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Abstract

In order to improve communication over a dispersive channel in a CDMA system, we have
to re-establish the orthogonally of codes which are used when combining input signals from
many users onto a single communication path, as otherwise the performance of such system
is limited significantly by inter-symbol interference (ISI) and multiuser access interference
(MAI). In order to achieve this, adaptive filters are employed. A variety of adaptive schemes
to remove ISI and MAI have been reported in the literature, some of which rely on training
sequences, such as the Least Mean Squares (LMS) and Recursive Least Squares (RLS)
algorithms, or on blind adaptation, such as the Constant Modulus Algorithm (CMA) or
the Decision Directed algorithm (DD), which has similar convergence properties as the LMS
in the absence of decision errors, the CMA is relatively slow compared to the DD algorithm

but more robust in converging to a suitable solution.

This thesis is concerned with developing a new robust and low-complexity blind multiuser

equalisation over frequency selective channels.

A robust pilot-assisted equalisation strategy is developed for the partially loaded timedivi-
sion duplex (TDD) component of the universal mobile telecommunications system (UMTS).
In addition to training-based equalisation performed using the midamble of a data packet,
some of the unused spreading codes are exploited to upload pilots in order to perform an
additional semi-blind adaptation over the payload of a packet. The latter ensures continuii-
ious adaptation and better tracking performance. The affine projection concept along with
the concurrent constant modulus algorithm (CMA) and decision-directed (DD) mode are
implemented to update the equaliser weights. Computer simulations are used to assess the

performance of the proposed adaptation strategy over various UMTS TDD time bursts.

A new low complexity adaptive technique is derived for blind multiuser equalisation based
on fitting the probability density function (PDF) of the equalizer output to the desired PDF
of the corresponding symbol alphabet, i.e. matched-PDF. The cost function of the proposed

technique can be measured by a stochastic gradient descent approach. The performance of

ii
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the proposed adaptation strategy is assessed by a number of simulations, and benchmarked
against FIRMER-CMA under QPSK modulation.

The matched-PDF algorithm is used for the equalisation of Space-Time Block Coding
(STBC) and Time-Reversal Space Time Block Coding (TR-STBC) signals transmitted over
dispersive MIMO channels. The performance is demonstrated in a number of simulations
and benchmarked against other blind schemes such as: CMA, Newton’s method, and the
Conjugate Gradient method. A thorough evaluation is carried out taking into consideration
the complexity of each implementation in terms of multiply-accumulate (MAC) operations

required per iteration.

Finally, some variations of matched-PDF algorithm are proposed to improve the equaliser
performance, including concurrent matched-PDF and decision directed, matched-PDF with
affine projection algorithm, as well as pilot assisted equalisation based on matched-PDF

algorithm for partially loaded systems.
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Chapter 1

Introduction

1.1 Research Motivation

Over the last decades, mobile communications research has supported the shift in focus
from voice transmission with moderate date rate to more inclusive communications with
internet support and multimedia capabilities. This has been achieved with the introduction
of 2G and 3G mobile communications technology standards, which allowed a data rate of
up to 2 Mb/s. This trend continued with the adoption of the long term evolution (LTE)
standard, pushing the data rate limit to up to 300 Mb/s for downlink and 75 Mb/s for
uplink [1]. This advancement in mobile communication systems was enabled by a huge
leap in mobile phone technology bringing sophisticated devices with high processing power
which are hungrier than ever for data, and was accompanied by new requirements for 4G
mobile cellular system standards. In March 2008, the radio-communications sector of the
International Telecommunications Union (ITU-R) defined a set of specifications for systems
to qualify as 4G, requiring peak data rate of 100 Mb/s for high mobility communication and
1 Gb/s for low mobility communication [2]. Since the first release of LTE did not meet the

requirements for 4G, research efforts have been ongoing to achieve new standards meeting
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these specifications [3]. This brought LTE-Advanced [4], a major enhancement to the LTE
standard which was accepted by ITU-R as a candidate for 4G technology. Although, 5G is

still under development, it promises to offer throughput as high as 10 Gb/s.

Many of the contemporary wireless network standards rely on orthogonal frequency divi-
sion multiplexing (OFDM) rather than code division multiple access (CDMA) as promoted
as part of the universal mobile telecommunications system (UMTS). Initially introduced to
avoid equalisation, OFDM has since been driven to higher data rates in situations where its
benefits are often negated, such as in mobility scenarios where complex equalisation schemes
will be required [5, 6, 7], in order to re-establish the orthogonality on which OFDM so fun-
damentally relies. Just as OFDM has seen a revival of frequency division multiplexing tech-
niques that had previously been popular several decades back in the form of techniques such
as frequency multi-tone (FMT), CDMA-based approaches may experience a renaissance of
spread-spectrum ideas in future communications applications; therefore, the contributions
of this thesis are aimed at such systems, with simulation parameters drawn from current

UMTS packet structures.

The increasing demand for high data throughput and multimedia services in the downlink
(DL) transmission drives research towards achieving higher capacity gain through multi-
input multi-output (MIMO) transmission and multiuser detection. In fact, DL signals are
perfectly synchronised at the transmitter, and they experience the same dispersive chan-
nel using orthogonal spreading sequences. In most communication systems the channel is
considered broadband, i.e the channel frequency response varies across the whole frequency
bandwidth, which results in inter symbol interference (ISI) and multiplex access interfer-
ence (MAI). This makes wireless transmission difficult and destroys the orthogonality of the
CDMA code sequences transmitted by different users. The overall aim of this thesis is to

design multiuser equalisers to mitigate the effects of the dispersive channel.
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A wide variety of equalisation schemes can be found in the literature [8, 9, 10], and can

be divided into:

1. Trained equalisers necessitate the periodic transmission of training sequences to be
known a priori to the receiver. Trained algorithms are reliable but the training sequences
can be considered as a waste of available valuable bandwidth. Trained equalisers can also

suffer from poor tracking performance in fast time-varying channels.

2. Blind equalisation algorithms do not require explicit knowledge of the training se-
quences and channel parameters, instead estimation is performed blindly i.e. without ex-
plicit knowledge of channel or training sequences . Blind equalisers require more data to
adapt but have the advantage of maximising the bandwidth utilisation. The most popular
blind approach is the constant modulus algorithm (CMA) which assumes that all points in

the transmit constellation have the same modulus.

3. Hybrid equalisation includes decision-directed (DD) and semi-blind algorithms. DD
means the equaliser uses a detected version of its output signal, based on a non-linear decision
device, to update its weights. Semi-blind adaptation is used when the transmission of full
training sequences is either infeasible or undesirable, this means the length of the training
sequences is reduced — instead of suppressed — in order to optimise the data through-
put. Hybrid algorithms are used when trained equalisation is not sufficient to minimise the

difference between the transmitted and received sequences.

This thesis is concerned with developing new robust and low-complexity multiuser equalis-
ers over frequency selective fading channels. The channels used throughout this thesis are
time-varying (except where otherwise mentioned), which motivates the use of equalisation
algorithms with good adaptation and tracking abilities. The remainder of this chapter
presents the original contributions of this dissertation and outlines the subsequent chapters

of the thesis.
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1.2 Original Contributions

The main original contributions in this thesis are believed to be:

1. Fast and Robust Multiuser Pilot-Assisted Equaliser for Downlink UMTS-
TDD (Chapter 3) [11]. A robust pilot-assisted equalisation strategy for the partially
loaded time-division duplex (TDD) component of the universal mobile telecommunica-
tions system (UMTS) is derived. In addition to training-based equalisation performed
using the midamble of a data packet, some of the unused spreading codes are exploited
to upload pilots in order to perform an additional training-based adaptation over the
payload of a packet. The latter ensures continuous adaptation and better tracking per-
formance. The affine projection concept along with the concurrent constant modulus
algorithm (CMA) and decision-directed (DD) mode are implemented to update the

equaliser weights.

2. A PDF Matching Blind Multiuser Equaliser (Chapter 4) [12]. A new blind
adaptive equalisation approach, the so-called PDF matching algorithm suitable for
fully loaded DS-CDMA downlink systems, is derived. The proposed approach is based
on fitting the probability density function (PDF) of the equaliser output to the desired
PDF of the corresponding symbol alphabet. The underlying PDF at the equaliser out-
put is estimated by means of the Parzen window method. A switch between blind and
decision directed adaptation is possible by manipulating the kernel size of the Parzen
window estimator. The cost function of the proposed technique can be optimised by a

stochastic gradient approach.

3. A PDF Matching Blind Multiuser Equaliser over frequency selective fad-
ing channels (Chapter 4) [13]. A new frequency selective channel model based on

Rayleigh fading is introduced. This time-varying channel model is used to test the

6
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tracking performance of the PDF matching technique mentioned above. The perfor-
mance of the proposed adaptation strategy is assessed by a number of simulations, and
benchmarked against CMA under QPSK modulation in a doubly-dispersive environ-

ment.

4. Fast converging implementation of the STBC receiver over dispersive chan-
nels (Chapter 5) [14]. A new blind adaptive technique is derived for the equalisation
of space-time block coded (STBC) signals transmitted over a dispersive MIMO channel.
The adaptation is based on minimising the difference between the PDF of the equaliser
output and a desired PDF based on the source symbols. In the proposed approach, the
PDFs are estimated by means of the Parzen window method using Gaussian kernels.
The cost function combines this PDF fitting with an orthogonality criterion derived
from the STBC structure of the transmitted data in order to discourage the extraction
of identical signals. This cost function motivates an effective and low-cost stochastic
gradient descent algorithm for adapting the equaliser. The performance is demon-
strated in a number of simulations and benchmarked against other blind schemes for

the equalisation of STBC over broadband MIMO channels.

