
Statistical Applications in the Analysis of Vaccine

Preventable Diseases

Alan Yeung

Department of Mathematics and Statistics

University of Strathclyde

Glasgow, UK

2016

This thesis is submitted to the University of Strathclyde for the

degree of Doctor of Philosophy in the Faculty of Science.



This thesis is the result of the author’s original research. It has been composed by

the author and has not been previously submitted for examination which has led

to the award of a degree

c© The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material in, or de-

rived from, this thesis.

Signed:

Date: July 24, 2016



i

Acknowledgements

I have found the PhD to be a difficult but rewarding experience and so it is neces-

sary to fully express my gratitude to those that have helped me to get through it.

First and foremost, I would like to give a huge thanks to my supervisor, Professor

Chris Robertson, for the invaluable support and guidance offered to me through-

out my PhD. I feel that I have come a long way since I started and have tried to

get through many of the challenges on my own, but there is no doubt that Chris

has been pivotal in getting me to where I am today.

I would also like to thank the University of Strathclyde for financial support,

facilities and providing a warm and friendly atmosphere for me to undertake my

research. Finally a mention goes out to my fellow postgraduate students in the

maths and stats department, my family and any staff that helped me along the

way for ensuring my enthusiasm remained high. I believe that you should try to

enjoy yourself at your place of work and these people have certainly done their

part in that respect.



ii

Abstract

Disease outbreaks are a constant threat to public health and so effective man-

agement of these outbreaks is vital. By using statistical methods, we can better

understand how a disease is affecting populations and monitor the progression of

diseases over time. This thesis applies and develops statistical methods to stud-

ies of vaccine-preventable disease outbreaks in Scotland and aims to aid in the

detection and management of outbreaks.

For detecting outbreaks, a system was designed for Health Protection Scotland

(HPS) to link cases with incomplete genetic typing data to other cases to form

potential clusters that may be worthy of further investigation. A novel influenza

strain spread worldwide in 2009 and this work helps in the understanding and mon-

itoring of that outbreak. A key parameter is the reproductive number and this

was monitored for pandemic influenza using routinely collected data. Then post-

code data was added to develop a spatial model for estimating the rate of spread.

For vaccine-preventable diseases, the primary intervention strategy is vaccination

but their effectiveness must be assessed. Vaccine effectiveness (VE) was assessed

against various clinical outcomes which were associated with influenza to differ-

ing extents. Additionally, different methods were employed, including attempts to

correct for biases.

The main findings of this work have important implications. The system to

identify linked TB cases helps to ensure more links between cases are found, pre-

venting further disease spread. The spatial method for estimating reproductive

numbers offers improved parameter estimates. The VE study found that esti-

mates differ more by the outcomes it was measured against than by the methods

employed. Moreover, estimates found using outcomes with low specificity for in-

fluenza can be unreliable. Therefore, the recommendation for future studies is to

focus on using outcomes with higher specificity for influenza.
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Chapter 1

Introduction

Modern society is certainly faced with no shortage of arduous problems which

must be tackled diligently. These problems are diverse and include those relating

to politics, economics, the environment, social issues and health issues. Ultimately,

these issues all intermingle with one another to some extent but in the field of epi-

demiology, we are primarily interested in health issues. With regards to these,

diseases pose one of the most serious problems facing us today. Diseases can be

broadly categorised into two forms – chronic degenerative diseases such as cancer

and diabetes, and infectious diseases such as influenza and malaria. Both of these

are of massive concern to public health bodies around the world but our main fo-

cus here is on infectious diseases and more precisely, on a subgroup of these which

we can entitle as vaccine preventable diseases. These are perhaps, the group of

infectious diseases that we are best equipped to deal with and we will discuss them

in more detail later in this introduction.

In the past, infectious disease was undoubtedly the number one health issue. In

more recent times, developed countries have redirected a lot of their attention to-

wards chronic degenerative diseases [385]. In particular, chronic diseases which

are currently being given a great deal of attention include cancer [178, 230], obe-

sity [376], diabetes [7] and oral health problems [194, 231] which are increasingly

being recognised as having associations with numerous other health problems in-

cluding diabetes and chronic heart disease [29]. One of the primary reasons for

the increased attention being paid to chronic disease is that we have become much

better at dealing with infectious disease outbreaks as many of them can now be

controlled with vaccines and some can be effectively treated with antibiotics [375].
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However, infectious diseases remain as the main focus in developing countries and

despite the increased focus on chronic degenerative diseases in current times, the

world is always wary of infectious diseases as they can have explosive characteris-

tics and can also be very unpredictable.

There are plenty of classical examples to illustrate the devastation caused on pop-

ulations by infectious diseases throughout history. Some of the more documented

ones include cholera [105], plagues [87, 400] and influenza [192]. A more com-

prehensive list of infectious disease threats arising from 2000–2011 can be found

in a list created by the Centers for Disease Control and Prevention (CDC) [61].

Each of the diseases we just mentioned has killed millions of people over a rela-

tively short space of time and they continue to lurk in the background to varying

extents. Although our main focus is on diseases that directly affect humans, it

would be inappropriate to not mention here that infectious diseases that spread in

animals are also hugely important public health issues. Disease outbreaks in ani-

mal populations can have detrimental impacts on the economy and some of those

diseases can also spread from animals to humans. Some of the largest infectious

disease threats to animals in Europe have been suggested to come from influenza

and foot-and-mouth disease [201].

Advances in medicine such as antibiotics and vaccines have given us plenty of tools

to fight back against diseases. However, new issues continually arise such as an-

tibiotic resistance [380] and the fight is a constant back and forth between human

endeavour versus nature’s extraordinary evolutionary capability. For these rea-

sons, infectious diseases remain perfectly capable of causing substantial fear and

panic at any moment as evidenced fairly recently by the likes of severe acute respi-

ratory syndrome (SARS) in 2002 [344], novel forms of influenza such as pandemic

influenza in 2009 [63], new coronaviruses like middle east respiratory syndrome

(MERS) in 2012 [78], and Ebola virus disease (EVD) in 2014 [125].

The use of statistics in epidemiological investigations goes back a long time in his-

tory. Some noted early examples come from Florence Nightingale’s employment of
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statistics to help in understanding that a major cause of death for British soldiers

in the 19th century came from unsanitary conditions in military hospitals [210],

and also John Snow’s investigation to find the source of the 1854 cholera outbreak

in the Soho neighbourhood of London (now well known as the Broad Street pump

outbreak) [279]. It is now widely recognised that understanding and employing

mathematical and statistical methods is crucial for assessing epidemiological data

in order to make decisions regarding public health [246, 347]. Since those early

days, a vast array of statistical methods relevant for epidemiologists have been

developed and a good overview of some of the most commonly utilised methods

has been compiled by Jewell [189].

In this thesis, we apply and develop statistical methods and models in order to

study vaccine-preventable disease outbreaks in Scotland. The goal is to assist in

the management of the disease outbreaks considered in this thesis as well as aiding

in the management of outbreaks on a more general level. Discussions on infectious

diseases can contain a great deal of domain-specific jargon and a basic understand-

ing of some of the main aspects of infectious diseases can be very beneficial for the

reader. Hence, here we give a short background to infectious disease characteris-

tics, provide some definitions to the basic terms used in discussions of infectious

diseases, and briefly describe some of the most relevant steps involved in managing

infectious diseases, paying particular attention to the role of the statistician within

this process.

1.1 Definitions

Various terms related to infectious diseases will be used throughout this thesis and

we define and explain some of them here. The list is non-exhaustive but larger

glossaries are available in for instance, Last et al. [212] or Barreto et al. [20], and

more information about infectious diseases in general can be found in Nelson and

Williams [260].
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Infectious Agent

An infectious agent is any micro or macro organism that has the ability to produce

infection in a human or animal. This includes bacteria, viruses, fungi and parasites.

Not all infectious agents entering into a body will actually develop into disease.

Infectious Disease

The exact definition of an infectious disease has been debated throughout history

[104], particularly as technological advances in our ability to detect different types

of diseases have been made. One of the earliest definitions of infectious disease

was coined by Jakob Henle and Robert Koch in the nineteenth century. The re-

quirements for an infectious disease to exist under their causal criteria have been

named as the Henle-Koch Postulates. Although these are still used by some re-

searchers today [121], the general consensus seems to be that they are sufficient

but not strictly necessary for establishing causation [103]. Hence, we shall use the

definition as given in the Dictionary of Epidemiology [212] rather than getting too

concerned with the intricacies of causality criteria.

They state that an infectious disease is an illness caused by an infectious agent or

the toxic product of an agent that results from transmission of that agent (or its

toxic product) from an infected person, animal or reservoir (for example, plants,

soil or substances) to a susceptible host, either directly or indirectly through an

intermediate animal host, vector, plant or inanimate environment.

Vaccine Preventable Disease

When an effective and preventative vaccine exists for an infectious disease, then

we can refer to that disease as a vaccine preventable disease. Coincidentally, any

deaths resulting from a disease for which a vaccine exists is termed a vaccine pre-

ventable death. Effective vaccines can induce immunity from an infectious disease

and they provide a way of potentially eradicating infectious diseases. Thus, these

diseases should be of significant interest to public health bodies as vaccines have

the power to save many lives through preventative action rather than corrective
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action.

As an example of how successful vaccines have been, Roush et al. [316] gives a com-

parison of the numbers of cases and deaths for a number of vaccine preventable

diseases in the US in the pre-vaccine era against the post-vaccine era. In summary,

it shows that vaccines have been instrumental in decreasing numbers of cases and

deaths from many diseases by over 90%. There have even been exactly 100% or

very close to 100% decreases in the US for some diseases such as diphtheria, polio

and smallpox. However, there are plenty of issues to consider with regards to the

use of vaccines – they vary in their efficacy in preventing disease; they may only

induce immunity for some limited period of time; some vaccines induce harmful

side effects upon certain groups of individuals; some diseases evolve over time;

vaccines can be costly to manufacture on a global scale; and there can be logistical

issues in administering them to people, particularly in politically unstable regions.

Some vaccines against human diseases have been around for a long time as shown in

Table 1.1 but at present, only two infectious diseases have been classified as being

eradicated worldwide as a result of human intervention and only one of these is a

human disease. Those two diseases are smallpox (a human disease) and rinderpest

(a disease affecting cattle) [247]. The smallpox vaccine introduced by Edward

Jenner in 1798 was groundbreaking in that it was the first successful vaccine ever

developed, but it took serious concerted effort to eradicate smallpox globally and

this was finally achieved in 1979 [24, 42]. Today, the elimination of smallpox has

saved countless millions of lives and it is considered as one of the greatest feats

of humanity. However, the fact that only two diseases have ever been eradicated

despite so many effective vaccines being available clearly demonstrates it is still a

massive challenge to completely eliminate any infectious disease.

Emerging Infectious Disease

A number of the vaccine preventable diseases we look at in this thesis can also be

described as emerging infectious diseases (EIDs). The exact definition of an EID

may be fairly subjective but one definition is an infectious disease whose incidence
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Smallpox 1798 Mumps 1967

Rabies 1885 Rubella 1969

Typhoid 1896 Anthrax 1970

Cholera 1896 Meningitis 1975

Plague 1897 Streptococcus pneumoniae 1977

Diphtheria 1923 Adenovirus 1980

Pertussis 1926 Hepatitis B 1981

Tetanus 1927 Hemophilus influenzae type b 1985

Tuberculosis 1927 Japanese encephalitis 1992

Influenza 1945 Hepatitis A 1995

Yellow fever 1953 Varicella 1995

Poliomyelitis 1955 Lyme disease 1998

Measles 1963 Rotavirus 1998

Table 1.1: Vaccine preventable human diseases alongside the years the vaccines were
developed. The source of this information is Nelson and Williams [260].

has been increasing in the past two decades and is likely to increase in the future

[214]. An attempt has been made to add quantitative rigour to the definition

of an EID by Funk et al. [126] but as yet, a clear consensus still does not exist.

Some of the main reasons for the appearance of EIDs include genetic drift in disease

strains (for example, in influenza strains), alterations in climate, changes in human

susceptibility, and antibiotic resistance. Something which should be mentioned

alongside EIDs are reemerging infections such as drug resistant tuberculosis, which

has reemerged in recent times due to antibiotic resistance.

Herd Immunity

Herd immunity is a term which may convey a number of meanings in the context

of epidemiology [117]. One use for the term is to describe the proportion of people

in a population that have become immune (either naturally or through the use

of vaccines) to a particular infectious disease. However, the term may also be

used to refer to some threshold proportion of a population which has to become

immune in order to lead to a decline in the incidence of infection. Although

there may be different specific meanings for the term, the general implication
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is always similar – the overall risk of infection among susceptible individuals in a

population is greatly reduced if a sufficient proportion of the population is immune.

This is because infectious individuals are much less likely to come into contact

with susceptible individuals (see Figure 1.1 for a depiction of this concept). The

protection conferred to susceptible individuals in this scenario is sometimes also

known as indirect protection.

Figure 1.1: Depiction of the herd immunity concept. The source of the image is the
National Institute of Allergy and Infectious Disease (NIAID) [254].
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Endemic

A disease which continues to occur at some expected frequency in a particular

geographical location over a certain period of time is known as being endemic. In

other words, the rate of infection is in a steady state or is consistently maintained

in a population and therefore, the rate is not noticeably increasing or decreasing

over time. As an example, malaria is endemic to parts of Africa [259] and varicella

(chickenpox) remains endemic in a number of European countries [229].

Epidemic

When a disease occurs at a greater rate than expected in a particular geographical

location, then we have an epidemic. Some examples of well-known and relatively

recent epidemics include SARS which occurred in Asia and Ebola in Africa. We can

also say that there is an AIDS (acquired immunodeficiency syndrome) epidemic

in Sub-Saharan Africa where the prevalence of the disease in adults is still much

higher than in other parts of the world [360].

Pandemic

If an epidemic has spread to different countries and a large population, then it

becomes a pandemic. In 2009, we had a pandemic strain of influenza as it rapidly

spread from Mexico to the US and then all over the world [63]. Novel forms of

influenza have great potential for causing pandemics as most populations will be

susceptible to them and the disease is easily transmitted. This is especially true

in the modern world due to increasing population sizes, urbanisation and better

transportation systems that allow individuals to readily move to other countries.

Outbreak

An outbreak is the term given to an epidemic that is contained within a small

population or small geographical area. Public Health England (PHE) defines it in

broad terms as an incident in which two or more people experience similar illness

and can be linked in time or location [297]. Of course, the usual expected back-

ground rate of a disease must always be taken into consideration with respect to
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the previous statement. An outbreak can also be an event that involves microbial

or chemical contamination of food or water. In 2012, there was an outbreak of Le-

gionnaires’ disease in Edinburgh, Scotland [238]. Once the source of the infection

was isolated, this disease could be confined to a small area as it is not conta-

gious (cannot be spread from person to person) and is spread through breathing

in droplets of contaminated water.

1.2 Disease Transmission

A number of different factors play vital roles in disease transmission. Firstly, there

is the infectivity or virulence of the disease itself. Some diseases are naturally

more potent and aggressive than others and these will have a greater ability to

evade a host’s defenses. Then there is also the susceptibility of the host which is

affected by, for instance, an individuals genetics as well as their current state of

health. Finally, the environment plays a role as well and this can include factors

such as the climate, sanitation and access to health care. A particularly worrying

scenario plays out when a highly virulent disease agent has been introduced into a

susceptible population and there is an environment that brings these two together.

For instance, Ebola was able to spread rapidly throughout Africa as it is a highly

virulent disease and some countries there also do not have the adequate medical,

communications and transport infrastructure in place to quickly respond to the

outbreak [384]. There are numerous ways that a disease can be spread, some of

which involve direct physical contact and some which are transmitted in a more

indirect manner.

Physical Contact

The most obvious route of infection is through direct physical contact. Exposure

to the skin, body secretions or infected wounds of an individual or animal carrying

a disease can cause transmission to another susceptible individual. This can occur

in everything from shaking hands to sexual contact. Examples of diseases that

can be transmitted in this way include the common cold and sexually transmitted

diseases such as HIV/AIDS.
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Droplet

Diseases can be transmitted through droplets in the air, usually coming from

respiratory secretions such as a person coughing, sneezing, talking or even simply

breathing. Influenza – one of the main diseases we consider in this thesis – is

transmitted in this way. Other examples of diseases spread by droplets are measles,

mumps and rubella (MMR). There tends to be a higher incidence of diseases like

influenza in the winter months and one reason for this may be that the droplets

can survive better when there are lower indoor humidity levels [209].

Vehicle

Inanimate objects or substances can host infectious agents and in doing so, is con-

verted into a vehicle that can disseminate the disease. Common sources of diseases

transmitted in this way include water, air, food and soil. For diseases transmitted

in this fashion, it is critical to find out the source of disease transmission as quickly

as possible to prevent further spread. For instance, if it is a food-borne outbreak,

then the restaurants or food suppliers providing that food should be isolated. This

exact situation arose in 2011 when an outbreak of E. Coli was linked firstly, to

several restaurants and then later to the source which was a German bean-sprout

farm [46]. Related to vehicular transmission is iatrogenic transmission. This is the

specific case of where the transmission is related to medical equipment or medi-

cal procedures. Methicillin-resistant Staphylococcus aureus (MRSA) is one such

disease that fits this category as it is usually acquired in hospital.

Vector-borne

When an insect (or more generally, an arthropod) carries a disease which can be

transmitted to humans or animals, it is called a vector-borne disease. One of the

most widely known vector-borne diseases is malaria which is carried by mosquitoes.

Almost half the world’s population is at risk of this disease but the worst affected

are those in the poorest countries [392]. Annually, there are hundreds of mil-

lions of cases of malaria and hundreds of thousands die from the disease. As

well as malaria, mosquitoes also carry many other viral diseases including yellow
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fever, dengue fever and Japanese encephalitis. This has led to the term mosquito-

borne disease which is sometimes used to refer to the group of diseases carried by

mosquitoes.

Vertical

Vertical transmission occurs when a disease is passed down from parent to child.

Examples of diseases which can be transmitted in this way include rubella [82],

toxoplasmosis [169] and sexually transmitted diseases like HIV [220] and chlamydia

[396]. Vertical transmission can be prevented by vaccinating prior to pregnancy (if

a vaccine exists for the disease) or for diseases such as toxoplasmosis, antibiotics

can be given to the mother if she is diagnosed early.

1.3 Managing Disease Outbreaks

There are a multitude of procedures involved in the management of communicable

diseases which vary dependent upon many factors – severity of illness, transmissi-

bility, and whether it affects humans, animals or both, to name just a few. A vague

overview of the key stages involved can be seen in Figure 1.2 which is taken from

the Communicable Disease Outbreak Plan by PHE [297]. It concisely summarises

the entire process, right from the beginning, which is identification of disease out-

breaks up to an official declaration of the end of an outbreak. Rough guides similar

to this one for investigating outbreaks are commonly established by public health

bodies around the world as it is essential for them to have some sort of protocol in

place for investigators to follow when the need arises. This increases the chance of

mounting a swift and effective response. For instance, the CDC in America also

has a set of steps for outbreak investigations [62].

1.3.1 Identification

The first step in outbreak management is to establish that any suspected disease

outbreak is actually a real outbreak. To come to this conclusion, certain pieces of

information must be known in advance – namely, the expected number of cases

in some geographical region over some defined period of time. If the observed
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number of cases exceeds this expected number, then this meets one of the fun-

damental criteria for an outbreak. Furthermore, if there is a connection between

two or more people experiencing similar illness, either linked in time or location,

then this strengthens the case for an actual outbreak. Links between cases can be

found by speaking to the cases to see if they may have been in contact with each

other recently or by using more sophisticated methods such as DNA analysis to

find identical (or at least, highly similar) strains of a disease; in Chapter 2, we use

genetic data to try to identify cases that may be part of the same transmission

chain. Note that the conversations with cases is important as the link may not be

from a person but could be from food, water, environment, animal or vector and

these conversations could help in confirming a source.

The expected number of cases is usually found by looking at data on the numbers

of cases over a comparable time period in the past. Often this kind of data can be

found from looking at primary care data – for example, numbers of GP consulta-

tions for specific diseases. For diseases that appear extremely rarely in developed

countries such as rabies and polio [322], a single case may be sufficient to meet the

requirements for an outbreak investigation as this would be outside the norm. If

it is a novel disease (or new strain of a disease), then it can be compared to num-

bers of cases from similar types of diseases in the past. However, since it is novel,

it would naturally be of great interest and this would warrant an investigation,

regardless of it’s transmissibility and severity.

Another important point to take into consideration is that if the observed number

of cases increases at a particular time, it may not necessarily be due to an outbreak,

but could be due to a number of other factors. For instance, rises in reporting

frequency or improvements in our ability to diagnose a disease would cause an

increase in observed case numbers. As well as these, there could be an increased

awareness about a particular disease that could result from media attention or

publicity campaigns and this could have an impact on the number of case reports

[127]. One more factor which could affect an increase in cases, but probably

much more slowly over time, is changes in population in an area. If a population
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increases, perhaps due to increased migration, then this obviously increases the

potential for more cases, at least in terms of the absolute numbers.

1.3.2 Epidemiological Investigation

To undertake an epidemiological investigation, it is first necessary to set defini-

tions for classifying individuals as having the disease under consideration. The

criteria assigned will usually be clear and objective but may vary in their abil-

ity to truly determine if the disease is present. For instance, one could be the

presence of certain symptoms like fever or an increased level of antibody against

a disease; the latter example here is more likely to be indicative of a true case

as it is probably more directly attributable to a specific disease, while the former

considers a symptom which appears in numerous illnesses. Since there may be

some uncertainty here, cases are often categorised into confirmed, probable and

possible cases. Laboratory-confirmed cases often constitute the confirmed cases;

probable and possible cases will likely differ in the types of symptoms exhibited

by individuals or may differ in the place or time where their illness took place.

Once case definitions have been set, detailed information is required from all cases.

This includes demographic information such as age, gender, race and possibly ge-

ographic information as well, which is useful for finding out if the disease spread is

confined to particular regions. Generally, demographic information is important

for exploring whether or not certain groups of people are affected differently by

a disease, or even if some groups are more likely to contract the disease. These

differences can be found using simple statistical methods, beginning with tabula-

tions, and then moving onto methods such as t-tests and χ2 tests to find differences

and associations respectively. Adjusted estimates can be found using methods like

linear regression, logistic regression or multinomial regression [108]. Additionally,

it is usually desirable to have risk factor information on cases as those with, for ex-

ample, chronic conditions are often more severely affected by diseases. It is crucial

to have clinical information on cases. In particular, the date of onset of symptoms

or illness and some idea of recent exposures are highly useful as is information on

the severity of illness experienced by cases. Marrying the demographic, risk factor
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and clinical information together allows a fairly detailed epidemiological investi-

gation of cases to be undertaken. The exploratory process of identifying patterns

among cases of a disease and developing hypotheses based on any identified pat-

terns is called descriptive epidemiology. Following from this, the testing of those

hypotheses in a more formal statistical framework is called analytical epidemiology.

We carry out these kind of analyses in Chapter 3.

1.3.3 Surveillance

Disease outbreaks need to be continually monitored as they are unfolding and

surveillance, in the context of pandemic influenza, is explored in Chapter 5. Surveil-

lance is used to provide useful management information to help inform decisions

on whether or not interventions are needed to bring an outbreak under control.

A simple and crucial tool for surveillance is to produce the epidemic curve for a

disease outbreak, which is a visual display of the number of cases over time. For

instance, in Chapter 5, we use the epidemic curve as one of the initial steps on

the surveillance of pandemic influenza in Scotland during 2009. To produce an

epidemic curve, we require from the epidemiological investigation, the dates of on-

set of symptoms or something similar such as the dates that cases reported their

illness. This can be updated as new data on case reports becomes available.

The epidemic curve can help in showing us a number of things. Most obviously,

it illustrates the times at which the outbreak is growing or when the numbers of

cases are decreasing, and we can also see the epidemic peak (or peaks if there are

multiple peaks). If the peak is yet to occur, this should also be noticeable in the

epidemic curve. Some examples of fairly typical epidemic curves created using

fictitious data are shown in Figure 1.3.

The shape of an epidemic curve can give insights into the pattern of the epidemic

such as whether or not it is likely that there has been person-to-person transmis-

sion of the disease or if it is more likely that a common source such as food or

water has been responsible for the disease transmission. For example, if there is

a sudden rapid rise in the number of cases followed by gentle decreases in the
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number of cases (see Figure 1.3a), then this is more indicative of a common source

being responsible for the outbreak. This is because people are often exposed to

a common source over a short period and then as awareness of illness increases,

people will probably take protective measures. For person-to-person transmission,

there are more likely to be a series of taller peaks over time until the point at

which the outbreak begins to wane (see Figure 1.3c). This is due to the nature of

person-to-person transmission, where we should be able to observe points in time

where cases are reproducing. Note that taller peaks will only occur if each person,

on average, transmits the infection to more than one other person. The eventual

waning occurs as there will be less people who can be infected over time. Usually

this is either due to people gaining immunity naturally after being infected or due

to successful implementation of control measures.

The information given in the epidemic curve can also give us ideas about the in-

cubation period (time between exposure to disease and symptoms first appearing)

of a disease. If the outbreak occurs from a common source as in Figure 1.3a, then

all of the cases will usually appear within the duration of one incubation period.

However, if people are exposed to the source of disease for a prolonged period,

then we will not observe a peak but it should look more like a plateau instead; this

is the pattern shown in Figure 1.3b. In person-to-person transmission diseases,

the peaks in the epidemic curve should initially be approximately one incubation

period apart but as more cases arise, the peaks usually tend to merge into wave

patterns (Figure 1.3c). If there are any outliers in an epidemic curve, they should

be considered carefully. Those that appear early in the outbreak may point to a

possible source of an outbreak or they may simply be an early case unrelated to

the current outbreak. Similarly, late outliers may also be unrelated to the main

outbreak or could be cases with unusually long incubation periods.

Another useful surveillance tool is to map the geographic locations of the cases,

provided this data is available. For this we could use the locations of the cases’

place of residence, where they work, or locations they commonly visit – in Chap-

ter 5, we use postcode data related to where cases live to create a map. Producing
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Figure 1.3: Common examples of epidemic curves for different types of infectious dis-
ease outbreaks. Note that the data used to create the graphs is entirely
fictitious.
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a map like this can help us to identify the geographical extent of the outbreak as

well as possible areas where people were exposed to the disease. As the outbreak

progresses, the map should show particular areas where clusters of cases are ap-

pearing. One thing to always be aware of when mapping cases in this fashion is

that more cases will nearly always appear in areas that are densely populated so

sometimes it may be better to also consider the proportions of populations affected

by a disease in particular regions. Conversely, if many cases appear in places that

are not densely populated, then this immediately points to a likely hotbed for the

spread of disease.

For a disease that transmits from person-to-person, we will also want a system

for monitoring the rate that the disease is spreading over time. This is commonly

characterised by the reproductive number, which tells us the average number of

secondary cases that each primary case produces. There are a vast number of

ways to calculate this parameter, depending on the disease characteristics as well

as the available data and this is explained in much more detail in Chapter 4.

Tools that monitor the reproductive number over time can help us to know when

interventions should be put in place and once they have been put in place, they

can be used again to assess the effectiveness of these control measures.

1.3.4 Control Measures

Control measures should always be implemented as early as possible in an out-

break. This should be the point where a sufficient amount is known regarding the

characteristics of the disease and we can be fairly certain that particular actions

will be effective in interrupting further spread. To achieve maximum effect, the

control measures should be targeted at the source of the outbreak or those most

likely to transmit infection [374]. Moreover, protective measures should be aimed

at those most susceptible to the disease and most likely to suffer severe outcomes

from the disease. With any control measure there are many considerations to be

taken into account including practicality, cost-effectiveness of the strategy, side

effects on health and impacts on the natural environment. As well as this, the

characteristics of the disease play a central role in deciding which control mea-
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sures are best to use.

There are many fairly routine ways of limiting a person’s exposure to a disease

and thus, decreasing their likelihood of contracting it. A typical measure which

individuals can take which is usually highly beneficial is to practice good hygiene.

An obvious action for this is more thorough and frequent hand-washing and efforts

can be made by health services to promote this behaviour. Studies have already

shown that improved hand hygiene can help in reducing some healthcare associated

infections in hospitals [346]. Another measure to limit exposure include actions

which isolate people from the general population. For instance, when people have

a disease, they should not go to work and children should not go to school. In

the case of children, it is particularly an issue as they tend to come into contact

with greater numbers of people than adults [248]. If the situation becomes more

severe, then schools can be closed for a period of time. However, when making

this kind of decision, we must weigh the benefits of reduced disease transmission

against disruption of normal day-to-day activities and services [58].

If the disease affects an animal population, there is an additional control strategy

that has a similar effect to isolation but can, for obvious reasons, never be used

in humans – culling. Of course, with a strategy like culling, there are many eth-

ical considerations which must be taken into account [74] and it should only be

used under extreme circumstances as a last resort. Examples of where a decision

to cull animals has been made in the past include culling badgers to prevent the

spread of tuberculosis in badgers and culling cattle to prevent the spread of the

foot-and-mouth epidemic [115]. Since culling as a control measure is so drastic, it

will inevitably attract a lot of public attention and there must be confidence that

it will definitely be effective and there were no other eligible options. In the case

of culling badgers, there have been contrasting opinions regarding the effect that

culling badgers has had on preventing tuberculosis [92]. This kind of controversy

emphasises the point that culling should only ever be be considered after all other

possible control measures have been categorically ruled out.
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For people that have already contracted the disease, there are still measures which

can be taken to limit their transmissibility. To achieve this, sometimes medicines

or antimicrobials can be used that either relieves a patient’s symptoms or shortens

the period that they can transmit the disease. This can ultimately have a large

impact on the eventual size of the outbreak [150].

Vaccination as a Control Measure

The control measure that has arguably greatest impact is vaccination as it reduces

susceptibility by inducing long-term protective effects against a disease. However,

it is often impractical and expensive to immunise entire populations against a

disease. Hence, after some epidemiological investigation has been carried out to

acquire a deeper understanding on a particular infectious disease, it is usually more

appropriate to target specific groups of people who are more at risk of adverse out-

comes in vaccination campaigns. For instance, in the UK, a targeted vaccination

approach has been employed for the pneumococcal vaccine. Since 2003, PPV23

(pneumococcal polysaccharide vaccine containing polysaccharide from 23 capsular

types) has been targeted at those aged 65 and over, and since 2010, PCV13 (pneu-

mococcal conjugate vaccine containing polysaccharide from 13 common capsular

types) has been aimed at children and is part of the routine childhood immuni-

sation programme in the UK [294]. Note that before 2010, PCV7 was aimed at

children instead of PCV13 and a further notable point is that children and adults

that belong to a clinical risk group are also targeted for vaccination – for example,

those with immunosuppression or chronic heart disease. Similarly, in Scotland,

the influenza vaccine is targeted at the elderly, those with long-term health con-

ditions, healthcare workers and also primary school children who get the vaccine

via a nasal spray [298].

Another consideration with vaccines is that they are not always completely ef-

fective at preventing disease and their effectiveness can vary depending on the

characteristics of individuals. There are numerous different methods for estimat-

ing the effectiveness of vaccines which are discussed more widely in Chapter 6.

Commonly, the effect of vaccines are estimated from case-control and cohort stud-
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ies. Regardless of the method used, the basic principle is always to compare the

rate of disease among vaccinated individuals against the rate among unvaccinated

individuals. An example of a vaccine with high efficacy is the measles vaccine

[206] but other vaccines such as the pneumococcal vaccine (PPV23) and influenza

vaccines have more moderate and varying levels of effectiveness [11, 116] (also see

Chapter 7 for more on the effectiveness of influenza vaccines). In particular, in-

fluenza vaccines may not always be highly effective as the strains that circulate

each season always vary.

Some vaccines may also have side-effects on the health of some groups of people. If

the side-effects are mild such as a mild fever or a rash, it is generally still advisable

to get vaccinated if at risk from a disease. However, some people would not be

advised to get the vaccine such as those who have an allergy to certain ingredients

used to synthesise the vaccine. At the most extreme, these people could suffer

an anaphylactic reaction [97]. This problem may be counteracted to an extent

when there are multiple vaccines available for the same disease. For instance,

a variety of influenza vaccines are available for patients; most of the vaccines are

inactivated and do not contain live viruses but some may contain viruses that have

been attenuated. In addition to this, many influenza vaccines contain detectable

amounts of egg protein so consideration must be given to individuals with egg

allergies [86, 98, 359]. In the UK, those with egg allergies are recommended to

get an inactivated influenza vaccine that is either egg-free or has a low amount of

ovalbumin (the main protein found in egg white) [298].

1.3.5 Outbreak Conclusions

Every disease outbreak presents an opportunity to accrue additional knowledge

on diseases and every opportunity must be fully seized as future outbreaks will

inevitably occur. Hence, after the declaration that an outbreak is over, every-

thing concerning the outbreak should be evaluated. For example, it is important

to ascertain whether or not surveillance measures were good enough or if control

measures were effective and implemented early enough. All of these findings have

to be communicated to the relevant people and organisations to ensure we have
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learnt as much as possible from the outbreak and can mount more effective re-

sponses in future. Eventually the lessons learnt from the outbreak will appear in

the scientific literature as a contribution to our overall knowledge on public health

and epidemiology (see, for example, Leung and Nicoll [218] for a discussion on

lessons learnt following 2009 pandemic influenza). The ultimate goal is to be able

to react to these outbreaks in an optimal manner that will minimise the burden

on public health.

1.4 Aims and Objectives

The general aims of the work in this thesis are to explore how statistical meth-

ods can be applied to assist in each of the main stages involved in managing

vaccine-preventable infectious disease outbreaks – detecting outbreaks, descriptive

and analytical epidemiology, surveillance of a disease outbreak, and evaluation of

control measures. More specific aims include the following:

• Applying existing statistical methods to aid in the understanding of impor-

tant epidemics that have affected Scotland in recent years.

• Creating novel systems that utilise data available from Scottish healthcare

systems that can be used identify potential clusters or linked cases of a

disease.

• Investigating how data routinely collected in Scotland can be used to extend

current methods employed to assist with surveillance of infectious disease

outbreaks.

• Exploring different methods of assessing the impact of control measures and

providing recommendations on the best ways to conduct analyses to obtain

reliable results.

1.5 Thesis Outline

This thesis essentially follows the structure just outlined for the management of

infectious diseases, with the chapters looking at the individual parts involved.
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Moreover, the thesis progresses following the stages involved in managing disease

outbreaks and it has also been structured in a way such that large sections of

it are relatively self-contained. For each of the analysis chapters, we had clear

goals on what we wished to achieve – for instance, identifying disease outbreaks,

surveillance of outbreaks, evaluation of intervention measures – but the decisions

on exactly which methods and models to apply and develop to achieve these aims

have been largely guided by the data that was made available by Health Protection

Scotland (HPS).

In Chapter 2, we look at data on reported cases of tuberculosis in Scotland from

2000–2013, with a particular interest in the genetic strain typing data. This chap-

ter fits well with the first stage in managing infectious disease outbreaks as we aim

to identify clusters of tuberculosis cases. To meet this aim, we design a bespoke

system for HPS to use which can help ensure that they do not miss potential

strain clusters of cases. This is important for limiting the spread of the disease

in the population. Furthermore, we also explore the use of multivariate methods

such as multidimensional scaling for finding clusters. Chapter 2 stands well on its

own and can be read independently of the rest of the thesis without much loss in

understanding.

The 2009 influenza pandemic provided a great research opportunity as it was an

immediate and pressing public health priority. We decided to take advantage of

the wealth of data that was being generated on the pandemic – some of which are

only really generated during public health emergencies – and begin to look at the

pandemic in Scotland in Chapter 3. There we analyse a rich but hastily assembled

dataset on early case reports of pandemic influenza as fully as possible to better

understand the characteristics of those being infected. To achieve this, we use

several logistic regression models to test whether or not different symptoms were

being reported more frequently between males and females as well as people within

different age groups. Since numerous statistical tests are conducted, we take into

consideration the issue of multiple testing when making conclusions. By linking

the case data to data on deprivation status for residents in Scotland, we also look
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at the effects of deprivation on treatment and severity of illness as described by

the reported numbers of symptoms. Furthermore, a separate linked dataset on

contacts of those cases was kept by HPS, which allows us to explore case-contact

relationships at the start of an epidemic.

In Chapter 4, we conduct a literature review on methods of estimating the repro-

ductive number for infectious diseases – arguably the most crucial parameter that

has to be found during an outbreak. Here, the emphasis is on infectious diseases

which can be contracted by humans. The review is intended to be general to give

an idea of the vast range of methods out there for achieving this single task and

does not go into great detail on particular methods. This is why the review is

broad and describes mathematical modelling methods and statistical estimation

methods for deriving the reproductive number. The main purpose of the chapter

is to give background on some of the methods which can be used in Chapter 5.

In that chapter, we look at the issue of surveillance for pandemic influenza in

Scotland. We utilise some of the statistical estimation methods introduced in the

literature review chapter to find the reproductive number during the exponential

growth phase (early phase) of the pandemic. The main motivation for the es-

timation methods we decided to use were based upon the data that was made

available by HPS. Since postcode data relating to the place of residence of cases is

routinely collected in Scotland when they visit healthcare providers, we saw this

as an opportunity to develop a method for estimating reproductive numbers which

incorporates a spatial element. Hence, we attempt to extend one of the existing

methods for tracking the reproductive number over time and theorise that using

the spatial data can result in improved estimates; this is as opposed to just using

data on the time of onset of symptoms.

We finally turn our attention to control measures in Chapter 6. Similarly to before,

we conduct a literature review on methods of estimating the effect of vaccines to

serve as reference material for the chapter immediately following the review. The

reason why so many methods exist is that it can be tricky to obtain reliable vaccine
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effect estimates as it is often unethical to deny individuals a vaccine in practice

and thus, we have to use observational studies rather than the superior design –

randomised controlled studies. In the literature review, we consider the advantages

and disadvantages of using different study designs and different clinical outcomes

on which, vaccine effect is measured against. As well as this, we also look at

methods of reducing bias in observational studies. We then apply some of these

methods in Chapter 7 where we obtain estimates of the effect of seasonal influenza

vaccine for seasons 2011–12 and 2012–13 in Scotland. Again, the methods that we

decided to employ for estimating vaccine effect were driven by the data that HPS

was able to provide.
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Chapter 2

Tuberculosis in Scotland

The first stage in managing an infectious disease is to try to detect the main sources

of an outbreak. In this chapter, we consider how to detect outbreaks and more

specifically, look at how applying statistical methods to genetic typing data can

assist with the detection of clusters of linked cases which can be instrumental in

causing outbreaks. The focus of our attention here is on a vaccine-preventable in-

fectious disease which can be spread via the respiratory route – tuberculosis (TB).

TB is an ancient disease that is believed to have co-evolved with its hosts over

several millennia. It was initially a disease that affected lower mammals but has

also affected humans for thousands of years – in fact, the earliest evidence of the

disease found in humans so far dates back to around 9,000 years ago [167]. The

disease really came into prominence in Europe when cities became larger and more

crowded. Subsequently, a major factor that allowed the disease to spread to other

regions of the world was the empire-building tendencies of powerful European na-

tions [22]. The precision of data on TB cases and deaths prior to the 20th century

is questionable. However, this data exists for the UK from the early 20th century

when TB was an urgent public health issue, and in some years there were over

100,000 cases reported with around 40,000 deaths and a death rate of over 100 per

100,000 population (Figure 2.1).

From the early part of the 20th century, the numbers of cases and deaths de-

clined sharply, with the exception of the two world war periods where there were

increases in deaths related to TB (centre plot of Figure 2.1). The reductions in

TB cases and deaths can probably be attributed to a combination of a number of
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Figure 2.1: Tuberculosis cases, deaths and death rates per 100,000 population in the
UK from 1913 to 2000. The data used to create the plot is publicly avail-
able from Public Health England [295]. Spikes in cases and deaths were
observed during the world wars. The first antibiotic (streptomycin) against
TB was used in 1944 and this was one of the major developments in the
fight against TB.
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changes which took place during this period. Some of the major factors include

improved living conditions, reduction of poverty, better nutrition and advances

in public health such as sanatoria and pasteurisation of milk [107]. Scientific and

medical breakthroughs also played their part in reducing TB cases. One of the first

breakthroughs came in 1895 with the discovery of the X-ray by Wilhelm Roentgen

[215] as this allowed the disease to be diagnosed and tracked. Effective medical

treatments for TB came much later and caused the numbers of cases and deaths

to drop even more. For example, the first effective antibiotic against TB, strep-

tomycin, was isolated in 1944 [325], and then isoniazid was developed in 1952 (an

effective oral medication against TB) [36]. Despite work on a TB vaccine starting

as far back as 1900, it took a long time to prove it was safe and development was

also disrupted by the first world war. The vaccine (now known as a BCG vaccine

– Bacille Calmette Guérin) only began to be used more widely in the UK following

the second world war [333].

Although the disease is now much less common in the UK since the introduction

of improved public health measures, effective medical treatments and screening,

numbers of cases have been gradually increasing in the last 20 years and so it

is important to continue monitoring TB cases to see how the situation develops

here. One of the main reasons for the increasing numbers of cases is because of

immigration to the UK from people originally living in countries where TB is more

prevalent. Often these cases arrive with latent TB infection (disease is present but

person is not symptomatic) which later reactivates into active TB infection [280].

A further reason for the increase in attention being paid to TB is the fairly recent

rise in multi-drug resistant TB (MDR-TB) and the even more serious, extensively

drug resistant TB (XDR-TB) cases around the world and in the UK. These more

worrying forms of TB can cause a great deal of burden on any health care system

and this makes it a matter of great concern.

Here we introduce some bespoke systems implemented in the R project for statis-

tical computing [302] that can aid in the identification of potential clusters of TB

cases in Scotland. This tool can be used by Health Protection Scotland (HPS) as
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part of their surveillance efforts and the system is important as missing clusters

could lead to further spread of the disease throughout the population. Rapid de-

tection of potential clusters of TB cases allows resources to be better directed and

aids in overall efforts to control TB outbreaks in Scotland. We also provide some

general exploratory statistical analysis on these cases to give an overview of TB

trends in Scotland in recent years.

2.1 Background on Tuberculosis

Tuberculosis is caused by bacteria belonging to the Mycobacterium tuberculosis

complex (MTBC) (see Section 2.1.1 later for more details on this and other my-

cobacteria organisms) which in most cases, will affect the lungs. When it does

affect the lungs, we would have pulmonary cases and only these cases are infec-

tious. If TB spreads outside of the lung causing other forms of TB, then the case

is said to be extrapulmonary. Pulmonary cases can spread the disease to others

through the air as they cough and sneeze. Inhaling a small amount of germs can

cause a person to become infected, but usually only prolonged exposure to someone

with the illness will cause the disease to spread (for instance, sharing a bedroom

with someone infected with TB). Another way that TB can be spread is through

contact from open wounds and ulcers but that is much less common.

The symptoms are unpleasant and at times, coughing will become violent, produc-

ing spatum (mucus from the lower airways) and blood. Other symptoms of active

TB cases include fever, night sweats, chest pain, fatigue, loss of appetite and unex-

plained weight loss. One way of diagnosing TB is to check for the presence of TB

bacteria in mucus samples using a microscope. Another way is to use X-rays to

examine if there is scarring in the lungs. It is considerably more difficult to detect

latent TB cases, but it is possible via skin testing or blood testing methods.

TB is a serious condition which can be fatal but can be cured with antibiotic drugs

and is ultimately preventable. Usually a six-month course of antibiotics will be

sufficient to cure the disease. To prevent TB, a BCG vaccine is available in the
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UK and offered to babies who are at an increased risk of coming into contact with

someone infected with TB. The effectiveness of the vaccine has been estimated

to vary anywhere between 0 to 80% for up to 15 years but on average, it has

been found to reduce the risk of TB in newborns and infants by over 50% in a

meta-analysis of published literature [68]. Even though TB can be treated with

antibiotics, there are forms of the disease that are drug resistant which are termed

MDR-TB and XDR-TB. A major reason that these forms of TB have arisen is

because of inadequate drug regimens being taken by patients; for instance, drug

regimens not being taken for the appropriate duration [304]. These forms of TB

are much more difficult and costly to treat [276] and they are of massive concern

as the numbers of drug resistant TB cases have been rising [293].

The disease remains as the leading cause of death among those infectious diseases

which can be cured, with around 1.3 million deaths worldwide from it in 2012 out

of 8.6 million falling ill with TB in that year [383]. The disease still occurs in every

part of the world and around one-third of the world’s population has latent TB.

The bacteria can remain latent in the body for a long time, possibly even life-long.

Most cases are from developing countries in South-East Asia and Africa as shown

in Figure 2.2 which was produced by the World Health Organization (WHO) for

a report in 2011 [394].

It is known that many new cases of TB in the UK are people of ethnic minorities

coming from countries with higher incidences of TB [281]. Hence, individuals ar-

riving to the UK from countries with an incidence of 40 or more cases per 100,000

population per annum must be screened upon arrival [152]. In the UK, there are

currently (in 2013) around 9,000 cases reported per year and most of these come

from the largest and most population-dense cities such as London [300]. The main

risk groups for TB are those who are co-infected with the Human Immunode-

ficiency Virus (HIV). These people are 21–34 times more likely to contract TB

[383]. People with weakened immune systems (immunosuppression) through other

routes such as those with drug or alcohol misuse problems also have an increased

risk of TB. Furthermore, it has also been linked to overcrowding and malnutrition
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Figure 2.2: Estimated TB incidence rates for countries around the world in 2011 as
given in the World Health Organization’s global tuberculosis report 2012
[394].

which are both associated with poverty [213].

2.1.1 Mycobacteria Organisms

Mycobacteria organisms can be divided into a few main groups. Firstly, we have

the mycobacteria that cause TB in humans and/or animals and these are grouped

within the “Mycobacterium tuberculosis complex” (MTBC). Among the closely

related species included in this group are M. tuberculosis (where ‘M.’ stands for

‘Mycobacterium’), M. Africanum, M. bovis, M. microti and M. canetti [45]. Out

of these, M. tuberculosis is by far the most commonly diagnosed species in humans,

while M. Africanum and M. canetti are mainly seen in cases from Africa [79, 307].

Bovine TB is another alias for M. bovis and comes mainly from cattle but it can

also occur in domestic animals such as sheep, goats, cats and dogs [19]. However,

bovine TB is now much less common in developed countries since the introduction

of pasteurised milk. Finally, M. microti is rare in humans and occurs mainly in

small rodents [59].

Another group of mycobacteria are those which cause leprosy. This includes M.
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leprae and M. lepromatosis [290]. Lastly, there are the nontuberculosis mycobac-

teria (NTM) group which are sometimes known as environmental mycobacteria or

atypical mycobacteria. These mycobacteria can cause pulmonary disease similar

to TB as well as other conditions such as skin disease [131]. This group includes

a vast number of organisms. Some examples are M. chelonae, M. abscessus, M.

fortuitum, M. xenopi, M. gordonae and M. avium.

2.1.2 Surveillance in Scotland

All mycobacterial isolates in Scotland are tested by the Scottish Mycobacteria

Reference Laboratory (SMRL) which is the national reference laboratory there.

This laboratory reports weekly results to HPS and also provides epidemiological

information if requested. In 2000, the Enhanced Surveillance of Mycobacterial

Infection (ESMI) scheme was established and coordinated by HPS [160]. This

scheme was designed to incorporate the European minimum dataset for the collec-

tion of TB data (see Schwoebel et al. [327] for more details), which allows Scotland

to contribute to the WHO and European TB data collection systems. Essentially,

cases reporting to the ESMI scheme will have some clinical and demographic in-

formation available.

The trends from notifications data collected by HPS as illustrated in Figure 2.3

show that the numbers of TB cases have been increasing since 2005 [162]. In

particular, there has been an increase in non-pulmonary cases. As part of the

global effort to tackle TB, the Scottish Government wished to reverse these trends,

and a TB action plan for Scotland was established by them in collaboration with

HPS in 2011 [330]. The main goal of this action plan was to identify where TB-

related services could be enhanced and within that goal, the main themes included

looking at how surveillance could be improved; the work in this chapter contributes

in this area.

2.1.3 Strain Typing

People suspected of having TB submit clinical samples such as a spatum sample.

If M. tuberculosis grows in culture media from this specimen, then it becomes an
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Figure 2.3: TB notifications in Scotland from 1990 to 2010. The plot was produced
using data made available by HPS [162].

isolate and only these can have their genetic material analysed (genotyped). A

key part of TB infection control comes from universal molecular strain typing of

all MTBC isolates. This means that at least one isolate is submitted from every

culture-positive patient with TB. This process is considered essential for epidemi-

ological investigations such as analysing the spread of specific genotypes. This is

because combining genotyping results with epidemiological information can help

identify TB cases which are part of the same transmission chain. Moreover, it can

help in identifying clusters of cases, unexpected outbreaks, false positives and can

distinguish between activation of latent TB infection and recent or newly acquired

infection with development of TB disease.

The first method for the typing of TB strains was IS6110 restriction fragment

length polymorphism analysis (RFLP) [363], but producing data using this method

proved technically challenging. Another method named spoligotyping [195] was

later developed which did not have the data production issues associated with

RFLP. However this method suffered from having low discriminative power for

distinguishing between strains. Hence, a better method for strain typing than

RFLP or spoligotyping was needed.
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VNTR-MIRU

The most widely used method for TB strain typing at present is VNTR-MIRU

(variable number tandem repeats of Mycobacterial interspersed repetitive units)

which produces results in a standardised code and so can be analysed easily. Note

that the method is also referred to as MIRU-VNTR in reports as well. In DNA, a

tandem repeat occurs when there is a repeated pattern of two or more nucleotides

which are directly adjacent to each other; an example of three tandem repeats

would be ACA ACA ACA. If there are 10–60 nucleotides being repeated, it is

termed as a minisatellite, and when the number of nucleotides being repeated is

not known or variable, we have VNTR. In many bacterial genomes, there are re-

gions of variable tandem base repeats (minisatellites) and these regions are prone

to variations in size. If a sufficient number of regions are present, the variations in

size can be used as the basis of a typing procedure – this is the fundamental idea

behind distinguishing different M. tuberculosis strains using VNTR-MIRU.

This method only became possible as a method of TB strain typing after the

publication of the M. tuberculosis H37Rv genome (total genetic content of M.

tuberculosis) where 41 MIRU loci (specific positions of a DNA sequence) were

reported. The M. tuberculosis strains are distinguished by examining the difference

in the number of copies of tandem repeats in specific loci of the genome. Originally

12 of these 41 MIRU loci were considered enough to be useful for distinguishing

between organisms. A fictitious example of a 12 loci MIRU profile would be:

123456654321

In this example, the first digit (1) refers to the first locus where there is one tan-

dem repeat, the second digit refers to the second locus which has two repeats and

the remaining digits can be interpreted similarly. Note that it is possible to have

tandem repeats in excess of 9 and any double-digit repeats would have to be clearly

separated in the data to be noticed. In our data, we distinguished double-digit

repeats by using capital letters in the fashion of A = 10, B = 11, C = 12, etc.

Later it was found that levels of discrimination could be increased by using 15
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loci, which Scotland had been using since the middle of 2005. This has since been

changed to a standard panel of 24 loci in an attempt to optimise reproducibility

and discrimination [365]. It is now the global standard for typing MTBC and has

been used in Scotland since November 2010.

Incomplete MIRU Profiles

In some isolates, there can be a missing locus (or multiple missing loci) due to

the quality/quantity of DNA samples as well as the general complexities of the

multiplex polymerase chain reaction (PCR) procedure used to amplify the DNA.

When a missing locus is present, it is represented by an underscore ( ) in the data.

For instance, in the following MIRU profile, the third locus is missing.

12 456654321

MIRU profiles with missing loci can only form potential rather than definitive

clusters. In the majority of isolates with 24 loci profiles, there are between 0–3

missing loci. In our dataset, over 98% of 24 loci profiles had between 0–3 missing

loci, and just under 50% were complete profiles (see Table 2.3 in Section 2.4 on

finding potential strain clusters for more details). It is possible for isolates to have

more than three missing loci but when there are more than three missing loci, a

repeat DNA extraction is usually recommended where feasible.

2.1.4 Cluster Definitions

Definitions for different types of clusters of TB cases are given in the TB Strain

Typing Cluster Investigation Handbook by Public Health England (PHE) [299].

We briefly summarise these definitions here. The definition of clustered cases is two

or more persons with TB that are linked in time and share possible epidemiological

links. This means that two cases would have spent time in the same locations at

a similar time but the timing of the infectious period may not have been definite

enough to be sure that transmission of infection between them would have taken

place. The next step up from this is an epidemiological cluster where the epidemi-

ological link is known. For this link, one case may have volunteered the name of

another case while either of them was potentially infectious or the patients may
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have spent time in the same locations when either of them was infectious. Using

strain typing data allows us to obtain strain type clusters. This is where two or

more persons with TB have isolates with indistinguishable MIRU profiles and the

dates of when they were diagnosed with TB are within two years of each other.

An example of this is if we have two isolates with profiles:

123456654321

123456654321

The combination of epidemiological and strain typing evidence gives an epidemi-

ologically confirmed strain typing cluster. This is where two or more persons with

TB provide samples within two years of each other which produce indistinguish-

able MIRU profiles, and in addition to this, there are also known epidemiological

links between them. For this type of cluster, we can confidently assert that the

cases involved are genuinely linked.

Potential Strain Clusters

In this investigation, we make use of either 15 loci MIRU profiles or 24 loci MIRU

profiles as they were most widely available. For each MIRU length, we have sep-

arate rules for identifying potential clusters. For 15 loci profiles, the rule we use

is that a case can have a maximum of one missing locus when forming a potential

cluster with other cases that have complete profiles. However, all loci other than

the missing locus must have exactly matching numbers of tandem repeats to the

complete profile. Since around 99% of cases in our dataset with a 15 loci MIRU

profile are either complete or have only one missing locus (Table 2.3), this rule will

include almost all of the cases when looking for potential clusters. In this example:

123456787654321

1234 6787654321

123456 87654321

the second and third profiles can form a potential strain cluster with the complete

profile at the top of the list. However, it must be noted that the second and third

profiles cannot form a potential strain cluster on their own without the complete
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profile. In other words, all potential clusters must involve at least one complete

profile. A further notable point is that incomplete profiles can be a member of

more than one potential cluster. For instance, in the example below, the case with

the incomplete MIRU profile shown on the second row would form two potential

clusters.

Potential Cluster 1 Potential Cluster 2

123456787654321 123476787654321

1234 6787654321 1234 6787654321

123456 87654321

For 24 loci profiles, we follow the rules set by PHE [296] and allow a maximum of

two missing loci to form potential clusters. Thus, an example of a potential cluster

involving 24 loci profiles could be:

123456781234567812345678

1234567 1234567812345678

123456781234567 2345678

Potential clusters must be investigated further to determine possible epidemiolog-

ical links between cases, particularly under the scenario where incomplete profiles

belong to multiple potential clusters. If there is deemed to be sufficient evidence

for a true cluster to exist after the investigation, then we may have enough evidence

to impute the missing digit by using the MIRU profiles of cases that are linked to

the incomplete profile. Furthermore, in the scenario where an investigator requires

further assurance as to what a missing digit may be, it may be possible to have

the gaps filled in to confirm (or disconfirm) the existence of a cluster by repeating

the genotyping procedure. However, even resampling does not guarantee that the

missing digit will be known as the sample may again, give an incomplete reading.

In any respect, investigating potential clusters by utilising incomplete profiles in

this way means that some clusters which may have been previously missed can

now be identified.

Single Locus Differences

Although rare, it is nevertheless possible for linked TB cases to have a variation in

one repeat unit between their MIRU profiles. The reasons why this happens are
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not fully known at present but it is believed that this may occur due to the evolu-

tion of a strain over a number of years or through transmission to different people.

A study by Shorten et al. [332] looked at a large London outbreak to research the

evolutionary relationship of Mycobacterium tuberculosis isolates from 13 patients

that had strains that clustered together based on epidemiological investigations.

Although these strains clustered, their MIRU profiles differed slightly. Based on

their findings, they concluded that evolution had occurred during the course of

transmission between cases, and a major reason for this may have been that the

strains evolved through acquiring additional antimicrobial resistance. Moreover,

another study by Walker et al. [370] used whole genome sequencing to detect

microevolution within strains and their findings support the evidence that mi-

croevolutionary events can change a MIRU genotype within a host. Examples of

this scenario have also been observed in Scotland. In one investigation, it was

found that an index TB case transmitted the infection to their partner and they

had identical 24 digit MIRU profiles with the exception of one digit (the 4th digit

was a 6 in the index case but a 9 in the secondary case) [331].

2.2 Data

Data was available from all the clinical samples tested by the SMRL from January

2000 up to the beginning of August 2013. The vast majority of the data came

from TB cases reporting to the ESMI scheme which offers extra information on

TB cases over those cases not reporting to the ESMI scheme (we shall refer to

these as “NOESMI” cases). Specifically, available data from cases reporting to

the ESMI scheme includes details of healthboard, gender, age group (specific age

or date of birth was not given), whether or not the form of TB is pulmonary or

non-pulmonary, the date of notification, the culture result and MIRU profile. In

contrast to this, we know only the date of notification, the culture result and MIRU

profiles for the NOESMI cases. Note that the SMRL only considered obtaining

MIRU profiles if the culture result was positive for a form of TB within the MTBC.
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2.2.1 Analysis Dataset

In total, we had data on 5,701 TB case notifications – 5,479 of these reported to

the ESMI scheme and 222 of these were NOESMI cases. For later analyses, we

removed some of these cases as we could not be certain that they were actually

TB cases. Firstly, we removed all cases who had a negative culture result. On

top of this, we also removed cases where the culture result was contaminated, not

known or failed to grow. Finally we removed cases that did not have their samples

sent for culture at all; the numbers of cases removed are summarised in Table 2.1.

All of the cases removed here were ESMI cases as all of the NOESMI cases tested

positive for some form of TB. This left 4,106 cases which could be used in later

analyses and we also note that 1,358 had 15 loci MIRU profiles and 1,141 had 24

loci profiles. These cases can be used for finding strain-type clusters.

n

All TB Data

ESMI 5,479

NOESMI 222

Total 5,701

Data Removals

Contaminated 4

Culture Negative 974

Culture Result Not Known 117

Failed to Grow 23

Not Sent for Culture 477

Data for Analysis

Remaining 4,106

With 15 Loci MIRU Profile 1,358

With 24 Loci MIRU Profile 1,141

Table 2.1: Numbers of TB notifications in our dataset along with numbers of cases
removed before analysis for various reasons. Also shown are the numbers
which did and did not report to the ESMI scheme and the number of cases
with 15 and 24 loci MIRU profiles available.
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2.2.2 A Note on Greater Glasgow and Clyde

Since our dataset spans 2000–2013 and contains healthboard information, we must

note that the time period of the data coincides with the time when the Greater

Glasgow and Clyde (GGC) healthboard was created (1st April 2006). It was

created by amalgamating the Greater Glasgow healthboard with a large share

of the Argyll and Clyde healthboard. Approximately 75% of the residents from

Argyll and Clyde joined GGC while around 25% joined the Highland healthboard

[180]. In order to make the output of our summary tables and graphs more concise

and comparable over the whole time period of the data when looking at aggregate

counts within healthboards, we assigned 25% of the Argyll and Clyde cases before

2006 to Highland and 75% of their cases to GGC.

2.3 Exploratory Analysis

To begin with, we explored the characteristics of the 3,884 TB cases that reported

to the ESMI scheme between January 2000 and August 2013. To gain an idea as

to whether or not the numbers of cases by sex, age group and within healthboards

were proportional to the population at large, we compared case counts against the

2013 mid-year population estimates provided by the National Records of Scotland

(NRS) [256]. Using these together allowed the calculation of an observed/expected

ratio (O/E ratio) for each category along with an associated 95% confidence in-

terval [90]; these are shown in Table 2.2.

Over the whole period, there were much more male cases (62%, n = 2,415) than

female cases (38%, n = 1,467). Since the gender split in Scotland is almost equal

between males and females, the results indicate that there are more male cases

than we would expect based on the mid-year population counts within each gen-

der (O/E ratio: 1.28, 95% CI: 1.22 to 1.33). A larger than expected proportion

of cases come from those aged 15–34 (O/E ratio: 1.32, 95% CI: 1.25 to 1.39) and

those aged 65+ (O/E ratio: 1.34, 95% CI: 1.26 to 1.43). However, there were very

few cases in the 0–14 age range (only 55 cases or 1.4%).
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Cases
2013

Mid-Year
Population

Expected
Cases

Obs /
Exp

95% CI

Sex

Female 1,467 2,741,168 1,997 0.73 0.70 – 0.77

Male 2,415 2,586,532 1,885 1.28 1.23 – 1.33

Age Group

0-14 55 852,005 621 0.09 0.07 – 0.12

15-34 1,324 1,376,449 1,003 1.32 1.25 – 1.39

35-64 1,576 2,152,384 1,568 1.01 0.96 – 1.06

65+ 926 946,862 690 1.34 1.26 – 1.43

Healthboard

Ayrshire & Arran 114 372,210 269 0.42 0.35 – 0.51

Borders 31 113,870 82 0.38 0.26 – 0.53

Dumfries & Galloway 47 150,270 109 0.43 0.32 – 0.58

Fife 123 366,910 265 0.46 0.39 – 0.55

Forth Valley 100 299,680 217 0.46 0.38 – 0.56

Grampian 303 579,220 418 0.72 0.64 – 0.81

Greater Glasgow & Clyde 1,791 1,137,930 822 2.18 2.08 – 2.28

Highland 128 321,000 232 0.55 0.46 – 0.66

Lanarkshire 338 652,580 471 0.72 0.64 – 0.80

Lothian 678 849,700 614 1.10 1.02 – 1.19

Orkney 3 21,570 16 0.19 0.04 – 0.56

Shetland 3 23,200 17 0.18 0.04 – 0.52

Tayside 177 412,160 298 0.59 0.51 – 0.69

Western Isles 13 27,400 20 0.66 0.35 – 1.12

Disease Type

Non-Pulmonary 1,179

Pulmonary 2,705

Table 2.2: Observed and expected numbers of tuberculosis cases in Scotland report-
ing to the ESMI scheme over the period January 2000 to August 2013 by
various characteristics. Expected numbers were estimated using 2013 mid-
year population counts provided by the National Records of Scotland [256].
Confidence intervals were calculated assuming observed cases are Poisson
variates [90]. Note that a very small number of cases were missing informa-
tion on some of the characteristics – 2 with missing sex, 3 missing age and
8 missing healthboard.
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By far the most cases came from the largest healthboard which is GGC (46% of

cases, n = 1,791), while many cases also came from the next largest healthboard,

Lothian (17.5%, n = 678). These were also the only two healthboards with a larger

proportion of cases than would be expected relative to their respective populations

(O/E ratio for GGC: 2.18, 95% CI: 2.08 to 2.28; O/E ratio for Lothian: 1.1, 95%

CI: 1.02 to 1.19). The rest of the healthboards had less cases than expected based

on their population size, but it must be noted that medium-sized healthboards

such as Grampian and Lanarkshire also had a reasonable amount of cases with

303 and 338 cases respectively (around 8% of total cases each). With regards to

the type of TB that cases were having, about 70% of cases had pulmonary TB (n

= 2,705) and 30% had non-pulmonary TB (n = 1,179).

2.3.1 Trends Over Time

Since ESMI and NOESMI cases had date of notification, we could plot the com-

bined total cases each year which is shown in Figure 2.4. In 2013, data only goes

up to the beginning of August and hence, we made a simple estimation of counts

for 2013 by multiplying the 2013 counts by 12
7

. It is important to note that while

estimating counts in this way allows the trend over the whole time period to be

more visible, we cannot rule out the possibility that the decreases in case counts

seen in 2013 (Figures 2.4 and 2.5) could be due to a reporting delay – if a reporting

delay does exist, we would only be able to obtain a more reliable count for 2013

with data extracted after some duration in 2014. A further note is that 122 cases

did not have a date of notification and so they are not included in the case counts.

It is clear that cases peaked firstly in 2004 and then peaked again between 2008 to

2010, but numbers of TB cases have been dropping since then. During the highest

peaks between 2008 to 2010, there were just under 350 cases each year.

Looking at only the ESMI data allows us to see trends over time by gender, dis-

ease type, age group and healthboard, and these trends are shown in Figures 2.5

and 2.6. There we can see that female cases peaked in 2004 and have been de-

creasing since 2008 while male cases peaked in 2010 and have been decreasing

since then. In Figure 2.5b, we can notice that the non-pulmonary cases have been
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Figure 2.4: TB cases over time. Counts relate to the total of ESMI and NOESMI TB
cases where year of notification was available. Note that in 2013, data
only goes up to the beginning of August and an estimate for the total year
counts has been made by multiplying by 12/7.

steadily increasing over time but numbers of pulmonary cases have been getting

lower since 2010. Figure 2.5b illustrates that case numbers have been relatively

stable over the years for those aged 0–14 and 35–64 and have been decreasing for

those aged 65+ since 2010. However, the number of cases aged 15–34 increased

from around 50 cases in 2001 to just under 150 cases in 2009 but since then, case

counts have been decreasing slightly and seem to be stabilising in recent years.

The numbers of cases each year by healthboard are shown in Figure 2.6. Although

there are some occasional bursts of cases in a year for a healthboard (for instance,

Borders in 2009, Forth Valley in 2006, Highland in 2010, and Tayside in 2008),

numbers of cases do not fluctuate dramatically over the period. An encouraging

sign comes from the steady decrease in cases from Greater Glasgow and Clyde

since 2009. However, numbers of cases in Lothian have remained at a similar level

over the years.
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Figure 2.5: TB cases over time by gender, disease type and age group where year of
notification was available. Note that in 2013, data only goes up to the
beginning of August and an estimate for the total year counts has been
made by multiplying by 12/7.

2.3.2 Strain Clusters with Complete MIRU Profiles

Using only TB cases with complete 15 or 24 loci MIRU profiles, we found all of

the strain clusters formed by having at least two TB cases with identical MIRU

profiles. Out of the 1,193 cases with complete 15 loci MIRU profiles, 722 cases

were in one of the 130 different strain clusters; from the 547 cases with complete 24
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Figure 2.6: TB cases over time by healthboard where year of notification was available.
Note that in 2013, data only goes up to the beginning of August and
an estimate for the total year counts has been made by multiplying by
12/7. Also note that the y-axis varies by plot to account for differences in
healthboard size.
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loci MIRU profiles, 218 were in one of the 51 different strain clusters. This means

that 60.5% of those with complete 15 loci profiles share a profile with at least one

other case and 39.9% of those with complete 24 loci profiles have a shared profile

with another case.

Figure 2.7 shows the frequencies of clusters of different sizes. For 15 loci profiles,

strain clusters varied in size from 2–37 cases, and there were 61 clusters of size

2 and two clusters with 37 cases in them. Meanwhile for 24 loci profiles, strain

clusters had between 2 to 26 cases in them; 26 clusters with 2 cases in them and

1 cluster with the largest size of 26 cases.

2.4 Finding Potential Strain Clusters

To find potential strain clusters, we made use of 15 and 24 loci MIRU profiles

which have missing loci. More specifically, for those with 15 loci profiles, we ex-

amined cases with one missing locus, and for those with 24 loci profiles, we looked

at cases with up to two missing loci (more background on the topic of potential

strain clusters can be found back in Section 2.1.4). Hence, for cases with 15 loci

profiles, we wanted to investigate the 150 cases with one missing locus to see if

they can form potential strain clusters (Table 2.3), while for cases with 24 loci

profiles, we wanted to consider a much larger number of cases (n = 496).

Table 2.3 also shows that there was proportionately much more missing data for

cases with 24 loci profiles compared with 15 loci profiles; almost 90% of the 15 loci

profiles were complete while under 50% of the 24 loci profiles were complete. This

is a clear sign that although the discriminatory power of the 24 loci VNTR-MIRU

genotyping procedure is superior for differentiating samples compared with using

using a smaller panel of VNTRs [65], this advantage is offset to an extent by the

additional difficulty in obtaining a complete MIRU profile. Another implication of

this finding is that it clearly illustrates a greater need to consider potential strain

clusters when using 24 loci VNTR-MIRU genotyping as our results suggest there

will be at least one missing locus around half of the time the procedure is carried
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(b) 24 Loci MIRU Profiles

Figure 2.7: Histogram of strain cluster size using only cases with complete MIRU pro-
files. A strain cluster here is formed by having at least two TB cases having
identical MIRU profiles and hence, the minimum strain cluster size is two.

out.

It is also important to consider where missing loci appear most frequently as this

gives an idea of where imputation of missing digits would be highly beneficial.

