 3D datasets where it will be more efficient.

Another application of FWI in the geophysics field is Ground Penetrating

Radar FWI [108] which works on a much smaller spatial scale. The work done

in [109, 110] used a frequency based FWI to reconstruct a horizontally layered

medium. The model was very sensitive to the initial wavelet. Similarly, [111]

used GPR FWI however the number of layers must be prescribed in this method.

Ultrasonic FWI has also been used in the medical field for the inspection of

the breast as it is a safer alternative to X-rays which, although very successful,

use ionising radiation [112]. The work done in [112] successfully inverted 3D

ultrasonic data to generate images that were more accurate than standard 2D

in vivo images. Similarly, ultrasonic FWI has been applied to the brain [113] to

generate images with sub-millimetre resolution. However this required an almost

full 360◦ array and hence was computationally expensive.
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The potential of FWI in the NDT industry has only recently come to the

forefront of research as it is only now with the ever increasing computational

resources that it has started to become feasible. The work done in [114] uses FWI

inversion in conjunction with Reverse time migration to reconstruct a composite

layered medium to be able to detect a flaw on the layer interface. Another

application of ultrasonic FWI in NDT concerns guided wave tomography; the

work carried out in [115, 116] uses a finite difference (FD) of wave propagation

forward model in the frequency domain to construct a thickness map of a plate

like structure.

Another FWI work, that needs to be noted, is the work in [117, 118, 119].

This series of papers successfully reconstructs an arbitrary layered media in a

computationally efficient manner. The work is limited to layered media and is

an iterative procedure which produced one layer at a time. However, the image

reconstructions are not robust to noise as the method is ill conditioned.

One important aspect of FWI is the choice of objective function. The sim-

plest one is the L2 misfit (the L2 norm of the difference between the observed

and modelled data) which is easy to implement [88]. In [120, 121] they over-

come the issue of cycle skipping (where the phases match are out by more than

half a wavelength) that happens with using L2 as a misfit. Another misfit is

the Wasserstein distance, a metric that captures the time-shift and amplitude

variations by calculating how much the modelled data needs to distort to resem-

ble to the experimental data. This misfit is computationally intensive and more

complex than the standard L2. The work in [122] proposed a new misfit based
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on the instantaneous phase (propagation phase of a wave front independent of

amplitude) difference and envelope (amplitude) ratios by using a Hilbert trans-

form. Their misfit reduces the non-linear behaviour of waveforms and is robust

to noise. However, the instantaneous phase is prone to cycle skipping.

1.3.4 Material Parametrisation

Another important aspect of FWI and inverse problems is the method employed

to parametrise the material (method to describe the geometry and physical prop-

erties). A simple and common method is to use a uniform grid as this is easy to

implement [102, 123, 124, 125, 126]. However, models with uniform parametrisa-

tion have sharp discontinuities and spatial smoothing may be required. There is

also a compromise between the resolution and the uncertainty [127]. An alterna-

tive grid approach is used in [73] in the context of welds, which uses a uniform

grid of both isotropic and anisotropic sub regions. An alternative approach to

parametrise the weld geometry is used in [71] whereby just four key parameters

represent the weld geometry. This low degree of freedom approach does not allow

a local description of the material properties.

An alternative approach (one which strikes a balance in terms of degrees of

freedom) is to use an irregular parametrisation such as Delaunay triangulation

or Voronoi tessellations [123]. A Delaunay tessellation (or triangulation in 2D)

is a series of random points (nodes) which are connected to their neighbour to

create an irregular triangulation [128]. The size of the triangles is dependent on
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density of points; a useful property when the application you are parametrising

has significant variations in length scales [129]. The dual of Delaunay tessellation

is the Voronoi tessellation. This partitions the spatial domain into irregular

convex polygons [129]. For the purposes of parametrising some heterogeneous

material, each polygon can be assigned a material property. The Voronoi diagram

is a fundamental and important geometrical construct, its construction has been

optimised [130], allowing it to be used in seismic tomography [100, 127, 131, 101,

132], NDT [41, 133, 134, 135], biological structures [136], epidemiology [137], and

a plethora of other computational sciences. An alternative way to partition the

spatial domain is using the Johnson-Mehl tessellation [138, 139, 140] where the

cells are not always convex and their boundaries can be hyperbolic [140].

1.4 Outline of Thesis

In this chapter, the concept of Non-Destructive Testing (NDT) is introduced and

different methods involved within NDT. The different types of ultrasonic waves

that are used within ultrasonic NDT are discussed. This is followed by a review

of techniques for flaw detection and characterisation, and NDT techniques for

material reconstruction tomography. A general introduction into inverse problems

outside of NDT is given alongside details on optimisation techniques, Bayesian

inverse problems, full waveform inversion and on material parameterisation.

19



1.

Chapter 2 details the specific techniques used for the inverse problem in this

thesis. This includes material parametrisation via Voronoi tessellation, definition

of the objective function, and an introduction to the reversible jump Markov

chain Monte Carlo (rj-MCMC) method. The mathematical modelling of waves

travelling through layered medium is detailed.

Chapter 3 until the end of Chapter 7 presents the original work in this thesis.

It provides the development of the forward model. First a detailed forward model

that is too computationally expensive and then a more computationally efficient

semi-analytical model used within the inversion algorithm.

Chapter 4 is the first test case for the inversion algorithm; a locally isotropic

randomly heterogeneous material and the use of simulated data to drive the

algorithm. The full waveform inversion tomography is then compared to time of

flight (ToF) tomography.

Chapter 5 focuses on a 2D layered medium. The tomographic inversion using

a partial array aperture for different scenarios is explored followed by the results

of the tomographic inversion using the complete FMC dataset. The robustness

of the inversion method is tested by adding artificial noise to the observed data.

Chapter 6 starts by comparing and adjusting the forward model to simulated

data generated in a finite element (FE) simulation. The results of the inversion

for a layered medium using a simulated data are then presented.
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Chapter 7 develops a new objective function based on a time windowed Hilbert

transform. The results of the tomographic inversion are then presented for ob-

served data created from both the forward model and from finite element simu-

lated data.

The thesis concludes with a summary of the results presented and an overview

of future work.
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Full Waveform Inversion Tomography

In this thesis, a full waveform inversion framework is created to build a tomo-

graphic method that will reconstruct spatially heterogeneous wave speed maps

from simulated ultrasonic phased array data. To solve these inverse problems,

the rj-MCMC method is selected as the optimisation technique. Voronoi tessel-

lations are used to parametrise the material. The Pearson correlation coefficient

was used as an objective function (this is then adapted in Chapter 5 and a new

objective function is proposed in Chapter 7). In this chapter, the components

of the inversion method are defined as the observed data, the material parame-

terisation, the objective function, and the optimisation technique. The methods

used to image a flaw and metrics to quantify the quality of the flaw image is then

given. Finally, the mathematics of wave propagation is outlined.
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2.1 Inversion Scheme

2.1.1 Observed Data

In this thesis, the observed data is generated in two ways: using a finite element

(FE) model (in the commercial package PZFlex and later its successor OnScale

[141]) and using the semi-analytical model developed in Chapter 3. In the case

of the FE generated data, physics neglected in the forward model of the inversion

framework (such as refraction and mode conversion) are included and so there is

no need to introduce synthetic noise. However, where the forward model is used

to generate the observed data, proportional and additive noise is added to check

the robustness of the inversion.

2.1.2 Material Parametrisation

To limit the degrees of freedom in our inverse problem, a Voronoi tessellation is

used to create a low dimensional parametrisation of the material. This starts by

creating a set of seeds S where each si ∈ S is a two dimensional Cartesian co-

ordinate. Non-overlapping convex polygons then tessellate the domain where the

domain of the ith polygon is defined as the space that is closest to seed si. Each

cell is assigned a material property, in this thesis this will be the longitudinal

material wave speed. This gives 3L+1 degrees of freedom (the (x, y)-coordinates

of each cell si, the set of wave speeds V, and the number of seeds L, which is also

an unknown). This method reduces the degrees of freedom required to describe
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the material map and provides a means of affecting large regions with a single

perturbation. This method has been used to parametrise tomographic imaging

problems [41, 100, 101].

2.1.3 Objective Function

Within the inversion algorithm a method of comparing the modelled and observed

data is needed to form an objective function. The objective function used is the

Pearson correlation coefficient (PCC), which measures the similarity between two

waves, with the intent of looking at the phase coherence between the modelled

and experimental wave signatures rather than the agreement in their amplitudes.

This is an advantage when considering attenuation (which is not included in

Figure 2.1: Example of a 2D partitioned using Voronoi tessellation
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the semi-analytic model introduced in Chapter 3) as it compares the relative

difference in height of the difference amplitudes rather than the absolute values

of the amplitudes within an A-scan.

Each A-scan is stored as a vector of length n given by the number of time

steps. For each transmit (i) and receive (j) ultrasonic transducer element pair

the observed A-scan is denoted by AE
i,j and the modelled A-scan by A

Mp

i,j (for the

pth material map). The PCC of the two A-scans is given by

Ψ(AE
i,j,A

Mp

i,j ) =

∑n
t=1(xt − x̄)(yt − ȳ)√∑n

t=1(xt − x̄)2
√∑n

t=1(yt − ȳ)2
, xt ∈ AE

i,j, yt ∈ A
Mp

i,j ,

where x̄ and ȳ are the mean of AE
i,j and A

Mp

i,j , respectively [142]. The PCC gives a

value between -1 and 1, where Ψ = 1 means there is a perfect agreement between

the two signals and Ψ = −1 means the modelled signal is the phase cancelling

counterpart to the observed signal (perfect negative correlation). Rescaling Ψ

using Ψ̂ = (1 − Ψ)/2 gives Ψ̂ ∈ [0, 1], with 0 being perfect agreement; this can

then be used as an objective function in a minimisation problem. Comparing the

A-scans for each transmit/receive pair the objective function can be written

Φ(Mp) =
P 2∑
i,j=1

Ψ̂
(
AE
i,j,A

Mp

i,j

)
, (2.1)

for material model Mp as parametrised by a given Voronoi and where P is the

number of transmitting elements.
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This objective function is then adapted in Chapter 5 and then a new objective

function is proposed and used in Chapter 7.

2.1.4 Data Uncertainty Parametrisation

Data uncertainty comes in multiple forms. First there is a numerical discrepancy;

using the same forward model in two different software packages gives slight

varying results. Then there is the uncertainty arising from simplifications in the

forward model (for example, neglecting to include mode conversion). Lastly there

is system noise; in an experimental set up this could be white noise generated from

the equipment. In this work, the data uncertainty is parameterised by the noise

parameter, σn. This parameter will be estimated during the inversion process.

This parameter should prevent the data from being overfitted or underfitted.

Since σn is an additional parameter to be determined, the dimension of the model

is 3L+ 2.

2.1.5 A Bayesian Framework

From related investigations [41, 100] it is clear that the objective function in

these Bayesian inverse problems will not be convex and will contain many local

minima. It is also important in the context of this problem to be able to quantify

the uncertainty in any map reconstruction and subsequent flaw imaging. It is

sensible therefore to use a global optimisation approach which is suited to such
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complex objective functions and one which will naturally give rise to a population

of material map solutions; from which statements can readily be made about the

uncertainty. For these reasons a Bayesian methodology was adopted.

The reversible-jump Markov Chain Monte Carlo (rj-MCMC) method produces

a posterior distribution for trans-dimensional spaces. It is an ensemble approach

based in a Bayesian framework in which all information is written in terms of

probabilities. The posterior probability density function is given by Bayes’ rule

p(Mp|AE
i,j) ∝ p(AE

i,j|Mp)p(Mp)

where p(Mp) is the prior probability density function of the model Mp and

p(AE
i,j|Mp) is the likelihood that the observed data AE

i,j arises from that model.

The difference between the model and the observed data is measured by the

objective function given in equation (2.1). The likelihood is then given by

p(AE
i,j|Mp) ∝ exp(−φ(Mp)/2) (2.2)

where

φ(Mp) =
Φ(Mp)

σn
(2.3)

where σn is the estimated variance of the data noise.

To calculate the posterior probability density function we also require infor-

mation on the prior, p(Mp). In this work the prior probability density functions

for each model parameter are chosen to be a uniform distribution as used in
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[41, 100, 101]. The model parameters are assumed to be independent of each

other. Therefore, the priori probability density function can be written as a

product of the probability density functions of the individual model parameters

p(Mp) = p(L)p(V |L)p(S|L)p(σn) (2.4)

where p(L) is the prior on the number of Voronoi cells to parametrise the under-

lying structure. A discrete uniform distribution defined as

p(L) =


1/∆L, if L ∈ L

0, otherwise,

(2.5)

is used. Where L = [Lmin, Lmin +1, . . . , Lmax−1, Lmax], ∆L = Lmax−Lmin +1 and

integer bounds Lmin, Lmax ∈ N. Each Voronoi seed si ∈ S will have an associated

wave speed, vi ∈ V which have a uniform distribution given by

p(vi) =


1/∆v, if vmin ≤ vi ≤ vmax

0, otherwise

(2.6)

where vi is measured in ms−1, ∆v = vmax−vmin +1 and vmin and vmax are integer

bounds. It is assumed that the wave speed of one cell is independent of the others,

therefore,

p(V |L) =
S∏
i=1

p(vi). (2.7)
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The seed positions have a uniform distribution within the bounds of the spatial

domain, the L seeds will have L distinct locations, therefore,

p(S|L) =

[
|I∗|!

L!(|I∗| − L)!

]−1

(2.8)

where |I∗| is the cardinality of the computational domain with which the seed

co-ordinates are assigned. Lastly, the prior on the level of uncertainty present in

the system is given by

p(σn) =


1/∆σn, if σminn ≤ σn ≤ σmaxn

0, otherwise,

(2.9)

where ∆σn = σmaxn − σminn + 1, and σmaxn and σminn are the bounds. Thus, the

probability of a given model p(Mp) is

p(Mp) = p(L)p(V |L)p(S|L)p(σn) =
L!(|I∗| − L)!

∆L(∆v)M |I∗|!∆σn
(2.10)

assuming the model parameters are within their predefined ranges, and is equal

to 0 otherwise.

2.1.6 The rj-MCMC Method

The Markov chain Monte Carlo (MCMC) method provides an iterative stochastic

model which generates samples from the Bayesian posterior probability density

function. However, the dimensionality of the model is fixed in a standard MCMC,
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unlike the rj-MCMC, which allows jumps in the dimensionality meaning it can

add and delete model parameters, in this case the birth or death of a cell. The

important step is the initial model. This could a random model generated from

the prior distributions or it could be a chosen model. One example of a chosen

model is the homogeneous model as done in this thesis.

The rj-MCMC algorithm consists of seven steps, which can be observed in the

workflow diagram Figure 2.2.

1. An initial model M is either decided, for example the homogeneous model,

or a random model drawn from a uniform distributions of the parameters.

2. The objective function value for the initial model M , φ(M), is evaluated.

Figure 2.2: Workflow diagram of the steps within the rj-MCMC algorithm
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3. A new model M ′ is proposed by randomly by perturbing the initial model

M in some way, this could be a birth of a new cell, death of a cell, moving

the position of a seed, change of wave speed within a cell, or a change of

the noise parameter, as described below.

4. The objective function value of the proposed model, φ(M ′), is calculated.

5. The Metropolis-Hastings criteria (acceptance ratio) α(M ′|M) is calculated

according to the following equation;

α(M ′|M) = min

[
1,
p(M ′)

p(M)
×
p(AE

i,j|M ′)

p(AE
i,j|M)

× q(M |M ′)

q(M ′|M)
× |J|

]
(2.11)

where the second term in the bracket is the product of the prior, likelihood,

and proposal ratios for M and M ′, and the Jacobian of the transformation

from M to M ′ (details below).

6. The proposed model M ′ is then either accepted or rejected. First generate

r, a random deviate from a uniform distribution between 0 and 1. If α ≥ r

then the change is accepted and M ′ replaces M as the new current model.

If α < r then the change is rejected and the model M is retained as the

current model.

7. Iterate from step 3 until sufficient samples have been generated.

As stated, in step 3, a new model M ′ is proposed by perturbing the current

model M in one of 5 ways:
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(i) The wave speed vi within the cell i is changed subject to

v′i = vi +Xσv

where v′i is the proposed wave speed in cell i, X is a random variable from

the standard normal distribution centred around 0 and variance of 1, and

σv is the standard deviation of the wave speed.

(ii) The system noise σn is changed subject to

σ′n = σn +Xσpropn

where σn is the proposed standard deviation on the noise parameter, and

σpropn is the standard deviation of the proposal distribution for a noise per-

turbation.

(iii) The coordinates of a seed si = (xi, yi) of cell, are changed subject to

x′i = xi +Xσc

and

y′i = yi +Xσc

where x′i, y
′
i are the proposed seed location s′i = (x′i, y

′
i), where σc is the

standard deviation of the proposed distribution for a cell move.
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(iv) The birth of a cell, where an additional seed sn+1 is randomly added to the

set S with velocities assigned by

v′L+1 = v∗L+1 +Xσb

where vn+1 is the proposed wave speed of the new seed sn+1, v∗n+1 is the

wave speed of the old model at sn+1 and σb is the standard deviation on

the wave speed proposal for a birth.

(v) The death of a cell, where a random seed si is deleted and the Voronoi is

recalculated.

As stated, in step 5 and 6, of the algorithm: The perturbed model M ′
1 is accepted

or rejected using the Metropolis-Hastings criterion Equation (2.11). This allows

for perturbed models M ′ that are worse than the current model M (have a higher

objective function value) to be accepted. That prevents the rj-MCMC getting

stuck in a local minimum. For perturbations of fixed dimensionality (change of

wave speed, noise, or change in seed position), the acceptance parameter α(M ′|M)

only depends on the likelihoods of the current and proposed models, with the pro-

posed model M ′ always accepted if its likelihood is greater than the current model

M . For the case when the likelihood is less than the current model, it is either

accepted or rejected, as described in step 6. In the case of fixed dimensionality,

p(M) = p(M ′) from Equation (2.10). Therefore the prior ratio is equal to 1 as
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long as the proposed values are within the bounds of their respective prior:

[
p(M ′)

p(M)

]
fixed

=


1 if M ′ is an acceptable model

0 otherwise

(2.12)

The proposal probability q(M ′|M) expresses the probability to move M to M ′,

and q(M |M ′) expresses the probability of the reverse, M ′ to M . When the

dimensionality does not change, q(M ′|M) and q(M |M ′) are symmetrical and

their ratio is equal to 1:

[
q(M |M ′)

q(M ′|M)

]
fixed

=


1 if M ′ is an acceptable model

0 otherwise

(2.13)

Lastly the Jacobian is always equal to 1 as shown in [100].

For the cases of perturbations with a change in dimensionality (births and

deaths) the acceptance of proposed models is balanced between likelihood, prior,

and proposal ratios, such that simpler models (i.e. those with fewer Voronoi cells)

have a higher probability. The prior ratio for a birth is

[
p(M ′)

p(M)

]
birth

=


L+1

(I−L)∆v
if M ′ is an acceptable model

0 otherwise

(2.14)
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and for a death is

[
p(M ′)

p(M)

]
death

=


(I−L+1)∆v

(L)
if M ′ is an acceptable model

0 otherwise.

(2.15)

The likelihood function is evaluated using the following

p(AE
i,j|M ′)

p(AE
i,j|M)

= exp−φ(M ′)− φ(M)

2
. (2.16)

The proposal distributions q(M ′|M) and q(M |M ′) are not symmetrical and are

different depending on if the perturbation is a birth or a death. For a birth of

the seed sL+1 the ratio is

[
q(M |M ′)

q(M ′|M)

]
birth

=

√
2π(I − L)

L+ 1
σb exp

(v′L+1 − vi)2

2σ2
b

(2.17)

where vL+1 is the wave speed of the proposed cell and vi is the present wave speed

for the seed si. For a death

[
q(M |M ′)

q(M ′|M)

]
death

=
L

σb
√

2π(I − L+ 1)
exp−

(v′j − vi)2

2σ2
b

(2.18)
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where v′j is the wave speed of the sj in the new tessellation (after the death of

si). This gives the acceptance, for the birth of a cell,

α(M ′|M)birth =


min

[
1, σb

√
2π

∆v
exp

(v′n+1−vi)2

2σ2
b
− φ(M ′)−φ(M)

2

]
if M ′ is an acceptable model

0 otherwise

(2.19)

and for the death a cell,

α(M ′|M)death =


min

[
1, ∆v

σb
√

2π
exp− (v′j−vi)2

2σ2
b
− φ(M ′)−φ(M)

2

]
if M ′ is an acceptable model

0 otherwise.

(2.20)

For an efficient exploration of the model space, the standard deviations σv, σn, σc, σb

need to be tuned such that they have an acceptance rate in the range of 23% -

44% [143]. With an acceptance rate less than 23% the algorithm is not accept-

ing enough modal perturbations and greater than 44% means the algorithm is

accepting too many modal perturbations for efficient convergence of the Markov

chain. Furthermore, a delayed rejection scheme is implemented, as used in [41], for

perturbations of wave-speed and seed location. If rejection occur for these pertur-

bations, a secondary perturbations with a smaller standard deviation (σdrv < σv,

σdrc < σc) is implemented. This improves the performance of the algorithm by

decreasing the probability of remaining in the current state and avoid persistent

rejection [144, 145]. It should be noted that the perturbations in the algorithm

is essential in ensuring convergence of the Markov chain.
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2.1.7 Sampling the Posterior Distribution

To create reliable posterior probability distributions enough samples need to be

generated. This is determined when the Markov chain has converged. However,

there are no dependable methods to ensure that convergence has been achieved

[41]. In this work, once the acceptance ratios have been tuned to the 23% - 44%

range, convergence has been achieved when the objective function value, noise,

and number of cells, exhibit stationarity.

