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Abstract

In order to improve communication over a dispersive channel in a CDMA system, we have

to re-establish the orthogonally of codes which are used when combining input signals from

many users onto a single communication path, as otherwise the performance of such system

is limited significantly by inter-symbol interference (ISI) and multiuser access interference

(MAI). In order to achieve this, adaptive filters are employed. A variety of adaptive schemes

to remove ISI and MAI have been reported in the literature, some of which rely on training

sequences, such as the Least Mean Squares (LMS) and Recursive Least Squares (RLS)

algorithms, or on blind adaptation, such as the Constant Modulus Algorithm (CMA) or

the Decision Directed algorithm (DD), which has similar convergence properties as the LMS

in the absence of decision errors, the CMA is relatively slow compared to the DD algorithm

but more robust in converging to a suitable solution.

This thesis is concerned with developing a new robust and low-complexity blind multiuser

equalisation over frequency selective channels.

A robust pilot-assisted equalisation strategy is developed for the partially loaded timedivi-

sion duplex (TDD) component of the universal mobile telecommunications system (UMTS).

In addition to training-based equalisation performed using the midamble of a data packet,

some of the unused spreading codes are exploited to upload pilots in order to perform an

additional semi-blind adaptation over the payload of a packet. The latter ensures continuii-

ious adaptation and better tracking performance. The affine projection concept along with

the concurrent constant modulus algorithm (CMA) and decision-directed (DD) mode are

implemented to update the equaliser weights. Computer simulations are used to assess the

performance of the proposed adaptation strategy over various UMTS TDD time bursts.

A new low complexity adaptive technique is derived for blind multiuser equalisation based

on fitting the probability density function (PDF) of the equalizer output to the desired PDF

of the corresponding symbol alphabet, i.e. matched-PDF. The cost function of the proposed

technique can be measured by a stochastic gradient descent approach. The performance of
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the proposed adaptation strategy is assessed by a number of simulations, and benchmarked

against FIRMER-CMA under QPSK modulation.

The matched-PDF algorithm is used for the equalisation of Space-Time Block Coding

(STBC) and Time-Reversal Space Time Block Coding (TR-STBC) signals transmitted over

dispersive MIMO channels. The performance is demonstrated in a number of simulations

and benchmarked against other blind schemes such as: CMA, Newton’s method, and the

Conjugate Gradient method. A thorough evaluation is carried out taking into consideration

the complexity of each implementation in terms of multiply-accumulate (MAC) operations

required per iteration.

Finally, some variations of matched-PDF algorithm are proposed to improve the equaliser

performance, including concurrent matched-PDF and decision directed, matched-PDF with

affine projection algorithm, as well as pilot assisted equalisation based on matched-PDF

algorithm for partially loaded systems.
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p order of APA

pl[n] lth pilot signal

pA(z) probability density function of A

1



MATHEMATICAL NOTATION 2

p̂A(z) probability density function estimate of A

p the cross-correlation vector

R the auto-correlation matrix

rnN received vector signal

u[n] single user transmitted signal

û[n] single user decoded signal

ul[n] lth user’s transmitted signal

ûl[n] lth user’s decoded signal

s[n] chip rate transmitted signal

sn transmitted signal vector

v[m] noise chip rate sequence

vn noise vector

v speed of movement

λ wavelength

w coefficient vector of an equaliser

wopt optimum coefficient vector

zl[n] lth inactive signal

x[n] input sequence to single user equaliser

xn input vector to single user equaliser

y[m] equaliser’s chip rate output signal

fDoppler Doppler shift

fmax maximum Doppler frequency

si[n] transmitted signal of antenna i

rj[n] received signal from antenna j

h[n, v] doubly-dispersive channel with n time index and v coefficient index

hj,i[n, v] time varying channel between the ith transmit and jth receive antenna

Hn,v MIMO channel matrix

e[n] error at time n

e error vector

ei[n] error corresponding to output i at time n

rrs cross-correation function between r[n] and s[n]

L size of Kernal window
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Chapter 1

Introduction

1.1 Research Motivation

Over the last decades, mobile communications research has supported the shift in focus

from voice transmission with moderate date rate to more inclusive communications with

internet support and multimedia capabilities. This has been achieved with the introduction

of 2G and 3G mobile communications technology standards, which allowed a data rate of

up to 2 Mb/s. This trend continued with the adoption of the long term evolution (LTE)

standard, pushing the data rate limit to up to 300 Mb/s for downlink and 75 Mb/s for

uplink [1]. This advancement in mobile communication systems was enabled by a huge

leap in mobile phone technology bringing sophisticated devices with high processing power

which are hungrier than ever for data, and was accompanied by new requirements for 4G

mobile cellular system standards. In March 2008, the radio-communications sector of the

International Telecommunications Union (ITU-R) defined a set of specifications for systems

to qualify as 4G, requiring peak data rate of 100 Mb/s for high mobility communication and

1 Gb/s for low mobility communication [2]. Since the first release of LTE did not meet the

requirements for 4G, research efforts have been ongoing to achieve new standards meeting

3



CHAPTER 1. INTRODUCTION 4

these specifications [3]. This brought LTE-Advanced [4], a major enhancement to the LTE

standard which was accepted by ITU-R as a candidate for 4G technology. Although, 5G is

still under development, it promises to offer throughput as high as 10 Gb/s.

Many of the contemporary wireless network standards rely on orthogonal frequency divi-

sion multiplexing (OFDM) rather than code division multiple access (CDMA) as promoted

as part of the universal mobile telecommunications system (UMTS). Initially introduced to

avoid equalisation, OFDM has since been driven to higher data rates in situations where its

benefits are often negated, such as in mobility scenarios where complex equalisation schemes

will be required [5, 6, 7], in order to re-establish the orthogonality on which OFDM so fun-

damentally relies. Just as OFDM has seen a revival of frequency division multiplexing tech-

niques that had previously been popular several decades back in the form of techniques such

as frequency multi-tone (FMT), CDMA-based approaches may experience a renaissance of

spread-spectrum ideas in future communications applications; therefore, the contributions

of this thesis are aimed at such systems, with simulation parameters drawn from current

UMTS packet structures.

The increasing demand for high data throughput and multimedia services in the downlink

(DL) transmission drives research towards achieving higher capacity gain through multi-

input multi-output (MIMO) transmission and multiuser detection. In fact, DL signals are

perfectly synchronised at the transmitter, and they experience the same dispersive chan-

nel using orthogonal spreading sequences. In most communication systems the channel is

considered broadband, i.e the channel frequency response varies across the whole frequency

bandwidth, which results in inter symbol interference (ISI) and multiplex access interfer-

ence (MAI). This makes wireless transmission difficult and destroys the orthogonality of the

CDMA code sequences transmitted by different users. The overall aim of this thesis is to

design multiuser equalisers to mitigate the effects of the dispersive channel.

4



CHAPTER 1. INTRODUCTION 5

A wide variety of equalisation schemes can be found in the literature [8, 9, 10], and can

be divided into:

1. Trained equalisers necessitate the periodic transmission of training sequences to be

known a priori to the receiver. Trained algorithms are reliable but the training sequences

can be considered as a waste of available valuable bandwidth. Trained equalisers can also

suffer from poor tracking performance in fast time-varying channels.

2. Blind equalisation algorithms do not require explicit knowledge of the training se-

quences and channel parameters, instead estimation is performed blindly i.e. without ex-

plicit knowledge of channel or training sequences . Blind equalisers require more data to

adapt but have the advantage of maximising the bandwidth utilisation. The most popular

blind approach is the constant modulus algorithm (CMA) which assumes that all points in

the transmit constellation have the same modulus.

3. Hybrid equalisation includes decision-directed (DD) and semi-blind algorithms. DD

means the equaliser uses a detected version of its output signal, based on a non-linear decision

device, to update its weights. Semi-blind adaptation is used when the transmission of full

training sequences is either infeasible or undesirable, this means the length of the training

sequences is reduced — instead of suppressed — in order to optimise the data through-

put. Hybrid algorithms are used when trained equalisation is not sufficient to minimise the

difference between the transmitted and received sequences.

This thesis is concerned with developing new robust and low-complexity multiuser equalis-

ers over frequency selective fading channels. The channels used throughout this thesis are

time-varying (except where otherwise mentioned), which motivates the use of equalisation

algorithms with good adaptation and tracking abilities. The remainder of this chapter

presents the original contributions of this dissertation and outlines the subsequent chapters

of the thesis.

5



CHAPTER 1. INTRODUCTION 6

1.2 Original Contributions

The main original contributions in this thesis are believed to be:

1. Fast and Robust Multiuser Pilot-Assisted Equaliser for Downlink UMTS-

TDD (Chapter 3) [11]. A robust pilot-assisted equalisation strategy for the partially

loaded time-division duplex (TDD) component of the universal mobile telecommunica-

tions system (UMTS) is derived. In addition to training-based equalisation performed

using the midamble of a data packet, some of the unused spreading codes are exploited

to upload pilots in order to perform an additional training-based adaptation over the

payload of a packet. The latter ensures continuous adaptation and better tracking per-

formance. The affine projection concept along with the concurrent constant modulus

algorithm (CMA) and decision-directed (DD) mode are implemented to update the

equaliser weights.

2. A PDF Matching Blind Multiuser Equaliser (Chapter 4) [12]. A new blind

adaptive equalisation approach, the so-called PDF matching algorithm suitable for

fully loaded DS-CDMA downlink systems, is derived. The proposed approach is based

on fitting the probability density function (PDF) of the equaliser output to the desired

PDF of the corresponding symbol alphabet. The underlying PDF at the equaliser out-

put is estimated by means of the Parzen window method. A switch between blind and

decision directed adaptation is possible by manipulating the kernel size of the Parzen

window estimator. The cost function of the proposed technique can be optimised by a

stochastic gradient approach.

3. A PDF Matching Blind Multiuser Equaliser over frequency selective fad-

ing channels (Chapter 4) [13]. A new frequency selective channel model based on

Rayleigh fading is introduced. This time-varying channel model is used to test the

6
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tracking performance of the PDF matching technique mentioned above. The perfor-

mance of the proposed adaptation strategy is assessed by a number of simulations, and

benchmarked against CMA under QPSK modulation in a doubly-dispersive environ-

ment.

4. Fast converging implementation of the STBC receiver over dispersive chan-

nels (Chapter 5) [14]. A new blind adaptive technique is derived for the equalisation

of space-time block coded (STBC) signals transmitted over a dispersive MIMO channel.

The adaptation is based on minimising the difference between the PDF of the equaliser

output and a desired PDF based on the source symbols. In the proposed approach, the

PDFs are estimated by means of the Parzen window method using Gaussian kernels.

The cost function combines this PDF fitting with an orthogonality criterion derived

from the STBC structure of the transmitted data in order to discourage the extraction

of identical signals. This cost function motivates an effective and low-cost stochastic

gradient descent algorithm for adapting the equaliser. The performance is demon-

strated in a number of simulations and benchmarked against other blind schemes for

the equalisation of STBC over broadband MIMO channels.

5. Fast converging implementation of the TRSTBC receiver over dispersive

channels (Chapter 5) [15]. A new blind multiuser equalization strategy for time re-

versal STBC (TRSTBC) signals transmitted over dispersive MIMO channels is derived.

Similar to the STBC receiver above, the cost function used here combines the PDF

matching component with an orthogonality criterion derived from the TR-STBC struc-

ture. The performance is demonstrated in a number of simulations and benchmarked

against other blind schemes. The proposed algorithm has a moderate computational

complexity and can perform with higher adaptation rate.

7



CHAPTER 1. INTRODUCTION 8

1.3 Outline of Thesis

The following chapters of this thesis are organized as follows:

Chapter 2 is a brief survey of adaptive equalisation concepts in digital communications.

The mean square error criterion is explained and the Wiener-Hopf solution is outlined. Then,

the formulation of some training based equalisers is demonstrated, mainly: the least mean

squares algorithm and recursive least squares algorithm. Blind equalisation schemes are then

discussed. Specifically, properties of the most popular blind algorithm, the constant modulus

algorithm, are highlighted and analysed. Chapter 3 introduces a pilot-assisted equalisation

approach for the downlink UMTS TDD system. First, a blind multiuser adaptive equaliser

based on the affine projection (AP) filtered-R multiple error (FIRMER) concurrent constant

modulus algorithm (CMA) and decision-directed (DD) algorithm, is briefly presented, then

a suitable cost function for a pilot assisted scheme and an associated stochastic gradient

algorithm are derived. We illustrate that the proposed semi-blind approach outperforms the

basic equalisation scheme in terms of MSE and BER.

Chapter 4 presents a blind matched-PDF algorithm for multiuser equalisation over fre-

quency selective fading channels. The algorithm operates in the chip rate and reduces the

error by minimising the difference between the PDF of the equaliser output and the PDF

of the corresponding constellation alphabet. Simulation results are shown to highlight the

performance of the derived algorithm.

Chapter 5 starts by reviewing the STBC scheme, and presenting a non-block based

approach to the blind equalisation of STBC over dispersive channels. The derived algorithm

adds a new term to the PDF-matching criterion, whereby the output of the equaliser is

forced to have the same structure as the transmitted STBC code word. Simulation results

are presented to evaluate the performance of the new algorithm in time-varying channels.

8
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Then, the block-based time reversal STBC (TRSTBC) scheme is introduced. A PDF-

matching based receiver for TRSTBC is analysed and shown to achieve faster convergence

than the CMA based receiver. This chapter investigates the performance gain of the proposed

algorithm against added complexity.

Chapter 6 summarises the main results of this dissertation, and puts forward ideas and

suggestions for future work and investigations.

9



Chapter 2

Algorithms for Adaptive Equalisation

This chapter introduces the general adaptive equalisation problem and reviews some adaptive

equalisation techniques. Sec. 2.1 explains how an adaptive equaliser can alleviate inter-

symbol interferences (ISI) introduced by a dispersive channel. The concept of mean square

error (MSE) is explained in Sec. 2.2, while the derivation of the Wiener-Hopf solution is

addressed in Sec. 2.3. Next in Sec. 2.4 and 2.5, the well known least mean squares (LMS)

and recursive least squares (RLS) algorithms are briefly reviewed, respectively. Then, in

Sec. 2.6 the affine projection algorithm is derived. In Sec. 2.8 and Sec. 2.9 the concepts of

decision directed adaptation (DD) and constant modulus algorithm (CMA) are reviewed.

2.1 General Concept of Adaptive Equalisation

In digital communication systems, equalisers are mainly designed to combat the multipath

effect of the channel, which causes inter-symbol interference (ISI). A simple model for such a

system is illustrated in Fig. 2.1. The equaliser coefficient vector w is assumed to be a linear

tapped delay line filter with finite impulse response (FIR) of length L.

10
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Figure 2.1: Basic communication system model with channel g and equaliser w operating
on received signal r[n]; the aim of the equaliser is to approximate the transmit signal s[n] at
its output y[n] in some optimal sense.

This structure has a linear relation between the equaliser output y[n] and the equaliser

vector w. The linearity and FIR structure have in the past contributed to the popularity of

this equaliser in practice [14, 15, 16]. In contrast, e.g. decision feedback equalisers (DFEs)

do not have this property.

The propagation environment adopted here is a dispersive channel defined by its channel

impulse response (CIR) g[n] with sample index n. This channel is a linear tapped delay filter

of length Lc with an associate coefficient vector

g = [g0 g1 · · · gLc−1]
T, (2.1)

and contains any filtering at the transmitter such as pulse shaping which may or may not

be known at the receiver.

2.2 Mean Square Error Criterion

Equalisers are mainly designed to combat the multipath effect of the channel, and hence the

minimisation of the probability of the occurrence of incorrect decisions, or the bit error ratio

(BER), is the main aim. In the past the BER have been found difficult to evaluate and it does
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CHAPTER 2. ALGORITHMS FOR ADAPTIVE EQUALISATION 12

not level itself easily as a cost function for adapting an equaliser [19]. However, significant

efforts have been made in implementing simple filtering and adaptation structures based on

a minimum bit error ratio (MBER) criterion, that have shown outstanding performance at

moderate computational complexity [20]. Nevertheless, the Wiener-Hopf or minimum MSE

solution, which minimises the error between the transmitted signal s[n] and the equaliser

output y[n], remains a popular equaliser, which forms an important benchmark to which

other equalisers are frequently compared.

In the following we aim to derive the Wiener-Hopf equaliser coefficients and the corre-

sponding MMSE solution, by minimising the expected squared magnitude of the error

e[n] = s[n− δ]− y[n] , (2.2)

for a specific choice of delay δ. The source signal s[n] is assumed to be an independent

identically distributed (i.i.d.) sequence. With these quantities, the nth equaliser output can

be calculated by

y[n] = wHrn , (2.3)

the discrete convolution between the coefficients w[n] and the received signal r[n]. These

signals can be expressed in vector notations: w and rn,

w = [w∗0, w
∗
1, · · · , w∗L−1]T (2.4)

For later convenience note that, the coefficients of vector w are complex conjugate w∗i .

rn = [r[n], r[n− 1], · · · , r[n− L− 1]]T (2.5)
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By substituting (2.3) into (2.2) we obtain

e[n] = sn−δ −wHrn , (2.6)

Minimisation of the mean square error (MSE) for optimisation problems is widely used in

practice due to the fact that its mathematical derivation is relatively straight-forward.

The mean squared error (MSE) criterion ξMSE is given by the statistical expectation of

the squared error signal,

ξMSE = E{e[n]e∗[n]} = E
{

(sn−δ −wHrn)(s∗n−δ − rHnw)
}

= E
{
sn−δs

∗
n−δ
}
− E

{
wHrns

∗
n−δ
}
− E

{
sn−δr

H
nw
}

+ E
{
wHrnr

H
nw
}

= σ2
s −wHE

{
rns
∗
n−δ
}
−wTE{sn−δr∗n}+ wHE

{
rnr

H
n

}
w

= σs2 −wHp−wTp∗ + wHRw (2.7)

where substitutions with the cross-correlation vector p and the auto-correlation matrix (co-

variance matrix for zero-mean processes) R have taken place. The cross-correlation vector

p is defined by

p = E
{
rns
∗
n−δ
}

= E








rns
∗
n−δ

rn−1s∗n−δ
...

rn−L+1s
∗
n−δ








=




rrs[δ]

rrs[δ − 1]

...

rrs[δ − L+ 1]




(2.8)

13



CHAPTER 2. ALGORITHMS FOR ADAPTIVE EQUALISATION 14

where rrs[τ ] is the cross-correlation function between r[n] and s[n],

rrs[τ ] = E{r[n+ τ ]s∗[n]} = r∗sr[−τ ] . (2.9)

The entries of the auto-correlation matrix R ∈ CL×L

R = E
{
rnr

H
n

}
= E








rnr
∗
n rnr

∗
n−1 · · · rnr

∗
n−L+1

rn−1r∗n rn−1r∗n−1 · · · rn−1r∗n−L+1

...
...

. . .
...

rn−L+1r
∗
n rn−L+1r

∗
n−1 · · · rn−L+1r

∗
n−L+1








(2.10)

=




rrr[0] rrr[−1] · · · rrr[−L+ 1]

r∗rr[−1] rrr[0] · · · rrr[−L+ 2]

...
...

. . .
...

r∗rr[−L+ 1] r∗rr[−L+ 2] · · · rrr[0]




(2.11)

are samples of the auto-correlation function rrr[τ ] defined by (2.9). R is Töplitz, i.e each

descending diagonal from left to right is identical, and is Hermitian, i.e is equal to its own

conjugate transpose: RH = R. These properties imply that the matrix R is positive semi-

definite and possesses real valued eigenvalues [10, 21].

The cost function ξMSE is quadratic in the filter coefficients, and because of the semi-

definiteness of R, the cost function (2.7) has a global minimum solution, which is unique if

R is full rank.

14
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2.3 Wiener-Hopf Solution

Using the properties of covariance matrix R mentioned in the previous section, minimising

the cost function in (2.7) can be achieved by setting the derivative of ξMSE with respect to

its coefficients to zero.

To optimise a convex function of complex parameters, the cost function has to be differ-

entiated with respect to the unconjugated coefficients, i.e. the complex conjugate of the

coefficient vector, to obtain the correct gradient, according to Wirtinger Calculus (Appendix

A) equation (A.4), such that

ξMSE(w)
!

= min ←→ ∇ξMSE =
∂ξMSE

∂w∗
!

= 0 . (2.12)

Hence, to minimise the MSE cost function with respect to the coefficients requires

∂ξMSE

∂w∗
= −p +

∂

∂w∗
wHRw

!
= 0. (2.13)

Transposing the scalar quantity (wHRw)T = wTRTw∗, the derivative of the second sum-

mand in (2.13) can be solved using the product rule,

∂

∂w∗
wHRw =

(
∂

∂w∗
wH

)
Rw +

(
∂

∂w∗
wTRT

)
w∗. (2.14)

Therefore, using equations (A.11) and (A.12), (2.12) becomes

∂ξMSE

∂w∗
= −p + Rw

!
= 0. (2.15)

If the auto-correlation matrix R is regular, (2.15) can be solved by inverting R to give the
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optimum vector wopt which is know as the Wiener-Hopf solution,

wopt = R−1p. (2.16)

If the auto-correlation matrix R is not full rank, the optimum solution in (2.16) cannot be

computed, and hence an infinite number of solutions exists. Even if R is invertible, it can be

ill-conditioned such that the inversion is prone to numerical errors. To avoid such problems,

we will next explore iterative schemes which are numerically more robust, and also avoid the

high computational cost that may be involved in the inversion of a matrix of considerable

dimension.

2.4 Least Mean Square Algorithm

2.4.1 Method of Steepest Descent

Adaptive equalisation can be performed by means of several iterative algorithms to find the

optimum solution. A popular search technique is the gradient descent algorithm, also known

as steepest descent algorithm, which can be formulated as

wn+1 = wn − µ∇ξMSE[n], (2.17)

where ∇(.) is the gradient operator, ξMSE[n] is the MSE cost function yielded by the coeffi-

cient vector wn at time n, and µ is referred to as the step size, loosely defining the length of

the step. Assuming wn is the current weight vector at time n, a new improved weight vector

wn+1 can be achieved using (2.17) by taking a step µ towards the negative gradient of the

cost function ξMSE[n].
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From (2.15), at time n the explicit term for the gradient can be phrased as

∇ξMSE[n] =
∂ξMSE

∂w∗n
= −p + Rwn . (2.18)

Substituting (2.18) into (2.17) leads to an update equation famously known as the steepest

descent algorithm [10, 22]. This update equation does not require any further inversion of

the auto-correlation matrix R, however a reliable estimation is needed for both the auto-

correlation matrix R and the cross-correlation vector p.

