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Abstract

The forecasting of future energy consumption and generation is now an essential part of

power system operation. In networks with high renewable power penetration, forecasts

are used to help maintain security of supply and to operate the system efficiently.

Historically, uncertainties have always been present in the demand side of the network,

they are now also present in the generation side with the growth of weather dependent

renewables. Here, we focus on forecasting for wind energy applications at the day(s)-

ahead scale. Most of the work developed is for power forecasting, although we also

identify an emerging opportunity in access forecasting for offshore operations. Power

forecasts are used by traders, power system operators, and asset owners to optimise

decision making based on future generation.

Several novel methodologies are presented based on post–processing Numerical

Weather Predictions (NWP) with measured data, using modern statistical learning

techniques; they are linked with the increasingly relevant challenge of dealing with

high-dimensional data. The term ‘high-dimensional’ means different things to different

people, depending on their background. To statisticians high dimensionaility occurs

when the dimensions of the problem are greater than the number of observations, i.e.

the classic p >> n problem, an example of which can be found in Chapter 7. In this

work we take the more general view that a high dimensional dataset is one with a

high number of attributes or features. In wind energy forecasting applications, this can

occur in the input and/or output variable space. For example, multivariate forecasting

of spatially distributed wind farms can be a potentially very-high dimensional problem,

but so is feature engineering using ultra-high resolution NWP in this framework.

Most of the work in this thesis is based on various forms of probabilistic forecasting.
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Probabilistic forecasts are essential for risk-management, but also to risk-neutral partic-

ipants in asymmetrically penalised electricity markets. Uncertainty is always present,

it is merely hidden in deterministic, i.e. point, forecasts. This aspect of forecasting has

been the subject of a concerted research effort over the last few years in the energy

forecasting literature. However, we identify and address gaps in the literature related to

dealing with high dimensional data in both the input and output side of the modelling

chain.

It is not necessarily given that increasing the resolution of the weather forecast

increases the skill, and therefore reduces errors associated with the forecast. In fact and

when regarding typical average scoring rules, they often perform worse than smoother

forecasts from lower-resolution models due to spatial and/or temporal displacement

errors. Here, we evaluate the potential of using ultra high resolution weather models

for offshore power forecasting, using feature engineering and modern statistical learning

techniques.

Two methods for creating improved probabilistic wind power forecasts through the

use of turbine-level data are proposed. Although standard resolution NWP data is

used, high dimensionality is now present in the output variable space; the two methods

scale by the number of turbines present in the wind farm, although to a different

extent. A methodology for regime-switching multivariate wind power forecasting is

also elaborated, with a case study demonstrated on 92 wind balancing mechanism

units connected to the GB network.

Finally, we look at an emerging topic in energy forecasting: offshore access forecast-

ing. Improving access is a priority in the offshore wind sector, driven by the opportunity

to increase revenues, reduce costs, and improve safety at operational wind farms. We

describe a novel methodology for producing probabilistic forecasts of access conditions

during crew transfers.
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Chapter 1

Introduction

Renewable energy sources contributed a third of UK electricity generation in 2018 [1].

This share has risen from a meagre 2.6% in 2000 [1], and if the UK is to meet it’s

national and international climate targets should be expected to grow. Wind power,

both onshore and offshore, represents 51.8% of this total contribution, with an installed

capacity of 21.7 GW [1]. These figures show the seismic shift in the electricity landscape

due to renewable technology. An illustration of the accelerated development of wind

power in the UK in recent years is shown in Figure 1.1.

Looking globally, total wind power capacity in 2019 reached 650 GW, with 60 GW

added during the year. Countries such as as China (236.4 GW), the USA (105.5 GW),

Germany (61.4 GW), India (37.5 GW), and Spain (≈25 GW) lead the way in terms

of installed capacity [4], but it is Denmark (48%), Ireland (33%), and Portugal (27%),

that reported the highest percentages of demand serviced by wind energy in 2019 [5].

Along with the fast rise in installed capacity, there has been a sharp drop in the

cost-of-energy associated with both onshore and offshore wind. Encouraging results re-

cently have indicated that wind power is becoming the most economical option for new

generation units in several markets. Specifically, in the UK the most recent auction

results for Contracts for Difference (strike price) have been allocated, with Dogger-

bank A and Sofia offshore wind farms both awarded a staggering £39.65/MWh [6],

which is cheaper than the average wholesale day-ahead electricity prices in 2018/19

(£58.6MWh) [7]. These new CfD results shift the view of the function of the subsidy;
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Figure 1.1: Annual statistics for UK wind energy [1] until 2018. There has been
substantial growth in both installed capacity and energy generation over the last 24
years

these are now mainly a risk hedging strategy. Although, time will reveal the actual

viability of these cost savings offshore. Also, in Scotland SSE Renewables have recently

announced an extension to Gordonbush onshore wind farm, the first subsidy free wind

farm in the UK [8].

Electricity is a challenging commodity to trade because of the lack of a viable in-

dustrial scale storage technology, meaning supply and demand of electricity must be

matched in real time. In the pre-renewables era this challenge was tackled by using

deterministic forecasts of demand to manage generation profiles and transmission con-

straints [9]. Modern-day power systems were originally built to accommodate large

centralised thermal power stations stoked with energy-dense fossil fuels, transferring

power via high voltage transmission to cities or industrial centres. Until recently, elec-

tricity markets were also geared toward accommodating these technologies.

Understandably, the shift in paradigm to decentralised and variable renewable en-

ergy sources throws up interesting challenges in transmission and distribution; un-

certainties in the power network are now present on the supply-side increasing the

difficulty of balancing the network [10]. In order to manage the influence of these

weather-dependant renewable sources, it is now necessary to use predictions of future

solar and wind generation. Furthermore, probabilistic forecasts are necessary for risk

minimisation in both market and operations applications, and for effective economic
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participation in electricity markets with asymmetric penalties.

As important as security of supply is the economic operation of the network. Histor-

ically the network was operated by a single monopoly, a vertically integrated company

governing generation, transmission, distribution, and retail. These monolithic compa-

nies were broken-up and privatised during a period of liberalisation, which began with

the UK in 1989 [11]. The modern-day system comprises of regional monopolies operat-

ing distribution governed by a regulator (e.g. OFGEM), private companies competing

for generation and retail opportunities, and finally high voltage transmission managed

by a Transmission System Operator (TSO). NationalGridESO, the TSO in the UK,

currently cites energy forecasting as an innovation priority for 2020/21 [12].

To facilitate the new electricity landscape, markets such as the day-ahead, balanc-

ing, ancillary services, and capacity markets have been created to try and ensure the

economic and secure supply of electricity. All participants in these markets, regardless

of portfolio make-up, are therefore exposed to the risks involved with a high penetration

of variable renewable power, to some degree [10]. Financial penalties are incurred by

participants for failing to meet agreed generation levels, and also for over-producing.

However there are also financial rewards available to shrewd participants for helping to

balance the grid at delivery — if the grid is short of supply then being able to step in

and increase generation levels, and vice versa.

Participants in these markets rely on energy forecasts, as well as forecasts of price

and demand, to make trading strategies, and given the high penetration of wind and

solar on the grid, are now looking toward probabilistic forecasts to hedge risk and

balance the generation profile [10]. Within this challenging and substantial field, this

thesis is focused on forecasting for wind energy applications. Applications include trad-

ing in balancing or day-ahead markets, balancing supply and demand, energy storage

management, and other developing research themes such as wind farm operation and

maintenance, and the role of predictability in investment decision making [13,14].
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1.1 Forecasting in Wind Energy

Wind itself can be considered as the bulk flow of air particles in the atmosphere. It is the

speed and direction of this flow is of most importance for wind energy applications [15].

The flow of air particles is driven by differences in atmospheric pressure across the

globe. A simple example of this effect on the local scale, and also important for wind

energy forecasting, is the diurnal patterns of sea breezes. During the day, the land

heats up to a much greater extent than the sea causing a temperature gradient, which

warms air directly above the land. This warm air becomes less dense than in the

surrounding area and rises, causing a region of low pressure over land and a more dense

high-pressure region at sea. This gradient begins to equalise and wind moves swiftly

inland. A similar but opposite effect is observed at night.

Similarly on a global scale, temperature gradients between the hotter equator region

and the colder poles causes global wind circulation, which is then complicated by the

Coriolis effect. This Coriolis effect deflects the flow of the wind to the right from the

direction of travel in the northern hemisphere, which leads to the prevailing west/south-

westerly winds across the UK.

Numerical Weather Predictions (NWP) can be used to gain some foresight into the

characteristics of the wind (or atmosphere) for the next ≈10 days. NWP models are

computed on the global scale by many organisations around the world, notably the Met

Office in the UK; the European Centre for Medium-Range Forecasts (ECMWF) based

in Reading; and the National Oceanic and Atmospheric Administration (NOAA) in

the USA. These vendors generate atmospheric forecasts on a three dimensional gridded

output covering regions of interest, or the entire globe. Often these organisations run a

higher resolution model (grid) around the region which constitute their main customer

base.

The wind to power conversion process is also a vital component of the problem.

The power available in a ‘chunk’ of air is proportional to the velocity cubed. This

well known relationship can then be modified to include the mechanical and electrical

efficiency of a typical modern variable speed pitch regulated wind turbine to give the
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power equation

P =
1

2
ρACp(λ, β)v3 (1.1)

where ρ is the density of air, A is the rotor swept area, Cp is the power coefficient, and

v is the wind speed. The power coefficient is related to the aerodynamic efficiency of

the specific turbine which depends on the tip speed ratio (λ) and the blade pitch angle

(β).

This cubic relationship is only part of the story in the full turbine power curve.

Turbines are typically designed to cut-out at low wind speeds (typically < 4m/s),

then as wind speed increases track the maximum possible aerodynamic efficiency curve

(Cp,max) until some maximum rated power, where pitching of the blades is used to

regulate the power output, to minimise generator and drive-train costs. At extreme

wind speeds (> 25m/s) the turbine is designed to cut-out, by pitching the blades

out of the wind to protect the electrical and mechanical equipment [16]. Turbine

vendors rigorously test turbines to characterise this relationship, which is known as the

manufacturers power curve.

In the field, mechanical wear, erosion, yaw misalignment, and general degradation

of turbine components can influence the power curve. Therefore, for forecasting appli-

cations the empirical power curve is most relevant. An example wind farm empirical

power curve is shown on Figure 1.2a versus average wind speed, measured via a cup

anemometers on each turbine nacelle. Figure 1.2b also shows the same power data

plotted versus concurrent forecast wind speed at the site using ECMWF forecasts, ex-

tracted at the closest grid point and interpolated to the required time resolution. At

the basic level, it is a version of the latter relationship that is being tackled in the

forecasting problem at the day-ahead temporal scale, and the plot is an indicator of

why accounting for uncertainty in the power forecast is quite so essential.

Outwith the typical wind speed and power forecasting applications, other target

variables can be very important for wind energy applications. It is estimated that

20-30% of the total cost of energy for an offshore wind farm is due to Operations &

Maintenance (O&M) in the UK [17]. Since O&M savings can be achieved by operators

at any stage of the project life cycle and independently of turbine manufacturers there

6



Chapter 1. Introduction

average measured wind speed [m/s]

po
w

er
 [%

 o
f P

n]

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Average measured wind speed

forecast wind speed at 100m [m/s]

po
w

er
 [%

 o
f P

n]

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Forecast wind speed

Figure 1.2: The empirical power curves of an example wind farm, where Pn is the
nominal capacity of the wind farm. At the basic level, it is the relationship in (b)
learned by day-ahead forecasting models, which illustrates why accounting for forecast
uncertainty is important, especially in the cubic range of the power curve

is a great opportunity to reduce this percentage. Therefore, improving installation,

operations, and maintenance practices is a current focus in both industry and academia.

Day-ahead forecasting can play a role here for improving decision making around the

dispatch and schedule of vessels and technicians. Deterministic forecasts of significant

wave height are typically used to forecast turbine accessibility in practice; this is an

area which could benefit from probabilistic information as risk management is key for

these safety critical decisions.

1.2 High Dimensional Forecasting

There is no strict condition that defines high dimensional data analysis. However, it is

generally interpreted as a dataset with a high number of attributes or features. In wind

energy forecasting applications, high dimensionality can enter the modelling chain in

both the input and output variable space. For the typical example of day-ahead power

forecasting, this means that high dimensionality can be present in the NWP feature

side and/or in the power variable side. An example of the former is the use of ultra-high

resolution NWP models, the research question is: how best to integrate the temporal

and spatial information content from the NWP to generate more accurate forecasts?

7



Chapter 1. Introduction

and: is this high dimensional input feature space worthwhile?

In terms of the target variable side, high dimensionality can occur at multiple tem-

poral and spatial scales. A current research theme in the wider forecasting community

is hierarchical forecasting (see Section 2.4). Here, an imposed structure is applied on the

target variables such that the physical reality of the system being forecast is respected.

For a wind farm, this structure could mean that forecasts of the individual turbine

power should sum to the wind farm forecast, which is not guaranteed when modelling

components separately. Therefore, the dimensionality of the forecast problem scales

with the number of turbines.

Specific types of probabilistic forecasts are required when making time and/or

space dependent decisions, such as balancing national generation/demand and manag-

ing transmission constraints. These are termed trajectory forecasts and can be either

statistical or physically based trajectories. A familiar example of this type of forecast

is ensemble members from a NWP model [18]. This research is focused on statistical

trajectory (i.e scenario) forecasts. Continuing the wind power example, this problem

can be very high dimensional in nature; the method demands that the dependencies

in time and/or space are embedded in the forecasting model chain for potentially all

transmission connected wind farms.

High dimensional analysis is an area of interest in the wider forecasting commu-

nity [19–21]. This is driven by the wealth of data now being collected across basically

all areas of modern life. Forecasting in such frameworks is computationally demanding

and a challenging prospect. Traditional methods for data visualisation, exploration, and

manipulation; fitting robust models; and forecast evaluation all become more difficult

with the increased dimensions of the problem. In retail, a common high dimensional

problem is demand forecasting [22]; this is reflected in the recently completed ‘M5’ fore-

casting competition [23]. There, the task is to forecast ≈40k time-series of hierarchical

sales data both expected sales and (optionally) uncertainty information.

Research in high dimensional statistics is ongoing outwith forecasting. Areas such

as image classification, social networking, online streaming, medicine, banking, en-

tertainment etc. are using high dimensional data to (for example) recommend new
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products to customers [24]. Regularisation is essential for regression, dependency, and

clustering algorithms using such volumes of data, i.e. sparse solutions help prevent

over-fitting [25]. This a recurring theme throughout the chapters of this thesis where

boosted/penalised regression models and sparse/parametric dependency structures are

applied in the energy forecasting context.

1.3 Objectives of Research & Novelty

The objective of this research is to develop and improve novel forecasting methods for

wind energy applications, with a focus on high dimensional problems. This is carried out

at a variety of spatial scales, but more generally at the day-ahead temporal scale. Wind

power forecasting is the main focus, along with forecasting turbine accessibility, which

is an emerging research theme that incorporates metocean aspects. In this section, we

discuss the research aims which are explored in Chapters 4, 5, 6, and 7, and outline the

contributions to knowledge.

The pursuit of ultra-high resolution forecasts and appraising their value for wind

power forecasting is not a new topic and has been discussed in literature with varying

success [26,27]. The situation has evolved substantially over the last few years, thanks

to quantity of data being collected, increases in computational power, and advances in

data science. Consequently, this enables the novel forecasting framework in Chapter 4,

based on computationally demanding approaches to producing ultra high-resolution

weather forecasts at the wind farm, and post-processing via advanced statistical learn-

ing techniques. In this case, the research aim is simple: to ascertain if it is possible to

extract value from a high dimensional input NWP model in the context of wind power

forecasting.

The nature of wind power on the network is hierarchical; from the turbine, to the

farm, regional, and national level. Tackling the forecasting challenge with this in mind

is important when creating forecasts that are coherent (i.e. sum appropriately at all

levels of the system). Currently, the topic of combining hierarchical and probabilistic

forecasting is lacking in literature. It is proposed in Chapter 5 that leveraging informa-
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tion from the turbine-level will enable improved wind-farm level forecast performance,

particularly since modern utility scale wind farms are often distributed over large ar-

eas of complex terrain and as a result, individual turbines can experience different

conditions from one another at any given time.

Furthermore, correlations in power forecast errors at the national scale are explored

in Chapter 7. Here, the research aim is to quantify the uncertainty in wind power

forecasts for the utility scale wind farms in the UK and importantly, exploit the forecast

error dependencies in space and time. There are numerous studies published in this

topic; however, these are normally based on a few renewable generators or regional

generation, and exhibit static or simple time-varying dependencies. Here, we develop

novel conditional dependency structures, applied over a substantial spatial scale across

large wind generators in the GB network.

Lastly, forecasting turbine accessibility is identified as an emerging opportunity to

aid decision making, and an area currently lacking in the literature. In Chapter 6

the aim is to provide a novel an end-to-end framework for generating access forecasts

based on vessel monition during transfer. Quantifying the uncertainty due to weather

conditions and using the temporal correlation structure of forecast errors is essential

for these multi-temporal decisions.
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Chapter 2

Energy Forecasting: Wind

Energy Applications

This thesis is focused on short-term forecasting, where the prediction horizon is several

hours to days ahead. Numerical Weather Predictions are key inputs into wind power

forecasting models at such horizons [26]. Best practice in creating these models involves

mapping the relationship between meteorological forecasts and the corresponding target

variable via a statistical learning technique. Outwith the energy forecasting community

this process is more commonly known as statistical post-processing.

The statistical post-processing of raw weather forecasts to a specific location of

interest, using measured data from the site, gives significant improvement in forecast

performance [28, 29]. In many cases, engineering additional explanatory features from

raw NWP data can significantly improve performance, a practice widely adopted in the

energy forecasting community [30–32]. Statistical learning tools that perform feature

selection and regularisation have been successful in international forecasting competi-

tions [33], improving out-of-sample performance, i.e. the ability of the model predict

well on unseen data. Gradient boosted regression trees in particular, which are an

ensemble of ‘weakly predictive’ trees, have been used widely by the winning teams at

these competitions; briefly, feature selection and regularisation is achieved by penalis-

ing the effect of each individual tree and by selecting only a few variables with high

explanatory power during the fitting of each tree.
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This chapter summarises key components in energy forecasting including, forecast

lead time, NWP, the types of forecasts (i.e. deterministic, probabilistic, univariate,

multivariate), as well as a literature review of state-of-the art forecasting methodologies,

all with a focus on wind energy applications.

2.1 Forecast Lead Time

The lead time of the forecast determines the suitability of methods and data for creating

an informative model. Very short term forecasts — 0 to (approximately) 6 hours ahead

— are usually built from purely statistical time-series models using information from

individual or spatially distributed power time series [29]. Looking further ahead in the

future — greater than approximately 6 hours ahead — the use of Numerical Weather

Prediction (NWP) has shown to give higher forecasting skill [26]. This finding extends

outwith the typical power forecasting example, such as forecasting significant wave

height [34].

Using the output of a NWP it is possible to use a data-driven approach to the

short-term forecasting problem. This avoids any assumption of the physical phenomena

governing the wind-to-power process. Supervised learning techniques map the input

variables (NWP, historical and lagged power measurements, time-of-day, season) to

the output wind power variable, and can include diverse techniques such as boosted

regression trees, support vector machines, neural networks, time-series models, and

regularised linear models among others [35].

Another important consideration is extracting the most amount of value from avail-

able resources such as the NWP — called feature engineering — and how to efficiently

incorporate and process high dimensional data [31]. This general methodology im-

plicitly accounts for site-specific effects such as turbine degradation, as well as any

systematic NWP biases present and is therefore recommended best practice [36]. Tur-

bine availability can also be accounted for using an appropriate normalisation of the

power measurements or by using seasonal features in the regression, since most planned

maintenance occurs during the summer months.

