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Abstract 
The complexity and scale of inter-neuron communication in the human brain presents an 

immense obstacle to understanding the mechanisms of information processing and how 

changes to neuronal connectivity are associated with pathological states. Neuron 

interactions underlie functional roles of local brain networks, for instance memory and 

cognitive abilities, which are often detrimentally impacted in cognitive states. Therefore, 

elucidating connectivity in the brain, between numerous subtypes of cell and in different 

functional regions, can provide a physiological model of appropriate neuronal behaviour. This 

could potentially be used to identify neuronal behaviours indicative of pathological states 

such as Alzheimer’s disease.  

Advancements in imaging technologies, such as calcium imaging and fMRI, have greatly 

enhanced studies of neuronal networks. However, the temporal and spatial resolution of 

these methods are limited in precisely determining activity observed across hundreds of 

neurons simultaneously. Similarly, patch clamping techniques have provided a wealth of 

knowledge in terms of ion channels and single-cell responses, yet are not currently operable 

across hundreds of neurons simultaneously.  

Presented here is a novel microelectrode array (MEA) with high spatial resolution (60 µm 

electrode pitch) combined with a data acquisition setup capable of sampling electrical signals 

at a frequency of 20 kHz, enabling precise recording of neuronal activity in acute rat brain 

slices. Electrode tips were exposed at the tips of silicon needles designed to bypass cellular 

damage resulting from tissue preparation to record from viable neurons. The device 

demonstrated a signal-to-noise ratio of 10:1 in the presence of tissue and platinised 

electrode impedances of 200 kΩ, which are appropriate electrical characteristics with which 

to perform extracellular electrophysiological recordings. The device was integrated into a 

custom data acquisition system and, through a robust spike sorting process, successfully 

identified individual neurons.  Neuronal signals were then assessed for temporal and 

amplitude features to discriminate subtypes of neurons to indicate functional roles within 

the network. This data was then used to develop several approaches to connectivity analysis 

afforded by the resolution of the device. Finally, the effectiveness of the needles in bypassing 

damaged tissue was evaluated histologically. These findings suggested that the preparation 

used here resulted in extensive cellular damage at the section surface. However, these 

results indicate potential for this approach to study of neuronal connectivity across hundreds 

of viable neurons.  
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1. Introduction 
 

The human brain processes information through complex mechanisms and understanding 

the relevance of neuronal interactions is critical to advancing contemporary neuroscience. 

Connectivity between neurons underlies cognitive functions such as learning and memory1, 

therefore, it is important to elucidate these mechanisms to fully understand the impact of 

neurodegenerative diseases on neural network systems. Presented here is an approach to 

obtain and analyse high quality recordings of neuronal activity over multiple cells in acute 

rodent brain slices. These recordings were made using a novel microelectrode array (MEA) 

of 512 electrodes possessing high spatial resolution (60 µm), processed at 20 kHz, and 

exhibiting an appropriate signal-to-noise ratio (10:1) to record extracellular neuronal signals. 

A key novelty of the MEA design are the pyramidal silicon needles on top of which the 

exposed electrode tips are situated. The design goal is to penetrate beyond tissue damaged 

by the brain slice preparation procedure and record from healthy neural networks and obtain 

data representative of physiological connectivity. The aim of the project was to provide a 

validated experimental system capable of precisely resolving hundreds of neurons over an 

area of 1x2mm and analysing a high proportion of a local functional network in the cortex. 

Furthermore, the intact network architecture would reflect the physiological arrangement of 

neuronal networks.  

Neural circuits of millions of densely packed cells exist throughout the brain, each eliciting 

electrical signals propagated to numerous target cells. This poses a daunting technical 

challenge, as the importance of subtle changes in electrophysiological currents is not fully 

understood, while the diversity of neuronal subtypes throughout the brain increases this 

complexity, for example, at least 16 neuron types have been identified in the human cortex 

2 and recently 133 types have been defined in the mouse neocortex3.  Current approaches to 

analysing connectivity via electrophysiological activity include EEG4 or fMRI5 imaging 

techniques. These techniques provide a holistic view of brain states and record from millions 

of cells simultaneously. These approaches can define functional areas but lack the resolution 

to determine the activity of individual neurons and their connections. Conversely, patch 

clamping techniques enable a highly detailed analyses of the ionic currents impacting 

individual cells6, yet they are invasive and limited to only being able to simultaneously record 

from a handful of cells while being technically challenging to perform.  
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Advances in photolithography techniques have enabled the generation of closely-packed 

electrodes capable of recording small amplitude electrophysiological signals propagated 

through the extracellular fluid surrounding neurons7.  In parallel, computing advancements 

have facilitated the differentiating of these signals to identify and allocate these signals to 

individual neuronal units via the process of spike sorting8. These developments have 

progressed the application of MEAs in studies of neuronal connectivity, which possess the 

advantage of being able to continuously record electrophysiological activity from a large 

population of cells simultaneously over periods of days9. Additionally, MEA recordings afford 

greater temporal precision than imaging techniques, such as calcium imaging, and can 

spatially determine the source of individual signals due to the proximity of electrodes. The 

density of neurons requires high spatial resolution of electrodes to differentiate signals and 

determine correlated connectivity between cells. Yet many neurons exhibit such low 

frequency activity they are difficult to detect due to data processing parameters which 

require a large number of spikes to define the electrical activity of individual cells. These 

“dark neurons”10 are therefore an obstacle in defining local networks and their function 

within a broader system. To overcome this, electrodes are increasingly arranged in greater 

densities to improve the electrode : neuron ratio. Alternatively, cell numbers are decreased 

by culturing neurons on top of MEAs, however, this method does not maintain a physiological 

network architecture. Neural probes consisting of multiple recording sites have been 

developed which can be inserted in vivo, but to access deep brain structures such as the 

hippocampus, the invasive nature of this technique inherently damages cells and disrupts the 

network. Therefore, MEAs of 512 electrodes have been developed to record from acute brain 

slices, which allows for access to specific structures and maintains network architecture, by 

fabricating electrodes at the tips of silicon needles capable of penetrating beyond tissue 

damaged by the sectioning procedure11. 

The aims of this project consisted of characterising the electrical characteristics of the MEA 

and developing an experimental protocol to reliably record from hundreds of neurons in the 

rat cortex. After the data is analysed and determined as suitably high-quality, discriminatory 

features could then be applied to provide parameters of typical behaviour of neurons with 

the aim of differentiating neuronal subtypes. This approach has been applied successfully to 

visual cortex recordings in previous reports12 and the applicability of these features to the 

data presented here was attempted. Finally, changes to neuron behaviour can be assessed 
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following a validated system change, for instance, stimulation of targeted cells through 

optogenetics or the application of a pharmacological agent.   

This thesis describes the characterisation of a novel device designed to record from hundreds 

of neurons simultaneously and the methods through which the extracted 

electrophysiological information can be analysed to highlight properties of neurons. In many 

instances, the approaches outlined in this work have not previously been applied to 

recordings of acute brain slice preparations and, although based on previous studies, further 

analysis was required to overcome limitations in the data. It is hoped the analytical 

approaches to the data may provide insight for further investigations that incur similar 

obstructions.  

Initially, the electrical properties of the device were characterised and found to exhibit 

excellent signal to noise ratio at levels appropriate to detect neuronal signals. These levels 

were achieved via the common method of platinisation of the electrodes to reduce their 

impedances. The acquisition system13,14 and fabrication of the device15 are also described. 

The setup and experimental recording procedures are described in chapter 4 which 

summarises the key population data: number of neurons identified, frequency of activity and 

the noise of the system. It also highlights a recurring difficulty in the dataset and justifies the 

use of parameters used to prioritise quality of the data over quantity. Neurons are a highly 

heterogeneous class of cell and differentiating their activities based on electrophysiological 

signals would be highly advantageous for neural network interrogation. Although narrow 

spikes have been associated with interneurons, there is currently no accepted approach16 to 

further identify subtle differences in waveform signature. Chapter 5 demonstrates several 

analyses of features of waveforms based on previous reports of their successful application 

in distinguishing neuron types. The temporal characteristics of neuron activity is addressed 

in chapter 6, where the variation exhibited by each neuron is evaluated. Periods of relative 

high activity, known as “bursting”, were assessed using two methods in this chapter, one of 

which was developed by the author.  The device records over an area which potentially 

consists of hundreds of neurons. Therefore, direct connectivity was difficult to define, 

however, several approaches to neuron connectivity analysis are described in chapter 6 

which were developed to identify highly correlated activity relative to the network. This 

method was adapted to account for spike count and the distance between neurons to 

generate directed graphs of neuron location and the likely direction of information 
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transmission between activity-correlated cells. The time lag of signal detection across 

electrodes was also used to highlight the initial segment of the axon output structure. Using 

an electrophysiological image consisting of waveforms temporally correlated to identified 

somatic spikes, and constructed based on neuron refractory periods, propagated signals 

from individual neurons were traced across multiple electrodes and detected at distances of 

up to 180 µm from the site of the identified cell body. This method therefore provides a 

means to validate models of effective connectivity between neurons. A critical novelty of the 

device is its structure, which is designed to enable electrode insertion into brain tissue. 

Therefore, chapter 7 assesses the appropriateness of this design and how effectively it can 

be combined with the experimental setup. Extensive tissue damage was observed via a 

combination of propidium iodide staining and optical clearing techniques which suggested 

the sectioning procedure potentially impacted the validity of recordings. Chapter 8 

summarizes the key achievements and suggests future directions of investigations into 

neuron connectivity.  

 

 



 

2. Literature Review 

Signal transduction through networks of connected neurons is the basis of cognition. How 

these signals are generated, modulated and integrated to encode memories or perceive 

stimuli is a critical factor in understanding the functions of brain structures. Furthermore, 

disturbances to normal network functions may underlie pathological neurodegenerative 

disease states and defining a physiological state of neuron connectivity may aid in early 

diagnosis, for instance, in cases of Alzheimer’s and Parkinson’s disease. This section will 

provide context for the characterisation of a novel high-density MEA designed to investigate 

neuronal connectivity in acute rat brain slices.  

Localised neuron networks, at a scale of hundreds of neurons, have been previously studied 

in vitro9,17. However, cultured cells do not retain the complex physiological architecture of 

the mature mammalian brain and therefore provide limited descriptions of the 

electrophysiology in neuronal networks. Electrophysiology studies can be approached by 

several methods, largely through intracellular or extracellular means. Intracellular methods 

provide detailed data regarding the activity of an individual cell,while extracellular methods 

can record activity from multiple units simultaneously. Technological advancements have 

enabled the generation of tools to probe localised networks and study network 

characteristics in terms of both connectivity and with a resolution capable of discriminating 

neuronal subtypes12 (GABAergic, glutamatergic etc.). However, limitations regarding long-

term biocompatibility remain an impediment for this approach18.  

Simultaneous extracellular recordings of hundreds of neurons provide a means of 

interrogating connectivity throughout a network but raises the additional problem of filtering 

a variety of electrophysiological signals which are to be correctly assigned to individual 

neuronal units. Advancements in computing have allowed large-scale analysis of extracellular 

voltage waveforms, termed spike sorting8, to improve the resolution of neuron 

electrophysiology and enable detailed investigations into the properties of each cell. Spike 

sorting approaches have greatly enhanced the speed of analysing large datasets and, 

although many variations of the process exist, consist of stages of feature selection and 

dimensionality reduction to maximise variation in signal waveforms; the uniqueness of each 

voltage potential can be used to discriminate the signal source (an individual neuron).  

Neuronal connectivity is an expansive topic and details of many of its elements, such as graph 

theory19,20, are beyond the scope of this work. However, generalised descriptions of 

structural, effective and functional connectivity are firmly accepted in neuroscience and can 
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be used to identify interactions between neurons21–23. Structural connectivity refers to the 

direct anatomical interactions between neurons, while effective connectivity assesses the 

weighting of these synapses – a preferential responsiveness of a neuron to a specific input 

suggests a more critical role for that connection. Functional connectivity relates to indirect 

correlations of activity, where unconnected neurons play similar roles within the same 

network.  

This chapter will outline the principles of electrophysiology, specifically the generation of 

voltage potentials and how these signals are propagated throughout a neuronal network. 

Investigative methods, such as intracellular recordings, will then be discussed to provide a 

context for describing MEA technologies used to study hundreds of neurons simultaneously. 

The advantages and limitations of this approach are summarised, before describing the 

method of neuron identification used in this body of work. Finally, forms of neuronal 

connectivity – structural, functional and effective - are briefly discussed in the context of MEA 

investigations.  

 

2.1 Electrophysiology 

Neurons propagate signals throughout their membranes using the flow of ions to produce an 

electrical voltage potential. These voltage potentials are generated at dendrites, the “inputs” 

to the cell, in response to chemical stimulations. Dendritic potentials can flow in a 

bidirectional manner. Backpropagation, towards the postsynaptic site of initiation, is 

believed to impact synaptic efficiency and provide local synaptic feedback24,25, while current 

flow towards the cell body (soma) can initiate a larger signal called an action potential (AP) 

where integrated dendritic signals exceed a voltage threshold. The AP is generated at the 

base of the axon, the output anatomical structure of a neuron.  

The ability of neurons to generate voltages derives from the cellular membrane and the 

selectively permeable proteins embedded within it. Orchestrating the flow of charged ions 

across this resistive barrier can create electrochemical and electrostatic forces to regulate 

local electrical potentials. This is achieved by transmembrane proteins which can actively 

drive ionic flow against the concentration gradient using adenosine triphosphate (ATP) as an 

energy substrate. When required, other proteins allow ions to flow passively towards 

concentration equilibrium. Neurons integrate dendritic potentials and, provided input 

voltage criteria are achieved, propagate an AP to neurons within the network . Therefore, 
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the mechanisms of generating and propagating voltage potentials are important in 

understanding the relaying of information between neurons.  

Electrophysiology is an expansive topic and of great interest to contemporary neuroscience 

research.  Neurons do not function solely as a relay of information but integrate a vast 

number of inputs from dendrites that are filtered before a further stimulation of the network 

occurs. Each neuron acts as a switchboard for the network and can inhibit, amplify or regulate 

the activities of other neurons. Neuronal networks act cohesively in processes such as 

learning and memory, therefore fully understanding the mechanisms of neuronal 

communication is highly desirable for determining pathophysiological states such as 

Alzheimer’s disease.  

This project concerns the characterisation of a tool with which to investigate inter-neuron 

communication, at the scale of tens to hundreds of neurons, by obtaining high-quality 

extracellular electrophysiological recordings. Therefore, this section will focus upon: 

membrane contributions to generating electrical potential, how differences in ionic currents 

are regulated and directed, and how electrical potentials can be summated to an AP, 

information which can be transmitted between neurons.    

 

2.1.1 The Cell Membrane  

Neurons can generate a voltage potential by conducting the movement of charged ions 

against concentration gradients through a resistor. This resistance is the form of the semi-

permeable cellular membrane which separates the extracellular space from the intracellular 

cytosol. This structure compartmentalizes the cell into an individual unit and plays a role in 

regulating cellular homeostasis. 

Biological membranes are composed of a phospholipid bilayer 8-10nm thick 26,27. Two 

symmetrical layers contain a hydrophobic lipid portion repelled by the cytosol and ECM and 

a polar, hydrophilic, glycerol-phosphate group (Fig. 2.1). Membranes are commonly 

described as selectively permeable: specific conditions and proteins are required to facilitate 

the movement of molecules across the barrier. However, smaller and less charged molecules 

more readily diffuse across the barrier. For instance, oxygen molecules dissolve and pass 

through the lipid tails easily and small uncharged polar molecules such as H20 can diffuse 

through, although at a slower rate28. Importantly, lipid bilayers are highly impermeable to 

charged ions regardless of molecular size and this property is crucial in producing voltage 

potentials across membranes. Membranes are highly dynamic, and a myriad of processes 
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occur across this structure. These processes are generated by proteins embedded in the 

membrane which, in response to stimuli, alter conformation and instigate a specific 

mechanism. Cellular membranes therefore act as a mediator between the individual cell and 

the extracellular environment.  

This communication between neurons occurs in many ways, such as via hormones (e.g. 

growth hormone-releasing hormone 29 and even gases (such as nitric oxide30) , but the two 

main distinctions are whether a stimuli (i.e. the binding of a chemical messenger) results in 

the fluctuation of molecules across the membrane through an ionotropic receptor ( through 

an ion channel or transporter) or causes a phosphorylation reaction through a G-protein 

(metabotropic) receptor embedded in the membrane. Metabotropic receptors mediate 

protein cascades and are involved in numerous cellular processes, but act over a longer time 

scale than ionotropic receptors. The kinetic speed at which ionotropic receptors alter 

configurations enables the rapid movement of ions across the membrane. These receptors 

are important in neurotransmission across synapses, however similar structures exist which 

respond to voltage changes rather than chemical binding and generate the resting 

membrane potential (RMP) and APs. 

 

 

 

Extracellular Matrix 

                                                             

           

 

 

 

 

 

 

                                                                  

Intracellular Cytosol 

  

Figure 2. 1.  Cellular membranes are composed of two symmetric layers of phospholipids. (A) 

Each layer consists of a hydrophilic portion, containing a polar phosphate group, 

electrostatically drawn to either the cytosol or the extracellular space. Hydrophobic tails of 

A B 

Hydrophilic head 

Hydrophobic tail 
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fatty acids are repelled from water-based medium. Image source: OpenStax College31. (B) This 

structure compartmentalises the cell and channels spanning the membrane regulate the flow 

of ions into, and out of, the cell.  

Differences in concentrations of charged molecules generate a voltage potential. Rapid 

electrophysiological changes to this voltage difference are attributable to two types of 

membrane transport proteins: ion channels allowing the passive flow of specific ions down a 

concentration gradient, and ion pumps which act against the gradient. Ion channels quickly 

alter their conformational state and mediate neuronal signalling, while ion pumps establish 

and maintain ionic concentrations necessary to propagate an AP. 

Ion channels are a large class of transmembrane proteins which, in response to a stimulus 

e.g. a voltage threshold or a pharmaceutical agonist, can re-configure into either an “open” 

or “closed” state, thus controlling the passive flux of a specific ion species across the 

otherwise impermeable lipid barrier of the membrane. Other means of ionic flow across the 

membrane are via exchangers (e.g. Na-Ca exchanger, NCX, 32) and ion pumps (i.e. ATP-

sensitive channels, 33) which utilise energy rather than passive movement. 

 

2.1.2 The Resting Membrane Potential 

In the absence of stimulation, the cytoplasmic surface of the membrane is more negative 

than the extracellular side. The discrepancy in ionic concentration generates a voltage 

potential (the RMP) in the range of -60 mV to -70 mV. This concentration gradient is 

maintained by the sodium/potassium ATPase (Na+/K+ATPase) pump, an anti-port ion channel 

which exchanges two extracellular K+ ions into the cell for three Na+ ions out of the cell 

resulting in a net loss of positive charge.  The Na+/K+ATPase channel is phosphorylated 

following the binding and hydrolysation of adenosine triphosphate (ATP) which provides the 

energy to pump Na+ and K+ ions across the membrane. These concentration gradients create 

an imbalance of electrochemical and electrostatic forces due to the selective permeability of 

the membrane. Electrochemical forces are the result of unequal concentration gradients of 

ion species while electrostatic forces are generated by the attraction and repulsion of these 

ions to each other (positively or negatively charged).   

The continual loss of positive charge driven by the Na+/K+ATPase results in the cell being 

negatively charged relative to its surroundings and attracts positive ions to the extracellular 

surface. The elevated intracellular concentration of K+ generates an outward directing 
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electrochemical force down the concentration gradient to act on K+ to exit the cell. However, 

the positively charged ions are additionally attracted to the negative environment of the cell. 

For as long as the electrochemical force exceeds the electrostatic force K+ would exit the cell 

via ion channels but, the increased loss of positive charge conversely increases the negativity 

of the cell (electrostatic force). The level at which both these forces acting on an ion are 

exactly balanced creates an equilibrium state where the net flux of the ion species is zero. 

The equilibrium (or reverse) potential (Ek,) of these forces is described by the Nernst equation 

(Equation 2.1).  

 

𝐸𝑘 =  − 
𝑅𝑇

𝑧𝐹 
ln

[𝐾]𝑖𝑛

[𝐾]𝑜𝑢𝑡
 

Equation 2. 1. The Nernst Equation is a useful approximation of the contributions of individual 

ion species towards electrical potential differences caused by concentration differences. In 

the example shown above, the movement of potassium (K+) ions is described which generate 

a considerable electrical potential difference (Ek) owing to large cytoplasmic and extracellular 

concentration discrepancy. The value of Ek at which there is no net flux of the ion species is 

the ionic equilibrium potential; where electrostatic and electrochemical forces are balanced. 

R is the gas constant (8.31 J/kmol), T is absolute temperature (310K), F is equal to Faraday’s 

constant (96500 coulombs/mol) and Z is the valence of the ion. 

 

Table 2. 1. The discrepancy of ionic concentrations between the cytoplasm and extracellular 

matrix creates a voltage potential, the contribution of each ion species to this potential can 

be calculated by the Nernst equation to provide the equilibrium potential (Ek).  Pi refers to the 

typical permeability for that ion. These are hypothetical values representative of mammalian 

neurons 34. 

The Nernst equation represents an idealized situation – membranes are selectively 

permeable to numerous inorganic ions and alterations to an ionic concentration gradient will 

consequently affect the electrical gradient. For neurons, the ions which exert the most 

Ion [Cytoplasm], mM [Extracellular], mM Ek, mV Pi, cm/s 

K+ 135 4 -92 1x10-7 

Na+ 12 140 +64 1x10-9 

Cl- 4 116 -88 1x10-8 
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significant bioelectric effect are K+, Na+ and Cl-. Rather than including the gradients of all 

inorganic ions, the Nernst equation can be modified to become more physiologically 

representative by combining the equilibrium potentials of these three important ions. The 

resulting equation is the Goldman-Hodgkin-Katz equation, commonly called the Goldman 

equation (equation 2.235).   

 

𝑉𝑚 ≅  
𝑅𝑇

𝐹
𝑙𝑛 

𝑃𝑘[𝐾]𝑜𝑢𝑡 + 𝑃𝑁𝑎[𝑁𝑎]𝑜𝑢𝑡 + 𝑃𝐶𝑙[𝐶𝑙]𝑖𝑛

𝑃𝑘[𝐾]𝑖𝑛 + 𝑃𝑁𝑎[𝑁𝑎]𝑖𝑛 + 𝑃𝐶𝑙[𝐶𝑙]𝑜𝑢𝑡
 

Equation 2. 2. The Goldman-Hodgkin-Katz equation is a modified version of the Nernst 

equation which accounts for the behaviour of several ion species in response to 

electrochemical and electrostatic forces.  

The Goldman equation accounts for the permeability of several ion species and is useful for 

calculating the influence of extracellular effects on the membrane potential. The 

discrepancies between equilibrium potentials of these significant ions means that altering 

the intracellular concentration gradient of one (e.g. increasing Na+) can affect another (e.g. 

the membrane is less polarised, therefore the electrostatic attraction of extracellular Cl- to 

the cell increases). The Goldman equation reflects the complex dynamics of ion currents 

across the cell membrane and the constant flux of electrical potential that occurs. The RMP 

is maintained by homeostatic mechanisms and the role of cellular structures, such as the 

membrane and ion channels, can be utilised to model cellular responses to changes in ion 

concentrations.     

 

2.1.3 Neuronal Currents Can be Described using Equivalent Circuit Model. 

The Nernst and Goldman equations can be used to calculate interactions between the 

membrane potential and ion concentrations but are limited in describing changes to 

membrane permeability, i.e. the opening and closing of ion channels. Resistance, capacitance 

and conductance of a neuron can be described by a resistor-capacitor (RC) circuit to illustrate 

the flow of current36 (Fig. 2. 2, A ). This model is useful to understand how membrane 

resistance and capacitance impacts the propagation of electrical signals across the cell.  

The phospholipid bilayer of the membrane insulates the conductive intracellular 

environment and generates electrical capacitance. A neuron can therefore contain charge 

and generate an electrical field. However, membranes act as leaky capacitors because the 
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ion channels embedded within it can conduct charge when in an open state. Furthermore, 

increasing the number of open channels allows more ions to flow, i.e. resistance to current 

is reduced, and conductance is increased. In the absence of a concentration gradient, single 

channel conductance would be calculated by Ohm’s Law. However, the ionic gradient 

additionally creates an electromotive force, represented in the equivalent circuit as a battery; 

a source of electrical potential generated by the difference in chemical potentials.  The 

relationship between current and voltage is therefore shifted towards the Nernst potential 

of the ion species the channel is selective to (Fig. 2.2, B).   

There is a chemical force driving the movement of ions (concentrated gradients shown by 

the Nernst potential, Ek) as well as voltage across the capacitance of the membrane (Vm, an 

electrical force). Both forces result in currents should ion channels open. Combined, they 

determine the driving force acting on an ion to reach equilibrium potential (Equation 2.3). 

 

 

 

Figure 2. 2. Ionic currents across a neuronal membrane can be represented as a resistor-

capacitor electronics circuit. (A) The membrane acts as an insulating capacitor storing charge 

(Cm) and ion channels as variable resistors conducting ion flow (gNa /gK/gCl). Ionic gradients 

also generate a chemical electromotive force represented as a battery (ENa/EK/ECl). Image 

adapted from Dabrowski et al.36 (B) The electrochemical driving force acting upon an ion 

species is determined by electrochemical and electrostatic forces, which shift the current-

voltage relationship towards the Nernst potential of that ion species. 

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 =  𝑉𝑚 − 𝐸𝑘 

 

Equation 2. 3. The electrochemical driving force refers to the electrostatic and chemical forces 

acting upon ions across a membrane and can be calculated as the difference between the 

membrane voltage potential (Vm) and the Nernst potential (Ek).  

Current 

Voltage 

Slope = K+ conductance 

Ek 

A B 
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The electrochemical driving force, and equating cellular properties to electrical components, 

enables the modelling of currents in a neuron in the form of the equivalent circuit model.  

This provides a means of modelling the effects of altering parameters such as density of ion 

channel expression, which can then be incorporated into a more complex model describing 

neurons with different characteristics. This model was further developed38 to incorporate 

synapses, and other forms include representations of neurons in a network39 which form the 

basis of network modelling simulations. The biophysical properties of membranes and ion 

channels can describe the mechanisms which generate electrical potentials. These potentials 

can be propagated throughout a network depending on how each signal is integrated and 

processed at the cell body.   

 

2.1.4 Postsynaptic Potentials Can Summate  

Neurons exist as individual units within a larger network circuit. The equivalent circuit 

describes the electrical state of a neuron and its responses when presented with a stimulus. 

Chemical receptors localized on dendrites receive a signal from a neighbouring neuron in the 

form of a neurotransmitter (see section 2.1.6). Binding of a transmitter to a ligand-gated ion 

channel initiates a change in receptor configuration to an open state. Subsequently the 

conductance of the specific ion increases, the electrochemical gradient is shifted and the 

charge across the membrane capacitor is adjusted. Subsequently a transient postsynaptic 

potential (PSP) is generated. These potentials are the input signals which are modified and 

integrated to determine further processing of the signal and are therefore important in 

evaluating connectivity between neurons.  

Postsynaptic potentials are transient voltage fluctuations with peak amplitudes ranging from 

30-665 µV40. Depending on postsynaptic receptors present, PSPs can be excitatory (EPSPs, 

i.e. depolarizing a dendrite) or inhibitory (IPSPs, i.e. polarising a dendrite) and the effect on 

membrane potential is propagated towards the cell body. EPSPs are typically elicited by 

increased Na+ conductance into the cell and IPSPs are commonly the result of Cl-  entry, 

however other ions, such as Ca2+, also contribute to PSPs41. 

Dendritic branches encounter more synapses as the projections approach the cell body; 

therefore, PSPs more proximal to the cell body filter the preceding signal. Such alterations 

may be reliant on specific frequencies as simulations of extracellular signals indicate that low 

frequency signals ( ~1 Hz) experience less attenuation when propagated from distal 

dendrites, while signals ~100 Hz are reduced by approximately a factor of 100 at the soma42. 



Chapter 2 

23 

 

However, it has been reported that dendrites located further from the soma of hippocampal 

CA1 neurons exhibit increased EPSP amplitudes which may counterbalance downstream 

filtering43. Integration of PSPs can occur along dendritic trees with the final, modified, signal 

being further processed at the soma. The amplitude and frequency of signals impact how 

input signals are summated and define whether the cell body will be depolarised to threshold 

and consequently generate an AP signal.  Temporal summation occurs when a high frequency 

input from few (or a single) sources incrementally lower the polarisation of the cell (Fig. 2.3, 

A). An individual signal of this amplitude would not cause the soma to reach threshold, but 

before the membrane potential can return to rest an additional input occurs and reduces the 

polarity of the cell. Therefore, high frequency dendritic potentials are more likely to elicit an 

AP even at low amplitudes. Spatial summation is the result of simultaneous stimulation by 

several neurons where precise timing can result in the summation of sub-threshold signals 

to induce an AP (Fig. 2.3, B). This mechanism creates highly complex computations as the 

precision of these interactions are related to how the local network behaves holistically and 

may underly a highly regulated function.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 3. Temporal and spatial summation. (A) Temporal summation occurs following high 

intensity stimulation from a single source. The high frequency of impulses stimulating the 

postsynaptic membrane means it does not fully return to resting potential, therefore a smaller 

amplitude signal at high frequencies can elicit a postsynaptic action potential. (B) Spatial 

summation occurs following near simultaneous stimulation of a synapse by two sources 

which sum amplitudes and achieve threshold voltage. Red dashed line; action potential 

threshold voltage.  
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The filtering and integration of potentials across even a small neuronal network produces 

highly complex interactions. The morphology of dendrites can influence summation by 

attenuating and filtering signals that are propagated towards the soma, as dendritic 

architecture can impact the probability of changes to the membrane resistance and 

capacitance. For instance, a greater degree of dendritic branching proximal to the soma 

would reduce the axial resistance, reducing the length constant of a potential and slowing 

signal propagation44. Therefore, any additional postsynaptic potentials occurring in this 

region are more likely to temporally summate with the slowed potential. To determine the 

significance of a neuron’s behaviour within a network, the behaviour of numerous 

neighbouring cells also need to be accounted for. Therefore, studying the neural code within 

a local network requires a high spatial resolution capable of defining as many neighbouring 

cells as possible combined with the temporal precision to indicate the mechanisms of signal 

summation occurring.  

Small amplitude dendritic potentials are difficult to study in large numbers simultaneously to 

these criteria; however calcium imaging techniques have been shown to be able to record 

from multiple synapses simultaneously in vivo and capable of resolving electrical activity on 

individual dendritic spines45. Two-photon microscopy imaging at the single cell level can 

provide high spatial resolution regarding the summation of dendritic signals but is often 

limited by low signal to noise ratio (~2:5) and temporal kinetics of the calcium dyes (sampling 

rates of ~1 kHz)46. Dyes with greater temporal definition are expected to be developed in the 

near future, while the combination with wide-field microscopy has enabled the visualisation 

of the electrical activity of ~1000 neurons in vivo47. This achievement required extensive 

image processing and data analysis, while improved temporal resolution would greatly 

enhance the analysis of connectivity in these studies.    

Small amplitude potentials cannot be utilised via extracellular recordings to define neurons 

as the distance from the membrane enhances attenuation of these small signals while the 

variety of currents present in the extracellular space generate noise, further masking signals9. 

These factors obfuscate the identification of subthreshold interactions suggestive of 

temporal or spatial summation. Extracellular neuronal recordings therefore focus on large 

amplitude potentials generated at the cell body which can be used to identify the activity of 

an individual neuron, however, spatial and temporal characteristics of neurons can be used 

to estimate connectivity in a network provided the resolution of these features is 
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appropriately high.  The number of connections, and how signals interact, means the 

integration of neural codes is particularly problematic in understanding neuronal networks. 

Connectivity is discussed further in 2.3.2   

 

2.1.5 The Action Potential  

Sub-threshold dendritic potentials are difficult to study due to limitations in allocating small 

potentials to an individual anatomical structure. However, the integrated output of the cell 

is generated from the easily identifiable cell body and consists of a large amplitude ( mV 

range) signal termed the action potential (AP). This potential has been extensively studied, 

and the key aspects of its generation are outlined below.     

At rest, the membrane voltage of the cell body is maintained at around -70 mV relative to 

the extracellular space; however slight fluctuations to this value occur constantly depending 

on various factors such as the availability of extracellular ions and other intracellular 

processes. Dendritic signals are integrated as they arrive at the soma and contribute to these 

fluctuations. The initial segment of the axon (the “output” component of a neuron) is the 

axon hillock where action potentials are generated and propagate signals through other 

neurons in the network. The high density of voltage gated Na+ channels in this area reflect 

the ability to mediate large voltage changes, and may also function as a feedback mechanism 

(backpropagation). EPSPs have been shown to be amplified in a sodium channel-dependant 

manner around the axon hillock 48, and channels >30 µm beyond the initial axon segment 

have exhibited increased excitability. These properties determine a neuron’s threshold 

voltage – if integrated, potentials reduce the polarisation of the axon hillock membrane 

sufficiently to reach a voltage threshold, an action potential is initiated. Threshold values are 

between -40 mV and -55 mV and this discrepancy is due to the properties and density of ion 

channels, diameter of the axon (affecting resistance and time constant), which in turn affects 

the summation of EPSPs to trigger the opening of voltage gated sodium channels 49 which 

initiate a cascade of ionic currents. 

Ion channels are generalised into either ligand-gated (opening mechanism controlled by a 

specific molecule) or voltage-gated. Voltage gated channels respond to a specific 

transmembrane potential and alter the conformation of subunits to an open state. At a 

transmembrane potential specific to the type of channel, the subunit conformation of the 

channel alters, increasing or decreasing the conductance of ions across the membrane. In the 

context of the AP, the threshold potential refers to the transmembrane voltage at which 
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voltage-gated sodium channels begin to open. Sodium rapidly enters the cell to attain 

concentration equilibrium and the cell is further depolarised, inducing more channels to 

increase conductance in a positive feedback loop. Action potentials can be described as “all 

or nothing” events – they occur only if threshold voltage is reached and the process will 

always initiate once these criteria is achieved. Potentials with insufficient amplitude to open 

multiple sodium channels will not elicit an AP and are failed initiations (Fig. 2.4). The 

membrane returns to RMP following these sub-threshold potentials. 

 

Figure 2. 4. Schematic of a typical action potential. Integrated voltage potentials open sodium 

channels of the axon hillock (stimulus): positively charged sodium ions flow into the cell, 

decreasing polarity across the membrane. Integrated potentials stimulating enough current 

to raise the resting membrane potential to threshold voltage initiate a positive feedback 

mechanism in voltage-gated sodium channels, causing more channels to open 

(depolarisation). Sodium channels become inactivated, but depolarisation triggers voltage-

gated potassium channels to open and potassium flows out of the cell down its concentration 

gradient (repolarisation) driven towards equilibrium potential (~-90 mV). During the 

refractory period ion channels are inactivated; as channels begin returning to resting state 

the membrane voltage remains too negative, and active channels too few, to generate 

enough current to reach threshold. The sodium/potassium ATPase channel pump returns the 

membrane to resting voltage.   

Positively charged sodium ions enter a neuron and reduce the polarity relative to the 

extracellular environment. Once threshold voltage is achieved, a positive-feedback 
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mechanism is induced opening more sodium channels and further depolarising the cell. This 

process continues and eventually achieves a positive bias of approximately +60 mV. This 

process is the depolarisation phase of the action potential. Very quickly (~0.5 ms) all axon 

hillock sodium channels have opened, yet the kinetics of their protein configurations limit 

the time they can remain open. As these channels are temporarily inactivated, the neuron 

cannot quickly return to RMP by expelling sodium. Instead, the depolarisation causes 

voltage-gated potassium channels open, permitting K+ ions to flow outward towards 

equilibrium potential. This subsequently re-polarises the neuron (repolarisation in Fig. 2.4). 

Potassium channels continue to open, and the continual loss of positive ions polarises the 

membrane potential beyond the RMP, hyperpolarising the membrane. This is the refractory 

period where no AP can be stimulated during this time (typically ~2 ms) due to the greater 

amplitude required to reach threshold and few sodium channels have reverted to their 

original configuration. However, this period is suggested to vary across cell types as mossy 

fibers of the cerebellum have been observed to elicit APs at a~1kHz50, indicating a refractory 

period of <1 ms occurs in this class of neurons. Refractory periods are a useful parameter in 

spike sorting analysis (see section 2.3) as this provides an upper frequency limit with which 

to filter neuronal spiking and spike timing correlation parameters are used in the analysis 

presented here.  

 

2.1.6 Neurons communicate via Synapses: Neurotransmission  

Neurons relay action potentials to each other via synapses- junctions between axon terminals 

and dendrites. The signal is transduced into vesicles of neurotransmitters, transported in 

discrete organelles of chemicals, which bridge the synaptic cleft and elicit a response from 

the postsynaptic cell. Release of vesicles into the cleft is the result of calcium-dependent 

exocytosis, whereby voltage gated calcium ion channels in the presynaptic terminal open in 

response to depolarisation51. The calcium flux then initiates exocytosis through a series of 

protein interactions52 which fuse the vesicle membrane with the cell membrane and release 

neurotransmitters into the synapse. This mechanism enables dendrites to receive multiple 

inputs in a changeable, but highly regulated, fashion.   