From Figure 2.8, we can observe that missing loci are most common in loci 9, 18,

22 and especially in loci 23 and 24 – 7.6% of MIRU profiles were missing data for

locus 9, 6.5% for locus 18, 5.4% for locus 22, 30.8% for locus 23 and 13.6% for

locus 24. Moreover, as most of the missing loci appeared in loci 23 and 24, this
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15 Loci Profiles 24 Loci Profiles

Missing Loci n % n %

0 1,193 87.85 547 47.94

1 150 11.05 358 31.38

2 12 0.88 138 12.09

3 1 0.07 81 7.10

4+ 2 0.15 17 1.49

Table 2.3: Number of missing loci by MIRU profile length.

reinforces the point that there is greater utility for finding potential clusters when

using 24 loci MIRU profiles.

2.4.1 Gower’s Dissimilarity Coefficient

In order to find potential strain clusters, we must identify the MIRU profiles that

are identical to other complete MIRU profiles except for the missing loci. To do

this, we must calculate a measure of similarity between profiles with missing loci

and all complete profiles. Gower introduced a general coefficient for measuring

dissimilarity (or similarity) which is capable of dealing with a mixture of different

types of data [136]; these include dichotomous (binary), qualitative and quanti-

tative variables. For finding similarities, we can treat each locus as a qualitative

variable and hence, Gower’s dissimilarity coefficient is suitable for our task. For a

pair of cases i and j with strains of TB genotyped using 15-loci, we would have

k=15 variables, with each variable representing an individual locus. Hence the

dissimilarity between the strains for a pair of cases on each locus can be denoted

by sijk.

For qualitative variables, sijk = 0 (no dissimilarity) the digits are the same in both

cases for locus k. Conversely sijk = 1 (dissimilar) if the digits differ between the

two cases in locus k. Gower’s method also has a quantity δijk which represents

the possibility of making comparisons. Here, δijk = 1 when a comparison can be

made between two MIRU profiles (both profiles have a digit in locus position k),
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Figure 2.8: Percentages of missing numbers of tandem repeats in each locus.

and δijk = 0 when a comparison cannot be made (one or both profiles are missing

a digit in locus position k). This effectively deals with profiles that have missing

loci through the adjustment sijk × δijk. As a simple example, consider a scenario

where we have two profiles each genotyped by 15 loci:

323332532315323

3233325323 5323
(2.1)

where denotes a missing locus, then δijk = 0 for k = 11 and δijk = 1 for the rest

of the loci (k 6= 11, k ≤ 15). Finally the dissimilarity between the pair of cases i
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and j is calculated as the average score taken over all possible comparisons.

sij =

K∑
k=1

sijk × δijk
K∑
k=1

δijk

(2.2)

So in fact, for the two profiles shown in (2.1), the dissimilarity score is sij = 0
14

= 0.

We can clearly see that the purpose of the δ term is to fix the denominator as the

number of non-missing loci, and we can also note that Equation (2.2) ensures that

all scores are in the range 0–1, with a score of 1 meaning all digits are different

between two profiles. Thus, the two profiles in the example are considered as not

dissimilar at all and so potential clusters can be easily identified by looking at the

incomplete MIRU profiles which produce dissimilarity scores of 0 with at least one

complete MIRU profile. In our example, we would be particularly interested in

discovering whether or not the missing digit matches the corresponding digit in the

complete profile which is a 1. When incomplete profiles produce sij > 0 with all

complete profiles, they do not form any potential clusters using this dissimilarity

scoring system.

2.4.2 Probabilities for Potential Strain Clusters

One more important point to mention is that it is possible for incomplete profiles

to belong to more than one potential cluster. In the following example, the incom-

plete profile shown on the second row could belong to two potential clusters:

323332532315323 323332532325323

3233325323 5323 3233325323 5323
(2.3)

In this instance, we would be interested in finding out if the missing digit is a 1

or a 2. One way to discover what the missing digit is with, perhaps, a high degree

of certainty is to repeat the genotyping procedure on the sample related to the

incomplete profile. However, as an intermediate step, it would be beneficial to

estimate a statistical probability that the incomplete profile belongs to either of
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these two clusters based on all available MIRU data (keeping in mind the possibility

that it may not belong to any of these clusters). It is important to stress that

these probabilities are only for exploratory purposes as certain assumptions need

to be made in order to derive them. In essence, nothing absolutely definitive can

come from these probabilities and epidemiological investigation is still necessary to

determine true clusters. We propose two methods for estimating the probability.

Method 1: Relative Frequency of Repeats in Each Locus

The first method we propose for calculating the probability that a missing locus

is a particular digit is to use the relative frequency of a digit in a particular locus

among all available MIRU profiles. If we denote fdk as the frequency of a specific

number of tandem repeats d in locus k, and nk as the total number of MIRU

profiles with a non-missing digit in locus k, then the relative frequency is

rdk =
fdk
nk

(2.4)

The percentages of different numbers of tandem repeats in each locus (rdk×100%)

are displayed in Figures 2.9 and 2.10. Note that much more data was available

for the first 15 loci compared with loci 16–24 (n = 2,499 for the first 15 loci and

n = 1,141 for loci 16–24). This is because we were able to use both, the 15 and

24 loci MIRU profiles when finding the percentages while for loci 16–24, we could

obviously only use the 24 loci MIRU profiles.

From the figures, it is immediately apparent that certain loci more commonly have

specific numbers of repeats. This finding can give us some degree of confidence

in using relative frequencies to impute missing digits as the number of repeats in

some loci seems to be reasonably predictable. For example, in loci 2, 6 and 9, there

are very often two repeats, particularly for locus 6 where there were two repeats

for approximately 95% of all the MIRU profiles. Furthermore, in loci 4, 13, 19

and 21, there are very often three repeats; this number of repeats occurred in over

80% of MIRU profiles for each of these loci. However for some loci such as locus
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Figure 2.9: Percentages for numbers of tandem repeats in each locus from 1 to 15. The
15 and 24 loci MIRU profiles could be used here. Note that percentages
have been rounded to one decimal place and are only displayed on the plot
if the percentage is greater than zero.
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Figure 2.10: Percentages for numbers of tandem repeats in each locus from 16 to 24.
Only 24 loci MIRU profiles could be used here. Note that percentages
have been rounded to one decimal place and are only displayed on the
plot if the percentage is greater than zero.
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7, the number of repeats is less predictable (3 or 4 repeats is most likely but 2, 5

and 6 repeats also appear quite frequently).

Referring back to our example in Equation (2.3), we can obtain the relative fre-

quency that the missing digit is a 1 or a 2, giving us probabilities using this method.

Using the percentages from locus 11 in Figure 2.9 (and converting back to relative

frequencies) gives r1,11 = 0.88 and r2,11 = 0.11 and hence, this method suggests

that the missing digit in the example is far more likely to be a 1 rather than a 2.

When there are two missing loci (the maximum allowed for considering potential

clusters in 24 loci profiles), we multiply together the relative frequencies for each

missing locus to get a probability using this method. Multiplying the relative fre-

quencies in this way assumes independence with regards to the joint-missingness

between loci. We tested this assumption by performing a bootstrap test where ran-

dom numbers of joint-missing loci were generated (while keeping the total number

of joint-missing loci fixed to be the same as in the actual data), and then compar-

ing the sum of the χ2 values for the actual data against the simulated data. The

bootstrap test showed that the independence assumption is not valid here – largely

due to the finding that most of the missing loci appear in loci 23 and 24 (see Fig-

ure 2.8) – but despite this, we will still use the method of multiplying the relative

frequencies here when there are two missing loci as it provides a simple measure of

probability for investigators to use, while bearing in mind that information derived

from epidemiological investigations would take precedence anyway.

Method 2: Incomplete Profile Must Belong to a Potential Cluster

Another method of calculating the probability that a missing locus is a specific

digit is to assume that the incomplete profile must belong to an existing potential

cluster. Essentially, this means that we assume that the missing digit can only

be a digit from a potential cluster. If there are more MIRU profiles in potential

clusters with digit d in the missing locus position, then there is a higher probability

of that missing digit being d. We can write this probability as
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pd =
nd
npc

(2.5)

where nd is the number of profiles which are in potential clusters with a digit d

and npc is the total number of profiles in potential clusters. For the example from

Equation (2.3), this method would assign a 50% chance of belonging to either of

the potential clusters as there is only one case in each of the potential clusters.

Comparison of Methods

As illustrated with the example given in Equation (2.3), the two probability meth-

ods can sometimes produce vastly different estimates. Since this can happen some-

times, we must consider the merits and shortcomings of using estimated probabil-

ities from both methods for cluster investigations.

Method 1 is based more on the big picture regarding TB strains in Scotland as it

looks at patterns in numbers of repeats for all of the MIRU data. Hence, Method

1 should work well when examining strains of TB that are common throughout

Scotland or when the number of repeats in a locus is reasonably consistent for all

strains. However, Method 1 is likely to be less useful when looking at missing num-

bers of repeats in loci which often have variable numbers of repeats; for instance,

loci 7, 17 and 23 (see Figures 2.9 and 2.10), and this is likely to be an issue as locus

23 is missing in around 30% of profiles (Figure 2.8). Moreover, the probabilities

generated using Method 1 when there are two missing loci may have questionable

reliability as the method assumes independence between joint-missing loci while

our tests showed this to be an invalid assumption.

In contrast to this, Method 2 focuses on much smaller subsets of MIRU profiles

as it only compares incomplete profiles to other profiles that are almost exactly

the same. Thus, it is likely to work better than Method 1 when looking at strains

of TB that are rarer in Scotland and may also be more reliable when there are

two missing loci. A disadvantage of Method 2 is that it disregards the possibility
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that cases belong to no existing cluster; with Method 1, this possibility is still

considered and can be apparent when all the estimated probabilities are low.

Another issue to consider regarding the two methods is that the probability es-

timates could change over time as more TB case data becomes available. This

problem is likely to affect Method 2 much more than Method 1. This is because

Method 2 is based on smaller numbers and thus, will be less stable over time.

However, the probability estimates for Method 1 will only be affected if there is a

large influx of rare TB strains into Scotland.

2.4.3 Implementation in R

Since HPS receives updated data on TB cases in batches after some period of time

(e.g. every quarter of a year), the functions written in R have been designed to take

in batches of TB cases with MIRU profiles and find all incomplete profiles which

form potential clusters. The R code for the functions is given in Appendix 2.A and

the instructions for processing updates is also contained in the Appendix. Gower’s

dissimilarity coefficient was calculated using the daisy() function from the clus-

ter package by Maechler et al. [232].

The first function fun.initcompleteclus() is to be run only once initially to find

all the strain clusters using only cases with complete MIRU profiles; it does not

need to be run when new batches of cases are received and is used just to create

a starting cluster dataset. This function has been designed in this way as at the

beginning we can find clusters very simply by just tabulating the MIRU profiles

and seeing which profiles have frequency greater than one. Each cluster is given a

cluster ID which is “SC” followed by a four digit number. So for instance, the first

cluster is named as “SC0001”. Note that these cluster IDs are fixed and static

over time. Once the complete strain clusters have been dealt with, the process

becomes more complicated.

All updating of clusters for new TB cases is taken care of by the fun.clusupdate()

which calls upon two sub-functions named fun.update.completeclus() and fun.
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assignmissclus(). The first of these examines any new cases with complete

MIRU profiles for assignment to clusters while the latter function only looks at

the incomplete MIRU profiles for the same purpose. If a new batch of cases all have

complete MIRU profiles, then only the first sub-function is run by fun.clusupdate(),

and conversely, if all cases have incomplete profiles, then only the second sub-

function is run. For every new case, there are three possibilities:

1. Assignment to an existing cluster.

2. Assignment to a new cluster.

3. No assignment to any cluster.

The fun.update.completeclus() sub-function achieves assignment to clusters by

using tabulations with appropriate use of subsetting operations which takes very

little computational effort. However, the fun.assignmissclus() sub-function

uses a ‘for loop’ where there is a cycle for each incomplete MIRU profile fed into

fun.clusupdate(), which is more computationally demanding. This is not a prob-

lem, provided, there are not huge amounts of TB cases (for example, hundreds of

thousands of cases).

In each cycle, one incomplete profile is considered and is compared against all

complete MIRU profiles. This is done by creating a temporary dataset with the

incomplete profile as the first item and then appending all complete profiles after

that. In this temporary dataset, no other incomplete profiles are included. The

comparisons are made by calculating the dissimilarity matrix using the daisy()

function.

This gives a matrix S, that is symmetric with sij = sji and since all comparisons

made against the same profile give a dissimilarity of 0, we also have sii = 0. As we

only want comparisons between the incomplete profile against all other complete

profiles, we only require the first row of the matrix (or equivalently, first column

since the matrix is symmetric), excluding the first element s1,1 which is the com-

parison with itself. From here, if we take the first row of the matrix, we can easily

find potential strain clusters by examining the profiles with index j in that first
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row which result in s1,j = 0. Note that most of the complexity in the R code seen

in Appendix 2.A is in collating which cases belong to which clusters, and to ensure

that existing cluster IDs are retained after every update.

The last function, fun.clusprob() is used to calculate the probabilities that in-

complete profiles belong to potential clusters using the two methods we described

previously in Section 2.4.2. Note that this function also requires data relating to

the relative frequencies of numbers of repeats for each loci. The final output tables

are viewable as a spreadsheet in Microsoft Excel and this was achieved by using

the XLConnect package in R [134]. Using this package allows the spreadsheet to

be updated with an R script and thus, automates this part of the process.

Using Results for Cluster Investigations

An example of the output produced after running the R cluster functions that

could be useful for cluster investigations is shown in Table 2.4. There we can ob-

serve three incomplete MIRU profiles that form potential clusters. Looking more

closely at the first incomplete profile shown on the table, we can see that it has

formed two potential clusters which are clusters SC0047 and SC0069. Note that

here, cluster SC0047 would have already existed and was made up of two cases

with complete MIRU profiles which are identical, while SC0069 is a new potential

cluster that is formed after joining with the incomplete profile. If it belonged to

SC0047, we would impute the missing digits in locus 23 and locus 24 as 8 and 2

respectively and if it belonged to SC0069, we would impute them as 6 and 2.

Based on probability method 1, it is slightly more likely to belong to SC0069 than

SC0047 but since both probabilities are low, this gives a reminder that we must

keep in mind the possibility that it may not belong to any of these clusters. Prob-

ability method 2 gives the opposite recommendation – the incomplete profile is

more likely to belong to SC0047 as it contains two cases compared with SC0047

which contains just one case. Another important consideration for this case is the

epidemiological information, which perhaps also suggests that it may belong to

none of the clusters as the case is from Grampian while the other cases are from
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healthboards which are relatively far away (Lothian and GGC). As well as this,

the year of notification for the case was in 2007 compared with the other cases

which have years of notification in 2011 and 2012.

For the third incomplete MIRU profile displayed in Table 2.4, there is seemingly

less ambiguity for the investigation. Both probability methods suggest that it

is more likely to belong to SC0043 than SC0099. Moreover, the case with the

incomplete profile has a year of notification which also matches closely to one of

the cases from SC0043. Therefore, the data brings a fairly strong argument for

this case belonging to SC0043, but further investigation would still be required to

confirm this conclusion. This example gives a clear demonstration of where the

system can be used to guide a follow-up TB cluster investigation.

Summary Results after Running R Functions

An overview of how many potential clusters were formed by each incomplete MIRU

profile is shown in Table 2.5. Out of the 150 MIRU profiles with 15 loci and one

missing locus, 59 formed one potential cluster, 25 formed two potential clusters

and 66 incomplete profiles were not sufficiently similar to any complete MIRU

profiles to form potential clusters. From the 496 MIRU profiles with 24 loci and

up to two missing loci, 141 formed one potential cluster with one complete profile,

25 formed two potential clusters, 5 formed four potential clusters, but 325 did not

form any potential clusters. These results imply that a large number of the cases

could be isolated cases – 44% of cases with incomplete 15 loci profiles and 65.5%

of cases with incomplete 24 loci profiles.

2.5 TB cases in 2012–13

The most recent TB cases are of considerable interest as we wish to discover and

prevent any new or recent outbreaks as soon as possible. If outbreaks are not found

quickly, then there is more potential for transmission of infection to others and the

effort to stem the outbreak may be greatly increased. Therefore, using a subset

of the most recent cases in the dataset, we further explored the patterns of trans-



Chapter 2. TB in Scotland 61

15 Loci 24 Loci

n % n %

Incomplete Profiles
Considered

150 496

Potential Clusters Formed

0 66 44.0 325 65.5

1 59 39.3 141 28.4

2 25 16.7 25 5.0

3 0 0.0 0 0.0

4 0 0.0 5 1.0

Table 2.5: Numbers of potential clusters formed by cases with incomplete MIRU pro-
files.

mission. We selected those cases with 24 digit MIRU profiles with a maximum of

two missing loci occurring within a year of the most recent case notification in the

data. This is made up of 165 cases with date of notification between 30th July

2012 up to 30th July 2013. Using multivariate methods such as multidimensional

scaling (MDS) can allow us to see an overview of how similar the strains of TB

are between cases over this period. As mentioned previously in Section 2.1.4, it is

possible for linked TB cases to have a single digit difference in their MIRU profile

and we can also investigate this possibility here.

We can again use Gower’s distance here but compared with previously, we will

treat the number of repeats in each locus as quantitative variables. When treating

all the variables as quantitative variables, Gower’s distance essentially becomes a

range-normalised Manhattan distance [136]. This looks at the absolute difference

in the numbers of repeats between the MIRU profiles of cases and then normalises

the distance using the range of variables so that distances will always be between

0–1. Calculating distances in this way allows us to explore the effect of giving

some importance to the magnitude of the number of repeats. For instance, in the

following example, the 2nd case is treated as being more similar to the 1st case

than the 3rd case (in the first locus, ‘2’ is closer to ‘1’ than ‘3’; all other loci are
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identical between the 3 cases).

123456781234567812345678

223456781234567812345678

323456781234567812345678

When using Gower’s distance, the missing loci are normally not considered in

comparisons, and so if a case with one missing locus has 23 identical digits to a

case with no missing loci, then they would be considered to be identical. To avoid

this problem in this analysis, we have imputed the missing digits using probability

method 2 where possible (using method 2 explicitly depends on the existence of

cases with highly similar MIRU profiles to incomplete profiles), and where it was

not possible to use method 2, we have used probability method 1 for imputation

(method 1 can always be used for imputation).

2.5.1 Multidimensional Scaling

One powerful method of visually representing these dissimilarities in a spatial map

is to use a dimension-reduction technique such as MDS [39] or more specifically

here, classical MDS. This method essentially allows us to estimate coordinate val-

ues in, for example, 2D space, where the interpoint distances or distance between

any two points (which here represent individual TB cases) is determined by the

dissimilarity between them. In practice, the distances between all sets of points

may not always be approximately proportional to their dissimilarities but the ma-

jority should be when the method performs well. The axes that these points lie

on are artificially created and are sometimes called the principal axes [139]. These

axes are artificial in the sense that they are not directly related to anything that is

observed but are in fact, derived from the data with a goal of explaining as much

of the variation in the data as possible.

Details on the optimisation schemes and goodness-of-fit indices used to estimate

MDS coordinates can be found in Everitt et al. [106], but we will not discuss them

here as we want to concentrate primarily on interpreting the results from the MDS

solution. Firstly, we can informally test the adequacy of representing the data in
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two dimensions. Due to the presence of negative eigenvalues from the MDS solu-

tion and because the dissimilarity matrix is not Euclidean, we tested the adequacy

by using a criteria suggested by Mardia et al. [235]. This makes use of squared

eigenvalues rather than the raw eigenvalues.

2∑
i=1

λ2i

n∑
i=1

λ2i

(2.6)

Here, λi denotes the ith eigenvalue obtained from the MDS procedure and note

that the numerator uses the two largest positive eigenvalues. Calculating this for

our data gives a value of approximately 0.79. It has been suggested before that a

value of around 0.8 is a reasonable fit [176] and so our result indicates that using

two dimensions to represent the dissimilarities is probably justifiable. Figure 2.11

shows several plots which are 2D representations of the dissimilarities between the

subset of recent TB cases after MDS. Effort has been made to distinguish those

cases with missing loci but have now had data imputed as there is more uncer-

tainty around them.

The plots illustrate that there are perhaps, three main clusters of cases – the

largest cluster on the top-left; another sizeable cluster on the top-right; and a

small cluster on the bottom-left. In the first plot of Figure 2.11 (top-left), colour

is used to distinguish the organism of the case. We can observe that there is a lot

of overlap between cases categorised as “M. Tuberculosis” and “M. Tuberculosis

Complex” as we would expect, but three out of the four “M. Bovis” cases are rea-

sonably distinctly separated from the main organisms. However, as there is a fair

amount of distance between the bovine TB cases, there must be some noticeable

differences in their MIRU profiles and it is unlikely that they form part of the same

transmission chain. There also appears to be one case (located slightly below and

left of centre) that is fairly isolated from all other cases. This is a case with MIRU

profile 644652432102233327231346 that has number of differing loci ranging from

13 to 22 (median 18 differing loci) with the MIRU profiles of all other cases in the

12–13 period under examination. Therefore this case appears to be quite geneti-
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Figure 2.11: TB cases from 30th July 2012 to 30th July 2013 represented visually in
two dimensions by MDS. Dissimilarities were estimated using Gower’s
distance. Plots show colours by organism, healthboard, gender, disease
type and age group. The shape of the points distinguish cases with com-
plete and incomplete MIRU profiles (legend only shown on top-left plot).
Note that the jitter function in R was used to distinguish cases with
identical MIRU profiles that would otherwise be laid directly on top of
each other. The regression biplot (bottom-right) gives some idea about
the loci that influence cases to be located where they are on the plots.
Note that there is a slight change in scale on the y-axis on the biplot as
compared with the other plots.
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cally different from the other cases. The other plots on Figure 2.11 show no clear

patterns by healthboard (top-right plot) or by age group (bottom-left plot). Most

of the cases in the bottom cluster are males and many of them are non-pulmonary

cases (centre two plots).

An MDS biplot can give an idea about how each of the loci relate to the MDS map.

It was created by following a procedure as given in Greenacre et al. [139]. The

direction and magnitude of the lines (biplot vectors) describe how influential each

of the loci are in pulling points to a certain position on the plot. If the biplot vec-

tor for a particular locus has greater magnitude, then there will be more variance

in that locus. The biplot vectors were found by a series of 24 linear regressions,

one for each locus. In each regression, the response was the number of repeats in

a locus and there were always the same two covariates which were the the x and y

coordinates found from the MDS procedure. As the MDS dimensions are centred

(the mean of each MDS dimension is zero), the constants from these regressions

are the mean number of repeats for each of these loci which will be situated at

the origin on the plot. Hence, all biplot vectors begin at the origin and the co-

efficients derived from the regressions for the MDS x and y coordinates give the

endpoints for the vectors. The results from the regressions are given in Table 2.6

and these are subsequently superimposed onto the MDS plot in the bottom-right

of Figure 2.11. Note that in the plot, the lines have been multiplied by an arbitrary

scalar value to help separate the lines out more.

From the biplot, we can see that differences in loci 3 and 18 are important for

cases being situated in the top-left. Similarly, differences in loci 7, 8, 12, 16 and

23 seem to have a bearing on cases being located towards the right side. Finally,

differences in loci 1 and 4 appear to have most influence on the bottom cluster of

cases. The various loci seen near the origin of the biplot have little influence as

most of the cases likely have a similar number of repeats in these loci. As a sense

check, we can calculate the variances in each of the loci and compare these against

the length of the vectors; these are seen in the last two columns of Table 2.6. It

should be easier to separate out cases when there is higher variance in some loci
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and this should be reflected in the length of the biplot vectors. In general, there is

good agreement as loci 2, 6, 9, 13 and 21 all have low variance but there are some

exceptions such as locus 15, which has moderate variance but is situated near the

origin in the biplot. Some differences such as this are to be expected as the MDS

solution will not perfectly represent the structure of the dissimilarity matrix in

two dimensions. On top of this, the R2 values show that some of the regressions

used to derive the biplot vectors do not give a good fit to the data. Moderately

high R2 values of around 0.45 and above were achieved for most of the loci with

higher variance but the loci with low R2 values show the limitations in what can

be interpreted from the biplot alone.

Minimum Spanning Tree

One useful way of identifying possible misrepresentations of the dissimilarities in

the MDS solution is to produce the minimum spanning tree (MST). In essence,

this is a spanning tree which connects up all pairs of TB cases according to certain

criteria. These are that every point (or case) must be visited at least once, the

entire tree must be connected meaning that there must be some path between any

pair of points, and finally, closed loops are not permitted. In total, there are
(
n
2

)
straight line segments connecting up pairs of cases and the length of a spanning

tree is the sum of the length of these segments; the MST is the tree which min-

imises the total length of the tree. Further details on algorithms which find the

MST can be found in Gower and Ross [137].

Figure 2.12 displays the same graph as earlier from the MDS solution but with

the line segments of the MST included. On the whole, the MDS procedure seems

to have worked well as most of the links in the MST connect pairs of cases close

to each other. Cases which are close together on the plot and connected in the

MST may be interesting to investigate further as their MIRU profiles likely only

differ slightly. In fact, a system for finding possible transmission pairs could be

created by looking at those points which are connected by a segment in the MST

as well as being within some threshold distance of each other on the MDS plot. As

the likelihood of there being a transmission pair is small when the two cases have



Chapter 2. TB in Scotland 67

Locus Constant
Coeff
MDS

Coord 1

Coeff
MDS

Coord 2
R2 Vector

Length
Var

1 3.53 3.938 -12.697 0.451 13.294 1.58
2 2.05 -1.963 0.521 0.050 2.031 0.39
3 3.23 -11.102 -4.184 0.733 11.864 0.91
4 3.24 -0.991 -9.108 0.494 9.162 0.67
5 3.76 10.193 -7.097 0.654 12.420 1.08
6 1.98 -0.016 -0.074 0.001 0.076 0.04
7 4.17 12.635 4.188 0.534 13.311 1.58
8 2.97 10.901 1.093 0.521 10.955 1.11
9 1.90 1.337 -1.815 0.246 2.254 0.09

10 4.93 0.984 -7.484 0.313 7.548 0.72
11 1.10 -0.614 -3.957 0.543 4.004 0.12
12 5.18 11.583 11.132 0.486 16.065 2.34
13 2.93 1.716 0.840 0.090 1.911 0.19
14 2.36 5.012 -3.478 0.495 6.100 0.34
15 3.10 0.257 -1.479 0.009 1.501 0.95
16 2.97 13.203 2.531 0.527 13.443 1.65
17 3.40 9.598 -9.516 0.537 13.516 1.50
18 3.28 -10.169 1.706 0.258 10.311 1.99
19 3.74 1.903 1.012 0.051 2.155 0.43
20 2.70 -0.618 10.794 0.382 10.812 1.21
21 2.98 0.517 0.580 0.022 0.777 0.12
22 3.33 -2.785 -4.518 0.099 5.308 1.20
23 5.60 8.030 4.648 0.202 9.279 1.97
24 2.54 6.912 7.527 0.387 10.219 1.18

Table 2.6: Results from linear regressions used to find biplot vectors. The constant
gives the mean number of repeats in each locus, and the two coefficients for
the MDS coordinates give the direction and magnitude for the vectors which
begin at the origin on the MDS plot. The variance column was calculated
outwith the regression.

non-identical MIRU profiles, then it would probably be best to choose a restrictive

threshold distance so that relatively few transmission pairs are considered. Note

that these could be looked at by recreating the plot (and making it larger) with ID

or row numbers for the cases so they can be easily identified rather than points,

but we have produced the plot here with points to prevent it from being overly

cluttered.

It is also possible to see that although some points are close on the graph, they
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Figure 2.12: Minimum spanning tree imposed onto the MDS solution for TB cases
from 30th July 2012 to 30th July 2013. Note that the jitter function in
R was used to distinguish cases with identical MIRU profiles that would
otherwise be laid directly on top of each other.

are not always connected with a line segment. When this happens, it is a sign

of a possible distortion in the MDS solution whereby, the MDS solution does not

accurately reflect the level of dissimilarity calculated earlier by Gower’s distance.

Some of the results from the MST make good practical sense. For example, the

bovine TB cases are all linked by a line segment – even when there are M. tuber-

culosis cases situated nearer. Again, it should be noted that care should be taken

when examining any links for those cases that have had data imputed due to the

additional uncertainty associated with them.

Using the connected pairs of cases from the MST, we can further investigate those

pairs which have MIRU profiles that differ in only one locus after data has been

imputed. A summary of the 12 pairs of cases that fit this criteria can be seen in
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Table 2.7, where the imputed digits in MIRU profiles have been underlined and

the differing digit between pairs of MIRU profiles has been made bold for clarity.

Since the connection between these pairs of cases is fairly speculative due to the

differing locus, it is probably better to focus on pairs of cases that have a very short

distance between them (relative to the scale of the distance measure used) and also

those with no data imputations (or perhaps only one imputed digit). For example,

the best candidates for investigation from Table 2.7 would be the 8th and 12th

pairs on the list as no data imputations have been made in their MIRU profiles and

the distance between these pairs on the MST is relatively short. Another strong

candidate for investigation would be the 4th pair of cases where only one digit has

been imputed in the MIRU profile of case B and the distance between them on

the MST is the shortest out of all the pairs considered in the table.

MIRU Case A MIRU Case B Distance
Digits

Imputed
Case A

Digits
Imputed
Case B

224332312515324224423552 224332312515325224423552 0.0083 0 2

424433332515322215423372 424433332515322215423352 0.0119 2 2

422352542517333442423282 422352542517333442423272 0.0060 1 1

224332312515324224423552 324332312515324224423552 0.0052 0 1

422352542517333442423272 422352542517333442423372 0.0069 1 2

323332432515325433443383 323332432515325433443353 0.0179 0 1

422342642517323442443472 422342642517323442443474 0.0104 1 0

422342642517323442443474 422342642517323442443464 0.0060 0 0

324332312515324224423552 324332312515324224423551 0.0052 1 0

422352642517334442423354 422352642517334442423351 0.0156 1 1

424352332517333456443352 424352332517333456443342 0.0060 2 1

614642432722334263313441 614642432722334262313441 0.0060 0 0

Table 2.7: Pairs of TB cases connected by the minimum spanning tree in 2012–13 that
have MIRU profiles with differences in only one locus after data imputations.
The imputed digits have been underlined and the differing digit between
pairs of profiles has been made bold for clarity. Gower’s distance, treating
numbers of repeats in each locus as quantitative variables, was used as the
distance measure.

2.5.2 Sensitivity Analysis

We can test the robustness of the classical MDS result by using non-metric MDS

while using the same distance metric. The main difference between classical MDS

and non-metric MDS is that the latter uses the rank order for dissimilarities rather
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than a direct numerical comparison. This is particularly applicable when we only

know about a measure on an ordinal scale – for instance, survey results which

were answered on a likert scale where we know a response of “strongly agree” is

of higher order than “agree” but we cannot accurately quantify the extent of the

increase in agreement.

For our TB data, we can postulate that when comparing the MIRU profiles of cases,

a larger difference in the number of repeats in a locus may indicate a greater differ-

ence between their TB strains, but we do not know exactly how large the increase

in dissimilarity is. Hence, there may be some merit in treating the dissimilarities

in an ordered fashion. Details on the algorithms used in the non-metric MDS

procedure to find the required coordinates in a plot can be found in Kruskal [211].

The basic idea is that a stress function is minimised after a number of iterations,

at least to the point where some convergence criterion is reached.

An informal method for assessing a non-metric MDS solution is a Shepard diagram,

which can be seen at the top of Figure 2.13. In a perfect scenario, the points would

lie on the bisecting line but on the graph there are a number of points positioned

further from the line towards the lower-right, and this suggests that the procedure

has only worked moderately well. The other two plots displayed in Figure 2.13 are

the biplot and MST. Overall, these plots look almost identical to the corresponding

plots found from classical MDS. The biplot shows that the same loci as previously

found are influential in the eventual location of cases on the plot and the MST

exhibits similar patterns as found before. The results found using non-metric MDS

have been encouraging in the sense that they largely agree with what was found

before. This hints at some level of robustness in our results against the type of

MDS procedure used as well as the distance measure used.

Other Distance Measures

Keeping the distance measure the same between using classical MDS and non-

metric MDS allowed a comparison to be made between the methods, but as part

of the sensitivity analysis, we also tried using different distance measures for MDS
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Figure 2.13: Non-metric MDS plots. Dissimilarities were estimated using Gower’s dis-

tance. The shephard diagram (top) can be used to informally assess the
quality of non-metric MDS solution. Note that the jitter function in
R was used in the biplot and the minimum spanning tree to distinguish
cases with identical MIRU profiles that would otherwise be laid directly
on top of each other.
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and non-metric MDS such as Euclidean distance and also simply using the number

of differing loci between MIRU profiles. Both of these measures produced very

similar results to what we already found; the main noticeable change was that

when using the number of differing loci as the distance measure, all four bovine

TB cases were more distinctly separated from the M. Tuberculosis cases.

2.6 Discussion

Disease outbreaks must be detected with haste so that effective interventions can

be taken if necessary. Crucial to this process is the rapid detection of potential

clusters of cases. If this can be achieved, then the effort and resources required

to prevent further disease transmission can be greatly reduced. Here, we have

attempted to design a number of bespoke systems which use statistical methods

to assist in the detection of possible clusters of TB cases in Scotland. Although

the annual incidence of TB in Scotland is relatively low as evidenced by our ex-

ploratory analysis of cases from 2000–2013 and HPS reports [162], there has been

a recent rise in non-pulmonary cases and the Scottish Government wishes to act

swiftly in order to reduce the burden on health caused by TB [330].

One major issue that HPS encountered in their investigations of TB cases was

that they may have been failing to detect some strain clusters. This is due to the

presence of missing loci in cases’ MIRU profiles, which can happen as the genetic

typing procedure does not always work perfectly. Our findings here show that this

problem has increased since the introduction of using a 24-locus VNTR-MIRU

panel compared with the previously utilised 15-locus panel. While the 24-locus

panel offers greater discriminatory power than a smaller panel of VNTRs [65], we

found that under half of 24-locus MIRU profiles were complete compared with al-

most 90% of 15-locus MIRU profiles being complete. Hence, a system was needed

which could alert them to scenarios where the incomplete MIRU profiles are identi-

cal to other complete MIRU profiles, with the exception of the missing loci – these

are prime suspects for potential clusters. Almost 99% of 15-locus MIRU profiles

had one or zero missing loci and over 90% of 24-locus MIRU profiles had at most,
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two missing loci. For these reasons, it was decided that a maximum of one miss-

ing locus be allowed for 15-locus MIRU profiles and two missing missing loci be

allowed for the now universally used 24-locus MIRU profiles. Furthermore, these

rules for identification of potential clusters are in line with what has been used by

Public Health England [296]. If we were to have allowed up to three missing loci

in 24-locus profiles, then another 7% of the data could have been examined when

finding potential clusters. However, it is likely that far too many potential clusters

would be created and this would be counterproductive in investigations.

The system was developed in R [302] and can take in batches of TB cases with

MIRU profiles, even when there are a mixture of complete and incomplete MIRU

profiles. It has to be run separately for cases with 15 digit and 24 digit profiles, but

going forward, this point is irrelevant as new cases will all have 24 digit profiles.

HPS can run the program whenever they receive new data on TB cases (quarterly

throughout the year) and this ensures that they minimise the chance of missing

potential strain clusters. In addition to this, time and resources can be saved as

the genotyping procedure can be repeated only when it is deemed that there is

sufficient reason to do so.

For cases with incomplete MIRU profiles that were part of multiple potential clus-

ters, we tried to estimate probabilities to describe the chance that they belonged

to each of those possible clusters. It has to be stressed that the two methods used

to assign probabilities are mainly for preliminary investigation purposes. Other

qualitative information regarding the cases that is known to the investigator would

be superior to the derived probabilities – for example, if cases were known to have

come into contact with each other at times when one of them was infectious.

In addition to this, other data that is routinely collected on cases such as date of

notification, age group and healthboard should also be considered in investigations.

One of our methods for assigning probabilities used the relative frequency of the

number of repeats in each of the 24 loci over all the available data. When there are

cases with two missing loci, we derived a probability simply by multiplying relative
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frequencies together which assumes independence in joint-missing loci. We found

that the independence assumption is probably not valid as most of the missing loci

in our data appeared in loci 23 and 24. Hence a better probability estimate could

be obtained by calculating probabilities conditional on exactly which two loci are

missing.

In our exploratory analysis of the TB data, we found that the majority of the

TB cases in Scotland were male and this finding is consistent with other stud-

ies [41, 249]. This adds evidence in favour for gender-focused interventions when

tackling TB transmission. There are several possible explanations for why we are

observing more males cases. Khan et al. [205] found that in Rawalpindi, women

were less likely to test positive in smear tests for TB, and the reason for this was

that women there were submitting poorer quality spatum samples compared with

men. However this finding may only apply to low-income countries and may not

be an explanation for gender disparities in developed countries. A possible expla-

nation for the disparity which may be more generalisable worldwide could be to

do with the impact that smoking has on TB. There has long been an association

between smoking and pulmonary TB [40] and higher rates of smoking in men could

be an important reason for observing more male cases [378].

Certain age groups also appear to be more at risk of TB. Compared with the age-

structure of the population, we found a greater than expected proportion of TB

cases were aged 15–34 and 65+. The finding that a large proportion of cases are

in the elderly has also been seen in Germany [154]; in fact, that study found that

the proportion of TB cases aged 60+ has been steadily increasing since 1976. For

controlling TB, it is important to target interventions at this group as the study

in Germany also found lower rates of treatment success in the elderly and higher

rates of mortality. Moreover, the elderly could potentially seed outbreaks to other

highly susceptible individuals in, for example, nursing homes.

There were far more cases in the GGC healthboard, relative to the size of popu-

lation within GGC. There are many reasons why this finding may not be wholly
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unexpected. In Scotland, Glasgow has the highest population density and contains

numerous areas with high deprivation. Hence, we are likely to see more cases in

Glasgow as there is more crowding as well as higher rates of poverty there, and the

link between poverty and TB has been found before, for instance in the US [32].

In addition to this, groups of people in Glasgow are known to have poorer health

and shorter life expectancies compared to elsewhere in Scotland [138]. Therefore

there are more likely to be higher proportions of people in Glasgow with weakened

immune systems and perhaps, alcohol and drug misuse problems compared with

other parts of Scotland. These factors are crucial as there is plenty of evidence

which indicates that heavy alcohol use is a risk factor for incidence and re-infection

of TB [305].

We also explored the use of MDS methods for finding clusters within the July

2012 to July 2013 period. The reason that we used only a subset of the cases in

the MDS analysis was because it becomes difficult to interpret results and spot

patterns when there are large numbers of cases. This is because the results from

the MDS are displayed visually in two (or three) dimensions and the results are

then interpreted with a degree of subjective impression by the reader. Using too

many data points makes this task very challenging. Therefore, it was best to look

at a subset of cases when using MDS, and we chose to use recent cases as this

would probably provide most value to investigators.

Before using MDS, we first imputed the missing digits using our two probability

methods. This was to ensure that all 24 loci would contribute to dissimilarity

calculations. However, imputing digits like this does not allow the additional un-

certainty associated with these cases to be clearly illustrated on the MDS plots.

There could have been better ways to allow the missing digits to contribute to dis-

tance calculations. For instance, for MIRU profiles that clustered with other cases,

with the exception of the missing loci, we could have adjusted the dissimilarity

by taking a weighted average based on the size of the potential clusters associated

with the incomplete MIRU profile. On the MDS plot, this would place the case

with the incomplete profile closer to potential clusters with larger numbers of cases
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and further away from potential clusters with less cases. Another very simple way

of ensuring that cases with imputed data would never have a dissimilarity of zero

would be to add a fraction to imputed digits such as 0.5.

One of the main added benefits of using MDS was that it gave a visual overview

of how similar the TB strains were between cases in Scotland over a period of

one year. As part of the same analysis, we used the minimum spanning tree to

connect pairs of cases together based on their similarity, and from there we could

examine those pairs more closely. More specifically, for finding speculative clusters,

we identified which pairs had a one locus difference between their MIRU profiles.

This is notable as in rare circumstances, epidemiologically-linked cases can have

slightly different MIRU profiles due to for example, evolution of a strain through

transmission over a number of years or strains adapting to acquire antimicrobial

resistance [331, 332]. Therefore it was necessary to provide a system for quickly

identifying pairs of cases that have a difference in only one locus and may be linked.

The sensitivity of our results to the choice of using classical MDS was tested by

rerunning the analysis using non-metric MDS which produced almost identical re-

sults. We then checked the sensitivity to the choice of distance measure being used

by rerunning the analysis using Euclidean distance and the number of differing loci

between MIRU profiles. Using Euclidean distance again produced very similar re-

sults, but when using the number of differing loci to measure dissimilarity, there

was a greater amount of separation between M. Bovis cases and M. Tuberculo-

sis cases. An explanation for this could be that Euclidean distance and Gower’s

distance both place too much importance on the magnitude of the difference in

numbers of repeats in each locus, while using the number of differing loci will

disregard the magnitude of the difference. Thus, perhaps an improved distance

metric over any of the choices we tried would weight the dissimilarity based firstly

on the number of differing loci between MIRU profiles and then secondly on the

magnitude of the difference in numbers of repeats within each locus.

To find possible links between pairs of cases, we could also have explored the use
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of the eBURST algorithm [114, 122], but ultimately decided to create a bespoke

system to have better control over the output produced from a tool. The eBURST

software provides a tool that attempts to identify related groups of genotypes

which can potentially be considered to be mutually exclusive. The algorithm was

originally designed for use with multilocus sequence typing (MLST) data – a se-

quencing technique that has been found to have much lower discriminatory power

for M. tuberculosis isolates than VNTR-MIRU [291]. This is because the genome

of M. tuberculosis has little DNA sequence diversity and is thus, described as be-

ing genetically monomorphic [70]. However, eBURST could also be applied to the

MIRU data as it essentially comes in the same form as MLST data; both types

of data consist of strings of integers. More specifically, eBURST could have been

used to find the pairs of cases that have single locus variations in the same manner

as we done using the MST. In fact, the eBURST software can also find pairs that

have double locus and triple locus variants and so it may be a useful way of quickly

identifying these even more tenuously linked pairs.

The systems designed here have limitations as we have discussed, but they nev-

ertheless serve as practical solutions for identifying potential clusters of TB cases

which may otherwise have been missed by HPS. On that account, they could prove

crucial in preventing clusters from growing to a size where they become difficult to

manage. The systems should be applicable in Scotland for a number of years into

the future as 24 loci VNTR-MIRU remains as the primary method for TB strain

typing. However, looking further ahead, VNTR-MIRU will likely be superseded by

more accurate methods for tracing TB outbreaks such as whole-genome sequenc-

ing (WGS) [310]. The cost of performing WGS continues to decrease [243], and

the speed at which we can analyse this data will increase. On top of this, the in-

creased discriminatory power allows for the detection of microevolution within TB

strains [370] and the extra power could also alleviate the need to always perform

such detailed epidemiological and contact investigations on TB cases. Therefore,

it seems inevitable that WGS will become the universal standard when it becomes

affordable for health services to perform WGS on all TB cases.
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TB is a disease that is endemic in Scotland and here, we have looked at how

genetic data can be used to detect cases that form potential strain clusters. In

the next chapter, we use statistical methods to analyse data on a large and fairly

recent epidemic in Scotland. This plays an important role in understanding how

a disease may affect certain groups of a population differently.
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2.A TB Appendix

2.A.1 R Functions

1 fun.initcompleteclus <- function(miru.df) {

2 # Assigns clus names to the clusters of complete profiles

3 # This function should be used only once to set up an initial clusters dataset

4 #

5 # Args:

6 # mirudf: df only needing 3 columns (but can have more)

7 # - ’miru ’ which has the MIRU profiles

8 # All profiles MUST have the same number of loci (24 or 15)

9 # - ’nummiss ’ which has the number of missing loci for each profile

10 # - ’id ’ which is a unique id for each profile

11 #

12 # Returns:

13 # df with clus nums for TB cases with complete profiles

14

15

16 mirulength <- unique(nchar(miru.df$miru))

17

18 # Validity checks

19 if (length(mirulength) != 1 | !mirulength %in% c(15, 24)) {

20 stop("MIRU profiles should either all have 24 loci or all have 15 loci")

21 }

22 if (any(duplicated(miru.df$id))) {

23 stop("There is more than one case with the same ID")

24 }

25

26 tab <- table(miru.df$miru[miru.df$nummiss == 0])

27 clus_tab <- tab[tab > 1] # clusters have at least 2 cases

28 n <- length(clus_tab)

29

30 clus.df <- data.frame(miru = names(clus_tab), clus = 1:n,

31 clus2 = paste0("SC", sprintf("%04d", 1:n)),

32 stringsAsFactors = FALSE)

33

34 # Create df with all cases that have profiles which are part of clusters

35 cases.df <- merge(miru.df , clus.df , by = "miru",

36 all.x = TRUE , stringsAsFactors = FALSE)

37 cases.df$numclus <- ifelse(!is.na(cases.df$clus), 1, 0)

38 cases.df$clusposs <- NA

39 cases.df <- cases.df[order(cases.df$clus , cases.df$id), ]

40

41 return(cases.df) # df contains all cases including those not part of a clus

42 }

./Chapters/TB/scripts/initcompleteclus.R
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1 fun.update.completeclus <- function(existcases.df , clus.df ,

2 newcases.df, mirulength = 24) {

3 # Updates clusters for complete profiles

4 # Function is designed to be used within ’fun.clusupdate ’

5 #

6 # Args:

7 # existcases.df: df with the TB cases before the current update

8 # clus.df: df with current clusters of TB cases

9 # newcases.df: df with new TB cases with complete profiles

10 # mirulength: Number of loci in profiles. Default is 24 loci

11 #

12 # Returns:

13 # updated clus df after finding clus for new complete profiles

14

15

16 # New cases have no clus info at present

17 newcases.df$clus <- NA

18 newcases.df$clus2 <- NA

19 newcases.df$numclus <- 0

20 newcases.df$clusposs <- NA

21

22

23 # For new complete clus

24 tab <- xtabs(~ miru , newcases.df)

25 tab2 <- tab[tab > 1]

26 tab.newclus <- subset(tab2 , !names(tab2) %in% clus.df$miru)

27

28 if (length(tab.newclus) > 0) {

29 tab.newclus <- tab.newclus[sort(names(tab.newclus))]

30

31 # Add new clus

32 # These are profiles which form entirely new clus

33 maxclus <- max(clus.df$clus)

34 add.df <- newcases.df[newcases.df$miru %in% names(tab2), ]

35 add.df <- add.df[order(add.df$miru), ]

36 clus.df <- rbind(clus.df , add.df)

37 clusno <- rep(maxclus + 1: length(tab2), tab2)

38 clus.df$clus[clus.df$miru %in% names(tab2)] <- clusno

39 clus.df$numclus[clus.df$miru %in% names(tab2)] <- 1

40 }

41

42 # Add new complete profiles which can be added to existing clus

43 tab3 <- tab[names(tab) %in% clus.df$miru]

44

45 if (length(tab3) > 0) {

46 add.df <- newcases.df[newcases.df$miru %in% names(tab3), ]

47 add.df$clus <- clus.df$clus[match(add.df$miru , clus.df$miru)]

48 add.df$numclus <- 1

49 clus.df <- rbind(clus.df , add.df)
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50 }

51

52 # Check if new profiles can be added to existing complete profiles

53 # which are not currently part of a clus

54 existcases.df <- subset(existcases.df, nummiss == 0)

55 allcases.df <- rbind(existcases.df , newcases.df)

56 tab <- xtabs(~ miru , allcases.df)

57 tab <- tab[tab > 1]

58 tab <- subset(tab , !names(tab) %in% clus.df$miru)

59

60 if (length(tab) > 0) {

61 maxclus <- max(clus.df$clus)

62 tab <- tab[sort(names(tab))]

63 add.df <- allcases.df[allcases.df$miru %in% names(tab), ]

64 add.df <- add.df[order(add.df$miru), ]

65 clus.df <- rbind(clus.df , add.df)

66 clusno <- rep(maxclus + 1: length(tab), tab)

67 clus.df$clus[clus.df$miru %in% names(tab)] <- clusno

68 clus.df$numclus[clus.df$miru %in% names(tab)] <- 1

69 }

70

71 # Update longer clus names

72 z.sel <- !is.na(clus.df$clus)

73 clus.df$clus2[z.sel] <- paste0("SC", sprintf("%04d", clus.df$clus[z.sel]))

74 clus.df <- clus.df[order(clus.df$clus , clus.df$nummiss), ]

75

76 return(clus.df)

77 }

./Chapters/TB/scripts/updatecompleteclus.R

1 fun.assignmissclus <- function(existcases.df, clus.df ,

2 newcases.df, mirulength = 24) {

3 # Updates clus for incomplete profiles

4 # Function is designed to be used within ’fun.clusupdate ’

5 #

6 # Args:

7 # existcases.df: df with the TB cases before the current update

8 # clus.df: df with current clusters of TB cases

9 # newcases.df: df with new TB cases with incomplete profiles

10 # mirulength: Number of loci in profiles. Default is 24 loci

11 #

12 # Returns:

13 # updated clus df after finding clus for new incomplete profiles

14

15

16 # Add clus vars to ’newcases.df’

17 newcases.df$clus <- NA

18 newcases.df$clus2 <- NA
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19 newcases.df$numclus <- 0

20 newcases.df$clusposs <- NA

21

22 allcases.df <- rbind(newcases.df, existcases.df)

23

24 # Reset clus info in ’allcases.df ’ for all those who have missing loci

25 # Some profiles with missing loci could now possibly belong to more clusters

26 # Doing this will keep the clus names as they were even after reassignment

27 allcases.df$clus[allcases.df$nummiss > 0] <- NA

28 allcases.df$clus2[allcases.df$nummiss > 0] <- NA

29 allcases.df$numclus[allcases.df$nummiss > 0] <- 0

30 allcases.df$clusposs[allcases.df$nummiss > 0] <- NA

31

32 clus.df <- subset(clus.df, nummiss == 0)

33

34 # On every cycle , check profiles with missing digits for assignment to clus

35 miss.df <- subset(allcases.df, nummiss > 0)

36

37 # Each case in the loop is compared with only complete profiles

38 # and this list is contained in ’ref.df ’

39 # (Two cases with missing loci cannot form a clus)

40 ref.df <- subset(allcases.df, nummiss == 0)

41

42 # ’clus.df’ updates after each loop ,

43 # ’ref.df’ stays constant and is what each profile is compared to

44 for (i in miss.df$id) {

45 # i <- miss.df$id[1]

46 dat <- rbind(miss.df[miss.df$id == i, ], ref.df)

47

48 # Split MIRU profiles into columns

49 z <- unlist(strsplit(dat$miru , ""))

50 z <- matrix(z, ncol = mirulength , byrow = TRUE ,

51 dimnames = list(dat$id, paste0("L", 1: mirulength)))

52 z <- data.frame(z)

53 z[z == "_"] <- NA # Change _ to missing

54

55 # Look at first row (profile with missing loci)

56 z.miss <- as.matrix(daisy(z, metric = "gower"))[1, ]

57 # Subset to have only matches (and not matches with itself)

58 z.miss <- subset(z.miss , z.miss == 0 & names(z.miss) != i)

59

60 # Run if there is at least one matching profile

61 if (length(z.miss) > 0) {

62 # Find matches to current existing clusters

63 clusmatch <- clus.df$clus[match(names(z.miss), clus.df$id)]

64

65 # If profile cannot be matched to existing clus ,

66 # it has to form new clus

67 if (any(is.na(clusmatch))) {
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68 maxclus <- max(na.omit(clus.df$clus))

69

70 # IDs for profiles which match but are not currently

71 # assigned a clus name

72 idmatch <- names(z.miss)[is.na(clusmatch)]

73 # Unique matching profiles which are not currently

74 # assigned a clus name

75 mirumatch <- sort(allcases.df$miru[allcases.df$id %in% idmatch ])

76 # Number of unique matching profiles

77 nmatch <- length(unique(mirumatch))

78 z.tab <- as.numeric(table(mirumatch))

79

80 clusno <- rep(maxclus + 1:nmatch , z.tab)

81 clus.df <- rbind(clus.df,

82 allcases.df[allcases.df$id %in% idmatch , ])

83

84 # Update clus info for matching profiles which now make clus

85 # but previously didn ’t

86 clus.df$clus[clus.df$id %in% idmatch] <- clusno

87 z.sel <- clus.df$id %in% idmatch & clus.df$numclus < 1

88 clus.df$numclus[z.sel] <- 1

89 clusmatch <- clus.df$clus[match(names(z.miss), clus.df$id)]

90 }

91

92 clusmatch <- unique(clusmatch)

93 num.match <- length(clusmatch)

94

95 if (num.match == 1) {

96 allcases.df$clus[allcases.df$id == i] <- clusmatch

97 }

98

99 # ID Number is not in the clus df so add it now

100 # One copy for each clus it matches to

101 if (!i %in% clus.df$id) {

102 repsdf <- miss.df[rep(which(miss.df$id == i), num.match), ]

103 clus.df <- rbind(clus.df, repsdf)

104 clus.df$clus[clus.df$id == i] <- clusmatch

105 }

106

107 # Update clus info

108 clus.df$numclus[clus.df$id == i] <- num.match

109 allcases.df$numclus[allcases.df$id == i] <- num.match

110

111 z.sel <- clus.df$id == i & clus.df$numclus > 1

112 clus.df$clusposs[z.sel] <- paste(sort(clusmatch), collapse = ", ")

113

114 z.sel <- allcases.df$id == i & allcases.df$numclus > 1

115 allcases.df$clusposs[z.sel] <- paste(sort(clusmatch), collapse = ", ")

116 }
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117 }

118

119 clus.df <- clus.df[order(clus.df$clus , clus.df$nummiss), ]

120 z.sel <- !is.na(clus.df$clus)

121 clus.df$clus2[z.sel] <- paste0("SC", sprintf("%04d", clus.df$clus[z.sel]))

122 rownames(clus.df) <- NULL

123

124 out <- list(allcases = allcases.df, clus = clus.df)

125 return(out)

126 }

./Chapters/TB/scripts/assignmissclus.R

1 fun.clusupdate <- function(existcases.df , clus.df , newcases.df) {

2 # Updates clusters for new profiles

3 # Profiles must all have 24 loci OR all profiles must have 15 loci

4 # If using 24 loci , the max number of missing loci is 2

5 # If using 15 loci , the max number of missing loci is 1

6 #

7 # Args:

8 # existcases.df: df with only the TB cases before the current update

9 # clus.df: df with current clusters of TB cases

10 # newcases.df: df with new TB cases

11 #

12 # Returns:

13 # updated clus df after finding clus for new profiles

14

15

16 mirulength <- unique(nchar(newcases.df$miru))

17 init.numclus <- max(clus.df$clus) # Initial number of clusters

18

19 # Validity checks

20 if (length(mirulength) != 1 | !mirulength %in% c(15, 24)) {

21 stop("MIRU profiles should either all have 24 loci or all have 15 loci")

22 }

23

24 if (mirulength == 24 & max(newcases.df$nummiss) > 2) {

25 stop("There are 24 loci MIRU profiles with more than 2 missing digits")

26 } else if (mirulength == 15 & max(newcases.df$nummiss > 1)) {

27 stop("There are 15 loci MIRU profiles with more than 1 missing digit")

28 }

29

30 if (any(duplicated(c(existcases.df$id , newcases.df$id)))) {

31 stop("There is more than one case with the same ID")

32 }

33

34 # Check ’existcases.df’ and ’newcases.df ’ have the same vars

35 if (any(grep("clus", names(existcases.df)))) {

36 z.sel <- grep("clus", names(existcases.df))
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37 varnames.exist <- names(existcases.df)[-z.sel]

38 } else {

39 varnames.exist <- names(existcases.df)

40 }

41 if (any(grep("clus", names(newcases.df)))) {

42 varnames.new <- names(newcases.df)[-grep("clus", names(newcases.df))]

43 } else {

44 varnames.new <- names(newcases.df)

45 }

46

47 if (!all(varnames.exist %in% varnames.new)) {

48 stop("Var names should be identical in ’existcases.df’ and ’newcases.df ’")

49 }

50

51 # Ensure var names are in the same order

52 if (!identical(varnames.exist , varnames.new)) newcases.df[, varnames.exist]

53

54

55 # Update clus for new cases with complete profiles first

56 newcases_complete <- sum(newcases.df$nummiss == 0)

57 newcases1 <- subset(newcases.df , nummiss == 0)

58

59 if (newcases_complete == 0) {

60 warning("No new cases with complete MIRU profiles")

61 } else{

62 cat(newcases_complete , "new cases with complete MIRU profiles\n")

63 clus.df <- fun.update.completeclus(existcases.df, clus.df,

64 newcases1 , mirulength)

65 }

66

67

68 # Update clus for new cases with incomplete profiles

69 newcases_incomplete <- sum(newcases.df$nummiss > 0)

70 newcases2 <- subset(newcases.df , nummiss > 0)

71

72 if (newcases_incomplete == 0) {

73 warning("No new cases with incomplete MIRU profiles")

74 } else{

75 cat(newcases_incomplete , "new cases with incomplete MIRU profiles\n")

76 }

77

78 missclus.out <- fun.assignmissclus(existcases.df , clus.df ,

79 newcases.df, newcases.complete ,

80 mirulength)

81

82 clus.df <- missclus.out$clus

83

84 # Reporting and Output

85 numclus <- max(clus.df$clus) # Number of clusters after update
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86 num.newclus <- numclus - init.numclus # Number of new clusters

87

88 cat(num.newclus , "new clusters. Before update:", init.numclus ,

89 "clusters. After update:", numclus , "clusters .\n")

90

91 out <- list(allcases = missclus.out$allcases , clus = clus.df)

92 return(out)

93 }

./Chapters/TB/scripts/clusupdate.R

1 fun.clusupdate <- function(existcases.df , clus.df , newcases.df) {

2 # Updates clusters for new profiles

3 # Profiles must all have 24 loci OR all profiles must have 15 loci

4 # If using 24 loci , the max number of missing loci is 2

5 # If using 15 loci , the max number of missing loci is 1

6 #

7 # Args:

8 # existcases.df: df with only the TB cases before the current update

9 # clus.df: df with current clusters of TB cases

10 # newcases.df: df with new TB cases

11 #

12 # Returns:

13 # updated clus df after finding clus for new profiles

14

15

16 mirulength <- unique(nchar(newcases.df$miru))

17 init.numclus <- max(clus.df$clus) # Initial number of clusters

18

19 # Validity checks

20 if (length(mirulength) != 1 | !mirulength %in% c(15, 24)) {

21 stop("MIRU profiles should either all have 24 loci or all have 15 loci")

22 }

23

24 if (mirulength == 24 & max(newcases.df$nummiss) > 2) {

25 stop("There are 24 loci MIRU profiles with more than 2 missing digits")

26 } else if (mirulength == 15 & max(newcases.df$nummiss > 1)) {

27 stop("There are 15 loci MIRU profiles with more than 1 missing digit")

28 }

29

30 if (any(duplicated(c(existcases.df$id , newcases.df$id)))) {

31 stop("There is more than one case with the same ID")

32 }

33

34 # Check ’existcases.df’ and ’newcases.df ’ have the same vars

35 if (any(grep("clus", names(existcases.df)))) {

36 z.sel <- grep("clus", names(existcases.df))

37 varnames.exist <- names(existcases.df)[-z.sel]

38 } else {
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39 varnames.exist <- names(existcases.df)

40 }

41 if (any(grep("clus", names(newcases.df)))) {

42 varnames.new <- names(newcases.df)[-grep("clus", names(newcases.df))]

43 } else {

44 varnames.new <- names(newcases.df)

45 }

46

47 if (!all(varnames.exist %in% varnames.new)) {

48 stop("Var names should be identical in ’existcases.df’ and ’newcases.df ’")

49 }

50

51 # Ensure var names are in the same order

52 if (!identical(varnames.exist , varnames.new)) newcases.df[, varnames.exist]

53

54

55 # Update clus for new cases with complete profiles first

56 newcases_complete <- sum(newcases.df$nummiss == 0)

57 newcases1 <- subset(newcases.df , nummiss == 0)

58

59 if (newcases_complete == 0) {

60 warning("No new cases with complete MIRU profiles")

61 } else{

62 cat(newcases_complete , "new cases with complete MIRU profiles\n")

63 clus.df <- fun.update.completeclus(existcases.df, clus.df,

64 newcases1 , mirulength)

65 }

66

67

68 # Update clus for new cases with incomplete profiles

69 newcases_incomplete <- sum(newcases.df$nummiss > 0)

70 newcases2 <- subset(newcases.df , nummiss > 0)

71

72 if (newcases_incomplete == 0) {

73 warning("No new cases with incomplete MIRU profiles")

74 } else{

75 cat(newcases_incomplete , "new cases with incomplete MIRU profiles\n")

76 }

77

78 missclus.out <- fun.assignmissclus(existcases.df , clus.df ,

79 newcases.df, mirulength)

80

81 clus.df <- missclus.out$clus

82

83 # Reporting and Output

84 numclus <- max(clus.df$clus) # Number of clusters after update

85 num.newclus <- numclus - init.numclus # Number of new clusters

86

87 cat(num.newclus , "new clusters. Before update:", init.numclus ,
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88 "clusters. After update:", numclus , "clusters .\n")

89

90 out <- list(allcases = missclus.out$allcases , clus = clus.df)

91 return(out)

92 }

./Chapters/TB/scripts/clusprob.R
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2.A.2 Instructions for Updating TB Clusters

Excel Processing

Make a copy of the data file so that the original data file is always available as a backup

– Work with the new copy.

Enable VBA scripts from options so that the “Developer” options are available in

Excel.

Import the “AmendBold” function (“AmendBold.bas”) into the Excel Work-

book in the “resources” folder).

ESMI Worksheet

Ensure everything in the “MIRUFINAL” and “UPDATED PROFILE” columns are for-

matted as text as the “AmendBold” function will not work unless data are formatted

as text. If some are in numeric form, they will be easy to spot as they will be aligned

right instead of aligned left. Delete the columns with headings “MIRU16”, “MIRU25”,

“MIRU26” as they are not needed.

Sort Descending by “UPDATED PROFILE” column.

Copy any with updated profiles across to the “MIRUFINAL” column.

Delete the “UPDATED PROFILE” column as it is not needed anymore.

Create a new column with heading “MIRUFINAL2” in the first empty column

In the new column, use the AmendBold function to get the new version of the MIRU

profile with #s to distinguish double-digit repeats (e.g. 10 will become 1#0#, etc). This

is vital so R can distinguish double-digit repeats when the data is read into it.

If “MIRUFINAL” is in e.g. column ”I” and ”MIRUFINAL2” was created in column

“K” then in Cell “K2” we would input the formula “= AmendBold(I2)”.

NO ESMI Sheet

Ensure everything in the “MIRU” and “MIRU UPDATED” columns are formatted as

text. The reasons and process for this are the same as before with the ESMI worksheet.
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Delete the columns with headings “MIRU16”, “MIRU25”, “MIRU26” as they are not

needed.

Sort Descending by “MIRU UPDATED”.

Copy any with updated profiles across to the “MIRU” column.

Delete the “MIRU UPDATED” column as it is not needed anymore.

Create a new column with heading “MIRU2” in the first empty column

In the new column, use the AmendBold function to get the new version of the MIRU

profile with #s to distinguish double-digit repeats.

Combined Sheet

Create new worksheet called “Combined”.

Copy all contents from the ESMI worksheet into it first (use ctrl+a).

Then carefully add in the NO ESMI sheet as follows:

Add the “RefLabReportID” heading to the first empty column in the Combined work-

sheet.

Add the values for RefLabReportID to the combined worksheet, starting from the first

available row, e.g. if the ESMI worksheet had 5480 rows in it, the first RefLabReportID

would be in row 5481.

Add in the other column values as follows:

“LabReportYear” goes in “DATENOTYR”

“FirstReport” goes in “DATENOT”

“SpeciesTxt” goes in “Organism”

“MIRU” goes in “MIRUFINAL”

“MIRU2” goes in “MIRUFINAL2”

With reference to the example before, you should now have 5480 rows with ESMI data,

and all the NO ESMI data should be contained in rows 5481 onwards - these will be

missing ESMI data such as age and gender.

Save the combined worksheet as a csv file with filename “esmi noesmi combined.csv”.

This is the file to be read into R.
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R Analysis

Make sure all the required packages are installed. These will be loaded automatically

at startup when the workspace is loaded using the .Rprofile file located in the same

directory as the workspace. The essential package to produce the final output is “XL-

Connect”.

Open the workspace file “TB.RData”. This is important as it will automatically set

the working directory appropriately for the rest of the scripts to work in R. As explained

above, it also loads the required packages, provided they have been installed.

Run the script “data setup.R” to tidy the data and set up the dataframes. It will save

a new workspace as “TB2.RData” at the end which is used from this point onwards.

The main dataframe we work with is “miru.df” - this contains only those cases with

MIRU profiles.

Load the “TB2.RData” workspace. Run the script “freq digits by locus.R” to get

digits.mat which is required to get probabilities for clusters, this is added to the

“TB2.RData” workspace at the end. Note that the script also produces barplots which

are saved in the “figs” folder.

Look in the “output” folder. If the file “clus24.xlsx” is already there, delete it as

the function to produce the Excel sheet using the XLConnect package will not work if

it the output file is already there.

Run the script “run functions clus24.R”. This produces the file “clus24.xlsx” which

is the final output. It takes about a few minutes to run the cluster function and also a

few minutes to run the XLConnect parts.
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2.A.3 Visual Basic Script for AmendBold Excel Function
Function AmendBold(ByVal rngText As Range) As String

Dim rngCell As Range

Dim strRetVal As String

Dim strChar As String

Dim lngI As Long

Set rngCell = rngText.Cells(1, 1)

For lngI = 1 To Len(rngCell.Value)

strChar = rngCell.Characters(lngI, 1).Text

strRetVal = strRetVal & strChar

If rngCell.Characters(lngI, 1).Font.FontStyle = "Bold" Then

strChar = "#"

strRetVal = strRetVal & strChar

If strChar = " " Then strRetVal = strRetVal & strChar

End If

Next

AmendBold = Application.Trim(strRetVal)

End Function
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Chapter 3

Characteristics of 2009 Pandemic
Influenza in Scotland

Chapter 2 on Tuberculosis was on identification of disease outbreaks for an en-

demic disease, and we developed methods which can be used to detect and alert

epidemiologists to potential linked cases and outbreaks. One of the issues we came

across there was missing data where MIRU profiles were frequently incomplete and

the missing numbers of tandem repeats were addressed by data imputation. Miss-

ing data is an issue that comes up often in epidemiological research [345] and it

will also be a feature of this chapter where we explore some of the statistical issues

that can arise when analysing a large disease outbreak.

In March and early April 2009, a novel strain of Influenza A (H1N1) virus emerged

originating from swine which gave rise to its colloquial name, swine flu. The 2009

pandemic H1N1 virus (referred to throughout this chapter as “pH1N1” where “p”

refers to the fact that the outbreak was classified as a pandemic) was unique as

it contains a combination of genes from both north American and Eurasian swine

lineages that had never been previously identified in swine or human populations

[343]. With any novel disease outbreak, it is important to gain an understanding

of it’s characteristics as soon as possible. This includes looking at the symptoms

that cases are reporting, and whether or not the disease affects certain groups

of individuals more adversely. Information such as this is vital for mounting an

efficient response to the outbreak.

In this chapter, we analyse a dataset provided by Health Protection Scotland
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(HPS) which includes just over 1,000 early pH1N1 cases in Scotland. This equates

to around 80% of all the cases that were eventually reported to HPS during the

containment phase of the pandemic [161]. As the name suggests, this was the

phase where the strategy was to contain the spread of the disease. An additional

priority during this phase was to gather as much information as possible on the

early cases in order to learn about the disease. Hence, these cases were interviewed

and answered questionnaires where they gave details regarding their symptoms,

what health services they used, their use of antivirals and also provided general

demographic information. Note that in addition to this dataset, HPS also kept

a larger database of early pH1N1 cases which included cases that did not pro-

vide the detailed data such as symptoms information but may have only provided

information on when they acquired the infection; we utilise the larger database

later in Chapter 5 where we look at estimating reproductive numbers for pH1N1

in Scotland during the containment phase.

A general aim in this chapter is to provide an overview of the information pro-

vided by these cases and to determine which groups of individuals may have been

more severely or disproportionately affected by the disease. In addition to this,

one of the main aims is to investigate the types of symptoms reported by cases in

Scotland. More specifically, we wish to find out whether or not individuals with

different characteristics are reporting different types and numbers of symptoms –

this includes individuals belonging to different age groups, gender and socioeco-

nomic groups. This allows for comparisons with what is being reported in other

studies in the UK and other countries around the world. As well as this, we wish

to explore if individuals with different characteristics were getting the same qual-

ity of treatment as measured by whether or not they received antivirals and also

by looking at the length of time they had to wait to receive antivirals. In the

containment phase, data was also collected on the contacts of cases. This gives

us a rare opportunity to look at case-contact mixing patterns and relationships in

the midst of a rapidly unfolding epidemic. For instance, we can explore how the

numbers of contacts reported by cases varies depending on the characteristics of

cases. As social contact patterns can have significant implications on transmission
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of communicable diseases, attempting to gain a better understanding around these

patterns is an important goal.