5. Fast converging implementation of the TRSTBC receiver over dispersive
channels (Chapter 5) [15]. A new blind multiuser equalization strategy for time re-
versal STBC (TRSTBC) signals transmitted over dispersive MIMO channels is derived.
Similar to the STBC receiver above, the cost function used here combines the PDF
matching component with an orthogonality criterion derived from the TR-STBC struc-
ture. The performance is demonstrated in a number of simulations and benchmarked
against other blind schemes. The proposed algorithm has a moderate computational

complexity and can perform with higher adaptation rate.
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1.3 Outline of Thesis

The following chapters of this thesis are organized as follows:

Chapter 2 is a brief survey of adaptive equalisation concepts in digital communications.
The mean square error criterion is explained and the Wiener-Hopf solution is outlined. Then,
the formulation of some training based equalisers is demonstrated, mainly: the least mean
squares algorithm and recursive least squares algorithm. Blind equalisation schemes are then
discussed. Specifically, properties of the most popular blind algorithm, the constant modulus
algorithm, are highlighted and analysed. Chapter 3 introduces a pilot-assisted equalisation
approach for the downlink UMTS TDD system. First, a blind multiuser adaptive equaliser
based on the affine projection (AP) filtered-R multiple error (FIRMER) concurrent constant
modulus algorithm (CMA) and decision-directed (DD) algorithm, is briefly presented, then
a suitable cost function for a pilot assisted scheme and an associated stochastic gradient
algorithm are derived. We illustrate that the proposed semi-blind approach outperforms the

basic equalisation scheme in terms of MSE and BER.

Chapter 4 presents a blind matched-PDF algorithm for multiuser equalisation over fre-
quency selective fading channels. The algorithm operates in the chip rate and reduces the
error by minimising the difference between the PDF of the equaliser output and the PDF
of the corresponding constellation alphabet. Simulation results are shown to highlight the

performance of the derived algorithm.

Chapter 5 starts by reviewing the STBC scheme, and presenting a non-block based
approach to the blind equalisation of STBC over dispersive channels. The derived algorithm
adds a new term to the PDF-matching criterion, whereby the output of the equaliser is
forced to have the same structure as the transmitted STBC code word. Simulation results

are presented to evaluate the performance of the new algorithm in time-varying channels.
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Then, the block-based time reversal STBC (TRSTBC) scheme is introduced. A PDF-
matching based receiver for TRSTBC is analysed and shown to achieve faster convergence
than the CMA based receiver. This chapter investigates the performance gain of the proposed

algorithm against added complexity.

Chapter 6 summarises the main results of this dissertation, and puts forward ideas and

suggestions for future work and investigations.



Chapter 2

Algorithms for Adaptive Equalisation

This chapter introduces the general adaptive equalisation problem and reviews some adaptive
equalisation techniques. Sec. 2.1 explains how an adaptive equaliser can alleviate inter-
symbol interferences (ISI) introduced by a dispersive channel. The concept of mean square
error (MSE) is explained in Sec. 2.2, while the derivation of the Wiener-Hopf solution is
addressed in Sec. 2.3. Next in Sec. 2.4 and 2.5, the well known least mean squares (LMS)
and recursive least squares (RLS) algorithms are briefly reviewed, respectively. Then, in
Sec. 2.6 the affine projection algorithm is derived. In Sec. 2.8 and Sec. 2.9 the concepts of

decision directed adaptation (DD) and constant modulus algorithm (CMA) are reviewed.

2.1 General Concept of Adaptive Equalisation

In digital communication systems, equalisers are mainly designed to combat the multipath
effect of the channel, which causes inter-symbol interference (ISI). A simple model for such a
system is illustrated in Fig. 2.1. The equaliser coefficient vector w is assumed to be a linear

tapped delay line filter with finite impulse response (FIR) of length L.

10
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noise
v[n]
channel equaliser
r(n]
slnjo——J g - L m—' ()

Figure 2.1: Basic communication system model with channel g and equaliser w operating
on received signal r[n]; the aim of the equaliser is to approximate the transmit signal s[n| at
its output y[n| in some optimal sense.

This structure has a linear relation between the equaliser output y[n] and the equaliser
vector w. The linearity and FIR structure have in the past contributed to the popularity of

this equaliser in practice [16, 17, 18]. In contrast, e.g. decision feedback equalisers (DFEs)

do not have this property.

The propagation environment adopted here is a dispersive channel defined by its channel
impulse response (CIR) g[n] with sample index n. This channel is a linear tapped delay filter

of length L. with an associate coefficient vector

g=1[g o1 - gr.|", (2.1)

and contains any filtering at the transmitter such as pulse shaping which may or may not

be known at the receiver.

2.2 Mean Square Error Criterion

Equalisers are mainly designed to combat the multipath effect of the channel, and hence the
minimisation of the probability of the occurrence of incorrect decisions, or the bit error ratio

(BER), is the main aim. In the past the BER have been found difficult to evaluate and it does

11
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not level itself easily as a cost function for adapting an equaliser [19]. However, significant
efforts have been made in implementing simple filtering and adaptation structures based on
a minimum bit error ratio (MBER) criterion, that have shown outstanding performance at
moderate computational complexity [20]. Nevertheless, the Wiener-Hopf or minimum MSE
solution, which minimises the error between the transmitted signal s[n| and the equaliser
output y[n], remains a popular equaliser, which forms an important benchmark to which

other equalisers are frequently compared.

In the following we aim to derive the Wiener-Hopf equaliser coefficients and the corre-

sponding MMSE solution, by minimising the expected squared magnitude of the error

e[n] = sln — o] —yln] (2.2)

for a specific choice of delay §. The source signal s[n| is assumed to be an independent
identically distributed (i.i.d.) sequence. With these quantities, the nth equaliser output can
be calculated by

y[n] = wir, | (2.3)

the discrete convolution between the coefficients w(n] and the received signal r[n]. These

signals can be expressed in vector notations: w and r,,,

W= [’LU87 UJI, e 7wz—1]T (24)

For later convenience note that, the coefficients of vector w are complex conjugate w;.

r, = [r[n],r[n—1],- - ,r[n—L—1]F (2.5)

12



CHAPTER 2. ALGORITHMS FOR ADAPTIVE EQUALISATION 13

By substituting (2.3) into (2.2) we obtain
e[n] = sp_s—whr, (2.6)

Minimisation of the mean square error (MSE) for optimisation problems is widely used in

practice due to the fact that its mathematical derivation is relatively straight-forward.

The mean squared error (MSE) criterion &ysg is given by the statistical expectation of

the squared error signal,

fuse = Efelnle’n]} = E{(sn-s—w'rn)(sh_5 — 1, W)}
= E{spssi_s} — E{wlr,st s} — E{snsriw} + E{w'r,r}w}
= ol —wW'E{r,s, st — W E{s,sti} + WwE{r,r) } W

= 0o —Wip—wp +wRw (2.7)

where substitutions with the cross-correlation vector p and the auto-correlation matrix (co-
variance matrix for zero-mean processes) R have taken place. The cross-correlation vector

p is defined by

¢ T ) r =
TnSk_s Trs|0]
Tn— 327 Trs 6—1
p = &E{rusi ;=€ o = | | (2.8)
\ _Tn—L+1SZ_5_ ) I rrs[d — L+ 1]_

13
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where r,[7] is the cross-correlation function between r[n] and s[n],

rulr] = E{rln + s )} = v 7] (29)

ST

The entries of the auto-correlation matrix R € CE*E

([ * * * 1)
Tnly Tlh 4 . Tl h_ 141
R=¢E{r,r,} =€ Patn TnetTany Tt n (2.10)
L _Tn—L+17"Z Tn—L+1Tp_1 " ° Tn—L—‘rlT:—L—i-l_ )
I R 5 IO I T
I o)
=L+ 1] L2 - 0] ]

are samples of the auto-correlation function r,,.[7] defined by (2.9). R is Toplitz, i.e each
descending diagonal from left to right is identical, and is Hermitian, i.e is equal to its own
conjugate transpose: R" = R. These properties imply that the matrix R is positive semi-

definite and possesses real valued eigenvalues [10, 21].

The cost function &ysg is quadratic in the filter coefficients, and because of the semi-
definiteness of R, the cost function (2.7) has a global minimum solution, which is unique if

R is full rank.

14
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2.3 Wiener-Hopf Solution

Using the properties of covariance matrix R mentioned in the previous section, minimising
the cost function in (2.7) can be achieved by setting the derivative of &ysg with respect to

its coefficients to zero.

To optimise a convex function of complex parameters, the cost function has to be differ-
entiated with respect to the unconjugated coefficients, i.e. the complex conjugate of the
coefficient vector, to obtain the correct gradient, according to Wirtinger Calculus (Appendix

A) equation (A.4), such that

9)
usp(W) =min < Véysp = SMS*E =0 (2.12)
W
Hence, to minimise the MSE cost function with respect to the coefficients requires
OémsE 0 g !
o ——w Rw =0. 2.13
ow* P+ 8W*W W ( )

Transposing the scalar quantity (wHRw)T = wTRTw*, the derivative of the second sum-

mand in (2.13) can be solved using the product rule,

8\(1* wiRw = (%WH> Rw + (8fv*WTRT) w*. (2.14)
Therefore, using equations (A.11) and (A.12), (2.12) becomes

agMSE

. =—P+Rw = 0. (2.15)

If the auto-correlation matrix R is regular, (2.15) can be solved by inverting R to give the

15
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optimum vector w,p, which is know as the Wiener-Hopf solution,
Wopt = R7'p. (2.16)

If the auto-correlation matrix R is not full rank, the optimum solution in (2.16) cannot be
computed, and hence an infinite number of solutions exists. Even if R is invertible, it can be
ill-conditioned such that the inversion is prone to numerical errors. To avoid such problems,
we will next explore iterative schemes which are numerically more robust, and also avoid the
high computational cost that may be involved in the inversion of a matrix of considerable

dimension.