The superiority of purely statistical models within the very short lead times is due
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to a number of factors; the most recent input measurements to a NWP model, used

to initialise the physical model, may be several hours old by the time the forecast is

issued, and errors introduced by the forecast wind to power process. Therefore, an

ideal operational forecasting tool would include a blend of purely statistical and post-

processed NWP models for improved accuracy across different lead times.

2.2 Numerical Weather Prediction

NWP models are initialised using the most recent available measurements of the at-

mosphere around the globe, from satellites and other sources, to estimate the current

condition of the atmosphere and oceans. Possible future states of the atmosphere can

then be computed at a specific temporal and spatial scale. Typically the spatial scales

range from 1-25km, the temporal resolution of 1-3 hours, and forecasts can be issued

multiple times each day [18]; the necessary elements of wind speed and direction can

then be extracted for a specific region of interest.

Chaos theory plays a significant role in weather forecasting systems [37], mean-

ing small changes in the underlying measurements that initialise the model can lead

to significant differences in the resulting forecasts. Ensemble forecasts are used to

quantify this uncertainty, where each ensemble member represents a NWP simulation

initialised with a perturbed initialised state, or alternatively via multi-model ensem-

bles with different physical representations. The former results in a number of equally

likely scenarios of the future weather system, and forms the basis of global probabilis-

tic weather forecasting. These are a type of physically-based scenario forecast, but

the underlying structure of the uncertainty is very different to the statistically based

counterparts, and they can capture different characteristics of the weather; ensemble

forecasts can capture new events that may be present in a weather system, but are

typically under-dispersed for a given location.

NWP models have been steadily improving over the last 40 years in terms of both

forecast skill and temporal/spatial resolution due to advances in scientific research,

computing capability, and the expansion of available observations used to initialise

atmospheric models [18]. Currently, ECMWF offers global weather forecasts at a spatial
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resolution of ≈9km (0.1◦x0.1◦ grid) at 1-6 hour intervals within the high resolution 10-

day forecast model. Wind speed forecasts retrieved directly from the ECMWF fields

therefore have no resolved variance below these spatial and temporal scales. A common

strategy to improve global weather forecasts is to downscale them using NWP models

that cover only a limited area and are referred to as Limited Area Models (LAM)

or mesoscale models. Mesoscale models have the advantage of representing the earth’s

surface in higher detail and resolve physical processes in higher temporal detail, but the

formulation of physical processes like turbulence and (cloudy) convection is essentially

the same as those of the global NWP models.

A purely physical approach to the wind power forecasting problem aims to improve

the weather predictions by describing the flow inside the wind farm, by downscaling via

a mesoscale model or CFD simulations. The improved description of the flow around the

site can then be used with a manufacturer’s power curve to estimate the power output

of a farm. However, it is typically necessary to post-process systematic errors in such a

model via Model Output Statistics (MOS) [35]. This forecasting method is most useful

when there isn’t historical data available at the site, for instance after commissioning

and more so in the past when global models were more coarse in resolution.

Large-eddy simulations (LES) have a typical resolution of 10m-100m or less and

directly resolve turbulence and boundary layer clouds. Furthermore, because a typical

LES resolution allows for wind turbine resolving simulations, the use of LES to study

flows through wind farms has received a lot of attention in the scientific literature

lately [38–40]. Until recently though, the high spatial and temporal (roughly 5-10

seconds) resolution of LES prohibited their use in an operational forecast setting due

to their high computational cost and excessively long run-times.

The pursuit of high resolution forecasts and appraising their value for wind power

forecasting is not a new topic and has been discussed in literature with varying suc-

cess [26,27]. Advances in computing, like the use of GPUs to accelerate LES computa-

tions, have drastically shortened the run-times and have paved the way for operational

weather forecasting using LES [41, 42]. A turbine resolving operational weather fore-

cast on wind farm scale is currently possible and raises the research question of how to
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integrate this high dimensional input feature space by statistical post-processing into

a power forecasting tool.

In general, statistical post-processing is a common tool used in the wider weather

forecasting community; the goal is to remove systematic bias present in the global

NWP model for improved predictions at a specific location [43]. This process is typ-

ically carried out using Model Output Statistics, mentioned previously, via multiple

linear regression [44], using historical NWP (of varying resolution and skill) and mete-

orological observations [45]. More recent applications include using machine learning

for the regression [46] with varying success, post-processing ensembles for site specific

calibration [47, 48], and using multiple forecast source information [28, 49]. Conven-

tional post-processing techniques are difficult to apply to wind power directly because

of the non-linear power curve and bounded nature of the time series [50]; this motivates

the use of non-linear statistical learning techniques in this thesis.

Importantly, increasing the resolution of the NWP model does not immediately

translate to improvements in forecast skill, which is usually measured on the average

performance, e.g. root mean square error and mean absolute error — see Section 3. A

forecast which may represent better the inherent behaviour of the underlying processes,

can then be heavily penalised due to phase and location errors where the exact timing

or placement of any particular weather event is missed. As a result, high resolution

forecasts can often perform worse in terms of skill scores when compared to low reso-

lution forecasts. This leaves an open research question: is possible to extract value

from an ultra-high resolution NWP model in the context of wind power forecasting

using advanced statistical learning techniques? This is explored in Section 4.

2.3 Types of Forecasts

There are a variety of types of forecast available to decision makers depending on the

application and personal preference [35]. Ubiquitous in industry is the deterministic

forecast which is simply a ‘best guess’ forecast involving a single number for a time

horizon ahead. Deterministic forecasts for continuous variables are typically either

optimised for the expected value or median value; accomplished simply by changing
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the loss function in the regression task. The former are generated by minimising the

squared loss and the latter the absolute loss. This is an important subtlety, as the

loss function should be chosen appropriately for the end-use case [51]. For example, in

wind power trading the financial penalty for over/under producing is typically based

on absolute differences. Additionally, the type of loss function used dictates the most

appropriate error metric for model development.

There are also probabilistic forecasts which quantify the uncertainty around this

central ‘best guess’ in the form of intervals, quantiles, or full density forecasts. Scenario

forecasts are a more academic topic for now, but are arguably the most useful for many

applications and can be used for time/space dependent decision making [10]. Crucially,

they contain information on the spatial-temporal correlations of forecast uncertainty.

It is also important to note that forecasts are available commercially at different levels

of aggregation: at the wind farm, regional, portfolio, and national scale.

In recent years, academic research has been focused on quantifying the uncertainty

associated with energy forecasts due to the underlying chaotic weather systems driving

the energy generation [52]. These uncertainty forecasts are useful for applications such

operating reserve management [53] and defining optimal bidding strategies [54]. How-

ever, currently practitioners prefer deterministic (point) forecasts of future generation

which comprise of single valued best estimates. This is due to the ease of interpretation

and incorporation into existing decision making systems, as well poor communication

of the underlying information content of an uncertainty forecast [36]. Therefore, im-

proving point forecasts is still a relevant research pursuit. For comprehensive reviews

of short-term wind power forecasting please refer to [26,35].

The proceeding two subsections are intended to introduce the different types of

forecasts available, touch on general methods available to generate the forecasts, and

explore applications. For a detailed review of the state-of-the-art, the reader is referred

to Section 2.4. All the example forecasts shown in the proceeding subsections are

generated for the west coast offshore wind portfolio in GB using NWP data from

ECMWF.
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Figure 2.1: Example deterministic forecast, where estCap. is the estimated capac-
ity. Deterministic forecasts provide a ‘best guess’ at each forecast lead time, although
uncertainty information is essentially hidden

2.3.1 Deterministic

Wind power prediction was initially approached as a deterministic problem with re-

search and early commercial products focusing on providing single-valued best estimates

of future generation [55]. The ease of interpretation and incorporation into decision

making models are clear advantages of this type of forecast. An example determinis-

tic forecast is shown in Figure 2.1. Clearly, these are intuitive and provide moderate

insight for end-users. Deterministic forecasting is approaching technological maturity

following a concerted research effort reviewed comprehensively in [35, 56]. At present

there are many commercial providers offering deterministic wind power forecasts.

In the 1990s, as wind energy capacity started to reach a noticeable penetration on

the grid, one of the first examples of an on-line power prediction tool was developed by

Landberg [57]. The method used a high resolution NWP, known as the High Resolution

Limited Area Model (HIRLAM), and transformed the wind direction and speed to
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the surface height. A downscaling process was then employed to incorporate local

effects such as obstacles and surface roughness. Following this a power curve and farm

losses model transforms the local forecast wind speed to power predictions. Finally,

systematic errors are reduced using MOS. This model averaged mean absolute error

metrics of around 15% of installed capacity during a case study in Denmark, and was

shown to be most useful in prediction lengths greater than 6 hours ahead.

Also commercially available is WindFor (formerly known as the Wind Power Pre-

diction Tool - WPPT) which was developed at the Danish Technical University (DTU).

This tool provides point (and optionally) uncertainty forecasts for a single wind farm,

portfolios, or regions. This is done using time-adaptive estimation of conditional para-

metric models to relate NWP wind speeds with measured power for each lead time.

The process has the advantage of being able to cope with a non-stationary process as

old information is discounted by down-weighting with a forgetting factor [58]. There

are various other commercial vendors of deterministic wind power forecasts, for more

information please refer to [35]. The key argument for using probabilistic forecasts is

that forecast uncertainty is only hidden using this type of forecast; it is always present.

2.3.2 Probabilistic

Uncertainty information associated with a forecast is essential for risk management and

profit maximisation. For example: for a risk-neutral trader operating in a market with

asymmetric penalties for over/under providing on wind generation, the optimal bidding

strategy will not be the expected generation or deterministic forecast; rather it will be a

specific quantile forecast derived from a predictive distribution [54]. Risk-averse traders

and those with a risk-appetite require probabilistic forecasts regardless of the nature of

the penalty in these markets. Probabilistic forecasts are also useful as inputs to unit-

commitment problems, reserve holding, and managing power flows, among others [52].

Probabilistic information is also highly relevant to wind farm operations & maintenance

(O&M) practices; risk management is important for vessel dispatch decisions because of

the aim of maintaining high levels of crew safety whilst minimising turbine downtime.

However, these decisions are typically based on deterministic forecasts of sea-state
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(b) Quantile forecast

Figure 2.2: Example probabilistic forecasts, where estCap. is the estimated capacity.
Here, the full distribution is not communicated, although users can see that the uncer-
tainty grows as wind speed forecasts move into the cubic region of the power curve, for
the proceeding two days. Figure 1.2b shows the dominant effect of the cubic region of
the power curve at the medium range wind speeds

conditions, live measurements, and accrued experience of marine coordinators.

Univariate

Univariate probabilistic forecasts, those issued independently on a per lead time and

per location basis, can be represented in a number of ways, the three most common

variations are the quantile, interval, and density forecast. The quantile forecast is any

specific quantile of the future predictive distribution and represents the probability that

an observation will fall under a certain value. An example of a quantile forecast is given

in Figure 2.2b. A prediction interval interval is a range in which future observations

will lie with a specific coverage probability, shown in Figure 2.2a. Full information

relating to the predictive distribution can be found in a full density forecast, which

can be obtained from a predictive Probability Density Function (PDF) or Cumulative

Density Function (CDF). It is important to note that quantile and interval forecasts

can be obtained from predictive PDFs and CDFs and they therefore provide the most

versatile framework for forecasting.

Constructing the predictive distribution can be done using a parametric assump-

tion of the conditional distribution shape, or by using a non-parametric data driven
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approach. Parametric approaches have advantage in terms of computational efficiency,

however certain assumptions have significant drawbacks in terms of fully character-

ising the uncertainty around a wind power forecast. A Gaussian assumption of the

forecast uncertainty has been shown to be not applicable because the shape of the pre-

dictive density changes with time, the uncertainty is highly dependent on the forecast

wind speed transformation using a non-linear power curve, and it is a bounded process

between cut-in and rated power [59,60]. Therefore, parametric approaches to the prob-

lem have been proposed using the bounded Beta distribution [60], the censored normal

distribution [50], and using a mixture of generalized logit–normal distributions distri-

butions with two probability masses at the process boundaries [61]. These approaches

have the advantage that it is often only one or two parameters that are needed to be

predicted to characterise the full predictive distribution.

A more flexible approach is offered using a non-parametric, distribution free method.

This requires more data and is typically more computationally expensive, but enable

a completely data driven prediction of the forecast uncertainty. Quantile regression

(QR) and kernel density estimation, are often used to tackle this problem. QR based

methods can be used to calculate the full predictive distribution using a number of

discrete quantiles and interpolation. The explanatory variables used to train the models

(e.g. NWP and historical power data) are crucially important and feature engineering

and selection is often tested rigorously via cross-validation [30]. An example density

forecast obtained via multiple QR is shown on Figure 2.3, visualised via a fan plot

(2.3a) and as a CDF at four lead times in Figure 2.3b with quantiles prediction points

indicated.

Rather than using a deterministic NWP input to a univariate probabilistic fore-

casting model, it is also possible to use probabilistic weather forecasts (NWP ensemble

members). Importantly, ensemble weather forecasts can be post-processed for improve-

ments in reliability [62]; they therefore require calibration to match observed proba-

bilities of occurrence for wind power [63]. Typically this method involves converting

ensemble wind speeds to power and then adding a calibration stage [64], although di-

rect quantile regression is equally applicable. In [48], an inverse power curve method,
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(b) CDF at four lead times from Figure 2.3a

Figure 2.3: Example density forecasts, where estCap. is the estimated capacity. Here,
the density forecast is constructed with multiple quantile forecasts and monotonic spline
interpolation at each lead time; a more complete view of the uncertainty is shown

where power observations are transformed into the wind speed domain, is used for both

parametric and non-parametric regression with ensemble wind speed data. For more

information regarding ensemble post-processing for wind power, please refer to [65].

Multivariate

Specific types of uncertainty forecasts are required to inform multi-temporal and spatial

decision making, such as stochastic unit commitment and reserve holding [66–68]. These

are termed scenario (or trajectory) forecasts, which maintain the dependency structure

between variables and over time [69]. This type of forecast is motivated by the fact

univariate energy forecasts are issued on a per-horizon and per-location basis, without

accounting for spatio-temporal dependencies that exist between the locations and/or

lead times. Intuitively, consider that distributed wind farms can experience the same

weather pattern over a number of days as it develops; forecast errors from NWPs

are then highly structured [70]. Generating statistical scenario forecasts requires the

dependency between the marginal distributions of each lead time to be modelled. The

most common method to model the dependency is to use copulas [69].

Pinson et. al [69] describe a method whereby from the marginal predictive distri-

butions of a reliable forecast, forecast errors are transformed to a normally distributed

random variable. From this normally transformed variable, the forecast dependency

21



Chapter 2. Energy Forecasting: Wind Energy Applications

lead time [hours]

le
a

d
 t

im
e

 [
h

o
u

rs
]

0

6

12

18

24

30

36

42

48

0 6 12 18 24 30 36 42 48
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.4: Example temporal covariance matrix of ‘forecast errors’ which characterises
the dependence structure of the multivariate Gaussian copula and permits the genera-
tion of scenario forecasts. Here, the errors persist for longer as the lead time develops,
due to degradation of the NWP skill at longer lead times

structures in space and time can then be fully described by a single covariance matrix.

An example temporal covriance matrix is shown on Figure 2.4. Statistical ensembles

can then be generated via sampling from the covariance matrix and transforming the

samples into the original power domain. An example of a scenario forecast is plotted in

Figure 2.5 with 100 scenarios, again generated for the west coast offshore wind portfolio

in GB.

The above approach is essentially modelling a multivariate predictive distribution

using a Gaussian copula. Copulas are a tool widely used in, e.g. quantitative finance,

which provide a framework for describing the joint distribution of random variables

and the inter-dependencies from the individual marginal distributions. The advantages
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Figure 2.5: Example statistically based scenario forecast as a spaghetti plot, where
estCap. is the estimated capacity. The uncertainty information can be difficult to
interpret in this visualisation, but the scenarios are useful for simulations or further
processing

of this methodology are that it is capable of producing as many scenarios as necessary

(as, opposed to physical ensemble methods), it can be based on a single NWP deter-

ministic input, and it is possible to condition the copula on external processes such as

weather conditions; however, the process does require large datasets to fully charac-

terise the dependency and it is notoriously difficult to model the tails of the predictive

distributions, which are both open research opportunities in the field [36].

The tails are often the most important area of interest for decision makers using

these forecasts; consider that it is the tails of the distribution, i.e. large forecast errors,

that will influence reserve holding capabilities; TSOs are typically risk-averse, as to

maintain security of supply. Additionally if the tails of the distribution are not well

defined the calibration of the forecasts (and therefore suitability of the Gaussian copula)

is diminished.

Communication of uncertainty forecasts is a current area of research and Bessa et
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al. [36] emphasised that the number of ensembles in a scenario forecasts should be

tuned to the end-users need, because a large spread of scenarios may not provide clear

information to the end user. Also highlighted is the possibility of using simultaneous

forecast intervals to represent the uncertainty [71], which leads to essentially quantile

trajectories representing a certain probability of observing a wind power measurement

lower or equal to that trajectory.

Statistically based scenario forecasts are comparable to ensemble-NWP forecasts,

which can also be used in multi-temporal decision making [36]. However, an important

subtle difference must be emphasised between the underlying information of the two

forecast types. The latter represents the physical uncertainty for the future atmosphere

state, whereas former represents the uncertainty dependent on the historical relation-

ship between power and forecast wind speed, direction, and any other explanatory

variables used. Ensemble forecasts have the advantage of being able to capture new

events present in any given weather forecast; the downside is that it is very computa-

tionally demanding to run a NWP simulation, so there are typically only 50 ensembles

available at any given issue time, and post-processing for calibration would likely be

necessary for any specific site [72].

Other methods have been proposed to generate scenario forecasts of wind power

such as stochastic differential equations [73] and multivariate analog ensembles [74];

these topics are discussed in more depth in the proceeding section.

2.4 State of The Art

For a brief history of the origins of wind power forecasting please refer to Costa et al. [55]

which accounts for the 30 year history of wind power prediction (in only 20 pages),

with a useful distinction between the physical and statistical approaches. Overall, the

ANEMOS.plus project [56] and a technical report by C. Monteiro et al. [35] are two

very useful and detailed resources which account the concerted research effort in the

short-term wind prediction topic over recent years.

Within academia in the past 10 or so years, the focus has been on developing
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probabilistic methods for forecasting, which is reviewed comprehensively by Zhang et.

al [52]. However, it has been noted that there is a severe disconnect between the research

in academia and recent industrial practices. Bessa et al. [36] addresses the blockage

in the transfer of knowledge and poses that the main barrier is due to the lack of

understanding of the underlying processes enabling uncertainty estimation, and a lack

of standardization in uncertainty forecast products. This study is a sub-project within

the International Energy Agency (IEA) Wind Task 36 on Forecasting [75], which is a

collaborative research project focusing on improving the value of wind energy forecasts

to the wind industry.

Recently, C. Sweeny et al. discuss the future of renewable power forecasting, in-

cluding a literature review of the state-of-the art methodologies for short-term wind

power forecasting [29]. Also discussed are promising new forecast products and business

models capitalising on newly available high-dimensional power and NWP data, one of

which includes the exchange of power and forecast data via decentralised frameworks;

the challenge here is in preserving the privacy of commercially sensitive data. This is

driven by the idea that having access to more diverse forecasts and data-sources will

ultimately improve forecast skill for an end-user.

Here, we focus on three main research themes prevalent in the energy forecasting

community at the moment: feature engineering and the results from energy forecasting

competitions; hierarchical forecasting; and multivariate forecasting. Note that these

research themes are all linked by the challenge of modelling potentially high dimensional

data. We also discuss an emerging application of forecasting in wind energy: access

forecasting for offshore operations, which incorporates aspects of metocean forecasting.