 Postsynaptic cells can be affected by various types of transmitter released at concentrations 

dependent on the electrical amplitude induced at the presynaptic cell. At an axon terminal, 

voltage-gated calcium channels (VGCCs) are expressed at the active zones of presynaptic 

membranes which initiate the exocytosis of neurotransmitters. These channels are co-
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localised with vesicle docking and priming sites for fast coupling of APs to calcium-dependant 

exocytosis. As VGCCs open in response to membrane depolarisation, extracellular Ca2+ is 

electrochemically driven into the cell. A series of protein interactions initiated by the 

presence of calcium promotes vesicles of neurotransmitters to be chaperoned towards the 

synaptic membrane. Vesicular and cellular membranes then fuse to release 

neurotransmitters into the synaptic cleft. There are a variety of neurotransmitters released 

across synapses which can initiate different responses in the postsynaptic neuron. Broadly, 

neurons can be classified as excitatory or inhibitory based on the neurotransmitters they 

emit. Table 2.2 identifies examples of well-established neurotransmitters grouped by their 

chemical structure.  Neurotransmitters diffuse across the synaptic cleft and bind to 

corresponding receptors located on postsynaptic dendrites. The effect may be to open ion 

channels or initiate a second messenger cascade, subtly generating and mediating electrical 

potentials conducted towards the cell body.  

 

Chemical Group Examples 

Choline ester Acetycholine (ACh) 

Monoamines 

Catechol 

Indole 

Imidazole 

 

Dopamine (DA), Noradrenaline (NA) 

5-Hydroxytryptamine (5-HT, serotonin 

Histamine 

Amino acids 

Acidic 

Basic  

 

Glutamate (Glu) 

 γ-Aminobutyric acid (GABA), glycine 

Peptides Enkephalins, endorphins, cholecystokinin, 

substanceP 

Purines Adenosine triphosphate (ATP) 

Retrograde Transmitters 

Steroids Pregnenalone 

Nitric oxide Nitric oxide 

Eicosanoids  Prostaglandins  

Table 2. 2. The chemical structures of neurotransmitters are diverse, reflecting the versatility 

of synaptic communication. Retrograde transmitters can act at the presynaptic terminal. 

Adapted from Neurotransmitters, Drugs and Brain Function53. 



Chapter 2 

29 

 

Although neurotransmitters are often described as exerting a postsynaptic effect, it is 

important to note that they can also act in a presynaptic manner to modulate activity. For 

example, glutamate is a classic transmitter with a postsynaptic excitatory effect, but it also 

partly inhibits ionotropic receptors presynaptically in a feedback mechanism54. A further 

complication is the heterogeneity of transmitters that can be released into the synaptic cleft 

from a single neuron. These are often termed primary and co-transmitters; for example, 

interneurons of the striatum are known to transmit primarily GABA, but also substance P 

across synapses 55. However, this combination only exists in certain brain structures (as do 

other combinations) which indicate modulatory functions specific to that population of cells.   

Neurotransmission is the chemical transduction of signals between neurons and is the mode 

of communication which elicits voltage changes at the dendrites of neurons, however, there 

are a variety of different mechanisms involved which can impact the postsynaptic input. 

Gene expression of receptors and production of transmitters determines the basic function 

of a neuron within a network, yet the role of individual neurons and its weighting within a 

network are poorly resolved. To examine this, technologies have been developed to examine 

the function of neuronal subtypes within a network by studies large numbers of neurons 

simultaneously. 

 

2.2 Microelectrode Arrays: Technological Developments  

To understand the functional connectivity of neuronal circuits, and how these relationships 

relate to physiological (and pathological) states, experiments need to consider a range of 

electrophysiological parameters. For example, the effectiveness of neuron-neuron 

communication is influenced by ion currents 22, sub-threshold potentials 56, local field 

potentials 57, synaptic weighting 58 and functional connectivity 21. Presently, intracellular 

recording methods can only be applied to a limited number of cells even in vitro, with 

simultaneous recordings of 8-12 neurons representing a significant achievement 59,60, while 

technologies which can monitor hundreds of neurons at once are constrained to investigating 

extracellular potentials – removing the ability to assess the impact of sub-threshold 

potentials 9 . As such, technical approaches are often compared and combined to limit these 

discrepancies and it is necessary to evaluate these methodologies in relation to each other.  

Intracellular recording methods have been developed over several decades with increasing 

sophistication. This has been partly driven by the pharmaceutical industry’s interest in high-

throughput screening of ion channel characterisations61 as investigating the properties of 
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individual ion channels and responses to changes in ion currents provides insights into 

electrophysiology at the molecular level. However, although these methods are useful for 

evaluating the activities of neurons,  they remain largely inapplicable in assessing functional 

connectivity of a large-scale neuronal network 62 as the necessity of bulky precision pipette 

manipulators and visualisation of the target cell makes this cumbersome setup unfeasible to 

study 100s of neurons simultaneously.  

The electrical fields generated by summated postsynaptic potentials can be detected 

extracellularly as voltage potentials (Ve). These signals can be interpreted via an 

electroencephalogram (EEG, potentials recorded from the scalp), electrocorticogram (ECoG, 

from the cortical surface using electrodes placed sub-durally) and as local field potentials 

(LFPs, electrodes placed within the brain). These techniques are useful in determining the 

synchronous activities of large numbers of neurons across brain structures, yet their spatial 

resolution is insufficient to identify individual neurons.  

To compromise, mesoscale technologies have been developed to identify large numbers of 

neurons simultaneously yet maintain the resolution to record the electrophysiology of 

individual units 9. An electrode placed proximally to a neuronal membrane allows for 

detection of field potential waveforms from which it is possible to define and reconstruct 

voltage potentials from individual neurons. Therefore, MEAs have been developed which can 

record the electrophysiological activity of hundreds of neurons simultaneously.  

Electrophysiological methods demonstrate a variety of spatial resolutions and the scale of 

neuronal populations they can investigate. This chapter will outline the development of 

intracellular techniques, before focussing upon MEAs - including the device presented in this 

project - and highlight the technological advancements in other methodologies designed to 

address the same problem. 

2.2.1 Intracellular Recording Methods 

Following the work of Hodgkin and Huxley (1952)37, electrophysiological techniques focussed 

on how to study single-cell currents in smaller preparations. Using a micropipette and 

forming a high resistance seal on a small area of membrane (Fig. 2.5), accurate 

measurements of potential changes occurring across individual ion channels can be 

achieved63. The value of this technique, known as patch clamping, is indicating the “open” or 

“inactive” (and “closed”) states of ion channels in response to stimuli. Applying a constant 

voltage to the setup and measuring resultant current, Ohm’s law indicates any change in 

resistance would reflect a change in ion channel state.  
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Figure 2. 5. Patch clamp techniques aim to detect current changes across the membrane in 

as small an area as possible, ideally limited to a single channel. A pipette filled with electrolyte 

solution is used to form a high resistance seal around the area, and isolates currents crossing 

the membrane caused by the flow of ions. These currents can be detected by an electrode and 

the signal amplified for analysis (image source adapted from Leica Mircosystems64). 

 Patch clamping enables low noise measurements of currents through ion channels with low 

conductance (in the range of pS) by sealing off a portion of the membrane containing as few 

ion channels as possible, ideally a single channel. Ensuring the current flows only into the 

pipette and not through the seal necessitates a GΩ seal65 to distinguish a single ion channel 

current. This requires a micropipette 0.5 µm - 2 µm in diameter to minimize the number of 

channels present but, additionally, decreased surface area increases the seal resistance and 

reduces current leakage. Gentle suction further increases resistance. Various configurations 

of patch clamping exist: cell-attached, whole-cell, inside-out, outside-out27, as well as 

automated systems for performing patch clamp in vivo 66. The cell-attached method is 

employed as described above with the membrane intact. In contrast, the whole-cell 

configuration ruptures the membrane at the pippette opening, allowing the voltage of the 

entire cell to be measured and also modified via solutions introduced into the cytosol via the 

pippette27. Removing the portion of the membrane that has been sealed onto the pippette 

from the rest of the membrane can enable greater interrogation of intracellular, or 

extracellular, properties of ion channels, for instance channel gating by a specific molecule. 

The inside-out and outside-in methods are examples of how the membrane can be 

manipulated to study specific properties of membrane ion channels67. These techniques are 

used to obtain precise measurements of voltage changes across membranes or current flow 
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through individual channels; for example, assessing the impact of pharmaceuticals upon the 

activities of specific channel subtypes 68,69. However, they are technically challenging, and 

bulky micromanipulators limit the number of clamping setups that can be applied 

simultaneously. As such, a more appropriate approach is required to analyse the connectivity 

of hundreds of neurons. 

 

2.2.2 Extracellular Potential Recording Methods 

The electrical fields generated by action potentials possess sufficient magnitude to be 

detected extracellularly as voltage potentials (Ve) with the use of a reference potential – 

provided the electrode is proximal to the membrane. These extracellular action potentials 

(EAPs) are also termed “spikes”, from which information regarding the flow of charge across 

a membrane can be inferred (Fig 2.2). Recordings of extracellular voltage fluctuations will 

exhibit several sources of biophysical signals, depending on the density, and electrode 

proximity, to the cells. High neuronal density results in the detection of potentials from 

several units and complicates the identification of neurons from the waveforms they 

produce, however, this has the advantage of identifying and recording from multiple neurons 

simultaneously. The collective electrical fields generated across a network are known as local 

field potentials (LFPs)- low frequency oscillations <100 Hz which represent the fluctuation of 

charge in the extracelular space42. LFPs are implicated in neuronal synchronicity – the 

collective activity of hundreds of neurons 70,71 -  and are often monitored using technologies 

surveying structures of the brain (e.g. EEG). However, if an electrode is proximal to an 

individual neuron, its electrical activity would dominate the signal at higher frequencies and 

bandpass filtering can further improve resolution of spikes from individual neurons.    
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Figure 2. 6. Extracellular voltage potentials exhibit inversed phases of action potentials. As 

the intracellular portion of the membrane becomes more positive during the depolarisation 

phase of the action potential, the extracellular surface becomes more negative. The detected 

amplitude changes in potential also depend on the distance of the electrode from the 

membrane.   

 

In contrast to intracellular techniques, extracellular electrodes are less invasive as the 

membrane and connections remain largely unperturbed, however, signal amplitude is rapidly 

attenuated over distance while electrical and biological noise reduces the ability to reliably 

isolate individual signal sources. As such, extracellular electrodes need to be located within 

~100 µm of a neuron to be identified72,73. Extracellular currents generated by large 

hippocampal cells have been detected up to a distance of 140 µm from an electrode 74, 

however, a volume with a radius of 140 µm from an electrode site in the same CA1 

hippocampal region is calculated to contain ~1108 recordable neurons, therefore only a 

fraction of cells in a given volume can be identified 75.  This discrepancy is the result of 

methodological limitations in attributing waveforms to individual units, the density of 

electrodes used and the low spiking frequency of some neurons.  

Traditionally, extracellular recording methods are limited to only providing information on 

whether a neuron fires an AP or not, without direct observation of the neuronal subtype. 

Employing optogenetic techniques in parallel to electrophysiology has great potential to 

increase the specificity of studies 76, whereby transgenic cells can be optically stimulated to 

induce an action potential, although artificially evoking spikes would not necessarily reflect 

communication in a physiological circuit. An alternative approach is to retrospectively match 

Hyperpolarisation 

Resting state 
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fluorescence imaging of specific cell types to waveforms detected in the vicinity of an 

electrode. Becchetti et al. (2012)77 expressed a fluorescent protein in inhibitory GABAergic 

cells cultured on an MEA in order to identify electrophysiological criteria and eliminate the 

need for subtype distinction in future studies. Their results indicate the Fano factor (here 

defined as the ratio of spike count variance to the mean of the neuron spike count78) to be 

the most reliable means of inhibitory/excitatory distinction with inhibitory neurons 

exhibiting significantly greater spike count variance, however, contention for these 

parameters remains. The variability of literature-reported electrophysiological classifications 

of neuronal subtypes is, often to a large degree, due to un-standardised methodologies and 

recording conditions (e.g. electrode types, recording temperatures, spike sorting algorithms). 

Attempts are being made to normalise this data79 although heterogeneous techniques will 

doubtless persist for some time. A further complication for extracellular recordings is “silent” 

(or dark) neurons which exhibit low spike frequency and can therefore be problematic in 

spike sorting. This artefact occurs where insufficient data is acquired to allocate spikes to an 

individual neuron and data is therefore excluded from further analysis. Although the 

prevalence of such neurons varies across brain regions, silent neurons may constitute ~90% 

of cells in cortical regions10.       

 

2.2.3 MEAs: Materials and Technical Requirements  

The recordings presented in this work were acquired using a 512-electrode MEA with a high 

spatial resolution (electrode pitch of 60 µm) and resolved at a temporal rate of 20 kHz. These 

characteristics are effective to investigate acute slices of brain tissue. Microelectrode array 

technologies have been developed for a range of functions with specific requirements. 

Implantable arrays have been used to study and alleviate symptoms of pathological diseases 

such as Parkinson’s disease - where a stimulating electrode is implanted into effected areas 

of neurodegeneration80 - and investigated as a method of restoring vision following retina 

degeneration81. The development of technologies to examine extracellular electrophysiology 

has enabled stimulation and recording of multiple neurons simultaneously. Arrays of small 

metal electrodes are becoming commonly used to investigate neuronal function, integrated 

with both in vivo and in vitro experimental setups9. These devices are required to produce a 

high signal to noise ratio (SNR) and remain biocompatible for long periods of time. Design 

and fabrication of MEAs is an expansive topic with much research devoted to material 

development, biocompatibility, and electrical design and fabrication techniques. This section 
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will briefly outline the requirements, development and materials used in devices comparable 

to the technology presented in this work, with an emphasis on in vitro research. 

Electrodes can be inserted at multiple spaced points in the brain, but MEAs require a high 

electrode spatial resolution to effectively record from a localized network of neurons. 

Increased resolution additionally helps to differentiate multiple electrophysiological signals 

and triangulate the signal. Traditionally, MEAs have been limited in their spatial resolution 

and number of electrodes, but the advancement of technologies based on micro-

electromechanical systems (MEMS) and complementary metal-oxide-semiconductor (CMOS) 

fabrication techniques, has helped to overcome some of these limitations82,83. MEAs 

consisting of 51984, 360085, and recently even 26,40086, electrodes have been demonstrated 

and electrode-electrode pitches of <20 µm realised. These devices are commonly used either 

in preparations of retinal ganglion cells or have neurons cultured on the device to study, for 

example; network maturation87, activities in pathological states88 and pharmacology89.   

The necessity of electrodes to be small enough to be arranged in high densities results in 

higher electrode impedance, which can impact the signal to noise ratio of the system. Charge 

carried by physiological electrolytes is transferred to electrodes via capacitive mechanisms. 

As the electrode is decreased in size the spread resistance (the resistance to current flow 

from solution to the electrode) increases90 and the interfacial capacitance of the system (in 

parallel with charge transfer resistance) becomes less dominant (see Diagram 3.1).  At a 

(material-specific) voltage limit, alternative mechanisms of charge transfer begin to occur, 

typically reduction-oxidation reactions resulting from increased charge transfer resistance, 

which can alter the behaviour of the system. To effectively record small amplitude neuronal 

activity, the effective electrode impedance (the sum of metallic resistance, spread resistance 

and at the electrode interface) needs to be less than the input impedance at the front end 

amplifier of the recording system or signals will be significantly attenuated91,92. To adjust 

system limitations, metal electrodes are electroplated with materials that increase the 

surface area required for charge transfer and decrease occurrences of unwanted reactions. 

Increased surface area reduces the electrical impedance of the electrode, improving the 

neuron/electrode interface. Impedance values for electrodes ~5 µm in diameter are typically 

between 200 kΩ and 800 kΩ at 1 kHz frequency.  The electrodes presented in this work were 

coated with platinum-black, a granular form of platinum which exhibits high capacitance at 

low current densities93, resulting in low impedance values. It is a commonly used material to 

plate electrodes due to its limited biological reactivity94 and mechanical stability90,93. 
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A major obstacle to obtaining electrophysiological data from chronic implantations is the 

immune response to foreign materials in the brain (section 2.2.4). To overcome this, 

numerous materials have been evaluated for their biocompatibility. However, these 

materials must retain appropriate conductivity and low impedance to record neuronal signals 

with effective SNR. Electrodes are typically fabricated from conductive metals such as gold, 

titanium nitride or platinum due to their conductivity and low biological reactivity. Methods 

of increasing the conductive surface areas of electrodes often utilise conductive structures 

such as carbon nanotubes (CNTs) and conductive polymers95. The device presented in this 

work is not implantable and is designed to study ex vivo tissue over periods of up to 5 hours.  

MEAs are among the forefront of technologies used to investigate electrophysiological 

properties of neuronal networks and have been combined with other technologies such as 

patch clamp60, and integrated with optical outputs for use in optogenetic studies76. Many 

studies that utilise MEAs commonly investigate neuronal cells in vitro, where cell densities 

are lower and network properties can be examined in greater detail. However, the network 

architecture of cultured cells is not representative of the physiological brain, therefore these 

studies are limited in neuronal connectivity on the scale of hundreds of neurons. Alternative 

approaches use organotypic slices - where a section of brain tissue is cultured before being 

recorded from – however, despite a more representative architecture, the boundaries of 

cortical layers and hippocampal regions become blurred during time required for culturing 

96. Here, we attempt to record from an acute slice of brain tissue with connectivity and 

architecture intact to resolve the electrophysiology of a representative neuronal network.  

 

2.2.4 Neuroinflammation and Biocompatibility  

A novelty of the MEA characterised in this project is the arrangement of 3-dimensional 

needle electrodes. Although MEAs with 3D electrode structures have been previously 

demonstrated 97, these investigations have primarily focussed on recording the 

electrophysiology of cultured cells or variations in electrode geometry and material. 

Sectioning of brain tissue allows access to regions otherwise difficult to access in vivo, or to 

recreate in vitro, such as the hippocampus or striatum. Organotypic slices, where brain 

sections are cultured, retain much of this original structure,  however, the boundaries 

between structures become less defined during culturing, reducing this advantage96. In 

contrast, the motivation for the presented device is to record from acute slices of brain tissue 

to ensure the connectivity of neuronal networks is as representative as possible. As such, the 
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reason for developing 3D needle electrodes is to penetrate beyond damaged layers of cells 

inherent in the sectioning procedure.  

It is important to consider the effects on the electrical activities of neurons resulting from 

mechanical damage to brain tissues. In response to acute stress, immunological responses 

initiate molecular cascades resulting in necrosis or apoptosis. Additionally, directly affected 

cells release cytokines and other chemical messengers which diffuse to neighbouring, 

unaffected, neurons and illicit responses. This section will summarise how neurons respond 

to the preparation of acute slices: directly (e.g. axotomy), indirectly (through biochemical 

messenger signals) and how these can influence the electrophysiology of the network. 

However, most immunological investigations concern physiological responses over the time 

scale of 6-12hours, while experiments discussed in this work typically last ~4hours. 

Therefore, the major mechanisms of apoptosis will be omitted and instead this chapter will 

focus on acute trauma and the immediate electrophysiological consequences of transecting 

neuronal projections.  

Severe mechanical damage to the soma will lead to catastrophic cell death, leaching cellular 

debris which will be later phagocytised by microglia – a ubiquitous immunological cell type 

in the brain. In many ways more problematic, however, are the extensive arborisations and 

protrusions of neurites. In the central nervous system, nerve fibres can extend a relatively 

large distance from the cell body and, on average, are 20,000 times larger than the soma in 

length and total surface area98 therefore neurons distal to an area of damage can still incur 

cellular trauma. Of concern is damage to the axon – the diameter and elongation of which 

makes it especially vulnerable.  

Neuronal projections can be degenerated in a controlled manner via several mechanisms; 

e.g. pruning (involved in embryonic developmental plasticity, 99) or apoptosis (programmed 

cell death, 100,101. In response to trauma, neuronal responses act to limit damage and promote 

neurite regrowth via Wallerian degeneration ( WD 102). This process spans several days, 

therefore the relevance to this project is limited to the initial responses, known as acute 

axonal degeneration (AAD). Although AAD and WD are distinct mechanisms in terms of 

where and when they occur, many characteristics are indistinguishable. For instance, 

Kerschensteiner et al. (2005) demonstrated that, once initiated, both processes fragment 

damaged axon portions at equivalent speeds (70 µm/min) while calpain proteases, key 

mediators of cytoskeletal degradation, are essential for both responses. As the time-course 
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relevant for recording from acute slices in the presented setup spans <12hours, this covers 

both AAD and the early stages of WD. 

Transection of an axon, axotomy, has been mostly studied in an in vitro context owing the 

technical difficulties in sectioning and monitoring a specific axon, although in vivo imaging of 

degenerative processes have been performed in both spinal cord nerves and optic nerves 

103,104. The immediate consequences are extended disintegration from the site of injury (~300 

µm distally, Kerschensteiner et al. 2005) in a process spanning between 5 and 60minutes. 

This is accompanied by vigorous spiking and an increased calcium influx 105. Increased calcium 

concentration promotes the modulation of proteins which will be retrogradely transported 

to the soma and initiate apoptotic or protective cascades. The intra-axonal rise in calcium is 

critical for AAD progression, as Ca2+  blockers attenuate this mechanism 104. During this acute 

stage, components of the axonal cytoskeleton, such as neurofilaments and microtubules, are 

disassembled via Ca2+ -dependant activation of the serine-threonine protease calpain. 

Through Western blotting and histological techniques, Kampfl et al. (1996) observed 

increased calpain activation, and accumulation of calpain-mediated break-down products, 

15minutes from the onset of injury.  

Increased intracellular calcium and increased spiking frequency will additionally affect 

electrochemical gradients, particularly Na-Ca exchanger membrane proteins. As sodium 

accumulates during high-frequency spiking, its gradient assumes an outward direction and 

Na-Ca exchangers invert their operation; driving more calcium into the cell attempting to 

rectify sodium concentration. 

These findings indicate that degenerative processes are initiated at a relevant timescale to 

data presented in this project and alter the electrophysiology of neuronal networks through 

increased calcium and sodium load. However, it is undefined to what extent neurons 

downstream in the network from an axotomised cell are influenced by these factors. 

Therefore, bypassing acutely damaged cells using 3D needle-geometry electrodes reduces 

the likelihood of recording from cells adversely impacted by mechanical damage. 

 

 

2.3 Spike Sorting of Extracellular Waveforms 

Spike sorting is method used to filter electrophysiological signals and assign extracellular 

waveforms to an individual neuronal unit. This is necessary when recording from multiple 

electrodes as duplicate signals are detected, while multiple signal sources can distort 
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recordings and limiting the reliability of high-quality neuronal recordings.  There are several  

approaches to overcome these problems which have developed through the use of MEAs 

and acute slices106. However, this section will expand on the method described in Litke et al.14 

with which the data presented in this project was analysed. 

Analysis of neuronal spikes recorded with extracellular methods requires a means to 

separate multiple signals detected on a single electrode. Spike sorting, assigning a waveform 

potential to an individual neuron, requires a high signal to noise ratio (SNR) ideally with 

signals unambiguously separated temporally and spatially across several electrodes. In 

addition to the biological noise of distant, low-amplitude potentials, electrical noise 

introduced into the preparation via the amplifier of the recording system must be filtered 

and discarded.  In the case of high density MEAs, several electrodes may detect a voltage 

potential from an individual neuron107, therefore the sampling rate of extracellular voltages 

is required to be performed at sub-millisecond timescales to provide temporal resolution 

capable of differentiating sources of individual action potentials.  

As commercially available MEAs are now commonly developed with hundreds of electrodes81  

the computational time required to process such large datasets - often in the range of a 

terabyte for a recording of several hours – can be a major factor in choosing a spike sorting 

method. The processing time for spike sorting algorithms increases with electrode number 

as more electrical signals are being recorded for processing, therefore this has become a 

major limitation for investigations with large numbers of electrodes. Computational time also 

increases due to manual adjustment by human verification – increasingly sorting methods 

are shifting towards a greater reliance on full automation to reduce human bias and this time-

consuming manual phase. Differences in experimental setup are an important consideration 

before deciding on a spike sorting method as acquisition systems, electrode number and 

pitch, and electrode material could have varying degrees of sorting reliability.  

Due to the desire to automate identification of thousands of waveforms, methods of spike 

sorting have focussed on Principal Component Analysis (PCA), whereby features are 

extracted and the maximum variations between the data are highlighted as a means of 

clustering data of a similar class together, i.e. data from an individual neuron. Other methods 

utilise independent component analysis (ICA)108, which acts on the assumption that all signals 

are statistically independent, and wavelet transformation, which is more commonly used in 

analysis of low frequency signals and is useful if amplitude analysis is not an applicable 

approach96,109.   
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Although frequency and amplitude of spiking events can alter, waveforms retain a 

characteristic shape, which can be identified using feature extraction techniques. This shape 

is also partly defined by the refractory period (see section 2.1.5) which is defined by the 

kinetics of ion channels and results in a waveform with defined biological parameters. 

Problems with spike sorting and the need for manual adjustment due to alterations to 

waveform shape over time continue to be an issue. For instance, neuroinflammation has 

been shown to result in neuron hyperexcitability110, while axotomized cultures of cortical 

cells have demonstrated long-term changes to AP amplitudes111.  

Reliable and robust spike sorting is critical to investigating neuronal connectivity- not just for 

identification of neurons but for ensuring good, isolated, recordings of spike times. 

Overlapping or miss-assigned spikes cause difficulties in analysing probabilities of 

connectivity. However, this difficulty arises from the relative temporal and spatial similarities 

from two connected neurons. This is also true in instances of spatial summation, where two 

proximal neurons are innervated by the same presynaptic neuron and  could exhibit similar 

temporal and spatial waveform properties.  

 

2.3.1 Principal Component Analysis 

Filtering of appropriate frequencies is typically performed in the range of 300-3000 Hz112 for 

spike analysis after which the RMS noise of the raw data is evaluated. From this, a suitable 

threshold is selected which spike amplitudes will pass, and then return past (Fig. 2.7). A 

typical threshold used in here would be 60 µV14, although suitability depends on the noise of 

the system used. If the employed threshold is too low, false-positive signals would be 

included for further processing and obfuscate neuronal identification; too high, and spikes 

may be omitted, reducing statistical power crucial to spike sorting (Fig. 2.8). 
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Figure 2. 7. Initial stages of spike sorting involve identifying voltages that exceed, and then 

return to, the RMS noise detected on the electrode (left), which is done by calculating a 

suitable threshold voltage (right). When a threshold value is too low, irrelevant background 

noise will be included for further analysis, which can contaminate identified neurons, while a 

high value reduces the number of spikes identified. 

PCA is a method of dimensionality reduction. As multiple waveform attributes are included 

for analysis the observed dimensions increase, however this makes separating data with 

common features more difficult. The dimensions that exhibit the highest variability in the 

data (the principal components) are then used to maximise the variance of the dataset. These 

components are based on orthogonal vectors of the variables which essentially re-fit the data 

to dimensions that highlight the greatest variance.  

 

 

 

A B 
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Figure 2. 8. Identifying, and applying, an appropriate amplitude threshold is a common 

second step for spike sorting. A high threshold will clearly identify neurons; however, this 

requires neurons to exhibit high amplitudes spikes and many spikes may be omitted, reducing 

the power of the statistics needed to cleanly separate signals during PCA. In the above 

example, the threshold (red dashed line) is -150 µV identifying the bulk of detected spikes, yet 

hundreds of spikes will be discarded from further processing. Bin width 10 µV. 

 

As a spike is identified on an electrode, all data points 0.5 ms prior and 0.8 ms after the spike 

time are included from that electrode (the “seed” electrode) and its six surrounding 

neighbours. The electrodes on the MEA presented are arranged hexagonally, and this 

accounts for each equidistant electrode. For a spike identified on each electrode, and its 

neighbours, a 182-dimensional vector is generated from the analogue waveform with each 

vector representing the recorded voltage at each time point included in analysis. As the 

numbers of dimensions now represent a large amount of data, PCA is performed to reduce 

these dimensions down to 5 and the more observable variations can be used to cluster data 

together.  

Clustering is carried out using The Expectation Maximization algorithm, which separates data 

based on the assumption that clusters represent individual classes, which are fitted to a 2D 

Gaussian distributions for each of the 5 dimensions (i.e. PCA dimension 1: PCA dimension 2, 

Fig. 2.9). This stage of spike sorting involves manual validation primarily due to electrode drift 

or non-stationary background noise which cause difficulties in Gaussian fitting8. 
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Figure 2. 9. PCA clustering of data was performed in 5 dimensions exhibiting the greatest 

variance across the data. Clustering examples of the same dataset (A, B, C) are PCA 

dimensions 1-3 represented in 2-dimensional plots. Data are clustered by calculations 

assuming the distribution is Gaussian; occasionally data do not fit this assumption, e.g. 

electrode drift from original neuron-electrode interface, resulting in over-clustering (D). This 

requires manual validation and is a motivation for improved spike sorting methods. 

The clusters then undergo neuron cleaning – very similar features could be reasonably 

included in a cluster which cannot physiologically belong to the same neuron. Multi-unit 

activity that has been incorrectly clustered can be identified using the absolute refractory 

period (section 2.1.5) by applying an autocorrelation function which analyses the inter-spike 

intervals of the reconstructed neuron and applies a limit of feasible re-activation based on a 

physiological limit of ~1.5 ms14. Histograms of inter-spike intervals associated with a cluster 

are generated to highlight spikes detected from more than one neuron, where intervals less 

than the refractory period (~1.5 ms) must originate from more than one source. Data which 

defy the limits of this inter-spike interval threshold are defined as contaminated, are not 

associated with a single neuron, and are discarded. 

 

A B 

D C 
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2.3.2 Connectivity 

Advancements in MEA technologies have enabled the recording of electrophysiological 

activity from hundreds of neurons simultaneously and allowed for analysis of local network 

connectivity properties113,96. Neuronal connectivity relates to how information is relayed 

throughout the network and how the integration of communicated signals produce a 

coherent output. Large scale connectivity analysis has been performed over entire brain 

regions, for instance with magnetic resonance imaging114, however the resolution afforded 

by new MEAs enables enhanced interrogation of network properties on the scale of 

individual neurons. Understanding neuronal connectivity can explain mechanisms of 

information processing and how this can be impacted in neurodegenerative diseases, whilst 

also elucidating adaptive plasticity mechanisms which underlie learning and memory.   

Large brain structures are understood to be functionally segregated as certain structures 

have defined roles, e.g. the hippocampus is strongly associated with learning and memory. 

However, the role of an individual neuron within a local network is less defined. An approach 

to characterise the function of a neuron in the context of a network is to discriminate formsof 

connectivity (Fig. 2.10). Structural connectivity concerns the anatomical connection between 

neurons at a synapse; this feature identifies an interaction, but not the role of the neuron 

within the network. Further characterisations include functional connectivity, where remote 

neuronal events exhibit a statistical dependency, or effective connectivity, the direct 

influence of a neuron upon another22.   

Functional connectivity is based on time dependant correlations and can be determined if 

the activity of one neuron can predict the activity of another. Effective connectivity relates 

to the synaptic weighting of a structural connection – the impact one neuron’s activity upon 

another. Defining the anatomical architecture of a network enforces a parameter enabling 

the clear identification of effective connectivity and has been incorporated into algorithms 

to adjust analyses of connectivity 96. Therefore, effective connectivity acts as a means of 

weighting synaptic connections by highlighting architectural features most probable to 

contribute to information propagation. This form of connectivity is more relevant to local 

network electrophysiology on the scale of hundreds of neurons; however, the area covered 

by the array presented in this work (1x2mm) implies assessments of indirect, functional, 

connectivity could be performed. 

Effective connectivity is typically studied in vitro115,21 as cell densities, network architecture, 

cell accessibility and cell type can be manipulated and designed to simplify investigations. 
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Additionally, such studies concern the flow of information throughout a network and are 

therefore condition-dependent. Stimulating the network at a known location, at a specific 

time, provides context to downstream activity. This can be performed with an electrical 

stimuli introduced into the extracellular space, while contemporary studies are increasingly 

utilising optogenetic techniques in a neuron-specific manner to evaluate networks in a more 

physiological environment116. Although providing useful insights, the conditional stimulation 

of network nodes does not reflect the physiological behaviour of neurons and the 

corresponding output of the holistic network.  

To accurately reconstruct correlated network activity of individual cells, MEAs have been 

used to characterise functional connectivity by inferred correlated activity states. This is 

performed by evaluating the network in the context of graph theory, a mathematical model 

with a large range of parameters which can indicate the behaviours of the network21. 

Properties of the graph (network) can then be assessed for commonalities. Example 

parameters include node degree (how many correlated connections for each neuron), cluster 

coefficient (how segregated the neuron is from other neurons) and path length (the number 

of neurons which a signal must traverse to reach another neuron). Node degree has been 

shown to be a useful metric in determining scale-free networks ( where a smaller population 

of neurons have a high degree of connectivity, i.e. population connectivity exhibits a power 

law distribution117 )characterised by highly connected hub neurons118 which are believed to 

be critical for information processing113. Scale-free networks correlate with robustness of the 

system, suggesting redundancy mechanisms exist to maintain the reliability of signal 

propagation in these pathways.   

The use of MEAs to study neuron connectivity is becoming widespread due to their ability to 

record from multiple neurons simultaneously, while increased spatial resolution achieved by 

technological advancements affords greater detail of direct neuron interactions. However, 

the difficulties associated with recording from acute slices has limited analyses of 

representative network connectivity in healthy, intact, neuronal networks. This work 

demonstrates a device with high electrode spatial resolution with a recording area of 2mm2 

integrated in an acquisition system capable of accurately defining hundreds of individual 

neuronal units. The connectivity analysis presented here aims to evaluate several approaches 

to assessing connectivity across a functional cortical network with a focus on effective 

connectivity.  
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Figure 2. 10. Three forms of connectivity can be used to describe neuron interactions within a 

network. (A) Structural connectivity refers to the anatomical connections at synapses. (B) 

Functional connectivity is time-dependant correlations in activity where the state of one 

neuron can predict the state of another. (C) Effective connectivity relates to synaptic 

weighting; a measure of the causal impact the activity of one neuron can directly affect a 

neighbour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3. Electrical Characterisation of a Novel Microelectrode Array 

Monitoring hundreds of neurons simultaneously within a local network requires high 

temporal and spatial resolution to effectively sort spikes and investigate connectivity 

between cells. Prior to electrophysiological recordings, the electrical properties of the MEA 

and recording system were evaluated. This section will briefly outline the fabrication of the 

MEA, fabricated by Dr. Gunning at the Institute of Photonics (University of Strathclyde) using 

photolithography techniques11, and describe the electronic components of the recording 

system. Aspects of the system which can limit the quality of recordings are then discussed 

and evaluated for their appropriateness to perform electrophysiological recordings of 

neurons. 

The impedances of electrodes at the electrode-electrolyte (the physiological solution) 

interface were assessed to determine the SNR and sensitivity to low amplitude neuronal 

spikes. High impedances limit the detection of low amplitude signals and constrain the 

electrical grounding of electrodes through the electrolyte solution which increases 

background noise, obscuring neuronal signals. To overcome this, the surface areas of 

electrodes were increased by electroplating with a biologically inert material. Electroplating 

is commonly used to lower electrode impedance values (see section 2.2.3) and the MEA 

presented here was electroplated with platinum black. The effect of platinisation upon 

electrode impedances, and resultant system noise, was investigated both by addressing 

electrode channels individually and, once the recording system was fully assembled, via 

software which initiates an application-specific integrated chip (ASIC). The impedances of 

tungsten electrodes were successfully reduced by the platinisation protocol to below 300 kΩ 

which is suitable value to match the system requirements and obtain an appropriate signal 

to noise ratio. No trend was observed following changes to current densities and time 

parameters used, therefore the minimum combination of these parameters (100nA / 20s) 

was used for future electroplating which resulted in a reliable impedance decrease across 

several electrodes.  

The MEA was then integrating into the acquisition system and root mean square (RMS) noise 

of electrodes measured in saline solution with a brain slice applied to the electrodes. The 

noise of 72% of the electrodes was measured to be between 14 and 16 µV, with no channels 

exhibiting an RMS noise greater than 18 µV. A total of 20 channels exhibited significantly 

lower noise and were confirmed as electrically shorted by direct measurements. The noise 

input from both the electrical system and in the presence of a brain slice immersed in saline 
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was found to be stable at an appropriate level to perform electrophysiological recordings.  

These initial evaluations were important to ensure the device behaves comparably to 

previous MEA developments and that devices could be reliably fabricated without defects 

occurring. 

 

3.1 Fabrication Summary of the 512-Needle Microelectrode Array 

The system presented in this work progressed from investigations of retinal ganglion cells 

which utilised an MEA with indium tin oxide electrodes based on a glass substrate7,119,84. 

However, the requirements to investigate acute slices required alterations to the MEA 

design. A novel combination of semiconductor fabrication methods were used to produce a 

device from a silicon substrate, as previously reported in the development of a 64-needle 

electrode MEA11, with tungsten electrodes exposed at the tips of silicon needles (figure 3.1, 

B & C). An 8-fold increase in the number of high-density electrodes may have decreased 

uniformity across electrodes due to low process capability of a novel photolithography 

process, however this was found not to be the case. Fabrication steps are visualised in Fig. 

3.1A, with Fig. 3.1B&C displaying scanning electron micrographs (S.E.M.) of the resultant 

needle electrodes. The fabrication of the 512-needle MEA was performed by Dr Gunning120, 

and their development is beyond the scope of this work (see appendix 1 for further details 

of array fabrication). Briefly: 

1) Photoresist is applied to a silicon wafer to pattern an array of circles, where 

photoresist is absent, which indicate electrode positions (60 µm pitch) and base 

diameters (25 µm). Exposed areas of silicon undergo deep reactive ion etching (DRIE) 

to produce tapered holes. 

2)  Silicon dioxide is applied to the lining of the holes and adjoining surface as an 

insulation layer, and tungsten deposited on top of the silicon dioxide by chemical 

vapour deposition. 