3.1 Background

The first pH1N1 cases recorded by the Centers for Disease Control and Prevention

(CDC) occurred in Mexico [60, 227] and the United States [132] but there have

been suggestions that the initial transmission to humans occurred several months

before the outbreak was formally recognised [343]. The virus became a real cause

for concern when increased rates of hospitalisation and death due to severe pneu-

monia in young adults were observed in Mexico [289].

Efforts were made by the Mexican government to keep the virus under control

by closing public and private facilities as well as general measures like social dis-

tancing, timely medical care, and personal hygiene. However, the virus was able

to spread rapidly through human-to-human contact, particularly in enclosed envi-

ronments. The efforts from the Mexican government to contain the virus proved

to be insufficient and after only a few weeks of proper surveillance, the virus had

spread to 30 countries.

The rapid spread around the globe was inevitable due to the high volumes of air

travel throughout the world and in particular, the United States. As a conse-

quence, on the 11th of June, the World Health Organization (WHO) raised the

pandemic alert to the highest level of 6 signalling the official start of the 2009

influenza pandemic [63]. By this time, there were almost 30,000 confirmed cases

reported from 74 countries. Transmissibility appeared to be substantially higher

than that of seasonal influenza and there was the belief that it may have been

more comparable with that of previous influenza pandemics [123] such as the 1918

Spanish influenza pandemic. Hence, the 2009 strain quickly became a matter of

serious interest and importance for public health organisations around the world.
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3.1.1 Pandemic Influenza in the UK

The first two confirmed cases in the United Kingdom were a couple of travellers

returning to Scotland from Mexico with respiratory symptoms on the 26th of April

2009 [155, 286]. These cases were officially recorded on the 27th of April. HPS

subsequently implemented an enhanced surveillance scheme to track cases as well

as their close contacts. Initially most cases resulted from travellers returning to

the UK from Mexico and the United States (imported cases), but on the 1st of

May 2009, the first indigenously acquired case was reported and since then there

was a rapidly rising increase in the number of indigenous cases reported [18]. By

the 2nd of July 2009, 7,447 cases were reported in the UK.

3.1.2 Known Symptoms

The vast majority of people suffering from 2009 pH1N1 experienced mild symptoms

and made a full recovery within about a week without the need of any kind of

medical intervention. The symptoms of this strain of influenza were typically the

same as the symptoms for seasonal influenza; people with the virus usually had

a fever or a high temperature (in excess of 38 ◦C or 100.4 ◦F). Other symptoms

included unusual levels of tiredness, headache, runny nose, sore throat, shortness

of breath, coughing, loss of appetite, muscle ache, and possibly, diarrhoea and

vomiting [240]. On rare occasions, the disease caused severe illness which may

require hospitalisation and these have been seen to mostly affect adults between

30–50 years [63]. This is in stark contrast to the case of the common seasonal

influenza where the majority of deaths and hospitalisations occur in frail elderly

people.

3.1.3 High-Risk Groups

People with certain underlying conditions were considered to belong to high-risk

groups for pandemic influenza as these conditions may render them to be more

susceptible to adverse outcomes such as hospitalisation and death. These condi-

tions include chronic respiratory disease, coronary heart disease, kidney disease,

liver disease, neurological disease, immunosuppression and diabetes [287]. More-
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over, patients who had drug treatment for asthma in the past three years were also

considered to be at increased risk of adverse reactions following influenza infection.

Pregnant women were of particular concern because during pregnancy, a woman’s

immune system becomes weakened [52, 186]. A study conducted by Oluyomi-Obi

et al. [271] in Manitoba in Canada looked at thirty pregnant women, of which

six were admitted to the intensive care unit. For these six women, the time from

onset of symptoms to life-threatening deterioration was on average, just five days

and two of the patients died. Although the study was fairly small, it gives cause

for concern and highlights why it is vitally important for pregnant women to take

extra precautions during periods when pandemic influenza is circulating.

3.2 Data

3.2.1 Pandemic Influenza Cases

The data used in this analysis consists of the pandemic influenza cases who re-

ported their illness to HPS between April to July 2009 and were also given ques-

tionnaires regarding their symptoms (see Figure 3.2 for a visual representation of

which cases have been included). Specifically, the earliest date reported by a case

was the 25th of April and the last reported date was the 9th of July; the cor-

responding self-reported dates of symptoms onset for these cases were 23rd April

and 30th June, respectively. The collection of detailed data from cases ceased from

around that time as after the 2nd of July, the containment phase of the pandemic

in Scotland was declared as over due to the rapidly growing number of cases [161].

From here the focus shifted to treating those considered to be most at risk of seri-

ous outcomes following infection rather than trying to reduce the risk of infection

from cases to their close contacts. Furthermore, from this point, it was clear that

it would take far too much resource from the health service to swab and collect

detailed clinical and epidemiological information from so many people presenting

with respiratory symptoms and influenza-like-illness.

All cases fall under three categories which are possible, probable and confirmed,
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with the level of assurance that a case is a true case rising through these three

categories in that order. Possible cases were people who had a history of acute

respiratory illness (ARI) and also recent travel to a known affected area (such as

the US or Mexico) or had been in contact with a confirmed or probable case. Prob-

able cases were defined as a person who had the characteristics of a possible case

but has also tested positive for influenza A but was not subtypeable. Finally, a

confirmed case referred to an individual who tested positive for the new influenza

A(H1N1) virus by the use of specific reverse transcription polymerase chain re-

action (RT-PCR) confirmed by sequence analysis [286]. During the containment

phase of the pandemic, anybody suspected of having been infected with pandemic

influenza was asked to provide a swab for laboratory-testing.

A large variety of clinical and epidemiological information was collected from case

questionnaires and interviews. This includes demographic details such as gender,

date of birth and their residential postcode; clinical illness history (for example,

dates for onset of symptoms and types of symptoms reported); whether or not

cases had underlying risk factors such as associated chronic diseases; whether or

not females were pregnant when diagnosed; and details of their use of different

health services available from the National Health Service (NHS). Finally, follow-

up information on if cases received antiviral drugs was available as well.

The postcodes of cases were linked to datazones (DZs) which are small areas of

statistical geography in Scotland covering between around 500 to 1,000 residents.

These DZs could subsequently be matched to a deprivation quintile measured by

the 2009 Scottish Index of Multiple Deprivation (SIMD) [328] to give an approx-

imation around the socioeconomic status of cases. For clarity, we mention here

that deprivation quintile one refers to people living in DZs belonging to the 20%

most deprived DZs in Scotland.

3.2.2 Modifications and Assumptions

The dataset originally consisted of 1,157 cases, but for this analysis we wanted

to concentrate on only laboratory-confirmed pandemic influenza cases. This re-
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duced the size of the dataset down to 1,138 cases; nineteen cases not classified as

“confirmed” and with no positive influenza laboratory test result recorded were

dropped (two cases classified as “possible”, fourteen as “probable” and three not

classified with any status).

Data was available on 21 different symptoms which are listed in Table 3.1. How-

ever, in order to make the analysis more concise, some similar symptoms were

grouped together – dry and productive coughs were combined together as cough,

muscle ache and joint ache were combined as muscle or joint ache, and nausea

and vomiting were combined as nausea or vomiting. This leaves data on 18 differ-

ent symptoms which were used in all analyses regarding symptoms instead of the

original 21 symptoms.

Missing Value Mechanism for Symptoms Data

Since many cases did not provide responses for all eighteen symptoms (see Ta-

ble 3.1, noting that the total number of cases for analysis was 1,138), data im-

putations were made in order to improve the completeness of the data. For the

imputations, we made the assumption that patients would often leave a question

blank rather than answer it as “No” when they did not have a symptom. There-

fore, if a case had answered at least one question regarding what symptoms they

had whilst other symptoms for that case were not filled in, then those blank entries

were assumed to be answered as “No”. However, if all entries regarding symptoms

were missing for a case, then the blank entries were treated as “Missing”. The

process for imputing missing responses is shown schematically on Figure 3.1.

The assumptions regarding the mechanism behind how missing data arose were

considered to be reasonable as if a person had at least filled in one question regard-

ing their symptoms, then we know that they have looked at the form and in this

scenario, they may have decided to only fill in information for symptoms they had

to save time. However if no questions regarding symptoms were answered, then we

cannot easily make any prediction about that person’s symptoms and they may

not have looked at the symptoms questionnaire at all. After imputations, data on
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Symptom
Responses

Before
Imputation

Imputed No
Responses

Dry Cough, Productive Cough 1,020 31

Muscle ache, Joint ache 968 83

Nausea, Vomiting 991 60

Fever 1,031 20

Runny Nose 986 65

Sneezing 972 79

Sore Throat 995 56

Shortness of Breath 949 102

Diarrhoea 966 85

Fatigue 978 73

Loss of Appetite 948 103

Chills 944 107

Conjunctivitis 936 115

Headache 954 97

Seizures 946 105

Altered Consciousness 944 107

Nose Bleed 947 104

Rash 950 101

Number missing all symptoms 87

Total responses after imputation 1051

Table 3.1: Numbers of symptom responses before and after data imputation. Note
that for analysis, dry and productive coughs were combined, muscle ache
and joint ache were combined, and nausea and vomiting were grouped to-
gether, leaving 18 different symptoms instead of the original 21 symptoms.
The number of responses refers to cases who gave either ‘Yes’ or ‘No’ re-
sponses. Imputed ‘No’ responses were made according to the process shown
in Figure 3.1.

all 18 symptoms was available for 1,051 cases which is 92.4% of the 1,138 cases

under consideration (Table 3.1).
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Symptoms

At least
one box

filled in as
‘Yes/No’

No boxes
filled in as
‘Yes/No’

Blank
boxes

assumed
as ‘No’

Data
treated as
‘Missing’

Figure 3.1: Flowchart showing the assumptions made when dealing with missing data
on symptoms that patients reported.

3.2.3 Contacts of Cases

Most cases provided some details regarding their close contacts, who were also

interviewed to discover demographic information on contacts among other impor-

tant details such as if they were symptomatic, and the type of relation they had

to the case. For the type of relation to the case, assumptions were made to cate-

gorise contacts as household and non-household contacts – close family members

(brothers, sisters, mothers, fathers) were assumed to be household contacts, while

friends, co-workers, grandparents and other social contacts were assumed to be

non-household contacts.

There were a number of issues with the contacts dataset which imposed limitations

on what could be achieved through analysis using it. Although there was data on

3,809 individual contacts of cases, only 3,514 (92.3%) of them could be linked to

a case belonging to the cases dataset, and only these contacts were included (Fig-

ure 3.2). This means that around 8% of the contacts data could not be used when

examining case-contact mixing. Moreover, the data on contacts was on the whole,

very incomplete and difficult to extract meaningful information from due to all or

much of the data in some variables being entered in free text form (see Table 3.2

for more details on issues with variables in the contacts dataset).

Despite these issues, it was still possible to undertake some meaningful investiga-
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tions like analysing how numbers of reported contacts varied by the characteristics

of cases. The data also allowed us to look into case-contact mixing patterns such as

if cases in particular age groups often had more contacts in particular age groups.

With regards to these mixing patterns, we explored three main patterns: ages of

case against ages of their contacts; gender of cases against gender of their contacts;

and deprivation quintile of cases against deprivation quintile of their contacts.

Variable % Missing Notes

Link Number to Case 7.7
7.3% of contacts linked to a case not
in the cases dataset; 0.4% had no link
to a case

Gender 3.8

Date of Birth 17.1
Date of birth was missing for all the
contacts of around 6% of cases

Deprivation 55.3 Postcodes missing or partially missing

Town 40.5
Lack of consistency for analysis as
most contacts were from different
towns

Contact Type 21.9
Modified to Household or
Non-household contact based on
assumptions

Date Last Contact 49.5
Many data entry errors; not all records
were specific dates

Other 71.7

Free text for other information on
contacts, e.g if they travelled with the
case or if contact was a work colleague
of a case

Symptoms 70.0
Modified to if contact reported having
symptoms or not having symptoms

Outcome 74.4

Free text for actions taken or advised
for contact, e.g. prescribing of
antivirals, speaking to a GP, if contact
has been swabbed

Table 3.2: Percentages of missing data for variables in the contacts dataset. The per-
centages were taken from the total number of contacts, which includes con-
tacts that could not be linked to a case from the cases dataset (n = 3,809).
Note that for some variables, the amount of data that can be utilised in
analysis may be even lower than reported here as even when data had been
filled in, it was not always entered correctly.
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Figure 3.2: Visual representation showing which Scottish pandemic influenza patients
reported to HPS were included in the current study – only cases that were
given the symptoms questionnaire have been included. In addition to this,
contacts of these cases were also used for this study. Note that all cases
(those given and not given the questionnaire) are used in Chapter 5 for
estimating reproductive numbers.

3.3 Statistical Methods

General descriptive analyses were performed on the data to provide an overview of

the characteristics of cases with the aim of finding out if certain groups of individ-

uals were disproportionately affected by pandemic influenza in Scotland, and then

also comparing our findings with what other studies have reported. This included

looking at the demographics of cases; investigating the numbers and types of clin-

ical symptoms reported by cases; finding how many reported underlying medical

conditions and how many had contact with different health services. Furthermore,

we also examined treatment by considering how many cases received antivirals and

if they received them, how long they had to wait to receive antivirals. Note that

throughout this chapter, we will often refer to the length of time that cases had

to wait for antivirals simply as the treatment delay.

Standard statistical tests were employed to find if there were differences by age and
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gender related to the numbers of symptoms reported, acquisition of antivirals and

the delay before receiving antivirals. These included χ2 tests, and non-parametric

tests such as Mann-Whitney and Kruskal-Wallis tests; non-parametric tests were

preferred here as numbers of symptoms and treatment delays were not normally

distributed. For some comparisons, we calculated proportions and to derive confi-

dence intervals around these proportions, we used the Wilson score interval [388].

Compared with the normal approximation method for deriving an interval, Wil-

son’s method has the advantage of not allowing a negative lower limit for propor-

tions and the procedure also works better for small sample sizes [3] which may

occur for rarer symptoms.

3.3.1 Linear-by-Linear Associations

We also wanted to find if numbers of symptoms reported, acquisition of antivi-

rals and treatment delay varied by deprivation quintile. We hypothesised that

for instance, numbers of symptoms reported may increase linearly with increas-

ing deprivation while we did not believe that there would be a linear trend for

age. Hence, we used linear-by-linear tests of association to test for this trend in

deprivation. The linear-by-linear test statistic is denoted as M2 throughout this

chapter and is calculated as in Equation (3.1) (see Agresti [2, chap. 2] for more

details).

M2 = (N − 1) r2 (3.1)

N refers to the total number of cases, and when N is large, M2 approximately

follows a χ2 distribution on 1 degree of freedom. Furthermore, r denotes Pearson’s

correlation coefficient which can be calculated after categories within ordered vari-

ables are assigned scores. For instance, deprivation quintiles one to five can simply

be given scores of one to five, and other ordered variables can be assigned scores

similarly.
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3.3.2 Logistic Regression and Multiple Testing

The types of symptoms reported by cases have been found to differ by age group

and gender in other studies and surveillance reports (for example, see Jhung et al.

[190], McLean et al. [240], Pebody et al. [286]). Thus, we also wished to com-

pare the symptoms reported by Scottish cases to ascertain if our findings would

be consistent with those studies. Differences in the types of symptoms reported

by age groups of cases, by gender and by deprivation status of cases were found

by using logistic regression [174]; odds ratios (ORs) were subsequently found by

exponentiating the regression equation of the form shown in Equation (3.2), where

psymp refers to the probability of reporting one of the eighteen symptoms.

log

(
psymp

1− psymp

)
= β0 + β1x1,i + . . .+ βnxn,i (3.2)

As we wanted to look at each of the eighteen symptoms one-by-one, we had to per-

form a regression for each symptom and for this, we had to take into consideration

the issue of multiple-testing [319]. To account for this issue, we used the Bonferroni

correction [35] which imposes a more stringent significance threshold – for eighteen

symptoms, an original 5% significance level is reduced to α = 0.05
18
≈ 0.0028. The

Bonferroni correction produces conservative results but we decided to use it here

as we desired to have a lower chance of attaining false positive results.

3.3.3 Principal Component Analysis

Principal component analysis (PCA) [175, 193] was used to try and determine how

different groups of symptoms clustered among the cases. For our application, PCA

attempts to capture most of the variation from the symptoms data in a smaller

set of linear combinations of the original variables which are named principal

components (PCs). To do this, the procedure transforms the variables into an

equal number of linearly uncorrelated variables which are the PCs. Hence for

our data, the eighteen variables are transformed into eighteen PCs where the first

PC captures the most variation from the data and each PC thereafter, captures

a monotonically decreasing amount of the variance from the data. Similarly to
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multidimensional scaling (MDS) which was used for cluster analysis in Chapter 2,

a motivation for using PCA is that it allows for a visualisation of high-dimensional

data in two or perhaps, three dimensions (provided that the variation can be

sufficiently captured in a small set of PCs), and this makes it much easier to

explore the data for the purpose of identifying possible clusters.

3.4 Results

3.4.1 Demographics

From the 1,138 laboratory-confirmed early cases of 2009 pH1N1 in Scotland, Ta-

ble 3.3 shows that the gender split was even with 562 (49.4%) male cases and 576

(50.6%) female cases. The ages of cases ranged from 0–82 and around 10.6% of

cases were aged 0–4, but the majority of cases were aged 15–64 (54.9%) or 5–14

(32.4%), which indicates that school age children and those in the working ages

were predominantly affected. This is supported with the median age of cases being

17 and an IQR of 9–28. Notably, only 15 cases were aged 65+ (1.3%), and also

note that age was not known for eight cases as their dates of birth were missing.

Figure 3.3 illustrates that the gender split for cases remained almost equal even

when stratified into the four age groups (χ2 = 2.42, p = 0.49).

Over three quarters (79.9%) of cases were from the Greater Glasgow and Clyde

(GGC) healthboard, with numerous cases also coming from Highland and Lanark-

shire (see Table 3.3); all of the other healthboards had less than 20 cases each.

There was a slight tendency for cases to be living in more deprived areas of Scot-

land with just under half of all cases coming from areas belonging to the two most

deprived quintiles (48.2%). It should also be noted that 156 cases were missing

deprivation information – 68 cases did not give their postcode, 52 cases only gave

partial details of their postcode, and the remaining 42 either wrongly recorded

their postcode or their postcode could not be matched to a DZ in Scotland.
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Variable Group Cases (%)

Gender Female 576 (50.62)

Male 562 (49.38)

Age Group 0-4 121 (10.63)

5-14 369 (32.43)

15-64 625 (54.92)

65+ 15 (1.32)

Unknown 8 (0.70)

Healthboard Ayrshire and Arran 8 (0.70)

Dumfries and Galloway 4 (0.35)

Fife 6 (0.53)

Forth Valley 19 (1.67)

Greater Glasgow and Clyde 909 (79.88)

Grampian 2 (0.18)

Highland 120 (10.54)

Lanarkshire 46 (4.04)

Lothian 7 (0.62)

Tayside 17 (1.49)

Deprivation Quintile Most Deprived 334 (29.35)

2 214 (18.80)

3 161 (14.15)

4 126 (11.07)

5 147 (12.92)

Unknown 156 (13.71)

Table 3.3: Counts and percentages for early 2009 pH1N1 cases in Scotland by gender,
age group, healthboard and deprivation quintile.

3.4.2 Symptoms

The numbers and percentages of cases reporting each of the 18 symptoms are

presented in Figure 3.4. The most common symptoms reported by cases were

consistent with what was mentioned previously in Section 3.1.2; these include 80–

90% of cases reporting a dry or productive cough, fever and fatigue; 70–75% of

cases having sore throat and headache; and 60–70% reporting muscle or joint ache,

loss of appetite, runny nose and chills. In addition to this, 48.3% of cases reported



Chapter 3. 2009 pH1N1 in Scotland 108

55
66

181 188

327

298

8 7

χ2 = 2.42

p = 0.49

0

100

200

300

0−4 5−14 15−64 65+

Age Group

N
um

be
r 

of
 C

as
es

 Female
 Male

Figure 3.3: Gender distribution by age group for early cases of 2009 pH1N1 in Scotland.

nausea or vomiting, while about a quarter of cases reported diarrhoea (24.6%). A

minority of cases (around 10% of cases or less) reported symptoms such as seizures,

rash, nose bleed, altered consciousness and conjunctivitis.

Differences in Symptoms by Age Groups

The ORs in Table 3.4 give the odds of reporting each of the 18 symptoms for

individuals in different age groups compared with individuals aged 15–64, which

was used as the reference category as they make up the largest group of cases.

Here, five cases that reported on symptoms were not used in the model as their

age was unknown and so 1,046 cases were included in the model instead of the

1,051 that did report on symptoms. Note that an additional three cases also had

unknown age but they also had unknown responses for all 18 symptoms and there-

fore would not be used anyway. An overall p-value for each symptom was derived

which comes from a general test of association between reporting a symptom and

age. Note that when considering which results to be interesting for discussion here,

we looked for an overall p ≈ 0.0028 or lower due to using Bonferonni corrections

for multiple testing (described earlier in Section 3.3.2). As well as the ORs, the

number of cases within age groups that reported at least one symptom (N) and

percentages of cases within age groups reporting each symptom are presented in
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Figure 3.4: Symptoms reported by early 2009 pH1N1 cases in Scotland. The percent-
ages were calculated using the numbers of cases answering either ‘Yes’ or
‘No’ after imputation (see Table 3.1).

the table along with the associated 95% confidence interval around the percentage.

Significant differences were observed between age groups for seven symptoms which

were fever, runny nose, sore throat, shortness of breath, muscle/joint ache, chills

and headache. For all of these symptoms except fever, significant differences were

found when comparing the 0–4 age group with those aged 15–64. Those aged 0–4

were around twice as likely to report runny nose (OR 2.16, 95% CI 1.35–3.45)

compared with those aged 15–64. However, those in the youngest age group were

less likely to report the other symptoms; they were around 60% less likely to re-

port sore throat and chills; about 72% less likely to report shortness of breath;

and approximately 85% less likely to report muscle/joint ache and headache (see

Table 3.4 for the exact OR estimates).
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The significant difference for fever was observed in the 5–14 age group, who were

around twice as likely to report that symptom compared with cases aged 15–64

(OR 2.10, 95% CI 1.39–3.19). In comparison to those aged 15–64, those aged 5–14

were also found to be just over 60% less likely to report muscle or joint ache and

just over 70% less likely to report shortness of breath. No significant differences

were observed when comparing the 65+ age group to the 15–64 age group, and for

some symptoms (seizures, nose bleed and rash), comparisons could not be made

as no cases aged 65+ reported these symptoms.

Symptom Age N (%) 95% CI OR (95% CI) p

Fever Overall 1,046 (84.9) 82.6 – 86.9 – < 0.001a

0–4 114 (88.6) 81.5 – 93.2 1.76 (0.95 – 3.25) 0.072

5–14 340 (90.3) 86.7 – 93.0 2.10 (1.39 – 3.19) < 0.001

15–64 580 (81.6) 78.2 – 84.5 1.00 –

65+ 12 (58.3) 32.0 – 80.7 0.32 (0.10 – 1.02) 0.053

Dry/Prod Cough Overall 1,046 (87.4) 85.2 – 89.3 – 0.027a

0–4 114 (86.0) 78.4 – 91.2 0.68 (0.38 – 1.23) 0.204

5–14 340 (83.8) 79.5 – 87.4 0.58 (0.39 – 0.86) 0.006

15–64 580 (90.0) 87.3 – 92.2 1.00 –

65+ 12 (75.0) 46.8 – 91.1 0.33 (0.09 – 1.27) 0.107

Runny Nose Overall 1,046 (61.5) 58.5 – 64.4 – < 0.001a

0–4 114 (77.2) 68.7 – 83.9 2.16 (1.35 – 3.45) 0.001

5–14 340 (57.9) 52.6 – 63.1 0.88 (0.67 – 1.15) 0.356

15–64 580 (61.0) 57.0 – 64.9 1.00 –

65+ 12 (33.3) 13.8 – 60.9 0.32 (0.10 – 1.07) 0.065

Sneezing Overall 1,046 (55.1) 52.0 – 58.1 – 0.264a

0–4 114 (55.3) 46.1 – 64.1 0.98 (0.65 – 1.46) 0.906

5–14 340 (54.7) 49.4 – 59.9 0.95 (0.73 – 1.25) 0.733

15–64 580 (55.9) 51.8 – 59.9 1.00 –

65+ 12 (25.0) 8.9 – 53.2 0.26 (0.07 – 0.98) 0.047

Sore Throat Overall 1,046 (73.1) 70.4 – 75.7 – < 0.001a

0–4 114 (55.3) 46.1 – 64.1 0.42 (0.28 – 0.63) < 0.001

5–14 340 (76.5) 71.7 – 80.7 1.10 (0.81 – 1.51) 0.538

15–64 580 (74.7) 71.0 – 78.0 1.00 –

65+ 12 (75.0) 46.8 – 91.1 1.02 (0.27 – 3.81) 0.978

Short Breath Overall 1,046 (30.8) 28.1 – 33.6 – < 0.001a

Continued on next page
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Symptom Age N (%) 95% CI OR (95% CI) p

0–4 114 (16.7) 10.9 – 24.6 0.28 (0.16 – 0.47) < 0.001

5–14 340 (17.1) 13.4 – 21.4 0.29 (0.21 – 0.40) < 0.001

15–64 580 (41.9) 37.9 – 46.0 1.00 –

65+ 12 (16.7) 4.7 – 44.8 0.28 (0.06 – 1.28) 0.100

Fatigue Overall 1,046 (78.7) 76.1 – 81.1 – 0.256a

0–4 114 (73.7) 64.9 – 80.9 0.80 (0.51 – 1.27) 0.345

5–14 340 (81.8) 77.3 – 85.5 1.28 (0.91 – 1.80) 0.149

15–64 580 (77.8) 74.2 – 81.0 1.00 –

65+ 12 (83.3) 55.2 – 95.3 1.43 (0.31 – 6.61) 0.647

Musc/Joint Ache Overall 1,046 (66.1) 63.1 – 68.9 – < 0.001a

0–4 114 (33.3) 25.3 – 42.4 0.15 (0.09 – 0.23) < 0.001

5–14 340 (57.1) 51.7 – 62.2 0.39 (0.29 – 0.52) < 0.001

15–64 580 (77.4) 73.8 – 80.6 1.00 –

65+ 12 (83.3) 55.2 – 95.3 1.46 (0.32 – 6.74) 0.629

Loss Appetite Overall 1,046 (64.9) 62.0 – 67.7 – 0.262a

0–4 114 (62.3) 53.1 – 70.6 0.97 (0.64 – 1.47) 0.896

5–14 340 (69.1) 64.0 – 73.8 1.32 (0.99 – 1.75) 0.058

15–64 580 (62.9) 58.9 – 66.8 1.00 –

65+ 12 (66.7) 39.1 – 86.2 1.18 (0.35 – 3.96) 0.791

Nausea/Vomit Overall 1,046 (48.6) 45.5 – 51.6 – 0.057a

0–4 114 (45.6) 36.8 – 54.8 0.96 (0.64 – 1.44) 0.854

5–14 340 (53.8) 48.5 – 59.1 1.34 (1.02 – 1.75) 0.033

15–64 580 (46.6) 42.5 – 50.6 1.00 –

65+ 12 (25.0) 8.9 – 53.2 0.38 (0.10 – 1.43) 0.153

Chills Overall 1,046 (59.4) 56.4 – 62.3 – < 0.001a

0–4 114 (42.1) 33.4 – 51.3 0.43 (0.29 – 0.65) < 0.001

5–14 340 (60.3) 55.0 – 65.4 0.90 (0.68 – 1.19) 0.458

15–64 580 (62.8) 58.8 – 66.6 1.00 –

65+ 12 (33.3) 13.8 – 60.9 0.30 (0.09 – 1.00) 0.049

Headache Overall 1,046 (68.5) 65.6 – 71.2 – < 0.001a

0–4 114 (32.5) 24.6 – 41.5 0.15 (0.10 – 0.24) < 0.001

5–14 340 (68.8) 63.7 – 73.5 0.71 (0.53 – 0.95) 0.024

15–64 580 (75.7) 72.0 – 79.0 1.00 –

65+ 12 (50.0) 25.4 – 74.6 0.32 (0.10 – 1.01) 0.052

Diarrhoea Overall 1,046 (24.7) 22.1 – 27.4 – 0.017a

0–4 114 (31.6) 23.8 – 40.6 1.27 (0.82 – 1.96) 0.289

5–14 340 (19.1) 15.3 – 23.6 0.65 (0.47 – 0.90) 0.009

15–64 580 (26.7) 23.3 – 30.5 1.00 –

Continued on next page
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Symptom Age N (%) 95% CI OR (95% CI) p

65+ 12 (16.7) 4.7 – 44.8 0.55 (0.12 – 2.53) 0.441

Conjunctivitis Overall 1,046 (10.7) 9.0 – 12.7 – 0.029a

0–4 114 (18.4) 12.4 – 26.5 2.29 (1.32 – 3.98) 0.003

5–14 340 (10.9) 8.0 – 14.6 1.24 (0.79 – 1.93) 0.343

15–64 580 (9.0) 6.9 – 11.6 1.00 –

65+ 12 (16.7) 4.7 – 44.8 2.03 (0.43 – 9.52) 0.369

Nose Bleed Overall 1,046 (6.7) 5.3 – 8.4 – 0.753a

0–4 114 (4.4) 1.9 – 9.9 0.62 (0.24 – 1.60) 0.324

5–14 340 (7.4) 5.0 – 10.6 1.07 (0.64 – 1.80) 0.794

15–64 580 (6.9) 5.1 – 9.3 1.00 –

65+ 12 (0.0) – – –

Rash Overall 1,046 (5.4) 4.1 – 6.9 – 0.012a

0–4 114 (12.3) 7.5 – 19.6 3.11 (1.56 – 6.18) 0.001

5–14 340 (5.0) 3.1 – 7.9 1.17 (0.62 – 2.20) 0.629

15–64 580 (4.3) 2.9 – 6.3 1.00 –

65+ 12 (0.0) – – –

Alter Conscious Overall 1,046 (7.9) 6.4 – 9.7 – 0.141a

0–4 114 (3.5) 1.4 – 8.7 0.36 (0.13 – 1.02) 0.054

5–14 340 (7.1) 4.8 – 10.3 0.76 (0.46 – 1.25) 0.273

15–64 580 (9.1) 7.1 – 11.8 1.00 –

65+ 12 (16.7) 4.7 – 44.8 1.99 (0.42 – 9.32) 0.383

Seizures Overall 1,046 (1.0) 0.5 – 1.8 – 0.343a

0–4 114 (2.6) 0.9 – 7.5 3.89 (0.86 – 17.63) 0.078

5–14 340 (0.9) 0.3 – 2.6 1.28 (0.29 – 5.76) 0.746

15–64 580 (0.7) 0.3 – 1.8 1.00 –

65+ 12 (0.0) – – –

Table 3.4: Odds ratios and 95% confidence intervals for differences in symptoms re-
ported by age groups. The reference age category was 15–64. N refers to
the total number of non-missing symptom responses in each age group and
the percentages relate to how many within age groups have a symptom.
a: p-value for Wald test of the overall variable.

Differences in Symptoms by Gender

Table 3.5 presents the ORs of reporting each symptom for males compared with

females. Note that a separate overall p-value was not required here as only one

comparison is being made for each symptom. After accounting for Bonferroni
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corrections, one statistically significant difference in reporting symptoms between

males and females was found, which was for nausea/vomiting. Around 44% of

men reported nausea/vomiting while around 53% of women reported that symp-

tom (OR 0.69, 95% CI 0.54–0.88). Furthermore, there was also a tendency for

males to be less likely to report most of the symptoms as seen by many of the ORs

being less the one in Table 3.5, with the main exceptions being cough, diarrhoea

and rash.

Differences in Symptoms by Deprivation

Similarly to when we looked for differences in reported symptoms by age, we de-

rived an overall p-value for each symptom using a general test of association when

comparing cases that lived in areas belonging to different quintiles of deprivation.

However compared with the model for age where we dropped cases with unknown

age, those cases that had unknown deprivation were included in the model in their

own category as they made up a sizeable amount of all cases that reported symp-

toms (n = 125, 12%).

After accounting for multiple testing using Bonferonni corrections, there were no

statistically significant differences in the symptoms reported by cases from dif-

ferent deprivation quintiles. However, we can note that there was a fairly large

difference in the the amount of cases reporting nausea/vomiting from the most

deprived quintile compared with the those from deprivation quintile two and also

those with unknown deprivation quintile. Approximately 58% of cases from quin-

tile one reported nausea/vomiting while around 43% of cases from quintile two and

38% of cases with unknown deprivation status reported that symptom. Another

point to highlight is that for a number of symptoms, the ORs were all less than

one when comparing deprivation quintiles 2–5 with the most deprived quintile.

Specifically, these symptoms were cough, shortness of breath, nausea/vomiting,

diarrhoea, conjunctivitis, rash and altered consciousness. Hence, this gives the

general impression that more symptoms were reported by cases living in areas be-

longing to the 20% most deprived DZs in Scotland.
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Symptom Gender N (%) 95% CI OR (95% CI) p

Fever F 531 (86.3) 83.1 – 88.9 1.00 –

M 520 (83.5) 80.0 – 86.4 0.80 (0.57 – 1.13) 0.207

Dry/Prod Cough F 531 (86.6) 83.5 – 89.3 1.00 –

M 520 (87.9) 84.8 – 90.4 1.12 (0.78 – 1.61) 0.542

Runny Nose F 531 (62.5) 58.3 – 66.5 1.00 –

M 520 (60.2) 55.9 – 64.3 0.91 (0.71 – 1.16) 0.438

Sneezing F 531 (58.4) 54.1 – 62.5 1.00 –

M 520 (51.3) 47.1 – 55.6 0.75 (0.59 – 0.96) 0.022

Sore Throat F 531 (75.9) 72.1 – 79.3 1.00 –

M 520 (70.6) 66.5 – 74.3 0.76 (0.58 – 1.00) 0.052

Short Breath F 531 (34.7) 30.7 – 38.8 1.00 –

M 520 (26.7) 23.1 – 30.7 0.69 (0.53 – 0.90) 0.005

Fatigue F 531 (81.0) 77.4 – 84.1 1.00 –

M 520 (76.2) 72.3 – 79.6 0.75 (0.56 – 1.01) 0.057

Musc/Joint Ache F 531 (67.8) 63.7 – 71.6 1.00 –

M 520 (64.2) 60.0 – 68.2 0.85 (0.66 – 1.10) 0.222

Loss Appetite F 531 (66.3) 62.2 – 70.2 1.00 –

M 520 (63.1) 58.8 – 67.1 0.87 (0.67 – 1.12) 0.276

Nausea/Vomit F 531 (52.9) 48.7 – 57.1 1.00 –

M 520 (43.7) 39.5 – 47.9 0.69 (0.54 – 0.88) 0.003

Chills F 531 (59.1) 54.9 – 63.2 1.00 –

M 520 (59.2) 55.0 – 63.4 1.00 (0.79 – 1.28) 0.974

Headache F 531 (71.8) 67.8 – 75.4 1.00 –

M 520 (65.0) 60.8 – 69.0 0.73 (0.56 – 0.95) 0.019

Diarrhoea F 531 (22.0) 18.7 – 25.8 1.00 –

M 520 (27.3) 23.7 – 31.3 1.33 (1.00 – 1.76) 0.048

Conjunctivitis F 531 (10.4) 8.0 – 13.2 1.00 –

M 520 (11.0) 8.6 – 13.9 1.07 (0.72 – 1.58) 0.751

Nose Bleed F 531 (7.3) 5.4 – 9.9 1.00 –

M 520 (6.0) 4.2 – 8.3 0.80 (0.49 – 1.30) 0.369

Rash F 531 (4.9) 3.4 – 7.1 1.00 –

M 520 (5.8) 4.1 – 8.1 1.19 (0.69 – 2.04) 0.529

Alter Conscious F 531 (8.1) 6.1 – 10.7 1.00 –

M 520 (7.7) 5.7 – 10.3 0.95 (0.60 – 1.48) 0.807

Seizures F 531 (0.9) 0.4 – 2.2 1.00 –

M 520 (1.0) 0.4 – 2.2 1.02 (0.29 – 3.55) 0.973

Table 3.5: Odds ratios and 95% confidence intervals for differences in symptoms re-
ported by males and females. The reference gender category was females.
N refers to the total number of non-missing symptom responses for each
gender and the percentages relate to how many within a gender have a
symptom.



Chapter 3. 2009 pH1N1 in Scotland 115

Symptom Depriv N (%) 95% CI OR (95% CI) p

Fever Overall 1,051 (84.9) 82.6 – 86.9 – 0.786a

Most Dep 317 (85.8) 81.5 – 89.2 1.00 –

2 198 (83.3) 77.5 – 87.9 0.83 (0.51 – 1.35) 0.447

3 153 (83.7) 77.0 – 88.7 0.85 (0.50 – 1.44) 0.541

4 121 (87.6) 80.6 – 92.3 1.17 (0.63 – 2.19) 0.625

5 137 (83.2) 76.1 – 88.5 0.82 (0.47 – 1.42) 0.478

Unknown 125 (85.6) 78.4 – 90.7 0.98 (0.54 – 1.78) 0.956

Dry/Prod Cough Overall 1,051 (87.3) 85.1 – 89.1 – 0.509a

Most Dep 317 (89.0) 85.0 – 92.0 1.00 –

2 198 (83.8) 78.1 – 88.3 0.64 (0.38 – 1.08) 0.095

3 153 (86.3) 79.9 – 90.8 0.78 (0.44 – 1.39) 0.401

4 121 (88.4) 81.5 – 93.0 0.95 (0.49 – 1.83) 0.875

5 137 (88.3) 81.9 – 92.7 0.94 (0.50 – 1.76) 0.843

Unknown 125 (87.2) 80.2 – 92.0 0.85 (0.45 – 1.59) 0.602

Runny Nose Overall 1,051 (61.4) 58.4 – 64.3 – 0.482a

Most Dep 317 (62.1) 56.7 – 67.3 1.00 –

2 198 (61.1) 54.2 – 67.6 0.96 (0.66 – 1.38) 0.814

3 153 (63.4) 55.5 – 70.6 1.06 (0.71 – 1.57) 0.792

4 121 (66.1) 57.3 – 73.9 1.19 (0.77 – 1.84) 0.441

5 137 (55.5) 47.1 – 63.5 0.76 (0.51 – 1.14) 0.183

Unknown 125 (59.2) 50.4 – 67.4 0.88 (0.58 – 1.35) 0.567

Sneezing Overall 1,051 (54.9) 51.9 – 57.9 – 0.500a

Most Dep 317 (55.8) 50.3 – 61.2 1.00 –

2 198 (58.6) 51.6 – 65.2 1.12 (0.78 – 1.60) 0.540

3 153 (52.9) 45.1 – 60.7 0.89 (0.60 – 1.31) 0.555

4 121 (60.3) 51.4 – 68.6 1.20 (0.79 – 1.84) 0.396

5 137 (51.1) 42.8 – 59.3 0.83 (0.55 – 1.23) 0.352

Unknown 125 (48.0) 39.4 – 56.7 0.73 (0.48 – 1.11) 0.137

Sore Throat Overall 1,051 (73.3) 70.5 – 75.9 – 0.581a

Most Dep 317 (73.2) 68.1 – 77.8 1.00 –

2 198 (70.2) 63.5 – 76.1 0.86 (0.58 – 1.28) 0.463

3 153 (70.6) 62.9 – 77.2 0.88 (0.57 – 1.35) 0.555

4 121 (75.2) 66.8 – 82.0 1.11 (0.69 – 1.80) 0.667

5 137 (77.4) 69.7 – 83.6 1.25 (0.78 – 2.01) 0.348

Unknown 125 (75.2) 67.0 – 81.9 1.11 (0.69 – 1.79) 0.665

Short Breath Overall 1,051 (30.7) 28.0 – 33.6 – 0.058a

Most Dep 317 (36.6) 31.5 – 42.0 1.00 –

2 198 (29.8) 23.9 – 36.5 0.74 (0.50 – 1.08) 0.114

Continued on next page
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Symptom Depriv N (%) 95% CI OR (95% CI) p

3 153 (26.8) 20.4 – 34.3 0.63 (0.41 – 0.97) 0.036

4 121 (29.8) 22.3 – 38.4 0.73 (0.47 – 1.15) 0.180

5 137 (24.1) 17.7 – 31.9 0.55 (0.35 – 0.87) 0.010

Unknown 125 (30.4) 23.0 – 38.9 0.76 (0.49 – 1.18) 0.219

Fatigue Overall 1,051 (78.6) 76.0 – 81.0 – 0.042a

Most Dep 317 (80.4) 75.7 – 84.4 1.00 –

2 198 (70.7) 64.0 – 76.6 0.59 (0.39 – 0.89) 0.011

3 153 (79.7) 72.7 – 85.3 0.96 (0.59 – 1.55) 0.858

4 121 (81.8) 74.0 – 87.7 1.09 (0.64 – 1.88) 0.744

5 137 (82.5) 75.3 – 87.9 1.14 (0.68 – 1.93) 0.611

Unknown 125 (77.6) 69.5 – 84.0 0.84 (0.51 – 1.39) 0.504

Musc/Joint Ache Overall 1,051 (66.0) 63.1 – 68.8 – 0.096a

Most Dep 317 (70.0) 64.8 – 74.8 1.00 –

2 198 (60.1) 53.2 – 66.7 0.64 (0.44 – 0.94) 0.021

3 153 (69.9) 62.3 – 76.6 1.00 (0.65 – 1.52) 0.983

4 121 (69.4) 60.7 – 76.9 0.97 (0.62 – 1.53) 0.901

5 137 (62.0) 53.7 – 69.7 0.70 (0.46 – 1.07) 0.096

Unknown 125 (61.6) 52.8 – 69.7 0.69 (0.45 – 1.06) 0.089

Loss Appetite Overall 1,051 (64.7) 61.8 – 67.5 – 0.082a

Most Dep 317 (67.5) 62.2 – 72.4 1.00 –

2 198 (59.6) 52.6 – 66.2 0.71 (0.49 – 1.03) 0.068

3 153 (62.7) 54.9 – 70.0 0.81 (0.54 – 1.21) 0.308

4 121 (74.4) 65.9 – 81.3 1.40 (0.87 – 2.24) 0.164

5 137 (65.7) 57.4 – 73.1 0.92 (0.60 – 1.41) 0.706

Unknown 125 (57.6) 48.8 – 65.9 0.65 (0.43 – 1.00) 0.050

Nausea/Vomit Overall 1,051 (48.3) 45.3 – 51.4 – 0.004a

Most Dep 317 (58.0) 52.5 – 63.3 1.00 –

2 198 (43.4) 36.7 – 50.4 0.56 (0.39 – 0.79) 0.001

3 153 (50.3) 42.5 – 58.1 0.73 (0.50 – 1.08) 0.115

4 121 (43.0) 34.5 – 51.9 0.54 (0.36 – 0.83) 0.005

5 137 (44.5) 36.5 – 52.9 0.58 (0.39 – 0.87) 0.008

Unknown 125 (38.4) 30.3 – 47.2 0.45 (0.29 – 0.69) < 0.001

Chills Overall 1,051 (59.2) 56.2 – 62.1 – 0.707a

Most Dep 317 (61.8) 56.4 – 67.0 1.00 –

2 198 (58.6) 51.6 – 65.2 0.87 (0.61 – 1.25) 0.464

3 153 (55.6) 47.6 – 63.2 0.77 (0.52 – 1.14) 0.194

4 121 (58.7) 49.8 – 67.1 0.88 (0.57 – 1.34) 0.546

5 137 (62.0) 53.7 – 69.7 1.01 (0.67 – 1.52) 0.966

Unknown 125 (55.2) 46.5 – 63.6 0.76 (0.50 – 1.16) 0.201

Continued on next page
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Symptom Depriv N (%) 95% CI OR (95% CI) p

Headache Overall 1,051 (68.4) 65.5 – 71.2 – 0.786a

Most Dep 317 (69.7) 64.4 – 74.5 1.00 –

2 198 (71.7) 65.1 – 77.5 1.10 (0.74 – 1.63) 0.628

3 153 (67.3) 59.5 – 74.2 0.89 (0.59 – 1.35) 0.599

4 121 (66.1) 57.3 – 73.9 0.85 (0.54 – 1.32) 0.468

5 137 (71.5) 63.5 – 78.4 1.09 (0.70 – 1.70) 0.698

Unknown 125 (60.0) 51.2 – 68.2 0.65 (0.42 – 1.00) 0.051

Diarrhoea Overall 1,051 (24.6) 22.1 – 27.3 – 0.010a

Most Dep 317 (31.5) 26.7 – 36.9 1.00 –

2 198 (26.8) 21.1 – 33.3 0.79 (0.53 – 1.18) 0.249

3 153 (20.9) 15.2 – 28.0 0.57 (0.36 – 0.91) 0.017

4 121 (17.4) 11.6 – 25.1 0.46 (0.27 – 0.77) 0.003

5 137 (21.2) 15.2 – 28.7 0.58 (0.36 – 0.94) 0.025

Unknown 125 (19.2) 13.3 – 27.0 0.52 (0.31 – 0.85) 0.010

Conjunctivitis Overall 1,051 (10.7) 8.9 – 12.7 – 0.820a

Most Dep 317 (12.6) 9.4 – 16.7 1.00 –

2 198 (10.1) 6.6 – 15.1 0.78 (0.44 – 1.37) 0.387

3 153 (11.1) 7.1 – 17.1 0.87 (0.47 – 1.58) 0.639

4 121 (9.1) 5.2 – 15.5 0.69 (0.34 – 1.40) 0.306

5 137 (10.2) 6.2 – 16.4 0.79 (0.41 – 1.50) 0.469

Unknown 125 (8.0) 4.4 – 14.1 0.60 (0.29 – 1.24) 0.171

Nose Bleed Overall 1,051 (6.7) 5.3 – 8.3 – 0.083a

Most Dep 317 (5.4) 3.4 – 8.4 1.00 –

2 198 (6.6) 3.9 – 10.9 1.24 (0.59 – 2.61) 0.571

3 153 (11.1) 7.1 – 17.1 2.21 (1.09 – 4.45) 0.027

4 121 (3.3) 1.3 – 8.2 0.60 (0.20 – 1.83) 0.372

5 137 (8.8) 5.1 – 14.7 1.69 (0.79 – 3.65) 0.178

Unknown 125 (5.6) 2.7 – 11.1 1.05 (0.42 – 2.59) 0.921

Rash Overall 1,051 (5.3) 4.1 – 6.9 – 0.789a

Most Dep 317 (6.3) 4.1 – 9.5 1.00 –

2 198 (4.0) 2.1 – 7.8 0.63 (0.27 – 1.45) 0.273

3 153 (4.6) 2.2 – 9.1 0.71 (0.29 – 1.72) 0.451

4 121 (5.8) 2.8 – 11.5 0.91 (0.38 – 2.21) 0.838

5 137 (4.4) 2.0 – 9.2 0.68 (0.27 – 1.73) 0.419

Unknown 125 (6.4) 3.3 – 12.1 1.02 (0.44 – 2.37) 0.972

Alter Conscious Overall 1,051 (7.9) 6.4 – 9.7 – 0.284a

Most Dep 317 (10.7) 7.8 – 14.6 1.00 –

2 198 (5.6) 3.1 – 9.7 0.49 (0.24 – 0.99) 0.047

3 153 (7.8) 4.5 – 13.2 0.71 (0.36 – 1.41) 0.326

Continued on next page
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Symptom Depriv N (%) 95% CI OR (95% CI) p

4 121 (6.6) 3.4 – 12.5 0.59 (0.26 – 1.31) 0.195

5 137 (7.3) 4.0 – 12.9 0.66 (0.31 – 1.37) 0.260

Unknown 125 (6.4) 3.3 – 12.1 0.57 (0.26 – 1.27) 0.167

Seizures Overall 1,051 (1.0) 0.5 – 1.7 – 0.913a

Most Dep 317 (0.9) 0.3 – 2.7 1.00 –

2 198 (1.0) 0.3 – 3.6 1.07 (0.18 – 6.45) 0.943

3 153 (2.0) 0.7 – 5.6 2.09 (0.42 – 10.49) 0.369

4 121 (0.0) – – –

5 137 (1.5) 0.4 – 5.2 1.55 (0.26 – 9.39) 0.633

Unknown 125 (0.0) – – –

Table 3.6: Odds ratios and 95% confidence intervals for differences in symptoms re-
ported by deprivation quintiles. the reference category was the most de-
prived quintile. N refers to the total number of non-missing symptom re-
sponses in each deprivation quintile and the percentages relate to how many
within deprivation quintiles have a symptom.
a: p-value for Wald test of the overall variable.

Multiple Logistic Regression

We fitted a multivariable logistic regression model with age, gender and depriva-

tion together to investigate how results from our univariable analyses would be

affected when also adjusting for the additional covariates – for example, with age,

we would examine the effect on results when also adjusting for gender and depriva-

tion. The percentage changes in the estimated ORs from the multivariable model

relative the univariable ORs are illustrated in Figure 3.5, and for symptoms that

produced statistically significant differences between groups in univariable analy-

ses, the ORs and 95% CIs are reported in Table 3.7.

From Figure 3.5, we can observe that when comparing deprivation quintile two

against deprivation quintile one for fever, the OR changed by around 10%, and

similarly for loss of appetite, the OR changed by around the same percentage

when comparing those aged 65+ against cases aged 15–64. Larger changes in ORs

were found for seizures, but this was perhaps expected as only 10 cases reported

seizures and even minor adjustments to a model could have a larger impact on

the ORs for that symptom. For all of the other symptoms, the ORs from the
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Altered Consciousness Chills Conjunctivitis

Cough Diarrhoea Fatigue

Fever Headache Loss of Appetite

Muscle/Joint Ache Nausea/Vomit Nose Bleed

Rash Runny Nose Seizures

Shortness of Breath Sneezing Sore Throat

2 vs 1
3 vs 1
4 vs 1
5 vs 1

Unknown vs 1
M vs F

0−4 vs 15−64
5−14 vs 15−64

65+ vs 15−64

2 vs 1
3 vs 1
4 vs 1
5 vs 1

Unknown vs 1
M vs F

0−4 vs 15−64
5−14 vs 15−64

65+ vs 15−64

2 vs 1
3 vs 1
4 vs 1
5 vs 1

Unknown vs 1
M vs F

0−4 vs 15−64
5−14 vs 15−64

65+ vs 15−64

2 vs 1
3 vs 1
4 vs 1
5 vs 1

Unknown vs 1
M vs F

0−4 vs 15−64
5−14 vs 15−64

65+ vs 15−64

2 vs 1
3 vs 1
4 vs 1
5 vs 1

Unknown vs 1
M vs F

0−4 vs 15−64
5−14 vs 15−64

65+ vs 15−64

2 vs 1
3 vs 1
4 vs 1
5 vs 1

Unknown vs 1
M vs F

0−4 vs 15−64
5−14 vs 15−64

65+ vs 15−64

−10 0 10 20 −10 0 10 20 −10 0 10 20

% Change in Odds Ratio

Age Group Deprivation Quintile Gender

Figure 3.5: Percentage change in odds ratios for multiple logistic regression on symp-
toms against age, gender and deprivation compared with univariable re-
gression. The change was calculated relative to the univariable odds ratio.
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multivariable model changed by less than 10% for comparisons between age, gender

and deprivation. Therefore on the whole, adjusting for multiple factors as in the

multivariable model only had a minimal impact on the ORs for reporting each of

the symptoms.

Number of Symptoms

For our analysis on the numbers of symptoms reported by cases – out of a possible

total of 18 symptoms for each case – we looked at only the 702 cases that returned

complete data on symptoms along with the 349 cases that returned partial data

and subsequently had “No” responses imputed. Out of these cases, the number

of symptoms reported ranged from 0–16 but the histogram (Figure 3.6a) shows

that the majority of cases reported between 6–12 symptoms; the median number

of symptoms reported by patients was 9 (IQR 6–11 symptoms). Only four cases

(0.4%) reported no symptoms and these can be considered as reported asymp-

tomatic cases.

We wanted to look at whether or not there were differences in numbers of reported

symptoms between gender, age group and deprivation quintile, with a hypothesis

that more deprived groups would report more symptoms. To visually explore this,

numbers of symptoms were grouped into 0–5, 6–10 and 11+ and error-bar plots

were produced using these categorisations. The clearest difference between males

and females that can be seen on Figure 3.6b is that a higher proportion of females

reported 11+ symptoms than males (29% vs 21.5%). The difference in numbers

of symptoms reported between males and females was found to be statistically

significant using a Mann-Whitney test (p = 0.011, Table 3.10).

From Figure 3.6c, the clearest differences between age groups lie with the lower

proportions of cases reporting 11+ symptoms in age groups 0–4 (13.2%) and 65+

(8.3%), compared with 23.2% and 29.5% for age groups 5–14 and 15–64, respec-

tively. Note that for those aged 65+, the error bars around estimated proportions

were wide due to the small number of cases in that age category. Moreover, a

Kruskal-Wallis test found that there was a significant difference in the numbers of
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Figure 3.6: Numbers of symptoms reported by early pH1N1 cases overall and by gen-
der, age group and deprivation quintile. Percentages were taken from only
cases that reported either complete or partial data on symptoms (n =
1,051). Error bars around the estimated proportions were calculated using
Wilson’s method [388]. Note that the y-axis scale varies between plots.

symptoms reported between age groups (p < 0.001). Post-hoc pairwise compar-

isons using Dunn’s test [94] with Bonferonni adjustments for significance found

that the main difference was between age groups 0–4 and 15–64 (as expected from

the percentages illustrated in Figure 3.6c). No clear trend in the numbers of symp-

toms by deprivation quintile can be seen from Figure 3.6d, and a linear-by-linear
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test did not indicate that there was any evidence of a linear association.

Clustering of Symptoms

PCA was used on the data for the 18 symptoms in order to find if different groups

of these symptoms clustered among the cases. From the scatterplot of the first two

PCs (which account for around a third of the total variance in the data) shown at

the bottom of Figure 3.7, we can observe that the procedure split the cases into

three main clusters. Moreover, the biplot (top of Figure 3.7), illustrates that the

symptoms that most discriminate the groups on the second PC are sneezing and

runnynose. This point is also clear from Table 3.8, which clearly shows that 100%

of cases in PCA group 1 (bottom group on the plot) reported those two symptoms

while 0% of cases in PCA group 3 (top group on the plot) reported those symptoms.

The cases were split into groups that were roughly indicative of their severity of

illness, with highest severity in group 1 and lowest severity in group 3. This state-

ment becomes clearer by deriving the average numbers of reported symptoms for

cases in each group – a mean of 10 reported symptoms was found for group 1, fol-

lowed by a mean of 8 for group 2 and finally, a mean of 6 for group 3. Furthermore,

the percentages of cases in each group reporting each of the symptoms generally

decreased from group 1 to group 2 and then group 3 (Table 3.8). The only ex-

ceptions to this were rarely reported symptoms such as altered consciousness and

seizures which were highest in group 1 but lower in group 2 than in group 3.

In the most severe illness group, the 10 symptoms that most cases reported were

chills, cough, fatigue, fever, headache, loss of appetite, muscle/joint ache, runny

nose, sneezing and sore throat. Over 65% of cases in group 1 reported each of

these symptoms. For cases in group 2 that reported a mean of 8 symptoms, the

most common symptoms were the same as for group 1 but perhaps excluding chills

and sneezing, which under 40% of cases in group 2 reported. Finally, for cases in

group 3, the most commonly reported symptoms were the same as for group 2 but

with the exceptions of loss of appetite and runny nose.
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Figure 3.7: Principal components analysis plots for the pH1N1 symptoms data. At
the top, the biplot is shown and at the bottom, a scatterplot for the first
two principal components is shown with colours illustrating how groups
were split up. Runny nose and sneezing were the symptoms that most
discriminate the groups; everybody in group one reported those symptoms
and nobody in group three reported those symptoms.
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Cases (%)

Symptom PCA Group 1 PCA Group 2 PCA Group 3

Altered Consciousness 41 (8.9) 20 (6.6) 22 (7.6)

Chills 307 (66.7) 174 (57.8) 141 (48.6)

Conjunctivitis 70 (15.2) 29 (9.6) 13 (4.5)

Cough 424 (92.2) 269 (89.4) 224 (77.2)

Diarrhoea 139 (30.2) 73 (24.3) 47 (16.2)

Fatigue 404 (87.8) 228 (75.7) 194 (66.9)

Fever 411 (89.3) 259 (86.0) 222 (76.6)

Headache 356 (77.4) 198 (65.8) 165 (56.9)

Loss of Appetite 320 (69.6) 208 (69.1) 152 (52.4)

Muscle/Joint Ache 340 (73.9) 182 (60.5) 172 (59.3)

Nausea/Vomiting 261 (56.7) 139 (46.2) 108 (37.2)

Nose Bleed 43 (9.3) 15 (5.0) 12 (4.1)

Rash 36 (7.8) 13 (4.3) 7 (2.4)

Runny Nose 460 (100.0) 185 (61.5) 0 (0.0)

Seizures 5 (1.1) 2 (0.7) 3 (1.0)

Shortness of Breath 174 (37.8) 80 (26.6) 69 (23.8)

Sneezing 460 (100.0) 117 (38.9) 0 (0.0)

Sore Throat 385 (83.7) 202 (67.1) 183 (63.1)

Table 3.8: Numbers and percentages of pH1N1 cases reporting each of the 18 symptoms
within three groups produced from principal components analysis (PCA).
See Figure 3.7 for an illustration of the groups chosen following PCA.

3.4.3 Treatment

For exploring treatment, we looked at all 1,138 laboratory-confirmed cases and as-

sumed unknown responses to be “No” when calculating proportions. This applies

to the analyses on health services, antivirals but not treatment delay as for that

analysis, we could only use cases that received antivirals and also reported both,

a date for receiving antivirals and a date of infection (date of onset of symptoms

or date of report or date of confirmation).

Cases most often reported that they telephoned or visited their GP (58.2%) while

NHS Direct and other health services were the next most commonly used services
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with 25.4% and 26.4% of cases using these services respectively (Figure 3.8). This

was followed by visiting walk-in centres which were used by only 8.6% of cases.

Less than 5.5% of cases used the remaining services which were contacting out of

hours services, attending accident and emergency departments and being admitted

to hospitals. Note that cases can attend multiple health services and therefore,

the percentages on Figure 3.8 do not add up to 100%.

58.2%

8.6%
5.5%

2.7%
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Figure 3.8: Health services used by pH1N1 cases with percentages calculated from the
1,138 laboratory-confirmed early pH1N1 cases in Scotland. Note that cases
can attend multiple health services and therefore, the percentages do not
add up to 100%.

Out of the cases that reported the use of multiple health services, 461 (40.5%)

used two health services, 88 (7.7%) used three health services and only 10 cases

(under 1%) used four health services; nobody reported the use of more than four

different health services. For those that used at least two different health services,

Table 3.9 shows how many cases used different pairs of health services (noting that

the numbers along the diagonal of the table give how many cases reported the use

of each individual health service). The most commonly reported pairs of health

services used were GP with other health services (n = 178), NHS Direct with other

health services (n = 125), GP with NHS Direct (n = 118), and GP with walk-in

centres (n = 57).
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GP
Walk-in
Centre

A&E Hospital
NHS

Direct
Other

Out of
Hours

GP 662

Walk-in Centre 57 98

A&E 23 4 63

Hospital 12 0 7 31

NHS Direct 118 41 19 11 289

Other 178 6 9 4 125 300

Out of Hours 13 5 3 5 22 5 42

Table 3.9: Numbers of pH1N1 cases using at least two different health services. Note
that the numbers on the diagonal give the use of a single health service.

From those that used at least three health services, 40 cases used GP with NHS

Direct and other health services, and 13 used GP with NHS Direct and walk-in

centres; less than 10 cases used any of the remaining three-way combinations of

health services. It was rare for cases to use four different health services but when

this happened, it was usually due to cases needing to be admitted to hospital or

an accident and emergency department. For instance, three cases reported the use

of GP with NHS Direct, walk-in centres and visiting the accident and emergency

department.

Antivirals

Almost three quarters of cases (74.3%) received oseltamivir (trade name: Tamiflu)

as their antiviral whilst only 0.6% of cases received Zanamivir (Relenza). No cases

received Amantadine or Rimantadine, and 0.3% of cases received other antivirals.

This gives an overall figure of 75.2% of cases that received antiviral drugs.

For antiviral use, we hypothesised that antiviral use would be higher for those

reporting more symptoms and would be lower for those from more deprived areas.

We also wished to find if there were differences by gender and age but did not ex-

pect any linear trend in antiviral use with age. Figure 3.9 shows the percentages of

cases receiving antivirals by gender, age group, number of symptoms reported and

deprivation quintile. Figure 3.9b shows decreasing percentages of cases receiving
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antivirals by age group and from, Figure 3.9c, there appears to be a slight trend

of higher antiviral use when cases have more symptoms.
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Figure 3.9: Percentages of early pH1N1 cases receiving antivirals by gender, age group,
numbers of symptoms and deprivation quintile. Error bars around the
estimated proportions were calculated using Wilson’s method [388]. Note
that the y-axis scale varies between plots.

To more formally test for differences, a χ2 test was used to test for a difference

in the proportions of cases receiving antivirals by gender, and the same test was

also used to test for an association between receiving antivirals with age group.

Linear-by-linear tests were used to test if there was a linear association between

receiving antivirals with numbers of symptoms and also with deprivation quintile.
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None of these tests indicated that there were significant differences or associations

(see Table 3.10).

A previous review by Ward et al. [377] on the use of oseltamivir against pandemic

influenza found that the most frequently reported adverse effects of using the

drug were nausea, vomiting and diarrhoea. To investigate if cases that received

oseltamivir were more likely to report these symptoms compared with cases that

did not receive oseltamivir, we used only the 992 cases that reported at least

one symptom and also reported on whether or not they received oseltamivir. We

found that cases were no more likely to report diarrhoea (OR 1.13, 95% CI 0.77 –

1.7) or nausea/vomiting (OR 1.23, 95% CI 0.88 – 1.73) based on if they received

oseltamivir.

Treatment Delay

The distribution of treatment delay times is given in Figure 3.10. From those cases

for which a treatment delay length could be derived (n = 778), 37.7% received an-

tivirals within the recommended 48 hours, and around half received treatment

within 3–6 days of having symptoms (50.4%). Therefore, around 88% cases of

received antivirals within a week of being symptomatic, but 12% of cases had to

wait a week or more to receive antivirals.

For treatment delay, we wanted to test the same hypotheses as for antiviral use.

To visually explore differences in treatment delay by gender, age group, number

of symptoms and deprivation quintile, treatment delay was grouped into 0–2, 3–

6 and 7+ days and the error-bar plots shown in Figure 3.11 were created. The

plots do not show any obvious differences in treatment delay by these variables.

Mann-Whitney and Kruskal-Wallis tests were used to test if there were significant

differences between treatment delay and gender, and between treatment delay and

age group; linear-by-linear tests were used to test for linear associations between

treatment delay with numbers of symptoms and with deprivation quintile. These

tests did not produce any significant results (summary results are shown in Ta-

ble 3.10).
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Figure 3.10: Time between onset of symptoms and receiving antivirals for early pH1N1
cases in Scotland. Note that this only includes cases for which the dates
of receiving antivirals and symptoms onset were known (n = 778).

Dependent Variable Independent Variable Test p

Number of Symptoms Gender Mann-Whitney 0.011

Age Group Kruskal-Wallis < 0.001

Deprivation Quintile Linear-by-Linear 0.283

Received Antivirals Gender Chi-Square 0.431

Age Group Chi-Square 0.197

Number of Symptoms Linear-by-Linear 0.293

Deprivation Quintile Linear-by-Linear 0.289

Treatment Delay Gender Mann-Whitney 0.962

Age Group Kruskal-Wallis 0.703

Number of Symptoms Linear-by-Linear 0.136

Deprivation Quintile Linear-by-Linear 0.121

Table 3.10: Summary statistical test results for analyses on numbers of symptoms,
receiving antivirals and treatment delay. Note that for linear-by-linear
tests, number of symptoms was grouped into 0–5, 6–10 and 11+, and
treatment delay was grouped into 0–2, 3–6 and 7+ days.

3.4.4 Chronic Diseases

Out of the 1,138 pH1N1 cases in our sample, 98 cases (8.6%) had at least one

associated chronic disease, with 17 cases having more than one associated chronic
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Figure 3.11: Percentages of early pH1N1 cases waiting 0–2 days, 3–6 days and over
a week for treatment by gender, age group, numbers of symptoms and
deprivation quintile. Error bars around the estimated proportions were
calculated using Wilson’s method [388]. Note that the y-axis scale varies
between plots.

disease (Figure 3.12b). From those that had at least one chronic disease, by far

the most prevalent disease was lung disease (37 cases out of 98 with at least one

chronic disease, 37.8%). This was followed by diabetes, (16 cases), kidney disease

(15 cases), chronic heart disease (13 cases), and seizure disorder (11 cases). Less

than 10 cases had malignancy, HIV, liver disease and only 4 cases had previously
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had an organ or bone marrow transplant (Figure 3.12a).

The figure of approximately 8.6% having a chronic disease is lower than the roughly

15% of the Scottish population aged under 65 who have a chronic disease [225] and

hence, our results here do not suggest that those with chronic diseases are much

more likely to report illness with pH1N1. However, we must note that we assumed

that when cases left a response blank regarding chronic diseases, this meant that

they did not have that particular disease and this may have biased the estimated

percentage downwards. Under the same assumptions, we also investigated if cases

with at least one chronic disease were more likely to visit accident and emergency

or be admitted to hospital compared with cases with no associated chronic diseases.

There was insufficient evidence to suggest that cases with chronic diseases were

more likely to visit those health services (OR 1.6, 95% CI: 0.82 to 3.13).

Pregnancies

Only 11 of the early pandemic influenza cases were pregnant when they contracted

the disease which is not a large enough number of cases to draw any firm conclu-

sions from regarding the severity of their illness or their treatment compared with

the general population. However we can note the median number of symptoms

reported by these women was fairly consistent with other cases (median of 10

symptoms for the pregnant cases and 9 for all cases). Furthermore, only one of

the women received antivirals later than a week after their onset of symptoms

(although data was unavailable on whether or not two pregnant women received

antivirals), but this person was also admitted to the accident and emergency de-

partment soon after they were symptomatic and so she may have been receiving

treatment in hospital before being prescribed antivirals.

3.4.5 Contacts

There was data on 3,514 contacts of pH1N1 cases in Scotland, that linked to 848

different cases in the cases dataset. Table 3.11 gives an overview of the information

available on the contacts that linked to pH1N1 cases. There were slightly more

female contacts than male contacts (49.4% vs 46.8%, with the remainder of con-
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Figure 3.12: Associated chronic diseases for pH1N1 cases.

tacts having unknown gender). Most contacts were aged 15–64 (57.8%) or 5–14

(15.1%) but relatively few were aged 0–4 or 65+, which matches closely to the ages

of cases. Deprivation was unknown for over half of contacts but it is still apparent

that far more contacts were from more deprived areas, with around a quarter of

contacts coming from the two most deprived quintiles, and this was around 56.7%

when only considering contacts for which deprivation status was known.

Approximately 78% of the contacts could be grouped into household or non-
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Variable Group n (%)

Gender Female 1,737 (49.43)

Male 1,643 (46.76)

Unknown 134 (3.81)

Age Group 0–4 259 (7.37)

5–14 530 (15.08)

15–64 2,030 (57.77)

65+ 83 (2.36)

Unknown 612 (17.42)

Deprivation Quintile Most Deprived 519 (14.77)

2 365 (10.39)

3 268 (7.63)

4 175 (4.98)

5 232 (6.60)

Unknown 1,955 (55.63)

Type of Contact Household 2,036 (57.94)

Non–household 703 (20.01)

Unknown 775 (22.05)

Symptoms No 748 (21.29)

Yes 302 (8.59)

Unknown 2,464 (70.12)

Table 3.11: Characteristics of contacts of 2009 pH1N1 cases in Scotland. Only contacts
that could be linked to cases in the cases dataset were included.

household contacts using the assumptions we mentioned in Section 3.2.3. Out

of all linked contacts, 57% were household and 20% were non-household. Notably,

deprivation status for contacts was known much more frequently for household

contacts compared with non-household contacts (56% vs 34%). Data regarding

whether or not contacts reported being symptomatic was largely missing (70%

missing). Thus, that variable could not really be used for any meaningful analyses.

To investigate if there was a bias in cases with certain characteristics reporting con-

tacts, we constructed a predictive model using logistic regression where reporting

or not reporting contacts was the binary response variable. The covariates in-
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cluded in the prediction model are shown in Table 3.12. The time period for when

a case had onset of symptoms (or another date such as date of illness reported if

that was unavailable) was included in the model to see if that had an influence on

whether or not cases had contacts. This variable was split into three periods to

roughly encompass the beginning, middle and latter part of the containment phase.