2.4.1 Feature Engineering & Forecasting Competitions

An area of challenge for wind power prediction, highlighted within the IEA Wind Task

36, is the lack of widely available and publicised benchmark test cases and datasets.

The importance is highlighted because many approaches to wind forecasting have been

proposed, and it is often difficult to compare forecast skill since results will differ across

datasets. For this reason, forecasting competitions such as the two wind power (2012
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and 2014) Global Energy Forecasting Competitions (GEFCom) [33, 76] are a valuable

pursuit and provide learning for both forecast producers and users. A common theme

amongst the top approaches to the two competitions is the use of feature engineering

and cross validation to generate robust and powerful prediction models [30,32]. Feature

engineering is the process of creating new input variables for a statistical learning

technique with greater explanatory power, using domain knowledge of the problem at

hand. Examples of these features include: spatially averaged wind speed forecasts from

a grid of NWP around a wind farm, temporally smoothed wind speed features, and the

wind direction difference between model heights to capture wind veer.

The two winning teams from GEFCom (2012 and 2014) utilised Gradient Boosting

Machines (GBM) with tree-based learners, the latter for quantile regression to produce

density forecasts, with input features engineered from NWPs [30, 32]. Other entrants

also employed GBMs but did not produce as skillful forecasts highlighting the impor-

tance of feature engineering in such methods. The k-nearest neighbours method has

also been successful in producing non-parametric density forecasts in these competi-

tions [77], which is very similar to the analog ensemble which has been demonstrated

in weather [78], wind power [79], and solar power forecasting applications [80].

Interestingly Landry et al. [30] details a probabilistic solution using Gradient Boosted

Trees with a quantile loss function using: leading and lagging wind forecast features;

independent hyper-parameter tuning for middle and tail quantiles; including hour of

the day features; and finally using off-site median power predictions for some of the

forecast zones improved performance in the probabilistic models. It is important to

note that the five most successful models in the latest competitions employed a fully

non-parametric approach [33].

Andrade et al. [31] reported value in extracting features from a spatially distributed

NWP grid surrounding the power plant, rather than interpolating to a single value at

the coordinates of the plant. The improvement is shown in both a solar and wind

power forecasting framework. The methodology combines the gradient boosting tree

algorithm, with feature engineering using leading and lagging NWP forecasts; spatial

and temporal standard deviations of NWP variables; and many others. Compared
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to a benchmark model, based on one NWP point for a specific location, the average

probabilistic improvement for the wind power predictions was shown to be 12.06% in

terms of Continuous Ranked Probability Score (CRPS).

Although the root cause of the improvement is not explicitly discussed in [31], one

possible reason could be due to the systematic errors present in the NWP; it becomes

beneficial to generate various smooth NWP input features to hedge against phase and

location errors and use the inherent feature selection ability of the algorithm to learn

the powerfully predictive inputs and subsequent patterns and interactions. This root

cause is therefore currently an open research question, and the impact of temporally

smoothing NWP input features is explored in Section 4, within the context of leveraging

ultra-high resolution NWP forecasts.

Importantly, when engineering a high-dimensional input feature space over-fitting

can occur during model training, where the learned relationships match too closely

to the training data and the model does not generalise well to new ‘unseen’ data.

This motivates the use of statistical learning techniques with intrinsic feature selection

and regularisation capabilities, such as GBMs or alternatively linear regression with

sparsity [81].

2.4.2 Hierarchical Forecasting

Hierarchical forecasting has received increased attention in recent years because of the

desire from forecast users for coherency (or consistency), i.e. the forecast of each level

in a hierarchy should sum together appropriately. For example, in a coherent hierar-

chical wind power forecast the predictions at the turbine level sum to the forecast at

the wind farm level, which sum together with surrounding wind farms to the regional

level forecast, and so on. This is motivated by the fact that forecasting individual

components in any given system may not be consistent after summation due to the

nature of the learning problem. Additionally, including coherency constraints in pre-

dictive models can improve performance at all levels of the hierarchy. Currently, most

published research on hierarchical forecasting has been in a deterministic framework.

Hierarchies can be both spatial and temporal in nature [82,83]. There are different
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approaches to hierarchical forecasting, the simplest being the bottom-up approach,

which forecasts the top level in the hierarchy by summing the constituent lower level

forecasts [84,85]. As discussed in [21], the bottom-up approach can in practice tend to

deliver poor performance because of the low signal to noise ratio of the bottom hierarchy

in applications such as load forecasting using smart meter data. However, consider that

a wind turbine provides a consistent weather dependent signal. Therefore, wind farm

power forecasting provides a useful test-case for bottom-up hierarchical forecasting.

The concept of coherent probabilistic forecasts is explored in [21, 86] where the im-

portance of this property is emphasised in settings where forecasts from multiple levels

of the hierarchy are used in decision-making. In these works, the marginal distribu-

tions are determined for nodes in the system and the dependence is modelled using an

empirical copula. However, in the wind farm setting the structure of the hierarchy is

relatively simple, and the size lends itself to families of parametric copulas rather than

the empirical copula, which requires large volumes of data to satisfactorily estimate.

In the wind power forecasting domain, deterministic forecast reconciliation, which

is the processing of predictions at all levels of the hierarchy to achieve the coherency

constraint, has been explored via generalised least squares [87] and forecast improve-

ment reported at all levels of the hierarchy. Additionally, an online adaptive method

is proposed using constrained multivariate regression, motivated by the fact that the

optimal reconciliation weights will be non-stationary due to the stochastic nature of

the problem; this is also carried out in the deterministic domain [88]. Privacy preserv-

ing distributed methods have also been applied to the day-ahead deterministic power

forecasting problem [89]. Temporal hierarchies in wind power forecasting have also

been evaluated in [90], which to the best of the author’s knowledge is the only study

published to date on coherent probabilistic wind power forecasts. There, they opt for an

alternative to the bottom-up approach to the problem. Therefore, incorporating wind

turbine level data in a bottom-up probabilistic method is currently an open research

question, and is explored in Section 5.

Copulas provide a suitable method for generating bottom-up spatially coherent fore-

casts. A wide variety of copula families exist, several of which have been applied to
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model spatial dependency in the wind power forecasting context but not in a hierar-

chical setting to the best of the authors knowledge [91]. Copulas are typically used

in the wind power forecasting community for generating multivariate spatial-temporal

scenario forecasts [69,92].

2.4.3 Multivariate Forecasting

Research in statistical scenario forecasting for day-ahead power forecasting is focused on

advancing or developing alternative methods to the Gaussian copula approach described

in Section 2.3.2 for describing the temporal interdependence structures [69]. The success

of the Gaussian copula in this setting is due to the ability to effectively model high

dimensional distributions, and the apparent absence of tail dependencies in the data.

Pinson et al. [72] propose an exponential covariance function, which is essentially a

parametric approach for defining the covariance matrix. This is compared to the data-

driven empirical copula using multivariate skill scores, and interestingly event based

verification tools. Gneiting proposes a non-separable parametric form for modelling

spatio-temporal data, with a case study on Irish wind speed data [93]. This means that

both the temporal and spatial components of covariance matrices are jointly modelled

from the empirical data, instead of independently and then combined. This approach

is readily applicable to the case of day-ahead multivariate wind power scenarios, but

to the best of the author’s knowledge has not yet been addressed in the literature.

Regime-switching is a method to make models dependent on the current behaviour

of the target time-series or on exogenous variable(s). The benefit is that the model can

react faster to changing conditions, as opposed to having fixed models or by tracking

slower changes in behaviour via (for instance) online updates. Mostly, regime switching

has been well addressed in the very-short term forecasting power literature [94, 95].

Browell et al. [96] has shown for very short-term spatio-temporal forecasts that a

regime-switching model based on large-scale meteorological phenomena or ‘atmospheric

regimes’ can improve forecast skill by an average of 3.1% at a six hour forecast lead

time.

Regime-switching probabilistic forecasts of wind energy are also examined in [97,98],
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using a correlation and cross correlation analysis at the wind sites studied; again these

studies are both based on very short term forecasting, i.e. ≈2 hours ahead. An open

research question remains on the use of regime-switching for conditioning the spatial-

temporal covariance dependency for multivariate day-ahead power forecasting.

Tatsu et al. provide the only example of conditioning of copula methods at the day-

ahead temporal scale, to the best of the author’s knowledge [91]. There, the authors

expand on the Gaussian copula method to include the spatial dependencies via sparse

precision matrices, and show the value of including direction-dependent correlations and

non-constant conditional variances. Additionally, to the best of the author’s knowledge,

scenario forecasting, and the associated dependency characteristics, in the GB network

has not been explored at the wind farm level. This open research question is

explored in more detail in Section 7.

A valid criticism of the Gaussian copula is that only only symmetric dependencies

are effectively modelled. Copula vines, which are a series of linked bivariate copula

families, offer a more flexible framework for modelling multivariate dependency, and

have subsequently been the subject of recent studies in wind power forecasting [92,

99]. Bessa [92] compared temporal scenarios using vine-copulas and compared these

with the conventional Gaussian copula method for three wind farms in a case study.

Results showed that in-fact the Gaussian approach with an exponential covariance

matrix outperformed the vine copula for two out of three wind farms in terms of the

energy score and the p-variogram score. One of the main advantages of the exponential

covariance matrix method was highlighted; it does not require a large historical dataset,

which was posed as a justification of the higher performance.

The high dimensionality of space-time scenario forecasting at the wind farm level

in certain regions, like the UK, mean that generating enough scenarios to capture

the full behaviour of portfolios becomes computationally demanding, and solving the

associated optimisation problems, such as probabilistic power flows, potentially not

practical using the raw scenarios. This has motivated recent research on forecasting

multivariate regions such as ellipsoids or polyhedra [100, 101]; such types of forecasts

make probabilistic optimisation problems more computationally tractable.
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Beyond copula methods, alternative approaches have been proposed using Stochas-

tic Differential Equations [73, 102] based on the historical forecast errors to describe

the evolution of the forecast error around the deterministic forecast, using epi-spline

basis functions which enable users to control for degree to which extreme errors are

captured by specifying particular quantiles in the forecast error distributions [103], and

by using a rank-reordering method which preserves spatial-temporal characteristics via

the Schaake shuffle [74, 104]. Briefly, the Schaake shuffle works by re-ordering ensem-

ble forecasts to reconstruct the space-time variability observed in a sampled historical

record of the measurements.

Using post-processed ensemble NWP data it is also possible to recover the spatial-

temporal characteristics of the weather data after applying the statistical learning or

calibration technique. This is done via a technique known as Ensemble Copula Cou-

pling (ECC), which is demonstrated on meteorological variables [105, 106]. A slightly

modified technique known as dual-ECC is demonstrated on wind speed ensemble data,

such that temporal error auto-correlations are accounted for [107]. To the best of the

author’s knowledge, this technique has not been applied to post-processed wind power

ensembles.

2.4.4 Forecasting in Wind O&M

It is estimated that 20–30% of the total cost of energy for an offshore wind farm is

due to Operations & Maintenance (O&M) in the UK [17]. Since O&M savings can

be achieved by operators at any stage of the project life cycle and independently of

turbine manufacturers there is a great opportunity to reduce this sizeable percentage.

Therefore, improving installation, operations, and maintenance practices is a current

focus in both industry and academia.

Access forecasting is concerned with predicting conditions for the transfer of tech-

nicians to and from offshore structures at the site. This is clearly highly dependent

on the local wave climate and sea-state forecasting plays a major role in the current

scheduling practices in offshore wind. These forecasts are typically deterministic fore-

casts of significant wave height. However, this provides limited information into the
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state of the weather over the next few days. Probabilistic forecasts, which quantify

the uncertainty around future values, provide a route to risk minimisation [10]. For

instance, scheduling tools could evaluate the spread of possible metocean conditions for

the target day.

O&M planning at different horizons can be classified into strategic, tactical, and

operational decision making [108], the latter of which is the horizon of focus of this

thesis. Relevant studies in this area of decision support are based on optimising

the scheduling problems in a metaheuristic manner [109], or via exact optimisation

methods [110, 111], or through a combination of the two [112]. Uncertainties in short

term maintenance scheduling stem from incorrect fault diagnosis, human error, repair

times, and of course the weather forecast. The latter has been examined in the litera-

ture [113, 114], although most published methods are based on deterministic forecasts

of the weather [110–112, 115], others have considered climatology from past observa-

tions [116] and ensemble NWP [117].

As discussed, at lead times of greater than approximately 6 hours, NWPs are su-

perior to time series forecasting methods for predicting variables such as significant

wave height [34] and should be employed in day-ahead scheduling decisions (and longer

lead-times). Probabilistic forecasting of wave height using time series models, driven

by recent observations only, is explored in [118] and the value of these forecasts is

demonstrated via a cost-loss model, but are limited to within day applications. The

economic case for improved offshore wind maintenance access forecasts has also been

explored [119], where different deterministic models and evaluation metrics are tested;

the cost of a sub-optimal configuration of these aspects is estimated to cost up to

hundreds of thousands pounds per year.

Offshore operations scheduling is a type of multi-temporal decision making; consider

that accessibility at a single point in time is not sufficient as technicians require to be

picked-up and returned to port at the end of the shift. Therefore, turbine accessibility

is often framed in terms of weather windows, where forecasts are used to specify access

conditions throughout a specified time period [117,120,121]. The probability of access

from weather forecasts is determined in [122], which are coupled to cost-loss decision
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model and compared with the deterministic case; this is found to increase the proportion

of access windows utilised and reduce operational expenditure.

For forecasting, this multi-temporal decision framework demands that error de-

pendencies in time are accounted for, making this another high dimensional problem

amenable to copula modelling. Various copula families have been tested rigorously for

hindcast metocean data [123], where the dependency is modelled between variables

including asymmetries. Copulas are also used to simulate wave height and wind speed

time series, with a case study application for cable installation at an offshore wind

farm [124].

To summarise, an open research question remains in the development of a novel

end-to-end probabilistic forecasting methodology for offshore wind farm operations,

at the day-ahead temporal scale. This uncertainty information could be potentially

valuable to operations teams that currently typically rely on deterministic forecasts of

wave height for scheduling and dispatch decisions. Please refer to Section 6 for more

detail.

2.5 Summary

Forecasting is an integral part of of power system operations. From participants in

electricity markets to Transmission System Operators, all who make decisions based on

the future generation of wind energy require decision-support tools. Probabilistic fore-

casts are essential for risk-neutral participants in asymmetrically penalised electricity

markets and for risk management; uncertainty is always present, it merely hidden in

deterministic forecasts.

There has been a vast research effort in probabilistic forecasting in recent years,

both univariate and multivariate, at the day-ahead temporal scale. However, there are

still gaps in the literature related to dealing with high dimensional data in both the

input and output side of the modelling chain. Specifically, open research questions

remain in

1. The performance of ultra-high resolution operational NWP models, using ad-
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vanced statistical post-processing techniques and feature engineering

2. Leveraging hierarchical probabilistic methods for wind farm power forecasting,

using information from individual turbines

3. Probabilistic forecasts for wind farm operations. Currently, wind farm operators

rely solely on deterministic forecasts of significant wave height for safety critical

decisions, such as maintenance scheduling and vessel dispatch

4. High-dimensional multivariate wind power forecasting. Here, error dependencies

in both space and time are used to generate statistical scenario forecasts. These

forecasts could be improved by using large scale atmospheric regimes and coupled

space-time parametric covariance matrices. Additionally, there has not been a

study at the GB wind farm spatial scale.

Before addressing these gaps, a forecast verification framework is formalised.
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Forecast Verification

The evaluation of a proposed forecasting model must be based on a impartial evaluation

of performance over an out-of-sample or testing dataset. In an ideal case, the forecast

could be evaluated in terms of the ability to inform optimal decisions, such as revenue

generated from using a novel forecast, compared to existing methods. For example, an

accurate deterministic forecast in terms of conventional statistical evaluations may not

lead to more optimal trading decisions, and therefore greater profits [125]. However

situation dependent evaluation metrics are difficult to quantify and don’t provide a

comparable framework to evaluate methods as a research endeavour. Therefore, fore-

casts are most commonly evaluated on the analysis of out-of-sample errors, and are

used for forecast provider selection, model development, and model diagnostics.

Here, we outline the most commonly used forecast verification tools for deterministic

and probabilistic forecasts. These are termed evaluation/verification metrics and scor-

ing rules interchangeably throughout. Univariate and multivariate evaluation metrics

are discussed, as well as methods for setting up a valid numerical experiment frame-

work. Lastly, we discuss the uncertainty present in evaluation results themselves (not

to be confused with forecast uncertainty), and address methods used to deal with this,

such as bootstrapping. Please refer to the recent paper by Messner et al. for more

detail on forecast evaluation in wind power forecasting [51].
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3.1 Deterministic

Madsen et al. propose a standardised protocol for the evaluation of deterministic short-

term wind power predictions [126]. This begins with the standard time-series definition

of prediction error et which is the difference between the measured value yt and the

forecast value ŷt

et = yt − ŷt (3.1)

where t is the time-index. The bias of the model is related to the systematic error and

is simply as the mean error over the evaluation period

bias =
1

N

N∑
t=1

et (3.2)

where N is the total number of samples. Therefore, bias does not give any information

as to the discrimination ability of a forecast, i.e. if it gives accurate predictions. It

reveals the difference between the average forecast value and the average measured

value; an ideal bias result is zero. However, bias is a very useful tool for diagnosing

systematic problems in the model. For example, in a regional wind power forecasting

tool, if the installed capacity of the region increases over time and this effect is not

captured by the model, then error analysis will likely reveal a substantial bias.

The two most common scoring rules for evaluating deterministic forecast accuracy,

i.e. discrimination ability, are the root mean square error (RMSE)

rmse =

√√√√ 1

N

N∑
t=1

e2
t (3.3)

and the mean absolute error (MAE)

mae =
1

N

N∑
t=1

|et| . (3.4)

Importantly, the RMSE is related to the variance of the errors and large errors will have

a significant impact on the results. Typically, a forecasting analysis will report both of
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these metrics. However, the error metric chosen should relate to the loss function used

in modelling. For instance, if a squared error loss function is used to fit the model,

then a squared scoring rule (like RMSE) should be used to evaluate the models during

development. The above performance metrics are often averaged by forecast lead time

to gauge the performance of the model during time-periods of interest.

3.2 Probabilistic

For probabilistic forecasts verification becomes more complex, and a two pronged ap-

proach is necessary to assess performance; calibration (or reliability) is essentially a

measure of probabilistic bias, and sharpness is related to the spread of the forecast

distribution. A probabilistic forecast is then evaluated in terms of sharpness, subject

to calibration [127].

The calibration is a measure of the statistical consistency between the distributional

forecasts and the observations. In other words, in a suitably large test dataset the nom-

inal probabilities of the forecast are approximately equal to the empirical (measured)

outcomes [128]. For example, for the median quantile — q50 — then approximately half

of the observed values (empirical) should be below this median forecast. An poorly cal-

ibrated probabilistic forecast is therefore bias and sub-optimal, regardless of any other

properties.

Sharpness is a measure of the accuracy of a probabilistic forecast, i.e. the spread of

the distribution, that allows for the ranking of competing forecasts, subject to calibra-

tion. Scores such as the pinball loss (for discrete quantiles), and the continuous ranked

probability score (for continuous distributions) are typically used for scoring rules on

univariate variables. These two measures in fact evaluate both calibration and sharp-

ness simultaneously; however, it is often prudent to simultaneously verify calibration,

either by decomposition of these accuracy scores [129, 130] or by direct methods. It is

helpful to think of an intuitive example of how these scores are related to accuracy; for

the q50 quantile specifically, the pinball loss is simply equal to 0.5 ∗mae.