2.4.2 Gradient Estimate

To lower the computational complexity and to avoid recursively involving very long data

windows to estimate statistical parameters required of R and p, the gradient (2.18) is cal-

culated by estimates of the auto-correlation matrix R and the cross-correlation vector p

based only on the previous samples of r[n] and s[n], which is equivalent to minimising the

instantaneous squared error, ene
∗
n rather than the MSE. Setting

p̂ = rns
∗
n (2.19)

R̂ = rnr
H
n , (2.20)

and substituting (2.19) and (2.20) into (2.18) gives a gradient estimate

∇̂ξn = − p̂ + R̂wn

= − (rns
∗
n) + rnr

H
nwn

= − rn(s∗n − rHnwn)

= − rne
∗
n. (2.21)
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LMS Algorithm

1: y[n] = wH
n rn

2: e[n] = s[n]− y[n]
3: wn+1 = wn + µrne

∗[n]

Table 2.1: Equations for channel equalisation by LMS adaptive algorithm at symbol rate n.

Substituting (2.21) into (2.17) yields the well known Least Mean Squares (LMS) algorithm

[10, 22, 23, 24] as

wn+1 = wn + µrne
∗
n . (2.22)

Tab. 2.1 illustrates the main equations involved to update the equaliser coefficients by using

the LMS adaptive algorithm.

2.4.3 Computational Complexity

The computational complexity of the LMS algorithm as listed in Tab. 2.1 results in

CLMS = 1 + 2L (2.23)

multiplications where L is the filter length. Clearly, the LMS algorithm has a low complexity

which is in an order of O(L) compared to Wiener-Hopf equation, which generally required

O(L3) due to the matrix inversion, or O(L2) of the method of steepest descent due to it

involving a matrix-vector multiplication.

2.5 Least Squares Algorithm

In contrast to the LMS algorithm where the cost function is estimated by trying to reduce

the expectation of the squared error, the least squares (LS) algorithm directly finds the
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filter coefficients by minimising a sum of squared errors. In this section, the least squares

formulation is introduced first, then a recursive structure of the least squares algorithm leads

to the well known recursive least squares (RLS), which is followed by a discussion of the RLS

complexity.

2.5.1 Least Squares Formulation

The cost function to be minimised in the least squares algorithm is the sum of squared errors

over all previous samples up to current time, n, de-emphasizing each past contribution by

an exponential time window,

ξLS,n =
n∑

v=0

βve[n− v]e∗[n− v], (2.24)

which is achieved by introducing a forgetting factor β , where 0 < β ≤ 1.

Similar to (2.12) the minimisation of this cost function requires

∇ξLS,n =
∂ξLS,n
∂w∗

!
= 0 . (2.25)

Similar to the derivations of the Wiener-Hopf solution in Sec. 2.3 [10], the minimisation of

(2.25) leads to

Rnwn = pn (2.26)

By introducing the forgetting factor β to Rn and pn we obtain

Rn =
n∑

k=0

βkr[n− k]rH[n− k], (2.27)
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and

pn =
n∑

l=0

βls∗[n− l]r[n− l]. (2.28)

2.5.2 Recursive Least Squares Algorithm

The recursive least squares (RLS) is an algorithm which recursively finds an updated filter co-

efficients wn+1 using the current wn and the auto-correlation matrix and the cross-correlation

vector from previous samples,

Rn = βRn−1 + rnr
H
n , (2.29)

pn = βpn−1 + s∗nrn. (2.30)

After recursively updating Rn−1 and pn−1, (2.25) can be solved for each time index n,

which will involve inverting Rn in (2.29) using the Matrix Inversion Lemma (also known as

Woodbury’s identity) [10, 22]. For a matrix A,

A = U + VZVH, (2.31)

according to the Matrix Inversion Lemma, the inverse of A can be expressed as

A−1 = U−1 −U−1V(Z−1 + VHU−1V)−1VHU−1 . (2.32)

The Matrix Inversion Lemma can be proven by multiplying A (2.31) by A−1 (2.32), and

recognizing that the result of this product is the identity matrix [22]. With U = βRn−1,

V = rn, Z = I1, (U + VZVH) becomes the right hand side of (2.29). Defining Φn = R−1n ,
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the matrix inversion can be performed iteratively using (2.32), giving

Φn =
1

β

(
Φn−1 −

Φn−1rnrHnΦn−1
β + rHnΦn−1rn

)
, (2.33)

where the initial Φ0 is usually set to a small identity matrix weighted by a small factor to

ensure regularity of the matrix Φn for small n. Introducing a gain vector

λn =
Φn−1rn

β + rHnΦn−1rn
, (2.34)

equation (2.33) can be formulated as

Φn =
1

β

(
Φn−1 − λnrHnΦn−1

)
. (2.35)

For later convenience, it is advantageous to simplify λn such that equation (2.34) becomes

λnβ + λnr
H
nΦn−1rn = Φn−1rn ,

and hence

λn =
1

β
(Φn−1rn − λnrHnΦn−1rn) (2.36)

=

{
1

β
(Φn−1 − λnrHnΦn−1)

}
rn

= Φnrn. (2.37)
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RLS Algorithm

1: y[n] = wH
n rn

2: α[n] = s[n]−wH
n−1rn

3: h = rHnΦn−1
4: k = β + hrn
5: λn = Φn−1rn/k
6: wn = wn−1 + λnα

∗[n]
7: Φn = 1

β
(Φn−1 − λnh)

Table 2.2: Equations for channel equalisation by RLS adaptive algorithm at symbol index
n.

The weight vector update equation wn = Φnpn can be solved by substituting pn from (2.30)

and then Φn from (2.35),

wn = βΦnpn−1 + s∗nΦnrn (2.38)

= Φn−1pn−1 − λnrHnΦn−1pn−1 + s∗nΦnrn (2.39)

= R−1n−1pn−1 − λnrHnR−1n−1pn−1 + s∗nΦnrn (2.40)

= wn−1 − λnrHnwn−1 + s∗nλn (2.41)

= wn−1 + λn
[
s∗n − rHnwn−1

]
(2.42)

= wn−1 + λnα
∗
n , (2.43)

where

αn = sn − rTnw∗n−1 (2.44)

= sn −wH
n−1rn (2.45)

is the a priori estimation error which is a tentative value of en (2.6) before updating the

weight vector. The complete RLS equations involved in updating the equaliser coefficients

are listed in Tab. 2.2.
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When analysing the convergence [10], in a stationary environment the forgetting factor β

is set to 1 to consider previous samples’ knowledge, and the RLS algorithm is affected equally

by old and current memory. Overall, the convergence behaviour of the RLS is considered

superior to the LMS.

In non-stationary environments, the forgetting factor is set to β < 1 to ensure the RLS

algorithm puts more emphasis on the current data and is not biased by past, out-dated

samples. This is a major factor in time varying environments [25] where in some situations

the LMS has a performance advantage [26, 27, 28, 29].

2.5.3 Computational Complexity

Compared to the LMS algorithm, the recursive least squares algorithm exhibits fast conver-

gence. However, the RLS comes at a high computational complexity. As listed in Tab. 2.2,

the multiplications create a computational cost of order O(L2),

CRLS = 3L+ 3L2 . (2.46)

Clearly the RLS complexity is higher than the LMS (2.23), therefore efforts have been

undertaken to create variations of the RLS algorithm with lower computational cost.

2.6 Affine Projection Algorithm

In this section we consider the affine projection algorithm (APA) which is a popular algorithm

within the acoustic echo cancellation schemes [30] and is included here because it links LMS

and RLS algorithms [31]. The APA was first proposed by Ozeki and Umeda [32] with the

aim to improve the slow convergence of the normalised LMS (NLMS) scheme which is a
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variant of the LMS algorithm with a normalised step size with regards to the power of the

transmitted signal. A more in-depth analysis of the convergence behaviour of the APA can

be found in a number of articles [33, 34, 35]. The main idea behind APA is reusing data by

exploiting previous regressor vectors to attain faster adaptation.

2.6.1 APA Formulation

Similar to the NLMS, APA can be seen as a solution to the following optimization problem:

Given the current coefficient vector wn, the received vector rn, and the current value of the

desired signal sn, calculate the new weight vector wn+1 such that

‖wn+1 −wn‖2
!

= min, (2.47)

subject to

rH[n− i]wn+1
!

= s∗[n− i], i = 0, 1, · · · , P − 1 (2.48)

where P is the number of constraints and hence defines the order of the APA algorithm.

This means that the new weight vector wn+1 should be best fit to the new data as well as

the previous P − 1 past received signals and their matching desired signals. It is important

to note that for the special case of P = 1 the APA algorithm becomes the NLMS adaptive

filter,

rHnwn+1
!

= s∗n

rHn−1wn+1
!

= s∗n−1

...

rHn−P+1wn+1
!

= s∗n−P+1 . (2.49)
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For convenience of mathematical presentation, we introduce the definitions

XH
n = [rHn , r

H
n−1, · · · , rHn−P+1] (2.50)

s∗n = [s∗n, s
∗
n−1, · · · , s∗[n− P + 1]] . (2.51)

The system of equations (2.49) becomes

XH
nwn+1

!
= s∗n . (2.52)

From equations (2.6) and (2.50) we can define the past error vector en, whose complex

conjugate is expressed by

e∗n = s∗n −XH
nwn . (2.53)

Using (2.52)

e∗n
!

= XH
nwn+1 −XH

nwn, (2.54)

hence

wn+1 = wn + (XH
n )−1e∗n . (2.55)

Keeping in mind that the APA demands a minimum change in the weight vector coefficients

(2.47), (2.55) can be solved by the pseudo-inverse (XH
n )† of XH

n [21]. Either the left or

right (XH
n )† has to be used depending on whether (2.54) is underdetermined (P < L) or

overdetermined (P ≥ L). Here we only consider situations where (P < L), which means the

left pseudo-inverse (XH
n )† = Xn(XH

nXn)−1 should be used to solve (2.55) [32],

wn+1 = wn + Xn(XH
nXn)−1e∗n. (2.56)
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pth order APA Algorithm

1: update sn and Xn

2: en = sn −XT
nw∗n

3: (XH
n )† = Xn(XH

nXn + ηI)−1

4: wn+1 = wn + µ(XH
n )†e∗n.

Table 2.3: Equations for the filter update by the APA adaptive algorithm.

Introducing a relaxation factor µ into the right summand of (2.56) and a weighted identity

matrix to (XH
n )† for regularisation purposes the update equation of the Pth order APA is

formulated as

wn+1 = wn + µXn(XH
nXn + ηI)−1e∗n. (2.57)

Tab. 2.3 summarises the main equations involved to update the equaliser coefficients by

using the APA adaptive algorithm.

2.6.2 Geometrical Interpretation

Assuming the hyperplane Pn−i+1 defines the solution space of the ith equation of the system

of equations (2.49), then successive projections from the current coefficient vector wn onto

the hyperplanes Pn−p+2, Pn−p+3, · · ·Pn+1 will solve (2.52) if the system of equations (2.49)

is consistent, i.e. all hyperplanes Pn−i+1 cross at least in one point [36], which is similar to

requiring Xn to be a full rank matrix.

2.6.3 Complexity Issues

According to the implementation steps summarised in Tab. 2.3, the computational complex-

ity of the APA is noted as

CAPA = (P 2 +O(P 3)) + 2PL , (2.58)
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Figure 2.2: Geometrical interpretation of affine projection algorithm

where P is the order of projection. The termO(P 3) is related to the complexity of calculating

the pseudo-inverse in step (3) of Tab. 2.3. Fast implementations of the APA (FAPA) claim

to reduce this cost to CFAPA = 2L+ 20P [37].

2.7 Training versus Blind Equalisation

In most high speed high data rate applications the propagation channel is not known a priori

and is very likely time varying, which requires adaptive solutions in the design of a receiver.

A classical approach in an adaptive receiver is the transmission of the pre-arranged sequence,

so-called training sequence, which is known a prior at the transmitter and receiver. A training

sequence is typically a fixed portion of the source sequence which is known in advance at

the transmitter and receiver, and therefore contains no information. Hence, training signals

take up bandwidth which might be considered too costly for certain applications. In a time-
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varying channel, constant training would be required, as any converged solution without

tracking would be out-dated soon, therefore the need to operate without explicit training

sequences arises. Such an approach is termed blind. Many blind algorithms have been

proposed such as second order statistics (SOS), [38, 39], minimum output energy (MOE)

[40, 41] and constant modulus (CMA) algorithms which will be discussed in more detail in

Sec. 2.9. Next the semi-blind decision directed algorithm is presented.

2.8 Decision Directed Adaptation

In decision-directed (DD) updating, the equaliser output y[n] is passed through a non-linear

decision device q(.) which estimates the transmitted source symbol s[n] by nearest neighbour

decision. DD is usually used after the convergence of the LMS algorithm when training

has ended, or after a successful convergence of a blind equalisation algorithm. Lucky [42]

recognised if the decisions are correct “most of the time”, the reference sequence s[n] in

the LMS’ error can be replaced with its estimate q(y[n]). This blind scheme is thus termed

decision directed adaptation. Tab. 2.4 illustrates the main equations involved to update the

equaliser coefficients by using this DD approach.

DD has the ability to track slowly varying changes in the channel without explicit need

of a training sequence, and converges to the optimal equaliser (2.16) when initialised at an

open-eye setting [43]. However, reliability of DD depends on the reliability of the source

estimate q(y[n]). Typically in blind equalisation scenarios another blind technique which

operates from a cold start settings such as CMA is used to reduce the error rate sufficiently

before switching to DD.
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DD Algorithm

1: y[n] = wHrn
2: e[n] = q(y[n])− y[n]
3: wn+1 = wn + µrne

∗[n]

Table 2.4: Equations for channel equalisation by DD adaptive algorithm at symbol rate n.

2.9 Constant Modulus Algorithm

The constant modulus (CM) criterion was first proposed by Godard in [44] and developed

independently by Treichler and Agee in [45]. CMA is a popular blind algorithm for cold start-

up of a tapped-delay-line equaliser structure [16]. Godard’s original intention was to develop

an algorithm for phase and amplitude-modulated signals, for example QAM which decoupled

equalisation and carrier recovery, so that carrier phase tracking could be accomplished at

the equaliser output in DD mode [44]. Treichler and Agee’s original intention was to develop

a criterion which sensed multipath induced amplitude modulation (AM) on an otherwise

constant envelope frequency modulation (FM) signal [45].

The CM criterion attempts to fit a power of the modulus of the equaliser output to a

constant. This constant is chosen to essentially project all constellation points onto a circle

of radius γ. Mathematically from [44] this criterion is expressed as

E{(|y[n]|p − γp)2} , (2.59)

with

γp =
E{|s[n]|2p}
E{|s[n]|p} , (2.60)

where γp is often called the dispersion constant of the constellation. The case p = 1 is usually

attributed to Sato [46]. We study solely the case p = 2 in the sequel and henceforth CMA

refers to the p = 2 case. Tab. 2.5 illustrates the main equations involved in updating the
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CMA Algorithm

1: y[n] = wHrn
2: e[n] = (γ2 − y[n]2)y[n]
3: wn+1 = wn + µrne

∗[n]

Table 2.5: Equations for channel equalisation by CMA at symbol rate n.

equaliser coefficients w[n] by using the CMA algorithm.

Godard shows that the value of the dispersion γp (2.60) minimises the CM cost func-

tion (2.59). The relation between CM and MSE criterion is strong: Treichler and Agee

demonstrated that in terms of convergence, minimising the constant modulus performance

function is equivalent to minimising the mean square error [45].

Due to the simplicity of the CMA and its independence of system and channel models [47],

the CMA has shown robustness to many system and channel impairments, see e.g. [19, 48, 49].

Furthermore, since the CMA uses the absolute value of y[n], the algorithm is insensitive to a

phase error, which can be caused by carrier frequency offset or/and unknown channel phase

[44]. Hence, carrier frequency offset estimation can be established separately after CMA

equalisation.

2.9.1 Convergence Speed of CMA

The basic CMA discussed above as well as many other blind algorithms based on non-

convex cost functions, exhibit local minima and slow convergence speed [47, 50]. There have

been numerous attempts to improve the typical CMA slow convergence [48, 51, 52]. One

can implement a CMA cost function for example with lattice filter equalisers [51], or with

an affine projection algorithm (APA) [52] or simply use the recursive least squares (RLS)

[48]. It is known that for trained equalisers, these approaches show faster convergence speed

than LMS type algorithms [10, 22, 31], however they require higher precision than the LMS
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as well as a higher computational complexity per iteration [47]. In order to obtain faster

converging algorithms with CMA by using these algorithms, some modifications are needed.

The Lattice CMA (LCMA), first proposed in [51] has shown faster convergence than the

basic CMA. Similar modification has been adopted for RLS CMA where a simple version of

this algorithm is presented in [10]. The APA CMA described in [52] has a simpler structure

than the Lattice CMA and RLS CMA and it is known by its capability to escape from

local minima as discussed in [52]. Note there are other approaches which aim to speed

up the convergence rate of CMA and are not covered here such as the conjugate gradient

search CMA [53], the Modified Constant Modulus Algorithm (MCMA) [54], Multi-Modulus

Algorithm (MMA) [55], and normalised CMA [56, 57]. Basically, the above approaches try

to apply already known fast converging algorithms to CMA, with the resulting convergence

speeds usually being faster than that of the CMA. However, the increase in convergence

speed is not as great as what may be expected from RLS or Lattice algorithms with training

sequences [47]. This is likely because the CM cost function being minimised is not the MSE

for which these algorithms are designed.

2.9.2 Ill-Convergence and Initialisation

Unlike MSE, the CM cost function is a non-convex multi-modality function [50, 58]. Yet, in

addition to the global minima, other stationary points which includes saddle points, local

minima and local maxima have been distinguished on the error surface of the CM cost

function [58]. For example, since the CM criterion operates purely on the magnitude of the

equaliser output, not the phase, we can easily recognise that any phase rotated versions of

a CM-optimal solution are as well solutions themselves. In differentially encoded systems,

the encoding scheme can remove some of the phase ambiguity. Other minima and saddles of

the CM error surface can arise from the possible choices of system delay, additive noise and

31



CHAPTER 2. ALGORITHMS FOR ADAPTIVE EQUALISATION 32

insufficient equaliser length [19]. Note also the existence of a flat point of the cost function

surface at the origin. It is shown that the origin is the only maximum of the CMA surface

which according to Treichler et al. [45] can be avoided by proper equaliser initialisation; the

traditional all zero initial vector should not be used [19]. A proper equaliser initialisation

remains an open research issue, with various ideas discussed in the literature [58].

2.10 Concluding Remarks

This chapter has reviewed the general concept of adaptive equalisation in digital commu-

nication systems. The Wiener-Hopf solution, which is based on minimising the MSE, has

been highlighted. In addition to the Wiener-Hopf solution, a number of popular adaptive

algorithms have been reviewed, starting with training based adaptive filters such as the LMS

algorithm, the least squares algorithm and the recursive least squares (RLS) algorithm, as

well as the affine projection algorithm (APA). Finally, basics and characteristics of some

blind algorithms have been discussed, mainly of the constant modulus algorithm (CMA)

and the decision directed (DD) update scheme. The next chapter presents a more detailed

implementation of the CMA algorithm for multi-user systems, and then discusses combining

the CMA with the DD algorithm concurrently, as well as applying the APA to the resulting

filter.
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Chapter 3

Firmer-CMA and Variations

In this chapter we review a blind multiuser equalisation strategy for downlink DS-CDMA

systems, the so-called filtered-R multiple error CM algorithm (FIRMER-CMA). We start by

introducing the algorithm’s cost function and deriving the corresponding stochastic gradient

search in Sec. 3.1. The following Sec. 3.2 presents a concurrent FIRMER-CMA and decision

directed algorithm for multiuser equalisation with an analysis and assessment of the con-

vergence behaviour of both FIRMER-CMA and the concurrent algorithm. In Sec. 3.3, an

affine projection algorithm is applied to the concurrent scheme to further accelerate the con-

vergence speed. Finally, partially loaded systems are considered in Sec. 3.4, whereby three

different algorithms which exploit inactive users’ codes are implemented and compared.

3.1 Blind Multiuser FIRMER-CMA Equaliser

Transmission over a dispersive channel destroys the mutual orthogonality of the codes which

are used to multiplex the various users in downlink DS-CDMA system. As a result, the

received and code-demultiplexed user signals are subject not only to ISI due to channel
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dispersion but also to multiple access interference (MAI) due to the loss of code orthog-

onality. In order to re-establish orthogonality of the codes, a chip level equaliser can be

utilised [59, 60]. In fact, by introducing an equaliser in front of the matched code filter,

optimum detection with zero ISI and MAI can be achieved in case of perfect equalisation.

Furthermore, unlike the uplink (UL) where different users are subject to different dispersive

channels, in the downlink (DL) transmission all users signals are synchronous and propagate

through the same medium which makes equalisation a simpler task. Various blind equali-

sation techniques, which can simultaneously suppress MAI and ISI and improve bandwidth

efficiency, have been proposed [40, 61, 62]. The constant modulus (CM) algorithm (CMA)

based multiuser equaliser is by far the most popular scheme. It has a very simple compu-

tational requirement and readily meets the real-time computational constraint. In [61, 62],

blind schemes have been performed using the CM criterion, whereby additional orthogo-

nality constraints or mutual decorrelation of the recovered user sequence are required. In

response to this scenario, we propose a simple and robust blind multiuser strategy, based

on exploiting the CM criterion of all active users of the system, whereby neither explicit

constraints nor mutual decorrelation are required. In the following, the main derivations of

the proposed algorithm are presented.

In a multi-user communications system where many users share a common channel, in-

terference from various users may distort the detection of a single user. Therefore in the

receiver the respective signals require to be separated in a manner such that interference is

reduced.

3.1.1 Demultiplexed User Signals

We consider the DS-CDMA downlink system in Fig. 3.1. The blocks p/s and s/p refer

to parallel-to-serial and serial-to-parallel procedures, respectively. Here, we are concerned
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Figure 4.1: DS-CDMA downlink signal model with a chip rate equaliser.
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The descrambling code c∗[m] has been absorbed into a modified and now time-varying code vector

h̃l[nN ],and w ∈ CL contains the equaliser’s L chip-spaced complex conjugate weights. Rearranging

w and h̃l[nN ] yields
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with Hl[nN ] ∈ ZL×(N+L−1) being a convolutional matrix comprising the lth user’s modified code

vector h̃T[n] and rnN ∈ CN+L−1. Note that Hl[nN ] contains the decoding process of only the l

th user’s signal and is absolutely different than HnN presented in Sec. 2.6 which comprises the

whole process of spreading and scrambling at the base station.