In general, the results indicate that the contacts appeared to missing for cases

in a fairly random manner (or at least unpredictable manner using the available

data and model). However, we note that one OR in the model was statistically

significant but this result simply tells us that when a case was missing all responses

regarding symptoms, they were also much less likely to report a contact (OR 0.1,

95% CI 0.05–0.19). This result is also vividly illustrated in Figure 3.13 (centre-

right plot) where we can observe that over 70% of cases with an unknown number

of symptoms had no contacts.

Case-Contact Relationships

The distribution of the number of contacts per case can be seen in Figure 3.14,

and from there, we can see that the distribution is highly skewed with only a

small number of cases reported a large number of contacts. The median number

of contacts per case was 3 with an IQR of 2–5 contacts, but notably, one case

reported 54 contacts, which was by far the most contacts reported by any case

(the next highest was 26 contacts). The plots in Figure 3.13 also allow us to

explore if cases with different characteristics were reporting different numbers of

contacts. There were no clear differences by gender, by deprivation or by numbers

of chronic diseases, and for number of symptoms, the only clear difference can be

seen when comparing those with an unknown number of symptoms as mentioned

previously. However, there was some variation in numbers of contacts by age

group. A kruskal-Wallis test on numbers of contacts against age group produced a

significant result and pairwise comparisons using Dunn’s Tests showed a number

of differences by age. Cases aged 0–4 had significantly less contacts than those

aged 5–14 but significantly more contacts than those aged 65+, and cases aged

65+ also had significantly less contacts than cases aged 15–64.
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OR 95% CI

Time Period

Before 25 May 2009 1.00 –

25 May to 21 June 2009 2.26 0.64 – 8.02

After 21 June 2009 1.74 0.48 – 6.28

Unknown 2.02 0.57 – 7.23

Symptoms

0–5 1.00 –

6–10 1.12 0.75 – 1.66

11+ 1.12 0.71 – 1.76

Unknown 0.10 0.05 – 0.19

Chronic Disease

0 1.00 –

1+ 0.72 0.44 – 1.17

Unknown 1.08 0.75 – 1.56

Gender

Female 1.00 –

Male 1.03 0.77 – 1.37

Age

0–4 1.00 –

5–14 1.35 0.98 – 1.87

15–64 1.00 –

65+ 0.42 0.14 – 1.29

Unknown 0.65 0.12 – 3.40

Deprivation Quintile

1 (Most Deprived) 1.00 –

2 1.28 0.84 – 1.96

3 1.34 0.84 – 2.15

4 1.00 –

5 1.36 0.84 – 2.22

Unknown 1.11 0.69 – 1.79

Table 3.12: Odds ratios and 95% confidence intervals from the predictive model for
which cases had at least one reported contact. Note that the time period
refers to the earliest known date between the date of onset of symptoms,
the date reported and the date the case was confirmed.
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Figure 3.13: Barplots of numbers of contacts per case grouped by gender of case, age
group, deprivation quintile, number of symptoms and chronic disease.
Note that the percentages on the y-axis scale give percentages within
groupings for each variable reporting a certain number of contacts (for
example, percentages of female cases having 0, 1–3 contacts, etc), and
the counts above bars show the numbers of cases having 0, 1–3 contacts,
etc.
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Figure 3.14: Distribution of numbers of contacts per case.

We further explored case-contact relationships by looking at ages of cases against

the ages of their contacts. Similarly, we also looked at gender of cases against the

gender of their contacts and also deprivation of cases against deprivation of their

contacts. We found that cases belonging to any age group had most contacts aged

15–64. More specifically, cases aged 0–4, 5–14 and 15–64 had an average of almost

two contacts aged 15–64, but cases aged 65+ had only an average of 0.67 contacts

aged 15–64 and typically had the least amount of contacts (Table 3.13). For all

other case-contact age combinations, averages of less than one contact per case

were found.

Table 3.14 shows that cases had more female contacts on average regardless of

whether the case was a male or female, but males generally had slightly more con-

tacts. The numbers on the diagonal of Table 3.15 are largest and this shows that

cases tended to have contacts that lived in areas belonging to the same depriva-

tion quintile as them. Furthermore, the results also indicate that cases reported

extremely few contacts from different deprivation quintiles to them. One reason

for this finding is that many of the contacts reported by cases would have been

household contacts. A supplementary table showing more complete results on
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case-contact relationships such as the numbers used to produce the mean numbers

of contacts is given in Appendix 3.A.

Contact Age

Case Age 0-4 5-14 15-64 65+ Unknown

0-4 0.36 0.64 1.86 0.10 0.52

5-14 0.27 0.64 1.90 0.07 0.45

15-64 0.19 0.34 1.74 0.07 0.60

65+ 0.00 0.07 0.67 0.13 0.27

Unknown 0.00 0.12 0.62 0.00 0.50

Table 3.13: Mean number of contacts by ages of cases and contacts.

Contact

Case Female Male Unknown

Female 1.45 1.34 0.14

Male 1.60 1.55 0.09

Table 3.14: Mean number of contacts by gender of cases and contacts.

Contact Deprivation

Case Deprivation Most Deprived 2 3 4 5 Unknown

Most Deprived 1.31 0.07 0.04 0.05 0.01 1.33

2 0.06 1.22 0.10 0.01 0.03 1.79

3 0.13 0.12 1.19 0.02 0.06 1.86

4 0.06 0.12 0.04 1.03 0.06 2.02

5 0.02 0.01 0.09 0.06 1.32 1.81

Unknown 0.24 0.28 0.17 0.07 0.06 1.96

Table 3.15: Mean number of contacts by deprivation quintile of cases and contacts.
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3.5 Discussion

This analysis looked at all known reported cases of 2009 pandemic H1N1 influenza

in Scotland between 25th April to 9th July 2009 that also provided detailed data

from questionnaires in addition to the routinely collected dates of report or onset

of symptoms. One of the main purposes of this analysis was to compare our

findings on the characteristics of cases in Scotland against what has been reported

elsewhere. The demographic characteristics showed that there were no major

differences in numbers of reported cases by gender, but most reported cases were

children and young adults. This is in line with previous reports in the UK, although

the median age of 17 found here was higher than the median ages of 12 [155] and 15

[240] found previously in the UK. The higher median age found for reported cases

in Scotland indicates that the outbreak was community based rather than school

based. In a more global comparison, the median age of early cases in Scotland

was higher than in Peru (median 13 years) [250] but lower than what was found

in Western Australia and Victoria as well as initial case series from Europe and

the United States (median 20–25 years) [200].

It is possible that some of the estimates with lower median ages could reflect

differential testing patterns over time. This is particularly the case if school chil-

dren were targeted for testing as this group is known to spread influenza at higher

rates due to their mixing patterns compared with adults. In fact, one of the first

recognised clusters of cases in the UK occurred in a school in the West Midlands

[18]. We also found very few cases aged over 65. This may be because older in-

dividuals have been exposed to similar previous influenza pandemics giving them

some level of extra protection against 2009 pH1N1 due to cross-reacting antibodies

[28]. In contrast to this, there has been no real evidence to suggest that vaccination

with recent seasonal nonadjuvanted or adjuvanted influenza vaccines conferred any

additional protection against pandemic influenza [149]

The majority of patients reported fairly mild illness with the most common symp-

toms being similar to those experienced during seasonal influenza outbreaks. These

symptoms include fever, coughing, general fatigue (malaise), sore throat and mus-
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cle or joint aches. The proportions of early cases in Scotland that reported these

common symptoms were similar to what was found previously in the UK by the

Health Protection Agency (HPA) in England (whose role was taken over by Public

Health England since 2013) [155].

Most cases reported six or more symptoms, with a median of nine symptoms

per case which is higher than the median number of symptoms reported in an Aus-

tralian study [51]. However, one possibility for their lower median is that they only

considered eleven different symptoms compared with the eighteen symptoms that

we considered. A much more reliable comparison on numbers of symptoms could

only be made if both studies considered the exact same symptoms. The Australian

study compared pandemic influenza cases with seasonal influenza cases and found

that the median reported number of symptoms was the same for both groups.

Hence, this could suggest that pandemic influenza did not cause a substantially

greater degree of discomfort compared with seasonal influenza.

Asymptomatic infections are possible but a systematic review found that there

was not much evidence to suggest that asymptomatic cases cause much transmis-

sion of influenza [283]. However, the authors of that review do stress that much

more research is needed on the transmission potential of asymptomatic cases. Only

four of the early cases in Scotland reported no symptoms despite being laboratory-

confirmed for pandemic influenza. The actual number of asymptomatic infections

is not known but will almost certainly be much higher as asymptomatic cases will

inevitably be missed by surveillance measures if individuals do not meet the case

definitions described in Section 3.2.1.

One notable aspect related to symptoms is that there were higher than usual

proportions of cases reporting diarrhoea and nausea/vomiting compared with sea-

sonal influenza cases which is a feature also found in an analysis of the first few

hundred (FF100) cases in the UK [240]. We note that the FF100 data also in-

cluded eighteen Scottish cases which would also have been included in our study.

As only around 2% of the cases in our study were also in the FF100 study, the rea-

son for both studies producing these same findings cannot be attributed to these

individuals being included in both studies.

The reasons for the higher proportions of cases reporting diarrhoea and nau-
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sea/vomiting are not clear but one study on the use of oseltamavir did find that

some patients suffered from gastrointestinal upset and these symptoms were the

most frequently reported in their review [377]. However, we found no significant

difference in the likelihood of cases reporting diarrhoea or nausea/vomiting based

on whether or not they received oseltamivir. The proportions of cases reporting

diarrhoea varied around the world which illustrates a lack of consistency for this

finding. In the USA and France, the proportions of cases reporting diarrhoea were

considerably smaller than in our study [177, 190], but in Spain, the proportions

reporting this symptom were higher [350]. In general, the proportions of cases

in Scotland reporting symptoms such as nausea/vomiting and muscle/joint ache

were high compared with these other countries.

When making comparisons between groups (age groups, gender and deprivation)

on counts data such as numbers of symptoms and the delay before receiving antivi-

rals, it should be noted that we could also have used Poisson regression. However,

as we were focussing on univariable relationships for those analyses, we believed it

was sufficient to use non-parametric statistical tests to draw conclusions. Here we

found that females tended to report more symptoms than males and that those

aged 15–64 reported more symptoms than infants aged 0–4.

We found that males did not differ much from females in terms of the types

of symptoms reported, which is consistent with results from a surveillance report

in Colombia [55]. Our lack of significant differences found between males and

females could be due to the choice of using Bonferroni corrections for multiple

testing which imposes a stricter cut-off level for statistical significance. However,

corrections for multiple testing were used as it is more appropriate for multiple

comparisons. This brings the benefit of producing less spurious results which could

arise when looking at a large number of symptoms. An earlier surveillance report

for the UK by Pebody et al. [286] found that females were more likely to report

vomiting and were also more likely to report diarrhoea, but they only supplied

odds ratios and did not state if they took into account multiple testing. We also

found that females were more likely to report nausea/vomiting but did not find

a significant difference in the likelihood of reporting diarrhoea between males and
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females.

Different symptom patterns were found for individuals belonging to different

age groups. Infants up to four years old were more likely to report runny nose while

being less likely to report sore throat, chills, shortness of breath, muscle/joint ache

and headache compared with adults aged 15–64. Although statistically significant

differences were found, we speculate that information relating to infants may have

been completed by parents or guardians and hence, may offer less accuracy than

self-reported symptoms. School-aged children (ages 5–14) were more likely to

report fever but less likely to report muscle/joint ache and shortness of breath.

These results are fairly similar to the results of an analysis of the FF100 cases

where they looked at only two age groups (under 16 and 16+) [240]. A study

from the USA by Jhung et al. [190] found that children were more likely to report

vomiting compared with adults but we did not find sufficient evidence for this.

When looking for differences in the specific types of symptoms reported by

gender, age group and deprivation, logistic regression was used to obtain ORs and

these were interpreted as relative risks (RRs) would be. However, these results

should be interpreted with caution as this would only have been wholly appropriate

for symptoms that were reported rarely. This is because the OR only approximates

the RR when the outcome is rare and for more common outcomes, the risk is

overestimated when using the OR; as the incidence of an outcome increases, this

overestimation becomes larger [77, 208]. In this situation, alternative methods

can be considered such as methods which adjust the OR for common outcomes

[242, 399].

We used PCA to investigate how groups of symptoms clustered among the

cases. The procedure split the cases into three main clusters which broadly cat-

egorised cases according to their severity of illness – at least as defined by the

average numbers of symptoms reported by cases within those groups. The symp-

toms that caused the most separation between groups were sneezing and runny

nose which were reported by all cases in the most severe group and not reported by

any cases in the least severe group. This finding loosely suggests that cases that do

not report these two symptoms generally report less symptoms overall. However

strong conclusions were not possible from using PCA as we only considered the
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first two PCs which only accounted for slightly under a third of the variance in

the symptoms data.

Most cases received antivirals, with the vast majority getting oseltamivir (Tamiflu)

and only a few receiving zanamivir (Relenza). No cases received Amantadine or

Rimantadine which were not recommended for treating pandemic influenza [253]

as the current pandemic strain showed some resistance to these treatments [188].

The FF100 analysis showed that treatment with antivirals reduced the length

of symptoms but the antivirals must be administered in a timely fashion; it is

recommended that antivirals are taken within 48 hours of symptoms onset. Less

than 40% of cases received antivirals within this time frame and on average, it took

around three days to receive antivirals. This signals a need to raise awareness about

the importance of using antivirals promptly. Antiviral use decreased slightly with

increasing age but there was no significant association between receiving antivirals

and age.

The case-hospitalisation rate was 2.7% and 5.5% attended accident and emer-

gency departments. Higher rates of hospitalisation were found in earlier studies

in the UK which could be due to people being more cautious in an earlier phase

of the pandemic rather than any real difference in severity of illness. Morever,

an earlier study in the US by Jain et al. [185] found that those with underlying

medical conditions were more likely to be hospitalised. We also found that those

with at least one associated chronic disease had an increased odds of attending

these departments but our result did not reach statistical significance; this is most

likely due to having only 98 patients with at least one chronic disease. Hence, our

results, along with the findings of other studies, still indicate that there is probably

a need for targeted early intervention in those considered to be at higher risk of

complications following influenza infection.

An analysis of the contacts of cases offered only limited value as much of the data

was incomplete or difficult to extract meaningful information from due to data

errors, inconsistencies and the fact that much of it was entered in free-text form.

While reasonably sophisticated methods for filling in missing data with plausible
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values do exist such as multiple imputation [345], these methods were deemed to

be not appropriate for the contacts data due to the large quantities of missing data

for variables.

Not all cases reported contacts and for these cases, this likely points to a data

issue regarding follow-up on their contacts rather than a true result of those cases

having no contacts. A further issue with the contacts data was that some contacts

related to cases that were not in the cases dataset that we analysed and so they

could not be used in our analysis here. It is probable that many of the contacts

later became cases but this could not be identified from the available information

on contacts.

Out of the contacts that could be categorised into household or non-household

contacts, around three quarters were household contacts and this implies that

household contacts are much more likely to be reported by cases compared with

non-household contacts. One possible cause for this may be recall bias where

cases may be more likely to remember their household contacts compared with

their non-household contacts. It is also important to note that some contacts were

assumed to be household contacts based on terms describing family members such

as ‘brother’, ‘wife’, ‘mother’ and some of these will likely be wrongly classified.

The numbers of contacts for cases differed by age group of the case but not

by deprivation. Higher proportions of cases aged 15–64 had 0–3 contacts and on

the whole, seemed to have less contacts than cases aged under 15. One possible

explanation for this could be that most of the cases aged 15–64 have left school

and perhaps, have moved away from their parents’ households, thus causing them

to have less frequent contact with family and friends. Regardless of the age of the

case, most of their contacts were aged 15–64. Since the 15–64 age range covers the

largest age range, this finding is expected. For infants and children, their contacts

aged 15–64 would most likely have been their parents while for cases aged 15–64,

their contacts aged 15–64 are likely to be less obvious – their contacts could be

partners, friends or work colleagues. The quality and completeness of the contacts

data was not good enough to produce evidence for these speculations.

A higher proportion of cases as well as their contacts came from more deprived

areas and cases predominantly reported contacts that were from areas with a simi-
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lar deprivation status to them. One reason for this finding would have been because

a large proportion of reported contacts were household contacts and a contact’s

postcode (and hence, deprivation) was known much more often for household con-

tacts compared with non-household contacts. There was insufficient evidence to

show that deprivation affected whether or not cases received antivirals, treatment

delay or the severity of the illness in terms of the number of symptoms reported.

The disproportionate amount of cases from more deprived areas may result from

differences in mixing patterns or could merely reflect reporting or testing biases

rather than actual differences in infection transmission. A large majority of re-

ported cases were from the GGC healthboard which generally has more areas of

higher deprivation compared with other parts of Scotland [138]. A speculation we

could make here is that there may have been a detection bias towards cases from

Glasgow and hence, a bias for finding cases from more deprived areas.

There are several more limitations inherent in this study on top of those already

mentioned. As the data comes from questionnaires and interviews, we can never

fully discount the possibility of memory recall errors from cases, especially when

recalling for instance, dates of symptoms onset. Data recording errors are another

issue which has to be considered. During the earlier phases of a pandemic, this is

likely to be more of a problem as there is tremendous pressure on staff to deal with

cases very quickly. Additionally, some of the data regarding symptoms was im-

puted as previously described in Section 3.2.2, but the quantities of data imputed

were not excessive. This data was also imputed in such a way as to take into con-

sideration how questionnaires are completed by cases. Thus, we believe the data

imputations would not have introduced significant errors in the results but we did

not test how different results would have been if the analysis was performed with

only the non-imputed data. As the data uses only laboratory-confirmed cases,

many cases may have been missed; particularly asymptomatic cases. However,

initially all suspected cases were tested and this means that more cases would

have been found than if testing had been restricted to only highly probable cases.

To conclude, the analysis undertaken here has provided an overview of the de-
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scriptive epidemiology around early cases of 2009 pandemic influenza in Scotland

and adds to the knowledge base on the disease. Missing data was accounted for by

making sensible assumptions around the data generation process and corrections

were made for multiple testing to limit the amount of spurious associations found

in analyses. By and large, cases reported fairly mild illness, similar in severity

to seasonal influenza. In contrast to seasonal influenza, pandemic influenza was

more prevalent in younger individuals and rarer for older individuals. The types

of symptoms reported by cases did not differ much between gender or deprivation

but more differences were observed by age group.

This analysis provides information which could be useful in efforts to model

outbreaks of the disease in Scotland as well as assisting in policy decisions. However

there are many more key transmission parameters related to infectious disease

outbreaks that we have not covered here. One of the most important parameters

is the reproductive number of a disease which describes the average number of

individuals that each case infects. This is useful for predicting how quickly an

epidemic will grow and in turn, this information can be used to guide decisions on

if interventions are required to control an outbreak. The issue is that estimating

this parameter can be troublesome unless perfect data on who infected whom is

available and this is almost never available for any outbreak, let alone an outbreak

on the scale of a pandemic. Depending on what is known about a disease, only

certain methods may be suitable for estimating the reproductive number. In the

next chapter, we review some of the different ways that this parameter can be

estimated.
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3.A Appendix: Chapter 3

Case Group Contact Group Contacts Cases

Mean

Contacts

per Case

Max

Contacts

per Case

Age Group

0–4 0–4 44 121 0.36 5

5–14 77 121 0.64 15

15–64 225 121 1.86 23

65+ 12 121 0.10 2

Unknown 63 121 0.52 12

5–14 0–4 98 369 0.27 5

5–14 237 369 0.64 20

15–64 701 369 1.90 8

65+ 25 369 0.07 2

Unknown 166 369 0.45 10

15–64 0–4 117 625 0.19 4

5–14 214 625 0.34 5

15–64 1089 625 1.74 16

65+ 44 625 0.07 2

Unknown 375 625 0.60 13

65+ 0–4 0 15 0.00 0

5–14 1 15 0.07 1

15–64 10 15 0.67 3

65+ 2 15 0.13 1

Unknown 4 15 0.27 4

Unknown 0–4 0 8 0.00 0

5–14 1 8 0.12 1

15–64 5 8 0.62 3

65+ 0 8 0.00 0

Unknown 4 8 0.50 2

Gender

Female Female 835 576 1.45 15

Male 773 576 1.34 11

Unknown 83 576 0.14 11

Continued on next page
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Case Group Contact Group Contacts Cases

Mean

Contacts

per Case

Max

Contacts

per Case

Male Female 902 562 1.60 29

Male 870 562 1.55 25

Unknown 51 562 0.09 6

Deprivation Quintile

Most Deprived Most Deprived 438 334 1.31 11

2 24 334 0.07 4

3 12 334 0.04 3

4 18 334 0.05 6

5 5 334 0.01 2

Unknown 446 334 1.34 16

2 Most Deprived 13 214 0.06 3

2 262 214 1.22 7

3 21 214 0.10 6

4 3 214 0.01 1

5 7 214 0.03 4

Unknown 383 214 1.79 9

3 Most Deprived 21 161 0.13 3

2 19 161 0.12 7

3 191 161 1.19 6

4 4 161 0.02 1

5 9 161 0.06 2

Unknown 300 161 1.86 18

4 Most Deprived 7 126 0.06 4

2 15 126 0.12 6

3 5 126 0.04 3

4 130 126 1.03 8

5 7 126 0.06 3

Unknown 254 126 2.02 43

5 Most Deprived 3 147 0.02 1

2 2 147 0.01 1

3 13 147 0.09 7

4 9 147 0.06 2

5 194 147 1.32 8

Continued on next page
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Case Group Contact Group Contacts Cases

Mean

Contacts

per Case

Max

Contacts

per Case

Unknown 266 147 1.81 21

Unknown Most Deprived 37 156 0.24 5

2 43 156 0.28 5

3 26 156 0.17 6

4 11 156 0.07 3

5 10 156 0.06 3

Unknown 306 156 1.96 17

Table 3.16: Numbers of contacts for cases by different age groups, gender and depri-
vation quintile. The mean and maximum numbers of contacts per case for
these groupings are also given.
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Chapter 4

Methods of Estimating
Reproductive Numbers

In Chapter 3, we gave an overview of the characteristics of 2009 pandemic influenza

cases in Scotland during the early phase of the epidemic. Whilst it is important to

understand how the disease is affecting different groups of individuals, there are

also many other crucial features of an epidemic which must be estimated using

mathematical and statistical methods; this is what we turn our attention to in

this chapter. Specifically, this chapter reviews some of the literature on the dif-

ferent methods of estimating a vitally important parameter in infectious disease

outbreaks. This parameter is known as the the reproductive number and it is often

used to summarise the rate of spread of an infectious disease.

Covering all of the methods of estimating the reproductive number would be a

truly monumental task due to the huge quantity of methods out there. Hence, for

this literature review, the intention is not to provide a comprehensive list of all

the different methods of estimating the reproductive number but rather to outline

a variety of methods which can be used depending on the data and information

available regarding the epidemic. The aim here is to describe methods of estimat-

ing the reproductive number which are applicable to the types of data that are

most commonly collected during different types of disease outbreaks. Since having

some understanding around mathematical models for infectious diseases is benefi-

cial for understanding some of the other methods of estimating the reproductive

number, we give a basic introduction to those models here and also show how they

can be used to derive the reproductive number as well.
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For selecting methods, the thought process was to include methods which can be

applied to different sizes of outbreak and different phases of outbreak – especially

the early phase which can be a hugely important phase as failure to control an

outbreak early can cause an outbreak to grow to sizes that are far more difficult

to manage. Whilst some methods can only be applied to the early phase where

numbers of cases usually grow exponentially, other methods can only be applied at

the end of an outbreak since they require data which can only be observed at the

end. Perhaps the most useful methods are those which can be applied continually

throughout an outbreak which is vital for surveillance and planning interventions;

we term these as real-time methods. Finally, an important aspect of this review is

that some of the methods explained here will be applied to Scottish data on 2009

pandemic influenza in the next chapter, and thus this chapter acts as reference

material for some of the analysis carried out in Chapter 5.

4.1 Introduction

When conducting epidemiological studies of disease outbreaks, it is most often the

case that data is at a premium and hence, many important epidemiological param-

eters need to be estimated from only the limited amount of data that is available

from for instance, disease surveillance systems. Outbreak data are usually based

upon counts of cases and the most obvious way of detecting cases comes through

individuals exhibiting symptoms of the disease and subsequently reporting this to

health services. These cases may also be stratified by some measures of interest

such as age, sex, and socioeconomic status.

Another major problem with epidemiological data is that it is usually imperfect;

for example, when looking at an infectious disease such as influenza, the number

of people who actually report their illness is only a small minority compared with

all of the people who actually contract influenza. One reason for this is that not

all infected individuals will actually exhibit clinical symptoms and thus, may not

even realise that they have been infected; these are known as asymptomatic cases.



Chapter 4. Estimating Reproductive Numbers 153

Commonly the notification rates of disease are better during periods where the

incidence of infection is high. In particular, the media plays a vital role towards

how an epidemic unfolds and can heavily influence notification rates [95]. Fur-

thermore, notification rates tend to vary with factors such as age where we might

expect notification to be highest among young infants and the elderly and lowest

among teenagers and young adults.

With all of these issues in mind, researchers have developed a plethora of different

methods of estimating parameters and these methods are usually specifically tai-

lored to what data is available for the disease. However, this is an on-going area

of research and huge efforts still need to be made in order to improve the accuracy

and efficiency of our estimations. This can be achieved both through the contin-

ued development of current methods and also via the creation of completely new

methods. The ultimate goal is to achieve accurate and timely estimation which is

absolutely vital as these estimated parameters can often be the basis for making

important decisions on how to control infectious diseases [124].

4.1.1 Important Epidemiological Parameters

Several parameters are useful when analysing infectious diseases. These include

the incubation period which is the delay between infection and the onset of symp-

toms [43]; the latent period which is the delay between infection and the beginning

of being able to transmit the infection to other susceptible individuals; and the

infectious period which describes how long an infected individual may transmit the

virus. It should also be noted that a recovery rate can often be derived from the

infectious period as well. The statistical estimation of the latent, incubation, and

infectious periods are no simple task with a major problem being the collection of

adequate samples of data. For example, the detailed data on pandemic influenza

cases used in Chapter 3 was insufficient to make reasonable estimates on any of

these parameters.

It could have been simple to derive a maximum possible incubation period for cases

using the earliest possible exposure date to the disease which we could take as the
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date of onset of symptoms for the first case in Scotland. However, that method

would obviously not produce useful maximums for cases that were diagnosed at

times much later than the initial case and in general, it is difficult to estimate the

earliest possible exposure time for diseases that are transmitted from person-to-

person unless we have a reasonably good idea of when cases were in contact with

each other. We may have also been able to derive a range for the incubation period

using cases where the date of infection reported or date of confirmation was before

the self-reported date of onset of symptoms but this only happened for less than

ten cases. A further issue with the data was that the accuracy in the dates was

questionable as some of the cases had a date of report over a month before their

date of onset of symptoms for influenza. For these reasons, it would also have been

difficult to estimate the latent period for cases. In fact, if we assume that cases are

only able to transmit infection when they have symptoms then the latent period

would become identical to the incubation period. As there was no data on which

cases transmitted the disease to other cases and no data on viral loads [38, 216]

for cases over time, this makes it very difficult to estimate the infectious period or

the recovery rate as well.

Estimates of these parameters may be based upon detailed statistical analyses of

transmission, volunteer infection studies or be more speculative in nature [9]. The

period of time that individuals are in each of these disease states is variable. For

example, the incubation period has previously been assumed to approximately

follow a lognormal distribution [265, 324]. Furthermore, in mathematical mod-

els, it is often essential to be able to estimate the person-to-person transmission

probability (commonly denoted as β in mathematical models) and this factor is

used to describe an individual’s chances of becoming infected after contact with

an infectious individual. Ideally, β should take into account various factors such as

epidemiological, environmental and social factors which may all affect the trans-

mission rate. All of these parameters will of course, vary between individuals, and

this is why we would estimate average values for these parameters.
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Serial Intervals

A key parameter which needs to be estimated during epidemics is the serial inter-

val distribution (or generation interval distribution) of a disease, which specifies

the time-scale at which infections accumulate. Many authors use these two names

interchangeably. However, some authors will make a subtle distinction between

the generation interval and the serial interval – the generation interval can be de-

fined as the time interval between the infection of a primary case and one of its

secondary cases, and the serial interval can be defined as the times between oc-

currences of similar observable events for a primary case and one of its secondary

cases; most commonly the onset of clinical symptoms [352]. Thus, these two terms

are only equivalent under certain conditions and can differ particularly when there

are many asymptomatic infections and asymptomatic secondary infections.

These intervals have also previously been referred to as transmission intervals and

have also been defined in a less verbal but more mathematical form as the sum

of the average latent and average infectious period [9]. Fine [118] argued that

this mathematical definition would only be identical to the other definitions if the

contact frequency and infectiousness of a case is independent of the time since

infection and for most infectious diseases, this would not be true. In the recent

literature, this mathematical definition and the term, transmission interval, have

been less common and hence, we will, by and large, use the term serial intervals

as just defined.

For diseases such as influenza and severe acute respiratory syndrome (SARS),

the serial interval is often observed by either contact tracing of cases to discover

who acquired infection from whom or by observing time intervals between the

symptoms onset of a first case and subsequent cases in a household. The average

serial interval is variable for different diseases; for instance, it has been found to be

8.4 days for SARS in Singapore [372] and 3.6 days for influenza [72]. A number of

methods utilise the serial interval distribution in estimating reproductive numbers

as we shall go on to exemplify. The central role that the serial interval distribution

plays in deriving reproductive numbers for some methods is a further reason for
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why it can be highly important to estimate the parameters that characterise the

shape of the distribution.

Reproductive Numbers

Perhaps the most important epidemiological parameter which has to be estimated

is the average number of people that a primary case infects for a particular dis-

ease. This is also known as the basic reproductive number (note that sometimes

“reproduction” is used instead of “reproductive”) or R0 when the population is

completely susceptible. This can happen, for instance, before the introduction of

a novel infectious disease that nobody has immunity from. Evidence of its im-

portance can be seen by the fact that it is included in almost all academic papers

that use some mathematical modelling in studying the spread of infectious diseases

[163].

The value of R0 is governed by the interaction between the infectious organism, its

host and the environment. Factors which affect this include the route of infection,

the duration of the infectious period, the type and frequency of contacts between

individuals in a population and also the probability that a contact between an

infected individual and a susceptible person will actually result in infection. An-

other reason why the estimation of R0 is seen as vitally important is that it can

be used as a tool to help guide government policy decisions such as whether or not

to vaccinate individuals at birth for certain infectious diseases or if schools should

be closed temporarily to limit transmission [110].

For the case where part of the population is immune from an infectious disease, ei-

ther through past exposure to the disease or vaccination, we estimate the effective

reproductive number (instead of R0) which is abbreviated as R. This can also be

tracked over a time period which is extremely important for surveillance purposes

as it allows us to observe how an epidemic is progressing. This is in contrast to

R0 which cannot really be tracked over time for all diseases as for some diseases,

individuals gain partial or full immunity following recovery from infection. The

effective reproductive number at a particular time point can be denoted as Rt
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where t is the value of R at time t. The concepts of R and R0 and the distinction

between them is illustrated in Figure 4.1, which shows an example of R0 = 2 and

R = 2 (each infective individual infects on average, two others).

Susceptible individual

Infectious individual

Partially protected individual
  (previous exposure to disease,
   previous vaccination)

Basic Reproductive Number Effective Reproductive Number

R0 = 2 R = 2

Figure 4.1: Illustration to show the distinction between basic and effective reproduc-
tive numbers (R0 and R). In the example, each case infects on average,
two other susceptible individuals. For the effective reproductive number,
yellow circles represent partially protected individuals who could be im-
mune to the disease or at least, less likely to be infected compared with
fully susceptible individuals (blue circles).

One of the strengths of R is its intuitive appeal with regards to the fact that it has a

threshold value of 1. When R > 1, we can think of this as each person transmitting

the disease to more than one person and so the the disease will spread into the

population. When R < 1, the disease should eventually die out as long as this

persists long-term, and finally in the case that R = 1, there will theoretically be

no growth or decline in the number of cases. Thus, infection would be maintained

in the population (endemic). Both R and R0 are especially useful as they allow

us to assess the risk of an epidemic and also gives an idea about the scale of the

effort that is necessary to bring the infection under control.
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4.2 Mathematical Models

We start our review on methods of estimating R by discussing mathematical mod-

els of infectious diseases [168, 197, 245] as the general concepts involved for some

of the basic models fit into many other methods of estimating R. Hence it is nec-

essary to have some understanding around them before proceeding to discuss some

of those other methods. Moreover, it is only necessary to discuss the basic models

here but discussions on far more complex models can be found in, for example,

Keeling and Rohani [198].

Mathematical models are a useful way of providing some predictions and insight

into an infectious disease. Wallinga and Lipsitch [371] even stated that mathemat-

ical models of transmission have become invaluable in planning for the control of

emerging infectious diseases. The idea behind these models is that they assign an

infection status to all members of a population. A set of equations is formed with

the intention of capturing the change in the numbers of individuals (or commonly

proportions of a population) in each of the infection states over time. Creating a

model usually requires us to make many assumptions on the disease process, and

the model is usually formulated depending on the precision or generality required

as well as the data that is available. This is because it is often too strenuous to

account for all factors of the infectious disease. Take for example, an airborne

infection such as influenza. An accurate model would need to take into account

the variations in social interaction, variations in temperature and climate and also

variability due to genetic factors.

4.2.1 SIR Model

It is best to introduce mathematical models of infectious diseases through one

of the simplest models – the Susceptible-Infectious-Recovered (SIR) model [204]

excluding any complications such as demographic variations. This means that

we do not concern ourselves with births, deaths or migration and assume that

their effects on the disease process in a particular scenario are all negligible. This

would only be plausible in a situation where a low level of disease is introduced
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to a large naive population, and the epidemic ends sufficiently quickly such that

demographic factors do not have sufficient time to exert any significant influence

on the process. Furthermore, the model also assumes homogeneous social mixing

whereby individuals of all ages, genders and ethnic backgrounds will contact each

other at exactly the same rate, which may be reasonable in the case of households

or schools, but would perhaps not be reasonable when considering a country-wide

population.

The SIR model classifies individuals of a population into three distinct classes;

individuals are initially susceptible (S), then they become infected as well as in-

fective (I) and finally they make a full recovery and gain lifelong immunity from

the infectious disease or die (R). For an epidemic to start, we initially require

at least one infected individual. The SIR process is represented schematically in

Figure 4.2.

Susceptible Infectious Removed
βSI γI

can infect

Figure 4.2: Flow diagram of the SIR model. Individuals progress from susceptible to
infectious at a rate β and then to removed/recovered at a rate γ.

The net rate of spread of infection is assumed to be proportional to the product of

the density of susceptible people and the density of infectious individuals; this con-

cept is known as the mass action principle [9]. This is an important assumption for

the SIR model and with this, we can say that at each time step, only a proportion

β of the contacts between susceptibles and infectives actually result in infection.

During each time step, the infectious class grows by the number of newly infected

individuals. However, at the same time, some infectives will recover or die and

will cease to be infective. These people progress to the removed/recovered stage

at a rate γ. This consequently means that at each time step the recovered class

increases by the same amount as the infected class decreases. Note that all of the
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rates, β and γ, are assumed to be constant over time. A mathematical description

of the SIR model can be constructed using a series of differential equations.

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

(4.1)

where β and γ are as described before; S, I and R (not to be confused with the

effective reproductive number used frequently throughout this chapter) represent

the proportions of susceptible, infectious and removed individuals in a population

respectively. Here γ is the transition rate from the infectious stage to the removed

stage and as the rates in this model are assumed to be constant, the average du-

ration that an individual is infectious is 1
γ
, based upon an exponential distribution

for the duration of infection. It must be noted that because we are working with

proportions, S + I + R = 1 and consequently, R can be solved as 1− S − I. The

required initial conditions for Equation (4.1) are S(0) > 0, I(0) > 0 and R(0) = 0.

Parameter Estimates

For a novel infectious disease where we assume that initially nobody has immunity

to the disease, we can usually find S from demographic data such as mid-year pop-

ulation estimates [180, 257], and I will initially be a small number, perhaps one

as new infectious diseases may commence as a result of one individual spreading

it. This leaves us with the parameters β and γ to solve.

Despite the simplicity of this model, we cannot easily get an exact analytical ex-

pression for the dynamics of S and I though time due to the nonlinear transmission

term βSI. Thus solutions for these models are commonly found using numerical

methods such as Runge-Kutta methods [48] for finding numerical approximations

to ordinary differential equations and β, γ can be found by fitting the SIR model

to the data. One method of finding optimal values for β and γ is by fitting a
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least squares model; that is by finding the values for the parameters which will

minimise the square of the errors between the observed data and the model pre-

dictions. Once β and γ are found, we can compute our parameter of interest, R0.

For an epidemic to happen, the number of infected individuals has to be increasing

so dI
dt
> 0 and thus, we also have

βSI − γI > 0

βSI

γ
> I

βS

γ
> 1

At the start of an epidemic, we may assume that everybody is susceptible (or at

least almost everybody). Hence S ≈ 1, and setting S = 1 leaves β
γ

= R0 > 1.

Another intuitive way to look at R0 is to consider it as the transmission rate mul-

tiplied by the average infectious period which gives a measure of the maximum

reproductive potential for infected individuals.

R0 = β × 1

γ
=
β

γ
(4.2)

Critical Proportion

As a value of R0 > 1 means the infection will spread into the population, R0 = 1

can be thought of as a critical value. Thus, for an infectious disease, it is also

possible to calculate a critical proportion which is the proportion of susceptibles

which must be protected from the disease (for instance, by vaccination) in order to

bring R0 down to a level where it will eventually die out. For an epidemic defined

with R0 > 1, the critical proportion can be derived.

pc = 1− 1

R0

(4.3)

In Equation (4.3), the term 1
R0

= γ
β

is the relative removal rate. Taking the sce-
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nario of using vaccination as the means of protection, if the relative removal rate is

small, then a large proportion of susceptibles need to be vaccinated. Conversely, if

the relative removal rate is large then only a small proportion of susceptibles would

require vaccination. This is the intuition behind the derivation of the formula for

pc. Since vaccines are not 100% effective (this topic is discussed in Chapters 6

and 7), we can adapt the equation to include an efficacy rate ε [147, 273].

pc =
1

ε

(
1− 1

R0

)
(4.4)

4.2.2 Including Demography and a Latent Phase

Not all infectious diseases will follow a classical SIR pattern and so it must be

adapted to suit the characteristics of a particular disease. This may involve adding

or removing classes of hosts within the compartmental framework of the model.

For example, we can add a class for individuals who are infected but not yet infec-

tious (latent); this gives us what is known as a a Susceptible-Exposed-Infectious-

Recovered (SEIR) model. Many common infectious diseases including influenza

are described reasonably well by this type of model and hence, we will concentrate

on explaining this model (see Keeling and Rohani [198] for explanations of many

other variations of mathematical models for epidemics).

In the SEIR model, individuals are initially susceptible, then they become in-

fected with an initial inoculation with a very small amount of pathogen units.

The pathogen will subsequently reproduce rapidly within the host but during this

phase the pathogen amounts are too low for active transmission to other suscepti-

ble individuals. Therefore individuals are infected but not yet infectious and this

is what is known as the exposed stage. After this latent period is over, individuals

in the exposed class then become infectious and are thus, classified as infectious in

the mathematical model, where they can transmit the disease to other susceptibles

for a period of time. Finally, in this model, individuals will make a full recovery

and gain lifelong immunity or die, and can thus, be classified as removed/recov-

ered. Figure 4.3 shows the SEIR model in a schematic fashion.
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Susceptible Exposed Infectious Removed

Deaths

Births

βSI σE γI

can infect
µ

µS µE µI µR

Figure 4.3: Flow diagram of the SEIR model with simple demography. The model is
similar to the SIR model (as shown in Figure 4.2) except that individuals
can also be classed as exposed and they leave this stage at a rate σ. In this
model, newborns enter the susceptible population at a rate µ and deaths
from natural causes occur at an equivalent rate µ.

For the SEIR model, we also introduce some demography by adding a natural host

lifespan into the differential equations where everybody is assumed to live exactly

to a certain age and then promptly dies. It is important to note that this lifespan

is usually the expected lifespan of a human and is independent of the disease.

Therefore, in the susceptible class, a proportion β of the contacts between suscep-

tibles and infectives result in infection where they will endure a latent phase, but

now some susceptibles are also lost due to natural mortality and some are gained

due to natural births.

The exposed class will increase by the number of susceptibles who became infected,

then some individuals will move to the infectious class at a rate σ and some will

also be lost in this class due to natural mortality. Similarly the infectious class

receives individuals from the exposed class and then loses some due to natural

mortality and also through individuals transitioning to the removed class a rate γ.

Finally the removed class gains the individuals from the infectious class who have

fully recovered but will also lose some individuals due to natural mortality. The

differential equations for the SEIR model with births and mortality included are
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dS

dt
= µ− βSI − µS = µ− (βI + µ)S

dE

dt
= βSI − µE − σE = βSI − (µ+ σ)E

dI

dt
= σE − µI − γI = σE − (µ+ γ)I

dR

dt
= γI − µR

(4.5)

where µ is a natural mortality rate (from which the natural lifespan is 1
µ

years). In

order to ensure that the model remains fairly simple, µ also represents the crude

birth rate in the differential equation dS
dt

so that the total population size remains

constant through time. β and γ remain as they were for the SIR model, and σ is

the rate at which individuals move from the exposed class to the infectious class.

Again, some of these parameters including the natural mortality rate can be found

from the demographic and case data, leaving β, σ and γ as the parameters that

need to be estimated by fitting the model to data. Due to the addition of the

exposed class, we now have S + E + I +R = 1, and R0 is now

R0 =
σ

(µ+ σ)
× β

(µ+ γ)
=

βσ

(µ+ γ)(µ+ σ)
(4.6)

where 1
(µ+σ)

is the average amount of time spent by an individual in the exposed

class and 1
(µ+γ)

is the average amount of time spent in the infectious class. To fur-

ther interpret Equation (4.6), the ratio σ
(µ+σ)

is the fraction of people that progress

from the exposed stage to the infected stage; the fraction of people that become

infected spend an average of 1
(µ+γ)

units of time infecting susceptible individuals,

and again, we can recall that at the beginning of an epidemic S ≈ 1.

We can also relate Equation (4.6) to the equation for R0 in the simple SIR model.

If we ignore births and natural mortality by setting µ = 0, then Equation (4.6)

becomes β
γ

and this is exactly the same as Equation (4.2), which also ignores births

and natural mortality. Hence, introducing the exposed stage has no impact on the
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overall transmission potential of infected individuals unless other external factors

such as births and deaths are introduced into the model. In essence, adding the

exposed stage into the SIR model has the effect of creating a time delay before

individuals become infectious. In a disease outbreak, the time delay is an important

factor to account for in the model as it gives additional time for diagnosing as well

as treating cases which could have a major impact on the numbers of individuals

that become infected.

Example: SEIR Model for the 1918 Influenza Epidemic

We mentioned earlier that the SEIR model fits reasonably well to the character-

istics of influenza. One example of where this model has been applied to this

disease is in a study by Massad et al. [236] who created an SEIR model for the

1918 Influenza epidemic in São Paulo, Brazil. They used this model to estimate

the value of R0 and also found a theoretical proportion that required vaccination

to bring the value of R0 below unity.

Even within the structure of a typical infectious disease model such as SEIR, the

models are often customised depending on what is known about the disease –

particularly with regards to the transmission dynamics of the disease and the pa-

rameters in the model. Therefore, the SEIR model by Massad et al. [236] was

altered from the way that we previously outlined in Equation (4.5) by adding in

a number of extra factors and choosing to work with actual numbers of individ-

uals rather than proportions as well. In their model, individuals in the exposed

and infected stages are both treated as being able to infect others. Furthermore,

they add in a disease-induced mortality rate; a birth rate which is not equal to

the natural mortality rate; asymptomatic cases; an incubation period; and also a

carrying capacity of the population (a population size that the environment can

sustain indefinitely). In keeping with earlier notation as far as possible, the system

of differential equations to describe their SEIR model is
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dS

dt
= −β

(
E + I

N

)
S − µS + rN

(
1− N

K

)
dE

dt
= β

(
E + I

N

)
S − (µ+ σ + κ)E

dI

dt
= σE − (µ+ α + γ)I

dR

dt
= κE + γI − µR

(4.7)

where N = S +E + I +R is the total population size; β, σ and γ are the same as

described previously; µ is the natural mortality rate; r is the birth rate; κ is the

rate at which asymptomatic individuals move from the exposed class directly to

the removed/recovered class without entering the infectious stage; α is the disease-

induced mortality rate which only occurs during the infected stage; and K is the

carrying capacity of the population. With these extra additions, the expression

for R0 is

R0 =
β(µ+ α + γ + σ)

[(µ+ σ + κ)(µ+ α + γ)]
(4.8)

A heuristic for this derivation is to consider that infected individuals spend an

average of 1
(µ+σ+κ)

time units in the exposed stage while infected individuals spend

an average of 1
(µ+α+σ)

time units in the infective stage. In addition to this, we

can think of the possibilities for transmitting infection in two parts – all infected

individuals will enter the exposed stage (keeping in mind that in this model, those

in the exposed stage also transmit infection at an equivalent rate to those in the

infectious class β) and then some of these individuals will transition directly to the

removed stage, while the remainder – the fraction σ
(µ+σ+κ)

– will enter the infective

stage before making the transition to the removed stage. Therefore, we could write

R0 as

R0 = β

[
1

(µ+ σ + κ)

]
+ β

[
σ

(µ+ σ + κ)
× 1

(µ+ α + γ)

]



Chapter 4. Estimating Reproductive Numbers 167

which simplifies down to Equation (4.8). Massad et al. [236] used a combination

of local demography data as well as data on weekly numbers of new cases and

previous research on influenza by Longini Jr et al. [226] in order to find the required

parameters. In fact the only parameter that they estimated by fitting to data was

β. They showed that their model predicted the actual number of new weekly cases

and deaths with a high level of accuracy (predicted deaths was almost identical

to the official recorded number while the total number of cases was within a few

percent of the official recorded number) and derived R0 = 2.68. Therefore, the

critical proportion was pc = 1
R0

= 0.63, meaning that 63% of the population

required vaccination in order to bring R0 below unity.

4.2.3 Transmission Heterogeneities

For many infectious diseases, individuals with differing characteristics may be more

or less likely to transmit a disease to other susceptibles. As a consequence, this

makes certain factors epidemiologically relevant and we must include this in a

model to gain a more accurate estimation of our parameter of interest R0. Traits

such as age, sex and genetic composition can influence an individual’s suscepti-

bility to an infectious disease and in addition to this, these factors can also be

related to an individual’s pattern of social contact with other individuals [163].

An example of where it may be important to include heterogeneities is with an

infectious disease that is transmitted respiratorily. Here we would assume that the

disease has a higher transmission rate in enclosed areas such as schools and for

this reason, we could give school children a higher transmission parameter.

To introduce heterogeneities in disease transmission, we will look at a simple

model where individuals do not actually gain lifelong immunity, but after infec-

tion they become susceptible once again; this is known as a Susceptible-Infectious-

Susceptible (SIS) model. This gives the simplification of being able to eliminate

the differential equation for removed/recovered individuals, and as long as we have

the differential equations for the infected class, we can calculate the remaining sus-

ceptibles by using S = 1−I (supposing S and I are proportions of the population).
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In our model, we only have two distinct groups as shown in Figure 4.4 – individuals

who have a higher rate of transmission (H) and individuals with a lower rate of

transmission (L). Furthermore, we will also disregard demographic information.

Susceptible
(H)

Infectious
(H)

Susceptible
(L)

Infectious
(L)

can infect

can infect

can infect

Figure 4.4: Flow diagram of the SIS model with heterogeneities in transmission rates.
In this model, there are high risk and low risk groups for susceptible and
infectious individuals who transmit infection and get infected at different
rates.

As mentioned previously, we only need the differential equations for the infectious

class for the SIS model. These will essentially be the same as the infectious differ-

ential equation for our first SIR model in Equation (4.1), but with the introduction

of two separate risk groups we now have two differential equations for this class

and for each differential equation we have two transmission parameters.

dIH
dt

= βHHSHIH + βHLSHIL − γIH

dIL
dt

= βLHSLIH + βLLSLIL − γIL

(4.9)

In Equation (4.9), βHH is the rate at which high risk infectives transmit to high

risk susceptibles; βHL is the rate at which high risk infectives transmit to low risk
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susceptibles; βLH denotes the transmission coefficient from low risk infectives to

high risk susceptibles; and finally, βLL gives the transmission rate of low risk infec-

tives to low risk susceptibles. This means that we now need to estimate a total of

four transmission parameters along with the recovery rate parameter. The most

convenient way of including heterogeneities is to use a Who Acquires Infection from

Whom (WAIFW) matrix which contains all the different transmission parameters.

β =

βHH βHL

βLH βLL

 (4.10)

A commonly assumed type of social mixing pattern is assortative mixing. This

describes a situation where individuals with the same or similar characteristics are

more likely to mix with each other. For instance, individuals in distinct age groups

may have most social contact with other individuals in their own age group. In the

context of this particular model, individuals in the high risk group would be more

likely to mix with high risk susceptibles while those in the low risk group would

be more likely to mix with low risk susceptibles. We would set the transmission

parameters in the following way for assortative mixing: the transmission coeffi-

cient βHH would be highest and we would expect βLL to be the second highest

term. Finally we would assume that the terms βHL and βLH would be the lowest

and we could even further assume that βHL = βLH . This would mean that high

risk individuals transmit infection to low risk individuals at the same rate as low

risk individuals transmit to high risk individuals. We can also use social contact

surveys to obtain an idea of how often individuals of various age groups contact

other individuals of different age groups. The data from the surveys allow us to

create contact matrices and in turn, this could be used as the WAIFW matrix [373].

Generally, R0 is higher when including heterogeneities in transmission than when

assuming homogeneous mixing [1, 26]. To calculate R0, we use an eigenvalue ap-

proach in which we calculate the eigenvalues of the matrix

R =

βHHnH

γ
βHLnH

γ

βLHnL

γ
βLLnL

γ

 (4.11)
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The matrix R is the matrix of coefficients (known as the Next Generation Matrix )

where we have a common recovery rate γ for all infected individuals and we also

use an approximation SH = nH and SL = nL which is plausible during the initial

phase of an epidemic where the relative change in the number of susceptibles is

very small. Diekmann et al. [88] states that the expected number of secondary

cases produced by a typical infected individual during their entire period of in-

fectiousness in a completely susceptible population is mathematically defined as

the dominant eigenvalue of a positive linear operator which is termed as the next-

generation operator.

This operator is linear as we only take into account the initial stage of an epidemic

where we disregard the depletion of susceptibles. The linear operator maps gener-

ations of infectives into each other, distributed over all the different characteristics

of the individuals, and the dominant eigenvalue of this next-generation operator

gives us information on whether or not the infected population will grow or decline

in size. Eigenvalues fit the scenario for infectious diseases perfectly as they have a

threshold value of one and can be interpreted as the average contribution to the

next generation [163]. Here R0 in this population can also be thought of as the

spectral radius of our next generation matrix R and is found by taking all the

absolute values of the eigenvalues of R and then choosing the largest value – the

dominant eigenvalue.

Although our example only contained two risk groups, we can split the individuals

of a population into more than two groups (for example, high, medium and low

risk groups which could be made up of individuals belonging to three different age

groups) and in the case of having j groups, we would get the following differential

equation for the infectious classes

dIi
dt

=
∑
j

βSiIj − γiIi (4.12)

where β is our matrix used to parameterise the transmission between groups of

individuals, the same way as before in Equation (4.10). Moreover R0, is still found
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using the eigenvalue approach in this general case as well.

4.3 Statistical Approaches

The methods used to estimate reproductive numbers depend heavily on the data

available on infectious disease outbreaks, and here we wish to cover methods that

are applicable with some of the most commonly collected types of data. In addi-

tion to this, the data that is available is also dependent on the stage of an outbreak

at which we want to estimate the parameter. For instance, one method that we

discuss looks at estimation using final size data and thus, the reproductive num-

ber can only be estimated retrospectively with that method. In contrast to this,

some methods require data on daily counts of case notifications but can only be

applied relatively close to the start of an epidemic where case counts grow at an

exponential rate.

Other methods that use daily counts of cases allow for the reproductive number to

be tracked as an epidemic is unfolding which has obvious advantages for surveil-

lance. If counts of cases are available and an outbreak can be broken down into

smaller clusters, then we would also be able to derive the sizes of those clusters

which opens up another avenue for estimating the reproductive number; we de-

scribe one method that uses this outbreak size data. Finally, another type of data

that is commonly collected for infectious diseases but can be costly and takes time

to collect is data on serological markers of infection and so we outline one method

that uses that data. To begin with, we look at at a method that can be used to

estimate the reproductive number during the vital early phase of an epidemic.

4.3.1 Estimation Assuming Exponential Growth

For new infectious diseases such as SARS in 2003 and pandemic influenza in 2009,

the number of cases tends to grow exponentially in the initial phase of an epi-

demic as most of the population is susceptible to the disease. Estimation of the

reproductive number in the early phase allows us to obtain estimates before miti-

gation strategies have been put in place and also before any sizeable depletion of
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susceptibles. The rate of exponential growth in this early phase can be denoted as

r and is defined as the per capita change in number of new cases per unit of time

by Wallinga and Lipsitch [371]. This can be obtained from numbers of daily case

notifications during the initial phase of an epidemic.

Before the concept of R0 saw widespread use in epidemiology, it was heavily de-

veloped in studies of ecology and demography by Dublin and Lotka [93] where it

was used to describe the expected number of offspring born to each female during

her life. The ideas of the growth of a population and the spread of disease are very

similar and this is the reason why Wallinga and Lipsitch [371] start by relating

the Lotka-Euler equation for the human population to the scenario for infectious

diseases and so we begin with the equation

b(t) =

∫ ∞
a=0

b(t− a)n(a) da (4.13)

Here t = 0 would be the present time and in the infectious disease context, b(t)

can be thought of as the rate of new infections at time t; a denotes the time since

infection (or age of infection); and n(a) refers to the expected rate of creating

secondary cases at time a since infection. For more details on how notation differs

between ecology and epidemiology, see the supplementary material for Wallinga

and Lipsitch [371]. In the initial phase of an epidemic, we can assume that the

number of cases increases exponentially with a growth rate r. One method of

finding r is by fitting a regression model (e.g. Poisson or negative binomial) to the

daily numbers of cases (see McBryde et al. [237] for an example of this for 2009

pandemic influenza in Australia). We can write b(t) as

b(t) = b(t− a)era

b(t− a) =
b(t)

era

(4.14)

Substituting this term for b(t−a) into Equation (4.13) gives a new equation for b(t).
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b(t) =

∫ ∞
a=0

b(t)e−ran(a) da

1 =

∫ ∞
a=0

e−ran(a) da

(4.15)

Equation (4.15) gives the standard Lotka-Euler equation. As we have previously

mentioned, n(a) is the expected rate of creating secondary infections. Hence the

reproductive number, R, is obtained by integrating n(a) over all times since infec-

tion.

R =

∫ ∞
0

n(a) da (4.16)

we can normalise the rate n(a) to a probability distribution for serial intervals.

g(a) =
n(a)∫∞

0
n(a) da

=
n(a)

R
(4.17)

We know a is the time since infection and thus, the serial interval distribution is ex-

actly the equation for g(a). Now rearranging Equation (4.17) to get n(a) = g(a)R

and substituting this into Equation (4.15) gives

1 =

∫ ∞
a=0

Rg(a)e−ra da

1

R
=

∫ ∞
a=0

e−rag(a) da

(4.18)

Equation (4.18) is the Laplace transform of the function g(a) and if we set z = −r
(negative of the growth rate), we can get the moment generating function (MGF)

of the serial interval distribution.

Mg(a)(z) =

∫ ∞
a=0

ezag(a) da (4.19)

Noting that Equations (4.18) and (4.19) are essentially the same, the MGF can be
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used to simplify Equation (4.18).

1

R
= Mg(a)(z)

R =
1

Mg(a)(z)

R =
1

Mg(a)(−r)

(4.20)

R is the inverse of the MGF of the serial interval distribution with a growth rate r.

Moreover, the shape of the serial interval distribution uniquely characterises the

relationship between R and r. This means that to calculate R using the method

presented by Wallinga and Lipsitch [371], we only need two things – the shape

of the serial interval distribution and the rate of exponential growth in the initial

phase of an epidemic. Previous research studies that investigated the time intervals

between primary to secondary transmission of a disease can be used to get an idea

around the shape of the serial interval distribution (see Cowling et al. [72] and

Hirotsu et al. [171] for examples on influenza) and as we mentioned before, the

exponential growth rate can be found by fitting an exponential curve (e.g. Poisson

regression) to the data on counts of cases. We can explain this method further

through a few specific examples.

SIR Model

The SIR model assumes that the serial interval distribution follows an exponen-

tial distribution. We define γ as the rate of leaving the infectious stage (assumed

constant). This implies that the mean serial interval is Tc = 1
γ

and we have for the

probability distribution and MGF

g(a) = γe−γa

Mg(a)(z) =
γ

γ − z
=

γ

γ + r

(4.21)
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Using Equation (4.20), R is

R =
1
γ
γ+r

=
γ + r

γ

R = 1 + r
1

γ
= 1 + rTc

(4.22)

Furthermore this definition can be related to derivation for R0 in Equation (4.2).

The exponential growth rate r is equivalent to the transmission rate β minus the

rate of leaving the infectious stage γ, i.e. r = β − γ. Hence we have

R = 1 +
(β − γ)

γ

R = 1− 1 +
β

γ
=
β

γ

which is exactly equivalent to Equation (4.2).

SEIR Model

We can extend the SIR model to an SEIR model fairly easily by adding in a rate

for leaving the exposed stage. The serial interval distribution for an SEIR model

would be assumed to follow a convolution of two exponential distributions. In fact,

Equation (4.20) can be generalised for the case of an infection which has n stages.

R =
1

M(−r)
=

1

M1(−r)×M2(−r)× . . .×Mn(−r)
(4.23)

Here M1,M2, . . . ,Mn are the MGFs for the duration between successive events in

the infection cycle. So for an SEIR model, M1 would use the MGF for the exposed

stage and M2 would use the MGF for the infectious stage. In this case, we can call

the rate of leaving the exposed stage σ while γ would denote the rate of leaving

the infectious stage and both rates would be assumed constant. This gives
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R =
1

M1(−r)×M2(−r)
=

1(
σ
σ+r

) (
γ
γ+r

)
=

1
σγ

(σ+r)(γ+r)

=
1
σγ

σγ+σr+γr+r2

=
1

1 + γ
r

+ σ
r

+ σγ
r2

= 1 +
r

σ
+
r

γ
+
r2

σγ

=
(

1 +
r

σ

)(
1 +

r

γ

)
(4.24)

We can note that the mean serial interval is Tc = 1
σ

+ 1
γ

in this SEIR model.

Delta Distribution

A Delta Distribution is described by the function

g(a) =

 1 if a = µ

0 otherwise
(4.25)

This suggests that all secondary infections occur at time Tc. This imposes the as-

sumption that there is no variation in the generation intervals which would almost

certainly not be true in practice but nevertheless, it may sometimes be sufficient

to describe the serial interval distribution of an infectious disease when there is

very little variation in serial intervals. Wallinga and Lipsitch [371] suggest that

this equation is best used to obtain an upper bound for R rather than to obtain

an accurate measure of R. We obtain R as

Mg(a)(z) = eµz = eTc(−r)

R =
1

M(−r)
=

1

eTc(−r)
= erTc

(4.26)

Note that since r > 0 and Tc > 0 are required conditions, R is always greater than

one here.



Chapter 4. Estimating Reproductive Numbers 177

Empirical Distributions

In the case that serial intervals do not clearly follow a standard probability distri-

bution, we can simply observe the distribution via a histogram. For this method,

it is required to define the category bounds of the histogram of the observed dura-

tions by b0, b1, . . . , bn, and also the observed relative frequencies of observed serial

intervals by y1, y2, . . . , yn. Now each of the bars of the histogram can be described

by a uniform distribution. For our example here, we will denote the upper bound

of the bar by b2 and the lower bound by b1. Therefore each bar has the following

distribution and MGF

g(a) =
1

b2 − b1
for b1 ≤ a ≤ b2

Mg(a)(z) =
eb2z − eb1z

(b2 − b1)z
=
eb2(−r) − eb1(−r)

(b2 − b1)(−r)

(4.27)

When calculating R we need to attach weights onto each of the bars which are

represented by the relative frequencies of the bars (as described earlier by yi). So

therefore R is

R =
1

M(−r)
=

1∑n
i=1 yi

(e−rbi−e−rbi−1 )
−r(bi−bi−1)

=
−r∑n

i=1 yi
(e−rbi−e−rbi−1 )

(bi−bi−1)

=
r∑n

i=1 yi
(e−rbi−1−e−rbi )

(bi−bi−1)

(4.28)

4.3.2 Real-Time Estimation

During the course of an epidemic, it is vital to obtain estimates of R as the epidemic

is developing. This allows timely decisions to be made, gives an idea of the scale of
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the effort required to bring a situation under control, and if mitigation strategies

have already been implemented, then we have the possibility of observing whether

or not the measures taken have been effective. It is for this reason, that perhaps

the most important methods of estimating R are those methods which can be

utilised in real-time. Several methods have been developed in this context but we

will focus on the method introduced and applied to SARS by Wallinga and Teunis

[372]. This method is useful as we often have the types of data required for it and

it imposes relatively few assumptions regarding the disease transmission process

compared with some other methods.

Wallinga and Teunis provide a method which allows us to manipulate the time

series of cases (using perhaps dates of symptom onset), along with a known (or

assumed) distribution for the serial intervals, into a time series of estimated re-

productive values on each day, denoted as Rt. As a simple example of what their

method allows, we can consider an epidemic with just 3 cases (c1, c2, c3) who have

dates of symptom onset (t1, t2, t3) with t1 < t2 < t3. Using the serial interval dis-

tribution, Wallinga and Teunis’ method gives a way of calculating the probability

that c1 infected c2 and the probability that c1 infected c3. The expected value of

R for case c1 at time t1 is the sum of these probabilities. A practical example of

where this method can be seen is in Nishiura et al. [268] where this method was

used to investigate an outbreak of pneumonic plague in China.

Their method requires us to think about infection networks (or transmission trees)

but these infection networks have certain restrictions as each case can only have

exactly one primary case and cannot infect themselves. Therefore, in our infection

network, infection is transmitted from one case to another and in principle, we

would draw a link or an arrow between the two cases to show that they form a

transmission pair. The method of Wallinga and Teunis is particularly useful when

we have either no information or incomplete information relating to who infected

whom as this method uses a likelihood-based estimation procedure which infers

who acquired infection from whom and in essence, reconstructs the entire trans-

mission tree based on the probabilities of infection for each case.
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In a mathematical sense, we will have some epidemic curve t = (t(1), t(2), . . . , t(m)),

where t(i) could be the date of onset of symptoms of the ith person with infection.

The individual who infects person i (infector of person i) is denoted by v(i). The

infection network is v = (v(1), v(2), . . . , v(m)) and this vector specifies the infector of

each case. We can denote the entire set of all infection networks which are consis-

tent with the epidemic curve t by V . If we have an outbreak with reported dates

of onset of symptoms for n cases, of which q come from outside the population

(imported cases) then we have n − q individuals who have a primary case within

our population. This means that we have (n− q)n−1 different network structures

as for n− q non-imported cases, there are n− 1 possible primary cases, assuming

there is no temporal pattern. We can also note that v(i) = 0 for imported cases

as the infectors of imported cases do not come from within the population being

considered. The fact that secondary cases can only have been infected by a pri-

mary case who acquired disease before them means that many of those network

structures are assigned zero probability.

We assume that serial intervals for the population follow some distribution with

probability density function w(τ |θ) where τ is the serial interval and θ is a vector

of parameters characterising the probability distribution. Note that w(τ |θ) = 0 for

τ < 0 (and perhaps τ ≤ 0 for some diseases). As an illustration, we can consider

influenza, for which serial intervals have previously been found to closely follow

a Gamma distribution [237] and also a Weibull distribution [73]. These two dis-

tributions can be characterised by shape and scale parameters and hence θ would

contain two parameters for both of these distributions. We can define a likelihood

function for the probability of observing an epidemic curve t, given the parameters

for θ and v.

L(v, θ|t) =
∏

i:v(i) 6=0

w(t(i) − tv(i)|θ) (4.29)

Summing this likelihood over the set V of all possible infection networks gives
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L(V, θ|t) =
∏

i:v(i) 6=0

∑
j 6=i

w(ti − tj|θ) (4.30)

In order to obtain the relative likelihood that a person k was infected by a person

j, we take the likelihood ratio.

pkj =
w(tk − tj|θ)∑
i 6=k w(tk − ti|θ)

(4.31)

This works intuitively as we are taking the likelihood of a person k being infected

by a case j and dividing this by the likelihood that person k was infected by any

possible infectious case i. Note that in the summation we have i 6= k to clearly

show that cases cannot infect themselves. Equation (4.31) can be used to estimate

an individual case reproduction number for one case j which we can denote by Rj.

This is estimated by summing all the pkj for a case j which are the probabilities

that case j infected all other cases k. If there are a total of n cases, of which q

are imported cases, then for each case j, we only sum probabilities for n− q cases

as the q imported cases have been infected outside of the population and thus, do

not contribute to Rj.

Rj =

n−q∑
k=1

pkj (4.32)

The expected number of secondary infections at a timepoint t is the mean of all

the individual reproductive numbers for those cases j with onset of symptoms at

time t; if the number of cases at time t is Nt, then we have

Rt =
1

Nt

∑
j ∈ tj=t

Rj (4.33)

This is the estimate that we are usually most interested in when monitoring disease

outbreaks. A more complete explanation around the mathematical derivations for

the likelihood functions can be found in the appendix section of the study by

Wallinga and Teunis [372].
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Limitations on Real-Time Tracking

Although this was termed as a ‘real-time’ method of estimating R, we must note

that it only allows nearly real-time tracking of the R. This is because accurate es-

timates of the instantaneous reproductive number can only be made after a delay.

It is necessary to wait until we can observe the number of persons a given primary

case has infected; that is, we must wait a sufficient amount of time such that all

secondary cases generated by that primary case have become infected, acquired

symptoms and reported their infections. This lag period is slightly longer than

the generation time, plus the incubation period plus the reporting delay. Hence,

the delay can take days, weeks, months or years depending on the type of disease

under consideration [221]. For diseases with a very long incubation period, this

method could not really be termed as a real-time method due to the long lag period.

Another limitation of the method comes when an epidemic is censored as there

will be unobserved secondary cases from cases that acquired infection near the

censoring time. However, a simple method for predicting the late number of sec-

ondary cases when an epidemic is censored at an end time T has been proposed

before. The idea behind these predictions is that we can directly use the serial

interval distribution to predict the late number of secondary cases and then use

these predicted numbers to adjust the values of Rt near the censoring time T (more

details can be seen in Cauchemez et al. [56]).

4.3.3 Estimation Using Outbreak Size Data

Farrington et al. [111] outline a method for estimating R using data on the sizes

of individual and distinct outbreaks of an infectious disease. Here we will briefly

summarise their method of using outbreak size data to estimate R by reproducing

their result found when applied to measles data from the USA between 1997–1999

(see Orenstein et al. [274] for more details on the data). Their method draws upon

some theory around branching processes [12].



Chapter 4. Estimating Reproductive Numbers 182

Branching Processes

In probability theory, the offspring distribution can be viewed using the theory

of branching processes which are well suited for the purpose of epidemiological

surveillance as they require only data on counts of cases [111]. The simplest form

of branching process posits that the number of offspring is independent across time

steps and is known as the homogeneous Galton-Watson branching process. In their

original application, Galton-Watson processes were used to study the extinction of

family names [379]. For our application, branching process theory provides a sim-

ple estimation method for the reproductive number where it is suggested that each

individual in a population from some generation n produces some random number

of individuals in the next generation n + 1. The number of individuals produced

gives rise to a distribution called the offspring distribution and is usually specified

by some probability distribution (for example, Poisson). This process is repeated

until the epidemic dies out (assuming it does). In an epidemiological sense, these

individuals would correspond to the number of people who are infected with some

particular disease and in turn, they may infect some random number of suscepti-

ble individuals with some probability in one time step. The most important result

for us here would be the offspring mean, which would represent the reproduction

number R when applied in the context of infectious disease outbreaks.

Since this method requires the condition of extinction, it is best suited for the

purpose of analysing epidemics with R < 1 as this is the requirement for extinction

of an epidemic. In essence, it can be used to monitor situations where an epidemic

was dying out but is perhaps, in danger of becoming endemic once again. An

example of where this situation has arisen is with measles in the UK where vaccine

uptake began to decline after 1998 due to discussions about alleged side effects of

the vaccine; specifically a link between the measles, mumps and rubella (MMR)

vaccine and autism. The claims of this link were later refuted [112, 354]. As a

consequence of the controversy, larger outbreaks started to resurface, and it was

shown that the epidemic was rising to an almost critical state (R ≈ 1) [187].
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Example: Measles in the USA 1997–1999

We denote x as the size of an outbreak generated from s initial cases. Note that

x is the size of the outbreak including the s initial cases. Then the distribution of

outbreak sizes (or offspring distribution), X, comes from the power series family

[25].

