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Abstract 
 

The propagation of natural light in turbid media (including seawater) is determined 

by both the conditions of illumination and the inherent optical properties of the 

medium. The illumination conditions include solar angle, degree of cloud cover and 

sea state, while the relevant inherent optical properties are the spectral coefficients of 

absorption and scattering and the scattering phase function. These inherent optical 

properties are functions of seawater composition, including the concentrations of 

phytoplankton, suspended minerals and dissolved organic substances. Given 

knowledge of the concentrations of these materials and their specific optical cross-

sections, the reflectance of a water body can be calculated using radiative transfer 

theory. However the inverse process, the determination of constituent concentrations 

from reflectance, is not directly soluble. This problem of reflectance inversion is at 

the heart of remote sensing of oceanic processes using satellite borne radiometers, 

and its solution is of great significance in modern oceanography, planetary science 

and climate change modelling. The hypothesis underlying this thesis is that the 

inversion of remote sensing signals can be achieved by a process of spectral 

matching, in which the water-leaving radiance spectra observed from space are 

compared with a database of spectra calculated using radiance transfer theory for 

water columns of known composition. This thesis has sought to implement a 

comprehensive look-up table (LUT) that can be expediently interrogated using a 

simple inversion algorithm that can be easily adapted to new datasets. 
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Chapter 1 

 
Introduction 

 
 
 

The propagation of natural light in turbid media (including seawater) is determined by 

both the conditions of illumination and the inherent optical properties of the medium.  

The illumination conditions include the solar angle, the level of cloud cover and the sea 

state, while the relevant inherent optical properties (IOPs) are the spectral coefficients of 

absorption and scattering and the scattering phase function (β).  These IOPs are 

functions of seawater composition, including the concentrations of phytoplankton, 

suspended minerals and dissolved organic substances. Radiative transfer theory can be 

used to calculate the reflectance of a water body when the concentrations of these 

materials and their specific optical cross-sections are known. However, the inverse 

problem i.e. the determination of constituent concentrations from a reflectance signal is 

not directly soluble. This problem of reflectance inversion using satellite borne 

radiometers is at the heart of remote sensing of oceanic processes and consequently, its 

solution is of great significance in modern oceanography, planetary science and climate 

change modeling.  This chapter discusses the motivation for this thesis as well as the 

obstacles that arise in the direct and inverse problems of radiative transfer theory. It also 

presents an overview of some modern approaches to ocean colour inversion. These 

techniques are, however, conceptually complex and often require a degree of algorithm 

training that makes their application to new data sets time consuming. Consequently, 

there are potential advantages in disregarding more mathematically complex algorithms 

in favour of a more simple approach. 

 
 
 



2 
 

1.1 Motivation for this work 

 
 

Optical remote sensing using satellite-borne radiometers has become an important tool 

for studying biological and physical processes in ocean basins (Dickey et al, 2004; Platt 

et al., 2008), and is recognised as being potentially of great value for monitoring the 

changing status of coastal waters and shelf seas (Petersen et al., 2008). Unfortunately, 

remote sensing algorithms derived using global data sets are not reliable when applied to 

waters subject to terrestrial influence (Robinson 2006). These waters are often classified 

as case 2 waters and contain optically significant concentrations of inorganic particles 

and coloured dissolved matter as well as phytoplankton cells. Conversely, case 1 waters 

describe regions where the optical properties are highly correlated with chlorophyll 

concentrations; this classification is often used to describe the clearer waters of the open 

ocean (Morel and Prieur, 1977).  

 

The unreliability of remote sensing algorithms in case 2 waters was a problem identified 

by Morel and Prieur (1977), who distinguished between waters where optical variability 

is correlated with phytoplankton population density and those where this correlation is 

disrupted by the presence of a wider range of optically significant materials (OSMs). 

Shelf seas generally fall into the latter category. In the simplest analysis, OSMs fall into 

three classes: phytoplankton cells (measured as chlorophyll concentration, CHL), 

suspended mineral particles (measured as the dry weight of mineral suspended solids per 

unit filtered volume, MSS) and dissolved coloured organic material (measured as the 

absorption coefficient of filtered samples at 440 nm, CDOM).  

 

Deriving reliable and accurate OSM concentrations from remote sensing reflectance (Rrs) 

signals, in the visible waveband, is a central problem in marine remote sensing and the 

principal focus of this thesis. The underlying hypothesis of the research presented here 

was that the inversion of remote sensing signals could be achieved by a process of 

spectral matching. This would involve the comparison of water-leaving radiance spectra 
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with a look-up table (LUT) of spectra that are calculated using radiative transfer theory 

for water columns of known composition (Mobely et al., 2002). Specific optical cross 

sections that were representative of the Western UK shelf sea had been determined 

previously, but there were still a number of challenging problems to be solved. The 

problems addressed will include: 

 

1) The need for an effective computational scheme for LUT searching. 

2) Alternatives to radiative transfer calculations, which are time consuming when 

many runs have to be carried out, for LUT production. 

3) Assessment of the degree to which ambiguities exist in the spectral matching 

process. 

4) Robustness of a spectral matching approach to remote sensing inversion using 

modelled data to which varying degrees of statistical noise have been added. 

5) The implications of applying LUT-based inversion to different geographical 

regions where water constituents may have significantly different optical 

properties. 

6) Application of the spectral matching inversion algorithm to in situ data and the 

quality of the constituent matches retrieved. 

 

The remainder of this chapter introduces the concept of forward and inverse radiative 

transfer modelling, where the complexity of the inverse problem is explored. The 

techniques that are currently employed to overcome the difficulties of remote sensing 

inversion will be discussed, as well as the technologies that make global ocean 

measurements possible. Some inversion techniques can be labour intensive and this, 

coupled with the associated computational burden is one of the primary reasons that a 

simple spectral matching inversion algorithm has been developed in this thesis. An 

easily adaptable inversion algorithm is highly desirable for the investigation of ocean 

colour, where fast and reliable results can be obtained without the time constraints that 

are associated with the more complex techniques.  
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1.2 Direct and Inverse problems in marine remote sensing  
 
 
The radiative transfer forward model uses IOPs and boundary conditions to calculate 

radiance distributions within and leaving a water body. This forward model provides a 

physically-derived radiance distribution for a given set of IOPs and boundary 

conditions. The physical properties of OSMs, such as the volume scattering function 

(VSF) and particle size distribution are used to derive the IOPs for the water body of 

interest. This ‘direct’ problem of radiative transfer, for the calculation of radiance 

distributions, is described in Mobley et al., (2005) and outlined in Figure 1.1.  
 

 
Figure 1.1: A simplified overview of the forward ‘direct’ radiative transfer problem 
(Mobley et al., 2005). 

Physical Properties of OSM: 
Concentrations 

Index of refraction 
Particle size distribution 

Volume Scattering function (VSF) 
SIOPs (defined in chapter 2) 

Calculation of IOPs 

Radiative Transfer Equation 

Radiance distributions 

Boundary Conditions: 
Solar Angle 
Wind speed 
Cloud Cover 
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The inverse problem of radiative transfer, in contrast to the forward model, attempts to 

identify water constituents from radiance distributions that are obtained from satellites or 

radiometric instruments. Natural variability in the illumination conditions, such as the 

solar angle, means that the radiance distribution can be different even though the IOPs 

remain the same. Consequently, two significant questions associated with this inversion 

process are the uniqueness of the solution obtained and its sensitivity to measurement 

errors. The stages of radiative transfer inversion, for the determination of ocean 

properties such as OSM concentrations, are outlined in figure 1.2 (Mobley et al., 2005). 

 

 
 
Figure 1.2: A simplified overview of the inverse radiative transfer problem (Mobley et 
al., 2005). 
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analytical algorithms 
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may result in incomplete 
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interest 
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1.3 Modern approaches to ocean colour inversion 
 
Early approaches to ocean colour inversion were empirical, relying on statistically 

derived relationships between ocean colour signals and OSM concentrations.  These 

approaches were relatively successful in retrieving chlorophyll concentrations in ocean 

basins, but performed poorly when applied to coastal waters.  More recently, attempts 

have been made to recover OSM concentrations by matching the observed spectra with 

the predictions of models that are based on hypothesised OSM concentrations (Garver 

and Siegel, 1997). Consequently, the spectral matching approach to the inversion of 

remotely sensed data for the purposes of ocean colour interpretation can be described in 

three stages:  

 

1. Implementation of a forward model for the generation of spectra that will be used 

for comparative purposes. 

2. Derivation of an objective function that is to be minimized in the matching 

process. 

3. Development of a search algorithm that will optimise the quality of spectral 

matching achieved. 

 

A number of spectral matching algorithms for stage three of the inversion process will 

be discussed in chapter 5, where it is noted that the choice of matching algorithm has 

little effect on the quality of matches obtained. In addition to spectral matching, there are 

a number of other, more complex methods that can be used to interpret remotely sensed 

radiance data. These methods include: the Levenberg-Marquardt (LM) multivariate 

optimisation algorithm, genetic algorithms, particle swarm optimisation and neural 

networks (Chen et al., 2009). Following a brief description of each method, the benefits 

of adopting a simple LUT-based spectral matching approach, instead of more complex 

techniques, shall be highlighted.  
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a) Levenberg-Marquardt (LM) multivariate optimisation  
 

The LM multivariate optimisation algorithm operates as an iterative process, whereby an 

interpolation is performed between a Gauss-Newton algorithm and a gradient descent 

method. The procedure is initiated when the user supplies the algorithm with an initial 

value for the parameter β. This parameter is then changed at each iteration step with new 

estimates, β + σ. The σ factor is determined by the linearisation of the functions:  

 

( ) ( ), ,i i if x f x jβ σ β σ+ ≈ +        (1.1) 

where,  

( ),i
i

f x
j

β

β

∂
=

∂
, is the gradient of f with respect to β.     (1.2) 

 

A value of 0 will be obtained when the sum of squares S(β), which is the gradient of S 

with respect to σ, is at its minimum. This first order approximation of ( ),if x β σ+  

gives: 

 

( ) ( )( )2
1

,
m

i i i
i

S y f x jβ σ β σ
=

+ ≈ − −∑        (1.3) 

 

and taking the derivative, with respect to σ and setting the result to 0, gives the 

Levenberg-Marquardt optimization which is a set of linear equations that can be solved 

for σ: 

 

( )( ) ( )T T TJ J diag J J J y Fσ β+ = −$ %& '�       (1.4) 

 

J is the Jacobian matrix which is a 1st order partial derivative matrix of a vector or a 

scalar valued function, with respect to another vector. F and y are the vectors with the ith 
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component ( ),if x β and yi respectively. The λ represents a damping factor: if one 

iteration has failed to reduce the residual difference sufficiently, this damping factor can 

be increased.  

 

The LM algorithm is considered an established technique (Lourakis, 2005) that can be 

used to find a solution to a multivariate function for non-linear least squares problems 

(Levenberg, 1944; Marquardt, 1963). This type of optimisation is used in hydrological 

optics, including the GSM01 algorithm (for chlorophyll retrieval), where it is used to fit 

modeled remote sensing reflectance (Rrs) data to measured Rrs spectra and to retrieve 

absorption and scattering properties of Rrs spectra (Maritorena et al., 2002; Slade, 2004; 

Kormick et al., 2009).  Korosov et al. (2009) used a semi empirical algorithm that was 

based on LM optimisation for the retrieval of OSMs from satellite remote sensing data. 

 

b) Genetic Algorithms 
 

Genetic algorithms are another type of multivariate optimization, which in this case, 

follow Darwinian-style natural selection. Populations of potential solutions are assessed 

by their ‘fitness’ in accordance with the objective COST function (Kostadinov et al., 

2007): 

( )

∞ 2

12

1
0.2 1 1.5 1 0.2

N
i i

N
i i

k k K
k

COST Nneg R a RMS
N

ψ

θ

ψ

ψ ψ
ψ=

=

# $−
& '
( )= + − + − + +

∑
∑   (1.5)

  

 

where Rk
2 is the square of the correlation coefficient between the kth measured and 

retrieved variable, Nneg is the number of negative retrievals, RMSk is the root mean 

square for the kth value and ak is the slope of the type II regression of the kth retrievals 

on the measurements. An a priori penalty is incurred when there is large deviations of 

the optimized parameters (ψ) from parameters of a pre-calculated data set and while Nθ 



9 
 

is the number of variables to be retrieved (Kostadinov et al., 2007). In the context of 

hydrological optics, the number of variables would be three: CHL, MSS and CDOM. In 

contrast to other techniques, generic algorithms do not require a library or database of 

pre-calculated data to be constructed. However, the methodology consists of three parts: 

a forward model for the generation of spectra, the objective function that is to be 

minimised and a search algorithm that performs the optimization, and is therefore  

consistent with the standard approach to solving the inverse problem of remote sensing. 

Zhan et al.. (2003) used genetic algorithms to obtain apparent optical properties (AOPs, 

described in Chapter 2) from measurements of ocean colour.  Their results showed that 

genetic algorithms could be successfully employed to retrieve optical properties from 

remote sensing reflectance. The authors claim to have a 60% accuracy for predicting 

CHL, 76% for the prediction of the particulate backscattering coefficient (443nm) and 

95 % accuracy for the CDOM absorption coefficient.  

 

c) Particle Swarm Optimisation 
 

Particle swarm optimisation (PSO) is an adaptive algorithm which shares some features 

with genetic algorithms. In PSO, a population of ‘individuals’ adapt by random searches 

in regions of the search area (i.e. a database). ‘Individuals’ move randomly forwards 

from their original or previous optimum position in conjunction with the optimum 

position for the total swarm. A ‘neighborhood’ approach can also be adopted which 

involves directional movement to the best position that has been determined by the 

swarm within a group of particles, the ‘neighborhood’. The fundamental principle of 

PSO is that a particle will constantly refine its search efforts within the ‘neighborhoods’, 

with each individual component of the overall swarm representing a solution to the 

optimisation problem. The movement of each particle in the search area, is determined 

by the ‘position update rule’ (equation 1.6), the fundamental aspect of the PSO 

algorithm (Slade et al., 2004). 
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( ) ( ) ( )1 1i i ix t x t x t+ = +Δ +
ur ur ur

 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )( ), ,1 21 i best G besti i i ix t x t x t x t x t x tχΔ + = Δ +Φ − +Φ −
ur ur r ur r ur

  (1.6)

 where, 

 

,1

,2

,

0 0 0
0 0 0
0 0 0
0 0 0

m

m
m m

m D

r
r

c

r

! "
# $
# $Φ =
# $
# $
# $& '

O  

 

where ( ),i bestx t
r

is the individual best position of the ‘individual’ and ( ),G bestx t
r

is the best 

position of the entire swarm, c1 and c2 represent weighting factors for the individual and 

global best positions, respectively. The rm,j represents random scalars between 0 and 1. 

The ( ) ( )( ),2 G best ix t x tΦ −
r ur

 term refers to a ‘social influence’ and draws the ‘individual’ 

to the globally best solution (the swarm), whereas ( ) ( )( ),1 i best ix t x tΦ −
r ur

 represents the 

‘individual’ particle ‘thinking’ for itself.  A change in direction ( )1ix tΔ +
r

 is due to the 

inertial component ( )ix tΔ
r

, the directional movement of the swarm (neighborhood) best 

( ),G bestx t
r

 and the directional movement of the ‘individual’ best, ( ),i bestx t
r

 (figure 1.3) 

(Slade et al., 2004). Slade et al. (2004) compared the performance of genetic algorithms 

and particle swarm optimisation for the inversion of ocean colour observations, with 

particle swarm optimisation performing the best and being the more expedient of the two 

methods.  
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Figure 1.3: This is a pictorial representation of how the PSO procedure behaves based 
on the trajectory of the individual particles (Slade et al., 2004). 
 

d) Neural Networks 
 

Artificial neural networks (ANN) such as the one represented in figure 1.4, consist of 

many inputs. The number of individual inputs (R ) are weighted (W) in the weight 

function matrix, before going into the transfer function f, where n is the net input of the 

summed weighted inputs and bias b (Hagan et al., 1996). ANNs require to be trained 

before use. If a single neuron with multiple inputs is insufficient, layers of S neurons can 

be generated (Figure 1.5). Such ANNs can be used to determine water constituent 

properties, such as CHL from Rrs spectra (Ressom et al., 2006). Schiller and Doerffer 

(1997) used neural networks to determine OSM concentrations from remote sensing 

reflectances. They trained their network with pre-calculated Rrs data that covered a 

predefined OSM range. Their inversion algorithm performed well and showed accurate 

retrieval for OSMs. However, the initial training of neural networks requires a 

significant amount of time and a large data set which requires the time burden and 

expense of in situ data collection (Kempeneers et al., 2005). 
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 Figure 1.4: A multiple input neuron (Hagan et al., 1996). 

 

f

 
 

Figure 1.5: A multiple input neuron in multiple layers (Hagan et al., 1996). 
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In comparison to a LUT approach, the above techniques, including neural networks and 

genetic algorithms, require a significant construction effort and are dependent on 

specific data sets. Consequently, if the database has to be changed for any reason, the 

time consuming process of generating a new data set and retraining the neural network 

will have to be repeated. In contrast, LUTs can be generated rapidly and at a high 

resolution for specific geographical regions (Philpot et al, 2004). From this point 

forward only simple methods of spectral matching shall be considered in an attempt to 

avoid the computational burden associated with more complex ocean colour inversion 

approaches. 
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1.4 Review of current technologies for satellite remote sensing 
 
 
Remote sensing technology is an important asset for oceanographers and Earth 

scientists. It can provide investigators with information on costal ecosystems as well as 

the data required to interpret ocean colour and monitor coastal environments (Hayes et 

al., 2010). Technology for the remote sensing of coastal regions is dominated by sensors 

that enable coverage of large geographical areas at relatively low resolution. Such 

sensors include: The Ocean Color and Temperature Sensor (OCTS), Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectro-radiometer 

(MODIS), Global Imager (GLI), and Medium Resolution Imaging Spectrometer 

(MERIS). These sensors are used for the development of ocean colour inversion 

algorithms and ocean colour interpretation, with SeaWiFS delivering what is believed to 

be the highest quality ocean colour data until the mission was terminated in 2011 

(McClain, 2009).  

 

OCTS was in commission from 1978 to 1986 and contributed significantly to ocean 

sciences. OCTS offered the necessary means for scientists to begin to understand ocean 

processes and propelled the advancement of oceanography by providing the optics 

community with an invaluable data set. The objective of the SeaWiFS sensor was to 

monitor global changes in oceanic processes as well as the influence that such processes 

have on the global carbon and biogeochemical cycles. SeaWiFS data can be used to 

monitor spring blooms and track populations of phytoplankton and their primary 

production. The MODIS sensor benefited from the knowledge and experience gained in 

the SeaWiFS project and is carried on the Terra and Aqua satellites. This assemblage 

allows the surface of the earth to be viewed every 1 to 2 days, measuring in 36 spectral 

bands. The MERIS sensor, onboard the Envisat satellite launched by the European Space 

Agency (ESA) in February 2002, measures the Earth’s reflection of solar radiation in 15 

spectral bands, obtaining a global image every three days. The primary objective of 

MERIS is the measurement of ocean colour, chlorophyll and sediments for the 



15 
 

understanding of the ocean carbon cycle. These sensors were designed and built to 

enhance knowledge and understanding of ocean processes and dynamics for the purpose 

of developing earth system models that can accurately predict global changes. Correct 

information is important to allow governments and councils to make the right decisions 

when dealing with environmental and climate issues McClain, 2009). Table 1.1 details a 

list of the current and future sensors that are used for ocean colour modeling.  
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MODIS/Terra 1 NASA (USA) 1999 2330 250/500/1000 9/36 405-14385 

OCM-/IRS-P4-2 ISRO (India) 1999 1420 360/4000 7/8 412-885 

MERIS/2 ESA (Europe) 2002 1150 300/1200 12/15 412-1050 

MODIS/Aqua 1 NASA (USA) 2002 2330 250/500/1000 9/36 405-14385 

OCM-2/Oceansat2/2 ISRO (India) 2009 1420 360/4000 7/9 400-900 

VIIRS/NPP/1 NOAA/NASA 

(USA) 

2011 3000 370/740 22 412-11800 

OLC1/Sentinel-3A/2 ESA/EUMETSAT 

(Europe) 
2013 1270 300/1200 21 400-1020 

S-GLI/GCOM-C JAXA (Japan) 2014 1150-

1400 

250/1000 19 375-12500 

VIIRS/JPSS/1 NOAA/NASA 

(USA) 

2016 3000 370/740  412-11800 

OLC1/Sentinel-3B/2 ESA/EUMETSAT 

(Europe) 
2017 1265 260 21 390-1040 

PACE/2 NASA (USA) 2019     

VIIRS/JPSS1/1 NOAA (USA) 2019 3000 370/740 22 412-11800 

ACE/2 NASA (USA) 202X  1000 Hyperspectral 350-2130 

HyspIRI NASA (USA) Unk 600 60 Hyperspectral 380-2500 

Table 1.1. Ocean Colour Sensors in space (extracted from National Research 
Council. Assessing Requirements for Sustained Ocean Color Research and Operations). 
 



16 
 

Improving the quality of remote sensing data is paramount to the successful 

implementation of ocean colour algorithms. The following proposed advancements are 

likely to provide such an opportunity and present the future of ocean colour science as 

an exciting prospect (McClain, 2009): 

 

1. Hyperspectral sensors: The introduction of additional information using 

hyperspectral data may improve retrieval and correction algorithms. 

2. Geostationary platforms: These have the potential to significantly improve data 

for regions which are persistently cloudy and therefore increase the frequency in 

which images can be obtained for a region. The Hyperspectral Environmental 

Suite (HES) and the Korea Geostationary Ocean Colour Imager (KGOCI) are 

potential geostationary platforms. 

3. Smaller satellites: These are easier to launch than the larger satellites and 

therefore, if hardware advancements are continued to the point where data 

quality matches that of the larger satellite outputs, ocean colour satellites will 

become cheaper and faster to design and launch.  

4. Unmanned airborne vehicles (UAV): Due to the current predominant use of 

UAVs for military applications, this technology is expensive. However, UAVs 

offer potentially very high spatial resolutions of specified regions.  