Once it is believed that convergence has been achieved, an initial number of

samples are discarded. This is known as the burn-in period and allows for the

removal of any influence from the initial mode, however, a burn-in is not always

necessary [97]. Since each model is a modification of the model before it is clear

that the MCMC with i iterations does not have i independent samples. To try

and make each sample independent of the others a process of “thinning” the chain

is implemented. This is when only every κth iteration is collected. From these

remaining samples posterior probability distributions can be generated from sta-

tistical moments at each discrete point. For this thesis, the statistical moments

used are the following measures: the arithmetic mean, which is ideal for Gaussian

posterior distributions but can be affected by outliers or by tails of the distribu-

tion; the median, a robust statistic that is less affected by outliers than the arith-

metic mean; the mode or maximum a posteriori (MAP), which compared to the

other two preserves discrete character of the ensembled Voronoi cells. Therefore
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the maps are normally characterised but sharp discontinuities between different

wave speeds; and the standard deviation which allows for a direct measure of the

uncertainty in the maps.

2.1.8 Imaging a Flaw

Using an FMC dataset obtained from a finite element simulation in conjunction

with a flaw imaging algorithm to detect and characterise a flaw within a material.

The Total Focusing Method (TFM) is a benchmark flaw imaging algorithm within

ultrasonic NDT [9] and has been shown to outperform other techniques such as

SAFT and time reversal MUSIC [38, 39]. It assumes that the host material is

homogeneous. The basis of the algorithm calculation of the distance from each

transmitting element to each pixel in the image domain and then to each receiving

element. Since it assumes a homogeneous material, i.e. constant wave speed, the

journey time can be estimated and related to a time point on every A-scan. Each

pixel can be associated with a given intensity I by summing these amplitudes

over the set of transmit/receive pairs. This can be formulated as

Ii,j =

∣∣∣∣∣∣
p∑

tx=1

p∑
rx=1

Atx,rx


√

(xtx − xi)2 + y2
j +

√
(xrx − xi)2 + y2

j

c̄

∣∣∣∣∣∣ , (2.21)

where c̄ is the homogeneous speed, xtx and xrx are the x-coordinates of the

transmitter and receiver elements, and Ii,j is the intensity of the pixel at location

(xi, yj). This is demonstrated in the Figure 2.3, which shows the ray going from
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the transmitter tx to the pixel located at (x, y) and then to the receiver rx. The

travel time is calculated and the associated time point in the A-scan is shown by

the orange arrow.

The host material is very often heterogeneous and if a map of the material

properties can be obtained then a modified TFM approach (referred to as TFM+

[41]) can be used. This uses a Multistencil fast marching method (MSFM) [41,

146] to obtain the travel times from each transmitting element to each pixel in

the image domain and from each of these pixels to each receiving element. This

is formulated as

Ii,j =

∣∣∣∣∣
N∑
tx=1

N∑
rx=1

Atx,rx(τ tx(xi, yj) + τ rx(xi, yj))

∣∣∣∣∣ , (2.22)

Figure 2.3: Example of a how the TFM image algorithm is calculated.
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where τ tx(xi, yj) is the travel-time from transmitter tx to pixel (xi, yj) and τ rx(xi, yj)

is the travel-time from the pixel to the receiver rx. This approach not only incor-

porates the spatially varying wave speeds but also refraction via Fermat’s prin-

ciple. It will be observed later that approximate material maps, obtained from

the moments of the posterior distributions, arising from a Bayesian tomography

method, are used in conjunction with the TFM+ algorithm.

2.1.9 Quality Metrics

It is useful to quantify the quality of the image reconstructions from the TFM

and TFM+ algorithms so that objective comparisons can be made. There are

four metrics used within this thesis, signal-to-noise ratio (SNR), flaw location

error, ROC curves and the area under the curve (AUC) of these ROC curves.

The SNR is calculated by finding the maximum flaw intensity value (Asignal)

within a rectangular region Ω in the image domain I around the inclusion, the

mean value (Anoise) in a rectangle Ω0 in a region far away from the flaw location,

and the formula

SNR = 20 log10

(
Asignal
Anoise

)
. (2.23)

The flaw position is estimated by finding the centre of mass xc, or max in-

tensity, within a square centred around the known location of a flaw within the

image domain I. The location error eloc is then given by the distance between the

known inclusion location x∗ and this calculated centre of mass (or max intensity)
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via

eloc = ||xc − x∗||. (2.24)

Receiver operating characteristic (ROC) curves have been a tool to visualise

and evaluate classifiers within the medical field [147, 148] and in NDT [41, 149].

One approach within the NDT community is to use a series of experiments and/or

simulations to determine the probability of detection [149]. However, the method

used in this thesis (and the following definition is from [41]). This uses a quan-

titive technique to compare different imaging algorithms (TFM and TFM+), or

different wave speed maps used in conjunction with the TFM+ algorithm, on the

same FMC dataset. The first step is to take the ground truth (a binary true map

or TFM+ image using the known wave speed map) and divide this image into

a grid (see Figure 5.5 as an example). Each grid cell that contains an intensity

above -4dB threshold is used to define the flaw domain Ωf (there are no other

artefacts “false flaws” at -4dB). The number of grid cells assigned to the flaw

domain is recorded as np and the remaining number of grid cells is recorded as

nf = nt−np, where nt is the total number of grid cells. These quantities are used

as the denominators in the calculations of probability of detection and false pos-

itive rates. The ROC curves for the images being tested, standard TFM, TFM+

from reconstructed material maps, and TFM+ with the known map (if using a

binary map as ground truth), are produced by implementing the following steps:

1. The images are partitioned using the same grid used to define Ωf
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2. The number of grid cells which lie above a threshold D and lie within Ωf

is denoted n+. The number of grid cells which meet this threshold but do

not lie within Ωf is denoted by n−.

3. The probability of detection (PoD) value is calculated as n+/np and the

false positive rate (FPR) value is given by n−/nf .

4. These calculations are repeated at decreasing thresholds to produce the

ROC curve which plots the probability of detection against the false positive

rate over the range of selected thresholds.

In this thesis, an initial threshold of D = −1dB is chosen, the probability of

detection (PoD) and false positive rate (FPR) is calculated. This is repeated

down to -40dB to obtain the ROC curves. For a perfect classification performance

the ROC curve passes through the point (0,1) (the area under the curve (AUC)

is equal to 1) indicating 100% PoD with a zero FPR. Normally this does not

happen and the AUC lies in the set [0,1].

2.2 Waves in Layered Medium

This section provides a summary of chapter 3 of [150]. The one-dimensional

acoustic wave equations are defined and then describe the physics when a wave

interacts with a single interface. The equations for a wave travelling through a

layered medium are then defined. The equations for the one dimensional velocity
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u and pressure p are

ρ(z)
∂u(t, z)

∂t
+
∂p(t, z)

∂z
= 0, (2.25)

1

K(z)

∂p(t, z)

∂t
+
∂u(t, z)

∂z
= 0, (2.26)

where ρ is the density of the medium, K is the bulk modulus of the medium,

and z is the spatial coordinate along the one-dimension medium. The quantities

c(z) =
√
K(z)/ρ(z) and ζ(z) =

√
K(z)ρ(z) represent the local wave speed and

impedance respectively. From these wave equations the left- and right-going waves

can be defined as,

A(t = 0, z) = ζ−1/2p0(z) + ζ1/2u0(z), (2.27)

B(t = 0, z) = −ζ−1/2p0(z) + ζ1/2u0(z). (2.28)

For the transmitted wave function, f(t), Equation (2.27) and Equation (2.28) can

be re-written as the right-going wave

A =


f(t− z/c), if z > 0

0, if z < 0,

(2.29)
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and the left-going wave

B =


0, if z > 0

f(t+ z/c), if z < 0.

(2.30)

Now consider two homogeneous half-spaces separated by an interface at z = 0.

Prescribe each half-space with the material properties ρj, Kj, cj,and ζj, where

j = 0 for the left half-space and j = 1 for the right half-space. If a wave is

generated in the left half-space there will be a right-going incident wave given by

A0(t,−z) = f(t). Once this wave interacts with the interface two waves will be

generated. A left-going reflected wave B0(t, 0) = Rf(t) in the left half-space and a

right-going transmitted wave A1(t, 0) = Tf(t) in the right half-space (B1(t, 0) = 0

since you cannot get a left-going wave in the right half-space), where R and T

are the reflection and transmission coefficients of the interface given by

R =
ζ0 − ζ1

ζ0 + ζ1

, T =
2
√
ζ0ζ1

ζ0 + ζ1

. (2.31)

These coefficients satisfy the energy conservation

R2 + T 2 = 1. (2.32)

From Equation (2.32), it can deduced that T =
√

1−R2.
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Now consider a heterogeneous slab, of length L, consisting of N layers with

each layer being homogeneous between two homogeneous half-spaces. The jth

layer corresponds to the interval [Lj−1, Lj)] with L0 = 0 and

ρ(z) =


ρ0 z < 0

ρj z ∈ [Lj−1, Lj)

ρN+1 z > LN ,

K(z) =


K0 z < 0

Kj z ∈ [Lj−1, Lj)

KN+1 z > LN ,

(2.33)

with local velocities cj and impedance ζj.

Similar to before, in the left half-space, a right-going source wave A0(t, 0) =

f(t) will generate a left-going wave, via the convolution B0(t, 0) = R ∗ f(t) and

a right-going wave AN + 1(t, L) = T ∗ f(t), with BN+1(t, L) = 0. The coefficients

R and T denote the global reflection and transmission coefficients. These can

be calculated, in the frequency domain, from the reverse recursive relationships

given by

R̂j(ω) =
Rj + R̂j+1(ω)

1 +RjR̂j+1(ω)
e

2i
ω(Lj−Lj−1)

cj , j = 0, . . . , N, (2.34)

where ω is the frequency and Rj =
ζj−ζj+1

ζj+ζj+1
is the reflection coefficient at the jth

interface. The “final” condition at j = N +1 is R̂N+1 = 0. This can then be used

to determine the global transmission coefficient via

T̂j(ω) =
TjT̂j+1(ω)

1 +RjR̂j+1(ω)
e
i
ω(Lj−Lj−1)

cj , j = 0, . . . , N, (2.35)
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where Tj = 2
√
ζ0ζ1

ζ0+ζ1
is the transmission coefficient at the jth interface. Using

Equation (2.34), R̂ can be expanded as a series to form

R̂(ω) =
N∑
j=1

∞∑
kj=0

αk1,...,kn exp

(
2iω

N∑
j=1

kj
Lj − Lj−1

cj

)
, (2.36)

where αk1,...,kn is a coefficient that only depends on R0, . . . , RN . Taking the inverse

Fourier transform yields

R(t) =
N∑
j=1

∞∑
kj=0

αk1,...,knδ

(
t− 2

N∑
j=1

kj
Lj − Lj−1

cj

)
(2.37)

where δ is the Dirac delta function. Each term in the series is associated with a

scattering sequence involving reflections and transmissions at different interfaces

that determine the value of αk1,...,kn . Similarly, expanding Equation (2.35) and

applying an inverse Fourier transform yields

T(t) =
N∑
j=1

∞∑
kj=0

βk1,...,knδ

(
t− 2

N∑
j=1

kj
Lj − Lj−1

cj
−

N∑
j=1

kj
Lj − Lj−1

cj

)
, (2.38)

where βk1,...,kn is a coefficient that only depends onR0, . . . , RN sinceRj =
√

1− T 2
j .

At this point a forward model of how waves travel through layered media is ready

to be constructed.
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2.3 Discussion

In this chapter, the components of the inversion method are defined such as:

Voronoi tessellation; Pearson Correlation Coefficient; reversible-jump Mark chain

Monte Carlo. The metrics to quantify the inversion are given: TFM and TFM+

imaging algorithm; flaw location errors; Signal-to-noise ratio; and receiver oper-

ating characteristic (ROC) curves. This is then followed by the mathematics of

wave propagation in layered media. The mathematics is then taken into the next

chapter were a novel semi-analytical forward model of wave propagation through

layered media is developed.
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Chapter 3

Development of the Forward Model

This chapter is the start of original content for this thesis. This section details

the development of a forward model to be used with the rj-MCMC to complete

the inversion scheme used for this thesis.

3.1 Forward Model

A mathematical model of an ultrasonic signal travelling through a 1D layered

medium is employed. The advantage of using this ray based model, is that re-

fraction and mode decomposition do not occur. One can view a straight ray

through a Voronoi tessellation as a ray going through a layered medium. This

forward model is based on the global reflection and transmission Equation (2.37)

and Equation (2.38).
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3.1.1 Deriving the amplitudes reflected wave and trans-

mitted waves

Deriving a closed form expression for the coefficients αk1,...,kn in Equation (2.37)

is not trivial and so a method for systematically generating these coefficients was

devised to gain insight on the behaviour of acoustic waves in multi-layered media.

Denote the amplitude of any partial wave in layer j by Ij. If this wave is

travelling to the right then, when it interacts with the jth interface it creates a

left going wave in layer j of amplitude RjIj and a right going wave in layer j + 1

of amplitude TjIj. If this wave of amplitude Ij is travelling to the left then, when

it interacts with the (j − 1)th interface it creates a left going wave in layer j − 1

of amplitude Tj−1Ij and a right going wave in layer j of amplitude −Rj−1Ij.

(j − 1)th

region (j − 1) region j

jth

region (j + 1)

RjIj TjIj = Ij+1

Ij

Ij−1 = Tj−1Ij −Rj−1Ij

Ij

Figure 3.1: Schematic of a left- and right-going wave interaction at an interface.

For example, the incident wave is generated by a point source of amplitude I0

in the left half space, region j = 0, that travels through the half-space until it

interacts with the front-wall interface (interface j = 0) to form two waves, a left

going reflected wave, with amplitude R0I0, which travels into the left half space

and a right going transmitted wave, with amplitude T0I0, which travels into layer
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j = 1 of the medium. The transmitted wave now becomes the incident wave, with

amplitude I1 = T0I0, and creates a left going wave reflected wave with amplitude

R1I1, and a right going transmitted wave with amplitude T1I1 in region j = 2;

these then both become new incident waves.

i = 0 1 2

front-wall back-wall

I0R0 I0T0 = I1

I0 I1R1 I1T1 = I2

Figure 3.2: Schematic of wave interaction at interfaces between two layers.

This series of waves continue to reverberate throughout the layered medium gen-

erating an infinite series of incident waves. Some of the wave energy leaves the

system when it is reflected into the left half-space and some when it is transmitted

into the right half-space. This process can be represented by a tree graph (see

Figure 3.3).

Each vertex of the tree represents a reflection/transmission at a particular in-

terface. The series of reflection and transmission events which a wave encounters

is then represented by a walk on this graph which starts at a vertex T0 (transmis-

sion into the layered medium) and terminates at one of the vertices denoted by

T3 (when the wave enters the right hand half-space) or T0 (when the wave enters

the left hand half-space). For the walks which terminate at vertices denoted T0,

within some finite given time frame, explicit expressions for the αk in Equation

(2.37) can be derived from the product of the set of vertices in each walk. For
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Figure 3.3: Tree graph for a 3 layered medium. When a wave interacts with an
interface, the energy is both reflected and transmitted. This is represented by the
branching of this tree graph, starting with T0 transmission into the medium. The
vertices of degree 1 (end vertices) are denoted by T0 (when the wave is transmitted into
the left half space) and T3 (when the wave is transmitted into the right half space).
The amplitude of the wave is then the product of the vertex labels along a walk on this
graph.

walks that terminate at vertices denoted by T3, in some finite given time frame,

explicit expressions for the βk in Equation (2.38) can be derived from the product

of the set of vertices in each walk. To calculate the time of arrival the number

of times each layer is traversed is tallied up and the travel times are summed.

This data is represented by a matrix with one row of amplitudes and another row

with the corresponding time of arrivals. This would give an A-scan with a se-
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ries of point amplitudes (Dirac delta functions from Equation (2.38)). Therefore,

each amplitude is convolved with the Ricker Wavelet as shown in Figure 3.4 and

brought together to give an A-scan.

This model was numerically evaluated and the resulting wave signature was

then compared to a wave signature arising from a finite element simulation of

a wave in the same layered medium. The finite element package OnScale [141]

was used to simulate a plane wave traversing a 2D layered model. Absorbing

boundary implemented on the domain’s vertical edges and free boundaries were

used at the front-wall and back-wall interfaces.

0 0.5 1 1.5 2

Time [s] 10-6

-0.6

-0.4

-0.2
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0.4
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1

A
m
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Figure 3.4: Figure of a single wave packet with amplitude 1, that is convolved with
the wave amplitudes to create an A-scan.
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Layer Number l Material Velocity (m/s) Material Density (kg/m3)
1 6420 2690
2 5700 8280
3 5900 7703
4 6100 4480
5 5010 8930

Table 3.1: Material property list. Layer length is 10mm for each layer.

The domain geometry consisted of five layers, see Table 3.1. The left and

right half spaces were assigned the properties of water and air respectively. The

resulting reflected wave as given by Equation (2.37) is shown in Figure 3.5.

Figure 3.5: Time domain signal comparison between a finite element simulation (On-
Scale) and the numerical evaluation of Equation (2.37) of an ultrasonic wave propa-
gating through a five layer medium, see Table 3.1. The time range is determined by
the time taken for the ultrasonic wave to reflect off the back-wall (interface j=5) and
return to the receiver at the front-wall (interface j=0).
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It can be observed that the two modelling approaches demonstrate excellent

agreement with a Pearson Correlation Coefficient of 0.998. The front wall reflec-

tion has been omitted as they are not comparable between the models; the finite

element model was excited at the j = 0 interface and recorded the wave as it

was transmitted from the transducer element, whereas our model only simulated

the initial reflected wave off the interface. Unfortunately this model, was not

computationally efficient as the volume of data required grew exponentially with

the number of layer interactions (maximum path length) within the medium and

grew beyond the data limits of MATLAB at 24 interactions. As this model will

form the forward solver for an inverse problem formulation, computational effi-

ciency is essential. This led to the development of an approximated model that

is more computationally efficient but still retains enough information to produce

a comparable wave signature.

3.1.2 Approximation of the Reflected & Transmitted Wave

To approximate the analytic model, a restriction to a limited number of significant

peaks within a certain time range is implemented. This approach dramatically

decreases the number of calculations required whilst still producing a wave sig-

nature which captures the most important wave-layer interactions.

Recall Equation (2.34)

R̂j(ω) =
Rj + R̂j+1(ω)

1 +RjR̂j+1(ω)
e

2i
ω(Lj−Lj−1)

cj , j = 0, . . . , N,
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an expression for the reflection coefficient R̂j(ω), at layer j, of a wave travelling

through a randomly layered medium in the frequency domain (ω). A backward

recursive relation, starting with R̂N+1(ω) = 0. By taking the first two terms of

the Taylor series expansion of RjR̂j+1 (it can safely be assumed this is between

[-1,1]), this can be approximated by

R̂j(ω) = (Rj + R̂j+1(ω))(1−RjR̂j+1(ω))e2iωtj + O[(RjR̂
2
j+1(ω))]

= ((1−R2
j )R̂j+1(ω)−RjR̂

2
j+1(ω) +Rj)e

2iωtj + O[(RjR̂
2
j+1(ω))], (3.1)

where tj = (Lj−Lj−1)/cj is the time it takes for the wave to travel through layer

j and t0 = 0. Then

R̂N(ω) = RNe
2iωtN ,

and

R̂N−1(ω) ≈ (1−R2
N−1)R̂N(ω)e2iωtN−1 −RN−1R̂

2
N(ω)e2iωtN−1 +RN−1e

2iωtN−1

= (1−R2
N−1)RNe

2iω(tN+tN−1) −RN−1R
2
Ne

2iω(2tN+tN−1) +RN−1e
2iωtN−1 .

Continuing in this manner it can be shown that

R̂j(ω) = αj1e
2iω(Kj

1·t) + . . .+ αjmj
e2iω(Kj

mj
·t)

=

mj∑
k=1

αjke
2iω(Kj

k·t), (3.2)
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where αjk is a coefficient that depends only on Rj, . . . , RN . The travel times for

each of the layers is stored in the vector t, the number of times the wave travels

through each layer is stored in the vector Kj
k, and mj is the number of distinct

partial wave arrival times forN−j layers (under this Taylor series approximation).

Both αjk and Kj
k are complicated, nested functions and are difficult to write them

as a closed form expression. The vector can be discretised by a fixed time step

∆t and therefore and be rewritten as

Kj
k.t = Kj

k,0t0 + . . .+Kj
k,N tN

= Kj
k,0∆tq0 + . . .+Kj

k,N∆tqN

= (Kj
k,0q0 + . . .+Kj

k,NqN)∆t

= Qj
k∆t

where qj ∈ N is the number of time steps in layer j. Then taking the inverse

Fourier transform of Equation (3.2)

Rj(t) =

mj∑
k=1

αjkδQj
k∆t (3.3)

where the travel time in layer j has been discretised by tj = Qj
k∆t.
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Using Equation (3.1) and Equation (3.2) gives us the following recursive rela-

tion

R̂j(ω) = (1−R2
j )

mj+1∑
k=1

αj+1
k e2iω(Kj+1

k ·t+tj)−Rj

mj+1∑
k=1

mj+1∑
p=1

αj+1
k αj+1

p e2iω((Kj+1
k +Kj+1

p )·t+tj)+Rje
2iωtj .