P(X = x; s) = b(x, s)
λx−s

A(λ)x
(4.34)

where b(x, s) is a constant and A(λ) is a power series function, A(λ) =
∑∞

r=0 arλ
r,

with ar ≥ 0. Assuming the offspring distribution is Poisson, then ar = 1
r!

and we

have A(λ) =
∑∞

r=0
1
r!
× λr = eλ. The total outbreak size follows what is known as

the Borel-Tanner distribution [143], where b(x, s) from Equation (4.34) is sxx−s−1

(x−s)! .

P(X = x; s) =
sxx−s−1

(x− s)!
× λx−s

(eλ)x

=
sxx−s−1λx−se−xλ

(x− s)!

(4.35)

In their application to outbreak sizes for measles in the USA, an outbreak was

defined as including at least two cases including the initial case. Outbreaks ranged

in size from 2–33 and all 41 outbreaks started with s = 1 initial case; details are

summarised in Table 4.1. Since all outbreaks started with one initial case Equa-

tion (4.35) becomes

Px = P(X = x; s = 1) =
xx−2λx−1e−xλ

(x− 1)!
, x = s, s+ 1, . . . (4.36)

Note that Px was included as a simpler notation to make it easier to refer back to

the result of Equation (4.36) later.
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Outbreak Size (x)
Number of

Outbreaks of
size x (mx)

2 13

3 9

4 5

5 5

6 2

8 2

9 1

11 1

13 1

15 1

33 1

Table 4.1: Numbers of measles outbreaks of different outbreak sizes in the USA be-
tween 1997-1999 (see Farrington et al. [111]). Note that all outbreaks start
from one initial case and all outbreaks are at least of size 2 including the
initial case.

Likelihood Function

If we denote mx as the frequency of outbreaks of size x as in Table 4.1, and

impose the condition of outbreaks having minimum size X = 2 cases, then the

log-likelihood function is

l(λ;x, s) =
33∑
x=X

mx logPx − log

(
1−

X−1∑
x=1

Px

)
33∑
x=X

mx (4.37)

Summing through the outbreak sizes x with frequency mx from Table 4.1 gives log-

likelihood kernels (log-likelihood function without additive constants, i.e. terms

that do not depend on λ) of 166 log(λ)−207λ−41 log(1−e−λ) for the USA measles

data. The best estimate λ̂, is obtained by finding the value of λ that maximises

the log-likelihood.
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Profile Likelihood Confidence Interval

A 95% confidence interval for λ̂ can be found from the profile log-likelihood [366].

If we have G2 = 2[l(λ̂)− l(λ)], then the 95% CI consists of values for λ for which

G2 < 3.84) (where the value 3.84 is the 95th percentile of a χ2(1) distribution).

This is equivalent to the values of λ, for which l(λ) ≥ l(λ̂)− 1.92.

Figure 4.5 shows the profile log-likelihood for λ. The MLE for λ is λ̂ = 0.66 with

a 95% CI of 0.55–0.78. Hence these can be taken as the estimates of R for measles

in the USA between 1997–1999.
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Figure 4.5: Log-likelihood profile for λ. Data comes from USA measles outbreaks
between 1997-1999 and the result is reproduced from Farrington et al.
[111]. The MLE is λ̂ = 0.66, 95% CI: 0.55 – 0.78.

4.3.4 Estimation Using Final Epidemic Size Data

Becker [27] describes a method for estimating R0 which requires only final epidemic

size data and the application of martingale theory [387]. The basic idea around

martingales is that for some stochastic process, the expectation of the next value

is the same as the latest observed value and therefore, all other prior observed

values are not beneficial for predicting the next value of the process. Since this
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method of estimating R0 requires final epidemic size data, it brings with it the

natural disadvantage of only being of use when an epidemic has finished. Hence,

the method cannot be used to aid in the decision-making of mitigation strategies

during an epidemic. Furthermore, when analysing a country-wide or worldwide

epidemic, we generally will not accurately know the final epidemic sizes but it can

be used in smaller confined environments such as households, schools and farms

where it is much easier to know the initial and final numbers of cases. Despite

these limitations, this method can still be used to give an estimation which can be

compared against the estimations of R0 found using other methods.

Epidemic Model

To begin, we must consider a community which initially has S(0) = n susceptible

individuals and I(0) = m infective individuals. An assumption here is that during

the course of the epidemic, there are no further infections resulting from contact

with individuals from outwith this community. We introduce N(t) as the num-

ber of individuals who become infected during a time interval (0, t] and initially,

N(0) = 0. S(t), I(t) and R(t) denote the number of susceptibles, infectives and

removed individuals at time t, respectively. Finally we define H(t) as the history

of the process (N, I,R) up to time t. Now, with an infection rate β and a recovery

rate γ, the progress of the epidemic can be described as

P[dN(t) = 1, dR(t) = 0 |H(t)] = βI(t)S(t) dt

P[dN(t) = 0, dR(t) = 1 |H(t)] = γI(t) dt

P[dN(t) = 0, dR(t) = 0 |H(t)] = 1− βI(t)S(t) dt− γI(t) dt

(4.38)

where the first line in Equation (4.38) follows the proportion of susceptibles, the

second line follows the proportion of infectives, and the third line follows the

proportion of removed individuals (simply calculated by using the rules of com-

plementary events for probability).
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Martingale Method

Firstly we assume that the only information we have is S(0), I(0), S(TN) and

I(TN), or in other words, we only know the initial numbers of susceptibles and

infectives as well as the numbers of susceptibles and infectives at the end of the

outbreak. To estimate R0, we introduce two processes which are zero-mean mar-

tingales, M1 and M2.

M1(t) = N(t)−
∫ t

0

βI(x)S(x)dx

M2(t) = R(t)−
∫ t

0

γI(x)dx

(4.39)

Becker [27] points out that S(t) and I(t) are often not observable throughout time,

so therefore, it is required to construct martingales consisting of only observable

quantities. In order to do this we create an indicator function of there being a

positive number of susceptibles, J(x) = I(S(x) > 0). Therefore, J(x) = 1 when

S(x) > 0 and 0 otherwise. Furthermore, we can let

B(x) =
J(x−)

S(x−)
(4.40)

where the notation (x−) represents the observation immediately prior to x. Note

here that B(x) = 0 when J(x−) = 0. Now a process M∗
1 (t) is defined by integrat-

ing the function B(x) with respect to M1.

M∗
1 (t) =

∫ t

0

B(x)dM1(x) =

∫ t

0

B(x)dN(x)− β
∫ t

0

I(x)J(x)dx (4.41)

M∗
1 is also a zero mean martingale as integrating the function B(x) with respect to

another zero mean martingale will result in another zero mean martingale [8, 27].

It should be noted that
∫ t
0
I(x)J(x) dx =

∫ t
0
I(x) dx when S(t−) > 0. Moreover,∫ t

0
B(x) dN(x) can be described in the form of a discrete approximation.
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∫ t

0

B(x) dN(x) =
1

s
+

1

(s− 1)
+ . . .+

1

S(t−)
(4.42)

This equation is completely determined by S(t−). We now construct another

zero-mean martingale M which includes R0 as part of the equation (also keeping

in mind that R0 = β
γ

for the SIR model, see Section 4.2.1).

M(t) = M∗
1 (t)−R0M2(t)

=

∫ t

0

B(x) dN(x)− β
∫ t

0

I(x)J(x) dx−R0R(t) +R0

∫ t

0

γI(x) dx

=

∫ t

0

B(x) dN(x)− β
∫ t

0

I(x)J(x) dx−R0R(t) +
β

γ

∫ t

0

γI(x) dx

=

∫ t

0

B(x) dN(x)−R0R(t) + β

∫ t

0

I(x)[1− J(x)] dx

(4.43)

which is still a zero-mean martingale as any linear combination of martingales still

yields a martingale [172]. It is assumed that the final size of the disease outbreak

can be observed. Thus, R (eventual number of removed/recovered individuals) and∫ t
0
B(x)dN(x) are both known, leaving only one nuisance term

∫ t
0
I(x)[1−J(x)]dx

which can be eliminated by introducing a suitable stopping time. This stopping

time will be denoted as TN and is the time when the infection process ends. This

can happen in two ways – when there are no more susceptibles left or when there

are no more infectious individuals in the community. Therefore TN can be defined

as

TN = inf {t ≥ 0 | [S(t) = 0] ∨ [I(0) +N(t)−R(t) = 0]} (4.44)

where ∨ denotes an ‘OR’ condition. Since we are dealing with zero-mean martin-

gales, we can equate Equation (4.43) to its mean which is of course, zero and then

solve with respect to R0. To do this we first deal with the case when S(TN) > 0 and

hence I(TN) = 0. We can note that when S(TN) > 0 then
∫ TN
0

I(x)[1−J(x)] dx = 0



Chapter 4. Estimating Reproductive Numbers 189

since J(x) = 1 when x < TN and also make use of the definition in Equation (4.42)

to solve for R0.

R̂0 =

∫ t
0
B(x)dN(x) + β

∫ t
0
I(x)[1− J(x)]dx

R(t)

=

∫ t
0
B(x)dN(x)

R(TN)

=
1

R(TN)
×
[

1

s
+

1

(s− 1)
+ . . .+

1

[S(TN) + 1]

]
(4.45)

However, we have one final issue to deal with and that is the case of there being

no more susceptibles. If S(TN) = 0, then a cumulative amount of infectious period

is wasted as some time is spent when there are no more susceptibles to actually

infect so it is necessary to correct for this problem. To solve this problem, we

introduce a time TR which is the occurrence time of the last recovery.

TR = inf [t ≥ 0 | I(0) +N(t)−R(t) = 0] (4.46)

If S(TN) = 0 then TR > TN , which literally means that if there are no more sus-

ceptible individuals, then the time of the last recovery must occur after the time

when there are no more susceptibles. Here, Becker [27] argues that if S(TN) = 0

then the time TN is not identifiable as when S(TN) = 0, then I(x)[1 − J(x)] is

no longer zero. As a consequence it is no longer possible to solve R0 from Equa-

tion (4.43). However De Jong and Kimman [80] state that the problem is purely

mathematical and in fact, there is no reason why TN cannot be observed in this

case. If we suppose that TN can be observed for this case, then we can calculate

R0 very similarly to before. First we define c as the amount of infectivity excreted

while susceptibles are still present in the community.

c =

∫ TN
0

I(x)∫ TR
0

I(x)
(4.47)
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Now we can construct a zero mean martingale just like in Equation (4.43) which

we denote here as M3.

M3(TR) = M∗
1 − cR0M2

=

∫ TR

0

B(x) dN(x)− β
∫ TR

0

I(x)J(x) dx− cR0R(TR) + cR0

∫ TR

0

γI(x) dx

=

∫ TR

0

B(x) dN(x)− β
∫ TR

0

I(x)J(x) dx− cR0R(TR) + c
β

γ

∫ TR

0

γI(x) dx

=

∫ TR

0

B(x) dN(x)− cR0R(TR)− β
∫ TR

0

I(x)J(x) dx+ cβ

∫ TR

0

I(x) dx

=

∫ TR

0

B(x) dN(x)− cR0R(TR) + β

∫ TR

0

I(x)[c− J(x)]dx = 0

(4.48)

Since c is the proportion of infectivity excreted while there are still susceptible

individuals left, the last term in Equation (4.48) becomes equal to zero.

∫ TR

0

I(x)[c− J(x)]dx =

∫ TR

0

[cI(x)− I(x)J(x)] dx

= c

∫ TR

0

I(x) dx−
∫ TR

0

I(x)J(x) dx = 0

(4.49)

So now we are left with just M3(TR) =
∫ TR
0

B(x)dN(x)− cR0R(TR) which can be

rearranged and solved for R0 analogous to the way previously in Equation (4.43).

R̂0 =

∫ t
0
B(x)dN(x)

cR(TN)

=
1

cR(TN)
×
[

1

s
+

1

(s− 1)
+ . . .+

1

[S(TN) + 1]

] (4.50)

To get an idea of the precision around these estimates of R0, standard errors can

also be derived. Details of the mathematics for deriving them can be found in
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Becker [27] and Höhle [172]. One example of where this method has been applied

was to data on an experiment looking at how vaccination reduced transmission

of Aujeszky’s disease virus (ADV) in pigs [80]. Using numbers available from the

experiment for S(0), S(TN) and R(TN) as well as the total numbers of pigs in each

group, they found R ≈ 10 in the unvaccinated group compared with R ≈ 0.5 in

the vaccinated group.

4.3.5 Estimation Using Seroprevalence Data

An epidemiological statistic which is of great importance is the proportion of in-

dividuals within a population who possess the specific antibodies required to fight

a particular infection [9]. These antibodies are detected using various serological

techniques based on immunological assay; consequently, this gives rise to the term

seroprevalence data. These measures may be of a qualitative nature (presence or

absence of antibodies) or a quantitative nature (e.g. antibody titres). If antibodies

are detected, this tells us that the individual has had the infection previously or

that they are currently infected. On the other hand, non-detection of antibodies

does not necessarily imply that an individual has never experienced a particular

infection.

Serological data can be obtained from surveys and will often be stratified by factors

such as age and sex, providing us with important information on specific classes

of a population who are more or less at risk of infection. Having data on the

proportions of seropositive and seronegative individuals in a population can allow

us to estimate a value for the reproductive number of a disease and for this reason,

measuring levels of antibody production is of considerable interest to us. However,

one issue with using this kind of data is that it is often only available after a

reasonable length of time following the start of epidemics – for example, this

study by Miller et al. [244] contains serological survey results for 2009 pandemic

influenza in the UK but the study was published online in January 2010 which

was well after the beginning of the pandemic. Although obtaining this data may

take some time, estimates of R using serological data are very useful as they offer

a route to obtaining potentially more accurate estimates of R as the serological
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data is a far less ambiguous marker for infection compared with diagnosis of cases

through, for example, symptoms.

Combining Seroprevalence Data with Social Contacts Data

For diseases which are transmitted by a respiratory or close contact route such as

influenza, it is well known that social contact patterns are highly important in de-

termining the spread of the disease. Surveys regarding numbers of conversational

contacts that individuals of differing age groups have with each other have already

been carried out before [248]. Although there are obvious concerns around these

social contact surveys [170] such as inaccurate reporting of numbers of contacts

due to memory recall issues, these surveys offer a conceivable improvement upon

assuming mixing patterns such as homogenous or assortative mixing which are of-

ten made with a lack of empirical evidence to back it up. The assumption is that

the number of potentially infectious contacts is proportional to the self-reported

numbers of contacts found in these surveys.

Wallinga et al. [373] introduced a framework for estimating R by combining data

on social contacts together with data on the age-specific proportions of individuals

immune to disease as taken from serological samples. The social contacts data that

they used relates to the number of conversations people of different age groups had

and comes from a random sample of people in Utrecht, Netherlands. The first step

in their method is to estimate a social contact matrix M from this data and they

do this by using a negative binomial model for numbers of conversational contacts.

A correction is made for the reciprocal nature of conversational contacts – total

contacts from individuals belonging to age class j with individuals from age class

i must be the same as total contacts from individuals belonging to age class i with

individuals from age class j. This correction was necessary as the surveys gave

data which did not conform to this condition. In fact, this correction would most

likely be necessary for any survey conducted for this purpose since numbers of

contacts would probably never be reported with perfect accuracy.



Chapter 4. Estimating Reproductive Numbers 193

They found parameters for mij (mean number of conversations per week from

individuals in age class i reported by people in age class j) by maximum likelihood

methods. We leave out specific details of estimating the contact matrix which

can be found in Wallinga et al. [373] and concentrate more on estimating the

transmission parameters in this summary. Note that other methods of estimating

contact matrices are possible (see Goeyvaerts et al. [135] for another individual

example and Hens et al. [165] for a more comprehensive review).

Transmission Parameters

Given the mean numbers of contacts between individuals in different age groups

mij, we have to find the next generation matrix N (giving age-specific numbers of

potential transmission events per individual) as not every conversation will lead

to transmission. This is found as

N = (nij) = (q mij) (4.51)

where q denotes what is known as the disease-specific infectivity parameter which

is estimated by keeping mij fixed and searching for the value of q which maximises

the log-likelihood of observing the age-specific proportions of a population im-

mune to the disease. Note that using the proportions immune to a disease would

only be a suitable proxy measure for the proportion that were infected assuming

that immunity was not gained through vaccination or if immunity due to vac-

cination and natural immunity gained through recovery from infection could be

well distinguished such as for Hepatitis B. One way of ensuring that the effects of

vaccination do not come into play here is to only consider diseases for which there

is no vaccine or to look at proportions immune before the introduction of a vaccine.

In Equation (4.51), the elements of N essentially give the numbers of infectious

contacts (as opposed to conversational contacts) individuals in age group i make

with individuals in age group j. Finding q involves a longer process. We first de-

fine the proportion immune in age class i as zi. The estimated per capita number

of infectious contacts that individuals in age class i have during an epidemic is
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∫
λi(t) dt =

∑
j

nijzj
wj
wi

(4.52)

where λi(t) is the hazard rate of infection for age class i and wi is the population

size for age class i which can be found from demographic data for a population.

Therefore, the estimated probability of being infected during the epidemic in age

class i is

zi = 1− exp

(
−
∫
λi(t) dt

)

= 1− exp

(∑
j

nijzj
wj
wi

) (4.53)

More generally, we have observations on age groups ã; the number of people tested

in an age group is g(ã) and the expected proportion immune is f(ã). A binomial

distribution with parameters g(ã) and f(ã) can be used to describe the numbers

of immune people in an age group given by h(ã). The log likelihood is thus

l(q;h) =
∑
ã

ln Bin(h(ã); g(ã), f(ã)) (4.54)

The best estimate of q is found by searching for the value of q which maximises the

log-likelihood from Equation (4.54). From this point, we have estimated the pa-

rameters that allow us to derive the next generation matrix N and R can be found

as the largest eigenvalue of N. As a further point, Wallinga et al. [373] showed

that using the social contacts data provided superior fits to data on mumps and

influenza compared with assuming homogeneous and assortative mixing. This

comparison was made using the Bayesian Information Criterion [326]. However,

they also showed that the estimates of R for mumps were sensitive to the transmis-

sion model being used which underlines the importance of choosing an appropriate

model.
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4.4 Discussion

In this chapter we reviewed a number of methods of estimating reproductive num-

bers. The number of research papers that we looked at was by no means ex-

haustive, especially considering that more methods of estimating R are always

on the horizon. As we discussed, many of the methods can only be implemented

when the appropriate types of data are available and some can only be applied

during certain phases of an epidemic. Although there are often restrictions on

what methods can be used to estimate R, it is important to have an awareness

around different methods of estimation. This is because it can be beneficial to use

more than one method to estimate R if possible as if estimates are consistent be-

tween methods then this lends more assurance around the validity of the estimates.

In our review, we were primarily interested in methods which could be applied

with types of data that are commonly available from routine surveillance such as

daily case notifications and demographic data. However, we found that the serial

interval distribution of a disease was essential for a number of methods of esti-

mating R [371, 372]. During epidemics, it is not uncommon for epidemiologists to

investigate possible links between cases and in these circumstances, it may be pos-

sible to obtain the serial interval distribution for a disease. Although this data can

be difficult to collect as it requires cases to be followed up and it can be difficult

to find out exactly who infected whom, it may only be necessary to know about

the general shape of the distribution as we discussed and this can be obtained

from research studies that looked at past disease outbreaks that exhibited similar

transmission patterns. An example for this could be to use the serial interval dis-

tribution found from a previous influenza outbreak and apply that for estimating

R in a new influenza outbreak. For these reasons, we also focussed on methods

which use the serial interval distribution in addition to daily case data.

One of the methods that used the serial interval distribution in conjunction with

daily case data was the method of Wallinga and Teunis [372]. This method can

be utilised for surveillance purposes as for some diseases, it allows near real-time



Chapter 4. Estimating Reproductive Numbers 196

estimations of R as an outbreak is unfolding. This is obviously important as it

can aid in decision-making related to mitigation strategies. For example, if the

reproductive rate is being tracked in almost real-time and it has been observed

that the rate has been rising for a period of time, then this gives a clear sign that

interventions would have to be considered urgently. Although it may be possi-

ble to obtain similar information by simply observing rises in numbers of cases,

looking at the reproductive rate reveals more on precisely how fast an outbreak is

growing and can also help to predict the size that an outbreak will grow to in a

following period of time. One drawback with this method comes from the fact that

it requires the serial interval distribution. If the duration of serial intervals for a

disease is generally long, then the method cannot be applied in near real-time as

for each case, the method estimates the probability that they infected future cases

and these probabilities are based on the serial interval distribution. Therefore, the

method requires data on future cases up to the point where there is almost no

chance of secondary transmission for each primary case in order to obtain reason-

ably reliable estimates of R. Thus, for a disease such as SARS which has a serial

interval of around a week [222], the method works well but it would not work so

well for diseases that have much longer and much more variable serial intervals

such as tuberculosis [369].

An important consideration for estimating R is how accurate the data is for picking

up true cases for a disease. With a disease like influenza, diagnoses may some-

times be made by clinicians based on symptoms and this can potentially pick up

false-positives as many other diseases cause similar symptoms. Hence, we also dis-

cussed a method of estimating R that made use of serology data [373], which can

be expensive and take some time to collect. Despite these disadvantages, serology

data offers the advantage of providing a much less ambiguous marker for infection

and this may provide better estimates of R.

Besides the consideration around the data required for methods, we also aimed

to present methods which could be used during different phases of an outbreak.

Methods that look at the exponential growth phase of an epidemic can usually
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only be applied during the initial phase of an epidemic, but on the other side of

the spectrum, some methods can only be applied retrospectively. We presented

one method that uses very little data to estimate R retrospectively – only data on

initial and final size data for populations [27, 172]. This method is most applicable

for small-scale outbreaks that are confined within certain locations such as farms

or schools. The reason for this is that it is much easier to obtain initial and final

size data under these circumstances.

In Table 4.2, we have attempted to summarise the methods that we described in

this chapter in terms of the data requirements and the period of an epidemic that

they can typically be applied. Note that the methods of estimating R using math-

ematical models were not included in the summary table as the requirements for

those models vary widely depending on the type of model being considered and the

parameters that need to be estimated for the model. It is also important to note

that although the table provides a succinct overview of the methods we reviewed,

it is not possible to properly summarise these methods in such a concise fashion

as there are many nuances which cannot be covered – for instance, the branching

process method [111] does not necessarily need to be applied at the end of an

epidemic but could be applied at the point where a reasonable amount of data

on individual outbreak sizes is already available. Furthermore, for the method of

Wallinga and Lipsitch [371] which looks at the exponential growth phase, it may

be difficult to know when the actual peak of the growth phase occurs as an epi-

demic can have several peaks in numbers of cases followed by periods of decrease

in numbers of cases. The consequence of this is that the estimates of the growth

rate and hence, estimate of R from that method, can be sensitive to the choice of

the peak time chosen.

For this review, most of the attention was paid to describing different ways of

estimating R, but we did not go into much detail on how to estimate confidence

intervals around these estimates. Confidence intervals can be obtained for esti-

mates using all of the methods we described but there are various ways to derive

them. For instance, bootstrap methods [96] can be used to obtain confidence in-
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tervals around estimates of R using the method of Wallinga and Teunis [372], and

for the method of Wallinga and Lipsitch [371], we can derive confidence intervals

around the estimate of the growth rate to subsequently get confidence intervals

around estimates of R.

In the next chapter, we revisit the early phase of 2009 pandemic influenza in Scot-

land and use some of the methods reviewed here to estimate the reproductive

number in that initial phase. In addition to using established methods of esti-

mating R, we also explore the feasibility of incorporating spatial data to derive

estimates of R. Specifically, we want to investigate if improved estimates of R can

be obtained by also using location data on where cases reside as this is one of the

routinely collected variables on cases in Scotland.
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Chapter 5

Estimation of Reproductive
Numbers for 2009 Pandemic
Influenza in Scotland

To prepare and plan effective responses as an epidemic unfolds, it is vital to obtain

estimates of some key epidemiological parameters. In particular, these are crucial

for producing effective surveillance systems. In this chapter, we make use of data

on case reports of 2009 pandemic influenza in Scotland during the early phase

(April to June 2009) to estimate firstly, the serial interval distribution, and then

we use the the serial interval distribution to estimate the reproductive number

R, which is the main goal of our analysis here. In Chapter 4 we outlined several

different methods of estimating R but as we explained there, the choice of method

which can be used is highly dependent on the data and information available re-

garding the epidemic. Therefore, many of the methods we introduced previously

can be eliminated from consideration.

We chose not to use the mathematical modelling methods such as fitting SIR or

SEIR models as they require precise knowledge on parameters such as the recovery

and transmission rates of the disease which we do not have. These are often not

available for novel disease outbreaks, although if the disease shares similar char-

acteristics to previous epidemics then parameters found from them can sometimes

be used to obtain preliminary results. Other methods which we felt could not be

considered include the branching process methods as they are more suited to epi-

demics which are endemic or dying out (R ≈ 1 or R < 1); methods which utilise
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final epidemic size data obviously cannot be used as we have only early phase epi-

demic data here; and finally we disregarded the method involving social contact

and serological data as serological data was not available in the early phase. We

note that social contacts data is available in the UK (see Mossong et al. [248]),

but this is not specific to Scotland.

Two methods which we can use here are the methods of Wallinga and Lipsitch

[371] and Wallinga and Teunis [372]. The first of those two methods estimates

R from an initial growth rate found from the early phase of an epidemic, while

the second of those methods attempts to track R over time and is more of a

continual surveillance method. The reason for deriving R using more than one

method is that estimates can potentially be sensitive to the method used and so

it is important to explore the range of estimates produced using different methods.

The dataset we used is incomplete in that it contains a dip in case reports due

to a period when laboratory testing of cases was temporarily suspended. Thus,

we worked with a total of three datasets – the original dataset and two additional

datasets that contain imputed data. We named these datasets as the original

dataset, the imputed dataset and the augmented dataset (further details on why

and how imputations were made will be explained later in Section 5.1.1).

In Scotland, postcode data on cases is routinely collected as well as the dates

of onset of symptoms and so this presented us with an opportunity to explore

the effects of adjusting estimates from the method of Wallinga and Teunis [372] by

adding in a spatial term to their formula. Our reasoning for including a spatial term

is that we believe those cases which live nearer to each other should accordingly

have a higher likelihood of being linked while pairs of cases living further away

from each other have less chance of being linked. Finally, we created two epidemic

simulations models (a basic model along with a more complicated and realistic

version) so that we could compare estimations of R made using the Wallinga and

Teunis method against our spatial method.
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5.1 Data

Individual level data was available on 1,383 laboratory-confirmed cases of pan-

demic (H1N1) influenza in Scotland during the early phase of the epidemic. More

cases are available in this dataset compared with the dataset used in Chapter 3

(which has 1,157 cases) as this dataset is far less detailed and does not contain,

for example, details of symptoms reported or antiviral use. The individual level

data available here comprises details of the dates of onset of symptoms, dates

of reporting the case to Health Protection Scotland (HPS), whether or not cases

travelled internationally within the week before their illness was reported as well

as demographic details (age, gender and residence postcodes). The first date of

report occurred on the 25th April 2009 and the last reported date was on the 7th of

July – at this point the outbreak did not cease but the collection of detailed infor-

mation on all reported cases was halted as the containment phase of the outbreak

in Scotland had ended. In addition to this, a subset of 121 cases had given de-

tails of who they most likely acquired infection from; these contacts were all cases

recorded in the dataset. It is presumed that these 121 cases were infected by their

reported contact (although we cannot be absolutely certain of this), and so this

allows for a reasonably accurate calculation of serial intervals in this group of cases.

Initially, dates of symptom onset were only available for 704 cases (as opposed to

date of report which was known for all 1,383 cases), but the dataset was deter-

ministically matched to a second dataset, which comprised a subset of these cases

that had answered detailed questionnaires regarding their illness (see Chapter 3).

Given the variables that were available in both datasets, matching was made based

on four common variables between the two datasets to give the best chance of ac-

curate and unique matches being found; these were date of birth, healthboard,

postcode and gender. Note that name or identifying initials were not available so

we could not match on these. This allowed the extraction of dates of symptom

onset for a further 212 cases which gave us date of symptom onset for 916 cases.

After matching, 467 cases were still missing dates of symptom onset, for which

dates could be imputed.
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There was also one more issue to be resolved. During the period of 15th to 21st

June, the number of reported cases was artificially low (see Figure 5.1). In this

period, there were too many reported cases to be handled and laboratory testing

was temporarily suspended. Note that the dataset constructed after matching

but before further data imputations is referred to as the original dataset in this

chapter.
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Figure 5.1: Number of early phase 2009 pH1N1 indigenous and imported case reports
each day in Scotland. The highlighted area between 15th to 21st June
2009 shows a period where case numbers were under-reported as laboratory
testing was temporarily suspended due to the high volume of case reports.

5.1.1 Imputation of Missing Dates of Symptom Onset

Cases still missing dates of symptom onset had dates imputed using the reporting

delay following the method used by White et al. [382]. Firstly, the reporting delay

distribution was derived for the 916 cases where we now had a date of symptom

onset by taking the time difference in days between the date of report and the date

of symptom onset. Figure 5.2 shows the reporting delay distribution, distinguish-

ing between indigenous and imported cases. The reporting delay ranged between



Chapter 5. Reproductive Numbers for pH1N1 in Scotland 204

0–21 days, but was predominantly between 2–7 days (around 80% of delays were

within 2–7 days).

0

50

100

150

0 5 10 15 20

Reporting Delay (Days)

N
um

be
r 

of
 C

as
es

Case
 Imported (n = 73) 
 Indigenous (n = 843)

Figure 5.2: Reporting delay distribution for early phase 2009 pH1N1 cases in Scotland
by indigenous and imported cases. Note that n in the legend refers to the
number of cases where the reporting delay was known.

During an epidemic, the reporting of illness may be quicker as the epidemic un-

folds and public awareness increases. Figure 5.3a is a plot of the reporting delay

against the date which cases had onset of symptoms. The loess curve (local re-

gression) [66] illustrates that the reporting delay shortened as time progressed for

indigenous cases while the delay was more constant for imported cases. Therefore,

the reporting delay for each case i was modelled using a linear regression with the

reporting delay, log(dt[i]) as the response (logs were taken as the reporting delay

distribution was skewed as seen in Figure 5.2) and two explanatory variables; the

date of report, rt[i], and a variable indicating if a case was imported or not, bt[i].

Each case missing an onset date (denoted ot[i]), now had a predicted value for

their reporting delay given their date of report and whether or not they were an

imported cases, which we refer to here as d̂t[i](rt[i], bt[i]). The modelled trend for

imported and indigenous over time can be seen in Figure 5.3b.

Following from this, a random variable Xt[i] was generated for each case missing
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Figure 5.3: Dates of symptom onset for early phase 2009 pH1N1 cases in Scotland
against their reporting delay by indigenous and imported cases. Reporting
delays are shown for 916 cases that had a known date of symptom onset.
The fitted loess curve (a) illustrates that the reporting delay tended to de-
crease for indigenous cases as time progressed and the log-linear regression
curve (b) shows our predictive model for the reporting delay.

an onset date. Specifically, Xt[i] was generated as the exponential of a normally

distributed random variable truncated at 21 days (the maximum reporting delay

found in our dataset), with mean log(d̂t[i](rt[i], bt[i])) and variance taken as the pre-

diction error from the regression model. The value for Xt[i] was rounded to give

an integer value representing the reporting delay in days. From here, the imputed
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date of onset was derived as ôt[i] = rt[i] −Xt[i].

A single imputation was made for each missing date of onset rather than multiple

imputation. This decision was made as one of our principle aims here is to compare

estimations of reproductive numbers between different methods and a fairer com-

parison between methods can be achieved if one complete dataset is used between

methods. However, we do note that the drawback in this is that variability due

to the data imputation process would be better accounted for by using multiple

imputation. In fact, this source of variability will essentially be ignored by using

a single imputation.

The dataset containing the extra 467 dates of symptom onset is depicted in Fig-

ure 5.4 and is referred to as the imputed dataset from this point on. As all imputed

dates of symptom onset were from the latter part of May 2009 onwards, this clearly

shows that missing dates of symptom onset only started to become an issue during

the part of the outbreak where numbers of case reports were rapidly increasing.
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Figure 5.4: Dates of symptom onset for early phase 2009 pH1N1 cases in Scotland
after imputing dates of symptom onset for 467 cases using the reporting
delay.
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5.1.2 Adjustment for Under-Reported Phase

As mentioned earlier, the six day period between 15th and 21st June 2009 suffered

from under-reporting. For each day the number of cases which should have been

reported was generated as a Poisson random variable with mean equal to 1.1 times

the number of case reports one week earlier. For example, the number of case re-

ports for Monday 15th June was generated using the number of case reports from

Monday 8th June. More specifically, on 8th June there were 52 case reports so the

number for 15th June would be estimated from a Poisson distribution with mean

1.1× 52 = 57.2.

This process assumes that for the under-reported period, the number of new cases

should have followed a similar pattern to the previous week but with some addi-

tional growth in the number of cases over time. We restricted the growth to 10%

from one week to the next rather than higher values as we wished to err on the

side of not overcompensating for the under-reported phase. We also note that too

high a rate of growth would make it more likely for there to be more daily cases

in this period than were observed in the day of the epidemic peak where there

were 84 cases reporting symptoms (after previous imputation of dates of symptom

onset), but our assumption was that case counts would build up to the peak.

After estimating the number of cases which should have been reported in this

phase, the dates of symptom onset were imputed using the reporting delay as de-

scribed before. Figure 5.5 shows the number of cases each day with augmented

date onsets distinguished. There were still some noticeable dips and peaks in

numbers of cases during the period which can be expected due to the stochastic

nature of the two-step procedure used here – increasing numbers of reported cases

in the under-reported phase and then imputing dates of symptom onset. From

here, the dataset including the adjustments for the under-reported phase is called

the augmented dataset. It is also important to remember that no individual level

data is available for these augmented dates of symptom onset.

To summarise, we now have three datasets which can be used in analyses for
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Figure 5.5: Dates of symptom onset for early phase 2009 pH1N1 cases in Scotland
with additional augmented data for the under-reported phase. For the
augmented data, additional case reports were generated between 15th to
21st June 2009 and then reporting delays were generated to derive dates
of symptom onset.

estimating reproductive numbers for the early phase of the 2009 pH1N1 outbreak

in Scotland. These are listed below.

1. Original dataset – before imputations for dates of symptom onsets and

before including additional augmented dates of symptom onset for the under-

reported phase. Available in all datasets (1), (2) and (3) where the numbers

in brackets refer to item numbers in this list. n = 916.

2. Imputed dataset – after imputations for dates of symptom onset using the

reporting delay distribution. Available in datasets (2) and (3). n = 1,383

(original = 916, imputed = 467).

3. Augmented dataset – after imputations for dates of symptom onset and in-

cluding additional augmented dates of symptom onset for the under-reported

phase. Only available in dataset (3). n = 1,642 (original = 916, imputed =

467, augmented = 259).
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5.2 Serial Interval Distribution

Crucial to a number of methods of estimating R is the serial interval distribu-

tion [371, 372]. We estimated the serial interval distribution by making use of a

number of cases who were followed through a contact tracing exercise where these

cases were asked who they had been in contact with over the previous seven days

and then subsequently linked to previously reported cases; we shall refer to these

cases as the traced cases. Thus, for 121 infectees, a presumed primary case was

ascertained and the serial interval was calculated as the the interval between the

date of symptom onset of the infectee and their presumed infector. Note that all

of the cases used to calculate serial intervals already had dates of symptom onset

and so they did not have to have a date imputed. If calculations were made using

cases with imputed dates then any potential inaccuracies created in the imputa-

tion process would also affect the serial interval distribution derived here.

The serial interval ranged from 0–9 days as shown on Figure 5.6, with a mean of

3.44 days. Note that it was assumed that the characteristics of the serial interval

do not change over the period considered, which may be reasonable as the data

only looks at the early phase of the epidemic. A further assumption was that the

set of traced cases consisted of a random sample of cases.

5.2.1 Distribution Choice

Distributions that do not allow negative values are suitable candidates for the se-

rial interval data as it is not possible to have a negative serial interval. The fits

of several parametric distributions (Gamma, Weibull, Log-Normal, Negative Bi-

nomial and Exponential) to the serial interval data were tested. Strictly speaking,

the serial interval data comes in a discrete form which would make the Negative

Binomial distribution the most applicable. However, it is possible to discretise the

continuous distributions and thus, they can also legitimately be used. All of the

candidate distributions use two parameters with the exception of the Exponential

distribution which only uses a single rate parameter; this makes it less flexible in

it’s ability to model data compared to the other distributions.
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The best fit parameters for the distributions were found by an optimisation proce-

dure to find the maximum log-likelihood [308]. Note that for the Gamma, Weibull

and Log-Normal distributions, serial intervals of 0 days were changed to 0.5 days

indicating an interval of half a day as those distributions only support positive val-

ues. The distribution which fitted the serial interval data best (or offered the most

parsimonious approximation to the data) was decided by using the AIC (Akaike

information criterion) [5], which accounts for model complexity while considering

goodness-of-fit. This is clearly shown in Equation (5.1) where k is the number of

parameters that need to be estimated and L is the value for the maximum like-

lihood. Note that for our candidate distributions, model complexity only affects

comparisons of the Exponential distribution against the other distributions since

it has one less parameter.

AIC = 2k − 2 ln(L) (5.1)

The Gamma distribution with shape parameter, α = 3.12 and rate parameter,

β = 0.9 was found to be the best-fitting distribution as it produced the lowest

AIC (see Table 5.1); this curve has been superimposed onto Figure 5.6. As can

be observed, the vast majority of serial intervals were between 2–4 days, but there

was some overestimation in the frequency of one day serial intervals and some un-

derestimation in the frequency of two day serial intervals – otherwise, the Gamma

distribution fits the data fairly closely.

Distribution Parameters Range
Log-

Likelihood
AIC

Gamma shape, rate (0,∞) −238.7 481.4

Weibull scale, shape [0,∞) −240.6 485.2

Log-Normal mean, variance (0,∞) −241.5 487.1

Negative Binomial successes, probability 0, 1, 2, . . . −245.6 495.2

Exponential rate [0,∞) −270.4 542.8

Table 5.1: Log-likelihood values and AIC for probability distributions fitted to the
serial interval data.
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Figure 5.6: Serial interval distribution with best fitting Gamma curve superimposed.

Assumption of Constant Serial Intervals

The methods we use to estimate R in this chapter assume that the serial inter-

val distribution is constant over time [371, 372], which may be questionable. To

investigate this assumption, we split the data into two sets – in the first set, the

presumed infector had a date of symptom onset on or before the 3rd of June 2009

(n = 56), and for the second set, the presumed infector had a date of symptom

onset after the 3rd of June (n = 65). Note that the cut-off date here was cho-

sen such that it would create two subsets of data that were reasonably equal in size.

As shown on Figure 5.7, the mean serial interval for those with a presumed infector

before 3rd June was only slightly higher than those with a presumed infector

after that date (means of 3.75 and 3.17 days for the earlier and latter periods

respectively). In addition to this, the serial intervals in the latter period were

also less variable with the standard deviation being 1.74 days in the latter period

while the standard deviation was 2.21 days in the earlier period. A non-parametric

Wilcoxon rank sum test also suggests that the serial interval was not significantly

different in the first period compared with the second period (W = 2,127, p > 0.05).

These results give some assurance that serial intervals stayed relatively constant
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Figure 5.7: Serial interval distribution split into two sets to investigate the assump-
tion of constant serial intervals through time – those where the presumed
infector had date of symptom onset on or before 3rd June 2009 and those
with date of symptom onset after that date.

in the time period that we are examining.

5.2.2 Discretisation

The serial interval data we have is discrete as we have it as a time difference in

days. Hence if we choose to model the serial interval distribution as a continuous

distribution such as the Gamma distribution, it is necessary to discretise it. We

discretised the distribution in the same way used by Roberts and Nishiura [309].

First the data was considered in the intervals [0, 0.5), [0.5, 1.5), . . . , [9.5, 10.5) to

substitute for the discrete values 0, 1, . . . , 10 days. The maximum serial interval

was set at ten days, which seemed reasonable as the maximum serial interval found

in our data was nine days and thus, we assumed that the probability of secondary

transmission after an infection age of more than ten days was negligible. Using

the notation of t as the time since infection, we have tmax = 10 days, and the

distribution was discretised as

st =
S(t)− S(t− 1)

S(tmax)
(5.2)
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where st denotes the discretised probability density for a serial interval, and S(t)

is the cdf (cumulative density function) of the Gamma distribution up to time t.

For example, s1 would be obtained as s1 = S(1.5)−S(0.5)
S(10.5)

. Another assumption made

is that s0 = 0, meaning that there is no probability for infections to occur on

the same day. The discretised probabilities for each serial interval are displayed in

Figure 5.8. As mentioned earlier, the chosen Gamma distribution over-predicts the

number of cases with a serial interval of one day and under-predicts the number

of cases with a serial interval of two days, but looks fairly accurate for the other

serial intervals. We also tried discretisation using intervals of [0, 1], [1, 2), . . . , [9, 10)

(results not shown). However this resulted in an even larger overestimation in the

frequency of one day serial intervals with respect to the observed data, whilst

giving similar results otherwise.
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Figure 5.8: Discretised Gamma probabilities for serial intervals (shown by the red
dashed line) superimposed onto the histogram of actual probabilities for
serial intervals given by the data. Probability of secondary transmission
after ten days was assumed to be negligible.
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5.3 Estimation of Reproductive Numbers

5.3.1 Exponential Growth

Values of R during the initial phase of an epidemic where case counts are usually

growing exponentially can be calculated using the method of Wallinga and Lip-

sitch [371]. The method requires only knowledge on the shape of the serial interval

distribution and the rate of exponential growth, r, to estimate R. Hence the first

parameter that must be estimated is r, which can defined as the per capita change

in the number of new cases per unit of time. The case reports come in the form of

counts and so Poisson regression is ideally suited for estimating r (although linear

regression on log counts is also possible).
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Figure 5.9: Exponential growth rate of 2009 pandemic influenza cases in Scotland in
the early phase. The data used came from the augmented dataset and the
growth rate was derived from a Poisson regression model. The start of the
exponential growth phase was set as 30th April 2009 (the time when new
cases began to appear almost every day) and the end was set as 21st June
2009 (the epidemic peak).

We chose the beginning of the exponential growth period as the 30th April 2009

since new cases started to appear almost daily from this point, while the end of
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the exponential growth period was chosen as the 21st June 2009 as this was the

day that case numbers peaked (Figure 5.5). If we started the growth period from

the earliest date of symptom onset for a case (18th April) as opposed to choosing

the 30th of April, it would have been a less accurate reflection of the growth rate

in the exponential phase. With an earlier start date, the growth rate would have

been underestimated as at the beginning, there was not much secondary trans-

mission of the disease as at that time, imported cases were coming into Scotland

sporadically. Precisely, between 18–29 April there were only three cases and two

of these were imported. The growth rate estimated from the Poisson regression

model was r = 0.080 with 95% CI 0.075–0.086 (Figure 5.9).

Once r has been calculated, R can be estimated using the relationship R = 1
M(−r)

where M is the moment generating function (MGF) of the probability distribution

used to model serial intervals (more details on the exponential growth method can

be found in Section 4.3 of Chapter 4). However since we are using the discretised

serial interval distribution rather than the continuous form, R should be estimated

using the formula for empirical distributions [371].

R =
r∑n

i=1 yi(e
−rbi−1 − e−rbi)/(bi − bi−1)

(5.3)

Here bi denotes the category bounds for serial intervals, and yi is the discretised

probability related to that interval. Since we always consider intervals of one day,

bi − bi−1 = 1 and Equation (5.3) simplifies to

R =
r∑n

i=1 yi(e
−rbi−1 − e−rbi)

(5.4)

Using Equation (5.4) and assuming the discretised Gamma distribution for serial

intervals, R for the exponential growth period was estimated as R = 1.36 (95% CI:

1.33–1.38). Note that the confidence limits for R were estimated directly from the

confidence limits found for the growth rate r and thus, do not take into account

uncertainty in the serial interval distribution.
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Sensitivity Analysis

The sensitivity of estimates of R using the exponential growth method was tested

against the choice of four variables; the start date and end dates of the exponen-

tial growth phase (start dates: 18 April, 30 April and 6 May; end dates: 7 June,

16 June, 21 June and 26 June), the distribution used to model serial intervals

(Gamma, Weibull, log-normal and empirical) and the dataset used (original, im-

puted and augmented). We chose 7th June as one of the end dates for exponential

growth as this was the epidemic peak before the drop due to the period of limited

lab-testing while the other end dates were selected to test the sensitivity of esti-

mates against small changes away from the observed epidemic peak.
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Figure 5.10: Sensitivity of growth rate r to choice of dataset as well as start and end
dates of the exponential growth phase.

The growth rate r was not affected much when end dates close to the true epidemic

peak (21st June) were used but using the much earlier end date of 7th June greatly

increased r (Figure 5.10). This is because the numbers of new cases were growing

very rapidly in the period up to 7th June, but then the rate of new cases did
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not maintain that rate of exponential growth. This underlines the importance of

trying to be quite certain that a true epidemic peak has been reached before using

this method to derive an estimate of R as failure to do so could result in unreliable

estimates – in this case, a large overestimate. A further point to note is that much

larger confidence intervals around r were obtained when using 7th June as the end

date as this meant that far fewer cases would be used in calculations. The dataset

used also had a noticeable impact on r, which emphasises the importance of our

earlier attempts to resolve data issues when using this method for estimating R.

In general, the choice of start date for exponential growth generally had the least

impact on r.

Estimates of R by dataset and choice of probability distribution as well as start

and end dates for the exponential growth phase are displayed in Figure 5.11. Since

the growth rate r has a direct effect on R, the same comments regarding r can

be repeated for R. The most obvious impact of this direct effect can be witnessed

with the much larger estimate of R when using 7th June as the end date (R ≈ 1.7

compared to R ≈ 1.3–1.4 for the other end dates). The one additional inclusion

here was the choice of probability distribution which had no major impact on

estimates of R.

Variability Due to Imputation

We mentioned in Section 5.1 that we decided to use single imputation for compara-

bility reasons but also that a disadvantage of using single imputation for creating

datasets was that we would not be able to account for the additional variability

in estimates of R due to data imputation. To investigate how much additional

variability we could observe, we produced 1,000 augmented datasets by following

the same process as described previously. For these datasets, we always used the

discretised Gamma distribution for serial intervals with start date as 30th April

and end date as 21st June to estimate R.

Since this is primarily an exploratory exercise, we simply obtained an average

estimate for R over the 1,000 datasets and also noted the lowest estimate for the
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Figure 5.11: Estimates of R using the exponential growth method of Wallinga and
Lipsitch [371]. Sensitivity of estimates were tested by varying the choice
of dataset and probability distribution as well as the start and end dates
for the exponential growth phase.
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the lower 95% confidence limit and the highest estimate for the 95% confidence

limit; this gave us R = 1.36 (1.32–1.40). This is not hugely different to the original

estimates (R = 1.36, 95% CI: 1.33–1.38) and therefore, this demonstrates that the

data imputation process did not have a large impact on the estimates of R using

the exponential growth method. The reason for this is that the epidemic peak is

what seems to have the largest effect on estimates of R as we showed earlier in our

sensitivity analysis and the data imputation mainly affects data leading up to the

peak rather than the peak itself.

5.3.2 Time-Dependent Estimates

We obtained time-dependent estimates of R (denoted Rt) for the pandemic in-

fluenza data using the method of Wallinga and Teunis [372] (from here on, we

refer to this as the “W&T” method). Again, this method only requires knowledge

of the serial interval distribution and a series of dates of symptom onset for cases

(sometimes called the epidemic curve). For more complete details on the method,

see Section 4.3.2 in Chapter 4 or the original reference. In brief, the probability

that case i was infected by case j can be obtained using the serial interval distri-

bution, w(τ |θ) where τ is the serial interval and θ is the vector of parameters that

defines the distribution. Moreover, let ti be the date of symptom onset for case i

and tj be date of symptom onset for case j.

pij =
w(ti − tj|θ)∑
k 6=iw(ti − tk|θ)

(5.5)

This is the likelihood that case i was infected by case j relative to being infected

by any case k. After calculating pij for all cases, the concept can be turned around

and we can look at this as also having the probabilities that each case j infected

all other cases. From this, individual reproductive numbers, Rj can be found as

Rj =
∑All Cases

i=1 pij. If we denote the number of cases with onset of symptoms at

time t as Nt, the effective reproductive number at time t, Rt, is worked out as

Rt =
1

Nt

∑
j ∈ tj=t

Rj (5.6)
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Note that imported cases are distinguished in the method. The assumption is that

imported cases were not infected by any cases in our data (indigenous or imported)

but indigenous cases may have been infected by the imported cases, provided they

acquired infection at a later time than the imported case.

Confidence Intervals

Confidence intervals for values of Rt can be found via simulation. Having obtained

values of pij for each non-imported case i, it is possible to simulate the infector

of case i based on those probabilities. Specifically, the infector of each case i is

simulated based on a multinomial distribution with probabilities pij. Following

this, it is possible to get Rj and subsequently Rt for the simulated data using the

same process as described before. The 95% confidence interval is computed by

repeating this procedure over many simulations (say 1,000 or 10,000 times) and

then taking the 2.5th and 97.5th quantiles.

Correction for Unobserved Secondary Transmission

A method to account for as yet unobserved secondary cases in a set of epidemic

curve data was introduced by Cauchemez et al. [56]. This is required as the epi-

demic curve data comes in the form of dates of symptom onset reported by cases

up to a time T and for those cases with onset of symptoms near time T , there will

be some future cases that they will infect but have not yet been recorded in the

current set of data (late secondary cases). As a consequence of this, Rt near time

T will always be underestimated. Therefore, the method attempts to correct for

this by predicting the eventual number of late secondary cases.

The proportion of secondary transmissions observed and unobserved after t days

from each infector is determined from the serial interval distribution shown in Fig-

ure 5.8. Since our serial interval distribution dictates that secondary transmission

is negligible after ten days from the date of symptom onset, this problem only af-

fects estimates of Rt made at time t > T −10 days; for estimates of Rt made ten or

more days before T , all secondary transmissions are assumed to have already been
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observed and thus, Rt is unaffected. The corrections made to a value of Rt = 1

between 0–10 days before T are given in Table 5.2. Note that in this period, the

confidence intervals for Rt are also adjusted in the same manner so this does not

take into account uncertainty in the multiplier used for adjustment.

Days
before T

Proportion
Observed

Proportion
Unobserved

Adjustment
to Rt = 1

0 0.000 1.000 –

1 0.131 0.869 7.659

2 0.361 0.639 2.769

3 0.584 0.416 1.711

4 0.752 0.248 1.329

5 0.862 0.138 1.160

6 0.928 0.072 1.078

7 0.964 0.036 1.037

8 0.984 0.016 1.016

9 0.995 0.005 1.005

10 1.000 0.000 1.000

Table 5.2: Proportions of observed and unobserved secondary transmissions near the
end of epidemic curve data up to time T . Proportions are based on the
discretised Gamma distribution used to model serial intervals shown in Fig-
ure 5.8. The adjustments to Rt are multiplier terms for Rt and were calcu-
lated as one divided by the proportion observed, but note that proportions
were rounded in the table so the calculation will not produce the exact mul-
tiplier shown. Adjustments do not affect estimates of Rt made 10 days or
more before T while estimates of Rt less than 10 days before T are affected.
Confidence intervals in this period are also adjusted using these multipliers.

Time-Dependent Estimates for 2009 pH1N1 in Scotland

We chose to obtain time-dependent estimates of R between the 30th of April and

the 2nd of July 2009 as this matches the start of the exponential phase period we

used before in Section 5.3.1, and the end date was chosen as there were less than

ten cases daily after the 2nd of July. Figure 5.12 illustrates the estimates of Rt

over the aforementioned time period. Over the whole period from April 30th to

July 2nd, the average estimate of R for the augmented dataset was 1.26 (95% CI:
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0.65–2.06), which is only slightly lower than estimates found using the exponential

growth method (see Section 5.3.1). However, the confidence interval obtained here

is much wider than that of the exponential method due to fluctuations in Rt over

time.

One notable feature is the explosion in Rt up to a value of around Rt ≈ 4 towards

the latter part of May 2009. Further investigation on this revealed that this was

mainly due to a cluster of detected cases in Dunoon. We can also observe that

estimates of Rt nearer the beginning of the period were less stable and the confi-

dence intervals were much wider as there were much less case reports compared to

the latter part of the epidemic curve.
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Figure 5.12: Time-dependent estimates of the reproductive number for pandemic in-
fluenza in Scotland found using the W&T method on the augmented
dataset. The mean R was found by averaging estimates from 30th April
to 2nd July 2009. Confidence intervals were derived using 10,000 simu-
lations. Note that Rt values derived at times when no indigenous cases
were reported were removed as Rt is estimated as zero under those cir-
cumstances.
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The plots on Figure 5.13 give the estimates of Rt when using the imputed and orig-

inal datasets instead of the augmented dataset. Both plots show a clear decrease in

the estimates of Rt in June, which is due to not correcting for the under-reported

phase. Moreover, when using the original dataset, the average R over the period

dropped to R = 1.19 (95% CI: 0.55–2.08) and the estimates of Rt at the end of the

period were lower due to having less cases compared with the other two datasets

where data imputations were made.
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Figure 5.13: Time-dependent estimates of the reproductive number using the imputed
and original datasets.

Predictive Distribution

With knowledge of the values of Rt along with the assumed serial interval distri-

bution, the incidence at time t, Ît can be estimated. To do this, we start by setting

the predicted incidence on the first day equal to the actual incidence on that day

– in our epidemic (Î1 = I1 = 1). Then the values for Ît;t>1, are estimated by mul-

tiplying the values of Rt by the probabilities of transmission in the serial interval

distribution. Hence in a scenario with one case on day one with Rt=1 = 1 and

using the probabilities from Figure 5.8, we would expect the first case to produce

around 0.13 new cases on day two. Since we assume no secondary transmission on

the same day, we would obtain Î2 ≈ 0.13. To find Î3, we would also need the value

of Rt=2 in conjunction with the values for Ît;t<3. Similarly, values of Ît;t>3 can be

found by extending the summation to account for more values of Rt and Ît.
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Figure 5.14 shows that predicted incidence using estimates of Rt from the W&T

method fitted well to the epidemic curve data for all three datasets. However,

they missed the epidemic peak by a margin – more specifically, the timing of the

epidemic peak was correct but the predicted incidence at this point was lower than

the actual incidence. One way of determining the model fit is to use the root mean

square error (RMSE) which is calculated as√
1

Nt

∑
t

(Ît − It)2 (5.7)

The model produced RMSE = 5.84, 6.58 and 5.08 for the augmented, imputed

and original datasets respectively. The main sources of error appear to come

from two sources – clusters of cases detected around May and June 2009 and

also the under-reported phase. This perhaps, gives some indication that the data

imputations have still not fully accounted for the under-reported phase.

5.4 Spatial Model

The W&T method posits that all infection networks are equally likely and the

likelihood of infection depends solely on the serial interval which is unlikely in

practice. Heterogeneities in transmission can exist for any number of reasons; for

example, it is well known that contact patterns vary greatly between individuals

of different ages [248]. In Scotland, postcode data on cases are routinely collected

allowing us to attempt to provide an extension to the W&T method by including

a measure of the distance between the residence locations of cases as well as their

serial intervals. The principal assumption we make is that cases living closer to

each other are more likely to come into contact with each other, and consequently

more likely to infect each other.

5.4.1 Locations of Cases

In Section 5.1, it was mentioned that postcode data was available for 1,310 cases

out of the total 1,383 for which individual level data was available. Since postcode

data is required here, the augmented dataset cannot be used as we do not have
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Figure 5.14: Predictive distribution of cases for all three datasets based on the pre-
dictions of Rt along with the serial interval distribution. RMSE is the
root mean square error between the predictive incidence and the actual
incidence. Note that imported cases are included in counts of cases but
the method cannot predict the arrival of imported cases.

location data for the extra cases added in for the under-reported phase. Thus,

the imputed dataset (excluding those 73 cases without a postcode) has to be used

instead. We note that for a fair comparison of the spatial method we develop here

against the W&T method, it is crucial that the same data is used for both methods.

The postcodes of cases were matched to their Scottish datazone (DZ) [328], which
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in turn allowed us to obtain easting and northing coordinates related to those DZ

centroids. A minority of cases only gave partial postcode information (n = 11), and

so their locations were matched less precisely. The vast majority of reported cases

were from the Glasgow area as illustrated in Figure 5.15, but cases sporadically

appeared in the other major Scottish cities such as around Edinburgh, Dundee

and Aberdeen. This is to be expected as these locations encompass the cities in

Scotland with highest population densities. Imported cases showed up in a larger

variety of areas compared with indigenous cases, and a small number of cases were

quite isolated from the main clusters. Note that one case with a postcode from

England is not shown on the map.

Figure 5.15: Locations of early phase 2009 pH1N1 cases in Scotland. n in the legend
refers to the numbers of cases with postcode data. Note that only cases
in the original/imputed datasets could be used as additional cases in the
augmented dataset do not have postcodes. Also note that one case living
in England is not shown on the map.
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5.4.2 Distance Function

The distance between cases was calculated using their easting and northing coor-

dinates. Specifically, the Euclidean metric was used and for a pair of cases i and

j, the distance is calculated as

dij =
√

(Ei − Ej)2 + (Ni −Nj)2 (5.8)

where E and N here denote the easting and northing coordinates for cases. As

northing and easting coordinates are characteristically associated with measure-

ment in metres, dij can be divided by 1,000 to get results in terms of kilometres.

The distances between the pairs of cases where the infectee and their likely infector

was reported is shown in Figure 5.16. As can be observed, when cases reported

their likely infector, it was highly likely that their infector had the same postcode,

which we assume to mean living in the same household here. We propose two

assertions which should be important to take into consideration when including a

distance measure for determining the probability of infection:

1. The probability of infection between a pair of cases decreases as the distance

between their households increases.

2. The probability of infection between a pair of cases increases when those two

cases live in the same household.

Exponential Decay

We assume that the probability of transmission decays exponentially with increas-

ing distance according to the function

exp(−λ dij) (5.9)

where the parameter λ allows control over the rate of exponential decay. The ef-

fect of using different values of λ on the rate of decay is illustrated in Figure 5.17.
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Figure 5.16: Distance between pairs of cases where the infectee and their likely infector
was reported. We assume that pairs of cases with a distance of 0km reside
in the same household.

Clearly, the spatial weight falls to zero extremely quickly as distance increases

when using values such as λ = 1 or 0.5, while using lower values such as λ = 0.15

or 0.1 still give a reasonable weight to a pair of cases when they are separated

by moderate distances such as 15–20km (moderate distances with respect to the

geography of Scotland).
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Figure 5.17: Rates of exponential decay for different values of λ in the function
exp(−λ dij). Lower values of λ give more weight to pairs of cases sepa-
rated by greater distances.
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In addition to this, we can include a parameter to increase the weight for pairs of

cases living in the same household, defined as two cases with the same postcode.

If this parameter is denoted as λ0, then the spatial weight given to a pair of cases

with distance dij is

w(dij) = λ0 I0(d) + exp(−λ dij) (5.10)

where I0(d) is an indicator function for a pair of cases living in the same household,

i.e.

I0(d) =

 1 if dij = 0km

0 if dij > 0km

The effect that λ0 has is dependent on the rate of exponential decay λ. If λ is

set at a higher value, then then rate of exponential decay is faster as shown in

Figure 5.17 and consequently, λ0 will cause a larger increase in spatial weight. For

example, if we consider a pair of cases separated by 1km and have λ = 0.1 and

λ0 = 1, then we get w(1) = 0 + e−0.1 = 0.905 while a pair of cases living in the

same household would have w(0) = 1 + e0 = 2. However, if λ is increased to a

value of 0.5, then we would get w(1) = 0 + e−0.5 = 0.607, and so in this scenario

the difference between w(0) and w(1) is larger and thus, the impact of λ0 would

be greater with a larger λ. Furthermore, if λ0 = 1, then this will at least double

the weight given to a pair of cases from the same household compared with a pair

of cases with non-zero distance as we have limdij→0 e
−λdij = 1.

Combining Spatial Weights with Serial Intervals

To obtain relative probabilities that case i was infected by case j as opposed to

other cases k, based on both the spatial weight and the serial intervals, Equa-

tion (5.5) can be multiplied by the relative spatial weight.

pij =
w(ti − tj|θ)w(dij|λ0, λ)∑
i 6=k w(ti − tk|θ)w(dik|λ0, λ)

(5.11)
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Since, w(ti−tj|θ) = 0 when ti−tj ≤ 0 (negative serial intervals) for the discretised

Gamma distribution (see Figure 5.8), including the spatial weight does not have

any effect on pij if case i has date of symptom onset before or on the same day

as case j (probability that case i was infected by case j is zero if case i exhibited

symptoms before or on the same day as case j). In other words, the spatial weight

only adjusts the probability of infection for possible transmission networks. Also

note that if λ0 and λ are set to zero, then Equation (5.11) reduces back to the

W&T method as given in Equation (5.5).

Estimates of Rt for the imputed dataset found using Equation (5.11) and parame-

ters initially chosen as λ0 = 1 and λ = 0.15 are shown in Figure 5.18a. Compared

with the estimates derived from the W&T method, the spatial method predicted

a much higher peak in Rt in the middle of May 2009 where Rt ≈ 7. On the whole,

the estimates of Rt differed at the start of the period but were very similar in the

latter half of the period. The average R calculated over the period was marginally

higher for the spatial method (spatial: R = 1.31; W&T: R = 1.28 – note that

this is slightly different from the estimate found previously in Section 5.3.2 on the

imputed dataset as this time we excluded cases without postcodes). Inspection

of Figure 5.18b shows that the spatial method seems to be more reactive to the

peaks and troughs in the incident number of cases. However, the average predic-

tive performance of both methods over the whole period was very similar when

measured using the RMSE (spatial: RMSE = 6.75; W&T: RMSE = 6.71).

Improving Model Fit

We initially chose parameters for the spatial model as λ0 = 1 and λ = 0.15. These

seemed reasonable as a decent amount of weight would be given when the house-

holds of pairs of cases were separated by moderate distances and if a pair of cases

was from the same household, the weight would be approximately doubled com-

pared with a very small but non-zero distance. However, by utilising the RMSE

as a measure of model fit, it is possible to find the best-fitting values of λ0 and

λ to the epidemic curve data. Best-fitting parameters were found by holding the

parameters for the serial interval distribution constant and finding the parameters
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Figure 5.18: Estimates of Rt and predictions of incidence for the imputed dataset from
the spatial method compared against those from the W&T method. For
the spatial method, parameters were chosen as λ0 = 1 and λ = 0.15.

of λ0 and λ which minimised the RMSE. This was achieved via a bounded opti-

misation procedure [50] with the conditions λ0 ≥ 0 and λ > 0.

The best-fitting parameters suggest that λ0 ≈ 0.9, meaning that there should be a

more modest increase in the spatial weight for pairs of cases with the same post-

code, compared with what we had assigned as λ0 before (λ0 = 1). Furthermore,

λ ≈ 0.05 was found for the rate of exponential decay for distance, suggesting that

the parameters that were previously chosen did not give enough weight to cases

separated by larger distances. RMSE was lower using the best-fitting parameters

(RMSE = 6.64) and at the maximum Rt was Rt ≈ 6.5 (rather than just above 7

with the initially chosen parameters); the average R over the period was slightly

lower at 1.29 (Figure 5.19).

5.5 Epidemic Simulations

To further test the feasibility of including a spatial element in estimating Rt, we

created two different simulation models which attempt to simulate influenza-like

epidemics in Scotland. The first model is simpler and is intended to create more

favourable conditions for estimating Rt using our spatial method while the second
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Figure 5.19: Estimates of Rt and predictions of incidence for the imputed dataset
from the spatial method with best-fitting parameters compared against
choosing λ0 = 1 and λ = 0.15. Best-fit was found by minimising the
RMSE.

model is more complicated and is supposed to simulate a more realistic scenario

for Scotland.

5.5.1 Simulation Models

Both simulation models are largely similar and only differ on one key aspect which

we will explain in more detail later. Simulations in both models follow the basic

structure shown in Figure 5.20 – simulations are initiated with a specified number

of cases and ends when a specified end day T is reached. After the first day, further

importations arrive each day with rate rimp which is constant through time. The

main purpose of allowing these imported cases is to ensure that the epidemics do

not die out too quickly as we want to simulate an epidemic which lasts at least

around one to two months. This is particularly an issue in the first days of the epi-

demic simulations when there are likely to be few cases to generate new infections.

Imported cases appear in a random DZ with probabilities based on the population

size of DZs, with higher probabilities given to DZs with larger populations (see

Figure 5.21 for an illustration of the population of DZs in Scotland). The specific

location for imported cases is always set as the DZ centroid.
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Figure 5.20: Basic outline of simulation procedure. All epidemics begin from a set
number of imported cases. After the first day, secondary cases are always
generated in the same fashion.

Each primary case infects a random number of other individuals according to a

Poisson distribution with mean R. Those secondary cases appear after an interval

generated from the serial interval distribution. Moreover, secondary cases can be

from the same household as the primary case with probability pSH. In our data,

183 cases shared a postcode with at least one other case and if we assume that

around half of these cases were infected by a case with the same postcode, then

an initial estimate could be pSH ≈ 0.07. If a secondary case is from the same

household then the eastings and northings for that case can simply be taken from

the primary case.
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Figure 5.21: Population sizes by datazones in Scotland. Note that some datazones on
the northern isles are not shown.

Locations of Secondary Cases

For secondary cases that are not from the same household, further processes are re-

quired as a location must be determined for them. A distance dij is generated from

a negative exponential distribution with parameter λ. Then a circle is generated

with radius dij and centre as the location of the primary case. At this point, the

two simulation models differ in how they select the location for the secondary case.

In the simpler model, an angle between 1 and 360 degrees (with 360 degrees indi-

cating north) is selected randomly and the secondary case arises on the line of the
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circle with the selected angle. This procedure can create unrealistic scenarios as it

allows cases to be generated in locations outside of Scotland and even in the sea.

However as mentioned earlier, this model is primarily used to test how the spatial

method performs under what we believe, should be favourable conditions. Another

advantage of the simpler model is that it is not so computationally expensive and

so it is feasible to run more simulations with this model.

In the more complicated model, the secondary cases can arise only on any DZ

which coincides with the outside line of the circle. Specifically, points are gener-

ated on the outside line of the circle (for example, 25 points), and we find which

DZs those points lie on and keep the set of unique DZs as possible locations for

the secondary case. This process is illustrated in Figure 5.22. In this illustration,

a distance of 5km was generated and the secondary case can only appear in one

of four candidate DZs. The DZ for the secondary case is chosen randomly with

probabilities based on the population sizes of the possible unique DZs for the sec-

ondary case.

In the rare circumstance where the points on the line of the circle do not many

any DZs, circles must be regenerated until a DZ can be chosen. Once the DZ is

chosen, a random set of easting and northing coordinates from within the bound-

aries of that DZ is selected for the exact location of the secondary case. Selecting

locations for secondary cases in this fashion prevents many implausible locations

for secondary cases (for instance, cases appearing in the sea or outside of Scot-

land). Details of the whole simulation procedure for the more complicated model

in algorithmic form are given in Appendix 5.A.

5.5.2 Simulation Testing

It is first necessary to check that a simulation model is working properly and to do

this, we can check that the models are producing the expected epidemic patterns

based on chosen parameters. We simulated different epidemics using various pa-

rameter values for both, the basic and more complicated simulation models. The

parameter values we used were λ = 0.15, 0.35 (reasonable/low weight given to
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Figure 5.22: Illustration of how locations of secondary cases were selected for the more
complicated simulation model. The point in the centre of the circle gives
the location of the primary case which comes from a randomly sampled
point within the boundaries of a DZ, and a distance of 5km was generated
for the secondary case in this example. The possible DZs for the secondary
case lie on the outside line of the circle (approximated by 25 points as
shown). In this example, four DZs are possible, and the most likely DZ is
the same as the primary case’s DZ due to it having a higher population
density compared with the other three candidate DZs which have similar
population density to each other.

pairs of cases with moderate distances between their households), same household

probabilities of 0.05, 0.5 (low/reasonable chance of same household probability –

0.5 is close to the rough estimate made earlier from the data), and importation

rates of 0.5 and 2 (moderate/high importation rates).