2.4 Least Mean Square Algorithm

2.4.1 Method of Steepest Descent

Adaptive equalisation can be performed by means of several iterative algorithms to find the
optimum solution. A popular search technique is the gradient descent algorithm, also known

as steepest descent algorithm, which can be formulated as

Wni1 = W, — uVuse[n), (2.17)

where V(.) is the gradient operator, {ysg[n] is the MSE cost function yielded by the coeffi-
cient vector w,, at time n, and u is referred to as the step size, loosely defining the length of
the step. Assuming w, is the current weight vector at time n, a new improved weight vector
w,11 can be achieved using (2.17) by taking a step u towards the negative gradient of the

cost function &ysg[n.

16
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From (2.15), at time n the explicit term for the gradient can be phrased as

0
Véuse[n] = ;i\;[viE =-p+Rw, . (2.18)

n

Substituting (2.18) into (2.17) leads to an update equation famously known as the steepest
descent algorithm [10, 22]. This update equation does not require any further inversion of
the auto-correlation matrix R, however a reliable estimation is needed for both the auto-

correlation matrix R and the cross-correlation vector p.

2.4.2 Gradient Estimate

To lower the computational complexity and to avoid recursively involving very long data
windows to estimate statistical parameters required of R and p, the gradient (2.18) is cal-
culated by estimates of the auto-correlation matrix R and the cross-correlation vector p
based only on the previous samples of r[n] and s[n|, which is equivalent to minimising the

instantaneous squared error, e, e} rather than the MSE. Setting

P = 1,5, (2.19)

R = r,r! (2.20)

n?

and substituting (2.19) and (2.20) into (2.18) gives a gradient estimate

V& = —bp+Rw,
= — (r,s}) +rrilw,
= — (s — W)
= —rue’. (2.21)

n

17



CHAPTER 2. ALGORITHMS FOR ADAPTIVE EQUALISATION 18

LMS Algorithm

1 ol = witr,

eln] = s[n] — y[n]
3 || Wy = W, + prpetn]

&

Table 2.1: Equations for channel equalisation by LMS adaptive algorithm at symbol rate n.

Substituting (2.21) into (2.17) yields the well known Least Mean Squares (LMS) algorithm
(10, 22, 23, 24] as

Wpi1 = W, +urye; . (2.22)

Tab. 2.1 illustrates the main equations involved to update the equaliser coefficients by using
the LMS adaptive algorithm.
2.4.3 Computational Complexity

The computational complexity of the LMS algorithm as listed in Tab. 2.1 results in
Crvs = 1+ 2L (2.23)

multiplications where L is the filter length. Clearly, the LMS algorithm has a low complexity
which is in an order of O(L) compared to Wiener-Hopf equation, which generally required
O(L?) due to the matrix inversion, or O(L?) of the method of steepest descent due to it

involving a matrix-vector multiplication.

2.5 Least Squares Algorithm

In contrast to the LMS algorithm where the cost function is estimated by trying to reduce

the expectation of the squared error, the least squares (LS) algorithm directly finds the

18
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filter coefficients by minimising a sum of squared errors. In this section, the least squares
formulation is introduced first, then a recursive structure of the least squares algorithm leads
to the well known recursive least squares (RLS), which is followed by a discussion of the RLS

complexity.

2.5.1 Least Squares Formulation

The cost function to be minimised in the least squares algorithm is the sum of squared errors
over all previous samples up to current time, n, de-emphasizing each past contribution by

an exponential time window,

ELsn = Z Be[n — vle*n — ], (2.24)
v=0

which is achieved by introducing a forgetting factor 5 , where 0 < 3 < 1.

Similar to (2.12) the minimisation of this cost function requires

agLS,n

|
= . 2.2
ow* 0 (2.25)

vé&LS,n =

Similar to the derivations of the Wiener-Hopf solution in Sec. 2.3 [10], the minimisation of
(2.25) leads to
R,w, = p, (2.26)

By introducing the forgetting factor 5 to R,, and p,, we obtain

R, =Y prn—kr"[n — k], (2.27)

19
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and
n

Pn = Z Bls*n — lJr[n —1]. (2.28)

=0

2.5.2 Recursive Least Squares Algorithm

The recursive least squares (RLS) is an algorithm which recursively finds an updated filter co-
efficients w,,; 1 using the current w,, and the auto-correlation matrix and the cross-correlation

vector from previous samples,

R, = AR, 1 + 1,1, (2.29)

Prn = ﬁpnfl + SZI‘n. (230)

After recursively updating R,,_; and p,_1, (2.25) can be solved for each time index n,
which will involve inverting R,, in (2.29) using the Matrix Inversion Lemma (also known as

Woodbury’s identity) [10, 22]. For a matrix A,
A=U+VZVH (2.31)
according to the Matrix Inversion Lemma, the inverse of A can be expressed as
Al=U'-Utv@Ezt+Vviutv)iviut . (2.32)

The Matrix Inversion Lemma can be proven by multiplying A (2.31) by A~! (2.32), and
recognizing that the result of this product is the identity matrix [22]. With U = R, 1,

V =r,, Z =1, (U+ VZVH) becomes the right hand side of (2.29). Defining ®, = R, !,

20



CHAPTER 2. ALGORITHMS FOR ADAPTIVE EQUALISATION 21

the matrix inversion can be performed iteratively using (2.32), giving

1 g1, ri P, 4
b, =—1d,_1 — N , 2.33
ﬁ ( ' ﬂ + rgq)n—lrn ) ( )

where the initial ®( is usually set to a small identity matrix weighted by a small factor to

ensure regularity of the matrix ®,, for small n. Introducing a gain vector

q)nflrn
= 2.34
M G, 239
equation (2.33) can be formulated as
1 H
(I)n = E ((bn,1 - )\nrn (anl) . (235)

For later convenience, it is advantageous to simplify A, such that equation (2.34) becomes

)\nﬂ + Anrgq)nflrn = (anlrn )

and hence
1 H
)\n = E(®n,1rn - Anrn®n,1rn) (236)
1 H
= B(q)n—l - )\nrn (I)n—l) ry,
= d,r,. (2.37)
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’ RLS Algorithm ‘

W, = W,_1 + A\, a*[n]

P, = L(®,1 — Ah)

Tyl =i,
2: || an] = s[n] —wil |1,
3: || h= rE@n,l

4: || k=5 +hr,

9: /\n = (IDn_lrn/k:

6:

7

Table 2.2: Equations for channel equalisation by RLS adaptive algorithm at symbol index
n.

The weight vector update equation w,, = ®,,p,, can be solved by substituting p,, from (2.30)
and then ®,, from (2.35),

w, = [BP,pn_1+ s, P.r, (2.38)
= q)nflpnfl - Anrgq)nflpnfl + S;qu)nrn (239)
= Rgilpnfl - )\nrqI:LIRgilpnfl + qu)nrn (240)
= W1 — Anliw,_1 4 55\, (2.41)
= W,_1+ A\, [s,*1 — rgwn_l} (2.42)
= W,_1+ M\ , (2.43)
where
Ap = Sp—TLWo (2.44)
= 5, — w1, (2.45)

is the a priori estimation error which is a tentative value of e, (2.6) before updating the
weight vector. The complete RLS equations involved in updating the equaliser coefficients

are listed in Tab. 2.2.
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When analysing the convergence [10], in a stationary environment the forgetting factor
is set to 1 to consider previous samples’ knowledge, and the RLS algorithm is affected equally
by old and current memory. Overall, the convergence behaviour of the RLS is considered

superior to the LMS.

In non-stationary environments, the forgetting factor is set to § < 1 to ensure the RLS
algorithm puts more emphasis on the current data and is not biased by past, out-dated
samples. This is a major factor in time varying environments [25] where in some situations

the LMS has a performance advantage [26, 27, 28, 29].

2.5.3 Computational Complexity

Compared to the LMS algorithm, the recursive least squares algorithm exhibits fast conver-
gence. However, the RLS comes at a high computational complexity. As listed in Tab. 2.2,

the multiplications create a computational cost of order O(L?),
Crrs = 3L + 3L* . (2.46)

Clearly the RLS complexity is higher than the LMS (2.23), therefore efforts have been

undertaken to create variations of the RLS algorithm with lower computational cost.

2.6 Affine Projection Algorithm

In this section we consider the affine projection algorithm (APA) which is a popular algorithm
within the acoustic echo cancellation schemes [30] and is included here because it links LMS
and RLS algorithms [31]. The APA was first proposed by Ozeki and Umeda [32] with the

aim to improve the slow convergence of the normalised LMS (NLMS) scheme which is a
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variant of the LMS algorithm with a normalised step size with regards to the power of the
transmitted signal. A more in-depth analysis of the convergence behaviour of the APA can
be found in a number of articles [33, 34, 35]. The main idea behind APA is reusing data by

exploiting previous regressor vectors to attain faster adaptation.

2.6.1 APA Formulation

Similar to the NLMS, APA can be seen as a solution to the following optimization problem:
Given the current coefficient vector w,,, the received vector r,,, and the current value of the

desired signal s,, calculate the new weight vector w1 such that
Lo
|[Wnt1 — Wy, = min, (2.47)

subject to

0 — {Jway = s*[n — ], i=0,1,---,P—1 (2.48)

where P is the number of constraints and hence defines the order of the APA algorithm.
This means that the new weight vector w,,; should be best fit to the new data as well as
the previous P — 1 past received signals and their matching desired signals. It is important
to note that for the special case of P = 1 the APA algorithm becomes the NLMS adaptive

filter,

H ! *
I‘n Wpt1 — Sn
_ 1Wnt1 = Sy
Fp—p+1Wnt1 = Sp_pi1 - (2.49)
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For convenience of mathematical presentation, we introduce the definitions

XE = [r};l? rgflv e 7r57P+1] (250)
:1 = [8275;717"' 75*[n_P+1H . (251)

The system of equations (2.49) becomes

Xw, 1 =s" . (2.52)

From equations (2.6) and (2.50) we can define the past error vector e,, whose complex

conjugate is expressed by

el =s' — Xllw, . (2.53)
Using (2.52)
e = Xw, 1 — Xfw,, (2.54)
hence
W1 =w, + (X)) tel . (2.55)

Keeping in mind that the APA demands a minimum change in the weight vector coefficients
(2.47), (2.55) can be solved by the pseudo-inverse (XI)T of X [21]. Either the left or
right (X! has to be used depending on whether (2.54) is underdetermined (P < L) or
overdetermined (P > L). Here we only consider situations where (P < L), which means the

left pseudo-inverse (XI)T = X,,(X2X,,)~! should be used to solve (2.55) [32],

W1 = Wy 4+ X (XX, ) ter. (2.56)
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pth order APA Algorithm
update s,, and X,,

e, =S, — XEWZ

(X = Xn (XX, + L)~
W1 = W, + pu(X)Ter.