The idea of proper, and strictly proper scoring rules are developed in [131]. For

a distribution forecast F̂ with realised measurement y from an unobserved governing
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distribution F , the average score is defined as

S̄ =
1

N

N∑
t=1

S(F̂t, yt) (3.5)

where the score S to each observation/forecast pair. The score is proper if

S(Ft, yt) ≤ S(F̂t, yt) (3.6)

holds for the distribution of F and F̂ . Note that here we imply a negatively orientated

score, i.e. better forecasts produce smaller scores. Furthermore, the score is strictly

proper when equality is true only if F̂ = F ; i.e. the minimum is unique. Strictly

proper scoring rules inform on the forecast verification framework used throughout this

thesis. Although for multivariate forecasts, proper scoring rules are used as discussed

in Section 3.2.2.

3.2.1 Univariate

Here, we establish the definition of quantile forecasts and density forecasts for con-

tinuous univariate variables, as well as the associated verification frameworks. For

interval forecasts and probability forecasts for discrete events, scores metrics such as

the Winkler and Brier score (respectively) are available, but discussion is omitted here

for brevity; the reader is referred to [51,128] for more information.

The predictive cumulative distribution function (CDF) of a random variable Y is

F̂ (y) = P (Y ≤ y) (3.7)

where F̂ is a strictly increasing function. A quantile forecast can be defined as

ŷ(α) = F̂−1(α) = inf{y ∈ R : α ≤ F̂ (y)} (3.8)

where α ∈ [0, 1] is the nominal probability of the quantile. As discussed, we can

therefore generate a distribution forecast directly using a technique such as conditional
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parametric regression, or estimate the distribution forecast using multiple quantile re-

gression and interpolation between the boundaries and the quantile forecasts.

For discrete quantiles, calibration is often measured directly via reliability diagrams.

This is is calculated via an indicator variable β
(α)
t

β
(α)
t =


1 if yt < ŷ

(α)
t

0 otherwise

(3.9)

which leads to a series of binary outcomes indicating whether the outcome lies below

(1) or above (0) the quantile forecasts. The mean of the series of outcomes can be

calculated over the whole dataset to give the actual coverage of the quantile

a(α) =
1

N

N∑
t=1

β
(α)
t (3.10)

and if the forecast is well calibrated and the sample size sufficient then a(α) ≈ α.

This measure is then calculated for each modelled quantile and results illustrated via

a reliability diagram which plots the nominal vrs. empirical proportions [51]. Quantile

bias plots are also used in this work to visualise the reliability when inspection of

small differences in calibration are necessary, in which case the nominal proportions

are plotted against α− â(α) [128].

For continuous density forecasts, it makes sense to evaluate the calibration of full

distribution, not just discrete quantiles. The probability integral transform (PIT) his-

togram is used in such cases, which is calculated via

ut = Ft(yt) (3.11)

and if the forecasts are well calibrated and the sample is sufficiently large then u ∼

U(0, 1), which is visually inspected via a histogram with a certain number of (typically

20 [132]) bins. An example of a PIT histogram is shown in Figure 3.1, where the

forecast is slightly under-confident; the relatively more frequent observations in the

mid range of the distribution show that spread of the distribution is over-dispersed.
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Figure 3.1: Example PIT histogram. Here, the forecast displays over-dispersion; obser-
vations are more concentrated at the mid-region of the distribution and the distribution
is on average under-confident

The opposite trend is found for over-confident (i.e. under-dispersed) forecasts, where

there are relatively more observations in the tails of the distribution.

For discrete quantiles, the sharpness and calibration is typically measured via the

pinball score (PB)

pb
(α)
t =


(1− α)(ŷ

(α)
t − yt) yt < ŷ

(α)
t

α(yt − ŷ(α)
t ) yt ≥ ŷ(α)

t

(3.12)

and again, averaged over the number of samples. This is interchangeably called the

pinball or quantile score. The average of multiple quantile pinball scores is often used

to gauge the performance of the full predictive distribution [33]; although since the out-

come of this score is dependent on both the target variable and the nominal probability

level, the mid-range of the distribution contributes most to these averaged pinball loss

scores.

For the full predictive cumulative distribution, the Continuous Ranked Probability
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(b) A sharper distribution forecast

Figure 3.2: Graphical illustration of the CRPS scoring rule for a single lead time, for two
forecasts. The score is the area below the squared difference between the observation
(step function) and forecast CDF

Score (CRPS) [127] is often used to measure both sharpness and calibration

crps =
1

N

N∑
t=1

∫ ∞
−∞
{F̂t(y)− 1(y ≥ yt)}2dy (3.13)

where 1(.) is the indicator function. The CRPS for a single forecast observation pair is

therefore the area between the squared difference of the forecast and observation CDF,

where the latter is a step-function from 0 to 1 at the observed value. Figure 3.2 shows

two illustrations of this, where a smaller CRPS is found from a sharper forecast. An

advantage of the CRPS is that it reduces to the MAE in the deterministic case [133],

which makes the score more intuitive and also consistent when moving from determinis-

tic to probabilistic frameworks. This is clear from equation 3.13; the integrand reduces

to either 1 or 0, and the error is found in the interval between the observed and forecast

value.

Similarly to the pinball score, most of the contribution of the CRPS score comes

from the mid-range of the distribution. When the tail of the forecast distribution is

important, e.g. for setting reserve requirements [134], or more generally in extreme

event forecasting, weighted scoring rules would be more suited [135]. Specifically, the

threshold weighted CRPS proposed in [135] works by emphasising specific regions of

interest (e.g. tails) of the distribution with relatively larger weights compared to other
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regions, and at the same time preserves the ‘properness’ of the score.

In fact, the CRPS is the continuous counterpart of the pinball loss. Equation 3.13

can be alternatively described as

crps =
1

N

N∑
t=1

2

∫ 1

0
pb

(α)
t dα (3.14)

i.e. the integral of pinball loss over all quantiles [135]. Although both the CRPS and

pinball scores evaluate both sharpness and calibration, it is still good practice to also

show calibration distinctly, either by reliability diagrams/PIT histograms, or by de-

composing the pinball/CRPS scores further into reliability, resolution, and uncertainty

components [51].

3.2.2 Multivariate

Here, we establish the definition of multivariate forecasts, as well as the associated

verification tools. A multivariate forecast is usually defined by a set of possible scenarios

for the forecast issue time, such as in the cases considered in this thesis. These scenarios

contain information on the space and/or time correlations and therefore, evaluating

the prescribed correlation structure is important in multivariate forecast verification.

A multivariate forecast as a set of spatio-temporal scenarios can be defined as

ẏJ,K =



ŷ1,1
1 ŷ1,1

2 . . . ŷ1,1
T

ŷ2,1
1 ŷ2,1

2 . . . ŷ2,1
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. . . . . . . . . . . .
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. . . . . . . . . . . .

. . . . . . . . . . . .

ŷ1,K
1 ŷ1,K

2 . . . ŷ1,K
T

ŷ2,K
1 ŷ2,K

2 . . . ŷ2,K
T

. . . . . . . . . . . .

ŷJ,K1 ŷJ,K2 . . . ŷJ,KT



(3.15)
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Figure 3.3: Example graphical illustration of the energy score contributions from several
bivariate normal scenarios and the corresponding observation. The energy score is a
function of both the spread and difference components of the scenarios

where J is the number of samples and the maximum lead time is T . Therefore, every

row is a scenario at each out of the K locations. However, to simplify the notation we

will only consider one location with purely temporal scenario forecasts ẏJ .

Multivariate forecast verification is the subject of current research. The most com-

monly used scoring rule in wind power forecasting at the moment is the energy score

(ES), which is a multivariate extension of the CRPS [131, 136]. The ES for a single

issue time is given by

es =
1

J

J∑
j=1

‖y − ŷ(j)‖2−
1

2J2

J∑
i=1

J∑
j=1

‖ŷ(i) − ŷ(j)‖2 (3.16)

where ‖.‖2 represents the `2 norm, y is the observed trajectory of the measured variable,

ŷ(j) is the jth scenario forecast taken from the underlying multivariate distribution.

The score is then averaged over all issue times. In Figure 3.3 an illustration of the

energy score is shown, generated from an example bivariate normal distribution. The

first term of the energy score measures the average euclidean distance between the

trajectory forecasts and the observation, and the second term is related to the multi-

dimensional spread of the scenarios.

In the literature, it is discussed that the ES has low sensitivity to the multivariate

correlations, compared to sensitivity in a mis-specified mean [136, 137]. This means
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that different dependency structures governing the multivariate scenarios can have a

somewhat similar energy scores, making the assessment of the benefit in a prescribed

dependency structure more difficult. The p-variogram score (VS-p) is developed with

this in mind [137], and for a single issue time is defined as

vs-p =
T∑

i,j=1

wij

(∣∣yi − yj∣∣p − 1

J

J∑
z=1

∣∣ŷ(z)
i − ŷ

(z)
j

∣∣p)2

(3.17)

where p is the order of the variogram and ŷ(z) is the zth forecast scenario. Typically,

the weights, wij , are set to the inverse distance between the ith and jth components.

Results in [137] show that a VS-p with an order of less than one has the best dis-

criminative ability, although typically results are reported for both orders of 0.5 and 1.

To summarise, this score finds the weighted sum of differences between pairwise com-

ponents of the observation trajectory and the average pairwise components from the

multivariate scenarios. However, it follows that if we have two competing multivariate

forecasts with the same correlation structure, but one set are are offset by some bias

in the mean level, they would have the exact same VS-p score because only pairwise

differences are considered; this score is proper, but not strictly proper.

Multivariate calibration methods are also used in the wider forecasting literature,

particularly when assessing ensemble forecasts of meteorological variables. Minimum

spanning tree (MST) rank histograms and variations are typically used [136]. To the

best of the authors knowledge, the only examples of these verification tools applied to

statistical wind power scenarios are [72, 103]. The former study compares ensemble-

based and statistically-based wind power scenarios, and interestingly event based scores.

When generating statistically based scenarios in this thesis, the marginals are ensured

to be well calibrated so we don’t elaborate further here. Please refer to [136] for more

detail.

The two discussed multivariate scoring rules have both strengths and weaknesses, so

typically both scores are used to verify multivariate scenarios [92], the strictly proper ES

is used to verify both the mean level and multivariate correlation, and the proper VS-p

is used to discriminate between correlation structures. However, small differences in the
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ES may be sufficient to discriminate between models when coupled with significance

tests [138], or when using bootstrapping to estimate sampling uncertainty, as discussed

in Section 3.3.2.

3.3 Comparing Performance

Any proposed novel methodology should be rigorously compared against fair and com-

petitive benchmark models. Also, comparing evaluation metrics is an important con-

cept, and there is an often overlooked uncertainty associated with scoring results. In

this section we discuss the framework of the numerical experiments used in this thesis,

and introduce methods for evaluating the uncertainty in scoring results.

3.3.1 Cross-Validation

Cross validation is a tool widely used for the verification of statistical models. The

framework is based on the premise that a model should be trained and tested on

independent data sets. This has obvious benefits in that evaluation metrics are based

on out-of-sample data, somewhat replicating the conditions of an operational model for

decision support. This framework prevents models which don’t generalise, but learn

relationships in the data very well, from giving spuriously better scores.

There are a variety of cross validation routines, but in this work we typically use

k-fold cross validation to make decisions on the modelling and evaluate results. This

means that the data is first partitioned into training and testing subsets, then on the

training subset only, k-fold cross validation is used to tune regression hyper-parameters

and develop new forecasting models. This cross validation routine works by sub-setting

the training data into k (approximately) equal partitions, then each partition is itera-

tively left out of the available training data and forecasts are issued for the ‘left-out’

partition, until each of the k folds have associated out-of-sample forecasts. This means

that robust evaluation results can be determined for the entire available dataset.

Setting the k folds is an important consideration in wind power, and generally

meterological post-processing tasks. This is because wind power exhibits temporal
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correlation; by randomly assigning each sample to a fold, the resulting evaluation can

lead to unrealistically low error scores because the data is not independent. Therefore,

blocks of data of are used in the following evaluations. There are different cross-

validation routines available, as well as using a rolling window to simulate the out-

of-sample performance [51]. However, computational expense limits the feasibility of

these methods in the following work.

3.3.2 Scoring Uncertainty

As well as forecast uncertainty, there is also always an inherent uncertainty present in

evaluation results due to the fact verification is done on a finite sample of data. This

is often overlooked in the wind power forecasting literature which typically presents

single-valued evaluation metrics as standard. If, for instance, the the size of the test

dataset is constrained, or differences between evaluation metrics is small in magnitude,

it is important to evaluate the significance of the results. That is, are the results for

the sample also true for the population, or due to pure chance.

Often, forecast performance is reported via relative change to a baseline S̄ref , i.e.

the skill score. If the perfect score is zero, as in the cases considered here, then the skill

score is

skill =
S̄ref − S̄
S̄ref

(3.18)

and in the following the terms skill score, percentage improvement, and relative change

are used interchangeably. As discussed, often when evaluating multivariate forecasts

the skill score value may be small in magnitude. However, a small relative change alone

does not always prove that a forecast is not suitable; the uncertainty associated with

the skill should be considered.

The bootstrap is a re-sampling technique for assessing the uncertainty of sample

statistics [139]. It is a flexible tool which is used across statistical applications to

understand the sampling distribution associated with estimators such as the mean,

regression coefficients, correlation coefficients, etc. from the original set of observations.

Crucially, the bootstrap can be used as a simple non-parametric method for estimating

the significance in forecast improvement [51]. Typically, data-points are randomly
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Figure 3.4: Boxplots showing the sampling variation of the ES skill between a bench-
mark and example multivariate forecast. Here, there is a small but significant im-
provement in the ES for both bootstrap methods; however the sampling uncertainty is
greater using the block-bootstrap

sampled with replacement, i.e. individual points can be sampled more than once,

with a length equal to the original length of the set, and then skill scores or scoring

rules are calculated. This process is repeated a user-defined number of times (typically

>100), until the sampling variation of the result is determined, which are then typically

presented via boxplots as shown on Figure 3.4a, or confidence intervals. Therefore,

evaluation results based on smaller datasets will have an inherently large sampling

uncertainty, and a consistent but small positive skill score on a large dataset will be

clear.

As with k fold cross validation, the temporal correlation of errors is important to

consider here as well; the bootstrap assumes that data is independent, i.e. not serially

correlated. This is often not the case in meteorological applications or time-series data

and can lead to an underestimation of the sampling variability. However, in these

cases the block-bootstrap [140] can be used, as shown on Figure 3.4b, where non-

overlapping blocks of length ≈7 days are sampled with replacement. There are several

types of bootstrap implementations which account for temporal correlation, such as

the variable length block bootstrap [141], and several studies in electricity demand

forecasting use the block bootstrap to generate future temperature scenarios for model

inputs [142,143].
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There are also alternatives to the bootstrap for evaluating the significance of fore-

cast improvement. The use of the Diebold-Mariano test [144,145], coupled with strictly

proper scoring rules and large sampling sizes is recommended by Ziel et al. for mul-

tivariate scoring [138]. The Diebold-Mariano test also accounts for the temporal cor-

relation of forecast errors. For more information, the reader is referred to Messner

et al. in the context of wind power forecasting [51], and Section 7.2. Briefly, the

block-bootstrap method has some advantages over statistical tests, in that there is a

tendency in the wider academic literature to simply accept or dismiss results that are

just below or above an arbitrary probability level in the latter, and bootstrapping is a

non-parametric process. However, in the absence of literature demonstrating the suit-

ability of one method over another, both are used in Section 7.2 to gauge the significance

of forecast improvement.

3.4 Summary

Forecast verification is a crucial component in model development, and is more complex

for probabilistic forecasts. However, the main idea is that they should be as sharp as

possible subject to calibration. Calibration is measured directly through techniques

such as reliability diagrams and the probability integral transform; sharpness are mea-

sured via strictly proper scoring rules, such the energy score and continuous ranked

probability score. It is discussed that these strictly proper scores in fact measure both

calibration and sharpness. However, it is recommended to evaluate calibration either

directly (as in this thesis) or by further decomposition of the scores.

We also discuss the framework in which proposed models can be compared fairly

with competitive and suitable benchmark models. This framework consists of using

cross validation to generate a large dataset out of sample forecasts, and using bootstrap

approaches to show the sampling uncertainty of average scoring rules or of relative

change to a benchmark. In the proceeding sections we apply this framework in the

pursuit of novel forecasting methodologies.
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Chapter 4

Statistical Post-processing of

Turbulence Resolving Weather

Forecasts

Chapter based on:

Gilbert, C., Messner, J. W., Pinson, P., Trombe, P. J., Verzijlbergh, R., van Dorp, P.,

& Jonker, H. (2020). Statistical post-processing of turbulence-resolving weather fore-

casts for offshore wind power forecasting. Wind Energy, 23(4), 884-897.

High-resolution NWP forecasts often exhibit spatial and/or temporal displacement

errors, and when regarding typical average scoring rules – e.g. MAE or RMSE, they

often perform worse than smoother forecasts from lower-resolution models. Recent

computational advances have enabled the use of large eddy simulations in the context

of operational weather forecasting, yielding turbulence resolving weather forecasts with

a spatial resolution of 100 meters or finer and a temporal resolution of 30 seconds or

less; the output from these NWP models therefore represents a high dimensional input

feature space for power forecasting models.

As discussed in Section 2.2, the pursuit of high resolution forecasts and appraising

their value for wind power forecasting is not a new topic and has been discussed in lit-

erature with varying success [26, 27]. The situation has evolved substantially over the
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last few years, thanks to quantity of data being collected, increase in computational

power (e.g. based on Graphics Processing Units – GPUs), and advances in data sci-

ence. This enables the high-resolution forecasting framework considered here, based on

computationally demanding approaches to producing high-resolution weather forecasts

at the wind farm, and post-processing via advanced statistical learning techniques.

At outset of this study, EMCWF offered global weather forecasts at a spatial reso-

lution of ≈16km, i.e. the 0.125◦ grid, at 1-6 hour intervals within the high resolution

(HRES) 10-day deterministic forecast model. This resolution is essentially a limit on

the variance and processes resolved in the wind speed fields. The NWP model consid-

ered here on the other hand, is based on an operational localised large-eddy simulation

(LES), which is driven at the boundaries by the global resolution ECMWF model.

NWP forecasts based on the LES framework have a significantly higher spatial

and temporal resolution; in this case, a horizontal resolution of ≈ 64m and temporal

resolution of 30s, yielding a very high dimensional input feature space for a utility

scale wind farm power forecasting model. The temporal and spatial resolution of these

models mean that atmospheric processes important for wind power variability, such as

turbulence, are directly resolved. Additionally, the wind turbines are embedded in the

simulation, allowing for a more detailed account of the wind wakes and interactions

around the wind farm.

However, the new information content of ultra-high resolution models does not

necessary translate into improvements in average error metrics. For one thing, there

is obviously a lot of uncertainty in the boundary forecasts driving the simulation at

the day-ahead scale. In fact, high-resolution forecasts may perform worse compared to

standard resolution models due to penalisation of phase and location errors; a forecast

that contains a higher, and subsequently more realistic, variability in space and time is

heavily penalised when the precise location/timing of a weather event is missed when

using typical average error metrics for evaluation.

The research aim and contribution of this chapter is simple: to ascertain if it is

possible to extract value from a high resolution NWP model in the context of wind

power forecasting. We also explicitly explore the impact of temporal smoothing of
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wind speed forecasts using single-input models, with the aim of understanding better

the benefits of feature engineering published widely in the literature [30,31].

We generate post-processed point forecasts of wind speed and power at the iconic

Horns Rev I 160 MW wind farm off the coast of Denmark and compare the forecasting

ability of the high resolution LES model with forecasts from ECMWF. In the post-

processing of the raw NWP data into power and wind speed forecasts, smoothing

techniques are used to account for the penalisation of temporal and spatial displacement

errors. The disadvantage of smoothing is that high resolution information can be

diminished; to remedy this, a simple feature engineering stage is proposed which can

account for the variability in the atmospheric model.