Figure 3.1: Signal model of DS-CDMA downlink with a Firmer-CMA equaliser

about blindly adapting the equaliser coefficients, where the system is fully loaded with

K = N multiple synchronous users’ signals, which for simplicity are assumed to have the

same rate. First we derive the detected signal ûl[n] as a function of the chip rate equaliser

w. Then, we state a suitable cost function based on which the equaliser can be adapted.

The sequence for decoding the lth user, contained in a vector hl, can be taken from an N×N

Hadamard matrix H. Therefore, the lth user is decoded as
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where the descrambling code c∗[m] has been absorbed into a modified and now time-varying

code vector h̃l[nN ], and w ∈ CL contains the equaliser’s L chip-spaced complex conjugate

weights. Rearranging w and h̃l[nN ] yields
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with Hl[nN ] ∈ ZL×(L+N−1) being a convolutional matrix comprising the lth user’s modified

code vector h̃T [n], and rnN ∈ CN+L−1 is the received signal. Note that Hl[nN ] only addresses

the decoding of the lth user signal.

3.1.2 Cost Function

Since the modulation scheme used for downlink UMTS-TDD is mainly quadrature phase

shift keying (QPSK) and in some exceptions 8PSK [63], the user signals ul[n] consist of

symbols with a constant modulus γ. By forcing all received user symbols ûl[n] onto γ, a

blind cost function ξCM can be proposed to adapt the weights w. Therefore, a suitable cost

function ξCM can be formulated as

ξCM = E
{
N−1∑

l=0

(γ2−|ûl[n]|2)2
}

(3.3)

which penalises the deviation of each of the N users’ decoded symbols from the desired

modulus. The optimum equaliser coefficient vector wCM,opt is obtained from

wCM,opt = arg min
w

ξCM . (3.4)
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Figure 3.2: Cost function ξc in dependency of a single complex valued coefficient w0.

There is no unique solution to (3.4), since minimising (3.3) is ambiguous with a manifold of

solutions due to an indeterminism in phase rotation. However, any member of this manifold

is a suitable solution for the equaliser w, and can be used in combination with a differential

modulation scheme to recover ul[n].

Example. The cost function ξCM is plotted in Fig. 3.2 in dependency of an equaliser with

a single complex coefficient w0. The system adopted here is a fully loaded UMTS TDD

system with N = 16 users transmitting their signals over an ideal AWGN channel with 30

dB SNR. The modulation scheme employed here is QPSK with γ = 1. Fig. 3.2 shows that

ξCM exhibits a manifold of optimum solutions satisfying |w0| = γ. Also, note the flat point

at w0 = 0 which forbids this coordinate as an initialisation point.

3.1.3 Blind Adaptation

A simple stochastic gradient descent update rule for w[m] can be found by calculating the

gradient of an instantaneous cost function, i.e. omitting the expectation operator in (3.3)
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ξ̂CM =
N−1∑

l=0

(γ2−|ûl[n]|2)2 . (3.5)

The resulting terms are then minimised with regard to w to obtain instantaneous esti-

mates of the cost function gradient Oξ̂(wn), leading to the stochastic gradient update

wn+1 = wn − µOξ̂CM(wn) (3.6)

where µ is the step size. The introduction of gradient noise through inaccurate estimates of

the true underlying statistics into the update routine can assist in avoiding the adaptation

to remain in flat points of the cost function. However, we will later see that this does not

apply to w = 0.

To determine Oξ̂CM, we apply complex vector calculus [64] to (3.6), yielding

∂ξ̂CM

∂w∗
=−2

N−1∑

l=0

[
(γ2 − |ûl[n]|2) ∂

∂w∗
ûl[n]ûHl [n]

]

=−2
N−1∑

l=0

[
(γ2 − |ûl[n]|2)Hl[nN ]rnN · rHnNHH

l [nN ] w
]

= −2
N−1∑

l=0

(γ2 − |ûl[n]|2)Hl[nN ] rnN û∗l [n]. (3.7)

This algorithm differs from the standard CM algorithm [50] in the inclusion of a code filtered

term Hl[nN ] rnN rather than just the equaliser input tap delay line vector rnN . This is

structurally similar to a multiple-error filtered-X LMS algorithm [65], where the transfer

functions appearing in the paths between the adaptive filter output and the error formations

have to be accounted for by modifying the LMS updating scheme. Hence, the proposed

scheme in (3.7) is referred to as filtered-R multiple error CM algorithm (FIRMER-CMA).
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FIRMER-CMA Algorithm
1: xl[nN ] = Hl rnN , for l = 0(1)N − 1
2: ûl[n] = wH

nxl[nN ], for l = 0(1)N − 1
3: el[n] = (γ2−|ûl[n]|2)ûl[n], for l = 0(1)N − 1

4: wn+1 = wn + µ
N−1∑
l=0

xl[nN ]e∗l [n]

Table 3.1: Equations for multiuser channel equalisation by FIRMER-CMA adaptive algo-
rithm at symbol index n.

Tab. 3.1 illustrates the main equations involved to update the equaliser coefficients w[m]

by using the resulting FIRMER-CMA algorithm. Regarding the earlier comment to avoid

initialisation with w = 0, this would lead to a zero output from step 2 of the algorithm in

Tab. 3.1, and subsequently null the error and innovations in steps 3 and 4, leading to the

CMA algorithm remaining trapped at w = 0.

3.2 Concurrent FIRMER-CMA and Decision Directed

Updating

The previously proposed blind multiuser FIRMER-CMA equaliser improves system band-

width efficiency by avoiding the use of a training sequence and can readily meet the real-time

computational constraint. However, since the latter algorithm is a CMA based equaliser,

slow convergence and the moderate levels of steady-state MSE are the main drawbacks of

such a scheme, which may limit its implementation in practical wireless communication sys-

tems. Therefore, this section introduces some fast and robust blind multiuser equalisation

alternatives. In order to increase the convergence speed of the FIRMER-CMA a concurrent

FIRMER-CMA and decision directed (DD) algorithm capable of achieving a low steady-state

MSE is derived.

Since FIRMER-CMA is based on the CM criterion, it is prone to achieve only moder-
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5.3 Concurrent FIRMER-CMA and DD Mode

Since FIRMER-CMA is based on the CM criterion, it is prone to achieve only moderate levels of

mean square error (MSE) after convergence, which may not be sufficiently low for the system to

attain adequate bit error rate (BER) performance. A possible solution to the latter problem is

to switch to a decision-directed (DD) mode in order to minimise the residual CMA steady state

MSE [76]. In order to avoid error propagation due to incorrect decisions, the CMA residual MSE

should be sufficiently low. In practice such a low level of MSE may not always be achievable by

the CMA [95, 49]. Consequently, a promising solution, suitable for single user transmission, has

been proposed in [95]. Whereby, a DD equaliser is concurrently operating with CMA rather than

switching to a DD adaptation after the CMA has converged. This concurrent CMA+DD equaliser

is reported to achieve a significant enhancement in equalisation performance over the CMA [95].

In the following, a concurrent FIRMER-CMA+DD algorithm is derived, which is similar to [95] but

suitable for synchronous DS-CDMA systems. Adaptation is performed by concurrently minimising

two cost functions based on either a CM criterion or a DD scheme for all active users. In Sec. 5.3.1

we derive the multiuser concurrent FIRMER-CMA+DD algorithm. Simulations of the proposed

algorithm are presented in Sec. 5.3.2.
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Figure 5.10: DS-CDMA downlink signal model with a concurrent equaliser
Figure 3.3: Signal model with a concurrent equaliser

ate levels of steady-state mean square error (MSE) performance after convergence, which

may not be sufficiently low for the system to attain adequate bit error ratio (BER) perfor-

mance. A possible solution to the latter problem is to switch to a decision-directed (DD)

mode in order to minimise the residual CMA steady state MSE [43]. In order to avoid error

propagation due to incorrect decisions, the CMA residual MSE should be sufficiently low.

In practice such a low level of MSE may not always be achievable by the CMA [20, 66].

Consequently, a promising solution, suitable for single user transmission, has been proposed

in [66], whereby a DD equaliser is concurrently operating with a CMA rather than switching

to a DD adaptation after the CMA has converged. This concurrent CMA+DD equaliser is

reported to achieve a significant enhancement in equalisation performance over the CMA [66].

Based on [66], a concurrent FIRMER-CMA+DD algorithm which is suitable for syn-

chronous DS-CDMA systems is derived. Adaptation is performed by concurrently minimis-

ing two cost functions based on either a CM criterion or a DD scheme for all active users.
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3.2.1 Concurrent Cost Function

We consider the downlink DS-CDMA system with an equaliser w which consists of a CMA

part wc and a DD branch wd operated in parallel, such that w = wc + wd, as depicted in

Fig. 3.3. The weights wc and wd are updated by minimising the two cost functions ξc and

ξd respectively which are given by

ξc = E
{
N−1∑

l=0

(γ2 − |ûl[n]|2)2
}
, (3.8)

ξd = E
{
N−1∑

l=0

(|q(ûl[n])− ûl[n])|2
}
, (3.9)

with q(.) mapping its input onto the closest constellation point. The optimum vectors wc,opt

and wd,opt are therefore obtained from

wc,opt = arg min
wc

ξc , (3.10)

wd,opt = arg min
wd

ξd . (3.11)

There are no unique solutions to either equations (3.10) or (3.11), since both (3.8) and

(3.9) are closely coupled. The phase indeterminism of (3.8) is somewhat reduced by (3.9) to

possible phase rotation, by π
2
, π and 3π

2
. Therefore, by operating DD and CMA concurrently

the phase ambiguity found in FIRMER-CMA case can be mitigated to some degree by

locking the solution onto the prescribed constellation pattern.

Example. In this example the two cost functions ξc and ξd are plotted in Figs. 3.4 and

3.5 respectively, in dependency of an equaliser w with a single complex coefficient w0. The
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Figure 3.4: Cost function ξc in dependency of a single complex valued coefficient w0.
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Figure 3.5: Cost function ξd in dependency of a single complex valued coefficient w0.

system adopted here is a fully loaded DS-CDMA system with N = 16 users transmitting their

signals over a distortionless and delayless channel with an SNR of 30 dB. The modulation

scheme employed here is QPSK with γ = 1. Fig. 3.4 shows that ξc exhibits a manifold of

optimum solutions satisfying |w0| = γ. Yet, only four solutions can be seen in ξd due to the

four possible QPSK decisions, Fig. 3.5.
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3.2.2 Concurrent Adaptation

In the following, we derive the concurrent FIRMER-CMA+DD algorithm which updates the

multiuser equaliser vector w, similarly to the single-user concurrent CMA+DD described

in [66]. The main idea is to update the CMA part wc, which is followed by a DD adaptation

step only if the previous CMA adaptation step is deemed successful. The proposed algorithm,

which is updated at the symbol rate with symbol time index n, can be described by the

following steps:

1. The decoded signals ûl[n] are calculated for all users according to

ûl[n] = wH
c [n]xl[n] + wH

d [n]xl[n], for l = 0(1)N − 1. (3.12)

whereby xl[n] represents a vector of filtered received signal samples,

xl[n] = Hl[nN ] rnN . (3.13)

2. The CMA part wc is adapted according to the rule

wc[n+ 1] = wc[n] + µc

N−1∑

l=0

e∗l,cxl[n] (3.14)

where el,c = ûl[n](γ2 − |û[n]|2) and µc is the CMA step size. This stochastic gradi-

ent adaptation is identical to the FIRMER-CMA and it is based on optimising an

instantaneous cost function derived from (3.8) by dropping the expectation operator.

3. Intermediate signals ũl[n], l = 0(1)N − 1, are evaluated by exploiting the previously
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calculated wc[n+ 1] such that

ũ[n] = wH
c [n+ 1]xl[n] + wH

d [n]xl[n]. (3.15)

4. Finally, the DD part of the algorithm adjusts wd as

wd[n+ 1] = wd[n] + µd

N−1∑

l=0

δ(q(ũl[n])− q(ûl[n]))e∗l,dxl[n], (3.16)

where el,d = q(ûl[n])− ûl[n], and µd is the DD step size. The indicator δ(.) is defined

as

δ(α) =





1 if α = 0

0 if α 6= 0,
(3.17)

and therefore disables the DD adaptation step for a specific user if the CMA adaptation

step leads to altering the decision.

The convergence of this concurrent scheme is governed by the step sizes in the algorithm.

In practice, the DD step size µd can often be chosen much larger than the CMA step size

µc. However, choosing too large a value can cause serious error propagation due to incorrect

decisions. Tab. 3.2 summarises the main equations of the proposed concurrent FIRMER-

CMA+DD. The potential drawback of DD adaptation is that if the hard decision is incorrect,

error propagation occurs which subsequently degrades the equaliser performance. It has

been shown that if the equaliser hard decisions before and after the CMA adaptation are

the same then the decision is likely to be correct [20]. For this reason, wd is only updated

in the latter case, similar to [66]. Hence, by employing the concurrent FIRMER-CMA+DD,

a considerably enhanced convergence speed and a lower steady state MSE can be achieved

compared to the standard FIRMER-CMA.
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Concurrent FIRMER-CMA+DD algorithm

1: update xl[n] = Hl[nN ]rnN , for l = 0(1)N − 1
2: ûl[n] = wH[n]xl[n], for l = 0(1)N − 1
3: el,c= ûl[n](γ2 − |ûl[n]|2) , for l = 0(1)N − 1

4: wc[n+ 1]=wc[n] + µc
∑N−1

l=0 e∗l,cxl[n]

5: ũl[n] = wH
c [n+ 1]xl[n] + wH

d [n]xl[n]
6: el,d = (q(ûl[n])− ûl[n]), for l = 0(1)N − 1

7: wd[n+ 1]=wd[n] + µd
∑N−1

l=0 δ(q(ũl[n])− q(ûl[n]))e∗l,dxl[n]

8: w[n+ 1]=wc[n+ 1] + wd[n+ 1]

Table 3.2: Concurrent FIRMER-CMA+DD algorithm.

3.2.3 Simulation Results

For the simulations below, we consider a fully loaded synchronous DS-CDMA system, where

the modulation scheme adopted is QPSK. We apply the FIRMER-CMA+DD to two different

channel impulse responses, a short g1[m] and a more dispersive g2[m], as characterised by

their chip rate transfer functions

G1(z) = 0.89 + (0.36− 0.27j)z−1 + 0.09z−3 , (3.18)

G2(z) = 0.67 + (0.54− 0.27j)z−4 + (0.41− 0.07j)z−7 − 0.20jz−11 . (3.19)

In the following, we first demonstrate the convergence behaviour and the steady state MSE

over noise-free channels, and thereafter characterise the evolution of the received constellation

in a noisy environment.

Experiment 1: In order to demonstrate the convergence behaviour of the proposed

algorithm, we transmit N = 16 QPSK user signals over g1[m] in the absence of channel

noise. The length of the equaliser is L = 10, and the relaxation factors are chosen to be

µc = 10−4 and µd = 10−2. After multiple simulations, these step sizes are the largest values
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SNR=10dB over the dispersive channel g2[m]. The length of the equaliser is L = 64, and the

relaxation factors are chosen to be µc = 10−6 and µd = 10−4. Fig. 5.14 depicts the decoded

signal constellations of user l = 0 after adaptation of 5 × 103 symbols with (a) no equalisation

performed (b) a standard FIRMER-CMA equaliser and (c) the concurrent FIRMER-CMA+DD.

The results clearly show that the concurrent algorithm achieves to open the initially closed eye and

to overcome the phase ambiguity encountered in the CMA scheme by locking onto the constellation

pattern prescribed by q(·).
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Figure 5.13: Comparison of convergence speed and steady state MSE between the proposed concurrent

FIRMER-CMA+DD algorithm and the standard FIRMER-CMA.

5.4 Combined AP-FIRMER-CMA+DD structure

In the previous section, the FIRMER-CMA+DD algorithm has provided a significant performance

enhancement in terms of steady-state MSE and convergence speed over the standard FIRMER-

CMA. The latter improvement is mainly due to the contribution of DD branch operating concur-

rently with CMA. However, as discussed in Sec. 5.3.1, the DD part is updated only if the transition

is considered secure. Therefore, the adaptation is generally reigned by CMA rather than DD es-

pecially in initially closed-eye systems. Thus,a slow convergence may still persist in the proposed

algorithm’s performance. A possible solution to this problem is accelerate FIRMER-CMA+DD

by implement APA in similar fashion to the affine projection scheme AP-FIRMER-CMA pre-

sented in Sec. 5.2.1. In this section, we derive a combined structure AP-FIRMER-CMA+DD in

Figure 3.6: Comparison of convergence speed and steady state MSE between the concurrent
FIRMER-CMA+DD algorithm and the standard FIRMER-CMA.

for which all simulations provided fast stable convergence. The adaptation is initialised with

both first coefficients in the weight vectors wc and wd set to 1/2 and zeroing all remaining

taps. The MSE performances of the proposed concurrent FIRMER-CMA+DD and the

standard FIRMER-CMA algorithms are shown in Fig. 3.6. Evidently a faster convergence

and lower steady state can be achieved by the proposed concurrent algorithm compared to

an adaptation based on FIRMER-CMA.

Experiment 2: For N = 16 QPSK users, we have adapted the concurrent FIRMER-

CMA under SNR = 10dB over the dispersive channel g2[m]. The length of the equaliser is

L = 64, and the relaxation factors are chosen to be µc = 10−6 and µd = 10−4. Again the

selected step sizes are the largest values for which all simulations provided fast stable con-

vergence. Fig. 3.7 depicts the decoded signal constellations of user l = 0 after adaptation of

5×103 symbols with (a) no equalisation performed (b) a standard FIRMER-CMA equaliser,

and (c) the concurrent FIRMER-CMA+DD. The results clearly show that the concurrent

algorithm overcomes the phase ambiguity encountered in the CMA scheme by locking onto

the constellation pattern prescribed by q(.).
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Figure 5.14: The decoded signal constellations of user l = 0 after adaptation of 5 × 103 symbols with (a)

no equalisation (b) standard FIRMER-CMA equaliser and (c) concurrent FIRMER-CMA+DD.Figure 3.7: The decoded signal constellations of user l = 0 after adaptation of 5×103 symbols with
(a) no equalisation (b) standard FIRMER-CMA equaliser and (c) concurrent FIRMER-CMA+DD.

3.3 Concurrent FIRMER-CMA+DD with Affine Pro-

jection

In the previous section, the FIRMER-CMA+DD algorithm has provided a significant per-

formance enhancement in terms of steady-state MSE and convergence speed over the stan-

dard FIRMER-CMA. The latter improvement is mainly due to the contribution of the DD

branch operating concurrently with CMA. However, the DD part is only updated if this step
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is considered secure. Therefore, the adaptation is generally governed by CMA rather than

DD especially in initially closed-eye systems. Thus, a slow convergence may still persist in

the proposed algorithm’s performance. A possible solution to this problem is to acceler-

ate FIRMER-CMA+DD by adopting the concept of the affine projection algorithm (APA)

scheme presented in Sec. 2.6. In this section, we derive a combined AP-FIRMER-CMA+DD

structure in order to gain benefits from both FIRMER-CMA+DD and APA algorithms.

The APA was first proposed by Ozeki and Umeda [32]. Initially, it was developed to

improve the perceived slow convergence of the NLMS scheme. A more in-depth analysis of

the convergence behaviour of the APA can be found in a number of articles [33, 34, 35]. The

main idea behind APA is reusing data by exploiting previously received signal vectors to

perform a faster adaptation.

3.3.1 Modified Cost Function

The CM term in (3.8) can be further reformulated as [52]

E
{
K−1∑

l=0

|dl,c[n]−ûl[n]|2
}

(3.20)

with dl,c[n] = γ
ûl[n]

|ûl[n]| . (3.21)

This alternative CM philosophy suggests to enforce the detected symbol ûl[n] to its nearest

symbol dl,c[n] from the circle which has the radius γ and the centre at the origin, as illustrated

in Fig. 3.8. The new form has a structure similar to an MMSE criterion, whereby the only

difference lies in the value of the desired symbol dl,c[n]. Defining the DD decision function

as

dl,d[n] = q(ûl[n]), (3.22)
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Figure 3.8: Configuration of the desired response for the CM criterion, assuming a QPSK constel-
lation.

both ξc and ξd can be written as

ξm = E
{
N−1∑

l=0

|dl,m[n]−ûl[n]|2
}
, (3.23)

with m ∈ {c, d} indicating the operational mode as either CM or DD.

Next, we are concerned with minimising both ξc and ξd concurrently based on the affine

projection scheme.

3.3.2 Formulation

The following steps present how the AP-FIRMER-CMA+DD is formulated.

1. We split (3.2) for the lth user’s decoded symbol ûl[n] into a scalar product between

the weight vector and an input vector,

ûl[n] = wHxl[n], (3.24)

whereby xl[n] represents a vector of filtered received signal samples,

xl[n] = Hl[nN ] rnN . (3.25)

49



CHAPTER 3. FIRMER-CMA AND VARIATIONS 50

2. We retain a record of the past P input vectors xl[n− p], and dl,c[n− p] and dl,d[n− p]

which are the the corresponding desired signal values for the CMA and DD parts

respectively, such that p = 0 · · · (P − 1),

Xl[n] = [xl[n] xl[n− 1] · · · xl[n− P + 1]] , (3.26)

dl,c[n] = [dl,c[n] dl,c[n− 1] · · · dl,c[n− P + 1]]T , (3.27)

dl,d[n] = [dl,d[n] dl,d[n− 1] · · · dl,d[n− P + 1]]T . (3.28)

3. We define the error vector according to the CMA part el,c[n] at time instance n,

e∗l,c[n] = d∗l,c[n]−XH
l [n]w[n], l = 0(1)N − 1, (3.29)

Based on this error vector, we want to perform a CMA weight update such that

Xl[n]Hwc[n+ 1] = d∗l,c[n], l = 0(1)N − 1. (3.30)

4. Inserting (3.29) in (3.30), we can update the CMA part of the equaliser weights

wc[n+ 1] = wc[n] + X†l [n]e∗l,c[n], (3.31)

where X†l [n] is the pseudo-inverse of the data matrix Xl[n]

X†l [n] = Xl[n]
(
Xl[n]HXl[n] + αI

)−1
, (3.32)

where α is a small number used for weighting the identity matrix I. Adding a relaxation

factor µc to the update and taking the contributions of all N users into account, (3.31)
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becomes

wc[n+ 1] = wc[n] + µc

N−1∑

l=0

X†l [n]e∗l,c[n]. (3.33)

5. We calculate the lth user’s intermediate symbol ũl[n] where only the CMA part is

updated

ũl[n] = XT
l [n]w∗c [n+ 1] + XT

l [n]w∗d[n]. (3.34)

6. Making the decision of updating the DD part

Λl[n] = diag(δ{q(ũl[n])− q(wHXl[n])}). (3.35)

The indicator δ(.) is a vectorial decision function that compares the lth intermediate

symbol ũl[n] with lth user’s decoded symbol ûl[n], where δ(.) behaves similarly to

(3.17).