Table 2.3: Equations for the filter update by the APA adaptive algorithm.

Introducing a relaxation factor p into the right summand of (2.56) and a weighted identity
matrix to (XI)T for regularisation purposes the update equation of the Pth order APA is
formulated as

Wit = Wy, + 1 X, (XEX, + 1) ter. (2.57)
Tab. 2.3 summarises the main equations involved to update the equaliser coefficients by
using the APA adaptive algorithm.
2.6.2 (Geometrical Interpretation

Assuming the hyperplane P,,_;,; defines the solution space of the ith equation of the system
of equations (2.49), then successive projections from the current coefficient vector w,, onto
the hyperplanes P,,_p12, Py_pi3, - - - Pryq will solve (2.52) if the system of equations (2.49)
is consistent, i.e. all hyperplanes P,_;.1 cross at least in one point [36], which is similar to

requiring X,, to be a full rank matrix.

2.6.3 Complexity Issues

According to the implementation steps summarised in Tab. 2.3, the computational complex-

ity of the APA is noted as

Capa = (P* + O(P%) +2PL , (2.58)
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Figure 2.2: Geometrical interpretation of affine projection algorithm

where P is the order of projection. The term O(P?) is related to the complexity of calculating
the pseudo-inverse in step (3) of Tab. 2.3. Fast implementations of the APA (FAPA) claim

to reduce this cost to Cpapa = 2L + 20P [37].

2.7 Training versus Blind Equalisation

In most high speed high data rate applications the propagation channel is not known a priori
and is very likely time varying, which requires adaptive solutions in the design of a receiver.
A classical approach in an adaptive receiver is the transmission of the pre-arranged sequence,
so-called training sequence, which is known a prior at the transmitter and receiver. A training
sequence is typically a fixed portion of the source sequence which is known in advance at
the transmitter and receiver, and therefore contains no information. Hence, training signals

take up bandwidth which might be considered too costly for certain applications. In a time-
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varying channel, constant training would be required, as any converged solution without
tracking would be out-dated soon, therefore the need to operate without explicit training
sequences arises. Such an approach is termed blind. Many blind algorithms have been
proposed such as second order statistics (SOS), [38, 39], minimum output energy (MOE)
[40, 41] and constant modulus (CMA) algorithms which will be discussed in more detail in

Sec. 2.9. Next the semi-blind decision directed algorithm is presented.

2.8 Decision Directed Adaptation

In decision-directed (DD) updating, the equaliser output y[n] is passed through a non-linear
decision device ¢(.) which estimates the transmitted source symbol s[n| by nearest neighbour
decision. DD is usually used after the convergence of the LMS algorithm when training
has ended, or after a successful convergence of a blind equalisation algorithm. Lucky [42]
recognised if the decisions are correct “most of the time”, the reference sequence s[n] in
the LMS’ error can be replaced with its estimate ¢(y[n]). This blind scheme is thus termed
decision directed adaptation. Tab. 2.4 illustrates the main equations involved to update the

equaliser coefficients by using this DD approach.

DD has the ability to track slowly varying changes in the channel without explicit need
of a training sequence, and converges to the optimal equaliser (2.16) when initialised at an
open-eye setting [43]. However, reliability of DD depends on the reliability of the source
estimate ¢(y[n]). Typically in blind equalisation scenarios another blind technique which
operates from a cold start settings such as CMA is used to reduce the error rate sufficiently

before switching to DD.
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DD Algorithm

1: | y[n] = whr,

eln] = q(y[n]) — y[n]
3 || Wy = W, + prpetn]

&

Table 2.4: Equations for channel equalisation by DD adaptive algorithm at symbol rate n.

2.9 Constant Modulus Algorithm

The constant modulus (CM) criterion was first proposed by Godard in [44] and developed
independently by Treichler and Agee in [45]. CMA is a popular blind algorithm for cold start-
up of a tapped-delay-line equaliser structure [16]. Godard’s original intention was to develop
an algorithm for phase and amplitude-modulated signals, for example QAM which decoupled
equalisation and carrier recovery, so that carrier phase tracking could be accomplished at
the equaliser output in DD mode [44]. Treichler and Agee’s original intention was to develop
a criterion which sensed multipath induced amplitude modulation (AM) on an otherwise

constant envelope frequency modulation (FM) signal [45].

The CM criterion attempts to fit a power of the modulus of the equaliser output to a
constant. This constant is chosen to essentially project all constellation points onto a circle

of radius 7. Mathematically from [44] this criterion is expressed as

E{(ylnII" — 1)} (2.59)

with

sy
P s} (260

where 7, is often called the dispersion constant of the constellation. The case p = 1 is usually

attributed to Sato [46]. We study solely the case p = 2 in the sequel and henceforth CMA

refers to the p = 2 case. Tab. 2.5 illustrates the main equations involved in updating the
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’ CMA Algorithm ‘

1: [ y[n] = w'r,,
2: || e[n] = (v* — y[n]*)y[n]
3: Wpi1 = Wy + urne* [n]

Table 2.5: Equations for channel equalisation by CMA at symbol rate n.

equaliser coefficients w([n| by using the CMA algorithm.

Godard shows that the value of the dispersion 7, (2.60) minimises the CM cost func-
tion (2.59). The relation between CM and MSE criterion is strong: Treichler and Agee
demonstrated that in terms of convergence, minimising the constant modulus performance

function is equivalent to minimising the mean square error [45].

Due to the simplicity of the CMA and its independence of system and channel models [47],
the CMA has shown robustness to many system and channel impairments, see e.g. [19, 48, 49].
Furthermore, since the CMA uses the absolute value of y[n], the algorithm is insensitive to a
phase error, which can be caused by carrier frequency offset or/and unknown channel phase
[44]. Hence, carrier frequency offset estimation can be established separately after CMA

equalisation.

2.9.1 Convergence Speed of CMA

The basic CMA discussed above as well as many other blind algorithms based on non-
convex cost functions, exhibit local minima and slow convergence speed [47, 50]. There have
been numerous attempts to improve the typical CMA slow convergence [48, 51, 52]. One
can implement a CMA cost function for example with lattice filter equalisers [51], or with
an affine projection algorithm (APA) [52] or simply use the recursive least squares (RLS)
[48]. Tt is known that for trained equalisers, these approaches show faster convergence speed

than LMS type algorithms [10, 22, 31|, however they require higher precision than the LMS
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as well as a higher computational complexity per iteration [47]. In order to obtain faster
converging algorithms with CMA by using these algorithms, some modifications are needed.
The Lattice CMA (LCMA), first proposed in [51] has shown faster convergence than the
basic CMA. Similar modification has been adopted for RLS CMA where a simple version of
this algorithm is presented in [10]. The APA CMA described in [52] has a simpler structure
than the Lattice CMA and RLS CMA and it is known by its capability to escape from
local minima as discussed in [52]. Note there are other approaches which aim to speed
up the convergence rate of CMA and are not covered here such as the conjugate gradient
search CMA [53], the Modified Constant Modulus Algorithm (MCMA) [54], Multi-Modulus
Algorithm (MMA) [55], and normalised CMA [56, 57]. Basically, the above approaches try
to apply already known fast converging algorithms to CMA, with the resulting convergence
speeds usually being faster than that of the CMA. However, the increase in convergence
speed is not as great as what may be expected from RLS or Lattice algorithms with training
sequences [47]. This is likely because the CM cost function being minimised is not the MSE

for which these algorithms are designed.

2.9.2 Ill-Convergence and Initialisation

Unlike MSE, the CM cost function is a non-convex multi-modality function [50, 58]. Yet, in
addition to the global minima, other stationary points which includes saddle points, local
minima and local maxima have been distinguished on the error surface of the CM cost
function [58]. For example, since the CM criterion operates purely on the magnitude of the
equaliser output, not the phase, we can easily recognise that any phase rotated versions of
a CM-optimal solution are as well solutions themselves. In differentially encoded systems,
the encoding scheme can remove some of the phase ambiguity. Other minima and saddles of

the CM error surface can arise from the possible choices of system delay, additive noise and
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insufficient equaliser length [19]. Note also the existence of a flat point of the cost function
surface at the origin. It is shown that the origin is the only maximum of the CMA surface
which according to Treichler et al. [45] can be avoided by proper equaliser initialisation; the
traditional all zero initial vector should not be used [19]. A proper equaliser initialisation

remains an open research issue, with various ideas discussed in the literature [58].