 

Remote sensing provides temporal coverage that can be used in conjunction with in situ 

measurements of optical properties. In situ measurements of ocean properties can also be 

made using autonomous underwater vehicles (AUVs) (McClain, 2009).  
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1.5 Outline of Thesis 
 
The topics covered in this thesis, and their distribution between chapters are shown 
below: 

 

The fundamental optical properties that are 
required for solving the inverse problem of 
remote sensing are discussed, including the 
definition of IOPs, AOPs and radiative transfer 
modelling. 

The key analytical methods and instruments are 
described as well as the calculation of specific 
inherent optical properties (SIOPs) required for 
radiative transfer modelling and LUT generation.  

Derivation of the radiance transfer equation is 
discussed in conjunction with simplification of the 
Rrs to bb/a relationship for use in a spectral 
matching approach to ocean colour inversion. 

The principles of LUTs are discussed as well the 
various approaches available for spectral matching. 
The spectral matching procedure that is adopted for 
the remainder of this work is presented here. 

This chapter investigates the most significant 
sources of errors and the potential effects these 
have of constituent retrieval. The relationship 
between the acceptance tolerance for matches and 
the required LUT resolution is also discussed, and 
how the size of the LUT affects search time. The 
effects of varying SIOPs on constituent retrievals 
are considered, together with their implications for 
taxonomic group discrimination. 
 

Chapter 2: Theory 

Chapter 3: Data Sources 
and analytical methods 

Chapter 4: Relationships 
between Rrs, IOPs and 
seawater composition 

Chapter 5: 
LUT and approaches to 
spectral matching 

Chapter 6: 
Introduced uncertainties 
for a modelled ocean and 
implications of SIOP 
variability 

Chapter 8: Discussion and Conclusions 

Chapter 7: Case 
Studies 

Case Studies including the Bristol Channel and Irish 
Sea. 
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Chapter 2 

 
Optical Theory 

 
 
The absorption (a(λ)), scattering (b(λ)) and backscattering coefficients (bb (λ)) are 

inherent optical properties (IOPs) which, in conjunction with the volume scattering 

function (β), control the way in which light propagates in natural water (Preisendorfer, 

1961). These properties depend only on the medium and are independent of the ambient 

light field, i.e. radiance distribution variations, within the water (Mobley, 1994; 

Preisendorfer, 1961). In addition to water itself, the main optically significant materials 

(OSMs) in coastal (case 2) waters are suspended mineral particles, phytoplankton cells 

and coloured dissolved organic matter (CDOM). These are conventionally measured 

using proxy variables: phytoplankton cells are measured as chlorophyll-a concentration, 

CHL; suspended mineral particles are measured as the dry weight of mineral suspended 

solids per unit filtered volume, MSS, and dissolved coloured organic material is 

measured as the absorption coefficient of filtered samples at 440 nm, CDOM (Kirk, 

1983; Spinrad et al., 1994; Bukata, 1995). The coefficients of radiance and irradiance 

attenuation are apparent optical properties (AOPs) which, unlike IOPs, are not 

independent of changes in the radiance distribution (Preisendorfer, 1961).  The 

behaviour of light and its interaction with water depends on the detailed characteristics 

of the optically significant materials, such as the Particle size distribution (PSD), shape, 

composition and index of refraction (n) of the suspended particles. Due to the variability 

of particle morphology and composition, the same mass concentration of particles in the 

ocean can produce a large variation in the IOPs, particularly the scattering and the 

backscattering coefficients. Understanding the variability of such characteristics is 

fundamental for ocean colour remote sensing, (Kirk, 1983; Spinrad et al., 1994; Bukata, 

1995; Jerlov, 1968). When considering coastal zones, the water generally has a high 
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turbidity due to the presence of uncorrelated concentrations of inorganic and dissolved 

material. Consequently, empirical methods that develop statistical relationships between 

reflectance and optical properties can be unreliable in such optically complex waters. 

For example, Morel and Gordon (1980) introduced an empirical method for the 

estimation of constituent concentrations of seawater through reflectance measurements 

taken from case 1 waters where optical properties are dominated by phytoplankton and 

its associated products. This empirical method enabled the retrieval of phytoplankton 

concentrations from clear water, but the authors found that such algorithms can be 

ambiguous in coastal zones (case 2 waters) where processes such as runoff or wind 

induced sediment re-suspension may be an influential factor (Morel and Gordon, 1980). 

Statistical relationships are more reliable in the open ocean, where phytoplankton and 

phytoplankton related products are the main contributors to IOP variability. For case 2 

waters, it appears that relationships between the IOPs and the reflectance are best 

established through semi-analytical algorithms based on radiative transfer theory 

(Wernand et al., 2008; Garver and Siegel, 1997). As light propagation is strongly 

influenced by the absorption, scattering and backscattering by the suspended particles it 

is important that appropriate values of these coefficients are used. The following chapter 

will: 

 

1. Define IOPs, AOPs and the radiative transfer equation that can be used to 

describe the propagation of light in seawater. 

 

2. Describe the radiometric quantities used to measure ocean colour: irradiance 

reflectance, radiance reflectance, remote sensing reflectance and normalised 

water-leaving radiance. 

 

3. Introduce numerical models for solving the radiance transfer equation with focus 

on the spectral characteristics of the IOPs. 

 

4.  Present the basic requirements for analytical modelling of ocean colour.  
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2.1 Inherent Optical Properties (IOPs) 
 
 
Consider a collimated beam of monochromatic light incident at right angles on an 

infinitesimally thin layer of water, of thickness dr (Figure 2.1).  

 

 

 

 
Figure 2.1: Diagrammatic representation of the interaction of a beam of  
monochromatic light incident at right angles on an infinitesimally thin layer of water 
(adapted from Mobley, 1994). 
 
The illuminating beam has a spectral radiant power Qi (λ), W nm-1.  The spectral 

absorptance, A (λ) is defined as the fraction of Qi (λ) that is absorbed, Qa (λ) by the 

medium (Mobley, 1994): 

 
A(λ) = Qa(λ) / Qi(λ)         (2.1) 
 
The spectral scatterance, B (λ), is defined as the fraction of Qi (λ) that is scattered out of 

the collimated beam, Qs (λ).  

B (λ) = Qs (λ) / Qi (λ)         (2.2) 

Qi (λ) 

dr Qa (λ) 

Qt (λ) 
Qs (λ) 

Ω 

θ,Φ 
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The remaining spectral radiant power is transmitted Qt (λ), with no directional change 

and is referred to as the transmittance: 

 
T (λ) = Qt (λ) / Qi (λ)         (2.3) 
 
A, B and T are the fraction of incident power absorbed, scattered and transmitted, 

respectively. The sum of A and B is the attenuance, C, which is the combined fractional 

loss due to absorption and scattering from the incident beam. The IOPs predominantly 

used in ocean optics are the spectral absorption coefficient, a (λ), spectral scattering 

coefficient, b (λ) and spectral beam attenuation coefficient, c (λ). They are defined as 

follows (Mobley, 1994; Kirk, 1983): 

 
( ) ( )

0
lim /
dr

a A drλ λ
→

=  (m-1)         (2.4) 

 
( ) ( )

0
lim /
dr

b B drλ λ
→

=  (m-1)         (2.5) 

 
( ) ( ) ( )c a bλ λ λ= +      (m-1)         (2.6) 

 
 

The angular distribution of Qs is described by expressing the angular scatterance as a 

function of distance and unit solid angle, from which the volume scattering function 

(VSF) of the medium, β(φ , λ), as dr approaches 0 and dΩ approaches 0, can be derived 

(Mobley, 1994; Kirk, 1983); 

 

0

( , )( , ) lim lim
( )
s

dr d dr
i

Q
Q drd

φ λ
β φ λ

λ→ Ω→
=

Ω
        (2.7) 

 
where, dΩ is the solid angle. The shape of the VSF is often expressed as the scattering 

phase function (β
:

): 
 

( , )( , )
( )b

β φ λ
β φ λ

λ
=

:
 (sr-1)        (2.8) 

Note that the IOPs defined above are dependent only on the composition of the medium 

and not on the properties of the light field.  
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2.2 Specific Inherent Optical Properties (SIOPs)  
 
 

Coastal regions can exhibit large spatial and temporal variability in their optical 

properties (Aurin et al., 2005) and it is frequently necessary to calculate the absorption, 

scattering and backscattering properties of the water body of interest (Brando and 

Dekker, 2003). This requires appropriate use of specific inherent optical properties 

(SIOPs) for the optically significant materials (OSMs). The total IOPs of a given volume 

of water can be expressed as the sum of the products of the concentrations of the OSMs 

and their SIOPs. This is written as:  

 

 

( ) ( ) ( )( ) ( )( ) ( )( )* * *
w chl mss cdoma a a CHL a MSS a CDOMλ λ λ λ λ= + × + × + ×   (2.9) 

 

( ) ( ) ( )( ) ( )( )* *
w chl mssb b b CHL b MSSλ λ λ λ= + × + ×      (2.10) 

 

( ) ( ) ( ) ( )* *
, , ,( ) ( )b b w b chl b mssb b b CHL b MSSλ λ λ λ= + × + ×     (2.11) 

 

 

It is common for an asterisk (*) to designate SIOPs, so that  a*chl, a*mss and a*cdom are 

the specific inherent absorption by phytoplankton, suspended minerals and coloured 

dissolved organic matter , b* and bb* represent specific scattering and backscattering, 

and CHL, MSS and CDOM represent the constituent concentrations.  
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2.3 Apparent Optical Properties (AOPs) 
 
 
Apparent optical properties (AOPs) depend on both the optical characteristics of the 

medium (IOPs) and the directional structure of the ambient light field (Mobley, 1994). 

The direction of photons in a light field is characterised by the zenith (θ) and azimuth 

(Ψ) angles (figure 2.2). Backscattering, or in some cases, multiple forward scattering, 

causes a fraction of incident photons to be returned across the water air boundary. 

However, not all light that is backscattered exits the water. The fraction that does is 

detected in remote sensing as the water leaving radiance (Lw) (Kirk, 1983; Mobley, 

1994; Spinrad et al., 1994; Bukata, 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
Figure 2.2: The zenith angle (θ), is measured from the vertical (up), the azimuth angle 
(Ψ), is measured clockwise from North and the elevation, h, is measured up from 
horizon.  
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The radiant flux (Φ ,W)  specifies the transfer of radiant energy (Q, J) per unit time in a 

given direction (θ,Ψ). The radiant intensity (I) is the measure of the Φ per unit solid 

angle in a specified direction (Kirk, 1983; Mobley, 1994):  

 
dI
d
Φ

=
Ω

 (W sr-1)         (2.12) 

 
The radiance, L (W m-2 sr-1), from a point in a surface is defined as the radiant flux per 

unit solid angle, per unit projected area of a given area (dS), in a given direction L (θ, Ψ) 

(Kirk, 1983): 

 
2

( , )
cos
dL

dS d
θ

θ
Φ

Ψ =
Ω

 (W m-2 sr-1)       (2.13) 

 
where cos θ is the cosine of the zenith angle. Horizontal variations in the environment 

and in the optical properties of seawater are usually much less than vertical variations 

(Mobley, 1994). Therefore, radiance signals are often defined as a function of depth (z) 

only. The radiant flux crossing an element of surface dS is the irradiance, E (W s-1 m-2): 

 
dE
dS
Φ

=  (W1 m-2)         (2.14) 

 
  
The planar irradiance due to downwelling light (Ed) and upwelling light (Eu), are defined 

as follows: 

 

2

( , )cosdE L d
π

θ θ= Ψ Ω∫         (2.15) 

 

2

( , )cosuE L d
π

θ θ
−

= − Ψ Ω∫         (2.16) 

 
 
where downward and upward irradiances at a point on the surface are integrated with 

respect to solid angle (Ω) over the whole upper and lower hemispheres, respectively 

(Kirk, 1983; Bukata et al., 1995). Ed is the integral of the radiance, weighted by the 
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cosine of the zenith angle over the upper hemisphere. Eu is the integral of the radiance, 

weighted by the cosine of the nadir angle (π -θ), over the lower hemisphere (Morel and 

Smith, 1982). Scalar irradiances are the integrals of the radiance distribution over the 

upper and lower hemisphere without the cosine weighting (Morel and Smith, 1982) and 

are defined as: 

 

 

E0 = L(θ ,ψ)d Ω
4π
∫          (2.17) 

 

0
2

( , )dE L d
π

θ ψ= Ω∫          (2.18) 

 

0
2

( , )uE L d
π

θ ψ= − Ω∫          (2.19) 

 

where, dΩ equals cos θ sin θ d θ. The average cosine, µ , is the ratio of the net 

downwards irradiance to scalar irradiance:  

 

0 0

d uE EE
E E

µ
−

= =

ur
         (2.20) 

 

This ratio helps to specify the angular distribution of the light field and indicates that the 

average cosine is equal to the net downward irradiance divided by the scalar irradiance 

(Kirk, 1983; 1991; Morel and Smith, 1982). The average cosine may be regarded as the 

average value of the cosine of the zenith angle of all photons for the total light at a 

specific point in the light field in an infinitesimally small volume element (Kirk, 1983). 

The reciprocals of the average cosine for upwelling and downwelling light, 
1

uµ
 and 

1

dµ
 

respectively, are proportional to the mean path length per vertical meter of the upward or 
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downward flux of photons (per unit of horizontal area per second) (Kirk, 1991). Some of 

the important AOPs discussed here and their derivations are listed in table 2.1. The 

diffuse attenuation coefficients, represented by the symbols K, Kd, and Ku, essentially 

provide an estimate of the turbidity of the water by measuring the attenuation of 

irradiance with depth (Mobley, 1994).   

 
 
 
 

Quantity SI units Symbol Equation 
 

Irradiance reflectance 
 

Dimensionless 
 
( )R λ  

( )
( )

u

d

E
R

E
λ

λ
=  

 
Radiance reflectance 

 
sr-1 

 
( )rsR λ  

( , )( , )
( , )

u
rs

d

L zR z
E z

λ
λ

λ
=  

 
Diffuse attenuation 

coefficient of radiance   
( ); ,L z θ ψ  

 
m-1 

 
( ),K z λ  

1 ( , )( , )
( , )

dL zK
L z dz

λ
θ

λ
Ψ = −  

Diffuse attenuation 
coefficient of downward 

irradiance  
( ),dE z λ  

 
m-1 

 
Kd ( ),z λ  ( )

( )1 d
d

d

dE
K

E dz
λ

λ
= −  

Diffuse attenuation 
coefficient of upward 

irradiance 
( ),uE z λ  

 
m-1 

 
Ku ( ),z λ  ( )

( )1 u
u

u

dE
K

E dz
λ

λ
= −  

 
Table 2.1: AOP symbols, terms and derivations (Mobley, 1994). 
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2.4 Radiative Transfer Equation 
 

Integro differential equations of radiative transfer are used to describe the propagation of 

light in the ocean. The radiative transfer equation (RTE), which establishes the 

relationships between IOPs and AOPs, is defined as follows (Kirk, 1983):  

 
( , , ) ( , , ) *( , , )dL z cL z L z
dr
θ

θ θ
Ψ

= − Ψ + Ψ        (2.21)

  
with units as follows: 
 

2 1 1
3 1 1

1

( ) : ( . . )
( )

dL Wm sr nm Wm sr nm L H S
dr m

− − −
− − −

−
 

 
1 2 1 1 3 1 1( ), ( ) : ( . . )c m L Wm sr nm Wm sr nm R H S− − − − − − −  

 
where L (z, θ, Ψ) represents the radiance at depth z, with angular coordinates (θ, Ψ) 

accounting for the direction of the photon beam. The rate of change of radiance with 

distance r, is represented by dL/dr and the path is specified by zenith and azimuth angles 

at depth z. The term, -cL (z, θ, Ψ) accounts for the loss of photons as a result of 

attenuation, c, whereas, L* (z, θ, Ψ) represents the gain in radiance (over dr) by 

scattering from adjacent paths. (Kirk, 1983; Spinrad et al., 2004).  This term can be 

expanded as 

 

L* (z, θ, Ψ) = 
4

( , , ; ', ') ( , ', ') ( ', ')z L z d
π

β θ θ θ θΨ Ψ Ψ Ω Ψ∫     (2.22) 

with units as follows: 
3 1 1 1 1 2 1 1( ) : ( )* ( )* ( )L Wm sr nm sr m L Wm sr nm d srβ− − − − − − − − Ω  

 
( , , ; ', ')zβ θ θΨ Ψ  indicates scattering from one direction ( ,θ Ψ ) to another direction (

', 'θ Ψ ) and ( , ', ')L z θ Ψ  is the radiance value in the direction from which the scattering 

originates. The radiative transfer modeling programme, Hydrolight, is used in this work 

for the numerical solution of problems involving the RTE.  
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2.5 Optical properties of natural waters 
 
Many inversion algorithms depend on accurate spectral descriptions of the absorption, 

scattering and backscattering coefficients of water constituents (Lee et al., 2002). 

Consequently, the following sections describe the spectral characteristics of absorption, 

scattering, backscattering and the backscattering to scattering ratio.  

 

a) The absorption coefficient 
 

The absorption of underwater light can be analysed by separating the total absorption 

into the contributions by individual components (Cannizzaro et al., 2008; Chami et al., 

2006; Gallegos, 2005). Since the absorption by the different constituents is additive. the 

total absorption as a function of wavelength can be written (Kirk, 1983): 

 

( ) ( ) ( ) ( ) ( )total ph TSM CDOM wa a a a aλ λ λ λ λ= + + +      (2.23) 

 

where the subscripts ph, TSM, CDOM and w represent phytoplankton, total suspended 

material (TSM), CDOM and water, respectively (Cannizzaro et al., 2008; Doxaran et al., 

2009). Values for aw are commonly taken from Pope and Fry (1997).  The optical 

characteristics of the main components are described below. 

 

Phytoplankton absorption 

 

The absorption due to phytoplankton can be determined using the quantitative filter 

technique (Yentsch 1962).  If pigments are extracted from the filtered material by 

organic solvents (e,g, Kishino et al., 1985) or bleached using sodium hypochlorite 

(Tassan and Ferrari 1998), the phytoplankton absorption coefficient, aph is obtained by 

subtracting the non-algal particle absorption (ana) from the total absorption (at): 

 

a ph λ( ) = at λ( )−ana λ( )            (2.24) 
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This technique has a degree of uncertainty due to the requirement for path length 

amplification correction (β) due to the highly scattering nature of the filter (Tassan and 

Ferrari 1998, Lohrenz 2000). 

 

Kishino et al. (1985) investigated three cultured phytoplankton species (using methanol 

extraction).  They found typical phytoplankton absorption spectra to have peaks due to 

chlorophyll absorption in the blue (430 nm) and red (675 nm) with relative minima 

between 550 nm (Dunaliella tertiolecta) and 600 nm (Skeletonema costatum) depending 

on species. The authors noted that the efficiency of extraction of photosynthetic 

pigments by the methanol method was as high as 95.5% for some cultured species. 

 

CDOM absorption 

 

CDOM is a significant contributor to light absorption in coastal regions, absorbing 

strongly at blue wavelengths. Jerlov (1957) first suggested that an exponential function 

of wavelength could be used to describe the CDOM absorption spectrum: 

 

( ) ( ) ( )r
cdom cdom ra a e γ λ λλ λ − −=         (2.25) 

 

where γ  is the slope of ( )a λ  and rλ  is a reference wavelength (Aas et al., 2005, 

Bricaud 1981). Extensive studies of CDOM absorption have shown that the coefficient 

for the spectral slope can vary from 0.01 to 0.02, with the majority of the values falling 

between 0.012 and 0.015 (Binding et al., 2003; Bricaud et al., 1981; Carder et al., 1981). 

 

Mineral particle absorption 

 

The$specific$absorption coefficient for suspended minerals (MSS) can be derived from 

spectrophotometric absorption measurements$on filtered material following extraction or 
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bleaching of phytoplankton pigments. MSS absorption spectra usually have a similar 

exponential shape to CDOM but with a smaller spectral slope and generally smaller 

numerical value (Brown, 2010). 

 

Spectrophotometer measurements by Binding et al. (2003) for mineral particles in the 

Irish Sea show that the specific absorption coefficient of MSS (a*MSS) increases steadily 

from red wavelengths to the blue wavelengths in accordance with a power law function, 

accounting for 98% of the spectral variation in a*MSS: 

 
* 7 3.24393 10MSSa λ−= ×          (2.26) 

 

On the other hand, the data in Neil et al. (2011) suggests an equation of the form  

 
3.512* 107 −×= λMSSa          (2.27) 

 

for mineral particles in the same region.  The discrepancy can probably be attributed to 

the fact that Neil et al. removed organic pigments from their samples by acetone 

extraction, whereas Binding et al. combusted the material at 500oC.  Combustion is 

known to change the absorption properties of mineral particles (Bowers and Binding, 

2009). 

 

b) The scattering coefficient 
 
Scattering from suspended particles plays a key role in determining the propagation of 

light in the water column. Consequently, it is necessary to understand the spectral shape 

of the scattering coefficient in natural waters, ( )b λ , and the factors that might influence 

it.$The wide variation in the characteristics of the constituent particles in the ocean is one 

of the factors that makes coastal waters optically complex (Peng et al., 2009).  
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The total scattering coefficient (btot)(λ) can be separated into contributions from 

individual components such as water and particulates. CDOM is considered a non -

scattering substance and is therefore not included (Bricaud et al., 1981). Consequently, 

the spectral dependence of btot can be written as: 

 

( ) ( ) ( ) ( )tot chl sed wb b b bλ λ λ λ= + +        (2.28) 

 

where bchl, bsed and bw represent scattering due to chlorophyll, sediment and water 

respectively. However, the partitioning of scattering between components can be 

difficult due to the absence of methods for routinely separating different classes of 

particles in natural hydrosols. Studies conducted by Snyder et al. (2008) and Pierson et 

al. (2008), which involved the division of the particulate scattering into organic and 

inorganic contributions, demonstrated the variability that can occur between 

geographical locations. (Sun et al., 2010). Further discussion of partitioning total 

scattering will be given in section 2.6. 

 

Snyder et al. (2008) used in situ ac-9 measurements to calculate the bulk particulate 

scattering (bp(λ)) from: 

 

p cdom pb c c a= − −          (2.29)

  

 

where, c is the attenuation, ccdom is the attenuation due to CDOM and ap is the particulate 

absorption. A wavelength proportional scattering correction was applied that assumed ap 

(712 nm) is zero and that the scattering phase function is the same at all wavelengths. 