(3.4)

Note that the the double summation comes from

R̂2
j+1(ω) =

(
mj+1∑
k=1

αj+1
k e2iω(Kj

k·t)

)2

=

mj+1∑
k=1

mj+1∑
p=1

αj+1
k αj+1

p e2iω((Kj+1
k +Kj+1

p )·t+tj).

Taking the inverse Fourier transform gives

Rj(t) = (1−R2
j )

mj+1∑
k=1

αj+1
k δ(Qj+1

k +qj)∆t−Rj

mj+1∑
k=1

mj+1∑
p=1

αj+1
k αj+1

p δ(Qj+1
k +Qj+1

p +qj)∆t+Rjδqj∆t.

(3.5)

Thus, working backwards iteratively from layer N produces an expression for

R0(t). Then an approximation of the A-scan of a wave travelling through the

multi-layered medium is given by the convolution

R0(t) ∗ f(t),

where f(t) is the function describing the source wave.
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The above analysis only considers the reflection coefficient, coefficient waves

that are transmitted and received at the j = 0 element. This model can there-

fore be used for modelling waves being transmitted/received by ultrasonic array

transducers where the same element is performing both the transmissions of the

wave and its reception. This is referred to as the Pulse-echo (PE) set-up.

Similar to the reflection case, Equation (2.35),

T̂j(ω) =
TjT̂j+1(ω)

1 +RjR̂j+1(ω)
e
i
ω(Lj−Lj−1)

cj , j = 0, . . . , N,

a backward recursive relation which describes the transmitted wave through a

randomly layered medium in the frequency domain using the following. Start-

ing with T̂N+1(ω) = 1 and where Tj =
√
ζjζj+1/(ζj + ζj+1) is the transmission

coefficient based on the mechanical impedances of the two adjacent layers [150].

Taking the first two terms of the Taylor expansion of Equation (2.35) leads to

T̂j(ω) =

mj∑
k=1

βjke
iω(Kj

k·t), (3.6)

where βjk is a coefficient that depends on Tj, . . . , TN and Rj, . . . , RN , and Kj is

the vector storing the number of times the wave travels through each layer. Now

substituting Equation (3.2) and Equation (3.6) into the first two terms of the

Taylor expansion of Equation (2.35) gives the following recursive relation

T̂j(ω) = Tj

mj+1∑
k=1

βj+1
k eiω(Kj+1

k ·t+tj) − TjRj

mj+1∑
k=1

nj+1∑
p=1

βj+1
k αj+1

p eiω((Kj+1
k +2Lj+1

p )·t+tj).
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Taking the inverse Fourier transform then

Tj(t) = Tj

mj+1∑
k=1

βj+1
k δ(Qj+1

k +qj)∆t − TjRj

mj+1∑
k=1

nj+1∑
p=1

βj+1
k αj+1

p δ(Qj+1
k +Qj+1

p +qj)∆t. (3.7)

As before the method works by iterating backwards from layer N to obtain

T0(t). An approximation of the A-scan of a wave travelling through the multi-

layered medium is then given by the convolution

T0(t) ∗ f(t),

where f(t) is the function describing the transmitted wave pulse. This model can

be used for modelling waves being transmitted and received by different ultrasonic

array transducers where one element is performing the transmissions of the wave

and is being received by all elements on an array on the other side of the material.

This is referred to as the Pitch-catch or Through-transmission (TT) set-up.

3.1.3 Pseudo-code for Approximating the Reflection &

Transmitted Wave

Before the waves can be generated a few inputs are needed: the number the

layers; the layer wave speeds; the layer lengths; a wavelet; and a timestep value

from the wavelet. With these the wave can be generated.
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From a computational perspective, Equation (3.3) for Rj+1(t) takes the form

of a 2×mj+1 matrix [Rj+1] where the first row stores the time steps Qj+1
k and the

second stores the corresponding amplitudes αj+1
k for k = 1, . . . ,mj+1; working

iteratively backwards from [RN ] to form the matrix [R0]. This is achieved by

substituting the matrix [Rj+1] into equation (3.5). The first term

(1−R2
j )

mj+1∑
k=1

αj+1
k δ(Qj+1

k +qj)∆t, (3.8)

is obtained by adding the value qj to all terms in the first row (the discretised

arrival times) and multiplying the second row (the amplitudes of the reflected

waves) by (1−Rj) giving a 2×mj+1 matrix. For the second term

−Rj

mj+1∑
k=1

mj+1∑
p=1

αj+1
k αj+1

p δ(Qj+1
k +Qj+1

p +qj)∆t, (3.9)

add each Qj+1
p + qj to each Qj+1

k term in the first row. That is, starting with

k = 1 (Qj+1
1 ) term in the first row. Create mj terms by add this in turn to

each of the p = 1, . . . ,mj+1 terms, that is {Qj+1
1 +Qj+1

1 , Qj+1
1 +Qj+1

2 , . . . , Qj+1
1 +

Qj+1
mj+1
}. Repeat this for k = 2 (Qj+1

2 ), and so on until k = mj+1. Giving rise

to mj+1(mj+1 + 1)/2 terms and add qj to each of these terms. As there will

be terms with the same arrival times these sum together (similar to a binomial

expansion), hence why it is not m2
j+1 terms. For the second row, start with

k = 1 (αj+1
1 ) and multiply this by each of the p = 1, . . . ,mj+1 terms, that is

{αj+1
1 αj+1

1 , αj+1
1 αj+1

2 , . . . , αj+1
1 αj+1

mj+1
}. Repeat this for k = 2, . . . ,mj+1, giving rise

to each of the mj+1(mj+1 + 1)/2 terms. Multiply each of these terms by −Rj.
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Finally, the last term

Rjδqj∆t (3.10)

forms the 2 × 1 matrix [qj, Rj]
T . These three matrices are then concatenated

to form the 2 × mj matrix [Rj], where mj = mj+1 + mj+1(mj+1 + 1)/2 + 1 =

(mj+1 + 2)(mj+1 + 1)/2. This process is repeated until [R0] is formed. The last

step is to multiply each amplitude by a wave function f(t) to create the A-scan

A.

The above process can be summarised by the following steps;

1. Input the number of layers, layer wave speeds, layer lengths, wavelet, and

timestep value.

2. Start with the 2× 1 matrix [Rj] = [qj, Rj]
T ,j = N

3. Repeat steps (a) and (d) below N + 1 times where j = N, . . . , 0 the layer

number.

(a) Calculate Equation (3.8): multiply each term in the second row (wave

amplitudes) of [Rj+1] by (1−R2
j ) and add qj to each term in the first

row (wave arrival times) giving a 2×mj+1 matrix [Rj]1.

(b) Calculate Equation (3.9): multiply each kth term by each pth term in

the second row of [Rj+1] and multiply each new term by −Rj. Add

each kth term to each pth term in the first row of [Rj+1] and add qj to

each new term, giving a 2×mj+1(mj+1 + 1)/2 matrix [Rj]2.

(c) Calculate Equation (3.10): create a 2× 1 matrix [Rj]3 = [qj, Rj]
T .
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(d) Concatenate these three matrices[Rj]1, [Rj]2, [Rj]3 to form a 2 × mj

matrix, [Rj], where mj = (mj+1 + 2)(mj+1 + 1)/2.

4. Create a vector which contains a single wave for each amplitude at the

calculated time of arrival.

5. Sum each of these vectors to give the A-scan for the given model.

This model was implemented in MATLAB and the resulting A-scan was com-

pared with finite element simulation, OnScale [141]. For example, 5 layers com-

posed of the materials listed in Table 3.1, were traversed by a place wave. On a

visual comparison these compare (see Figure 3.6). To quantify their similarity,

the Pearson Correlation Coefficient (PCC) was used and this had a value of 0.945.

Figure 3.6: Time domain signal comparison of a finite element simulation (plot (a))
and the analytical model given by equation Equation (3.5) (plot(b)). The medium
consists of 5 layers, see Table 3.1. The transmitted pulse is given by a Ricker Wavelet

.

62



3.

As the recursion relationship iterates from j = N + 1 to j = 0 it can be

seen that mj grows exponentially. Therefore to keep the computation time low

and minimise memory requirements, only the most significant (highest value)

amplitudes within a given time frame were kept. The time frame was determined

by the length of time it takes for the wave to travel the depth of the medium twice

and the number of peaks was limited to twice the number of layers as any more did

not provide an increase in correlation, as seen in Figure 3.7 and the computational

time grew linearly with the number of peaks, as seen in Figure 3.10.

Figure 3.7: Plot of the Pearson correlation coefficient between the A-scan arising
from the finite element simulation and that arising from the approximate model given
by equation Equation (3.5) varying the number of peaks within a given time frame.
Other parameters identical to those in Figure 3.6
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Similar to the reflection case, Equation (3.7) is used to form a matrix [Tj];

working iteratively backwards from [TN ] to form the matrix [T0]. However, for

the transmission case, the matrix [Rj+1] is required. The first term

Tj

mj+1∑
k=1

βj+1
k δ(Qj+1

k +qj)∆t

is obtained by adding the value qj to all terms in the first row and multiply the

second row by Tj to form a 2×mj+1 matrix. For the second term

−TjRj

mj+1∑
k=1

nj+1∑
p=1

βj+1
k αj+1

p δ(Qj+1
k +Qj+1

p +qj)∆t

add each Qj+1
p + qj to each Qj+1

k term in the first row for p = 1, . . . ,mj+1, giving

rise to mj+1 + nj+1 terms and make the corresponding amplitudes for each term

equal to −TjRjβ
j+1
k αj+1

p in the second row giving rise to a 2 × (mj+1 + nj+1)

matrix. These two matrices are then concatenated to form the 2 × mj matrix

[Tj].

The process is the same as the reflection case with the additional following

steps in step 2;

(e) Multiply each term in the second row (wave amplitudes) by Tj and add qj

to each term in the first row (wave arrival times) giving a 2×mj+1 matrix.
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(f) Multiply each kth term by each pth term in the second row of [Tj+1] and

multiply each new term by −TjRj. Add each kth term to each pth term in

the first row of [Tj+1] and add qj to each new term, giving a 2×(mj+1+nj+1)

matrix.

This model was implemented in MATLAB and compared with a corresponding

finite element simulation, OnScale [141]. For example, 5 layers composed of

materials listed in Table 3.1. On a visual comparison these compare well (see

Figure 3.8) and have a Pearson correlation coefficient of 0.9095.

Figure 3.8: Time domain signal comparison of a finite element simulation (plot (a))
and the analytical model given by equation Equation (3.7) (plot(b)). The medium
consists of 5 layers, seel Table 3.1. The transmitted pulse is given by a Ricker Wavelet

65



3.

Figure 3.9: Plot of the Pearson correlation coefficient between the finite element
simulation and the approximate model given by Equation (3.7) varying the number of
peaks within a given time frame. Other parameters identical to those in Figure 3.6

3.2 Discussion

In this chapter, the semi-analytical model that will be used within the inversion

scheme has been developed. First a detailed model was developed that proved to

be too computationally expensive. A new model was developed that was more

computationally efficient. The pseudo code for this semi-analytical model is then

given. In the next chapter, this semi-analytical model is used to reconstruct a

locally isotropic randomly heterogeneous material.
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Figure 3.10: Plot of the computation time of the approximate model given by Equa-
tion (3.7) varying the number of peaks retained within a given time frame. Other
parameters identical to those in Table 3.1
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Chapter 4

Tomographic Reconstruction of a

Randomly Heterogeneous Material

In this chapter, the methods and tools described in Chapter 2 is brought together

to attempt a Full waveform inversion (FWI) of a heterogeneous material with a

flaw present. The first case examines is a synthetically generated random ma-

terial consisting of locally isotropic materials represented by a Voronoi diagram

generated using 100 seeds. This case was studied in [41] which used time of flight

(ToF) data within an rj-MCMC algorithm to obtain an approximation to the

material wave speed map. That work proved that the rj-MCMC framework can

successfully obtain an approximation of the material map given sufficient ToF

data. When used in conjunction with an imaging algorithm, known as TFM+,

the authors showed that it can improve the signal-to-noise ratio (SNR), the flaw

location error, and the probability of flaw detection (measured by the area under
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the curve generated by ROC curves). Time of flight uses a single data point and

discards a rich data set of potential information contained in the full recorded

wave. The aim of this thesis is to use the full wave, and by using more information

show that an improved approximation of the material map can be obtained from

the rj-MCMC algorithm, which, when used to correct for the delay laws within

the TFM+ algorithm, should provide better flaw reconstructions compared to

the one generated with the use of ToF.

4.1 Randomly Locally Isotropic Heterogeneous Material

The synthetically generated random material found in [41], with dimensions

64mm x 40mm, material wave speeds varying from 4000 to 7000 m/s, and a

constant density of 7890kg/m3 was used to create the observed data (see Fig-

ure 4.1). To provide some ground truth, data from a finite element simulation,

run in OnScale [141] was considered. A finite element model was used to generate

a full matrix capture (FMC) dataset (an array of size p × p × t, where p = 32

is the number of array elements, and t is the number of time steps recorded by

the receiver). A through-transmission (two arrays one transmitting and another

receiver on the other side of the medium) set up was employed, with arrays with

a 2mm pitch, and a centre frequency of 1.5MHz. An embedded 4mm diameter

side drill hole (SDH) centred around (31mm, 20mm), was also included in the

simulation to facilitate flaw imaging comparisons.
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Figure 4.1: Synthetically generated random material diagram with material wave
speeds varying from 4000 to 7000m/s. The average wave speed is therefore 5500m/s
and this gives rise to an average wavelength of 3.8mm at 1.5MHz. The average Voronoi
cell diameter is 5mm and, given the high mechanical impedance mismatches, this ma-
terial is highly scattering. The white disc denotes a side drilled hole flaw of diameter
4mm simulated as a void. The density is assumed to be constant throughout the host
medium.

To enable imaging algorithm comparisons, the standard Total Focusing Method

(TFM), Equation (2.21), which assumes that the host material is homogeneous

was used to get a reconstruction of the flaw (Figure 4.2). It can be observed that

the SDH flaw cannot be detected. This is due to the high degree of scattering

within the material as the average wavelength (3.8mm) is commensurate with the

average cell diameter (5mm) and there exists substantial inter-grain mechanical

impedance mismatches.

When the known wave speed map is used in the TFM+ imaging algorithm

(Equation (2.22)) then the flaw reconstruction which results is shown in Fig-

ure 4.3. Now the SDH flaw has been detected where it could not be using the
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Figure 4.2: Plot (a) shows the TFM results assuming host material is homogeneous.
Plot (b) is an enlarged image around the SDH flaw region. Both are plotted with a 6dB
dynamic range. No flaw is detected. The black circle indicates where the flaw should
be. The red square indicates the noisy region used in the SNR calculation (Equation
(2.23)).

standard TFM. There is also another artefact at (0.02, 0.015), this is because

all scattering is focused by the known map and this corresponds to the interface

with a high variation in wave speed in Figure 4.1.

To quantify the improvement, two factors were looked at: the signal to noise

ratio (SNR) and the flaw position error. The SNR was calculated using Equation

(2.23) and the maximum flaw intensity value (Asignal) within a rectangular re-

gion Ω=(21-41mm, 10-30mm) centred around the inclusion, and the mean value

(Anoise) in the rectangle Ω0=(15-30mm, 20-30mm), located some distance from

the flaw location (see the red rectangles in Figure 4.2). The error in the flaw

position was calculated by finding the centre of mass in the image intensity do-

main within a 6mm square centred around the known location of the inclusion.

The location error is then given by the distance between the known inclusion
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Figure 4.3: Plot (a) shows the TFM+ result accounting for the known material map.
Plot (b) is an enlarged image around the flaw region and plotted with a 6dB dynamic
range. A flaw is clearly detected. The black circle indicates where the flaw should be.

location and this calculated centre of mass, which gave an error of 0.98mm. The

difference in SNR value and flaw location error can be found in Table 4.1 where

it can be observed that there is an improvement for both metrics in the TFM+

reconstruction.

The next step is to attempt to obtain an approximation of the material wave

speed map using the Full Waveform Inversion (FWI) rj-MCMC algorithm that

allows for the detection of the flaw.

Table 4.1: Comparison of the flaw image quality metrics of SNR and Flaw Position
Error between Figure 4.2 and Figure 4.3.

TFM TFM+
SNR [dB] 13.3 16.3

Flaw Position Error [mm] 1.7 0.98
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4.2 Improving Flaw Detection using FWI rj-MCMC

In this section, the heterogeneous material map ?? is reconstructed using the

set for the inversion tools described in Chapter 2: a Voronoi tessellation to

parametrise the spatial domain; the observed data generated from OnScale [141];

the bespoke semi-analytical model from Chapter 3 as the forward model ; an ad-

justed Pearson Correlation Coefficient (PCC) for the objective function; and the

rj-MCMC the selected as the optimiser.

The rj-MCMC was run for a total of 100,000 iterations, with the first 60,000

being discarded (referred to as the burn-in period). The remaining models were

sampled at an interval κ = 100. A homogeneous model was used to initialise

the algorithm, with constant wave speed of 5500 m/s. The algorithm had the

following limits on the prior (uniform) distributions: the number of cells must

lie in the range of 10 to 300; the wave speed for a Voronoi cell must lie in the

range of 5500 ± 1500 m/s; and the noise parameter must lie in the range 0.01

and 1. The proposal distributions σ for wave speed, cell position, birth, and

noise perturbations were Guassian and centred on the values from the previous

iteration. The standard deviation for the proposal distributions were: on wave

speed 100 m/s, and 50 m/s for the case of a delayed rejection (σdr); on cell position

10%, and 2% for the delayed rejection; on the wave speed for a new cell generated

by a birth perturbation 500 m/s centred at the wave speed value at that spatial

position in the previous iteration; on the noise parameter 0.05 from the existing

noise value. These are summarised in Table 4.2
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Table 4.2: Prior and proposal distributions set for the simulation.

Perturbation Range σ σdr

Wave speed 5500 ± 1500 m/s 100 m/s 50m/s
Seed position - 10% 2%

Birth - 500 m/s -
Noise 0.01 - 1 0.05 -

The average objective function value, over the full 1024 rays, as the algorithm

iterates through the samples, is shown in Figure 4.4. This shows a steady decrease

until the 60, 000th iteration where it levels off at a value of 0.4. The number

of cells as the algorithm iterates through the samples is shown in Figure 4.5

(a). This increased steadily until it reached about 250 cells just after the 60,000

iterations. These factors determined the burn-in period used to generate the

posterior distributions. The distributions of the number of cells for the last 40,000

iterations is shown in Figure 4.5 (b) which shows a normal distribution with a

left tail. This left tail corresponds to the iterations around 60,000 in Figure 4.5

(a).

From the moments and characterisations of the posterior distribution of the

wave speed at each point in the domain, a material map was constructed in

Figure 4.6, which shows the MAP (maximum a posteriori). The mean and median

of the posterior distributions have a similar appearance but with a smoother

gradient between wave speeds regions. Using this approximation of the material

wave speed map with the TFM+ algorithm, the flaw reconstructions obtained are

shown in Figure 4.7. Using the same method as described in Section 4.1, an SNR

value was calculated as 15.0dB, and a flaw location error of 0.95mm was obtained.
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Figure 4.4: The average objective function value as the algorithm iterates through
each sample.
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Figure 4.5: Plot (a) is the number of cells at each iteration of the rj-MCMC algorithm.
Plot (b) is the distribution of the number of cells for the last 40,000 cells (after the
chosen burn-in period of 60,000).

This has a comparable SNR value to that obtained using the known map and a

comparable flaw location error. Importantly, it outperforms the standard TFM

imaging shown in Figure 4.2 as detailed in Table 4.3.
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Figure 4.6: The material map obtained from the MAP of the posterior distribution
on wave speeds generated by the rj-MCMC (material wave speeds vary from 4000 to
7000m/s.)

Table 4.3: Comparison of the flaw image quality metrics of SNR and Flaw Position
Error between Figure 4.2, Figure 4.7, and Figure 4.3.

TFM TFM+ FWI TFM+
SNR [dB] 13.3 15.0 16.3

Flaw Position Error [mm] 1.7 0.95 0.98

The TFM+ image from the known map (Figure 4.3 (a)) was used as the ground

truth in the ROC curve generation [41]. This was done by dividing the TFM+

image into a grid. Each grid cell with an image intensity over −4dB was defined

as being part of the flaw domain Ωf and the number of cells in the flaw domain

is recorded as np. The total number of cells not in the flaw domain is denoted

by nf . The standard TFM (Figure 4.2) and the TFM+FWI image (Figure 4.7)

are then partitioned using the same grid. The probability of detection (PoD)
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(a) (b)

Figure 4.7: Plot (a) is the TFM+ image arising from the MAP of the posterior
distribution Figure 4.6. Plot (b) has been cropped around the flaw region. The black
circle indicates the known location of the flaw.

value is calculated by n+/np and the false positive rate (FPR) value is given

by n−/nf , where n+ is the number of grid cells which have a value above some

threshold D and lie within the flaw domain Ωf and n− is the number of grid cells

with an image intensity value above this threshold that are not in Ωf . This is

repeated from the initial threshold of D = −1dB down to −40dB and Figure 4.8

was obtained. It clearly shows that the flaw reconstruction TFM+ FWI greatly

outperforms the standard TFM, with an area under the curve (AUC) value of

0.872 (Table 4.4).