2.10 Concluding Remarks

This chapter has reviewed the general concept of adaptive equalisation in digital commu-
nication systems. The Wiener-Hopf solution, which is based on minimising the MSE, has
been highlighted. In addition to the Wiener-Hopf solution, a number of popular adaptive
algorithms have been reviewed, starting with training based adaptive filters such as the LMS
algorithm, the least squares algorithm and the recursive least squares (RLS) algorithm, as
well as the affine projection algorithm (APA). Finally, basics and characteristics of some
blind algorithms have been discussed, mainly of the constant modulus algorithm (CMA)
and the decision directed (DD) update scheme. The next chapter presents a more detailed
implementation of the CMA algorithm for multi-user systems, and then discusses combining
the CMA with the DD algorithm concurrently, as well as applying the APA to the resulting

filter.
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Chapter 3

Firmer-CMA and Variations

In this chapter we review a blind multiuser equalisation strategy for downlink DS-CDMA
systems, the so-called filtered-R multiple error CM algorithm (FIRMER-CMA). We start by
introducing the algorithm’s cost function and deriving the corresponding stochastic gradient
search in Sec. 3.1. The following Sec. 3.2 presents a concurrent FIRMER-CMA and decision
directed algorithm for multiuser equalisation with an analysis and assessment of the con-
vergence behaviour of both FIRMER-CMA and the concurrent algorithm. In Sec. 3.3, an
affine projection algorithm is applied to the concurrent scheme to further accelerate the con-
vergence speed. Finally, partially loaded systems are considered in Sec. 3.4, whereby three

different algorithms which exploit inactive users’ codes are implemented and compared.

3.1 Blind Multiuser FIRMER-CMA Equaliser

Transmission over a dispersive channel destroys the mutual orthogonality of the codes which
are used to multiplex the various users in downlink DS-CDMA system. As a result, the

received and code-demultiplexed user signals are subject not only to ISI due to channel
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dispersion but also to multiple access interference (MAI) due to the loss of code orthog-
onality. In order to re-establish orthogonality of the codes, a chip level equaliser can be
utilised [59, 60]. In fact, by introducing an equaliser in front of the matched code filter,
optimum detection with zero ISI and MAI can be achieved in case of perfect equalisation.
Furthermore, unlike the uplink (UL) where different users are subject to different dispersive
channels, in the downlink (DL) transmission all users signals are synchronous and propagate
through the same medium which makes equalisation a simpler task. Various blind equali-
sation techniques, which can simultaneously suppress MAI and ISI and improve bandwidth
efficiency, have been proposed [40, 61, 62]. The constant modulus (CM) algorithm (CMA)
based multiuser equaliser is by far the most popular scheme. It has a very simple compu-
tational requirement and readily meets the real-time computational constraint. In [61, 62],
blind schemes have been performed using the CM criterion, whereby additional orthogo-
nality constraints or mutual decorrelation of the recovered user sequence are required. In
response to this scenario, we propose a simple and robust blind multiuser strategy, based
on exploiting the CM criterion of all active users of the system, whereby neither explicit
constraints nor mutual decorrelation are required. In the following, the main derivations of

the proposed algorithm are presented.

In a multi-user communications system where many users share a common channel, in-
terference from various users may distort the detection of a single user. Therefore in the
receiver the respective signals require to be separated in a manner such that interference is

reduced.

3.1.1 Demultiplexed User Signals

We consider the DS-CDMA downlink system in Fig. 3.1. The blocks p/s and s/p refer

to parallel-to-serial and serial-to-parallel procedures, respectively. Here, we are concerned
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Figure 3.1: Signal model of DS-CDMA downlink with a Firmer-CMA equaliser

about blindly adapting the equaliser coefficients, where the system is fully loaded with
K = N multiple synchronous users’ signals, which for simplicity are assumed to have the
same rate. First we derive the detected signal 4;[n]| as a function of the chip rate equaliser
w. Then, we state a suitable cost function based on which the equaliser can be adapted.

The sequence for decoding the [th user, contained in a vector h;, can be taken from an N x N

Hadamard matrix H. Therefore, the [th user is decoded as

[ V] o |l ymn
sl —wr| SN YN —1]
0 c[nN—N+1]||y[nN—-N+1]
I r[nN] 1
T I H L N 3.)

0 wil| | r[nN—L—-N+2]

where the descrambling code ¢*[m] has been absorbed into a modified and now time-varying
code vector h; [nN], and w € C* contains the equaliser’s L chip-spaced complex conjugate

weights. Rearranging w and hy[nN] yields
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fl? [nN] r[nN]
. hf'[nN] rinN—1]
ﬂl [n] W
0 h [nN]||r[nN—L—N+2]
wil H;[nN|r,n , (3.2)

with H;[nN] € Z2*E+N=1 heing a convolutional matrix comprising the Ith user’s modified
code vector hT[n], and 1,y € CN*L~1is the received signal. Note that H;[nN] only addresses

the decoding of the [th user signal.

3.1.2 Cost Function

Since the modulation scheme used for downlink UMTS-TDD is mainly quadrature phase
shift keying (QPSK) and in some exceptions 8PSK [63], the user signals u;[n] consist of
symbols with a constant modulus . By forcing all received user symbols #;[n] onto v, a
blind cost function ¢y can be proposed to adapt the weights w. Therefore, a suitable cost

function £qy can be formulated as

§CM=5{Z V2 —liy[n] } (3.3)

which penalises the deviation of each of the N users’ decoded symbols from the desired

modulus. The optimum equaliser coefficient vector weon opt is obtained from

WCM,opt = arg m“i,n Som - (3.4)
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Figure 3.2: Cost function &, in dependency of a single complex valued coefficient wy.

There is no unique solution to (3.4), since minimising (3.3) is ambiguous with a manifold of
solutions due to an indeterminism in phase rotation. However, any member of this manifold
is a suitable solution for the equaliser w, and can be used in combination with a differential

modulation scheme to recover u;[n.

Example. The cost function £cy is plotted in Fig. 3.2 in dependency of an equaliser with
a single complex coefficient wy. The system adopted here is a fully loaded UMTS TDD
system with N = 16 users transmitting their signals over an ideal AWGN channel with 30
dB SNR. The modulation scheme employed here is QPSK with v = 1. Fig. 3.2 shows that
£cm exhibits a manifold of optimum solutions satisfying |wy| = . Also, note the flat point

at wy = 0 which forbids this coordinate as an initialisation point.

3.1.3 Blind Adaptation

A simple stochastic gradient descent update rule for w|m| can be found by calculating the

gradient of an instantaneous cost function, i.e. omitting the expectation operator in (3.3)
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Eon=3 (7~ lialn]P)? (3.5)

The resulting terms are then minimised with regard to w to obtain instantaneous esti-

mates of the cost function gradient Vé (wn), leading to the stochastic gradient update

Wpi1 = Wy — :uvéCM(Wn> (3'6)

where p is the step size. The introduction of gradient noise through inaccurate estimates of
the true underlying statistics into the update routine can assist in avoiding the adaptation
to remain in flat points of the cost function. However, we will later see that this does not

apply to w = 0.

To determine VéCM, we apply complex vector calculus [64] to (3.6), yielding

o€, = )

cM 2 2 - ~H

=2 22 |0 ) g bl
N-1

=—23" [(* — liu[n) YH [N e,y - el HE [nN] w]

= =23 (% = [a[n)PYH[nN] Ty 6 [n]. (3.7)

This algorithm differs from the standard CM algorithm [50] in the inclusion of a code filtered
term H;[nN] r,n rather than just the equaliser input tap delay line vector r,y. This is
structurally similar to a multiple-error filtered-X LMS algorithm [65], where the transfer
functions appearing in the paths between the adaptive filter output and the error formations
have to be accounted for by modifying the LMS updating scheme. Hence, the proposed
scheme in (3.7) is referred to as filtered-R multiple error CM algorithm (FIRMER-CMA).
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FIRMER-CMA Algorithm
xnN]=H; r,y, for [=0(1)N—1
wy[n] = wixy[nN], for I =0(1)N —1
en] = (V2= [n]|*)dy[n], for 1=0(1)N —1

N-1
Woi1 = Wy, + 10 Y x[nN]ef[n]
i=0

Table 3.1: Equations for multiuser channel equalisation by FIRMER-CMA adaptive algo-
rithm at symbol index n.

Tab. 3.1 illustrates the main equations involved to update the equaliser coefficients w|m)|
by using the resulting FIRMER-CMA algorithm. Regarding the earlier comment to avoid
initialisation with w = 0, this would lead to a zero output from step 2 of the algorithm in
Tab. 3.1, and subsequently null the error and innovations in steps 3 and 4, leading to the

CMA algorithm remaining trapped at w = 0.

3.2 Concurrent FIRMER-CMA and Decision Directed

Updating

The previously proposed blind multiuser FIRMER-CMA equaliser improves system band-
width efficiency by avoiding the use of a training sequence and can readily meet the real-time
computational constraint. However, since the latter algorithm is a CMA based equaliser,
slow convergence and the moderate levels of steady-state MSE are the main drawbacks of
such a scheme, which may limit its implementation in practical wireless communication sys-
tems. Therefore, this section introduces some fast and robust blind multiuser equalisation
alternatives. In order to increase the convergence speed of the FIRMER-CMA a concurrent
FIRMER-CMA and decision directed (DD) algorithm capable of achieving a low steady-state
MSE is derived.

Since FIRMER-CMA is based on the CM criterion, it is prone to achieve only moder-
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Figure 3.3: Signal model with a concurrent equaliser

ate levels of steady-state mean square error (MSE) performance after convergence, which
may not be sufficiently low for the system to attain adequate bit error ratio (BER) perfor-
mance. A possible solution to the latter problem is to switch to a decision-directed (DD)
mode in order to minimise the residual CMA steady state MSE [43]. In order to avoid error
propagation due to incorrect decisions, the CMA residual MSE should be sufficiently low.
In practice such a low level of MSE may not always be achievable by the CMA [20, 66].
Consequently, a promising solution, suitable for single user transmission, has been proposed
in [66], whereby a DD equaliser is concurrently operating with a CMA rather than switching
to a DD adaptation after the CMA has converged. This concurrent CMA+DD equaliser is

reported to achieve a significant enhancement in equalisation performance over the CMA [66].