Simulations were made using all combinations of these parameters (giving eight

different combinations in total), with R fixed at 1.1 and epidemics stopped at the

time when 500 cases was reached – we kept the number of cases relatively small as

our priority here was to observe the different patterns of epidemic spread produced

using different parameter values. The patterns generated from simulations can be

seen on Figure 5.23 (basic model) and Figure 5.24 (more complicated model).
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Figure 5.23: Typical simulations from the basic model using various values of λ, same
household probability (sh prob) and importation rate (imp rate). All
simulations started with two initial imported cases, R was fixed at 1.1,
and epidemics were stopped at the time when 500 cases were reached.
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Figure 5.24: Typical simulations from the more complicated model using various val-
ues of λ, same household probability (sh prob) and importation rate
(imp rate). All simulations started with two initial imported cases, R
was fixed at 1.1, and epidemics were stopped at the time when 500 cases
were reached.
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When simulating using the basic model, it is immediately clear that there was

no restriction made for cases to appear within Scotland. In contrast to this, in

simulations from the more complicated model, cases were all located within Scot-

land, and in this respect, our simulation models have worked successfully. It is

also evident that setting λ to a lower value (in this case 0.15), greatly increases

the degree of spread in the locations of cases whilst cases accumulated much closer

together when using λ = 0.35. As expected, using a higher probability for cases

being from the same household also induces less spread on case locations. Fi-

nally, if the importation rate is higher, then we are likely to get more clusters of

cases in distinct locations as a result of imported cases appearing in random DZs.

As the simulations produced patterns in line with our expectations, this gives us

confidence that the simulation model is working correctly.

Finding Suitable Parameters

To further ensure that the simulation models produce results as we believe they

should, we first conducted some more tests. The aim this time was to investigate

if simulations would produce average values of R close to what it is being set at.

In the simulations, it is possible for us to track the true value of Rt by exam-

ining exactly how many secondary cases are produced by each primary case at

each time point t and then calculating the mean R for cases that appear at time

t. A few variables are likely to have an impact on this: the value of R assigned

for simulations, the number of initial cases, and the rate that imported cases arrive.

Therefore, in our first test, we set R = 1.1, had one initial case, and had the impor-

tation rate set at 0.5 cases per day; simulations were stopped either when 40 days

were over or at the time when 1,500 cases were produced if this occurred before

40 days. Note that previously we stopped simulations when 500 cases appeared as

the aim there was to get an idea of the patterns produced from simulations but

this time we set the stopping point at 1,500 cases as this allows us to check the

simulation model when it is used to create epidemics similar to the early phase

of the Scottish pandemic influenza outbreak. At the end of a single simulation,

the average value of R over the time period was obtained, which should be close
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to the input value of R set in simulations for a good simulation model. This was

repeated 1,000 times so that we could obtain an average for this over the 1,000

simulations. Then we repeated this whole procedure for various other parameter

values – R = 1.2, 1.3, 1.4, 1.5, initial cases = 2, 3, 5, and importation rate = 1, 2,

3, 5.

The results from the simulation tests are shown in Figure 5.25. Clearly, using a

low importation rate such as 0.5 cases per day produces poor results as the average

R over 1,000 simulations is far away from the value set for R in simulations. This

is because with a low importation rate, epidemics grow too slowly and most of

the simulations will reach 40 days and stop without producing a lot of cases. The

consequence of having less cases is that the average R will be more variable. In

fact, when R is set to a reasonably low value (R = 1.1–1.5) the importation rate

seems to have the most significant impact on the value of R in simulations, whilst

the number of initial cases has a lesser impact. On the whole, it appears that for

all values of R tested, using two initial cases and setting the importation rate at

three cases per day produced consistently good results.

5.5.3 Simulation Results

A typical simulated epidemic with R set at 1.2 and running for a period of just over

a month is illustrated in Figure 5.26. For the simulation, we used the parameters:

λ = 0.3, same household probability for secondary cases of 0.05 and importation

rate set at two cases per day. The true mean R, calculated by recording the num-

bers of secondary infections produced by cases over the period was 1.163, while

the mean R estimated using the spatial method over the period was 1.151, and

the mean R estimated by the W&T method was 1.157. Note that λ = 0.3 and

λ0 = 1 were used in estimations using the spatial method.

From this measure, the W&T method was closer to the true average R than the

spatial method, but perhaps a better measure of performance is how well the two

methods capture the changes in Rt over time. One way of measuring this is to

compare the true Rt with the estimated Rt at time points where there are cases
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Figure 5.25: Results from test runs of the simulation procedure. The average value
of R over 1,000 simulations should be close to the input value of R in
simulations for a good simulation model. The results show that this is
affected by the importation rate (imp rate) and to a lesser extent, the
number of initial cases.

(the numbers at the bottom of Figure 5.26 indicate the number of indigenous and

imported cases that appeared every day in the simulation). Visual inspection of

the plot shows that the spatial method captures the changes in Rt much more

closely than the W&T method, which produced less variable estimates of Rt. We
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summarised these differences by calculating an RMSE using the difference in val-

ues of the true Rt and the values of Rt estimated using the spatial and W&T

methods; RMSE was much lower using the spatial method than the W&T method

(0.17 compared with 0.3).
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Numbers below indicate:

  1st line − Indigenous Cases per day

  2nd line − Imported Cases per day

True Mean R = 1.163
Spatial Mean R = 1.151

W&T Mean R = 1.157
Spatial RMSE = 0.168

W&T RMSE = 0.302
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Figure 5.26: Comparison of the spatial and W&T methods of estimating Rt for a
simulated epidemic. RMSE was calculated from the difference between
the values of the true Rt and the values of Rt estimated at every timepoint
when there were cases using the spatial and W&T methods. In this
simulation, R was set at 1.2 (this value is marked by the grey dashed line).
Estimations from the spatial method used the parameters λ = 0.3 and
λ0 = 1. The numbers at the bottom indicate the numbers of indigenous
and imported cases per day.

To ascertain if these results would be consistent, we simulated 1,000 epidemics

using the basic simulation model and 100 epidemics using the more complex sim-

ulation model, which is far more computationally expensive to simulate from. In

all simulations, we used the same parameters as in the typical simulation we just

described, with the exception of varying R between 1.1, 1.2, 1.3, 1.4 and 1.5. In

all simulations, estimations from the spatial method were made using λ = 0.3 and
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λ0 = 1. After each simulation, we recorded the mean R from both methods, the

RMSE for both methods, and the difference in the true mean R over the period

compared with the mean R over the period estimated using the two methods which

we call the “mean error”. Finally, we calculated the mean over 1,000 epidemics

for the basic model and the mean over 100 epidemics for the complex simulation

models – the results are shown in Table 5.3.

R = 1.1 R = 1.2 R = 1.3 R = 1.4 R = 1.5

Basic Model

Spatial Method

Mean R 1.103 1.207 1.306 1.406 1.506

Mean RMSE 0.238 0.241 0.257 0.268 0.283

Mean Error 0.015 0.018 0.020 0.024 0.026

W&T Method

Mean R 1.101 1.205 1.303 1.404 1.504

Mean RMSE 0.285 0.290 0.309 0.324 0.341

Mean Error 0.018 0.020 0.024 0.026 0.031

Complicated Model

Spatial Method

Mean R 1.102 1.210 1.314 1.420 1.512

Mean RMSE 0.248 0.242 0.274 0.276 0.283

Mean Error 0.016 0.021 0.022 0.025 0.029

W&T Method

Mean R 1.098 1.206 1.306 1.415 1.508

Mean RMSE 0.283 0.283 0.313 0.329 0.336

Mean Error 0.017 0.022 0.025 0.028 0.032

Table 5.3: Results from epidemic simulations to compare the spatial and W&T meth-
ods. When using the basic simulation model, 1,000 simulations were gen-
erated and 100 were generated when using the more complex simulation
model. RMSE was calculated from the difference between the values of the
true Rt and the values of Rt estimated from the two methods at every time-
point when there was at least one case. The “mean error” is the difference
in true mean R over the period and the mean R over the period estimated
using the two methods.
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For all values of R set in simulations, the mean R over the period estimated using

the two methods was slightly closer to the true value of R when running simulations

from the basic model compared with the more complex model but both simulation

models performed well in this respect. Moreover, the spatial method always had

lower mean RMSE compared with the W&T method and had lower mean error.

Figure 5.27 displays the RMSE for both estimation methods for each simulation

from the two models. We can observe that the RMSE for each simulation is nearly

always larger from the W&T method than the spatial method. These results

suggest that there is some merit in including a spatial factor in the calculation of

Rt.

5.6 Discussion

During the early phase period of April to June 2009, the influenza epidemic was

relatively mild in Scotland. After imputation for missing dates of symptom on-

set using the reporting delay distribution and correction for a period of under-

reporting caused by a temporary halt in laboratory testing, R was found to be

around 1.36 using the exponential growth method [371] and around 1.26 using

the time-dependent method (averaged over the whole period) [372]; without cor-

rections to the data, R was slightly lower as a result of the fewer cases reported.

Time-dependent estimates of Rt showed one major peak in transmission activity

observed during the middle of May. This owed largely to a cluster of cases detected

in Dunoon around that time. These cases all travelled together on the same bus.

The estimates of R found here are fairly consistent with those found in surveillance

reports from other countries such as early estimates from Mexico [75, 123], New

Zealand [278], Peru [250] and Chile [288]. However higher estimates of R being

above two have also been observed in a number of studies including estimates

found in Japan [266], Australia [237], the USA [382], and Mexico [37].

A notable point found in the reports from Japan and Australia is the higher

rates of transmission found for minors (those aged under 20), particularly for

transmission between minors to other minors. This emphasises the importance
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Figure 5.27: RMSE from the spatial and W&T methods for basic and complex simu-
lations. 1,000 simulations were generated from the basic model and 100
simulations were generated from the more complicated model.
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of social contact patterns when estimating R, and this underlines some of the

limitations of our analysis which did not take into account these heterogeneities.

Knowledge of social contact structures can aid greatly in efforts to contain the

spread of disease. For example, if it is known that most of the transmission is

coming from children, then the decision to close schools for a period of time may be

an appropriate strategy. Additionally, more cost-effective vaccination campaigns

would be possible with knowledge around what groups of individuals to target to

achieve maximum reductions in transmission.

It is challenging to incorporate an accurate measure of the amount of contact

that individuals of different age groups have with each other, but mixing patterns

have been investigated before in European countries by Mossong et al. [248]. This

offers a promising route to derive estimates of R after accounting for differences in

mixing patterns. However it must be noted that in those surveys, individuals were

asked to record their own contact patterns in paper diaries, and so it is inevitable

that there will be some level of error through for instance, imperfect memory recall.

The strengths and limitations of using the exponential growth method for estimat-

ing R as we did has been discussed by Nishiura et al. [267]. Briefly, they highlight

how the cut-off date can affect estimates of the exponential growth rate. This

can be a problem when there are multiple peaks in case notifications; choosing to

model the rate on an initially high peak in cases could potentially overestimate

R if that peak occurred as a result of biases in, for instance, case ascertainment.

We demonstrated this issue when we used 7th June 2009 as a cut-off date for the

exponential period. This cut-off date resulted in much higher estimates of R ≈ 1.7

due to an overestimation of the growth rate.

Another limitation in the methods we used to estimate R is that they per-

haps, do not account appropriately for imported cases. As discussed in Roberts

and Nishiura [309], R can be overestimated by not dealing with importations in

an adequate fashion. In our estimates of Rt, indigenous secondary cases have the

same probability of having been infected by imported cases as by other indige-

nous cases (provided the time interval is the same). In reality, imported cases are

likely to infect others in Scotland but perhaps at a different rate from indigenous
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cases. The factors that we should consider include the transmission dynamics in

the country where imported cases were infected as well as an associated time-lag

for importations. This happens as imported cases would spend a portion of their

infectious period outside of Scotland, leaving only a fraction of time where they

could cause secondary infections in Scotland.

We attempted to adjust the probabilities of infection estimated from the method of

Wallinga and Teunis [372] via the inclusion of a spatial term. Our assumption was

that increasing the distance between the households of a pair of cases would lower

the probability of infection between this pair of cases. Specifically, we assumed that

the probability decays exponentially with increasing distance. This assumption is

likely to be fine for the most part, and particularly for cases living in more remote

parts of Scotland where there may be less interaction between those individuals

with others living far away. However, the assumption could be less likely to hold

for people working in the major cities as many have to commute to work, and this

creates many opportunities for transmission of infection to others during travel

and at their place of occupation. In these circumstances, there is definite potential

for transmissions to people that do not live close to the primary case.

An additional adjustment was that we increased the probability of infection for

pairs of cases that we assumed to belong to the same household. We note that there

could have been some inaccuracies with this as we did not have data specifying if

cases belonged to the same household, but we inferred this information by assuming

that if cases shared the same postcode, then they were from the same household.

An example of where cases could share the same postcode but not belong to the

same household would be for residents of different apartments within the same

flat. Despite the potential inaccuracies in the way we derived the information

on whether or not cases shared the same place of residence, we felt that it was

important to try and account for the increased chance of disease transmission for

individuals that live together.

Estimates of Rt found by including the spatial term were more variable com-

pared with the Wallinga and Teunis method; especially in April and the beginning

of May where there were not so many case notifications. We also found a higher
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peak in Rt with the spatial method due to the cluster of cases found in Dunoon

who all lived relatively close to each other.

Initially estimates for the two additional parameters in the spatial model (λ0

and λ) were chosen fairly arbitrarily but then we followed a more methodical ap-

proach to obtain improved estimates. We found the parameters by minimising the

RMSE using an optimisation process, where the error was calculated by comparing

the predicted daily numbers of new cases from the model against the data. We

note that other scale-independent measures of predictive performance are available

such as the mean absolute percentage error (MAPE) but in our case, this was not

a concern since the scale is the same for the two estimation methods. Further-

more, we could also have used other methods for estimating the parameters such as

Bayesian methods [129]. These methods assume that the parameters are random

variables but this comes with the added complication of specifying suitable prior

distributions for the parameters (although non-informative priors could be chosen

to minimise their impact on estimations).

It is possible that the assumptions we made for the spatial method would not

be entirely appropriate as distance between households of cases may not necessar-

ily serve as an entirely accurate proxy for contact patterns. However the idea of

adjusting estimates found from the Wallinga and Teunis method has the poten-

tial to offer better estimates of Rt as they only consider generation intervals (or

serial intervals). Whilst one of the strengths of their method is the relatively few

assumptions they impose on transmission, this can also be a limitation.

Using our epidemic simulations, we showed that the spatial method could

more closely capture the true value of Rt compared with the Wallinga and Teunis

method. However, we should bear in mind that in simulations, we had control over

how distances were generated for secondary cases and so we did not estimate λ

and λ0 when deriving reproductive numbers but used values based on the param-

eters set in simulations. Thus, this is likely to have led to more favourable results

for our spatial method of estimating Rt. In a real influenza outbreak, we cannot

be sure that the distances between the locations of primary and secondary cases

would always mimic the patterns we generated.

Another consideration we make is that we could have incorporated our spatial
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term in other ways. One possibility is to only consider neighbouring datazones for

secondary infections. This would mean that we would set the weight, w(dij) = 1 if

another case is in the same or a neighbouring datazone and set w(dij) = 0 otherwise

– this is similar to how a conditional autoregressive (CAR) model is implemented

[33]. However, we decided not to use this as it is inherently unrealistic to impose

these conditions on an influenza outbreak and the use of datazones as boundaries

is also not ideal as they only cover very small areas of Scotland. One other way

of including a spatial term is to give weights based on distance boundaries. For

instance, we could have set three boundaries giving highest probability to those

cases within 1km of a primary case, a moderate probability to cases within 1–5km

and a low probability for any cases further than 5km away. This method would not

exclude any cases on the basis of distance but would have added another decision

in the form of choosing appropriate distance boundaries.

One of the questionable assumptions of both the spatial and Wallinga and Teunis

methods is that of a constant generation interval distribution over time. Kenah

et al. [202] have argued that the generation interval contracts as epidemics progress

due to increased competition to infect remaining susceptibles; essentially as epi-

demics progress, there are a growing number of infectious individuals who would

race to infect susceptibles. We investigated this idea with our subset of cases that

reported a likely infector. While we found that cases with date of symptom onset

in the latter part of the exponential growth phase had slightly shorter and less

variable serial intervals compared with cases with date of symptom onset in the

earlier part, our results did not indicate that there was any significant difference

in the length of serial intervals. If there was a real contraction, more accurate

estimates of R would be achieved by using different serial interval distributions

for different time periods. However, another issue with investigating this is that

it would be difficult to know if any contraction is a real contraction or if the con-

traction is an artifact due to increases in surveillance as the epidemic progress.

All of our estimates of R are indicative of a mild epidemic but as usual, the

estimates are subject to a degree of uncertainty. The uncertainty stems from not
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only the methods used to estimate R but also from the use of only laboratory-

confirmed cases. In the early phase we assumed that everyone with symptoms was

tested and so the 1,383 cases represent the totality of cases in the period April to

June 2009. However, it is likely that certain types of individuals would be more

likely to get tested, which could result in some biases.

Our attempts to include a spatial term in estimating Rt could benefit from

investigation into whether or not exponential decay is suitable for modelling dis-

tance. It is difficult to find suitable parameters for the rate of decay and also

how much to increase the likelihood of infection by if a pair of cases is from the

same household as there is not much data for which the chain of transmission is

confidently known. Moreover, these parameters would also be different depending

on the geography of the country being analysed. For example, we did not distin-

guish if cases are from high or low population density areas and it could be useful

to add in this extra layer of complexity. As mentioned before, the method could

also be improved by dealing better with imported cases. Furthermore, it would be

interesting to explore the effects of adjusting by other important factors such as

age.

To test the spatial method we developed a simulation model which could also

be improved. Our simulations allowed cases to appear in any location within the

bounds of datazones in Scotland. This, of course, would not happen in reality

as cases should only be located in residential zones. Hence, a possible extension

would be to sample from lists of postcodes once a datazone is chosen for cases;

this would restrict cases to appearing in locations which have postcodes.

For surveillance purposes, it is vital that estimates of R are obtained in as near

real-time as possible during epidemics which is what these methods offer to an

extent. However, we must keep in mind that the most accurate estimates of R

are probably only attainable retrospectively when more complete data is available

on the population – for instance, large-scale serological data [373]. Therefore

estimates made using the methods outlined in this chapter are useful for getting

early estimates which allow decision-makers to react but these estimates should

also be validated against other methods when and where possible.
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Preventative measures can be used in conjunction with surveillance measures

including those used here in order to monitor their impact. In the remaining

chapters we consider interventions that can help prevent new cases from arising,

focussing exclusively on vaccines. When vaccines are available against an infectious

disease as a preventative measure, they offer one of the best routes to protecting the

population. In the next chapter, we look at some different ways of determining how

effective vaccines are as well as exploring various issues that are often encountered

in studies of vaccine effectiveness.
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5.A Appendix: Epidemic Simulation Algorithm

Algorithm 1 Simulate influenza-like epidemic in Scotland

Require:

1: Spatial polygon data for Scottish datazones (DZ)
2: Population densities for DZs

Inputs:

1: Reproductive number R
2: Serial interval distribution
3: Number of initial cases ninit

4: Exponential decay rate λ
5: Length of epidemic T
6: Importation rate rimp

7: Probability of secondary case being from same household pSH

Initialise with:

1: Initialise with ninit indigenous cases on day t = 1
2: Sample DZs randomly with probabilities from population densities
3: Obtain eastings and northings for DZs



Chapter 5. Reproductive Numbers for pH1N1 in Scotland 253

Following Initialisation:

1: while day t < T do
2: if day t ≥ 2 then
3: Generate number of imported cases on day t from Poisson with rate rimp

4: if Imported cases 6= 0 then
5: Sample DZs randomly with probabilities from population densities
6: Obtain eastings and northings for DZs
7: end if
8: end if

9: for all New cases on day t do
10: Generate number of secondary cases from Poisson with mean R
11: end for

12: if Secondary cases 6= 0 then
13: for all Secondary cases arising from primary cases on day t do
14: Generate serial intervals from serial interval distribution
15: Randomly assign cases to be from same household with probability pSH

16: for all Secondary cases from same household do
17: Assign eastings and northings to secondary cases from primary cases
18: end for

19: for all Secondary cases not from same household do
20: Generate random distance dij from negative exponential distribution

with decay parameter λ

21: Generate circle with radius dij with centre as location of primary case

{Secondary cases can only appear in DZs on the line of a circle}
22: Sample from possible DZs randomly with probabilities from popula-

tion densities

23: Sample random easting and northing coordinates for secondary case
from selected DZ

24: end for

25: end for
26: end if

27: Move to day t+ 1

28: end while

29: return Dataframe containing date onsets, eastings and northings
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Chapter 6

Studies of Influenza Vaccine
Effectiveness

In this chapter, we move away from surveillance of disease outbreaks to the subject

of control measures. Public health interventions can be crucial for reducing the

numbers of individuals that experience severe outcomes from a disease, but the

success of these interventions cannot be automatically assumed and hence, their

impact must be assessed. The previous chapters focussed on the novel pandemic

influenza outbreak in 2009. During that outbreak, public health bodies quickly

recognised the important role that vaccines may have in reducing transmission of

infection, and hurriedly started production on monovalent vaccines after outbreaks

in the USA and Europe. Following this, the UK’s national immunisation strategy

group introduced two pandemic influenza vaccines (Pandemrix and Celvapan) to

be used as a preventative measure.

In Scotland, the Chief Medical Officer worked alongside the Scottish government

to establish a vaccination programme targeted initially at pregnant women, health-

care workers and vulnerable groups of individuals such as those with underlying

health problems. The choice of groups of individuals to target for vaccination was

supported by investigating mortality due to pandemic influenza [91]. Uptake of the

vaccine began during the second wave of infection in late October 2009 and soon

after, the effectiveness of the vaccines were assessed using various study designs

and methodologies [151, 336].

It is not uncommon for the pandemic strains of influenza to garner the most at-
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tention among the public and media as they have the most potential to cause

devastating consequences. As a result of this, the ongoing battle against seasonal

influenza may sometimes be overlooked but it should not be as it is an ever-present

disease which causes many deaths year-on-year, particularly among the frail and

elderly [357]. With this in mind, our aim is to look at different ways of assessing

the effectiveness of the seasonal influenza vaccine. Specifically, we have data on

cohorts of patients taken from a sample of general practitioner’s (GP) practices in

Scotland for two post-pandemic seasons. This allows for estimation of influenza

vaccine effectiveness (VE) by measuring it against a variety of clinical outcomes

using a range of different methods and study designs. However, evaluating how

effective influenza vaccines are can be anything but straightforward and there are

various issues which must be considered when carrying out VE studies.

For this reason, we defer the analysis of influenza VE in Scotland until the following

chapter, allowing this chapter to serve as an important prelude to our study. It does

this by firstly discussing the typical types of study designs used for VE studies. We

then give consideration to some of the issues which arise specifically when dealing

with influenza VE studies. Finally we explore some of the methods which are

used to deal with issues in VE studies – for instance, methods of detecting as well

as reducing bias and confounding (both of these terms will be discussed in more

detail later) which can often be present when using observational study designs.

Although the main focus is on influenza VE, some of the methods are generic on

VE and may not be suitable for looking at influenza VE but the majority are

applicable to studies of influenza VE.

6.1 Introduction to Influenza Vaccination

For many diseases, vaccinations are highly effective and we only have to remi-

nisce on the success of the smallpox vaccination campaign which led to the total

eradication of the disease in 1977 to see how effective they can be [24, 42]. As

well as this, the effect of vaccinations against some diseases are not expected to

change much from year to year; a few examples include poliomyelitis [81], measles
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[348] and hepatitis B [228]. However, producing an effective influenza vaccine has

proved more troublesome. The main reason for this is that influenza is a continu-

ally evolving virus [342] and as the circulating influenza strains vary each year and

by geographic regions, the vaccine must be created with concern to which strains

are in dominant circulation. A consequence of this is that influenza VE calculated

for one year will almost never be a good indicator of how effective the vaccine will

be in following years. In spite of these issues, influenza vaccination remains the

best way of preventing and controlling influenza and is widely believed to save

many lives throughout the world [4, 292, 368]. This is especially true when there

are severe influenza epidemics and the vaccine produced is a good match.

For these reasons, vaccination campaigns are widespread but as vaccinating the

entire population is prohibitively expensive, a trade-off between cost and effective-

ness in protecting individuals against adverse outcomes due to influenza has to

be achieved. Hence, vaccination is usually targeted at individuals in risk groups

such as the elderly, young children, healthcare workers (as they are more likely to

have contact with vulnerable individuals) and those that have underlying health

issues such as chronic disease. There are various reasons as to why certain groups

of individuals may be targeted for vaccination – some are encouraged to get vacci-

nated as they are at an increased risk of developing serious complications following

infection and others may be more likely to transmit influenza to other individuals

(for instance, children who come into contact with many other children at schools).

To monitor how successful a vaccine has been in preventing disease, it is vital

to make estimates of influenza VE. Moreover, estimates of influenza VE need

to be constantly made as past estimations of VE cannot be guaranteed to be a

good indicator for the VE in subsequent seasons. The accuracy of VE estimates

are dependant upon many factors including the choice of clinical outcomes used to

measure it against and the study design which may be influenced by the availability

of data. The choice of statistical methodology used to estimate VE is also likely

to depend on the study design used, which makes the choice of study design one

of the more crucial aspects of conducting a study on influenza VE.
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6.2 Study Designs

The gold standard for study designs to test the effectiveness of a treatment are ran-

domised controlled trials (RCTs) [6] as they are supposed to allocate treatments

to groups in a truly randomised manner. The main premise of an RCT is that the

random allocation should ensure there are no systematic differences between the

group of individuals used as controls and the group of individuals given the treat-

ment. These systematic differences refer to both, known and unknown factors that

affect the outcome of interest. However, this type of design is considered unethical

for studies of influenza VE since individuals that need the vaccine for protection

should not be denied it. This is particularly true when looking at elderly popula-

tions as they are most at risk of hospitalisation and mortality following influenza

infection [263]. Thus, alternative study designs have to be considered. Observa-

tional studies offer feasible solutions to this problem as they can be used to assess

the effects of healthcare interventions without affecting the care provided or the

patients [34].

Cohort studies and various different versions of case-control studies are commonly

used in studies of influenza VE. Another simple method which makes use of ag-

gregated data on numbers of vaccinated and unvaccinated individuals to obtain

rapid estimates of VE is the screening method [109]. Selecting which study design

to use requires careful consideration of what data and resources are available. In

addition to these, attention should be paid to the methodological constraints of a

particular design as there are advantages and disadvantages in using each design

[362]. While study designs differ, there are issues inherent in all observational

studies of VE which will be discussed in more detail in what follows. These issues

must be dealt with meticulously to obtain reliable VE estimates.

6.2.1 Cohort Studies

A cohort consists of a group of subjects that have at least one characteristic in

common at a certain point in time. This could be a characteristic related to those

individuals such as a common demographic (e.g. including only those aged 65+ at
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a specific timepoint) or it could be a shared experience (e.g. including only those

registered with a specific group of medical practices at a specific timepoint). For

studies of influenza VE, this could mean that only subjects eligible for influenza

vaccination would be selected for a cohort. This may exclude individuals who are

allergic to some of the ingredients used to create the influenza vaccine such as those

with an egg allergy. However, we could even apply the least strict selection criteria

where the cohort could simply be made up of individuals in the general population

who are alive at a point in time. There are two different ways of conducting co-

hort studies – prospectively such as in studies by Castilla et al. [54], Eurich et al.

[99] or retrospectively such as in studies by Herrador et al. [166], Kavanagh et al.

[196], Simpson et al. [336].

In the prospective design, the study is preplanned and a cohort is formed by select-

ing individuals that meet some criteria at the present point in time. The cohort is

then followed over a period of time to observe how many report outcomes associ-

ated with influenza among vaccinated and unvaccinated individuals. This period

of time has to be long enough for a sufficient number of those outcomes (events) to

occur so that meaningful statistical analysis can be conducted. The difference in

the retrospective design is that the study is created at a time when the follow-up

of a cohort has already finished. Consequently, the eligible individuals that are in-

cluded in the cohort have to be identified and selected retrospectively. This cohort

will be composed of individuals who meet certain criteria as at some past point in

time. Then data on these individuals for a following period of time in the past is

analysed and again, the aim is to observe how many report influenza-associated

outcomes among vaccinated and unvaccinated individuals over that period.

In attempts to rank study designs based on a hierarchy of evidence, prospective

cohort studies have been ranked higher than retrospective cohort studies [364].

One of the main reasons for this is that in a prospective study, the study can

be planned and designed to answer specific questions of interest. For example,

a researcher can preplan which variables to collect data on before the study has

commenced. In contrast to this, in a retrospective study the researcher has to
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make use of existing data and so it is more likely that they may not have data on

some variables that the researcher believes are important. Further discussion on

the strengths and weaknesses of prospective and retrospective cohort study designs

can be found in Euser et al. [102].

In some instances, a subset of the cohort can be used to conduct a nested case-

control study. This may allow for additional estimates of VE based on more specific

outcomes associated with influenza such as laboratory-confirmed influenza, which

may only be available for some patients in the cohort [54, 184, 336]. An example of

where this can happen is when some patients consulting with their general practi-

tioner (GP) for symptoms associated with influenza have their diagnosis confirmed

or disconfirmed through laboratory testing. Typically, the majority of patients are

diagnosed with influenza based on symptoms alone rather than through laboratory

testing as the test result would not affect their treatment. The subset of patients

with laboratory test results can be considered as a validation set which can be

used to validate estimates of VE that were derived using the whole cohort on less

specific outcomes. If VE estimates found from the nested case-control study are

consistent with those found from the whole cohort, this gives some reassurance

about the reliability of estimates, particularly if subjects involved in the nested

case-control study were sampled randomly [145].

Computerised databases containing data collected by GPs may allow for vaccinated

and unvaccinated individuals to be identified and extracted. Moreover, common

unique patient identifiers can be used to link different databases such as vacci-

nation, hospital and GP medical records; in Scotland this unique identifier is the

Community Health Index (CHI) number. This allows us to obtain vast amounts

of information on patients, possibly also allowing influenza VE to be estimated

using various outcomes [196]. This means that large populations can be involved

when conducting cohort studies. Even though information for large numbers of

people may be available, it is vital that efforts are made to assess if the cohort

is representative of the general population. As well as this, it is important to as-

sess if confounding is present and if there is good agreement between information
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provided in the various databases [362]. Person-time analyses which account for

the amount of time each individual contributes to the study are normally used

to estimate VE in cohort studies with rate ratios (RRs) calculated by comparing

the incidence of influenza in vaccinated compared with unvaccinated individuals.

Unadjusted VE estimates are calculated as (1 − RR)×100% while adjusted VE es-

timates can be found by methods such as Poisson regression and Cox proportional

hazards models.

6.2.2 Case-Control Studies

In case-control studies, cases are defined according to the outcome under consider-

ation, and an example of this could be individuals who have laboratory-confirmed

influenza. Since the outcome is already known in cases and information on cases

has to be traced backwards in time to identify their exposure, case-control studies

are always retrospective. In the simplest sense, controls just have to consist of

individuals who have not yet experienced the outcome at the end of the study

period. A case-control study where controls are selected in this fashion is some-

times called a traditional case-control study or a case-noncase study. However,

often for a closer match between the characteristics of cases and controls, stricter

criteria should be used for selecting controls. More specifically, controls should be

similar to the cases in terms of their risk of developing the outcome. For studies of

influenza VE, controls should come from the same source population as the cases

and they should have similar risk of contracting influenza compared with cases.

The case-control study would then compare the vaccination status of cases against

the vaccination status of controls.

Issues which must be considered when conducting case-control studies include the

representativeness of the cases and how to define what individuals should comprise

the control group. In order to assess the representativeness of cases, information

on potential confounding factors such as their access to healthcare must be avail-

able. One of the simplest options for choosing controls is to use the test-negative

case-control design [84] and several studies of influenza VE have used this design

[120, 199, 337, 339–341]. An example of how a test-negative case-control design
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could be carried out for a study on influenza VE study could be to use individ-

uals consulting with their GP for influenza-like-illness (ILI) or acute respiratory

illness (ARI) that also had a swab taken for laboratory testing. The individuals

that subsequently tested negative would used as controls. Test-negative controls

should have similar health-seeking behaviour to the source population and all pa-

tients with laboratory test results would be used in the study. A potential concern

with the test negative design comes from the fact that some cases could be misclas-

sified as controls and vice-versa but using a laboratory test with high sensitivity

and specificity for influenza should minimise the chance of misclassification occur-

ring.

Another simple method is to select controls randomly from the community. Again,

it is important to ensure that selecting controls in this way would create a set of

controls that are representative of the population that the cases came from. Fur-

thermore, it is also important that the vaccination coverage for the community is

a similar level to the coverage among the population from which cases were taken.

For instance, if all cases were patients registered at GP practices, then we would

be assuming that there is a similar vaccine coverage in the GP-registered popula-

tion and the wider community. If the vaccination coverage in community controls

is lower, then the VE may be underestimated and this was previously found in a

European study of influenza VE [207].

If there are reasons to believe that randomly sampling controls from the commu-

nity would not produce a representative sample, a more refined criteria may be

to randomly sample controls only from GP practices. This may be a particularly

good choice if the cases were all patients registered at GP practices. The simplest

option here would be a case-cohort design where controls are selected from the

list of all patients registered with GPs. An obvious disadvantage here is that con-

trols are selected irrespective of whether or not they had the influenza outcome

of interest and thus, influenza cases could sometimes be selected as controls. A

more complicated option would be a density case-control design which is more in

line with the traditional case-control study. With this design, controls are selected
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each time a case is reported, and the pool of patients to select controls from would

include only those patients that had not yet reported the influenza outcome of

interest at the time the case was reported.

In all case-control designs, a fundamental issue is that adequate sample sizes must

be attained. While this is an issue for any study, it can more often be an issue

for case-control studies compared with cohort studies as there are generally fewer

subjects involved [219]. This is particularly crucial if subgroup analyses are to be

conducted such as influenza VE estimates by age group or by influenza subtype.

The required sample size depends on many factors such as the desired power of

the study, the influenza incidence and the vaccination coverage among the source

population [362]. In order to derive VE estimates in a case-control study, it is first

necessary to calculate the odds ratio (OR) of being a case among vaccinated in-

dividuals compared to unvaccinated individuals. Influenza VE estimates are then

found by VE = (1 − OR)×100% and adjusted VE estimates in case-control studies

are commonly found by using logistic regression.

With so many study design options available for conducting studies of VE, it

is no surprise that researchers have already attempted to investigate how accu-

rate VE estimates are from different designs. A simulation study by Orenstein

et al. [272] which looked at the accuracy of VE estimates calculated from cohort,

traditional case-control and ILI test-negative case-control studies showed that all

designs tended to underestimate VE but produced fairly similar results. In gen-

eral, the traditional case-control design produced the highest and most accurate

estimates followed by the test-negative design.

Indirect Cohort Design

Although the indirect cohort method has the term “cohort” within it, it is actually

a modified case-control design that uses non vaccine type cases as controls. This

method was introduced by Broome et al. [44] who examined the effectiveness of

the pneumococcal polysaccharide vaccine; this is why the indirect cohort method

is also called the “Broome method”. Since its introduction, the method has been
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applied in numerous studies of VE for the pneumococcal vaccine [10, 83, 233, 318].

The idea of using non vaccine type cases as controls came around as they expected

that the vaccine would be effective against serotypes contained in the vaccine but

would be ineffective against serotypes not contained in the vaccine. This methodol-

ogy has the advantage of usually providing well-matched controls as in this design,

non vaccine type cases (controls) and vaccine type cases (cases) are likely to come

from the same population. At the very least, cases and controls should have similar

health-seeking behaviour since they all received vaccination. On the other hand,

the design makes an assumption that the risk of non vaccine type infection is the

same for both vaccinated and unvaccinated individuals and if that is not true,

then VE estimates will be biased. As an example, if in reality, the chance of non

vaccine type infection is higher in vaccinated individuals then the indirect cohort

method would overestimate VE. It has been suggested that there is a lack of ev-

idence to support this assumption [320] and there has also been evidence against

the assumption [381]. However, a method was created to attempt to correct for

potential biases caused by the violation of this assumption [10] which should allow

to method to stay relevant.

The indirect cohort method has not really been applied outwith studies of pneu-

mococcal vaccine. The only scenario where it could be applicable for studying

influenza VE is when there are many different strains of influenza circulating in

an area at once and the vaccine only includes some of those strains. In practice,

sufficient numbers of reported and confirmed vaccine type and non vaccine type

influenza cases will almost never be available in the course of an influenza season.

6.2.3 Screening Method Study Design

Farrington presented a simple method for estimating VE using aggregated data

[109] which has been used in a number of VE studies [217, 303, 306, 386]. The

primary concept behind this method is that VE is estimated by comparing vaccine

coverage among cases against the vaccine coverage among the population where

those cases were derived from. For this to work, we require a random sample of
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cases of disease, all arising over some given time period in a precisely defined pop-

ulation. From those cases, we have to be able to estimate the proportion of cases

that have been vaccinated (PCV). Furthermore, we must also be able to reliably

ascertain the proportion of the population vaccinated (PPV). Emphasis can be

made on the word “reliably” as for the screening method, the value of PPV used is

assumed to be the true value. To estimate VE in a screening method study design,

we need the OR of being a vaccinated case relative to the OR of being vaccinated

in the population where those cases came from.

ORCases

ORPopulation

=
PCV

(1− PCV)

/
PPV

(1− PPV)
(6.1)

The VE is then

VE = 1− PCV

(1− PCV)
× (1− PPV)

PPV
(6.2)

One issue which must be taken into consideration when using the screening method

is the potential of bias from confounding variables. Therefore stratification by

possible confounding variables such as age and location are often necessary. Lo-

gistic regression is commonly used to estimate VE after adjusting for possible

confounders. Here, the log-odds of vaccination in cases would be the response

variable and the log-odds of vaccination in the population would be entered as an

offset term in the model. A mathematical description of the logistic regression

model helps to clarify the role of the offset term in the screening method.

log

[
PCV

(1− PCV)

]
= log

[
PPV

(1− PPV)

]
+ β0 + βix1 + . . .+ βkxk (6.3)

In Equation (6.3), we have k covariates (or k possible confounding factors under

consideration), β0 is the intercept term and the other βk are regression coefficients

of the xk covariates. The offset term has no estimated coefficient and makes the

odds of vaccination in the population become the denominator on the left hand

side of Equation (6.3) (after exponentiating).
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log

[
PCV

(1− PCV)

]
− log

[
PPV

(1− PPV)

]
= β0 + βix1 + . . .+ βkxk

log

[
PCV

(1− PCV)

/
PPV

(1− PPV)

]
= β0 + βix1 + . . .+ βkxk

PCV

(1− PCV)

/
PPV

(1− PPV)
= exp(β0 + βix1 + . . .+ βkxk)

(6.4)

An adjusted VE estimate can be found as VE = 1 − exp(β0). Standard errors

obtained from logistic regression can be used to compute confidence intervals for

VE estimates.

The screening method has some major limitations. It assumes that the PPV

derived is the true value and this is something that can only be known if compre-

hensive data on vaccinations are being collected. Accurate vaccine coverage rates

are critical for the method to produce accurate VE estimates and this point has

been emphasised before [306]. If cases and the reference group used to obtain vac-

cine coverage estimates are from different populations, then VE estimates would

be biased. Another shortcoming is that detailed analysis of risk factors would re-

quire vaccine coverage statistics, stratified according to those risk factors and this

is often not available. Despite these shortcomings, the screening method can be

used as a rapid and cheap surveillance tool for routine monitoring to obtain crude

VE estimates and this is it’s primary purpose.

6.3 Issues in Studies of Influenza VE

As well as the choice of study design for conducting a study on influenza VE, there

are many other issues that can have a large influence on VE estimates. These

include how well the vaccine is matched to what influenza strains are circulating

at a particular time in a particular location, the clinical outcomes used to measure

VE against and confounding that is almost always present in observational studies.
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6.3.1 Vaccine Match to Circulating Viruses

There are currently three types of influenza virus (A, B and C) which is an im-

portant consideration when making influenza vaccines. Influenza A strains are

the most varied and have been found in many warm blooded animals including

mammals, birds and humans. Furthermore, out of the three main categories, the

A strains most often cause epidemics and can be broken down into subtypes based

on the their hemagglutinin and neuraminidase description – ‘H’ (hemagglutinin)

followed by the number of those proteins, and ‘N’ (neuraminidase) followed by

the number of those proteins. For instance, 2009 pandemic influenza which was

discussed in earlier chapters was an influenza A virus named as H1N1 in this way.

Influenza types B and C are mainly found in humans (although influenza B has

also been found in seals [277]). These types are not broken down into subtypes

and evolve slower than type A influenza viruses. Compared to influenza types A

and B, type C is rare and usually causes only minor reactions.

The degree of vaccine match to the currently circulating strains of influenza is an

important factor in studies of influenza VE. Hence, the World Health Organisation

(WHO) continually monitors and maps influenza viruses as they circulate around

the world. As sufficient batches of the vaccine usually take around six months to

produce, the WHO must make predictions of which strains will cause influenza

outbreaks during the forthcoming winter season in the northern hemisphere well

in advance. Since this is essentially a best guess by the WHO, there is always some

uncertainty as to whether the vaccine will be effective. This level of vaccine match

can be assessed during the influenza season by obtaining virological results from

influenza cases. A good match between circulating virus strains and the vaccine

used to protect the population is more likely to result in better vaccine effective-

ness; this result has been seen in studies looking at antigenically drifted influenza

[270].

A further difficulty is that in any period of influenza activity, there can be co-

circulation of influenza viruses such as A and B type influenza viruses. The het-

erogeneity of co-circulating viral strains causes varying levels of cross-protection,
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possibly differing by population and outcome studied [263]. These problems make

it challenging to ascertain the degree of vaccine match. Another possibility is

that different viruses could be circulating in different geographical areas causing

further difficulty in creating a well-matched vaccine. For this reason, it may be

worthwhile to obtain strain-specific influenza VE estimates if they can be found

from the available data [362].

6.3.2 Association of Outcomes to Influenza

Influenza VE should ideally be measured using influenza outcomes which are highly

specific such as laboratory-confirmed influenza. However, attaining virological con-

firmation through collecting naso-pharyngeal swabs and performing reverse tran-

scription polymerase chain reaction (RT-PCR) or culture analysis is expensive and

time-consuming. In reality, various clinical outcomes are used to monitor influenza

and the choice of outcome used for a study may be dictated by the availability

of data in a country. Different outcomes can have varying levels of sensitivity,

specificity and positive/negative predictive value which are important in gaining

an accurate insight into VE.

In particular, the specificity of an outcome has been highlighted as being influential

to VE estimates. Using outcomes with imperfect specificity tend to underestimate

VE in cohort, traditional case-control and test-negative case-control studies [272].

Table 6.1 gives an overview of different clinical outcomes in relation to their lev-

els of specificity against influenza. In the literature, the clinical outcomes which

are most frequently reported include exhibiting symptoms consistent with acute

respiratory infections (ARI) or influenza-like-illness (ILI), deaths or hospitalisa-

tions from all causes and laboratory-confirmed influenza. These outcomes can be

loosely categorised into low, medium and high specificity with VE expected to be

more accurate for the more specific outcomes and less accurate when using the less

specific outcomes [224].

Even though laboratory-confirmed influenza is the most specific outcome, care

must be taken to ensure that the selection of patients to swab is a systematic
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Level of Specificity Clinical Outcome

Low (∼ 5%) All-cause mortality. All-cause hospital-
isations

Medium All influenza-like-illnesses (without lab-
oratory confirmation). Pneumonia and
influenza mortality and hospital admis-
sions

High (∼ 90%) Laboratory-confirmed influenza

Table 6.1: Clinical outcomes associated with influenza by level of specificity. The in-
formation in the table was taken from Simonsen et al. [334].

procedure and is consistent throughout the influenza season. An example of a

systematic procedure for swabbing would be to sample the first patient at the be-

ginning of the week. During an influenza season, consistency may not be possible

if lower proportions of patients are swabbed during peak influenza periods due to

limited laboratory capacity. Furthermore, clinicians may be less likely to swab pa-

tients who are known to be vaccinated which would cause an overestimation of VE.

The specificity of an outcome is also affected by the incidence of influenza compared

with the incidence of other respiratory viruses which are in current-circulation. In

seasons with low incidence of influenza in relation to other respiratory viruses, the

specificity of an outcome such as ILI will be less specific causing further underesti-

mation of VE [272]. Other factors which affect the specificity of outcomes are that

the clinical case definition for identifying cases may vary by countries and could

also change during the course of an outbreak. If using laboratory confirmation,

an issue of some concern is that detection of influenza using swabs becomes more

difficult with time after onset of illness. In general, detection of influenza is rare

seven days after onset of illness. Adjusting VE estimates for swabbing delay may

be necessary when using laboratory-confirmed endpoints [362].
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6.3.3 Confounding in Observational Studies

The main idea behind the term “confounding” is that a perceived causal relation-

ship between an independent and dependent variable can be partially (or even

wholly) explained by an extraneous variable. This idea is illustrated in Figure 6.1

where W is a confounding variable in the relationship between X and Y . There,

the variables X and Y both depend on W , which can be thought of as exogenous

since it is determined by variables outside of the system depicted in the causal

diagram. If the confounding variable W is not accounted for when determining

the effect of X on Y , then biased estimates would be obtained. An explanation

using less abstract concepts could come from looking at the relationship between

alcohol and heart disease. Although there is a relationship between alcohol and

heart disease [284], a confounding factor may be smoking as it is associated with

alcohol consumption [21] and also increases the risk of heart disease [252]. There-

fore, the effect of smoking would have to be accounted for when studying the effect

of alcohol on heart disease.

W

X Y

Figure 6.1: Causal diagram illustrating a simple case of confounding. In the diagram,
W is an extraneous confounding variable which affects both, an indepen-
dent variable X and and a dependent variable Y . As a consequence, W
distorts the relationship between X and Y and failure to account for it
when determining the effect of X on Y will result in biased estimates.

When studying VE, a confounder would have to be a risk factor for influenza as

well as being associated with the likelihood of getting vaccinated. As observational

studies do not allocate vaccination randomly to subjects, it is almost certain that
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some level of confounding will be present. In other words, individuals with certain

characteristics will be more or less likely to receive vaccination. It is crucial to

attempt to identify these confounding factors as they will cause influenza VE esti-

mates to be biased and adjustments have to be made to reduce this bias. However,

finding important confounding factors is challenging as people in the vaccinated

and unvaccinated groups differ in ways that can be difficult to measure [182]. There

are two types of confounding which can plausibly occur in observational studies of

influenza VE – positive confounding and negative confounding.

Positive confounding in studies of influenza VE can come in the form of the healthy

vaccinee effect or extreme frailty bias. The healthy vaccinee effect is present when

individuals who get vaccinated are healthier at the time of vaccination compared

with those that do not get vaccinated. If the vaccinated population is over-

represented by healthier people, it is likely that estimates of VE will be over-

estimated because the vaccinated individuals, as a group, are less likely to report

an influenza-related outcome compared with the group of unvaccinated individ-

uals, regardless of vaccination. Positive confounding can also occur when frail

individuals or individuals with functional status limitations have fewer opportuni-

ties to get vaccinated [183]. Vaccination may not be considered to be worthwhile

for these patients as they may have end stage conditions and in this case, VE

will again be overestimated if it is not appropriately accounted for. Negative con-

founding (corresponding to confounding by indication) is the opposite case. In

the scenario where negative confounding is present, individuals who have more

underlying health problems would be more likely to get vaccinated [144], and this

would result in VE estimates that are underestimated.

6.4 Dealing with Issues in Studies of Influenza VE

Various methods have been designed to deal with confounding in VE studies. Some

of these methods are designed to adjust for bias (for instance, propensity scores)

while other methods such as modelling a hypothetical unobserved confounder are

used only to detect bias.
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6.4.1 Multivariable Models

When conducting non-randomised studies on influenza VE, it is essential to col-

lect data on possible confounding factors for each individual. This allows for the

calculation of adjusted VE estimates using covariates via methods such as Pois-

son regression or Cox proportional hazards models for cohort studies and logistic

regression for case-control studies and the screening method design. However it

should be noted that even after paying careful attention to potential confounders,

residual confounding may still be present and can never be completely ruled out.

Residual confounding can occur if there were extra confounding variables that

were not adjusted for in models. Common reasons for this happening include data

availability issues and a lack of understanding around the causal relationships that

affect an outcome. In addition to this, residual confounding can also come from

data errors in variables or a lack of measurement accuracy in variables. For ex-

ample, there may be insufficient adjustment for age if it is grouped into twenty

year age bands and there are differences in the risk of experiencing an outcome for

individuals within those age categories.

Whilst there is no comprehensive list of all the important factors involved in study-

ing influenza VE, a proposed minimum set of variables to collect has been docu-

mented [362], and this has been reproduced in Table 6.2. The proposed variables

include smoking habits, underlying chronic diseases and functional status. These

variables reflect characteristics of individuals that should affect their tendency to

get vaccinated. Variables such as functional status, severity of chronic diseases and

healthcare seeking behaviour are not easy to document. Possible proxy measures

for functional status include requiring help for bathing and walking, needing to

have a GP visit them in their own home, and the Barthel index [69] which is a

valid measure of disability that has been used before in studies of influenza VE

[353].

The severity of a chronic condition can be measured by examining the number of

times an individual was admitted to hospital in the previous year for the condition,

and also by examining the prescribing behaviour of individuals. One example of
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Possible Confounding Variables

Underlying chronic diseases

Severity of chronic diseases

Smoking history

Previous influenza vaccination

Functional status

Healthcare seeking behaviour

Antiviral usage

Table 6.2: Minimum set of confounding factors to document in studies of influenza
vaccine effect proposed by Valenciano et al. [362].

how to measure healthcare seeking behaviour is to look at the number of visits an

individual has made to their GP within a previous period of time – for instance,

the last couple of years. In addition to these variables, age is an obvious important

factor due to the immune system becoming weaker as people grow older (immune

senescence) and possible differences in health-seeking behaviour in different age

groups. Time period can be influential when vaccination is not distributed to the

population simultaneously.

6.4.2 Instrumental Variables

Instrumental variables (IV) analysis is a well-known analytical technique, tradi-

tionally used for dealing with apparent and hidden bias in observational studies.

IV analysis can also be applied in RCT settings in the unwanted event of treat-

ment contamination where patients do not always follow their assigned treatment

protocol [351]. It has been well established in settings outside of healthcare such

as econometrics [262] but can also be used in VE studies to adjust for unmeasured

confounding – for example, in a study of influenza VE in community-dwelling

elderly patients [389].
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Definition

IV analysis uses a variable which is strongly associated (correlated) with the factor

under consideration but is not directly associated with the outcome variable or

any potential confounders, whether observed or unobserved. These are the main

assumptions for a valid IV analysis and it must be noted that it may never be

possible to prove that the IV is not related to unmeasured variables; at best, this

statement can only be strongly inferred. In VE studies, the IV will be strongly

related to vaccination status but will not have an independent effect on outcome

except through exposure to vaccination. In other words, the IV may have an effect

on the likelihood of an individual being opportunistically vaccinated but should

not have any impact on the risk of contracting influenza.

Selection of IVs for Influenza VE studies

In principal, IV analysis makes perfect sense for providing unbiased estimates of

influenza VE but finding appropriate IVs for use in studies has proved highly prob-

lematic. Analysis using gout as an IV has been suggested as a valid method to

deal with confounding in influenza VE studies [398] but a later study rebutted

this claim [141]. Thus far, no IVs have been established as being unequivocally

appropriate for analyses of VE. Due to the uncertainty as to what a suitable IV

would be, many IVs have been considered for VE studies.

One study which set out with the mission of finding IVs for influenza VE studies

chose to consider four potential IVs based on classes of comorbidity, classes of

medication and physician characteristics [141]. These potential IVs were a his-

tory of gout, a history of orthopaedic morbidity, a history of antacid medication

and GP-specific vaccination rates. Linear regression analyses were used to find

associations between IVs and influenza vaccination status and between IVs and

observed confounders. The results showed that all of the IVs considered had some

association with vaccination status. In addition to this, all potential IVs showed

some apparent relation to mortality (the outcome) through observed confounding

variables such as age, sex and comorbidity. These points clearly underline the

difficulty in finding a true IV.
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Despite these difficulties, a reasonable suggestion for an IV was made by Groen-

wold et al. [141]; they suggest that if patients are randomly allocated to either

an encouragement program to get vaccinated or to routine care then it should

be reasonable to assume that the encouragement program should only affect the

outcome through vaccination. A study looking at influenza VE on community-

dwelling elderly patients used census subdivision-specific (CSD) influenza vaccine

coverage as an IV [389]. Their study showed that the measured risk factors were

balanced across CSDs for all influenza seasons, providing reasonable assurance

that unmeasured risk factors may also be balanced across CSDs. The conclusion

drawn was that they had found a valid and strong IV. Furthermore, they exam-

ined post-influenza periods where a VE should not be noticeable due to the lack

of influenza circulating during those times. The IV analysis appeared to produce

estimates of VE more in-line with expectations compared with standard regression

modelling and hence, IV analysis appeared to produce less biased estimates.

In a study protocol for seasonal influenza VE, variables suggested as candidates

for an IV included previous antacid prescription, previous thyroxine prescription,

gout and screening attendance [224]. In theory, these variables may indicate that

a person is more likely to visit their GP, leading to more opportunities to be

vaccinated but having these conditions should not affect the risk of contracting

influenza. As previously mentioned, these potential IVs may not be entirely valid

and the challenge of searching for appropriate IVs remains.

6.4.3 Modelling an Unobserved Confounder

To test how well confounders have been adjusted for, various sensitivity analyses

can be performed. One such method is to model or simulate an unobserved con-

founder. After obtaining results from the main analysis, an attempt to quantify

the error due to unmeasured confounding factors is made by repeating the same

analysis with the inclusion of a new unobserved confounder. The sensitivity of in-

fluenza VE estimates is tested by examining how the estimates vary when values of

the unmeasured confounding factor changes. The confounder is required to plau-
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sibly affect the outcome and if simulated, has to be based on realistic assumptions.

One study which used all-cause mortality as the outcome chose to use smoking

status as a potential unobserved confounder [141]. This variable was chosen as

smokers are known to be at an increased risk of mortality compared with non-

smokers. As smoking status was not routinely reported in their medical database,

different scenarios involving varying percentages of smokers in gout and non-gout

groups (gout was included as an IV) were used to test the sensitivity of results. In

this case, crude IV analysis showed a positive association between influenza vacci-

nation and mortality risk and a negative association was observed after adjusting

for observed confounders. However, after a final adjustment for smoking status, a

positive association was again apparent. The study claims that the assumptions

used to simulate smoking status were realistic, giving rise to a large possibility of

unobserved confounding.

Another study looking at influenza VE in the elderly suggested that possible un-

measured confounders could include race, income and functional status [264]. They

modelled an unobserved confounder to cause persons with the confounder to be

half as likely to receive vaccination and 2–3 times more likely to be hospitalised or

die compared with persons without the confounder. Furthermore, the prevalence of

the confounder in the population varied between 20–60%. These sensitivity anal-

yses demonstrated that their original estimates of VE could have been affected by

residual confounding. Higher prevalences of the unmeasured confounder caused

VE to be much lower (VE against hospitalisations decreased from 27% to as low

as 7%), although the effect was still significant.

6.4.4 Propensity Scores

We firstly note here that although propensity scores are mostly discussed in the

general terms of treatment and control groups, we will keep this discussion fo-

cussed on their application to studying VE and will thus, refer to the treatment

and control groups as the vaccinated and unvaccinated groups throughout.
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Using non-randomised observational study designs can often result in large dif-

ferences on observed covariates between the vaccinated and unvaccinated groups

(selection bias). This is a problem as this would mean that people getting vacci-

nated have different baseline characteristics from the people in the unvaccinated

group, ultimately causing bias in the VE estimates. Propensity scores are a method

of eliminating (or at least attenuating) bias resulting from these large differences

which increases the precision of estimates. The formal definition of a propensity

score is “the conditional probability of assignment to a particular treatment given

a vector of observed covariates” [312]. In the context of VE, propensity scores are

used to attempt to estimate the probability of individuals to get vaccinated given

a set of background information related to those individuals (measured covariates)

which may plausibly influence the decision to get vaccinated.

The propensity score model’s main purpose is to adequately balance the covariates

and the end result produced is a scalar summary of all the background information

provided by covariates. After calculating propensity scores, groups of subjects with

similar values of propensity score are expected to have similar characteristics – at

least as far as measured by the covariates fed into the model. Using the probability

that a subject would have been vaccinated via propensity scores essentially allows

the creation of a quasi-randomised experiment. In other words, randomisation is

artificially achieved to emulate a RCT and thus, two subjects with very similar

propensity scores should be almost equally likely to be assigned to the vaccinated

or unvaccinated groups.

Mathematical Definition

For subjects i (i = 1, . . . , N), the conditional probability of being vaccinated

(Zi = 1) and unvaccinated (Zi = 0), given a vector of observed covariates (xi)

is

e(xi) = Pr(Zi = 1|Xi = xi) (6.5)

where e(xi) is the propensity score for a subject i. It is assumed that the vector of
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covariates X contains all relevant information regarding getting vaccinated mean-

ing that there are no hidden biases. Furthermore, given the observed covariates X,

it is assumed that the decisions to vaccinate for each subject (Zi) are independent

giving

Pr(Z1 = z1, . . . , ZN = zn|X1 = x1, . . . , XN = xN) =
N∏
i=1

e(xi)
zi [1− e(xi)]1−zi

(6.6)

The propensity score creates a balancing score such that the conditional distribu-

tion of the covariates X is the same for vaccinated and unvaccinated units.

Estimation of Propensity Scores

Two methods can be used to estimate propensity scores in the situation where

covariates do not contain missing data; these are discriminant analysis and logis-

tic regression [76]. Using discriminant analysis assumes that observed covariates

have a multivariate normal distribution while the more commonly used method

of logistic regression does not have this assumption. For the latter method, the

vaccination decision is estimated by the inverse logit transformation of the linear

predictor derived from the logistic regression model with vaccine status as the out-

come. This is shown in Equation (6.7) where the βi’s are the regression coefficients

for each of the covariates Xi.

ln

[
e(xi)

1− e(xi)

]
= β0 + β1X1 + . . .+ βNXN

e(xi) =
exp(β0 + β1X1 + . . .+ βNXN)

1 + exp(β0 + β1X1 + . . .+ βNXN)

(6.7)

For the propensity score model, it is vital to carefully consider including any vari-

ables which have some relationship to the decision to vaccinate. This is important

to minimise the chance of hidden bias not explained by the measured covariates.



Chapter 6. Influenza VE Studies 278

Applying Propensity Scores

A two-stage process is used to apply propensity scores. Rather than simply fit-

ting a large outcome model that includes all of the covariates in the propensity

scores model, using a two-stage approach (fitting a model to obtain propensity

scores and then using propensity scores in a final model) has advantages. For

instance, parsimony is not required in the propensity score model as it’s only goal

is to model the likelihood of getting vaccinated. Moreover, this allows us to fit

a smaller outcome model in the second stage, making it easier to assess it’s validity.

Usually three main techniques are used in applying propensity scores – matching,

stratification (subclassification) and regression adjustment. Another possibility is

propensity score weighting but as this is less commonly used in the medical lit-

erature, we will not discuss it here; for more details on it, see Rosenbaum [315].

Regardless of the technique used, propensity scores are derived in the same man-

ner and should produce unbiased estimates of the VE under the assumption that

assignment to vaccination is strongly ignorable. This assumption suggests that the

decision to get vaccinated can be determined by an independent Bernoulli random

variable with some probability of success Pr(Zi = 1|Xi = xi).

After estimating propensity scores, the application of these scores can be applied

in different ways. If adjustment for covariates is made prior to calculating VE,

then matching and stratification can be used. On the other hand, if adjustment

for covariates is made while calculating VE, then stratification and regression

adjustment are possible. Here, we focus on explaining propensity score matching

and propensity score stratification in more detail as they are more commonly used

in the literature.

Matching

Traditional matching techniques involve choosing unvaccinated subjects to match

to vaccinated subjects based on certain background covariates that are believed

to be important. The issue here is that it can be difficult to find suitable matches

when matching on a large number of important covariates. This problem can be
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overcome by using propensity scores as matches can be made based on a scalar

summary of the covariates rather than matching on a large number of covari-

ates. The idea is that on average, there should be no systematic differences in

baseline characteristics between propensity-matched pairs. It has been suggested

previously by Austin et al. [17] that matching on propensity scores leads to the

least biased treatment effect estimation. However, one consideration which must

be taken into account when matching is that there could be a vast reduction in

overall sample size. For instance, this could happen when there are many more

unvaccinated subjects compared with vaccinated subjects and one-to-one match-

ing is used (only one unvaccinated subject is matched to each vaccinated subject).

Rosenbaum and Rubin [314] give three different ways of matching based on the

propensity score which are “nearest available matching on the estimated propen-

sity score”, “Mahalanobis metric matching” and “nearest available Mahalanobis

metric matching within calipers defined by the propensity score”. Here we will

only discuss the third method as it is a combination of the other two methods and

hence, an explanation of it should provide enough detail to understand the match-

ing process for the simpler two methods. A further reason for choosing to discuss

only this method is that they showed that it gave the best balance in covariates

out of the three matching methods they tested.

For this method, there are two main steps and we would not only use the propen-

sity scores but would also use a subset of covariates important in the decision to

get vaccinated when matching vaccinated and unvaccinated subjects. Following

the calculation of propensity scores for all subjects, the first step is to randomly

order the vaccinated subjects and then one vaccinated subject is chosen for match-

ing. The unvaccinated subject that is chosen to be matched has to be sufficiently

similar to the vaccinated subject; formally, they need to have a propensity score

within a caliper (preset range) of the vaccinated subject’s propensity score. Note

that often the logit of the propensity score is used instead of the raw propensity

score as it is usually more normally distributed. Some researchers have examined

what caliper sizes should be used for best results, with Rosenbaum and Rubin
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[314] suggesting that a caliper size of a quarter of the standard deviation of the

logit of the propensity scores should be used. More recently, Austin [16] conducted

simulation studies and concluded that 0.2 times the standard deviation gave opti-

mal results.

The next step is to make a choice of one unvaccinated subject to match to the

chosen vaccinated subject. This has to be selected from only those unvaccinated

subjects that have propensity score within the specified caliper of the vaccinated

subject’s propensity score. This is where Mahalanobis distances are used. These

can give a measure for a multivariate effect size or a distance which in this sce-

nario, is based on the subset of important covariates. The Mahalanobis distance

is defined as

dij = (ui − vj)T C−1 (ui − vj) (6.8)

where u denotes the values of the matching covariates for vaccinated subject i,

while v denotes the values of the matching covariates for unvaccinated subjects j,

and C is the covariance matrix of the matching covariates over the entire group of

unvaccinated subjects. The unvaccinated subject that is finally chosen for match-

ing is the one that fulfills min(dij). This process is repeated until an unvaccinated

subject is chosen for every vaccinated subject. If a vaccinated subject cannot be

matched to a sufficiently similar unvaccinated subject, then they are excluded.

The process that we just described for matching relates to greedy matching. This

is because each time a vaccinated subject is chosen (bearing in mind that vac-

cinated subjects have been ordered randomly), the best matching unvaccinated

subject is chosen. This happens even if that particular unvaccinated subject may

be a better match to another vaccinated subject. It is also possible to use another

type of matching called optimal matching. Here, the goal in the matching pro-

cess is to minimise the total within-pair difference of the propensity score which

is more computationally expensive than greedy matching. A study by Gu and

Rosenbaum [142] found that optimal matching did not perform any better than
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greedy matching for obtaining balance in matched samples.

Stratification

Direct stratification of subjects on covariates is usually only practical when there

are relatively few covariates. For this reason, propensity scores are useful when

stratifying because they summarise numerous background characteristics into one

scalar summary. This allows stratification based on just propensity scores rather

than numerous covariates. Following the estimation of propensity scores using

for example, logistic regression, cut-offs for different strata are typically chosen

using the quintiles or deciles of the estimated propensity scores for both the vac-

cinated and unvaccinated groups combined. Quintiles are a popular choice as it

has been stated before that using five strata based on the propensity score is usu-

ally sufficient to remove over 90% of the bias due to each of the covariates in the

propensity score model [313]. Subjects in the vaccinated and unvaccinated groups

subclassified into each of the strata should be similar in most of the characteristics

measured by the covariates.

The second stage is to include the propensity score quintiles, possibly along with a

subset of other important covariates, into a final model to estimate VE. As stated

previously, this will result in a final model containing far fewer covariates than if a

one-stage approach was used and this makes the process of model-checking simpler.

This method of propensity score stratification was used in a study of influenza

VE involving 1,066 adult patients from the Netherlands aged 18–64 with chronic

obstructive pulmonary disease (COPD) or asthma [144]. VE was measured against

the incidence of influenza associated complications, and a multivariable logistic

regression model with age, underlying disease, number of GP visits, gender and

health insurance included as covariates was used to calculate propensity scores

of being vaccinated. Propensity scores were then categorised into quintiles to

allow vaccinees and non-vaccinees with similar propensities of being vaccinated

to be matched. The use of propensity scores had a marked effect on the VE

estimate and also resulted in a smaller confidence interval. The estimate using

multivariable logistic regression without propensity score stratification was −27%
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(95% CI: −94% to 16%) while the estimate using propensity score stratification

was 14% (95% CI: −35% to 45%).

Assessing Covariate Balance

When using propensity score methods, it is important to check whether or not the

method has achieved its aim of creating covariate balance between the vaccinated

and unvaccinated groups. To test the level of balance in baseline covariates, it is

possible to use standard statistical methods such as t-tests for matching and F -

tests for stratification. However, it has been argued before that significance testing

is not appropriate for comparing balance [13]. This is because the statistic used to

assess balance should do so with respect to the sample and not some hypothetical

population, and also because the sample size should not affect the value of the

statistic. The second issue is often a problem as the sample sizes are often much

larger in the unvaccinated (control) group, and this can lead to a perceived in-

crease in balance for matched samples, primarily caused by a reduction in sample

size compared with an initial unmatched sample. Therefore much of the literature

on propensity scores assesses balance by using the standardised difference, which

is not affected by units of measurement or sample sizes.

d =
100× |x̄V − x̄U |√

s2V +s2U
2

(6.9)

In Equation (6.9), the subscripts V and U relate to vaccinated and unvaccinated

groups, while x̄ and s relate to means and standard deviations; multiplication by

100 is used to derive estimates in terms of a percentage. In words, the standardised

difference is simply the absolute difference in sample means divided by an estimate

of the pooled standard deviation. Although there is no overwhelming consensus

on the threshold for an important level of imbalance, a standardised difference of

less than 10% is often used to indicate a negligible difference [15]. This particu-

lar derivation of the standardised difference only works for continuous numerical

variables, but there is a corresponding measure for categorical variables
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d =
(p̂V − p̂U)√

p̂V (1−p̂V )+p̂U (1−p̂U )
2

(6.10)

where p̂V and p̂U denote the proportions in the vaccinated and unvaccinated

groups, respectively. This, of course, only works for binary categorical variables;

for categorical variables involving more than two categories, it is possible to treat

each category as ‘yes/no’. Another option proposed before is to use the multi-

variate Mahalanobis distance metric [397] as defined in Equation (6.8). Perfect

balance following propensity score methods should never be expected for all base-

line variables but a much greater degree of balance should be expected.

6.4.5 Negative Controls

Negative controls can be used to detect and resolve uncontrolled confounding and

bias in observational studies. The use of negative controls comes with an increased

cost of measuring additional variables or measuring variables over longer periods

of time but it has been argued that they should be used as a routine precaution

in observational studies [223]. This is achieved through checking for an effect that

is hypothesised to be implausible. Properly selecting negative controls requires

expert knowledge on the subject of interest but if chosen appropriately, this method

can be used to investigate the credibility of a study. In studies of influenza VE, two

different ways of employing negative controls have commonly been used to identify

residual confounding. The first method is to analyse influenza VE in seasons where

influenza is not circulating (non-influenza periods). A number of VE studies have

taken this approach [99, 182]. The second approach is to measure influenza VE

against non-influenza related outcomes and an example of where this has been

employed is in the study by Baxter et al. [23].

Analysis of Non-Influenza Periods

Observational studies of influenza VE in elderly persons have been controversial

due to the large effect sizes witnessed even after adjustment for several covariates

related to health status. Some studies have reported approximately 50% mortality
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reduction in elderly populations [264, 367] and this led to suspicions of uncon-

trolled confounding. The results seem implausible as vaccination rates among the

elderly have generally increased over the years but no proportional reduction in

hospital admission rates or all-cause mortality have been evident. Furthermore,

US ecologic studies examining excess deaths account for only about 5–10% of all

winter-time deaths [334]. These excess death figures seem incompatible with VE

figures suggesting 40–50% reductions in mortality.

A cohort study using only persons 65 years of age and older sought to provide

evidence of bias using negative controls [182]. The central hypothesis is that a

protective effect of the vaccine should not be observable in non-influenza periods

(see Table 6.3 for a brief overview of the seasonal influenza periods as described

in a protocol by the European Centre for Disease Prevention and Control [100]).