The authors found that a previous assumption of a wavelength independent phase 

function is incorrect due to an under-correction of scattering at blue wavelengths 

(Snyder et al., 2008). Without comprehensive scattering phase function measurements 

the authors determined that it would be impossible to apply a correction and instead, 
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they developed a method to estimate this effect using the light scattering correction 

proposed by McKee et al. (2003), in conjunction with a suitable Fournier-Forand phase 

function. Snyder et al. (2008) used a power-law function ( f (λ) – f ( λ /550 )γ ) to 

describe the wavelength dependence of  bp(λ) spectra. This function incorporates  the 

amplitude at 550nm (f550, in reciprocal metres) and a power law exponent (γ, 

dimensionless). The application of a power law fit allows a wavelength specific 

measurement for the average degree of departure from a simple power law form, 

allowing variation between spectra to be quantified. Consequently, Snyder et al. (2008) 

calculated, at each wavelength, the extent to which each spectrum deviated from the 

power-law function as a measure of spectral variance. For each wavelength, the measure 

of the fractional difference (fd), i.e. the observed signal from the expected (using the best 

fit power-law functional form) was calculated as follows: 
$

( )
( ) ( )

( )
obs pred

pred

f f
fd

f
λ λ

λ
λ

−
=         (2.30) 

 

where fobs is the measured value and fpred is calculated from the power law fit (Snyder et 

al, 2008). Likewise, Defoin-Platel and Chami (2007) calculated scattering due to Chl-a 

and sediment (bChl and bsed, respectively) using a power law function: 

 

( ) ( )443
443

Sbchl

chl chlb b λ
λ

−
# $= % &
' (

       (2.31) 

 

( ) ( )443
443

bsedS

sed sedb b λ
λ

−
# $= % &
' (

       (2.32) 

          

where, SChl and SSed are the spectral slopes for Chl-a and sediment, respectively. The 

spectral slope for the particulate scattering was then accurately approximated using 

nonlinear regression (Defoin-Platel and Chami, 2007): 
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( ) ( )
( ) ( )

443 443
443 443

Chl Chl Sed Sed
p

Chl Sed

b Sb b Sb
Sb

b b
+

=
+

      (2.33) 

         

Sun et al.  (2009) developed a model that could determine the particulate scattering 

spectra in Lake Taihu, a very turbid and productive lake. Sampling was done at various 

stations across the lake. They tested 2 types of models for the simulation of scattering 

spectra, a linear one and a power one. The mean percentage error between the modelled 

and measured scattering values for the power model was in the range of 0.1% to 4.2% at 

all wavelengths. The wavelength dependency was found to be similar to other studies: 

Morel et al. (2006) studied the bp(λ) shape in case 2 waters and found that the 

normalised scattering spectra corresponded approximately to a λ-0.6 dependency, very 

similar to the slope of the power model (-0.729) by Sun et al. (2009). It is suggested that 

the similarities of their linear model to a study by Gould et al (1999) for case 2 waters 

supports the generalisation that spectral dependency of bp(λ) generally changes little in 

some case 2 waters. This conflicts with the conclusions of Snyder et al (2008) above, 

who reported variation in US coastal zones for bp(λ) spectra.  

 

The way in which the spectral shape of the particulate backscattering coefficient has 

been described by various authors includes: 

 

1. Spectral variations that follow an inverse power-law function (Morel, 1973) 

 

2. The application of a power-law function with spectral slopes varying between 

0.1 and 1.4 reproduced the spectral variations in the near infrared bp spectral 

shape (Doxaran et al, 2009) 

 

3. There is a strong correlation between a decrease in bp (or b*p) and high ap (Babin 

et al., 2003; and Stramski et al., 2007) when the particle population is dominated 

by phytoplankton cells.  
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While there is debate amongst the community as to the shape of the scattering spectra 

there is also debate with respect to the spatial variability. The work presented here 

highlights the need for further investigation of this topic, and the standardisation of the 

methods used would facilitate the development of algorithms based on the information 

obtained.  

 

Much of the theoretical work on marine light scattering is based on Mie theory. Gustav 

Mie used Maxwell’s equations, complemented by the appropriate boundary conditions, 

to derive an analytical solution for light scattering by homogenous spherical particles. 

Mie scattering theory is of interest in ocean optics for the calculation of volume 

scattering functions (VSF) and for the inverse problem of particle size analysis (PSA). 

The implementation of Mie theory to analyse mono or poly-dispersed particles, of a 

given refractive index (n), is based on a few key assumptions:  

 

1. Particles scatter independently, which requires a distance between spheres of at 

least three times their radii. This allows the intensities scattered by particles to be 

added (Van De Hulst, 1957). 

2. The wavelengths for the scattered and incident light are the same (elastic 

scattering). 

3. Only spherical and homogenous particles are considered. 

4. No multiple scattering is considered as it is assumed the particles are only 

irradiated by the original beam (Jerlov, 1968).  

 

c) The influence of absorption on the scattering coefficient 
 

Early investigations by Morel (1973) found that, for a mixture of non-absorbing particles 

that have an identical index of refraction (n) and a PSD which follows an inverse power-

law function, spectral variations in b (λ) also follow an inverse-power law function. If 

particle absorption cannot be neglected (for example phytoplankton cells), spectral 
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variation in scattering by marine particles can be described in terms of normal and 

anomalous dispersion: 

 

1. Normal dispersion occurs when there is a monotonous decrease in the complex 

refractive index n, when moving from the ultraviolet part of the spectrum 

towards the red (i.e. as a function of wavelength) for weakly absorbing particles. 

 

2. Aas et al (1996) concluded that anomalous dispersion will only influence the 

scattering properties of small phytoplankton in the vicinity of strong absorption 

bands. With the algal components, anomalous dispersion is expected to cause a 

minimum and maximum in scattering efficiencies at the short and long 

wavelength sides of the chlorophyll c absorption peaks. Gordon et al. (2009) 

found a slight reduction of particulate backscattering in the region influenced by 

phytoplankton absorption.  

 

Doxaran et al. (2009) investigated the influence that light absorption (in the visible 

spectrum) has on bp(λ)  properties, and found a departure from the power law function at 

wavebands with high absorption. The authors used Mie computations to determine 

efficiency factors for scattering and absorption (Qb and Qa, respectively), calculating the 

coefficients by integration over the size distribution. Effects of ap(λ) on scattering were 

shown to significantly increase with decreasing values of n. This is related to variations 

of Qa and Qb with respect to particle diameter. The authors observed a decrease in bp(λ)  

at short visible wavelengths in the North Sea and Bristol Channel with a discontinuity 

systematically observed at 440 nm (440 nm corresponds to strong light absorption by 

phytoplankton). The authors supported their findings with those of Babin et al. (2003) 

and Stramski et al. (2007) whose field and laboratory data found a correlation between a 

decrease in bp(λ) and a corresponding high ap(λ).  

 

On comparison with field data, the relationship between visible and infra-red spectral 

slopes for bp(λ)  is linear (slope close to 1) based on the condition that wavebands with 
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ap(λ)  are avoided (440 nm for example). Doxaran et al (2009) claim that in the visible 

part of the spectrum, the ap(λ)  effects on b(λ)  properties are systematically significant. 

In their sampled coastal areas, differences on average of 10% and up to 35% were 

observed at 440 nm between actual bp(λ)  values and bp(λ)  values modelled using a 

power-law function fitted onto the near-IR waveband and extrapolated to 440nm. The 

authors concluded that this departure from the power-law function is almost equal to the 

ap(λ) when the PSD presents a high proportion of coarse particles (ones that follow a 

Junge size distribution). Smaller particles are poorer absorbers of light, thus, light 

scattering by sub micrometric particles are less affected by ap(λ). This study allowed 

them to present a new model for the determination of spectral variations in bp(λ)  from 

the near-IR to visible spectral domains: 

 

( ) ( ) ( ) ( )21 tanh 0.5p p ref p
ref

b b a
γ

λ
λ λ γ λ

λ

−
$ %

& '= − − × ×) * + ,) *
- .

    (2.34) 

With λref a reference wavelength and γ the spectral slope of bp(λ) in a spectral domain 

where ap(λ) is almost negligible (near IR). The authors claim this model will accurately 

correct for ap(λ) effects when marine particles follow a Junge size distribution and that it 

reproduced field measured bp(λ) with an error lower than 6% (Doxaran et al, 2009).  

 

 

d) The backscattering coefficient   
Total scattering, btot ( )λ  can be partitioned into the spectral forward scattering 

coefficient, bf ( )λ  and the spectral backscattering coefficient bb ( )λ  as follows (Kirk, 

1983): 

 
btot = bb + bf            (2.35)  
 

( )2
0

2 sinfb d
π

π β θ θ θ= ∫         (2.36) 
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( )
2

2 sinbb d
π

ππ β θ θ θ= ∫         (2.37) 

 
 

Furthermore, the backscattering coefficient can be separated into water and particle 

contributions which is expressed as: 

 

bbp λ( ) = bb λ( )−bbw λ( )           (2.38) 

  

where bbw ( )λ   is the backscattering of light due to water, with ( )bwb λ  = 0.5bw ( )λ  (Aas 

et al., 2005; Carder et al., 2003).  

 

Sources of particulate backscattering in the ocean include gas bubbles, phytoplankton 

cells, mineral particles, bacteria, viruses and colloids and they vary in size by several 

orders of magnitude (Stramski et al., 2004). Boss et al. (2004) point out that theoretical 

studies are the predominant source of bb ( )λ  knowledge, with Mie theory a popular 

choice for analysis. The solutions to such theoretical studies have shown that particle 

size, composition and refractive index all affect bb ( )λ .  

 

While theoretical studies are the predominate source of knowledge, research has been 

conducted to investigate backscattering properties by more physical means. Maffione 

and Dana (1997), proposed the use of a fixed angle backscattering sensor for the 

estimations of backscattering from the VSF at 140o from the forward direction, β(140°), 

and argued that: 

 

( )
2 1.08 6.79

140
bb π

β
≈ =

°
        (2.39) 
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The most accurate measurements are made when there is the least angular variability in 

the shape of the VSF, i.e. between 110° and 160° approximately (Gordon et al., 2009). 

Following on from this, another parameter of interest is the proportion of backscattering 

that accounts for the total scattering, i.e. the backscattering ratio: bbp:bp which will be 

discussed in the following section. 

 

Physical measurements were also carried out by Loisel et al. (2007) who studied three 

optically distinct regions using an ECO-VSF to measure backward scattering at three 

angles (100˚, 125˚ and 150°). From this, estimations of the shape of the VSF could be 

made for the backscattering area which in turn enabled bbp to be calculated. The authors 

also used a Hydroscat-6 to allow comparisons to be made between retrieved values of b-

bp and the estimated values. Similar results were obtained from the two instruments with 

values on average only slightly higher (approximately 1.54%) for the Hydroscat-6. 

 

e) The backscattering to scattering ratio 

The particulate backscattering to scattering ratio, bbp:bp,  is of fundamental importance in 

ocean optics.  

 

1. It can provide information on particle size distribution and composition 

2. It enables the derivation of approximate phase functions (Loisel et al., 2007; 

Mobley et al., 2002) 

3. It is essential for radiative transfer calculations and is used in many semi-

analytical algorithms for IOP retrievals (Gordon et al., 1988; Loisel et al. 2007; 

Morel & Maritorena, 2001). 

 

Boss et al. (2004) and Mobley et al. (2002) compared measured backscattering data 

(from the coast of New Jersey, USA) with the results of radiative transfer modelling to 

conclude that the bbp:bp ratio varied by less than 10% and 24%, respectively.  The low 

spatial variability was also demonstrated by Sun et al. (2009) who presented a variety of 

backscattering ratios from across the globe to document the extent of their variability. 
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Out of the six areas they documented, five had a bbp:bp range with a minimum of 0.005, 

with the maximum of the ranges reaching 0.060. These values represent a contribution 

of bb to total scattering of 0.5% and 6%, respectively.  

 

Mobley et al (2002) employed a range of Fournier-Forand phase functions to show that 

the exact choice of phase function in the backscattering direction does not have a great 

effect on the underwater light field but it is important to use the correct backscatter 

fraction. Although, the Fournier-Forand phase functions generally gave better agreement 

with measured quantities than the average Petzold phase function.  

 

Chang and Whitmire (2009) modelled the backscattering ratio using Mie theory. Their 

work was based upon the assertion by Ulloa et al. (1994) that the backscattering ratio 

can vary strongly with monodispersions or in minerogenic dominated waters. They 

found that the bbp:bp ratio was spectrally flat for regions with larger particles and, when 

the PSD slope (ξ) was  ≤ 3.25 for all particulate refractive indices (np). However, the 

authors observed spectral variability in the backscattering ratio for all other conditions. 

This research involved the use of Mie scattering theory and Hydrolight to calculate the 

IOPs for the hypothetical optical water types that varied by n and ξ. They found the 

accuracy for determination of bbp is dependent on np and ξ. whereby, for 1.05 <np< 1.15, 

the determination of bbp was to within 25% of the true values.  

 

The backscattering ratio has been shown to be an important component in ocean 

modeling. The following points provide an overview of this section: 

 

1.  Boss et al. (2004) and Mobley et al. (2002) concluded that the bbp:bp ratio 

varied by less than 10% and 24%, respectively and that the exact choice of the 

phase function in the backscattering direction does not have a great effect on the 

underwater light field.  

2. Sun et al. (2009) presented backscattering ratios from a wide range of locations 

to document the extent of variability. Out of the six areas documented, five had a 
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bbp:bp ranges with  minima of 0.005 and maxima reaching 0.060. These values 

represent a contribution by bb to total scattering of 0.5% and 6%, respectively.  

3. Chang and Whitmire (2009) found that a power law function could not always 

be fitted to backscattering spectra and that the bbp:bp ratio was spectrally flat for 

regions with larger particles, when the PSD slope (ξ) was  ≤ 3.25, for all 

particulate refractive indices (np) but that the backscattering ratio for all other 

conditions varied spectrally.  

 

For the purpose of this work, the variation of the phase function with wavelength will be 

investigated in chapter 4 to determine the extent to which this ratio affects the 

relationships used for the spectral matching inversion algorithm developed later in this 

thesis. 
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2.6 Attributing scattering to different water components 

 
 

a) A reductionist approach 
 

The heterogeneous nature of oceanic and coastal waters means that to understand the 

optical interactions, such as scattering and backscattering, it is necessary to separate the 

contribution of different classes of particulate materials (Martinez-Vicente et al, 2010). 

Stramski et al., (2001) proposed a reductionist approach to this problem in which  the 

IOPs are modeled using data for various planktonic species and there is partitioning of 

IOPs into the scattering coefficients of organic material and minerogenic substances (bo 

and bm, respectively). This is a difficult challenge as there are more than 10,000 species 

of phytoplankton (Jeffrey and Vesk, 1997) of varying shapes, composition, physiologies 

and sizes. This diverse group includes diatoms, dinoflagellates, cyanobacteria and 

coccolithophores. While phytoplankton can contain a range of pigments such as 

chlorophyll-b and xanthophylls, chlorophyll-a is considered the most important due to 

its role in photosynthesis (Jeffrey et al, 1997). These different characteristics of 

phytoplankton will affect their optical properties, and the significance of differences 

between taxa on spectral matching outcomes will be discussed in chapter 6.   

 

The approach of Stramski et al.  (2002) was a departure from the more traditional 

method of modeling IOPs in oceanic waters, where bio-optical models linked to 

chlorophyll concentration are used. By considering how specific particulate components 

affect ocean and coastal water IOPs, it potentially gives a better understanding of the 

variability in optical properties of seawater (Stramski et al., 2001).  A major problem 

arises, however, from the fact that it is not possible to physically separate different 

classes of scattering particles in a manner analogous to that used for absorption.  Such 

partitioning is particularly important in coastal regions as the high sediment load present 

in the water column can have a detrimental effect of Chl retrieval algorithms. One 

possible approach was proposed by Stavn and Richter (2008), who investigated the 
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partitioning of bp and bbp, in Mobile Bay. The authors developed a multiple linear 

regression model that could be used to generate specific optical cross sections (using 

cruise data) that in turn could determine bm and bo (scattering due to the mineral, m and 

organic, o fractions, respectively). This method relied on the assumption that the 

composition of mineral matter was the same at each station, with only the concentration 

varying. 

 

The ‘reductionist’ approach presented by Stramski et al (2001, 2004, 2007) was used by 

Martinez-Vicente et al (2010) to study a coastal station in the Western English Channel. 

For this region, they hypothesised that particulate scattering could be expressed as 

follows (a similar one can be used for bbp): 

 

6 6
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ϕ

σ σ σ
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= = + = + +

= + + = + +∑ ∑
(2.40) 

 

where it is assumed that all scattering is attributed to suspended particulate matter 

(SPM), consisting of organic and inorganic materials (POM and PIM, respectively). The 

inorganic materials can consist of biogenic inorganic matter such as coccoliths or diatom 

frustules. The organic material contribution can also be broken down into phytoplankton 

contributions (bpφ) and non-living bacterial particles (bpPOMnonliving). However, the 

phytoplankton contributions can be further divided into the particle scattering coefficient 

(bppla,i) of the ith phytoplanktonic component. Consequently, the mass-specific scattering 

and backscattering of plankton can be defined in terms of phytoplankton carbon rather 

than Chlorophyll-a. Such an approach is useful because of its potential application to 

ecosystem models as well as bio-optical models where bio-optically accurate 

relationships are required for the characterisation of light propagation (Martinez-Vicente 

et al, 2010). 
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Peng et al (2009) documented a development in individual particle analysis (IPA) which 

involves a scanning electron microscope being interfaced with automated image and x-

ray analysis (SAX) for the proposed purpose of directly measuring the light scattering 

features of minerogenic particles, such as the index of refraction, PSD and the shape and 

composition of particles. This technique was used in inland waters, the results of which 

were used as inputs into Mie theory calculations for minerogenic b and bb efficiency 

factors (Qbm and Qbbm, respectively) of individual particles. This enabled the calculation 

of bm and bb,m.  For bm: 

( ) ( ), ,
1

1 , ,
mN

m bm i i i m i
I

b Q m d PA
V

λ λ
=

= ∑        (2.41) 

 

where Nm is the number of minerogenic particles per unit volume of water, PAm,I is the 

projected area of minerogenic particle i and V is the sample volume. As a development 

from the original ‘reductionist’ approach this SAX-Mie procedure can discriminate 

between sub-classes within the minerogenic component, for example, clay minerals and 

calcite. The authors tested the estimates generated from the above equation (2.40) using 

Case 1 empirical bio-optical models to independently estimate bo and bb,o from the 

chlorophyll concentration and by comparing the summations of the minerogenic and 

organic components with bulk measurements of bp and bbp. An average deviation of 

8.2% was observed between results from the two-component model and the observed 

values from measurements taken in Lake Superior, which is an optically complex fresh 

water system. They concluded that the model performed reasonably well and that the 

minerogenic component (in comparison to the particulate component), particularly 

comprising clay minerals, was more important for the total contribution to bbp than bp, 

with bb,m accounting for a variation of 42% to 64% of the bulk measurements over the 

sites analysed in Lake Superior.  

 

Limitations in the SAX-Mie approach come from the differences that may arise in n for 

the PSD, for example, in the above situation, had montmorillonite been dominant rather 



44 
 

than clay minerals, the estimate of bb,m could have been biased 20% high. Also, Mie 

theory assumes the particles are perfect spheres. Deviations from a ‘perfect’ 

representation causes a shift in the volume scattering function (VSF) that will influence 

light scattered in the backward direction more than the forward. However, the integrated 

SAX-Mie approach offers great promise for understanding the role of minerogenic 

particles in influencing the underwater light field and remote-sensing signals, and has 

the potential to address origins of backscattering in oceanic waters (Peng et al, 2009).  

 

b) Remote sensing reflectance and the ( ) ( )/bb aλ λ  relationship 

 

Ocean colour can be quantified using radiometric measurements such as irradiance 

reflectance, R or remote sensing reflectance, Rrs (Mobley, 1994; Stramski et al, 2004). 

Spectral reflectances depend on the constituents of seawater and their concentrations 

(Morel, 1974; Stramski et al, 2004). In certain circumstances, when inelastic scattering, 

such as fluorescence and Raman scattering is neglected,  the irradiance reflectance (R) 

just below the surface can be related to the backscattering coefficient (bb) and absorption 

coefficient (a)  using the apparently simple expression 

 

a
bf

wE
wER b

L
d

u
β,)(

)(
==           (2.42) 

where Eu(w) is the upward planar irradiance, Ed(w) the downward planar irradiance in 

water and  the factor fLβ is a variable function of the radiance distribution and volume 

scattering function (Morel and Prieur, 1977). It must be pointed out, however, that the  

fLβ term incorporates all the complexities associated with radiative transfer in turbid 

media, and it is rarely possible to derive values for this term analytically.  The 

alternative is to compute values numerically by solving the radiative transfer equation on 

a case-by case basis. A number of investigations using Monte Carlo techniques (Gordon 

et al 1975, Morel and Prieur 1977, Kirk et al. 1981) have demonstrated that approximate 

solutions could be found of the form 
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( )
a
bCR b

0µ≈           (2.43)

  

 

For this approximation, the term fLβ is replaced with C(µ0)  which depends on the mean 

cosine of the photon distribution just below the surface. C(µ0) is strongly correlated with 

the zenith angle of the refracted solar beam and also varies with the  VSF.  

 

The subsurface irradiance reflectance expressed in equations 2.43 and 2.44 can be 

related to the remote sensing reflectance, Rrs, as follows  

 

R
Q
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aLR

d

u
rs ==

)(
)(

         (2.44) 

    

where Lu(a) and Ed (a) are the vertical water-leaving radiance and downward irradiance 

in air just above the surface,  Q is the ratio of upwelling irradiance to radiance just below 

the surface, and T represents the optical processes involved in light crossing the air-

water interface (Mobley, 1999). The combination of equations 2.43 and 2.44 gives 
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        (2.45) 

     

This expression only holds for a restricted set of conditions, including a fixed solar 

angle, cloud-free sky and restricted range of values for the inherent optical properties.  