Section 4.1 details the specifics of the NWP models used and the case study site,

and Section 4.2 includes descriptions of statistical post-processing techniques. Results

are presented, evaluated, and compared in Section 4.3 based on measurements from

an individual turbine and subsequently the overall wind farm, and finally Section 4.4

details the conclusions and future work.

4.1 Case study at the Horns Rev offshore wind farm

To evaluate the performance of post-processed high resolution forecasts generated from

the LES model, results are presented for Horns Rev I and compared with those based

on ECMWF predictions. Horns Rev I was one of the first large capacity offshore

wind farms and therefore has a large bank of historical data. Both wind speed and

wind power post-processing are considered as these are both extremely important for

operational tasks such as trading and operation and maintenance (O&M).

4.1.1 Horns Rev

Out of the 3 offshore wind farms located at Horns Rev, we focus on that which was

installed first, in operation since 2002, and commonly referred to as Horns Rev I.

Horns Rev I consists of 80 2-MW turbines located approximately 18km off the coast

of Denmark in the North Sea covering an area of around 21km2. It was historically
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the first large offshore wind farm worldwide. The data used for the following study

consists of average power generation and wind speed anemometer measurements from

each constituent turbine from January 2015 to December 2016 at a 10-minute temporal

resolution. Initially, to reduce the dimensions of this exploratory analysis, much of the

post-processing results presented are for an individual turbine located at the north west

corner of the park with a final analysis of the wind farm power as whole. It should

be noted that a single turbine located at the south west corner of the wind farm is

excluded from the analysis, due to a permanent turbine malfunction.

4.1.2 Weather forecasts: from ECMWF to the Whiffle Large Eddy

Simulation

The operational ECMWF deterministic forecasts covering the years 2015 and 2016 were

retrieved at 3-hour time resolution and approximately 16km spatial resolution. Note,

that forecasts are also available at 1-hour resolution, but at the outset of this study

ECMWF typically offered only the 3-hour resolution data to commercial customers. To

make the forecasts comparable to the turbine data, the forecast fields were interpolated

in time using linear interpolation and model levels were interpolated to a hub height of

70 meters by linear interpolation of the closest model levels [146].

Whiffle is a start-up that has focused on the computation of LES on Graphics Pro-

cessing Units (GPUs), which enables their model GRASP (GPU-Resident Atmospheric

Simulation Platform) to compute 48h hour ahead forecast within roughly an hour. The

formulation of the model is provided in [147] and more recent features, including the

GPU implementation and the method to drive an LES model with large-scale boundary

conditions from a NWP model have been described in [42] and [148].

The simulation domain for this study is 8.2km in the horizontal and 5km in the

vertical with 1283 grid points, yielding a horizontal resolution of 64m. In the vertical

direction, the grid is stretched, with a resolution of roughly 16m near the surface

and 80m near the top of the domain. Periodic boundary conditions are taken from

the ECMWF deterministic forecasts and are applied as dynamic tendencies to a so-

called concurrent precursor simulation [149]. The values of the precursor LES are
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Figure 4.1: Schematic representation of the LES model setup. ECMWF fields are used
to estimate the initial conditions and are applied as dynamic tendencies to a pre-cursor
LES with periodic boundary conditions. The precursor LES values are then prescribed
on the boundaries of a second LES to prevent the wakes from re-entering the domain

then prescribed, during run-time, to the boundaries of a second LES that includes

wind turbines. This setup allows for the development of sufficient turbulence, while it

prevents the re-circulation of the turbines wakes in the LES domain, due to the periodic

nature of the boundary conditions. Figure 4.1 shows a schematic representation of this

setup.

Wind turbines have been modelled in the LES with a uniform actuator disk model

as described by [150]. The turbine parametrisation applies axial and radial forces to

the LES wind fields that are based on the power and thrust curves of the turbine

type. Therefore, the torque exerted on the rotor blades can readily be diagnosed

from the simulation and the produced power can be exported as output variable with

the same time resolution as the LES time-step, which is typically in the order of 5

seconds. All output variables that may be relevant for post-processing, such as power,

rotor-disk averaged wind speed and direction and air density have been exported for

each individual turbine location with a 30 seconds time resolution. Care was taken

to produce a forecast dataset that was as representative as possible for day-ahead

forecasting, so a maximum computation time of 1 hour per forecast was observed and

the 00UTC ECMWF operational forecasts valid for the next 24-48h (local time) were

used as boundary conditions. The 00UTC cycle of the ECMWF high-resolution forecast

is available around 06:20 UTC for commercial customers. With the settings applied in

this paper, the day-ahead LES forecast can thus be delivered at 07:20 UTC the latest,

which corresponds to 08:20 CET and 09:20 CEST. The LES forecast is therefore well

in time to be used for day-ahead trading.
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(a) Instantaneous wind speed (b) Two hour average wind speed deficit

Figure 4.2: Wind speed fields at hub height for 2016-05-18 02:00 UTC, where the
turbine locations and their yaw angles are depicted with the grey bars. The average
deficit (percent reduction with respect to free-stream wind speed) is calculated using
the preceding two hours

Figure 4.2a shows a snapshot of the instantaneous wind speed field at hub height for

a typical day with south-westerly winds. Using the pre-cursor simulation that has no

wind turbines, it is also possible to calculate the difference between the free-stream wind

speed and the wind speed in the wind farm. Figure 4.2b shows the wind speed deficit,

i.e. the percent reduction in wind speed with respect to the free stream wind, in the

simulation domain. The wind speed deficits for this particular day are roughly 20% to

40%, which is in agreement with values that have been reported in the literature [151].

Although the focus of this paper is on the prediction of wind speeds and wind farm

power, the framework of a turbine resolving LES model driven by NWP boundary con-

ditions opens more possibilities for future research and practical applications. Currently

ongoing research efforts focus of wind resource assessments and annual energy predic-

tion using LES with reanalysis fields as boundary conditions, air-sea interactions in and

around wind farms, more advanced turbine parametrizations and in-depth analysis of

the interactions of (far) wake effects and their environment.
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4.2 Post-processing models

The following describes the statistical post-processing models utilised and the general

post-processing strategy for the case study. The approach can be summarised by using

statistical learning techniques for both wind speed and power forecasting with a focus

on smoothing, feature engineering, and selection. Note that due to the inclusion of

both wind speed and power forecasting, the notation yt signifies the target variable

(measured wind speed or power) and xt is the weather forecast-derived input variable

at time t.

Smoothing is an interesting approach in this high-resolution forecasting context,

however it has been surprisingly overlooked in the applicable research literature for

energy forecasting. Benefits have been reported with temporal and spatial feature

engineering in the post-processing of coarse global atmospheric models [30–32] with

rolling average and leading/lagging wind speed variables among others. Therefore,

the aim here is to explore this relationship more explicitly with single input models

and then to capture the value in the high-frequency content of the signal with other

engineered features. This approach, compared to using the high resolution wind speed

signal directly, aims to retain the value of the smoothed wind speed forecast whilst

augmenting the model with selected summary statistics of the high frequency signal.

4.2.1 Wind speed forecasting

For wind speed forecasting the raw NWP signals are statistically post-processed to

account for systematic biases between each signal and the measured time series at

the turbine nacelle. A truncated linear regression model is used to account for the

non-negativity of wind speed [152] which is defined as

yt ∼ N0(µt, σ
2) (4.1)

µt = β0 + β1xt (4.2)

where wind speed yt at time t follows a zero truncated normal distribution with mean

µt and standard deviation σ while µt is a linear function of the predicted wind speed xt
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and β0, β1, and σ are regression coefficients. The zero truncated normal distribution

has a probability density function of

d(yt) =


1
σφ(yt−µtσ ) yt > 0

0 yt ≤ 0

(4.3)

where φ(.) is the probability density function of the standard normal distribution. The

regression coefficients are estimated with maximum likelihood estimation as imple-

mented in the R software package crch [153].

4.2.2 Power forecasting

The Gradient Boosting Machine (GBM) is a supervised learning method whereby a se-

ries of individually weakly predictive base-learners (e.g. regression trees) are combined

to make a powerfully predictive ensemble [154]. For an excellent and in-depth tutorial

on this subject the reader is referred to [155]. The algorithm works by consecutively

fitting single base-learners to improve the overall predictive estimate of the target vari-

able; each learner is trained sequentially on the negative gradient of the loss function,

with respect to the ensemble constructed so far. Intuitively, the model is grown at

each iteration to improve upon the prediction of the ensemble so far; regularisation

is extremely important to prevent over-fitting, which necessitates the shrinkage term

introduced in the following definition of the algorithm.

Specifically, for base-learner regression trees, at each iteration the available input

space is partitioned into disjoint regions, which allows for the direct capture of non-

linear relationships, such as the wind power curve, and makes this a powerful tool for

energy forecasting applications [30–32]. Additionally, the flexibility of the algorithm in

terms of loss functions is a desirable attribute; in this chapter a squared loss function is

used. For target variable y and a pool of explanatory variables xt = (x1, x2, . . .)
>, the

gradient boosting machine [154, 156] FN (xt) is defined as the sum of N base-learners

fn(xt)

yt = FN (xt) + εt =
N∑
n=0

fn(xt) + εt (4.4)
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where f0(xt) is the initialisation guess, εt is an error term, and the subsequent ensemble

of base-learners is constructed sequentially by estimating the latest via

argmin
fn

∑
t

L (yt, Fn−1(xt) + fn(xt)) (4.5)

for some loss function (e.g., squared loss) L(·). To tackle this approach in practice, the

base learner chosen here is the regression tree fn = h(x; θn), specified by a vector of

tree parameters θn. Where L(·) is differentiable, the negative gradient gn(x) is defined

as

gn(xt) = −
[
∂L (yt, Fn(xt))

∂Fn(xt)

]
Fn(x)=Fn−1(x)

(4.6)

and the regression tree is efficiently fit to this negative gradient by least squares

θn = argmin
θ

∑
t

[gn(xt)− h(xt; θ)]
2 . (4.7)

The ensemble is then updated with

Fn(xt) = Fn−1(xt) + λρnh(xt; θn) (4.8)

where λ which is a user defined regularisation lever termed shrinkage, and ρn which is

the best gradient step-size found via

ρn = argmin
ρ

∑
t

L (yt, Fn−1(xt) + ρh(xt; θn)) (4.9)

and specifically for regression trees a different ρn is computed for each terminal leaf.

This model fitting optimisation strategy is then based on two stages: least squares

fitting of the base learner followed by the parameter optimisation according to the gen-

eral loss function [157]. Regularisation is extremely important when deploying a GBM

model. Generalisation performance is achieved via the tunable shrinkage parameter

(λ) which allows the user to penalise the importance of each individual learner in the

overall ensemble, the number of learners, and row/column [158] sub-sampling fractions

where a random subset of rows or covariates respectively are used for each training
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round. Row and column sub-sampling are really useful for generalisation performance

when a large set of input features are available. If the entire dataset is defined as

{yt,xt}T1 then a random sub sample of rows of size T̃ < T is given by {yr(i),xr(i)}T̃1 ,

where {r(i)}Ti is random permutation of the integers {1, . . . , T} [157]. A random subset

of features/columns can be defined similarly.

Other tree-specific tunable hyper-parameters include the depth (or number of splits)

of each tree, and the minimum number of observations per terminal leaf of the tree. It

is evident that the benefits of the GBM method come at the expense of the necessary

fine-tuning stages compared to for instance a linear model. These regression models

were created in R via the h2o [158] software package.

4.2.3 Feature Engineering

Although high-resolution numerical models may be able to better approximate specific

weather features, temporal and/or spatial displacement errors can in fact reduce their

skill compared to coarser global models that provide a smoother representation of the

same events. Figure 4.3 shows an example time series of the raw wind speed forecasts

versus the turbine anemometer measurements. Visually, it is clear that neither GRASP

or ECMWF can perfectly predict the truth, although GRASP clearly shows a higher

and thus more realistic variability.

When regarding the Pearson correlation coefficient between the observations and

NWP forecasts in Table 4.1 (top row) it can be seen that the high frequency informa-

tion actually seems to disturb the forecast signal and that smoother forecasts are of

advantage. This observation raises the idea of temporally smoothing the forecasts to

obtain forecasts with the same underlying signal but with some of the (potentially dis-

turbing) high frequency information removed. This is most simply done by calculating

GRASP ECMWF

Raw 0.898 0.910
Smoothed 0.905 0.915

Table 4.1: Pearson correlation coefficient of raw and smoothed forecasts with wind
speed observations. For smoothing the moving average spans 500 minutes
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Figure 4.3: Example time series of raw wind speed forecasts from both NWP sources
versus the turbine anemometer measurement. The GRASP and ECMWF variables used
are the disk averaged and 70 metre wind speed respectively. Each of the 4 day-ahead
forecasts have different issue times, indicated by the jumps in wind speed predictions
around midnight each day

moving averages of the raw time series

x̃t =
1

M + 1

t+M/2∑
r=t−M/2

xr (4.10)

where M is an even number that controls the degree of smoothing. For this study, we

tested moving averages spanning time windows from 30 seconds to 16 hours. Although

high frequency information is disregarded, Table 4.1 (bottom row) shows that this

smoothing increases the correlation between the observations even in the ECMWF

model. The justification of smoothing in post-processing, even for ECMWF forecasts,

can be alternatively explained by the fact that the NWP global models resolve processes
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at resolutions that are less than that of the grid they are computed on. In addition,

high-resolution forecasts expose themselves to the risk of being doubly penalised when

predicting the right events, but slightly misplaced in time or in space. Smoothing

somewhat dampens this risk. It should be emphasised that the GRASP data retains

the high resolution spatial information and one example of spatial smoothing is retained

in the analysis and is defined as the spatial average of all the disk averages wind speeds

in the wind farm.

Although average scores may be improved by smoothing the numerical forecasts,

the high frequency content still might contain some valuable information. Therefore,

moving variances are derived as

zt =
1

M + 1

t+M/2∑
r=t−M/2

(xr − x̃t)2 (4.11)

which are used as supplementary engineered features to summarize the variability of

the forecast. Additionally, a separate strategy to exploit the higher frequency content

of the NWP signals is proposed based on a rolling Fast Fourier Transform (FFT). A

smoothed Power Spectral Density (PSD) estimate of the transformed signal is split into

a number of bands; the average, sum, range, and variance of the power in these bands

is used to inform the models. The rolling discrete Fourier transform of the time-series

centred on the window M is defined as

Xt,k =

t+M/2∑
r=t−M/2

xre
−i2πrk/M , k = 0, 1, ...M − 1 (4.12)

at frequency domain point k. The corresponding rolling estimate of the PSD at this

point is

Pt,k =
1

M
|Xt,k|2 k = 0, 1, ...M − 1 (4.13)

and since the Fourier transform of this real valued data is symmetric, the bands which

are defined to engineer features within a frequency range are split equally within the

M/2 range. The features retained in the final models are then based on summary

statistics of Pt,k within the highest frequency band which proved to be most informative.
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Other transformations could potentially better track the time-varying properties of the

time-series such as the Hilbert-Huang Transform [159], however for this proof of concept

study these aspects are reserved for future work.

Therefore, the modelling strategy can be summarised as follows: to use temporally

smoothed forecasts as the driving signal for the post-processed models and supplement

this with engineered features that inform the model with information on variability of

the NWP. As discussed, feature engineering has proven extremely successful in both

wind and solar energy forecasting [30–32]. However, the temporal smoothing properties

have not been explored explicitly, to the best of our knowledge, by single input models.

It should be noted that all of the engineered rolling features are calculated per issue

time of the forecast because of potential step changes in the variables across at this

point.

4.3 Results

The results of this case study are presented as firstly an analysis of the raw LES out-

put, following an exploratory analysis where a single turbine in the farm is selected

for post-processing with single input models to explicitly extract the value in smooth-

ing. Both wind speed and wind power post-processing are considered at this stage.

Next, additional features are added to the turbine power models to capitalize on the

high frequency content, before finally results for the wind farm level forecasting are

presented.

For the post-processing analysis, the data is partitioned into tuning and testing data

by 6 and 18 months blocks respectively, where the tuning data is used to improve the

GBM models. Out-of-sample forecasts are generated using 5-fold cross-validation on

the testing dataset with curtailment around the wind farm flagged and removed from

the forecasting exercise. The definition of prediction error et = yt − ŷt is the difference

between the measured yt and forecast value ŷt. Evaluation of the post-processed fore-

casts is then based on the Root Mean Square Error (RMSE) over the testing dataset

and the results are generally presented via boxplots showing the sampling distribu-

tion from bootstrap score averages. Bootstrap sampling can convey the distribution of
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the evaluation metric via sampling the errors with replacement, then calculating the

average error metric, and repeating the process k (in this instance 100) times.

The power point forecasts generated by the GBM models are constructed to min-

imize the quadratic loss function in this study. Therefore, the models created will be

optimised for the mean squared error and this motivated the use of RMSE as the lead

measure of accuracy. Though other scores such as mean absolute error could also be

similarly reported, the results will not be optimised for the measure unless the models

were modified to carry out a median regression. Additionally, due to the wealth of

models tested in this case study the MAE results are omitted for brevity.

4.3.1 LES results

We first present a number of quantities from the unprocessed LES output to verify

the implementation of the wind farm in the LES model set-up. Figure 4.4 shows the

yearly average power production per turbine from the observations and as forecast by

GRASP. For the turbines on the western and southern edge of the wind farm, the yearly

average production shows a good agreement between the model and the observations.

The deviation is roughly within a 20 kW range, which is 2% of the average yearly

production. Deeper inside the wind farm, GRASP underestimates the production, or,

equivalently, overestimates the wake effects. This is also confirmed by an initial analysis

looking at the RMSE of the power as exported directly from the LES (results not shown

here) and forms another justification for statistical post-processing.

4.3.2 Exploratory Data Analysis

In order to reduce the dimensions of the problem, the following presents results of

forecasting for a single turbine in the farm, located at the north-east perimeter of the

farm in terms of both wind speed and power prediction performance. Here we have a

few parameters which require explanation: DA indicates the disk averaged wind speed

which is a weighted average of the closest LES grid point wind speeds over the rotor

disk plane, and DA-all is the spatial average of these disk averaged variables over all

the turbine locations.
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Figure 4.4: Yearly average power from observations (left) and forecast by the GRASP
LES model (right)

Single Input Models

To explicitly investigate the influence of smoothing the wind speed forecast on both

wind power and wind speed forecasting single-input models are first considered; a

separate model for each NWP wind speed forecast is trained against the measured

wind speed or power time-series.

Figure 4.5 shows the results for the wind speed post-processing case at 70m height

where 0.5 and 10 minutes indicates no smoothing for GRASP and ECMWF data respec-

tively. It should be noted that the ECMWF is already linearly interpolated to match

the temporal resolution of the power measurements. The RMSE for the ECMWF is

generally much lower for wind speed across the smoothing window choices, apart from

the longest rolling window lengths of >900 minutes. For both models the optimal

smoothing window is around 400-500 minutes which is longer than the original tempo-

ral resolution of the ECMWF data and implies that smoothing can improve the forecast

accuracy of a post-processed model derived from both traditional NWP output as well
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Figure 4.5: Wind speed RMSE results with different smoothing windows at 70m height.
Forecasts were derived from a truncated linear regression model with different smoothed
forecasts as input. At this turbine, ECMWF gives more accurate wind speed forecasts
across all the smoothing windows
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Figure 4.6: Wind power RMSE results with different smoothing windows. Forecasts
were derived from GBM models with smoothed wind speed input variables at 70m
height for ECMWF and the disk averaged wind speed (DA) for GRASP. At this turbine,
GRASP gives more accurate wind power forecasts across all the smoothing windows.
This is because GRASP gives superior wind speed forecasts, at regions key to wind
power prediction as shown on Figure 4.7a

as high-resolution LES output.