Based on [66], a concurrent FIRMER-CMA+DD algorithm which is suitable for syn-
chronous DS-CDMA systems is derived. Adaptation is performed by concurrently minimis-

ing two cost functions based on either a CM criterion or a DD scheme for all active users.
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3.2.1 Concurrent Cost Function

We consider the downlink DS-CDMA system with an equaliser w which consists of a CMA
part w,. and a DD branch w, operated in parallel, such that w = w. + w, as depicted in
Fig. 3.3. The weights w,. and w, are updated by minimising the two cost functions £. and

&4 respectively which are given by

(=& { - (v = \ﬁz[n]IQ)Q} : (3-8)

=€ {ijuq(m[n]) - az[nw}, (3.9)

with ¢(.) mapping its input onto the closest constellation point. The optimum vectors w opt

and wg op are therefore obtained from

Weopt = argminé, (3.10)

Waopt = argminé, . (3.11)
Wq

There are no unique solutions to either equations (3.10) or (3.11), since both (3.8) and
(3.9) are closely coupled. The phase indeterminism of (3.8) is somewhat reduced by (3.9) to
possible phase rotation, by 7, 7 and 37” Therefore, by operating DD and CMA concurrently
the phase ambiguity found in FIRMER-CMA case can be mitigated to some degree by

locking the solution onto the prescribed constellation pattern.

Example. In this example the two cost functions &. and &; are plotted in Figs. 3.4 and

3.5 respectively, in dependency of an equaliser w with a single complex coefficient wy. The
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Figure 3.4: Cost function &, in dependency of a single complex valued coefficient wy.
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Figure 3.5: Cost function &; in dependency of a single complex valued coefficient wq

system adopted here is a fully loaded DS-CDMA system with N = 16 users transmitting their

signals over a distortionless and delayless channel with an SNR of 30 dB. The modulation
scheme employed here is QPSK with v = 1. Fig. 3.4 shows that &. exhibits a manifold of

optimum solutions satisfying |wy| = 7. Yet, only four solutions can be seen in &; due to the

four possible QPSK decisions, Fig. 3.5.
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3.2.2 Concurrent Adaptation

In the following, we derive the concurrent FIRMER-CMA+DD algorithm which updates the
multiuser equaliser vector w, similarly to the single-user concurrent CMA+DD described
in [66]. The main idea is to update the CMA part w,, which is followed by a DD adaptation
step only if the previous CMA adaptation step is deemed successful. The proposed algorithm,
which is updated at the symbol rate with symbol time index n, can be described by the

following steps:
1. The decoded signals @;[n] are calculated for all users according to
ty[n] = wi [n]x[n] + win]x[n], for [ = 0(1)N — 1. (3.12)
whereby x;[n] represents a vector of filtered received signal samples,

x;[n] = Hy[nN] r,n. (3.13)

2. The CMA part w, is adapted according to the rule
N-1
wen + 1] = we[n] + ue Z ey Xi[n] (3.14)

=0

where €. = @[n|(y* — |@[n]|?) and p. is the CMA step size. This stochastic gradi-
ent adaptation is identical to the FIRMER-CMA and it is based on optimising an

instantaneous cost function derived from (3.8) by dropping the expectation operator.

3. Intermediate signals @;[n],l = 0(1)N — 1, are evaluated by exploiting the previously
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calculated w.[n + 1] such that
a[n] = wiln + 1]x;[n] + wi[n]x;[n]. (3.15)
4. Finally, the DD part of the algorithm adjusts w, as
N-1
waln + 1] = waln] + pa Y 8(q(@n]) — a(iuln]))ef ], (3.16)
1=0

where e, 4 = q([n]) — W[n], and p, is the DD step size. The indicator J(.) is defined

as

1 ifa=0
ia) = (3.17)
0 ifa#0,

and therefore disables the DD adaptation step for a specific user if the CMA adaptation

step leads to altering the decision.

The convergence of this concurrent scheme is governed by the step sizes in the algorithm.
In practice, the DD step size u4 can often be chosen much larger than the CMA step size
.. However, choosing too large a value can cause serious error propagation due to incorrect
decisions. Tab. 3.2 summarises the main equations of the proposed concurrent FIRMER-
CMA+DD. The potential drawback of DD adaptation is that if the hard decision is incorrect,
error propagation occurs which subsequently degrades the equaliser performance. It has
been shown that if the equaliser hard decisions before and after the CMA adaptation are
the same then the decision is likely to be correct [20]. For this reason, wy is only updated
in the latter case, similar to [66]. Hence, by employing the concurrent FIRMER-CMA+DD,
a considerably enhanced convergence speed and a lower steady state MSE can be achieved

compared to the standard FIRMER-CMA.
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Concurrent FIRMER-CMA+DD algorithm

update x;[n] = H;[nN]|r,n, for i=0(1)N —1
wy[n] = whn]x[n], fori=0(1)N —1
ere=1an](v* — |w[n]?) , for i=0(1)N —1

weln + 1 =weln] + ue Yy ef xiln]

] = we![n + Lxi[n] + wg [n]x[n]

era = (q(w[n]) — wn]), for I=0(1)N —1
waln + 1) =waln] + pta 05 a(iuln]) — a(iuln)ef gl
wln + 1]=w¢[n + 1] + wg[n + 1]

Table 3.2: Concurrent FIRMER-CMA+DD algorithm.

3.2.3 Simulation Results

For the simulations below, we consider a fully loaded synchronous DS-CDMA system, where
the modulation scheme adopted is QPSK. We apply the FIRMER-CMA+DD to two different
channel impulse responses, a short ¢g;[m| and a more dispersive gs[m|, as characterised by

their chip rate transfer functions

G1(z) = 0.89 + (0.36 — 0.275)z ' +0.0927% | (3.18)

Ga(z) = 0.67 + (0.54 — 0.275)2~* + (0.41 — 0.075)z~ " — 0.205z""" . (3.19)

In the following, we first demonstrate the convergence behaviour and the steady state MSE
over noise-free channels, and thereafter characterise the evolution of the received constellation

in a noisy environment.

Experiment 1: In order to demonstrate the convergence behaviour of the proposed
algorithm, we transmit N = 16 QPSK user signals over g;[m] in the absence of channel
noise. The length of the equaliser is L = 10, and the relaxation factors are chosen to be

te = 107* and g = 1072, After multiple simulations, these step sizes are the largest values
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Figure 3.6: Comparison of convergence speed and steady state MSE between the concurrent
FIRMER-CMA+DD algorithm and the standard FIRMER-CMA.

for which all simulations provided fast stable convergence. The adaptation is initialised with
both first coefficients in the weight vectors w, and w, set to 1/2 and zeroing all remaining
taps. The MSE performances of the proposed concurrent FIRMER-CMA+DD and the
standard FIRMER-CMA algorithms are shown in Fig. 3.6. Evidently a faster convergence
and lower steady state can be achieved by the proposed concurrent algorithm compared to

an adaptation based on FIRMER-CMA.

Experiment 2: For N = 16 QPSK users, we have adapted the concurrent FIRMER-
CMA under SNR = 10dB over the dispersive channel go[m]. The length of the equaliser is
L = 64, and the relaxation factors are chosen to be p, = 107% and gy = 107, Again the
selected step sizes are the largest values for which all simulations provided fast stable con-
vergence. Fig. 3.7 depicts the decoded signal constellations of user [ = 0 after adaptation of
5 x 10% symbols with (a) no equalisation performed (b) a standard FIRMER-CMA equaliser,
and (c) the concurrent FIRMER-CMA+DD. The results clearly show that the concurrent
algorithm overcomes the phase ambiguity encountered in the CMA scheme by locking onto

the constellation pattern prescribed by q(.).
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Figure 3.7: The decoded signal constellations of user I = 0 after adaptation of 5 x 10 symbols with
(a) no equalisation (b) standard FIRMER-CMA equaliser and (c) concurrent FIRMER-CMA+DD.

3.3 Concurrent FIRMER-CMA+DD with Affine Pro-
jection

In the previous section, the FIRMER-CMA+DD algorithm has provided a significant per-
formance enhancement in terms of steady-state MSE and convergence speed over the stan-
dard FIRMER-CMA. The latter improvement is mainly due to the contribution of the DD

branch operating concurrently with CMA. However, the DD part is only updated if this step
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is considered secure. Therefore, the adaptation is generally governed by CMA rather than
DD especially in initially closed-eye systems. Thus, a slow convergence may still persist in
the proposed algorithm’s performance. A possible solution to this problem is to acceler-
ate FIRMER-CMA+DD by adopting the concept of the affine projection algorithm (APA)
scheme presented in Sec. 2.6. In this section, we derive a combined AP-FIRMER-CMA+DD
structure in order to gain benefits from both FIRMER-CMA+DD and APA algorithms.

The APA was first proposed by Ozeki and Umeda [32]. Initially, it was developed to
improve the perceived slow convergence of the NLMS scheme. A more in-depth analysis of
the convergence behaviour of the APA can be found in a number of articles [33, 34, 35]. The
main idea behind APA is reusing data by exploiting previously received signal vectors to

perform a faster adaptation.

3.3.1 Modified Cost Function

The CM term in (3.8) can be further reformulated as [52]

5{2_: |dz,c[n]—ﬂl[n”2 (3.20)

~

w[n]

|u[n]|

with dic[n] =~ (3.21)

This alternative CM philosophy suggests to enforce the detected symbol 4,;[n] to its nearest
symbol d; .[n] from the circle which has the radius v and the centre at the origin, as illustrated
in Fig. 3.8. The new form has a structure similar to an MMSE criterion, whereby the only
difference lies in the value of the desired symbol d;.[n]. Defining the DD decision function

as

di,a[n] = q(iu[n]), (3.22)
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Figure 3.8: Configuration of the desired response for the CM criterion, assuming a QPSK constel-
lation.

both &. and &; can be written as

i = 5{2_ |dz,m[nJ—al[nJ|2}, (3.23)

with m € {¢, d} indicating the operational mode as either CM or DD.

Next, we are concerned with minimising both &. and &; concurrently based on the affine

projection scheme.

3.3.2 Formulation

The following steps present how the AP-FIRMER-CMA+DD is formulated.