Table 4.4: Comparison of the AUC values from Figure 4.8.

Method AUC
TFM 0.65808
TFM+ FWI 0.87185
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Figure 4.8: ROC curve generated from the standard TFM image (Figure 4.2) and
the TFM+FWI image (Figure 4.7) using the TFM+ image from the known map (Fig-
ure 4.3) as the ground truth

From these results, it can be deduced that the objective of improving flaw

detection has been met. A flaw is now clearly detectable. The next step is to

compare these results with the results from [41] to see if this method performs

better than ToF.

4.3 Comparing Full Waveform Inversion to Time of Flight

In [41], there were two methods of obtaining a reconstruction of the material wave

speed map. The first used a through transmission (TT) set-up (pitch-catch), and

the second used a pulse-echo (PE) set up. The first comparable metric given is

78



4.

the error in the flaw location. As in Section 4.1 the distance between the location

of maximum flaw image intensity and the known centre of the flaw are used to

quantify the error. Using this method, the FWI TFM+ image has a flaw location

error of 1.2 mm which is comparable to the ToF (TT) TFM+ image and better

than the ToF (PE)+ TFM+ image, as shown in Table 4.5.

The next metric that is used to compare the abilities of each of the mate-

rial reconstruction methods is the area under the curve (AUC) of the associated

receiver operating characteristics (ROC) curves. The generation of the ROC

curves is described in Subsection 2.1.9 and Section 4.2. The perfect imaging

algorithm would reconstruct the flaw in precisely the correct position, with the

correct size and with no other “false” flaws appearing in the image. The AUC

can take values between zero and one and in such instances it would be one.

Therefore, the higher the values of the AUC are the better the flaw imaging algo-

rithm. The reconstructed material maps from the Full Waveform Inversion (FWI)

method as the basis for the image processing algorithm (TFM+) to calculate the

AUC(FWI). This value is then compared with that obtained from the standard

TFM AUC(TFM), and values from the literature where two different Time of

Flight (ToF) methods to reconstruct the material maps pulse-echo AUC(ToF -

Table 4.5: Comparison of the flaw location errors between the reconstruction in Fig-
ure 4.7 and the results found in [41].

Basis of TFM+ Flaw location error [mm]
FWI 1.2
ToF (TT) 1.2
ToF (PE) 1.8
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PE) and through-transmission AUC(ToF - TT) [41]. As before the TFM+ arising

from the known map was used as the ground truth to generate the ROC curves.

In [41], the AUC value was 0.539 for the standard TFM, 0.651 for ToF (PE), and

0.703 for ToF (TT), as summarised in Table 4.6. FWI, with an AUC of 0.872,

outperforms both forms of ToF. However, when comparing the standard TFM,

the results differ. Therefore, an adjustment was implemented to compare like

for like, by multiplying the FWI AUC by 0.538/0.658 to give a value of 0.71343,

which still outperforms both the ToF methods.

The next metric is the area under the curve (AUC) of the associated ROC

curves. The AUC value for (a) the standard TFM, the TFM+ using the recon-

structed maps from, (b) through transmission set-up for time of flight ToF (TT),

(c) pulse-echo set up for time of flight ToF (PE), and (d) the full waveform in-

version, are all compared. As before the TFM+ arising from the known map was

used as the ground truth to generate the ROC curves. In [41], the AUC value

was 0.539 for the standard TFM, 0.651 for ToF (PE), and 0.703 for ToF (TT), as

summarised in Table 4.6. FWI, with an AUC of 0.872, outperforms both forms of

ToF. However, when comparing the standard TFM, the results differ. Therefore,

an adjustment was implemented, to compare the AUC from TFM+ FWI and

TFM+ (TT) and (PE), by multiplying the FWI AUC by 0.538/0.658 to give a

value of 0.71343, which outperforms both the ToF methods.
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Table 4.6: Area under the curve for the ROC curves generated from ToF [41].

Method AUC
TFM 0.53850
TFM+ (TT) 0.70342
TFM+ (PE) 0.65071

From the AUC and flaw location error, it can be seen that the FWI method for

material reconstruction performed just as well as the ToF TT method. Both these

methods had the same array set up. The PE method, which is more industrially

relevant, uses a single phased array which a FWI approach has not been developed

yet.

4.4 Posterior Distribution vs a Randomly Generated Het-

erogeneous Map

To confirm that the MAP of the posterior distribution on wave speeds as shown

in Figure 4.6 is a good representation of the synthetically generated random

material in Figure 4.1, and does not improve the flaw reconstruction by chance,

a new random Voronoi diagram containing 100 seeds (such that the Voronoi cell

sizes are approximately the same size), and wave speeds varying from 4000 - 7000

m/s uniformly, was generated. Using this randomly generated map within the

TFM+ algorithm, the flaw reconstructions can be found in Figure 4.9. From this

figure it can be seen that a flaw is not detectable.
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Figure 4.9: TFM+ image arising from the randomly generated heterogeneous ma-
terial, plot (a). Plot (b) has been cropped around the flaw region. The black circle
indicates where the flaw should be.

When looking at the quantitative measures of how this flaw reconstruction

performs, it has an SNR value of 15.7dB, a flaw location error of 2.2 mm (when

measuring from the centre of mass (CoM)), a flaw location error of 8.1 mm when

measuring from the maximum intensity (MI) value, and a ROC AUC value of

0.622 (see Figure 4.10). These values are summarised and compared to the per-

formance of the standard TFM and TFM+ FWI in Table 4.7, where it can be

evaluated that the flaw reconstruction using the random Voronoi in the TFM+

algorithm does not perform any better than the standard TFM and in some

measures does worse.

From this, it can clearly be seen that the flaw reconstruction using the char-

acteristics of posterior distribution from the FWI has achieved its objective of

improving flaw detection and characterisation. However, it did not perform any

better than ToF TT approach.
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Figure 4.10: ROC curves using the TFM+ from the known map as the ground truth.
Comparing the standard TFM, TFM+ FWI, and TFM+ from the random Voronoi.

Table 4.7: Comparing the qualitative metric (SNR, flaw error, and AUC) between
the standard TFM, TFM+ FWI, and TFM+ random material map.

Method SNR Flaw error (CoM) [mm] Flaw error (MI) [mm] ROC AUC
TFM 13.3 1.7 2.1 0.65808
FWI TFM+ 15.0 0.95 1.2 0.87185
Random TFM+ 15.7 2.2 8.1 0.62212

4.5 Discussion

The work done in [41] gave the foundation for the work done in this chapter. It

provided a scenario where a flaw cannot be detected using the standard TFM

imaging algorithm but can be detected with TFM+ imaging algorithm with the

known wave speed map, and with an approximation of the wave speed map from
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the FWI-rj-MCMC inversion algorithm. This led to two clear objectives for this

chapter. The first objective was to improve flaw detection and characterisation

through full waveform inversion (FWI). This objective was met successfully. The

second objective was to outperform the ToF based material map reconstruction

combine with the TFM+ imaging algorithm from [41]. This objective was not

met, however, the FWI approach did not perform any worse than ToF.

To gain insight into the FWI algorithm it seemed sensible to start by using the

semi-analytical model (which is the forward model in our inverse problem setup)

as the observed data (also known as the inverse crime). This meant that what

was being compared in the objective function had identical physics. This allowed

for additional scrutiny of the algorithm at every step, the code used to produce

the semi-analytical model, and the objective function.

On doing so it was discovered that the initial peak of the A-scan dominates the

objective function value and the tail of the A-scan was obscured so this essentially

equivalent to the time of flight method. This explains why the work presented in

this chapter successfully reconstructs the flaw but does not improve upon ToF.
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Chapter 5

Tomographic Reconstruction of a

Layered Medium

A forward model for the time domain transmitted ultrasound wave travelling

through a piecewise constant material has been developed for one spatial dimen-

sion in Chapter 2. This is analogous to the case of an incident plane wave whose

direction of propagation is orthogonal to the interfaces of a two dimensional

layered medium. For this reason a layered medium consisting of four parallel,

isotropic layers, of infinite extent in the lateral direction, was studied (see Fig-

ure 5.1). The material properties can be found in Table 5.1. The shear wave and

density were chosen to be constant throughout the medium to simplify the model.

The reconstruction of this medium could be the initial steps to solving the inverse

imaging problem of carbon fibre composite materials that are increasingly used

within industry [24].
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Figure 5.1: Schematic of a layered medium with 4 layers each 10mm in thickness, with
wave speeds 5700m/s, 6100m/s, 5010m/s, and 5900m/s respectively. Two 32 element
ultrasonic phased arrays with element pitch 2mm are shown at the upper and lower
surfaces as shown. Three flaws (inclusions), with 4mm diameter, positioned at (16mm,
15mm), (32mm, 25mm), and (48mm, 35mm), each with longitudinal wave speed of
5300 m/s and 2260kg/m3 density.

Table 5.1: Material properties of the layered medium shown in Figure 5.1

Layer Longitudinal Shear wave speed [m/s] Density [kg/m3]
Wave Speed [m/s]

1 5700 3200 7890
2 6100 3200 7890
3 5010 3200 7890
4 5900 3200 7890
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5.1 TFM of Layered Medium

To illustrate the benefits of recovering the medium properties, a situation was

chosen where the standard imaging algorithm (TFM) (where the material is as-

sumed to be homogeneous) fails to satisfactorily image a flaw but the TFM+

(where the heterogeneous material map is accounted for) improves the image

to a more satisfactory level. Three 4mm diameter inclusions were embedded at

locations (16mm, 15mm), (32mm, 25mm), and (48mm, 35mm), each with longi-

tudinal wave speed 5300m/s and density 2260kg/m3, in the sample depicted in

Figure 5.1. The FMC data was simulated with the finite element package On-

Scale [141] using a phased array in the pulse-echo format. The array had a pitch

(element spacing) of 2mm, and emitted a Ricker wavelet function (see Figure 3.4)

with a centre frequency of 1.5Mhz. The simulation was run on a domain with

element size λ/15, where the wavelength λ is calculated using the minimum wave

speed present in the model (here the shear wave speed). The time duration for

which the model was run was 50µs chosen to obtain A-scans that would have

sufficient duration for the tomographic inversion; the wave takes roughly 8µs

to traverse the layered medium and this ensured that multiple reflections were

captured. The other parameters within the finite element package are functions

of these parameter values. Free boundary conditions were implemented at the

backwall and absorbing boundary conditions were used in the lateral direction.
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The standard TFM Equation (2.21) (with a constant velocity of 5677m/s,

given by the mean wave speed for the four layers) was applied to the FMC data

and the resulting image is shown in Figure 5.2. Delay law corrections were then

applied using the known map to generate the TFM+ image (Equation (2.22))

shown in Figure 5.3.

Comparing the images of the inclusions in Figure 5.2 and Figure 5.3, it can be

observed that the flaw closest to the back wall is better resolved when knowledge

of the layered material is incorporated. In the standard TFM image this inclusion

appears to have the same amplitude as the surrounding noise, whereas in the

TFM+ image the flaw is clearly visible. By taking into account the varying wave

speeds, the TFM+ algorithm more accurately locates the correct time stamp

within the A-scans. This means the peaks within the A-scans associated with

the flaw are calculated and the flaw is more accurately imaged. To quantify

the improvement two factors were looked at: the signal to noise ratio (SNR)

and the flaw position. The SNR was calculated using Equation (2.23) where

the maximum flaw intensity value (Af ) was selected from the rectangular region

Ω drawn around the inclusion, (44-54mm, 32-38mm), and the mean noise value

(An) in the rectangle Ω0 of the same dimensions in the mirrored position, (12-

20mm, 32mm-38mm) - see the red rectangles in Figure 5.2. The flaw position is

calculated by finding the maximum intensity within a 6mm square centred around

the known location of the inclusion within the image. The location error is then

given by the distance between the known inclusion location and this calculated

maximum intensity. These values are summarised in Table 5.2. It can be
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Figure 5.2: The TFM image created using a homogeneous host material wave speed
of 5677m/s, arising from a finite element FMC dataset for the heterogeneous material
shown in Figure 5.1. Three inclusions (white circles), with 4mm diameter were embed-
ded at locations (16mm, 15mm), (32mm, 25mm), and (48mm, 35mm). The white line
indicates the back wall and the red rectangles indicate the regions used to calculate the
SNR values.

Table 5.2: Comparison of the flaw image quality metrics of SNR and Flaw Position
Error.

TFM TFM+
SNR (dB) 17.5 23.6

Flaw 1 Position Error [mm] 0.283 0.985
Flaw 2 Position Error [mm] 1.523 0.633
Flaw 3 Position Error [mm] 1.315 1.300

observed that there is an improvement of 6.1dB in the SNR with the TFM+

and marginal improvement of 0.89mm, and 0.015mm in the flaw positions of the

middle and bottom flaw, with the standard TFM having a better flaw location
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Figure 5.3: The TFM+ image arising from the finite element FMC data for the
scenario shown in Figure 5.1, with three inclusions with 4mm diameter embedded
at locations (16mm, 15mm), (32mm, 25mm), and (48mm, 35mm), indicated by the
white circles, with material constants, longitudinal wave speed 5300m/s and density
2260kg/m3.

error for first flaw. These flaw location errors, for both the standard TFM and

TFM+ with the known map, are within the flaw domain. However, it is possible

for the flaw location to outperform the TFM+, as with the top flaw here and

in Subsection 6.2.1 and Subsection 7.3.2. This issue arises from the simplicity

of the medium. It could, therefore, be inferred that this is not a good metric of

quality, however, it is part of the framework for improvement in flaw detection,

position, and characterisation that would hopefully be implemented for more

complex heterogeneous material
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As the material is piecewise homogeneous, the wave speed changes between

each layer are relatively small, and the ultrasonic array has a large aperture and

many elements, then the TFM imaging does a reasonably good job in this case.

As such, there is not a great deal of scope for the TFM+ imaging approach to

improve upon. Nevertheless, this first scenario will be used as a test case to

assess the level of imaging improvement gained when the TFM+ algorithm uses

the reconstructed material maps from the rj-MCMC simulations.
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Figure 5.4: ROC curve for the images arising from the standard TFM (Figure 5.2)
using the image from the TFM+ (Figure 5.3) as the ground truth.

Table 5.3: Comparison of Area under the curve between the basic TFM and TFM+
with known map using the binary map as the ground truth.

Method AUC
TFM 0.8304

TFM+ 0.9012

91



5.

10 20 30 40 50
Width [mm]

10

15

20

25

30

D
ep

th
 fr

om
 a

rr
ay

 [m
m

]

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

dB

Figure 5.5: A binary map, divided into a grid, of the three flaws present within the
medium used as the ground truth for the ROC curves.
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Figure 5.6: ROC curves for the images arising from comparison of the standard TFM
(Figure 5.2) and TFM+ (Figure 5.3) with the known map to a binary map representing
the exact locations and dimensions of the flaws.
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The ROC curve (see Figure 5.4) provides the probability for detection of the

inclusions present in the images arising from the standard TFM Figure 5.2 using

TFM+ Figure 5.3 with the known map as the ground truth. It can be observed

that there is very little room for improvement with an AUC of 0.969. The reason

for this is that the main difference in the inclusions between standard TFM

and TFM+ is the intensity amplitude and not the shape of the inclusion. The

TFM imaging algorithms do not image the inclusions but the reflections caused

by the inclusions. Each inclusion, within a TFM image, is represented by three

components. These three components are the reflection from the upper surface of

the inclusion, the reflection from the lower surface of the inclusion, and an internal

reflection within the inclusion. An alternative approach is to use a binary map

(Figure 5.5) as the ground truth for the ROC curves. In these binary maps, the

whole inclusion is depicted by a dB of 0. This means that the greater intensity

present in the TFM+ algorithm has an improved PoD, as one would expect. The

respective area under the curves (AUC) are recorded in Table 5.3. The question

then arises if a reconstructed map is able to correctly identify the inclusions more

successfully than the standard TFM.

5.2 Setting up and Initiating the rj-MCMC Algorithm

The first step in reconstructing a medium is to first generate the experimental

or observed data. This could be data collected from an ultrasonic array in a lab,

data from a finite element simulation, or data generated from the forward model
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that will be used as part of the inversion algorithm (colloquially known as the

inverse crime). For this chapter, the data is generated within MATLAB using

the forward model in the transmission (pitch-catch) set up (where two arrays are

placed on either side of the sample, directly opposite each other).

To generate the data there are three necessary inputs. Firstly, a waveform file

which determines the transmitted wave. In this work the Ricker wavelet function,

(a predefined waveform) with centre frequency 1.5MHz, generated in OnScale was

used (see Figure 3.4). Secondly, the timestep used by OnScale when generating

the waveform; a timestep of 1.688120e-08 seconds was used here. Thirdly, a file

containing cell seed positions and cell wave speeds to enable the generation of a

Voronoi tessellation that will subsequently attempt to reconstruct. To create a

Voronoi tessellation comprising of four horizontal layers, eight Voronoi cells were

used (since the algorithm used to generate the Voronoi tessellation required a

minimum of 5 cells). There are two in each layer and the cell seeds both have the

same depth position (y-coordinate) and cell wave speed are set as in Table 5.1.

Four of the cell seeds have the same lateral position (x-coordinate) and the other

four again have the same lateral position but mirrored from the first four to create

a Voronoi tessellation in the form of a rectangular grid (see Figure 5.7). From this

geometry a MATLAB algorithm determined the raypaths for all combinations of

sources and receivers positioned as in Figure 5.1. For each raypath, the number of

layers that the wave passed through, the associated layer thicknesses, and wave

speeds of each layer were fed into the forward model algorithm, generating an

FMC of forward model generated A-scans.
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Figure 5.7: The eight cell Voronoi tessellation used to create the homogeneous initial
Voronoi and the known 4 layer medium.

The rj-MCMC algorithm is initiated using a few set up files. These are: a

sources file containing the positions of the source array elements (in this example

the array was placed at a depth of 0mm and started at 1mm laterally and each

element was placed at 2mm intervals (pitch), with element 32 being placed at

63mm); a receiver file containing the positions of the receivers (this had matching

lateral positions as the source files but at a depth of 40mm), and an observed ray

file containing which raypaths are to be modelled (this allows for only part of

the dataset to be used if required). From these files, raypaths are generated and

stored in a raypath file which contains the coordinates of each step of all raypaths.

A general input input file containing all the prior and proposal distributions, and

the MCMC run parameters. Lastly, (optionally) an initial Voronoi file which is
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the initial Voronoi tessellation. A random Voronoi tessellation can also be used for

the initial geometry and is generated using the prior distributions on the material

parameters. Lastly, there are files that contain the FMC data, timestep value,

and the transmitted waveform. Once these files are input all that is required is

the number of iterations the rj-MCMC algorithm will use.

5.3 Results using the PCC Objective Function

To begin, an inversion from the full FMC dataset was attempted using the Pearson

Correlation Coefficient (PCC) objective function as presented in Subsection 2.1.3.

A homogeneous (a Voronoi tessellation composed of eight Voronoi cells each hav-

ing a wave speed of 5600 m/s) was used to initialise the rj-MCMC algorithm.

Unfortunately, the algorithm was unable to reconstruct a layered medium and

the resulting material maps obtained by examining moments of the posterior

distribution on wave speeds were homogeneous (see Figure 5.8).

On further investigation, this was in part due to the initial received wave

packet dominating the correlation coefficient calculation. The objective function

was insensitive to the part of the A-scan which contained the reflected waves

arising from multiple reflections by the layer interfaces. To increase the objective

function sensitivity to these reflections the logarithm of the A-scans was used and

the results are presented in the next section.
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Figure 5.8: Material map approximation constructed from the median of the posterior
distribution on wave speed at each point in the domain generated using the PCC based
objective function within the rj-MCMC framework.

5.4 Reconstruction of a Layered Medium using 32 rays

from the Full Matrix Capture

The medium to be reconstructed is a layered medium and this would suggest

that, in theory, a single vertical ray would be sufficient to invert for this 1D

structure [117, 118, 119]. However, to keep the algorithm generally applicable to

2D scenarios and for example, evenly layer structures, the case where 32 vertical

rays is studied and examined whether these are sufficient to reconstruct the 2D

layered structure.
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Figure 5.9: Wave speed profiles of the known map and the reconstructed map shown
in Figure 5.8 along the vertical cross-section at x = 32mm.

Two scenarios were considered. Firstly, a pulse-echo set-up, where the trans-

mitting array is also the receiving array. Secondly, a pitch-catch set-up, where the

top surface array transmits and the bottom surface array receives. This scenario

is repeated with the rj-MCMC noise parameter constrained. These two different

pitch-catch scenarios are denoted as Case A (with a free noise parameter) and

Case B (with constrained noise parameter).
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5.4.1 Reconstruction using a Pulse-Echo set up

Using the vertical rays in a Pulse-echo set-up requires the use of the reflected

wave as given by Equation (3.5). Once again the rj-MCMC algorithm was unable

to obtain a posterior distribution map that contained any features of the layered

medium. As before the first reflected wave dominated the objective function.