7. Similar to (3.33) we update the DD part of the equaliser weights

wd[n+ 1] = wd[n] + µd

N−1∑

l=0

Λl[n]X†l [n]e∗l,d[n], (3.36)

where e∗l,d[n] = d∗l,d[n] − XT
l [n]w[n] for l = 0(1)N − 1, and µd is a relaxation fac-

tor. Therefore, Λl[n] disables the DD adaptation step for a specific user if the CMA

adaptation step leads to an alteration in the decision (3.35).

8. The final equaliser coefficients are updated through combination of the CM and DD

weights according to

w[n+ 1] = wc[n+ 1] + wd[n+ 1]. (3.37)

9. Increment n and to return to step 1.
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pth order concurrent affine projection algorithm

1: update, Xl[n], dl,c[n] and dl,d[n] for l = 0(1)N − 1

2: X†l [n] = Xl[n](Xl[n]HXl[n] + αI)−1

3: el,c[n] = dl,c[n]−XT
l [n]w∗[n]

4: wc[n+ 1]=wc[n] + µc
∑N−1

l=0 X†l [n]e∗l,c[n]

5: ũl[n]=XT
l [n]w∗c [n+ 1] + XT

l [n]w∗d[n]
6: Λl[n] = diag(δ{q(ũl[n])−wHXl[n]})
7 el,d[n] = dl,d[n]−XT

l [n]w∗[n]

8 wd[n+ 1]=wd[n] + µd
∑N−1

l=0 Λl[n]X†l [n]e∗l,d[n]

9 w[n+ 1]=wc[n+ 1] + wd[n+ 1]

Table 3.3: Concurrent affine projection algorithm (AP-FIRMER-CMA+DD) for pilot-assisted
multiuser equalisation.

Similar to the convergence of the concurrent scheme, AP-FIRMER-CMA+DD is governed

by the step sizes µc and µd. In practice, the DD step size µd can often be chosen much

larger than the CMA step size µc. However, choosing too large values can cause serious

error propagation due to incorrect decisions [66].

The potential drawback of DD adaptation is the probability of error propagation occurring

in case of a wrong hard decision, which subsequently degrades the performance. It has been

shown that if the equaliser’s hard decision before and after the CM adaptation are the same

then the decision is likely to be correct [66]. For this reason, wd is only updated in the

latter case, similar to [66]. Hence, by employing the APA scheme alongside the concurrent

approach, a considerably enhanced convergence speed and a lower steady state MSE could

be achieved compared to the standard FIRMER-CMA and FIRMER-CMA+DD. Hence, the

implementation of the pth order algorithm could be summarised as shown in Tab. 3.3,

3.3.3 Performance

In this section, we show by computer simulations that a considerable improvement in per-

formance has been achieved compared to FIRMER-CMA and FIRMER-CMA+DD. We first
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CHAPTER 5. FAST AND ROBUST BLIND MULTIUSER EQUALISATION SCHEMES 100

and the projection order p = 5. The adaptation is initialised with the second coefficient in the

weight vector set to unity. The MSE performances of the proposed APA-FIRMER-CMA+DD

and the standard concurrent FIRMER-CMA+DD algorithms are shown in Fig. 5.15. Evidently a

faster convergence is achieved by the employing the proposed algorithm compared to the standard

FIRMER-CMA+DD.
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Figure 5.15: Comparison of convergence speed for the proposed APA-FIRMER-CMA+DD with projection

order p = 5 and the FIRMER-CMA+DD, curves represent the MSE.

Experiment 2 For N = 4 QPSK users, we have adapted the matched filters, FIRMER-CMA,

and the proposed APA-FIRMER-CMA+DD (with p = 3 or p = 5) algorithms under various SNR

conditions over the dispersive channel g1[m]. With the first tap of an equaliser of length L = 10

set to unity and an appropriately adjusted µc and µd, the algorithms has always been given 103

symbol periods to converge prior to correction of the phase rotation and bit error rate (BER)

measurement. The BER curves are given in Fig. 6.7. The results clearly show that the proposed

algorithm exhibits a similar BER performance for various values of p and outperform both the

standard FIRMER-CMA and matched filters receiver with a considerable gain, as can be seen in

Fig. 6.7.

Figure 3.9: MSE curves of the FIRMER-CMA+DD (p = 1) and AP-FIRMER-CMA+DD (p = 5).

demonstrate the convergence behaviour and the steady state MSE over noise-free channels,

and thereafter characterise the bit error rate performance of the proposed algorithm.

Simulation 1: In this computer simulation we demonstrate the convergence behaviour of

the proposed scheme. We consider a QPSK constellation and transmit N = 16 user signals

over a dispersive channel g1[m] with a chip rate transfer function

G1(z) = 0.89 + (0.36− 0.27j)z−1 + 0.09z−3 . (3.38)

The length of the equaliser is L = 10, we choose the relaxation factors to be µc = 5×10−3

and µd = 2× 10−2 and the projection order to be p = 5. These step sizes have been selected

after numerous simulations and are the largest values for which all simulations provided

fast stable convergence. We set the second tap in the weight vector to unity in the initial

adaptation step. The MSE performances of the proposed AP-FIRMER-CMA+DD and the

standard concurrent FIRMER-CMA+DD algorithms are shown in Fig. 3.9. The results

clearly show that the convergence speed of the proposed scheme is faster compared to the

standard FIRMER-CMA+DD.
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Figure 3.10: BER curves of the matched filter receiver, FIRMER-CMA (p = 1), and AP-FIRMER-
CMA+DD equalisers for two different projection orders with p = 3 and p = 5.

Simulation 2: For N = 4 QPSK users, we have considered the matched filters [16, 40],

FIRMER-CMA (p = 1), and the proposed AP-FIRMER-CMA+DD (with p = 3 and p = 5,

retrospective justification in discussion later) for adaptation under different Signal-to-Noise-

Ratio circumstances over the same channel g1[m]. The length of the equaliser is L = 10,

whereby the first coefficient in the weight vector is set to unity and the remaining coefficients

set to zero, and we adjust the step sizes µc and µd until an adequate BER is achieved. The

algorithms have always been given 103 symbol periods to converge prior to correction of the

phase rotation and BER measurement.

Discussion: The BER curves are given in Fig. 3.10. It is evident from the simulation

results that the proposed algorithm exhibits a large improvement in BER performance when

going from p = 1 to p = 3 and outperforms both the standard FIRMER-CMA and matched

filter receiver, but for p > 3, the improvement is small compared to the cost increase.
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3.4 Semi-Blind Adaptation

In this section, we explore a semi-blind channel equalisation scheme for the downlink time-

division duplex (TDD) component of the universal mobile telecommunication system (UMTS).

In addition to the basic MSE chip rate equalisation performed over the training field of each

UMTS TDD time burst, a semi-blind adaptation is adopted over data fields. In a partially

loaded scenario, a number of inactive users are exploited to load pilot signals in order to

enhance the system tracking performance and eliminate the typical CMA phase ambiguity

problem. The performance of the proposed scheme in terms of MSE in partially loaded

systems and the effect of various loading conditions on the proposed algorithm behaviour

are illustrated in this section through various simulations. A new UMTS TDD burst struc-

ture will be introduced, which is more suitable for the proposed pilot-assisted scheme, and

provides better spectrum efficiency than the standard UMTS data bursts.

3.4.1 UMTS TDD Physical channel

In the UMTS TDD physical channel, 15 time slots form one frame, whereby each frame

has a duration of 10 ms [63] as shown in Fig. 3.11(a). Within every time slot a maximum

of N = 16 users can transmit their signals simultaneously by means of different spreading

codes. The contribution of each user is called a burst, which is a combination of two data

fields, a midamble and a guard period as depicted in Fig. 3.11(b). There are two burst types

proposed in [63], namely burst type 1 and burst type 2. As illustrated in Fig 3.11(b), both

types have the same length of 2560 chips, concluded by a guard period of 96 chips in order to

avoid overlapping of consecutive time slots. Burst type 1 has a longer midamble (512 chips),

suitable for channel conditions where long training periods are required for adaptation and

tracking of an equaliser.
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38400 chips = 10 ms

Frame

2560 chips

Slot#0 Slot#1 Slot#2 Slot#3 Slot#14

(a)

(b) GP

burst type 2

1104 chips 1104 chips256 chips

data field 1 midamble data field 2

976 chips 976 chips512 chips

burst type 1

Figure 3.11: Time structure in UMTS TDD: (a) basic frame structure, and (b) burst structure.

3.4.2 Signal Model

We consider the UMTS-TDD downlink model in Fig. 3.12 with a maximum of N (assumed

16 in the following) symbol-synchronous active users, which for simplicity are assumed to

have the same rate. In the case of a partially loaded system with K ≤ N−1, we assume the

first K users with signals ul[n], l = 0(1)K−1, to be active, and the next Np ≤ N−K to be

pilots with signals pl[n], l = 0(1)Np−1 while the remaining N−K−Np inactive user signals

zl[n] are assumed to be zero. The signals ul[n] and pl[n] are code multiplexed using Walsh

sequences of length N extracted from a Hadamard matrix H. The resulting chip rate signal,

running at N times the symbol rate, is further scrambled by c[m] prior to transmission over

a channel with dispersive impulse response g[m] and corruption by additive white Gaussian

noise v[m], which is assumed to be independent of the transmitted signal s[m].

The dispersive channel g[m] destroys the orthogonality of the Walsh codes, such that

56



CHAPTER 3. FIRMER-CMA AND VARIATIONS 57

[m]c*

[m]y

[m]

[m]

[m]v

..

..
p [ n]

][u
K−1

u [ n0

..
n][p

N  −1p

p [ n

..
][u

K−1

u [ n0

[m]s

r [m]

H p/s

HT

w

wd

c

pilot−assisted

training

^
n][p

N  −1p

^
0

^
n

^
]

0 ]

n

]

s/p

g [m]

[m]c

Figure 3.12: Signal model of DS CDMA downlink with a concurrent equaliser for a partially loaded
system

direct decoding of the received signal r[m] with descrambling by c∗[m] and code-matched

filtering by HT will lead to both multiple access interference and inter-symbol interference

of the decoded user signals ûl[n], l = 0(1)K − 1. In order to re-establish orthogonality of

the codes, a chip level equaliser w[m] can be utilised. The equalisation is performed in both

midamble period and data fields; in the former by means of the training sequence at the chip

rate in the minimum mean-squared error (MMSE) sense [60], in the latter by using a blind

or semi-blind scheme [67].

3.4.3 Semi-Blind Equalisation Criterion

We first derive the detected user signals ûl[n] and the pilot signals p̂l[n] as a function of the

equaliser w[m]. Based on this, we state a suitable cost function based on which the equaliser

can be adapted.
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3.4.4 Demultiplexed User and Pilot Signals

The DS-CDMA downlink model shown in Fig. 3.12 is fairly similar to the system which has

been addressed in Sec. 3.1.1. Hence, based on (3.1), the lth user is decoded as

ûl[n] = wH Hl[nN ] rnN , (3.39)

and with similar analysis, the lth pilot’s demultiplexed signal can be given as

p̂l[n] = wH Hl[nN ] rnN (3.40)

where Hl[nN ] ∈ CL×(N+L−1) is a convolutional matrix comprising of the lth either user’s or

pilot’s modified code vector h̃T[n] and rnN ∈ CN+L−1 is the received signal.

3.4.5 Cost Functions

The equaliser w[n] consists of an equaliser with a CM component wc[n] and a DD component

wd[n] operated in parallel, such that w[n] = wc[n]+wd[n]. In the following, we are concerned

with concurrently updating w[n].

The CM term: The K active user signals ul[n] consist of symbols with a constant modulus

γ. By forcing all received user symbols ûl[n] onto γ and the received pilot symbols p̂l[n]

onto the known transmitted sequences pl[n] , a semi-blind cost function ξc is proposed to

adapt wc weights. Note that the remaining N−K−Np inactive users ẑl[n] should be taken

into consideration, otherwise the equalisation problem is underdetermined. Accordingly,

the signals ẑl[n] are forced to zeros in the MSE sense to ensure that the overall system is

fully determined. Therefore, the proposed cost function ξc consists of three terms and is

formulated as
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ξc = E
{
K−1∑

l=0

(γ2−|ûl[n]|2)2
}

+E
{
Np−1∑

l=0

|pl[n]−p̂l[n]|2
}

+ E
{
N−K−Np−1∑

l=0

|ẑl[n]|2
}
, (3.41)

where E{·} denotes the expectation operator. The optimum equaliser coefficient vector wc

in the CM sense is obtained from

wc,opt = arg min
wc

ξc . (3.42)

The DD term: By employing a non-linearity q(·) that maps its input onto the the closest

constellation point, the multiuser decision directed cost function ξd for the DD part can be

formulated as

ξd = E
{
K−1∑

l=0

|q(ûl[n])−ûl[n]|2
}

+E
{
Np−1∑

l=0

|pl[n]−p̂l[n]|2
}

+ E
{
N−K−Np−1∑

l=0

|ẑl[n]|2
}

(3.43)

The optimum equaliser coefficient vector wd in the mean square error sense based on the

assumption of correct decisions is obtained from

wd,opt = arg min
wd

ξd . (3.44)

In case where no pilot is loaded there are no unique solutions to either (3.42) or (3.44), since

minimising (3.41) or (3.43) is ambiguous due to an indeterminism in phase rotation. Also,

note that erroneous decisions are possible in (3.43) and therefore affect (3.44).

3.4.6 Phase ambiguity

Since an ambiguity with respect to a complex rotation ejϕ (ϕ ∈ [0; 2π] ) cannot be resolved

by the CM criterion, this rotation invariance could be overcome by the use of the inactive

codes to load pilot signals.
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Figure 3.13: Cost function ξc in dependency of a single complex valued coefficient w0, for a partially
loaded system with 10 active users and 6 pilots.

Example. To show how pilots overcome the phase ambiguity, the following example is

presented. We assume a system with K = 10 active users and Np = 6 pilots, over a

distortion-less and delayless channel g[n] = δ[n]. Thus, as shown in Fig. 3.13, the cost

function ξc has one unique optimum solution w0 = 1. By comparison, the cost functions ξc

and ξd plotted in Figs. 3.2 and 3.5 respectively, implemented in a fully loaded system with

N = 16, ξc exhibited a manifold of solutions while ξd showed four solutions corresponding

to the four QPSK decisions. Hence, in partially loaded systems, exploiting inactive users

to load pilot signals has successfully resolved the rotation invariance problem and prevented

the phase ambiguity from manifesting itself.

3.4.7 Modified Cost Function

The alternative CM philosophy suggested in Sec. 3.3.1 is used to reformulate the CM term

in (3.41), whereby the detected symbol ûl[n] is mapped to its nearest symbol dl,c[n] from

the circle which has the radius γ and the centre at the origin. Both ξc and ξd can simply be
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Active user Pilot Inactive user

bl[n] ûl[n] p̂l[n] ẑl[n]

dl,c[n] γ ûl[n]
|ûl[n]| pl[n] 0

dl,d[n] q(ûl[n]) pl[n] 0

Table 3.4: Parameter values of the generalised cost function ξm.

written as

ξm = E
{
N−1∑

l=0

|dl,m[n]−bl[n]|2
}
, (3.45)

with m ∈ {c, d} indicating the operational mode as either CM or DD. The index l = 0(1)N−1

represents either active users for l ≤ K−1, pilots for K ≤ l ≤ K+Np−1, or inactive users

for K+Np ≤ l ≤ N−1. Tab. 3.4 shows the various parameter values of the modified cost

function ξm.

Next, we are concerned with minimising both ξc and ξd concurrently based on the affine

projection scheme.

3.4.8 Concurrent Affine Projection Adaptation

In this section we consider applying the affine projection algorithm on the concurrent-

CMA+DD in a partially loaded system. It is convenient to define:

xl[n] = Hl[nN ]rnN , (3.46)

xj[n] = Hj[nN ]rnN , (3.47)

xi[n] = Hi[nN ]rnN . (3.48)
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In the pth order of the APA algorithm, the current and last P data, pilot, and inactive

vectors are taken into account for updating:

Xl[n] = [xl[n] xl[n−1] · · · xl[n−P+1]] , (3.49)

Xj[n] = [xj[n] xj[n−1] · · · xj[n−P+1]] , (3.50)

Xi[n] = [xi[n] xi[n−1] · · · xi[n−P+1]] . (3.51)

The implementation of the pth order algorithm has been previously summarised in Tab. 3.3.

The following steps briefly describe how the AP-FIRMER-CMA+DD is applied to partially

loaded systems.

1. The lth active user and jth pilot decoded symbols, ûl[n] and p̂j[n], have been defined

in (3.39) and (3.40), respectively as

ûl[n] = wH Hl[nN ] rnN , (3.52)

p̂j[n] = wH Hj[nN ] rnN .

2. We define the error ep according to the pilot signals at time instance n,

ep[n] = pj[n]− p̂j[n]. (3.53)

3. We retain a record of the past P pilot errors ep[n−p] and inactive user signals ûi[n−p],

such that p = 0 · · · (P − 1),

ep[n] = [ep[n] ep[n− 1] · · · ep[n− P + 1]], (3.54)

ûi[n] = [ûi[n] ûi[n− 1] · · · ûi[n− P + 1]]. (3.55)
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4. We obtain the gradient of ξc (3.41) with regards to w using the CMA update equation

defined in (3.33) with K active users. Taking into consideration the Np pilots and the

remaining N − K − Np inactive signals [68], the CMA update equation for partially

loaded systems becomes

wc[n+ 1] = wc[n] + µc



K−1∑

l=0

X†l [n]e∗l,c[n]−
K+Np−1∑

j=K

Xj[n]ep[n]∗ +
N−1∑

i=K+Np

Xi[n]û∗i


 .

(3.56)

5. Using equations (3.34) and (3.35) the DD part is updated (3.36). Similar to (3.56),

the gradient of ξd (3.43) is calculated

wd[n+1] = wd[n]+µd



K−1∑

l=0

Λl[n]X†l [n]e∗l,d[n]−
K+Np−1∑

j=K

Xj[n]ep[n]∗ +
N−1∑

i=K+Np

Xi[n]û∗i


 ,

(3.57)

where Λl[n] disables the DD adaptation step for a specific user if the CMA adaptation

step leads to an alteration in the decision (3.35).

6. Combining the CM and DD weights leads to the final equaliser update equation

w[n+ 1] = wc[n+ 1] + wd[n+ 1]. (3.58)

7. After incrementing the symbol index n, the next iteration would recommence with step

1 of the algorithm.
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Figure 3.14: MSE curves of the FIRMER-CMA, FIRMER-CMA+DD, and AP-FIRMER-
CMA+DD with p = {2, 5} in partially loaded scenario.

3.4.9 Simulation Results

In order to demonstrate the convergence behaviour of the proposed algorithm, we transmit

K = 14 QPSK active user signals and Np = 2 pilots over a noise-free but dispersive channel

g3[m], represented by its transfer function

G3(z) = 0.84 + (0.42− 0.34j)z−1 + 0.09z−2. (3.59)

The length of the equaliser is L = 20, and the relaxation factors are set to µc = 0.05 and

µd = 0.1. The adaptation is initialised with the first coefficients in both weight vectors

wc and wd set to 0.5, with the remaining coefficients set to zero. The MSE curves of the

proposed algorithm operating in different scenarios over two UMTS TDD bursts are shown

in Fig. 3.14.

As evident from Fig. 3.14, by operating the proposed algorithm with µd = 0 (only CM
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be invariant over each time slot with SNR = 20dB. The BER is averaged over 1000 time slots,

for various loading conditions. As is depicted in Fig. 6.7, the performance of the pilot-assisted

algorithm is dramatically better than the classical training equalisation. A considerable reduction

in BER and significant increase in data rate are achieved by loading pilots. For example, by loading

only one pilot over a small midamble of size 64 chips, we obtain almost similar BER performance

to the classical scheme where the adaptation is only performed over a seven times longer midamble,

as shown in Fig. 6.7. Hence, 384 chips could be saved and used for data transmission. This means

around 16% of data rate is gained. Moreover, by loading more pilots the BER could be reduced.

For example, a reduction of at least 63% is obtained by loading three pilots for the previous short

midamble, as presented in Fig. 6.7. However, we have noticed no further improvement in BER

by adding further pilots to the scheme.
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Figure 6.6: effect of the number of pilots on the BER performance corresponding to the case of 10 active

users.
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Figure 6.7: Effect of the training sequence length and pilot loading on the BER performance over a

quasi-time varying channel with SNR = 20dB.

Figure 3.15: Effect of the number of pilots on the BER performance.

branch is active) over bursts of type 2 (short training period), a better MSE performance

is reached as compared to the case where only training is performed in type 1 with its

larger midamble. The shortening of the midamble at no performance loss is equivalent to

an increase in data throughput by 13%. Furthermore, faster convergence is obtained by

either activating the DD equaliser or increasing the algorithm’s projection order to p = 2

and p = 5. The AP-FIRMER-CMA+DD (p = 5) reaches a steady state MSE in one tenth

of the time required by the FIRMER-CMA+DD.

3.4.10 Effect of Pilot Loading on BER Performance

Loading more pilots enhances the quality of the transmission, however that comes at a cost

as all transmissions are subject to power constraints. Increasing the number of pilots will

consume more of the allocated power. In CDMA systems, the optimal power ratio of pilot

and data channels was obtained in [69].

To show the effect of various loading scenarios on the BER performance of the proposed

algorithm we perform two experiments. In the first experiment, we consider a UMTS TDD

system with K = 10 active users and Np pilots with 0 ≤ Np ≤ 6 where we calculate the BER
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be invariant over each time slot with SNR = 20dB. The BER is averaged over 1000 time slots,

for various loading conditions. As is depicted in Fig. 6.7, the performance of the pilot-assisted

algorithm is dramatically better than the classical training equalisation. A considerable reduction

in BER and significant increase in data rate are achieved by loading pilots. For example, by loading

only one pilot over a small midamble of size 64 chips, we obtain almost similar BER performance

to the classical scheme where the adaptation is only performed over a seven times longer midamble,

as shown in Fig. 6.7. Hence, 384 chips could be saved and used for data transmission. This means

around 16% of data rate is gained. Moreover, by loading more pilots the BER could be reduced.