For wind power, shown in Figure 4.6, a similar profile is found with some very

important distinctions; the GRASP based models give a lower error than ECMWF

across the smoothing windows, and the characteristic dip of the wind speed plots is

slightly shifted and not as pronounced. This suggests that from smoothing, the error
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Figure 4.7: RMSE of Whiffle’s GRASP model and ECMWF conditioned on 5 equally
populated observation bins with a 400 minute smoothing window and at a height of
70m. The shaded areas show the interquartile range from bootstrap score averages

improvements at the optimal smoothing window are out-with the below rated region of

the power curve because the non-linear effect of the power curve would tend to amplify

improvements in this key region. However, for both NWP sources, smoothing NWP

forecasts for use in power forecasting does have a beneficial influence at a window of

around 400 minutes.

The unusual difference between the wind speed and wind power performance be-

tween the NWP sources is explained in Figure 4.7 which shows the performance of

four comparable models conditional on the wind speed and power measurements re-

spectively. All models compared here are using a smoothing window of 400 minutes

and at 70m height. At the key wind speed ranges for power prediction — the medium

range wind speeds — the GRASP post-processed model is more accurate. Due to the

influence of the cut-in and rated regions of the turbine power curve, the larger wind

speed prediction errors of the GRASP model at the low and very-high wind speed

ranges respectively are negated in the power domain. It should be noted that wind

speed predictions could be improved at these regions by using (for instance) splines in

the regression, however this is out-with the scope of this preliminary analysis which is

mainly focused on wind power.

Looking at the performance in terms of the model height is also informative. Fig-

ure 4.8 shows that for wind speed forecasting the ECMWF gives the highest accuracy
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Figure 4.8: Wind speed RMSE at different model heights with a 500 minute smoothing
window. DA and DA-all are the disk average wind speed, and the wind farm spatial
average of the disk average wind speed respectively
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Figure 4.9: Wind power RMSE at different model heights with a 400 minute smoothing
window. DA and DA-all are the disk average wind speed, and the wind farm spatial
average of the disk average wind speed respectively

at 50 metres, with broadly similar performance across the heights compared to GRASP;

it is important to emphasise that these additional ECMWF height fields are linearly

interpolated from the nearest available model heights, roughly 10m, 31m, 54m, 79m

and 107m. For the LES model there is a pronounced improvement around the hub

height of the turbine, which signals that there is more skill in the vertical profile of the

LES compared to that of ECMWF. This is expected because the resolved wake effects

are most prominent at hub height.

For power predictions over the different model heights, as shown in Figure 4.9, there
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Figure 4.10: Wind power RMSE where ECMWF features are at 70m height and for
GRASP the disk averaged wind speed and wind direction at 70m are used for GRASP.
A is the raw NWP signal; B is the smoothed NWP signal over 400 minutes; C is the
smoothed NWP and wind direction; D is the smoothed NWP, PSD features, and wind
direction; E is the smoothed NWP, rolling variance, and wind direction

is again a reversal of roles where GRASP gives much improved forecasts at four key

model heights. Notably, the disk averaged wind speed variable is the best predictor of

wind power. The wind farm spatial average of the disk averaged wind speed forecasts

is not the best predictor here, which suggests that for this particular turbine the high

spatial resolution is providing some benefit.

Improving the Power Forecast

Thus far, the analysis has essentially excluded the high temporal resolution content.

Including the proposed rolling variance and PSD band features aims to capitalize on

this available information. Figure 4.10 is the culmination of the exploratory analysis;

it shows the progression from the raw NWP forecast, to the smoothed signal, to the

smoothed forecast with wind direction, then including PSD band features, or finally

rolling variance variables. For GRASP, the forecast used is the disk averaged wind speed

and wind direction at 70 meters, and for ECMWF the speed and direction forecasts are

based at 70 meters. The smoothing and rolling window used for both is 400 minutes.

Although these single-input models have highlighted the influence and value of

temporal smoothing, the errors can be clearly further reduced by incorporating wind
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direction and engineered features. As shown in Figure 4.10, incorporating wind direc-

tion into the model is valuable for the GRASP. For the ECMWF forecasts, a more

significant improvement is observed when including wind direction. It is suggested

that could be due to some of the directional effects of the farm, such as wake deficits,

are already resolved in the high resolution model, whereas for ECMWF these effects

are obviously excluded. The plot also illustrates that incremental benefit is achievable

for GRASP and even ECMWF using these PSD engineered features. However, using

the simpler rolling variance degrades performance across both cases. Overall at this

turbine, Figure 4.10 shows that accuracy improvements are achievable using the high

resolution LES data. Additionally, it is clear that to fully utilise the high resolution

temporal content of the signal more advanced models are required.

4.3.3 Wind Farm Power

Investigating the overall predictive skill, in terms of the wind farm power, can illustrate

the average performance of both source datasets. This section is based on an approach

whereby the wind farm power is modelled with the entire set of explanatory variables in

each case, and the inherent feature selection ability of the statistical learning technique

is relied upon to select the most relevant features. The three cases considered are

the separate GRASP and ECMWF datasets with smoothing and features engineered

as shown previously, and finally a combined model with access to all available NWP

inputs and features.

The dimensionality of the data in these three cases are an issue however because

of the large pool of available information; for the combined case we have an input

feature space of 820 variables, due to the amount of features engineered at each tur-

bine. Although the boosting algorithm provides an inherent feature selection capability,

empirically it is found that a more rigorous selection and feature reduction stage can

improve model performance by making them more parsimonious [30].

The feature selection stage employed here involves fitting a regularised GBM model

with all the available inputs and retaining only the features which have the highest

influence. A second (and final) model is then trained using these selected variables.
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Briefly, the variable influence in this tree-based algorithm is based on the number of

times a variable is selected for splitting in the model fitting, as well as the resulting

empirical reduction in the loss function as a result of these splits; the reader is referred to

[155] for more information. A complete list of the initial and reduced set of features can

be found in Appendix A. This process removes the influence of unnecessary predictor

variables where no additional valuable information is available but may have been used

sparingly in the primary model training. Regularisation levers in the GBM framework

provide the necessary framework for this feature selection stage and have been compared

to other more familiar algorithms such as penalised regression [156].

Figure 4.11 shows the results of the wind farm forecasting case study. From this it is

clear that, even in this context, the high resolution data is competitive with ECMWF.

However, the real value comes from using the information from both GRASP and the

standard ECMWF forecast, which gives significant improvements in RMSE over both

single dataset models. This is understandable given that the model is selecting the

best of both worlds in terms of information content. Lastly, a feature selection stage is

clearly shown to improve the accuracy of the 3 models tested.

The key result of this study is in demonstrating that it is possible to obtain im-

provements in typical average error metrics using a combination of ultra-high resolution

NWP data, modern state-of-the-art regression techniques, and typical weather forecasts

available to commercial operators. The GRASP model clearly adds new information

via the spatial and temporal resolution which, combined with the regression technique

and feature engineering, leads to improved forecast skill. However, this is a proof-

of-concept study and further work is required to both maximise the value of the high

resolution data, and benchmark against different techniques; For instance, assessing the

value of using GRASP in a typical commercial forecasting system, with an ensemble of

established NWP sources. More future work avenues are elaborated in Section 4.4.

4.4 Conclusions & Future Work

The value in post-processing ultra high resolution weather forecasts for power prediction

has been demonstrated, by improving the accuracy of point forecasts at Horns Rev I.
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Figure 4.11: Wind farm power results

The case study evaluates the performance of wind speed and power forecasting at

a single turbine in the array to first explore the dataset and then investigates the

performance of overall wind farm power prediction. These predictions are compared

against forecasts generated purely from the standard resolution ECMWF model.

The exploratory investigation uses single-input models to characterise the value in

temporal smoothing of both NWP sources which is shown to improve performance.

Generally, ECMWF proved to be better at prediction of wind speeds, and Whiffle’s

LES model GRASP superior at power prediction at this single turbine. It is revealed

that this is due to the high resolution model providing more accurate wind speed

forecasts in the cubic region of the turbine power curve, which is expected because the

wake effects resolved by the LES model are most prominent in this regime. Improving

the power forecast by including wind direction and engineered features to capitalise

on the high frequency content of the GRASP signals is investigated. Whilst wind

direction measurably improves both forecasts, further work is necessary to fully exploit

the temporal information in the LES model.

For wind farm power forecasting using information from both ECMWF and GRASP

proved to give significant increases in accuracy, especially with a feature selection stage,

compared to using information content solely from either single source, which are com-

parable to each other. This can be explained by the statistical learning technique model

selecting the most relevant information content from a diverse pool.
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Moving from the standard ECMWF forecast to the ultra-high resolution turbu-

lence resolving model represents a significant jump in resolution. For future work

looking to benchmark against all possible methods, it would be prudent to include a

comparison of a middle-ground between the two, and evaluate performance against a

mesoscale model [160, 161], typically used in commercial power forecasting systems.

Additional benchmark comparisons should certainly include direct comparisons with

ensemble members or an ensemble of weather prediction sources, however, it should

be noted that a robust numerical comparison in this context would necessarily require

inclusion of ultra-high resolution ensembles generated by the LES simulation. Such a

study would currently require significant computational power and time.

Another possible benchmark for future work is the Model Output Statistics (MOS)

method, which form the basis of the early wind power prediction tools [162]. As dis-

cussed in Chapter 2.2, conventional MOS techniques are difficult to apply to wind

power directly because of the non-linear power curve and bounded nature of the time

series [50]. However, it is particularly relevant to the wind speed forecasting aspect

of this work. Furthermore, wind speed predictions from such models could be used as

features for forecasting the power variable in a modern statistical learning framework.

In general, statistical post-processing is a common tool used in the wider weather

forecasting community; the goal is to remove systematic bias present in the global

NWP model for improved predictions at a specific location [43]. This process is typ-

ically carried out using Model Output Statistics, mentioned previously, via multiple

linear regression [44], using historical NWP (of varying resolution and skill) and mete-

orological observations [45]. More recent applications include using machine learning

for the regression [46] with varying success, post-processing ensembles for site specific

calibration [47, 48], and using multiple forecast source information [28, 49]. Conven-

tional post-processing techniques are difficult to apply to wind power directly because

of the non-linear power curve and bounded nature of the time series [50]; this motivates

the use of non-linear statistical learning techniques in this thesis.

In the context of this proof-of-concept study it is clear that it is possible to use

the high resolution data with machine learning post-processing models to improve on
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conventional wind farm forecasting by combining information content from GRASP

and ECMWF. To realise further improvements in the LES wind forecasts, a number of

promising venues for future research include evaluating the influence of the LES domain

size and the time-resolution of the NWP boundary conditions. The latter should be

updated to match the hourly resolution data recently made available from ECMWF

for commercial use. Furthermore, a probabilistic framework in which the LES model is

used to derive probability distributions of the forecast variables can have added value

for wind energy applications.

The high resolution LES weather model is shown to approximate much more closely

the underlying behaviour of the wind speed signal than the benchmark NWP. However,

the double penalisation of spatial and temporal errors mean that average error metrics

are perhaps not the best framework for evaluating these forecasts; event-based metrics

and applications in ramp forecasting of wind power could be very useful for optimally

leveraging the GRASP information content. Future work should consider this as well

as utilising the high spatial and temporal information in a modelling framework more

suitable to the data.

Engineered features such as the rolling variance which quantify the variability of

the signal could be more valuable in probabilistic forecasting for modelling the upper

and lower ends of the distribution via quantile regression [31,163]. Variability features

extracted from the power measurement time-series have also proven successful for very-

short term probabilistic forecasting, i.e. 15 minutes to 6 hours ahead [164]. Leveraging

temporal variability features extracted from the high resolution NWP then represents

a promising avenue for future work in terms of improving the skill of probabilistic

forecasts at extended lead times. A more in depth study focused on extracting value

from the temporal content of the wind forecast signal such as deep-learning [165],

instantaneous frequency transforms [159], or wavelet decomposition [166] techniques

should be explored. Finally, a hierarchical model where each turbine is used to generate

a consistent wind farm forecast could be an optimal way of using the high spatial content

of the data.
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Leveraging Turbine-level Data

for Probabilistic Wind Power

Forecasting

Chapter based on:

Gilbert, C., Browell, J., & McMillan, D. (2019). Leveraging turbine-level data for im-

proved probabilistic wind power forecasting. IEEE Transactions on Sustainable Energy,

11(3), 1152-1160.

In the previous chapter, point forecasts of wind power were generated from a high

dimensional NWP feature space, and future work highlighted the possibility of us-

ing a hierarchical framework for the optimal use of the input data. This chapter de-

scribes two methods for creating improved probabilistic wind power forecasts through

the use of turbine-level data. Although standard resolution NWP data is used, high-

dimensionality is now present in the output variable space; the two methods scale by

the number of turbines present in the wind farm, although to a different extent.

The first method proposed is a feature engineering approach, where deterministic

power forecasts for individual turbines are used as predictor variables when producing

non-parametric wind farm forecasts. This is a hierarchical method in the sense that

information from the turbine-level is used to supplement the available information set.
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However, forecast coherency, as discussed in Section 2.4.2 is not guaranteed. Therefore,

a second approach is proposed based on hierarchical coherency. In this second bottom-

up approach, density forecasts are produced for all turbines and the spatial dependence

between them is modelled in a copula framework to allow aggregation to the wind farm

level.

The turbine-level feature engineering method aims to improve the wind farm

forecast by generating new covariates from individual turbine data. Whereas the

bottom-up probabilistic method reflects the physical reality of the problem —

that the total wind farm power output is the sum of individual turbine generation

— and therefore have the added benefit of coherency. The main contributions of this

chapter are the two proposed forecasting methods and their evaluation. We hypothesise

that leveraging information from the turbine-level will enable us to improve forecast

performance at the day-ahead lead times, particularly since modern utility scale wind

farms are often distributed over large areas of complex terrain and as a result, individ-

ual turbines can experience different conditions from one another at any given time.

The advantages of the proposed hierarchical method are improved accuracy and co-

herency between turbine-level and wind farm total, however the results suggest that

nature of the wind farm (terrain, layout, size, ...) has a bearing on the extent of this

improvement.

This chapter is organised as follows: Section 5.1 details the forecasting methods

and benchmark models, Section 5.2 describes the case study based on two utility scale

wind farms in the UK, Section 5.3 presents and evaluates the results, and conclusions

are drawn in Section 5.4. Supplementary information provides additional detail and

results in Appendix B.

5.1 Forecasting Methodology

This section covers the two tested methods for leveraging turbine level data, the bench-

mark models, and the statistical learning techniques employed. The entire forecasting

methodology is summarised in Figure 5.1, which details the training process, input

data, and output forecast of each model. The turbine level feature engineering model
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Figure 5.1: Flowchart illustration of the entire forecasting model training methodol-
ogy. Wind Farm Level Power Data and Turbine Level SCADA data are only required
for model training and evaluation. The only inputs required to produce operational
forecasts are Numerical Weather Predictions. TB indicates turbine, WF is wind farm,
Det. is deterministic, and Reg. is regression

is generated using quantile regression, where NWP predictions are supplemented with

additional features; these include deterministic forecasts of individual turbine genera-

tion and wind farm-level generation.

The bottom-up probabilistic method involves estimating the full multivariate pre-

dictive distribution of generation from all turbines. To this end, the marginal distribu-

tion of each turbine is determined via quantile regression and the spatial dependency

structure is modelled via a copula. The wind farm-level density forecast is then gener-

ated by sampling from the multivariate distribution and taking the empirical distribu-

tion of the aggregated turbine-level samples. The Gaussian copula with both empirical

and parametric covariance matrices is examined, due to its simplicity and successful

use in similar studies [69, 72, 91]; vine copulas with a range of copula families are also

considered [92,99].

Explanatory variables xt common to both proposed methods and benchmarks are

derived from NWP wind speed and direction outputs at 10m and 100m. Features that

capture wind shear, veer, and phase errors in NWP are engineered inspired by [30,31].

Cubic spline basis functions are also included to capture diurnal bias in the NWP at the
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specific sites along the lines of [81]. Full details of all features are listed in Appendix B.

We use the GBM statistical learning technique to map the relationship between

the input features derived from the NWP and the target measured time series, i.e.

individual turbine or wind farm power measurements, as discussed in Section 4.2.2.

Turbine-level deterministic forecasts used as features in this study are produced by

GBMs fit with a squared loss function, and density forecasts are produced using GBTs

via multiple quantile regression, with spline interpolation to estimate the predictive

CDF; knots are placed at each predicted quantile and the boundaries, 0 and nominal

power.

5.1.1 Benchmark Models

Two highly competitive benchmark models are implemented based on wind farm level

power measurements and input features xt derived solely from NWPs. These features

include temporal averaging, shear and others; a full list is provided in Appendix B. The

first benchmark is a wind farm-level GBT quantile regression model, WF(xt), and the

second is an Analog Ensemble method, AnEn, described below. These benchmarks

represent the state-of-the-art in wind power forecasting and were informed by [30,32,77]

in particular.

The Analog Ensemble is a non-parametric algorithm that ranks similarity between

the current forecast and a training dataset of historical forecasts with concurrent mea-

surements. The k most similar concurrent measurements are used to construct an en-

semble, assumed to be equally likely, from which empirical quantiles can be extracted.

In this case, a mean GBM benchmark forecast is used as the explanatory variable and

the model searches for the most similar out-of-sample mean power forecasts in the

training dataset. The AnEn is also conditioned by lead time and the ranking metric

used is euclidean distance. This algorithm is similar to the k-Nearest-Neighbours re-

gression solution used in the second placed entry to the GEFCom2014 wind track [77].

For more information, the reader is referred to [78].
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5.1.2 Turbine-level Feature Engineering

Here, we present the method to engineer features based on individual wind turbines

to feed into the wind farm-level forecast. This approach comprises of two layers: in

the first layer, deterministic forecasts for individual wind turbines and the wind farm

as a whole are produced; then in the second layer, density forecasts for the wind farm

are produced by quantile regression using features from both NWP and the first layer.

The deterministic forecasts for individual wind turbines yi,t are produced using the

same explanatory variables xt as for direct wind farm-level forecasting benchmark.

These forecasts are combined via a weighted sum over all D turbines to produce the

deterministic wind farm forecast

zt =

D∑
i=1

ωiyi,t + εt , (5.1)

which completes the constitution of the supplementary feature set

xSUP
t = [xt, y1,t, ..., yD,t, zt] . (5.2)

The weights ω are estimated via elastic net regression motivated by the necessity to reg-

ularise turbine forecasts because they are highly correlated. The weights are calculated

via

ω = argmin
ω

{
1

2N
||Z−Yω||22 + λ

[
(1− α)

1

2
||ω||22 + α||ω||1

]}
(5.3)

where α and λ are hyper parameters requiring tuning, Z and Y are matrices of vertically

stacked instances of zt and yt [167]. The hyper parameter 0 ≤ α ≤ 1 controls the

weighting of the two penalty terms, in effect trading off between ridge (α = 0) and

lasso (α = 1) regression. Total regularisation is controlled by λ ≥ 0. The optimal

values of α and λ are determined through grid search and k-fold cross validation.

The final wind farm level density forecast, WFT(xSUP
t ), is produced using quantile

regression in the same way as the benchmark model but with the expanded feature

set xSUP
t . In order to refine the forecast skill, a reduced feature set selected from

xSUP
t is used. This selection process involves fitting a regularised GBM model with
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all the available inputs from xSUP
t , then selecting and retaining only the features that

have the greatest influence. Briefly, the variable influence is based on the number

of times a variable is selected for splitting in the tree-ensemble model fitting, as well

as the resulting empirical reduction in the loss function as a result of these splits; the

reader is referred to [155] for more information. This additional selection stage removes

superfluous predictors which provide no additional information and only deteriorate

forecast performance. The final variables retained in each model, and their relative

importance, can be found in Appendix B. Low shrinkage and interaction depth hyper-

parameter choices for the GBT algorithm provide a degree of regularisation and feature

selection from which the dimensions of the problem can be reduced substantially [156].