1. We split (3.2) for the Ith user’s decoded symbol u;[n] into a scalar product between

the weight vector and an input vector,
y[n] = whx[n], (3.24)
whereby x;[n] represents a vector of filtered received signal samples,
x;[n] = Hy[nN] r,n. (3.25)
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2. We retain a record of the past P input vectors x;[n — p|, and d; .[n — p] and d; 4[n — p)
which are the the corresponding desired signal values for the CMA and DD parts

respectively, such that p=0--- (P — 1),

Xl[n] = [Xl[n] Xl[n — 1] cee Xl[n — P+ 1]] ) (326)
dio[n] = [die[n] diefn—1] - difn—P+1)", (3.27)
dl,d[n] = [dhd[n] dhd[n — 1] cee dl,d[n — P + 1”T . (328)

3. We define the error vector according to the CMA part e;.[n]| at time instance n,
ej [n] =dj.[n] - X)'[nlwln], 1=0(1)N -1, (3.29)
Based on this error vector, we want to perform a CMA weight update such that

X, [n'weln + 1] =dj [n], 1=0(1)N —1. (3.30)
4. Inserting (3.29) in (3.30), we can update the CMA part of the equaliser weights
w[n + 1] = w.[n] + X[ [n]e] [n], (3.31)
where X[n] is the pseudo-inverse of the data matrix X;[n]
Xi[n] = Xyn] (Xi[n]"X[n] + o) ", (3.32)

where « is a small number used for weighting the identity matrix I. Adding a relaxation

factor . to the update and taking the contributions of all NV users into account, (3.31)
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becomes

we[n + 1] = wo[n] + e i X/ [nef . [n]. (3.33)

5. We calculate the Ith user’s intermediate symbol @;[n] where only the CMA part is
updated
iy[n] = X [n)wi[n + 1] + X} [n]wi[n]. (3.34)

6. Making the decision of updating the DD part

Ayln] = diag(d{a(u[n]) — a(w"Xi[n])}). (3.35)

The indicator §(.) is a vectorial decision function that compares the [th intermediate

symbol @;[n| with [th user’s decoded symbol @;[n], where §(.) behaves similarly to

(3.17).

7. Similar to (3.33) we update the DD part of the equaliser weights

N-1
waln + 1] = waln] + pa Y Ma[n]Xj [nle] y[n], (3.36)

1=0
where e ,[n] = dj4[n] — X['[n]w[n] for I = 0(1)N — 1, and g is a relaxation fac-

tor. Therefore, A;[n]| disables the DD adaptation step for a specific user if the CMA

adaptation step leads to an alteration in the decision (3.35).

8. The final equaliser coefficients are updated through combination of the CM and DD
weights according to

wn+ 1] = w.[n + 1] + wy[n + 1]. (3.37)

9. Increment n and to return to step 1.
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pth order concurrent affine projection algorithm
update, X;[n|, d;.[n] and d;q[n] for I =0(1)N —1
X/ [n] = Xy[n](X;[n]" X [n] + oL) !

ercln] = dicn] — X [nJw*[n]

weln 4 =we[n] + i 1! X{[nle][n]

y[n] =X [n]wi[n + 1] + X [nJw}[n]

Aq[n] = diag(6{a(@u[n]) — w"X;[n]})

evaln] = dyaln] — X [nJw*[n]

Waln + 1] =waln] + pa 35" Aan]X] [nlef yfn]

wn + 1]=w¢[n + 1] + wg[n + 1]

© 00 =3P I W

Table 3.3: Concurrent affine projection algorithm (AP-FIRMER-CMA+DD) for pilot-assisted
multiuser equalisation.

Similar to the convergence of the concurrent scheme, AP-FIRMER-CMA+DD is governed
by the step sizes u. and ug. In practice, the DD step size pg can often be chosen much
larger than the CMA step size u.. However, choosing too large values can cause serious

error propagation due to incorrect decisions [66].

The potential drawback of DD adaptation is the probability of error propagation occurring
in case of a wrong hard decision, which subsequently degrades the performance. It has been
shown that if the equaliser’s hard decision before and after the CM adaptation are the same
then the decision is likely to be correct [66]. For this reason, wy is only updated in the
latter case, similar to [66]. Hence, by employing the APA scheme alongside the concurrent
approach, a considerably enhanced convergence speed and a lower steady state MSE could
be achieved compared to the standard FIRMER-CMA and FIRMER-CMA+DD. Hence, the

implementation of the pth order algorithm could be summarised as shown in Tab. 3.3,

3.3.3 Performance

In this section, we show by computer simulations that a considerable improvement in per-

formance has been achieved compared to FIRMER-CMA and FIRMER-CMA+DD. We first
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Figure 3.9: MSE curves of the FIRMER-CMA+DD (p = 1) and AP-FIRMER-CMA+DD (p = 5).

demonstrate the convergence behaviour and the steady state MSE over noise-free channels,

and thereafter characterise the bit error rate performance of the proposed algorithm.

Simulation 1: In this computer simulation we demonstrate the convergence behaviour of
the proposed scheme. We consider a QPSK constellation and transmit N = 16 user signals

over a dispersive channel g;[m] with a chip rate transfer function

G1(2) = 0.89 + (0.36 — 0.275)z" +0.0927° . (3.38)

The length of the equaliser is L = 10, we choose the relaxation factors to be p, = 5x 1073
and g = 2 x 1072 and the projection order to be p = 5. These step sizes have been selected
after numerous simulations and are the largest values for which all simulations provided
fast stable convergence. We set the second tap in the weight vector to unity in the initial
adaptation step. The MSE performances of the proposed AP-FIRMER-CMA+DD and the
standard concurrent FIRMER-CMA+DD algorithms are shown in Fig. 3.9. The results
clearly show that the convergence speed of the proposed scheme is faster compared to the

standard FIRMER-CMA-+DD.
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Figure 3.10: BER curves of the matched filter receiver, FIRMER-CMA (p = 1), and AP-FIRMER-
CMA+DD equalisers for two different projection orders with p = 3 and p = 5.

Simulation 2: For N = 4 QPSK users, we have considered the matched filters [16, 40],
FIRMER-CMA (p = 1), and the proposed AP-FIRMER-CMA+DD (with p =3 and p = 5,
retrospective justification in discussion later) for adaptation under different Signal-to-Noise-
Ratio circumstances over the same channel g;[m]. The length of the equaliser is L = 10,
whereby the first coefficient in the weight vector is set to unity and the remaining coefficients
set to zero, and we adjust the step sizes p. and pg until an adequate BER is achieved. The
algorithms have always been given 10® symbol periods to converge prior to correction of the

phase rotation and BER measurement.

Discussion: The BER curves are given in Fig. 3.10. It is evident from the simulation
results that the proposed algorithm exhibits a large improvement in BER performance when
going from p = 1 to p = 3 and outperforms both the standard FIRMER-CMA and matched

filter receiver, but for p > 3, the improvement is small compared to the cost increase.
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3.4 Semi-Blind Adaptation

In this section, we explore a semi-blind channel equalisation scheme for the downlink time-
division duplex (TDD) component of the universal mobile telecommunication system (UMTS).
In addition to the basic MSE chip rate equalisation performed over the training field of each
UMTS TDD time burst, a semi-blind adaptation is adopted over data fields. In a partially
loaded scenario, a number of inactive users are exploited to load pilot signals in order to
enhance the system tracking performance and eliminate the typical CMA phase ambiguity
problem. The performance of the proposed scheme in terms of MSE in partially loaded
systems and the effect of various loading conditions on the proposed algorithm behaviour
are illustrated in this section through various simulations. A new UMTS TDD burst struc-
ture will be introduced, which is more suitable for the proposed pilot-assisted scheme, and

provides better spectrum efficiency than the standard UMTS data bursts.

3.4.1 UMTS TDD Physical channel

In the UMTS TDD physical channel, 15 time slots form one frame, whereby each frame
has a duration of 10 ms [63] as shown in Fig. 3.11(a). Within every time slot a maximum
of N = 16 users can transmit their signals simultaneously by means of different spreading
codes. The contribution of each user is called a burst, which is a combination of two data
fields, a midamble and a guard period as depicted in Fig. 3.11(b). There are two burst types
proposed in [63], namely burst type 1 and burst type 2. As illustrated in Fig 3.11(b), both
types have the same length of 2560 chips, concluded by a guard period of 96 chips in order to
avoid overlapping of consecutive time slots. Burst type 1 has a longer midamble (512 chips),
suitable for channel conditions where long training periods are required for adaptation and

tracking of an equaliser.
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Figure 3.11: Time structure in UMTS TDD: (a) basic frame structure, and (b) burst structure.

3.4.2 Signal Model

We consider the UMTS-TDD downlink model in Fig. 3.12 with a maximum of N (assumed

16 in the following) symbol-synchronous active users, which for simplicity are assumed to

have the same rate. In the case of a partially loaded system with K < N—1, we assume the

first K users with signals w;[n], { = 0(1)K —1, to be active, and the next N, < N—K to be

pilots with signals p;[n], { = 0(1)N,—1 while the remaining N —K — N, inactive user signals

z[n] are assumed to be zero. The signals w;[n] and p;[n] are code multiplexed using Walsh

sequences of length N extracted from a Hadamard matrix H. The resulting chip rate signal,

running at N times the symbol rate, is further scrambled by ¢[m] prior to transmission over

a channel with dispersive impulse response g[m| and corruption by additive white Gaussian

noise v[m|, which is assumed to be independent of the transmitted signal s[m)].

The dispersive channel g[m| destroys the orthogonality of the Walsh codes, such that
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Figure 3.12: Signal model of DS CDMA downlink with a concurrent equaliser for a partially loaded
system

direct decoding of the received signal r[m| with descrambling by ¢*[m| and code-matched
filtering by H' will lead to both multiple access interference and inter-symbol interference
of the decoded user signals [n], I = 0(1)K — 1. In order to re-establish orthogonality of
the codes, a chip level equaliser w[m| can be utilised. The equalisation is performed in both
midamble period and data fields; in the former by means of the training sequence at the chip
rate in the minimum mean-squared error (MMSE) sense [60], in the latter by using a blind

or semi-blind scheme [67].