3) Excess tungsten on the wafer surface is removed, using photolithography and 

etching techniques, to pattern the electrode tracks. 

4) Polysilicon is deposited in the etched holes to provide mechanical stability, and the 

surface excess is etched to expose the tungsten tracks. 

5) Aluminium is sputter deposited, patterned and etched so that it coats the exposed 

tungsten and enhances the electrical contact with tungsten at the needle tip. 
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6) The wafer is inverted and most of the original silicon is removed (leaving ~100 µm 

thickness for physical support) using a solution of tetra methyl ammonium 

hydroxide. The underlying silicon dioxide remains intact to act as an etch stop and 

allowing the formation of the needles. The extent of silicon removal during this stage 

determines the length of the needles. 

7) The tungsten needle tips are then exposed by removing silicon dioxide with 

hydrofluoric acid. 

 

 

 

   

   

   

   

   
 

Figure 3. 1. Fabrication of the MEA. (A) Arrays were fabricated from silicon using 

photolithography techniques which can etch defined areas into which conductive materials 

can be deposited. Specifics the microfabrication technique can be found in appendix1. (B) The 

microelectrode needles can be produced in high-density arrays of 60 µm pitch and heights up 

to 250 µm; example image of ~50 µm high needles. (C) These needles are insulated in silicon 

dioxide (also providing mechanical support) with a tungsten electrode exposed at the tip. (D) 

Electrodes are arranged in a pattern to make each electrode equidistant to its neighbours and 

form a rectangle 1x2mm in size. 

A 

1) 
2) 

3) 

4) 5) 

Material legend: 

1) Silicon  

2) Silicon dioxide 

3) Tungsten 

4) Aluminium 

5) Polysilicon 

 

B C 

50µm 5µm 

D 
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The array of electrodes is arranged in a rectangular geometry, but individual electrodes are 

laid out in a hexagonal arrangement (Fig. 3.1, D) with each electrode equidistant to each of 

its 6 neighbours. The electrodes were spread over an area of 1x2mm with 60 µm pitch 

between needles. This fabrication process can produce needles up to 250 µm in height, 

however the needles which recorded neuronal signals in this work were 90 µm in height with 

a 30 µm diameter base and pyramidal tungsten electrode tips 5x5x20 µm in size.  

The heights of the needles are a critical property, as the novelty of the device is the ability to 

bypass damaged tissue – an inherent consequence of acute slice preparation. Additionally, a 

compromise between the diameter of the needles and mechanical stability must be 

consideredas large electrodes (and needle support) inserted into tissue would likely cause 

severe damage to brain tissues yet needles too fragile may fracture upon insertion. However, 

the size of the electrode tips is important to consider as the conducting surface area 

determines the impedance of the electrode which must be matched to the recording system 

to achieve high-quality recordings. 

 

3.2 Investigations of Electrode Platinisation and Impedance Measurements  

The surface area of each pyramidal tungsten electrode tip was ~200 µm². Electrode surface 

area is inversely related to impedance (as area decreases, impedance increases) therefore 

the small size of these electrodes limits current flow and increases electrical noise. However, 

single-cell resolution becomes more difficult with a large electrode detecting multi-unit 

activity, as the large surface area would attenuate signals through spatial averaging121. In 

contrast to patch clamp, where a high electrode resistance amplifies voltage deflections, 

impedances of electrodes for extracellular recordings require low impedances. Electrodes 

are coupled to the electrical grounding (in this case, a platinum wire) through the electrolyte 

solution and impairing the connection of electrodes to grounding causes the electrodes to 

be “floating” – with no reference, the system will record a higher noise input. The 

impedances of electrodes  is critical in detecting the extracellular currents generated by 

neurons.  

The electrode and input amplifier impedances are connected in series. The effective 

electrode impedance is the sum of the spread resistance (electrolyte conductivity through 

the surface of the electrode), the impedance associated with electrode surface (charge 

transfer resistance in parallel with interfacial capacitance) and the metallic resistance of the 

electrode. To preserve signal quality and reduce signal reflection, the front-end amplifier is 
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designed with an impedance greater than the impedance of the electrode because the signal 

will be attenuated where this is less than the electrode impedance (see equation 3.1). 

These parameters have previously been used to model optimal impedance values7 and 

application-specific silicon chips, integrated into the recording system presented here122, are 

designed to function at an electrode impedance of ~300 kΩ at 1 kHz. To match electrode 

impedances to the system design, and ensure a high SNR, impedances were measured, 

surface areas were increased by electroplating with granular (black) platinum.  

𝑉𝑖𝑛 =
𝑉𝑒

1 + (
𝑍𝑒
𝑍𝑎

)
 

Equation 3. 1. The recorded voltage (Vin) is determined by the impedances of the electrode 
and front-end amplifier (Ze and Za, respectively). The voltage input will be attenuated if Za 
is not substantially greater than Ze. Ve is the voltage at the electrode interface.  

Electrode impedances were measured in their initial state following fabrication, where 

tungsten is the conductive material, followed by independent platinisation of several 

individual electrodes. These initial evaluations were performed before the MEA was 

integrated into the neuroboard, in a custom setup with the function of keeping the device 

physically stable whilst allowing access to individual readout channels on the opposite side 

to the electrodes (see Appendix 2).  

The etching process to expose the tungsten tips of electrodes may not have resulted in 

complete or uniform exposure, further decreasing the surface area. As discussed previously 

biologically inert materials are commonly used to coat electrodes (see section 2.2.3), 

specifically those which form nanostructures9 and increase the electrode-electrolyte 

interface area. Here, electrodes are plated with platinum black which is a granular form of 

platinum. This form of platinum possesses well characterised catalytic properties and, 

compared to other metals used as electrodes like gold, is reportedly less reactive123 in 

electrolyte solutions.  
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Diagram 3. 1. A simple electrical model of electrode impedance showing the major factors 
affecting electrode impedance at the electrode-electrolyte interface. Spread resistance 
refers to the area and resistivity of the electrolyte solution. Charge transfer resistance is 
determined by the charge transfer rate and the redox reactions that occur at the interface, 
while the interfacial capacitance consists of layers of charged ions (~15 µF/cm2). 
Additionally, there may be coupling to a neighbouring channel which is determined by 
distance between channels, surface area and the permittivity through the dielectric 
medium.  

 

3.3 Platinization protocol 

Platinization of the 3D needle arrays was performed with caution. Previous experiments 

using planar electrode arrays had utilised a current density of 4nA/ µm2 applied for 20s to 

platinize flat electrodes 20 µm2 in size7. However, the pyramidal structure of the 512 MEA 

electrodes presented an electrode surface area of ~200 µm² (5 µm x 5 µm base and 20 µm 

height). Uncertainty of how uniformly electrodes would be plated, depending on how 

thoroughly tungsten had been exposed in the etching process, meant further investigations 

of platinisation were required.   

For initial platinisation attempts, electrodes were individually platinized using a Yokogawa 

multi-channel source measurement unit (GS820) connected to a single channel probe applied 

to a channel readout bondpad. The electrodes were immersed in a 1% chloroplatinic acid 

solution (PtCl). Chloroplatinic acid solution (8% in water, Sigma Aldrich, 262587) was diluted 

with 0.08% lead (II) acetate trihydrate (Sigma, 316512) in distilled water to provide 1% 

solution. The platinum reference wire encircling the chamber was then connected to the 

source measurement unit to complete the circuit and a current of 0.004 µA at a 1volt 

compliance limit was applied. Further investigations into the effect of platinisation were 

performed at 0.004, 0.008 and 0.012 µA, each for either 20 or 30seconds. Later, when the 

array was integrated into the neuroboard, tungsten electrodes were electroplated using 

input commands from custom-made labview software (National Instruments), which 
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initiated the platchips located on the neuroboard to ensure appropriate parameters. 

Electrode impedances were measured using an LCR meter (Iso-Tech 800), in the same setup 

as platinisation, at 0.1V across a frequency range of 0.1: 100 kHz. 

 

3.4 Data Acquisition System 

The MEA was then integrated into the neuroboard, containing the PlatChips and 

NeuroChips14,122,124,125, and shielded in an aluminium box which acted as a Faraday cage (Fig. 

3.2, B). A circular gap in this box was present over the electrode portion of the array and the 

electrode area was surrounded by a plastic cylinder 1cm in height. The plastic cylinder 

functioned as a chamber to contain the electrophysiological solution and tissue, isolating 

conductive physiological solutions from sensitive electronic components. 

  

Figure 3. 2. (A) The MEA was glued into a PCB board populated with the PlatChips and 

NeuroChips of the acquisition system located on the underside of the board. A cylinder of 

Delrin plastic formed a chamber around the needles of the MEA to contain physiological 

solution. A platinum wire surrounded the inner wall of the chamber to function as an electrical 

reference which led out of the chamber and was soldered to a grounding pin. (B) The 

neuroboard was sealed within an aluminium box to shield the system from electrical static 

and physical damage. A hole in the box allowed access to the MEA chamber and to insert 

perfusion tubes into the chamber to continually refresh the chamber with warmed solution 

(seen attached to the lid of the box with an in-line heater and the pump in the background).  

A B 
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3.4.1 Application-Specific Integrated Circuits of the Neuroboard  

The acquisition system was developed at the AGH University of Science and Technology, 

Krakow, Poland, andUniversity California Santa Cruz, U.S.A.14,122,124,125, critical components of 

which are the PlatChips and NeuroChips which populate a PCB board termed the 

“neuroboard”. The electrode voltage is amplified, filtered and multiplexed by the electronics 

of the neuroboard, which is connected to an interface board with a 68-pin shielded cable (NI 

SH68-68-EPM). The interface board acts as a conduit for power supplies, providing +/- 2.5V 

and +/-5V, with currents controlled by variable resistors on the board. The interface board 

also enables commands for recording and platinisation protocols to be transmitted from a 

PC running Labview software (National Instruments) to the neuroboard via a digital 

input/output cable, while the analogue multiplexed signals from the neuroboard are relayed 

to the PC via two separate analogue output cables. 

Within the PC, two ADC boards, with 4 ADC channels each, digitized the input analogue 

signals at a sampling rate of 20 kHz for each channel. Each ADC channel is 12-bits, providing 

4096 voltage levels over a 5V range (+/-2.5V). Amplification by NeuroChips (gain of 1500) 

before processing results in a resolution of 0.814 µV per ADC count. With a sampling rate of 

20 kHz, the system can record voltage changes of 0.814 µV at 50µs intervals. 

The number of electrodes that can be included in an array is limited by the readout 

electronics required to amplify and filter electrical signals from electrodes. Low noise 

electronics are required which process amplitudes of 50-500 µV in a 30-3000 Hz frequency 

spectrum with a multichannel readout. In the work presented here, ASICs required for data 

pre-amplification, filtering, and platinisation of electrodes, was primarily divided between 

two functionally different 64-channel ASIC chips; PLAT-64 and NEURO-64 122. 
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Figure 3. 3. The 512 needle MEA is integrated on a PCB, with the acquisition system consisting 

of 16 ASICs; eight PLAT-64 chips couple to eight NEURO-64 chips. (A & B) Each of the 64 

channels per chip correspond to individual electrodes which are situated on the inverse side 

of the PCB surrounded by a chamber (C) with which to contain electrophysiological solution, 

and a ring of platinum wire to function as ground. 

An electrode is AC-coupled to a capacitor before the readout connects to the PLAT-64 chip. 

This is because the reference platinum wire and electrodes sit at slightly different potentials 

- as electrodes would charge in attempting to match the potential of the reference, the 

capacitor prevents the chip’s amplifier from being saturated. Eight PLAT-64 chips couple the 

electrodes to eight NEURO-64 chips (Fig. 3.3, B) and act as a switch and supply currents for 

platinisation of electrodes in the range of 0-500nA controlled by a 5-bit DAC (block diagram 

of a single PLAT-64 channel can be found in appendix 3). Each of the 64 channels contains a 

A 

B 
C 
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current generator with a 150pF capacitor; therefore, channels can be individually platinised 

as required. 

During recordings, signals are relayed to a corresponding NEURO-64 chip of 64 channels and 

a multiplexer requiring a rate of up to 5M Hz122. Signals are driven through preamplification, 

a bandpass filter and a final output amplification stage before a 64:1 multiplexer reduces the 

number of outputs from 512 to 8 before being relayed to a computer for processing. This 

acquisition system has  demonstrated an input system noise of 7 µV RMS with 512 electrodes 

with a passband of 50-2000 Hz122. This system has been shown to record neuronal activity 

across 512 planar electrodes at a rate of 20 kHz in previous investigations of retinal ganglion 

cells and organotypic slice cultures124.  

 

3.5 Platinised Electrodes have Appropriate Impedance to Detect Neuronal 

Activity  

Initial platinisation procedures were performed on a minimum number of electrodes to 

minimise impact to the entire array. Tungsten electrodes (n = 3) exhibited an average 

impedance of 480.6 kΩ (±0.74 S.D.) at 1 kHz (Fig. 3.4), corresponding to 1 ms and an 

appropriate comparison for AP frequencies. As expected, impedance values decreased with 

increased frequency, demonstrating an AC capacitive coupling between the electrodes and 

electrolyte interface. After platinisation at 0.004 µA for 20seconds, the impedance of the 

electrode at 1 kHz decreased by 51% to a mean of 245 kΩ (±3 S.D.). For comparison, platinised 

needle electrodes have been previously reported to exhibit a typical impedance of 300 kΩ at 

1 kHz11.  
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Figure 3. 4. Electrode impedance as a function of frequency. Impedance values for 3 

electrodes measured before and after electroplating with platinum at a current density of 

0.04 µA applied at 1V. For voltage applied at 1 kHz, the electrode’s impedance is reduced from 

480.6 kΩ to 245.6 kΩ following the formation of granular platinum black at the electrode 

surface. Black = tungsten electrode, red = platinum electrode. Error bars S.D. 

Following successful platinisation of 3 electrodes, alternative currents were applied to 

investigate an optimal protocol for platinisation. Tungsten electrodes (n= 6) exhibited 

impedances of 390 to 599 kΩ (Fig. 3.5, A) and were electroplated using current densities of 

0.5, 0.75 or 1 nA/ µm² (current input of 100 nA, 150 nA and 200 nA) applied for either 20s or 

30s on individual electrodes. All electrodes exhibited a decrease in impedance following 

platinisation, ranging from 227-269 kΩ. Higher current densities did not produce a greater 

decrease in impedance. Similarly, increasing the duration of electroplating did not result in a 

greater decrease in impedance at any of the attempted current densities (Fig. 3.5, B) and 

impedances were reduced by an average of 52.4%. Following platinisation, electrode 

impedances demonstrated less variation (±16.6 kΩ compared to ±74.4 kΩ for tungsten 

electrodes prior to platinisation) suggesting platinisation also improves uniformity of 

performance across electrodes.  

Low current densities were used as a precaution – an excessively large surface area leads to 

inaccuracies in local potential events as the recorded signal is averaged over a relatively large 

area and can impact recorded signal amplitudes121. This spatial averaging can attenuate 

amplitudes and has a greater impact on electrical sources closer to the electrode, for example 
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it has been shown that 11 µm and 86 µm diameter electrode detect the same signal 

amplitude at a signal source distance of 20 µm, but at 1 µm this signal is attenuated by 25% 

at the larger electrode126.Briefly electroplating with a current of 100nA for 20s reduced 

impedances to appropriate values of 150-300 kΩ and was found to consistently reduce 

impedances by ~50% (Appendix 4). Therefore, this was determined as a suitable platinisation 

protocol for microelectrodes.  

 

 

Figure 3. 5. (A) Six electrodes were individually platinised in turn, and a current of 100nA, 

150nA or 200nA was applied. Tungsten electrode surface area was calculated to be 200 µm², 

corresponding to current densities of 0.5, 0.75 or 1nA/ µm², and electrodes were platinized 

for either 20 or 30 seconds. Electrodes impedances were measured at 1 kHz. Each 

platinisation protocol reduced impedances below 300 kΩ, indicating a suitable impedance 

level to record extracellular neuronal signals. (B) No trend was observed across platinisation 

protocols. Increasing current density and time of current application did not enhance the 

B 

A 
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decrease in impedance following these protocols. Electrode impedances were reduced on 

average by 52%, ranging from 49.3% to 59.5%. Error bars (S.D.) were excluded due to the 

stability of measurements resulting in very low values.   

3.6 Readout Channels Are Not Capacitively Coupled.  

Prior to integrating the MEA into the acquisition system, the inter-channel capacitances of 

the MEA channel readouts were investigated to determine if parasitic capacitance was 

evident and could impact recordings. This was due to concern that the semi-conductive 

properties of the silicon substrate would carry charge between the insulated electrode 

channels. Two probes were applied to bond pads, capacitances measured using an LCR meter 

(Iso-Tech 800), then one probe was moved to the next bond pad and measurements 

repeated. This was repeated at several locations on the readout side of the MEA as the 

readout tracks differed in length depending on the location of the corresponding electrode.  

Capacitances between bondpads remained stable across the array with a typical range of 8.5-

11pF. Measurements representative of capacitances seen across the array are presented in 

Fig. 3.6; there was no change in capacitance over distance between bondpads and different 

track lengths did not exhibit a bias in this property. This indicates that channels in the MEA 

do not demonstrate direct capacitance, as there is no correlation between readout track 

distance, but suggests that channels display capcitance to the substrate itself in the range of 

20pF (a 20pF inter-channel capcitance would be recorded as ~10pF capcitance to substrate 

as observed). This low value capacitance would not significantly impact recording quality.  

 

Figure 3. 6. The capacitance between electrode readout channels was measured by applying 

probes to channel bondpads. Measurements typically ranged from 8.5 pF to 11 pF and was 
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consistent across distance between channels and the different lengths of channels required 

for the readout of 512 electrodes. This figure is a representative example, where one probe 

remained at contact and the other was moved to successively distal contacts. 

 

3.7 Biological and System Noise  

Previous experiments using a similar setup with 61 recording electrodes have determined 

the electronics of the system to contribute ~5 µV RMS input noise and a ~7 µV noise level 

recorded from electrodes immersed in saline solution14. Measured in 0.1M saline solution 

(0.9% NaCl) in the absence of tissue, the system presented here recorded an RMS noise of 

~10-12 µV. These measurements are more relevant when brain tissue is applied to the 

electrodes and setup is more complete, as non-stationary biological noise is additionally 

present. Therefore, the data presented here is of electrode noise recorded in the presence 

of a rat brain slice. During the initial minutes, brain slice recordings exhibit very low (or 

complete absence of) neuronal activity. Therefore, a noise evaluation of 15 seconds of 

recorded data was performed which corresponds to 300,000 samples per electrode channel.  

The combined biological and system noise across all electrodes accounted for a mean of 

15.35 µV RMS input (±0.1 µV S.D.). This includes two disconnected electrodes exhibiting high 

noise values (black boxes, Fig. 3.7) which are likely either broken or the result of a defect 

during fabrication. Exclusion of these channels from analysis does not significantly alter the 

average noise, which ranges from 11.8-17.8 µV (Fig. 3.7). Several channels exhibited 

significantly lower noise and were suspected of being electrically shorted (red dashed boxes, 

Fig.3.7). Using a 32-channel probe card and a data acquisition system (Keithley, 2701), 

resistances between electrode channel bond pads were measured to identify these 

electrodes. A total of 20 channels displayed low resistance to a neighbouring channel (10-

900Ω) compared to the remainder, measurement of which was limited by the maximum 

measurement of the acquisition system. Of these shorted channels, 3 triplets and 4 pairs 

were found, suggesting poor insulation of these channels on the MEA readout.  
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Figure 3. 7. The RMS noise input averaged over 15seconds with tissue placed on the array 

immersed in physiological solution. The average noise over all channels was 15.35 µV with an 

average standard deviation of 0.1 µV (not shown). Channels 72 and 128 (black boxes) are 

disconnected and therefore exhibit higher noise values, while most of the electrodes that 

measured noticeably lower noise (dashed red boxes) were paired neighbours, suggesting 

these channels had been shorted together.  

The spread of electrode noise can be seen in Fig. 3.8 (excluding disconnected channels) and 

72% of the 512 channels exhibited an RMS noise value between 14 and 16 µV. An electrode 

RMS input noise of ~15 µV is sufficiently low enough to detect neuronal spikes with a peak 

amplitude >80 µV. As the tissue becomes more active in the presence of the solutions used 

during recordings, it is reasonable to expect an increase in the background biological activity 

and a subsequent increase in RMS noise; however, a further 15s noise analysis taken 

20minutes into recording from tissue showed this increase was observed to be on average 

0.86 µV (+/-1.2 µV S.D.) which is slight enough to be negligible.   
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Figure 3. 8. Histogram of electrode noise distribution excluding two disconnected, high noise, 

channels. The mean RMS input noise for each electrode was measured over a 15second 

recording period; corresponding to 300,000 samples. Electrodes exhibited a mean noise of 

15.35 µV (±1 S.D.), while electrodes with a recorded noise level in the range of 14 to 16 µV 

accounted for 72% of channels.     

3.8 Discussion: Electrical Characterisations  

The novel MEA presented here was fabricated at the University of Strathclyde using 

photolithographic techniques. The device consisted of 512 tungsten electrodes, each 

insulated in a 3-dimensional needle of silicon dioxide, with 60 µm pitch. The tips of the 

needles were etched to expose the tungsten electrodes which measured a 5x5x20 µm 

pyramid. The electrodes covered an area of 1mx2mm, and readout channels were etched on 

the opposite side.  The fabrication of 512 high-density needle MEAs did not compromise the 

properties of electrodes, which demonstrated electrical characteristics suitable for the 

extracellular recording of multiple neurons simultaneously.  

Tungsten electrodes can be uniformly and effectively platinised at a current density of 0.5nA/ 

µm2 for 20seconds to reduce electrode impedance by ~50%.  Increasing the current input, 

and applying for longer periods, did not enhance this effect. The deposition of granular 

platinum may reach a saturation point on exposed tungsten. The etching process (see section 

3.1)  may not have been uniform across electrode tips, therefore, increased platinum surface 

area would have limited impact on impedance  

. Capacitances measured between electrode read out channels did not exhibit correlation 

with distance, indicating that the capacitances measured are the result of channel 
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capacitance with the silicon substrate and not directly between readout channels. The low 

values for this capacitive mechanism (~10 pF) indicates the MEA fabrication process can 

successfully insulate readout channels and did not impact the quality of recordings. 

The input noise generated by the system was a critical factor in verifying the suitability of the 

system as excessive RMS noise would obscure electrophysiological events. The system 

presented here exhibited an RMS noise of ~10-12 µV, comparable to previous studies using 

a similar setup10. In the presence of brain tissue, this increased to an electrode average to 15 

µV, however, this value is still an appropriate level with which to identify extracellular spikes 

which are commonly greater than 100 µV in amplitude.  

 The scale and fragility of the microneedles and the electrode readout channels makes the 

device prone to damage or fabrication defects. Only 20 channels of the 512 electrodes were 

found to be electrically shorted (3.9%), indicating a reliable process of fabrication. These 

electrodes can be consistently and uniformly platinised to provide the required impedance 

values, which decreases the input noise of the system to suitable levels to recording 

extracellular neuronal activity. 

 

Characteristic Average Values Summary 

Tungsten impedances at 1 

kHz(kΩ) 
490 ±74  

Platinum Impedances at 1 

kHz(kΩ) 
250 ±17 

Not reduced below 200kΩ at 

any attempted parameters 

Impedance reduction (%) 52  

Capacitive coupling (pF) 9.8  

System noise (µV) at 1 kHz 11.5 (1:11) 
Interface and front-end 

amplifier 

Biological noise (µV) at 

1kHz 
15.35 (1:15) 

SNR of 1:15 reported in 

comparable device11 

Shorted Channels (%) 3.9 20 channels out of 512 

Table 3. 1. Summary of the electrical characteristics of the 512-needle MEA. The device 

exhibits appropriate properties with which to achieve the experimental aim and compares 

favourably to previously evaluated devices of similar design.  



 

4. Neuron Identification and Population Evaluation 

This chapter will detail the experimental procedures that were used to characterise 

electrophysiological recordings of acute brain slices with the novel MEA and the spike sorting 

parameters used to identify distinct individual neurons. This process consisted of: the 

preparation of acute slices and the means used to maintain viability during recordings; the 

analytical approach to spike sorting using a custom-designed software from University 

California Santa Cruz14; and justification for the use of certain parameters in further analyses. 

Features of the recording, for example evaluating electrical and biological noise of the setup, 

will be summarized before a broad discussion of the spike amplitudes and frequencies 

exhibited by the neurons. This information was then used to refine parameters to use for 

connectivity analyses.  

Dissections were performed according to a previously described method127, but modified to 

provide acute coronal slices. The procedure allowed access to a large portion of cortex which 

could be easily arranged over electrodes. Slices were maintained in solutions of artificial 

cerebrospinal fluid (aCSF), which is commonly used for in vitro neuronal studies to substitute 

physiological cerebrospinal fluid128. These aCSF solutions contained different concentrations 

of specific salts depending on the stage of their preparation; for instance, during sectioning, 

tissues were immersed in a solution containing a high sucrose concentration. Warmed 

artificial cerebrospinal fluid with elevated potassium content was oxygenated and perfused 

over the tissue for the duration of recordings, which typically lasted 4 hours. 

Numerous recording attempts were made, however, the data for this chapter is limited to 

the recording which identified the highest number of neurons effectively separated from 

noise. Comparisons between datasets were not completed as most recordings were 

impacted by electrical noise artifacts or acquired insufficient electrophysiological data to 

identify neurons. These challenges are discussed in chapter 8.   

The approach to spike sorting was based on PCA, a method of feature extraction and 

dimensionality reduction (see 2.3.1), but additional stages of data analysis are required to 

identify neurons. Briefly: a voltage threshold is applied to waveforms recorded on electrodes 

and separates electrical events unlikely to be the result of noise; PCA is then performed on 

data derived from groups of electrodes to cluster events with similar attributes; further 

thresholds are then applied to remove duplicate spikes and to improve PCA clustering of 

electrical signals. Resulting waveforms are then manually evaluated prior to further analysis. 

Several spike sorting parameters were applied to the data to maximise the quality and 
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number of neurons identified. The optimum parameters were found to be a threshold setting 

of 6, which was multiplied by the RMS input noise measured on each individual electrode, 

with a small allowance for correlation and contamination of signals. These parameters 

initially identified 74 neurons and, following manual assessment of average waveforms and 

clusters, an additional 4 neurons were identified to provide a total of 78. 

The SNR of neurons to electrodes were found to be at an appropriate level to cleanly detect 

neuronal signals (~10:1). This was consistent across each neuron and corresponding 

electrode – indicating the device’s stability in recording neurons and a successful fabrication 

technique. An evaluation of changes to each neurons’ spike rate over time indicated that 

most neurons displayed a dramatic decrease in spike rate following the initial 2 hours of 

recording. However, the amplitudes of spikes remained constant over the full 4 hours of 

recording suggesting the reduced frequency was not the result of a deteriorating interface 

between electrode and neuron. Parameters with which to further assess neurons were then 

compiled and the characteristics of each individual neuron was assessed. Comparisons 

between neurons highlight the variety of neuronal properties across the population and 

provided an estimation of parameters with which to approach connectivity analysis.    

 

4.1 Experimental Setup and Spike Sorting 

To record spike activity which reflects normal connectivity, slices must be maintained in 

solutions with appropriate oxygen, glucose and ion species content in order to mimic 

physiological conditions and to remain viable. However, the trauma of dissection, and 

subsequent sectioning, initiates molecular inflammatory responses which alter the 

electrophysiological behaviours of neurons (see section 2.2.4). Therefore, alterations are 

made to aCSF solutions to limit changes in activity and maintain normal functionality.  

Previous studies have modified the concentration of solutes and temperature of solutions to 

optimise cell survival1,2,3 by including a sucrose-rich solution as an equimolar replacement. 

Therefore, three different solutions were used during tissue preparation for 

electrophysiological recordings. 

 

4.1.1 Dissection Procedure 

Animals were maintained at the Biological Procedures Unit at the University of Strathclyde 

and procedures were performed according to protocols outlined by UK Home Office 



Chapter 4 

66 

 

legislation. Sprague Dawley rats (p14-21) were sacrificed by cervical dislocation, the brain 

was removed and placed directly into a vial of ice-cold artificial cerebrospinal fluid (aCSF). 

This solution consisted of 124nM NaCl, 3mM KCl, 2mM MgSO4, 1.25 mM NaH2PO4, 26mM 

NaHCO3, 10mM D-glucose and was oxygenated with carbogen (95% O2, 5%CO2) for 15-20 

minutes prior to addition of 1mM CaCl2. Brains were kept in aCSF for 3 minutes to allow the 

entire organ to cool and lower metabolic rate with the aim of minimising excitotoxic and 

apoptotic mechanisms. 

Brains were then placed onto a filter paper moistened with a sucrose-modified version of 

aCSF (206mM sucrose, 2mM KCl, 1mM MgCl2, 2mM MgSO4, 1.25mM NaH2PO4, 26mM 

NaHCO3, 10MMD-glucose, 1mMCaCl2) where the cerebellum was removed, and the two 

hemispheres separated medially (dotted line in Fig. 4.1, A). Tissues were then fixed to a 

vibratome stage on an anterior-dorsal vertical axis (dorsal fixed to the stage) and bathed in 

oxygenated sucrose-aCSF. Next, a vibratome (Intracel 1500) was used to section 350 µm thick 

coronal slices starting ~0.5 Bregma.  

Brain sections were taken from each hemisphere and transferred to a custom-made 

incubation chamber (Fig. 4.1, B). This was developed in response to earlier experiments 

highlighting that even low-pressure oxygenation could induce a vortex in the solution, 

potentially physically damaging slices. Partially trapping oxygen bubbles allowed for low-

pressure oxygenation to be used and increase oxygen solubility. However, an oxygen sensor 

was not available to verify this. Sections were kept in the chamber at room temperature aCSF 

for 60 minutes to allow equilibrium in the new medium to occur.  

Sections were then transferred to the MEA chamber using a shallow plastic scoop, taking care 

to limit contact with tissues. While floating in the chamber, liquid was carefully removed via 

a syringe which allowed the tissue to contact the electrodes. The cortex was positioned over 

the needles during the solution removal and approximately the same area was used during 

each experimental repetition (Fig. 4.1, A, white box). Recordings aimed to provide an 

assessment of the acquisition system, rather than focussing on a specific cortical area. 
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Figure 4. 1. Coronal sections (A) were taken from rat brains allowing access to a large portion 

of cortex which could be easily arranged over electrodes. Prior to sectioning, hemispheres 

were separated as the recording chamber could not easily accommodate sections of this size 

(dotted line). Sections were arranged over electrodes to record from approximately the same 

cortical area for each attempt (white box). Image sourced from Allen Brain Atlas2. (B) Sections 

were incubated in oxygenated aCSF for one hour at room temperature in a custom-made 

incubation chamber before recordings began. Oxygen was supplied from a pressurised 

oxygen tank and fed through tubing to a bubbling stone in the incubation chamber. The 

oxygen source (bubbling stone) was separated from direct contact with sections by a plastic 

dish, but oxygenated solution could be refreshed via a mesh at the base.  

4.1.2 Recording Procedure 

Once excess solution had been gently removed with a syringe, a resistance seal with an 

osmotic membrane was placed over the tissue and aCSF applied over the membrane 

(Diagram 4.1). Care was required to lower this seal – the tissue could float and not contact 

the electrodes or could be crushed by excessive force.  
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Diagram 4. 1.  Schematic of the positioning of slices on the MEA. Electrodes are located at the 

base of a chamber which was filled with eCSF. Sections were placed in the chamber and 

positioned over electrodes, before liquid was carefully removed using a syringe. A resistance 

seal with an osmotic membrane was then placed on top to secure the tissue against 

electrodes and eCSF perfused over the tissue.  

During recordings, acute slices were perfused using a perfusion pump (Cole Parmer, 

Masterflex C/L) at a rate of 2ml/min with oxygenated excited-aCSF (eCSF). This solution 

resembles aCSF but with increased KCl content (increased to 5mM from 3mM) to stimulate 

neuronal activity. Before reaching the array chamber, perfused eCSF was heated with an in-

line heater (Warner Instruments, TC-324C) and a thermistor connected to the heating system 

was used to ensure the solution at the bottom of the chamber was 37°C. The supply of eCSF 

was continually oxygenated and solution was circulated through separate perfusion tubings.  
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Figure 4. 2. Experimental layout for electrophysiological recordings. Excited aCSF is perfused 

through the in-line heater before reaching the array chamber and is circulated using the same 

pump. The interface board relays raw data (bandpass filtered) from the neuroboard, which 

the MEA is wire bonded to. The interface board also connects and filter voltages from both 

power supply units (+/-5V and +/-2.5V) required by the neuroboard. Signals are then digitized 

by two ADC boards, each with 4x 12-bit channels, and processed using LabView software. 

4.1.3 Spike Sorting and Neuron Identification  

Presented in the following sections is a high-quality recording from an acute slice of rat cortex 

which identified 78 unique neurons. Acute slice recordings were typically four hours long. 

The time limitation of four hours is a result of a significant drop in activity which is discussed 

in the following sections. Many experiments did not exhibit a sufficiently high SNR to identify 

discrete neurons (further discussed in chapter 8), however, the data presented here 

demonstrate clear clustering of well-defined neuronal spikes. This indicates that the spike 

sorting method is appropriate for interpreting data derived from acute slices via the needle 

MEA and processed through the neuroboard system. This section outlines the capability of 

the spike sorting method used and provides justification for the use of parameters on which 

further analytical investigations were based. The impact of electrical and biological noise was 

then evaluated to demonstrate an appropriate SNR to record neurons is achievable with this 
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system. As the activity (spiking frequency) of most neurons significantly decreases after 2 

hours of recording, a brief outline of the overall population activity is provided as justification 

for subsequent chapters focussing on the initial 2 hours of recording. Additionally, a summary 

of neuron properties, such as spike amplitude, during this time period is included.  

The spike sorting process occurs over several stages (Fig. 4.3) and several example 

parameters and results are listed below (table 4.1). Initially, a sigma value is chosen to 

represent the deviation from RMS noise spike voltages are likely to be detected at – a voltage 

significantly more negative than the noise. This estimated value was multiplied by the 

threshold setting to generate a threshold voltage, i.e. a voltage value which, ideally, has a 

low probability of resulting from system noise. Next, 5-dimensional PCA clustering is 

performed (as described in section 1.3) to reduce the dimensionality of data. After identifying 

clusters of neuron waveforms, and defining them as an individual unit, further contamination 

and correlation thresholds are applied. Contamination and correlation values indicate how 

cleanly the spikes are identified and separated from each other and lower values maintain a 

more stringent threshold of identification. Contamination refers to the Gaussian clustering 

of data during PCA – the clusters with significant overlap indicates electrodes have detected 

electrical events which cannot be easily attributable to an individual neuron. The 

autocorrelation function is applied based on a neuron refractory period of ~1.5 ms14 and 

neurons that have highly correlated spike times may not be discrete cells as initially 

processed but duplicates detected by several electrodes.   

 

 

 

Figure 4. 3. Flow chart schematic of spike sorting. A voltage threshold value is multiplied by a 

sigma value derived from the RMS input of each individual electrode; a signal which goes 

beyond, and then returns past, this value is incorporated into the next stage of analysis. After 
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PCA clustering, correlation and contamination thresholds are applied to the clusters to ensure 

spikes are clearly identified and allocated to an individual neuron and not duplicated. The 

results are evaluated manually and re-assessed for further processing. 

 

Initially, threshold voltage and sigma values could be chosen arbitrarily to ensure only spikes 

were included. This was used as an initial evaluation of how appropriate chosen parameters 

were, however, more accurate was to use the RMS noise value calculated for each electrode, 

which accounts for discrepancies between electrode RMS noise input values.  The variation 

of these RMS noise values can be seen in section 3.7 and averaged ~15 µV. 

Ideally, neuron clusters would be highly distinct, and exhibit a correlation value (determined 

through the auto-correlation function) and contamination value (determined by how 

effectively PCA clustering separates the signals) of zero. Although minimising contamination 

and correlation parameters ensured highly defined neurons, these parameters can be set too 

stringently to identify many units (see parameter combinations #1, 2 and 3 in table 4.1). 

Following discussions with the developers of the spike sorting software, a recommended 

relaxation of the correlation and contamination parameters(relating to spike timing 

differences and the overlap of Gaussian distributions of PCA clustered samples) still 

maintained a realistic means of defining individual units whilst increasing the number of units 

identified; as can be seen from parameter combinations # 4, 5, 7, 9 and 10 in table 4.1 

(combinations #6 and 8 are included for comparison of higher parameter values only).  

 

 

 

 

 

 

 

 

 

 



Chapter 4 

72 

 

Parameter 
Sigma 

Value 

Threshold 

Setting 
Correlation  Contamination  

Raw 

Neurons 

Processed 

Neurons 

Unique 

Cells 

Average 

Spikes/ 

Cell 

1 6 10 0 0 4 1 1 300 

2 6 8 0 0 72 18 18 569 

3 RMS 8 0 0 41 16 7 986 

4 RMS 7 0.25 0.3 128 31 31 982 

5 RMS 6 0.25 0.3 300 74 74 531 

6 RMS 6 1 0.85 300 73 73 562 

7 RMS 4 0.25 0.3 2844 1419 1414 106 

8 RMS 4 1 0.85 2844 1419 1414 106 

9 RMS 5 0.25 0.3 925 206 205 179 

10 RMS 3 0.25 0.3 3230 1564 1559 101 

Table 4. 1.  Summary of numbers of neurons identified using different spike sorting 

parameters. Strict parameters resulted in a low number of highly defined neuronal units; 

while relaxing these settings allowed for more units to be identified, more noise is introduced 

into the analysis which degrades the quality of recordings.  Quality of recordings was assessed 

by manually reviewing the PCA clusters of spike data points and the average waveforms 

generated. Parameters using the electrode noise value and threshold setting of 6 resulted in 

78 unique neurons which satisfied the criteria of high-quality neurons (bold outline). Further 

analysis proceeded using this dataset. 