The reflection model Equation (3.5) is a 1D model and therefore can only

be applied to the vertical rays that transmit and receive on the same element.

Rays that transmit from one element and received on another would require a 2D

model. It is theoretically possible to mathematically define the raypath within a

layered medium, however, for a random heterogeneous model, as expected within

10 20 30 40 50 60

5

10

15

20

25

30

35

40 5000

5200

5400

5600

5800

6000

6200

W
av

e 
S

pe
ed

Figure 5.10: Material map generated from the median posterior distribution from the
scenario where 32 rays where used with the pulse-echo set-up Equation (3.5).
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the rj-MCMC algorithm, it is not possible. This is a limitation in the work that

would need to be overcome for the work to be applied in experimental cases.

There are situation during ultrasonic NDT that access to only one side of the

material is possible e.g. the examination of a pipe. In the through transmission

(TT) set-up it is possible to model all A-scans from each transmit/receive pair

of phased array elements. This allows for greater coverage of the medium being

examined and greater reconstructions. In certain instances (such as those found

at the manufacturing stage of components) it is possible to have access to both

sides of a component. For this reason this is the set up used for the remainder of

the thesis.

5.4.2 Reconstruction using a Pitch-Catch set up - Case A

For the pitch-catch case when only 32 A-scans (vertical rays) were utilised. The

rj-MCMC was run for a total of 3,000,000 samples, where the first 1,500,000 were

discarded (the burn-in period), this was to ensure the initial homogeneous model

did not affect the posterior distribution. The remaining models were sampled at

an interval of κ = 100. A homogeneous model was used to initialise the algorithm

with each Voronoi cell having a wave speed of 5600m/s, as this was the median of

the prior distribution on wave speeds. The algorithm had the following limits on

the prior (uniform) distributions: the number of cells must lie in the range of 5 to

150; the wave speed for a Voronoi cell must lie in the range 5600±700 m/s; and the

noise parameter must lie in the range 0.002 and 0.5. The proposal distributions
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(σ) for wave speed, cell position, birth, and noise perturbations were Gaussian

and centred on the values from the previous iteration. The standard deviation for

the proposal distributions were: on wave speed 200m/s, and 50m/s for the case of

a delayed rejection (σdr); on cell position 8% and 2% for the delayed rejection; on

the wave speed for a new cell generated by a birth perturbation 150m/s at that

point in the previous iteration; on the noise parameter 0.008 from the existing

noise value. These are summarised in Table 5.4.

With these proposal distributions, the algorithm had an overall acceptance rate

of 60.8%. The acceptance rates were, 88.8% for the wave speed, 53.4% for the

position, 53.4% for the birth and death of a cell, and 47.6% for the noise. These

acceptance rates are high; the literature recommends that for efficient sampling

of the model space these should lie within the range of 23% to 40% [41]. This

high acceptance rate remained robust to changes in the standard deviations of

the proposal distributions.

The average objective function value, Equation (2.1), for each model as the

algorithm iterates through the samples, is shown in Figure 5.11, with an initial

objective function value of 0.449 and it levels off around 0.27 relatively quickly.

Table 5.4: Prior and proposal distributions set for the simulation for 32 rays Case A.

Perturbation Range σ σdr

Wave speed 5600 ± 700 m/s 200 m/s 50m/s
Seed position – 8% 2%

Birth – 150 m/s –
Noise 0.002 - 0.5 0.008 –
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The number of Voronoi cells was limited to 150 (see Figure 5.12 (a)). No matter

what the upper limit of the number of cells Voronoi cells was set to, the algorithm

increased to this upper limit, similar to Figure 5.15. This suggests that the

method is not converging, most likely, due to the fact that the problem is non-

unique and the 32 vertical rays does not provide enough information to constrain

the problem uniquely. The moments of the posterior distributions, Figure 5.13,

show that no texture or material characteristic were reconstructed. The mean

and median Figure 5.13 (a) and (b) are effectively homogeneous maps around the

mean wave speed of 5600m/s. The maximum a posteriori (MAP) distribution

(c) is a heterogeneous map with a wave speed of predominately 6200m/s. After

observing these material reconstructions it was proposed that the noise parameter

should be limited. This is done in the next subsection and referred to as Case B.
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Figure 5.11: The average objective function value as the algorithm iterates through
each sample. For the simulation using 32 rays in the pitch-catch setup - Case A

102



5.

0 0.5 1 1.5 2 2.5 3

106

0

50

100

150

# 
of

 c
el

ls

(a) (b)

Figure 5.12: Plot (a) is the number of cells at each iteration of the rj-MCMC algorithm
and plot (b) is the distribution of the number of cells across all iterations. The maximum
number of cells being limited to 150. For the simulation using 32 rays in the pitch-catch
setup - Case A

5.4.3 Reconstruction using a Pitch-Catch set up Without

the Noise Variable - Case B

In this section, the noise parameter is limited. The main function of the noise

parameter is to parametrise uncertainty and prevents data overfitting or under-

fitting. Since the simulated FMC data AE
i,j was created from the same forward

model used in the inversion algorithm the data is noiseless. Therefore the level

of uncertainty is minimum.

The algorithm was run again with the same parameters but this time the noise

parameter had a range between 0.0001 and 0.001, with a standard deviation of

0.015. Now that the standard deviation of the noise parameter was far greater

than the range it will have 0% acceptance rate and always be near zero. With
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Figure 5.13: Material map reconstructions of the 4 layered medium for the simulation
using 32 rays Case A. Plot (a) is the mean of the posterior distribution on wave speed at
each point in the domain whilst plot(b)-(d) show the median, MAP, and the standard
deviation respectively.

these priors, the algorithm had an overall acceptance rate of 21.2%. The accep-

tance rates were: 40.9% for the wave speed; 37.7% for the position; 14% for the

birth and death of a cell.

The objective function value, Equation (2.1), for each model as the algorithm

iterates through the samples, is shown in Figure 5.14; it exhibits an initial objec-

tive function value of 0.45 and it levels off around 0.2 relatively quickly. This is

approximately 0.07 less than when the noise parameter is not limited in Case A.
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The number of Voronoi cells was limited to 150 (see Figure 5.15 (a)). Similar to

Figure 5.12 the algorithm always reached the upper limit of the number of cells.

This shows that the algorithm is attempting to use all of the degrees of freedom

to fit the data and that the method is not converging.
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Figure 5.14: The average objective function value as the algorithm iterates through
each sample. For the simulation using 32 rays Case B
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Figure 5.15: Plot (a) is the number of cells at each iteration of the rj-MCMC algorithm
and plot(b) is the distribution of the number of cells across all iterations. The maximum
number of cells being limited to 150. For the simulation using 32 rays Case B

105



5.

5000 5200 5400 5600 5800 6000 6200
0

200

400

600

800

1000

1200

1400

(a)

5000 5200 5400 5600 5800 6000 6200
0

100

200

300

400

500

600

700

800

(b)

5000 5200 5400 5600 5800 6000 6200
0

100

200

300

400

500

600

700

800

900

(c)

5000 5200 5400 5600 5800 6000 6200
0

100

200

300

400

500

600

700

800

900

(d)

5000 5200 5400 5600 5800 6000 6200
0

200

400

600

800

1000

1200

(e)

Figure 5.16: Posterior distributions on the wave speeds, recorded at every 100th
iteration, at 5 points in the spatial domain: (a) at x = 16mm, y = 15mm, in the first
layer, (b) at x = 32mm, y = 20mm, on the interface between first and second layer,
(c) at x = 22mm, y = 23mm, in the second layer, (d) at x = 23mm, y = 27mm, on
the interface between the second and third layer, (e) at x = 20mm, y = 35mm, in the
third layer, as shown in Figure 5.17
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However, the histograms shown in Figure 5.16 depict the posterior distribu-

tions of wave speeds at 5 different points in the spatial domain (see points (a)-(e)

in Figure 5.17(d)). Plot (a) shows the distribution at point x = 16mm, y = 15mm,

a point in the middle of the first layer of the posterior maps; plot (b) the dis-

tribution at the point x = 32mm, y = 20mm, located on the interface between

the first and second layer; plot (c) the distribution at the point x = 22mm,

y = 23mm located in the second layer of the posterior distribution maps; plot

(d) the distribution at the point x = 23mm, y = 27mm located on the interface

between the second and third layer; and plot (e) the distribution of wave speeds

at the point x = 20mm, y = 35mm in the third layer. The points (a),(c), and (e),

show truncated normal distributions indicating that the algorithm is confident

with the wave speeds in these regions. With the distributions being normal at

these points the mean and the median will both give robust reconstructions. It

should be noted that in (c) there is a heavy tail and this is most likely due to a

higher variation in the exploration of the model space at this point and leads to

the higher standard deviation within this layer as shown by Figure 5.17(d) and

Figure 5.20. Figure 5.16(b) and (d), show bi-modal distributions and this will

be due to the algorithm being unable to decide which wave speed to assign to

this pixel. This is indicated by the high standard deviation at these points in

Figure 5.17 (d).

From the moments of the posterior distributions of the wave speed at each

point in the domain, material maps were constructed. Figure 5.17, shows (a) the

mean, (b) the median, (c) the MAP (maximum a posteriori), and lastly (d) the
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Figure 5.17: Material map reconstructions of the 4 layered medium for the simulation
using 32 rays Case B. Plot (a) is the mean of the posterior distribution on wave speed at
each point in the domain whilst plot(b)-(d) show the median, MAP, and the standard
deviation respectively.

standard deviation map of the posterior probability distribution. Four distinct

layers can be observed with a similar fluctuation in wave speeds between the layers

and so the methodology has recovered the texture of the material; however, the

layer thicknesses and wave speeds have significant errors and this is highlighted

in Figure 5.18 which depicts a vertical cross section through each of the maps.

The first layer has a thickness of approximately 5mm and has some variations

in the wave speed in the horizontal (x) direction within this layer and these
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fluctuations differ between the different reconstructed maps. The top left hand

corner of the median and the mean reconstructed maps has an area of higher

wave speed with the region below having a lower wave speed than the rest of

the layer. Features like this are not surprising since only the vertical rays are

taken into account. There could be only a single ray going through the Voronoi

cell depicting this area, whereas, an equivalent area in the centre could have

multiple rays passing through the same Voronoi cell. The MAP has a wave speed

of approximately 6200m/s in the top layer, while the mean and median estimate

5750m/s (closer to the known wave speed). There is also a high level of standard

deviation in this region. The reconstruction of the second layer has a thickness

of approximately 12mm and exhibits wave speeds ranging between 5850m/s and

6150m/s. The third layer, with thickness approximately 8mm, is faster than the

known wave speed with a range of 5400m/s to 5600 m/s. The reconstruction of

the last layer has a thickness of approximately 14mm, an estimated wave speed

range of 5900m/s to 6000m/s for the median and mean, and 6200m/s to 6300m/s

for the MAP. Figure 5.17 (d) plots the standard deviation at each pixel in the

reconstruction shown in (b). The uncertainty present is strongest at the interfaces

between the layers. however, this is expected as the wave speed value of these

pixels move between the two wave speed values in the adjacent regions (see the

bi-modal distribution in Figure 5.16(b) and (d)) and this can in fact be used to

tell us about the achieved resolution of the reconstructions.
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Figure 5.18: Wave speed profile of moments of the posterior distribution of wave
speeds (Figure 5.17) along the vertical cross-section at x = 32mm

The difference in wave speed between the reconstructions from the known

map is shown in Figure 5.18 which plots a vertical cross-section of the medium at

the halfway point (32mm) of the wave speed profile. The variation of the wave

speed in the reconstructed material maps in the lateral direction (x-coordinate)

along the length of the material at each millimetre depth is shown in Figure 5.19

with the wave speed profile at x = 32mm where plot (a) shows the mean, plot

(b) shows the median, and plot (c) shows the MAP. The blue boxes denote the

interquartile range and the red crosses denote the outliers. This shows that the

wave speeds are relatively consistent along the lateral direction of the medium,

apart from in the MAP profile between 18mm and 25mm where there is a large
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Figure 5.19: Wave speed profiles at x = 32mm and box plots of the wave speed
variation at every mm depth of the medium. Plot (a) is generated using the mean
map, plot (b) the median, and plot (c) the MAP from Figure 5.17.

variation in the wave speeds in layer 3 due to the high wave speeds at the sides of

the reconstructions. The differences in location of the layer interfaces, between

the reconstructions from the known map is shown in Figure 5.20, which plots

the standard deviation along the depth of the medium at x = 32mm; a high

standard deviation should indicate a layer interface. From this it can be observed

that there is an overall high standard deviation, however, there are still peaks at

17mm and 25mm which indicated layer interfaces.
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Figure 5.20: A vertical profile of the standard deviation (blue) (Figure 5.17(d)) at
x = 32mm and the known layer interfaces (red dashed).

The results from Figure 5.18, Figure 5.19, and Figure 5.20, shows visually that

layer texture can be reconstructed but there is significant room for improvement.

Before attempting to improve on the material reconstruction the quality of the

reconstruction is quantified and then tested for its improvement for flaw detection

as part of the TFM+ algorithm.

To quantify the accuracy of the reconstructed maps in Figure 5.17, the Frobe-

nius norm

ε(M∗,M) = ||M∗ −M ||F (5.1)
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Figure 5.21: Plot of the Frobenius norm (ε) between the known map (M∗) and each
1000th Voronoi diagram (red). Also, the Frobenius norm versus: Initial - homogeneous
- case (MH , εH = 0.65, blue), Mean posterior (M , ε = 0.053, orange), Median pos-
terior (Mm, εm = 0.054, yellow), MAP (Mmap, εmap = 0.077, purple), as shown in
Figure 5.17.

of the difference matrix between the known map (M∗) and the initial (homoge-

neous) (MH), mean (M), median (Mm), and MAP (Mmap), posterior distribu-

tions were calculated and plotted in Figure 5.21. It can be observed that the

mean of the posterior distribution is closest to the known map, ε = 0.053, with

the median error εm = 0.054 being just slightly higher. The maximum a pos-

terior fares the worst, εmap = 0.077, most likely due to the incorrect high wave

speed region reconstructed at the top of the domain (see Figure 5.17(c)). The
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figure also plots the Frobenius norm (denoted εk) of the difference between every

1000th accepted Voronoi tessellation (Mk) and the known map . Interestingly, it

can be observed that the Frobenius norm error associated with the homogeneous

map εH = 0.065 is close to the minimum value; this however highlights the fact

that the Frobenius norm is an averaged measure of the similarity between two

matrices and does not account for the local textures which are better captured

by the reconstructions.

An alternative approach which does capture the degree to which the material

texture has been reconstructed is the norm,

ε̂(M̂∗, M̂) =

N−1∑
i=0

(N/2)+1∑
j=0

(M̂∗(i, j)− M̂(i, j))2

− (M̂∗(0, 0)− M̂(0, 0))2 (5.2)

where N is the dimension of the Fourier transform, M̂∗ is the two dimensional

spatial Fourier transforms of M∗ and M̂ the corresponding transform for MH ,

M ,Mm,Mmap. This is normalised with respect to the value ε̂(M̂∗, 0). From

Figure 5.22, it can be observed that the median of the posterior distribution is

closest to the known map ε̂m = 0.0082, with the mean not as close, ε̂ = 0.0098

and the MAP fares the worst ε̂map = 0.0122, most likely due to the incorrect high

wave speed region reconstructed at the top of the domain. The homogeneous

map with a value of ε̂H = 0.017 indicates that texture is encapsulated in this

metric.
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Figure 5.22: Plot of the error (ε̂) of the two dimensional Fourier transform of the
known map and each accepted 1000th sample (ε̂k, red). Similarly for the; Initial -

homogeneous - case (M̂H , ε̂H = 0.017, orange), Mean posterior (M̂ , ε̂ = 0.0098, yellow),
Median posterior (M̂m, ε̂m = 0.0082, purple), and MAP (M̂map, ε̂map = 0.0122, green),
as shown in Figure 5.17.

These results agree with what is observed visually. The median of the posterior

distribution gives the best reconstruction with the layers being more defined.

The MAP being reconstruction is adversely affected the bimodal nature of the

posterior distribution and the method can select the “wrong” modal. This could,

in some cases, be an aid as it has the potential to give greater definition at layer

interfaces. In all cases there is still room for improvement in the reconstructions

with regards to wave speed and layer thicknesses.
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5.4.4 TFM+ from the Reconstructed Material Map Using

32 Rays

The success of the material reconstructions can also be measured by the improve-

ment in flaw detection and characterisation using the TFM+ algorithm. The flaw

reconstruction, using the median posterior distribution map from Figure 5.17 (b),

is displayed in Figure 5.23. It can be observed that the TFM+ reconstruction is

unsatisfactory and visually appears worse than the standard TFM; there is only

one satisfactorily detectable inclusion and there is a shift in the back wall. The

shift in position of the backwall is due to the thicker layers within the recon-

struction with a high velocity and the layer with a low wave speed being thinner

than the known map thus creating a higher mean velocity. The SNR is 16.1,

the flaw location error is 1.924mm (for the lowest flaw), and the ROC AUC is

0.839. The SNR and flaw location error both perform worse than the standard

TFM. This indicates that a poor reconstruction can actually perform worse than

the homogeneous map within the imaging algorithm. There is only a marginal

improvement in the ROC AUC measure (see Table 5.5). The ROC curves are

shown in Figure 5.24 which shows comparable results between the standard TFM

and the TFM+ generated from the median posterior distribution material map.

These values are summarised in Table 5.5

There is clearly scope to improve the reconstructed material maps and obtain

a successful TFM+ reconstruction. One route to achieving this is to use more

information and employ the A-scans from all transmit-receive pairs; not just the
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Figure 5.23: A TFM+ image of the three circular inclusions shown in the schematic
in Figure 5.1 and indicated by the three white circles. The horizontal is the position of
the back wall. The TFM+ algorithm Equation (2.22) with the material map given by
the median of the posterior distribution as shown in Figure 5.17.

Table 5.5: Comparison of quality metric between SNR, Flaw Error and ROC AUC
for the simulation using 32 rays Case B.

TFM TFM+FWI TFM+
SNR 17.5 16.1 23.6

Flaw Error [mm] 1.315 1.924 1.300
AUC 0.8304 0.8389 0.9012

vertical rays as used above. Using the FMC data means an increase in calculation

time but to balance this the inversion algorithm runs for fewer iterations. This

is shown in Section 5.5.
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Figure 5.24: ROC curves, from Figure 5.6, including the TFM+ generated from the
median posterior distribution from Figure 5.17(b).
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5.5 Reconstruction of a Layered Medium using 1024 rays

from the Full Matrix Capture

In this section, the case where all 1024 A-scans are utilised for the material map

reconstruction. The rj-MCMC was run for a total of 600,000 samples, where

the first 400,000 were discarded and the remaining models were sampled at an

interval of κ = 100 (note that the problem is constrained by more data, therefore

can reduce the number of iterations the MCMC is run over). The initial model

used was composed of eight Voronoi cells (in a rectangular grid pattern as before),

each assigned a wave speed of 5600 m/s.

The algorithm had the following limits on the prior uniform distributions: the

number of cells must lie in the range 5 to 75 cells; the wave speed for a Voronoi

cell must lie in the range 5600±700 m/s; and the noise parameter must lie in the

range 0.001 and 0.5. The standard deviation for the proposal distributions (σ)

were: on wave speed 200m/s, and 50m/s for the delayed rejection (σdr); on cell

position 8%, and 2% for the delayed rejection; on the wave speed for a new cell

generated by a birth 100m/s; on the noise parameter 0.03. These are summarised

in Table 5.6. The standard deviation for the proposal distributions were chosen

such that the overall acceptance rate would lie between 23% and 40%. The limits

on the uniform prior on the noise parameter were chosen by setting the lower limit

to be lower than the objective function value between the FMC data modelled

through the correct map and the observed data of 0.0029 (minor difference due

to numerical discrepancies). The upper limit being greater than the objective
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function value between the FMC data arising from a homogeneous map and the

observed data. With these priors the algorithm had an overall acceptance rate of

29.9%. The acceptance rates were 57.7% for the wave speed, 42.9% for the cell

seed position, 9.7% for the birth and death of a cell, and 20.3% for the noise. By

using the full 1024 rays possible, the Voronoi cells within the model have more ray

paths going through them. This then affects the model parameters even though

it is the same underlying model.

Table 5.6: Prior and proposal distributions set for the simulation for 1024 rays.

Perturbation Range σ σdr

Wave speed 5600 ± 700 m/s 200 m/s 50m/s
Seed position – 8% 2%

Birth – 100 m/s –
Noise 0.001 - 0.5 0.03 –

0 1 2 3 4 5 6
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Figure 5.25: The average objective function value as the algorithm iterates through
each Voronoi sample for the simulation using the full 1024 rays.
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Figure 5.26: Plot (a) is the number of cells at each iteration of the rj-MCMC algorithm
and plot(b) is the distribution of the number of cells from the last 200,000 samples.
For the simulation using the full 1024 rays.