Under these circumstances, all of the three terms in brackets can be considered as 

approximately constant (Kirk 1994, Mobley 1999) and it is possible to write the 

approximation  
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a
bR b

rs κ≈          (2.46) 

   

 

The extent to which κ can be considered as a constant of proportionality in practice, 

varies from case to case and must be established numerically.  Nevertheless, equation 

(2.46) suggests that under typical remote sensing conditions (which include high solar 

zenith angle and cloud free conditions, Rrs is largely a function of the total 

backscattering and absorption coefficients (bb and a).  
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2.7 Summary of chapter 2 

 

 

• The absorption (a(λ)), scattering (b(λ)) and backscattering coefficients (bb (λ)) 

are the key inherent optical properties (IOPs) which, in conjunction with the 

volume scattering function (β), control the way in which light propagates in 

natural water (Preisendorfer, 1961). 

 

• Apparent optical properties (AOPs) depend on both the intrinsic optical 

characteristics of the medium (in this case water) and the directional structure of 

the ambient light field (Mobley, 1994). Unlike IOPs, apparent optical properties 

(AOPs) are not independent of changes in the radiance distribution 

(Preisendorfer, 1961). 

 

• In addition to water itself, the main optically significant materials (OSM) in 

coastal (case 2) waters are suspended mineral particles, phytoplankton cells and 

coloured dissolved organic matter (CDOM). 

 

• The equation of radiative transfer is used to describe the propagation of light in 

the water column, and in all non-trivial cases it is solved numerically (e.g. using 

HydroLight). 

 

• Particles in the ocean affect the way in which the light interacts with the water 

and consequently, remote sensing reflectance depends on the constituents present 

in seawater and on their concentrations (Morel, 1974; Stramski et al., 2004). The 

inherent optical properties for the different constituents are additive. They are 

defined as a function of wavelength and are obtained from the product of the 

concentrations of the optically significant constituents and their specific inherent 

optical properties.  
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• Total scattering, btot ( )λ  can be partitioned into the spectral forward scattering 

coefficient, bf ( )λ  and the spectral backscattering coefficient bb ( )λ  (Kirk, 1983), 

where the backscattering coefficient is usually a small fraction of the total 

scattering. Theoretical studies can be used to predict the backscattering 

coefficient and it can be measured to a reasonable degree of accuracy using  in 

situ instruments. However, such studies usually involve the assumptions that (1) 

the particles can be modelled as equivalent spheres and (2) the size distributions 

can be described by a power law. 

 
• Mineral particles are optically very significant. They can be present in great 

abundance in the water column and their high refractive index means they scatter 

light effectively (Wozniak and Stramski, 2004). There is a gradual decrease in 

the concentration of such minerals when moving from the shoreline out to deeper 

waters (Wozniak and Stramski, 2004).  
 

• Approximate relationships between remote sensing radiance signals and the 

backscattering to absorption ratio arise from simplified radiative transfer theory.  

These relationships will be investigated as a potential way to develop a spectral 

matching inversion algorithm to recover OSM concentrations from remote 

sensing reflectance signals.  
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Chapter 3 

 
Data sources and analytical methods 

 
 

The following chapter provides an overview of the procedures and techniques that were 

necessary for the construction of a realistic model of radiative transfer in an optically 

complex water column. This numerical model was required for investigating ocean 

colour interpretation algorithms based on a simplified relationship between remote 

sensing reflectance signals and the inherent optical properties (IOPs) of the water 

column. The collection and analysis of field data was not part of the work undertaken for 

the current project, but since this thesis relies heavily on a pre-existing database of field 

observations, the underlying methodologies are presented in this chapter.  The following 

topics are therefore addressed: 

 

1. The analytical methods and instruments employed in determining seawater 

optical properties.  

2. The derivation of a set of specific inherent optical properties (SIOPs), calculated 

from in situ data collected from the Western Shelf Sea of the United Kingdom. 

3. The mode of operation of the radiative transfer programme Hydrolight, which 

was used for numerical solution of the Radiative Transfer Equation (RTE), 

enabling relationships between radiance signals and IOPs to be established.  

4. The approach adopted for the construction of a look-up table (LUT) of 

reflectance spectra for a modelled ocean.  
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3.1 Cruise Information 

 

The work presented here required the calculation of SIOPs that were representative of 

the Western UK shelf seas. The data used for this purpose was recorded on previous 

ocean expeditions undertaken by the University of Strathclyde Environmental Optics 

group. These cruises encompassed 276 stations in the Clyde, Bristol Channel, Irish Sea 

and Scottish Sea Lochs (Figure 3.1). The instruments deployed included a SeaBird SBE 

19 CTD, WET Labs ac-9 absorption and attenuation meter, HOBI Labs HS-2 

backscattering meter and Satlantic SPMR profiling radiometer. 

 
Figure 3.1: The locations of the 276 stations comprising the UK shelf data set (Ian 
Brown, Strathclyde University). 
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3.2 Key optical instrumentation 

 

a) The ac-9 

The in situ spectral absorption, a(λ), and beam attenuation, c(λ), coefficients (at nine 

wavebands) were measured relative to a pure water blank using a WET Labs ac-9 

absorption and attenuation meter. The scattering coefficient, b(λ) was then obtained 

from: 

 

( ) ( ) ( )b c aλ λ λ= −        (3.1) 

 

The ac-9 has a dual path optical configuration where each channel has its own source, 

optics and detectors. The optics for the beam performing the attenuation measurement 

and absorption measurement are shown in figures 3.2 and 3.3.  A narrow band spectral 

output is created when light from a tungsten halogen bulb is collimated and then passed 

through a band-pass filter that is mounted on a continuously rotating filter wheel. This 

beam then passes through a beam splitter creating a reflected beam whose intensity is 

measured by a reference detector and a primary beam which passes into the flow tubes 

containing the sample of water. The flow tube for the attenuation measurement has a 

black internal surface which means any scattered light is absorbed and is not included in 

the measurement of transmitted intensity, and the transmitted beam is refocused through 

a lens onto the receiver detector after it reaches a second pressure window. The flow 

tube for the absorption measurement has a glass surface which results in the total 

internal reflection of forward scattered light that is collected by a diffuser and detector at 

the end of the tube (WET Labs ac-9 User’s Guide, 2008). Measurements obtained from 

an ac-9 require a scattering correction to be applied to the absorption measurements 

since all the scattered light is not collected in the absorption tube (WET Labs ac-9 

User’s Guide, 2008). 
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Figure 3.2: The optical path configuration for the measurement of attenuation. 1) Lamp 
2) 1 mm aperture 3) 6 mm aperture 4) 38 mm singlet lens 5) Interference filter 6) Beam 
splitter 7) Reference detector 8) 6 mm quartz pressure window 9) Flow tube 10) 30 mm 
singlet lens 11) Signal detector (WET Labs ac-9 User’s Guide, 2008).  
 
 

 
Figure 3.3: The optical path configuration for the measurement of absorption. 1) Lamp 
2) 1 mm aperture 3) 6 mm aperture 4) 38 mm singlet lens 5) Interference filter 6) Beam 
splitter 7) Reference detector 8) 6 mm quartz pressure window 9) Reflective flow tube 
10) Signal detector (WET Labs ac-9 User’s Guide, 2008).  
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b) The Hydroscat 2 

Optical backscattering was measured at two wavelengths (470 nm and 676 nm) using a 

HOBILabs HydroScat-2 backscattering sensor (figure 3.4). This sensor also measures 

CHL-a fluorescence at 676 nm. It has two separate channels, each with its own light 

emitting diode (LED) source. The LED enables a beam of light to be created in water 

and the receiver optics detect the light that is scattered. This beam of light is transmitted 

into the water with an approximate angle of 20 degrees to the normal and the 

divergences that occur from the source beam and the field of view of the receiver 

determine the scattering angles that the measurement is taken from. The HydroScat 

estimates the VSF at 140° which contributes to the calculation of the backscattering 

coefficient using equation 2.42 (HOBILabs User’s Manual, 2008).  HydroScat data 

processing includes a correction to compensate for the effects of light attenuation that 

occurs in the light path: 

 

( ).b bb bub K bσ=        (3.2) 

 

where, bbu is the uncorrected backscattering and ( )bbKσ  is a function of a) the sensor 

geometry and b) the IOPs of the sample volume which can be measured using an ac-9 

(HOBILabs User’s Manual, 2008).  
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Figure 3.4: HOBILabs HydroScat-2 backscattering sensor (HOBILabs User’s Manual, 

2008). 
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3.3 In situ measurements 

 

The SeaBird SBE 19 CTD was used to measure the temperature and salinity of each 

cruise station. The WET Labs ac-9 (or ac-9 plus) was calibrated using Milli-Q ultra pure 

water before collecting data for the water absorption and beam attenuation coefficients 

(anw and cnw) at nine wavebands (412, 440, 488, 510, 532, 555, 650, 676 and 715 nm). 

The ac-9 WET Labs ac-9 user manual gives details for correcting temperature and 

salinity variations between the calibration water sample and the in situ station sample. 

This correction was applied using the Sullivan et al., (2006) coefficients and CTD 

profiles. Correction for the absorption measurements were required to account for 

inefficient measurements of scattered light. This correction is referred to as the 

proportional method, defined by Zaneveld et al., (1994). This correction sets the water 

absorption at 715nm to zero, assuming negligible effects of suspended and dissolved 

particle absorption at the near-IR waveband. To obtain the non-water scattering 

coefficients (bnw) the water absorption data was subtracted from the beam attenuation 

coefficients.  

 

A HOBI Labs HS-2 backscattering meter was used to collect data for backscattering 

coefficients (bb) at two wavebands. These bands were centered on 470 nm and 676 nm. 

Coefficients of anw and bnw described above were used in conjunction with the sigma 

correction method to account for absorption and scattering. Particulate backscattering 

coefficients (bbp) were obtained by subtracting the water contribution, which was taken 

to be half the total scattering values measured by Smith and Baker (1978).  Extrapolation 

was required to overcome measurements at only two wavebands. Deployment of the HS-

2 alongside a Wet Labs ECO BB9 instrument (backscattering at nine waveband as 

opposed to 2) in subsequent cruises confirmed that linear extrapolation between the HS-

2 channels at 470 nm and 676 nm gave values within +/-20% of those measured by the 

BB9 within this wavelength range.  

 

 



56 
 

A Satlantic SPMR profiling radiometer, for the measurement of downwards-planar 

irradiance (Ed) and upward radiance (Lu), was used to collect in situ data at each cruise 

station. The profiler collected data centered on 412, 443, 490, 510, 554, 665 and 700 nm. 

SPMR casts were carried out at least 20 m from the ship to avoid shadow effects, and 

two casts were averaged for each station. As weather conditions along the Western UK 

coast is highly variable, collection of data was not always conducted in conditions 

conducive to satellite remote sensing. However, this data has been included in the 

overall data set. Values for water-leaving radiance and above-surface downward 

irradiance, which are required for calculations of remote sensing reflectance, were 

derived by extrapolating SPMR profiles through the air-sea interface using the 

expressions quoted in the Satlantic ProSoft manual.  
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3.4 Concentrations of Optically Significant Constituents  

 

Triplicate measurements were conducted for the calculation of CHL. 25mm GF/F filters 

were used for filtering in situ water samples before they were frozen and stored until 

returned to the laboratory. Extraction of phytoplankton pigments was accomplished by 

soaking the filters for 24 h in neutralised acetone at 4oC. Following this, the samples 

were centrifuged and the absorbance spectrum of the supernatant was measured, relative 

to an acetone blank, in 1 cm path length cuvettes. Acidification with dilute hydrochloric 

acid was performed and then the measurement was repeated. The trichromatic equations 

of Jeffrey and Humphrey (1975) were used to determine the Chlorophyll-a 

concentrations. 

 

Five liters of in situ  water sample was fltered through 90mm GF/F filters to obtain the 

mineral suspended particles. 500mls of distilled water was then used to rinse the filters 

before freezing them for return to the laboratory, where they were dried to a constant 

weight in an oven at 100°C. Samples were weighed in order to obtain the concentration 

of total suspended solids (TSS). The samples were then cooked in a furnace at 500 °C for 

3 hours to allow reweighing and the determination of the total mineral suspended solids 

(MSST). The use of the furnace allows for the assumption that all organic material is 

removed.  

 

For determinations of CDOM, seawater samples were filtered through 0.2 µm membrane 

filters, with the filtrate being collected in acid-rinsed glass bottles and stored under 

refrigeration. Absorption by CDOM was measured in a spectrophotometer using 10 cm 

cuvettes with UV treated ultrapure water as a reference. Care was taken to allow the 

sample and reference to reach the same temperature before the measurements were 

carried out.  
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3.5 Derivation of specific inherent optical properties (SIOPs)  

 

Specific inherent optical properties were derived using the methodology developed by 

Brown (2009).   

 

a)  Specific absorption coefficients. 

500ml of in situ water sample was filtered through a 25mm diameter Whatman GF/F 

filters to collect suspended particles. Samples were frozen and returned to the laboratory.  

Sample measurements were made using a custom-built spectrophotometer with a highly 

collimated single beam in which the filters were placed immediately adjacent to a PTFE 

diffuser backed by a photomultiplier detector. The suspended particle filters were 

moistened with filtered seawater and mounted onto a glass slide with the sample the first 

surface encountered by the illuminating beam. A clean filter was used as a blank.  

Acetone was then used to extract the pigments allowing optical density spectra to be 

measured before after, with the subtraction of these two spectra providing the 

phytoplankton pigment and non-algal particle measurements. As with the ac-9 data, 

optical densities were set to zero at 715 nm.  The relationship between filter optical 

density (ODf) and the apparent absorption coefficient (af) for the material on the filter is 

given by  

( ) ( )
V

AOD
a f
f

××
=

λ
λ

303.2
      (3.3) 

where A is the effective area of the filter and V the volume of sample filtered.  The 

apparent absorption coefficients of particles collected on glass fibre filters is known to 

be greater than that of an equivalent concentration of particles in suspension (asus), the 

two coefficients being related by a path length amplification factor β  

( ) ( )
β

λ
λ f

sus

a
a =        (3.4) 

whose numerical value varies with measurement methodology and filter loading 

(Bricaud and Stramski 1990, Lohrenz 2000). This variability could be reduced with 

Tassan and Ferrari's (1998) transmittance plus reflectance technique. For the work 
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reported here, we obtained a value for β by plotting the absorption coefficients derived 

with no pathlength compensation against the particulate absorption coefficients 

measured at the same location in situ using an ac-9.  Spectrophotometer measurements 

were averaged over the 10 nm bandwidths covered by the ac-9 for this purpose.  The 

resulting graph was clearly linear (Figure 3.5.), with a gradient derived by geometrical 

mean regression of β = 1.73 and a coefficient of determination r2 = 0.90.  This procedure 

allowed filter pad optical densities to be converted to absorption coefficients for 

phytoplankton (aph) and non-algal particulates (anap) using equations 3.3 and 3.4.  

 
 

Figure 3.5.  Apparent absorption coefficients of particles collected on filter pads, af (λ), 
plotted against particulate absorption coefficients measured in situ using an ac-9, asus 
(λ). The line, derived by geometric mean regression, has a slope of β = 1.73 and 
coefficient of determination r2=0.9. 
 

Specific absorption coefficients for phytoplankton and mineral particles, a*CHL(λ)  and 

a*MSSter(λ)) were calculated by dividing the absorption coefficients obtained from the 

analysis of samples on filters by the measured OSM concentrations. For CDOM, the 

spectral dependence of absorption was described by  
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( )
( )

( )440

440
−−= λλ Se

a
a        (3.5) 

    

(Bricaud et al. 1981) where a(440)  is the absorption coefficient at 440 nm and the 

exponent  S serves as the equivalent of an SIOP. The calculation of remote sensing 

reflectance from in situ measurements is described in section 2.6 (b) and can be defined 

as: 

Rrs ≈ κ
bbW + bbMSST

* MSST + bb CHL
* CHL

aW + aMSST
* MSST + aCHL

* CHL + aCDOM
* CDOM    (3.6) 

 

b) Specific scattering and backscattering coefficients.  

 

Currently, it is not possible to separate the different contributions to the scattering 

coefficients by the varying types of particles. However, by plotting MSST against CHL 

for all stations (Figure 3.6), it is possible to identify groups of points characterised by 

relatively high CHL and low MSST (Cluster 1) and by low CHL accompanied by high 

MSST (Cluster 2). Stations falling into these groups were selected by setting thresholds 

of CHL >4 mg m-3 for Cluster 1 and MSST >4 g m-3 for Cluster 2.  

 
Figure 3.6: Particulate backscattering at 676 nm (bbp676) plotted against total suspended 
mineral concentrations (MSST).   
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Cluster 1 stations were located mainly in deep Scottish sea lochs, which generally have 

low concentrations of suspended sediment, while those in Cluster 2 were from relatively 

shallow, coastal areas of the Irish Sea and Bristol Channel with high suspended sediment 

concentrations.  It was assumed therefore, that the scattering properties of Cluster 1 were 

primarily determined by phytoplankton cells (measured as CHL) and those of Cluster 2 

by mineral particles of a terrigenous origin (MSSter). Specific scattering coefficients, 

b*MSSter(λ) and b*CHL(λ) and backscattering coefficients, bb*MSSter(λ) and bb*CHL(λ), 

for these two classes of material were estimated from the ratio of IOPs to OSMs for the 

stations in the two groups. The remaining stations (Cluster 3) were not classifiable as 

being dominated by phytoplankton or suspended sediment.  Most of these stations were 

located in areas of the Irish Sea with depths over 30 m, and optical microscopy indicated 

that they contained a high proportion of colonial diatoms.  We conclude that a 

significant fraction of the MSST measured at these stations consists of biogenic minerals 

in the form of diatom frustules and that the contribution of this material to scattering and 

absorption should logically be include in the phytoplankton-related CHL component.  

 

c) Derived SIOPs 

The set of specific inherent optical properties derived by the methods described above 

were used as an initial basis for radiative transfer modeling. They are illustrated in 

Figure 3.7 and 3.8, and listed in Table 3.1 below.  Table 3.2 gives inherent optical 

properties for pure water in the same wavebands, using absorption data from Pope and 

Fry (1977) and scattering data from Smith and Baker (1978). 
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a)           b)  

 

 

 

 

 

 

 

 

Figure 3.7 a) Chl a specific absorption coefficients, a*
CHL(λ) and MSS-specific 

absorption coefficients, a*
MSS(λ) . (b) CDOM-specific absorption coefficients, a*

CDOM(λ).  
 
 
 

 

 

  

 

 

 

 

 

 
Figure 3.8: Mean specific scattering for Chl, b*

CHL(λ), and MSS, b*MSS(λ). Evidence of 
anomalous dispersion is present where minima occur in the scattering cross sections 
associated with the chlorophyll absorption peaks (Gordon et al, 2009). 
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Table 3.1: Specific inherent optical properties for the three optically significant 
materials at SeaWiFs wavebands derived from cruises in the Bristol Channel and Irish 
Sea 
 
 

Table 3.2: Specific inherent optical properties for pure seawater at SeaWiFs wavebands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wavelength 
(nm) 

a*CHL 
(m2 mg-1) 

bb*CHL 
(m2 mg-1) 

b*CHL 
(m2 mg-1) 

a*MSS 
(m2 g-1) 

bb*MSS 
(m2 g-1) 

b*MSS 
(m2 g-1) 

a*CDOM 
 

412 0.036 0.0012 0.0509 0.071 0.0154 0.3134 1.556 
443 0.038 0.0012 0.0395 0.057 0.0145 0.3226 0.969 
489 0.025 0.0012 0.0464 0.041 0.0133 0.3305 0.503 
510 0.02 0.0011 0.0482 0.035 0.0127 0.334 0.386 
555 0.011 0.0011 0.0544 0.022 0.0115 0.334 0.226 
665 0.024 0.0011 0.0435 0.005 0.0086 0.3435 0.036 
700 0.013 0.0011 0.0516 0.001 0.0077 0.3428 0.009 

Wavelength 
(nm) a*water bb*water b*water 

412 0.005 0.0033 0.0067 
443 0.007 0.0024 0.0048 
489 0.015 0.0015 0.0031 
510 0.033 0.0013 0.0026 
555 0.059 0.0009 0.0019 
665 0.425 0.0004 0.0008 
700 0.624 0.0003 0.0007 
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3.6 HydroLight 

 

Hydrolight is a numerical software programme that solves the time independent, integro-

differential radiative transfer equation to obtain the radiance distribution and derived 

quantities within and leaving any plane-parallel water body (Mobley and Sundman., 

2001).  To allowed different water bodies and different environmental conditions to be 

examined, IOPs that were representative of the coastal shelf of the UK were used as 

input parameters for Hydrolight modelling.  The program  has a built in graphical user 

interface (GUI) where a user can manually input the desired parameters including; 

absorbing and scattering properties, sky spectral radiance distribution and boundary 

conditions. However, the use of the GUI heavily restricts the number of runs that can be 

done as manual input imposes a significant time burden and also increases the chances 

of human error.  

 

To bypass the Hydrolight GUI, Matlab scripts were written during the course of this 

project to streamline the input and output processes of Hydrolight.  This approach had 

the following advantages: 

1. Manual input using the GUI generates an I.txt file that has standard information 

for each run and also specific information relating to the selected input 

parameters. The Matlab script allowed the user to specify multiple values for 

cloud cover, solar angle and wind speed and then generated the required number 

of I.txt files in a few seconds. The Hydrolight program could then be run from 

these files. 

2. The output files that are created from each run are in text format. The Hydrolight 

programme supplies an Excel macro to process this data but again, this is 

incredibly time consuming. Consequently, a Matlab script was created that 

selected the required information automatically and processed it into one output 

file. This reduced the manual burden of processing and removed human errors 

that can occur from copying and pasting data between files. A detailed flow chart 

of the processes used in this work is presented in figure 3.9. 
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Figure 3.9. Flow diagram illustrating the use of the  Matlab scripts used in this thesis. 

‘I’ files that are required for batch runs in Hydrolight need to be 
generated. 

C:\Documents and Settings\Administrator\My Documents\MATLAB is the 
location of all Matlab scripts that are required 

The ‘generate2.M’ script performs this function. However, this script is designed specifically 
for set parameters. It is therefore recommended that if the parameters change from those 

included in this script, one run for the parameters required is made and any alterations needed 
are completed before generating a large quantity of ‘I’ files. Lines 50 and 60 include the 

location of the required Synthetic AC9 and HydroScat data, respectively. 

N.B. The naming system for the synthetic AC9 and HydroScat data are incorporated 
into the script. Thus, must be altered at line 50 and 60 should the naming system or 

directory change. Please refer to the script for additional information. 