Influenza VE should be measured before and after the influenza season so these

estimates can be compared with estimates derived during influenza seasons.

Pre-influenza Beginning of September to start of influenza season

Influenza season Time period with 70% of cases, first to last positive iso-
late

Peak influenza Five week period that includes the two weeks before and
after the week of peak influenza circulation

Peri-influenza Winter weeks during the influenza period

Post-influenza End of seasonal influenza until end of May

Summer Beginning of June until end of August

Table 6.3: Seasonal influenza periods as defined in a protocol by the European Centre
for Disease Prevention and Control (ECDC) [100]. The exact dates for the
influenza season varies every year which is why it cannot be defined more
precisely.

If a clear vaccine effect is seen in periods when influenza is not circulating then

this is indicative of bias. For a cohort study this means that the relative risk of

an outcome for vaccinees compared with non-vaccinees should be approximately

one and not be statistically significant in a non-influenza period. Hence, they
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chose to assess the risk of all-cause mortality and pneumonia or influenza related

hospitalisation among vaccinated and unvaccinated individuals before, during and

after influenza seasons. A Cox proportional hazards model with adjustment for

health status covariates showed that the largest protective effects were observed

before influenza seasons. It was suggested that this gave convincing evidence of

residual confounding and that the risk reductions almost certainly could not be due

to a true VE. Another study by Eurich et al. [99] looked specifically at mortality

reduction due to influenza vaccination in non-influenza periods. They also found a

roughly 50% reduced risk of mortality outside of the influenza season. After taking

into account additional factors such as functional and socioeconomic status, the

benefits seen were dramatically lower and more in accordance with the expected

null result. This clearly highlights the point that false VEs may be observed,

particularly if confounding factors are not properly adjusted for.

Non-Influenza Related Outcomes

Another approach to employing negative controls in studies of influenza VE is to

use outcomes that should not conceivably be linked to influenza. In other words,

real protective effects of vaccination should only be observed in outcomes asso-

ciated with influenza and findings which consistently suggest VE against control

conditions give the indication that analysis did not sufficiently account for bias.

Trauma-related hospitalisation is one example of a control outcome which has been

used in studies of influenza VE as this outcome should not be caused by influenza

[23, 182].

In the cohort study of seniors by Jackson et al. [182], injury or trauma related

hospitalisation was used as a control outcome. However, influenza vaccination was

found to reduce the risk of injury or trauma related hospitalisation even before

influenza season, adding more fuel to the argument that confounding may have

been inadequately controlled for. The opposite result has also been found before

using the same control outcome. For a study on the effect of the 2009 pandemic

influenza vaccine in Scotland, vaccinated patients were found to be more likely to

be admitted to hospital for trauma, which can be interpreted as a negative VE
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against trauma [335].

6.4.6 Difference-in-Differences Approach

Using the notion that vaccination should have little or no effect in non-influenza

periods, a method of assessing influenza VE by differentiating VEs from selection

effects was created and coined as a difference-in-differences approach by Fireman

et al. [119]. This method was employed on the back of the controversy surrounding

large influenza VE estimates found in studies of seniors. The observed effects were

believed to be due to selection bias not being adequately adjusted for. Specifically,

the selection bias was probably due to the situation of mortality being higher in

people unlikely to have received the vaccine which could happen, for instance, if

the frailest individuals do not get vaccinated. As a consequence, this would give

high VE estimates but in reality, would actually be more of a reflection of charac-

teristic differences between vaccinees and non-vaccinees. It has been demonstrated

that among seniors, decedents were less likely to get the vaccine than survivors

outside of influenza season which gives a clear indication of selection bias [119].

Some researchers believe that it may not be possible to suitably adjust for con-

founding factors as selection bias is constantly changing with time. Thus, the

difference-in-differences approach attempts to circumvent the issues of selection

bias and unmeasured confounding. It posits that if an influenza vaccine really is

effective in preventing outcomes associated with influenza, then a difference be-

tween two differences should be apparent. Firstly, the difference in the odds of

prior vaccination between survivors and decedents (supposing the outcome under

consideration is death) when influenza is circulating is noted. Then secondly, this

is compared to the expected difference in the odds of prior vaccination between sur-

vivors and decedents on the same days if influenza was not circulating. In essence,

the apparent effect of the vaccine outside influenza season is subtracted from the

benefits seen during influenza season. In order to estimate VE using this method,

a novel approach termed case-centred logistic regression is utilised. The method

is termed as “case-centred” as the data set used only contains one entry for each

case and hence, all the emphasis is placed on the cases.
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Expected Odds of Vaccination

For each decedent, it is necessary to calculate their expected odds of vaccination.

Before this can be achieved, all potential risk sets (strata) have to be considered.

The number of risk sets is equal to the number of days in the study multiplied

by the number of age-sex groups. Therefore, if there were four age-sex groups

and two years worth of data with 365 days in each year, there would be a total

of 2,920 potential risk sets. For each risk set, the vaccine coverage on that day is

derived empirically and hence, each risk set for each day contains vaccine coverage

estimates for similar groups of people.

The complete set of results are stored in a look-up table so that each decedent’s

expected odds of vaccination can be found simply by looking up their age-sex

group on their day of death. For example, supposing the start date of the study

was 1st September 2012, and a man aged 67 died on 1st November 2012, then the

expected odds of vaccination would come from the proportion of all males aged

65–69 including the decedent (assuming age groups are in five year age bands) who

were vaccinated between 1st September and 1st November.

Case-Centred Logistic Regression

The expected odds of vaccination for each decedent are entered as an offset term

(a regression variable with a fixed coefficient of one) in the case-centred logistic

regression model where the dependent variable is the decedent’s vaccination status

(whether or not an individual had received vaccination before dying). The sim-

plest model with just an offset term and intercept term is

logit(PObs) = logit(Pexp) + β0 (6.11)

where PObs is the observed probability of vaccination and Pexp is the expected

probability of vaccination. Entering the expected odds as an offset term essen-

tially creates a denominator variable for the observed probability of vaccination

(much like how an offset term was used in the screening method in Section 6.2.3).

After exponentiating the whole equation, the intercept term exp(β0) estimates the
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OR of being vaccinated which can be found to equal the RR after some calculations.

logit(PObs)

logit(Pexp)
= β0

exp (β0) =
P (Vac = 1|Case = 1)

P (Vac = 0|Case = 1)

/
P (Vac = 1)

P (Vac = 0)

(6.12)

From here, we can concentrate on the right side of Equation (6.12) to derive

alternative expressions for P (Vac = 1|Case = 1) and P (Vac = 0|Case = 1). Us-

ing Bayes rule, we can begin with P (Case = 1|Vac = 1) to eventually derive

P (Vac = 1|Case = 1).

P (Case = 1|Vac = 1) =
P (Vac = 1|Case = 1)P (Case = 1)

P (Vac = 1)
(6.13)

This can be rearranged to find P (Vac = 1|Case = 1).

P (Vac = 1|Case = 1) =
P (Case = 1|Vac = 1)P (Vac = 1)

P (Case = 1)
(6.14)

We can use the same process to find P (Vac = 0|Case = 1) – substituting what

would be found for that along with Equation (6.14) into Equation (6.12) yields

exp (β0) =
P (Case = 1|Vac = 1)

P (Case = 1|Vac = 0)
= RR (6.15)

In a study of influenza VE in the elderly, time of year was added to the model to

measure selection effects over time as well as indicator variables for age group, sex

and influenza year [119]. Finally an indicator for influenza season was added which

is vital as the indicator for influenza season allows us to observe the difference it

makes to the OR which is the goal of the method. VE is estimated by one minus

the exponential of the difference that the influenza season indicator makes to the

OR. In this way, the difference in the association between mortality and prior vac-

cination is compared inside and outside influenza seasons to give an estimate of VE.



Chapter 6. Influenza VE Studies 289

This approach to estimating VE brings about the advantage of alleviating some

concerns about confounding by time and selection effects but some issues still re-

main. It is particularly useful in the situation where there is much more data

available on the time-vaccination association rather than the time-outcome asso-

ciation. However, before this method can be considered, it is required to have

a large dataset spanning multiple years, preferably with influenza circulating on

different dates in some years in order to increase statistical power. These require-

ments mean that it may only be possible to obtain estimates of average VE across

years rather than year-specific VE estimates. It should also be noted that when

using the difference-in-differences approach, the choice of what constitutes the pe-

riod when influenza is circulating is an important parameter and some sensitivity

analyses using different dates for influenza seasons may be beneficial [23]. Another

concern is the choice of offset term in the model as it is critical this is correctly

specified [301]. The risk sets used for finding the expected odds of vaccination are

only created by age and sex, and possible confounding by other potential factors

cannot be ruled out.

6.4.7 Dynamic Modelling

A relatively novel approach to estimating VE comes through the use of dynamic

mathematical models similar to those discussed previously for estimating repro-

ductive numbers in Chapter 4. Several different models were outlined by Gjini and

Gomes [133] who aimed to show the use of these models in a conceptual and illus-

trative sense. To introduce their main ideas, we will give brief details on only the

most basic model that they described. This is a susceptible-infectious (SI) model

where there is only one pathogen type for a disease that is directly transmitted.

Furthermore, vaccination is assumed to be continuously ongoing and while it has

a protective effect, it is never impossible for vaccinated individuals to acquire dis-

ease. Note that in their method, VE is interpreted from a biological standpoint as

it is defined as the reduction in the probability of pathogen acquisition per contact

in vaccinated individuals relative to unvaccinated individuals.

Two sets of differential equations are required – one for vaccinated individuals and
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one for non-vaccinated individuals. Before showing these equations, it is best to

clarify the notation involved: superscripts of u and v are used to show vaccinat-

ed/unvaccinated status; β denotes the transmission rate; µ gives the birth rate

and the equivalent death rate (a commonly used simplification for mathematical

models of infectious disease); ρ is the vaccination coverage; and finally, w is a

fraction (0 ≤ w ≤ 1) referring to the individual vaccine protection, from which

VE is estimated as 1− w. For the non-vaccinated group, we have

dSu

dt
= µ(1− ρ)− βSu(Iu + Iv)− µSu

dIu

dt
= βSu(Iu + Iv)− µIu

(6.16)

and for the vaccinated group, the system of equations is

dSv

dt
= µρ− βwSv(Iu + Iv)− µSv

dIv

dt
= βwSv(Iu + Iv)− µIv

(6.17)

The main difficulty with this method comes from the challenge of parameter infer-

ence but a proof of principle numerical procedure is provided by Gjini and Gomes

[133]. This procedure is based on ODE (ordinary differential equation) model fit-

ting to cross-sectional data using a nonlinear least-squares optimisation algorithm.

For more complicated models – which would be required for realistic epidemics –

this challenge would be even greater. These would relax assumptions of homo-

geneous mixing and could include transmission between age groups and different

spatial locations.

Another difficulty comes with trying to validate results from dynamic models as

this would require complex spatiotemporal (or at least temporal) data which is of-

ten not available. However, if sufficient information can be obtained to accurately

inform those parameters, it was argued that these models can account for crucial
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aspects of disease transmission that other statistical methods may not be able to

deal with as effectively. This includes accounting for multiple effects simultane-

ously such as vaccine coverage, transmission rates, temporal effects of vaccination

programmes such as changes in exposure over time, and competition between dif-

ferent strains of a disease. The use of dynamic models for estimating VE is clearly

still nascent but with advances in data collection and methods for estimating pa-

rameters in systems of differential equations, they are likely to become more widely

utilised.

6.5 Summary

In summary, we have provided in this chapter an overview of some of the various

issues surrounding studies of influenza VE. In addition to this, we have outlined

various different statistical methods used for measuring and assessing estimates of

VE, which are summarised in Table 6.4. Ideally, we would be able to conduct con-

trolled experiments using RCTs to estimate the effectiveness of influenza vaccines.

However, as patients who stand to benefit from the vaccine cannot be denied access

to it, it is never really possible to conduct an RCT for studying influenza VE and

so we have to use observational studies instead. We have discussed some differ-

ences between the study designs commonly used to conduct VE studies including

the cohort, case-control and screening method study designs. Furthermore, we

have talked about some of the difficulties involved with producing influenza vac-

cines and how the end product may not always match up well to the presently

circulating strains of influenza. This is likely to remain a problem, at least until

better methods of producing the vaccine have been proven to be safe and can be

scaled up to a level for mass production.

Another fundamental issue we considered is how different ways of diagnosing in-

fluenza can affect VE estimates. It is not practical or cost-effective to always

conduct laboratory-testing for all cases and so other outcomes associated with

influenza must be used such as diagnoses of influenza-like-illness based on symp-

toms. The choice of clinical outcome used is pivotal in the estimation of VE as
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they have varying levels of specificity and sensitivity. We outlined some differ-

ent methods of detecting bias; for example, the use of instrumental variables and

modelling the effect of unobserved confounding variables. Finally, some differ-

ent methods to reduce bias and confounding were detailed. These included the

commonly used multivariable regression models with the inclusion of appropriate

covariates, propensity score methods as well as more recently applied methods to

VE studies such as the difference-in-differences approach and dynamic modelling.

We will be cognizant of these issues and apply a number of these methods in a

study of VE for seasonal influenza using data from Scotland in post-pandemic

seasons.
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Chapter 7

Influenza Vaccine Effectiveness in
Scotland

In the previous chapter, we described a number of different methods for estimating

vaccine effectiveness (VE) and discussed some advantages and disadvantages of

using certain study designs and clinical outcomes to measure VE. Here we apply

some of those methods to estimate influenza VE in Scotland where relevant data is

available from surveillance systems employed there. This data allows us to obtain

a range of VE estimates using a variety of methods and outcomes. Obtaining

numerous estimates here is useful in order to gain a better understanding of how the

methods and outcomes used can affect estimates. The main focus of this chapter

is on a cohort of individuals registered with various National Health Service (NHS)

General Practitioner’s (GP) practices. This group of GP practices is considered to

collectively contain patients that are broadly representative of the population of

Scotland as a whole. In this chapter, we do not only present the various eventual

VE results but also attempt to give details on the steps involved in obtaining those

estimates.

7.1 Introduction

To meet the challenges of measuring influenza VE, the UK has established surveil-

lance systems in place to closely monitor the annual effectiveness of vaccines [120].

These systems make use of routinely collected epidemiological data taken from

individuals presenting in primary care. In Scotland, influenza VE has been es-

timated using routinely collected data since 2008 at Health Protection Scotland
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(HPS). The present study seeks to provide estimates of seasonal influenza VE for

seasons 2011–12 and 2012–13 in Scotland by making use of this data which comes

from a sample of GP practices. Having data for two seasons gives us the added

benefit of being able to compare and contrast our VE estimates for each season

when using the same methods to estimate VE.

As discussed in Chapter 6, confounding and bias have to be considered when using

observational study designs. We attempt to adjust for bias in this study by the

use of covariate adjustment for possible confounding variables as well as propensity

score (PS) methods [76]. It must be noted that these adjustments cannot guarantee

that bias and confounding will be completely eliminated from the study. However,

they should help in reducing bias and methods exist to detect residual bias; for

instance, estimating VE using the same methods restricted to a non-influenza time

period where a VE should not be found. Using a variety of methods provides a

wider array of estimates from which we can draw upon for discussion. This is

important as it has already been found before that estimates of VE can differ by

choice of study design, the clinical outcomes considered as endpoints for influenza

diagnosis and the statistical methods employed [196]. The analysis here can help

us to further understand exactly how different methods can influence VE estimates.

With this in mind, we examined the effect of influenza vaccination against different

types of GP consultations related to respiratory problems (which are to different

extents, clearly indicative of a patient actually having influenza) and all-cause

mortality for the entire cohort of patients as well as on a PS-matched sample of

patients from the cohort when PS methods were used. We obtained more esti-

mates of VE by using aggregated counts of GP consultations in conjunction with

vaccine coverage estimates to calculate VE via the screening method study design

originally proposed by Farrington [109]. Furthermore, laboratory confirmation of

influenza was available for a subset of patients allowing us to obtain VE estimates

using a nested case-control study design – specifically a test-negative design was

employed where those that tested negative were used as controls in the study.
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7.1.1 Vaccine Composition

When measuring VE, consideration has to be given to the influenza strains con-

tained in the vaccine. An internationally accepted naming convention for influenza

viruses was given by the WHO [391] and this is used to name the strains contained

in the vaccine. The convention names the virus according to the type (A, B, C),

the type of host for the strain (if not human), the geographical region of origin,

strain/lineage number, year of isolation and if the virus is type A, the hemagglu-

tinin and neuraminidase description is also provided.

In both seasons under consideration in this analysis (2011–12 and 2012–13), the

vaccine included A and B type influenza viruses as well as the 2009 pandemic

influenza strain. Specifically, in the northern hemisphere, the 2011–12 influenza

seasonal trivalent vaccine was composed of the following strains [393]:

• A/California/07/2009 (H1N1)pdm09-like virus

• A/Perth/16/2009 (H3N2)-like virus

• B/Brisbane/60/2008-like virus

With the exception of the pandemic strain, the 2012–13 trivalent vaccine was

composed differently [395]:

• A/California/07/2009 (H1N1)pdm09-like virus

• A/Victoria/361/2011 (H3N2)-like virus

• B/Wisconsin/1/2010-like virus

7.2 Methods

7.2.1 Cohort

The data on the cohorts come from the Pandemic Influenza Primary care Report-

ing (PIPeR) surveillance system – one of the systems used to monitor influenza
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in Scotland [159]. This system draws from GP practices that contribute to the

Practice Team Information (PTI) network [179]. The GP practices on the PTI

network have been selected so as to be broadly representative of the Scottish pop-

ulation in terms of age, gender, deprivation and urban/rural mix. For influenza

season 2011–12, patient data was available from 22 of these GP practices and for

the 2012–13 season, data was available from 25 GP practices. Note than one GP

practice changed code between these seasons and this was the practice with code

46199 which changed to 46606. These cohorts make up our study populations for

the two seasons. Many of the patients in the 2011–12 cohort were also in the fol-

lowing year’s cohort, but there were a large number of new patients in the 2012–13

season due to the additional participating GP practices. Other variations between

GP practices in the two seasons were caused by patients leaving GP practices and

other new patients joining GP practices.

Every year, the seasonal influenza immunisation programme runs from 1st October

to 31st March in the following year. Thus, the cohort of patients that we wished

to follow up consisted of individuals who were registered with a GP practice one

month before the start of the programme (1st September). In addition to this,

patients known to have died or emigrated outside of Scotland before 1st September

were removed from the cohort. In total, there were 157,026 patients to follow up

for the study in season 2011–12 and 170,774 patients to follow up in season 2012–

13, covering around 3% of the population of Scotland in each season. Patients

were followed up until 31st March giving us study periods of seven months for

each of the two seasons. Anybody that died during the study period was censored

at their date of death.

Risk Groups

In Scotland, the influenza vaccine is recommended and offered free for individuals

considered to be at an increased risk of serious complications following influenza

infection. Additionally, people that work closely with vulnerable individuals such

as healthcare workers are also targeted for vaccination. We defined individuals
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in the at-risk group according to these conditions but restricted to variables for

which data was available. Hence, at-risk individuals included all persons aged

65 or over at the beginning of the study period, pregnant women and anybody

who had at least one underlying health condition out of the following list: chronic

respiratory disease (including asthma), chronic heart disease, chronic liver disease,

chronic renal disease, diabetes, immunosuppression and neurological disorders.

Furthermore, the group of at-risk individuals also included people in long-stay

residential care and people working as carers. Risk group status was assigned

at the beginning of the study period and individuals in the at-risk group were

considered to be at-risk for the whole study period. A binary variable for risk

group status was created for use in covariate adjustments when examining those

aged under 65.

7.2.2 Vaccine Uptake

In the two influenza seasons under consideration, vaccination exclusively for pan-

demic influenza had largely ceased but according to the data, some patients still

received the pandemic vaccine (see Appendix Tables 7.18 and 7.19 for a breakdown

of the types of influenza vaccinations received by patients over the study periods).

These are likely to have resulted from coding or date entry errors. Due to this, it

was first necessary to isolate the seasonal influenza vaccinations from all influenza

vaccinations for the analysis. In addition to those vaccinated during the study

period, we also considered anybody that received vaccination up to two months

prior to the study start date (from 1st July 2011/1st July 2012) as vaccinated in

the current study (see Figure 7.1) – this was to pick up a very small number of

individuals who received vaccinations before the commencement of the immunisa-

tion programme in Scotland.

The end of season vaccine uptake rates were estimated for all patients in the

cohort to get an overall uptake rate. Furthermore, uptake rates were estimated by

age groups and for those belonging to risk groups. We also looked at cumulative

vaccine uptake throughout the period of the study. This allowed for a comparison

of whether uptake trends differed by several factors related to the characteristics
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1st July 2011 1st Sept 2011 31st March 2012

If vaccinated in 
this period, consider 
patient as vaccinated
in the study period

Study Start Date Study End Date

1st July 2012 1st Sept 2012 31st March 2013

2011-12

2012-13

Figure 7.1: Timeline showing key dates in the studies.

of patients.

7.2.3 Vaccine Effectiveness

For the cohort study, end of season influenza VE against three types of GP consul-

tations were considered as well as all-cause death. The GP consultations data came

in the form of Read codes which was a system created to allow a standardised way

for GPs to record relevant summary information from consultations [181]. Various

Read codes were grouped together to form three broad types of consultations –

influenza-like illness (ILI), acute respiratory infection (ARI) which includes some

of the ILI consultations, and influenza-like illness or acute respiratory infection

excluding asthma-related consultations (ILIARI). Note that ILIARI consultations

was defined exactly to be a subset of ARI consultations and thus, any ILIARI

consultations would also always have been ARI consultations. Details of the Read

codes used for different consultation types can be seen in Appendix Table 7.20.

The most specific of these consultations outcomes for influenza was ILI, followed

by ILIARI and then ARI. All-cause death was the least specific outcome consid-

ered.

When measuring VE, a period of 14 days was allowed for vaccination to become

protective as some time is required for the body to build up immunity to the virus

[298]. Thus, if a consultation occurred within a two week period following vacci-

nation, it was treated as a consultation for an unvaccinated individual rather than

a vaccinated individual.
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Firstly, VE was estimated using a Cox proportional hazards model with robust

standard errors [355] to account for clustering of patients within GP practices,

and adjustment for all available background covariates. Vaccination status was

included as a time-dependent covariate in the Cox model to account for patients

getting vaccinated at different times. Those vaccinated between 1st July and 1st

September of the study year were treated as being vaccinated for the entire study

period. In analyses using consultations outcomes, patients could have multiple

events (restricted to one event per day) but for the death outcome, obviously only

a single event is possible. Several potential confounding factors were considered

and these were assigned at the beginning of the study period and remained con-

stant for the duration of the study. These included gender, age, risk group status,

whether or not patients received the seasonal influenza vaccination in the previ-

ous year, whether or not patients had ever previously received pandemic influenza

vaccination, and the number of ILIARI consultations patients had within the pre-

vious year. The data zone (DZ) of residence for each patient was available and

this was linked to deprivation as measured by the 2009 Scottish Index of Multiple

Deprivation (SIMD) [328]. Furthermore, information on the urban/rural status

(categorised as urban, small towns and rural) for patients was also found using the

DZ of residence for patients.

By comparing the hazard ratio (HR) of those in the vaccinated group against those

in the unvaccinated group, VE can be derived as 1−HR×100%. VE estimates by

age groups 0–64 and 65+ were obtained by including an interaction term between

age group with vaccination status in the model. The first analysis used all available

patients in the cohort in a Cox model and then further VE estimates were derived

using a Cox model on a PS matched sample of patients, stratifying on pairs of

matched patients. VE estimates were also found using other methods and datasets.

These include using PS stratification with all patients in the cohort assigned as

belonging to a PS decile; the screening method on aggregated consultations data;

and by applying regression methods to the virology data. These are explained in

more detail in the following sections.
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7.2.4 Detection of Residual Bias

On the premise that a true VE should only be observed at times when influenza is

circulating, in one analysis, we split the study period into a pre-influenza period

(1st September to 31st October) and a during influenza period (1st November to

31st March), with an expectation of finding no VE in the pre-influenza period.

The influenza season time period variable was included as a time-dependent co-

variate in the Cox model, and an interaction term between vaccination status and

influenza period was used to obtain VE split by the pre/during influenza periods;

VE estimates by those aged 0–64 and 65+ were found by additionally including

age group in the interaction term.

If we assume that the level of bias found in VE estimates from the pre-influenza

period remains consistent throughout the influenza period, then we can also derive

a VE estimate during the influenza season adjusted for the amount of bias found in

the pre-influenza period. This can be calculated by Equation (7.1) where HRduring

is the HR for vaccination in the during influenza period and HRpre is the HR for

vaccination in the pre-influenza period.

VE = 1− exp [log(HRduring)− log(HRpre)] (7.1)

A study by Jackson et al. [182] found evidence of bias in VE estimates against

mortality in seniors by using pre/during influenza season analysis. Therefore, we

also investigated the robustness of VE estimates against all-cause death in those

aged 65+ by modelling the effect of an unobserved confounder on those estimates

in a similar fashion to Groenwold et al. [141]. Smoking is known to increase the

risk of mortality but information on smoking was not available on patients in

our study. More specifically, previous research by Kenfield et al. [203] found an

odds ratio (OR) of approximately 2.8 for all-cause death among smokers compared

with non-smokers. Hence, we simulated a variable to represent smoking status for

individuals in the cohort, ensuring that the OR of all-cause death among smokers

compared with non-smokers was around 2.8. For simulating the variable, we also

accounted for varying prevalences of smoking among vaccinated and unvaccinated
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individuals as this would directly affect VE.

7.2.5 Propensity Scores

The PS in our scenario gives an estimate of each individual’s probability of vacci-

nation, given their background characteristics (further information can be found in

Section 6.4.4), which essentially makes up risk factor profiles for every individual

(for risk of vaccination in this case). Propensity scores are primarily used to try

to create a quasi-randomised experiment and their sole purpose is to create more

balance on the background covariates of individuals in the vaccinated and unvac-

cinated groups (or more generally, treatment/control groups). We attempted to

attenuate the effects of selection bias on influenza VE estimates by using a PS

model. It is not necessary to construct a parsimonious PS model as no outcome

data is used in the model and hence, all potential confounders were considered as

the model itself cannot cause bias in the estimate of influenza VE. The PS methods

used in this analysis were PS matching and PS stratification.

Propensity Score Model

To create the PS model, we looked at patients that were vaccinated by an end

date chosen as a time where vaccine uptake had largely levelled off. This allows

us to create a binary variable indicating those who were and were not vaccinated

by this time which acts as our response variable in the regression model. PS was

modelled using a generalised additive mixed model (GAMM). This model allows

the inclusion of nonparametric regression terms, while also allowing the inclusion

of random effects as well as fixed effects in the predictor. The reason for using a

mixed model here is that observations may not be independent due to the possi-

ble clustering of patients in different GP practices. Therefore, we allowed for the

inclusion of an additional source of variation caused by the different GP practices.

Although vaccination generally increases with increasing age, it is likely that this

increase is non-linear and hence, using a smooth term for age in the GAMM should

result in a better estimation of propensity scores.

Specifically, as we have a dichotomous dependent variable indicating if a patient
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was vaccinated (Y = 1) or not vaccinated (Y = 0) by a chosen end date, a gen-

eralised additive mixed-effects logistic regression model including the previously

mentioned covariates and random intercepts for different GP practices is appro-

priate. The 2-level model is given by

ln

(
P (Yij = 1)

P (Yij = 0)

)
= β0 + f(ageij) +

P∑
p=1

βpxpij + bi + εij

bi ∼ N(0, σ2
b ) εij ∼ N(0, σ2) i = 1, 2, . . . , I j = 1, 2, . . . , J

(7.2)

where the indice ij refers to patient j registered in GP practice i, β0 is the inter-

cept, f(ageij) relates to the smooth function used for age, βp are the fixed-effect

coefficients for each covariate p, xij = x1ij, . . . , xpij denote the fixed effect regres-

sors, and bi is the random GP practice effect, which is assumed to follow a normal

distribution with mean 0 and variance σ2
b .

In the model, there were six possible categorical covariates (five in the model

for those aged 65+ as risk-group cannot be included as all people aged 65+ are

considered to be at risk) and one smooth term (age). The estimated coefficients βk

give the expected change in the log odds of being vaccinated for an increase of one

unit in the corresponding predictor covariate k when holding all other covariates

constant. Since everybody aged 65+ is targeted for vaccination, the characteristics

affecting propensity to consult should differ quite considerably between those aged

under 65 and those aged 65+. For this reason, we created separate PS models for

those aged 0–64 and those aged 65+.

Propensity Score Matching

The method employed for PS matching was to perform one-to-one matching (each

vaccinated person is matched with one unvaccinated person) based on “nearest

available Mahalanobis metric matching within calipers defined by the propensity

score” [76]. This means that when searching for unvaccinated individuals to match

to vaccinated individuals, only those within a given range (caliper) on certain vari-
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ables can be considered. Theoretically, this should match vaccinated individuals

to unvaccinated individuals who are similar to them in terms of the background

covariates we include in the PS model. We based the matching on more than only

the PS to aid the matching process. The other variables considered in matching

were age and for those aged 0–64, we used risk group as well.

Using the logit of the estimated PS was preferred instead of using the raw PS as it

is often approximately normally distributed (or at least more so than the raw PS).

Austin [16] suggests that caliper size of 0.2 times the standard deviation of the

logit PS be used and we followed this recommendation here. For matching those

aged 0–64, matching was made exactly on risk group and for age, calipers were

decided based on allowing matches to be made within a range of approximately

±3 years. These restrictions ensure that the importance of age and risk group are

accounted for when choosing matches.

Once the PS matched sample was obtained, VE was estimated with a Cox model

stratifying on pairs of matched patients. No further adjustment for background

covariates was necessary on the PS matched sample as both groups should already

be similar in all of their measured characteristics due to the matching process.

Following matching, the level of balance in covariates was checked by looking at

standardised differences [14] between the vaccinated and unvaccinated groups.

Propensity Score Stratification

For PS stratification, we split individuals up according to the decile of PS that

they belonged to. The PS deciles were subsequently entered into a Cox model with

further covariate adjustment for age, risk group (risk group included for those aged

0–64 only) and vaccination status to estimate influenza VE. Having adjustment for

these covariates keeps the methodology more comparable with our PS matching

which used age and risk group for matching. Again, covariate balance was checked

after dividing patients into PS deciles by using standardised differences.
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7.2.6 Screening Method

The screening method as described by Farrington [109] uses aggregate data to

measure VE. For this method, the focus was on only those patients with consul-

tations for ILI, ARI or ILIARI. Moreover, we looked at numbers of consultations

from vaccinated and unvaccinated individuals over a period of time. Vaccine cov-

erage is required for the screening method and this was estimated at a time point

close to the start of the period we looked at for consultations. VE estimates have

previously been found to be sensitive to the input estimates used [67]. Hence, we

estimated vaccination coverage at different time points for use in the screening

method to investigate how much of an impact those estimates would have on VE

estimates.

In the screening method analysis, confounding variables were adjusted for by using

a mixed-effects logistic regression model with stratification by gender, age group

(categorised as 0–64 and 65+), risk group, and a random effect for GP practice.

To achieve this, we had to find the numbers of consultations from vaccinated and

unvaccinated individuals broken down by gender, age group and risk group within

GP practices. We also estimated vaccine coverage broken down by these groups

as well.

7.2.7 Virology

A number of patients who had acute respiratory symptoms had a virology test for

clinical reasons and data on the results of these tests were available from HPS.

These swab tests were from all hospital laboratories in Scotland that submitted

data to the Electronic Communication of Surveillance in Scotland (ECOSS) system

[158] as well as the West of Scotland Regional Virus Lab where most of the test-

ing is done on samples from GP practices. These were utilised in a test-negative

case-control study design.

Prior to receiving the data for analysis, the virology data were linked to the vac-
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cinations data using a common unique patient identifier to obtain information

on whether or not patients had received an influenza vaccination. Following the

linkage, the patient identifier was removed and an anonymised identifier was used

for this study. For those that received vaccination, their date of vaccination was

also known and with this, it was possible to discover whether or not patients were

vaccinated before or after their virology test. If the test date was within 14 days

after the date of the vaccination, then the patient was considered to have been

tested before we could be reasonably certain that the vaccination had a chance to

become protective – in this scenario, we would not treat it as a vaccine failure if

the test result was positive. Conversely, if the test date was more than 14 days

after the date of vaccination, then the patient was considered to be vaccinated

before testing, and a positive test result for one of the influenza types contained

in the vaccine would be indicative of vaccine failure.

Some patients had multiple tests and for these patients, it was necessary to extract

only one test result and associated date to be used in analysis. There were dif-

ferent possibilities for these patients which differed by whether or not the patient

received vaccination. The rules we followed for selecting a test result are displayed

in Figure 7.2. For patients that did not receive vaccination and had a positive

test result for influenza, we chose the date of their first positive test; if patients

never received vaccination and only ever tested negative, then we used the date of

their first test. However, for patients that received vaccination, the process was

more complicated. For patients that were never tested post-vaccination (plus the

two week period for immunity to build up), we followed the rules to choose dates

as just described for unvaccinated patients. Finally for patients that were tested

post-vaccination, we only looked at their tests post-vaccination and followed those

rules for choosing dates.

A generalised additive logistic regression model was used to estimate influenza

VE for the virology outcome. An additive model was chosen as it allows for a

temporal trend to be modelled using the day of virology sample collection. This

adjusts for the situation of individuals receiving vaccination at different times and
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Figure 7.2: Flow diagram showing how date of virology test for patients was selected
under different scenarios.

this is important as the background rate of disease in the community changes over

time.

7.3 Results

7.3.1 Patient Cohort Characteristics

Table 7.1 shows that the gender split in the cohort was almost equal for both

seasons and the majority of patients were in the working ages of between 16–64

(over 65% in both seasons). The gender and age split of the cohort matched up
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very closely to the wider Scottish population [255]. Patients were predominantly

from urban areas as we would expect but almost the same number of patients

came from small towns and rural areas. Compared with the general population,

there were more people in the cohort from urban areas and less from rural areas

[258]. As well as this, a larger proportion of the cohort lived in more deprived

areas compared with less deprived areas. It should be noted that 1.2% of patients

(n = 1,939) in the 2011–12 season could not be matched to a deprivation quintile

or urban/rural classification as they were missing information on their DZ; in the

2012–13 season, 2.4% of patients (n = 4,173) did not have DZ information.

Approximately 14% of patients had consulted with their GP for ILIARI at least

once within the previous year; 20% of patients had received the seasonal influenza

vaccine within the previous year and just under 17% had previously been vacci-

nated for pandemic influenza. Those figures were consistent for both seasons.

There was considerable variation in the sizes of GP practices as one practice had

as much as around 19,000 registered patients while others had as little as 2,000

patients. The amount of variability in GP practice sizes lends support to the no-

tion that there could be some clustering effects within GP practices. These effects

would have to be considered in our analyses.

2011–12 2012–13

Variable Group n (%) n (%)

Gender Female 79,212 (50.45) 85,279 (49.94)

Male 77,814 (49.55) 85,495 (50.06)

Age Group 0–5 8,952 (5.70) 9,921 (5.81)

6–15 17,244 (10.98) 18,601 (10.89)

16–44 59,448 (37.86) 63,922 (37.43)

45–64 44,087 (28.08) 48,356 (28.32)

65–74 15,229 (9.70) 16,991 (9.95)

75+ 12,066 (7.68) 12,983 (7.60)

Deprivation Quintile Most Deprived 33,746 (21.49) 37,611 (22.02)

Continued on next page
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2011–12 2012–13

Variable Group n (%) n (%)

2 32,901 (20.95) 35,126 (20.57)

3 32,859 (20.93) 34,788 (20.37)

4 28,770 (18.32) 31,484 (18.44)

5 26,811 (17.07) 27,592 (16.16)

Unknown 1,939 (1.23) 4,173 (2.44)

Urban/Rural Urban 115,178 (73.35) 125,376 (73.42)

Small Towns 20,680 (13.17) 21,275 (12.46)

Rural 19,229 (12.25) 19,950 (11.68)

Unknown 1,939 (1.23) 4,173 (2.44)

Prev Year Seasonal Vacc No 125,597 (79.98) 136,469 (79.91)

Yes 31,429 (20.02) 34,305 (20.09)

Any Pandemic Vacc No 130,985 (83.42) 143,271 (83.90)

Yes 26,041 (16.58) 27,503 (16.10)

Prev Year ILIARI Consultations 0 135,507 (86.30) 146,437 (85.75)

1 14,618 (9.31) 16,406 (9.61)

2+ 6,901 (4.39) 7,931 (4.64)

Practice Code 16193 0 (0.00) 3,116 (1.82)

16244 2,039 (1.30) 2,070 (1.21)

16259 4,992 (3.18) 4,961 (2.91)

18057 14,089 (8.97) 13,986 (8.19)

18413 8,244 (5.25) 8,208 (4.81)

20409 8,191 (5.22) 8,111 (4.75)

20471 8,902 (5.67) 8,944 (5.24)

20752 19,249 (12.26) 19,242 (11.27)

21755 9,563 (6.09) 9,502 (5.56)

25046 12,559 (8.00) 12,505 (7.32)

25173 5,369 (3.42) 5,307 (3.11)

25205 8,551 (5.45) 8,523 (4.99)

25436 2,928 (1.86) 2,974 (1.74)

40046 9,917 (6.32) 9,922 (5.81)

40493 2,606 (1.66) 2,701 (1.58)

43538 2,306 (1.47) 2,302 (1.35)

46199 3,455 (2.20) 0 (0.00)

46606 0 (0.00) 3,417 (2.00)

Continued on next page
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2011–12 2012–13

Variable Group n (%) n (%)

52382 2,925 (1.86) 3,093 (1.81)

80753 13,090 (8.34) 13,066 (7.65)

80772 3,047 (1.94) 2,979 (1.74)

80895 7,292 (4.64) 7,442 (4.36)

86162 0 (0.00) 5,749 (3.37)

87023 3,467 (2.21) 3,483 (2.04)

87339 0 (0.00) 5,071 (2.97)

87343 4,245 (2.70) 4,100 (2.40)

Table 7.1: Counts and percentages for the cohorts of patients used in the influenza
VE studies by various characteristics. Note that the GP practice with code
46199 in the 2011–12 season changed to code 46606 in the 2012–13 season.

Risk Groups

Around 16% of patients aged 0–64 in the 2011–12 cohort were considered to be at-

risk from influenza (n = 21,131) and this increased to around 18% for the 2012–13

cohort (n = 25,546). Table 7.2 shows that the most common underlying illnesses

for patients aged 0–64 in risk groups were chronic respiratory disease, diabetes and

chronic heart disease. Note that information on underlying illnesses was poorly

recorded in the data for those aged 65+, but all people in that age category are

targeted for influenza vaccination in Scotland so we do not require information on

underlying illnesses to assign them into a risk group. Adding all patients aged 65+

to those in a risk group aged 0–64 gave us an overall figure of just under a third

of patients being in a risk group in both seasons.

7.3.2 Vaccine Uptake

In both seasons, around 22% of patients got the seasonal influenza vaccination

(n = 33,876 in 2011–12 and n = 36,764 in 2012–13). Of these vaccinations, 58

were received in the two months prior to September in 2011 and 80 people were

vaccinated in the lead up to September in 2012. People that got vaccinated in

the two month lead up period were treated as vaccinated for the season under
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2011–12 2012–13

Risk Factor n (%) n (%)

Carer 1,284 (0.99) 1,724 (1.22)

Heart Disease 3,364 (2.59) 4,098 (2.91)

Liver Disease 981 (0.76) 1,380 (0.98)

Renal Disease 812 (0.63) 1,004 (0.71)

Respiratory Disease 8,120 (6.26) 10,317 (7.33)

Diabetic 4,444 (3.43) 4,734 (3.36)

Immunosuppression 2,146 (1.65) 2,625 (1.86)

Neurological Disease 2,790 (2.15) 3,453 (2.45)

Pregnant 1,531 (1.18) 1,768 (1.26)

Care Home Resident 71 (0.05) 91 (0.06)

Clinical Risk Group 21,131 (16.29) 25,546 (18.14)

Table 7.2: Numbers of patients in the cohort aged 0–64 with different risk factors.
Percentages are out of the 129,731 patients aged 0–64 in the cohort for the
2011–12 season and out of the 140,800 patients for the 2012–13 season.

consideration.

The vaccine uptake rates for all individuals and split by age groups over the two

study periods are shown in Table 7.3. The percentages vaccinated were very sim-

ilar in the two seasons. Overall vaccine uptake averaged over all age groups was

around 20% but there was a clear pattern of higher uptake rates with increasing

age. The vaccine uptake rate was only 10% for those aged under 65 but was over

70% for those aged 65+.

The various plots from Figure 7.3 illustrate that most vaccinations were given out

in the period of September to the end of November. Since the vaccine uptake rates

over time were very similar for the 2012–13 season, we have not included plots for

that season here. Essentially, any points made on vaccine uptake here regarding

the 2011–12 season can be echoed for the following season. From December, the

cumulative vaccine uptake rates were fairly constant showing that very few people

received vaccination after December. From Figure 7.3a, it is again evident that

vaccine uptake rates increased with increasing age and was particularly high for
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Age Group Vaccinated Patients Uptake (%) 95% CI

2011–12

0–5 161 8,952 1.80 1.54 – 2.09

6–15 731 17,244 4.24 3.74 – 4.80

16–44 4,041 59,448 6.80 6.18 – 7.48

45–64 8,277 44,087 18.77 17.52 – 20.10

65–74 10,882 15,229 71.46 68.80 – 73.97

75+ 9,409 12,066 77.98 75.56 – 80.22

Total 33,501 157,026 21.33 20.46 – 22.23

2012–13

0–5 173 9,921 1.74 1.45 – 2.09

6–15 745 18,601 4.01 3.46 – 4.63

16–44 4,362 63,922 6.82 6.21 – 7.50

45–64 8,752 48,356 18.10 16.93 – 19.33

65–74 12,196 16,991 71.78 67.91 – 75.35

75+ 10,124 12,983 77.98 75.86 – 79.96

Total 36,352 170,774 21.29 20.20 – 22.41

Table 7.3: Seasonal influenza vaccine uptake by age groups. The number of patients
vaccinated includes anybody that received vaccination in the period from
1st July up to 31st March in the following year.

those aged 65+. Although vaccine uptake rates were lowest for those living in

areas belonging to the most deprived quintile, there was no clear indication that

levels of deprivation had a large influence on vaccination rates as individuals in

deprivation quintile 2 (more deprived) had the highest vaccination rates. Those

with unknown deprivation had very low vaccine uptake. Part of the reason for this

was due to some of these individuals leaving their GP practice early in the study

period and if they got vaccinated after leaving their practice, their data would not

have been linked.

Patients in a risk group had much higher vaccination uptake compared to those

not belonging to a risk group as we would expect (Figure 7.3c). As well as this,

those that consulted with their GP for ILIARI more often within the previous

year appeared to be more likely to get vaccinated as depicted in Figure 7.3d.
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Furthermore, Figures 7.3e and 7.3f show that individuals who had previously been

vaccinated for pandemic influenza and those who received the seasonal influenza

vaccination within the previous year were much more likely to have been vaccinated

for seasonal influenza in the current season. A reason for this is due to the targeted

vaccination for those in a risk group – many of the individuals that were vaccinated

in the previous year or previously vaccinated for pandemic influenza would have

been in a risk group at that time and would remain in a risk group for the 2011–12

season as well. Vaccine uptake over the period was very similar for males and

females and by urban/rural classification (plots not shown).

Vaccine Uptake for Individuals At-Risk

Out of the group of at-risk individuals (which includes all patients aged 65+),

around 65% received the seasonal vaccine in each season (n = 30,167 in 2011–12

and n = 34,604 in 2012–13). Within the 0–64 age group, uptake varied between

around 30–55% for patients at-risk and was highest for those aged 44–64 (Ta-

ble 7.4).

Figure 7.4a shows that vaccine uptake for at-risk patients aged under 65 was almost

always lower than the uptake for those aged 65+ and the difference in uptake rates

began to accelerate rapidly from around mid-October. By the end of the season,

uptake was about 25–30% lower for those aged 0–64 at-risk than for those aged

65+. However, it is clear that vaccine uptake was much higher for those aged

0–64 at-risk than for all patients aged 0–64. Figure 7.4b illustrates a more vivid

pattern of higher uptake for individuals residing in less deprived areas when only

considering those at-risk compared with when looking at the whole cohort. Similar

patterns to what was observed in the analysis of vaccine uptake for all patients

emerged when examining vaccine uptake for only those at-risk split by number

of GP consultations for ILIARI within the previous year, any previous pandemic

influenza vaccination and having seasonal influenza vaccination within the previous

year (plots not shown).
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Figure 7.3: Vaccine uptake over time for the study period in the 2011–12 season (in-
cluding the 2 months prior to the starting date of the study) split by various
characteristics. Vaccine uptake patterns in the 2012–13 season were very
similar.
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Age Group Vaccinated
Patients
At-Risk

Uptake (%) 95% CI

2011–12

0–5 100 337 29.67 24.05 – 35.99

6–15 561 1,424 39.40 34.93 – 44.05

16–44 2,937 7,911 37.13 33.88 – 40.49

45–64 6,278 11,459 54.79 51.73 – 57.81

65–74 10,882 15,229 71.46 68.80 – 73.97

75+ 9,409 12,066 77.98 75.56 – 80.22

Total 30,167 48,426 62.30 60.04 – 64.49

2012–13

0–5 125 431 29.00 23.02 – 35.82

6–15 640 1,712 37.38 31.84 – 43.27

16–44 3,691 9,358 39.44 36.15 – 42.84

45–64 7,828 14,045 55.74 52.73 – 58.70

65–74 12,196 16,991 71.78 67.91 – 75.35

75+ 10,124 12,983 77.98 75.86 – 79.96

Total 34,604 55,520 62.33 59.79 – 64.80

Table 7.4: Seasonal influenza vaccine uptake by age groups for patients in risk groups.
The number of patients vaccinated includes anybody that received vacci-
nation in the period from 1st July up to 31st March in the following year.
Those aged 0–64 considered to be at-risk include care workers, those that are
pregnant and those that have at least one underlying illness. All individuals
aged 65+ were considered to be at-risk.

7.3.3 Consultations and Deaths

The percentages of patients from the cohort within different characteristic group-

ings that consulted with their GP for ARI, ILIARI or ILI in each season are

illustrated in Figure 7.5. Similar patterns on which types of patients consulted

were seen in both seasons but the percentages were higher in 2012–13.

Although the gender split in the cohort was almost even, a higher percentage of fe-

males consulted. Those aged 0–5 were most likely to have a consultation, especially

in 2012–2013 where over 30% of the cohort aged 0–5 consulted. This result can

be expected since respiratory infections are among the most common reasons for
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Figure 7.4: Vaccine uptake in 2011–12 over time for those in risk groups split by age
group (under 65 and 65+) and by deprivation quintile. Vaccine uptake
patterns in the 2012–13 season were very similar.

young children to consult [49]. Outwith infants, older patients generally consulted

more. The best indicator of patients having a consultation was if they consulted

within the previous year for ILIARI. Additionally, those in risk groups or with pre-

vious influenza vaccination were also more likely to have a consultation. Slightly

higher percentages of those from more deprived areas consulted but percentages

were similar by urban/rural classification.

Weekly numbers of consultations for ILI, ARI and ILIARI by whether or not the

individual was vaccinated or unvaccinated at the time of consulting are presented

in Figure 7.6; weekly deaths by the same criteria are also shown there. Note that

only data relating to complete weeks in the study periods were used for the plots.

Therefore, two days worth of data at the end of the 2011–12 study period was

omitted from the plot while six days worth of data at the end of the 2012–13

study period was omitted.

There were clearly not many ILI consultations in the 2011–12 season (58 for un-

vaccinated patients and 21 for vaccinated patients by the end of the study period).

This indicates that there was not very much influenza circulating in Scotland dur-

ing that season. Moreover, this gives an early indication that VE estimates should

be fairly low for 2011–12. Since there were so few consultations for ILI, we excluded
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Figure 7.5: Percentages of cohort patients within different groups that consulted. Con-
fidence intervals were calculated using Wilson’s method [3]. Note that the
y-axis scale varies by plot.
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using them as a clinical outcome in later analyses on VE for 2011–12. However, as

there were over 1,000 ILI consultations for the 2012–13 season, we could use them

to estimate VE for that season. Furthermore in 2012–13, there was a clear peak in

ILI consultations around January 2013 (Figure 7.6b). Weekly numbers of ARI and

ILIARI consultations were fairly consistent over time in 2011–12 except around

the holiday period (end of December and beginning of January) where more vari-

ability can be expected. In 2012–13, there was a noticeable increase in ARI and

ILIARI consultations from around December to February, particularly for ILIARI.

Over the seven month study period for 2011–12, there were 885 deaths, giving

us a crude death rate of 9.7 per 1,000 population per year (95% CI: 9.1–10.3).

In 2012–13, there were 1,005 deaths giving a crude death rate of 10.1 per 1,000

population per year (95% CI: 9.5–10.7). In both seasons, the crude death rates were

a little lower than the overall death rate in Scotland of 10.3 per 1,000 population

[130]. Figures 7.6g and 7.6h illustrate that from around mid-December, there

was a general trend of more weekly deaths from vaccinated individuals than from

unvaccinated individuals – this was particularly true for the 2011–12 season. This

pattern occurs because of the higher rates of vaccination in older individuals who

are also more at risk of death, particularly in winter.

7.3.4 Vaccine Effectiveness Estimates

The adjusted HRs of having ARI and ILIARI consultations in the 2011–12 season

are given in Table 7.5, while the adjusted HRs of having ARI, ILIARI and ILI

consultations in the 2012–13 season are shown in Table 7.6. To obtain the HRs,

two models were fitted – firstly a model without interaction between vaccination

and age group was used to derive HRs needed to obtain VE for all ages, and then

secondly a model including the interaction term was included to add in the HRs

required for age-specific VE estimates. Note that since the patients that had un-

known deprivation status were the same patients who had unknown urban/rural

category, we chose not to include both variables in the model as then estimates

would not be obtained for all coefficients due to the issue of perfect multicollinear-

ity. Therefore, only deprivation was used as this generally had a larger influence on
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Figure 7.6: Weekly numbers of GP consultations for ILI, ARI and ILIARI as well as
weekly numbers of all-cause deaths over time by whether or not patients
had received seasonal influenza vaccination prior to their consultation or
death. Only data for complete weeks in the study periods were used – two
days of data at the end of the 2011–12 period was omitted and six days of
data at the end of the 2012–13 period was omitted. Note that the y-axis
scale varies considerably by plot.
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results. The VE can be calculated from the HR comparing the vaccinated group

against the unvaccinated group, and the VE for those aged 0–64 and 65+ can be

derived from the HRs related to the interaction between vaccination and age.

For ARI consultations in 2011–12, the VE was estimated to be 4% (95% CI: −4%

to 11%); VE estimates against ARI were similar when splitting between those aged

0–64 and 65+. For the ILIARI consultation outcome, VE was slightly lower. VE

against ILIARI for all ages was −5% (−12% to 1%), and again, VE did not differ

much when looking separately at under 65s and 65+. Hence, for the two consul-

tation types with sufficient amounts of data for analysis in 2011–12, this method

produced very low VE estimates and none of the VEs were significant.

In the 2012–13 season, VE estimates were higher. VE against ARI consultations

for all ages was 11% (4% to 17%) and against ILIARI consultations, VE was 4%

(−2% to 10%). VE for these two consultation types was also similar when looking

at those aged 0–64 and 65+ separately. The highest VE estimates were obtained

when measured against ILI consultations where it was 39% (23% to 51%). For

ILI, estimates differed between those aged 0–64 and those aged 65+, with higher

VE estimates for those aged 0–64. VE for those aged 0–64 was 42% (28% to 54%)

and for those aged 65+, VE was 31% (−8% to 56%).

Besides VE, the HRs in Tables 7.5 and 7.6 also tell us the effect of the different

variables included in the model on the risk of having consultations. The effects

of variables were very similar for the two seasons for ARI and ILIARI so we can

focus on 2012–13 which has results for ILI consultations as well. There were

similarities for all three consultation types – males (compared with females) had

a significantly lower risk of having consultations; being in a risk group and having

ILIARI consultations within the previous year significantly increased the risk of

having consultations; deprivation had no major impact. However, there were also

some differences between ARI/ILIARI compared with ILI. Those aged 0–5 had

a significantly higher risk of having ARI/ILIARI consultations compared with

all other age groups, but there were no significant differences by age group for
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ARI ILIARI

HR 95% CI HR 95% CI

Vaccinated
No 1.00 1.00
Yes 0.96 0.89 – 1.04 1.05 0.99 – 1.12

Interactions
Age 0–64, Vacc 0.93 0.83 – 1.04 1.03 0.95 – 1.11
Age 65+, Vacc 1.03 0.96 – 1.10 1.08 0.99 – 1.17

Age Group
0–5 1.00 1.00
6–15 0.72 0.67 – 0.79 0.60 0.54 – 0.67
16–44 0.52 0.48 – 0.57 0.51 0.47 – 0.55
45–64 0.43 0.39 – 0.47 0.50 0.46 – 0.56
65–74 0.86 0.75 – 0.99 0.77 0.66 – 0.89
75+ 0.75 0.65 – 0.87 0.80 0.68 – 0.94

Gender
Female 1.00 1.00
Male 0.78 0.74 – 0.82 0.74 0.70 – 0.80

Risk Group
No 1.00 1.00
Yes 3.58 3.26 – 3.94 1.58 1.46 – 1.71

Dep Quintile
Most Deprived 1.00 1.00
2 1.04 0.94 – 1.16 1.03 0.92 – 1.15
3 1.10 0.97 – 1.25 1.11 0.96 – 1.27
4 1.07 0.96 – 1.19 1.03 0.92 – 1.15
5 1.00 0.76 – 1.32 0.92 0.73 – 1.17
Unknown 0.71 0.47 – 1.05 0.64 0.39 – 1.04

PY Seasonal Vacc
No 1.00 1.00
Yes 1.61 1.41 – 1.85 1.30 1.21 – 1.38

Prev Pandemic Vacc
No 1.00 1.00
Yes 1.25 1.10 – 1.44 1.17 1.07 – 1.27

PY ILIARI Cons
0 1.00 1.00
1 2.29 2.09 – 2.51 2.92 2.61 – 3.28
2+ 4.65 4.06 – 5.33 6.89 5.72 – 8.30

Table 7.5: Hazard ratios of having ARI and ILIARI consultations found from a Cox
proportional hazards regression model for season 2011–12. Vaccine effect
can be derived from the hazard ratio for the vaccinated group, and vaccine
effect for those aged 0–64 and 65+ can be found from the interaction terms.
Note that ILI consultations were not considered as there were not enough
ILI consultations recorded for the 2011–12 season.
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ARI ILIARI ILI

HR 95% CI HR 95% CI HR 95% CI

Vaccinated
No 1.00 1.00
Yes 0.89 0.83 – 0.96 0.96 0.90 – 1.02 0.61 0.49 – 0.77

Interactions
Age 0–64, Vacc 0.87 0.80 – 0.95 0.99 0.93 – 1.05 0.58 0.46 – 0.72
Age 65+, Vacc 0.92 0.84 – 1.01 0.93 0.84 – 1.03 0.69 0.44 – 1.08

Age Group
0–5 1.00 1.00
6–15 0.49 0.46 – 0.53 0.44 0.41 – 0.48 0.97 0.45 – 2.09
16–44 0.35 0.32 – 0.38 0.34 0.32 – 0.37 1.82 0.80 – 4.15
45–64 0.30 0.28 – 0.33 0.33 0.30 – 0.37 2.21 0.92 – 5.30
65–74 0.48 0.42 – 0.55 0.44 0.38 – 0.50 1.56 0.82 – 2.95
75+ 0.48 0.42 – 0.54 0.49 0.43 – 0.56 1.27 0.60 – 2.69

Gender
Female 1.00 1.00
Male 0.75 0.72 – 0.78 0.73 0.70 – 0.76 0.79 0.69 – 0.90

Risk Group
No 1.00 1.00
Yes 2.87 2.64 – 3.13 1.52 1.39 – 1.66 1.40 1.15 – 1.71

Dep Quintile
Most Deprived 1.00 1.00
2 0.99 0.93 – 1.04 0.98 0.92 – 1.04 0.97 0.71 – 1.33
3 0.99 0.92 – 1.06 0.96 0.88 – 1.04 0.82 0.55 – 1.21
4 0.95 0.87 – 1.04 0.90 0.81 – 1.01 0.92 0.61 – 1.39
5 0.91 0.80 – 1.03 0.84 0.77 – 0.93 0.89 0.54 – 1.46
Unknown 0.40 0.19 – 0.82 0.35 0.17 – 0.75 0.14 0.04 – 0.51

PY Seasonal Vacc
No 1.00 1.00
Yes 1.49 1.35 – 1.64 1.28 1.18 – 1.39 1.13 0.83 – 1.55

Prev Pandemic Vacc
No 1.00 1.00
Yes 1.19 1.08 – 1.30 1.11 1.04 – 1.18 1.17 0.94 – 1.46

PY ILIARI Cons
0 1.00 1.00
1 2.19 2.07 – 2.30 2.50 2.36 – 2.65 1.68 1.45 – 1.95
2+ 4.14 3.84 – 4.48 5.30 4.87 – 5.77 2.89 2.18 – 3.84

Table 7.6: Hazard ratios of having ARI, ILIARI and ILI consultations found from a
Cox proportional hazards regression model for season 2012–13. Vaccine
effect can be derived from the hazard ratio for the vaccinated group, and
vaccine effect for those aged 0–64 and 65+ can be found from the interaction
terms.
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ILI consultations. Moreover, those that received the seasonal vaccination within

the previous year and those that had previous pandemic influenza vaccination

were more at risk of having ARI/ILIARI consultations but the effects were not

significant for ILI.

All-Cause Deaths

HRs of all-cause death along with 95% confidence intervals, estimated from a Cox

model for both seasons are given in Table 7.7. Note that for the deaths outcome,

we used age groupings of 0–64 and 65+ in the model rather than the the smaller

age bands as there were no deaths in some of the smaller age groupings. A further

note is that in 2011–12, risk group was not included in the model as nobody aged

0–64 in a risk group died in that season.

In 2011–12, we found a positive VE for all ages of 24% (5% to 39%), and a slightly

higher VE of 34% (16% to 48%) when looking at those aged 65+. However, vac-

cinated patients aged 0–64 had a higher HR of death with negative VE of −206%

(−277% to −149%). This result is likely due to the fact that we examined VE

against deaths from any cause and perhaps, those aged under 65 who got vac-

cinated could have been more likely to have underlying health issues (negative

confounding) that we have not accounted for in the model. In the 2012–13 season,

the VE results followed the same pattern as the previous season, but VE estimates

were higher throughout: 46% (32% to 57%) for all ages; 52% (40% to 61%) for

age 65+; and −14% (−77% to 26%) for age 0–64.

The other HRs in Table 7.7 show that age (divided into 0–64 and 65+) and being

in a risk group had by far the largest effects on risk of all-cause death. Those

that had the the seasonal vaccine in the previous year and those that had ILIARI

consultations within the previous year also had a significant increase in risk of

death. Additionally, patients living in areas of higher deprivation had a significant

increase in risk of death, with differences found when comparing those from the

most deprived quintile against those from deprivation quintiles 3–5. The effect of

having previous pandemic vaccination differed in the two seasons – in 2012–13,
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2011–12 2012–13

HR 95% CI HR 95% CI

Vaccinated
No 1.00 1.00
Yes 0.76 0.61 – 0.95 0.54 0.43 – 0.68

Interactions
Age 0–64 and Vacc 3.06 2.49 – 3.77 1.14 0.74 – 1.77
Age 65+ and Vacc 0.66 0.52 – 0.84 0.48 0.39 – 0.60

Age Group
0–64 1.00 1.00
65+ 21.20 16.64 – 27.00 36.13 31.68 – 41.20

Gender
Female 1.00 1.00
Male 1.10 0.98 – 1.25 1.12 0.98 – 1.28

Risk Group
No 1.00
Yes 5.71 4.79 – 6.81

Dep Quintile
Most Deprived 1.00 1.00
2 1.05 0.83 – 1.33 0.98 0.77 – 1.24
3 0.74 0.58 – 0.94 0.74 0.62 – 0.89
4 0.62 0.49 – 0.78 0.69 0.57 – 0.84
5 0.65 0.53 – 0.79 0.77 0.61 – 0.96
Unknown 0.75 0.21 – 2.68 0.50 0.10 – 2.51

PY Seasonal Vacc
No 1.00 1.00
Yes 1.48 1.20 – 1.82 1.53 1.21 – 1.94

Prev Pandemic Vacc
No 1.00 1.00
Yes 1.15 0.96 – 1.37 1.22 1.06 – 1.40

PY ILIARI Cons
0 1.00 1.00
1 1.38 1.12 – 1.69 1.32 1.12 – 1.56
2+ 2.32 1.77 – 3.04 1.91 1.65 – 2.21

Table 7.7: Hazard ratios of all-cause death from a Cox proportional hazards regression
model. Vaccine effect can be derived from the hazard ratio for the vaccinated
group, and vaccine effect for those aged 0–64 and 65+ can be found from
the interaction terms.
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those that had the pandemic vaccine were significantly more at risk of death but

the effect was not significant in 2011–12. Gender had no significant effect on the

risk of death.

7.3.5 Pre/During Influenza Season Analysis

With seemingly little influenza activity in 2011–12, we performed the pre/during

influenza season analysis only on the 2012–13 season. This analysis added a time

period factor (pre-influenza: 1st September to 31st October 2012; during influenza:

1st November 2012 to 31st March 2013) into the Cox model which was included

as an interaction with vaccination and the results are shown in Table 7.8. The re-

sults show that there was no VE (low or negative VE with 95% CIs spanning zero)

against any of the consultation types in the pre-influenza period and this is the

expected result when little-to-no influenza was circulating. However, we found a

positive VE against all-cause death for those aged 65+ in the pre-influenza period

(VE: 24.2%; −15.5% to 50.3%), which is indicative of residual bias. VE estimates

found for the during influenza period were very similar to those found using the

whole study period.

We also obtained VE estimates adjusted for the amount of bias found in the pre-

influenza period by assuming that the level of bias found in the pre-influenza period

remained consistent during the influenza season for all outcomes. This produced

positive VE estimates for all outcomes – against ARI, ILIARI and all-cause death,

VE was around 20–40% (except ARI for those aged 65+ where VE was low);

against ILI, VE was high with estimates above 70% for all ages and for those aged

65+, while VE was just under 50% for those aged 0–64. A notable point is that

the adjustment increased VE for all estimates except against ARI for those aged

65+ and against all-cause death for all ages and in particular, those aged 65+.

Modelling an Unobserved Confounder

As the results from our pre/during influenza season analysis indicated that there

was a VE against all-cause mortality in those aged 65+ in the pre-influenza period,

we decided to model the effect of an unobserved confounder (smoking – yes/no) for
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that outcome in that age group. Figure 7.7 illustrates that additionally including

the effect of smoking (under the assumption that smoking increases the risk of all-

cause mortality by 2.8 times) would reduce the observed VE estimate. For the pre-

influenza estimates, we could theoretically say that this would remove some of the

residual bias as we expect VE close to zero. In particular, increasing the prevalence

of smoking among unvaccinated compared with vaccinated individuals reduces VE.

However, even with a 95% prevalence of smoking among unvaccinated individuals

and 20% prevalence of smoking among vaccinated individuals, a positive VE was

still observed in the pre-influenza period, which suggests that further adjustment

would still be needed to remove bias from the VE estimate. Our data lacked

information on long-term health conditions for those aged 65+, and it is likely

that details on those would help to remove more bias from the VE estimates

against all-cause mortality.

7.3.6 Propensity Scores

To keep the analysis more concise, we only used the 2011–12 data to report the

results related to the development of the PS model and covariate balance checks.

However, we report the PS-adjusted VE estimates for both seasons. This does not

lead to much loss of information as most of the results in the intermediate steps

leading to PS-adjusted VE estimates in the 2012–13 season were almost identical

to the 2011–12 season.

In order to model the propensity for individuals to get vaccinated, it was first

necessary to choose an appropriate cut-off date for influenza vaccination. As was

previously mentioned in Section 7.3.2, vaccine uptake largely ceased after the end

of November and for this reason, we chose 30th November 2011 as the cut-off date

for modelling each person’s probability of getting vaccinated. Only 1.7% of pa-

tients (n = 2,746) were vaccinated after the cut-off date. Hence, using this date

for the model is appropriate as we want to capture the characteristics of those

individuals that get vaccinated reasonably early rather than capturing the charac-

teristics of those that get vaccinated late. The vaccine uptake pattern over time

was similar in the 2012–13 season, and so we used 30th November 2012 as the
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Figure 7.7: Vaccine effect estimates against all-cause death for those aged 65+ in the
pre/during influenza season analysis after adjusting for an additional sim-
ulated unobserved confounder in a Cox proportional hazards model. The
shaded areas give the 95% confidence interval around vaccine effect esti-
mates. Previous research found an odds ratio of around 2.8 for all-cause
death among smokers compared with non-smokers [203] and so the sim-
ulated confounder here mimicked this. The smoking prevalence among
vaccinated individuals was fixed at 20% but the prevalence among unvac-
cinated patients was allowed to vary from 30% to 95% in 5% intervals.

cut-off date to construct the PS model for that season.

Table 7.9 gives the estimates from the GAMMs used to model propensity to vac-

cinate for patients aged 0–64 and 65+. To give us further reassurance that the

cut-off date chosen was appropriate, we also ran the model using the end of the

influenza season (31st March 2012) as the cut-off date for vaccination and found

that this had only minimal impact on the estimated coefficients (results not shown).

The factors which appeared to be influential in getting vaccinated differed be-

tween the two age groups. For those aged under 65, individuals who had seasonal

influenza vaccination within the previous year, those that had any previous pan-

demic influenza vaccination, and as expected, those that belonged to a risk group
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Age 0–64 Age 65+

OR 95% CI OR 95% CI

(Intercept) 0.01 0.01 – 0.02 0.27 0.23 – 0.31
Gender

Female 1.00 1.00
Male 0.88 0.84 – 0.92 1.01 0.94 – 1.08

Risk Group
No 1.00
Yes 8.16 7.77 – 8.58

Dep Quintile
Most Deprived 1.00 1.00
2 1.09 1.01 – 1.18 1.10 0.98 – 1.23
3 1.05 0.97 – 1.14 1.13 1.00 – 1.28
4 0.94 0.86 – 1.02 1.20 1.06 – 1.37
5 1.07 0.98 – 1.17 1.40 1.21 – 1.60
Unknown 0.60 0.44 – 0.82 0.20 0.13 – 0.29

PY Seasonal Vacc
No 1.00 1.00
Yes 13.78 13.08 – 14.53 26.16 24.17 – 28.31

Prev Pandemic Vacc
No 1.00 1.00
Yes 2.77 2.62 – 2.93 1.77 1.61 – 1.95

PY ILIARI Cons
0 1.00 1.00
1 1.35 1.25 – 1.46 1.13 0.99 – 1.28
2+ 1.63 1.48 – 1.80 0.95 0.81 – 1.12

Random Effects SD SD

GP Practice 0.37 0.32 – 0.44 0.24 0.15 – 0.36
Residual 0.87 0.87 – 0.88 1.00 0.99 – 1.01

Table 7.9: Estimates from the GAMM used to model propensity scores for vaccination.
A binary response variable was created by considering those that did and did
not receive seasonal influenza vaccination by 30th November 2011. Random
intercepts were used for GP practice.
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were much more likely to be vaccinated. In addition to this, those consulting with

their GP for ILIARI at least once within the previous year were also more likely to

be vaccinated while males were slightly less likely to get vaccinated than females.

Deprivation had no significant impact on the likelihood of getting vaccinated; the

only conclusion we could draw was that those with unknown deprivation were much

less likely to get vaccinated which we found previously. Figure 7.8a illustrates the

propensity to vaccinate by age for those aged 0–64, adjusted for the other factors

included in the model. The propensity to vaccinate generally increased with age

but in a non-linear fashion. In particular, the probability of vaccination was lowest

for children and infants, but increased sharply for individuals after about 50 years

of age.

(a) Ages 0–64 (b) Ages 65+

Figure 7.8: Plots of the smooth functions used for age in the GAMMs used to model
propensity scores for vaccination. The shaded areas show the 95% confi-
dence intervals (Bayesian credible intervals) and the rug plots at the bot-
tom give an idea about the number of data points at each x-value.

For those aged 65+, gender and having consulted with a GP for ILIARI within the

previous year did not play a significant role in getting vaccinated (see Table 7.9).