5.1.3 Bottom-Up Probabilistic Method

Here, we propose a novel approach to forecast the power from the wind farm by es-

timating the joint predictive distribution of production from all wind turbines in the

farm in a copula framework. The marginals of the copula comprise of density forecasts

which are produced for each turbine using quantile regression and spline interpolation

from the collection of quantiles. A range of copula functions are explored.

Let the random variable Yi denote the wind power generation at the ith turbine, and

yi the corresponding realisation (time indices are dropped to avoid notational clutter).

The predictive CDF of the ith turbine is

Fi(yi) = P (Yi ≤ yi) (5.4)

for i = 1, 2, ..D turbines. Sklar’s theorem [168] states that for any D-dimensional cu-

mulative distribution F (·) with continuous marginals Fi(·) there exists a unique copula

function C(·) such that

F (y1, y2, ..., yD) = C (F1(y1), F2(y2), ..., FD(yD)) , (5.5)

which separates the marginal distributions and dependency structures between the

marginals. This is useful because it decouples the problem into two constituent parts:
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1) estimating the marginal distributions for each turbine, and 2) estimating the depen-

dence structure via a copula function. Note that the copula function links uniformly

distributed marginals ui = Fi(yi) and therefore the calibration of the density fore-

casts that form the marginal distributions is critical. Equation 5.5 can be alternatively

written as

C(u1, u2, ..., uD) = F
(
F−1

1 (u1), F−1
2 (u2), ..., F−1

D (uD)
)

(5.6)

where F−1
i (·) is the inverse of the marginal distribution Fi(·). Therefore, via sampling

from the multivariate copula, pseudo-observations can be back transformed into the

original domain to produce spatial scenario forecasts of power generation [91]. Next we

introduce a range of options for the copula function.

Gaussian Copula

The Gaussian copula is given by

C(F1(y1), F2(y2), ..., FD(yD)) =

ΦΣ

(
Φ−1(F1(y1)),Φ−1(F2(y2)), ...,Φ−1(FD(yD))

)
(5.7)

where Φ−1(·) indicates the inverse standard normal distribution function and ΦΣ(·) the

D-dimensional normal distribution function with covariance matrix Σ and zero mean.

In this context, the covariance matrix encodes the spatial dependence structure for the

D-turbines which illustrates one of the reasons why the Gaussian copula is so popular:

the dependency structure is characterised by a single covariance matrix. It should be

noted that vi = Φ−1 (Fi(yi)) constitutes the transformation of the uniformly distributed

marginals into the Gaussian domain where vi ∼ N (0, 1). Therefore, we can estimate

the copula by calculating the sample covariance matrix for the transformed normally

distributed variables.

Using this framework, it is simple to sample from the multivariate distribution and

generate D-spatial scenarios of the future generation. Each of the samples are back-

transformed ûi = Φ(v̂i), and then transformed into the original power domain using
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the inverse CDF for the ith turbine

ŷi = F−1
i (ûi) (5.8)

which are summed over the D-turbines to give a snapshot of the wind farm forecast

generation ẑj for a jth out of K ordered samples j = 1, 2, ...,K. Using the empir-

ical distribution function the wind farm forecast with the correct underlying spatial

dependence structures is finally given by

F̂ (z) =
1

K

K∑
j=1

1(ẑj ≤ z) . (5.9)

We refer to this approach (based on the empirical covariance matrix) as EGCop in

the proceeding text. From observing the often noisy empirical covariance estimates in

this and other studies based on temporal scenarios forecasting [72,91], we also consider

a parametric exponential covariance structure – PGCop. This approach has shown to

be effective in increasing forecast skill by smoothing the empirical covariance matrix.

The parametric spatial covariance between two turbines is

Σi,j = cov(vi, vj) = exp

(
− ∆s

η

)
(5.10)

where ∆s is the spatial distance between turbines i and j in kilometres which are

extracted from a distance matrix, and the parameter η is found using using empiri-

cal covariance and distance information; the lower triangle, including the on-diagonal

terms, are extracted from the empirical matrix and distance matrix and the coefficient

estimation is formulated as a non-linear least squares regression problem, where the

coefficients are found by numerical optimisation. The parametric covariance matrix is

then constructed using the full spatial distance matrix between the turbines and the

coefficient estimate.
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Copula Vine

The vine copula, VCop, is a series of bivariate copulas in which a different distribution

family may be used for each pair. This allows for more complex dependency structures

with asymmetry and tail dependencies to be captured, at the expense of added compu-

tational cost compared to the Gaussian method. This flexibility has encouraged recent

studies considering vine copulas in the wind power forecasting context [92,99]. The vine

method works by factorising the D-dimensional density into the d(d− 1)/2 product of

bivariate copulas where each pair copula is estimated via maximum likelihood from a

set of distribution families (Gumbel, Gaussian, Student-t etc.). The optimal family for

each pair-copula is chosen by minimisation of the Akaike Information Criteria (AIC).

The implementation here follows [92] and for more detail please refer to [169].

5.2 Case Study

The proposed methodologies and benchmarks are tested on two large UK wind farms,

Wind Farm A (128MW capacity, 56 turbines) and Wind Farm B (70MW capacity,

35 turbines), which cover an area of approximately 20km2 and 15km2 respectively.

Training and testing data are partitioned at Wind Farm A into 12 and 4 month blocks

respectively and at Wind Farm B 15 and 6 month blocks, due to differences in data

availability. The test dataset covers the months of December to March for Wind Farm

A and April to September for Wind Farm B. Both test periods contain periods of high,

low, and variable wind speed, and results based on the shortest test dataset (Wind Farm

A) covers the most challenging period for forecasters. An example density forecast at

Wind Farm A using the parametric copula method is shown in Figure 5.2.

Generation data from individual turbine SCADA systems and the wind farm power

export meter are used at 30-minute resolution with instances of curtailment flagged

and excluded from the forecasting exercise. Data is also adjusted for availability so the

impact of outages on evaluation results is minimised. NWP data from the European

Centre for Medium-Range Weather Forecasts is extracted at the closest grid point to

each wind farm from 0 to 48 hours ahead in hourly intervals, with 2 issue times per
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Figure 5.2: Example density forecast using the parametric Gaussian copula approach
at Wind Farm A

day. Linear interpolation is used to match the resolution of the hourly forecasts and

half hourly power data. The methodologies described are implemented in R using the

packages glmnet, VineCopula, kknn, and gbm [170–173].

5.3 Results

The hyper-parameters of the GBT and AnEn models considered here are tuned in

order to minimise CRPS, subject to reliability. However, it is beneficial to tune hyper-

parameters for different quantiles separately. Here, we produce 19 GBT models for

quantiles from 0.05 to 0.95 in steps of 0.05. To minimise the burden of hyper-parameter

selection, only hyper-parameters for the 0.05, 0.3, 0.5, 0.7, and 0.95 quantiles are opti-

mised and then used for neighbouring quantiles. The shrinkage and tree depth hyper-

parameters are selected using k-fold cross validation and a grid search of the parameter

space on the training data. The number of trees is kept constant at 500, as is the
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minimum number of observations in each terminal node at 30, and the bag fraction at

75%. For the AnEn benchmark, the number of members in the ensemble is selected by

minimising the CRPS on the training data via k-fold cross validation.

For VCop, C-vine and R-vine structures were both tested. The C-vine, which uses

a star shaped configuration for each tree in the vine to connect the bivariate copulas,

consistently provided lower error metrics than the R-vine structure, so only results

from that structure are detailed here for brevity. The reason for this difference could

be that the R-vines, which are a hybrid of the star-shaped (C-vine) and simple path-

shaped (D-vine) dependency [169], are simply too complex and over-parameterised.

The performance of the parametric covariance model, elaborated below, supports the

suitability of simpler and regularised dependency structures. However, vine-copula

models are not the sole-focus of this chapter and more work is needed to verify the

reason for the difference in skill between the vine structures. Each bivariate copula is

selected using the AIC on the training data and then used to produce forecasts on the

test data. Full details of copula family selections are given in Appendix B.

At Wind Farm A, all of the proposed methods show improvements over the two

benchmarks across all lead times. The CRPS and improvement over benchmark metrics

at Wind Farm A are detailed in Table 5.1. The feature engineering method reduces

CRPS by 3.95% and 5.46% compared to direct wind farm-level forecasting using WF(xt)

and AnEn respectively. The only difference between the WF(xt) benchmark and this

method is the incorporation of features derived from turbine-level information. The

copula-based methods also consistently outperform the benchmarks, and the Gaussian

copula with parametric covariance matrix give the best performance of all models across

all lead-times with reductions of 5.01% and 6.50% over WF(xt) and AnEn respectively.

The calibration plots in Figure 5.3 reveal that the turbine-level feature engineering

and copula methods also marginally improve the reliability of the forecast compared

to the WF(xt) benchmark, and that these methods are all well calibrated, indicating

that reductions in CRPS are mainly due to increased sharpness.

At Wind Farm B, as detailed in Table 5.2, all proposed methods outperform the

benchmarks, though to a lesser extent than Wind Farm A. Unlike Wind Farm A, the
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Figure 5.3: Wind Farm A calibration plots

feature engineering approach provides the greatest improvement reducing CRPS by

1.24% and 2.39% compared to the WF(xt) and AnEn benchmarks respectively. This

improvement is also consistent across lead-times. The quantile bias plots, shown in

Figure 5.4a, illustrate that the model calibration is slightly diminished when compared

to the WF(xt) benchmark from the 15th-60th percentile, but otherwise provides im-

provement outside this range. The reliability diagram in Figure 5.4b reveals that the

proposed models are well calibrated and that variations between the models are small.

Bootstrapping [139] is used here to estimate the uncertainty of evaluation results.

The CRPS values from the test datasets are re-sampled with replacement (number

of samples equal to the size of the test dataset) and averaged 1000 times in order to

estimate the sampling variation of the average scores in Tables 5.1 and 5.2. The results

of this process are presented via boxplots in Figure 5.5 and show that improvement in

CRPS compared to benchmarks is pronounced at both sites.
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Figure 5.4: Wind Farm B calibration plots

Comparing the copula methods at both wind farms, the Gaussian copula with para-

metric covariance matrix produces forecasts with lower CRPS and superior calibration,

supporting parametrisation of the covariance matrix to produce a smooth spatial de-

pendency structure. The more detailed and flexible dependency structure of the copula

vine does not lead to further improvements in the forecast skill, and neither does the

Gaussian copula with empirical covariance suggesting that both of these models are

over parametrised given the volume of training data. The calibration of the vine cop-

ula in particular is poor compared to the WF(xt) benchmark, which is again reflective

of this over-fitting issue.

The regular layout of turbines at Wind Farm B is evident in the covariance matrix

for that wind farm, shown in Figure 5.6 and the layout of the farm can be found in

Appendix B. The block pattern is consistent with the evenly spaced rows of turbines.

The covariance is relatively high across the wind farm with only 6% of values below
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Figure 5.5: Boxplots showing the bootstrap sample distributions of mean CRPS for the
best benchmark and proposed model at both wind farms

0.7, which implies that there is little information to be gained by considering individual

turbines as forecast errors are very similar across the site. At Wind Farm A, as shown

in Figure 5.7, the covariance structure is more complex because of the wind farm’s

irregular layout and terrain; covariance is high within small areas of the wind farm but

weak between regions.

Deterministic forecast performance is summarised in Table 5.3. The median (p50

in Figure 5.2) of each predictive distribution is taken as the deterministic forecast and

evaluated in terms of Mean Absolute Error. As expected, the behaviour of the results

is very similar to the probabilistic case; at Wind Farm B, which is characterised by

a relatively simple layout and terrain, a modest improvement in forecast accuracy is

achieved by using turbine level information, whereas at Wind Farm A the paramet-

ric Gaussian Copula results in a significant improvement over the benchmark models.
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Figure 5.6: Parametric covariance matrix at Wind Farm B

Performance evaluations separated by forecast lead time and in terms of Root Mean

Square Error are available in Appendix B.

One feature of the bottom-up probabilistic method is the extended computational

time required to train all the models. In this study, with a desktop computer (8

virtual cores, 3.6GHz CPU, 16GB RAM) it takes approximately 10.5 minutes to fit the

required 19 quantile regression models using parallelization. This is the length of the

model training phase for the WF(xt) benchmark. The feature engineering method will

take 10.5 minutes plus an additional 3.5 minutes multiplied by the number of turbines.

The bottom-up hierarchical method training duration is 10.5 minutes multiplied by the

number of turbines. However, significant additional time is required to determine the

vine copula structure. Operationally the time required to issue a forecast is negligible

for all but the VCop method and re-training models would be required infrequently.

The case study results indicate that turbine-level data can be leveraged to improve

forecast skill, although the characteristics of the wind farm also have a bearing on the

performance of the different methods. At a site with simple layout where the response
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Figure 5.7: Parametric covariance plots at Wind Farm A. Note that the latitude and
longitude scales of (b) are indicative
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Table 5.3: Deterministic forecast performance based on the median (p50) of each pre-
dictive distribution — %∆ indicates improvement compared to specified benchmark
[MAE as % of max power]

Model Wind Farm A Wind Farm B
MAE %∆WF(xt) %∆AnEn MAE %∆WF(xt) %∆AnEn

WF(xt) [30] 9.69 – – 11.39 – –
AnEn [78] 9.88 – – 11.49 – –
WFT(xSUP

t ) 9.27 4.25 6.09 11.21 1.61 2.41
EGcop 9.16 5.47 7.28 11.26 1.12 1.92
PGcop 9.11 5.92 7.72 11.26 1.12 1.92
Vcop 9.19 5.09 6.92 11.27 1.09 1.90

of all turbines to the weather is similar, and therefore forecast errors are similar, only

a modest improvement in forecast skill is realised by considering turbine-level informa-

tion. In this situation there is no advantage in modelling the full spatial dependency

structure between forecast errors at individual wind turbines; it is sufficient to sup-

plement a conventional forecasting method with turbine-level features. However, at a

complex site modelling the spatial covariance structure provides greater improvement

— 5% greater in this case study — than feature engineering alone.

Importantly, these improvements come at very low cost. Turbine-level SCADA data

is routinely collected and stored by operators, and only modest computational power

is required to realise the benefits of the methods proposed here. Furthermore, turbine-

level data is only required for training, not in real-time operation, so there is no need

for new communications or data feeds, and third party forecast providers could enhance

their forecasts for individual wind farms with a static dataset of historic turbine-level

data. Importantly, the proposed framework is not constrained to GBTs as these can

be readily substituted with any other method of producing density forecasts.

5.4 Conclusions & Future Work

Turbine-level data provides valuable information about how a wind farm responds to

different weather conditions, and the nature of forecast errors, which is not accessible

when only considering a wind farm’s total power production. Two methods for im-

proving wind power forecasting by leveraging data from individual wind turbines are
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evaluated. The first is a feature engineering approach whereby deterministic forecasts

for individual turbines are aggregated and used as supplementary input variables to a

conventional wind farm-level model. The second is a novel bottom-up probabilistic ap-

proach which forecasts the joint predictive distribution of generation from all turbines

in a copula framework, which is then used to produce a wind farm-level forecast.

Both methods are shown to increase forecast skill compared to two highly com-

petitive benchmarks, particularly at the site with complex terrain. At Wind Farm A,

the Gaussian copula method with parametric covariance matrix reduces CRPS by 5%

compared to the best performing benchmark while the feature engineering approach

provides a 4% improvement. At Wind Farm B, both methods improve forecast skill by

approximately 1%. These improvements come at almost no cost as turbine-level data is

routinely recorded by SCADA systems and this data is only required for training fore-

cast models; no additional communications or data flows are required operationally.

Therefore, both utilities producing in-house power forecasts and third party forecast

providers could enhance their forecast performance using a static dataset of turbine-

level data.

Future work should explore the benefits of turbine-level data in spatio-temporal

forecasting and the dynamic evolution of covariance structures. For example, Pinson

et al. [69] propose an adaptive update scheme to track slow changes in temporal co-

variance, but fast changes require dependency structures to be conditional on suitable

explanatory variables or regimes. The turbine level probabilistic forecasts would also

benefit from a time-adaptive model which would enable better tracking of adjustments

in the power curves; this could be achieved by regular re-training of the multiple quan-

tile regression models in a rolling window style framework or via an online update

methodology [174]. The latter would require a stream of operational data which could

be very valuable, however would present different challenges such as dealing with miss-

ing or poor quality data in real-time; the very-short term forecasting literature provide

potential avenues to address this challenge [175].
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Chapter 6

Probabilistic Access Forecasting

for Improved Offshore Operations

Chapter based on:

Gilbert, C., Browell, J., & McMillan, D. (2021). Probabilistic access forecasting for

improved offshore operations. International Journal of Forecasting, 37(1), 134-150.

In the previous chapter we introduced copulas in a hierarchical wind power forecast-

ing framework to generate a multivariate spatial distribution. Here, we instead focus

on temporal correlations of forecast errors in the pursuit of statistical scenario forecasts

for a different application: offshore access forecasting. This chapter involved modelling

a high dimensional input feature space via feature engineering for the marginal fore-

casts, as well as high dimensional multivariate distribution for generating temporal

scenario forecasts. Improving access is a priority in the offshore wind sector, driven by

the opportunity to increase revenues, reduce costs, and improve safety at operational

wind farms. This chapter describes a novel methodology for producing probabilistic

forecasts of safety-critical access conditions during crew transfers.

As discussed in Section 2.4.4, access prediction is an emerging application in energy

forecasting. This is because operators are looking to improve safety around the transfer

decisions, and the industry-wide drive to operate more efficiently. The ability to access

turbines is dominated by the local wave climate, and sea-state forecasting plays a major
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role in the current scheduling practices in offshore wind, which is typically based on

deterministic forecasts of significant wave height.

The contribution of this chapter is in providing an end-to-end framework for gen-

erating access forecasts based on vessel monition during transfer up to 5 days ahead,

including quantifying the uncertainty due to weather conditions. To this end, a method

is developed to produce probabilistic forecasts of significant wave height and peak wave

period using statistical post-processing of NWP. Temporal and cross-variable depen-

dency is modelled in a copula setting to generate scenario forecasts. These are converted

to vessel specific forecasts using a data-driven vessel motion model which captures the

displacement of the vessel during transfer. An option for transformation of the vessel

motion forecast into an ‘access score’ is also presented. This score enables simple visual-

isation and communication of uncertainty information for decision-makers. A flowchart

summarising the entire modelling chain in both training and operation phases is shown

in Figure 6.1.

This chapter is organised as follows: Section 6.1 covers some background on main-

Numerical Weather
Predictions

Historic Ocean
Measurements 
(Wave buoy) 

Post Processing
Models

Vessel Motion Model

Historic Numerical
Weather Predictions

Historic Vessel
Motion

Measurements

Access Forecast
Visualisation

Operation Training

Figure 6.1: Flowchart of the modelling chain in operation and training
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tenance access and the metocean environment, Section 6.2 details the forecast post-

processing method, Section 6.3 describes the data driven vessel motion model, followed

by Section 6.4 where results are presented and discussed for a UK offshore wind farm.

Future work is outlined and conclusions are drawn in Section 6.5.

6.1 Access in the Offshore Environment

Typically, vessel dispatch is managed by a marine coordinator in a control room at

the operations base. This work aims to innovate in the decision space where coordi-

nators makes the scheduling/dispatch decision depending on the weather forecast, any

available live measurements, accrued experience of the site, and the list of work orders.

This schedule is typically made first thing in the morning and then updated at night for

the next day accounting for the completed work, any new tasks, and updated weather

forecasts. As the day progresses the marine coordinator has to deal will deviations as a

result of turbine inaccessibility, technician sea-sickness, or delays; these first two issues

are clearly partly due to metocean forecast errors. Innovations in probabilistic access

forecasting are then useful for both marine coordinators and schedulers.