Once the ‘I’ files have been generated, they must be located in the correct directory: 
C:\H42\run\batch 

This can be done automatically, just ensure that this location is open in the current directory 
when running the ‘generate2.m’ script. 

Before the batch run can proceed, the run list, located in  
C:\H42\run 

 Must be completed with the list of I files you wish to run. 
In addition to this, FOR files corresponding to the name of the ‘I’ files must be generated in 

C:\H42\maincode\batch  
 

Hydrolight can now be run from C:\H42\run 

Following completion of the Hydrolight runs, the ‘output’ script can be run to generate 
a library of nLw, absorption, scattering and backscattering data. 

Script Searching Methods 

Searchint Searchnorm555 Searchnormpeak 
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The use of Matlab scripts allowed a large number of radiative transfer calculations to be 

performed without the significant time expenditure incurred using the GUI to manually 

set up each individual Hydrolight run. Radiative calculations were performed using the 

SIOPs listed in table 3.1 and the range of constituent concentrations listed in table 3.3. 

Hydrolight performed linear interpolations between the inherent optical properties 

supplied if this was required by the specification of the ouput wavebands. A new 

Fournier-Forand phase function was selected by Hydrolight when the bb/b ratio varied 

by a specified amount (0.0005). The constituent combinations used (see Table 3.3) 

resulted in 1331 radiative calculations being performed for predefined environmental 

conditions that were based on cloud cover, wind speed and solar angle. 

 

To assess the effect of environmental conditions (solar angle, cloud cover and wind 

speed) on the estimation of remote sensing signals, a variety of scenarios were 

investigated. Hydrolight simulations described above were repeated for every 

combination of environmental factor listed in table 3.4. This resulted in radiance 

distribution libraries for 75 different environmental conditions. 

 
Constituents Range Interval 

CHL 0 – 20 mg/m3 2 mg/m3 

MSS 0 – 20 g/m3 2 g/m3 

CDOM 0 – 1 m-1 0.1 m-1 

Table 3.3. Range and intervals of the OSM concentrations used to perform radiance 
calculations in Hydrolight. 
 
 
Environmental Condition Range 

Solar angle 25°, 35°, 45°, 55°, 65° 

Cloud Cover 0%, 20%, 50%, 80%, 100% 

Wind speed 1.1 m/s, 3.1 m/s, 5.1 m/s 

Table 3.4. Range of environmental conditions used to perform radiative transfer 
calculations in Hydrolight. 
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3.7 Summary of Chapter 3 

 

1. SIOPs were derived from in situ measurements collected from cruises that covered 

areas of the Western UK shelf seas including the Irish Sea and some Scottish Sea lochs. 

Spectral absorption and beam attenuation coefficients (at nine wavebands) were 

measured using a WETLabs ac-9 in situ absorption and attenuation meter which enables 

the calculation of the scattering coefficient.  Optical backscattering was measured at two 

wavelengths (470 nm and 676 nm) using a HOBILabs HydroScat-2.  

 

2. Matlab scripts were constructed to overcome the time burden of using the Hydrolight 

GUI and allow the efficient generation of runs for extensive combinations of input 

parameters. Hydrolight calculations were used to derive remote sensing reflectance 

spectra for a realistic range of constituent concentrations and environmental conditions. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



68 
 

Chapter 4 

 
Relationships between Rrs, IOPs and 

seawater composition 
 

 
 
This chapter investigates relationships between the ratio of the backscattering and 

absorption coefficients (bb ( )λ / a ( )λ ), the normalized water leaving radiance (nLw (λ)) 

and the remote sensing reflectance (Rrs (λ)). Hydrolight was used to create extensive sets 

(which will be referred to as libraries) of nLw(λ) and Rrs(λ) spectra that corresponded to 

specific spectral vaues of bb ( )λ / a ( )λ  (and by implication, optically significant material 

(OSM) concentrations). The libraries were created using the IOPs and procedures 

explained in chapter 3.  They allowed the influence of the OSMs on the relationship 

between bb ( )λ / a ( )λ  and Rrs(λ) to be explored for modelled data that were 

representative of the Western UK Shelf Sea. To overcome the time constraints 

associated with large numbers of Hydrolight runs, and to address the problem of LUT 

resolution, relationships were derived for bb ( )λ / a ( )λ : nLw and bb ( )λ / a ( )λ : Rrs. 

These relationships allowed an LUT of bb ( )λ / a ( )λ  vectors (consisting of values in 

seven wavebands), with their corresponding OSM concentrations, to be generated 

quickly in MATLAB for any range of constituents required. A remote sensing 

reflectance signal could therefore be converted to a bb ( )λ / a ( )λ  signal using the 

generated relationship and then matched to a high resolution LUT to recover the 

appropriate OSM concentrations.  
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4.1 The effects of OSM concentrations on radiance signals  
 
 

The spectral library generated for the range of constituents modelled in Hydrolight (table 

3.3) is displayed in figure 4.1 for both nLw (λ) and Rrs (λ) signals. These graphs show a 

large spread in the radiance values for the range of OSM concentrations used (CHL 0 mg 

m-3 to 20 mg m-3, MSS  0 g m-3 to 20 g m-3 and CDOM 0 m-1 to 1 m-1).  To explore the 

individual effects of these OSM concentrations, i.e. the way in which they drive radiance 

signals a smaller selection of the Rrs(λ) spectra is shown in figure 4.2a. This graph shows 

Rrs (λ) spectra for CHL set to 2 mg m-3 , with  CDOM ranging from 0 m-1 to 1 m-1 and 

for fig.4.2b, MSS ranging from 0 g m-3 to 20 g m-3. The plots in Fig. 4.2a do not include 

MSS, and so the variation between the spectra is caused by CDOM. Increasing the 

concentration of CDOM from 0 m-1 to 1 m-1 reduces the radiance signal in all 

wavebands, as indicated by the arrow. In Figure 4.2b, where the variation is due to MSS, 

individual spectra converge at the red end of the spectrum into distinct groups, 

highlighted by red circles. Each of these groups represents a different concentration of 

MSS, and the arrow indicates the increase in the Rrs (λ) produced by increasing the 

concentration of this constituent from 0 g m-3 to 20 g m-3.  The contrasting effects of 

MSS and CDOM on the radiance signals may be explained by the fact that changes in 

MSS affect absorption, scattering and backscattering whereas changes in CDOM affect 

only absorption (Kirk, 1994).  
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Figure 4.1: The distribution in the remote sensing signals of Rrs and nLw for the full 
range of constituent concentrations: CHL 0 mg m-3 to 20 mg m-3, MSS 0 g m-3 to 20 g m-

3 and CDOM ranging from 0 m-1 to 1 m-1.  
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Figure 4.2: Rrs spectra representing varying OSM concentrations: a) CHL fixed at 2 mg 
m-3 with CDOM increasing from 0 m-1 to 1 m-1

 b) CHL fixed at 2 mg m-3 with MSS 
ranging from 0 g m-3 to 20 g m-3. The arrows indicate the effects of increasing the 
concentrations of the individual constituents on the overall spectral distribution. 
 
 
 
 
 

a. b. 
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a) Relationship between bb ( )λ / a ( )λ  and Rrs 

In order to avoid extensive radiative transfer calculations using Hydrolight, the 

possibility of establishing relationships between bb ( )λ /a ( )λ  and Rrs was investigated. 

For simplicity, linear approximations to these relationships were derived initially. It was 

later found that polynomial relationships yielded better inversion results for the purposes 

of spectral matching, and this is discussed further in Chapter 5. The process involved the 

following stages: 

1. Hydrolight runs were performed for the range of concentrations and 

environmental conditions listed in table 3.3 and 3.4. 

2. Best-fit linear relationships were established at 7 (SeaWiFs) wavelengths 

between bb ( )λ / a ( )λ  and Rrs(λ).  

Figure 4.3 illustrates the relationship at each wavelength and provides evidence of slight 

wavelength dependence. Table 4.1 lists the gradients and R2 values for these 

relationships. This confirms the wavelength dependence and shows that the R2 values are 

over 0.99 for each wavelength, indicating a good linear fit. Hydrolight inputs are 

predominately controlled by the user, who supplies a file in AC-9 format containing the 

absorption and attenuation coefficients and a file in HydroScat format containing the 

backscattering coefficients. Hydrolight then selects a wavelength-dependent phase 

function from the available Fournier-Forand functions (Fournier and Forand, 1994) with 

a bb/b(λ) ratio obtained from the user supplied HydroScat and AC-9 data files. In order 

to determine if wavelength dependence in the phase function selected could account for 

the slight variation evident in the Rrs(λ) against bb/a (λ) spectra, use was made of an in-

built option of specifying a fixed bb/b(λ) ratio, which in turn results in a constant phase 

function. The effect of fixing the phase function on the relationship between Rrs(λ) and 

bb/a(λ) is displayed in figure 4.4 (values are listed in table 4.2). These result show a near 

perfect linear relationship which is supported by the R2 values. The gradients all fall 

between 20.3 and 21 giving a gradient variation of only 0.9 in comparison to the 2.1 
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variation when the phase function is not fixed (table 4.1). The bb/b ratio used to fix the 

phase function was calculated by averaging the bb and b values obtained from the 

Hydrolight outputs that were originally used to build the relationships between Rrs and 

bb/a. This bb/b ratio was calculated as 0.0343. 

Rrs

0.000 0.005 0.010 0.015 0.020 0.025 0.030

b b
/a
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555nm 
665nm 
700nm 

 
Figure 4.3: Relationship between bb/a (λ) and Rrs (λ) when Hydrolight is allowed to 
select a new phase function at each waveband. 
 
 
 
 

  
412 nm 

 
443 nm 489 nm 510 nm 555 nm 665 nm 

 
700 nm 

 
 

Gradient 21.44 20.81 20.27 20.03 19.56 19.30 19.31 
 

R2 0.9952 0.999 0.9995 0.9995 0.9997 0.9991 0.9988 
 
Table 4.1. Gradient and R2 values for the relationships between bb/a (λ) and Rrs (λ) when 
Hydrolight selects for a new phase function at each waveband. 
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Figure 4.4: Relationship between bb/a (λ) and Rrs (λ) when a fixed phase function is 
employed. 
 
 
 

  
412 nm 

 
443 nm 489 nm 510 nm 555 nm 665 nm 

 
700 nm 

 
 

Gradient  20.71 20.52 20.34 20.38 21.02 20.63 20.51 
 

R2 0.9998 0.9999 1 1 .9995 0.9998 0.9999 
 
Table 4.2. Gradient and R2 values for the relationships between bb/a (λ) and Rrs (λ) when 
the function is fixed. 
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b) Relationship between bb ( )λ / a ( )λ  and nLw 

The normalized water leaving radiance (nLw) is derived using: 

 

( ) ( )
( )

( )λ
λ
λ

λ 0FE
LnLw
d

W=         (4.1) 

 

where F0, the extraterrestrial solar irradiance, is corrected for the earth–sun orbital 

distance and eccentricity. The extraterrestrial solar irradiance values were taken from the 

Gregg and Carder (1990) sky irradiance model. The Fo term accounts for the attenuation 

that occurs within the atmosphere and the radiation from the sky. This attenuation is due 

to absorption and scattering by marine aerosols, Rayleigh scattering by atmospheric 

gases, and absorption by ozone, oxygen and water vapour. In cloud-free conditions, the 

solar energy that reaches the sea surface is predominantly derived from the direct solar 

beam that remains after these processes occur (Kirk, 1983).  

 

Computed relationships between (nLw) and bb ( )λ / a ( )λ  are shown in Figure 4.5. A 

large part of the spectral variation that is evident in this relationship is due to the 

extraterrestrial solar irradiance value F0, whose wavelength dependence is shown in 

figure 4.6. 
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Figure 4.5: bb/a(λ) against nLw (λ)for the 7 SeaWIFs wavelengths. A significantly 
different gradient was observed for three of the wavelengths (412nm, 665nm and 
700nm). 
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Figure 4.6: The extraterrestrial solar irradiance value F0 which accounts for the 
attenuation that occurs within the atmosphere and the radiation from the sky. These 
values are used to normalise Rrs (λ) signals. 
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c) Comparison of the bb ( )λ / a ( )λ : Rrs and bb ( )λ / a ( )λ : nLw relationship 
when the phase function is fixed 
 
 
The variation between wavelengths for the bb ( )λ / a ( )λ : nLw Hydrolight results is 

shown in figure 4.5. Using the wavelength with the highest gradient value, which was 

found to be 555nm, the percentage difference between that and the gradient values of 

412, 665 and 700 nm was 13%, 16% and 25%, respectively, where the other 

wavelengths show a less than 3% deviation from 555nm. Table 4.3 lists these percentage 

differences, as well as the observable differences when the normalisation step is 

removed and the bb ( )λ / a ( )λ : Rrs (λ) relationship is used.  

 

  

412 nm 

 

443 nm 

 

489 nm 

 

510 nm 

 

555 nm 

 

665 nm 

 

700 nm 

 

bb/a:nLw 

 

13% 

 

<3% 

 

<3% 

 

<3% 

 

Base 

 

16% 

 

25% 

 

bb/a:Rrs 

 

9% 

 

6% 

 

3% 

 

2% 

 

Base 

 

1% 

 

1% 

 
Table 4.3: The percentage differences between the gradients for the normalised and 
non-normalised relationships using 555 nm as a reference value. 
 

 

Removing the normalisation step has resulted in a gradient difference of 9%. in the blue 

waveband (412 nm), with a gradual decrease towards the red wavelengths (700nm). 

While the removal of the normalisation step significantly reduced the variation between 

the gradients, there still remained a significant difference between the wavelengths. 

Although fixing the phase function with the bb ( )λ / a ( )λ : Rrs resulted in a tighter 

relationship between wavelengths (Table 4.4), the effect of fixing the phase function on 
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the bb ( )λ / a ( )λ : nLw relationship had no impact on the gradient distribution (Table 

4.5).  

 

 
Table 4.4: The percentage difference in gradient (from 555 nm) when the normalization 
step is removed and the phase function is fixed. 
 

 
 

412 nm 

 

443 nm 

 

489 nm 

 

510 nm 

 

555 nm 

 

665 nm 

 

700 nm 

 

10% 

 

0.9% 

 

2% 

 

2% 

 

Base 

 

17% 

 

25% 

 
Table 4.5: The percentage differences in gradient (from 555 nm) for the bb ( )λ / a ( )λ : 
nLw relationship, for a fixed phase function. 
 

 

d) The effect on the bb ( )λ / a ( )λ : Rrs relationship when the phase 
function is altered 
 

To assess how altering the phase function affects the relationships of bb ( )λ / a ( )λ : Rrs 

with respect to the gradient deviations between wavelengths, the phase function was 

altered by plus and minus five and ten percent (of the original value) and the Hydrolight 

runs were repeated. The percentage differences in the gradients from the 555 nm value 

are given in table 4.6. It can be seen that altering the phase function does have an effect 

on the values of the gradients.  
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Variation 

 
412 nm 

 
443 nm 

 
489 nm 

 
510 nm 

 
555 nm 

 
665 nm  

 
700 nm 

 
+5% 

 
3% 

 
4% 

 
4% 

 
4% 

 
Base 

 
2% 

 
3% 

 
-5% 

 
0.4% 

 
1% 

 
3% 

 
3% 

 
Base 

 
2% 

 
2% 

 
+10% 

 
4% 

 
5% 

 
5% 

 
4% 

 
Base 

 
3% 

 
3% 

 
-10% 

 
0.8% 

 
0.4% 

 
2% 

 
2% 

 
Base 

 
1% 

 
1% 

 
0% 

 
1% 

 
2% 

 
3% 

 
3% 

 
Base 

 
2% 

 
2% 

 
Table 4.6: The percentage difference in gradients when the normalization step is 
removed and the phase function is altered by the percentage indicated in the left hand 
column. 
$
The normalisation step has therefore been shown to have a significant influence on the 

relationship of bb ( )λ / a ( )λ : Rrs, which may be partly explained by the wavelength 

dependence of the extraterrestrial solar irradiance. However, following the removal of 

the normalisation step, gradient variation across the wavelengths was significantly 

reduced but was still present. It has been shown that this may be attributed to the 

changes in phase function. A fixed phase function was shown to result in a very small 

percentage difference when the normalisation step was removed, and varying the phase 

function introduced increased percentage differences in the positive direction (table 4.6).  

Gordon  (1983) demonstrated that the relationship between Rrs and bb/a  depends on the 

angular distribution of the underwater light field, which is partly a function of the phase 

function but also depends on the input light field. These relationships are explored 

further in Chapter 5. 
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4.2 Converting an Rrs signal to a bb / a vector 

 

At this stage in the analysis, linear relationships have been generated which could be 

used to convert an Rrs (λ) observation to a corresponding bb ( )λ / a ( )λ ratio. Table 4.7 

shows representative linear relationships for a solar angle of 45°, wind speed of 3.1 ms-1 

and zero cloud cover. These relationships allow an observed Rrs spectrum to be 

converted waveband by waveband to bb/a (λ) values and matched to entries in an LUT of 

bb ( )λ / a ( )λ vectors generated in Matlab from triplet concentrations of OSMs. (Later, 

for the purposes of spectral matching, it is shown that polynomial relationships yielded 

rather better inversion results: see Chapter 5.) 

 

 

  
412 nm 

 
443 nm 489 nm 510 nm 555 nm 665 nm 

 
700 nm 

 
m 

 
21.4239 20.69417 20.128 19.92828 19.57386 19.01585 19.00808 

 
c 0.000851 0.003366 0.005123 0.005687 0.006055 0.007611 0.006966 

 

Table 4.7: The values required to convert an Rrs (λ) signal into a bb/a (λ) vector based 
on the linear relationship y mx c= + . 
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4.3 Environmental Variability 
 

In view of the potential spatial and temporal variability in meteorological conditions 

during the acquisition of remote sensing data, the effect of environmental variability on 

the relationship of bb ( )λ / a ( )λ vs. Rrs (λ) was investigated. 75 Hydrolight libraries were 

created using the SIOPs and procedures described in chapter 2. The different 

combinations of environmental conditions are listed in table 3.3. Figure 4.7 illustrates 

that the resulting variability in the Rrs(λ) signals is relatively low, with the maximum 

difference of 5% occurring at 550 nm.  
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Figure 4.7: This graph represents the distribution across the 75 combinations of 
environmental conditions derived from Table 3.3 for the Rrs(λ) signal. The remote 
sensing signal for each environmental condition was calculated for a water body with the 
following constituent concentrations: 4 mg/m3 for CHL, for 6 g/m3 MSS and 0.3 m-1 for 
CDOM.  
 



81 
 

Figure 4.8 shows the variability in the gradient m for the 75 combinations of 

environmental conditions. The plots highlighted in red represent environmental 

conditions (such as limited cloud cover and a solar angle between 35 and 55 degrees) 

that would be conducive to satellite monitoring of an area. The spread of the gradients 

appears small but becomes more pronounced towards the red end of the spectrum. The 

individual effects of the solar angle, cloud cover and wind speed are shown in Figures 

4.9 to 4.13. These graphs suggest that the environmental factors that have most effect on 

the bb ( )λ / a ( )λ  vs Rrs(λ)  relationships are the solar angle (figure 4.9) and cloud cover 

(figure 4.10) with obvious exceptions when the cloud cover is 100% (figure 4.10).  
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Figure 4.8: Variations in m for all 7 SeaWiFS wavelengths for the 75 environmental 
combinations that were investigated. Those highlighted in red represent conditions that 
are conducive to satellite observations. 
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Figure 4.9: This graph depicts the changes in gradient for the relationships between Rrs 
(λ) and bb/a (λ) (at each wavelength) when only the solar angle is altered. Showing that, 
overall, the solar angle has the greatest effect on the relationship. 
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Figure 4.10: This graph represents the effects of altering only the cloud cover as an 
environmental condition. The solar angle and wind speed have been held constant and 
45° and 3.5ms-1 respectively.  
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Figure 4.11: Modeled data shows the effect of varying solar angle when the cloud cover 
is 100%. The other cloud cover parameters of; 0, 20%, 50% and 80% present the same 
distribution as seen in figure 4.10.  
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Figure 4.12: The combined effect of altering cloud cover and wind speed on the 
relationship between Rrs (λ) and bb/a (λ). The spread seen within the same colour bands 
is due to altering cloud cover. Wind speed seems to have little effect on the distribution.  
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Figure 4.13: This figure displays the effects of altering wind speed at each solar angle.  
It is evident that wind speed has very little effect within each solar angle but that once 
again, altering the solar angle clearly alters the gradient and therefore, the relationship 
between Rrs (λ) and bb/a (λ).  
 
 
For remote sensing inversion, it was necessary to evaluate the importance of converting 

an Rrs signal to a bb/a value waveband by waveband as opposed to applying a single 

inversion relationship for all wavebands. Figure 4.14, which displays the linear 

relationships of bb ( )λ / a ( )λ  vs Rrs (λ) for the different wavebands (including varying 

environmental conditions), suggests that it is necessary to use waveband-specific 

relationships. Also, a selection process could usefully be incorporated into the inversion 

process, whereby the user is able to select relationships that best suit the environmental 

conditions under which data were collected. This process shall be discussed in greater 

detail in chapter 5.  
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Figure 4.14: Representation of the 
variation of relationships between Rrs(λ) 
and bb/a (λ) evident across the SeaWiFS 
wavelengths for all 75 environmental 
combinations. These relationships are 
necessary for our model to invert an Rrs 
(λ) signal to obtain concentrations of 
OSMs.
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4.4 Summary of Chapter 4 
 

 

• A wavelength dependency was identified when normalized water leaving (nLw) 

spectra obtained by radiative transfer calculations were plotted against the bb ( )λ
/ a ( )λ  values used as inputs for these calculations. 

 

• A much tighter relationship between bb ( )λ / a ( )λ  and Rrs was obtained by the 

removal of the normalisation step and fixing the phase function. 

 
• The effects of environmental variability on the relationship between bb ( )λ / a

( )λ  and Rrs was investigated for 75 combinations of environmental conditions 

(solar angle, cloud cover and wind speed).  The maximum calculated variability 

in Rrs signals for a given set of bb/a  values was 5%  at 550 nm.  

 

• The wavelength dependence that has been demonstrated in the gradients of the 

linear relationships between bb ( )λ / a ( )λ  and Rrs means Rrs signals will be 

converted to a bb/a vector wavelength by wavelength for the purposes of spectral 

matching. 