For example, a reduction of at least 63% is obtained by loading three pilots for the previous short

midamble, as presented in Fig. 6.7. However, we have noticed no further improvement in BER

by adding further pilots to the scheme.

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

channel SNR

B
E

R

SNR=5dB
SNR=10dB
SNR=15dB

number of pilots

Figure 6.6: effect of the number of pilots on the BER performance corresponding to the case of 10 active

users.
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Figure 3.16: Effect of the training sequence length and pilot loading on the BER performance.

for different number of loaded pilots and various SNRs. As shown in Fig. 3.15, loading more

pilots enhances the BER performance of the system for relatively medium to high SNRs,

and nearly no improvement in BER performance is noticed for low SNRs.

In the second experiment, the BER is calculated for different midamble sizes, which we aim

to shorten with respect to the values proposed in [70]. The length of the equaliser is L = 10,

and the propagation environment used is a 3 paths quasi-time-varying channel, whereby it

is assumed to be constant over each time slot with SNR = 20dB. The BER is averaged over

1000 time slots, for various loading conditions. As depicted in Fig. 3.16, the performance of

the pilot-assisted algorithm is dramatically better than the classical training equalisation. A

considerable reduction in BER and significant increase in data rate are achieved by loading

pilots. For example, by loading only one pilot over a small midamble of size 64 chips, we

obtain almost similar BER performance to the classical scheme where the adaptation is only

performed over a seven times longer midamble, as shown in Fig. 3.16. Hence, 384 chips could

be saved and used for data transmission. This means around 16% of data rate is gained.

Moreover, by loading more pilots the BER could be reduced. For example, a reduction of at

least 63% is obtained by loading three pilots for the previous short midamble, as presented

in Fig. 3.16. However, we have noticed no further improvement in BER by adding further
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pilots to the scheme.

3.4.11 Summary

A concurrent affine projection algorithm for pilot-assisted multiuser equalisation, suitable

for the UMTS TDD downlink scenario, has been derived. The algorithm provides continuous

channel tracking and presents better convergence behaviour over the basic training equali-

sation even with longer midambles, whereby advantages in terms of data rate and spectrum

efficiency can be achieved. The convergence can be accelerated by either activating the DD

equaliser or increasing the affine projection algorithm’s order.

3.5 Concluding Remarks

Firmer-CMA: A blind equalisation approach for a DS-CDMA downlink scenario has been

presented, which aims to enforce CM conditions on the various user signals. A stochastic

gradient algorithm has been derived, which differs from previous CM algorithms by a code-

prefiltering of its input. This algorithm has been extensively tested and demonstrated itself

as very stable. Representative simulations have been presented, highlighting the convergence

behaviour as well as its BER performance. It has been shown how this algorithm can be

readily implemented in different modes and operating with various alternative algorithms.

Concurrent FIRMER-CMA+DD: A concurrent FIRMER-CMA+DD algorithm which

is suitable for synchronous DS-CDMA systems has been derived. Adaptation is performed by

concurrently minimising two cost functions based on the CM criterion and the DD scheme.

The potential drawback of DD adaptation is the probability of error propagation occurring

in case of a wrong hard decision, which subsequently degrades the performance. For this

reason, the concurrent scheme is designed to update the DD part only if the equaliser’s
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hard decision before and after the CM adaptation are the same, and in doing so the DD

adaptation is more likely to be successful.

By employing the concurrent FIRMER-CMA+DD, the convergence speed has been consid-

erably enhanced and a lower steady state MSE has been achieved compared to the standard

FIRMER-CMA, as demonstrated in simulations.

AP-FIRMER-CMA+DD: A consolidated AP-FIRMER-CMA+DD structure which com-

bines advantages of both the AP-FIRMER-CMA and FIRMER-CMA+DD has been intro-

duced. The proposed AP-FIRMER-CMA+DD provides a further increase in convergence

speed over the FIRMER-CMA+DD and a lower BER than the FIRMER-CMA.

Pilot-Assisted AP-FIRMER-CMA+DD: A semi-blind AP-FIRMER-CMA+DD for pilot-

assisted multiuser equalisation for a UMTS-TDD downlink scenario has been presented. The

algorithm provides continuous channel tracking and presents better convergence behaviour

over basic trained equalisation even with longer training periods, whereby a gain of data rate

and spectrum efficiency can be achieved. It has been shown through various simulations that

the implementation of pilots enhances the system performance in terms of MSE and BER

and resolves the typical CM phase ambiguity. A burst structure with a shortened training

field, which is suitable for the above pilot-assisted strategy, has been presented. The new

burst offers a considerable gain in data rate and spectrum efficiency and ensures a continuous

adaptation. The convergence can be accelerated by either activating the DD equaliser or by

increasing the affine projection algorithm’s order.
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Fast Adaptation for Time-Varying

Channels

The previously proposed blind multiuser FIRMER-CMA equaliser improves system band-

width efficiency by avoiding the use of a training sequence and can readily meet real-time

computational constraints even for low cost commercial systems. However, since the lat-

ter algorithm is a CMA based equaliser, the slow convergence and the moderate levels of

steady-state MSE are the main drawbacks of such a scheme, which may limit its imple-

mentation in any commercial wireless communication systems. This chapter introduces a

fast and robust blind multiuser equalisation alternative based on a strategy called the PDF

Matching Algorithm (also known as Matched-PDF or PDF Fitting Algorithm). We start

by introducing the algorithm’s cost function and deriving the corresponding stochastic gra-

dient search in Sec. 4.1. The following Sec. 4.2 is dedicated to analysing and assessing the

convergence behaviour and the BER performance of the proposed algorithm. We simulate

a Rayleigh time-varying channel model in Sec. 4.3 to demonstrate the tracking performance

of the proposed algorithm. Last, we conclude with some remarks in Sec. 4.4.
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4.1 PDF Matching Algorithm

Recovering several users blindly, based on the constant modulus (CM) criterion, has been

proposed in [67]. The latter approach was labelled as FIRMER-CMA, which utilises the

CDMA user codes to implicitly impose the orthogonality constraint on the detected se-

quences, resulting in a simple and efficient CM algorithm. However, the adaptation in [67] is

performed at relatively slow rate, and has a computational complexity that depends quadrat-

ically on the number of active users. These drawbacks render this algorithm inefficient for

heavily loaded systems. An interesting alternative consists of trying to force the probability

density at the output of the equaliser to match the known constellation PDF. In [71], the

authors have proposed a method where the cost function is the quadratic distance between

the current PDF at the output of the equalizer and the target PDF, based on statistical

knowledge of the input sequence. Other PDF matching approaches have been proposed

in the literature for QAM modulations [72, 73], however the so-called stochastic quadratic

distance (SQD) has a computational burden which increases with the order of the QAM

modulation scheme. The authors in [74] introduced a low cost stochastic quadratic distance

(LC-SQD) PDF matching algorithm by only considering neighbouring values of the symbol

constellation PDFs instead of using the whole constellation as in the SQD algorithm. The

LC-SQD decreases the SQD complexity and outperforms it, however, at low signal-to-noise

ratio (SNR), it may diverge in some cases. To avoid this drawback, the authors in [75] pro-

posed a new method, also based on SQD, but that is more efficient than LC-SQD in terms of

complexity, convergence speed and residual ISI. More recently, the PDF fitting algorithm was

used to equalize QAM constellations by measuring the distance error between observed and

assumed PDFs for the real and imaginary parts of the equalizer output separately [76, 77].

The only multiuser PDF matching approach was applied in [78] on space division multiple

access (SDMA) systems for uplink scenarios with high computational complexity. In this
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Figure 4.1: Signal model of DS-CDMA downlink with a PDF-Matching equaliser w[m]

chapter, we investigate a simple but efficient blind adaptive multiuser equaliser applied in

DS-CDMA systems.

4.1.1 Demultiplexed User Signals

Similar to Chap. 3, we consider the DS-CDMA downlink system in Fig. 4.1. Using the same

derivations as in Sec. 3.1.1, the lth user can be decoded as

ûl[n] = wH Hl[nN ] rnN , (4.1)

with Hl[nN ] ∈ ZL×(L+N−1) (3.2) containing the decoding process of only the lth user’s signal,

rnN ∈ CN+L−1. In the following, we are concerned with blindly updating the equaliser vector

w.

The FIRMER-CMA assumes that the user signals ul[n] consist of symbols with a constant

modulus γ, such as QPSK. The system model for the new proposed algorithm is the same

model used for the FIRMER-CMA, only with a new cost function.
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4.1.2 Cost Function

The proposed cost function is based on the idea of blindly equalising several signals, leading

to a cost term which is here related to fitting the PDFs of the equaliser outputs to a desired

PDF according to [73]. The idea of this approach is to measure the difference between two

PDFs, pA(z) and pB(z), using the quadratic distance between them, which is defined as

ξPDF =

∞∫

−∞

(pA(z)− pB(z))2dz . (4.2)

In the following, the PDF-matching criterion for the extraction of signals at the equaliser

outputs û[n] is outlined. The variable whose PDF is measured at the equaliser output is the

squared magnitude value |û[n]|2, in close relation to the constant modulus algorithm. The

estimation of this PDF is based on the Parzen window method [79, 80], whereby a smooth

PDF estimate is achieved by replacing a sample |û[n]|2 by a kernel function centred at its

location. We here select a Gaussian kernel Kσ(z) with variance σ,

Kσ(z) =
1√
2πσ

e−
z2

2σ2 , (4.3)

such that the PDF estimate over a window of Lw output samples is given by

p̂|û[n]|2(z) =
1

Lw

Lw−1∑

l=0

Kσ(z − |û[n− l]|2) . (4.4)

The larger the window length Lw, the more confident the PDF estimate will be. However, a

trade-off exists, as during adaptation the output statistics are not stationary, and therefore

it is advantageous to limit Lw to an interval within which the statistics can be assumed

quasi-stationary. Therefore, the PDF of the original constellation must be convolved with

the kernel of the Parzen estimator being used for p̂|û[n]|2(z).
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The PDF estimate at the equaliser output, p̂|û[n]|2(z), will be compared to the PDF of the

squared moduli of the transmitted signals, |u[n]|2, subject to the same Gaussian kernel Kσ(z)

[72]. For consistency, the target PDF p̂|u[n]|2(z) must consider the effect of the estimator to

guarantee the cost function is zero for perfect equalisation. Another advantage of convolving

the discrete PDF of |u[n]|2 defined by the constellation points of u[n] with the Gaussian

kernel in (4.3) is that the resulting PDF exhibits a spread around constellation points akin

to the influence of channel noise. Given the model of AWGN, the PDF of squared moduli

would be a superposition of chi-square distributions, which subsequently might provide a

more appropriate kernel. However, we here follow the suggestion of a Gaussian kernel in [72]

as this will lead to simplifications that are required for a solution with low computational

cost.

Therefore, the convolution with the Gaussian kernel yields the desired PDF

p̂|ui |2(z) =
1

M

M∑

m=1

Kσ(z − |sm|2) , (4.5)

where sm, m ∈ {1, 2, · · · ,M}, are the M constellation points of the ith transmitted signal.

By exploiting the fact that for Gaussian kernels [72]

∞∫

−∞

Kσ(z − z1)Kσ(z − z2)dz = K√2σ(z1 − z2) , (4.6)
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the cost function of the matched-PDF algorithm for the equaliser output becomes

ξPDF[n] =
1

L2
w

Lw−1∑

m=0

Lw−1∑

l=0

Kσ
√
2(|û[n− l]|2 − |û[n−m]|2) (4.7)

+
1

M2

M∑

m=1

M∑

l=1

Kσ
√
2(|sl|2 − |sm|2)

− 2

LwM

M∑

m=1

Lw−1∑

l=0

Kσ
√
2(|û[n− l]|2 − |sm|2) .

Analysing this cost function, it can be observed that the first term on the right hand side

is the estimator of the information potential associated with Renyi’s entropy of the second

order [81], except in our case the cost function must be minimised, whereas in [81] the

information potential must be maximised. The second term on the right hand side does not

depend on w and can be neglected in the optimisation process. Finally, the third term pulls

the PDF of the equaliser output towards the desired PDF. The third term is responsible for

measuring the distance between PDFs while the first two act as normalisation for different

PDFs. It has been argued in [73] that because these terms are used in a cost function

which is meant to find an extremum, it is logical to use only the cross term, hoping that

the minima of the two criteria occur at the same parameter value. Some evidence for this

behaviour was highlighted in [82], where a similar cost function provides outstanding results

in an application of information theory to clustering.

In any case, the first term of the cost function can be ignored for Lw = 1 while the

second term can be considered spurious for constant modulus constellations [73]. Hence the

matched-PDF cost function simplifies to

ξPDF[n] = − 2

M

M∑

m=1

Kσ
√
2(|û[n]|2 − |sm|2) . (4.8)

The cost function in (4.8) is depicted in Figure 5.3. Similar to the CMA, the cost function
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Fig. 2. The PDF-matching cost function for a single complex

valued coefficient w0.

and by considering L = 1 in (5) as in [4], the matched-PDF

cost function is simplified to,

ξPDF[n] = − 1

M

M∑

m=1

K√2σ(|y[n]|2 − |sm|2) . (8)

The cost function in (8) is depicted in Figure 2. Similar

to the CMA, the cost function at hand exhibits a manifold

of optimum solutions due to its phase ambiguity.

4. STOCHASTIC GRADIENT ALGORITHM

Based on the cost function in (8), this section addresses the

problem of adjusting the equaliser. The coefficients of the

equaliser are updated using the stochastic gradient descent

method,

wn+1 = wn − µPDF∇w∗ ξ̂n, (9)

where ∇w∗ denotes the gradient with regard to w∗, and
µPDF is the step size.

The derivative of the cost function with respect to w∗

can be given by

∂

∂w∗
ξPDF[n]=− 1

M

M∑

m=1

K ′√
2σ

(|y[n]|2−|sm|2)y∗[n]rn,

(10)

where

K ′√
2σ

(z) =
∂

∂z
K√2σ(z) = − 1

4σ2
K√2σ(z) (11)

is the derivative of the Gaussian kernel (4). In order to sim-

plify the derivative, we assume all the points in the transmit

constellation have the same modulus, i.e. |sm|2 = γ2, for

m = 1, · · · ,M . Thus, the summation and division by M
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Fig. 3. MSE curves of Matched PDF and Firmer-CMA

drops from (10). Inserting (11) into (10) and rearranging

terms leads to

∂

∂w∗
ξPDF [n]=K√2σ(|y[n]|2 − γ2)e∗[n]rn, (12)

where,

e∗[n] =
1

4σ2
(|y[n]|2 − γ2)y∗[n], (13)

and Kσ(z) is the Gaussial kernel used for the Parzen esti-
mator as defined in (4). It is the additional of this kernel

term that distinguishes the cost function gradient shown in

(12) from a standard CM algorithm. The constants arising

e.g. from the differentiation of the kernel can be absorbed

into the step size µPDF.

5. SIMULATION RESULTS

In order to demonstrate the convergence behaviour of the

proposed algorithm, we transmit N = 16 QPSK active user

signals over a dispersive channel g[m], represented by its

transfer function G(z) = 1 + (0.3 + 0.5j)z−1 + 0.2z−2.

White Gaussian Noise with signal to noise ratio (SNR) of

30dB has been added at the output of the channel. The

length of the equaliser is Lw = 21. The adaptation is

initialized with the first coefficient in both weight vectors

for the CMA and the Matched PDF set to 1. A step size

µPDF = 5e−2 and a kernel size σ = 10 have been selected
for matched-pdf approach. This large kernel size has been

selected because the main goal here is to maximize the con-

vergence speed. The MSE curves of the proposed algorithm

compared to the Firmer-CMAAlgorithm obtained when us-

ing a step size of µCMA = 1e−2 are shown in Figure 3.

The step sizes which have been selected for Firmer-CMA

and the Matched PDF are the largest values for which all

simulations provided fast stable convergence.

Figure 4.2: The PDF-matching cost function for one output. A segment of the surface is removed.

at hand exhibits a manifold of optimum solutions due to its phase ambiguity.

4.1.3 Stochastic Gradient Algorithm

Based on the cost function in (4.8), this section addresses the problem of adjusting the

equaliser. The coefficients of the equaliser are updated using the stochastic gradient method,

wn+1 = wn − µPDF∇w∗ ξ̂n, (4.9)
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where ∇w∗ denotes the gradient with regard to w∗, and µPDF is the step size. The derivative

of the cost function with respect to w∗ can be calculated as

∂

∂w∗
ξPDF[n]=− 2

M

M∑

m=1

K ′√
2σ

(|û[n]|2−|sm|2)û∗[n]rn, (4.10)

where

K ′√
2σ

(z) =
∂

∂z
K√2σ(z) = − 1

4σ2
K√2σ(z) (4.11)

is the derivative of the Gaussian kernel in (4.3). In order to simplify the derivative, we assume

that all the points in the transmit constellation have the same modulus, i.e. |sm|2 = γ2, for

m = 1, · · · ,M . Thus, the summation and division by M drop out from (5.24). Evaluating

the derivative K ′σ in (5.24) and rearranging terms leads to

∂

∂w∗
ξPDF[n]=2K√2σ(|û[n]|2 − γ2)e∗[n]rn, (4.12)

where,

e∗[n] =
1

4σ2
(|û[n]|2 − γ2)û∗[n], (4.13)

and K√2σ(z) is the Gaussian kernel used for the Parzen estimator as defined in (4.3). It is

the addition of this kernel term that distinguishes the cost function gradient shown in (4.12)

from a standard CM algorithm. The constants arising e.g. from the differentiation of the

kernel can be absorbed into the step size µ.

4.2 PDF Algorithm Performance

In this section, we show by computer simulations that a considerable improvement can be

achieved by the PDF matching algorithm compared to FIRMER-CMA.
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4.2.1 Implementation Details

For the simulations below, we consider a fully loaded synchronous DS-CDMA system,

where the adopted modulation scheme is QPSK. We apply the Matched-PDF algorithm

and FIRMER-CMA to the same short channel with impulse responses g4[m] characterised

by its chip rate transfer function

G4(z) = 1 + (0.3 + 0.5j)z−1 + 0.2z−2. (4.14)

White Gaussian noise with an SNR of 30dB has been added at the output of the channel.

The length of the equaliser is L = 21. The adaptation is initialised with the first coefficient in

both weight vectors for the FIRMER-CMA and the Matched-PDF set to 1 and the remaining

coefficients set to zero.

Step sizes µCMA = 1e−2 and µPDF = 5e−2 have been chosen for FIRMER-CMA and

Matched-PDF, respectively. After numerous simulations, these step sizes are the largest

values for which all simulations provided fast stable convergence. A kernel size σ = 10 have

been chosen for the Matched-PDF approach. This large kernel size has been chosen because

the main goal here is to maximise the convergence speed. The MSE curves are ensemble

averaged over a window of 1000 data samples.

4.2.2 Results

The MSE curves of the proposed algorithm compared to the FIRMER-CMA algorithm

are shown in Figure 4.3. It is clear from the MSE curves that the MSE performance of

the Matched-PDF is much faster than FIRMER-CMA, where the Matched-PDF reaches

its steady-state MSE of approximately −55dB almost twice as fast as the FIRMER-CMA.

Figure 4.4 shows the BER performance for both FIRMER-CMA and Matched-PDF, where
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Figure 4.3: MSE curves of the proposed Matched-PDF Algorithm and the standard FIRMER-
CMA.

it is clearly shown that the superior convergence rate of Matched-PDF comes at no cost in

terms of BER degradation. In fact, the BER curves of both algorithms are almost identical,

with an exception at low SNRs where the PDF-Matching has a slight edge over the FIRMER-

CMA. A potential reason for this could be insufficient convergence time to reach the steady

state for the slower CMA for some members of the ensemble average shown on Fig. 4.4.

In the presence of phase ambiguity, the inter-symbol-interference (ISI)

ISIn = 10log10

∑
n |θ[n]|2 −maxn |θ[n]|2

maxn |θ[n]|2 , (4.15)

provides a more accurate measure of system performance than the MSE, where θ[n] is the

convolution of the channel and equaliser block. The ISI performance has been measured with

the step sizes µCMA = 1e−3 and µPDF = 5e−3. The step sizes which have been selected are

the largest values for which all simulations provided maximally fast and stable convergence.

Figure 4.5 indicates that the Matched-PDF algorithm offers convergence in terms of ISI
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Figure 4.4: BER vs SNR curves of the Matched-PDF Algorithm and FIRMER-CMA.

performance that is approximately twice as fast as the FIRMER-CMA. By comparing the

MSE and ISI performances, it is evident that the proposed algorithm converges much faster

than the FIRMER-CMA, without any degradation in BER performance.

4.2.3 Summary

A new adaptive algorithm for blind multiuser equalisation has been derived. The new cost

function of this method is based on minimising the distance between the actual PDF of

the equaliser output and the desired PDF. The proposed method showed faster convergence

speed compared to the FIRMER-CMA using QPSK constellation. Furthermore, the kernel

size of the Parzen window estimator could be increased to accelerate the convergence speed,

and once the ISI is sufficiently reduced the kernel size can be reduced to achieve higher

accuracy.

So far in our simulations we have considered a stationary channel which gives a good

measure in terms of convergence speed; however, in real life not all channels can be considered
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Figure 4.5: ISI curves of the Matched-PDF Algorithm and FIRMER-CMA.

stationary but will vary in time. Therefore, in the next section we will test the proposed

algorithm under time-varying channel conditions.

4.3 Time-Varying Channels and Tracking Performance

This section first introduces a time-varying channel model. Thereafter, this channel model

is used to test how well the Matched-PDF algorithm can cope with changes in the channel,

i.e. measure the tracking performance.

4.3.1 Time-Varying Channel Model

In order to demonstrate the tracking behaviour of the proposed algorithm, we run multiple

computer simulations under various scenarios from transmitting a single user to N = 16

QPSK active user signals over a doubly-dispersive channel h[n, ν] which is frequency selec-
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Figure 4.6: Channel Impulse Response at time n

tive and time-varying, where Lc is the length of the channel, n is the time index and ν

is the coefficient index. The finite impulse response (FIR) filter of channel h[n, ν] with Lc

coefficients is depicted in Fig. 4.6, where ∆ is a delay of one symbol period.