The parameters in row 5 were used for further analysis. Similar parameter settings could 

produce varied results; for example, comparing rows 5 and 9 in table 4.1 shows that 

increasing the threshold setting increases the likelihood of identifying cells, but drastically 

limits the average number of spikes allocated to that cell. In this comparison, with an average 

RMS noise value of 15 µV (see section 4.2) row 5 has a spike amplitude threshold of 90 µV 

and row 9 a threshold of 75 µV. Therefore, settings in row 9 detect more signals and 

subsequently suggests a large number identified neurons. However, this larger dataset 

makes clustering less defined and to accurately assign spikes to discrete units the number of 

spikes per cell is consequently much smaller than results from row 5 settings. As cells with < 

100 spikes/cell would be discounted from further analysis, it was decided that the results in 

row 9 did not provide sufficient data. Spatial temporal qualities of the array and their 

usefulness regarding connectivity investigations were therefore considered. A small number 



Chapter 4 

73 

 

of neurons detected over distal locations on the array are less likely to share functional 

connections, however, a reasonably high number of spikes per neuron (~200) are required 

to make connectivity investigations relevant. The spread of neurons across the array in the 

selected parameter dataset is discussed in a later section (section 6.2), while spike 

frequencies and amplitudes are summarized below. 

Quality of recordings was assessed by manually reviewing the PCA clusters of spike data and 

the average waveforms generated. Parameters using the electrode RMS noise value and 

threshold setting of 6 (Table 4.1, bold outline) resulting in 74 unique neurons. Additional 

manual assessment of the clustering (using custom software CellFinder to examine 

dimensional clusters in 2 dimensions) produced a further 4 neurons for analysis. The 78 

neurons had been allocated a reasonable minimum spike rate (minimum 100 per neuron) 

and coherent extracellular waveforms were observed (Fig. 4.4). This dataset satisfied the 

criteria of a reasonable number of high-quality neurons to investigate connectivity. Further 

analysis proceeded using this dataset and was performed using Matlab software. 

 

Figure 4. 4. The average spike waveform for each individual neuron in a spike sorting 

parameter dataset which identified 78 unique neurons (dataset #5 in table1). Individual units 

were identified by PCA clustering and subjected to a correlation, contamination and spike 

count limit, had each spiking event attributed to it plotted as a function of time and amplitude 

with the minimum recorded amplitude centred at t= 0 ms. The spike amplitude was recorded 
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from the electrode which first detected an electrical event which was attributed as a spike 

and assigned to the respective neuron. All spiking events per neuron were plotted this way 

and averaged to provide an average spike waveform for each neuronal unit. Further analysis 

of waveform characteristics is provided in chapter 5. 

 

4.2 System Noise and Signal Evaluation and During Recordings 

As discussed in chapter 3, the input RMS noise of the acquisition system in the presence of 

tissue was appropriately low enough to detect neuronal signals and previous experiments 

achieved quality recordings with a similar range of noise values. To assess whether neuron 

detection was limited to electrodes with exceptional SNR, the RMS noise of electrodes that 

identified neurons (termed “seed” electrodes) were evaluated using seconds of recorded 

data. This corresponds to 300,000 samples per electrode channel (20 kHzsampling rate). The 

mean noise of seed electrodes (15.5 µV ±0.4) was comparable to that of non-seed electrodes 

(15 µV ±0.7), while the mean noise across all electrodes was 15.32 µV ±0.8. The seed and 

non-seed electrodes groups exhibited significantly different RMS noise (p <0.05, student’s t-

test), and this excludes groups of shorted, low-noise, non-seed electrodes and two 

ungrounded, electrically floating, electrodes, however this difference is likely due to the 

difference in population numbers (74 seed to 438 non-seed). Seed electrodes did not exhibit 

outlier noise values which could indicate a bias in detecting spikes (Fig. 4.5, A). The seed 

electrode noise ranged from 14.64 - 16.07 µV (Fig. 4.5, B) which was an appropriate level to 

detect neuron spike amplitudes.  
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Figure 4. 5. RMS input noise of electrodes over three 5 second periods during first minute of 

recording from brain tissue. (A) Each point represents the RMS noise of an electrode: red 

points are seed electrodes which detected peak spike amplitudes of neurons; black dots 

correspond to electrodes not associated with neurons (error bars standard deviation). Seed 

electrodes did not exhibit outlier noise values. (B) Histogram of the RMS noise on each seed 

electrode. Over half electrodes (44) exhibited an RMS noise value of 15.04 µV - 15.64 µV.  

 

The average spike threshold value for spike sorting parameters is 92.76 µV (this varies based 

on electrode RMS) and most spike amplitudes exceeded 100 µV (Fig. 4.6, A). The spike 

amplitude count per neuron (Fig. 4.6, B) demonstrates the distribution of spike amplitudes 

for each neuron. There is a clear discrepancy between neurons with high spike count 

detected by the MEA and most cells that have a peak of less than 200 spikes.  However, the 

range of amplitudes is relatively consistent across all neurons (from ~-100 µV to ~-250 µV). 

The large variation in spike amplitudes may be the result of spike rate changes over time as 

spike amplitude has been shown to significantly reduce in the majority (86%) of substantia 

nigra neurons in response to increased firing rates129. Yet, amplitudes in these neurons were 

not found to significantly increase following a dramatic reduction in spike rate in the second 

half of recordings (see Fig. 4.10). Potentially, perturbations in the incubation chamber (due 

to, for instance, the perfusion system) could cause the tissue to oscillate and result in 

attenuation of the signal amplitude. 

The RMS noise value for each seed electrode was then compared to the average spike 

amplitude for each associated neuron to calculate the specific SNR for each neuron: 

electrode interface (Fig.4.7). The average SNR was 10.4 ±1 which is an appropriate ratio to 
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discern high amplitude spikes to cluster neurons and consistent with earlier reports using a 

similar system15. 

 

  

Figure 4. 6. (A) Average spike amplitudes per neuron, error bars S.D. The range of amplitudes 

was relatively consistent across the population.  (B) Counts of spike amplitude values, where 

each line represents a neuron (bin width 10 µv). Four neurons exhibit a distinctly higher 

number of spikes (peak >400 counts), however the variation in amplitudes is largely consistent 

and the most active neuron (peak ~1000counts) envelopes most of this variation.   
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Figure 4. 7. The average spike amplitude per neuron divided by the RMS noise input value 

recorded on the associated electrode indicates the SNR of the system. (A)  Histogram of 

neuron amplitudes divided by their respective electrode noise demonstrates 52 neurons 

displayed an SNR value of between 9 and 11 to 1. (B) Average neuron spike amplitude divided 

by corresponding electrode noise for each neuron.  

 

4.3 Neuron Activity is Limited to 2 Hours of Recording in this Preparation 

Continuous spiking activity was recorded for 4hours. Previous electrophysiological recordings 

from acute slices of hippocampus and neocortex have demonstrated robust viability beyond 

4hours and in some preparations have remained validated beyond 36 hours130,131. However, 

in the data presented here, there is a drastic decrease in neuron firing rate following the first 

two hours of recording. The combined spike rate of all neurons rapidly increased for the first 

hour (peaking 75-80minutes) before steadily decreasing. The high frequency peak of activity 

at ~3.5hours (starting ~12000s) is attributable to a single neuron, which exhibits very low 

frequency spiking except during this period (lasting ~20min). The initial rise in activity was 

observed across most neurons and explicit examples are provided in later sections.  

Although neuron activity was detected over a 4-hour period, later sections of this work will 

focus on the data obtained in the first 2 hours of recording where a clear majority of cells 

exhibit greater activity. This section will briefly compare and summarise the differences 

between the first and second halves of recording (termed 0-2hr and 2-4hr respectively) to 

justify this decision. Due to the drastic change in spiking frequency, and consequent loss of 

useful data, further analyses focussed on the initial 2hours of recording. The reduction in 
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spike rate is observed across the population and is unlikely to be related to inter-neuron 

communication.  

 

4.3.1 Decrease in Neuronal Spike Frequency 

The spike rate per neuron for the duration of the 4-hour recording demonstrates very low 

spike frequency across the population (Fig. 4.8, A) due to long periods of quiescence between 

spikes. Neuronal activity was detected and recorded for 4-hours, however 71% of all 

recorded spikes are elicited within the first two hours of recording. The disparity in activity 

between the first and second halves of the recording can be seen from the combined 

population spike rate (Fig. 4.8B) and the activity differences between these periods (Fig. 4.8 

C &D) were assessed in greater detail.  

The percentage of each neuron’s spikes elicited in either half of recording (Fig.4.9, A) 

demonstrates half (39) of all neurons exhibit >75% of activity 0-2hr, while 12 neurons elicit 

>50% of spikes during 2-4hr. While a minority of neuron demonstrate increased activity after 

2 hours of recording, this figure highlights that most of the recorded data is obtained in the 

initial 2 hours of recording. A smaller ISI value suggests a higher frequency of activity (Fig. 

4.9, B). Apart from seven neurons (#20, 25, 29, 41, 71, 72, 73), the average ISI value 2-4hrs is 

larger than the preceding two hours, suggesting a general decrease in spike frequency in 

addition to percentage of elicited spikes. Additionally, at 0-2hrs, 4 neurons exhibited an 

average ISI of >100s while this number increases to 49 neurons in the 2-4hr period. This does 

not reflect the variation in spikes per neuron but is an indication of the change in behaviour 

over the duration of recording. 

 The later high frequency neuron (discussed in Fig. 4.8) can be identified in figure 4.9 (A) as 

neuron #71, which highlights a larger inter-spike intervals (ISIs) in the initial two hours (black) 

with a shorter periodicity in the second half of recording (red). This outlier is also evident in 

figure 3.6, showing 94.4% of this neuron’s spikes occur within 2-4hours. Neuron #72 also 

elicits very few spikes in the initial half of recordings (1.74% of total recorded neuron spikes), 

however, this neuron has a small number of attributed spikes (117 total), only marginally 

more than the spike count cut-off value of 100 spikes used as a neuron clustering criterion. 
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Figure 4. 8. Neuron spike rates. (A) Combined neuron population firing rate for the duration 

of the 4-hour MEA recording from an acute cortical slice. Binned at a rate of 1min, the 

population of recorded neurons showed a peak in activity ~75-80minutes into the recording 

which then decreased at a similar rate until ~145minutes. The population activity remains in 

the range of 1-2 Hz except for a single neuron exhibiting ~20minutes of high frequency 

activity. (B) Neuron spike frequency for the total population during 4 hours of recording. (C) 

Individual neuron spike frequency during the initial two hours of recording. (D) Individual 

neuron spike frequency during the last two hours of recording; error bars S.D. 
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Figure 4. 9. Neuron activity alters over time with most neurons eliciting more spikes, at a 

higher frequency, during the first 2 hours of recording. The reduced quantity of spikes 

recorded in the second half of recording makes this period of activity difficult to evaluate (A) 

Percentage of spikes elicited by neuronal units during the initial 120minutes of recording and 

the latter 120minutes of recording. Of the 78 neurons, 12 neurons were more (>50%) active 

during 2-4hrs, but half (39neurons) elicited over 75% of their spikes in the first 0-2hrs; 

highlighting the discrepancy in neuron activity during these intervals. (B) Average inter-spike-

interval (ISI) for each neuron in the first 2 hours of recording and the second 2 hours of 

recording. The increased ISI 2-4 hours into recording highlights the lower firing rate in the 

second half of recording.  

 

An initial summary of the dataset indicates a distinct variation in both total spike count, and 

average spike frequency, per neuron over the course of the entire 4-hour recording. For 

instance, the average spike count for the population in 0-2hrs is 382 spikes/cell, yet there is 

a large degree of variation across neurons. Therefore, generalisations regarding the entire 

population activity (and assuming similar behaviour) are not easily reconciled. Although this 

variation decreases over 2-4hrs, this is due to fewer spikes being identified. This population 

is not targeted (i.e. specific cortical cell types) and is instead based on distinct activity. 

Decreased variation could indicate synchrony and an alignment of activity behaviour, yet it 

is proposed here that the decreased spike rate seems unlikely to be representative of normal, 

healthy, network communication.  
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4.3.2 Neuron Spike Amplitude Does Not Decrease  

In addition to high temporal resolution, the acquisition system is also capable of high 

resolution of spike amplitudes. Further analysis was performed to assess if the decrease in 

spike frequency is accompanied with a corresponding decrease in spike amplitude. 

Decreasing amplitude could suggest a change to the electrode-electrolyte interface, for 

instance due to increased distance or cellular injury. The average spike amplitude for each 

neuron was measured for 0-2hours and 2-4hours (Fig. 4.10, A&B). Average amplitudes 

ranged from 132.5 : 224.2 µV during 0-2hrs and 129.7 : 225.2  µV  during 2-4hrs, and no 

significant difference between datasets was identified ( p = 0.2, t-test). 

  

Figure 4. 10. Average neuron spike amplitude 0-2hrs (A) and 2-4hrs (B); error bars are 

standard deviation. The average amplitude 0-2hrs ranges from 132-224 µV with an average 

of 161 µV and an average deviation of 28 µV. During 2-4hrs, average amplitudes ranged from 

130 to 225 µV with an average of 158  µV and an average standard deviation of 25 µV. The 

change in amplitude deviation in spikes attributed to neurons #4 and #29 is noticeable, and 

in each case can be attributed to a single outlier spike (see Appendix 5). 

 

Changes to individual neuron spike amplitudes were further investigated. An average 

amplitude decrease of >10 µVs was exhibited by 14 neurons in the second half of recording, 

while 4 neurons increased by >10 µV (Fig. 4.11, A). Overall, more average spike amplitudes 

decreased in the second half of recording, but did not indiate catastrophic degradation of the 

electrode-electrolyte interface as the behavioural repsonse over time is not uniform acros all 

neurons. Additionally, the change in standard deviation of the spike amplitudes (Fig. 4.11,B) 
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exhibited minimal changes, indicating that the variation of spike amplitudes remains 

constant. Two exceptions are neuron #4 (S.D. increased by 70 µV, average amplitude increase 

of 17 µV) and #29 (S.D. decrease of 98 µV, average amplitude decrease of 15 µV). In both 

instances this change in deviation results from a single outlier spike compared to other spikes 

attributed to the neuron (see Appendix 5). The population change in deviation over the two 

time periods did not significantly change (p = 0.11, student’s t-test).  

 

  

Figure 4. 11. (A) Comparing average neuron spike amplitudes between 0-2hrs and 2-4hrs, a 

total of 14 neurons exhibited an average amplitude decrease of more than 10 µV between 0-

2hrs and 2-4hrs, while only 4 neurons displayed an increase of more than 10 µV. The mean 

spike amplitude per neuron did not significantly change across the two time periods (p= 0.2, 

student’s t-test). There was an overall decrease in average neuron amplitude in the second 

half of the recording (48 neurons decreased in average amplitude), however, these small 

changes are not indicative of a significant degeneration of the electrode-electrolyte interface. 

(B) Change in spike amplitude standard deviation per neuron between 0-2hrs and 2-4hrs. 

Overall, variation in spike amplitude decreased in the second half of recording, but the 

deviation in 0-2hrs was not significantly different to the deviation 2-4hrs (p=0.11 student’s t-

test). Both neuron #4 and #29 showed large changes in spike amplitude variation are 

attributable to single outlier spikes (see appendix 5). 

In order to ensure averaging of amplitudes did not obscure transient periods of rapid changes 

in spiking behaviour, manual evaluation of individual neurons was performed to verify the 

initial summary of spike amplitudes between 0-2hrs and 2-4hrs (Fig. 4.12); similar analyses 

were performed between hours 1, 2, 3 & 4. No differences in amplitudes were identfied 
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between comparisons of hours 1 and 2 or between 3 and 4. These results indicate that the 

decrease in spike frequency, exhibited by the majority of neurons, is not accompanied by a 

corresponding decrease in amplitude and suggests that no periodic changes in amplitude 

impacted the identification of spikes.  

       

  

Figure 4. 12. Example of individual neuron spike amplitude analysis over time (neuron 18). (A) 

Neurons exhibited a disparity in spike frequency between 0-2hrs and 2-4hrs (dotted line at 2 

hours into the recording). However, this decrease in activity was not related to any change in 

spike amplitudes; blue dots represent the time of a spike event during the 4-hour recording 

and the amplitude of each spike. (B) Counts of spike amplitude during 0-2hours. (C) Counts of 

spike amplitude during 2-4hours.    

A 

B C 
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4.4 Discussion: Neuron Identification 

The electrophysiological recording of neuronal activity presented here demonstrates the 

ability of the system to obtain high quality electrophysiological data which can be used to 

identify neurons. The data presented in this work is derived from a single recording which 

identified 78 individual units following the application of appropriate spike sorting 

parameters. The signal to noise ratio of electrode to neuron amplitudes averaged 10:1 which 

was suitable to allocate a high number of extracellular spikes to neurons via spike sorting and 

did not suggest that spike events required significantly large amplitudes to be detected. The 

recording of 78 neurons simultaneously was continued for a 4-hour period as spiking activity 

was still observed at this point. However, the population exhibited significantly decreased 

activity after 2 hours of recording with only a few neurons remaining active. No 

corresponding decrease in spike amplitudes were observed, suggesting that the electrode-

neuron interface remained stable. Due to the low activity frequencies after 2 hours, further 

analysis will focus on the initial half of the recording as this represents a greater volume of 

useable data. The reduction in spike rate is observed across the population and is unlikely to 

be related to inter-neuron communication. Average population values for key properties are 

summarised in table 4.2. 

Average Neuron Properties 0-2 hours 2-4 hours 4 hours 

Spike Count (spikes / cell) 382±569 208±654 590±965 

Spike frequency (Hz) 0.06±0.08 0.03±0.09 0.08±0.13 

Amplitude (µV) 161±28 158±25 160±29 

 System Noise Properties 

Electrode noise (µV) 15.3 ± 0.8 

Seed Electrode noise (µV) 15.5 ±0.4 

Non-seed electrode noise (µV) 15 ±0.7 

SNR 10 : 1 

Table 4. 2. Average neuron population properties and system noise.  

The process of spike sorting consists of several stages which aim to provide high quality data 

which can be allocated to individual neurons. It has been shown here that using the RMS 

noise input value for each electrode individually provided an acceptable sigma value to apply 

to the amplitude distribution detected by electrodes. This was combined with a threshold 

setting of 6, meaning only signals which went above and then below 6σ were included in the 
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signal distribution (table 4.1). Therefore, voltage amplitudes greater than ~80 µV were 

included for further analyses. Reducing the threshold setting to 5σ (comparable to amplitude 

threshold of ~75 µV) drastically increased the number of cells identified (205 compared to 

74), but many became contaminated with non-neuronal signals and impacted the final 

dataset. Furthermore, relaxing correlation and contamination limitations had little impact on 

neuron numbers identified. This suggests that the settings used in this work were the most 

appropriate with which to maximise the quality and quantity of recordings with this 

acquisition system.    

The suitability of the system RMS noise input was confirmed; although seed electrodes 

exhibited significantly higher noise values in the presence of brain tissue, increased biological 

activity in the electrode vicinity makes the RMS difference reasonable. No trend was 

observed across seed electrodes exhibiting high or low noise. Additionally, this is a 

comparison of 74 electrodes to 438 (5.9 times as many), and the higher deviation may 

account for the significant difference. The SNR is a limitation of any extracellular recording 

system; however, this ratio is dependent upon the signal amplitude as much as the inherent 

noise of the system. Extracellular signals rapidly deteriorate in amplitude with distance from 

the membrane10 and, although properties of neurons widely differ, the amplitudes of spikes 

can indicate the proximity of a neuron to its corresponding electrode. Gauging the variation 

of amplitudes additionally indicates how cleanly neurons have been clustered and identified, 

as a bimodal distribution of amplitudes suggests the miss-allocation of spikes.  

The initial half of the recording demonstrated a steady increase in activity, peaking ~1 hour 

into the recording. The rise in activity could be attributed to the slicing preparation 

procedure. Once in the recording chamber, slices are perfused with excited aCSF containing 

elevated K+ content (see section 4.1) which is warmed to 37°C via an in-line heater 

(temperature was measured using the heating element’s thermistor placed at the bottom of 

the chamber pre-recording and heating adjusted accordingly). This contrasts with the prior 

incubation phase, where slices are maintained at room temperature in aCSF. This transition 

likely causes an increase in activity and could explain the subsequent drop in spike frequency 

as cells were dying. The decrease in activity could also be the result of increased distance 

between neurons and electrodes caused by the buoyancy of the tissue. If the resistance seal 

was not secure (see Diagram 4. 1), the slice could become dislodged from electrodes. 

However, this would be indicated by a change in spike amplitude as the current would 

dissipate in the extracellular fluid, and this was not found to be the case.  
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Due to the overall change in firing rate, analysis of the entire recording session becomes 

obfuscated. Although non-stationary firing frequencies are common in biological systems, 

comparing and evaluating activities of neurons becomes difficult if that activity changes 

significantly across the population. As fewer spikes are detected over time, the behaviour of 

the neuron is also interpreted as being altered. This may be the case (e.g. resulting from a 

change in the experimental setup, or traumatic cellular injury), but the focus of the 

experiment then becomes that change in behaviour, rather than behaviour of healthy 

neurons connected in a representative network.   

Despite a significant reduction in spike frequency over the course of the recording, the 

relatively constant amplitudes of spikes indicate the electrode-neuron interface is unlikely to 

be degrading. Therefore, the first 2 hours of recording provide appropriate data which with 

to further analyse connectivity in acute brain slices.  

 

Recording # Notes Duration Clustered neurons Spikes/cell 

1 
Too few neurons 

identified 
1 hour 1 43 

2 
Too few neurons 

identified 
4 hours 4 102 

3 No results 4 hours 0 0 

4 No results 4 hours 0 0 

5 

Clusters 

demonstrate 

abnormal (duration 

>4ms) wavefroms 

4 hours 9 59 

6 

Further processing 

undertaken, but too 

few cells identified 

2 hours 12 112 

7 

Further processing 

undertaken, but too 

few cells identified 

2 hours 11 180 

8 Further processing 4 hours 78 531 

9 
Solution leaked and 

damaged electronics 
4 hours 6 23 

Table 4. 3. Summary of recording experiments 



 

5. Neuronal Spike Features and Temporal Characteristics  

Spike features extracted via electrophysiological recordings can provide insights into neuron 

behaviour. Relating neuron behaviour to a role in a wider network is a critical aspect in 

understanding neuronal connectivity. The variety of neuronal subtypes within the cortex 

allows for a highly heterogeneous network of activity, therefore being able to discriminate 

and classify neurons is important in understanding functional architecture of the network. 

This chapter outlines approaches to defining the characteristics of subpopulations of neurons 

within the recorded data. Further investigation could attempt to validate these findings in 

relation to specific cortical layers and known characteristics of neuronal populations, 

unfortunately, information regarding precise recording location is not available in this work.  

Analyses of neuron characteristics were performed using Matlab software to examine 

specific qualities of each neuron. The averaged neuron waveform describes the typical 

trough-to-peak spike amplitudes and temporal characteristics of neurons. Previous studies 

have suggested these features can provide information regarding the function of a neuronal 

unit and that excitatory and inhibitory cells can be distinguished based on these features 

alone12. However, the reliability of this approach may depend on cell type and experimental 

setup16, as the targeting of specific cell types for focussed experimentation would not yield 

data from a variety of cellular network functions. No definitive parameters for such 

distinctions were identified in this work, although the unbiased sampling of a highly 

heterogenous cortical population may reflect the range of neuronal features which cannot 

be easily classified into two categories. The greatest variation across the population was 

observed in the slope of the refractory period from hyperpolarisation to resting membrane 

potential (RMP) and the temporal differences between depolarisation and hyperpolarisation, 

indicating these features to be the most effective means of differentiating the heterogenous 

neuron population presented here. Further discussion and investigations of these waveforms 

are presented in section 5.1 and concern variations in phase amplitudes (peak to trough 

ratios), spike widths (the time between the negative and positive phases) and the gradient 

of phase changes (Fig.5.1, B and Fig.5.4).   
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Figure 5. 1. Neuron waveforms are averaged to provide representative electrophysiological 

features of individual cells. The positive depolarisation of a neuron causes a negative voltage 

deflection in the medium surrounding an electrode; this signal is identified through spike 

sorting and clustered to represent the activity of a single neuron. (A) The most negative point 

of the signal (corresponding to peak depolarisation) is centred at t = 0 ms for each spike 

attributed to that neuron. Each sample, corresponding to every 0.05 ms on the x-axis, is 

averaged across every spike to produce a generalized representation of that neuron’s spiking 

waveforms. (B) Averaged spike waveform features were analysed to discriminate neuron 

subtypes using temporal and amplitude properties (arrows) as discussed in section 5.1. 

The elicited spike rate per neuron was relatively low compared to previous studies using a 

similar experimental setup96, with most neurons displaying the greatest amount of activity in 

the first 2 hours of recording (see chapter 4). Firing rates generally peaked 40-80 minutes 

into recording, yet multiple neurons exhibited periods of relatively high frequency followed 

by prolonged periods of quiescence. Sporadic patterns of high frequency activity is termed 

bursting, and is a commonly observed behaviour in connectivity studies 132,133,134. However, 

long periods of inactivity required additional processing to provide valid interpretations of 

spike train temporal patterns.   

 It was not initially clear whether rapid changes in spike frequency were directly related to 

the relatively low firing rates of neurons or if spike sorting had inadvertently favoured 

bursting behaviours while limiting the recording of regular, or low frequency, firing rates. A 

possible source of bias could be increased spike amplitudes, which would provide a greater 

SNR and, consequently, be included throughout the spike sorting process indicating a false-

positive result of increased spike activity. However, spike amplitudes over time remain 

A B 
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relatively constant over the 2-hour recording in all neuron spike trains (examples in Fig. 5.2, 

A & C). Previous studies using similar systems have not indicated a bias towards bursting 

behaviours11 and significant amplitude changes over time would be identifiable during 

manual evaluation of PCA clustering. Amplitude changes would become clustered as an 

elongation of data points and due to the Gaussian method employed here to fit cluster data 

point distributions, would result in multiple overlapping clusters of distributions therefore 

more likely to fail the contamination criteria. Clusters in this dataset do not suggest that 

waveform amplitude changes impacted the clustering of spikes that would consequently 

result in a decreased spike rate.  

The large variation between the spike frequencies of neurons prompted evaluation of spike 

temporal properties and is addressed in section 5.2. Inter-spike intervals (ISIs) of neurons 

were analysed as the temporal precision of neuron behaviour is often investigated using this 

quality135. Distinctive ISI distributions can indicate simple or complex spiking patterns, 

however, the low spike frequency necessitated further processing for this analysis. Evaluating 

ISI values by limiting the maximum ISI value included in analyses exposed a population-wide 

change in the rate of ISI value count; the number of identified ISI values did not scale linearly 

with an increased allowance of maximum ISI, suggesting that certain spike frequencies were 

more prevalent. To evaluate ISI values relative to each neuron’s spike rate, values were 

segregated based on each neuron’s median ISI value. This provided analyses of higher (>50% 

of ISI values) and lower (<50% of ISI values) frequency spike rates relative to each individual 

neuron. A group of neurons exhibiting distinct (p<0.05) behaviour at relatively higher spike 

frequencies was identified which indicated fast, regular, spiking activity. An additional group 

of neurons exhibiting bimodal distributions at higher frequencies was also identified and was 

found to be statistically distinct (p<0.05, student’s t-test). The coefficient of variation (CV) of 

spike trains was then analysed at high and low frequencies. This measure indicates the 

regularity of a neuron’s spiking activity and can suggest tonic or bursting patterns of 

behaviour. More neurons demonstrated greater spike rate irregularity at lower frequencies, 

although behaviour types could not be defined with this method.  

As CV values indicated many neurons exhibited bursting behaviour, a method of burst 

identification was performed. Many studies have utilised the ISI of neurons to evaluate 

bursting activities, yet numerous attempts have been made to further refine the definition 

of bursting. For instance, Turnbull et al.136 proposed the “string” method based on 

electrophysiological recordings from cell cultures grown on a MEA. When plotting each spike 
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time against spike number (out of total recorded spikes), a more vertical slope gradient 

indicates high frequency neuron activity. By defining the minimum number of spikes in a 

burst and the maximum intra-burst ISI, “strings” of spikes can be defined as bursts. These 

parameters can be fitted to neuron activity to identify the potential maximum number of 

bursts; however, it is recommended to optimise the parameters to suit experimental 

conditions and is therefore not auto-adaptive, requiring manual evaluation of numerous 

spike trains. The mISI method developed by Chen et al.135 progressed the string method and 

generates an auto-adaptive threshold for ISI values with which to identify periods of bursting, 

calculating a maximum ISI for burst identification using mean ISIs and burst durations. The 

use of these parameters was investigated using data from the 512-needle MEA. To the 

author’s knowledge these methods have been applied to EEG137, in vivo (crickets)138 and in 

vitro data139,140, but not to acute rodent ex vivo data.     The average threshold value for 

bursting defined by the mISI method was 9seconds, with ~50% of spikes allocated to each 

neuron identified as bursting. Although this method did not identify high-frequency bursting 

activity, the earlier use of the median ISI value to form the basis of CV analysis is partially 

reinforced by these findings. 

The final section of this chapter focuses on a novel method of bursting analysis developed by 

the author and based on the mISI method. This method identifies the ISI value at which the 

greatest number of sequentially bursting spikes can be identified and uses only ISI values 

below this limit. Histograms of groups of bursting spikes were developed which were used to 

identify repeating ISI patterns and further segment spike trains. This adaptive method was 

able to reliably threshold high frequency bursting activity and demonstrated greater 

variation in bursting activity than the mISI method.  

Information regarding neurons, and individual spikes, were extracted using the 512MEA 

acquisition system. This allowed for detailed investigations of the behaviour of neurons in 

acute ex-vivo cortical slices. The following sections will detail the features assessed prior to 

evaluation of connectivity in chapter 6. Spike features were categorised into two groups: 

waveform properties (such as amplitudes and trough to peak spike ratios) and temporal 

properties (such as inter-spike intervals and burst durations). Results are summarised in table 

5.1 at the end of the chapter. 
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Figure 5. 2. Example of verification analysis of amplitude over time (A & C) and spike rate 

(B&D) from two individual neurons. Top row: this neuron (#52) demonstrates a typical 

increase in spike rate during the first two hours which dramatically drops 120minutes into the 

recording (B), and no significant change in spike amplitude occurred over this period (A). 

Bottom row: other neurons (e.g. #11) exhibited distinct behaviours, where spike rates 

dramatically and sporadically increase - a sustained increase is observed towards 120 minutes 

of recording, however, this rate rapidly decreases after two hours of recording.  

 

 

 

D 

B A          Neuron # 52 

C          Neuron # 11 
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5.1 Classification of Cell Types: Excitatory or Inhibitory 

Differentiating functions of individual neurons within a network is an important goal in 

understanding how cells interact and communicate. Broadly, neurons can be separated into 

two classes; excitatory or inhibitory. Excitatory neurons most commonly utilise the 

transmitter glutamate postsynaptically to elevate membrane potentials closer to spiking 

threshold, while GABA is usually transmitted by inhibitory interneurons to achieve the 

opposite effect (see section 2.1.6). A variety of molecules are secreted by neurons and 

discrimination of the neurotransmitter utilised by an individual neuron by 

electrophysiological data alone is not currently validated. Classifying cells as excitatory or 

inhibitory would greatly assist the interpretation of neuronal networks and their underlying 

functions, for example, interneurons provide a timing mechanism for network 

computations141 and can dampen firing rates through feed-forward inhibition142. While there 

have been numerous technical approaches, several studies have attempted to discriminate 

cells through analysis of electrophysiological features alone. Such features are appropriate 

for analysis through the temporal precision and amplitude resolution afforded by the 

512MEA presented in this work.  

Excitatory pyramidal cells and inhibitory interneurons of the hippocampus have been shown 

to be reliably separated using extracellular features143144,145. The primary difference used in 

identification is the faster (narrower) negative spike amplitude that inhibitory neurons 

exhibit, relative to excitatory counterparts, which is associated with the Kv3 family of 

potassium channels146. Previous analyses of extracellular in vivo cortical recordings using 

MEAs  successfully distinguished inhibitory and excitatory neurons147,12,148. This was achieved 

by applying parameters to waveform features and the precise timings of spike frequencies. 

However, subsequent studies applying a similar approach to cultured neurons in vitro and 

could not confirm the applicability of these parameters16. The high-density MEA presented 

in this work presented a novel opportunity to evaluate this approach using ex vivo acute slices 

with needle-based electrodes recording from healthy, intact, neuronal networks.   

The spike-sorted data generated via Vision was extracted and manipulated in Matlab 

software to study waveform details. An average neuron waveform can be extrapolated via 

the acquisition system, representing the average spike elicited by a neuron. This was 

generated by averaging each sampling point surrounding a spike time. During spike sorting, 

a peak amplitude polarity (negative in this case) is identified after the signal passes the spike 

sorting threshold voltage. This signal is time stamped, PCA analysis is performed on the 
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electrode signal before and after the event, and finally a raw (system filtered) data waveform 

can be observed. The system samples the electrodes signal every 50µs (20 kHz) - which is the 

temporal resolution of each waveform. By aligning every spiking event, each sampling frame 

can be averaged to provide a representative waveform. Presented in figure 5.3 is the neuron 

spike sorted, averaged, waveform for 78 neurons recorded from across the 512-MEA. All 

averaged spikes are centred at 0 ms. Waveform amplitudes at -2 ms are centred at 0 µV to 

account for the variation in DC offset across individual channels and for ease of comparison. 

The dotted boxes in the figure outline the trough and peak features of the waveforms which 

are the basis for waveform analysis.   

 

Figure 5. 3. The average spike waveform for each neuron recorded in a single experiment from 

the 512 MEA. Lines represent the waveform resulting from averaging the spikes allocated to 

an individual neuron. Averaged waveforms were assessed at the final stages of spike sorting: 

the shape of the wave; the temporal qualities of the positive and negative phases and 

reasonable amplitudes were considered. All identified neurons are represented in this figure 

(n=78). The most negative amplitude (trough) of each waveform was centred on t = 0 as this 

was defined as the spike time. The average amplitudes 2 ms prior to the spike time was 

centred at 0 µV. Variations in the ratios of troughs to peaks (dotted boxes) potentially underlie 

functional differences. 
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Past studies have used combinations of features to differentiate between fast-spiking 

inhibitory and broad-spiking excitatory neurons (Fig. 5.4). These features are termed: the 

peak to trough ratio12 (compared amplitudes of depolarisation to hyperpolarisation), the 

spike width (trough to peak time), trough width, peak width147 and the peak to resting 

membrane potential (RMP) slope (gradient from refractory period hyperpolarisation to 

RMP). Waveform analysis focussed on the averaged waveform for each neuron which was 

then compared across the population.  

 

Figure 5. 4. Diagram showing features used in waveform analysis. Five parameters were used 

to distinguish recurring spike differences between neurons based on previous studies. (1/2) 

The peak to trough ratio, where a value ≈1 indicates a fast spiking inhibitory neuron. The spike 

width (3) is the time ( ms) taken for the spike to reach peak positive amplitude following the 

spike event, while the trough width (4) is the time required to depolarise and repolarise the 

extracellular medium. The gradient to return to RMP from the peak was termed the end slope 

(5) and the peak width refers to the duration of the positive phase (peak) to occur (6).  

 

The justification for each parameter is discussed in turn below: 

1/2)  Peak to trough ratio. The value of this feature has been associated with inhibitory 

neurons when ≈1 while excitatory neurons typically exhibit a value of ~0.512,16. Although 

narrow spiking is also associated with interneurons, the parameter alone does not account 

for changes to amplitudes and ignores the peak of the waveform. Variation between slopes 

① 

③ 

④ 

⑤ 

⑥ 

② 
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of the initial depolarisation is very small (see troughs in Fig 5.3) while the peak phase is more 

variable in this dataset.  

3) Spike width. The trough to peak time provides a further dimension to the peak to 

trough ratio and could potentially suggest membrane dynamics of channel kinetics as this 

phase would correspond to the speed at which potassium channels open.  

4)   Trough width. The width of the trough has been repeatedly reported to be able to 

identify narrow-spiking neurons and reliably classify them as inhibitory interneurons. This 

feature relates to the kinetics of sodium channels opening and becoming inactivated as well 

as opening of potassium channels and can underlie major differences in ion channel 

expressions. 

5)   End slope. The end slope corresponds to the return to baseline (RMP) from the 

positive peak. A steeper slope (i.e. faster return to baseline) has been reported as a useful 

measure of narrow-spiking (inhibitory) neurons12 and can be used to corroborate differences 

in peak to trough ratios. 

6)   Peak width. The duration of the peak can be used in a relative ratio to the trough 

width. A value approximating 1 would suggest a narrow-spiking interneuron even if the 

trough width was not especially narrow compared to other neurons. 

 

5.1.1 Analysis of Averaged Neuron Waveforms 

The initial stage of waveform analysis was shifting the offset of spike amplitudes. The 

waveforms in Figure 5. 3 overlap as the amplitude at -2 ms is aligned to 0 µV but aligning the 

spike trough to 0 µV at 0 ms enables an easier comparison between neuron averages (Fig. 