 

• A selection step will be incorporated in the inversion process developed in 

Chapter 5, whereby the user is able to select environmental conditions that best 

suit the conditions of data collection.  
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Chapter 5 

 
Look up tables (LUTs) and the various 

available approaches to spectral matching 
 

 
 

In this chapter, the use of a LUT, coupled with a spectral matching inversion algorithm 

for the retrieval of OSMs is tested using modeled spectra as inputs. Performing such 

controlled matches is an important assessment of the robustness of the inversion 

technique before it is applied to in situ remote sensing reflectance data. This chapter will 

look at the results that are obtained when an Rrs signal from a modeled ocean, generated 

using HydroLight, is converted to a bb ( )λ / a ( )λ  vector (i.e. a set of waveband-specific 

values) and then matched to a LUT of bb ( )λ / a ( )λ vectors generated from known 

constituent concentrations. A detailed description of the spectral matching procedure is 

given, followed by the results that led to an environmental selection step being included. 

This step allows the user to select the inversion relationship between bb ( )λ / a ( )λ  that 

best suits the environmental conditions at the time when the data was collected. The 

effects of varying LUT resolution, as well as the number of spectra to be matched, will 

be tested with respect to the search times of the spectral-matching look-up table 

procedure. The various spectral matching algorithms that are available are also 

discussed.  
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5.1 Look-up table (LUT) principles 

 

The inversion of remotely sensed data for the purposes of ocean color interpretation by 

spectral matching typically involves three stages:  

 

i. Construction of a forward model for the generation of a spectral library that will be 

used for matching purposes 

ii. Selection of an objective function that describes the disparity between the input 

spectrum and an entry in the spectral library  

iii. Development of a search algorithm that optimizes the match by minimizing the 

objective function.  

 

Look-up tables have frequently been adopted in data inversion problems due to the way 

in which they allow large volumes of data to be effectively represented.  Liu and Miller 

(2008) and Mobley et al. (2005) were among the first to use a LUT for a spectral 

matching approach in ocean color remote sensing. The approach presented here to 

resolve the inversion of Rrs signals is similar to that adopted by Mobely et al. (2005). 

The obvious way to tackle the problem of Rrs inversion was to create a look-up table 

(LUT) of Rrs spectra using radiative transfer calculations that encompassed the range of 

OSM concentrations likely to be found in shelf seas. This LUT could then be 

interrogated to identify matches to the initial ‘observed’ spectrum or spectra. However, 

the quality of the matches achieved depends on the spacing of the LUT entries. The 

construction of a table with sufficient resolution to be useful in practice would require a 

very large number of entries.  If these entries were obtained from radiative transfer 

calculations performed in Hydrolight, a great deal of computing time would be required. 

A possible solution to this problem can be found in the relationship between bb/a and Rrs 

which was explained in section 2.4 and is displayed in equation 5.1, 

 

  
  ,

2

(1 ) ( ) ( )( ) :
( ) ( )

F L b b
rs

r f b bR G
n Q a a

β λ λ
λ

λ λ

−
= × ×        (5.1) 
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where, the variable, f
Q

 is dependent on the optical properties of the water (f), the 

angular distribution of the upwelling light field and the volume scattering function 

(Chami et al., 2006; Chang and Whitmire, 2009). Consequently, using this relationship, 

the spectral character of the light leaving the ocean is strongly dependent on the ratio of 

( ) ( )/bb aλ λ  (Gordon and Morel, 1983; Morel and Prieur, 1977).  If G, which can be 

considered as a constant only as a crude approximation under restricted circumstances, is 

known as a function of wavelength, then observed Rrs values can be uniquely mapped on 

to bb/a values. It is then only necessary to generate an LUT of bb/a vectors in wavebands 

matching those of the Rrs observations. This is easily performed using the products of 

the OSM concentrations and the relevant SIOPs (table 3.2 and 3.3). 

 

The LUT for this work was therefore calculated by using expressions of the form shown 

in equations 3.2 and 3.3 to generate total bb and a values from the SIOPs listed in table 

3.1. The range of OSM concentrations covered was as follows: 0-10 mg m-3 for CHL, 0-

10 g m-3 for MSS and 0-1 m-1 for CDOM. The numerical increments between 

calculations were 0.1 for CHL and MSS and 0.01 for CDOM. The result was a high 

resolution library of 1,030,301 bb/a vectors covering the 7 SeaWiFs wavebands. The 

LUT was created in MatLab. 
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5.2 The spectral matching procedure used in this thesis 
 
 
The LUT and spectral matching inversion procedure that was implemented in this work 

is outlined in figure 5.1 and described below. This procedure was used for the retrieval 

of OSM concentrations, the investigation of environmental variability, error analysis and 

the examination of the effects that spatial and SIOP variability has on OSM 

concentration retrievals.  

 

First, an Rrs signal or signals is obtained for an area of interest, and these signals are 

entered as the ‘unknown’ spectra that are to be matched to the LUT. The Matlab 

program that performs the spectral matching is then launched and the user is provided 

with several options. The number of spectra to be matched must be specified and then 

the environmental conditions that best match the conditions under which the signal or 

signals originate must be selected. There is a choice of five solar angles and cloud cover 

parameters and three wind speeds (table 3.3). The spectral matching routine employs 

this environmental data to select the best polynomial bb ( )λ / a ( )λ : Rrs relationship for 

the signal inversion. Section 5.3 details the variation in these relationships for the 

different environmental conditions.  The Rrs data is then converted to bb ( )λ / a ( )λ

spectra, wavelength by wavelength, using the 3rd order polynomial relationships 

described in section 5.3. 

 

The spectra are then matched to the LUT of bb ( )λ / a ( )λ  vectors using a matching 

procedure that is based on the calculation of the root mean square error (RMSE) 

averaged across all the wavebands. The best match is taken to be the one with the lowest 

RMSE. Finally an output file is created with the best OSM constituent retrievals for the 

given Rrs signal or signals.  
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Figure 5.1: An overview of the spectral matching procedure that occurs for the 
inversion of an Rrs  (λ) signal to obtain OSM concentrations. 

Rrs 
Signal 

Environmental selection for inversion relationship: 
1. User selects a solar angle that best represents region 

of study: 25°, 35°, 45°, 55° or 65°. 
2. User selects the cloud cover that best represents 

region of study: 0%, 20%, 50%, 80% or 100%. 
3. User selects the wind speed that best represents 

region of study: 1.1 m/s, 3.1 m/s or 5.1 m/s 

bb/a(λ) spectrum 

LUT of 1,030,301 bb/a(λ) vectors with 
corresponding constituents (SeaWiFS 

wavebands) 

Constituent retrieval for 
a given Rrs (λ) signal 

 
Wavelength defined 

polynomial relationships  

The matching is based on 
calculating the Root Mean Square 
Error (RMSE) averaged across all 
the wavebands by simple least 
squares searching 
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The matching of seven-waveband “observed” vectors with entries in the LUT was based 

on the calculation of the root mean square error (RMSE) averaged over all wavebands. 

This measure of spectral distance differs from the one used by Defoin- Platel and Chami 

(2007) who calculated the maximum fractional difference waveband by waveband. For a 

single observed vector, the calculation of all RMSE values took a few seconds using 

MATLAB on a desktop computer: the time required could be significantly reduced by 

optimising the software used. The RMSE is calculated by: 

 

 

xrmse λ( ) =
x λ( )library − x λ( )observed( )

2

∑
λn

               (5.2) 

 

Where λn is the total number of wavelengths (7 SeaWiFs), libraryx  refers to each of the 7 

wavelengths in the LUT of 1,030,301 bb/a vectors and observedx  is the unknown spectrum 

(at each wavelength), for which a constituent retrieval is required. 
 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

5.3. Variability in the bb ( )λ / a ( )λ : Rrs relationship used for spectral 
matching. 
 
The relationships between bb ( )λ / a ( )λ : Rrs that are used to convert an Rrs signal to a 

bb/a spectrum are based on 3rd order polynomials (equation 5.3) and are derived from the 

relationships displayed in figure 4.14. Polynomial expressions were used because it was 

discovered they gave slightly more accurate OSM retrievals (approximately 10%) than 

straight lines when tested using modeled data.  

 
3 2y ax bx cx d= − + +          (5.3) 

 
With a, b, c and d calculated at each wavelength for the 75 environmental combinations 

that are given in table 3.3. Figure 5.7 and tables 5.1 to 5.4 show the variability that can 

arise with these parameters when the environmental conditions are altered. It is this 

variability that led to the inclusion of environmental selection in the spectral matching 

routine (figure 5.1) for the inversion of an Rrs signal. This means a relationship is 

selected for environmental conditions that best fit the conditions present when in situ or 

satellite data is recorded. 
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Figure 5.2: Variability that occurs between the polynomial components, a, b, c and d for 
the relationship between bb ( )λ / a ( )λ and Rrs when the environmental conditions are 
altered. The combinations of environmental conditions used are given in table 3.3. The 
variation in these coefficients is up to 42% in a, 50% in b, 8% in c and 25% in d.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 

c d 
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 412nm 443nm 489nm 510nm 555nm 665nm 700nm 
Mean 16533.27 23320.35 11163 10419.7 7266.308 13532.66 20658.27 

Range 10000.45 20575.52 3834.264 2743.881 1398.572 3564.398 7107.663 
Table 5.1 Component a of the polynomial relationship. 
 

 412nm 443nm 489nm 510nm 555nm 665nm 700nm 
Mean -367.238 -498.931 -385.346 -354.742 -256.76 -489.928 -676.936 

Range 161.2049 327.7801 69.88304 45.67245 16.69289 57.42662 108.9139 
Table 5.2 Component b of the polynomial relationship. 
 

 412nm 443nm 489nm 510nm 555nm 665nm 700nm 
Mean 23.34395 23.92223 22.68169 22.48619 21.67381 22.5453 23.07708 

Range 1.418669 1.940391 1.196424 1.132953 1.013253 1.142184 1.213693 
Table 5.3 Component c of the polynomial relationship. 
 

 412nm 443nm 489nm 510nm 555nm 665nm 700nm 
Mean -0.00034 -0.00093 -0.00048 -0.00037 0.000646 0.000323 9.32E-05 

Range 0.000427 0.000124 0.000987 0.001168 0.001356 0.000893 0.000649 
 
Table 5.4 Component d of the polynomial relationship. 
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5.4 Discussion of alternative spectral matching techniques  
 
 
This section discusses the various spectral matching algorithms that are available (i.e. 

stage three of the inversion process) and how they compare to the least squares matching 

routine actually used in this work, which is based on the calculation of the RMSE 

averaged across all the wavebands by simple least squares searching. Howari (2003) 

reviewed five different functions that could be used for spectral matching: 

 

Absolute difference: AD j jM s r= −∑       (5.4)

  

Squared difference: ( )2SD j jM s r= −∑       (5.5) 

Squared derivative: 1 1, ,AD j j j j j j jM s r s s s r r r− −= Δ −Δ Δ = − Δ = −∑   (5.6)

  

Euclidean vector distance: 2 2
E j jM s r= −∑       (5.7) 

Correlation coefficient: 
( )( )

( )( )( ) ( )( )( )
1
22 2

/

/ /

j j j j

CC

j j j j j j

x y x y N
M

x x x N y y y N

! "Σ − Σ Σ% &=
! "Σ − Σ Σ Σ − Σ Σ
% &

 (5.8) 

 
 
Where the M values are the calculated results for each of the matching functions, sj and 

rj are the normalised intensity values at point j for the sample and library spectra, 

respectively and xj and yj are the x and y values in the library and sample spectra 

respectively. In the comparison carried out by Howari (2003), the correlation coefficient 

performed the best, followed by the squared derivative, the Euclidean vector difference 

and then the absolute difference algorithm. However, the author concluded that any of 

the functions could be useful as an elimination tool, whereby a large search library could 

be reduced to a smaller quantity which could then be interpreted by alternative methods.   
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Work by Bissett (2006) on the interpretation of ocean colour data in terms of water 

column optical properties and bathymetry involved validation of a spectral matching and 

LUT technique for the inversion of hyperspectral reflectance spectra. In addition to 

equations 5.6 and 5.7, the functions listed below were considered in this work, but only 

the Euclidean vector distance (equation 5.7) was actually used. 

 

Manhattan: 
1

n
ik jkk
x x

=
−∑         (5.9) 

Chebyshev: max ik jk
k

x x−         (5.10) 

Canberra: 
1

n ik jk

k
ik jk

x x

x x=

−

+
∑         (5.11) 

Bray Curtis: 
( )
1

1

n
ik jkk

n
ik jkk

x x

x x
=

=

−

+

∑
∑

        (5.12) 

Angular Separation: 1

2 2
1 1

.

.

n
ik jkk

n n
ik jkk k

x x

x x
=

= =

∑
∑ ∑

      (5.13) 

 

Vector Distance Separation algorithms (5.9 – 5.12) and vector angle separation (5.13) 

can be used to measure the closeness of two spectra i and j, with xik representing an Rrs 

spectrum i at wavelength k. The work by Bissett (2006) focused on performing k nearest 

neighbour analysis (kNN) where k is the closest fitting spectrum that corresponds to a 

particular environmental parameter, such as IOPs, and where the retrieval is taken to be 

the mean of the most frequently occurring value of k. As well as classifying water 

bodies, this kNN analysis can be used for error estimation whereby, if the k values all 

correspond to the same environmental condition, or there about, it may be concluded 

that there is not a strong influence by noise and the retrieval will be correct, within a 

small error. Conversely, if there is a large variation in the k values, it may be presumed 

that one can be less confident in the validity of the retrieval.  
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Mobley et al. (2005) developed a spectrum-matching, LUT approach for the 

interpretation of ocean colour for the retrieval of specific environmental information 

(without ancillary data) that includes water column IOPs and bottom classification. The 

authors state that all required information is contained within an Rrs hyperspectral signal 

and therefore inversion of an Rrs signal would be expected to have a high accuracy of 

retrieval. They investigated the following spectrum-matching algorithms: 

 

  

Least-squares matching of the absolute spectra:  

( ) ( ) ( )
2

( ) ,rs j rs j
j

LSQabs i w j R i Rλ λ
" #$ $% &= −( )* +, -$ $. /

∑
:

     (5.14) 

 

 

Least-squares matching of length normalized spectra: 

( ) ( )2 ,rs rs j
j

R i R i λ= ∑          (5.15) 

the quantity to be minimized is then: 

( ) ( )
( )
( )

( ), rsrs j j

j rs rs

R i R
LSQnorm i w j

R i R

λ λ
" #$ %
& &' (& &

= ' () *
' (& &
' (& &+ ,- .

∑
:

:     (5.16) 

 

Angle matching of length-normalised spectra: 

 

     (5.17) 
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Least squares matching of offset spectra: 

 

( ) ( )min min ,rs rs jj
R i R i λ=         (5.18) 

The spectra are then compared using: 

( ) ( ) ( ) ( )( ) ( )
2

, min minrs rsrs j rs j
j

LSQoffset i w j R i R i R Rλ λ
" #$ %& &' (= − − −* +, -. /0 12 3& &4 5

∑
: :

 (5.19) 

 

 

Where rsR
:

is the ‘unknown spectrum to be matched, ( ),rs jR i λ  represents the ith 

spectrum in the library of known spectra and ( )w j  is a weighting function to determine 

the quality of the matches. The authors found that these algorithms performed similarly 

with respect to the quality of matches obtained. Consequently, they concluded that the 

choice of the spectral matching algorithm, with modeled data, is not as important as may 

have once been perceived. However, they did not test this theory on application to real in 

situ data.  
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5.5 Comparison of the Euclidean and correlation coefficient algorithms 
with the least squares matching method for modeled data 
 

To test the routine devised for converting an Rrs signal to a bb/a vector, as well as the 

spectral matching method described in figure 5.1, modeled Rrs data were used to assess 

the quality of OSM concentration recovery. 396 Rrs signals were taken at random from 

the Hydrolight generated library for the following environmental conditions: solar angle 

45°, cloud cover 0 % and wind speed 3.1 m/s. These spectra represented a range of 

possible signals from a modelled water body whose constituent concentrations lay 

within the limits employed in creating the library. The selected spectra were converted 

to bb/a vectors and then matched to the library using the three algorithms given by 

equations 3.7, 5.5 and 5.6. Figure 5.3 displays the recoveries for CHL, MSS and CDOM 

for all three matching algorithms. The least-squares and Euclidean algorithms gave 

approximately the same results: the best recovery is observed for MSS with only a 1% 

maximum deviation from a perfect recovery, whereas CHL and CDOM show a larger 

deviation of up to 10% and 5% respectively, from a perfect recovery, indicated by their 

R2 values. However, the correlation coefficient method performed poorly with 

deviations from a perfect recovery reaching 460% (when CHL levels were 0), 400% 

(when MSS levels were 0) and 90% for CHL, MSS and CDOM, respectively. Such poor 

performance would be expected to be degraded further when the correlation coefficient 

method was applied to real data.  

 

 

 

 

 

 



101 
 

Observed MSS

0 2 4 6 8 10 12

R
ec

ov
er

ed
 M
SS

0

2

4

6

8

10

12

Correlation Coefficient
RMSE
Euclidean

 

Observed CDOM

0.0 0.2 0.4 0.6 0.8 1.0 1.2

R
ec

ov
er

ed
 C
D
O
M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 
 

Figure 5.3. OSM retrieval from the spectral matching LUT  approach for Rrs inversion. 
Three matching algorithms were tested on modeled Rrs spectra: least squares matching, 
Euclidean distance and the correlation coefficient algorithm. 
 
 

a) Application of spectral matching to in situ SPMR data 

 

The results for the least squares matching and Euclidean algorithm concur with the 

findings of Mobley et al. (2005), who showed that the choice of algorithm for the 

matching procedure is generally not critical. However, this conclusion was derived using 

modeled data.  For the practical applications of these algorithms to real data, an re-

assessment of their performance is required.  Consequently, a comparison was made 

between the spectral matching algorithm used in this work (equation 3.7) and the 
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Euclidean algorithm (equation 5.5) using data collected using a SeaWiFS Profiling 

Multispectral Radiometer (SPMR). The Correlation Coefficient algorithm was excluded 

as it performed the poorest using modeled data. Figure 5.4 shows the recovery of OSM 

using the least-squares matching and Euclidean algorithm on in situ SPMR data 

collected on the Western coast of the UK. This data encompasses the areas of the Bristol 

Channel, Irish Sea and the Sound of Jura. 

 

These recoveries show that the least squares matching method used in this work 

performs in a similar way to the Euclidean matching algorithm which has been used by 

other workers in the field. However, both algorithms show variable results for OSM 

retrieval, with the poorest recovery occurring for CHL. Chapter 6 investigates this 

problem in more depth.  
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Figure 5.4. OSM retrieval for two different spectral matching algorithms: least squares 
matching and the Euclidean coefficient algorithm, using in situ SPMR data. 
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5.6 Comparisons of matching techniques in the presence of noise 
 

If a spectrum were taken out of the bb/a library and used as the ‘observed’ spectrum, the 

spectral matching routine would always obtain an exact match and a perfect constituent 

recovery for all three matching algorithms. It would therefore be expected that the 

‘recovered’ spectrum would be identical to the observed spectrum and its associated 

OSMs. This provides a simple method for testing the matching routine at a basic level. 

However, since, 

 

1. in situ data is not perfect  and 

2.  the full matching routine used in this work requires an Rrs signal to be 

converted to a bb/a spectra before it can even be matched to the LUT 

 

The robustness of these matching routines was assessed by introducing artificial noise 

into to the bb/a spectra. 344 bb/a vectors were selected at random from the LUT and 

perturbed by applying noise independently to each waveband. The noise added was 

generated from a Gaussian distribution whose mean was equal to the initial bb/a value 

and whose standard deviation was set to 5% of the mean. This percentage was selected 

because 5% corresponds to the target uncertainty for the recovery of water-leaving 

radiances from SeaWiFs and MODIS observations. However, this figure is exceeded by 

at least a factor of two in practice (Gregg et al., 2009). The quality of the matches to the 

LUT are shown in figures 5.5 to 5.7. These results show that the introduction of noise 

results in poor performance of all matching algorithms. Overall, the least-squares 

matching algorithm performs the best and the Correlation Coefficient the worst, with a 

more significant deterioration occurring in CHL retrieval for all three algorithms. 
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Figure 5.5. CHL recovery from modeled bb/a spectra that were artificially perturbed by 
5% to simulate noise. Three matching algorithms were used: Least-squares, Euclidean 
and the correlation coefficient algorithm. 
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Least Squares Matching
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Euclidean matching
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Figure 5.6. MSS recovery from modeled bb/a spectra that were artificially perturbed by 
5% to simulate noise. Three matching algorithms were used: Least-squares, Euclidean 
and the correlation coefficient algorithm. 
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Corelation Coefficient Matching
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Figure 5.7. CDOM recovery from modeled bb/a spectra that were artificially perturbed 
by 5% to simulate noise. Three matching algorithms were used: Least-squares, 
Euclidean and the correlation coefficient algorithm. 
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5.7 Effect of library resolution and library size on recovery time 
 
 
Library (or LUT) resolution is a critical factor in spectral matching. In the work 

discussed here, the inversion of an Rrs signal is performed with the aim of retrieving the 

OSM concentration that best corresponds with the input spectrum. Problems can occur if 

the input signal is generated by OSM concentrations that fall in the intervals between 

values represented in the LUT. Therefore, to optimize the inversion results, a LUT with a 

very high resolution was generated in Matlab, resulting in over one million bb ( )λ / a ( )λ

vectors. The generation of such a high resolution LUT using Hydrolight would place 

unrealistic demands on computer time, and was the fundamental reason that an approach 

based on a  bb ( )λ / a ( )λ  LUT was developed in the course of this project.  