The average objective function value, Equation (2.1), as the algorithm iterates

through the samples, is shown in Figure 5.25. The initial objective function value

is 0.424 and it levels off below 0.2 after 200,000 iterations. The number of cells

steadily increases for the first 300,000 iterations then stays around 40 cells for

the remainder of iterations. This is highlighted in Figure 5.26 which shows the

number of Voronoi cells for the last 200,000 iterations, omitting the burn-in, has a

skewed normal distribution with a tail to the right and has a peak centred around

40 cells. The number of cells is higher than one may expect for a simple model

but it has converged in this case. This can in part be attributed to the fact that,

although it is possible to describe this layered material with four Voronoi cells,

any deviation in the x co-ordinates will cause the layer interfaces to diverge from

the horizontal. However, less precision is required in describing the horizontal

layers using multiple cells which balance out these skewing effects.
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Figure 5.27: Material map reconstructions of the 4 layered medium for the simulation
using the full 1024 rays. Plot (a) is the mean of the posterior distribution on wave
speed at each point in the domain whilst plots (b)-(d) show the median, MAP, and the
standard deviation respectively.

From the moments of the posterior distributions on the wave speed at each

point in the domain, material maps were constructed. Figure 5.27, shows (a)

the mean, (b) the median, (c) the MAP, and (d) the standard deviation of the

posterior probability distributions. Five distinct layers can be observed; three

layers well approximate the correct layer thickness and wave speed, however, the

first layer is reconstructed as two layers. The reason for this could be in part due

to the fact that the semi-analytical data does not contain any internal reflections

from the first layer. It is modelled using a backwards recursive relation from
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the bottom layer to the top. The wave speeds of the reconstructed layers are

approximately 5650m/s, 5000m/s, 6000m/s, 5000m/s, and 5850m/s respectively.

Figure 5.27 (d) plots the standard deviation of the posterior distribution on wave

speed at each pixel. It shows a high standard deviation at the layer interfaces

and lower within the layers. This suggests the problem is poorly constrained at

layer interfaces; the pixels here jump between neighbouring layers and typically

exhibit bimodal posteriors. Note that there is a high level of standard deviation

in the first layer again suggesting this part of the domain is poorly constrained.
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Figure 5.28: Wave speed profile of moments of the posterior distributions (Fig-
ure 5.27) along the vertical cross-section at x = 32mm.

123



5.

5 10 15 20 25 30 35

5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

6000

(a)

5 10 15 20 25 30 35

5000

5200

5400

5600

5800

6000

(b)

5 10 15 20 25 30 35

5000

5200

5400

5600

5800

6000

(c)

Figure 5.29: Wave speed profiles at x = 32mm and box plots of the wave speed
variation at every mm depth of the medium. Plot (a) is the median, plot(b) is the
mean, and plot(c) is the MAP, of the posterior distributions from the rj-MCMC method
(see Figure 5.27)

The difference in wave speeds between the reconstructions from the known

map is shown in Figure 5.28, which plots a vertical cross-section of the medium

at the halfway point (32mm) of the wave speed profile and it shows a consistent

wave speed across each layer. The layers are more distinct due to the sharp change

in wave speeds. The three profiles (mean, median, and MAP) all depict similar

profiles meaning there is a high level of robustness in the posterior distribution.
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Figure 5.30: A vertical profile of the standard deviation of the posterior distribution
(blue) - Figure 5.27(d) - at x = 32mm. The known layer interfaces are shown (red
dashed).

This is in contrast to the wave profiles in Figure 5.18 (which were generated

using the 32 vertical rays), indicating that with more data the inversion is better

constrained and gives better tomographic reconstructions.

The variation of the wave speed along the length of the medium at each mil-

limetre depth, with the wave speed profile at x = 32mm, is shown in Figure 5.29,

where plot (a) shows the mean, plot (b) shows the median, and plot (c) shows

the MAP, of the posterior distributions. This shows that the wave speeds are

consistent along the length of the medium by having a small interquartile range

(blue boxes), apart from at the layer interfaces where wave speeds from the ad-
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jacent layers may occur. There is a greater amount of outliers (red crosses) in

(a) the profile from the mean map, due to the wave speed being closer to the

homogeneous value of 5600 m/s at the edges of the reconstruction in Figure 5.27

(a). The reason for this being more present in the mean map rather than the

other two indicates that the posterior distributions near the edges are skewed.

With a skewed distribution the mean does not accurately represent the centre of

a distribution whereas it does in the median and MAP. Note, the edges of the

image are poorly constrained within the reconstruction; there is a maximum of

4 rays going through this region, whereas, a region in the centre of the recon-

struction could have 16 rays. The interquartile ranges present in these profiles

are much smaller and consistent compared to the interquartile ranges present in

Figure 5.19. This highlights the need to have multiple rays at different angles to

fully constrain the inversion and give a more accurate reconstruction. Figure 5.30

plots the standard deviation along the depth of the medium at x = 32mm. It can

be observed that the internal layer interfaces are consistently 10mm apart and

are about 1mm off the correct location.

To quantify the accuracy of the reconstructed maps in Figure 5.27, the Frobe-

nius norm error was examined between the two dimensional, spatial Fourier trans-

forms of M̂∗ and M̂ as given by Equation (5.2). From Figure 5.31, it can be

observed that the mean and the median of the posterior distribution map fare

the best (the mean has an error of ε̂ = 0.0049 and the median has error of

ε̂m = 00057) and the MAP fares the worst (with ε̂map = 0.0071).
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Figure 5.31: Plot of the error (ε̂) between the two dimensional Fourier transforms
of the known map and each accepted 1000th sample (ε̂k, red). Also, the error for

the initial - homogeneous - case (M̂H , ε̂H = 0.017, orange), Mean posterior (M̂ , ε̂ =
0.0049, yellow), Median posterior (M̂m, ε̂m = 0.0057, median), and MAP (M̂map,
ε̂map = 0.0071, green), from Figure 5.27.

By visually inspecting the moments and characteristics of the posterior dis-

tributions (see Figure 5.27) and examining the difference in the spatial Fourier

transform, it can be concluded that the texture of the material has been success-

fully characterised; with confidence that the medium is constructed from layers

with almost constant thickness. Also the pattern of changing wave speed, from

one wave speed to a higher, to a lower, to a higher wave speed, in the longitudinal
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direction is also better described. In the lateral direction, the wave speed stays

fairly consistent within each layer (see Figure 5.29) where each boxplot depicts

the variation of wave speed in the lateral direction.

5.5.1 TFM+ from the Reconstructed Material Map Using

1024 Rays

To examine the success of the reconstructions with respect to enhanced flaw imag-

ing, using the median of the posterior distribution to correct the delay laws in the

TFM+ algorithm the resulting flaw reconstructions are displayed in Figure 5.32.

It can be observed that there is a shift in the backwall due to the average wave

speed of the median posterior distribution (5498m/s) being lower than the known

map which equates to a longer travel time through the median map. However,

the flaw closest to the backwall is now clearly detected which indicates an im-

provement from the standard TFM. The inclusion closest to the back wall has a

SNR value of 28.4dB and a flaw error of 1.315mm. The ROC curves shown in

Figure 5.33 shows that the TFM+ image from the median map has a greater PoD

than the standard TFM with an AUC of 0.8713. There is not an improvement

in the flaw location error compared to the standard TFM. However, there is im-

provement in the SNR and a small improvement in the ROC AUC (note, there is

not room for significant improvement as the standard TFM performs well in this

simple medium). These are summarised in Table 5.7.
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Figure 5.32: TFM+ image (Equation (2.22)) using the Median posterior distribu-
tion map, Figure 5.27 (b).The three white circles indicate the inclusions shown in the
schematic Figure 5.1 and the while line indicating the position of the backwall.
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Figure 5.33: ROC curves from Figure 5.6 including the ROC curve from the TFM+
generated from the median posterior distribution from Figure 5.27(b).

Table 5.7: Comparison of quality metric SNR, Flaw Error and AUC between the
standard TFM, TFM+ FWI, TFM+ known, for the simulation using the full 1024
rays.

TFM TFM+FWI TFM+
SNR 17.5 28.4 23.6

Flaw Error [mm] 1.315 1.315 1.300
AUC 0.8304 0.8713 0.9012
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5.6 Reconstruction of a Layered media with the Addition

of Noise

In this chapter so far, the observed data has been created using the same analyt-

ical model as the forward model and so this data is effectively noiseless. To check

how robust this method is to noise, artificial noise was added to the observed

data. This was done in two ways. Proportional noise, where the change in value

is dependent on the amplitude at that time point, was added via

Ai,j(t) = Ai,j(t) + Ai,j(t)N(0, eN1). (5.3)

Additive noise, where the change is independent of the data, was added via

Ai,j(t) = Ai,j(t) + N(0, eN−2). (5.4)

The FMC dataset from the previous section was modified to have eN1 =

5%, eN1 = 10%, and eN1 =20% proportional noise. With the addition of 20%

proportional noise the effect on the A-scans can been seen in Figure 5.34. All

three simulated data sets were then used as the observed data for the rj-MCMC

tomographic inversion algorithm with no other changes to set up or parameters.

It can be observed in Figure 5.35 that there are minor variances in the wave speed

between the reconstructions, however, 4 layers are still clearly detected with wave

speeds still in the same range and the original “noiseless” posterior distribution.
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Figure 5.34: A-scan comparison of a wave travelling through 4 layers with no noise
(top) and with random proportional noise of 20% variation (bottom).

The changes in these posterior distributions were quantified using the metric

in Equation (5.2) to give the ε̂m = 0.0057, ˆεm∗0.05 = 0.0069, ˆεm∗0.1 = 0.0064,

ˆεm∗0.2 = 0.0078. This means that proportional noise does effect the reconstruction

but not substantially so this method is robust to proportional noise.

Next, examining the case where the data is subjected to additive noise. The

amplitude at each point in time was perturbed by a random value from the dis-

tribution N(0, 0.01e− 3). The maximum amplitude of the wave is approximately

1.7e-3, the equates to an additive noise of around 0.005%. The A-scan with this
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Figure 5.35: Median posterior distributions of the 4 layered medium with varying
levels of proportional noise. Plot (a) 0% noise, plot (b) 5% proportional noise, plot (c)
10% proportional noise, and plot(d) 20% proportional noise. The proposal distribution
parameters are the same as Table 5.6.

noise can be observe in Figure 5.36. This is similar to the white noise often ob-

served within the experimental system due to electrical interference. With this

additive noise the reconstruction was homogeneous with a wave speed of 500 m/s

and no features where able to be reconstructed. This is due the objective function

taking the log of this data amplifying the effect of the additive noise.
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Figure 5.36: A-scan comparison of a wave travelling through 4 layers with no noise
and with random additive noise distributed around 0.01e-3
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5.7 Discussion

After being unable to obtain the material map approximation using the Pearson

correlation coefficient as the objective function, a new objective function was

developed. This new objective function required taking the logarithm of the A-

scan. This allowed for the smaller amplitudes to have a greater importance within

the objective function. These smaller amplitudes contain the information of the

internal reflection within the layered medium.

First, to comply with the one-dimensional assumptions made in the modelling

framework, only the vertical rays were considered in the inversion (those trav-

elling perpendicularly to the layer interfaces). In this scenario we were initially

unable to reconstruct any material features in either the pitch-catch arrangement

(where two arrays were modeled, one on the top boundary to transmit and one

on the bottom to record) or the pulse echo arrangement (single array inspection).

However, by tightly constraining the noise parameter, we were able to reconstruct

some information on the layered texture in the pitch-catch scenario. Moving to

consider the full FMC data set (so not imposing restrictions on the incident angles

of rays that could be used), the additional data helped to better constrain the

problem and reconstructions which better represented both the layered structure

and the variation in wave speeds were obtained. These results show that it is

possible to do a full waveform inversion as part of an rj-MCMC system. Not only

is it possible but the reconstructions from the rj-MCMC algorithm are robust to

proportional noise. Using the reconstructed maps as part of the TFM+ imaging
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algorithm provided enhanced images of the inclusions. In particular, where there

was very little room for improvement, an improvement of 4.1% in probability of

detection for the bottom inclusion which was the most difficult to image.

The next step is to invert with simulated data arising from a finite element

program which includes more of the physics present in the system (for example

mode conversion and refraction) and assess whether our semi-analytic model is

enough to reconstruct the material map from this more complex dataset. This is

done in the next chapter.
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Chapter 6

Tomographic Reconstruction of a

Layered Medium from Finite Element

Simulated Data

6.1 Adjusting to Simulated Data

Having reconstructed the layered medium (Figure 5.1) where the data has arisen

from the forward model used within the inversion framework (inverse crime), it

is sensible to challenge this tomographic reconstruction methodology with sim-

ulated data that includes more of the physical phenomena observed in practice.

For example, the inclusion of different wave mode types (shear/longitudinal),
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wave mode conversion at interfaces, and wave refraction, to name but a few. A

commercial package (OnScale) was used to run a two dimensional finite element

simulation based on numerical integration of the elastodynamic equations [141].

6.1.1 Adjusting to Simulated Data - Planar Wave

The first step is to make sure that the finite element simulation and the A-scans

generated from our analytical model have a good agreement. To this end a plane

wave travelling through the same two dimensional layered model in Chapter 2 was

modelled. A plane wave was emitted from the upper boundary into the layered

material whose lateral boundary conditions are periodic. The top half space was

assigned the same material properties as the first layer and the bottom half space

was modelled as water. A pulse-echo A-scan is shown in Figure 6.1 and five echoes

can be observed: the initial wave is the reflection off the front wall; the next three

are reflections from the three layer interfaces; the last is the wave reflection off

the back wall. Note that there is a small timeshift and a minor difference in

amplitude. These are due to the differences in numerical accuracy between the

two model implementations and the finite element simulation deforming the wave

as it travels through the layers. The first wave pulse represents the recording of

the pulse as it is transmitted and is not part of the semi-analytical model.

An A-scan generated in pitch-catch mode is shown in Figure 6.2. It can be

observed that there is a significant difference in the amplitudes. On investiga-

tion the reason for this is the difference in what quantity each model outputs.
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Figure 6.1: An A-scan comparison of a finite element simulated reflected wave (blue
line) and the equivalent from the semi-analytic model Equation (3.5) in pulse-echo
mode. The wave is travelling through the 4 layered medium shown in Figure 5.1

The model in Chapter 2 has a wave A(t, z) with dimensions kg
1
2 s−

3
2 and has a

transmission coefficient between layer i and layer i+ 1 given by

Ti =
2
√
ζiζi+1

ζi + ζi+1

.

The finite element simulation models a pressure wave p(t, z) (dimensions kgm−1s−2

which has a transmission coefficient of,

T̃i =
2ζi+1

ζi + ζi+1

,
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Figure 6.2: An A-scan comparison of a finite element simulated transmitted wave
(blue line) and the equivalent from the semi-analytic model (orange line) Equation
(3.7) in the Pitch-catch mode. The wave is travelling through the 4 layered medium
shown in Figure 5.1

at the same interface. The upper half space, with impedance ζ0, contains the

downward travelling wave f(t) - the source term. Therefore, in the first layer

with impedance ζ1, there is a downward travelling wave A1 which is equal to

T0f(t− z/c) when using the semi-analytical model. However, when the pressure

(and velocity) waves are produced in the finite element simulation, they are pr0 =
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1
2
ζ

1
2
0 f (in the upper half space) and pr1 = 1

2
ζ

1
2
1 A1 (in the first layer). That is

pr1 =
1

2
ζ

1
2
1 A1 =

1

2
ζ

1
2
1 T0f

=
1

2
ζ

1
2
1

(
2
√
ζ0ζ1

ζ0 + ζ1

)
f

=
1

2
ζ

1
2
0

(
2ζ1

ζ0 + ζ1

)
f =

(
2ζ1

ζ0 + ζ1

)
pr0

= T̃ pr0.

In the upper half space there is a downward moving pressure wave pl0 and an

upward moving pressure wave pr0. This means there a factor of 1
2
ζ

1
2
0 between the

semi-analytical model in Chapter 2 these pressure waves to their finite element

counterparts. These are related by the following equations,

pl0 = −1

2
ζ

1
2
0 B0,

pr0 =
1

2
ζ

1
2
0 f.

This can be repeated for the velocity wave u(t, z).

The reflection coefficient, in both formulations are equal in amplitude but

differ in sign and −R = R̃ =
(
ζ1−ζ0
ζ0ζ1

)
and B0 = Rf . Hence,

pl0 = −1

2
ζ

1
2
0 B0 = −1

2
ζ

1
2
0 Rf

= R̃pr0,
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This explains why there was good amplitude agreement in the reflection (pulse-

echo) case in Figure 6.1 but poor agreement in the transmission (pitch-catch)

case in Figure 6.2.

The analytical model therefore needs to be adapted such that it uses T̃ and R̃.

For the latter case this is simply done by multiplying by -1 (which has already

been applied in Figure 6.1). For the former case, in the pulse-echo scenario every

time a wave is transmitted into a layer it then needs to be transmitted back out

of that layer for the wave to be received. So the transmission coefficients appear

in the amplitude term in product pairs. Note that

T 2
i = 4

ζiζi+1

(ζi + ζi+1)2

=

(
2ζi

ζi + ζi+1

) (
2ζi+1

ζi + ζi+1

)
= T̃ ri T̃

l
i

and so the transmission coefficient product pairs are identical in both formula-

tions.
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In the pitch-catch case, every amplitude calculation contains the product

T0T1 . . . TN =
2
√
ζ0ζ1

ζ0 + ζ1

2
√
ζ1ζ2

ζ1 + ζ2

2
√
ζ2ζ3

ζ2 + ζ3

. . .
2
√
ζN−1ζN

ζN1 + ζN

=
2N
√
ζ0ζ1ζ2 . . . ζN−1

√
ζN

(ζ0 + ζ1)(ζ1 + ζ2) . . . (ζN1 + ζN)

=

(
ζN
ζ0

) 1
2 2Nζ1ζ2 . . . ζN−1ζN

(ζ0 + ζ1)(ζ1 + ζ2) . . . (ζN1 + ζN)

=

(
ζN
ζ0

) 1
2

T̃0T̃1 . . . T̃N ,

for aN layer material. Therefore to change the pitch-catch case all that is required

is to multiply by the prefactor
(
ζN
ζ0

) 1
2

so that the analytical model agrees with the

finite element model. Note, that when the half-spaces are the same (ζ0 = ζN+1)

then this prefactor becomes 1.

When this change has been implemented, the A-scans compare well in he pitch

catch case as shown in Figure 6.3. Here, a good match up is observed, with a

small timeshift and minor differences in amplitude due to the additional physics

in the finite element model.

6.1.2 Adjusting to Simulated Data - Spherical Wave

The previous section considered a plane wave excitation as this essentially trans-

forms the 2D finite element simulation into a 1D problem and a good agreement

with the 1D analytical model was found. However, if the Full Matrix Capture

(FMC) data is to be used then more typically each array element would fire in
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Figure 6.3: An A-scan comparison of a plane wave generated from a finite element
simulation (blue line) and the corrected semi-analytic model (orange line) in the Pitch-
catch mode. The wave is travelling through the 4 layered medium shown in Figure 5.1

turn and given that each element is smaller than or at least commensurate with

the wavelength, an approximately spherical wave emerges; at least in the far field.

It is therefore important to compare the semi-analytical model with the A-scan

produced from a finite element simulated spherical wave. The same 4 layered

heterogeneous spatial domain was examined, with two 32 element arrays (with

2mm pitch), positioned above each other as in Figure 5.1, and an extended lateral

domain (now with absorbing boundary conditions) to reduce side wall effects.
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Multiplying the semi-analytical model calculations by a factor (max value of

the simulated A-scan divided by the max value of the simulated A-scan) that

removed the attenuation due to spherical spreading loss, the A-scan in Figure 6.4

for the vertical raypath is produced. It can be observed that there is a relatively

good match up (objective function value of ). Note that the large wave packet

near the end of the A-scan is the wave that has travelled the depth of the medium

three times. This will not be included within the inversion algorithm and informs

the time range chosen for the subsequent tomography exercise.
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Figure 6.4: An A-scan comparison of a finite element simulation (blue line) and the
equivalent semi-analytical model (orange line) for a single element in pitch-catch mode.
The transmitter and receiver directly are above each other. The wave is travelling
through the 4 layered medium shown in Figure 5.1
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Figure 6.5: An A-scan comparison of a finite element simulation (blue line) and the
equivalent semi-analytical model (orange line) from transmitter 1 to receiver 32. The
wave is travelling through the 4 layered medium shown in Figure 5.1.

In Figure 6.5 there is a comparison between the finite element simulation and

the analytical model for the situation where the transmitting element (trans-

mitter 1) is now diagonally across from the receiving element (receiver 32). The

analytical model assumes that the ray travels in a straight line between the trans-

mitter and the receiver but of course this is now not the true as the reflections

within each layer means that the ray is composed of a series of segments in a

range of directions (see Figure 6.6 - note the figures ignores refraction between

layer transmission). The analytical model was given the same scaling as above

but there is still an amplitude difference. This difference most likely due to the
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wave path from 1 to 32 is the “tail” of the spherical wave and has a much smaller

amplitude. There also appears to be a shear wave coming in at the end of the

A-scan.