5.5). The extent of variation between neurons can then be better viewed and subsequent 

calculations are simplified. Total peak to trough amplitudes for most neurons range from 

~175 µV to ~275 µV, while three outliers (highlighted in black dashed boxes) are visible. The 

large amplitude (blue – neuron #64) waveform consists of a particularly large amplitude 

negative phase, but the dimensions of the waveform are consistent with other waveforms. 

An average waveform with additional troughs during return to RMP (purple – neuron #53) 

could indicate signal contamination from a nearby neuron that has not been thoroughly 

separated by spike sorting. One neuron exhibits an erratic average waveform (orange – 

neuron #72), which has not elicited enough spikes in the first two hours of recording to be 

averaged effectively (see section 4.4). Neuron #72 was excluded from further analysis due to 

the low spike count in this half of the recording. 
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Figure 5. 5. Averaged neuron waveforms. For comparisons between neurons, averaged 

waveforms were offset by centring the spike time (t=0 ms) to 0 µV. This is the same data as 

presented in Fig. 5.3, however, aligning time and trough amplitude highlights differences in 

peak to trough ratios and spike width across the population. This is performed as part of the 

spike sorting process, however the high-resolution amplitude data presented here is extracted 

from electrode data files once neurons have been identified. Three outliers are identified in 

black, dashed, boxes. 

With the waveform trough value centred at 0 ms, 0 µV, an approximate voltage for the RMP 

was required to define the start of the negative phase. The waveforms presented in Fig 5.5 

consist of 120 data samples; 40 prior to spiking event and 80 samples after the event. The 

initial 30 samples (-2 to -0.5 ms in Fig.5.5) were averaged to define a resting amplitude (RMP) 

and an amplitude of 4 sigma below this average was used as the threshold of the beginning 

of the negative phase. This was due to several neurons exhibiting a shallower gradient of 

signal amplitude where the averaged RMP would not be applicable. A 4-sigma deviation was 

assessed as the most appropriate parameter (see Appendix 6), however, alternative values 

were tested with limited consequences to the results. The peak signal amplitude was then 

identified as the point of most positive voltage amplitude in the waveform and sample point 

recorded. The peak and trough amplitudes (①/② in Fig.5.4) and spike width (③ in Fig 5.4) 

could then be compared. For each parameter evaluated, histograms were generated and 

binned according to the square root of the number of elements in the data (i.e. n = 78 
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neurons) with a Gaussian probability density function fitted. Clustering of scatter plots was 

then performed in Matlab via k-means clustering with centroids based on Euclidean 

distances. Where discrete clusters were identified an additional histogram of each cluster is 

included.   

 

5.1.2 Neuron Subtypes Discrimination via Waveform Analysis 

Peak to trough amplitude ratios and spike widths demonstrated a normal distribution (Fig 

5.6, B & D), indicating neurons could not be separated into sub-types using these parameters 

as previously reported12. The scatter plot used to compare these features (Fig. 5.6, A) did not 

suggest this combination of analyses could highlight distinct groups of cells and k-means 

clustering was performed (Fig. 5.6, C). The average spike width was 0.89 ms (S.D. ±0.13), 

however, a single neuron exhibited narrow spiking at 0.48 ms (Fig 5.6 C & D, neuron #62). 

The spike widths of each cluster were compared, and each found to be significantly different 

from each other (p<0.05, student’s t-test), with the greatest difference observed between 

clusters 2&3, however the lack of visual clustering and the approximately normal distribution 

does not suggest a distinct population based on this feature. The peak to trough ratio (peak 

amplitude divided by trough amplitude) averaged 0.7 (S.D. ±0.05) and did not highlight any 

distinct waveform differences between neurons (lowest t-test value when comparing 

clusters p= 0.09, clusters 2&3).   
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Figure 5. 6. The average peak to trough ratio per neuron and average trough to peak time. 

Analysis was performed on the averaged waveform per neuron. The time taken for the signal 

to change polarity following a spike (trough to peak time) has been reported to indicate a 

fast-spiking inhibitory interneuron or a slower excitatory neuron. An additional parameter is 

the amplitude ratio of the maximum polarities (peak: trough), which accounts for the 

amplitude change that occurs during the trough: peak phase. A ratio value ≈1 and low time 

value suggests a fast-spiking inhibitory neuron. No discrete clusters of neurons were identified 

using these waveform features. (A) Scatterplot of peak-trough ratios and spike widths. (B & 

D) Histograms of peak-trough ratios and spike widths respectively with normal probability 

distribution function fitted (red line). (C) Additional k-means clustering of the scatterplot (A) 

did not achieve separation of neurons, however a single neuron exhibited a small spike width 

(dotted blue circle). 

B A 

C D 
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The temporal features of waveforms have been suggested to be the main indicator of 

inhibitory interneurons as a narrow trough width (④ in Fig.5.4) is associated with a faster 

spike. The trough widths measured in the data presented here exhibit a normal distribution 

(Fig. 5.7, B) averaging 0.63 ms (±0.08 S.D.). Two neurons (#55 and #72) exhibited trough 

widths <0.5 ms, however, this does not correspond to a peak width correlation due to neuron 

72’s low spike count (see Fig. 5.5). Comparisons of each cluster’s trough width values did not 

highlight any significant differences (lowest p = 0.39, student’s t-test).  

Peak widths (⑥ in Fig. 5.4) demonstrated greater variation and a normal probability density 

function could not be effectively fitted to the data (Fig. 5.7, D; average 1.17 ms, ±0.38 S.D.). 

Neurons with longer peak widths could be clustered (Fig. 5.7, C), and each cluster’s peak 

width values were significantly different (p<0.05). However, cluster 3 is the most distinctive 

and the 5 neurons of this cluster skews the distribution (highlighted by the lack of a Gaussian 

fit) indicating a longer refractory period is unusual in the population.  

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

100 

 

  

  

Figure 5. 7.Temporal features of average waveforms. (A) Scatter plot of trough and peak 

widths. (B) No distinction between neurons was observed using trough width waveform 

parameters. The 2 neurons with a trough width <0.5 ms demonstrate opposite peak width 

features suggesting that a narrow trough does not correlate with refractory period. (C & D) 

Peak widths exhibit a skewed distribution which does not fit a Gaussian probability function. 

Five neurons possessed long average peak widths (C, cluster 3), however, were not 

convincingly separated from the bulk of the data (Appendix 7).   

 

The end slope of the signal (⑤ in figure 5.4: the negative gradient from the peak positive 

amplitude to the RMP) was then calculated using the sample point at which the slope reached 

1 sigma above the RMP as defined in the peak to trough ratio calculation. This gradient 

A 

D C 
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represents the rate of change in extracellular voltage during the return to RMP from 

refractory period hyperpolarisation. This feature showed greater variation than previously 

discussed features (mean -1.46, ±0.86 S.D.). End slope values did not fit a normal distribution 

(Fig 5.8 B) and comparing against peak to trough ratios indicated a distinct group at an end 

slope value of approximately -2 (Fig 5.8 A).  

  

  

  

 

Figure 5. 8. The end slope of the waveform is the gradient of the signal from the peak 

amplitude to resting membrane potential and therefore represents the extracellular voltage 

change during action potential refractory period. Left: scatter plot of end slopes vs. peak to 

trough ratios. A larger peak, relative to the trough amplitude, is associated with a shallower 

end slope gradient as the membrane potential would take longer to return to rest. Nine 

D C 

A 
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neurons (#8, 36, 50, 51 ,53, 55, 60, 66 & 69) exhibited particularly steep gradients greater 

than -2.5 and were noticeably clustered. 

Neurons with steeper slopes (<2.5) were clustered as an individual group and were found 

significantly different from the neighbouring cluster (p<0.05). However, the use of 3 clusters 

was insufficient to distinguish the potential population centred at an end slope value of -2 

(Fig 5.8, C, cluster 3). Histograms of individual clusters (Fig. 5.9, A) further suggested this 

group to be discrete, as two populations were identified. Following further clustering (Fig. 

5.8, D) the distributions of these populations were observed to no longer overlap (Fig 5.9, B) 

and values of these clusters were found to be significantly different from neighbouring 

clusters (p<0.05, student’s t-test). This required 5 clusters, only two of which demonstrated 

uncontaminated distributions (Fig. 5.9, B, clusters 1 & 3). The centroids of these clusters (see 

Fig. 5.8 D) suggest a correlation between the end slope and peak to trough ratio as a larger 

trough amplitude, relative to the peak amplitude, indicates a steeper end slope. Yet, peak to 

trough ratios are not effective in clustering neurons (Fig. 5.6) and each cluster identified via 

end slope analysis exhibits a wide range of ratio values which overlap with neighbouring 

cluster distributions.    

 

  

 

Figure 5. 9. Histograms and k-means clustered scatterplots of average waveform end slopes. 

(A) Clustering with 3 clusters highlights a discrete group of neurons with a steep end slope 

(cluster 2), however a further cluster is noticeable in the histogram of cluster 3. (B) Further 

clustering was able to separate this population (cluster 3), but no additional populations were 

identified in the data. The neuron with very shallow gradient and low peak to trough ratio in 
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both scatterplots is neuron 72 which displays unusual waveform properties due to low spike 

count impacting the average waveform.   

 

Finally, the ratios of the peak to trough amplitudes and peak to trough widths were compared 

(Fig. 5.10, A). This assesses the relative voltage and time differences for each neuron, where 

a width ratio >1 indicates a longer positive peak than the negative trough (as would be 

expected).  

Histograms of width ratio values (peak width divided by trough width) did not fit a normal 

probability function (Fig. 5.10, B) and ranged from 1.06 to 3.54 (mean 1.88, ±0.07 S.D.). Six 

neurons possessed a value greater than 2.7 (Fig. 5.10, C) and this population was found to 

have significantly different values from the neighbouring cluster (p<0.05, student’s t-test). 

The remaining two clusters were observed to be part of the same distribution (Fig. 11A). 

Increasing cluster numbers to 4 did not effectively separate this distribution further as 

clusters 4 & 1 (Fig. 11, B) were not found to be significantly different (p>0.05). Waveforms 

with a significantly longer refractory periods than depolarisation are unusual in this 

population.  
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Figure 5. 10.Amplitude and temporal ratios. (A & B) Width ratios exhibited a non-Gaussian 

distribution across the population (mean 1.87, ±0.07 S.D.). (C & D) Although 6 neurons with 

large ratio values (#10,27, 44, 56, 62 & 73) could be interpreted as a cluster, k-means 

clustering did not cleanly separate the distributions. Five of these neurons possessed either 

large peak widths or a short spike width, but not distinctly separate from the population. 

Neuron #44 exhibited no other unusual waveform properties.   

D 
C 

A B 



Chapter 5 

105 

 

 

 

 

 

Figure 5. 11. Histograms and k-means clustered scatterplots of clustered width ratios 

compared to peak to trough ratios. (A) Neurons with greater width ratios were initially 

interpreted as a cluster, however k-means clustering did not effectively separate these 

distributions from the rest of the data. The sample size of the potential cluster is also low with 

a large range of ratio values. (B) Increasing cluster numbers did not improve cluster 

resolution.  

The parameters described in figure 5.4 were not as effective in categorising the recorded 

population as previous studies have suggested. The end slope, relating to the rate of 

membrane refractory period, did suggest some distinct clusters of neuron behaviour, 

however, inferences from this parameter alone was not sufficient to further categorise 

neurons. The parameters addressed here may not be applicable to ex-vivo tissue in the 

proposed setup and previous studies have favoured specific combinations while consensus 

for the most reliable analyses appears contentious.  

A repeat analysis of waveform parameters was performed for each neuron across all elicited 

spikes. During spike sorting clustering, spike feature variation is maximised to improve 

clustering of individual units. Therefore, waveform variation between spikes of a discrete unit 

should be low. However, as discussed in previous sections, the spike rate of each neuron 

varies significantly over the time of recording. The decreasing spike rate could be associated 

with acute cellular trauma and changes to waveform features have been shown to occur in 

response to inflammatory cytokines110. Such responses are unlikely to have progressed 

during the short timescale of the recording but were reviewed for reassurance. Each neuron 

was analysed in turn, and no discrete clusters of spikes with significant waveform feature 
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differences were identified. However, many neurons were observed to have a tail-off in 

several features, particularly peak widths and trough widths, indicating some waveform 

characteristics are more variable than others. Waveform features were additionally 

examined in ten-minute time bins to evaluate changes over time that could correspond to 

spike rate fluctuations. As with spike amplitudes (Fig. 5.2, A & C), no corresponding patterns 

were observed over time. 

 

5.2 Spike Train Temporal Properties Indicate a High Proportion of Bursting 

Neurons 

No definitive difference in waveform characteristics was observed within the recorded 

population which could suggest functional differences. Similarities in network functionality 

were therefore evaluated for other characteristics. An important aspect of neurons are the 

temporal properties of elicited spikes, which is incorporated into key models of neuron 

information coding – the mechanism of information transfer between neurons – and 

differentiating neurons based on spike activity patterns could distinguish cellular subtypes. 

Approaches to investigate temporal coding commonly utilise the ISIs to discern functional 

differences between neurons149,134. This property is also used in determining periods of high-

frequency activity without using an arbitrary time window. Spontaneous periods of high 

frequency action potentials are commonly observed in cultured neurons150,151 and 

organotypic slices of brain tissues115. These events, termed bursts, are believed to be critical 

in network formation as they have also been associated with long-term potentiation and may 

therefore have a role in learning and memory152. Bursts have been shown to increase the 

reliability of information transmission as a bursting neuron has a higher probability of eliciting 

an action potential postsynaptically. Additionally, bursting can be induced by 

pharmacological agents, for instance by increasing the activity of sodium channels153, while 

acute cellular damage can trigger burst-like behaviour via cytokine 2nd messengers110. The 

cellular mechanisms and role of this function within a network remain poorly understood 

and separating physiological bursting from experimentally induced bursting remains a 

concern for acute slice preparations. The aim of the 512-needle MEA presented in this work 

is to record cellular activity from cells unaffected by the sectioning procedure and limit the 

damage to localised networks. Therefore, this setup presents the potential for a more valid 

interpretation of physiological network bursting.  
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Distributions of ISI values were assessed to investigate changes in temporal activity. These 

findings suggest that some recorded neurons demonstrate more complex activity patterns 

occur at relatively higher frequencies of spiking. The regularity at which these ISI values occur 

was then evaluated based on the coefficient of variation for each neuron sequence. Half 

(49%) of the population exhibited more irregular activity at relatively low frequencies. The 

MISI approach to bursting identification developed by Chen et. al135 was then performed and 

was found to be unsuitable for the spike trains presented here due to the large range in ISI 

values and indicated that ~50% of each neuron’s activity represented spiking behaviour. 

Therefore, a novel approach to burst activity analysis was developed based on proximity of 

periods of (relatively) high frequency activity within ISI sequences. This method highlights a 

greater variation of bursting behaviours across the population suggesting it is more sensitive 

to changes in temporal activity.  

 

5.2.1 Inter-spike Interval Distributions 

The ISI values for each neuron spike train were calculated using Matlab software. The ISI 

distribution curve, for all neurons, is presented in figure 5.12 (A); the peak ISI value is 5 ms. 

Distributions of each neuron spike train ISI values were also examined (example Fig. 5.12, B). 

A surprisingly large number of 2 ms and 3 ms ISI values were identified and could be 

attributed to relaxed correlation and contamination parameters during spike sorting as well 

as manual re-clustering evaluations (see section 4.1.3). Although concerning, these intervals 

represented a low proportion (3%) of values overall. Distributions of ISI values have been 

used to indicate a threshold ISI value to differentiate between regular and sporadic firing 

rates 133,135,140 and this temporal feature was initially evaluated for each individual neuron. 
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Figure 5. 12. Counts of inter-spike interval values. (A) Histogram of all neuron spike train ISI 

values (1 ms bins). The peak ISI value for the population as 5 ms, while a large number of ISIs 

under 3 ms are identified which is improbable due to the refractory periods of neurons. The 

range of ISIs extends far beyond 50 ms, however the bulk of cumulated values are presented 

within this timeframe; see Fig. 4.9,B. (B) Example histogram of ISI values for a single neuron. 

Most neurons exhibited a large range of ISI values. 

 

Histogram counts of ISI values were plotted on a logarithmic axis (Fig. 5.13) where a bimodal 

distribution suggests the presence two distinct patterns of activity133,149.  Some distributions 

displayed an identifiable threshold (e.g. neuron #11, see Fig. 5.13, A), however most spike 

trains exhibited a peak of low value ISIs and a large spread of higher values (Fig. 5.13, B).  The 

proportion of high value ISIs was striking; the average population ISI over the initial 2 hours 

of recording was 44 seconds (±29.6 S.D.). Although outlier values could skew this average, 

intervals exceeding 1 minute were common and the range of average ISIs per neuron was 

between 2s (±4.5 S.D.) and 118 s (±142 S.D.). High value ISIs are related to the low spike 

frequency reported in earlier chapters as, for the duration of the recording, spiking activity is 

separated by long periods of inactivity (see Appendix 8 for individual neuron example).  
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Figure 5. 13. Histograms of ISI values per neuron plotted on a logarithmic scale. Threshold ISI 

values to identify periods of high-frequency bursting can be inferred from a bimodal 

distribution (A), but the large proportion of low-frequency activity made this approach 

difficult to meaningfully apply to most neurons of the dataset (B).  

 

5.2.2 High Frequency Spike Rates Identify Distinct Activity in a Subset of Neurons 

Sequences of ISI values were processed using a range of limiting values. A limit of, e.g. 100 

ms, was set and ISI values exceeding the limit were excluded. The percentage of remaining 

values were then calculated as a percentage of the total, original, ISI values. For summary 

analysis, this data was then averaged across the population. The results indicate that, as a 

population, 49.97% of all ISI values in the recording are less than 7.5 seconds (Fig. 5.14, A, 

dashed red line); i.e. when the limit is set to 7.5 seconds the average remaining percentage 

of ISI values is 49.97%. The averaged percentage of ISI values under a limit was plotted 

against the ISI limit which can suggest a change in spiking behaviour was observed. The 

gradient of the curve changes when the limit is increased beyond 1s (Fig. 5.14, A, dashed 

black line). As this relationship is not linear, it could indicate distinct activity patterns. 

 The variation across spike trains for a range of limiting values can be seen in Fig. 5.14 (B) and 

highlights the requirement of an adaptable method of processing ISI values for distinguishing 

neuron behaviours at high and low spike frequencies. While resembling the pattern observed 

in the population analysis (Fig. 5.14, A), some spike trains exhibit 60% of ISI values under a 

limit of 50 ms (population average is 27.6% at 50 ms). A method was therefore developed to 

generate a dynamic limit based on the median ISI value of each spike train to segregate 
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relatively high frequency activity periods from lower spiking patterns. These were then 

compared to classify neurons based on the temporal qualities of spiking activity.   

  

Figure 5. 14. Percentage of ISI values under a given limit. (A) Inter-spike intervals less than 

7.5seconds represent 49.97% of the entire population’s ISI values (red, dashed, line). A limit 

of 100 seconds accounts for 86.8% of all ISI values. The gradient of the slope becomes steeper 

at limits greater than 1 second, indicating a change in spiking behaviour. (B) Boxplot of 

percentages of individual spike train ISIs below a given limit. The variation of ISI values 

between spike trains indicates a generic limit is inapplicable. Red lines represent median 

values; edges of blue boxes are 25th and 75th quartiles; whiskers extend to extremes of dataset 

not considered outliers; outliers represented by red crosses.  

The variation in counts of ISI values per neuron was analysed using the standard deviation in 

ISI distribution plots. Distributions with a narrow single peak, or no peak, would demonstrate 

a lower variation in ISI counts than distributions with broader or bimodal distributions. To 

account for the wide range of values, this was performed for values above and below the 

median ISI value of each neuron (Fig. 5.15).   

A linear trend is observed between increasing mean ISI and ISI variance, however, at 

relatively higher spike frequencies (Fig. 5.15, A), a group of 18 neurons exhibit significantly 

lower variance (p = 0.00014, 2-tailed student’s t-test). The ISI distributions of these plots 

were individually evaluated and exhibited narrow peaks of low value ISIs (high frequency) 

with a mean of 4.6 ms (±3.5, S.D.). Although less defined, a second cluster of 6 neurons with 

a variance of between 90 and 300 ms consistently demonstrated broad or bimodal ISI 

distributions and was statistically distinct from the higher variance group (p = 0.013, 2-tailed, 

student’s t-test). At lower frequency ISIs (Fig. 5.15, B), no change in ISI distribution was 
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identified that showed a relationship with increasing ISI variance. This data suggests that, at 

relatively higher frequencies, some neurons demonstrate more complex patterns of 

temporal activity. 

  

Figure 5. 15. The variation of counts of ISI values per neuron were evaluated. The linear trend 

indicates that a small mean ISI corresponds to a narrow distribution of ISI values. (A) The 

variation of counts of ISI values less than the median ISI value per neuron. (B) The variation 

of counts of ISI values greater than the median ISI value per neuron. 

 

5.2.3 Coefficient of Variation of Inter-Spike Intervals 

Coefficients of variation (CV) have been successfully applied in previous studies to 

differentiate inhibitory and excitatory cells in vitro77,147 and to evaluate variation in spike train 

activity154,113,155. This approach divides the spike interval standard deviation by the mean ISI 

value to quantify the width of the ISI distribution. A CV value can indicate the regularity of 

spiking, i.e. if a neuron’s behaviour is dominated by tonic or bursting firing rates. A CV value 

>1 suggests high variability in activity as the deviation exceeds the mean. 

The 2-hour recording was analysed per neuron and all neurons exhibited a CV value greater 

than 1 (mean 1.98 ±0.72 S.D.), suggesting all neurons exhibit irregular firing patterns (Fig. 

5.16). Neuron #72 was not appropriate to analyse with this parameter as only two spikes 

were elicited in the first two hours.  The CV is a measure of spike train variability and large 

ISI values would increase this variation dramatically without high frequency bursting being 

apparent. Therefore, high and low frequency activity was compared across neurons by 

limiting the ISIs analysed to above or below the median ISI value for each neuron.  
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Figure 5. 16. Coefficient of variation over the 2hour recording. (A) All neurons exhibited a 

CV>1, indicating ISI variation exceeds the mean value. (B) Histogram of CV values over the 

2hour recording demonstrates the peak CV value is 1.75 with two outlying neurons exhibiting 

a CV value>4. 

Neuron ISI values lower than the median represent the highest frequency spiking for each 

neuron. These spike rates demonstrated a CV>1 (mean 1.16 ±0.76 S.D.) in 39 neurons (50%), 

suggesting half of the population display irregularly elicited firing rates when firing at high 

frequencies relative to that neuron (Fig. 5.17 A). When ISI values are limited to values greater 

than the median ISI, 51 neurons (66%) possess a CV>1 (Fig. 7.18 C&D, mean 1.28 ±0.54 S.D.). 

When these neurons are firing at relatively low rates these frequencies are less likely to be 

repeated. This suggests that more neurons display greater spike rate variability when firing 

at lower frequencies.  
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Figure 5. 17. Coefficient of variation values, per neuron, calculated with ISIs above or below 

the median ISI value for each neuron. (A) ISI values exceeding the median ISI were excluded 

from analysis, leaving relatively high frequency spike rates with which to calculate CV values. 

At higher frequencies, 50% of neurons display a high degree of spike train variation, i.e. CV>1. 

(B) At lower relative frequencies, 66% of neurons displayed a CV>1 indicating greater spike 

rate variation at lower frequencies.    

 

The CV values at relatively high and low frequencies were then directly compared (Fig. 7.18). 

Of the 77 neurons (#72 excluded), 35 neurons (45%) exhibited a greater CV value at relatively 

higher firing rates and 38 (49%) demonstrated greater variation at lower rates. Four neurons 

displayed less than 0.005 difference and were therefore determined to have an equal degree 

of variation throughout the recording.  
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Figure 5. 18. Comparison of CV values per neuron at relatively high and low frequencies. The 

population was roughly split (45% to 49%) with greater variation at either frequency band. 

Four neurons (6%) demonstrated no difference between frequencies. The point at 0,0 is 

neuron 72 which exhibited no variation.  

 

5.3 Defined Periods of Bursting Behaviour 

Spontaneous periods of high frequency action potentials are commonly observed in cultured 

neurons and organotypic slices of brain tissues 155,156. These events, termed bursts, are 

believed to be critical in network formation, however, they have also been associated with 

long-term potentiation and may therefore have a role in learning and memory152,157, while 

rate of bursting events as been shown to alter in pathological states such as Parkinson’s158 

and Alzheimer’s disease159. Bursts have been shown to increase the reliability of information 

transmission (a bursting neuron has a higher probability of eliciting a postsynaptic action 

potential), however, the cellular mechanisms and role of this function within a network 

remain poorly understood.  

The definition of a burst is variable, and studies have developed identification parameters 

based on: their experimental setup (e.g. cell culture155 or in vivo160), cell types employed (e.g. 

cortical pyramidal neurons161 or granule cells) and the technologies used to record activity 

(patch clamp, EEG, extracellular). Burst detection analyses often utilise ISI values of a neuron, 

rather than frequencies spanning arbitrary time windows. The deficiencies of using spike rate 

parameters alone relate to the significant variation in activity levels observed across 
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numerous cell types within a network. The use of an arbitrary value does not account for this 

variation and a dynamic value based on features of the spike train is more relevant.  

This section evaluates the applicability of the burst identification MISI method to the 

recorded data and then describes an alternative approach to identifying bursting activity 

within a spike train termed the MBISI method. The MISI method, developed by Chen et al.135, 

indicates that ~50% of the activity of each neuron is defined as bursting, while 30 neurons 

exhibited bursting in more than 50% of active periods. However, these assertions are relative 

to each neuron’s firing rate and identified intra burst intervals (IBI) of >10seconds; a low firing 

rate to define as a burst. This method demonstrated low variation between neurons 

suggesting that they are all behaving similarly to each other despite large spike train 

variability. In comparison, the novel MBISI approach exhibited a large deviation in bursting 

behaviours between neurons, providing greater resolution to discriminate activity 

differences.  

 

5.3.1 Mean Inter-spike Interval Method 

The MISI method of burst identification generates an auto-adaptive threshold value (ML) 

which is relative to each neuron. It is performed by calculating the mean of ISI values less 

than the mean of the original sequence, i.e.: calculate the mean ISI value in a spike train 

(MISI); identify ISI values less than MISI; values less than MISI are maintained as a sequence, 

termed Ln; calculate the mean of Ln, termed ML; define bursts in the original ISI sequence as 

two or more successive ISI values less than ML. Interval values before and after each spike 

are plotted to survey the activity of each neuron and compare to the ML value (Fig. 5.20). 

Intervals preceding and after a spike below ML are designated as a bursting sequence of 3 

spikes. 

The method indicates an average of 49.6% (±12%, S.D.) of each neuron’s activity consists of 

bursting (Fig. 5.19, A; a histogram of percentages of bursting spikes can be found in appendix 

9). The MISI method generates a bursting threshold relative to each neuron with a mean ML 

value of 9.7seconds (±8.4s, S.D.). A sequence of 3 spikes with ISI values of ~10s represents a 

low spike rate and is arguably not bursting activity due to the low frequency of activity. Eight 

neurons exhibited an ML value less than 1s (Fig. 5.20, B) and a greater percentage of spikes 

identified as bursting correlated with a lower ML value (Appendix 10).  

Due to the low spiking frequency observed across neurons, the MISI method identifies a 

relative threshold of burst activity greater than what would be considered high frequency 
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spike activity (e.g. the population average of 9.7seconds). Additionally, this method suggests 

that, on average, half of all neuron activity is bursting and does not demonstrate a large 

degree of variation between neurons which could be used to differentiate functional roles.  

Therefore, an alternative method was developed to further distinguish neuron behaviours 

based on patterns of inter-burst interval values and the sequences at which these occur. 

 

  

Figure 5. 19. Example of the MISI method of burst detection. The ISI value preceding a spike 

(x-axis) and subsequent to the same spike (y-axis) are plotted. The value of ML for this neuron 

is shown as a red line. Spike ISI values less than MISI both before and after the spike are part 

of a burst of three spikes.  (A) The large range of ISI values makes makes the MISI threshold 

difficult to discern; a black, dashed, box outlines the region of interest which is presented in 

(B) where the red lines are visible.  
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Figure 5. 20. Evaluation of the MISI method of bursting activity detection. (A) The percentage 

of each neuron’s ISI value lower than ML threshold value (identified as bursting activity); 

mean 49.6% (±12%, S.D.). (B) The ML value calculated per neuron; mean 9.7seconds (±8.4s, 

S.D.). 

 

5.3.2 MBISI analysis 

As an alternative method of ISI sequence analysis, a novel approach was developed based on 

proximity of periods of (relatively) high frequency activity within the sequence. This approach 

calculates the maximum number of groups of three or more spikes that can be defined with 

a given ISI value and separates the sequence into ISI values and inter-burst intervals (IBI), 

where ISI<IBI. The ISI value which identifies the maximum number of bursts (3 or more 

spikes) in a spike train was termed MBISI (max bursts) and reflects the ISI at which the 

sequence can be maximally segmented. Changes in the rate of burst identification over 

increasing ISI values were consistently identified across the population and provided a basis 

for a temporal threshold for burst activity. Peaks in histograms of the numbers of bursts 

detected were then used to calculate an ISI value to identify periods of bursting activity in 

each neuron spike train.   

Briefly: 

1 Spike train ISI values are calculated 

2 MN is a limiting ISI value which increases by 1 ms each iteration from 0 to the 

maximum ISI within a given spike train. 
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3 The spike train ISI values are analysed for values less than MN, the times at which 

the corresponding spikes were elicited are then recorded 

4 Then sequences where 2 or more adjacent ISI values (minimum 3 spikes) less 

than MN are identified 

5 These sequences with a minimum of 2 ISI values are defined as bursts.  

6 The number of identified bursts throughout the spike train is recorded 

7 Subsequent to analysis of the entire spike train, the next iteration begins with 

MN increasing by 1 ms. 

As the MN value increases, more bursts are identified, each consisting of greater numbers of 

spikes. This value peaks as the ISI value exceeds the time between bursts and approaches the 

maximum ISI, reducing the number of identified bursts (Fig. 5.21, A). Plotting the number of 

spike train bursts against increasing MN values (the maximum intra-burst value included in 

analysis) highlights bursting activity separated by large ISI values. Changes to the gradient of 

the curve describe characteristics of temporal proximity; i.e., a plateau indicates bursts are 

separated by greater ISI values while a steep gradient suggests a temporally variable spike 

train (Fig. 5.21, B).  
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Figure 5. 21. MN burst analysis indicates the proximity of high frequency periods within a 

temporal sequence and identifies the ISI value at which the sequence can be most segmented 

into discrete periods of activity. (A) As MN increases, more groups of sequential spikes are 

identified as bursts. MN approaches the maximum ISI value and the number of spike groups 

decreases. (B) Example plot of MN analysis of two neurons. Both neurons exhibit a plateau 

preceding a further increase in burst number, indicating several large ISI values separating 

bursts. A plateau approaching the peak burst value suggests that a small proportion of spikes 

are separated by large ISIs (orange line).   

 

With the number of identified bursts plotted against MN (1 ms less than the inter-burst 

interval), neurons consistently demonstrated a plateau in the numbers of bursts identified 

(Fig. 5.21, B) suggesting a regular pattern within the distribution. Histograms of MN values 
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were generated which highlight repeated burst number values (Fig. 5.22, A). A greater count 

of burst ISI value indicates that the burst sequence has not changed despite a more relaxed 

(increasing) ISI limit which should identify more bursts. The average value in these 

distributions was found to precede the initial plateau observed across the population (Fig. 

5.22, B). The average number of bursts identified by this method was then used as a 

threshold for burst identification and spike groups identified at MN lower than this value are 

designated as bursts.    

The peak number of bursts represents the maximum segmentation of each spike train. The 

number of bursts identified at MBISI value were calculated as a percentage of the maximum 

burst number (5.23, A). The mean population value of bursting activity (% of spikes exhibiting 

bursting activity) was 48.86%, comparable to the MISI method (49.6%), however, the 

population distribution exhibited double the deviation (±24 S.D compared to ±12 for MISI). 

Due to the relative nature of this method, neurons with high spiking frequencies do not 

necessarily demonstrate a high percentage of bursting periods. The variation between 

neurons is more observable using this method than the MISI although it is based on three or 

more successive spikes, not two. 

  

Figure 5. 22. Frequency of burst count identifies discrete populations of bursts at varying 

limiting ISI values. (A) Histogram of neuron #11 MBISI burst analysis. Counts of burst value 

refer to the count of incidences a count of bursts occurs in analysis, i.e. MN = X, number of 

bursts = Y; MN = X+1, number of bursts = Y; there are 2 counts of Y. Over 500 ISI values used 

as MN identify 81 bursts; despite the limiting ISI value increasing, no change to the number 

of identified bursts is observed. The average burst count in this histogram is 76 bursts. (B) The 

average of 76bursts is plotted against the results at increasing MN values (red dashed line a 
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80). This identifies the MN value of 827 ms as an appropriate threshold of bursting activity 

for this neuron.   

   

Figure 5. 23. Temporal qualities of neurons measured using the NBISI method. (A) The number 

of identified bursts below the MN limiting threshold as a percentage of maximum identifiable 

spike groups per neuron. Mean 48.9%, ±24.8 S.D. (B) The MN limit is the ISI value at which 

the average number of bursts occurs; sequences of 3 or more spikes with ISI values well than 

the MN limit are defined as a group of bursting spikes.   

 

5.4 Discussion: Spike Features and Temporal Characteristics  

 

The temporal and amplitude features of extracellular waveforms have been reported to 

indicate if a neuron is exert an inhibitory or excitatory role within a network12. An approach 

is presented in this work which attempted to discriminate between these two broad classes 

of cell.  These features are suggested to indicate a class of neuron because the function of a 

cell requires specific types and densities of ion channels embedded in the cell membrane. 

Such discrepancies may be reflected in the speed and magnitude of ion currents. No clear 

distinction between cell types was identified, however, some features exhibited greater 

distribution than others which highlights the heterogeneity of the population. The end slope 

and width ratios possessed the highest deviation across the population (±0.86 and ±0.71 

respectively) and k-means clustering of these data suggest significant differences between 

neurons. Both features are related to temporal characteristics of the average spike (end slope 

is the time taken to return to RMP from peak amplitude and width ratios are based on the 
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time of each phase of the AP) which is important as this approach is based on the observation 

that inhibitory neurons exhibit a faster, narrower, spike162,163. 

Although trough widths did not indicate significant variation across the population (p = 0.39, 

Fig. 5.7, B) a cluster of neurons demonstrated longer refractory periods (peak widths; Fig. 

5.7, D). This feature becomes more significant when compared to the trough width and the 

relative ratios may be more representative of faster spiking (Fig. 5.10, B). A potential cluster 

of 6 neurons with significantly (p<0.05) larger width ratio values indicates that these cells 

have a longer positive peak than the duration of the negative trough. However, this does not 

necessarily equate to a narrow spiking inhibitory cell as a longer refractory period has not 

associated with this class of cells.  

A steeper (more negative) end slope gradient has been associated with inhibitory neurons12  

and two potential neuron populations were identified, but, this was not correlated with peak 

or trough widths measured independently. The end slope represents the rate of voltage 

change following peak amplitude (intracellular hyperpolarisation) in returning to RMP. It can 

be seen from figure 5.3 that the greatest variation in averaged waveforms occurs around the 

refractory period and these differences were found to be significant when clustered in groups 

of 3 or more (Fig. 5.9). Histograms of the end slope value distributions identified three 

clusters, however, not all clusters exhibited a convincingly specific identity. Particularly steep 

slopes (Fig. 5.9, A, cluster #2) were observed to have a distinct distribution, yet the large 

range of values does not suggest specificity. Low-gradient slopes (Fig. 5.9, A, cluster #1) 

indicated a normal distribution if portions of cluster #3 were re-assigned, however, 

attempting to re-define this cluster did not improve the resolution of the distribution (Fig. 

5.9, B, clusters # 4,2,5). The most interesting waveform identity was centred on a slope 

gradient value of -2 and exhibited a significantly distinct and specific distribution (Fig. 5.9, B, 

cluster #3). Previous studies have not reported waveforms possessing end slope gradients of 

this values (max ~-.1512) and no investigation known to the author has described three 

separate clusters of populations defined using this method.  

Although relaxed contamination and correlation parameters used to improve spike sorting 

may admit anomalous refractory period signals, averaging of the waveform limits the impact 

a minority of abnormal spikes could cause. It is possible that shallow gradient slopes may 

have been recording from somatic areas closer to the axon hillock where hyperpolarisation 

is attenuated 164, however, this suggests that the majority of neurons were recorded from 

this specific area which seems unlikely.   
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Steep slope suggests quick return to RMP and therefore would be able to fire again (high 

frequency) and a large amplitude extracellular peak is associated with fast spiking165. This 

suggests that the more negative slope neurons are fast spiking inhibitory neurons, yet these 

cells do not demonstrate significantly narrow trough widths.  

Pyramidal neurons have been reported to exhibit prominent afterdepolarisations 166,167 a 

feature which was clearly identified in neuron #53 (purple waveform in fig. 5.6). However, 

neurons exhibiting afterdepolarisations were not identified as a distinct population when 

analysed using the waveform features presented in this work. Additionally, they were not 

found to consistently demonstrate similar temporal features. see appendix 12) 

The applicability of these features in determining neuronal subtype is not universally 

accepted, although the inability to reproduce such findings may highlight the diversity of 

approaches in regards electrophysiological hardware, experimental technique and tissue 

preparation. Weir et al. utilised trough width in analyses of neuron cultures derived from 

new-born mice, and found no significant difference between trough widths of inhibitory and 

excitatory cells which had been independently classified by immunohistology techniques16. 