 

With such a high resolution LUT, it was important to evaluate the effects on the time 

required for the spectral matching process. Figure 5.8 shows the effects of increasing 

library size on the time it takes to match one spectrum. While there is a significant 

decrease in time for the smaller library sizes, these LUT sizes are too small to achieve 

good results. The benefits of saving only one second with a smaller resolution is lost 

when the quality of matches returned is poor. In fact, as the number of spectra to be 

matched in a single run increases, the average time per spectrum drops to around 1.87 

seconds. Matches were performed on a 32bit 1.80GHz Intel Pentium Dual CPU (E2160) 

computer with 3GB of RAM (DDR2 @ 500Mhz), and increasing computer 

specifications would be expected to decrease the search time.  
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(CHL x MSS x CDOM) 

 
Library size 

 
Time 

(Seconds) 
0.1 0.1 m-1 101x101x101 1030301 2.31 

0.14 0.1 m-1 71x71x101 515150 2.10 
0.2 0.1 m-1 51x51x101 262701 1.41 

0.28 0.1 m-1 36x36x101 169781 0.92 
0.39 0.1 m-1 26x26x101 68276 0.74 
0.57 0.1 m-1 18x18x101 32724 0.61 
0.8 0.1 m-1 13x13x101 17069 0.57 
1.2 0.1 m-1 9x9x101 8181 0.51 
1.6 0.1 m-1 7x7x101 3636 0.47 
2.2 0.1 m-1 5x5x101 2525 0.43 
3.3 0.1 m-1 3x3x101 909 0.42 
5.1 0.1 m-1 2x2x101 404 0.40 

 
Figure 5.8. Graph showing the effects of increasing the library resolution on the time it 
takes to match one spectrum in Matlab using a least squares matching algorithm. A 
tabulated output of the results is given below the graph. Although the increment size 
changed, the range remained the same: : 0-10 mg/m3 for CHL, 0-10 g/m3 for MSS and 0-
1 m-1 for CDOM. 



109 
 

  
It is also important to consider the effects of the library resolution on the quality of OSM 

recovery. Figure 5.9 shows a graphical representation of LUTs of different resolutions, 

all of which encompass concentration ranges of  0-20 mg m-3 for CHL, 0-20 g m-3 for 

MSS and 0-1 m-1 for CDOM. 

 

First, an 11 x 11 x 11 matrix with concentration intervals of 2, 2 and 0.1 for CHL, MSS 

and CDOM respectively provides a library size of 1331 OSM concentrations. 

 

Second, a 6 x 6 x 11 matrix with larger concentration intervals of 4, 4 and 0.1 for CHL, 

MSS and CDOM respectively provides a library size of 396 OSM concentrations. The 

consequence of employing this second matrix for spectral matching is that there is 

greater chance that a desired concentration will fall between the matrix values than they 

would with the larger dimensioned matrix.  

The effect of LUT  resolution on OSM retrieval was tested by evaluating the quality of 

matches when 100 bb/a spectra that represent the range of concentrations present in both 

matrices, were matched to the different libraries  Figure 5.10 presents the results of 

testing the two matrices. When the input spectrum fell between matrix entries, the next 

closest match was selected. As can be seen from the graphs in figure 5.5, this can result 

in very poor OSM recoveries.  

 

a) Final Library Resolution 

 Data collected by the Strathclyde University optics group suggests that OSM 

concentrations in Western UK shelf seas, from where the SIOPs used in this work were 

derived, are typically below 10 mg m-3 for CHL, 10 g m-3 for MSS and 1 m-1 for CDOM. 

Values recorded above these concentrations accounted for less than 4% of the total data 

set. Consequently, the LUT employed for the remainder of this work was constructed 

using ranges of 0-10 mg/m3 for CHL, 0-10 g/m3 for MSS and 0-1 m-1 for CDOM. The 

concentration intervals were 0.1, 0.1 and 0.01 for CHL, MSS and CDOM, respectively. 

However, one benefit of an LUT-based spectral matching approach is that the 
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concentration ranges and resolution of the LUT can be easily altered for other ranges. 

For example Babin et al. (2003) reported concentrations that reached up to 40 mg m-3 

for CHL and 73 g m3 for MSS in European waters and Fang et al. recorded CDOM 

values that reached 1.41 m-1 in the Pearl River estuary, China. 
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Figure 5.9. Matrix resolution when the concentration intervals are increased. The black 
dots represent the resolution of the smaller matrix whereas the green dots indicate the 
larger matrix and display the effects of increasing resolution as the gaps between the 
black dots are now filled with OSM entries. 
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Figure 5.10. Graphs showing recoveries of OSM when the library resolution is altered. 
The larger matrix contained entries for all ‘unknown’ spectra, whereas the smaller 
library had gaps and therefore the ‘unknown’ spectra fell between the library entries. 
Both libraries cover the same concentration range; 0-20 mg/m3 for CHL, 0-20 g/m3 for 
MSS and 0-1 m-1 for CDOM. 
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5.8 Summary of chapter 5 
 
 

i. There are a number of algorithms available to perform spectral matching using a 

look up table of pre-computed values. 

 

ii. The matching algorithm used in this work (least squares) showed comparable 

retrieval results to the widely implemented Euclidean matching algorithm. 

 

iii. Increased resolution of the LUT increases the search time required.  Such time 

penalties could be overcome by increasing the available computer processing 

speed. 

 

iv. The spectral matching process for the inversion of an Rrs signal and the retrieval 

of OSM concentrations has been summarized in figure 5.5. 

 

v. The conversion of an Rrs to a bb/a spectrum can be done using 3rd order 

polynomial relationships that are generated to represent different environmental 

conditions based on solar angle, cloud cover and wind speed. 

 

vi. The LUT and spectral matching procedure adopted in this work provides greater 

flexibility in its application to changing data sets than other, more complex 

techniques. For example, it can be quickly adapted to changes in optical 

properties that occur with spatial variability. 
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Chapter 6 

 
Introduced errors for modeled data and 

implications of SIOP variability 
 

 
 
 
The reported occurrence of multiple solutions to the inversion of remote sensing 

reflectance, Rrs, signals is important when attempting to recover the concentrations of 

optically significant materials (OSMs) from optically complex shelf seas. This chapter 

has sought to quantify the severity of this problem in a number of ways: 

1. Artificially perturbing ‘observed’ spectra and comparing the quality of matches 

returned with the non-perturbed spectra 

2. Determining the effects of increased observational errors on the recovery of 

OSMs from optically complex waters. 

3. Quantifying the degradation of recovery when the acceptance criterion is relaxed 

i.e. when the R.M.S.E taken to be representative of a good match, is increased. 

4. Comparing results derived from data to which artificial noise has been added 

with the OSM recoveries from in situ SPMR data to determine if the spread of 

recoveries observed with in situ data can be explained by errors of observation. 

5. Examining the variability in potential solutions by looking at their ‘spectral 

neighborhood’. 

6. Discussing the ambiguity that can occur when the simple algorithm which is 

used in this work is applied to areas where the SIOPs differ from those used to 

create the fundamental inversion relationships. 
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6.1 Introduction of Statistical Noise to ‘Observed’ data 
 
Artificial errors in the observational measurements were simulated in this study through 

the introduction of artificial noise, using a Gaussian distribution, independently to each 

waveband. This statistical method of applying noise meant that the mean was set to 

equal the “true” value (at each wavelength) and the standard deviation was varied as a 

test of sensitivity (to represent different amounts of ‘noise’). Therefore, to introduce 

statistical noise into test spectra:  

1. The bb/a(λ) vectors were selected at random from the already pre-computed 

LUT described in previous chapters. 

2. The noise level was selected from a Gaussian distribution whose mean was 

equal to the initial bb/a(λ)  value and whose standard deviation was set at a 

variable percentage (0% to 5%) of the mean. A 5%  error corresponds to the 

target uncertainty for the recovery of water-leaving radiances from SeaWiFs and 

MODIS observations, but this figure is exceeded by at least a factor of two in 

practice (Gregg et al., 2009)). The level of perturbation is synonymous with the 

level of noise that is applied independently to each waveband.  

 

The consequence of this perturbation is a series of spectra that are distorted versions of 

the original. A visual representation of this distortion is given in figure 6.1.

 
Figure 6.1. Example of a statistically perturbed bb/a(λ) vector. 
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The use of modeled data means the constituent concentrations used to generate the 

original spectra are known. Consequently, the quality of constituent retrievals obtained 

(from the signal to which noise has been added) can be compared and quantified with 

respect to the original spectrum.  

 

The quality of the matches obtained using the pre-computed LUT entries is assessed by 

calculating the RMSE for a bb/a vector (averaged across all wavebands). For the 

purposes of assessment in this chapter, matches were generated with acceptance criteria 

increasing from an RMSE of 0 to 0.01 in increments of 0.0001. The results of 

introducing statistical noise and the effects this has on the retrieval of OSM, by spectral 

matching are presented in the following sections.  
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6.2 Effect of measurement errors and acceptance criteria on the 
number of matches returned (modeled data). 
 
 
One hundred bb/a(λ) vectors were selected at random from the pre-computed LUT and 

perturbed by a varying degree of noise, as described in section 6.1. Figure 6.2 shows the 

combined effect of noise and acceptance tolerance on the number of matches obtained 

from the bb/a vectors. If an exact replica of the observed spectrum was found in the 

library, then only one match was returned with the minimum RMSE of 0. The points  

plotted in figure 6.2 represent an average of the 100 randomly selected spectra used in 

this test  

 

Obtaining an single exact match when the RMSE was set to 0 was an important result, 

which 

(i) Indicated that no intrinsic ambiguity was found in the six-waveband matching 

process.  

(ii) Confirmed that there was a unique relationship between bb/a(λ) vectors and the 

OSM concentration triplets used to generate the LUT. Given the unique mapping 

of OSM concentration triplets on bb/a(λ) vectors, the recovery of OSM 

concentrations becomes a trivial operation for modeled data in the absence of 

added noise.  

 

The results showed that the number of potential matches increased rapidly when the 

acceptance tolerance was increased (an RMSE of 0.0024 produced 618 matches for 

noise-free spectra). The addition of random noise to the “observed” spectrum reduced 

the number of matches obtained for a given acceptance interval because a higher 

proportion of OSM recoveries for the modified spectra fell outside the acceptance 

criteria. Quantifying the number of bb/a(λ) matches did not however, give any indication 

of the quality of OSM concentrations that were recovered, and this aspect is investigated 

next.                                                                                                                                                   
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Figure 6.2. Number of matches returned within a given acceptance interval (RMSE) for 
bb/a vectors to which Gaussian noise had been added in the range 0% to 5 %.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



118 
 

6.3 Effect of errors of observation on the recovery of OSM 
concentrations 
 
 
a) Quality of OSM retrieval in conjunction with the introduction of 
noise 
 
For brevity, the recovery of CHL concentrations is used as an example in this section: 

other OSMs followed a very similar pattern. As in section 6.2, a set of 100 bb/a(λ) 

vectors were selected at random from the LUT and perturbed in the way described in 

Section 6.1. To assess the effect of observational errors on the recovery of OSM, the 

LUT was searched and the match with the lowest RMSE for each vector accepted. Figure 

6.3 illustrates the degradation in accuracy of CHL recovery in response to added noise 

for the 100 randomly selected bb/a(λ) vectors. Perfect recoveries were achieved only 

when zero noise was added.  
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Figure 6.3. Degradation in CHL recovery as noise is added to the observed bb/a(λ)  
vector with standard deviations (from left to right) of 0.2%, 0.4% and 0.6% of the mean 
value. For each recovery, the LUT match with the lowest RMSE was selected. 
 

 

The average RMSE values for the 100 “observations” provide a useful measure of the 

quality of the matches achieved. These values were 0.00026, 0.00043 and 0.00063 for 
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standard deviations of 0.2%, 0.4% and 0.6%, respectively. In order to gain a clearer 

picture of the significance of errors of observation for the inversion process, the process 

was repeated for a further 3000 entries randomly selected from the LUT. These spectra 

were subjected to the same perturbation and matching as previously described. Figure 

6.4 shows how the average percentage error in CHL recovery increases with the standard 

deviation of the added noise, expressed as a percentage of the true value. The line drawn 

through the points is of the form y = 11.4 ln(x) + 34. 

 

 

 
 
Figure 6.4 Variation in the average percentage error for CHL recovery for 3000 
randomly selected spectra as the standard deviation of the added noise increases. 
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b) Mapping the observed errors in OSM recovery with modeled data 
onto in situ SPMR data. 
 
 
The objective of this section was to assess the magnitude of the errors in constituent 

retrievals that occurred when in situ Rrs signals from shelf seas were used for spectral 

matching. This enabled a comparison to be made with the retrievals obtained from the 

artificially perturbed spectra, described above, that represented realistic levels of 

observational uncertainty. Due to the persistent cloud cover over the Western UK Shelf 

Sea, it is difficult to obtain high quality satellite images. Consequently, in situ Rrs signals 

were derived from radiometric profiles obtained by deploying an SPMR (Satlantic) at 96 

stations in the Irish Sea and Bristol Channel.  This is the geographical area from which 

the SIOPs used to construct the spectral library were derived. The errors of observation 

present in the SPMR-derived signals, estimated using regression analysis for stations 

where multiple profiles were carried out, were taken to be 10% for each waveband.  

Figure 6.5 show results for both modelled and measured recoveries of CHL, MSS and 

CDOM using the standard spectral library. The filled circle symbols show recoveries for 

396 modelled Rrs spectra with 10% RMS random noise added. The open symbols show 

recoveries for 96 Rrs spectra derived from SPMR profiles. The most obvious conclusion 

is that CHL is affected more strongly than MSS or CDOM by the addition of noise to 

spectral observations.  Equally interesting, however, is that fact that the constituent 

recoveries from the field data fall within the error boundaries predicted by adding 

realistic noise levels to the modelled data. 
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Figure 6.5. Constituent retrieval for in situ SPMR data and modeled data with artificial 
noise (representative of observational noise) introduced. 
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6.4 Spectral neighbourhood 
 

The term spectral ‘neighbourhood’ was briefly introduced in chapter 1, when particle 

swarm optimization (PSO) was discussed. With respect to spectral matching, it refers to 

an area or group that provides potential solutions to an optimization problem. This 

technique can be very useful when the management of large data sets is required. A 

prime example of this is the deconvolution process of Rrs signals described in this work, 

where the ‘problem’ could be significantly reduced if the first step of the process 

involved application of the spectral neighbourhood theory, whereby the size of the data 

set is first reduced in size as opposed to seeking a single answer immediately. In 

addition to this, it can be used to explore the problem of ambiguity in the inversion 

process.  As it is not known a priori what shapes the spectral neighbourhoods will 

assume as the acceptance criteria are relaxed. This work has shown that they generally 

appear as expanding single clusters, which implies that the range of possible solutions 

remains in the vicinity of the actual value. It could be the case that the spectral 

neighbourhood is less well behaved (for example it could have split into multiple 

clusters) which would make the inversion process subject to much larger errors.  In the 

present context, the RMSE can be used to determine the spectral neighbourhood of 

potential solutions to Rrs inversion. Figures 6.6 a. and b. display the effect of increasing 

the RMSE acceptance criteria on the size and shape of spectral neighbourhood clusters in 

a three-dimensional space defined by b, a and bb/a.. The plots show that the potential 

size of neighbourhoods at each wavelength increases (demonstrated from a change in 

colour from blue at the centre to red at the extremities) as the acceptance of an RMSE 

close to zero is relaxed. This could be considered as a crude method that enables the 

reduction of a very large dataset quickly to allow more refined methods to interrogate 

the data further and seek a single answer.  

 

Qiu and Hancock’s (2006) work in pattern recognition involved performing matching 

and cluster analysis based on spectral neighbourhood partitions. Their approach 

however, involved applying neighbourhoods to the data to be matched using the Fiedler-
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vector of the Laplacian matrix to decompose data into neighbourhoods for matching and 

cluster analysis. The Fiedler vector is the eigenvector that corresponds to the second 

smallest eigenvalue of the Laplacian matrix, which is a matrix representation of a graph 

(Bailey et al., 1995).  The authors describe the neighbourhood in terms of a node, i, 

surrounded by other nodes i.e. the neighbourhood, connected by edges in the graph. The 

author’s diagrammatical representation of this is given in figure 6.7. The objective of 

their approach was to weight each node by a level of significance at the centre of a 

neighbourhood, following the fielder vector defined path, selecting central nodes based 

on this weighting factor. 
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Figure 6.6.  a) The effect, across the SeaWiFs wavelength, of varying the spectral 
neighbourhood as defined by the RMSE. b) Higher resolution view of the spectral 
neighbourhood, at 489nm, as the strictness of the RMSE fit to zero is relaxed. 
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Figure 6.7. Characterization of neighbourhoods (Qiu and Hancock, 2006). 
 
 
Figure 6.8 shows the variation that can occur in the constituent retrieval of CHL and 

MSS when the spectral neighbourhood, defined by the RMSE, is increased. This figure 

demonstrates the potential for the variability that can occur within a spectral 

neighbourhood using least squares matching and shows a wider distribution of potential 

solutions the recovery of CHL compared to MSS.. 
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Figure 6.8.  Calculation of the RMSE for recoveries obtained by using least squares 
spectral matching. The variability that occurs with the constituent retrieval within a 
spectral neighbourhood is evident and represents the increase in acceptance of the 
RMSE, i.e. values that are further away from zero are accepted. The CDOM variations 
are assumed to be negligible for the purpose of demonstrating how spectral 
neighbourhoods may appear. 
 
 
 
 
 
 



126 
 

6.5 Potential errors arising if a spectral matching inversion algorithm is 
applied without considering the differences in specific optical 
properties between  phytoplankton taxa 
 
 

Phytoplankton play an important role in determining the optical properties of the ocean, 

Given the existence of approximately 5000 known species of marine phytoplankton 

(Hallegraeff, 2003), it is important to assess the degree of variability in the specific 

absorption and backscattering coefficients of phytoplankton taxa in different water 

regions. This is an important aspect of ocean optics because the effects different species 

have on the interaction of light with the seawater can affect the robustness of remote 

sensing inversion algorithms (Mill and Nu, 1998). Consequently, there have been 

numerous studies of the magnitude and spectral shape of the specific absorption 

coefficients of different phytoplankton species. Although the SIOPs can have similar 

shapes if the phytoplankton are from the same taxonomic group, it is widely accepted 

that there can be wide variations between groups and consequently geographical 

locations (Morel and Gentili, 1993; Bricaud et al., 1995). Suzuki et al. (1998) studied 

the differences that can arise between the chlorophyll specific absorption spectra, 

a*CHL(λ), of phytoplankton in the North Pacific Ocean as a result of the differences in 

the phytoplankton pigment composition, noting the association of higher values at 

warmer locations. Likewise, Bricaud et al. (1995) investigated a*CHL variability using 

815 spectra from different regions of the world ocean, where concentrations ranged from 

0.02 to 25 mg m-3. This work revealed ranges of 0.18 to 0.01 m2 mg-1 for a*CHL (at 

440nm), with decreasing variability in eutrophic waters and Mill and Nu (1998) 

observed a*CHL values with ranges of 0.020-0.056 m2 mg-1 (at 440 nm) and 0.013-0.020 

m2 mg (at 674 nm) in the Gulf of California. The backscattering coefficient has shown 

similar variability for different phytoplankton taxa with variations of backscattering 

efficiencies ranging from 0.0023 to 0.081 (at 470 nm) (Vaillancourt et al., 2004). Due to 

this potential variability, it is likely that the success of standard operational algorithms 

depends on the use of appropriate SIOPs. A potential side effect of using inappropriate 

SIOPs is the over estimation of CHL  (Loisel et al., 2008). Consequently, a modeling 
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study was conducted on the sensitivity of constituent recovery using least squares 

spectral matching involving SIOPs derived in the laboratory for five different 

phytoplankton species.  

 

a) The ambiguity that arises when SIOPS from 5 different species of 
Phytoplankton are used 
 
The chlorophyll-specific absorption and scattering coefficients, from cultures grown at 

Strathclyde University, were obtained for five species of phytoplankton: Prymnesium 

parvum, Rhinomonas reticulata, Phaeodactylum tricornutum, Isochrysis galbana and 

Dunaliella primolecta (Craig, 2000). Chlorophyll-specific backscattering was estimated 

using a bb/b ratio of 0.0128 that was representative of phytoplankton dominated waters 

(Loisel et al., 2007). Figure 6.9 shows how the CHL specific absorption and 

backscattering coefficients varied for each of the phytoplankton species, with the SIOPs 

used to generate the bb/a spectral library included for comparison.  

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 6.9 Chlorophyll-specific absorption and backscattering coefficients for five 
phytoplankton species. The chlorophyll-specific absorption coefficient was obtained 
from cultures grown at Strathclyde University and the specific backscattering was 
estimated using a bb/b ratio of 0.0128. 
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The species-specific SIOPs were used to generate bb/a spectra for water with CHL 

concentrations of 2, 4, 6, 8 and 10 mg m3. No MSS and CDOM were included. These 

synthetic spectra were then matched to the original bb/a library which was generated 

using SIOPs derived for UK west coast waters. Constituent retrievals deviated from the 

perfect recovery obtained when the matched spectrum was derived from the SIOPs used 

to create the library, although a linear relationship was obtained for three of the five 

phytoplankton species (figure 6.10).  There is an approximate factor of five variations 

between the species due to mismatches. These results emphasize the importance of the 

selection of appropriate SIOPs if the performance of the spectral matching technique is 

to be optimized, even in Case 1 waters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. CHL recovery for spectra generated using SIOPs for five phytoplankton 
taxa. The 1:1 (dashed) line is the consequence of matching bb/a spectra derived from the 
library SIOPs.  
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b) Distinguishing phytoplankton species from space.  
 
 
In an attempt to determine if different phytoplankton species produced remote sensing 

signals that were sufficient to allow their discrimination in the clearest (Case 1) ocean 

waters, Rrs spectra for the five species of phytoplankton have been plotted in figure 6.11. 

It would appear that the significant variability observed between the SIOPs of these 

phytoplankton species has also been replicated in the remote sensing signals. 

Consequently, this result offers the possibility that discrimination in more optically 

complex waters may be possible. However, observational noise must be considered as 

well as other particulates that effect the absorption and scattering properties of light. 