3.4.3 Semi-Blind Equalisation Criterion

We first derive the detected user signals @;[n] and the pilot signals p;[n] as a function of the
equaliser w[m|. Based on this, we state a suitable cost function based on which the equaliser

can be adapted.
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3.4.4 Demultiplexed User and Pilot Signals

The DS-CDMA downlink model shown in Fig. 3.12 is fairly similar to the system which has

been addressed in Sec. 3.1.1. Hence, based on (3.1), the Ith user is decoded as

iy[n] = w Hy[nN] run, (3.39)

and with similar analysis, the [th pilot’s demultiplexed signal can be given as

pn] = wh H;[nN]r,y (3.40)

where H;[nN] € CF*(N+L=1) is a convolutional matrix comprising of the [th either user’s or

pilot’s modified code vector h™[n] and r,y € CN*L1 is the received signal.

3.4.5 Cost Functions

The equaliser w[n| consists of an equaliser with a CM component w.[n] and a DD component
wg|n] operated in parallel, such that w[n| = w.[n] +wy[n]. In the following, we are concerned

with concurrently updating w[n].

The CM term: The K active user signals u;[n] consist of symbols with a constant modulus
~. By forcing all received user symbols @;[n] onto v and the received pilot symbols p;[n]
onto the known transmitted sequences p;[n] , a semi-blind cost function &. is proposed to
adapt w, weights. Note that the remaining N — K — N, inactive users Z[n] should be taken
into consideration, otherwise the equalisation problem is underdetermined. Accordingly,
the signals Z[n] are forced to zeros in the MSE sense to ensure that the overall system is
fully determined. Therefore, the proposed cost function £, consists of three terms and is

formulated as
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fczg{Z(V — |t [n] }+5{i|pl |2}+5{ Zp |3l[”]|2}a (3.41)

=0 =0

where £{-} denotes the expectation operator. The optimum equaliser coefficient vector w,

in the CM sense is obtained from

Weopt = argminé, . (3.42)

The DD term: By employing a non-linearity ¢(-) that maps its input onto the the closest
constellation point, the multiuser decision directed cost function &; for the DD part can be

formulated as
fdze{iq(al[ )—i }+5{er@ \2}+8{ v |zl[nu2} (3.43)

The optimum equaliser coefficient vector w,; in the mean square error sense based on the

assumption of correct decisions is obtained from
Wi opt = aIg Hvbin &q . (3.44)
d

In case where no pilot is loaded there are no unique solutions to either (3.42) or (3.44), since
minimising (3.41) or (3.43) is ambiguous due to an indeterminism in phase rotation. Also,

note that erroneous decisions are possible in (3.43) and therefore affect (3.44).

3.4.6 Phase ambiguity

Since an ambiguity with respect to a complex rotation e’% (¢ € [0;27] ) cannot be resolved
by the CM criterion, this rotation invariance could be overcome by the use of the inactive

codes to load pilot signals.
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Figure 3.13: Cost function &, in dependency of a single complex valued coefficient wq, for a partially
loaded system with 10 active users and 6 pilots.

Example. To show how pilots overcome the phase ambiguity, the following example is
presented. We assume a system with K = 10 active users and N, = 6 pilots, over a
distortion-less and delayless channel g[n] = d[n]. Thus, as shown in Fig. 3.13, the cost
function &, has one unique optimum solution wg = 1. By comparison, the cost functions &,
and &, plotted in Figs. 3.2 and 3.5 respectively, implemented in a fully loaded system with
N = 16, &. exhibited a manifold of solutions while &; showed four solutions corresponding
to the four QPSK decisions. Hence, in partially loaded systems, exploiting inactive users
to load pilot signals has successfully resolved the rotation invariance problem and prevented

the phase ambiguity from manifesting itself.

3.4.7 Modified Cost Function

The alternative CM philosophy suggested in Sec. 3.3.1 is used to reformulate the CM term
in (3.41), whereby the detected symbol 4;[n] is mapped to its nearest symbol d;.[n| from

the circle which has the radius v and the centre at the origin. Both &, and &; can simply be
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’ H Active user ‘ Pilot ‘ Inactive user ‘

bi[n] iy[n] hi[n] Zi[n]
dy <[] Vo | Pl 0
dy q[n] q(tu(n]) | mn] 0

Table 3.4: Parameter values of the generalised cost function &,,.

written as v
Em = 5{2 |y [7] —bl[n]|2} : (3.45)
=0

with m € {c¢, d} indicating the operational mode as either CM or DD. The index [ = 0(1) N—1
represents either active users for | < K —1, pilots for K <! < K+ N,—1, or inactive users
for K+N, <1 < N—1. Tab. 3.4 shows the various parameter values of the modified cost

function &,,.

Next, we are concerned with minimising both &. and &; concurrently based on the affine
projection scheme.
3.4.8 Concurrent Affine Projection Adaptation

In this section we consider applying the affine projection algorithm on the concurrent-

CMA-+DD in a partially loaded system. It is convenient to define:

x;[n| =H;[nN]|r,x, (3.46)
x;[n] =H;nN]r,n, (3.47)
x;[n] =H;[nN]r,x. (3.48)
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In the pth order of the APA algorithm, the current and last P data, pilot, and inactive

vectors are taken into account for updating:

Xi[n|=[x/[n] x)[n—1] -+ x[n—P+1]] , (3.49)
X,[n]=[x;[n] xj[n—1] --- x;[n—P+1]] , (3.50)
Xi[n]=[xi[n] xi[n—1] --- x;[n—P+1]] . (3.51)

The implementation of the pth order algorithm has been previously summarised in Tab. 3.3.
The following steps briefly describe how the AP-FIRMER-CMA+DD is applied to partially

loaded systems.

1. The Ilth active user and jth pilot decoded symbols, u;[n] and p;[n], have been defined

in (3.39) and (3.40), respectively as

iy[n] =w" Hy[nN] r,n, (3.52)

ﬁ][n] :WH Hj [TZN] r,n.

2. We define the error e, according to the pilot signals at time instance n,

ep[n] = pjln] = p;ln]. (3.53)

3. We retain a record of the past P pilot errors e,[n—p| and inactive user signals @;[n—p],

such that p=0--- (P — 1),

e,[n]=lep[n] ep[n — 1] -+ e,[n — P+ 1]], (3.54)

@[n] = [t]n] tln — 1] - wn— P+ 1]]. (3.55)
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4. We obtain the gradient of . (3.41) with regards to w using the CMA update equation
defined in (3.33) with K active users. Taking into consideration the N, pilots and the
remaining N — K — N, inactive signals [68], the CMA update equation for partially

loaded systems becomes

1 K+Np—1

K-
we[n+ 1] = wen| + pe X [n Z X,[n Z X;[n

1=0 i=K+N,

(3.56)

5. Using equations (3.34) and (3.35) the DD part is updated (3.36). Similar to (3.56),

the gradient of £, (3.43) is calculated

wan+1] = wyn]+ g i Al[n}XlT[n]e}id[n] — Z Xj[n]ep[n]* + | i

(3.57)
where A,[n] disables the DD adaptation step for a specific user if the CMA adaptation

step leads to an alteration in the decision (3.35).

6. Combining the CM and DD weights leads to the final equaliser update equation

win + 1] = wen + 1] + wy[n + 1]. (3.58)

7. After incrementing the symbol index n, the next iteration would recommence with step

1 of the algorithm.
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Figure 3.14: MSE curves of the FIRMER-CMA, FIRMER-CMA+DD, and AP-FIRMER-
CMA+DD with p = {2,5} in partially loaded scenario.

3.4.9 Simulation Results

In order to demonstrate the convergence behaviour of the proposed algorithm, we transmit
K = 14 QPSK active user signals and NV, = 2 pilots over a noise-free but dispersive channel

g3[m], represented by its transfer function

G3(2) = 0.84 + (0.42 — 0.345) 2~ +0.09272. (3.59)

The length of the equaliser is L = 20, and the relaxation factors are set to p. = 0.05 and
g = 0.1. The adaptation is initialised with the first coefficients in both weight vectors
w,. and w, set to 0.5, with the remaining coefficients set to zero. The MSE curves of the
proposed algorithm operating in different scenarios over two UMTS TDD bursts are shown

in Fig. 3.14.

As evident from Fig. 3.14, by operating the proposed algorithm with gy = 0 (only CM
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Figure 3.15: Effect of the number of pilots on the BER performance.

branch is active) over bursts of type 2 (short training period), a better MSE performance
is reached as compared to the case where only training is performed in type 1 with its
larger midamble. The shortening of the midamble at no performance loss is equivalent to
an increase in data throughput by 13%. Furthermore, faster convergence is obtained by
either activating the DD equaliser or increasing the algorithm’s projection order to p = 2
and p = 5. The AP-FIRMER-CMA+DD (p = 5) reaches a steady state MSE in one tenth
of the time required by the FIRMER-CMA-+DD.

3.4.10 Effect of Pilot Loading on BER Performance

Loading more pilots enhances the quality of the transmission, however that comes at a cost
as all transmissions are subject to power constraints. Increasing the number of pilots will
consume more of the allocated power. In CDMA systems, the optimal power ratio of pilot

and data channels was obtained in [69].

To show the effect of various loading scenarios on the BER performance of the proposed
algorithm we perform two experiments. In the first experiment, we consider a UMTS TDD

system with K = 10 active users and [V, pilots with 0 < N,, < 6 where we calculate the BER
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Figure 3.16: Effect of the training sequence length and pilot loading on the BER performance.

for different number of loaded pilots and various SNRs. As shown in Fig. 3.15, loading more
pilots enhances the BER performance of the system for relatively medium to high SNRs,

and nearly no improvement in BER performance is noticed for low SNRs.

In the second experiment, the BER is calculated for