Spike widths and ratios have been used to successfully cluster inhibitory cells168,169, yet have 

also been shown to be ineffective in distinguishing cells170  and omitted from analysis due to 

claims of unreliability12.  

End slopes are associated with a greater distribution range (Fig. 5.8B compared to Fig.5.10B) 

and this feature is the best discriminator for this dataset, however, currently any conclusions 

regarding subtypes of neurons could be interpreted as experiment-specific and relative only 

within that data. It is commonly reported that the proportion of inhibitory interneurons to 

excitatory neurons in the cortex is in the region of 1:5 171, yet this analytical approach does 

not suggest 15 (n= 78) distinct neurons. However, it is notable that there is a wide variation 

in waveform properties and an outlier in one waveform feature analysis is not repeatedly 

identified as an outlier in other analyses. The large variation in the number of spikes 

attributed to individual neurons may bias the resolution of each averaged waveform, 

therefore further investigations necessitate a high number of spikes to ensure waveform 

properties are representative.  

It was not initially clear whether rapid changes in spike frequency were directly related to 

the relatively low firing rates of neurons or if spike sorting had inadvertently favoured 

bursting behaviours while limiting the recording of regular, or low frequency, firing rates. 

Increased spike amplitudes would provide a greater SNR and, consequently, be included 
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throughout the spike sorting process indicating a false-positive result of increased spike 

activity. 

Previous studies using similar systems have not indicated a bias towards bursting 

behaviours11 and significant amplitude changes over time would be identifiable during 

manual evaluation of PCA clustering. Amplitude changes would become clustered as an oval, 

or an elongation of data points, and would not fit the contamination criteria. Clusters in this 

dataset do not suggest that waveform amplitude changes impacted the clustering of spikes 

that would consequently result in a decreased spike rate.  

A traditional proposal of neuron coding is based on the firing rate of a neuron (“rate coding”), 

where the frequency of action potentials determines the information to be relayed 

throughout the network. Sensory neurons have been observed to increase firing rates in 

response to increasing stimulus intensity, indicating a corresponding change in the manner 

of neural coding. Additionally, neurons exhibiting high spiking frequencies are more reliable 

in eliciting postsynaptic spikes whereby the stimulus is interpreted as being of greater 

importance to network processing. An alternative mechanism to relay information has been 

proposed as temporal coding. The temporal resolution of action potentials (millisecond scale) 

allows for a large-degree of variability within a spike train which could transmit highly 

complex information172. For instance, the frequency of action potentials within a defined 

time frame could be highly similar between two neurons, however, the possible arrangement 

of spikes in this time could afford large variability in temporal spiking properties between the 

two neurons. The regularity of spiking is a highly variable feature of this dataset and bursting 

neurons may play a critical role in the connectivity of this network. 

Bursting neurons are characterised as eliciting spontaneous periods of high frequency 

spiking. However, definitions of bursting are variable as high frequency activity is relative to 

each neuron and a dynamic threshold is required to define this. Initially, a burst detection 

parameter described by Bakkum et al.133 was attempted, but results did not clarify an 

appropriate ISI threshold for this dataset (see appendix 11 for neuron #11 comparison). The 

method was developed for analysis of cultured neurons on an MEA - the low spike count and 

high proportion of large ISIs in the dataset presented here likely impacted the outcome of 

this analysis. Therefore, the simpler MISI method was applied to the dataset to identify 

neurons with a high percentage of bursting spikes and suggested that >30% of spikes are 

bursting in each neuron’s spike train (Fig. 5.20, A, mean 49.6%, ±12%, S.D.). This method 

identified 14 neurons with a high percentage of bursting spikes (>60%), yet the population 
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demonstrated a narrow distribution and therefore was limited in its ability to distinguish 

neurons based on this feature. An alternative method was developed and termed MBISI 

analysis which identifies sequences of spikes over a range of ISI values. Histograms of 

sequences identified as each ISI value consistently identified regular patterns of ISI sequences 

and the mean of the ISI distributions was found to proceed this repeated ISI value. This ISI 

value was therefore used as a threshold for bursting analysis and indicated a much more 

variable dataset. 

The neurons population presented in this work exhibited high variation across multiple 

waveform and temporal features, however, in most cases these distributions were 

continuous and did not indicate discrete populations which could underlie opposing or 

alternative functions within a network. Waveform analysis appears to be useful to identify 

typicality in the dataset, yet here outliers in one feature were not consistently identified as 

abnormal in others. In contrast, the temporal features of the population demonstrated large 

variation and required further processing to address these discrepancies. Using the median 

ISI value to segment spike trains provided a useful comparison for relatively high and low 

frequency spiking, and irregular spike trains evaluated using the CV, MISI and MBISI methods 

do suggest a heterogeneous population. Incorporating a reliable method of recording from 

specific cortical layers would assist in validating conclusions regarding neuronal 

characteristics, as this would potentially limit the neuronal subtypes recorded from.  
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Spike waveform properties Average Standard Deviation 

Trough Width 0.63 0.08 

Peak Width 1.17 0.38 

Width Ratios 1.88 0.71 

Spike width (ms) 0.89 0.13 

Peak to trough Ratio 0.70 0.05 

End Slope -1.46 0.86 

Spike Temporal Properties Average Standard Deviation 

Mean ISI (s) 44 29.6 

Low Frequency ISI (s) 50.48 6.3539e+04 

High Frequency ISIs (ms) 4.6 3.5 

CV ISI 1.97 0.72 

CV high frequency 1.16 0.76 

CV low frequency 1.28 0.54 

MISI Bursting ISIs (%) 49.6% 12 

MISI ML value (s) 9.7 8.4 

MBISI Bursting ISIs (%) 48.86 24.78 

MBISI MN value (s) 24.2 57.3 

Table 5. 1. Summary of neuron waveform and temporal features.  

 

 

  

 

 



 

6. Connectivity Analysis of Recorded Neurons  

The MEA and acquisition system are designed to define the electrophysiological activities of 

discrete neuronal units in healthy acute slices. The device presented in this work possesses 

high spatial resolution of electrodes spread over an area of 0.9X1.8 mm with the potential to 

identify and record activity from hundreds of neurons. The spatial resolution enables high 

accuracy in determining neuron locations over the array, while the effective spike sorting 

approach can attribute small amplitude activity (putative axonal signals), detected over 

several electrodes, to individual units and trace signal propagation across a network. These 

spatial features can be combined with temporal patterns of activity to investigate neuronal 

connectivity in a healthy brain slice representative of physiological network activity.   

Investigations of neuronal networks can provide information to changes in plasticity; the 

ability of networks to re-model the strength of inputs and alter the dynamics of the network. 

Plasticity is a key mechanism associated with learning and memory1, and underlies 

neurodevelopment173. Furthermore, neuron network connectivity is impacted in pathological 

states such as Alzheimer’s disease and schizophrenia174. Therefore, elucidating the role of 

local networks within larger brain structures could greatly assist in identifying early markers 

of diseases.  

The functions of neuronal interactions throughout a network are not fully understood. 

Difficulties in investigating functions can be attributed to the diversity of cell types, such as 

between inhibitory interneurons and pyramidal cortical neurons175, and the large number of 

connections that exist between neurons. Technical considerations include the simultaneous 

investigation of as many units of the network as possible to determine the role of each within 

the network. A key challenge in this regard are silent (sometimes referred to as “dark”) 

neurons10. Such neurons are visualised histologically yet exhibit extremely sparse 

electrophysiological activity and are therefore typically unobserved in recording 

experiments. Estimates suggests that only 10% of cortical neurons can be reliably detected 

by extracellular electrophysiological methods9,176, impeding the ability to study the network 

fully. This is proposed to be due to sparse activity patterns of many neurons and that active 

subsets of neurons respond only to specific stimulus triggers10. However, increased electrode 

spatial resolution could help to reduce the gaps in network knowledge by increasing the 

numbers of neurons recorded from to determine the proportion of low-activity neurons in a 

population    
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Investigations into the mechanisms of acquiring, processing and storing information within a 

network of neurons involve mathematical modelling beyond the scope of this work. 

However, the data acquired through the recording presented here can be assessed in terms 

of (1) effective connectivity i.e. local interactions with a neuron downstream of the network 

and (2) functional connectivity i.e. temporally correlated activity suggesting equivalent 

functions22. Effective connectivity can be evaluated using spatial information derived from 

neuron locations and compared to the degree of correlation in activity patterns. Functional 

connectivity evaluation also relies on temporal properties of spikes but could suggest a 

similar input into two distant cells, e.g. two interneurons providing inhibitory feedback 

signals to the same neuron, but not directly interacting. The temporal properties used in this 

analysis were based on the results of peristimulus time histograms (PSTHs). This commonly 

used method to infer causal activity177 counts the cumulative spike rate within a defined time 

window following an event such as electrical stimulation. In this work, a PSTH is a measure 

of delay in activity between one neuron and another.  

The following sections will describe correlated neuron activity patterns resulting from PSTH 

analysis. Although steps were taken to mitigate the impact of spike rate discrepancies on this 

measure, the number of significant PSTH results (where spikes were recorded within the time 

window) demonstrated a near linear relationship with spike rate and indicated an ineffective 

approach to quantify correlated activity. Neuron locations, and distances between neurons, 

were then included in analysis and suggested proximal neurons exhibit greater similarities in 

activity patterns, indicative of effective connectivity. However, directed graphs were 

generated which indicated that, while clusters of proximal neurons exhibited similar 

activities, several separated units possessed similar levels of correlation. The propagation of 

axonal signals was then summarised for the population, the direction of which could be 

estimated for 48 neurons based on the time delay between the seed electrode and small 

amplitude signals on surrounding electrodes.  These analyses describe the potential for this 

system to investigate connectivity across hundreds of neurons in a network with high 

temporal and spatial resolution across a large area.  

 

6.1. Peristimulus Time Histograms 

 In the recording presented here, each spike was treated as an event and the activity of other 

neurons following each event was surveyed to gauge correlated activity changes. The 

variable, and large, ISI values for the dataset meant that coherent PSTH combinations were 
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uncommon with few spikes occurring within 500 ms of a spike event. However, neurons with 

high spike count, such as #2 and #52 (910 and 1887 spikes, respectively), provided sufficient 

spikes within 500 ms time window to generate meaningful PSTH plots (Fig. 6.1). The PSTH 

plots presented here (examples in Fig.6.1, B&C) are produced by the following steps: 

1) Identify each spike time for a neuron (Stime) 

2) Defining a time window (t) following the spike time 

3) For each neuron being compared to, identify spikes of those neurons that occur 

within (t) of (Stime) 

4) Bin the time window, e.g. every 10 ms, up to (t) 

5) Sum the number of spikes which occur within each bin, i.e. the number of spikes 

which are elicited by that neuron at 10-20 ms after (Stime)  

 

 

 

 

 

Figure 6. 1. Excerpt of a raster plot of neurons #52 & #2 with corresponding PSTH plots 

calculated over the 2 hours of recording. (A) The initial 90minutes of recording from neurons 

A  

B C 
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2 and 52, where each spike is represented by a vertical line. (B) Histogram of the time delay 

between neuron #52’s spike activity (n = 1887) and neuron #2’s subsequent spikes (n = 910) 

within 500 ms. Each of #52’s spikes are a trigger (centred at time 0, x-axis) and for each of 

#2’s spikes occurring within 500 ms the time delay between events is binned into the PSTH. 

Neuron #2 elicits 23% of its recorded spikes within 500 ms of neuron #52’ spikes. (C) Converse 

analysis with neuron 2 spikes used as a stimulus trigger. Although suggesting a peak of 

activity within 100 ms, this represents 3.8% of neuron 52’s spikes. 

These plots indicate a correlation in periods of activity and could suggest functional 

connectivity. However, a generous post-spike time window was required to accumulate 

enough data to generate meaningful plots due to the low spike rate. Spike counts included 

in PSTH plots represent a low proportion of each neuron’s overall spikes; for example, neuron 

#52’s activity within 100 ms of a neuron #2 spike (Fig. 6.1, B) accounts for 3.8% of neuron 

52’s spike events. Therefore, relying on PSTH plots accumulating large numbers of spikes 

alone is not an effective approach to identifying correlated activity in this dataset.  

The low number of correlations in PSTHs are likely the result of large IS values observed 

throughout the dataset and drastically reduces spike timing coincidences. Correlated, 

functional activity should still be observable, however, the low number of neurons identified 

within an area of 2 x 1 mm indicates that far fewer correlated activities could be recorded. 

Other studies of connectivity using patch clamp techniques have had more success in 

identifying correlated activity between neurons over distances of 100 µm178, suggesting that 

the number of spikes assigned per neuron in this setup may significantly impact this measure.   

The number of spikes present in the PSTH can be misleading due to imbalances of recorded 

spike numbers between neurons. A neuron with high frequency activity has a higher 

probability of detecting another neuron’s spikes within a given time window. The fraction of 

each neuron’s spikes present in each PSTH was calculated to improve interpretation of 

correlation (Fig. 6.2). These 78x78 tables were used to generate a colourmap of 6006 values; 

excluding the neuron comparing against itself (red diagonal in Fig. 6.2). Columns represent 

the PSTH stimulus neurons with rows as the neuron spikes subsequent to the event. Neurons 

1:32 show the greatest degree of correlation with neighbouring neurons, while neurons 18, 

37, 52, 53, 58 and 74 demonstrate consistent activity correlation with other neurons. These 

neurons have higher number of elicited spikes (> 1000 spikes) relative to the population 

average (382 spikes) which would enhance the appearance of correlated activity, however, 

two neurons (48 & 67) also elicit >1000 spikes and demonstrate little correlated activity with 
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other neurons, even within a 500 ms time window (Fig. 6.2, B). A total of 2770 combinations 

(46%) found at least one spike within a 100 ms PSTH window (defined here as a positive 

combination). This analysis was repeated with a time window of 500 ms following each spike 

and predictably increased the fraction of spikes included within the PSTH (Fig. 6.2, B) and 

produced 4108 (68%) positive combinations.  
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Figure 6. 2. Colourmap of the percentage spikes per neuron occurring within a given PSTH 

time window. Spike times function as a stimulus and each row represents the PSTH of a 

neuron with the column the corresponding neuron being compared to. Following a spike (row) 

any spike activity of another neuron (column) within the time window is recorded. The sum 

of each neuron’s activity in the time window is then divided by that neuron’s total spike count. 

The colour scheme is red (lowest value – 0) to green (highest value- 69%). A colour scale is 

provided showing how percentage values are binned. Red boxes indicate low percentage of a 

neuron’s spikes occurred within the given timeframe and neurons were not compared to 

themselves (red diagonal). (A) Fraction of spikes within a 100 ms PSTH time window highlights 

very few correlated neurons, with neurons 1:32 exhibiting the greatest consistency of similar 

spike activity. (B) Fraction of spikes within a 500 ms PSTH time window. 

The low number of correlations is a result of the low spike count that many neurons exhibited 

over 2 hours of recording and are distributed across large interspike intervals. To determine 

the impact of spike count on the liklihood of a spike occurring within the PSTH time window, 

the number of spikes per neuron was compared to the number of positive PSTH 

combinations (Fig. 6.3). This was calculated as the number of combinations where a neuron’s 

spike is subsequent to a spike stimulus (i.e. the rows in figure 6.2). No change in trend was 
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observed when analysis was based on the number of combinations with a neuron’s spike as 

the stimulus (columns in Fig. 6.2; appendix 13). As expected, there is a trend of increasing 

numbers of positive combinations with larger neuron spike counts, however, deviation from 

a linear dependance indicates that some neurons demonstrate limited correlated activity 

despite a relatively high spike count. The percentage of spikes each neuron exhibited within 

the time window of another neuron’s spikes was averaged and included as a colour code. 

Although high spike count and number of positive combinations correlate, the percentage of 

each neuron’s spikes present in the PSTH time window (colour-coded) are observed to be 

less dependent on these factors. For instance, at a 500 ms interval (Fig. 6.3, B), the greatest 

number of positive combinations consisted of, on average, 19% of that neuron’s total spike 

count, yet another neuron exhibited fewer positive combinations but consisting of an 

average of 31% of its total spikes. This data does not provide information regarding individual 

neuron:neuron activity dependancies and the neurons presented here demonstrate low 

correlation in activity, however, accounting for spike count and the percentage of spikes 

included within PSTH time windows suggests underlying correlated activity in many neurons. 

  

Figure 6. 3. Increasing spike count results in a trend of increasing numbers of neuron 

combinations with more than 1 spike within a PSTH time window. Point colours are based on 

the average fraction of neuron spikes occurring within each possible neuron combination time 

window. Colour coding scheme; dark blue (low), yellow (high).  (A) At a PSTH window of 100 

ms spike count correlates with increased spike; neuron 18 exhibits the highest number of 

positive combinations (74) with an average percent of its spikes included in combinations as 

10.3%, the lowest is neuron 47 with 8 positive combinations and  0.48% of its spikes included. 

(B) A PSTH window of 500 ms reduces the linearity of the data as more combinations 

A B 
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approach the limit of 78 possible combinations. Neuron 53 exhibited the highest number of 

combinations at 77, with 19% of spikes. The highest fraction of spikes included was 

31%(neuron 18) and the lowest was 1% (neuron 34). 

 

6.2. EI mapping 

Peristimulus time histograms provide indirect evaluation of activity dependence between 

neuron and can be suggestive of functional connectivity as this data does not include any 

indication of direct effective connectivity. The spatial resolution of the MEA presented here 

enables the relative distances between neurons to indicate locally clustered cells. These 

distances can be incorporated into connectivity analysis and proximal and temporally 

correlated activity could suggest local, effective, connectivity between neurons.  

The locations of seed electrodes were plotted using a map of electrode positions (Fig. 6.4). 

During spike sorting the 6 electrodes surrounding a seed electrode are evaluated for signal 

amplitudes as repeated correlated activity on two neighbouring electrodes indicates a 

duplicate signal. Spikes can then be more accurately discriminated and allocated to an 

individual neuronal unit. Signals detected on neighbouring electrodes also increases the 

resolution of the cell location as signal amplitudes can be used to triangulate the source of 

the largest amplitude.  

The locations of detected neurons were not evenly distributed across the MEA, suggesting 

that many electrodes did not come into proximity with functional neurons. This may be due 

to incomplete penetration of needles past damaged tissues, greater extent of cellular 

damage, the needles may not have been inserted or the slice detached from the needles 

before sufficient data could be acquired to identify neurons.    
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Figure 6. 4. Electrophysiological mapping of neuron locations across the MEA. When a supra-

threshold spike is detected on an electrode the signal is compared to its 6 neighbours. 

Comparing the spike amplitudes between electrodes (orange dots) allows for triangulation of 

the signal and provides an approximate location of the cell (blue circles). The locations of 

detected neurons were not evenly distributed across the MEA. 

 

6.2.1 Proximal Correlated Activity  

Distances between neuron locations were calculated and compared to the percentage of 

each neuron’s spikes elicited within 100 ms and 500 ms of each other neuron’s spike time. 

Comparing the PSTH percent to cell distance provides supporting evidence of neurons 

comprising the same network pathway and could indicate effective connectivity; i.e. distal 

neurons exhibiting a high PSTH correlation are probably separated by several network nodes 

and correlation is either functional or coincidental. The largest distance between neurons 

was 1930 µm and the smallest was 4 µm.  

At a time-window of 100 ms (Fig. 6.5, A), spike PSTH combinations below 10% demonstrated 

no relationship with cell distances. Two neuron combinations demonstrate a PSTH 

percentage >60% (spikes of neuron #52 subsequent to neuron #47 spikes and neuron #75 

subsequent to neuron #77 spikes). The distances of these neuron combinations are 162.5 µm 

(52:47) and 62.3 µm (75:77). Due to the small distances and high spike correlation, these 

neurons are likely closely linked within the same network path. A similar trend is observed at 

a time window of 500 ms (Fig. 6.5, B), where higher correlated activity combinations between 

each neuron (PSTH%) occur with smaller distances between neurons. 
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Figure 6. 5. The percentage of each neuron’s spikes included within the PSTH time window of 

each other neuron compared to the distance between seed electrodes. Spikes percentages 

<10% are excluded. (A) A PSTH time window of 100 ms. (B) A PSTH time window of 500 ms. 

The outlier at 50% PSTH spikes in both plots is neuron #72  

The percentage of each neuron’s spikes within a given interval of another neuron’s spikes 

can be visualised across the array to demonstrate that a large PSTH spike percentage is more 

likely to be identified at shorter distances- suggesting effective connectivity. This is achieved 

using the digraph (directed graph) function of Matlab, where nodes are the coordinates of 

each neuron and edges (connections between nodes) are positive PSTH combinations. An 

example of a digraph is presented in figure 6.6. A node (neuron) is represented with a red 

circle tagged with the neuron ID number. The radius of a node increases with a larger number 

of outputs; i.e. the number of neurons exhibiting activity following a spike. Edges (arrowed 

lines) originate from a neuron eliciting spikes within the PSTH time window of spikes from 

another neuron, which the arrow points at, indicating an output signal. Therefore, the arrow 

direction indicates activity dependency on another neuron. Line colour is based on the 

weighting of connection and is calculated using the percentage of each neuron’s spikes 

present within the PSTH time window.  

A B 
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Figure 6. 6. Example of a digraph plot utilised to demonstrate activity correlations across 

neuron positions on the MEA device. Neuron 44 has a large node radius as it has the highest 

number of other nodes eliciting activity following its spikes (outputs), while neuron 41 has no 

identified outputs. Direction of arrows indicate neuron dependency; neuron 48 demonstrates 

high correlation of activity with neuron 45 as 52% of its spikes occur within 100 ms of neuron 

45’s spikes.  

Directed graphs were generated for PSTH time-windows of 100 ms (Fig. 6.7) and 500 ms. (Fig. 

6.8). As per figure 6.6, at 100 ms PSTH percentages less than 10% were excluded as these 

represented coincidental spiking times and were unlikely to reflect correlated behaviour. 

Several clusters of correlated activity can be observed, suggesting effective connectivity 

between member neurons. With a time-window of 500 ms (Fig. 6.8) PSTH percentages less 

than 30% were excluded from the graph to improve identification of edges. The greater time 

window increases the percentage of spikes included (corresponding to a more colourful plot) 

but reduces the definition of many of the clusters identified at 100 ms. These findings 

demonstrate how the data simultaneously recorded from hundreds of electrodes can be 

used to investigate effective connectivity in neuronal networks and identify clusters of 

correlated activity using a range of parameters.  
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Figure 6. 7. Directed graph based on neuron locations used as nodes and edges as the 

percentage of spikes present within 100 ms of each other neurons’ spike times.  

 

Figure 6. 8. Directed graph based on neuron locations used as nodes and edges as the 

percentage of spikes present within 500 ms of each other neurons spike times.  
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6.2.2 Signal propagation 

Simultaneous recording from 512 electrodes enables the flow of electrical charge through 

the extracellular space to be recreated where axonal signals are of sufficient amplitude to be 

detected. During spike sorting, the electrophysiological signals associated with an individual 

neuron are compared to the activity on the electrodes surrounding the seed electrode. 

Voltage fluctuations detected on surrounding electrodes immediately subsequent to a 

spiking event can can be allocated to an individual neuron detected on a seed electrode as 

these low amplitude events occur within the neuron’s refractory period and cannot emanate 

from an alternative source. Spike sorting is not based on these small amplitude signals, 

however, once spikes are assigned to a neuron further processing can eliminate interfering 

signals while averaging these potentials allows for visualisation of the waveform. The high 

spatial resolution of electrodes (60 µm pitch) enables axonal signals emanating from the cell 

body to be detected by the seed electrode’s 6 neighbours by detecting amplitude changes 

during the milliseconds following the spike event.  These signals can be used to plot the 

direction of signal propagation which could be used to help infer effective connectivity 

between cells. The original development of this array and acquisition system focussed on 

retinal recordings14, where neurons are more regularly arranged than in the cortex, and 

enabled the visualisation of signal propagation. Unlike retinal ganglion cell projections, 

cortical neuron outputs are myelinated, a lipid coating which increases membrane resistance 

and inhibits the tracking of signal propagation over large distances. Additionally, cortical 

projections are not predictably arranged, and the axon path may extend beyond the range 

of electrode detection; typically, ~100 µm. Although cortical neurons exhibit more complex 

network architectures, these features provide information regarding somatic and axonal 

activity elicited by multiple neurons recorded simultaneously and could be further developed 

to study network electrophysiology.    

Spikes allocated to an individual neuron were mapped to specific electrodes and the activity 

on surrounding electrodes immediately following spike events were evaluated. This 

highlights the path of axonal projection (Fig. 6.9, A). As with averaged neuron spike 

waveforms generated from seed electrodes signals immediately following identified spike 

times can be averaged to produce a waveform of the axonal signal (Fig. 6.9, B). These 

waveforms exhibit triphasic signals (hyperpolarisation, depolarisation and repolarisation) 

and, considering the distance from the somatic signal, are putatively axonal150,179.   



Chapter 6 

139 

 

  

Figure 6. 9. Signal propagation across the MEA. (A) Electrophysiological image generated by 

Vision software showing the averaged action potential of neuron #35 propagate across 

electrodes. The seed electrode (red circle) detected the greatest amplitude, while surrounding 

electrodes record subsequent, decaying, signal attributed to the neuron through PCA spike 

sorting. (B) The averaged waveforms detected on seed (blue line) and surrounding electrodes 

(red dashed lines). The signal is detectable 134 µm away 0.5 ms after the initial spike event 

on the seed electrode 

 

A total of 57 neurons exhibited (sub-spike sorting threshold) electrical activity on more than 

one electrode in the immediate aftermath of an elicited spike; indicating that axonal signals 

were detected on neighbouring electrodes (as in Fig. 6.9). An electrode was counted as 

detecting electrophysiological activity if an amplitude >25 µV was recorded within 1 ms of a 

somatic spike. Excluding neurons where no additional electrodes were identified, the 

number of electrodes per neuron detecting axonal signals (Fig. 6.10, A) averaged 2.8 

electrodes (±1.9, S.D.), while the time lag between seed electrode spike time and maximum 

delayed axonal signal (Fig. 6.10, B) was 0.21 ms (±0.09 ms, S.D.). Nine neurons were noted as 

having additional electrodes detecting signals but no calculated signal delay (e.g. neuron 5); 

this was due to small amplitude signals being detected near the seed electrode at the time 

of the somatic spike and these neurons were located at a greater distance from seed 

electrodes than other neurons.   

Electrode 265 

Electrode 201 

Electrode 257 

Electrode 202 
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Figure 6. 10. The average amplitude of electrodes at each spike time for an individual neuron 

can indicate the path of signal propagation across the MEA. (A)Non-seed electrodes 

exhibiting an average signal amplitude >25 µV within 1 ms of each neuron’s spike time were 

counted per neuron.  (B) The time lag between the somatic spikes detected at a seed electrode 

and the maximum time of signal detection at additional electrodes.  

 

These findings demonstrate the capabilities of the MEA acquisition system to investigate the 

propagation of neuronal electrophysiological signals. This is achieved by the high spatial 

resolution of electrodes and the spike sorting approach which can detect axonal activity 

associated with a single neuron over several electrodes and trace the direction of signal 

propagation. This setup can therefore advance investigations into effective connectivity and 

network dynamics.  

 

6.3 Discussion: Connectivity 

This section presented several methods with which to quantify connectivity between 

neurons and identified limiting factors in this approach. Correlated activity can be indicated 

through PSTH plots which use comparisons of temporal patterns of activity to highlight 

repeated, functional, connectivity. However, very few neurons in this dataset demonstrated 

correlated activity even based over a relatively long duration of time window (e.g. 500 ms) 

and only a handful of PSTH plots produced coherent, meaningful results. Therefore, the spike 

count of each neuron was factored into analysis to calculate the fraction (%) of each neuron’s 

spikes present within a time window of each other neuron’s spikes (Fig.6.2). To an extent, 

A B 
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this analysis created a dependency on the spike count of each neuron, however, that many 

neurons deviated from this trend suggests that underlying correlated activity was present in 

numerous combinations (Fig. 6.3).   

Temporally correlated activity is a useful measure of functional connectivity but omits the 

proximity of each neuron combination. The MEA presented here possesses sufficiently high 

spatial resolution to define the location of a neuron with an accuracy of ~10 µm. The locations 

of detected neurons were not evenly distributed across the MEA, suggesting that many 

electrodes did not come into proximity with functional neurons. This may be due to 

incomplete penetration of needles past damaged tissues or the  extensive  cellular damage 

observed. Equally, the needles may not have been inserted or the slice detached from the 

needles before sufficient data could be acquired to identify neurons. However, the (2-

dimensional) distances between neurons could be calculated and combined with earlier PSTH 

analyses to evaluate temporal activity patterns in comparison with neuron proximity. This 

method highlighted that neuron combinations with high temporal correlations tended to 

more proximal. Additionally, with a PSTH time window of 100 ms, combinations with less 

than 10% of spikes correlated were found to have no dependency on distance and, in terms 

of effective connectivity, could be defined as noise.  This was increased to 30% for a time 

window of 500 ms.    

 



 

 

7. Histological Evaluation of Acute Slice Damage  

A key design novelty of the MEA presented in this work is the 3-dimensional needles on top 

of which the electrodes are based (see Fig. 3.1). The intention of the design is to penetrate 

beyond tissue damaged by the sectioning procedure and record from healthy, intact, 

neuronal networks in acute brain slices. Neurons alter their electrophysiological behaviour 

in response to acute damage and having communication to surrounding cells severed 

impacts the validity of studying connectivity activity within a local network. To provide 

assurances that the needle electrodes can bypass this layer of damage, and the viability of 

sections is maintained for recording purposes, histological evaluations of acute cortical 

sections were performed.  

Acute brain slices are often avoided in studies of neuron connectivity due to the acute 

damage resulting from the sectioning procedure180. More commonly, cultures of neurons are 

grown on the surfaces of planar MEAs, which can be maintained in a healthy state for 23-28 

days181. The relatively low density of cultured cells also assists in spike sorting and microscopy 

analysis 77,182. However, interactions between neurons are limited in their representation of 

physiological network functions as the architecture of the network is not directed180. 

Advances to overcome this include the use of microfluidic devices combined with MEAs, 

which can pattern cell locations according to their design183.  Defining the network structure 

has been used to study axon guidance during network development184 and degeneration of 

neural projections185, while connectivity studies have achieved large-scale analyses of 

thousands of neurons186 . Alternative approaches have used organotypic slice cultures where 

a brain slice is cultured in a protective environment for several days to allow cells to regain 

stability following the trauma of sectioning187,188. Such slices maintain the global network 

structure and maintain physiological interactions between neurons, however it has been 

reported that the boundaries of brain structures (such as the hippocampus) exhibit reduced 

definition96, suggesting that the network architecture becomes altered at a local level after 

several days in culture. Neural probes inserted in vivo enable representative activity analyses 

of network functions 189,116. These devices are highly useful in studying functional connectivity 

but are limited in the number of recording sites that can be inserted to study connectivity of 

deep brain structures, such as the hippocampus, due to their invasive nature.    

Sectioning of brain tissue enables access to deep structures with maintained representative 

network architecture. Therefore, although physiologically valid neuronal networks of the 
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cortex and hippocampus can be accessed, damage to tissue is inevitable. The device 

presented in this work consists of 512 electrodes spread over an area of 1x2mm at a spatial 

resolution capable of discerning multiple local networks of tens of neurons. The electrodes 

are based at the tips of 90 µm tall silicon needles designed to bypass tissue damaged by 

sectioning. It is necessary to define the extent of damage to tissues caused by the 

experimental setup to ensure that this design goal is achieved. A series of experiments were 

performed using the membrane impermeable fluorescent dye propidium iodide (PI) to assess 

the extent of membrane rupturing. A suitable protocol for the use of (PI) was developed for 

use on free-floating (FF) sections and demonstrated widespread damage to section surfaces. 

This dye is not neuron-specific and indicates damage to glial cells in addition to neurons. 

These PI stained sections were imaged at depth (z-plane) using confocal microscopy and 

fluorescence intensity was measured. Results suggest tissue incubation for 1hour in aCSF 

does not impact cell survival (t-test p = 0.55). However, limitations in effectively imaging 

through thick sections with high cell density raised concerns regarding the impact of light 

scattering on fluorescence measurements. This was partially confirmed by comparable 

experiments using TritonX, a detergent which permeabilises cell membranes, as a positive 

control which demonstrated a decrease in fluorescence signal at depths >50 µm. To 

overcome this limitation, sections were embedded in agar, re-oriented and re-sectioned to 

provide a cross-sectional view of PI stained tissues. These findings confirmed a high 

proportion of cells were PI-positive up to ~100 µm into the tissue from the sectioned edge. 

The poor resolution in these sections, likely caused by the additional processing, prevented 

effective quantification of PI-stained cells, therefore, alternative verification of the extent of 

damage was performed using optical clearing techniques. These methods alter the refractive 

index of tissues to reduce light scattering and enable a greater depth of imaging. The 

techniques SeeDB and ClearT2 indicated a high proportion (>80 %) of cells exhibited PI 

fluorescence up to depths of ~135 µm and ~125 µm respectively.  

The experiments outlined in this chapter demonstrate extensive acute cellular damage 

occurs following tissue preparation using the protocol presented in this work (section 4.1.1). 

This experimental setup would require inserting electrodes up to at least 100 µm beyond the 

edges of sectioned brain tissues for effective recordings of an intact viable neuronal circuit 

as a worst-case scenario. The device was designed to circumvent cellular damage to the 

surfaces of sections; however, previous studies have indicated that patch clamp recordings 

are achievable in superficial layers of brain sections59,190. Patch clamping is a targeted 
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approach to recording, i.e. recordings would not be attempted on damaged/unviable cells, 

while the recording presented here is unbiased towards healthy neurons. Yet, the extensive 

damage observed in this preparation suggests that the sectioning procedure was detrimental 

to the tissue’s health and that improvements, such as a more advanced vibratome191 or 

alternative cutting mediums192–194 (or temperature195), could drastically reduce the 100 µm 

damaged layer observed here and enable high quality recordings of potentially hundreds of 

healthy neurons. This issue is further discussed in section 8.5. 

 

7.1 Summary of Experimental Procedures 

The aim of these experiments was to indicate at what depth cells are impacted by tissue 

preparation and to quantify cell viability at a depth appropriate for needle insertion. Several 

fluorescence staining approaches were performed, the methods for each are outlined in 

separate sections below. These methods were developed progressively to circumvent 

disadvantages which became evident in each setup. Initial evaluations were attempted using 

standard paraffin embedding techniques, however, dehydration procedures altered the 

tissue dimensions and made interpretations of results unreliable. Therefore, subsequent 

histology experiments were performed using FF sections. The use of FF sections is often 

avoided where possible due to poor antibody penetration, greater time required to allow 

diffusion of reagents and imaging difficulties due to slide mounting procedures. Furthermore, 

needles of the MEA are typically fabricated with a height of 90 - 120 µm to bypass damaged 

cells and FF sectioning is typically performed on sections <100 µm thick. Electrophysiological 

recordings are typically performed on 350 µm thick sections, and this section thickness was 

used in histological experiments.  

To identify damaged cells, sections were incubated in PI, a DNA intercalating molecule which 

emits peak fluorescence at 617nm upon binding. As PI is membrane impermeable due to its 

high polarity, it stains cells with compromised membrane integrity and is indicative of cell 

death196,130. PI is not cell-type specific, therefore emitting fluorescence in damaged glial and 

neuronal cells. Investigations were performed to validate the use of PI on 350 µm thick FF 

sections (section 7.1.1). Thick tissues exhibit high fluorescence background interference due 

to cell densities, therefore, the nuclease RNAse was combined with PI to reduce fluorescence 

resulting from PI-RNA binding throughout the cell and limit the fluorescence signal to nuclei. 

Once a suitable protocol had been developed for PI, fluorescence intensity was quantified 

using a confocal microscope and ImageJ software. Image stacks were acquired at depth (z-
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plane) to analyse changes in PI fluorescence as lower signal levels would suggest healthier 

tissue. Imaging across several trials achieved fluorescence signals at depth of 105-155 µm. 

The depth of imaging was likely limited due to light scattering caused by high cellular density 

of the cortex. Scattering could also provide a false-positive result as reduced PI signal may 

not necessarily be caused by fewer damaged cells.  

To circumvent the problem of imaging at depth, sections were embedded in agar gel and re-

orientated to enable access to a cross section of tissue slices (section 7.4). This was effective 

in imaging PI across the section; however, the clarity of imaged cells may have been impacted 

by this processing. To develop the approach, sections were applied to sample microneedles 

– the needle structures had been etched on a silicon substrate, but no further fabrication had 

been completed. Cross sections of the impacted areas could then be imaged for evaluation. 

A protocol was developed to differentiate PI stained cells from cells that came into direct 

contact with microneedles using DiI (1,1’-Dioctadecyl-3,3,3’,3’-

Tetramethylindocarbocyanine Perchlorate), a readily diffusing lipophilic chemical which 

increases fluorescence (emission ~565nm) once bound to membranes. This dye is non-

selective to membranes exposed to the chemical and was applied to microneedle samples 

before being inserted into tissue, which was then embedded in agar and sectioned (section 

7.1.4).  

The density of cells in the cortex and the presence of high-scattering components like 

collagen and lipids creates technical challenges for imaging at depth, while tissue fixation 

with PFA increases scattering in mammalian tissues - imaging depth is typically limited to 

<300 µm using 2-photon microscopy 197,198.  Alternative verification of the extent of PI-

positive cells was attempted using optical clearing techniques SeeDB and ClearT2 (section 

7.1.5). These protocols alter the refractive index of tissues to reduce light scattering, enabling 

greater depth of imaging. Optical clearing agents have a high osmolarity and higher refractive 

index (RI) than extracellular fluid – displacing this fluid increases the extracellular RI to match 

that of cellular components. Several optical clearing methods use organic solvents (BABB / 

3DISCO), but these have been known to quench fluorescence199, while the method CLARITY 

is expensive and complex to perform. The protocols used in this work were chosen due to 

their relative simplicity and previous studies have approved their applicability to clear thick 

tissue sections 200,201,202. The greater cellular resolution obtained through these methods 

allowed for quantification of the proportion of damaged cells.  
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Fluorescence images were acquired using an epifluorescence upright microscope (Nikon 

Eclipse E600) or a Leica SP5 confocal microscope. Image processing was performed using 

ImageJ software and analysed with Matlab.  