Considerable contributions have been published previously to define a realistic and sensible

representation of a time-varying channel [83, 84]. Clarke assumed isotropic scattering leading

to a uniformly distributed angle of arrival (AoA) [84]. For reasons of simplicity, Clarke’s

representation with a Rayleigh distribution has been chosen to model time-varying channels.

Time variation of the channel is normally associated with mobility of a terminal, being

the transmitter, the receiver or any reflecting object in the propagation environment. In

wireless communication systems, multiple copies of the transmitted signal arrive at the

receiver with different delays and phases creating the multipath phenomenon. Furthermore,

due to mobility of a terminal, the signal experiences a random frequency modulation on each

of the multipath components due to Doppler shifts.

When a signal is transmitted in a free-space propagation environment where there is no

multipath propagation, the relative motion between the transmitter and receiver results in

an apparent change in the frequency of the received signal. This apparent frequency change

is called Doppler shift. To analyse this phenomenon, consider the simple scenario shown in
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Figure 4.7: Mobility of a terminal causes Doppler Shift.

Fig. 4.7. Assuming the receiver is moving at a constant velocity v along a direction that

forms an angle of arrival ϑ with the received signal, then it can be seen that the difference

in path lengths travelled by the signal from the transmitter to the mobile receiver at points

a and b is given by

∆l = d cos(ϑ), (4.16)

= v ∆t cos(ϑ), (4.17)

where ∆t is the time required for the mobile to travel from a to b. The phase change in the

received signal due to the difference in path lengths is therefore

∆φ =
2π ∆l

κ
, (4.18)

=
2π v ∆t

κ
cos(ϑ), (4.19)

where κ is the wavelength of the transmitted signal. Hence, the apparent change in received

frequency, or Doppler shift, is given by:
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ΩD =
1

2π

∆φ

∆t
, (4.20)

=
v

κ
cos(ϑ) , (4.21)

=
v

c
fc cos(ϑ) . (4.22)

using c = fc κ, where c is the speed of light and fc is the frequency of the transmitted signal.

It can be seen from (4.22) that the Doppler shift is a function of, among other parameters,

the angle of arrival of the transmitted signal. In an environment with multipath propagation,

in which multiple signal copies propagate to the receiver with different angles of arrival,

different propagation paths experience different Doppler shifts. The resulting signal is the

sum of the multipath components. Consequently, the frequency spectrum of the received

signal will in general be ‘wider’ than that of the transmitted signal, i.e. it contains more

frequency components than were transmitted. This phenomenon is referred to as Doppler

spread.

The Doppler spread can be quantitatively characterised by the Doppler spectrum [85]. The

Doppler spectrum is the power spectral density of the received signal when a single-frequency

sinusoid is transmitted over a multipath propagation channel. In a static environment in

which the reflectors stay immobile, the Doppler spectrum is simply an impulse located at

the frequency of the transmitted sinusoid when there is no relative motion. When there is

relative motion, the Doppler spectrum occupies a finite bandwidth. The exact shape of the

Doppler spectrum depends on the configuration of the reflectors. It can be shown [85] that

when the mobile receiver moves at a constant speed v and the signal power received by the

receiver antenna arrives uniformly from all incident angles in [0 : 2π], the Doppler power

spectrum takes the form of:
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Figure 4.8: Magnitude response of the Doppler filter or PSD of a channel coefficient.

S(f) =





1.5

πfmax

√
1−( f−fc

fmax
)2

|f − fc| < fmax

0 |f − fc| ≥ fmax.





where fmax = v
κ

is the maximum Doppler shift. This Doppler spectrum is plotted in Fig.4.8.

The implementation of a Rayleigh fading channel for simulation is based on the filtered

Gaussian noise model and is performed in the frequency domain and then transformed into

the time domain. As illustrated in Fig. 4.9, two Gaussian noise sources are generated and

then multiplied by the frequency response of the Doppler filter (equivalent to time domain

convolution). The resulting signals are transformed into the time domain by the inverse

discrete Fourier transform. Taking the first output as it is, and multiplying the second by

the imaginary unit j =
√
−1 provides the real and imaginary parts of the time domain

coefficient trajectories of channel h[n, ν].

In the following computer simulations, the channel is implemented in overlap-save mode [86].

The length of the output data segment will be in the length of a block. If more data is re-
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Figure 4.9: Implementation of a single Rayleigh fading coefficient

quired, further blocks can be produced without violating the smoothness constraint. The

smooth continuation is achieved by overlap-save, whereby instead of saving an entire seg-

ment of random data points, only the seed value generating this data segment has to be

remembered and passed to the next generation of coefficients.

Fig. 4.3.1(a) shows the Rayleigh time-varying channel used in our simulation, where the

channel is changing for every transmitted symbol. Fig. 4.3.1(b) shows a zoomed version

to enable a closer look at the first 100 coefficients, where you can clearly see the Rayleigh

channel changing over time.

4.3.2 Implementation Details

White Gaussian noise with signal to noise ratio (SNR) of 30dB has been added at the output

of the channel. The length of the equaliser is Lw = 21. The adaptation is initialized with

the first coefficient in both weight vectors for the CMA and the Matched-PDF set to 1. A

step size µPDF = 1e−3 and a kernel size σ = 10 have been selected for the Matched-PDF

approach. The step size of the FIRMER-CMA Algorithm was set to µCMA = 1e−3. Again,

both step sizes which have been selected for FIRMER-CMA and the Matched-PDF are the

largest values for which all simulations provided stable convergence.
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Figure 4.10: Trajectories of moduli of Rayleigh fading channel coefficients, with (a) a series of
5000 sampling periods and (b) a shorter detail.

4.3.3 Simulation Results

The MSE curves of the proposed algorithm compared to the CMA algorithm are shown in

Fig. 4.11, under (a) a single user scenario, and (b) a multiuser scenario. The simulation

result shows clearly the tracking behaviour in a time-varying environment. Starting from

the optimum solution, both techniques track the changes in the channel and hence equalise

the signal accordingly.

To enable a better comparison in the performance of the CMA and Matched-PDF algo-

rithm under time-varying channels, in both single user and multiuser systems, we average

the resulting MSE over a moving window of symbols, with the results shown in Fig. 4.12.

Unlike the performance of the CMA and Matched-PDF Algorithm in constant environ-

ments Fig. 4.3 [12], it was expected that a lower MSE performance would be obtained under
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Figure 4.11: MSE curves of Matched-PDF and CMA with averaging for a single user system
(top) and a multiuser system (bottom).

time-varying channels Fig. 4.11 and Fig. 4.12 [13]. It is also worth noting that the Matched-

PDF algorithm has lost its advantage over the CMA under fast time-varying channels. In

constant environments the Matched-PDF’s MSE performance reached −55dB while Fig. 4.12

shows that its best MSE performance in time-varying environments reaches −12dB. How-

ever, the convergence speed of the Matched-PDF is still relatively faster than that of the

CMA algorithm in both single and multiuser systems.

Fig. 4.12 also demonstrates that both algorithms reach a lower MSE level in the multiuser

system; about 5dB lower than that of the single user system, this is due to the orthogonality

of the Walsh codes used in multiplexing the users.
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4.3.4 Summary

Both Matched-PDF and FIRMER-CMA have been tested under Rayleigh time-varying chan-

nel conditions, which was designed based on the filtered Gaussian noise model, but imple-

mented in overlap-save mode which ensures smooth continuation of the channel.

The Matched-PDF algorithm for blind adaptive equalisation under fast time-varying chan-

nels has been tested under a fast time-varying environment. The proposed algorithm showed

a promising tracking performance, but could only be demonstrated to yield comparable

tracking performance to FIRMER-CMA.
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4.4 Concluding Remarks

A new adaptive algorithm for blind multiuser equalisation has been derived. The new cost

function of this method is based on minimizing the distance between the actual PDF of

the equalizer output and the desired PDF. The proposed method showed faster convergence

speed compared to the FIRMER-CMA using QPSK constellation. Furthermore, the kernel

size of the Parzen Window Estimator can be increased to accelerate the convergence speed,

and once the ISI is sufficiently reduced the kernel size can be reduced to achieve higher

accuracy.

The Matched-PDF algorithm has been reviewed under fast time-varying channels. The

proposed method showed faster convergence speed compared to the classical CMA in con-

stant environments. In a fast time-varying systems, the proposed algorithm yields compara-

ble performance to the FIRMER-CMA but showed a promising robustness to noise and the

double dispersiveness of the channel which was frequency selective and time-varying.

It can be concluded that the proposed algorithm provides advantages over the FIRMER-

CMA in constant environments while it provides a similar tracking performance when the

channels are fast time-varying.
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Chapter 5

Case Studies: PDF Matching

Algorithm for MIMO Systems

In the previous chapter we introduced a new adaptive algorithm for blind multiuser equal-

isation, which shows faster convergence speed compared to Firmer-CMA in stationary envi-

ronments, and exhibits a promising robustness to noise and channel dispersiveness in time-

varying scenarios. However, all algorithms considered so far are designed for the case of a

single transmit and receive antenna. With many future communication systems relying on

multiple-input multiple-output (MIMO) configurations of antennas, in this chapter we test

the new scheme as an example on MIMO Space Time Block Coding (MIMO STBC) and

Time Reversal Space Time Block Coding (MIMO TR-STBC), and we compare these against

state-of-the-art algorithms. We also look at the computational cost of these algorithms.

This chapter is organised as follows. In Sec. 5.1 a description of the MIMO channel and

signal model is given for MIMO-STBC. The proposed cost function for the equaliser is then

derived. It also includes some simulation results benchmarked against existing approaches

to mitigate ISI in broadband MIMO STBC systems. The following Sec. 5.2 is dedicated to
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Figure 2.11: A Multiple-Input Multiple-Output system with M transmit and N receive
antennas

2.2 Diversity Techniques

Consider the flat Rayleigh fading channels depicted in Figure 2.8. Channel 1 is said to

have a deep fade at around 2000 iterations resulting in a very poor Signal to Noise Ratio

(SNR) at the receiver. This reduces the performance of the communication system and

may result in complete failure. Diversity techniques are widely used in mobile wireless

communications to combat the effect of fading on the transmitted signal. Diversity

techniques provide the receiver with multiple replicas of the same message having passed

through multiple independently distributed fading paths. If the probability of a deep

fade in each channel is pf , then the probability of deep fades across all N channels is

pN
f < pf for N > 1.

The most common types of diversity are time diversity, frequency diversity, and

spatial diversity.

Time Diversity: In time diversity, the same message is transmitted at different

time slots, [27]. The slots are sufficiently separated to allow the channels to be uncor-

related. The minimum separation period is defined by the reciprocal of the fading rate,

as in [28]:

1

fd

=
c

vfc

(2.6)

Figure 5.1: A Multiple-Input Multiple-Output system with M transmit and N receive antennas

analysing and assessing the convergence behaviour and the BER performance of the proposed

algorithm under MIMO TR-STBC system. Finally, conclusions are drawn in Sec. 5.3.

5.1 MIMO STBC Based on PDF Matching

Multiple-Input Multiple-Output (MIMO) systems use more than one antenna at both ends of

the transmission in order to increase the performance of such systems. Figure 5.1 illustrates

a typical MIMO system with M transmit and N receive antennas as given by




r1[n]

r2[n]

...

rn[n]




=
N−1∑

ν=0

Hn,ν




s1[n− ν]

s2[n− ν]

...

sm[n− ν]




. (5.1)

The use of multiple transmit and receive antennas has been shown to increase the capacity

of the transmission link [87]. This extra capacity can be exploited to increase either the
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multiplexing gain or the diversity gain of the system [87, 88], whereby we here focus on the

latter using space-time coding schemes. The work in [88] proposed a STBC transmit diversity

scheme, which is capable of maximising the diversity over frequency-flat MIMO channels,

whose responses between pairs of transmit and receive antennas can be characterised by

complex gain factors.

For high data rate services, most channels cannot be considered frequency-flat but are

dispersive, causing inter-symbol interference. In order to exploit diversity in such an environ-

ment, a number of variations on the classical STBC encoding have been proposed. OFDM

can decompose a frequency-selective channel into a number of subcarriers, which represent

individual narrowband transmission channels, that can each be STBC encoded [89, 90]. The

drawback of OFDM systems is in general the sensitivity to synchronisation errors and their

large peak-to-average power ratio [91]. Single-carrier time domain approaches were first pro-

posed by [90], whereby the STBC structure was applied to a window of symbols, which is,

after a guard interval, repeated as a complex conjugate and time reversed version [92]. How-

ever, time-reversal (TR) STBC is sensitive if the channel is doubly-dispersive, i.e. frequency

selective and time-varying [93].

A recently proposed blind equalisation scheme for STBC [93] overcomes this problem and

shows a higher robustness towards time-variations of the channel than TR-STBC. In order to

increase the convergence speed of the STBC-CMA algorithm, various algorithmic variations

have been evaluated, of which the most successful is the recursive quasi-Newton (RQN)

approach, [94]. Unfortunately, the RQN method requires a considerable computational effort,

which even a fast version of this algorithm cannot entirely alleviate.

In [73] a cost function that minimises the difference between a measured PDF at the

equaliser output and a target PDF has been proposed, assuming a simple Gaussian model for

the desired PDF. The technique has been successfully applied for SISO equalisation [72, 73]
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Figure 1: Channel and signal model with transmit STBC sig-
nals si[n], a 2× 2 MIMO channel with CIRs hi j[n], received
signals r j[n], equaliser components w j,i[n] and equaliser out-
puts yi[n] which should adhere to the STBC structure.

2.2 MIMO Channel Model
The receiver requires a minimum of two receive antennas in
order to equalise the MIMO system characterised above. As-
suming the availability of two sufficiently spaced receive an-
tennas, the signals r j[n], j ∈ {1,2}, received at the jth re-
ceive antenna over a dispersive and noise-corrupted channel
are given by

[
r1[n]
r2[n]

]
=

N−1

∑
ν=0

Hn,ν

[
s1[n−ν ]
s2[n−ν ]

]
+vn . (2)

The channel is characterised by the matrices

Hn,ν =

[
h1,1[n,ν ] h1,2[n,ν ]
h2,1[n,ν ] h2,2[n,ν ]

]
, (3)

whereby h j,i[n,ν ] is the potentially time-varying channel im-
pulse response between the ith transmit and the jth receive
antenna, responding to an input δ [n−ν ]. The vector

vn =

[
v1[n]
v2[n]

]
(4)

represents spatially and temporally uncorrelated Gaussian
noise with zero mean and covariance E

{
v[n]vH[n]

}
= σ2

v I.
The parameter N in (2) is the length of the MIMO channel in
(3) such that Hn,ν = 0 ∀ n≥ N.

2.3 Equaliser
For equalisation, we group the four subequalisers shown in
Fig. 1 into two equalisers wi, i ∈ {1,2}, each responsible for
the ith output of the MIMO equaliser,

wi =

[
wi,1
wi,2

]
(5)

with

wH
i, j = [wi, j[0] · · · wi, j[L−1]] , {i, j} ∈ {1,2} . (6)

Similarly, the received samples from the jth receive antenna
sitting in the tap delay line of the subequaliser,

rT
j [n] = [r1[n] · · · r1[n−L+1]] , (7)

are concatenated into

r[n] =
[

r1[n]
r2[n]

]
. (8)

With this notation, the outputs yi[n], i ∈ {1,2}, of the
equaliser in Fig. 1 over two successive symbol periods n and
n+1 can be written as

[
y1[n] y1[n+1]
y2[n] y2[n+1]

]
=

[
wH

1
wH

2

]
· [r[n] r[n+1]] . (9)

For successful equalisation, the equaliser output should
match the channel input in an appropriate sense, and also re-
flect the STBC structure in (1). We will use these properties
to construct a suitable cost function next.

3. PDF-FITTING BASED COST FUNCTION

3.1 Cost Function Structure
The proposed cost function is based on the idea of blindly
equalising several signals, leading to a cost term which is
here related to fitting the PDFs of the equaliser outputs to a
desired PDF according to [8, 11]. The danger of applying
a blind criterion to every equaliser output yi[n] is that the
strongest received signal will be extracted multiple times.
In order to discourage multiple signal extraction, in [12] a
cross-correlation criterion is added to the cost function. For
STBC-CMA [6], this cross-correlation can be translated into
an orthogonality condition ξ⊥ of the two transmitted STBC
signals. A similar approach is taken here, resulting in a com-
bined cost function

ξ = α
NTx

∑
i=1

ξPDF,i +(1−α)ξ⊥ (10)

where ξPDF,i is the criterion to force the ith output to attain a
specific desired PDF, with NTx = 2 the number of transmitted
symbols within the period of one STBC block. The param-
eter 0 ≤ α ≤ 1 controls the weighting between the two cost
terms.

In the following, the PDF-fitting criterion for the extrac-
tion of signals at the equaliser outputs yi[n] is outlined in
Sec. 3.2, followed by comments on the orthogonality con-
dition to discourage multiple signal extraction in Sec. 3.3.

3.2 PDF-Fitting Cost Function Component
The idea of this approach is to measure the difference be-
tween two PDFs pA(z) and pB(z) [8],

ξPDF =

∞∫

−∞

(pA(z)− pB(z))2dz . (11)

Here, the variable whose PDF is measured at the equaliser
output is the squared magnitude value |yi[n]|2, in close rela-
tion to the constant modulus algorithm. The estimation of
this PDF is based on the Parzen window method, whereby
a smooth PDF estimate is achieved by replacing a sample
|yi[n]|2 by a kernel function centred at its location. We here
select a Gaussian kernel Kσ (z) with variance σ ,

Kσ (z) =
1√

2πσ
e−

z2

2σ2 , (12)

Figure 5.2: Channel and signal model with transmit STBC signals si[n], a 2 × 2 MIMO
channel with CIRs hj,i[n, ν], received signals rj[n], equaliser components wi,j[n] and equaliser
outputs yi[n] which should adhere to the STBC structure.

and multiuser detection [12]. In this chapter we intend to apply Matched-PDF to target

the equalisation of an STBC MIMO system. Based on the STBC-CMA approach [93], the

aim of this chapter is to investigate a PDF fitting based cost function for the equalisation of

STBC over a broadband MIMO channel.

5.1.1 Channel and Signal Model

The general setup of channel and equaliser is outlined in Fig. 5.2, and the individual system

blocks are described below.
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Space-Time Block Coding

Assuming transmission from two antennas, the transmit signal s[n] is STB encoded to provide

two antenna signals si[n], i ∈ {1, 2} for the ith antenna, computed according to [88],



s1[n] s1[n+ 1]

s2[n] s2[n+ 1]


 =



s[n] −s∗[n+ 1]

s[n+ 1] s∗[n]


 . (5.2)

This produces two orthogonal signals with a characteristic STBC structure, which will later

be exploited in the equaliser.

MIMO Channel Model

The receiver requires a minimum of two receive antennas in order to equalise the MIMO

system characterised above. Assuming the availability of two sufficiently spaced receive

antennas, the signals rj[n], j ∈ {1, 2}, received at the jth receive antenna over a dispersive

and noise-corrupted channel are given by



r1[n]

r2[n]


 =

N−1∑

ν=0

Hn,ν



s1[n− ν]

s2[n− ν]


+ vn . (5.3)

The channel is characterised by the matrices

Hn,ν =



h1,1[n, ν] h1,2[n, ν]

h2,1[n, ν] h2,2[n, ν]


 , (5.4)

whereby hj,i[n, ν] is the vth coefficient of the channel impulse response between the ith
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transmit and the jth receive antenna, at time n. The vector

vn =



v1[n]

v2[n]


 (5.5)

represents spatially and temporally uncorrelated Gaussian noise with zero mean and covari-

ance E
{
v[n]vH[n]

}
= σ2

vI. The parameter N in (5.3) is the length of the MIMO channel in

(5.4) such that Hn,ν = 0 ∀ n ≥ N .

MIMO Equaliser

For equalisation, we group the four subequalisers shown in Fig. 5.2 into two equalisers wi,

i ∈ {1, 2}, each responsible for the ith output of the MIMO equaliser,

wi =




wi,1

wi,2


 (5.6)

with

wH
i,j = [wi,j[0] · · · wi,j[L− 1]] , {i, j} ∈ {1, 2} . (5.7)

Similarly, the received samples from the jth receive antenna sitting in the tap delay line of

the subequaliser,

rTj [n] = [r1[n] · · · r1[n− L+ 1]] , (5.8)

are concatenated into

r[n] =




r1[n]

r2[n]


 . (5.9)
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With this notation, the outputs yi[n], i ∈ {1, 2}, of the equaliser in Fig. 5.2 over two

successive symbol periods n and n+ 1 can be written as



y1[n] y1[n+ 1]

y2[n] y2[n+ 1]


 =




wH
1

wH
2


 · [r[n] r[n+ 1]] . (5.10)

For successful equalisation, the equaliser output should match the channel input in an ap-

propriate sense, and also reflect the STBC structure in (5.2). We will use these properties

to construct a suitable cost function next.

5.1.2 PDF-Matching Based Cost Function

Cost Function Structure

The proposed cost function is based on the idea of blindly equalising several signals, leading

to a cost term which is here related to fitting the PDFs of the equaliser outputs to a desired

PDF according to [73, 82]. The danger of applying a blind criterion to every equaliser output

yi[n] is that the strongest received signal can be extracted multiple times to the detriment of

weaker signals. In order to discourage multiple signal extraction, in [62] a cross-correlation

criterion is added to the cost function which enforces the recovery of uncorrelated data

streams. For STBC-CMA [93], this cross-correlation can be translated into an orthogonality

condition ξ⊥ of the two transmitted STBC signals. A similar approach is taken with the

proposed algorithm (STBC-PDF), resulting in a combined cost function

ξ = α

NTx∑

i=1

ξPDF,i + (1− α)ξ⊥, (5.11)

where ξPDF,i is the criterion to force the ith output to attain a specific desired PDF, with

NTx = 2 the number of transmitted symbols within the period of one STBC block. The
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parameter 0 ≤ α ≤ 1 controls the weighting between the two cost terms.

In the following, the PDF-fitting criterion for the extraction of signals at the equaliser

outputs yi[n] is outlined, followed by comments on the orthogonality condition to discourage

multiple signal extraction.