These additional influences may make discrimination more complex than this initial 

result implies. To some extent, consideration of additional particulates may provide 

insight as to why the inversion algorithm used in this work, spectral matching by 

calculation of the RMSE, performs the poorest for CHL recovery. Obviously this is a 

highly topical subject in ocean colour interpretation studies and requires considerable 

investigation. The physiological (morphology and size) differences between different 

species and how this effects their spectral characteristics must also be considered.  
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Figure 6.11. The remote sensing signals for five different species of phytoplankton, a 
typical satellite observational error is approximately 10% (Gregg et al., 2008). 
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6.6 Discussion 

 
The performance of the spectral matching routine for the recovery of OSM 

concentrations has been efficiently demonstrated using a LUT of bb/a vectors. This work 

has shown that with a perfectly defined and modeled system, the spectral matching 

model produces exact retrievals and no ambiguity exists in the inversion process. The 

addition of Gaussian noise to the observed spectra and the relaxation of the acceptance 

criteria, based on the RMSE, accounted for two potential sources of ambiguity. The 

introduction of statistical ‘observational’ noise leads to a rapid degradation in constituent 

retrieval despite only small amounts of noise being introduced (figure 6.2). In addition to 

this, poor constituent retrieval occurs when bb/a spectra, derived from SIOPs 

representing different phytoplankton taxa, are matched with a bb/a library constructed 

using Western UK coast SIOPs. Finally, the spectral matching model had had partial 

success (figure 6.4) when applied to real in situ SPMR data. In this case, the in situ Rrs 

signals were measured in the area from which the SIOPs used to create the bb/a library 

were derived. This work has confirmed the sensitivity of a simple spectral matching 

model to observational noise, and it can be concluded that deriving unambiguous OSM 

concentrations with this spectral matching routine is unlikely in optically complex 

waters. However, the availability of supplementary knowledge such as restricted ranges 

of constituent concentrations may help to reduce errors in constituent recoveries. In 

addition to this, hyperspectral data could improve the quality of recoveries in this type of 

inversion through spectral matching and also provides the scope to select optimum 

wavelengths. If any spectral matching approach is to be pursued, then a great deal of 

further work is required on the creation of LUTs using SIOPs that best represent the 

region of study. It should be noted that the application of any inversion method for 

satellite data must take into consideration the uncertainties that could potentially be 

introduced, including the atmospheric correction from the top of the atmosphere that is 

introduced to water reflectance data.  
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6.7 Chapter 6 Summary 
 
 

i. The addition of random noise to the “observed” spectrum reduced number of 

matches produced for a given acceptance interval. 

 

ii. The average percentage error in CHL recovery increases with the standard 

deviation of the added noise. 

 

iii. CHL is affected more strongly than MSS or CDOM by the addition of noise to 

spectral observations. 

 

iv. The potential size of spectral neighbourhoods at each wavelength increases as the 

acceptance of an RMSE close to zero is relaxed. 

 

v. CHL specific absorption and backscattering coefficients vary significantly for 

each of the five phytoplankton species: Prymnesium parvum, Rhinomonas 

reticulata, Phaeodactylum tricornutum, Isochrysis galbana and Dunaliella 

primolecta. 

 

vi. Constituent retrievals for the five Phytoplankton species deviated from the 

perfect recovery obtained when the matched spectrum was not derived from the 

SIOPs used to create the library, although a linear relationship was obtained for 

three of the five species investigated. 

 

vii. The sensitivity of a simple spectral matching model to observational noise has 

been demonstrated.  
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Chapter 7 

 
Case Studies in the Irish Sea, Bristol Channel 

and The Clyde 
 

 
 

The robustness of the remote sensing inversion algorithm, using spectral matching, has 

been demonstrated so far using modelled data and in situ SPMR data. The SIOPs that 

were used for the analysis up to this point have been representative of the UK Western 

shelf sea and were calculated using a series of linear and multiple linear regressions. 

This chapter will investigate the effects on constituent recovery when using SIOPs that 

are specific to a region of study in contrast to the ones that are representative of a larger 

area. In addition to this, the effects of using regionally derived SIOPs to generate new 

relationships between Rrs and bb/a will be investigated to ascertain the potential for the 

use of a 'one fits all' relationship. The case study regions used in this chapter to 

investigate regionally derived relationships, shall be the Irish Sea and the Bristol 

Channel. Finally, the quality of recoveries for the Irish Sea, Bristol Channel and The 

Clyde will be demonstrated using the SIOPs representative of the Western UK Shelf 

Sea. It must be noted that a selection of the graphs in the following section contain data 

points that are not normally distributed. Consequently, the R2 can be misleading where 

there is in fact, an over-estimation of reality. 
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7.1 Effects on the ( ) ( ) ( ): /rs bR b aλ λ λ  relationships using regionally 
calculated SIOPs 
 
 
The premise of this work is that the relationships that have been derived between Rrs and 

bb(λ)/a(λ) are relevant to different regions of interest. Furthermore, it is important to 

ascertain if the relationships that have been established are valid in regions where the 

SIOPs are different from the original SIOPs used to quantify the relationships. 

Consequently, before applying the inversion method to real in situ data, Hydrolight was 

used, in the same way as described in chapter 3, to generate new relationships using 

SIOPs derived specifically for: 

 

1. The Irish Sea 

2. The Bristol Channel 

 

These relationships, wavelength by wavelength, are displayed in figure 7.1 together with 

the originally derived relationships representative of the Western UK Shelf sea. The 

results show that changing the SIOPs does not significantly affect the relationship 

between Rrs (λ) and bb/a (λ). Consequently, the previously established procedure for 

recovering bb/a (λ) from Rrs (λ) can be applied, with reasonable confidence, to regions 

where the SIOPs are different from those used in the original derivation. 
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Figure 7.1. 2nd order polynomial 
relationships between Rrs and bb/a 
(λ) using SIOPs that are 
representative of the Western UK 
shelf sea, the Irish Sea and the 
Bristol Channel.  
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7.2 The Irish Sea 
 
This section assesses the quality of constituent recoveries obtained when the SIOPs used 

to create the LUT are derived specifically for the Irish Sea. Previous results using 

modelled data have shown significant degradation in constituent recoveries, particularly 

for CHL retrieval, when artificial ‘noise’ was added to the inputs. It is anticipated that 

such results will be reflected, if not exacerbated, when the Rrs (λ) spectral matching 

inversion algorithm is applied to in situ data.  

 

A particularly poor recovery was observed for CHL with R2 values of 0.001.  The 

mineral recovery was significantly better (at least up to 6 g m-3) and is illustrated in 

Figure 7.2. CDOM recoveries resulted in an R2 value of 0.1 due largely to the frequent 

recovery of a '0' concentration. The poor retrievals of these constituents could be due to 

the reduced data set used when regional relationship SIOPs were derived, or to the 

presence of concentration combinations that were not included within the resolution of 

the LUT.  
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Figure 7.2. MSS recoveries for the Irish Sea in situ SPMR data. The spectral matching 
involved a LUT table that was created using SIOPs derived specifically for the Irish Sea. 
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7.3 The Bristol Channel 
 
  
The results from applying the spectral matching procedure, to in situ SPMR data from 

the Bristol Channel were similar to those obtained for the Irish Sea. There was poor 

retrieval for all constituents with R2 values of 0.18 for CHL, 0.54 for MSS and 0.00 for 

CDOM.  The inversion relationships and LUT were derived specifically for the Bristol 

Channel. A possible reason for such a poor recovery is the variability in the type of 

waters that were sampled. A region that is to be specifically modelled should contain a 

small range of water types. However, as is seen in Figure 3.1, measurements in the 

Bristol Channel cover coastal sites where there is high sediment re-suspension as well as 

significantly less turbid offshore waters. The SIOPs for the Bristol Channel included 

measurements from both these types of area and therefore, may be too varied for the 

purposes of specific regional modelling.  
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7.4 Quality of constituent retrieval using SIOPs representative of the 
Western UK Shelf Sea 
 
 
The previous section presented the results of applying spectral matching inversion using 

relationships created with SIOPs specific to the region of study. An alternative approach 

is to using SIOPs representative of the Western UK shelf Seas as a whole, derived by 

averaging values for The Bristol Channel, The Clyde and the Irish Sea. 

 
Before constituent retrievals using this approach can be presented, a series of validation 

tests are required to anticipate the robustness of this inversion algorithm. This will be 

done as follows: 

 

1. The wavelength specific relationships derived in Chapter 4 will be tested using 

the linear derived gradient (m) value that is used to convert the Rrs signal to a bb/a 

vector. The in situ data will be used to create the same relationships between Rrs 

and bb/a to determine m and ascertain if the application of the generalized 

relationships is justified. The variation that is present between the two values of m 

could also give an indication of the expected error in recovery. 

 

2.  The inversion procedure involves the conversion of an Rrs signal to a bb/a signal 

using the relationships described in Chapter 4. The bb/a signal obtained can be 

compared with the in situ bb/a measurements where these are available. This 

provides an intermediate step in the validation of the inversion process. Which 

does not depend on the SIOPs used for constituent recovery. 

 

3. Finally, the quality of the constituents retrieved can be assessed. 

 

 

Rrs(λ) and bb/a(λ) data collected from the Western UK Shelf Sea are plotted in Figure 

7.3.  The line of best fit has a slope ( m) of 21.2 compared to an m value of 21.4 for the 
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modelled data set (though the R2 value of 0.6 is lower than in the modelling studies). 

This gives some confidence that the relationships derived for the modelled data are valid 

for this in situ data set. The lower R2 value will provide an understanding for any 

deviations from a precise recovery. 

  
Figure 7.3 Relationship derived between in situ Rrs and bb/a data. 
 

 

The second stage of the validation prcoess is to examine the relationship between the 

observed and recoverd bb/a signal. The results are presented in figure 7.4 for 412 nm. 

With an R2 value of 0.71, the deviation from a perfect recovery suggests a certain 

amount of breakdown in the constituent recoveries. The remaning wavelengths present a 

similar distribution, although slightly more variation is observed at the red end of the 

spectrum.  
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Figure 7.4. Comparison of the observed bb/a signal to the recovered signal at 412nm. 
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Clyde and the Irish Sea, 2001 and 2002 cruises, respectively. The results for the Bristol 

Channel have no recoveries for CHL or CDOM. This is due to the majority of recovered 

concentrations being 0 and is reflective of the results obtained in section 7.3 using the 

regionally derived relationships. In addition to the reasons listed in section 7.3, other 

reasons for the poor recoveries may be due to the absence of a close match within the 

LUT or due to the ambiguity that can exist due to observational noise. Regardless, the 

MSS recovery is generally good with a high R2 value that is greater than the R2 value for 

the created inversion relationships. Overall, the Clyde presents the best results across the 

constituent classes, particularly for CHL. It must be noted that variable quality of the in 

situ measurements is reflected in the constituent recoveries. The Bristol Channel data 

had a number of inconsistencies, making quality control and validation difficult. Finally, 

the Irish Sea has also demonstrated a good recovery for the data collected.  

 

  

Figure 7.5. CHL recovery for in situ data collected in the Western UK Shelf Sea. 
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Figure 7.6. MSS recovery for in situ data collected in the Western UK Shelf Sea. 

 
Figure 7.7. CDOM recovery for in situ data collected in the Western UK Shelf Sea. 
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Figure 7.8. MSS retrieval for the Bristol Channel, using a simple least squares matching 
routine. 
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Figure 7.9. Constituent retrieval for The Clyde, using a simple least squares matching 
routine. Relatively good retrievals are observed for all particulates. 
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Figure 7.10. Constituent retrieval for the Irish Sea (2001), using a simple least squares 
matching routine. A Relatively good retrieval is observed for MSS. 
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Figure 7.11. Constituent retrieval for the Irish Sea (2002), using a simple least squares 
matching routine. A Relatively good retrieval is observed for all constituents. 
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The results of the constituent retrieval have demonstrated that: 

 

1. Remote sensing inversion using a simple least squares approach is possible and 

can yield quite accurate results, particularly for MSS. 

 

2. The generation of new LUTs using SIOPs specific to a region of study does not 

produce improved constituent matches and may reduce the quality of retrievals 

due to the reduction in the size of the available data set . 

 

3. While some inaccuracy can be attributed to the presence of noise in the 

observations, the quality of constituent retrievals is still good despite the use of a 

general 'one fits all' algorithm that is representative of a larger geographical area. 
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7.5 Chapter 7 Summary 
 
 

• The relationships between Rrs and bb/a were shown to not vary significantly 

when SIOPs specifc to each  region were used to create them 

 

• Overall, constituent retrieval was optimum using inversion relationships created 

from SIOPs representative of a larger geographical area, in comparison to those 

created on a small regional scale. 

 

• While ambiguity exists in the form of observational noise, the quality of 

constituent retrievals is still good (represented by a high R2 value) despite the use 

of a general 'one fits all' algorithm representative of a larger geographical area. 

 

• The constituent retrieval using SIOPs representative of the Western UK shelf Sea 

has demonstrated reasonably well the benefit and level of accuracy that can be 

achieved using a simple, least squares spectral matching inversion algorithm. 
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Chapter 8 

 
Conclusions and Discussion 

 
 
 
This chapter shall give a summary of the conclusions and discussions that have been 

made throughout this thesis. This will be achieved by revisiting the outline of this thesis 

which was presented in chapter 1. Each of the chapter aims will be given again in italics, 

followed by the main conclusions of the chapter. Finally, suggestions for further work, 

relating directly to this thesis, shall be given. 
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8.1 Summary of Work 
 
 

This work has shown that the propagation of natural light in turbid media (including 

seawater) is determined by both the conditions of illumination and the inherent optical 

properties of the medium.  The illumination conditions include solar angle, degree of 

cloud cover and sea state, while the relevant inherent optical properties (IOPs) are the 

spectral coefficients of absorption and scattering and the scattering phase function.  

These inherent optical properties are functions of seawater composition, including the 

concentrations of phytoplankton, suspended minerals and dissolved organic substances. 

Using knowledge of the concentrations of these materials, obtained through a number of 

cruises in the Western UK shelf sea, and their specific optical cross-sections, the 

reflectance of a water body was calculated using radiative transfer theory. This work 

then attempted the inverse of this process for the determination of constituent 

concentrations from reflectance.  

 

This work was undertaken because of the problem of reflectance inversion, which is at 

the heart of the optical remote sensing of oceanic processes. Optical remote sensing 

using satellite-borne radiometers has become an important tool for studying biological 

and physical processes in ocean basins (Dickey et al, 2004; Platt et al, 2008), and is 

recognized as being potentially of great value for monitoring the changing status of 

coastal waters and shelf seas (Petersen et al, 2008). Unfortunately, remote sensing 

algorithms derived using global data sets are not reliable when applied to waters subject 

to terrestrial influence (Robinson 2006). A solution to this problem is of great 

significance in modern oceanography, planetary science and climate change modelling. 

 

This research project aimed to successfully invert remote sensing signals by spectral 

matching. This involved the comparison of water-leaving radiance spectra with a LUT of 

pre-defined spectra, calculated using radiance transfer theory for water columns of 

known composition. Ultimately, it has been demonstrated that inversion techniques can 
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be labour intensive and it is for this reason that the spectral matching inversion 

algorithm has been developed in this thesis. An easily adaptable inversion algorithm is 

highly desirable for the investigation of ocean colour, where fast and reliable results can 

be obtained without the time burden that is associated with more complex techniques 

and radiative transfer modelling. This work enabled the following challenging problems 

to be addressed: 

 

1) The need for an effective computational scheme for database searching. This was 

achieved by implementing a simple least squares matching algorithm for the 

spectral matching. 

2) An effective technique to by-pass the time consuming constraints of radiative 

transfer calculations. This was achieved through the development of LUTs that 

could be created quickly using Matlab and easily adapted to new regions of 

interest. 

3) Uncovering the possible existence of ambiguities in the spectral matches. This 

was achieved by introducing errors wavelength by wavelength and assessing the 

quality of the constituent retrievals. 

4) Robustness of a spectral matching approach to remote sensing inversion using 

modelled data as well as in situ radiometric data. This was also achieved by 

assessing the quality of constituent retrieval. 

5) The implications of applying such an inversion algorithm to various spatial 

locations where water constituents are potentially very different, was 

investigated by using different regional locations as case studies. 

 

The following section will give the main conclusions that can be drawn from this work 

on a chapter by chapter basis.  
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8.2 Conclusions and Discussion 
 
 
A) CHAPTER2: FUNDAMENTAL OPTICAL PROPERTIES 

 
The radiative transfer theory and the simple relationships that can be derived between 

remote sensing radiance signals and the backscattering to absorption ratio were 

investigated as a potential way to develop a spectral matching inversion algorithm using 

simple least square matching. It was concluded that under certain circumstances, this 

relationships can be expressed in the simplest form of Rrs(λ) = G bb/a (λ),  to allow the 

investigation of the inverse problem of remote sensing and recover OSM concentrations 

from remote sensing reflectance signals.  
 

B) CHAPTER 3: THE CALCULATION OF SPECIFIC INHERENT OPTICAL 

PROPERTIES (SIOPS) 

 

Typical SIOPs were derived from in situ measurements that were collected from cruises 

that encompassed areas of the Western UK shelve seas. These SIOPs were calculated 

using the spectral absorption and beam attenuation coefficient (at nine wavebands) of 

water and were measured using; the WETLabs ac-9 in situ absorption and attenuation 

meter for the calculation of the scattering coefficient and; a HOBILabs HydroScat-2 

backscattering sensor for the measurement of optical backscattering at two wavelengths. 

Matlab scripts were constructed to overcome the time burden of using Hydrolight’s GUI 

and radiance distribution and IOP libraries were created for 75 environmental 

conditions.  

 

C) CHAPTER 4: SIMPLIFICATIONS OF THE RRS(λ) TO BB/A(λ) RELATIONSHIP FOR 

USE IN SPECTRAL MATCHING  

 

The generally complex relationship between bb/a(λ) and Rrs (λ) can be reduced to a 

relatively simple approximation when specific conditions are applied. The work in this 
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chapter identified a wavelength dependency in the normalized water leaving (nLw) 

spectra and Rrs (λ) signals when plotted against their bb ( )λ / a ( )λ  spectral counterparts. 

A stronger wavelength dependency was observed for nLw(λ) signals due to the 

normalisation step and the range of phase function that can occur with large datasets.  

Due to the greater wavelength variation with the nLw(λ) to bb/a(λ) relationship, a 3rd 

order polynomial relationship, wavelength by wavelength, between Rrs(λ) and bb/a(λ) 

was used for the inversion of remote sensing signals. However, for simplicity, linear 

relationships between Rrs (λ) and bb/a (λ) were used for all analytical and comparative 

purposes. 
 

The effects of environmental variability on the relationship of bb ( )λ / a ( )λ : Rrs were 

investigated using these linear relationships. This investigation included a total of 75 

combinations of different environmental conditions that included solar angle, cloud 

cover and wind speed. Variability was relatively low, with the difference between the 

maximum and minimum Rrs(λ) signals (representing the 75 conditions) only 5% at 550 

nm where the distribution visually looked the largest. However, having obtained 

relationships for the 75 environmental combinations, a selection process was 

incorporated into the inversion routine, whereby the user can select environmental 

conditions that best suits the region of data collection 

 

D) CHAPTER 5. THE SPECTRAL MATCHING TECHNIQUE. 

 

The matching algorithm used in this work showed comparative retrieval results to the 

widely implemented Euclidean matching algorithm. An increased resolution of the LUT 

resulted in a corresponding increase in the search time; however, such time 

inefficiencies could potentially be overcome with an increased computer processing 

speed. 

 

In comparison to other, more complex techniques, discussed in chapter 1, such as: the 

Levenberg-Marquardt (LM) multivariate optimisation algorithm, genetic algorithms, 
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particle swarm optimisation and neural networks, the LUT and spectral matching 

procedure adopted in this work provides a data-set versatility that the more complex 

techniques do not. It can be quickly adapted to the changes in optical properties and 

therefore subsequent changes in SIOPs,  that can occur with spatial variability. 
 
 
E) CHAPTER 6: SIGNIFICANT SOURCES OF ERRORS AND THEIR POTENTIAL EFFECTS  

 
The addition of random noise to the “observed” spectrum reduced the number of 

matches produced for a given acceptance interval. CHL retrieval was affected more 

strongly by the addition of noise to spectral observations than MSS or CDOM. These 

investigations also revealed that the potential size of spectral neighborhoods, at each 

wavelength, increased as the acceptance criteria of the RMSE was relaxed. 

CHL specific absorption and backscattering coefficients were shown to vary 

significantly for each of the five phytoplankton species examined. Constituent retrievals 

deviated from the perfect recoveries when the matched spectrum was derived from the 

SIOPs that were representative of the individual phytoplankton species while the LUT 

was created using the SIOPs that were generally representative of the Western UK Shelf 

Sea.  

The sensitivity of a simple spectral matching model to observational noise means that 

the derivation of OSM concentrations is subject to errors in optically complex waters. 

However, the accuracy of the recoveries could be predicted using modelling studies, and 

this was tested using the results given in chapter 7. 

 

F) CHAPTER 7: REGIONAL CASE STUDIES  

 

The inversion relationships created using modelled data were validated using in situ 

data. The inversion algorithm was considered to have performed well when the 

consituent rettrival acheived  R2 values reaching 0.8. 

The use of regionally derived SIOPs caused no improvement to the quality of OSMs 

retrieved. In fact the quality of retrievals were considerably poorer than the ones 
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observed when general SIOPs were used which were considered to be representative of 

the Western UK Shelf Sea.  

 

These results have demonstrated that a remote sensing inversion using a simple least 

squares approach is possible and can yield useful results, particularly for MSS. 

 

While the approach presented here allows for the generation of new LUTs using SIOPs 

specific to a region of study this may reduce the quality of retrievals due to the limited 

sampling of that region. Ultimately, while ambiguity exists in the form of observational 

noise, the quality of constituent retrievals is still good despite the use of a general 'one 

fits all' algorithm that is representative of a larger geographical area. 
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8.3 Suggestions for further work 
 

This work has uncovered the potential problems associated with new technologies and 

methods. However, as discussed within this work, there are potential solutions. For 

example, the simple inversion method demonstrated within this work has scope for 

improvement by perhaps using hyper-spectral data as this would allow optimum 

wavelengths to be selected that in turn increase the quality of constituent recoveries. The 

areas that have been highlighted within this work as requiring work at a community 

wide level has a particular emphasis on the standardisation of methods. This includes, 

but is not limited, to the following issues: 

 

1. The determination of scattering spectra for the different classes of materials in 

natural marine suspensions, and the degree to which these spectra are spatially 

variable, needs further investigation. A standardisation of the methods used to 

determine this information would also facilitate a greater transfer of information 

amongst colleagues and allow algorithms that require such information to be 

universally applicable.  

 

2. The spectral dependence of the bbp:bp ratio is a very important for ocean colour 

modelling. There is debate whether this shape can be described by a power law, 

and what form this law may have... 

 

3. Ideally, the algorithm developed in this work would be applied to remote sensing 

satellite images, and validation of the constituent retrievals using in situ sampling 

would be required. The provision of high quality in situ data that coincides in 

time and space with cloud-free satellite images requires a major, resource-

intensive and coordinated programme of work. 
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