 

Chemical Supplier 

Propidium iodide ThermoFisher, P3566 

PFA Sigma, P6148 

RNase ThermoFisher, EN0531 

PBS Sigma, P4417 

Triton X Sigma, X-100 

DiI Thermo Fisher, D3911 

Fructose Sigma, F0127 

Formamide Sigma, 11814320001 

PEG Sigma, 81253 

DAPI Sigma, F6057 

Table 7. 1 Chemical agents used in histological analysis.  

 

7.2 Propidium Iodide Demonstrates Extensive Damage to Tissue Surfaces 

An appropriate method of staining free-floating sections with PI was developed and 

demonstrated extensive damage to surfaces of tissues. Confocal images were then acquired 

in a z plane to gauge PI fluorescence throughout the section. Initial evaluations focussed on 

the impact of incubation in aCSF for 1 hour and to provide an indication of the extent of 

damage prior to the insertion of electrodes. This stage is commonly used in 

electrophysiological recordings to allow time for neurons to stabilise activity following acute 

trauma. Slices are sectioned in a low temperature (~1°C) cutting solution with high sucrose 

content to limit inflammatory mechanisms initiated by sectioning and reduce neuronal 

activity. Incubating in oxygenated aCSF at room temperature allows the return of stable 

neuronal activity, and the dissociation of ruptured cells from the slice. Investigations 

suggested the incubation period had no impact on cell survival, however, subsequent studies 

into the impact of needle insertions on cell survival cast doubt on the reliability of imaging at 

depth due to the density of PI-positive cells and the ability of the stain to effectively penetrate 

the medial part of the section.  
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To accurately reflect the tissue damage that occurs during sectioning, and over the course of 

other procedures prior to recording such as section incubation, studies were designed to 

mimic the recording procedures as closely as possible. Immediately following tissue 

sectioning, slices were placed in an incubation chamber resembling the setup used in 

recording procedures (see Fig. 4.1) containing standard aCSF (see section 4.1.2). For 

electrophysiological recordings, slices are incubated for 1 hour prior to being placed on the 

array, therefore, the impact of this stage was compared between incubated and non-

incubated sections. Sections were made at a thickness of 350 µm as per the recording 

procedure. Staining protocol was as described above (section 7.1.2), and slices were fixed for 

1 hour in PFA then incubated with 5µg/ml PI as earlier results indicated these parameters as 

appropriate.  

 

7.2.1  Validation of Propidium Iodide Staining of Free-Floating Sections 

Following cervical dislocation, rat brains were removed and dissected as described earlier 

(see section 4.1.1). Once glued on the vibratome stage and bathed in cutting solution, coronal 

brain sections were made at a thickness of 350 µm and immediately placed in 4% 

paraformaldehyde (PFA, Sigma P6148) for either 1, 2 or 3 hours at room temperature. 

Sections were then transferred to well plates using a plastic scoop and washed 4 x 10mins in 

PBS (pH 7.4). Next, sections were incubated in PI at either 2 or 5 µg/ml for 1 hour at room 

temperature on a vibrating platform. Selectivity of staining was enhanced via enzymatic 

removal of RNA with the use of ribonuclease A (RNase) included in the PI stain solution at a 

concentration of 0.5µg/ml. Following incubation, a further 4 x 10minute washes in PBS were 

performed before slide mounting. A non-hardening mounting medium was applied 

(Vectashield, H-1000) and a coverslip placed on top. Edges of the slide-coverslip were sealed 

with nail varnish to contain the medium and section. Sections were then imaged with an 

epifluorescence microscope. 
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Stage Step Time (minutes) 

1 Incubation 60 

2 Fixation – 4%PFA 60 / 120 / 180 

3 Wash – PBS 10 (x 4) 

4 Stain – PI (5 or 2µg/ml) + RNase 60 

5 Wash – PBS 10 (x 4) 

6 Slide mounting with medium - 

7 Seal slides with varnish - 

Table 7. 2. Protocol summary for propidium iodide staining of free-floating sections. 

Comparisons were made between the fixation time required (1, 2 or 3 hours) and the 

concentration of PI used (2 or 5 µg/ml) to determine an appropriate PI staining method for 

free-floating sections.   

Surfaces of sectioned tissue displayed nucleic fluorescence following PI staining (Fig. 7.1). The 

dye is not cell-type specific, resulting in a high density of PI-positive cells, however 

background interference fluorescence was minimal. No difference was observed between 

the 2µg/ml and 5µg/ml groups; therefore, the lower concentration was adopted in further 

experiments. Tissue thickness necessitated longer fixation time in PFA to allow permeation 

of the agent, but prolonged immersion in PFA has been reported to cause diffusion of the PI 

signal and increase non-specific, background, fluorescence203. No difference was observed 

between sections fixed for 1 or 2 hours. Fixing for 3 hours in PFA resulted in high background 

fluorescence despite the cellular resolution on the superficial focal plane of sections 

(Appendix 14). Further experiments fixed tissues for 1 hour in 4% PFA. 
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Figure 7. 1. Free-floating sections were effectively stained by PI to identify cells with 

compromised membrane integrity. Lateral surfaces exhibited extensive PI fluorescence and 

minimal background fluorescence despite high PI-positive cell density. Images taken from two 

separate coronal sections of cortical areas each fixed for 1 hour in PFA and stained with 

2µg/ml PI. Scale bars 100 µm.  

 

7.2.2  Incubation in aCSF Demonstrated Limited Impact on Fluorescence Signal 

Following sectioning in an ice-cold sucrose-based cutting solution, acute slices are routinely 

incubated in aCSF for one hour at room temperature to allow neurons time to adjust to 

environmental change and return to stable activity. The impact of incubating tissue for 1 hour 

in aCSF at room temperature was estimated by the PI fluorescence signal of confocal images 

taken at increasing depths through the slice. Incubated slices were compared to slices 

immediately placed in 4% PFA following sectioning.  The 350 µm thick sections were stained 

as described in section 7.1.2 and z-stacks of images were acquired using a confocal 

microscope (Leica SP5) with an appropriate PI filter channel. Images were taken at 5 µm steps 

into the section until no signal was detected and image processing was performed using 

ImageJ software. Fluorescence signal of PI-positive cells was calculated as “mean gray area” 

(averaged binary value, i.e. white to black, across pixels) via ImageJ with measurements 

starting when the average greyscale across the image exceeded a value of 20. The unit of 

mean gray area is arbitrary units (a.u.). 

Peak fluorescence signal was observed superficially in slices that did not undergo incubation: 

incubated sections exhibited an averaged peak of 135.2 a.u. (±11 S.D.) at a depth of 40 µm; 

    100µm     100µm 
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non-incubated section fluorescence peak of 129.1 a.u. (± 9.4 S.D.) occurred 30 µm deep (Fig. 

7.2). Sections left to incubate in solution would experience dissociation of ruptured cells, 

which may account for the shallower fluorescence gradient over a depth of 5-40 µm. 

Averaged fluorescence profiles (Fig. 7.2, B) indicate incubated slices exhibit greater damage 

than non-incubate at a depth of 40-60 µm, however, the criteria for defining the start of 

analysis may result in this difference as the signal profile for incubated sections has shifted 

~10 µm. A greater signal intensity in superficial layers would achieve inclusion criteria, 

therefore the shifted peak is likely caused by an increased signal in superficial layers of non-

incubated slices as ruptured cells have not dissociated as would occur during incubation. 

Averaged conditional results found no significant differences between fluorescence signals 

(p = 0.55, 2-tailed student’s t-test).  

    

Figure 7. 2. Impact of aCSF incubation on PI fluorescence in free-floating tissue sections. (A) 

Non-incubated sections exhibited an elevated signal intensity in superficial layers and peak 

signal occurred at a shallower depth than incubated sections (30 µm compared to 40 µm). (B) 

Averaged fluorescence signal profiles (error bars standard deviation). Incubated sections 

demonstrate an increased PI fluorescence at a depth of 40-60 µm, however, no overall 

significant difference was identified (p = 0.55, student’s t-test). 

 

 

 A  B 
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7.2.3  Baseline Propidium Iodide Fluorescence Signal Determined by TritonX 

Incubation 

Imaging at depth through tissue is limited due to light scattering through cellular components 

with varying refractive indices. Therefore, further experiments were performed to include a 

positive control to quantify PI fluorescence at depth. Triton X (Sigma Aldrich, X-100) is a 

detergent commonly used in histology protocols to permeabilise membranes, permitting 

high molecular weight antibody constructs entry into cells at concentrations >0.15mM204. 

Triton X is non-selective to cells, allowing PI to permeate every cell of the tissue section. After 

PFA fixation and washing stages, 3 sections were immersed in a solution of 1% Triton X in PBS 

for 30minutes at room temperature on a vibrating platform and washed 4x 10minutes in PBS 

before PI staining (table 7.2).   

The PI fluorescence profile of TritonX-treated sections analysed at depth was found to closely 

resemble that of aCSF-incubated sections (Fig. 7.3). Both conditions exhibited an equivalent 

increase in signal, with TritonX-treated sections exhibiting a peak fluorescence of 124 a.u. 

(±10.6 S.D.) at 35 µm depth and incubated slices peaking at 135 a.u. (±11S.D.) at 40 µm. At 

greater depths (>60 µm), TritonX sections exhibited greater fluorescence intensities, 

indicating more cells have been permeabilised by the detergent. This suggests that damage 

at section surfaces are equivalent, but that less cellular damage occurs in towards the centre 

of the section in aCSF incubated sections. However, this disparity could be the result of 

different cell densities in imaged regions and the impact of TritonX on the molecular 

interactions of PI is unknown. 

 

Stage Step Time (minutes) 

1 Incubation in aCSF 60 

2 Fixation – 4% PFA 60 

3 Wash – PBS 10 (x 4) 

4 (optional) Permeabilization – Triton X 30 

5 (optional) Wash – PBS 10 (x 4) 

6 Stain – PI + RNase 60 

7 Wash – PBS 10 (x 4) 

Table 7. 3. Summary propidium Iodide staining protocol including aCSF incubation and Triton 

X incubation stages.  
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Figure 7. 3. Comparison of TritonX-treated and aCSF-incubated slices. (A) Fluorescence 

profiles of sections imaged at depth (5 µm z-plane increments) treated with Triton X (red lines, 

n = 3) or incubated in aCSF only (black lines, n = 2). (B) Averaged fluorescence profiles for each 

condition remain equivalent up to depths of ~60 µm. TritonX-treated slices demonstrate 

greater PI fluorescence intensities at depths >60 µm. 

 

7.3 Assessing the Impact of Microneedle Insertion.  

To assess the impact of inserting microneedles into tissue, this process was simulated using 

sample silicon wafers with representative needles etched on the surface (Image 7.1). 

Following the incubation period in aCSF, tissues were placed onto representative MEA 

sample needles ~90 µm high (5x5 tapered tip and 30 µm diameter base) and a resistance seal 

(see diagram 4.1) applied on top to ensure tissues contact with microneedles as per the 

recording procedure. Initially, sections were immersed in PFA while remaining in contact with 

the needles and stained with propidium iodide. However, this caused a large volume of tissue 

to be ruptured upon slice removal (Image 7.1, B), therefore, tissues (n = 3) were briefly 

applied to needles before being detached.  

Mean gray values of images for needle-applied, triton-X treated and aCSF incubated 

conditions were compared across the z-plane to evaluate PI fluorescence at depth (Fig. 7.4, 

B). Peak fluorescence values for all conditions were found at a depth of 30-40 µm. The 

gradient of needle-applied and TritonX-treated sections at 5-30 µm were closely aligned and 

exhibited fluorescence values ~14a.u. higher than incubated sections. The increased disparity 

between these groups at more medial regions could be the result of different cell densities 

 A  B 
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in imaged regions and the impact of TritonX on the molecular interactions of PI is unknown. 

No difference was observed between averaged group values (p = 0.28, 2-tailed student’s t-

test).   

 

  

Image 7. 1. Surplus silicon-based needles produced during trials of etching fabrication 

techniques were used to mimic the placement of sections on needles. (A) The silicon wafer 

was glued to a plastic support before sections were applied. Sections were removed from the 

silicon wafer before fixation as fixing in PFA, whilst on top of the needles, caused a large 

amount of tissue to remain (B). Scale bar 2mm.  

   

Figure 7. 4. Visualisation of silicon needle punctures in tissue sections. (A) Puncture marks of 

needles are visible on the surfaces of sections stained with PI (red). (B) Greyscale fluorescence 

 A  B 

2mm 

 B 

    100µm 

 A 

2mm 



Chapter 7 

154 

 

values of successive images taken in a z-plane (n=6). Sections incubated in TritonX detergent 

displayed a greater signal at depths >60 µm. Units A.U. = arbitrary units.  

 

Image stacks were acquired along the z-plane and allowed a 3-dimensional image to be 

generated to visualise needle puncture marks in sections (Appendix 15). A layer of high PI 

fluorescence signal is observed superficially, which extends 50-60 µm into the tissue. The 

sample needles used in these experiments had dimensions representative of those used in 

the final MEA device, but with a reduced height of between 60-90 µm depending on sample 

used. These findings suggest needles with a height >70 µm would extend beyond the area of 

high PI fluorescence corresponding to damaged cell membranes. However, imaging depth is 

constrained by the scattering and a reduction in measured signal may not correspond to a 

decrease in fluorescence. Therefore, an alternative method was used to verify these findings.  

 

7.4 Cross-section Imaging of Agar-embedded Tissues  

Imaging of the surfaces of coronal sections provided verification of the setup and of staining 

procedures, yet the depth of needle penetration, and damage to surrounding cells, could not 

be easily resolved. Triton-X incubated sections exhibited greater PI fluorescence in medial 

portions of sections than tissue treated in a manner representative of the recording 

procedure. However, confirming the condition of tissue at depths corresponding to the 

height of electrode needles (~90 µm) was prevented due to light scattering in high cell density 

tissue. 

 A method was developed to obtain cross-sectional images of slices by embedding tissue in 

low boiling point 1% agar gel (Sigma, A0169) following the staining procedure. Agar was 

initially poured into a petri dish and allowed to set before a slice was placed in liquid agar 

and left to set for 24hours at 4°C. A cube of agar including the sectioned tissue was removed, 

rotated 90°, and sectioned again (see Diagram 7.1). Re-sectioning could be reliably 

performed by the vibratome at a thickness of 50 µm. However, tissue rupture occurred at an 

increasing rate at lower thicknesses. Tissue ruptures were particularly consistent during 

separation of tissue from the surrounding agar. Secondary sections were placed in a large 

petri dish of PBS before being separated from agar and placed on slides using histology 

mounting medium, fluoroshield, containing DAPI (Sigma, F6057).   
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Diagram 7. 1.Secondary sectioning of agar-embedded sections. Following propidium iodide 

staining, sections were embedded in low boiling point agar gel, rotated 90degrees and 

sectioned in the new orientation. The new orientation allowed visualisation of a cross-section 

of the areas where needles had been inserted on the surface of the coronal section. The red, 

hatched, area indicates the proposed extent of tissue damage resulting from the initial 

sectioning and the grey gaps suggest the aimed penetration depth of the needles – electrodes 

are located at the tips of the needles and should extend into healthier tissue (pink). Diagram 

drawn using SketchUp software.   

 

Sections had been embedded in agar and rotated perpendicular to the original place of 

sectioning to provide a cross-section ~50 µm thick (z-plane) and spanning the 350 µm (x-y 

plane) section. Acquired confocal images confirmed a layer of cell-specific PI fluorescence 

signal extending ~150 µm (x-plane) into the medial part of the tissue from the initially 

sectioned edge (Fig. 7.5). This layer was not uniform to both surface edges (Fig. 7.6), 

indicating that the sectioning procedure used in the recording with MEA can impact the 

quality of recordings, yet the unequal depth of PI fluorescence was not consistently 

observed- either a single sectioned side of tissue exhibited a ~150 µm layer of PI fluorescence 

or both section planes did.  Analyses therefore focussed on the maximally damage edge of 

sectioning to provide a worst-case scenario. It was believed that the top of the slice (edge 

sectioned first) incurred damage repeatedly, but this was not confirmed. This discrepancy 

was likely due to the vibratome blade vibrational magnitude, which has been shown to 

impact slice quality at vibrations >0.5 µm205, or the blade angle which could not be changed 

on the vibratome.  

Healthy Tissue 
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Indentations of needle penetration were visualised in embedded tissues, but accurate 

quantification of neuronal damage was limited by non-specific fluorescence and poor cellular 

definition, which may have been caused by signal diffusion during the secondary sectioning.  

Agar-embedded tissues are cooled overnight at 4°C and immersed in PBS on the vibratome 

stage during re-sectioning which may have caused diffusion of the PI signal.  

 

Figure 7. 5. Stitched images of PI-positive cells taken in a cross-sectional view (greyscale). 

Coronal sections were stained, rotated 90° (dorsal to lateral), embedded in agar and re-

sectioned to provide 50 µm thick cross-sections. Edges of tissues where original sectioning 

occurred to provide coronal sections exhibit more distinct cellular PI fluorescence suggesting 

greater cellular damage. The area of specific PI-positive cells extends to ~150 µm (total 

section thickness 350 µm). Background interference increases in the centre of the section, 

indicating cells are less permeable to PI, however, section thickness could inhibit staining 

efficacy.  

 

Tissues that had been placed on surplus silicon sample needles (image 7.1) were also 

embedded and cross-sectioned. A high intensity PI fluorescence signal was detected in areas 

proximal to needle puncture marks and decreased ~150 µm from the surface (Fig. 7.6). Cross-

sectioning highlighted an unequal intensity of fluorescence signal on each surface (i.e. left 

and right of cross sectioned tissue). This did not correspond to the site of needle penetration 

and was likely caused by the sectioning procedure. The unreliable non-uniformity of PI signal 

distribution was puzzling and may relate to how delicately the slices were handled or possibly 

the horizontal alignment and vertical vibration of the blade caused variable movements if 

the analogue settings of the vibratome were inprecise206. 

100µm 
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Figure 7. 6. Cross-sectioned tissues imaged following sample needle penetration. (A) A layer 

of high-intensity PI fluorescence extends ~100 µm from the section surface medially and the 

signal intensity decreases at depths >100 µm. (B) Profiles of inserted needles can be 

visualised in cross sectional images (dotted box) and circumvents light scattering issues 

associated with imaging through tissue. Red: PI, blue: DAPI nucleic stain.  

 

7.5 Neuron Tracing with DiI Lipophilic Dye 

Visualising the inserted electrode and the surrounding tissue could assist to distinguish the 

impact of inserting high-density needle electrode from the sectioning procedure, therefore, 

a non-selective cell tracer dye, DiI, was used to highlight cells which had contacted needles. 

This dye was selected due to its reported speed and ease of application207. DiI has been 

previously used to outline the insertion paths of neural probes208,209, however not to 

distinguish membrane contact at a scale of single-cells and not reportedly applied to studies 

using inserted devices of this size (i.e. 90 µm needle electrodes). More commonly, DiI is 

applied to cultures210 for single cell resolution. In the context of acute slices it has been used 

to trace the insertion of gene transfer beads during viral vector gene transfer211 and has been 

combined with optical clearing to visualise vasculature212. 

Staining with DiI was performed on fixed sections which were then embedded in agar. 

Crystals of DiI were dissolved in ethanol at 2mg/ml, applied to microneedles and left to dry 

in the absence of light. Sections fixed in PFA were then placed on top of the microneedles 

and pressure was applied with a resistance seal (see diagram 4.1) for one hour at room 

 A  B 

    100µm     100µm 
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temperature. A minimal volume of PBS was continually pipetted onto the tissue to prevent 

tissue desiccation.  Sections were then carefully removed from the sample needles, inverted, 

and imaged with a confocal microscope. 

Microneedles were coated in DiI stain prior to tissue placement and left to dry (see section 

7.1.4). Microneedle puncture marks could not be clearly identified, and intense fluorescence 

signal aggregated in sporadic areas (Fig. 7.7). This was likely the result of tissue rupture during 

removal of tissue or incomplete dissolution of DiI crystals in ethanol solvent. Despite a failure 

to image the puncture area, DiI provides clear visualisation of neurons and their processes 

and is even capable of resolving dendritic spines (Fig. 7.8). The application of DiI on 

microneedles was also attempted via secondary sectioning in agar, but no conclusive results 

were achieved. 

 

  

Figure 7. 7. Staining of brain sections with cell tracer dye DiI resulted in areas of aggregated 

dye and did not indicate locations of microneedle insertion.  

    100µm     100µm 
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Figure 7. 8. DiI staining of brain tissue provided high resolution of individual neurons and their 

processes.  

7.6 Optical clearing 

Cross sections of agar-embedded tissues enabled imaging of distortions caused by dummy 

MEA needle insertion, but the processing involved may have impacted the quality of staining 

and had a low success rate in identifying areas needles had been applied to. An alternative 

means of verification was explored via optical clearing of brain tissues. The comparative ease 

and costing of the SeeDB method197  made this protocol an ideal candidate, and an additional 

technique, ClearT2 optical clearing201, was also performed. 

SeeDB utilises high concentrations of dissolved fructose and tissues are immersed in 

progressively higher concentration solutions over several hours (table 7.3). Previous 

literature focussed on increasing the transparency of whole organs, compared to sections 

used in this study, therefore the minimal suggested times of immersion in solutions were 

used. The SeeDB protocol was performed after PI staining and washing steps.   

Imaging of sections whilst immersed in SeeDB solution requires optimised objective lenses 

for immersion microscopy, which was not available. Initial attempts were made to remove 

excess clearing solution to enhance cell definition. Improvements were achieved by gluing 

sections to a coverslip and placing sections in PBS which could then be imaged using a water 

immersion lens. However, the solution displaced the fructose-based SeeDB solution and 

imaging had to be rapidly performed. Due to working steps, slices in well plates were 

maintained at 4°C in darkness overnight if required.  

 

 

    100µm     100µm 
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Solution Time (hours) 

20% w/v 4 to 12 

40% w/v 4 to 12 

60% w/v 4 to 8 

80% w/v 8 to 12 

100% w/v 8 to 12 

115% w/v 10 to 14 

  

Table 7. 4. SeeDB optical clearing protocol for use on acute brain sections. Solutions in w/v – 

weight per volume. 

 

While easy to perform and relatively cheap, the SeeDB method requires several hours. 

ClearT2 involves the immersion of tissues in poly-ethylene glycol (PEG), a hydrophilic 

polymer, and formamide (table 7.4). The ClearT2 protocol was performed after PI staining 

and washing steps. Imaging of ClearT2 sections was performed in the same manner as SeeDB-

cleared sections.  

 

Solution Time (minutes) 

25% formamide / 10% PEG 10 

50% formamide / 20% PEG 5 

50% formamide / 20% PEG 30 to 60 

Table 7. 5. ClearT2 optical clearing protocol for use on acute brain sections.  

Optical clearing techniques were employed to verify earlier results and with the aim of 

visualising sample MEA needles while still in contact with tissue sections. Increased 

transparency at depth enhanced cellular resolution and enabled analysis via imageJ software 

to distinguish DAPI and PI stained cells. The proportion of damaged cells surrounding the 

MEA needles could then be quantified and compared to the medial portions of tissue.  

The two methods employed, SeeDB and ClearT2, were successfully performed to increase 

the transparency of tissue sections and the proportion of damaged cells could then be 

quantified and compared throughout the tissue. However, the use of a water immersion lens 

prevented the aim of visualising microneedles within tissue which was not achieved. The 

verification of these techniques suggested earlier assertions arising from secondary cross-

sectioning studies were valid. Propidium iodide and DAPI staining can be successfully 
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combined with both SeeDB and ClearT2 optical clearing techniques and provided higher 

cellular resolution compared to secondary sectioning method. These studies suggest ClearT2 

provides more reliable PI signal profiles than SeeDB due to reduced variation between 

stained sections imaged at depth. Additionally, ClearT2 tissues analysed for the percentage 

of PI-stained cells at depth exhibited a more coherent result and indicates that the 

combination of dyes with this method can be more readily interpreted.  

 

7.6.1 SeeDB Optical Clearing 

The SeeDB protocol was performed as described above (table 7.3) and was effectively 

combined with a double-staining of DAPI and PI (Fig. 7.9). Enhanced cellular resolution was 

observed compared to cross-sectioned images, enabling quantification of both DAPI and PI 

positive cells at depth (Fig. 7.11). Images of DAPI and PI positive cells were acquired up to a 

depth of 190 µm with the surface of the section defined as the first image with a DAPI mean 

gray value exceeding 20 (a.u.).  Mean gray values at depth demonstrated a lower peak PI 

fluorescence intensity compared to non- cleared sections (Fig 7.9A; see Fig. 7.1 for 

comparison), likely a result of reduced background fluorescence.  Additionally, peak 

fluorescence intensities were observed at greater depths than previous results indicated (50-

65 µm compared to 25-45 µm). Optical clearing techniques can cause expansion of the tissue 

volume altering the dimensions of the layer of high-PI fluorescence, however, SeeDB has 

been shown to result in tissue shrinkage by up to ~25%200 and, although the entirety of 

sections could not be imaged, the profile of PI fluorescence at depth is consistent with earlier 

results.     

Cell counts of each image were measured for both DAPI and PI positive cells and compared 

(Fig. 7.11B) and DAPI images consistently displayed a higher cell count than depth-equivalent 

PI images. The peaks of PI cell counts occurred at greater depths (65-80 µm) than the mean 

gray peaks, suggesting more cells were identified with a lower fluorescence intensity at this 

depth. This could be a result of increased cell density limiting the fluorescence signal due to 

light scattering, or that a lower concentration of PI has permeated the tissue to this depth. 

These results were averaged and presented in figure 7.11C, highlighting an increase in cell 

count at 135 µm which may be related to a change in anatomical structure location in the 

section. The proportion of averaged PI cells was then calculated (Fig.7.11, D) and indicated 

higher cell viability at depths >135 µm, however, the reduced cell count and fluorescence 

intensity at this depth makes this assertation difficult to confirm.   
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Figure 7. 9. SeeDB optically cleared sections. (A) PI staining (red) can be achieved in SeeDB-

cleared sections. Background fluorescence was reduced in cleared sections compared to non-

cleared, improving cellular resolution. (B) DAPI nucleic staining (blue) was included in the 

protocol to provide a measure of the proportion of cells exhibiting PI fluorescence.  (C) Merged 

image of PI and DAPI images. Image acquired 85 µm medially into cleared section of cortex, 

scale bar 100 µm.     

 

Background PI fluorescence was reduced in cleared sections, improving the reliability of cell 

identification analysis via ImageJ which was performed using the particle count 

measurement tool. Briefly, background was subtracted by rolling ball (surrounding pixels of 

every pixel are averaged to identify a threshold for signal, Fig. 7.10, A), an appropriate 

threshold between 0 and 255 (8-bit images) was set and visually verified for each image (Fig. 

7.10, B). Particles of a size >10 pixels, and circularity 0.1 to 1, were then included for analysis 

(Fig. 7.10, C).   

 

 

 

 

 A 

 B 

 C 

    100µm 



Chapter 7 

163 

 

 

 

 

 

Figure 7. 10. Particle analysis of SeeDB optically cleared sections. (A) Background PI 

fluorescence is subtracted and (B) a pixel threshold was manually evaluated for each image. 

(C) The particle count is then measured for each image.  
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Figure 7. 11. Analysis of SeeDB-cleared sections.  (A) Mean gray values of PI images 

demonstrate a fluorescence profile consistent with non-cleared sections and signal was 

detected up to a depth of 190 µm. Staining intensity peaks 50-65 µm into sections at 73-88 

(a.u.). (B) Counts of PI and DAPI positive cells for each image acquired at depth. Most images 

exhibited a greater DAPI cell count than PI as would be expected. (C) Averaged cell counts of 

PI and DAPI images. Peak cell counts occur at a depth of 65-70 µm, aligning with mean grey 

values, however, two later peaks (135 µm and 160 µm) are not observed in mean gray 

measurements. Error bars standard deviation. (D) Percentage of averaged DAPI stained cells 

which are also PI-positive based on average values. Although the numbers of identified cells 

decrease > 100 µm deep, the proportion of PI stained cells rapidly decreases at depths greater 

than 135 µm, suggesting a greater number of viable cells at this depth.  

 A  B 
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7.6.2 ClearT2 Optical Clearing 

Optical clearing by the ClearT2 method utilises graded solution concentrations of formamide 

and PEG as described in table 7.5. Sections were observed to have become more transparent 

following clearing and expanded in size ~2mm laterally (image 7.2), consistent with previous 

studies201.  

 

  

Image 7. 2. Optical clearing of brain tissue with the ClearT2 method. (A) Paraformaldehyde-

fixated tissue, (B) same tissue following clearing by ClearT2 protocol (see table 7.5 for details). 

Sections expanded ~2mm laterally and exhibited increased transparency.   

 

 

 

 

 

 

 

 A  B 

1 cm 



Chapter 7 

166 

 

 

  

Figure 7. 12. ClearT2 optically cleared sections. (A & B) PI (red) and DAPI (blue) stained cells. 

(C) Merged images taken at a depth of 130 µm into tissue. 

 

Mean fluorescence intensity of PI was measured for each image and particle count calculated 

using imageJ software (as described in Fig. 7.10). Fluorescence signal of PI-stained cells was 

detected up to a depth of 225 µm with peak signal occurring 40-60 µm into tissue (Fig. 7.13, 

A), consistent with SeeDB results. Sections demonstrated a reliable pattern of numbers of 

identified cells at depth (Fig. 7.13, B) and cell numbers peaked at a depth of 65 - 90 µm. Peak 

cell counts were comparable to SeeDB results; however, more cells were identified at 

superficial depths in ClearT2-cleared sections. For example, average PI count at 5 µm (Fig. 

7.11, C) was 634 (±159, S.D.), but 490 (±103, S.D.) for SeeDB sections. The percentage of DAPI-

stained cells exhibiting PI fluorescence remained >80% up to depths of ~125 µm (Fig. 7.13, 

D), similar to earlier results.  

 A 

 B 

 C 
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Figure 7. 13.Analysis of ClearT2 optically cleared sections. (A) ClearT2 method enabled 

detection of PI fluorescence signal up to a depth of 225 µm with a peak average of 83.5 (a.u.) 

at ~50 µm depth. (B) Particle count analysis of PI and DAPI positive cells. Peak cell count 

occurred between 65 - 90 µm deep into tissue. (C) Averaged cell counts of PI and DAPI images. 

ClearT2-cleared sections demonstrated low variation between analysed image stacks (error 

bars S.D.). (D) The percentage of DAPI cells exhibiting PI fluorescence based on average 

values. A high proportion of cells exhibit PI fluorescence up to a depth of ~125 µm before 

rapidly decreasing. 

 

 

 

 

 A  B 

 C  D 



Chapter 7 

168 

 

7.7 Discussion: Histological Evaluation 

The studies presented in this chapter suggest the procedures used to prepare acute cortical 

slices for electrophysiological recordings result in extensive tissue damage up to 100 µm from 

sectioned surfaces. However, the viability of cells beyond this depth have not been reliably 

confirmed using PI staining protocols.  

An appropriate method for staining and imaging thick sections of brain tissue with PI was 

developed. This stain is typically used in flow cytometry assessments or to indicate specific 

stages of mitosis and is not commonly combined with FF tissue sections. Without further 

tissue processing, PI fluorescence signal could be detected via confocal microscopy up to an 

average depth of 140 µm. The impact of section incubation for 1hour in aCSF, as per the 

electrophysiological protocol, was then assessed and found no significant differences (p = 

0.55, t-test). Light scattering caused by high cell density limited the validity of these results, 

however, this effect would be less pronounced at the section surfaces, suggesting that the 

initial 50-60 µm accurately reflect the extent of cellular damage (Fig. 7.2). Incubated sections 

exhibited a shallower gradient of fluorescence signal, but larger peak values at greater depths 

than non-incubated sections. Dissociation of ruptured cells during incubation would reduce 

the density of cells at surfaces and cells would be less compacted. If the fluorescence signal 

in this low cell density area still achieved inclusion criteria, this expanded area of damaged 

cells may be interpreted as a thicker section. The greater peak values may be caused by 

additional cell damage at the surface which occurred during the hour of incubation. However, 

this impact appears marginal. Although no overall difference was observed between groups, 

conclusions regarding PI-positive cells at depth could not be asserted.    

Sections were placed on sample microneedles to determine any additional impact on PI-

fluorescence and were compared to a positive control group utilising TritonX detergent (Fig. 

7.3). Disappointingly, TritonX-treated sections displayed a shallower positive gradient at 

surfaces and a lower peak fluorescence value than sections placed on needles; the opposite 

of what was expected. However, a greater signal was observed across lower depths in 

TritonX-treated sections, suggesting that the number of PI-positive cells decreases in the 

medial portions of sections. This discrepancy is noticeable at depths greater than 65 µm. 

Technical difficulties caused by light scattering prompted an alternative approach which was 

to embed sections in agar and re-section at a new angle. These images of 50 µm thick cross-

sections indicated a layer high fluorescence intensity PI-positive cells 100-150 µm thick. 

Although re-sectioning provided reasonable visualisation of PI fluorescence across sections, 
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poor cellular resolution prevented quantification of the proportion of damaged cells and PI 

may not have effectively diffused through the entire section. This could have been resolved 

by including TritonX positive control in agar re-sectioning experiments to determine if a 

similar staining pattern was observed.  Interestingly, a discrepancy in PI fluorescence on each 

sectioned edge was evident in several agar embedded sections (Fig. 7.6). This was not 

correlated to the insertion of needles and was not consistently observed. The quality of the 

vibratome blade and angle of sectioning may be responsible206. However, handling of slices 

during transportation to and from the vibratome could additionally impact this outcome. The 

use of a small paintbrush to direct slices was limited due to potential damage reported from 

their use213, but it is highly possible that the protocol lacked proper control measures in this 

regard. Attempts were made to ensure sections did not rotate to examine each surface 

individually, however, this was not achieved. The fluorescence discrepancies on edges may 

explain greater imaging depth in a single section observed following SeeDB clearing (Fig. 7.11, 

A).  

Optical clearing techniques SeeDB and ClearT2 were effectively used to reduce the light 

scattering in thick brain sections, detecting PI fluorescence signal up to depths of 135 µm and 

125 µm, respectively. However, these techniques have been shown to provide fluorescent 

imaging of depths up to 2000 µm. In this case, the depth of imaging was limited by the 

availability of an optimised magnification objective. Therefore, imaging had to be performed 

with immersion objectives in PBS which would begin to reverse the clearing of tissue as 

clearing agents began to diffuse into the solution.  

Previous studies have indicated SeeDB protocol causes limited alterations to tissue 

dimensions199, and no noticeable expansion or shrinkage was observed in this work. ClearT2 

clearing has been compared favourably  to SeeDB in terms of maintaining consistent tissue 

dimensions200 and has been reported to have no impact on expansion of individual cell size. 

Studies have reported that ClearT2 does not cause tissue expansion in brain sections >800 

µm thick 201 or  only cause mild expansion in thinner sections199. Lateral tissue expansion of 

~2mm was observed following ClearT2 optical clearing in this work (Fig. 7.2), however the 

cause of this ~20% lateral expansion is unclear as the protocol was adapted from work 

recommending use on sections 200-1000 µm thick.  

The resolution of the acquired images (examples in Fig. 7.9 & 7.12) were greatly enhanced 

compared to re-sectioned tissues and enabled accurate quantification of PI-positive cells 

which could be compared to the cell count of non-selective DAPI-positive cells. The ClearT2 
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method has been reported to have poor clearing capability when compared to SeeDB214, 

however in this work a more reliable profile of cell count at depth was observed in ClearT2-

cleared sections (Fig. 7.11,C compared to Fig. 7.13, C). Both optical clearing techniques 

suggest that a significant reduction in the number of PI-positive cells occurs at a depth of 

~125-135 µm into sections. This result would be impacted if PI fluorescence signal at depth 

decreases at a greater rate than DAPI and a greater imaging depth was expected in these 

studies, yet these results are consistent with the fluorescence profile in earlier results. An 

additional future investigation could include the optical clearing technique RTF (Rapid 

clearing method based on triethanolamine and formamide) which is based on the ClearT2 

method and has been reported to enhance the clearing capabilities in a variety of tissue 

preparations215.  

These findings across a range of tissue processing methods are difficult to directly compare 

due to differences in staining efficacy, cell resolution, imaging depth and tissue expansion, 

however, the results of staining in the superficial regions of sectioned tissue edges remain 

the most valid as they are impacted less by light scattering and more effectively permeated 

by fluorescent dyes. Therefore, these results indicate extensive PI staining of cells, 

corresponding to acutely damaged cell membranes, up to a depth of between 80-100 µm 

into sections in this setup. For the experimental setup described here, electrodes located at 

tips of MEA microneedles should be inserted to this depth at minimum to record from viable 

neuronal circuits. 

Previously described procedures have achieved slices with viable cells at the section surface. 