PDF-Fitting Cost Function Component

The idea of this approach is to measure the difference between the PDFs pA(z) and pB(z) [73]

of two random variables A and B,

ξPDF =

∞∫

−∞

(pA(z)− pB(z))2dz . (5.12)

Applying this method below requires us to replace the true PDFs with estimates. Here,

the variable whose PDF is estimated at the equaliser output is the squared magnitude value

|yi[n]|2, in close relation to the constant modulus algorithm. The estimation of this PDF

is based on the Parzen window method, whereby a smooth PDF estimate is achieved by

replacing a sample |yi[n]|2 by a kernel function centred at its location. We here select a

Gaussian kernel Kσ(z) with variance σ,

Kσ(z) =
1√
2πσ

e−
z2

2σ2 , (5.13)

such that the PDF estimate over a window of L output samples is given by

p̂|yi[n]|2(z) =
1

L

L−1∑

l=0

Kσ(z − |yi[n− l]|2) . (5.14)

The larger the window length L, the more confident the PDF estimate will be. However, a

trade-off exists, as during adaptation the output statistics may not be stationary, therefore

97



CHAPTER 5. PDF MATCHING ALGORITHM FOR MIMO SYSTEMS 98

limiting L to an interval within which the statistics can be assumed quasi-stationary.

The PDF estimate p̂|yi[n]|2(z) will be compared to the PDF of the squared moduli of the

transmitted signals, |si[n]|2, subject to the same Gaussian kernel Kσ(z) [72]. An advantage

of convolving the discrete PDF of |si[n]|2 defined by the constellation points of si[n] with

the kernel is that the resulting PDF exhibits a spread around constellation points akin to

the influence of channel noise. Given the model of AWGN as outlined above, the PDF of

squared moduli would be a superposition of chi-square distributions, which subsequently

might provide a more appropriate kernel. However, we here follow the suggestion of a

Gaussian kernel in [72] as this will lead to simplifications that are required for a solution

with low computational cost. Therefore, the convolution with the Gaussian kernel yields the

desired PDF

p̂|si|2(z) =
1

M

M∑

m=1

Kσ(z − |si,m|2) , (5.15)

where si,m, m ∈ {1, 2, · · ·M}, are the M constellation points of the ith transmitted signal.

By exploiting the fact that for Gaussian kernels [72]

∞∫

−∞

Kσ(z − z1)Kσ(z − z2)dz = K√2σ(z1 − z2) , (5.16)

the matched-PDF component of the cost function for the ith equaliser output simplifies for

L = 1 [73], such that

ξPDF,i[n] = − 1

M

M∑

m=1

K√2σ(|yi[n]|2 − |si,m|2) . (5.17)

The cost function component in (5.17) is depicted in Figure 5.3 in dependency of a single

complex valued coefficient. Similar to the CMA, the cost function exhibits a manifold of
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valued coefficient w0.

and by considering L = 1 in (5) as in [4], the matched-PDF

cost function is simplified to,

ξPDF[n] = − 1

M

M∑

m=1

K√2σ(|y[n]|2 − |sm|2) . (8)

The cost function in (8) is depicted in Figure 2. Similar

to the CMA, the cost function at hand exhibits a manifold

of optimum solutions due to its phase ambiguity.

4. STOCHASTIC GRADIENT ALGORITHM

Based on the cost function in (8), this section addresses the

problem of adjusting the equaliser. The coefficients of the

equaliser are updated using the stochastic gradient descent

method,

wn+1 = wn − µPDF∇w∗ ξ̂n, (9)

where ∇w∗ denotes the gradient with regard to w∗, and
µPDF is the step size.

The derivative of the cost function with respect to w∗

can be given by

∂

∂w∗
ξPDF[n]=− 1

M

M∑

m=1

K ′√
2σ

(|y[n]|2−|sm|2)y∗[n]rn,

(10)

where

K ′√
2σ

(z) =
∂

∂z
K√2σ(z) = − 1

4σ2
K√2σ(z) (11)

is the derivative of the Gaussian kernel (4). In order to sim-

plify the derivative, we assume all the points in the transmit

constellation have the same modulus, i.e. |sm|2 = γ2, for

m = 1, · · · ,M . Thus, the summation and division by M
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drops from (10). Inserting (11) into (10) and rearranging

terms leads to

∂

∂w∗
ξPDF [n]=K√2σ(|y[n]|2 − γ2)e∗[n]rn, (12)

where,

e∗[n] =
1

4σ2
(|y[n]|2 − γ2)y∗[n], (13)

and Kσ(z) is the Gaussial kernel used for the Parzen esti-
mator as defined in (4). It is the additional of this kernel

term that distinguishes the cost function gradient shown in

(12) from a standard CM algorithm. The constants arising

e.g. from the differentiation of the kernel can be absorbed

into the step size µPDF.

5. SIMULATION RESULTS

In order to demonstrate the convergence behaviour of the

proposed algorithm, we transmit N = 16 QPSK active user

signals over a dispersive channel g[m], represented by its

transfer function G(z) = 1 + (0.3 + 0.5j)z−1 + 0.2z−2.

White Gaussian Noise with signal to noise ratio (SNR) of

30dB has been added at the output of the channel. The

length of the equaliser is Lw = 21. The adaptation is

initialized with the first coefficient in both weight vectors

for the CMA and the Matched PDF set to 1. A step size

µPDF = 5e−2 and a kernel size σ = 10 have been selected
for matched-pdf approach. This large kernel size has been

selected because the main goal here is to maximize the con-

vergence speed. The MSE curves of the proposed algorithm

compared to the Firmer-CMAAlgorithm obtained when us-

ing a step size of µCMA = 1e−2 are shown in Figure 3.

The step sizes which have been selected for Firmer-CMA

and the Matched PDF are the largest values for which all

simulations provided fast stable convergence.

Figure 5.3: The PDF-matching cost function for one output. Part of the surface has been removed
to visualise the shape near the origin.

optimum solutions due to its phase ambiguity.

Orthogonality Condition

Applying the PDF matching criterion to both equaliser outputs could potentially lead to

the multiple extraction of only the strongest signal. Therefore, an additional constraint

such as the minimisation of the cross-correlation between the equaliser outputs needs to

be included into the cost function [62]. The orthogonality of the STBC structure provides

a good condition which does not require the approximation of the cross-correlation over a

window of data, but can be directly applied to data collected over two consecutive time

slots [93].

Based on (5.2), in the absence of noise and for perfect equalisation we have y1[n] =
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y∗2[n+ 1] = s[n] and y2[n] = −y∗1[n+ 1] = s[n+ 1]. Thus the vector

an =



y1[n] − y∗2[n+ 1]

y2[n] + y∗1[n+ 1]


 (5.18)

provides a suitable measure of orthogonality, such that

ξ⊥ = aH
nan . (5.19)

If two orthogonal sequences are extracted, then the measure in (5.19) will be zero. As the

PDF-matching criterion is insensitive to the phase of the signals, the outputs yi[n] can be

subject to an arbitrary rotation commonly found with constant modulus-type algorithms. If

we introduce a rotation angle ϕi for the ith equaliser output

an =



y1[n]ejϕ1 − y∗2[n+ 1]e−jϕ2

y2[n]ejϕ2 + y∗1[n+ 1]e−jϕ1


 , (5.20)

and assume perfect equalisation yi[n] = si[n], then

aH
nan = 0 ⇐⇒ ϕ1 = −ϕ2 + 2πk (5.21)

with k ∈ Z. Thus, if the total cost function is minimised, the phase ambiguity of the

PDF fitting cost function component is complemented by (5.21), enforcing the orthogonality

component such that the equaliser outputs can be expected to match the transmitted signals

save of opposite phase shifts.
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Overall Cost Function

With the PDF fitting and orthogonality condition defined, the complete cost function out-

lined in (5.11) can be approximated as

ξ̂n = − α

M

2∑

i=1

1∑

ν=0

M∑

m=1

K√2σ(|yi[n+ ν]|2 − |si,m|2) + (1− α)aH
nan . (5.22)

The PDF fitting component has an additional summation over two contributions, as the

STBC code as defined in (5.2) extends over two symbol periods.

5.1.3 Stochastic Gradient Algorithm

Based on the cost function in (5.22), this section addresses the problem of adjusting the

equaliser. We choose a stochastic gradient approach whereby updating occurs for every

STBC block spanning two symbol periods. The coefficients of the ith equaliser are updated

using the stochastic gradient descent method,

wi [n+ 2] = wi [n]− µPDF∇w∗i ξ̂n, (5.23)

where ∇w∗i denotes the gradient with regard to w∗i , and µPDF is the step size. The gradient

terms of ξ̂n relating to the PDF and the orthogonality enforcing components are derived

separately below.

PDF Term

The derivative of the PDF term with respect to w∗i is given by
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∂

∂w∗i
ξPDF |i[n]=

1

M

M∑

m=1

K ′√
2σ

(|yi[n]|2−|si,m|2)y∗i [n] rn, (5.24)

where

K ′√
2σ

(z) =
∂

∂z
K√2σ(z) = − 1

4σ2
K√2σ(z) (5.25)

is the derivative of the Gaussian kernel (5.13). In order to simplify the derivative, we assume

all the points in the transmit constellation to have the same modulus, i.e. |si,m|2 = γ2, for

m = 1, · · · ,M . Thus, the summation and division by M in (5.24) is spurious. Evaluating

the derivative K ′σ in (5.24) and rearranging terms leads to

∂

∂w∗i
ξPDF |υ[n] =





K√2σ(|yi[n]|2 − γ2)e∗[n] rn υ = i

0 υ 6= i,
(5.26)

where

e∗[n] =
1

4σ2
(|yi[n]|2 − γ2)y∗i [n], (5.27)

and K√2σ(z) is the Gaussian kernel used for the Parzen estimator as defined in (5.13) [72, 98].

It is the addition of this kernel term that distinguishes this part of the cost function gradient

shown in (5.26) from a standard CM algorithm.

Orthogonality Condition

Note that the second part of the cost function (5.11), ξ⊥, has the same functionality as the

orthogonality-enforcing term of the STBC-CMA cost function, as defined in (5.19), [93]. The

gradient of the term with regard to the space-time equalisers wi, i ∈ {1, 2}, is given by

∂
∂w∗1

ξ⊥ = (y∗1[n]−y2[n+1]) rn+(y2[n]+y∗1[n+1]) rn+1

∂
∂w∗2

ξ⊥ = (y∗2[n]+y1[n+1]) rn+(y∗2[n+1]−y1[n]) rn+1.
(5.28)
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Inserting the combined terms (5.26) and (5.28) into (5.23) provides the update equation

of the proposed algorithm. The constants arising e.g. from the differentiation of the kernel

can be absorbed into the step size µ.

5.1.4 Algorithm Performance

This section provides details of the parameters of the algorithm and a comparison of its

computational complexity, followed by simulations whose results are benchmarked against

existing methods.

Computational Complexity

Tab. 5.1 lists the computational complexity of the STBC-PDF together with the STBC-

CMA [93] and a fast converging, highly complex variant of the STBC-CMA based on a recur-

sive Quasi-Newton update. The metric used here is to count complex multiply-accumulates

(MAC) for every iteration n. The difference between the STBC-PDF and the STBC-CMA

is the evaluation of the Gaussian kernel in the update equation. The Gaussian kernel can

be approximated by a MacLaurin series [80] with only relatively few MACs but poor be-

haviour for larger arguments to the kernel. The best results we obtained by implementing

the Gaussian function as a look-up table which requires memory and comparisons, but only

one multiplication.

As shown in Table 5.1, the RQN equaliser’s complexity is of the order O(L2
w) whereas the

STBC-CMA STBC-RQN-CMA STBC-PDF

24Lw + 4 36L2
w + 26Lw + 59 24Lw + 6

Table 5.1: Complexity of the different equalisers, in number of complex multiply-accumulate
(MAC) operations per iteration.
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Figure 4: Complexity of the different equalisers, in number of
Multiply-Accumulate (MAC) operations

pared to the STBC-CMA. The RQN equaliser shows the
fastest convergence. However, as shown in Table 1, its com-
plexity is of the order O(L2

w) whereas the complexities of
the STBC-CMA and the STBC-PDF schemes are of the or-
der O(Lw). The complexity of the different equalisers is vi-
sualised in Fig. 4 as a function of the subequaliser length
Lw. Both STBC-CMA and the proposed algorithm, have very
similar computational cost.

6. CONCLUSIONS

A novel algorithm has been derived for the blind adaptive
equalisation of STBC over frequency selective channels. The
proposed cost function is based on minimizing the distance
between the actual PDF of the equalizer output and a desired
PDF, and is complemented by an additional term that ensures
the STBC structure and hence orthogonality of the equaliser
outputs. A low-cost stochastic gradient update was derived
based on this cost function.

The complexity of the derived algorithm was found to
be comparable to the STBC-CMA, but the proposed method
exhibited a faster convergence close to the performance of
the fast but very costly recursive quasi-Newton version of
the STBC-CMA.
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Figure 5.4: Complexity of the different equalisers, in number of complex multiply-accumulate
(MAC) operations per iteration.

complexities of the STBC-CMA and the STBC-PDF schemes are of the order O(Lw). The

complexity of the different equalisers is visualised in Fig. 5.4 as a function of the subequaliser

length Lw. Both STBC-CMA and the STBC-PDF have very similar computational cost.

Channel Description and Transmission Parameters

A 2 × 2 MIMO model as indicated in Fig. 5.2 is used for simulations. It comprises of

four dispersive channel impulse responses of length Lh = 4 obeying the delay-power profile

characterised in Tab. 5.2. Simulations are performed over an ensemble of 100 MIMO channels

whose coefficients are drawn from complex Gaussian distributions with variances defined by

Tab. 5.2. QPSK modulation is used at the transmitter with a modulus equal to unity. At the

receiver, signals are corrupted by AWGN at an SNR of 20dB. The length of the subequalisers

wi,j, i, j ∈ {1, 2} is set to Lw = 11, and they are initialised to zero with only the middle tap

delay Ts 2Ts 3Ts 4Ts

strength [dB] 0 −3 −5 −7

Table 5.2: Delay-power profile of the MIMO system’s channel impulse responses
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Figure 5.5: MSE curves of STBC-PDF and STBC-CMA

of each subequaliser set to unity. The step sizes for the various algorithms were selected such

that they provided the approximately fastest yet still stable convergence across all channel

realisations.

Simulation Results

Figure 5.5 shows the mean square error (MSE) curve of the STBC-PDF compared to those of

the STBC-CMA and the RQN implementation at SNR = 20dB, whereby potential rotations

as outlined in (5.21) have been compensated with respect to the steady-state performance.

The results show that the MSE convergence of the PDF Matching Algorithm reaches the

steady-state after fewer iterations compared to the STBC-CMA, while the RQN equaliser

shows the fastest convergence but at the expense of a significantly higher computational

complexity.
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5.1.5 Summary

A novel algorithm has been derived for the blind adaptive equalisation of STBC over fre-

quency selective channels. The proposed cost function is based on minimizing the distance

between the estimated PDF of the equaliser output and a desired PDF, and is comple-

mented by an additional term that ensures the STBC structure and hence orthogonality of

the equaliser outputs. A low-cost stochastic gradient update was derived based on this cost

function.

The complexity of the derived algorithm was found to be comparable to the STBC-CMA,

but the proposed method exhibited a faster convergence close to the performance of the fast

but very costly recursive quasi-Newton version of the STBC-CMA.

5.2 MIMO TR-STBC Based on PDF Matching

In order to achieve the maximum diversity in a doubly-dispersive environment, a number

of variations on the classical STBC encoding have been proposed. OFDM can decompose

a frequency-selective channel by introducing subcarriers and a cyclic prefix into a number

of individual narrowband transmission channels, which can each be STBC encoded [89, 90].

The drawback of OFDM systems is in general the sensitivity to synchronization errors and

their large peak-to-average power ratio [91]. The orthogonality of OFDM is also destroyed

by time variations of the channel, such that the channel must be approximately stationary

over the length of an OFDM symbol.

Single-carrier time domain approaches were first proposed in [90], whereby the STBC

structure was applied to a window of symbols, which is, after a guard interval, repeated as a

complex conjugate and time reversed version [92, 95]. However, time-reversal (TR) STBC is
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sensitive if the channel is doubly-dispersive, e.g. frequency selective and time-varying [93].

The proposed blind equalisation scheme for TR-STBC in [96] showed slow convergence

which might not be suitable for non-stationary channels. In order to increase the convergence

speed of the TR-STBC-CMA algorithm, various algorithmic variations have been evaluated,

including the conjugate gradient search method [97], and the fast Quasi-Newton (FQN)

approach [22], which has been shown to be superior in terms of convergence speed compared

to the conjugate gradient approach [22]. Unfortunately, both CG-TR-STBC and RQN-TR-

STBC methods require a considerable computational effort, which hinders their application

to TR-STBC.

In this section we intend to apply the low cost PDF matching algorithm to target the

equalisation of a TR-STBC MIMO system, TR-STBC-PDF.

5.2.1 Channel and Signal Model

Burst Structure and TR-STBC Data Model

Considering a system with two transmit and two receive antennas, the transmitted data

is divided into odd and even symbol sequences, depicted here in two sets of symbols a1[n]

and a2[n], respectively. a1[n] and a2[n] are transmitted in blocks between preamble and

postamble sequences P [n]; these guard periods are inserted in order to combat the effects of

ISI. Data is transmitted in bursts as shown in Fig. 5.6, where Ls, La and Lp are the lengths

of the burst, the source data and the guard period, respectively, which satisfy La > Lp > 1

and Lp > Lh, with Lh being the length of the longest multipath channel.

During the regular burst, s1[n] and s2[n] are transmitted from first and second antennas,

respectively. During the reverse burst, the sequences are time reversed and conjugated,

−s∗2[n] and s∗1[n]. The data model is shown in Fig. 5.7, where ∗ is a non-linear function
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s1[0] · · · s1[Ls − 1]

P [0]....P [Lp − 1]

P [0]....P [Lp − 1]

P [0]....P [Lp − 1]

P [0]....P [Lp − 1]

a1[0].....a2[La − 1]

a2[0].....a2[La − 1]

s2[0] · · · s2[Ls − 1] s∗1[Ls − 1] · · · s∗1[0]

regular burst reverse burst

(a)

(b)

s[n]

s1[n]

s2[n]

−s∗2[Ls − 1] · · · − s∗2[0]

Figure 3.1: Block structure in Time-Reversal STBC: (a) structure of the regular burst,
(b) regular and reverse bursts.

M = 2 and N = 1, is shown in Figure 3.2. The TR (·) and (·)∗ are non-linear func-

tions denoting time reversal and complex conjugation, respectively. Considering the

transmission of a specific block of data and assuming the channel is stationary over the

regular and reverse bursts, we define the polynomial channel matrix

H̄ (z) =



h1 (z) h2 (z)

h∗2 (z−1) −h∗1 (z−1)


 , (3.1)

where hi (z) is the z-transform of the frequency selective channel from the ith transmit

antenna to the single receive antenna,

hi (z) •−−◦ hi [n] , (3.2)

i.e.

hi (z) =
∞∑

n=−∞
hi [n] z−n. (3.3)

Note that the polynomials on the second row of matrix H̄ (z) are complex conjugated

and time reversed.

As shown in Figure 3.2, the signal received during the regular burst is denoted

r1 [n] and the signal received during the reverse burst is time-reversed and complex

Figure 5.6: Block structure in Time-Reversal STBC: (a) regular burst, (b) regular and reverse
bursts.

denoting complex conjugation and the TR is a linear but time varying function denoting

time reversal.

Let r[n] be the received signal of dimension 4× 1,

r[n] = [r11[n] r21[n] r̃12[n] r̃22[n]]T , (5.29)

where ri1[n] and ri2[n] are the signals picked up by the ith antenna during the regular and

reverse modes of transmission, respectively. It can be observed that the signals received

during the second phase of transmission are conjugated and time reversed to produce r̃12[n]

and r̃22[n] as depicted in the block diagram of Fig. 5.7. The vector r[n] can be written as

r[n] =

Lh−1∑

τ=0

H[τ ] s[n− τ ] + v[n] , (5.30)

where v[n] is the additive white Gaussian noise vector, s[n] = [s1[n] s2[n]]T. Note that the

received signals contain contributions from both transmitted signals. In other words, the

detection of s1[n] and s2[n] is coupled. Assuming the channel is stationary over the regular
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*
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h11(z−1)

h21(z−1)

h12(z−1)

h22(z−1)

r11[n]

r12[n]

r21[n]

r22[n]

v1[n]

v2[n]

a1[n]

Figure 3.9: Data Model for a 2x2 TR-STBC system.

is given by

wi [n] =




w∗
i,11 [n]

w∗
i,21 [n]

w∗
i,12 [n]

w∗
i,22 [n]



, (3.26)

and the corresponding output is

yi [n] = wH
i [n] rn, (3.27)

where the regressor vector of the equaliser is given by,

rn =
[
rH
11,n rH

21,n rH
12,n rH

22,n

]H
, (3.28)

with rji,n = [rji [n] rji [n− 1] · · · rji [n− L+ 1]]T .

3.3.3 Tap-Constrained CMA

To blindly retrieve the transmitted signal at the receiver, the redundancy introduced

by TRSTBC is exploited. A tap-constrained CM algorithm, which will be explained in

this section, was derived in [20] for TRSTBC systems.

Figure 5.7: Data model for a 2× 2 TR-STBC system

and reverse bursts, H[τ ] is the τth matrix valued coefficient of the polynomial channel matrix

H(z),

H(z) =




h1(z) h2(z)

h∗2(z
−1) − h∗1(z

−1)


 , (5.31)

with,

hi(z) =



hi1(z)

hi2(z)


 , (5.32)

where hij(z) is the z-transform of the frequency selective channel from the jth transmit

antenna to the ith receive antenna,

hij(z) t d hij[n] (5.33)

hij(z) =
∞∑

n=−∞
hij[n]z−n. (5.34)
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Figure 3.10: CMA Equalization for TR-STBC.

where the regressor vector of the equalizer is given by,

rn =
[
rH
11,n rH

21,n rH
12,n rH

22,n

]H
, (3.28)

with rji,n = [rji [n] rji [n − 1] · · · rji [n − L + 1]]T .

3.3.3 Tap-Constrained CMA

To blindly retrieve the transmitted signal at the receiver, the redundancy introduced

by Time-Reversal STBC is exploited. A tap-constrained CM algorithm, which will be

explained in this section, was derived in [11] for TRSTBC systems.

Similar to equation 3.6, premultiplying the e�ective channel matrix by its para-Hermitian

yields

˜̄H
(
z−1

)
H̄ (z) =




d (z) 0

0 d (z)




︸ ︷︷ ︸
D (z)

. (3.29)

Figure 5.8: Equaliser structure for Time-Reversal STBC.

The length of the channels is assumed to be identical, denoted Lh.