In Figure 6.7 an A-scan comparison for the waves transmitting on element

1 to receiving element 21 is plotted. It can be observed that there is a large

wave packet around 18µ secs which is not included in the analytical model. From

analysis of plots of the surface displacement, this wave packet appears to be

a shear wave that is generated by the transmitting array element. Figure 6.8

plots the displacement, at four points in time, to highlight the generation of

a shear wave plot (a) that travels through the medium and then reaches the

receiver plot (d). As the analytical model only considers longitudinal waves this

accounts in part for the difference between the A-scans in Figure 6.7. To reduce

the production of a shear wave by the transmitting element the finite element

Figure 6.6: Two raypaths travelling through a layered medium with a reflection
in the final layer. Solid line indicates the raypath assumed by the one dimensional
semi-analytical model. Dashed line indicates the raypath taken by the spherical wave
(ignoring refraction) within the finite element simulation.
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simulation was changed. Instead of each element in the array having a finite size

(one commensurate with the wavelength), a point source, that emits a spherical

pressure wave, was used as the transmitter. The displacement of the material

caused by a transmission from this point source is shown in Figure 6.9 which plots

the acoustic pressure travelling through the medium. After implementing the

point source transmitters in the finite element simulation the A-scans produced

exhibit smaller amplitude shear waves (see Figure 6.10).
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Figure 6.7: An A-scan comparison between a finite element simulation (blue line) and
the equivalent A-scan from semi-analytical model (orange line) from transmitter 1 to
receiver 21.
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(a) (b)

(c) (d)

Figure 6.8: Plots of the in-plane displacement at four points in time (8.5µs, 12.5µs,
16.5µs, 20µs) which highlights the shear wave being generated by the transmitter. The
black square denotes the location of receiver 21.

Figure 6.9: Plot of the acoustic pressure wave being generated by a point source.

To examine the similarity of the observed data over the full array, the log based

objective function was calculated for every pair of transmit-receive elements and

is plotted as a heatmap (Figure 6.11). Recall from Chapter 5 that this log based
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Figure 6.10: An A-scan comparison between a finite element simulation (blue line)
and the equivalent A-scan from semi-analytical model (orange line) from transmitter 1
to receiver 21. The transmitters are now point sources.

calculation is used in the inversion algorithm to give greater weight to the smaller

amplitudes in the A-scans. Figure 6.11 shows that the objective function values

are now higher along the main diagonal. Taking the log of the signal means that

the smaller signals (say due to shear waves), are given a far greater importance.

These additional features in the data arising from the enhanced physics of the

finite element simulation were not present in the previous chapter.

The last step before the tomographic inversion is to look at how the log objec-

tive function varies as the model is perturbed. It is important that the objective

function is sensitive to changes in the material to be reconstructed. It was found
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Figure 6.11: Log based objective function heatmap between the A-scans generated
from the semi-analytical model and the finite element data using a point source trans-
mitting element for the layered model in Figure 5.1.

that the objective function is insensitive to quite large perturbations. Despite

these discouraging results, in the next section, an inversion using this objective

function will be attempted.
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6.2 Reconstruction of a Layered Medium from Simulated

Data using the Log Based Objective Function

In this section, the inversion of the layered media (Figure 5.1) is attempted using

the log based objective function (as used in Chapter 5) on data from a finite

element simulation. The rj-MCMC was run for a total of 600,000 samples, where

the first 400,000 were discarded (burn-in period) and the remaining models were

sampled at an interval κ = 100. The initial model used to initialise the algorithm

was composed of eight Voronoi cells (in a rectangular grid pattern as before),

each assigned a wave speed of 5600 m/s. The algorithm had the following prior

uniform distributions: the number of cells must lie in the range of 5 to 250 cells;

the wave speed for a Voronoi cell must lie in the range 5600± 700 m/s; and the

noise parameter must lie in the range 0.001 and 0.5. The standard deviation for

the proposal distributions σ were: on wave speed 600m/s, and 150m/s for the

delayed rejection; on cell position 30%, and 3% for the delayed rejection; on the

wave speed for a new cell generated by a birth 100m/s; on the noise parameter

0.03. These are summarised in Table 6.1

Table 6.1: Proposal distributions in the rj-MCMC framework for the case where finite
element simulated data is being inverted.

Perturbation Range σ σdr

Wave speed 5600 ± 700 m/s 600 m/s 150m/s
Seed position – 30% 3%

Birth – 100 m/s –
Noise 0.001 - 0.5 0.03 –
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With these priors, the algorithm had an overall acceptance rate of 47.4%. The

acceptance rates were: 88.1% for the wave speed; 47.7% for the position; 29.8%

for the birth and death of a cell; and 29.7% for the noise. These values are very

high with an overall acceptance rate of 23-44% is desired.

The average objective function value (over all transmit-receiver pairs), as the

algorithm iterates through the samples, is shown in Figure 6.12, which shows

a sharp initial decrease and then steady objective function value of 0.35. This

is lower than the calculated objective function value of 0.475 between the mod-

elled data of the known Voronoi diagram and the observed data. The number

of Voronoi cells, as the algorithm iterates through the samples, is shown in Fig-

ure 6.13 (a). This shows a steady number of cells around 200 cells. This is also

shown in Figure 6.13 (b) which shows an approximate normal distribution with

a mean of around 200 cells for the last 200,000 samples. This is a very large

number, most likely that the algorithm is trying to account for the additional

waves present within the full wavefield finite element simulated data but absent

in the semi-analytic ray-tracing model.

Examining the posterior distributions of the wave speed at each point in the

domain, the median material map was reconstructed, (see Figure 6.14), and the

standard deviation map (see Figure 6.15). These both clearly show that the

algorithm failed to reconstruct the material map. It is believed that by taking

the log of the A-scans this emphasises small amplitude waves within the objective

function calculation. Since the finite element simulated data contains much more

of the physics (for example, wave refraction, and shear waves) it has a richer set of
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Figure 6.12: The average objective function value (Equation (2.1)) as the rj-MCMC
algorithm iterates through each sample.
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Figure 6.13: Plot (a) is the number of cells at each iteration of the rj-MCMC algorithm
and plot (b) is the histogram of the number of cells of the last 200,000 samples.
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small amplitude waves and hence has a poor correlation with the semi-analytical,

ray-tracing modelled data. This leads to a larger objective function value and

thus makes it hard to accurately reconstruct the medium. In future work, a

new analytical model that contains this additional physics may be required. For

now, to overcome this issue, a new objective function will be needed that is more

robust. Before one is developed a flaw reconstruction is attempted and quantified.
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Figure 6.14: Material map obtained from the median of the posterior distribution on
wave speed across the domain.
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Figure 6.15: Standard deviation of the posterior distribution on wave speed across
the domain.

6.2.1 TFM+ from the Reconstructed Material Map from

Simulated Data

Using the median of the posterior distribution, shown in Figure 6.14, as the recon-

structed material map within the TFM+ algorithm gives the flaw reconstruction

in Figure 6.16 recall there are three embedded defects - see Figure 5.1. From

this, three flaws can be detected, however, the third flaw could go unnoticed as

it appears to have a similar magnitude as the surrounding noise. The signal-to-

noise ratio for the third flaw is 15.9 dB, calculated by the maximum intensity of

a rectangle around the flaw and a mean value of a rectangle that is placed at the

same depth but centred at width 15mm. This is due to the additional noise that

is present in this image compared to the standard TFM image (see Figure 5.2)

and the TFM+ image with the known map (see Figure 5.3) which exhibits SNRs
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of 17.5 dB and 23.6 dB respectively. The error in the flaw location is 0.1mm.

From the ROC curves (see Figure 6.17) it can be observed that the performance

is slightly better than the TFM (based on a homogeneous medium assumption)

and the TFM+ (with the known map); the latter is slightly better at lower FPRs.

This is quantified by the area under the curve (AUC) value of 0.901 for TFM+

with the known map, 0.875 for TFM+ with the reconstructed map, and 0.830 for

TFM with a homogeneous map. However, this value uses the full reconstruction

meaning there are two more flaws that can create some false positives. Calculat-

ing the ROC curves for just the fourth layer focuses attention on the third flaw,

where the TFM performs better than TFM+ with the reconstructed map. All

these results are summarised in Table 6.2.
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Figure 6.16: A TFM+ image of the 3 inclusions, using the material map obtained
from the median of the posterior distribution as shown in Figure 6.14.
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Figure 6.17: ROC curves from Figure 5.6 and the ROC curve generated from the
TFM+ image Figure 6.16 calculated over a domain that contains all three inclusion.
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Figure 6.18: ROC curves from Figure 5.6 and the ROC curve generated from the
TFM+ image Figure 6.16 calculated over a domain that only contains the fourth layer.
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Table 6.2: Comparison of the quality metrics between the TFM image based on a
homogeneous map, the TFM+ image based on the known map, and the TFM+ image
based on the Full Waveform Inversion (FWI) reconstructed map (Figure 6.14).

Method SNR Flaw Position Error AUC AUC (4th Layer)
TFM 17.5 1.315 0.830 0.876

TFM+ 23.6 1.300 0.901 0.915
TFM+ FWI 15.9 0.100 0.875 0.845

6.3 Discussion

In this chapter, the A-scans generated from the semi-analytical model were com-

pared to the A-scans generated from a finite element plane wave simulation. From

these it was found that the modelled waves and simulated waves had different

dimensions. Adjustments to the model was made such that it was of a pressure

wave and better reflected what is being produced within the finite element sim-

ulation. This new semi-analytical model was then compared to a spherical wave

within the finite element simulation. From these comparisons, adjustments to

the semi-analytical model were implemented to account for the attenuation due

to spherical decay, and the finite element simulation was adjusted to limit the

presence of shear waves. An inversion was then attempted using the simulated

data from finite element simulation as the observed data.
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Although there was some improvement in the flaw detection, the log based ob-

jective function failed to create a material map approximation that contained any

features of a layered medium. The main problem is that the small amplitudes aris-

ing from the additional physics contained in the finite element simulated A-scans

which are then given significant weighting in the log of the A-scan is calculated.

In order to progress it would appear that a new objective function has to be

created. This should take into account the waves that arrive at the receiver after

the initial wave arrives but focus on the subset of the arriving waves that the

ray-tracing, semi-analytical model predicts.
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Chapter 7

Tomographic Reconstruction using a

Time Windowed Objective Function

From the previous chapters, it is evident that the initial peak in the received

A-scans are dominating the objective function Equation (2.1). This is not ideal

as critical information on the structure of the layered medium (Figure 5.1) is

contained in the smaller peaks that follow. It is therefore sensible to explore

other objective functions. For the exploration of a new objective function the

same scenario of a medium with four layers (Figure 5.1) will be investigated as

in Chapter 5 and Chapter 6. The simplicity of the model allows investigation at

every step of the rj-MCMC and facilitates the comparison of the log based PCC

and any new proposed objective functions.
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To explore a new objective function, the natural place to start is with exami-

nation of a simple L1 or L2-norm, as it is very common in the literature and has

produced positive results [88, 120, 121]. The advantage is the ease at which this

can be implemented and the low computational cost. Unfortunately, the L1-norm

objective function has similar issues as the PCC objective function. Firstly, it is

sensitive to a small timeshift and prone to cycle skipping; the phenomena where

peaks and troughs in a wave are matched but out of phase by one period. This

is demonstrated in Figure 7.1 which plots the L1-norm of the difference between

two identical Ricker wavelets f(s) and g(s− t) (for a fixed (s)) as they transition

in and out of phase. Secondly, the initial wave dominates the objective function

value. This is simply due to the relative amplitudes of the waves that follow the

initial wave which is generally the largest. This is highlighted in Figure 7.2 which

plots (a) an A-scan example and (b) the L1-norm as a function of the length of

time of the A-scan taken. It can be observed here that the initial wave accounts

for over 50% of the objective function value even though the information about

the layered medium is contained within the later arriving waves. Therefore to

reconstruct the layered structure, there needs to be a greater importance put on

the later arriving waves.

162



7.

5 10 15

Time [s] 10-7

0

1

2

3

4

5

6

7

D
iff

er
en

ce

Figure 7.1: The L1-norm of te difference between two Ricker wavelet functions f(s)
and g(s− t) (for a fixed (s)), moving in and out of phase.
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Figure 7.2: Plot (a) A-scan travelling through the layered medium and plot (b) the
L1-norm as a function of the length of time taken of the A-scans from (a).
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7.1 The Hilbert Transform

The first step to addressing the challenges associated with the objective function is

to use the envelope of the received wave by taking the Hilbert transform H(f(t)),

[122]. The Hilbert transform H(f(t)) of a real signal is defined as

H(f(t)) =
1

π
C

∫ +∞

−∞

f(τ)

t− τ
dτ. (7.1)

where C stands for the Cauchy principal value. The Hilbert transform produces

a real part (<) and an imaginary part (=). The envelope of the wave is then

obtained by

E(t) =
√
<(H(f(t))2 + =(H(f(t))2, (7.2)

where H denotes the Hilbert transform (see Figure 7.3).

To check for the suitability of this objective function, two wavelets were moved

in and out of phase f(s) and g(s − t) (for a fixed (s)). This produced a smooth

convex output which means that the envelope would stop cycle skipping (see

Figure 7.4). The envelope for a full A-scan was then obtained (see Figure 7.5).

This still has the issue of the initial peak dominating the objective function

value due to its amplitude being far greater than the other peaks present in an

A-scan. To overcome this a time windowed approach was implemented. This

takes a window around the regions of interest (first, second, and third peaks)

and then normalise the window by the maximum value of the observed data in

164



7.

0 50 100 150 200
t

-1

-0.5

0

0.5

1
Real(H(wave))
Imag(H(wave))
Envelope(H(wave))

Figure 7.3: Real and Imaginary component of the Hilbert transform (and the enve-
lope) of a Ricker wavelet.

this window. This means that each peak has an equal weighting on the objective

function value. The number of windows chosen was three for the three main

peaks that can be observed in a typical A-scan.

Starting with two A-scans (one from the semi-analytical model (forward model)

and the other from finite element simulation (observed data)) travelling through

the layered medium (see Figure 7.6), the Hilbert transform envelope for these

are obtained (see Figure 7.7). The three most dominant peaks are found and

a window around each one is taken and normalised by the maximum value of

the observed (simulated) data within each window (see Figure 7.8). The window

size is chosen to be the same size as the input waveform that is used within the

inversion, for this case the Ricker wavelet.
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Figure 7.4: The L1-norm fo the difference between two envelopes of a Ricker wavelet
function f(s) and g(s− t) (for a fixed (s)) moving into and then out of phase.

To check how sensitive the proposed objective function (L1-norm of the Hilbert

transform envelope and time windowing of the three tallest peaks) is, two identical

A-scans generated from the semi-analytical model were compared. In one of the

A-scans the second largest peak’s amplitude was increased by 10%. This led to an

objective function value increase of 4.88 from zero (see Figure 7.9). The objective

function matrix heatmap generated by varying the seed location and wave speeds

of a Voronoi with 8 cells (see Figure 7.10) shows a good sensitivity and suggests

this could be a promising objective function.
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Figure 7.5: An A-scan of a wave travelling through the layered medium (blue line)
with its associated envelope (orange line).
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Figure 7.6: A-scans from a layered medium generated by the semi-analytical model
(blue line) and the equivalent finite element simulation (orange line).
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Figure 7.7: Envelopes of the A-scans generated by the semi-analytical model (blue
line) and the equivalent finite element simulation (orange line).

7.2 Implementing the Hilbert Transform Envelope

To calculate the Hilbert transform the code from the supplementary materials in

[151] was adapted. The Hilbert transform envelope of a vector x (the discretised

form of an A-scan) was created by

1. Calculating the discrete FFT of x denoted by x̂.
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Figure 7.8: Normalised windows of the envelopes of the A-scans generated by the
semi-analytical model (blue line) and the equivalent finite element simulation (orange
line)

2. Create a vector h where

hi =


1 when i = 1 or (n/2 + 1)

2 when i = 2, . . . , n/2

0 when i = (n/2 + 2), . . . , n

3. Calculate {x̂ihi : i = 1, . . . , n}, the element-wise product of x̂ and h.

4. Calculate the inverse discrete FFT of x̂h denoted by xh.

5. Calculate the envelope by taking the square root of the element wise product

<(xh)2 plus the element wise product =(xh)2 (see Equation (7.2)).
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Figure 7.9: The windows of the envelopes of three largest peaks of an A-scan of the
4 layered medium unedited (orange line), and 10% increase is the second largest peak
(blue line). Objective function value of 4.88.

One downside of the code was that the number of elements of the vector xh needs

to be 2n for some natural number n. To make sure the third peak is included,

choosing n = 11 (2n = 2048 sample points) provided a sufficiently long enough

A-scan.

An objective function matrix heatmap was obtained between the observed

data generated by the semi-analytical model implemented in MATLAB (inverse

crime) and data generated by the semi-analytical model as implemented in the

tomography algorithm in FORTRAN (see, Figure 7.11). It can be observed that

there are a few outliers. With these included the mean value is 6.34, however,
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Figure 7.10: The Hilbert transform time windowed objective function value as the
seed location and wave speeds are varied from 0-25% from their original value.

when they are excluded it is 5.76. They are therefore affecting the overall ob-

jective function value for this particular model but not by a large amount. This

difference between the two approaches is simply down to the discretisation of the

Voronoi diagram in the tomography algorithm leading to a wave speed mismatch

at Voronoi cell boundaries. One way to minimise this would be to increase reso-

lution (number of discrete blocks) that represents the models. However, the goal

is not to find this known map. It is to find a set of Voronoi diagrams that form

an ensemble to represent the known map. Therefore, these small errors should

cancel out over many samples.
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Figure 7.11: Objective function matrix heatmap between the observed data generated
in MATLAB and the semi-analytical model data generated within the rj-MCMC.
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7.3 Tomographic Reconstruction of a Layered Medium

using a Hilbert Transform

In this section, a tomographic reconstruction of the layered medium (Figure 5.1)

is attempted using observed data generated from the semi-analytical model as

implemented in MATLAB (similar to the approach in Chapter 5) and the Hilbert

transform time-windowed (HTTW) objective function.

7.3.1 Reconstruction over 300,000 samples

The rj-MCMC was run for a total of 300,000 iterations with a burn-in of 200,000.

The remaining models were sampled at an interval of κ = 100. A homogeneous

initial model composed of 8 cells with each Voronoi cell having a wave speed of

5600 m/s was used.

The algorithm had the following prior (uniform) distributions: the number of

cells must lie in the range 5 to 300 cells; the wave speed for a Voronoi cell must

lie in the range 5600 ± 700 m/s; and the noise parameter must lie in the range

1 and 120. The standard deviation for the proposal distributions (σ) were: on

wave speed 200 m/s, and 60 m/s for the delayed rejection; on cell position 15%,

and 3% for the delayed rejection; the wave speed for a new cell generated by a

birth perturbation 50 m/s; on the noise parameter 6. These are summarised in

Table 7.1.
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Table 7.1: Prior and Proposal distributions set for the simulation using the semi-
analytical model as the observed data.

Perturbation Range σ σdr

Wave speed 5600 ± 700 m/s 200 m/s 60m/s
Seed position – 15% 3%

Birth – 50 m/s –
Noise 1-120 6 –

The standard deviation, for the proposal distributions were, chosen such that

the overall acceptance rate would lie between 23% and 44%. The limits of the

noise parameter were chosen by setting the lower limit to be less than the objective

function value between the FMC generated with the known map and the observed

data and the upper limit being greater than the objective function value between

the FMC generated for homogeneous map and the observed data. Note, that

the noise value should be commensurate with the objective function value, hence,

why there is a much larger range than in previous chapters. With these priors the

algorithm had an overall acceptance rate of 41.0%. The acceptance rates were:

82.5% for the wave speed; 42.6% for the position; 18.7% for the birth; 18.6% for

the death; and 28.5% for the noise.

The average objective function value, as the algorithm iterates through the

samples, is shown in Figure 7.12. The initial objective function value is 108.0

and it converges to approximately 60 relatively quickly. The number of Voronoi

cells as the algorithm iterates through the samples is shown in Figure 7.13 (a)
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which converges to around 100 cells. The histogram for the last 100,000 iterations

(omitting the burn-in period), is shown in (b) which shows a skewed distribution

with a tail on the right.

From the moments and characteristics of the posterior distribution on wave

speed at each point in the domain, material maps were constructed. Figure 7.14,

shows (a) the mean, (b) the median, (c) the MAP, and (d) the standard devia-

tion map of the posterior probability distributions. Two distinct layers can be

observed in the bottom half of the material maps. This is supported by the high

levels of deviation in (d) indicating layer interfaces. These two layers have wave

speeds of approximately 5100 m/s and 5900 m/s respectively which is close to

the correct wave speeds of 5010 m. and 5900 m/s respectively. In the top region,

there is no clear layer interface however the wave speeds vary from 5700 - 6000m/s

which is close the correct wave speeds of 5700 m/s and 6100 m/s. The layer inter-

faces in these reconstructions are not as well defined as in the reconstructions in

Figure 5.27. However, the wave speeds are closer to the known wave speeds. The

differences in wave speed from the known map is highlighted in Figure 7.15 which

is a vertical cross-section of the medium at the halfway point (32mm). It shows

that both the median and mean have a relative constant wave speed of 5800 m/s

for the first 20mm and then shows the estimated wave speed, approximating the

correct wave speed of 5010m/s for 10mm then correctly a wave speed of 5900m/s

for 10mm. It also shows the MAP does relatively well in reconstructing the wave

speeds. It shows a wave speed of 5700m/s for 1mm, a little less than 6100 m/s

for 10mm, about 5010 m/s for 10mm and then a little more than 5900m/s for
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Figure 7.12: The average objective function value as the algorithm iterates though
each Voronoi diagram sample.
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Figure 7.13: Plot (a) is the number of cells at each iteration of the rj-MCMC algorithm
and plot (b) is the distribution of the number of cells from the last 100,000 samples.
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10mm. However, this is one particular cross-section that gives a good wave speed

profile. This does not seem to be consistent when observing other cross-sections

at other x values. For example the cross section x = 60 would give a poor wave

speed profile from Figure 7.14. The cross-section in the centre arises from the

area with the most ray coverage and is often the best.
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Figure 7.14: Material map reconstructions of the 4 layered medium. Plot (a) is the
mean of the posterior distribution on wave speed at each point in the domain whilst
plots (b)-(d) show the median, MAP, and the standard deviation respectively. Both
the forward model and the observed data arise from the semi-analytical model.
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Figure 7.15: Wave speed profile of the moments of the posterior distributions (Fig-
ure 7.14) along the vertical cross-section at x = 32mm.