This suggests that the sectioning procedure described in this work damaged section surfaces 

to a greater extent than in comparable studies and this could have been minimised with 

greater investment in vibratome technology. Patch clamping at the surface of brain sections 

has been reliably demonstrated59,190,216,217, suggesting that the extent of cellular damage 

observed here can be overcome with alternative preparations and procedures. Further 

experiments should focus on improving the viability of acute slices and validating the health 

of the surfaces of sections prior to adjustments to the device’s design. The damage observed 

here may be the result of poor vibratome or blade quality – ceramic blades have 

demonstrated enhanced section surface viability193 – although alternative solution 

preparations could validate this approach. Alternative cutting and incubation mediums such 

as NMDG193,218 could be utilised, while slicing at higher temperatures have been shown to 

yield improved recording quality. Despite the extensive damage observed in sections 



Chapter 7 

171 

 

presented here, the MEA was capable of resolving the activity of 78 neurons which suggests 

great potential for the study of hundreds of neurons given further experimental setup 

validation.   

 

 



 

 

8. Conclusions & Discussion 

This work describes an approach to record highly spatially and temporally defined neuronal 

electrophysiological activity in acute rat brain slices using a novel MEA. Electrodes were 

effectively platinised to exhibit appropriate SNR values with which to record neurons while 

the acquisition system and custom Java software reliably classified neurons. However, the 

data presented in this work is limited to 78 neurons identified in a single recording and 

comparisons between recording datasets were not completed. Numerous recording 

attempts were made, however, electrical artifacts and insufficient electrophysiological data 

inhibited the identification of neurons.  

The population of neurons elicited 71% of their activity within the first two hours of a 4-hour 

recording, indicating a physiological change which reduced activity after two hours. This is 

likely attributable to the dissection and sectioning procedure, which is discussed in greater 

detail in sections below. Therefore, analysis was limited to the initial 2 hours of recording. 

Yet, identified neurons were well defined and consequently analysed for discriminatory 

features that could suggest the presence of discrete subpopulations. Averaged extracellular 

action potentials were compared by the time and amplitude of different phases of the signal. 

While findings did not confirm previous reports of distinctions based on trough widths and 

peak to trough ratios, the end slopes of the population (representing the amplitude change 

from hyperpolarisation peak to return to RMP) demonstrated the greatest variance and 

discrete clusters were identified. Temporal characteristics were difficult to classify due to 

large ISI values and therefore the data required further processing by being segregated into 

high and low frequency ISIs with a threshold set at each neuron’s median ISI value. This 

method identified a discrete population of neurons at high frequency values which exhibited 

significantly lower variance and smaller mean ISI values; this subpopulation was not 

identifiable at lower frequency ISIs. 

High frequency behaviour known as bursting has a variable definition and the sporadic spike 

rate of the population led to the use of a bursting identification method. The MISI method 

which dynamically adapts a threshold based on the mean of ISI values less than the mean of 

the spike train ISI (section 5.3.1). This method suggests that on average 49.6% of each 

neuron’s spikes occur during periods of bursting with all but one neuron (#72) exhibiting 

bursting for more than 30% of their activity. For comparison, an alternative method of burst 

identification was developed which demonstrated a similar average value of bursting spikes 
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(48.9%), but a greater variation from this value, suggesting this approach may be a more 

powerful discriminator of irregular bursting behaviour. 

To determine the viability of acute slices following the tissue preparation procedure, cells 

were stained with propidium iodide: a membrane impermeable dye which fluoresces upon 

binding with DNA. This dye will therefore only emit fluorescence if a cell’s membrane has 

been ruptured which would indicate acute trauma. To circumvent the problem of light 

scattering while imaging at depth, alternative approaches were developed which included 

embedding sections in agar and rotating them to provide a cross sectional image and the 

optical clearing techniques ClearT2 and SeeDB. Collectively, these results indicate a layer of 

~100 µm of severely damaged cells exists at the plane of sectioning. The depth of this layer 

is similar enough to the height of the electrode needles (90 µm) to cause concern regarding 

the efficacy of the MEA design, however, the microfabrication technique utilised in the 

fabrication of this device permits the production of needles with heights greater than 90 µm 

and further experimentation would indicate if greater depth yields a higher rate of neuron 

identification. Importantly, future steps should be taken to minimise the damage to brain 

slice tissue (further discussed in section 8.5). 

Several technical challenges arose during the progression of this project and a major 

impediment of the project was ensuring that the fragile electronics of the acquisition system 

and silicon wafer MEA were sealed off from electrolyte solutions being perfused over tissue. 

On two occasions, liquid passed between the MEA and the neuroboard allowing salt to 

accumulate around wire bonds. This resulted in a failure of the recording system and reduced 

the possible number of recording attempts. It remains unclear if this occurred over time 

(potentially reflected in electrical noise which impeded neuron identification) or in a single 

drastic incident. These events limited the acquisition of data for this project, however, there 

is great potential for large datasets to be acquired through this approach.  

8.1 Discussion: Electrical Characterisations 

The MEA demonstrated electrical characteristics suitable for the extracellular recording of 

multiple neurons simultaneously: tungsten electrodes could be effectively platinised to 

reduce impedances to ~200kΩ at 1  kHz (Fig. 3.5); this resulted in a system electrical RMS 

noise level of 10-12 µV; immersed in saline and with tissue placed on the electrodes, the 

device exhibited an average RMS noise of 15.4  µV (Fig. 3.8). This is an appropriate noise level 

with which to record extracellular neuronal activity11. Additionally, the silicon substrate of 

the MEA exhibited coupling to the channels, but only minimal coupling between channels 
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(Fig. 3.6), highlighting a reliable fabrication process. All electrodes demonstrated decreased 

impedance values following platinisation, however, the impact of various protocols was 

indistinguishable as no electrode exhibited values lower than 200kΩ and the decrease did 

not correspond with increased current and time (Fig. 3.5, B). The surface area of exposed 

tungsten was not uniform, as can be seen from the variation in tungsten electrode 

impedance values. As granular platinum-black is deposited at these sites the surface area 

increases and impedance is reduced. The surface area to volume ratio increases with 

irregular shapes, yet once the electrode surface is covered in platinum this ratio appears to 

be only be marginally increased. Therefore, increasing the current and time of platinisation 

in the electrodes presented here has minimal impact on impedance values and the electrode 

can be effectively platinised by applying 100nA for 20s. 

8.2 Discussion: Neuron Identification  

Future experiments aim to compare recordings taken from identical brain regions; therefore, 

it is important to keep spike sorting parameters as similar as possible and necessitates 

consistent levels of electrical noise. System noise analysis based on 15 seconds of data 

collected at three intervals of 5 seconds at the very start of the experiment were used to 

quantify the noise of electrodes inserted into tissue and to determine spike sorting 

parameters. The mean RMS noise of all electrodes inserted into tissue was 15.4 µV ±0.8(S.D.) 

and, taking account of the noise of each electrode and average spike amplitude detected on 

relevant electrode, the SNR ranged from 8:15 (average 10.4) which is consistent with earlier 

reports using a similar system15. Variation across electrodes is likely the result of slight 

inequalities in the etching process, which exposes the tungsten electrodes, which in turn 

alters the surface area on which platinum is deposited. Sources of noise have been minimised 

through earlier developments of the acquisition system and how the neuroboard is insulated, 

while platinisation of electrodes was limited to ~200 kΩ and would not be further reduced 

without applying an unnecessary increase in current. Alternative sources of noise could 

derive from contact with the metallic perfusion tubes while the platinum wire circulating the 

recording chamber acts as an electrical grounding and improved insulation of this component 

could marginally improve the SNR. Electrical lighting consistently interfered with recordings 

due to the photoelectric effect on the silicon MEA wafer, consequently recordings were 

performed in the absence of light.  

A key aspect of the data identified in chapter 4 is the dramatic decrease in spike rate observed 

after 2 hours of recording. Of all recorded spikes from across the population, 71% were 
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identified during the initial 2 hours with a peak in activity ~1hour from the start of recording. 

This could be interpreted as the length of time required for excited aCSF to perfuse into the 

tissue, remove incubation solution, and increase activity of neurons, however at a minimum 

perfusion rate of 2ml/min this assumes that 120mls is required to flush out the chamber with 

a volume less than ~3ml of solution when filled with tissue, mesh and perfusion pipes. 

Potentially the weight of the resistance seal acted slowly, and needles were only fully 

inserted after a prolonged period. The resistance of solution passing through the mesh seal 

prevented direct application of pressure and may have taken time before tissue was not 

physically disturbed by perfusion. It is more likely that cells had been damaged during the 

tissue preparation procedure and the decrease in activity is the result of necrotic cells no 

longer able to maintain ionic homeostatic regulation and unable to initiate action potentials. 

This is further discussed in section 8.5. Alternatively, following the peak of activity, electrodes 

may have moved to more superficial tissue layers if the buoyancy of tissue resulted in it being 

raised within the solution. This would diminish the cell: electrode interface and spikes would 

no longer be associated with the same neuron. However, this movement would also 

attenuate spike amplitudes which is not observed (Fig. 4.10) and was not observed in the 

manual evaluation spike sorted clusters. 

8.3 Discussion: Spike Features and Temporal Characteristics  

The aim of chapter 5 was to demonstrate analytical approaches to distinguish neuronal 

subtypes based on electrophysiological features alone. Temporal and amplitude features of 

averaged waveforms of each neuron were analysed with the aim of identifying inhibitory 

cells, as had been successfully performed in previous studies12,143,147,148, and inter-spike 

interval values were interrogated and compared between neurons to highlight similar 

patterns of behaviour149,134. Of the waveform features analysed, the end slopes of the 

population (representing the amplitude change from hyperpolarisation peak to return to 

RMP) demonstrated the greatest variance and discrete clusters were identified (Fig. 5.8). 

Three distinct clusters were identified and the least specific (poorly clustered) distribution 

has been associated with inhibitory neurons, having steeper end slope gradients12. However, 

the remaining neurons exhibited a discrete distribution centred around a gradient of -2; 

particularly steep in comparison to previous reports in the range of 0.1 to -0.212. Previous 

reports have not suggested this method capable of categorising cells with greater resolution 

than excitatory or inhibitory neurons, yet the distribution presented here consists of a 

spectrum of properties. The specific cluster around -2 may represent excitatory neurons and 
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more shallow end slopes could be recorded from neuronal areas proximal to the axon hillock, 

where hyperpolarisation is attenuated164, however these assertions are not supported by 

other waveform characteristics which have been more repeatedly used as a successful 

discriminator. It is worth noting that studies have utilised features that clearly demonstrate 

clear discrimination and the only consistent indicator of inhibitory neurons is a narrow trough 

width which is not observed in this work. Yet trough width was not found to be a reliable 

indicator of inhibitory neurons when cell type was verified by immunohistology techniques16 

suggesting waveform features may only be useful for identifying neuronal subtypes in certain 

cell preparations.  

Temporal analysis of spike trains aimed to differentiate regularity of neuronal activity which 

could underlie functional roles within a network141. This analysis was impacted by the low 

spike rate of most neurons, spread out over 2 hours of recording. Bimodal distributions of ISI 

values can be used to indicate complex patterns of activity149, yet few neurons exhibited this 

distribution (Fig. 5.13). Therefore, spike trains were segregated into high and low frequency 

spiking by analysing the variance of ISI values above and below the median ISI value for each 

neuron. At higher frequencies, a discrete population was identified with low variance and 

relatively low mean ISI values (Fig. 5.15), suggesting a group of neurons – when spiking at 

high frequencies – elicit a regular high rate of spikes. While this distinction is an interesting 

identifier the processing involved to highlight these, relative, differences subtracts from the 

method’s usefulness and it is unclear if this behaviour correlates to relevant functional roles.  

The coefficient of variation was calculated for each neuron as an additional approach to 

assessing the regularity of spiking activity. This approach divides the spike interval variation 

by the mean ISI value to quantify the width of the ISI distribution, therefore a CV value >1 

suggests high variability in activity as the deviation exceeds the mean. Again, the low spike 

rate impacted this approach and indicated all neurons exhibited highly irregular spike trains 

(Fig. 5.16). The segregation of spike trains above and below the median ISI value was 

repeated and CV value re-calculated; this analysis suggested that more neurons exhibited a 

more variable spike train at lower frequencies, consistent with ISI distribution analysis. The 

irregularity observed in low frequency activity may be due to the use of the median value 

and the range of ISI values as such large ISIs occupy a large temporal space, i.e. high 

frequencies (low-value ISIs) could exist between 6-250 ms, but low frequencies could range 

from 251-20000 ms. Further investigation could employ a more dynamic threshold to identify 

an appropriate ISI value for each neuron or by eliminating statistically anomalous ISI values.    
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Finally, temporal analysis was performed to identify spontaneous high frequency activity 

termed bursting. The difference to high frequency ISI activity is the spontaneity and duration 

of these periods, however definitions of a burst are variable. Attempted here is the MISI 

method which identifies sequences of two or more ISI values lower than an auto-adaptive 

threshold based on the mean of ISI values. This method suggested at least 30% (average 

49.6%) of each neuron’s activity is relatively spontaneous high frequency activity (Fig. 5.20) 

which, while consistent with the irregularity evaluated through CV analysis, does not match 

with the low spike rate observed in the population. It is therefore likely that this method is 

highly susceptible to changes in spike frequency. As an alternative, a method was developed 

to identify repeated patterns of 3 or more sequential ISI values. The average value of the 

number of identified bursts was found to precede regularly repeated ISI values (Fig. 5.22) and 

was therefore used as a threshold for burst identification. This analysis provided a more 

variable assessment of each neuron’s bursting activity and appears more adaptable to 

irregular spike trains than the MISI method. However, a key difference is the analysis of 3 or 

more ISI spikes opposed to MISI utilising only 2 and altering this minimum value may enhance 

the MISI applicability.  

The inapplicability of these parameters to this dataset may arise from the health of the 

recorded tissue. The parameters were developed based on neuronal culture16,77 and in vivo12 

recordings where the proportion of cell viability is expected to be greater than acute slices. 

As discussed above, improving slice viability and validating the preparation could align 

recordings with this device more closely with previous studies or, at a minimum, provide a 

larger dataset with which to reinforce these findings. 

8.4 Discussion: Connectivity Analysis of Recorded Neurons 

Presented in chapter 6 are approaches to analyse the functional and effective connectivity 

of neurons utilising the high spatial and temporal resolution of the 512-needle MEA. These 

developed from the generation of peri-stimulus time histograms (Fig. 6.1), which highlight 

correlated activity between neurons, and limiting activity of interest to neurons with a high 

proportion of their spikes plotted in these histograms (Fig. 6.2). This method is dependent 

on the number of spikes elicited by a neuron; however, this relationship was not linear (Fig. 

6.3) and suggested a degree of connectivity could be discerned in the data. Using the 

triangulated locations of neurons across the array (Fig. 6.4) the distance between neurons 

could be combined with PSTH data to indicate neurons both proximal to each other and 
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demonstrating a high proportion of correlated activity (Fig. 6.5). Consequently, the direction 

of connectivity, locations of cells and weight of correlation were presented as directed graphs 

(Fig. 6.7 & 6.8). The resolution qualities of the array also allowed the visualisation of the 

immediate direction of electrophysiological signals for 57 identified neurons (Fig. 6.9). These 

approaches to connectivity analysis can be used to identify spatially clustered cells which may 

be functionally similar within a network. Increased spike numbers per cell and a greater 

population of neurons would greatly enhance the validation of these methods. Additionally, 

further analysis of the immediate direction of signal propagation and comparisons with the 

directed graph approach could help to differentiate functional and effective connectivity in 

acute slice recordings.  

8.5 Discussion: Histological Evaluation of Acute Slice Damage 

The integrity of cell membranes in brain slices were histologically evaluated using the 

fluorescent dye propidium iodide. Results indicated that the tissue preparation presented 

here cause significant trauma to sections, evidenced by high PI fluorescence signal 

observable up to approximately 100 µm from sectioned edges. This represents substantial 

damage compared to contemporary studies216,217 and is potentially due to the quality of the 

dissection procedure, vibratome quality or the handling and incubation of sections.  

This conclusion suggests that the needle heights of the MEA used in this work (90 µm), if fully 

inserted, were close to the boundary of the region of acute cellular damage and may account 

for decreased spike frequency following the initial two hours as these cells experienced 

necrosis. However, it is notable that PI is not commonly applied to free-floating sections and 

is more often used in low cell density cultures203,219 or flow cytometry to determine stages of 

mitosis220,221, therefore further validation of this technique is required to ensure these 

findings are appropriate for conclusions based on free-floating sections.   

To circumvent the challenges of developing a protocol for the use of PI on FF sections, more 

common paraffin embedding techniques were attempted. Previous studies reported 

prolonged PFA fixation causes diffusion of the PI signal and results presented here indicated 

a decrease in signal specificity by 3hours fixation (see section 7.2.1). Yet, paraffin dehydration 

protocols require several hours of formalin fixation prior to desiccation222, and limiting this 

fixation time likely impacted further embedding stages which resulted in drastic tissue 

shrinkage.   

Minimising acute cellular trauma is a critical factor to improve neuron yield and maintain 

high quality signal acquisition during this recording approach. Therefore, identifying and 
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limiting potential sources of damage must be addressed before developing this method 

further. Of particular concern is the sacrifice and dissection procedure employed in these 

studies. Here, cervical dislocation was performed followed by decapitation. Investigations 

focussing on improving the health of acute brain slices repeatedly state that the preferred 

method of sacrifice is anaesthetisation by isoflurane prior to decapitation180,223–227 which may 

confer neuroprotective benefits in young animals225. It is believed that compression of the 

spine during cervical dislocation applies pressure on the cerebral spinal fluid and results in 

the rupture of blood vessels in the brain. This method was performed due to Home Office 

legal requirements which limited the exploration of alternative animal procedures.  

The unpredictable and unequal distribution of PI on either edge of sectioning (Fig. 7.6) may 

have resulted from handling during tissue transfer, yet vertical blade vibration and speed of 

sectioning would also impact the severity of damage191. Sections need to be taken rapidly to 

be placed in incubation aCSF and maintain viability, but sectioning too fast can result in 

pressure on the tissue which is particularly evident if the blade does not achieve sufficient 

purchase in the tissue (i.e. not vibrating adequately). Vibrational movement is required to 

match the lateral speed of the blade; too slow, and the blade will move forward before the 

tissue is properly cut, too fast and the blade can cause friction against tissue already cut. 

Additionally, the angle of the blade could not be altered in the vibratome used here which 

could explain a difference in PI fluorescence between edges as the surface area and 

sharpness of the blade would differ between the top and bottom edges. However, this was 

not confirmed and would be evidenced by more consistent observation of unequal lateral 

fluorescence in agar-embedded cross sections. 

During the stages of tissue preparation, tissues were maintained in a series of solutions 

designed to minimise metabolism while keeping the ionic environment relatively consistent 

for neurons to survive. Sucrose-based cutting solutions are commonly used in acute slice 

preparations, however, they are not required for quality slices as it has been reported that 

decreased calcium and increased magnesium concentrations alone can yield superior 

results213. The reasoning for using a sucrose-rich solution is to provide an equimolar 

replacement for NaCl: following an insult, inflammatory responses cause neurons to swell 

and become more permeable; this causes a surge in sodium entry into the cell which is 

followed by an increased intake in water. These mechanisms can adversely impact 

homeostatic regulations and result in cell death. Developments in slicing techniques have 

identified alternative candidates for cutting solutions such as N-Methyl-D-glucamine which 
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reportedly improves slice viability taken from mature adult animals194 and has gained 

popularity in acute brain slice preparations193. As with sucrose cutting solutions, acute slice 

preparations commonly cool solutions to approximately freezing point. The low temperature 

slows metabolisms therefore extending the viability of the slice for recording time by slowing 

the kinetics of apoptotic cascades as well as loss of homeostatic ion current control. 

However, membrane transporters have been reported to not respond uniformly to 

temperature changes205, suggesting placing the brain into cold solution immediately 

following dissection may impact ionic homeostasis and therefore slice viability.  

Quantification by PI suggested no improved viability of slices resulting from the incubation 

of slices in aCSF for 1hour prior to recording (section 7.2.2). This stage of the experiment is 

to provide a period of cellular recovery as debris from damaged/dead cells can be removed 

and dissociate from healthier portions. This provides the advantage of reducing the thickness 

of the layer of damaged cells the needles are required to bypass. That no effect was observed 

in the setup presented here could indicate that damage was so severe any cellular 

dissociation during this period was minimal and undetectable due to the extensive depth of 

acute trauma. Further recording attempts could explore the state of tissue during this period 

of incubation to validate the viability of tissue prior to placing on the MEA.  

Optical clearing techniques were employed with aim of improving the quantification of PI 

fluorescence at depth in thick sections. Both methods successfully increased imaging depth 

in 350 µm thick sections, but to different extents. SeeDB, a fructose-based clearing agent, 

identified a peak of PI fluorescence at a depth of 50-65 µm (Fig. 7.11, A) while the greatest 

number of identified PI positive cells occurred at 65-80 µm (Fig. 11, B). While the cell 

identification method could doubtless be improved, this could suggest the intensity of PI 

signal in superficial layers reduces cellular resolution or that PI has not effectively diffused 

through the tissue. Further studies using prolonged PI incubation or 200 µm thick slices could 

assist to confirm this. The proportion of PI positive cells in SeeDB-cleared sections was not 

readily coherent in superficial layers due to a peak between 0-50 µm (Fig. 7.11). It is possible 

that this resulted from an anatomical structure where cell density varies, or that loose, 

partially dissociate, cells formed a separate layer during incubation. The SeeDB method is 

easy to perform and did not cause alterations to tissue dimensions but takes several days 

and may not consistently affect regions of varying cell density.  

In contrast to SeeDB, the CearT2 method resulted in ~2 mm of lateral tissue expansion (Fig. 

7.2) despite previous studies with ClearT2 on sections 200-1000 µm thick reporting limited 
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alterations to slice dimensions201. This expansion was observed to similar extents in each 

tissue processed by this method. A possible source of this discrepancy could be handling of 

tissues, as this method replaces lipids in fibrous structures with PEG and may reduce tissue 

integrity causing in the tissue to stretch when transported under strain.  

The ClearT2 method generated higher resolution images compared to the SeeDB method, 

despite contrary reports214, and cell identification produced a more coherent profile (Fig. 

7.13, B, C &D) which indicated that ~90% of cells are PI-positive up to a depth of 

approximately 125 µm. This is more aligned with results in cross sectional images. The 

superior resolution may be caused by an imaging challenge which also impeded the depth of 

image acquisition. The confocal microscope did not possess an objective optimised for the RI 

of these solvent solutions and imaging was performed using a water immersion lens with 

cleared tissue immersed in PBS. Therefore, imaging was performed quickly as these 

techniques are readily reversible and the solvents can diffuse into PBS. This was a major 

limiting factor in imaging optically-cleared tissues. It is possible that the objective used was 

better suited to ClearT2 and that SeeDB is more readily reversible in PBS. However, these 

results are relatively consistent with earlier assertions and improved procedures would likely 

enable a quantifiable PI profile of an entire acute slice. 

Experiments utilising DiI were aimed at achieving visualisation of needle penetration depth 

to ensure needles were fully inserted. Previous successful applications of this approach have 

inserted a single silicon probe millimetres into the brain209,208, while in this work needles 90 

µm tall with 60 µm spacing were applied. The small electrode dimensions likely contributed 

to the aggregation of dye and poor discrimination of needle insertion sites. DiI is more 

commonly used to stain vasculature212 which, if additionally stained, would decrease 

specificity of cellular imaging in 350 µm thick free-floating slices due to the number of vessels. 

Aggregation of the dye limited the specificity of the stain and it has been reported that DiI 

diffusion into cell membranes is improved at 37°C228, however, the aim of the experiment 

was not to improve neuron identification but the sites of needle penetration, therefore 

limiting DiI diffusion would be preferable. In addition to attempting the stain at lower 

concentrations, further use of DiI should also be applied to lightly fixed (1.5% PFA) sections 

as this has been reported to improve resolution of cells229,230, while sonification of the DiI 

solution has been reported to improve the solubility in ethanol207. 
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8.6 Summary & Future Directions 

The novel 512 needle MEA presented in this work can define neurons and their signals with 

a high degree of precision and generates high spatial and temporal resolution data with 

which to interrogate the functional and effective connectivity in acute brain slices. Further 

validation of the recording process is required to improve the number of neurons identified 

and the quality of data. Future experiments should initially focus on improving the viability 

of slices to provide the usefulness of prolonged periods of continuous recording. This would 

also likely increase the yield of neurons identified and refine locations of functional units 

within a network.  

The approaches to discriminate neuronal subtypes based on signal waveforms presented 

here are based on prior investigations, yet the parameters which were utilised remain 

contentious and few of these are universally accepted as reliable. This work does, however, 

highlight the variability of the repolarisation phase between neurons and further 

experiments with this system could determine the classification power of this criterion.  

Long periods of quiescence severely impacted the temporal analysis of the dataset. These 

low activity periods may reflect physiological activity; however, this assertion requires 

further verification with larger neuron numbers obtained from several recordings and 

comparisons with in vivo recordings from the same region. If the behaviour is validated, the 

MEA could be used to investigate brain structures difficult to approach with current in vivo 

technologies. Segregating spike train ISI values artificially created two, more manageable, 

datasets and a distinct group of neurons exhibited regular high rates of activity at higher 

frequencies, but not lower frequencies, suggesting complex patterns of spiking behaviour. 

This approach may be more applicable to distorted or abnormal spike trains, yet further 

interrogation of these neurons could provide valuable insights into their functional roles.  

The MBISI method was developed by the author and was prompted by inconsistencies 

observed following the application of the MISI method. Although useful, the MISI method 

appears to be highly influenced by the irregularity of the spike trains presented here and may 

be more suitable to future recordings. The MBISI method essentially identifies the ISI value 

in each spike train which immediately precedes ISI values which are regularly elicited, i.e. 

regular activity. In this sense, MBISI is a measure of irregularity of groups of 3 or more 

sequential spikes. Whether this method is applicable to other recorded spike trains remains 

to be seen. 
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Connectivity was evaluated using the combined temporal and spatial characteristics of the 

system which were designed with this purpose in mind. Temporal precision provided highly 

defined PSTH plots, but these were hampered by the low spike count. Adjustments were 

made to account for the percentage of spikes occurring within a given time window to 

highlight relevant correlated activity and, in parallel, the locations of neurons were defined 

with high spatial accuracy. These properties were effectively combined and highlighted 

several units with high activity correlation which were relatively proximal, suggesting the 

identification of a network pathway. This analysis also exhibited the direction of signal 

propagation and further experiments with a higher neuron yield could provide greater detail 

of these network. To ensure a valid interpretation, in future perhaps a more defined structure 

with known pathways, such as the hippocampus, should be used to verify the applicability of 

this approach.  

Finally, the viability of acute slices following the tissue preparation procedure were evaluated 

to confirm the suitability of the silicon needle heights. The methods employed produced 

variable results; however, it seems reasonable to suggest an area approximately 100 µm thick 

from slice edges was severely damaged by the protocol used in this work, suggesting the 

needle tips were inserted into the boundary between this damaged area and healthier tissue. 

It seems probable that this was a major contributor to the disappointingly low numbers of 

identified neurons. While electrode-tipped silicon needles have been fabricated at greater 

heights, future work should aim to minimise tissue damage as a priority as even at healthy 

depths such severe trauma would likely impact the electrophysiology of neurons.   
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Appendices 
 

Appendix 1. Photolithographic process 

The MEa presented in this work is made using a novel combination of photolithographic 

techniques 11 and the process is outlined in the steps below: 

(i) DRIE etch silicon. The first step in the fabrication process is to etch arrays of 61 

hexagonally close packed, high in to a 4-inch diameter, 350 μm thick silicon wafer. On 

aspect ratio (11:1), tapered holes to a depth of ∼300 μm to this wafer, ten devices are 

fitted. Following a combined pre-bake at 150 ◦C (to remove moisture) and an HMDS 

(hexamethyldisilazane) prime (to improve adhesion of photoresist to the wafer), SPR220-7 

photoresist is spun to a thickness of 7 μm, and baked on a hotplate at 90 ◦C for 200 s. 

Standard UV contact photolithography (using developer MF-26A) is used to pattern the 

photoresist in to arrays of holes, each having a 25 μm diameter. This patterned mask is 

hardened by oven baking for 1 h at 120 ◦C. The holes are etched using a STS ICP (inductively 

coupled plasma) deep reactive ion etcher, which switches between CH4 passivation and SF6 

etch steps to achieve the required etch profile (Bosch process). This profile defines the 

shape of the needle. 

(ii) Thermal oxidation and metallization. A2μm thick silicon dioxide layer is thermally 

grown at 1050 ◦Ctoform a high-quality, uniform sidewall insulation. The tapered point at 

the base of the etched hole will eventually be the conducting tip of the needle making it 

important to have a conformal metal coating. To this end, 400 nm of LPCVD(low pressure 

chemical vapour deposition) tungsten (W) is deposited. Prior to the tungsten deposition, a 

titanium layer (50 nm) was sputtered to promote tungsten adhesion to the thermal silicon 

dioxide . 

(iii) Readout lithography. The tungsten layer is patterned using a pre-bake and HMDS 

prime followed by spinning Shipley 3612 photoresist to a thickness of 1.6 μm. The 

photoresist is oven baked at 90 ◦C for 30 min before UV exposure and oven baked at 120 ◦C 

for 60 min after developing. Photoresist spun over the perforated surface of the silicon 

wafer is always spun relatively thin. It is baked in an oven rather than a hotplate since lower 

gradient temperature ramping avoids resist bubbling over the etched holes. This resist layer 

is used as standard for all of the remaining photolithography steps in this process. An SF6 

reactive-ion etch removes the exposed tungsten, electrically isolating each electrode. 

(iv) Polysilicon deposition. For mechanical strength, 4 μmof LPCVD polysilicon is deposited 

and patterned to fill, or at least partially fill, the holes. A 1.6 μm photoresist mask and an 

SF6 etch with 10% oxygen are used respectively to mask and etch the polysilicon. This 

exposes the tungsten readout for electrical contact in the next step. These first steps have 

essentially embedded arrays of conducting needles in to the wafer. 



Appendices 

207 

 

(v) Aluminium (Al) deposition and patterning. A short argon etch removes a few 

nanometres of surface material preparing the wafer surface for a 1 μm layer of sputter 

deposited aluminium, which makes electrical contact with the exposed tungsten. Sputtered 

aluminium is a well- established, reliable contact for wire bonding (which is used to connect 

the array to the readout electronics at a later stage). The aluminium is patterned using a 1.6 

μm photoresist mask and a Al-11 chemical wet etch (pre- mixed phosphoric, acetic and 

nitric acid inwater) heated to 40 ◦C. The combination of tungsten and aluminium form an 

electrical connection between the tungsten tip of each needle (the electrode) and an 

aluminium bond pad. 

 (vi) Silicon nitride deposition and patterning. The aluminium/ tungsten tracks are 

protected with a 500 nm layer of low temperature (350 ◦C)PECVD (plasma enhanced 

chemical vapour deposition) silicon nitride. The following steps are not shown in figure 1. 

To expose the aluminium bond pads, the silicon nitride is selectively etched (RIE) using SF6 

and 10% oxygen. The wafer is then diced to release individual devices. 

(vii) Silicon and tip oxide etch. Two etch masks, one on each side of the device, are 

required before etching hundreds of microns of bulk silicon to expose the array of needles. 

In this process, the bulk silicon will ultimately be etched strength around the needles). To 

retain the mechanical to leave ∼100 μm thickness (this provides mechanical strength of the 

device, a frame around the edge of the device is protected with a mask of silicon dioxide. 

On the backside (with holes and readout) of each device, Protek B3, an etch mask resistive 

to wet chemical base etches is spin-coated. A 25% concentration TMAH (tetra methyl 

ammonium hydroxide in water) solution, heated to 95 ◦C, is used to remove enough of the 

bulk silicon to expose the oxide-coated needles. The silicon etch rate is ∼0.9 μmmin−1 and 

so thin (325–350 μm) silicon wafers are used to avoid long etch times. The slow etch rate is 

beneficial for accurately defining the length of the needle and, in particular, the conductive 

tip. At some point during the silicon etching, the arrays of oxide- coated needles will begin 

to appear. When the desired length of tip (length of needle needed to be conducting) is 

exposed from the silicon, the device is removed from the TMAH and rinsed thoroughly in 

water. Using dilute (5%) buffered hydrofluoric acid, as much as 75% of the tip oxide 

thickness is etched. It is critical that a thin layer of oxide remains at the tip and no tungsten 

is exposed. 

(viii) Final silicon and tip oxide etch. The silicon etch is continued to expose the required 

length of the needlelectrode, leaving a few tens of microns of silicon as the support 

substrate. A 2% concentration of hydrofluoric acid (which is selective to tungsten) is used to 

remove the remaining oxide from the tip, exposing a small tungsten electrode. The 

protective Protek is removed in acetone followed by a low-power oxygen plasma clean. The 

silicon chip is glued to a support piece of silicon or glass (for strength) and is wire-bonded to 

a PCB making it compatible with the existing readout system. 
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Appendix 2. Measuring MEA impedances 

Impedances before and after platinisation were measured prior to integrating the MEA into 
the neuroboard 

 1) Before inverting the MEA, the chamber was filled with saline or platinisation solution, 
for either impedance measurements or platinisation procedures.  

2) To ensure electrodes remained in contact with the solution following inversion a 3D-
printed lid was secured to the top of the recording chamber 

3)  The MEA was then inverted and secured in a custom-made plastic holder which 

prevented the substrate from moving. The holder was designed to precisely fit the chamber 

to prevent any movement (not shown).  

4) Electrode readouts could then be accessed with and impedance probes applied to 

characterise electrical properties of the array (see Image. 8.1) 

 

 

Figure 8. 1 Schematic of how the MEA is arranged to measure impedances. The recording 
chamber is filled with saline solution and sealed with a 3D-printed lid. The MEA is then 
inverted and secured in a custom-made holder. Recording probes are then applied to 
exposed read out 

4)   MEA channel 

      readout (topside) 

Chamber 

3)   Custom-made 

       MEA holder 

2)   3D-printed  

        chamber lid 
1) Electrolyte 

solution 

Electrodes 
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Image 8. 1. Photograph of a probe applied to electrode readout on the MEA substrate in 
order to measure the electrical characterisations of electrodes  

 

Appendix 3. Block Diagram of a single PLAT-64 channel 

 

The data acquisition system was originally developed to image the electrophysiological 

activity or retinal ganglion cells122, however, their design is applicable to studies of cortical 

neurons. 

 

Figure 8. 2. Schematic taken from Dabrowski et al.(2003) 122 describing the design of electrode readouts to PLAT-
64 ASIC. In this case, a stimulation option is available which was not included in the work presented here.   
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Appendix 4. Percentage Impedance Decrease following Platinisation 

 

 

Figure 8. 3 Briefly electroplating with a current of 100nA for 20 seconds sufficiently reduced impedances to 
appropriate values of 150-300 kΩ and was found to consistently reduce impedances by ~50%. 
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Appendix 5. Outlier Spike Amplitudes 

 

 

 

Figure 8. 4. Neurons #4 (A) and #29 (B) exhibited large differences in average spike amplitude deviation between 
periods 0-2hours and 2-4hours. In both cases this was the the result of single outlier spikes skewing the 
deviation. 

 

 

 

 

 

 

A 
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Appendix 6. Calculation of Neuron Average RMP 

 

 

 

Figure 8. 5. (A) Resting membrane potential was defined by the 1.5 ms of averaged waveform amplitudes from 2 
ms to 0.5 ms prior to the averaged minimum amplitude (depolarisation peak). Four sigma below the averaged 
1.5 ms of amplitudes (30 samples) was chosen as an appropriate RMP (orange line) to account for variable 
gradients observed in some neuron wavefor ms(B). 

 

 

 

 

A 
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Appendix 7. Five Neurons Possessed Long Average Peak Widths 

 

Figure 8. 6. Five neurons possessed long average peak widths (C, cluster 3), but were not convincingly separated 
from the bulk of the population. 

 

Appendix 8. High Incidence of Large Value ISIs  

 

Figure 8. 7. Large inter-spike intervals are prevalent in the dataset. A histogram of ISI values from neuron #23 
highlights that this property is commonly observed to exceed 10seconds (N.B. x-axis is x104). 
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Appendix 9.  Neurons Demonstrating Bursting Behaviour Determined by the MISI Method 

of Burst Detection 

 

Figure 8. 8. Histogram of neurons exhibiting bursting behaviour defined as two subsequent spikes with an ISI 
value less than the neuron ML value.  

 

Appendix 10. Neuron ML Values 

 

Figure 8. 9. Eight neurons exhibited an ML value less than 1second and a greater percentage of spikes identified 
as bursting correlated with a lower ML value 
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 Appendix 11. Attempt at Bakkum burst detection 

 

Figure 8. 10. Adapted method from 133 
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Appendix 12. Waveform Afterdepolarisation  

 

 

 

Figure 8. 11. Three neurons exhibited significant afterdepolarisation (A) and this feature has been associated 
with pyramidal neurons. However, these neurons did not share any other temporal or waveform characteristics 
and were not segregated as a discrete population 
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Appendix 13. Connectivity Analysis 

 

 

Figure 8. 12. No change in trend was observed when analysis was based on the number of combinations with a 
neuron’s spike as the stimulus (columns in Fig. 6.2). 
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Appendix 14. Prolonged PFA Fixation Increased PI Background Fluorescence 

 

Figure 8. 13. Fixing brain sections for 3 hours in PFA resulted in high background fluorescence despite the high 
cellular resolution on the superficial focal plane of sections.  

Appendix 15. 3-Dimensional Imaging of Tissue Punctures 

 

Figure 8. 14 Visualisation of silicon needle punctures in tissue sections. Confocal microscopy 
enabled images to be acquired in the z plane and a 3-dimensional image generated. Total 
depth imaged was 205um but fluorescence signal was only present for 135um. Indentations 
at the top surface of the generated image indicate needle penetration into tissue. 