Equaliser Structure

As shown in Fig. 5.8, two space-time equalisers, w1[n] and w2[n], are used to retrieve the

transmitted data. Each space-time equaliser consists of four adaptive FIR filters of length

Lw. At the nth iteration, the weight vector of the ith space-time equaliser is given by

wi[n] =




w∗i,11[n]

w∗i,21[n]

w∗i,12[n]

w∗i,22[n]



, (5.35)
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and the corresponding output is,

yi[n] = wH
i [n] rn , (5.36)

where the regressor vector of the equaliser is given by

r[n] =
[
rH11,n rH21,n rH12,n rH22,n

]H
, (5.37)

with rji,n = [rji[n] rji[n− 1] · · · rji[n− L+ 1]]T.

For successful equalisation, the equaliser output should match the channel input in an

appropriate sense, and also reflect the TR-STBC structure in Fig. 5.6. These properties will

be used to construct a suitable cost function.

5.2.2 Cost Function

For the 2 × 2 TR-STBC-PDF MIMO system, the cost function was derived following the

same steps as in STBC-PDF which has led to (5.17).

Choosing a stochastic gradient approach, the equaliser weights can be calculated as fol-

lows,

∇̂w1ξPDF =
1√
2π

{
e∗1[n]rne

−(|y1[n]|2−γ2)2
2σ2 + e2[n]Pr∗ne

−(|y2[n]|2−γ2)2
2σ2

}
, (5.38)

where

ei[n] = (|yi[n]|2 − γ2)yi[n], for i = 1, 2 (5.39)

111



CHAPTER 5. PDF MATCHING ALGORITHM FOR MIMO SYSTEMS 112

and

P =




0 0 −ĨLw 0

0 0 0 −ĨLw

ĨLw 0 0 0

0 ĨLw 0 0



, (5.40)

with ĨLw being the reverse-identity matrix of size Lw × Lw, e.g. Ĩ2 =




0 1

1 0


.

The equaliser weights can be adjusted according to,

w1[n+ 1] = w1[n] − µPDF ∇̂w1 ξPDF, (5.41)

where ∇w1 denotes the gradient with regard to w1[n], and µPDF is the step size.

The constants arising from the differentiation can be absorbed into the new step size

µ̃PDF = 1√
2π
µPDF leading to,

w1[n+ 1] = w1[n] − µ̃PDF [e∗1[n]a1[n]rn + e2[n]a2[n]Pr∗n] , (5.42)

with

ai[n] = e
−(|yi[n]|2−γ2)2

2σ2 , for i = 1, 2 . (5.43)

The relation between w2[n] and w1[n] for TR-STBC-Matched-PDF is similar to that in the

Tap-Constrained-CMA for TR-STBC [96],

w2[n] = PTw1[n] . (5.44)
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Parameters Conjugate Gradient FQN-CMA TR-STBC-PDF

Remembrance factor n/a αfqn = 0.999 n/a
Standard deviation n/a n/a σ = 1

(Kernel Size)
Window of output sizes n/a n/a L = 1
Transmit constellations QPSK QPSK QPSK

Step size µCG = 3× 10−4 µFQN = 1

4[rHR̂−1
rr r+ε]

µPDF = 2× 10−3

ε = 0.002
Equaliser length Lw = 15 Lw = 15 Lw = 15

Correlation Matrix

Estimate Initialization n/a R̂rr[0] = I4Lw n/a

Table 5.3: Simulation parameters for the different blind equalisers.

5.2.3 Algorithm Performance

This section provides details of the parameters of the algorithm, followed by simulations

whose results are benchmarked against existing methods.

Implementation Details

Computer simulations have been performed in order to evaluate the performance improve-

ment achieved by the TR-STBC-PDF equaliser. QPSK symbol mapping was used with

a modulus equal to
√

2. An appropriate burst length was chosen to allow time for the

equalisers to converge, and 1000 channel realizations were drawn from a correlated Rayleigh

distribution with a normalized maximum Doppler frequency fd = 100Hz, the random sam-

ples were correlated to correspond to a vehicular speed of 55km/hour. Subequalisers of order

15 were used in the simulations. The first space-time equaliser w1[n] was initialized using

the central spike technique and the step sizes for the various algorithms were selected such

that they provided the approximately fastest yet still stable convergence across all channel

realisations. The remaining parameters were initialised according to Table 5.3.
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Simulation Results

Figure 5.9 shows the MSE curves for the different TR-STBC equalisers. It can be clearly

observed that the TR-STBC-PDF outperforms the standard Tap-Constrained CMA in terms

of convergence speed. The FQN algorithm shows faster convergence than all other methods,

followed closely by the TR-STBC-PDF.

Figure 5.10 shows the BER achieved by the different equalisers with respect to the burst

length at SNR = 10dB. The channel was varied after two bursts of size 256 symbols. The

channel coefficients were drawn from a 3-tap doubly dispersive Rayleigh channel with max-

imum Doppler frequency fd = 100Hz, corresponding to a vehicular speed of 55km/hour.

Comparing the performance of the simulated equalisers, a gradual decrease in the BER is

observed as we move from one equaliser to the other in the same order as in the MSE per-

formance. This translates to faster adaptation to channel variations. However, even with

the FQN implementation, a burst size of at least 150 symbols is required to achieve a BER

lower than 10−2. This implies the channel has to be stationary over a duration longer than

300 symbols. Hence, TR-STBC with blind equalisation is generally not suitable for fast

time-varying channels.

5.2.4 Complexity Study

To fairly evaluate the performance gain, the complexity of the different algorithms must be

considered. Table 5.4 shows the number of complex MAC operations required by the TR-

STBC-PDF and other implementations of the TR-STBC-CMA in terms of the space time

(ST) equaliser of order Lst = MNLw = 4Lw for every iteration n. The multiplication by

matrix P has been ignored because it is a permutation matrix that can be implemented by

indexing.

114



CHAPTER 5. PDF MATCHING ALGORITHM FOR MIMO SYSTEMS 115

constant modulus

fast quasi-Newton

matched-PDF

Boray conj. grad.

Figure 5.9: MSE curves for the different implementations of the TR-STBC-CMA

In Table 5.4, the number of recursions for the CG scheme is assumed to be m = 5.

The division operation can be performed in a number of MACs equal to the wordlength,

which is assumed 16 here. In the FQN-CMA column, the Levinson-Durbin Recursion is

evaluated to invert the covariance matrix once every Lw iterations. The TR-STBC-PDF

algorithm requires evaluation of the exponentials in addition to the complexity of the CMA

in Table 5.4. The complexity of the exponential can be ignored assuming the use of a look-up

table, where the accuracy of the result depends on the size of memory allocated to the table.

Hence, the added complexity compared to the standard STBC-CMA is only one complex

MAC operation for each output.

Figure 5.11 shows the complexity plot in terms of the equaliser order Lw. When weighting

the gain against complexity, the TR-STBC-PDF algorithm stands out. For Lw � 1, its

complexity approaches that of the TR-STBC-CMA, yet its performance approaches that of

the FQN-CMA.
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Figure 5.10: BER for the different implementations of the TR-STBC-CMA, SNR = 10dB

TR-STBC-CMA Conjugate Gradient FQN-CMA TR-STBC-PDF

4Lst + 6 47Lst + 116 4L2
st + 6Lst + 23 4Lst + 8
+CLDR/Lw

Table 5.4: Complexity of the different equalisers per iteration, in terms of complex MAC
operations and the Levinson-Durbin recursion (LDR) with complexity CLDR.

5.2.5 Summary

A novel algorithm (TR-STBC-PDF) has been derived for the blind adaptive equalisation of

TR-STBC over doubly-dispersive channels. The proposed cost function is based on mini-

mizing the distance between the actual PDF of the equaliser output and a desired PDF. A

low-cost stochastic gradient update was derived based on this cost function. The complexity

of the TR-STBC-PDF algorithm was found to be comparable to the TR-STBC-CMA, but

the TR-STBC-PDF exhibited a faster convergence close to the performance of the fast but

very costly recursive quasi-Newton version of the TR-STBC-CMA.
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Figure 5.11: Number of MACs required per iteration for proposed algorithms.

5.3 Concluding Remarks

This chapter has looked at space-time-block-coding and time-reversal space-time-block-

coding for MIMO systems under frequency selective fading channels. The tap-constrained

CM receiver performs well over stationary channels but suffers from slow convergence. A

different method of equalisation was investigated in this chapter, namely Matched-PDF. The

proposed cost function is based on minimizing the distance between the estimated PDF of

the equaliser output and a desired PDF. This equaliser has shown a fast convergence close to

the performance of the Fast Quasi-Newton method, but unlike the latter its complexity was

comparable to the tap-constrained CMA. However, even with this fast converging equaliser a

significantly longer burst was required, for MIMO-TR-STBC as compared to MIMO-STBC,

to achieve a desirable BER level. This renders the TR-STBC scheme unsuitable for use

over fast time-varying channels. Furthermore, long bursts require a larger memory at the

receiver, which is not always feasible.
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In the next chapter, a conclusion of the work produced in this thesis will be drawn with

some proposals for future work.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main objective of this thesis was to develop blind equalisation algorithms for multiuser

detection over dispersive channels. Multiuser detection has been shown to exhibit a signifi-

cant improvement in capacity and spectrum efficiency over single-user detection. However, its

complexity and prior knowledge requirement make it impractical for down-link (DL) trans-

mission. Alternatively, it has been shown that blind multiuser equalisation algorithms could

render multiuser detection suitable for DL applications. Motivated by the significant system

capacity improvement provided by multiuser detection compared to single-user systems, the

low complexity and robustness of CMA, and finally by the ability of state-of-the-art FPGA

and DSP processing platforms to perform computationally complex signal processing tasks

at higher sampling rates, we have investigated and proposed a robust multiuser adaptive

equaliser, which has low computational complexity despite operating at the chip-level.

The general concept of adaptive filtering has been reviewed and discussed. Particular at-

tention has been dedicated to popular algorithms such as LMS, RLS, CMA, affine projection
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algorithms, and training-based and decision-directed updating schemes. We have reviewed

derivations of these algorithms in a unified notational framework and highlighted some of

their properties, such as their computational complexity.

A blind multiuser equalisation approach, the so-called filtered-R multiple error CM al-

gorithm (FIRMER-CMA), has been presented. This approach has been first proposed for

fully loaded systems, where it aims to enforce CM conditions on the various user signals. A

stochastic gradient algorithm has been derived, which differs from previous CM algorithms

by a code-prefiltering of its input. This algorithm has been extensively tested and proven

itself very stable in practice. The algorithm has been modified to be implemented in different

modes such as fully or partially loaded and blind and semi-blind scenarios with the latter

achieved through reconfiguration for adaptation by a DD algorithm. A concurrent FIRMER-

CM and DD receiver (FIRMER-CM+DD) was also developed, which takes advantage of the

robustness of CMA and the fast convergence of DD in a concurrent adaptation scheme,

where the slower converging CMA algorithm is complemented by a faster-converging DD

step when decisions are deemed reliable. Furthermore, the FIRMER-CMA+DD algorithm

can mitigate phase ambiguity found in the FIRMER-CMA case by locking the solution onto

the prescribed constellation pattern through its DD mode.

By applying the APA to the concurrent filter, the so-called AP-Concurrent-CMA+DD

algorithm has been formulated. This algorithm is very similar to other APA schemes, but

differs in its specific application through the code filtering of the data matrix. Properties of

the proposed algorithm have been investigated in simulations, and a faster convergence over

the FIRMER-CMA and FIRMER-CMA+DD has been demonstrated. At the expense of a

somewhat increased complexity, this blind scheme offers considerably enhanced convergence

speed over previous work which makes it an attractive candidate for downlink applications.

A semi-blind equalisation approach based on the AP-Concurrent-CMA+DD algorithm
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for a UMTS-TDD downlink scenario has been presented. Some unused codes in a partially

loaded scenario have been exploited to load pilot signals. Supported by simulations, this

pilot-assisted scheme provides continuous channel tracking and offers better convergence

behaviour over the basic training equalisation even with longer training periods, whereby

a gain of data rate and spectrum efficiency can be achieved. It has been shown through

various simulations that the implementation of pilots enhances the system performance in

terms of MSE and BER and resolves the typical CM phase ambiguity. Furthermore, a

new homogeneous burst structure, which is suitable for the above pilot-assisted strategy,

has been presented. The new burst structure offers a considerable gain in data rate and

spectrum efficiency and ensures a continuous adaptation. Another advantage of using the

proposed burst structure is that no switching is required during data transmissions, since it

includes only one homogeneous field in addition to the existing guard period.

A new adaptive algorithm for blind multiuser equalisation has been developed in Chap-

ter 4. The new cost function of this method is based on the statistical information of the

transmitted sequences, by minimising the distance between the actual PDF of the equaliser

output and that of the transmitted streams. This method is known as PDF-matching algo-

rithm as it matches the PDF of the equaliser outputs to that of the transmitted sequences.

The proposed method has shown faster convergence speed compared to the FIRMER-CMA

using a QPSK constellation. Furthermore, the kernel size of the Parzen window estimator

can be increased to accelerate the convergence speed, and once the ISI is sufficiently reduced,

the kernel size can be decreased to achieve higher accuracy.

The PDF-matching algorithm has been reviewed under fast time-varying channel con-

ditions. In simulations, the proposed method has demonstrated faster convergence speed

compared to the FIRMER-CMA in constant environments. In fast time-varying systems,

the proposed algorithm yields comparable performance to the FIRMER-CMA but showed

a promising robustness to noise and the double dispersiveness of the channel. It can be
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concluded that the proposed algorithm provides advantages over the FIRMER-CMA in con-

stant environments while it provides a similar tracking performance when the channels are

fast time-varying.

Chapter 5 has looked at space-time-block-coding (STBC) and time-reversal space-time-

block-coding (TR-STBC) for MIMO systems under frequency selective channels. The tap-

constrained CM receiver performs well over stationary channels but suffers from slow con-

vergence. A different method of equalisation has been investigated in this chapter, namely

PDF-matching. This equaliser has demonstrated a fast convergence and performs close to

the fast quasi-Newton method, but unlike the later its complexity is comparable to tap-

constrained CMA.

These developments have significantly increased the convergence speed (and tracking be-

haviour) compared to TR-STBC, but it has been demonstrated that further enhancements

will be required to operate in fast time-varying channels; this however will be left to future

endeavours.

6.2 Future Work

Based on the research outlined in this thesis, the following areas are of interest for potential

further investigation:

Matched-PDF Algorithm with a Switch Between Blind and Decision-Directed

Equalisation: A switch between blind and decision directed adaptation is possible by ma-

nipulating the kernel size of the Parzen Window Estimator in the matched PDF algorithm

which yields an accurate final solution [73]. Initially, a large kernel size can be employed

to reinforce convergence speed. When the eye of the constellation is opened, a switch to a

smaller kernel size or to decision-directed equalisation, can be performed. Therefore, adap-
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tively controlling the kernel size may be a suitable approach to trade-off better between fast

convergence speed and accurate steady-state performance.

Variations of the Matched PDF Algorithm: Some further combinations of the matched-

PDF algorithm with other techniques are worth investigating with the aim to further improve

the equaliser performance, including concurrent matched-PDF and decision directed opera-

tion. Since our proposed matched-PDF is based on the CM criterion, it is prone to achieve

only moderate levels of MSE after convergence, which may not be sufficiently low for the

system to attain adequate BER performance. A possible solution is to operate the DD

equaliser concurrently with the matched-PDF rather than switching to a DD adaptation

after the Matched-PDF has converged.

Another possibility is to operate the matched-PDF algorithm with an affine projection

algorithm, since the DD part in the concurrent Matched-PDF+DD is only updated if the

DD step is considered secure. Hence the adaptation is generally governed by Matched-

PDF rather than DD. A possible solution to this problem is to accelerate Matched-PDF by

adopting the concept of the affine projection algorithm. A concurrent matched-PDF and

DD adaptation with affine projection is also worth investigating as the APA offers a flexible

choice of the projection order and therefore enables different convergence speeds.

Matched-PDF algorithm for partially loaded systems: It will be interesting to see

how a pilot assisted implementation of the matched-PDF algorithm affects the equalisation

of a partially loaded system. In a partially loaded scenario, a number of inactive users are

exploited to load pilot signals in order to enhance the system tracking performance, and we

expect the pilots to enhance the system performance in terms of MSE and BER.

AP-FIRMER-CMA+DD and Matched-PDF algorithms for 5G New Radio: For

5G, most proposals are based on filter bank multi-carrier systems. In such systems, a filter

bank trans-multiplexer is employed with a dispersive channel. At the receiver, equalisation
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and synchronisation are required. It will be interesting to see how the schemes investigated

in this thesis (AP-FIRMER-CMA+DD and Matched-PDF) can be applied to mitigate the

effects of the dispersiveness of multi-carrier systems of the next generations.
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Appendix A

Wirtinger’s Calculus

For a general function f(w) of the complex variable w = wr + jwi ∈ C, where wr and

wi are the real and imaginary parts of w respectively, with j =
√
−1 and the assumption

of statistical independence of real and imaginary parts. Using the definition of w and its

complex conjugate w∗, we may express the real quantities wr and wi in terms of the pair of

complex-conjugate coordinates w and w∗.

wr =
1

2
(w + w∗), (A.1)

and

wi =
1

2j
(w − w∗). (A.2)

where the asterisk denotes complex conjugation.

Using Wirtinger vector valued calculus [10, 99, 100], we may define certain complex deriva-

tives in terms of the real derivatives ∂
∂wr

and ∂
∂wi

∂

∂w
=

1

2

(
∂

∂wr
− j ∂

∂wi

)
(A.3)
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and

∂

∂w∗
=

1

2

(
∂

∂wr
+ j

∂

∂wi

)
(A.4)

Hence, the function f(w) can give the following derivatives

∂f(w)

∂w
=

1

2

(
∂f(w)

∂wr
− j ∂f(w)

∂wi

)
(A.5)

∂f(w)

∂w∗
=

1

2

(
∂f(w)

∂wr
+ j

∂f(w)

∂wi

)
(A.6)

Applying these two equations we can find

∂w

∂w
=

1

2

(
∂w

∂wr
− j ∂w

∂wi

)

=
1

2

(
∂(wr + jwi)

∂wr
− j ∂(wr + jwi)

∂wi

)

=
1

2
(1− j × j)

= 1

Hence,

∂w

∂w
=
∂w∗

∂w∗
= 1 , (A.7)

Following similar steps, we can deduce the following

∂w∗

∂w
=

∂w

∂w∗
= 0 (A.8)

Now, we consider the differentiation with respect to a complex vector w. Let w be an L-by-1
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vector with elements w0, w1, · · · , wL−1. Applying equations (A.3) and (A.4) we can write

∂

∂w
=

1

2




∂
∂wr0
− j ∂

∂wi0

∂
∂wr1
− j ∂

∂wi1
...

∂
∂wrL−1

− j ∂
∂wiL−1




(A.9)

and

∂

∂w∗
=

1

2




∂
∂wr0

+ j ∂
∂wi0

∂
∂wr1

+ j ∂
∂wi1

...

∂
∂wrL−1

+ j ∂
∂wiL−1




(A.10)

where ∂
∂w

is refered to as the derivative with respect to vector w, and ∂
∂w∗ as the conjugate

derivative with respect to vector w. The asterisk ∗ represents complex conjugation as defined

in (2.4). Equations (A.7) and (A.8) can be generalised using (A.9) and (A.10) to give

∂wT

∂w
=
∂wH

∂w∗
= I , (A.11)

and

∂wT

∂w∗
=
∂wH

∂w
= 0 , (A.12)

where I and 0 are the L-by-L identity and null matrices, respectively.

For the convenience of this thesis we will adopt the definition of (A.10) as the derivative

with respect to vector w, as discussed in Section 2.2. Hence equation (??) has been defined
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as

∂

∂w
=




∂
∂w0

∂
∂w1

...

∂
∂wL−1




∗

. (A.13)

129



Appendix B

Matched Filters

CHAPTER 2. SYNCHRONOUS DS-CDMA SYSTEM OVERVIEW 16

n0 ][u

u [ ]n
1

Transmitter

c
 [m]

N

N

r[m]s[m]

v[m]

Channel
N

N

m[ ]h m[ ]h

[m]

m[ ]

h
0

1

[m]

m[ ]h1

h0

K−1K−1
u [ ]n

u [ ]n

[u ]n

K−1

1

0

u [ ]n

[u ]

u [ ]n

n

K−1

1

0

N

[m]c*

g[m]

h

Receiver

u [ ]n
K−1

matched filter

^
~

^

~

^

~

~

~

~

N

Figure 2.4: Equivalent baseband representation for synchronous DS-CDMA system with a con-

ventional detector

replica of each user’s code or spreading waveform to recover the particular transmitted symbols.

The correlation detector can be equivalently implemented through what is known as matched

filtering [37]. The output of the correlators or matched filters (MFs) are sampled at the symbol

rate, which yields soft estimation of transmit symbols. The final hard symbol decisions are made

by means of nonlinear decision devices, as illustrated in Fig. 2.4. However this kind of detector

does not take into account the effect of interferences and distortions generated in channels and by

other users’ signals, see Sec. 2.7 . In fact complex detectors are required to mitigate such effects

in DS-CDMA systems, which will be addressed as part of a more detailed description of detection

techniques for DS-CDMA receivers presented in Sec. 2.8. First a mathematical framework for a

synchronous baseband DS-CDMA system is presented in the next section.

2.6 Synchronous Baseband Model

In this section a discrete baseband model for the synchronous DS-CDMA system, described above

in Sec. 2.5, is derived. This model is the prototype of downlink systems of concern in this thesis.

The main goal in the following is to derive a vector rnN which contains N consecutively received

samples as a function of the transmitted users’ symbols. The received signal vector rnN is given

by

Figure B.1: Synchronous DS-CDMA system with matched filters

In DS-CDMA systems, users ul[n] (0 ≤ l < K) transmit their signals over a common

channel, and each user l is provided with a specific spreading sequence hl. During trans-

mission, symbols will be spread by a factor called the spreading factor N [101]. After the

spreading procedure is done, the resulting signals are called chips.

Let’s consider the DS-CDMA system in Fig. B.1, where the spread sequences hl are

synchronous and the chips can be summed up and then further scrambled by multiplying by

a scrambling sequence c[m] prior to transmission over a dispersive channel g[m] with additive
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noise v[m].

In the conventional DS-CDMA receiver, the detector descrambles the received signal r[m]

and then correlates the resulting signal with a replica of each user’s spreading code to recover

the specific transmitted sequences. The output of the matched filter (MF) is sampled at the

symbol rate, which yields soft estimation of transmit symbols. The final hard symbol decision

is made by means of nonlinear decision devices, as shown in Fig. B.1. However this kind of

detector does not take into account the effects of ISI and MAI.
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