The variation of the wave speed profile along the lateral dimension of the

medium is shown in Figure 7.16. Where plot (a) shows the mean, (b) the median,

and (c) the MAP. This shows that the lower two layers are most consistent along

the lateral dimension of the medium. The top two layers do not exhibit the

same consistency. However, in the MAP profile (c) the average wave speed along

the lateral dimension sits about 5800 m/s for the first 10 mm then starts to

increases to about 6050 m/s. These values are closest to the known model. The

interquartile range is also very small for the second layer, however, it should be

noted that there is a large range when looking at the outliers.
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Figure 7.16: Wave speed profiles at x = 32mm and box plots of the wave speed
variation at every mm depth of the medium. Plot(a) is the median, plot (b) is the
mean, and plot (c) is the MAP, of the posterior distributions from Figure 7.14.

The distance, in the location of the layer interfaces, from the reconstruction

to the known map is shown in Figure 7.17. This shows that there is no interface

identified for the first layer, the second layer is approximately correct but this is

difficult to confirm due to the large region (centred at (32mm, 25mm)) of a high

standard deviation, and the third interface is off by about 1mm.

Now examining the posterior distribution of wave speeds at particular points

in the tomographic reconstruction (Figure 7.18 and Figure 7.19 points (a) - (f)).

These points are distributed such that there is one in each layer and two on the
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Figure 7.17: A vertical profile of the standard deviation (blue) - Figure 7.14 (d) - at
x = 32mm and the known layer interface (red dashed).

well reconstructed interfaces (on regions of high standard deviation) (see Fig-

ure 7.20, (a) - (f)). It is expected that there will be normal distributions within

the layers and bimodal distributions at the interfaces. However the interface re-

gion is particularly small (just one or two pixels) and can be hard to precisely

detect. It can be observed that: point (a) has a normal distribution at around

5900 m/s however there is a small tail to the left; point (b) has a bimodal distri-

bution with peaks at 5100 m/s and 6000 m/s which indicates it is on the interface

and thus exhibits values close to the known wave speeds of 5010m/s and 5900m/s

on either side of the interface; point (c) has a skewed normal distribution centred

at 5100-5200 m/s and a tail to the right; point (d) has a bimodal distribution

with peaks at 5200 m/s and 5900 m/s indicating an interface; point (e) has a

skewed distribution which has a dominant peak at 6100 m/s which is the wave
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speed that was expected (however, the skewed distribution indicates that it has

not fully converged in this region; point (f) has a normal distribution centred

around 5800 m/s which is close to the correct wave speed but the large standard

deviation indicates that the algorithm has not fully converged. Overall these dis-

tributions show that the model has not converged in the top half of the material

map but indicates that it is starting to converge and should be run for longer

(this is done in Subsection 7.3.3). In the second layer (20mm-30mm range) it

is close to converging but not quite due to the high standard deviation of the

distributions. The distribution in the last layer suggests that the algorithm has

converged in this region.

One possible explanation lies in how the semi-analytical model builds the A-

scan (see Chapter 2 for details). It is done with a backwards recursive relation

starting at the backwall and recording the largest reflections layer by layer until

it reaches the front wall. This means that the bottom layer has the potential

to have the most internal reflections and therefore the greatest impact on the

A-scan. Whereas the first layer has no internal reflections recorded. This could

explain why this is the region with the greatest error in all the reconstructions.
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Figure 7.18: MAP of the posterior distribution of the tomographic reconstruction.
Points where the wave speed distributions (Figure 7.20) have been analysed are shown.

7.3.2 TFM+ from the Reconstructed Map using the Hilbert

Transform Time Windowed Objective Function

To further test this tomographic reconstruction, it is used to image the flaws

embedded in the layered medium used in conjunction with the TFM+ algorithm.

Using the same FMC data as in Section 5.1, the MAP of the posterior distribu-

tion map is used with the TFM+ algorithm, and the resulting flaw reconstruction

is displayed in Figure 7.21. The last flaw is clearly detected which indicates an

improvement from the standard material reconstruction using the TFM (Fig-

ure 5.2). The SNR is 22.3dB and the flaw position error is 0.2mm. These results

are compared to the TFM and TFM+ with the known map are summarised in
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Figure 7.19: Standard deviation of the posterior distribution of the tomographic re-
construction. The points where the wave speed distributions (Figure 7.20) are analysed
are also shown.
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Figure 7.20: Wave speed distributions for selected points in the domain (as shown in
Figure 7.19).
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Table 7.2. From the ROC curves (see Figure 7.22) it can be observed that the

TFM+ with the MAP, with an AUC=0.86197, is better than the standard TFM

but not as good as the TFM+ with the known map, which is to be expected.

These results can be compared with the results in Subsection 5.5.1 which used

the Pearson Correlation Coefficient objective function based on the log of the

A-scans. It can be observed that there is a greater flaw location error here,

however, the SNR and AUC are not as good. These comparisons are summarised

in Table 7.3

Table 7.2: Comparison of quality metrics SNR, Flaw Error location, and ROC AUC
for the lower flaw in Figure 5.2, Figure 7.21, and Figure 5.3.

TFM TFM+FWI TFM+
SNR 17.5 22.3 23.6

Flaw Error (mm) 1.315 0.200 1.300
AUC 0.830 0862 0.901

Table 7.3: Comparison of the quality metrics SNR, Flaw Error location, and ROC
AUC, between the log PCC and the Hilbert transform time windowed (HTTW) objec-
tive functions.

Log PCC HTTW
SNR 28.4 22.3

Flaw Error (mm) 1.315 0.2
AUC 0.871 0.862
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Figure 7.21: A TFM+ image using the MAP of the posterior distribution map,
Figure 7.14(c). The white circles indicate the locations of the inclusions.
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Figure 7.22: ROC Curves of the TFM (homogeneous material map), TFM+ (known
heterogeneous material map) and TFM+ FWI (tomographic reconstruction of hetero-
geneous map shown in (Figure 7.21) using the binary map (Figure 5.5) as ground truth.

7.3.3 Reconstruction over 600,000 samples

To examine the convergence of the tomographic algorithm, the rj-MCMC was run

for a further of 300,000 iterations (giving a total of 600,000 iterations) with a burn-

in of 400,000. The remaining models were sampled at an interval of κ = 100. The

initial model was the homogeneous model as used before. The prior and proposal

distribution parameters were the same as before and can be found in Table 7.1.

The simulation was seeded such that the first 300,000 iterations are the same as

in Subsection 7.3.1.
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The average objective function value, as the algorithm iterates through the

samples is shown in Figure 7.23, where it can be observed that at around 400,000th

iteration the objective function value is more or less level with less variation. How-

ever, this is most likely due to the higher number of cells (shown in Figure 7.24).

With a higher number of cells each perturbation will have a lesser effect on the

objective function.

From the median of the resulting posterior distribution, Figure 7.25, it can be

observed that there is a large region of varying wave speed at 18mm in depth

followed by 4 distinct layers of approximately 5mm each followed another layer

of varying wave speed. This material wave speed map is subjectively worse than

in Figure 7.14.
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Figure 7.23: The average HTTW objective function value as the algorithm iterates
though each Voronoi sample.
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Figure 7.24: Plot (a) is the number of cells at each iteration of the rj-MCMC algorithm
and plot (b) is the distribution of the number of cells from the last 200,000 samples.
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Figure 7.25: Material map reconstructions of the 4 layered medium. Plot (a) is the
median of the posterior distribution on wave speed at each point in the domain whilst
plot (d) shows the standard deviation respectively.

Looking at the acceptance rates of the parameters, Figure 7.26, it can be ob-

served that they all remain steady after the first 100,000 runs. This behaviour

is dictated by the Metropolis-Hastings criteria (Equation (2.11)). If the com-

bination of these terms remains constant from model M to model M ′ then the

probability of acceptance will remain constant. For example, in Equation (2.14),

which describes the prior ratio for a perturbation caused by a birth of a cell, when
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the number of cells (L) gets large the relative difference becomes small. If the

objective function doesn’t vary much (as is suggested in Figure 7.23) then the

likelihood in Equation (2.16) will be a constant.

There are several possible ways to improve this reconstruction. One is to

improve the objective function. Another is to improve the forward model used;

since the semi-analytical model is used to generate the observed data it could be

that it is not capturing enough information of the layered medium to allow for

an accurate reconstruction. As stated before, there is an imbalance between the

reflections each layer can produce. With this in mind, a material reconstruction

based on finite element simulated data is attempted next.
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Figure 7.26: The acceptance rates of the different parameters as the algorithm iterates
through 600,000 samples.
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7.4 Tomographic Reconstruction of a Layered Medium

using the Hilbert Transform Time Windowed Objec-

tive Function on Finite Element Simulated Data

In the previous section, the tomographic reconstruction was based on observed

data generated from the semi-analytical model. In this section, it will be run

using finite element simulated data generated from OnScale. The goal is to be

able to reconstruct a material wave speed map that contains more layered features

than Figure 6.14 using the Hilbert transform time windowed objective function.

The rj-MCMC was run for a total of 600,000 samples, with a burn-in of 400,000,

and the remaining samples were sampled at an interval κ = 100. A homogeneous

initial model was used with each Voronoi cell assigned a wave speed of 5600 m/s.

The algorithm had the following limits on the prior distribution: the number of

cells must lie in the range of 5 to 300 cells; the wave speed for a Voronoi cell must

lie in the range 5600 ± 700 m/s; and the noise parameter must lie in the range

of 1 and 120. The standard deviation for the proposal distributions (σ) were: on

wave speed 400 m/s and 120 m/s for the delayed rejection; on cell position 15%

and 3% for the delayed rejection; on the wave speed for a birth perturbation 50

m/s; and on the noise 6. These are summarised in Table 7.4.
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Table 7.4: Proposal distributions set for the rj-MCMC on simulated data using the
new objective function.

Perturbations Range σ σdr

Wave speed 5600 ± 700 m/s 400 m/s 1200m/s
Seed position – 15% 3%

Birth – 50 m/s –
Noise 1 - 120 10 –

With these proposals, the algorithm had an overall acceptance rate of 39.7%.

The acceptance rate for each parameter was: 77.1% for the wave speed; 48.0%

for the position; 17.0% for the birth and 17.0% death of a cell; and 26.9% for the

noise.

The average objective function value, as the algorithm iterates through the

samples, is shown in Figure 7.27, which converges to around 98. The number of

Voronoi cells for the last 200,000 iterations is shown in Figure 7.28, which shows

a bimodal distribution with a peak around 90 cells and the other around 120

cells. This indicates that the model has not converged and the algorithm is still

exploring the model space.

From the moments of the posterior distribution on the wave speed at each

point in the domain, material maps were constructed. Figure 7.29 shows, (a)

the mean, (b) the median, (c) the MAP, and (d) the standard deviation of the

posterior probability distributions. One distinct layer at the bottom of the domain

can be observed with a depth approximately of 10 mm and a wave speed of 6000-

6200 m/s. A faint second layer and a heterogeneous region above this with

a high standard deviation can be observed. This could be in part due to the
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Figure 7.27: The average objective function value as the algorithm iterates through
each Voronoi sample for the rj-MCMC where the observed data is generated in a FE
package.

Figure 7.28: The distribution of the number of cells from the last 200,000 samples.
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Figure 7.29: Material map reconstructions of the 4 layered medium for the simulation
using the full 1024 rays. Plot (a) is the mean of the posterior distribution on wave
speed at each point in the domain whilst plots (b)-(d) show the median, MAP, and the
standard deviation respectively.

semi-analytical model’s potential to contain more internal reflections from the

bottom layer as discussed in Section 5.5 and Section 7.3. Another reason, is the

difference in arrival times for the subsequent wave packets in the A-scans that

have a diagonal raypath. This is shown in Figure 7.30 and Figure 7.31, where it

can be observed that the second wave packet in the FE A-scan arrives sooner than

predicted by the semi-analytical model. The reason for this is shown in Figure 6.6,

which shows two alternative raypaths, FE simulation and semi-analytical model,
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for a diagonal ray with a reflection in the last layer. The semi-analytical model

(solid line) is one dimensional, however, the FE simulation is two dimensional

and therefore has a raypath which has a more acute angle to the vertical and

undergoes refraction. This allows for a shorter distance and therefore a faster

time of arrival.

7.4.1 TFM+ from the Reconstructed Material Maps from

Simulated data

To quantify the quality of the reconstruction with respect to enhanced flaw imag-

ing, the median of the posterior distribution was used to correct the delay laws

in the TFM+ algorithm and the resulting flaw reconstructions are displayed in
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Figure 7.30: A-scans from a layered medium generated by the semi-analytical model
(blue line) and the equivalent finite element simulation (orange line) for a diagonal
raypath (transmitting on element 1 and receiving on element 15).

196



7.

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
Time [s] 10-5

-3

-2

-1

0

1

2

3

4

A
m

pl
itu

de

10-5

Semi-Analytical Model
Simulated Model

Figure 7.31: The second reflection from the A-scans (Figure 7.30) from a layered
medium generated by the semi-analytical model (blue line) and the equivalent finite
element simulation (orange line) for a diagonal raypath (transmitting on element 1 and
receiving on element 15).

Figure 7.32. It can be observed that there is a flaw in the bottom layer contained

within the white circle indicating the known location of the inclusion. This flaw

has an SNR value 14.7 dB and a flaw location error of 1.005 mm. From the ROC

curves (Figure 7.33) it can be observed that the performance is marginally better

than the standard TFM with an ROC AUC value of 0.855.

Table 7.5: Comparison of quality metric SNR, Flaw Error and AUC between the
standard TFM, TFM+ FWI, TFM+ known, for the simulation using simulated data
from a FE package.

TFM TFM+FWI TFM+
SNR 17.5 14.7 23.6

Flaw Error [mm] 1.315 1.005 1.300
AUC 0.8304 0.8550 0.9012
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Figure 7.32: A TFM+ image from the material map given by the MAP of the posterior
distribution as shown in Figure 7.29(c)
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Figure 7.33: ROC curves from Figure 5.6 including the ROC curve from the TFM+
generated from the median of the posterior distribution from Figure 7.29(c).
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Comparing these values to the SNR, flaw location errors, and AUC values

from the case in Chapter 6 which used the PCC on the log of the A-scans as

the objective function; it could be argued Figure 7.29 provides a better material

reconstruction due to indications of layers. However, when looking at the SNR

values, flaw location error, and AUC values the material reconstruction Chapter 6

performs better in all three metrics. The values can be found in Table 7.6.

7.5 Discussion

In this chapter, a new objective function was developed that calculated the enve-

lope of a wave using a Hilbert transform, windowed regions of interest and then

calculated the L1-norm between these windows. This Hilbert transform time win-

dowed (HTTW) objective function was then implemented into the tomographic

inversion scheme. The first section used observed data generated by the forward

model (so called inverse crime), where the layer interfaces in the material recon-

struction were not as defined compared to these generated using the PCC log

based objective function. However, the wave speeds of the layers were more ac-

Table 7.6: Comparison of quality metric SNR, Flaw Error and AUC between the
standard TFM+ images arising from using PCC on the log of A-scans (Log PCC) and
l1-norm on the windowed envelopes of A-scans (l1 Windows) as objective functions
from simulated data from a FE package.

Log PCC HTTW
SNR 15.9 14.7

Flaw Error [mm] 0.1 1.005
AUC 0.875 0.855
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curate. The next potential research would be to look into the robustness of this

HTTW objective function via different levels of proportional noise and additive

noise similar to Section 5.6.

When the material reconstruction was used with the TFM+ algorithm there

was an improvement in the imaging of the lowest (most difficult) flaw. However,

it did not perform any better than the imaged flaw from Section 5.5, which had

a better flaw location error and AUC value.

The HTTW objective function was then used to reconstruct the layered medium

from finite element simulated data. This provided a reconstruction which showed

indication of layers but had not fully converged. This material reconstruction

was visually an improvement from Chapter 6, however, the quality metrics aris-

ing indicated, from the subsequent application of the TFM, that it performed

worse.
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Chapter 8

Conclusion and Future Work

This thesis has developed a framework for using ultrasonic array data to recon-

struct material maps and to use these to improve the imaging of flaws.

8.1 Conclusion

This thesis began by giving a review of the current literature on Non-destructive

testing (NDT), introducing the different methods of flaw detection and charac-

terisation, and tomographic reconstruction. There was an introduction to in-

verse problems and different tools for inversion such as optimisation techniques,

Bayesian inverse problems, and full waveform inversion. Following this, Chap-

ter 2 gave a detailed summary of the methods and tools used to create the full

waveform inversion (FWI) presented in this thesis. This included a discussion on

Voronoi tessellations, the different types of observed data that are used in the to-
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mographic inversion, and the underlying principles of the Bayesian optimisation

method used in the rj-MCMC method. A mathematical model is then developed

to describe the propagation of ultrasonic waves travelling through layered media

in one-dimension. Using this, Chapter 3 develops, a bespoke one-dimensional

semi-analytical model is developed for the forward solver in the inversion algo-

rithm that follows.

In Chapter 4, the first approach to the tomographic inversion was conducted

on a synthetically generated random material. The material wave speed recon-

struction was used within the TFM+ imaging algorithm to reconstruct a flaw

present within the medium. Metrics were introduced to quantify the relative

improvement in the flaw reconstruction when compared to the benchmark TFM

imaging algorithm (an industry standard imaging algorithm). This approach was

then compared to that obtained using a time of flight (ToF) tomographic inver-

sion method. It was shown that FWI had comparable results to the ToF through

transmission (TT) results with a flaw location error of 1.2mm and an area under

the curve (AUC) of 0.7 for the ROC curves generated.

Chapter 5 looked at the case of a layered medium with the observed data being

generated from the semi-analytical forward model. The objective function was

adapted by taking the logarithm of the A-scans before calculating the objective

function value. With this new objective function, and using only a subset of

the data available, a tomographic reconstruction was obtained that contained

layered features. These layers had an incorrect thickness of 6mm for one and

14mm for another. It gave an AUC value of 0.84, which was comparable to the
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standard TFM. Using the full data set the tomographic reconstruction contained

clearly defined layers of around 10mm each, however, the wave speeds of the

layers were not correct for all the layers with one layer being off by 700 m/s. The

TFM+ image from the tomographic reconstruction gave an AUC value of 0.87,

an improvement on the standard TFM. It was then shown that this FWI method

was robust to proportional noise of 20% but not additive noise.

In Chapter 6 the FWI tomographic methodology was challenged with data that

was generated from a finite element simulation. This brought in additional physics

and a greater level of complexity. The FWI method was unable to reconstruct

the layered medium. However, this reconstruction still gave an AUC value of

0.875 which is an improvement on the standard TFM.

Next, in Chapter 7, a new objective function was developed. One that took the

envelope of the wave, windowed regions of interest, and then calculated the L1-

norm between the forward model and the observed data. This Hilbert transform

time windowed objective function was not dominated by the initial wave and was

robust to additive noise. Tomographic reconstructions with the observed data

generated from the semi-analytical model and finite element simulated data were

then attempted. With the semi-analytical data the tomographic reconstruction

managed to have regions of the correct wave speed but did not have clearly

defined layered interfaces. The TFM+ image gave an AUC value of 0.86 which

is an improvement on the standard TFM. With the finite element simulation one

layer was successfully reconstructed, with an AUC value of 0.855.
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8.2 Future Work

There is a large scope of future work for this research. There are various methods

that could improve the tomographic reconstruction of the layered media. How-

ever, the goal of this thesis was to create an inversion method of a general isotropic

heterogeneous material. The next step could be to focus on the inversion of more

complex heterogeneous material, such as a medium with a grid layout. Another

would be to adapt the full waveform inversion for locally anisotropic materials.

The next step could be to undertake tomographic inversion from experimen-

tal data from an ultrasonic phased array. To achieve this, improvements to the

forward model and/or objective function could be implemented. There are var-

ious methods of improving the forward model used. The first would be a one-

dimensional forward model that generates information over the whole medium

uniformly thus allowing for accurate material reconstruction close to the trans-

mitting array. Another would be to develop a two-dimensional model. With a

two-dimensional model it could be possible for additional physics to be included

such a refraction, shear waves, and mode conversion. An alternative would be

using a finite element solver as the forward model however this would require

more computational power. Another approach would be to develop the forward

model from the elastic wave equations instead of the acoustic wave equations.

A new objective function could also be developed, one option is the Wasserstein

metric.
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The inversion algorithm could be adapted and one method that could be im-

plemented is parallel tempering as presented in [101]. Another would be to add

in elements of simulated annealing to the evolution of the noise parameter in the

rj-MCMC algorithm to improve convergence.

This thesis has laid out a framework for tomographic reconstruction of het-

erogeneous materials using limited aperture ultrasonic array data. This platform

will hopefully pave the way for a fully functioning tomography capability in the

years to come.
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