Similarly to the model for those aged 0–64, having been vaccinated within the

previous year for seasonal influenza and having previous vaccination for pandemic

influenza were highly significant. A difference for this age group was that depriva-

tion appeared to have an effect on vaccination, with individuals from deprivation
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quintiles 4–5 being more likely to get vaccinated compared with those from the

most deprived quintile. In fact, for patients aged 65+, more deprivation generally

lowered the probability of vaccination. The probability of vaccination decreased

sharply beyond about the age of 85 (see Figure 7.8b). The explanation for this

could be that the oldest and most frail individuals are less likely to get vaccinated

as they may have serious health issues which would reduce the beneficial effect of

the vaccination. From the standard deviation estimate for the random effect of

GP practice (bottom of Table 7.9), we can see that there was more variation by

GP practice in the model for those aged 0–64 than for those aged 65+, which is

to be expected as all individuals aged 65+ are targeted for vaccination.

Distributions of Propensity Scores

The histograms in Figure 7.9 illustrate the differing distributions of propensity

scores between patients aged 0–64 not in a risk group, patients aged 0–64 in a risk

group and those aged 65+. To create pairs of matched vaccinated-unvaccinated

individuals, the first criteria is that they must have similar PS. Thus, the his-

tograms for vaccinated and unvaccinated individuals have been overlaid on top of

each other so that it is easy to discern PS ranges that are covered by vaccinees and

non-vaccinees. These areas of overlap signal PS ranges where matches can be made

based on PS. For those aged 0–64 not in a risk group, the overwhelming majority

had extremely low propensity scores and very few got vaccinated (Figure 7.9a).

Hence most of the unvaccinated individuals aged 0–64 will not be matched.

For those aged 0–64 in a risk group, there were also many people who got vacci-

nated despite having reasonably low propensity scores for vaccination which can

be seen in Figure 7.9b. This most likely comprises individuals who require vacci-

nation for occupational reasons while their demographic and health characteristics

would suggest that they would not have a high propensity for vaccination. This

includes, for example, carers and healthcare workers who require vaccination as

they may need to have close contact with vulnerable patients but are otherwise,

not at any increased risk of adverse outcomes from influenza.
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Figure 7.9: Histograms of propensity scores for vaccinated and unvaccinated individ-
uals split by age groups 0–64 and 65+. The propensity scores give the
probability of being vaccinated based on the observed background vari-
ables related to patients. The histograms for vaccinated and unvaccinated
individuals have been overlaid on top of each other. The parts of bars that
overlap are filled in a blue-red (violet) colour and this shows propensity
score ranges where there are vaccinated and unvaccinated individuals with
similar scores.
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The PS model for patients aged 65+ did not distinguish between vaccinees and

non-vaccinees as clearly as the model for those aged under 65. In particular, a

group of individuals with a high propensity to get vaccinated did not actually

get the vaccine (Figure 7.9c). These people may be a group of old and frail

individuals who are less likely to get vaccinated (as we mentioned previously) but

their background characteristics were similar to the majority of patients that have

high propensity to get vaccinated.

ROC Curves

Figure 7.10 shows the receiver operating characteristic (ROC) curves for the propen-

sity score models. The ROC curves reinforce some of the conclusions drawn earlier

from the histograms in Figure 7.9. These are that the model excellently discrimi-

nated between vaccinees and non-vaccinees for the 0–64 age group. The area under

the curve (AUC) which gives a measure of the discriminatory ability of the model

reinforces this point with a very high value of 0.941. The high level of discrimi-

nation is largely due to the separation achieved by using risk group and variables

associated with risk group status such as numbers of consultations in the previous

year. The model for those aged 65+ also discriminated very well but not quite as

clearly as for the 0–64 age group (AUC: 0.865). The slightly poorer performance

could be due to not having a variable to split those aged 65+ in terms of risk

severity like we could for those aged 0–64.

7.3.7 Propensity Score Matching

The histograms of propensity scores displayed previously in Figure 7.9 showed that

there were many instances where it would not be possible to match vaccinated in-

dividuals to unvaccinated individuals based on propensity score. This is due to a

lack of unvaccinated individuals with suitably similar scores within some ranges

of propensity score. We can observe that there were not enough unvaccinated

individuals aged 0–64 with propensity scores above approximately 0.5 to match

to vaccinated individuals with similar scores. Similarly, there were not enough

unvaccinated individuals to match against vaccinated individuals aged 65+ with

propensity scores above around 0.7. The matched sample contained 13,948 indi-
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(a) Ages 0–64 (b) Ages 65+

Figure 7.10: ROC curves for the propensity score models split by age groups 0–64
and 65+. The area under the curve (AUC) measures the discriminatory
ability of the model. This tests how well the model correctly classifies
those who get vaccinated and those who do not get vaccinated.

viduals aged 0–64 (10.8% of the 0–64 cohort; 6,974 pairs of matches), and 7,544

individuals aged 65+ (27.6% of the 65+ cohort; 3,772 pairs of matches).

Covariate Balance After Matching

Figure 7.11 depicts the level of balance achieved in the covariates between vacci-

nated and unvaccinated individuals before and after matching by propensity scores.

The standardised differences for all variables were below 10% after PS matching

for those aged 0–64 which suggests that a good level of balance had been achieved

in all of the background covariates (risk group was 0% after matching as this was a

necessary condition in matching). In age group 65+ (Figure 7.11b), standardised

differences for all variables were also well below 10% after matching.

Vaccine Effect After Matching

The VE estimates for the two seasons after PS matching are given in Table 7.10.

On the whole, VE estimates were lower than what was found before when using all

patients in a Cox model, and this was generally true for both seasons. In addition

to this, there were larger confidence intervals due to the large reductions in sam-
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Figure 7.11: Standardised differences for background covariates between vaccinated
and unvaccinated individuals before and after propensity score matching.
The red dashed line shows a standardised difference of 10% which can be
considered as a cut-off between a negligible and non-negligible difference
between the two groups of patients. The numbers above the horizontal
lines for covariates show the values of standardised difference before (left
side number) and after matching (right side number) for each covariate.
For instance, for those aged 0-64, the standardised difference in age be-
tween vaccinated and unvaccinated individuals before matching was 78.2
and after matching, it was 0.2.
Depriv: Deprivation; PY: Previous year; Vacc: Vaccination;
Cons: Consultations; PS: Propensity score
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ple size. For the ARI consultations outcome, all VE estimates were negative and

ranged from around −9.6% to −13.1%. The ILIARI estimates were slightly higher

than the ARI estimates, with the exception of when looking at only those aged

65+ where VE was −10.7% (95% CI: −30.1% to 5.8%). For the death outcome, we

found a positive VE when looking at all ages (35.2%; 14.3% to 51%), but a large

negative VE for those aged 0–64 (−242.9%; −695.7% to −47.7%). The highest VE

was found for those aged 65+ when measured against all-cause mortality (51.7%;

33.7% to 64.8%).

2011–12 2012–13

VE (%) 95% CI VE (%) 95% CI

ARI

All Ages −12.4 −20.2 to −5.1 −13.8 −20.8 to −7.3

Age 0–64 −13.1 −22.0 to −4.9 −15.1 −23.1 to −7.6

Age 65+ −9.6 −26.8 to 5.3 −9.5 −24.3 to 3.4

ILIARI

All Ages −9.8 −20.3 to −0.1 −13.3 −22.1 to −5.2

Age 0–64 −9.3 −22.2 to 2.2 −16.2 −27.1 to −6.3

Age 65+ −10.7 −30.1 to 5.8 −6.8 −22.4 to 6.9

ILI

All Ages 20.0 −11.1 to 42.4

Age 0–64 25.4 −7.6 to 48.3

Age 65+ −7.7 −129.1 to 49.4

All-Cause Death

All Ages 35.2 14.3 to 51.0 60.6 48.1 to 70.0

Age 0–64 −242.9 −695.7 to −47.7 0.0 −95.9 to 48.9

Age 65+ 51.7 33.7 to 64.8 66.9 54.9 to 75.6

Table 7.10: Vaccine effect estimates after propensity score matching. The matching
method used was nearest available Mahalanobis metric matching within
calipers defined by the propensity score. Matching was based on the logit
propensity score, age and risk group (only for those aged 0–64).

In the 2012–13 season, the PS-matched VE estimates against the ARI and ILIARI

outcomes were again all negative, but we obtained positive VE estimates for the

ILI outcome except for those aged 65+. Against ILI consultations, VE for all
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ages was 20% (−11.1% to 42.4%); for those aged 0–64, VE was 25.4% (−7.6% to

48.3%); and for those aged 65+, VE was −7.7% (−129.1% to 49.4%). We also

found positive VE estimates against the death outcome for all ages and those aged

65+; for those aged 0–64 there was no VE (0%). This can be contrasted to all

other VE estimates against all-cause death found so far for those aged 0–64 where

we had always estimated a large negative VE.

7.3.8 Propensity Score Stratification

Having created a model to estimate the propensity to vaccinate for each individ-

ual, systematic differences between individuals in the vaccinated and unvaccinated

groups can also be controlled for by stratification on the PS. In an effort to re-

move some bias, the combined group of all vaccinated and unvaccinated individuals

were used to create ten strata (deciles) with the cut-offs being determined by using

the deciles of the PS. Essentially, covariates within these deciles should be more

balanced between vaccinees and non-vaccinees than without stratification.

Covariate Balance Within Strata

To check covariate balance, we again used standardised differences to compare

vaccinated and unvaccinated individuals on covariates within strata. Note that

some comparisons could not be made within strata as there were no people in the

vaccinated group within some strata-variable combinations. Compared with PS

matching, the level of covariate balance achieved is expected to be less here since

all patients are kept in PS stratification. This is what we found as some strata still

had fairly large standardised differences for a number of covariates. For instance,

in age group 0–64, there were many gender imbalances within PS deciles and

there were also imbalances for the deprivation and previous seasonal and pandemic

vaccination variables (Table 7.11). Nevertheless, stratification of individuals into

deciles using the PS achieved some degree of balance as compared with before

(see Figure 7.11 for standardised difference values before any PS adjustment).

Furthermore, adjustment for age group and risk group (risk group was included

in the model for those aged 0–64 only) in the PS stratification model should help

alleviate some concerns with regards to levels of covariate balance.
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Age Gender
Dep

Quint
Risk

Group

PY
Seas
Vacc

Any
Pand
Vacc

PY
ILIARI

Cons

Age 0–64

Decile 1 18.2 2.0 35.9 5.4 23.4

Decile 2 10.6 47.0 28.6 12.9 19.9

Decile 3 5.4 44.3 31.7 15.4 18.9

Decile 4 23.8 41.1 18.6 16.9 11.9

Decile 5 11.8 31.2 17.8 3.3 23.1

Decile 6 7.1 34.6 20.7 3.9 13.6

Decile 7 14.0 18.6 25.4 1.8 25.2 25.1

Decile 8 21.6 2.2 33.8 30.6 2.9 32.9 9.9

Decile 9 16.3 1.1 0.9 4.0 20.3 7.4 4.4

Decile 10 19.1 12.1 3.9 11.6 58.6 24.9 2.3

Age 65+

Decile 1 1.7 5.0 54.1 4.2 20.9

Decile 2 9.5 1.3 6.8 12.9

Decile 3 2.7 7.5 23.2 3.3 42.2 6.1

Decile 4 8.0 3.5 11.8 20.7 13.1 11.6

Decile 5 10.8 5.1 11.7 12.9

Decile 6 3.7 4.1 23.5 4.1

Decile 7 6.7 1.9 17.9 11.6

Decile 8 15.7 5.7 1.9 18.9

Decile 9 14.2 5.0 15.7 10.9

Decile 10 17.0 8.5 9.4 8.7

Table 7.11: Covariate balance checks after propensity score stratification. All numbers
are standardised differences (in %s) comparing the characteristics of vacci-
nated and unvaccinated patients within strata (deciles). Some comparisons
could not be made due to there being zero counts.
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Vaccine Effect After Stratification

A logistic regression model with random intercepts for GP practice and vaccina-

tion status, age group and risk group along with PS deciles as covariates was used

to estimate VE. The estimates are summarised in Table 7.12. Note that estimates

for all ages were not obtained as we used separate PS models for age groups 0–

64 and 65+, and unlike with PS matching, we cannot stratify within matched pairs.

VE estimates against all-cause death followed the same patterns as found previ-

ously with other methods in both seasons. Moreover, in the 2011–12 season, the

VE estimates against ARI and ILIARI consultations were also similar but slightly

lower to what was found previously. For the 2012–13 season the results were a

little different to what we got from PS matching. Here, we found a positive VE

estimate against ARI consultations when looking at those aged 65+ (5.8%, −6.2%

to 16.4%).

2011–12 2012–13

VE (%) 95% CI VE (%) 95% CI

ARI

Age 0–64 −20.2 −30.2 to −11.0 −11.3 −19.2 to −3.9

Age 65+ −9.5 −23.3 to 2.8 5.8 −6.2 to 16.4

ILIARI

Age 0–64 −27.7 −37.0 to −18.9 −22.7 −30.9 to −15.0

Age 65+ −18.6 −39.3 to −1.0 2.3 −13.0 to 15.5

ILI

Age 0–64 37.7 22.2 to 50.1

Age 65+ 14.7 −62.6 to 55.3

All-Cause Death

Age 0–64 −189.2 −360.6 to −81.6 −27.7 −97.4 to 17.4

Age 65+ 34.1 17.5 to 47.4 52.3 41.3 to 61.2

Table 7.12: Vaccine effect estimates after propensity score stratification. Patients were
split into strata according to the propensity score deciles they belonged to.
The model used to derive vaccine effect adjusted for propensity score decile,
age group and risk group (risk group was included in the model for those
aged 0–64 only).



Chapter 7. IVE Scotland 340

Summary of VE Estimates Derived from Cox Models

At this point, we have used Cox proportional hazards models to derive numerous

estimates of VE against consultations and all-cause mortality for all ages and split

by those aged 0–64 and 65+. As we already have so many VE estimates and the

remaining analyses in this chapter uses other types of models to estimate VE, it

is useful to summarise the main results so far. There were insufficient ILI consul-

tations to derive VE estimates against that outcome in 2011–12 and in general,

VE was difficult to measure for that season as there was not much influenza in

circulation. Hence, in Table 7.13, we have summarised VE estimates against the

most specific consultation type (ILI) and all-cause mortality for the 2012–13 season

only. This allows us to easily compare the estimates from the different methods

that all used the Cox model in eventuality.

As we would expect, VE was similar for the Cox-adjusted method taken for the

whole season and for the during influenza season analysis as the latter analysis

was identical, with the exception of removing September and October 2012. Ad-

justing for levels of bias found in the pre-influenza season in VE estimates resulted

in higher estimates except against all-cause death for those aged 65+ where the

adjustment reduced VE. Using PS methods resulted in lower VE estimates against

consultations for ILI, particularly using the PS matching method. Since PS match-

ing considerably reduced the number of patients and changed the methodology to

comparing effects within matched pairs, it is not surprising for this method to pro-

duce estimates that differed from the other methods which used the whole cohort.

No VE was found against ILI in the pre-influenza period. However, as positive

VE estimates were obtained against all-cause mortality for those aged 65+ in the

pre-influenza period, this strongly indicates that there was insufficient adjustment

for confounding factors in that age group.

7.3.9 Screening Method

For the screening method analysis, we examined consultations over the two month

period with most influenza activity in the 2012–2013 season (according to numbers

of ILI consultations), which were January and February 2013. This time period
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for consultations was also chosen as we know from results in Section 7.3.2 that

vaccine coverage did not change much after the end of November. Hence, vaccine

coverage was estimated as at 31st December 2012 and as at 30th November 2012.

Using vaccine coverage as at the end of November for examining consultations from

January/February 2013 allows us to observe how sensitive VE estimates from the

screening method are to underestimates of vaccine coverage.

The VE estimates obtained from the screening method are given in Table 7.14.

The estimates were lower compared with those found previously in Cox models

(especially for ARI and ILIARI consultations) and positive VE estimates were only

produced from ILI consultations. Furthermore, VE was highly sensitive to slight

changes in vaccine coverage – for instance, VE from ILI with vaccine coverage

taken at the end of December was 16.3% (−224.3% to 78.4%) while if vaccine

coverage was taken at the end of November, VE decreased to 7.5% (−235.7% to

74.5%).

Cons
Type

Cons
Vacc
Cons

% Vacc
Cons

Vacc
Cov

VE (%) 95% CI

ARI 10,826 3,689 34.1 Dec 31 −112.4 −164.6 to −70.4

ARI 10,826 3,689 34.1 Nov 30 −133.1 −189.9 to −87.5

ILIARI 8,771 2,552 29.1 Dec 31 −76.1 −130.5 to −34.5

ILIARI 8,771 2,552 29.1 Nov 30 −93.5 −152.0 to −48.5

ILI 623 115 18.5 Dec 31 16.3 −224.3 to 78.4

ILI 623 115 18.5 Nov 30 7.5 −235.7 to 74.5

Table 7.14: Vaccine effect estimates for 2012–13 from the screening method. The con-
sultations were taken over the two months with most influenza activity
(January and February 2013). Total consultations over the period for each
type are shown on the table but for the screening method, these were
broken down by GP practice, gender, age group and risk group. Vaccine
coverage (broken down by the same groups) was estimated at the end of
December 2012 and at the end of November 2012.
Cons: Consultations
Vacc Cons: Consultations from vaccinated patients
Vacc Cov: Vaccine coverage
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7.3.10 Virology

With little influenza circulating in 2011–12, virology data was available for only

327 patients, but a much larger amount of virology data was available for the

2012–13 season (n = 846). Table 7.15 summarises the demographic characteris-

tics of patients that were tested and also gives the number of patients that tested

positive for specific types of influenza as well as the number that tested negative.

More females were tested than males (54% vs 46% in 2011–12; 59% vs 41% in

2012–13) and nearly 90% of tests were on those aged under 65 in both seasons.

A lot of tests were on infants aged 0–5 (almost 30% in 2011–12 and around 20%

in 2012–13). These results fit with the patterns seen previously when examining

those that consulted in the cohort (Figure 7.5). However, the percentage of tests

which were on those aged 0–5 in 2011–12 is still very high which may indicate

some bias in testing. There were also more tests from people living in urban and

more deprived areas. In both seasons, around one fifth of people tested had the

seasonal vaccine within the previous year, and around the same amount had pre-

viously been vaccinated for pandemic influenza. Almost three quarters of those

tested in 2011–12 did not have any ILIARI consultations within the previous year;

in 2012–13, the figure was slightly lower at around 70%.

The vast majority of virology tests were negative in 2011–12 and therefore, there

was a low positivity rate of 6.7% (n = 22). However, the positivity rate was much

higher in 2012–13 (22.3%, n = 189). Influenza A and AH3 were more common in

2011–12 but influenza B was most commonly detected in 2012–13.

Virology VE Estimates

Table 7.16 displays the virology test results by whether or not individuals were

vaccinated at the time when they were tested (specifically vaccinated at least two

weeks prior to testing to allow for the period of time where immunity builds). At

the time of testing, most patients were unvaccinated (81%, n = 265 in 2011–12;

80.5%, n = 681 in 2012–13).
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2011–12 2012–13

Variable Group n (%) n (%)

Gender Female 175 (53.52) 495 (58.51)

Male 152 (46.48) 351 (41.49)

Age Group 0–5 98 (29.97) 165 (19.50)

6–15 26 ( 7.95) 72 ( 8.51)

16–44 98 (29.97) 311 (36.76)

45–64 65 (19.88) 207 (24.47)

65–74 25 ( 7.65) 58 ( 6.86)

75+ 15 ( 4.59) 33 ( 3.90)

Risk Group No 246 (75.23) 609 (71.99)

Yes 81 (24.77) 237 (28.01)

Deprivation Quintile Most Deprived 84 (25.69) 295 (34.87)

2 80 (24.46) 227 (26.83)

3 61 (18.65) 164 (19.39)

4 53 (16.21) 96 (11.35)

5 47 (14.37) 58 ( 6.86)

Unknown 2 ( 0.61) 6 ( 0.71)

Urban/Rural Urban 232 (70.95) 744 (87.94)

Small Towns 47 (14.37) 59 ( 6.97)

Rural 46 (14.07) 37 ( 4.37)

Unknown 2 ( 0.61) 6 ( 0.71)

Prev Year Seasonal Vacc No 256 (78.29) 679 (80.26)

Yes 71 (21.71) 167 (19.74)

Any Pandemic Vacc No 256 (78.29) 676 (79.91)

Yes 71 (21.71) 170 (20.09)

Prev Year ILIARI Consultations 0 243 (74.31) 594 (70.21)

1 40 (12.23) 137 (16.19)

2+ 44 (13.46) 115 (13.59)

Influenza Test Result A 9 ( 2.75) 27 ( 3.19)

AH3 10 ( 3.06) 77 ( 9.10)

B 3 ( 0.92) 85 (10.05)

Negative 305 (93.27) 657 (77.66)

Table 7.15: Counts and proportions for patients that had a virology test by various
characteristics. The test results for patients are also shown and for patients
that tested positive, the type of influenza they tested positive for is given.
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Vaccinated Unvaccinated Total

2011–12

Positive 4 18 22

Negative 58 247 305

Total 62 265 327

2012–13

Positive 31 158 189

Negative 134 523 657

Total 165 681 846

Table 7.16: Cross tabulation of virology test result against whether or not a patient
was vaccinated before testing. The definition of a patient being vaccinated
before testing used here meant that the patient was tested a minimum of
two weeks after the date they got vaccinated.

The unadjusted ORs and corresponding 95% CIs were obtained by considering the

counts in Table 7.16 as two separate 2×2 tables (one for each season). In 2011–12,

the OR was 0.95 with 95% CI: 0.31 to 2.9. This corresponds to an unadjusted VE

of 5% (−190% to 69%) and hence, that vaccinated and unvaccinated individuals

were almost equally likely to have a positive test for influenza. Furthermore, the

CI was wide due to the small quantity of virology data available for that season.

The virology figures for 2012–13 suggest that the vaccine was more effective in

that season. The OR was 0.77 with 95% CI: 0.5 to 1.19, corresponding to a VE

of 23% (−19% to 50%).

Generalised Additive Logistic Model

An adjusted VE estimate was obtained by using a GAM with days since first virol-

ogy test modelled by a cubic spline function to adjust for changes in swab positivity

over time. Initially, the model included seven covariates: days since first virology

test, vaccination status, age group, gender, any GP consultations within the previ-

ous year, risk group status and deprivation quintile. However we wanted the most

parsimonious model that includes age (retained since testing rates varied consid-

erably by age group), the time factor and vaccination status. Only these three
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factors were kept in the final model as all other covariates were found to be not

statistically significant – the results from the final model can be seen in Table 7.17.

The time factor was significant in both seasons and from Figure 7.12, we can see

how the pattern of swab positivity changed over time. In 2011–12, the probability

of a positive test generally increased over the time period. However, the pattern

in 2012–13 was much different – the peak in probability of testing positive was

reached around the middle of the period (coinciding with the time when there

were most ILI consultations) and then fell steadily towards the end of the period.

From the GAM, the VE estimate in 2011–12 was −88.2% (−769% to 59.3%),

and in 2012–13, VE was 23.4% (−30.2% to 54.9%). In particular, the virology

VE estimate for 2012–13 is in line with VE estimates found earlier against ILI

consultations.
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Figure 7.12: Plots of the smooth functions used to model days since first test in the
GAM virology models. The shaded area shows the 95% confidence inter-
vals (Bayesian credible intervals). A rug plot which gives an idea about
the numbers of data points at each x-value is displayed at the bottom.

7.4 Discussion

Seasonal influenza vaccine effect estimates for seasons 2011–12 and 2012–13 in

Scotland have been provided in this study. The main goals were not only to

provide VE estimates for Scotland but also to better understand how estimates
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2011–12

OR 95% CI p

(Intercept) 0.03 0.01 – 0.10 < 0.001

Vaccinated at Test

No 1.00

Yes 1.88 0.41 – 8.69 0.418

Age Group

0–5 1.00

6–15 3.44 0.84 – 14.09 0.086

16–44 0.85 0.27 – 2.70 0.781

45–64 0.14 0.01 – 1.43 0.097

65+ 0.20 0.02 – 2.45 0.207

edf (Ref df) χ2 p

s(Days) 2 (2) 23.35 < 0.001

2012–13

OR 95% CI p

(Intercept) 0.14 0.09 – 0.23 < 0.001

Vaccinated at Test

No 1.00

Yes 0.77 0.45 – 1.30 0.325

Age Group

0–5 1.00

6–15 4.36 2.17 – 8.76 < 0.001

16–44 1.14 0.67 – 1.95 0.632

45–64 1.35 0.77 – 2.39 0.296

65+ 1.08 0.44 – 2.66 0.864

edf (Ref df) χ2 p

s(Days) 3 (3) 70.66 < 0.001

Table 7.17: Odds ratios from the GAM using virology data. Days since first virology
test was modelled using a cubic spline function. The time trend, age group
and vaccination status have been kept in the model but all other covariates
tested were not statistically significant so were dropped.
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of VE vary by methodologies applied, study designs employed, and clinical out-

comes used to measure VE against. Estimations were made against five different

clinical outcomes – ARI, ILIARI and ILI consultations, all-cause mortality and

virology test results obtained from a subset of patients in the cohort who were

swabbed. ARI consultations contained within them some of the clinical codes for

ILI consultations and ILIARI was identical to ARI but excluded asthma-related

consultations.

It is important to use a range of outcomes to measure VE as each has their advan-

tages and disadvantages. In particular, these outcomes vary fairly substantially in

their levels of specificity for measuring influenza VE. Certain types of consultations

such as ARI/ILIARI are plentiful due to the wide variety of respiratory illnesses

they cover. However these consultation types have low specificity for influenza and

many individuals consulting with their GP for symptoms related to ARI/ILIARI

will not actually have influenza, but will instead have other respiratory illnesses.

On the other hand, ILI consultations are rarer as they are much more specific to

influenza rather than other respiratory infections.

Another issue to be aware of is that correct recording of consultation types

may vary by GP practice in Scotland, especially ILI consultations. It is conceiv-

able that ILI consultations were under-recorded in some practices as those with

influenza but presenting to their GP with milder symptoms may have been diag-

nosed as having ARI/ILIARI instead. The virology data provides the outcome

with highest specificity and we very briefly explored the possibility of misclassi-

fied ILI consultations by using the virology data. We found that around 7% of

patients in 2012–13 with laboratory-confirmed influenza had a consultation for

ARI/ILIARI rather than ILI close to the time of testing. Although these consul-

tations may not necessarily have been misclassified as the diagnoses would have

been made based on symptoms, the positive test results give some indication that

classifying those consultations as ILI may have been more appropriate.

It is seen as essential in a study of influenza VE to have at least some data on

a highly specific outcome (preferably laboratory-confirmed influenza) [362] as VE

results measured against that outcome can then be used to validate VE results
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from other outcomes. The drawback of virology data is that it is the most difficult

type of data to obtain and consequently, VE estimates made using this outcome

can often have wider confidence intervals due to the decreased availability of virol-

ogy data. Out of the outcomes we considered, ILI consultations provided the best

balance between specificity for influenza and having an outcome with sufficient

data (at least in 2012–13) to obtain reasonably precise estimates of VE. Moreover,

it must also be noted that to obtain fairly precise VE estimates specific to sub-

groups such as age or risk group, we also require sufficient outcome data within

each of those subgroups as well as accurate recording of influenza vaccinations.

The severity of outcomes is also an important factor that has to be taken into

account in discussions of VE. Having a death outcome is useful for giving some

indication as to how effective the vaccine may be in reducing mortality. It is cru-

cial to explore the effects of the vaccine against a severe outcome such as death

or hospitalisation as one of the fundamental aims of influenza vaccination strate-

gies is to protect high-risk individuals against severe outcomes [101]. However, we

only had data on all-cause mortality which is a very non-specific outcome and it

would have been preferable to have, for example, pneumonia and influenza related

mortality instead, but this data was not available. In addition to this, it would

have been interesting to measure VE against influenza related hospitalisations as

this would likely have provided an outcome with more data points than all-cause

mortality but this was also not available.

A larger quantity of data was available on all outcomes in 2012–13 compared with

2011–12. This was partly due to having more participating GP practices in the

2012–13 season. However the main reason for having less outcome data in 2011–

12 was that very little influenza circulated in Scotland in that season [156]. As

a consequence, one of the major issues with the 2011–12 season was that there

were far too few ILI consultations to conduct analyses using that outcome. More

generally, a lack of influenza circulating makes it difficult to ascertain VE using

any of the methodologies and study designs we considered. Thus, more focus was

given to examining VE in 2012–13.

We used a variety of different methods to estimate VE. When measuring
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VE against consultations outcomes and all-cause mortality, these methods in-

cluded Cox proportional hazards models with adjustment for confounding vari-

ables, propensity score adjustments (PS matching and PS stratification) and the

screening method. For the virology outcome, we used a generalised additive lo-

gistic regression model to estimate VE. The estimates varied fairly substantially

between some methods but in general, the choice of outcome affected estimates

more. This finding is consistent with what has been found previously in a study

of VE in Scotland for the 2009–10 pandemic influenza season [196]. While similar

methods and outcomes were used in their study, the work here builds on what

they found as we also include PS methods in our comparisons of VE.

The most severe outcome is all-cause death and it is of major interest to ascertain

whether or not the vaccine is effective in preventing influenza-related deaths. Our

results suggested this to be the case as we obtained positive VE estimates when

looking at all ages, and estimates were larger when examining just those aged

65+. However, we obtained large negative VE estimates when looking at those

aged under 65 for this outcome. This pattern of VE estimates was consistent for

all methods used in both seasons. However, we showed caution against drawing

the conclusion that the vaccine was highly effective at preventing death, especially

in seniors. This was due to the findings of other researchers [182].

A study in the US found that only about 5% of excess deaths could be at-

tributable to influenza [334]. However, our lowest estimate of VE against all-cause

mortality for all ages in 2012–13 was 42% (95% CI: 32% to 57%) which was ob-

tained from the Cox model with covariate adjustment. Hence, with consideration

to the results from the US study, the positive VE estimates we got were much

larger than we might expect for all-cause mortality. To further investigate the

high VE estimate against all-cause death, we split the study period into a pre-

influenza (September and October 2012) and during influenza period (November

2012 to March 2013) based on the argument that a VE should not be detected

when little-to-no influenza is circulating. However, we still found a VE of 24%

(95% CI: −16% to 50%) in the pre-influenza period and our belief was that this

result was indicative of residual bias.
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One of the major issues with the data for those aged 65+ was that we did not

have risk information (underlying health issues) on them like we did for those aged

0–64. Hence a possible explanation was that the inflated estimates could be due

to frailty selection where a group of non-vaccinated, very frail elderly people con-

tributed to a large proportion of the deaths examined. To investigate the possible

impact of an unobserved confounder on VE, we simulated data on smoking (either

smokes or does not smoke), which is one of the variables contained in the minimum

set of variables to have in influenza VE studies proposed by Valenciano et al. [362].

We based the simulated smoking data on previous research which showed that the

OR of all-cause mortality in smokers compared with non-smokers was around 2.8

[203]. Furthermore, we varied the prevalence of smoking among unvaccinated in-

dividuals aged 65+ while keeping the prevalence among vaccinated individuals at

20% (close to the prevalence of smoking in the general Scottish population [329]).

The results showed that even with a 95% prevalence of smoking in unvaccinated

individuals, there was still a positive VE. Therefore, this gives further evidence on

the necessity of having risk information and good frailty indicators on those aged

65+ to produce less biased VE estimates.

We also found negative VE estimates for those aged 0–64 against all-cause

mortality which may suggest that there was some bias possibly caused by negative

confounding in that age range. Specifically, a reason could be that those aged

under 65 that got vaccinated were more likely to have underlying health issues

and we have not fully accounted for this in our models. In a brief exploration of

this issue (not covered in the main results), we calculated VE within risk group

for those aged 0–64 in 2012–13. This produced a large negative VE for those not

in a risk group while producing VE close to zero for those in a risk group. These

results suggest that negative confounding was present, particularly for those not

in a risk group and thus, there is also a need for variables that further adjust for

health levels in that age group if measuring VE against all-cause death.

As part of the pre/during influenza season analysis, we calculated VE estimates

adjusted for amounts of bias found against outcomes in the pre-influenza period.

For this, the assumption was that levels of bias from the pre-influenza period would
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persist and remain consistent throughout the influenza season. This assumption

suggests that the types of individuals that get vaccinated early cause bias in VE

estimates in ways that are not accounted for by our covariates, and this hidden

bias lingers on for the remainder of the study period. Making this adjustment

generally produced much higher VE estimates against all outcomes except all-cause

death where it reduced VE for those aged 65+; this exception is because of the

positive VE estimates found against all-cause death in the pre-influenza period.

The strength of this adjustment is that it allows VE to be adjusted for factors

that are possibly difficult to measure. However, the assumption of a constant bias

being able to be measured in this way and then being propagated throughout the

influenza season may be questionable and is difficult to assess.

From the consultations outcomes, the VE estimates were always lowest when

measured against ARI and ILIARI, regardless of the method employed. Excluding

VE estimates found when adjusting for levels of bias in the pre-influenza season,

VE estimates against ILIARI were either negative or very low in either season. The

highest estimate was 7% (−3% to 16%) for those aged 65+ in 2012–13. Similar

results were obtained when using the ARI outcome, but these were mostly slightly

higher than the ILIARI estimates.

On the whole, we would expect the ILIARI and ARI estimates to be reason-

ably similar as they differ only on their inclusion of asthma-related consultations.

Since influenza can induce additional problems for asthma-sufferers, it is not en-

tirely unexpected that the ILIARI estimates were lower than the ARI estimates.

In essence, we could expect some reductions in consultations for vaccinated indi-

viduals with asthma compared with unvaccinated individuals with asthma. This,

in turn, causes some increase in the estimated VE.

Using the ILI outcome resulted in the highest estimates of VE out of the three

types of consultations. The estimates were predominantly between 20–50% in the

2012–13 season. As ILI consultations are the most specific to influenza, we should

expect the largest reductions in this type of consultation following vaccinations.

Our VE results against ILI in 2012–13 are reasonably similar to estimates from

other studies in Europe. A cohort study in France using volunteers registered on

an online surveillance system for ILI estimated VE to be 49% (20% to 67%) for
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the overall population [85]. Mid-season estimates from Spain found VE to be 32%

(15% to 46%) [53].

Using a highly specific outcome such as virology data should result in the most

reliable estimates of VE but we still have to be wary around possible biases in test-

ing. Looking at the virology data more closely indicated that higher proportions of

tests came from people within certain age groups. For instance, in 2011–12 almost

30% of swab results came from those aged 0–5 and this fitted with the age group

who had most consultations (with respect to the amount of patients aged 0–5 in

the cohort). However, the proportion of tests on those aged 0–5 was still high

which suggests that there may have been some bias in swabbing patterns towards

certain age groups. Moreover, the largest proportion of positive test results within

an age group came from those aged 6–15. From these findings, we felt that it was

necessary to keep age in models used to estimate VE against the virology outcome.

As mentioned previously, a lack of influenza circulating in 2011–12 meant there

was not much virology data to conduct analyses in 2011–12. Swab results were

only available from 327 individuals in 2011–12. but in 2012–13 we had virology

data from 846 individuals. The negative estimates we obtained from the virology

outcome for 2011–12 were lower than UK-wide estimates obtained using a test-

negative case-control study design [285]. They obtained a VE estimate of 23%

(−10% to 47%) which was still fairly low. In England and Wales, influenza circu-

lation hit a clear peak in 2011–12 while in Scotland, circulation was consistently

low [156] which helps to explain this result. Furthermore, our estimates differ

from other studies from around Europe. A study in Spain using virology data

estimated VE to be 55% (3% to 79%) [191]. We do, however, have to note that

they used a targeted population. A multicentre study using data from several

hospitals around Europe provided a pooled VE estimate against hospitalisation

with laboratory-confirmed influenza of 24.9% (1.8% to 44.6%) [311].

In the 2012–13 season, there did not seem to be as much of a tendency to swab

individuals within certain age groups. The virology data gave VE estimates which

were reasonably consistent with what was found when using ILI consultations –

VE was 23% (−30% to 55%). Our estimates using this kind of data are again,
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lower than estimates found from studies in the UK and Europe. In the UK, a

mid-season analysis found an overall VE estimate of 51% (27% to 68%) against

laboratory-confirmed influenza [241]. A mid-season estimate is also available from

Spain where VE against laboratory-confirmed influenza was found to be much

higher at 86% (45% to 96%) [53].

We attempted to reduce possible bias in VE estimates via the construction of

a PS model, which showed good predictive capability for distinguishing between

vaccinated and non-vaccinated individuals. In the PS matched sample, we checked

the level of covariate balance in the two groups using standardised differences [14].

Overall, a high level of balance on all background covariates was achieved which

was a good indication that the matching procedure worked well. However, PS

matching produced VE estimates that differed most from those produced by other

methods. This can be expected as the method uses only a matched sample of the

cohort while all the other methods we employed involved the whole cohort (with

the exception of when using virology data). With PS stratification, VE estimates

were more similar to what was produced from other methods. However, the level of

balance within deciles of the PS score would ideally have been better. Generally,

the PS model could be improved by having better frailty indicators which are

important in determining who is more likely to get vaccinated.

It has to be noted that for the PS model and the Cox regression models used

to find VE estimates, there was missing data on deprivation which was included

as a separate category in those models. However, Vach and Blettner [361] showed

that including individuals with missing data in models by creating an additional

category results in a biased estimation. Hence, a better approach would have been

to firstly investigate if the data was missing at random and then if that was the

case, the data could be appropriately imputed to provide improved parameter es-

timates [317, 345].

The screening method produced estimates of VE which were in line with estimates

from other estimates when measured against ILI consultations. However, when us-

ing ARI and ILIARI consultations, the screening method produced large negative
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estimates. The VE estimates from the screening method can be sensitive to the

vaccine coverage [67] and it is difficult to appropriately align vaccination coverage

with a time period for consultations, particularly as vaccine coverage is changing

throughout the season. We limited the impact of a non-constant vaccination cov-

erage by choosing to estimate vaccine coverage at a time when vaccine uptake had

largely finished and using consultations from the peak influenza period in 2012–13.

Screening method VE estimates are dependent on the ratio of consultations (or

events) from vaccinated individuals compared to unvaccinated individuals. When

there are relatively many consultations from vaccinated individuals coupled with

lower vaccine coverage, the screening method produces low estimates of VE. The

reason that lower vaccine coverage affects this is because the relatively many con-

sultations would be coming from a smaller pool of vaccinated individuals.

The best scenario for the screening method would be for the uptake of the

seasonal vaccination to be finished before the influenza season starts, and then to

look at aggregate numbers of events from vaccinated and unvaccinated during the

peak of the influenza season. However, if we wish to obtain timely VE estimates

for surveillance, this is not possible as we cannot be certain of when the peak

will occur each season, and sometimes the uptake of the vaccine will be happen-

ing during times when influenza is already circulating. Hence a problem with the

screening method that can occur frequently is to look at consultations at times

when influenza is not circulating.

This study demonstrates how complicated measuring influenza VE can be and

highlights a number of the issues involved when carrying out a study of influenza

VE using observational study designs. We have shown that VE estimates vary most

widely with the use of different clinical outcomes but the choice of methodology

used to estimate VE can also have a substantial impact on VE estimates. The key

point is that having a variety of VE estimates to compare and contrast against

is beneficial as the weight of evidence can guide us to a consensus on the overall

VE. Very low estimates of VE were obtained for the 2011–12 season, which was

most likely due to the low amounts of influenza that were circulating in that

season. Although 2012–13 was also a fairly mild influenza season, the amount of
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the virus circulating was much higher in comparison to the previous season [157],

and we obtained higher VE estimates for that season. Although we attempted to

adjust for potential bias using various methodologies, we cannot rule out residual

confounding from unmeasured sources. One of the main ways that the study could

be improved in this regard is by having better frailty indicators, particularly for

those aged 65+. This would be of benefit to the PS model as well as aiding in the

principal goal of producing more reliable VE estimates.
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7.A VE Appendix

Read Codes

Read Code Description Count

65E.. Influenza vaccination 33,820

65E2. Influenza vaccination given by other healthcare provider 499

ZV048 [V]Influenza vaccination 139

65E9. PANDEMRIX - first influenza A (H1N1v) 2009 vaccination given 65

65EB. PANDEMRIX - 1st flu A (H1N1v) 2009 vac by othr hlth provider 57

65E0. First pandemic influenza vaccination 28

65E3. 1st pandemic influenza vacc give by other healthcare providr 9

65EC. PANDEMRIX - 2nd flu A (H1N1v) 2009 vac by othr hlth provider 2

65E4. 2nd pandemic influenza vacc give by other healthcare providr 1

65E7. CELVAPAN - 1st flu A (H1N1v) 2009 vacc by othr hlth provider 1

65EA. PANDEMRIX - second influenza A (H1N1v) 2009 vaccination give 1

Table 7.18: Read Codes with descriptions for all influenza vaccinations (seasonal and
pandemic) received by patients in the cohort between 1st July 2011 and
31st March 2012. The study start date for the 2011–12 season was 1st
September 2011 and the end date was 31st March 2012 but individuals
were also considered vaccinated for the season if they received vaccination
up to 2 months prior to the study start date. Note that patients can have
more than one vaccination.
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Read Code Description Count

65ED. Seasonal influenza vaccination 37,070

65E.. Influenza vaccination 2,641

65E9. PANDEMRIX - first influenza A (H1N1v) 2009 vaccination given 72

65EB. PANDEMRIX - 1st flu A (H1N1v) 2009 vac by othr hlth provider 55

ZV048 [V]Influenza vaccination 48

65E2. Influenza vaccination given by other healthcare provider 27

65E0. First pandemic influenza vaccination 11

65E3. 1st pandemic influenza vacc give by other healthcare providr 8

65ED0 Seasonal influenza vaccination given by pharmacist 3

65E7. CELVAPAN - 1st flu A (H1N1v) 2009 vacc by othr hlth provider 2

65EC. PANDEMRIX - 2nd flu A (H1N1v) 2009 vac by othr hlth provider 2

ZV048-1 [V]Flu - influenza vaccination 2

65E.. Query Influenza vaccination 1

65E5. CELVAPAN - first influenza A (H1N1v) 2009 vaccination given 1

65E6. CELVAPAN - second influenza A (H1N1v) 2009 vaccination given 1

Table 7.19: Read Codes with descriptions for all influenza vaccinations (seasonal and
pandemic) received by patients in the cohort between 1st July 2012 and
31st March 2013. The study start date for the 2012–13 season was 1st
September 2012 and the end date was 31st March 2013 but individuals
were also considered vaccinated for the season if they received vaccination
up to 2 months prior to the study start date. Note that patients can have
more than one vaccination.
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Consultation
Type

Readcodes

ILI
G5203 | H2... | H27.. | H270. | H2700 | H2701 | H270z | H271. | H2710 |
H2711 | H271z | H27y. | H27y0 | H27y1 | H27yz | H27z. | H2y.. | H2z.. |
Hyu05 | Hyu06 | Hyu07

ILIARI

H0... | H05.. | H05z. | H06.. | H06z. | H07.. | H0y.. | H22.. | H22y. | H23..
| H260. | H3... | Hyu1. | Hyu10 | H04.. | H05y. | H0z.. | H22z. | H23z. |
H25.. | H26.. | Hyu0. | Hyu11 | H00.. | H01.. | H010. | H011. | H012. |
H014. | H01y. | H01z. | H02.. | H022. | H023. | H024. | H02z. | H03.. |
H030. | H031. | H035. | H036. | H037. | H03z. | H040. | H0400 | H0402 |
H0403 | H040w | H040z | H041. | H0410 | H041z | H042. | H042z | H043. |
H0432 | H043z | H044. | H04z. | H050. | H051. | H052. | H054. | H055. |
H060. | H0603 | H0604 | H0605 | H0606 | H060C | H060w | H060x | H060z
| H061. | H0612 | H0615 | H061z | H062. | H06z0 | H06z1 | H06z2 | H20.. |
H201. | H20y. | H20z. | H21.. | H220. | H223. | H224. | H22y2 | H22yz |
H231. | H24y2 | H2600 | H261. | H262. | H263. | H27z. | H28.. | H2A.. |
H30.. | H300. | H301. | H302. | H30z. | H3y0. | H3y1. | Hyu0A | Hyu0H

Asthma
H33.. | H330. | H3300 | H3301 | H330z | H331. | H3310 | H3311 | H331z |
H332. | H333. | H334. | H33z. | H33z0 | H33z1 | H33z2 | H33zz

Table 7.20: Read Codes for different GP consultation types used in the study. Abbre-
viations used are:
ILI: influenza-like illness
ILIARI: influenza-like illness or acute respiratory infection excluding
asthma
Note that acute respiratory infections (ARI) were also used in the study
and were made up of the same Read Codes as ILIARI but ARI included
consultations for asthma.
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Chapter 8

Conclusions

8.1 Summary and Discussion

The work we have undertaken in this thesis has considered some of the ways in

which statistical methods can be applied to assist in the management of disease

outbreaks that are vaccine preventable. We have focussed our attention on in-

fectious disease outbreaks in Scotland where the National Health Service (NHS)

holds a number of high quality healthcare databases, making it an ideal candidate

country to facilitate the achievement of our goals. In sum, we have applied and

developed methods to aid in the surveillance and management of two infectious

diseases which are to different extents, vaccine preventable. These are tuberculo-

sis (TB) and influenza (pandemic and seasonal strains), with the bulk of the work

being on influenza. Specifically, one chapter was on TB, three chapters were on

pandemic influenza (with one chapter that reviewed methods of estimating repro-

ductive numbers with a view to applying those methods to pandemic influenza),

and two chapters were on seasonal influenza and vaccine effect.

A prevailing theme throughout was the use of statistical methods to correct for

issues of data quality and quantity which frequently appear when analysing disease

outbreak data. This happens because national routine surveillance systems may

often not be designed to collect the types of data that are required for analysis of

outbreaks. Hence, these statistical methods are essential for producing improved

parameter estimates in the face of imperfect data.

The first topic we considered looked at how statistical methods could be applied

to genetic typing data to detect clusters of potentially linked TB cases. Here,



Chapter 8. Conclusions 361

the principal contribution was of practical importance as a bespoke system was

created to detect potential genetic strain clusters of TB. At the time of writing, the

system is being run regularly by Health Protection Scotland (HPS) and a database

of all known strain clusters involving cases living in Scotland is being maintained.

This detection system was necessary as the strain typing procedure is imperfect

and often does not always capture the number of repeats in all 24 loci to form

a complete MIRU (Mycobacterial interspersed repetitive units) profile. Hence,

clustering based only on complete data is inadequate as this would fail to detect

a large number of links between cases; our system rectified this issue by alerting

investigators to potential links involving cases with incomplete genetic typing data

(up to a maximum of two missing digits in MIRU profiles).

The system is important for two main reasons. Firstly, by notifying epidemi-

ologists of many more potential links between cases, this ensures that less clusters

fail to be detected. With active follow up of cases in identified clusters, this can

help to prevent further spread of the disease. Furthermore, finding more linked

cases can improve our understanding of how TB is being transmitted between per-

sons in Scotland. Secondly, repeating the strain typing procedure in every instance

where the number of repeats in all 24 loci is not captured would be prohibitively

expensive, time-consuming and may not even be possible at all in some instances.

However, the system helps in rapidly finding close matches between cases and

thus, it helps in directing attention to instances where the strain typing procedure

can be be performed again with a reasonable chance of finding potential strain

clusters.

When the system finds that a case can belong to multiple potential clusters,

we assigned probabilities that they belong to each potential cluster in two differ-

ent ways. However, these probability measures were fairly crude. For example,

one measure looked at the frequencies of numbers of repeats in each locus over

all MIRU profiles and assumed independence in joint-missing loci. We examined

where missing loci most often appeared and found that this happened far more

often in loci 23 and 24. Therefore the independence assumption is likely to be

invalid and better probability estimates could be attained by accounting for the

positions of the missing loci. Due to the limitations of the probability measures,
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our recommendation is that in practice, the probability measures should only be

used for preliminary investigation purposes and that qualitative information on

cases should take precedence in follow up cluster investigations.

We then analysed data from the 2009 pandemic influenza outbreak in Scotland.

More precisely, we got access to two novel datasets that were linked; one containing

early cases of pandemic influenza in Scotland who answered detailed questionnaires

and the other containing contacts of those cases. Since the data was collected in

haste during the height of the pandemic, it was challenging to analyse due to

the quantities of missing data and the amount of data that was entered in free-

text form. In future outbreaks, additional thought should be given, prior to data

collection, on how to record case data in a structured format to make rapid analysis

more straightforward. Moreover, one of the reasons for the amount of missing

data in the dataset could have been because investigators attempted to capture

information on too many specific symptoms from cases – the questionnaire looked

for answers on 21 symptoms which we then analysed as a set of 18 symptoms

by grouping some similar symptoms together. Perhaps a simpler approach that

categorised symptoms into larger groupings from the beginning may have been

more beneficial in the sense that cases may have been more willing to respond

to all questions. Previous work on shortening questionnaires in a US census has

shown that simplification can indeed improve response rates [89].

To deal with the missing data, we made reasonable assumptions on the mech-

anism behind how missing data on symptoms was generated and this allowed us

to use all cases in the dataset for analysis except those cases that did not provide

any information on symptoms (over 92% of cases). Exploring the data in detail

allowed us to gain a more vivid picture of how the disease affected the Scottish

population. For instance, we looked at differences in the symptoms reported by

gender and by those in different age groups using a series of logistic regression

models, with adjustments made for multiple testing. This showed that symptoms

reported did not really differ by gender but did by age group with infants and

school children reporting different symptoms from adults. Furthermore, looking

at the deprivation category of where cases lived showed no apparent indication
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that deprivation affected severity of illness or access to treatment. In general,

pandemic influenza caused fairly mild illness on the majority of individuals and

the types of illness reported by cases was not dissimilar to seasonal influenza.

The simple Bonferroni correction [35] was used to account for multiple testing.

This method was used as we wished to limit the number of spurious statistically

significant differences that would be found. Specifically, it would limit the number

of false positive results (type one errors). However, we note that when conduct-

ing a large number of tests, the Bonferroni correction can be overly conservative

and consequently increases the chance of false negative results. Other adjust-

ment methods for multiple testing that do not reduce statistical power to such an

extent could have been used instead. Two alternative methods include the Holm-

Bonferroni method [173] and the Benjamini-Hochberg procedure [31], but many

more methods exist [30]. These two procedures control the false discovery rate

(FDR) and are more forgiving of type one errors compared with the Bonferroni

correction. Using these may have yielded more interesting results that could have

been further scrutinised for verification.

A more thorough understanding around case-contact mixing patterns during

the explosive phase of an epidemic would help to prevent disease transmission.

We wanted to achieve this using the data on contacts of cases but our analysis

was limited. We were able to ascertain that children reported more contacts than

adults and that most reported contacts were from areas with similar deprivation

status to the case. However, the data was likely to have suffered from recall bias

[71]. The fact that the majority of reported contacts were household contacts is

perhaps an indication that the cases were far more likely to remember interactions

with people they live with rather than transient contacts.

After looking at the pandemic influenza outbreak from a descriptive and analytical

epidemiology perspective, we considered disease outbreak surveillance by estimat-

ing reproductive numbers along with the serial interval distribution. Both are

important parameters, but reproductive numbers are of particular interest as they

can neatly summarise how fast an epidemic is growing at a given time. Methods

that can track the effective reproductive number over time with a relatively short
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time lag can be employed as surveillance systems for disease outbreaks. In addition

to this, they can be used not only to alert authorities to situations when interven-

tions are needed, but can also be used to monitor the impact of interventions.

For our work on this, we again looked at data on early case reports from pan-

demic influenza in Scotland and estimated the parameter using existing methods

as well as by developing a new method that utilises spatial data on cases. Due to

data issues related to case ascertainment during certain time periods and reporting

of dates of onset of symptoms, we worked with three datasets: one dataset using

the original data only; one dataset that imputed dates of onset of symptoms using

the reporting delay distribution for cases that only had dates of illness reported;

and one dataset that created additional case reports to correct for under-reporting

on days when laboratory testing was suspended. Once the datasets were estab-

lished, we estimated the reproductive number for pandemic influenza for all three

datasets using a couple of established methods that make use of only the serial

interval distribution and the dates of onset of symptoms.

The first of these methods, used the moment generating function of the serial

interval distribution and assumes exponential growth of new cases [371] which is

reasonable in the early phase; the second method can be thought of as a “back

calculation” method [372] that also uses the serial interval distribution to infer

infection probabilities for each case and then sums these probabilities to find re-

productive numbers on a given day. All of the estimates, averaged over the early

phase, were under 1.5, indicating that the disease was growing at a fairly man-

ageable rate and this finding was consistent with what was being found regarding

pandemic influenza from other countries. However, one peak in infection was found

in May 2009 due to the detection of a cluster of cases that all travelled together

on the same bus.

As postcode of residence was routinely collected for cases, we investigated com-

bining data on the distance between where cases lived together with the time dif-

ference of when they first had onset of symptoms to see if this would result in

better estimates of the reproductive number over time. The reason for develop-

ing this method was motivated by the argument that given the observed times of

infection and outbreak size, not all infection trees are equally likely [140] which
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is an assumption in the method of Wallinga and Teunis [372]. For instance, this

assumption is violated when there is clear variation in contact rates between dif-

ferent types of individuals. The assumption we made with the spatial method

was that cases living nearer to each other would be more likely to be part of the

same transmission chain. For the estimation, we included the spatial component

together with the temporal component in a simple multiplicative fashion. If two

cases were from the same household, we further increased the probability that one

of them acquired infection from the other.

By developing an epidemic simulation model to simulate epidemics similar to

the early phase of the pandemic influenza outbreak in Scotland, we were able to

show that the spatial method could capture changes in the reproductive number

over time more closely than using the temporal component alone, which produces

more stable estimates over time. However, the limitation here was that we had

knowledge of the parameters used in epidemic simulations and this helped us to

choose parameters for the spatial method that would return favourable results. In

practice it is difficult to provide strong evidence that the spatial method produces

much better estimates without knowing the true transmission chain.

The last part of the thesis was dedicated to statistical methods for estimating

vaccine effect (VE). This can be a complex affair in the context of large-scale

influenza VE studies. The aims of our work here were twofold – one aim was

simply to provide estimates for the seasonal influenza vaccine in two consecutive

post-pandemic seasons (2011–12 and 2012–13) in Scotland, and another aim was

to gain a better understanding of how estimates of VE vary by methodology,

observational study design and clinical outcomes considered. This is important

as estimates derived from observational study designs can often suffer from bias

issues, if not appropriately accounted for. For instance, it is essential to make

adjustments for the health-status and health-seeking behaviour of individuals. The

data provided for our study came from a set of general practitioner practices that

was considered to be representative of the Scottish population.

In total, five outcomes were considered: all-cause mortality, three different

types of GP consultations for respiratory illness with differing levels of specificity
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for influenza and laboratory-confirmed influenza. Additionally, three study designs

were applied: retrospective cohort (for all outcomes except laboratory-confirmed

influenza), nested case-control (for laboratory-confirmed influenza only) and the

screening method design (on consultations only). The methodologies applied for

these study designs varied. Cox proportional hazards models and propensity score

methods (matching and stratification) were applied in the retrospective cohort

design; a generalised additive model was used for the nested case-control study;

and a mixed effects logistic regression model was used for the screening method

design.

Both time periods that we examined were relatively weak influenza seasons but

in 2011–12, influenza activity was especially low. As a consequence, VE estimates

for that season were close to zero and not particularly informative. Hence we

gave more focus to the 2012–13 season when more influenza was circulating. VE

estimates for that season were around 20-50% when measured against outcomes

with higher specificity. Using different clinical outcomes was found to have a larger

impact on the VE estimates than the methodologies applied. However one method

affected our VE estimates fairly drastically and this was using propensity score

matching. The main reason for this was because the method used only a relatively

small sample of matched-patients from the cohort while most other methods were

applied on the whole cohort.

We investigated the issue of biased VE estimates against all-cause mortality

in seniors [182] by splitting our influenza season into a pre-influenza and during

influenza period. The expectation is that there should be no VE in the pre-

influenza periods when almost no influenza is circulating. However, we still found

positive VE estimates against all-cause mortality in those aged 65+ in the pre-

influenza period which is a strong indication of residual bias. For those aged

65+, we had no information on their underlying illnesses, which was possibly the

main reason for these biased estimates. Modelling the effect of an unobserved

confounder (smoking) showed that including this variable would help reduce the

bias in those estimates but not sufficiently to bring VE in the pre-influenza period

down to zero. Hence, to measure VE against all-cause mortality, it is absolutely

necessary to have better variables that inform us about their health levels.



Chapter 8. Conclusions 367

8.2 Future Work

The cluster detection system we created for TB works well within the confines of

what it is capable of and is flexible enough to allow for different numbers of missing

digits or different lengths of coding systems. This means that it can be applied to

other diseases that gather genetic data in the form of a numeric code. For example,

a number of disease organisms are coded using multilocus sequence typing (MLST)

[234] including campylobacter, Neisseria meningitidis and Staphylococcus aureus.

Note that at this time, only one of those organisms mentioned causes a disease for

which, we could term as vaccine-preventable. This is Neisseria meningitidis which

causes meningitis.

For TB, the 24 digit MIRU system has been universally accepted and has the

great advantage of providing genetic typing data in a portable and comparable

format. Therefore it should continue to be used as the main system for genetic

typing for at least, a number of years in Scotland. However, as MIRU only looks

at a number of specific sections of the M. tuberculosis genome, it can fail detect

smaller changes that occur over time such as microevolutionary changes [370].

Moreover, it is possible for two cases to be directly linked but have non-identical

MIRU profiles for this reason.

It is becoming increasingly important to understand these changes, particu-

larly with the threat of multidrug-resistant TB looming ever larger. Hence, in

eventuality, MIRU is likely to be replaced by whole genome sequencing (WGS)

which offers more discriminatory power and is capable of detecting these smaller

changes. Evidence in favour of WGS has already been observed in a study by

Török et al. [358] that found two linked TB cases in the UK using WGS when

epidemiological investigation missed the transmission event. WGS will be used

more widely as the cost of the procedure continues to decrease and the time taken

for the process to be completed also continues to decrease. In response to this,

mathematical and statistical methods will need to be developed to rapidly analyse

the large quantities of data that will be produced.

The work that we done on estimating reproductive numbers could be improved and
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extended further. The first area to mention here is the spatial model for estimating

reproductive numbers that we produced as it had remaining issues. There are two

key parameters in the spatial model – λ0 which is the increase in probability of

transmission due to cases being in the same household, and λ which is the rate of

exponential decay in probability of disease transmission as distance between cases

increases.

Finding optimal parameters for the spatial model proved to be challenging. In

our work, we simply used sensible parameters aligned closely against parameters

used in epidemic simulations rather than estimating best-fit parameters from the

data itself. The ideal model would be able to simultaneously identify optimal pa-

rameter estimates for λ0 and λ while estimating reproductive numbers. However,

the optimisation procedure we used from the optim() function in R is computa-

tionally demanding and frequently encountered problems when trying to estimate

best-fitting parameters by minimising the root mean square error (RMSE) between

predicted and observed case counts in the epidemic curve. Furthermore, the op-

timisation procedure was sensitive to the initial conditions set. The consequence

of this was that it would return variable parameter estimates dependent on those

initial conditions.

There are other feasible ways we could have estimated parameters that may

have yielded better or more consistent results such as using a Bayesian approach

[129]. This would allow the λ0 and λ parameters to be treated as random vari-

ables and suitable prior distributions could be specified for the parameters. As

an example, we may wish to specify a distribution that allows the λ parameter

(exponential decay rate for distance) to vary between 0–1, which is the range we

looked at in Section 5.4.2.

In a different direction, there is also potential to extend our work in other ways

which may be important in certain disease outbreak scenarios. For instance, there

is the possibility for the serial interval distribution to vary over time [202]. We

did not find significant evidence for this in Chapter 5 but we must keep in mind

that we only looked at the initial phase of the epidemic and when looking at a

disease outbreak over a longer duration, these changes could be important. In those

circumstances, these changes may have to be taken into consideration, particularly
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when using methods of estimating the effective reproductive number that rely

so heavily on serial intervals such as those that we applied. The variations can

occur due to changes in the population including differing proportions of infected

individuals over time as well as depletion of susceptible individuals (assuming that

individuals become immune for at least a period of time, following recovery from

infection). Given that time-dependant serial interval data exists, a simple way

to account for these changes would be to split an outbreak into distinct time

periods and apply different serial interval distributions for those periods. A more

sophisticated approach would be able to gradually transition over time from an

initially specified distribution.

Another way that our estimates could be improved would come if detailed data

is available on imported cases. If we have knowledge of when imported cases got

infected along with the country that they got infected in, then we can adjust the

serial interval distribution for these cases. Specifically, a portion of time has to be

removed for imported cases as they spend a portion of time outside the country

under consideration and are thus, unable to infect individuals in that population

during that time. It has to be noted that in the situation where there are relatively

few imported cases and they acquired their infection in countries where the transit

time to the country of interest is short, the points we make here can probably be

ignored. However, in the opposite scenario, this could have a reasonable impact

on estimates.

There is also plenty of scope to produce better estimates of VE for seasonal in-

fluenza. The most obvious starting point for this would be to have better frailty

indicators for individuals, especially for those aged 65+, for whom we had no in-

formation on chronic disease. Furthermore, we were missing a number of the con-

founding factors that Valenciano et al. [362] suggested that researchers should have

for studies of influenza VE. These include variables to measure smoking history,

severity of chronic illness and functional status. From these, severity of chronic

index could be measured using the Charlson index [64] or by looking at numbers of

hospitalisations related to chronic illness within a timeframe (e.g. last 12 months);

functional status could be measured using the Barthel index [69], which measures
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how well individuals can perform daily activities such as walking and bathing.

As a minimum, to reduce bias in estimates of VE against all-cause mortality in

seniors, we should have information on the number of underlying chronic diseases

for those aged 65+.

VE could also have been measured against more clinical outcomes, with some

being more specific for influenza. For instance, instead of looking at all-cause

mortality, we could have looked specifically at those that died from causes related

to pneumonia and influenza. Data on cause of death is recorded by the Gen-

eral Register Office for Scotland (GROS) in ICD-10 (international classification

of diseases) form [275]. The main issue with trying to have a much more specific

death outcome is that for a small country such as Scotland, we may only have

very few deaths resulting from these specific causes in a given season which would

make analysis difficult. To get round the issue of small numbers, we could also

consider measuring VE against hospitalisations resulting from influenza, which we

are likely to have more data on. Again, causes for hospitalisation are recorded in

Scotland using ICD-10, which allows this information to be extracted. Measuring

VE against these additional outcomes would bring us closer in our search to find

the most reliable influenza VE estimates using data that is readily available in

Scotland.

For the analysis of disease outbreaks, the confidence that investigators and analysts

have in the conclusions they draw will always vary, dependant on key factors such

as the data available and the methodologies considered. All of the suggestions

made to improve the work in this thesis follow those themes. Recent infectious

disease outbreaks such Zika virus and Ebola [113, 125] provide clear reminders that

we must continue to improve the ways in which we deal with infectious diseases.

One of the pivotal ways in which this will be possible comes from the fact that the

amount as well as types of data continues to increase, potentially offering more

avenues to analyse disease outbreaks – for instance, social media data has been

used to alert authorities to cases of influenza in China [321]. Therefore, it seems

certain that the role of the statistician in epidemiology will become ever more

prominent and thus, investigating the ways in which statistics can be applied will
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continue to be a vibrant area of research.
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[269] Obadia, T., R. Haneef, and P.-Y. Boëlle (2012). The R0 package: a toolbox to

estimate reproduction numbers for epidemic outbreaks. BMC Medical Informatics

and Decision Making 12 (1), 147.

[270] Ohmit, S., J. Victor, J. Rotthoff, E. Teich, R. Truscon, L. Baum, B. Rangara-

jan, D. Newton, M. Boulton, and A. Monto (2006). Prevention of antigenically

drifted influenza by inactivated and live attenuated vaccines. New England Journal

of Medicine 355 (24), 2513–2522.

[271] Oluyomi-Obi, T., L. Avery, C. Schneider, A. Kumar, S. Lapinsky, S. Menticoglou,

and R. Zarychanski (2010). Perinatal and maternal outcomes in critically ill obstetrics

patients with pandemic H1N1 Influenza A. J Obstet Gynaecol Can 32 (5), 443–447.

[272] Orenstein, E., G. De Serres, M. Haber, D. Shay, C. Bridges, P. Gargiullo, and

W. Orenstein (2007). Methodologic issues regarding the use of three observational

study designs to assess influenza vaccine effectiveness. International Journal of Epi-

demiology 36 (3), 623–631.

[273] Orenstein, W. A., R. H. Bernier, T. J. Dondero, A. R. Hinman, J. S. Marks, K. J.

Bart, and B. Sirotkin (1985). Field evaluation of vaccine efficacy. Bulletin of the

World Health Organization 63 (6), 1055.



Bibliography 399

[274] Orenstein, W. A., G. J. Nigel, G. De Serres, P. C. Farrington, S. B. Redd, and

M. J. Papania (2004). Assessment of the status of measles elimination from reported

outbreaks: United States, 1997–1999. Journal of Infectious Diseases 189 (Supplement

1).

[275] Organization, W. H. et al. (2012). International classification of diseases (ICD).

[276] Ormerod, L. (2005). Multidrug-resistant tuberculosis (MDR-TB): epidemiology,

prevention and treatment. British Medical Bulletin 73 (1), 17–24.

[277] Osterhaus, A., G. Rimmelzwaan, B. Martina, T. Bestebroer, and R. Fouchier

(2000). Influenza B virus in seals. Science 288 (5468), 1051–1053.

[278] Paine, S., G. Mercer, P. Kelly, D. Bandaranayake, M. Baker, Q. Huang, G. Mack-

ereth, A. Bissielo, K. Glass, and V. Hope (2010). Transmissibility of 2009 pandemic

influenza A (H1N1) in New Zealand: effective reproduction number and influence of

age, ethnicity and importations. Euro Surveillance 15 (24), 9–17.

[279] Paneth, N. (2004). Assessing the contributions of John Snow to epidemiology: 150

years after removal of the broad street pump handle. Epidemiology 15 (5), 514–516.

[280] Pareek, M., I. Baussano, I. Abubakar, C. Dye, and A. Lalvani (2012). Evaluation

of immigrant tuberculosis screening in industrialized countries. Emerging Infectious

Diseases 18 (9), 1422.

[281] Pareek, M., J. P. Watson, L. P. Ormerod, O. M. Kon, G. Woltmann, P. J. White,

I. Abubakar, and A. Lalvani (2011). Screening of immigrants in the UK for imported

latent tuberculosis: a multicentre cohort study and cost-effectiveness analysis. The

Lancet Infectious Diseases 11 (6), 435–444.

[282] Patil, G. (1962). Certain properties of the generalized power series distribution II.

Annals of the Institute of Statistical Mathematics 14 (1), 179–182.

[283] Patrozou, E. and L. A. Mermel (2009). Does influenza transmission occur from

asymptomatic infection or prior to symptom onset? Public Health Reports 124 (2),

193.

[284] Pearson, T. A. et al. (1996). Alcohol and heart disease. Circulation 94 (11), 3023–

3025.



Bibliography 400

[285] Pebody, R., N. Andrews, J. McMenamin, H. Durnall, J. Ellis, C. Thompson,

C. Robertson, S. Cottrell, B. Smyth, M. Zambon, et al. (2013). Vaccine effectiveness

of 2011/12 trivalent seasonal influenza vaccine in preventing laboratory-confirmed

influenza in primary care in the United Kingdom: evidence of waning intra-seasonal

protection. Euro Surveillance 18 (5).

[286] Pebody, R., C. Joseph, E. McLean, C. Hawkins, G. Kafatos, M. Catchpole,

J. Van Tam, P. Kaye, J. Green, P. White, N. Phin, B. Evans, J. Watson, J. Ellis,

A. Bermingham, A. Lackenby, G. Smith, S. Palmer, S. Malur Sudhanva, D. Brown,

L. Miller, M. Zambon, J. McMenamin, C. Ramsay, O. Blatchford, D. Goldberg,

J. Cowden, M. Donaghy, A. Eastaway, and B. Carmen (2009, May). Epidemiology

of new influenza A(H1N1) in the United Kingdom, April-May 2009. Euro Surveil-

lance 14 (19).

[287] Pebody, R., E. McLean, H. Zhao, P. Cleary, S. Bracebridge, K. Foster, A. Charlett,

P. Hardelid, P. Waight, J. Ellis, et al. (2010). Pandemic Influenza A (H1N1) 2009 and

mortality in the United Kingdom: risk factors for death, April 2009 to March 2010.

Euro Surveillance 15 (20).

[288] Pedroni, E., M. Garcia, V. Espinola, A. Guerrero, C. Gonzalez, A. Olea, M. Calvo,

B. Martorell, M. Winkler, M. Carrasco, et al. (2010). Outbreak of 2009 pandemic

influenza A (H1N1), Los Lagos, Chile, April-June 2009. Euro Surveillance 15 (1).

[289] Perez-Padilla, R., D. De La Rosa-zamboni, S. Ponce de Leon, M. Hernandez,
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