Crew transfer referrers to the process of transferring an individual from a vessel to

an offshore structure. In the offshore wind industry, it is routine practice for techni-

cians to transfer from dedicated Crew Transfer Vessel (CTV) to a wind turbine via a

specially designed ladder which the CTV pushes up against. CTVs are equipped with

a rubber fender shaped to fit the ladder, and the vessels propulsion system is used to

create friction between the fender and the ladder in order to stabilize the vessel. Once

stable, the crew member may proceed with the transfer and climb the ladder to the

wind turbine. Safety is paramount in this dangerous environment and the individual

transferring, the vessel master, and marine coordinator all have the power to stop op-

erations if they are deemed unsafe. In contrast, it is common for contractual levers

to be in place between asset owners and operators specifying a significant wave height

threshold below which CTVs are expected to attempt transfers [176].

In order to plan and execute maintenance operations, including crew transfer, fore-

casts of the sea state are then required. In practice, these typically comprise of signifi-
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cant wave height at 1- or 3-hour intervals for a single location in space, representative

of the wind farm, for the next 48 hours. In this work three crucial environmental

factors for access quality are forecast: significant wave height, peak wave period, and

peak wave direction at 1 hour intervals up to 5 days ahead. The spatial resolution

is for a single location in space representative of the wind farm. Other factors, such

as lightning risk and visibility, are reserved for future work, as well as incorporating

information from wave spectra.

6.2 Sea State Forecasting Methodology

Here, the method for generating scenarios of significant wave height and peak wave

period are detailed. The method for post-processing wave direction for the vessel motion

model is also described. The NWP outputs used here include significant wave height,

peak wave period, and mean wave direction. It is common practice in contemporary

regression models to engineer additional features and use cross-validation for algorithm-

specific parameter tuning. For example, the NWP error characteristics suggest that

including leading and lagged lead-times will be beneficial.

We also consider rolling averages, rolling variances, diurnal, and seasonal effects.

However, the significantly increased dimensions of the input space necessitates feature

selection techniques and/or regularisation, which is discussed in the proceeding sections.

All engineered temporal features are calculated per issue time. A full list of features

used in each model can be found in Appendix C.

6.2.1 Parametric & Non-Parametric Regression

Three methods are considered for producing density forecasts of significant wave height

or peak wave period. All are based on post-processing NWP, i.e. learning the rela-

tionship between historical observations and concurrent weather predictions. One non-

parametric and two parametric density forecasting methods are compared. Parametric

techniques assume that the predictive distribution follows a parametric distribution

and the forecasting task is to predict the parameters of that distribution, whereas
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non-parametric techniques make no assumptions of this sort. Here, gradient boosting

machines are used for quantile regression, and two variations of generalised additive

models for location, scale, and shape are used to produce parametric density forecasts,

which are made distinct by the method of model fitting.

Gradient Boosting Machines

The use of gradient boosting machines, discussed in Section 4.2.2, as a statistical learn-

ing technique is motivated by the success of this algorithm in the energy forecasting

arena [30,31]. The predictive distribution is constructed for each variable and lead-time

from multiple quantile forecasts (probability levels: 0.01, 0.05, 0.1,..., 0.95, 0.99) using

cubic spline interpolation with knots at each predicted quantile and fixed boundaries

at zero and the maximum value observed in the training data. Monotone cubic spline

interpolation is used to guarantee a valid Cumulative Distribution Function (CDF) at

each lead time [177]. An example predictive CDF of significant wave height for a single

lead time is shown in Figure 6.2 using the multiple quantiles and spline interpolation

method, as well as a parametric predictive CDF which is discussed in the following

section.

Modelling extreme quantiles, those in the tails of the predictive distribution, is

challenging due to high estimation error of quantile regression at the extremes and

motivates the use of extreme value theory (e.g. Pareto-type tails) and parametric

methods. Here we found negligible difference between the described approach and use of

Generalised Pareto tails in terms of calibration, which require an additional parameter

to be estimated and does not remove the need to impose boundaries. Further work is

necessary to generate sharp and calibrated non-parametric models for the tail of the

distribution of metocean variables, which may well be more suited to sites with different

tail characteristics than the case study considered here. Recent advances in wind power

forecasting provide a suitable starting point for such analysis [178].

96



Chapter 6. Probabilistic Access Forecasting for Improved Offshore Operations

o
o
o
o

o
o
o
o
o
o
o
o
o
o

o
o

o
o
o

o
o

Hs [m]

F
(H

s
)

0
0

.1
0

.3
0

.5
0

.7
0

.9
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

non−parametric
parametric

Figure 6.2: Example predictive CDF for significant wave height at a single lead time,
based on either multiple quantile regression or distributional regression. In the latter,
the conditional distribution family is the Generalised Beta Prime

Generalised Additive Models for Location, Scale, and Shape

Since the main objective of the sea-state forecasting stage is to produce scenario fore-

casts, parametric regression models are considered because the tails of the distribution

are well defined compared to quantile regression, where tails require special treatment.

The tails of the distribution have a large impact on dependency structure estimation and

scenario forecast production. Additionally, the full distribution is described by fewer

parameters. To this end, two variations of generalised additive models for location,

scale, and shape are used. One uses maximum likelihood to optimise the model fit and

the other uses boosting; these are termed the gamlss [179] and gamboostLSS [180,181]

models respectively. The use of boosting in this case is employed to allow for the use

of feature engineering as discussed above.

Gamlss models are termed ‘semi-parametric’ models, because a parametric distri-

bution is assumed for the target variable and the parameters of that distribution may

include non-parametric smoothing functions of explanatory variables — this should not
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be confused with non-parametric probabilistic forecasts in the form of quantiles. This

framework is an extension of the more familiar generalised additive models [156] in that

any parameter of the distribution can be a function of the explanatory variables, not

just the conditional mean.

If we have observations y, in this case significant wave height or peak wave period,

the conditional density typically fd(y|θ) depends on up to four parameters; these are

the location (θ1), scale (θ2), and shape parameters (θ3, θ4). Distributions with less than

four parameters are supported. Note that the time index of the observation from the

above is dropped to avoid notational clutter. So, an additive regression predictor ηθi

is generated for each distribution parameter θi for i = 1, . . . , 4. Let xi be the pool of

Ni explanatory variables in the sub-model for θi, and gi(.) the link function, then the

model formulation of gamlss is

gi(θi) = ηθi = β0θi +

Ni∑
n=1

fnθi(xi,n), i = 1, . . . , 4 (6.1)

where the function fnθi is the effect of explanatory variable n on the distribution pa-

rameter θi. This can be linear or non-linear effects such as penalised splines; β0θi are

the intercepts of each sub-model. Typically, these models are fitted iteratively using a

combination of maximum likelihood, transformation of distribution parameters θ using

the inverse link function, and successive back-fitting of the predictor functions in each

sub-model ηθi [179].

However, when xi becomes large, feature selection procedures should be carried

out to avoid over-fitting and the computational expense of repeated model estimation

for feature selection can increase significantly. Model fitting based on component-wise

gradient boosting is an attractive solution to this problem [181]. Formally, given yt

observations and ηt additive predictors of the four sub-models, the gamboostLSS [180,

181] algorithm minimises the loss function L(·) i.e the negative log likelihood

1

T

T∑
t=1

L(yt, ηθ1t, ηθ2t, ηθ3t, ηθ4t) =
1

T

T∑
t=1

L(yt,ηt) . (6.2)
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Similarly to the gamlss model, for each distribution parameter a set of base learners

hi,n(·) (penalised splines, cyclical splines, linear effects etc.) are specified for each

explanatory variable, and the model formula can be different for each predictor. Where

L(·) is differentiable, the vector of the negative gradient ri is defined as

r
[m−1]
i = −

[
∂L(yt,ηt)

∂ηθi

]
t=1,...,T

(6.3)

where the boosting iteration is m and ηt = η̂
[m−1]
t are the current estimates of the

additive predictors. To begin the algorithm, additive predictors η̂
[0]
θi

are initialised with

offset values. The base learners hi,n(·) are fit to this negative gradient and only the best

base learner (n∗), according to the least squares error, is used to update the additive

predictor

η̂
[m−1]
θi

:= η̂
[m−1]
θi

+ λhi,n∗(·) (6.4)

where λ is a shrinkage parameter, or step-length, which is included for regularisation.

The additive predictor η̂
[m]
θi

is then set equal to η̂
[m−1]
θi

and the process is repeated for

the remaining θ parameters in this boosting iteration. Following this, the boosting

process is repeated until the user specified m = mstop is reached. Therefore, k-fold

cross-validation is used in this case to tune the total number of boosting iterations and

the value of the shrinkage term. This process is known as component-wise gradient

boosting, enabling an intrinsic feature selection capability (as some features are never

the best learner n∗ and therefore do not form part of the model), which performs well

with high dimensional input data.

For both parametric additive models explored, the selection of the base learner is

important, and types of learners available are very similar. Taking the gamlboostLSS

model notation, the typical base learner hi,n(·) specification in this case is a penalised

B-spline (i.e. the p-spline), with cyclical splines used for direction variables, and a

bivariate p-spline for the seasonal terms — time-of-day and day-of-year — to include

the smooth interaction of these variables. Taking the most commonly used base learner
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as an example, the p-spline is defined as

hp-s
i,n(xi,n) =

K∑
k=1

akBk(xi,n) (6.5)

where the kth B-spline basis function is Bk(xi,n), and ak are the associated spline

coefficients. The coefficients are estimated with penalisation to enforce a degree of

smoothness to the fit [182]. The exact method of penalised coefficient estimation varies

across the two implementations tested here; the gamboosLSS implementation is ex-

panded by [183], with information on the constrained cases, such as circular variables.

Various penalised spline implementations are explored and compared by [184], along

with details on the gamlss procedure. For a full description of each model formulation

used in the entire analysis, the readers are refereed to the supplementary material.

A key component of distributional regression is choosing an appropriate conditional

distribution family for the target variable. In the case of wave height and period re-

gression the distribution should support values on the positive real line. A number of

candidate families meeting this criteria are tested and the best performing candidate

identified by evaluating resulting forecasts in a cross-validation exercise. An exam-

ple predictive CDF of significant wave height using a candidate distribution family is

shown in Figure 6.2 for a single lead time, and an example density forecast is shown in

Figure 6.3a.

Benchmark Models

Two benchmark methods are included as both a ‘naive’ and ‘smart’ comparison. In

both cases the target variable is related to a corresponding single input from the NWP

source, e.g. significant wave height to significant wave height, and the target variable is

assumed to follow a Gamma distribution, as this was found to be a competitive model

during exploratory analysis and in related work [185]. These models are implemented

in gamlss, in which the variance of the distribution is also influenced by the mean due

to the parameterization. Therefore, the shape of the distribution is not constant and

both models are very competitive. The naive benchmark is a generalised linear model
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Figure 6.3: Example probabilistic forecasts of significant wave height using
gamboostLSS parametric regression. In 6.3a the intervals plotted cover specified prob-
ability level ranges, e.g. the 90%int. is the 5% — 95% quantile range

with a single linear base learner, this is termed the benchmark — glm. The second

benchmark is a simple generalised additive model with a single penalised spline as the

base learner, termed benchmark — gam.

6.2.2 Scenario Forecasting

Where probabilistic forecasts are used for multi-temporal decision making, scenario

forecasts are required [36]. Here, the Gaussian copula, introduced in Section 5.1.3, is

used although the marginals of the copula are now density forecasts separated by lead

time, i.e. this is now temporal dependency rather than spatial. An example scenario

forecast of significant wave height based on this technique is shown in Figure 6.3b,

where the temporal scenarios are those defined in Equation 5.8.

Here three configurations of the dependency are tested: 1) Independence — the

benchmark where no temporal correlation is embedded in the high dimensional depen-

dence, 2) Linked — the full temporal inter-dependency between significant wave height

and peak wave period is modelled across the lead times, and 3) Temporal — the depen-

dency is modelled for each variable separately across the forecast lead times. The linked

case is motivated by the idea that the uncertainty is linked between the variables, be-

cause they are summary statistics from the same source wave spectrum forecast; again

the cross-variable dependency matrix is simply estimated using the sample covariance
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matrix of the transformed normally distributed variables.

6.2.3 Wave Direction Regimes: Clustering & Logistic Regression

Wave direction can have a significant impact on vessel motion and on the characteris-

tics of NWP errors, particularly if wave direction is associated with different physical

processes. This section describes the wave direction post-processing strategy. For the

purpose of the vessel motion model, a small number of distinct directional regimes are

considered rather than incorporating direction as a continuous variable.

Peak wave direction is incorporated by first clustering the wave buoy measurements

into two distinct regimes, motivated by the fact that the wave climate at the case study

location is dominated by locally driven wind waves or waves from the swell, though

this technique could easily be extended to wave climates with more than two distinct

regimes. Logistic regression is then used with NWP to predict the cluster membership

at any forecast lead time. Therefore, wave direction prediction is simplified into a

straightforward classification problem. Note, here we are using a forecasting model to

predict regime membership based on a clustering model. Alternatively, it is possible

to directly use distance metrics from the NWP forecasts as they become available and

the cluster centres based on the buoy measurements. However, this would not account

for biases present between the site measurements and NWP forecasts. Comparing this

alternative approach is reserved for future work.

To cluster the measured variables, we define the input space zt = (ωpt , Tpt , Hst),

where the three environmental factors are peak wave direction, peak wave period, and

significant wave height respectively. The k-means clustering algorithm is used to define

the two regimes [156]. This algorithm generates disjoint regions Rk that collectively

cover the input space spanned by zt. Note that all input variables are scaled and the

wave direction variable is linearised. Since, in this case there are only two regimes

defined, logistic regression is used to determine the probability of regime membership.

The gradient boosting machine described above is used as the logistic regression tool

with inputs features engineered similar to the continuous target variable regression

case. Again, a full list of input features for the wave direction regime forecasting
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can be found in the supplementary material. For more information on the regression

technique, please refer to [154].

6.3 Vessel Motion During Transfer

Accessibility is constrained by vessel motion during push-on and transfer. Therefore,

in order to provide forecasts of accessibility to both wind farm and vessel operators it

is necessary to forecast the sea conditions and understand how individual vessels will

respond in those conditions. Here a data-driven approach to vessel motion modelling

is undertaken.

Distributional models using generalised additive models for location, scale and

shape, described in Section 6.2, are used to learn the relationship between met-ocean

observations and the vessel motion data (heave peak-to-peak) during push-on instances.

The main mode of movement during push-ons which impede transfers is vertical dis-

placement of the vessel fender and the turbine transition piece due to the oncoming

wave field, this can result in a ‘slip’ event which can have serious safety implications.

This motivated the use of the heave motion of the vessel as a key transfer quality and

safety indicator. The other degrees-of-freedom can clearly have an impact on transfer

quality, but this is reserved for future work.

In operation, forecasts from Section 6.2, i.e. the scenarios of wave height and period,

as well as the forecast regime membership, are used as inputs to drive the vessel motion

model; this process generates vessel-specific scenarios of motion during transfer. A

visualisation stage, discussed briefly in Section 6.4 completes the forecasting process,

as shown in Figure 6.1.

6.4 Case Study

The methodology is tested at an east coast offshore wind farm in the UK. Ocean

measurements are collected from a Centre of Environment Fisheries and Aquaculture

Science wave-buoy within the site boundary. NWPs of the wave climate from the

European Centre for Medium-Range Weather Forecasts are extracted at the closest
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grid point to the site from 0-120 hours ahead at hourly intervals, with 2 issue times per

day.

Vessel telemetry data is from two purpose built offshore wind service vessels with

the same specification: length 19.2m, width 8.2m, maximum draft 2m, passengers 12,

aluminium catamaran; this data is collected during the construction phase of the wind

farm, which contains around 700 push-on instances alongside concurrent wave buoy

measurements. Transfer events are identified using the measured push-on force as well

as time-stamped swipes from technicians’ ID cards when transferring. The vessel’s

average peak-to-peak heave is determined during each push-on attempt and used in

the following analysis. The time resolution is reconciled by matching transfer events to

the closest buoy measurement in time.

For the regression problems the data is partitioned into 4.5 (January 2013 - June

2017) and 1 (July 2017 - June 2018) year(s) for training and testing respectively. This

allows for sufficient data in the modelling of the copula and an entire year to evaluate the

subsequent forecasts in out-of-sample tests. To make decisions on the best configuration

for each forecasting task and to tune the algorithm specific hyperparameters, 4-fold

cross-validation is used on the training data only. To refresh, the four main forecasting

tasks are: 1) significant wave height regression, 2) peak wave period regression, 3) wave

regime clustering & logistic regression, and 4) copula dependency modelling.

The method is implemented in R [170] using the package ProbCast, which is in

development, although a ‘beta version’ is available with accompanying scripts for this

methodology [186]. ProbCast is developed for the modelling, evaluation, and plot-

ting of probabilistic forecasts, using gbm, gamlss, and gamboostLSS for the regression

models [170,179,180].

Probabilistic density forecasts of significant wave height and peak wave period are

evaluated according to the principle that the forecast should be optimally sharp subject

to calibration [127]. This concept and the appropriate univariate and multivariate

scoring rules are discussed extensively in Section 3.

For the univariate density forecasts, implementing quantile and parametric regres-

sion for density forecasting introduces a compromise when using evaluation metrics for
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comparison. Here the Probability Integral Transform (PIT) is used to measure the

calibration of the full distribution, motivated by the direct impact of this variable on

the dependency structure, and the pinball loss score is used to measure the sharpness

and calibration at discrete quantiles of the distribution averaged over all lead times.

It is also important to understand the growth in the uncertainty of the density

forecasts as a function of lead time. Here, sharpness is tested in terms of average

interval width plots [128]. For an interval with a nominal coverage rate of 1-β the

interval size is

δ
(β)
t = ŷ

(1−β/2)
t − ŷ(β/2)

t (6.6)

and this measure is averaged over all cases, grouped by each lead time. It is important

to note that this measure of sharpness is a final illustrative layer to the forecast which

is proven to be sharp and reliable via the pinball loss and PIT histogram respectively.

Scenario forecasts are evaluated via multivariate probabilistic forecast verification

methods. Two metrics capable of evaluating the trajectories are the Energy Score (ES)

and the p-Variogram Score (VS-p); both are evaluated per issue time of the forecast.

For more information regarding these scores, the reader is referred to Section 3.2.2.

The regime classification forecasts are evaluated in terms of the Area Under the

Receiver Operator Curve (AUROC) [187]. In evaluating logistic regression, the ROC

curve plots the true positive rate versus the false positive rate for different threshold

values at which the predicted probability is cut to define the two prediction classes.

The maximum area AUROC is equal to one, and optimal forecasts are as close to this

value as possible.

6.4.1 Sea State Forecasting

Here we detail the results of the wave height, period, and direction forecasting tasks

including density, scenario, and regime membership forecasting.
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Parametric & Non-Parametric Regression

To make decisions on the best regression technique for significant wave height and peak

wave period, the calibration and sharpness are compared by 4-fold cross-validation on

the training data. Cross-validation is also used to tune the model hyperparameters of

the boosting methods and to refine the model formula for the gamlss model. For the

parametric regression techniques, the conditional distribution of the measured variable

is also defined using cross-validation. A large range of distributions with (0,∞) support

were tested. For both significant wave height and peak wave period the Generalised

Beta Prime distribution [179, 188] produced the best forecasts in terms of sharpness,

subject to calibration. It is a flexible four parameter distribution, which nests other

common distributions. For regression model selection in the case study, the calibration

of the density forecasts is crucial due to the direct impact on the dependency structure

and therefore scenario generation quality.

For the significant wave height density forecasting task, Figures 6.4a and 6.4b show

the pinball loss in both cross-validation and testing respectively, which reveals that

the two boosting models reduce the pinball loss across the quantiles evaluated, com-

pared to the gamlss model, although to a lesser extent at the tails of the distribution.

Comparing the gbm and gamboostLSS techniques the former gives lower error scores in

cross-validation and the latter in testing, although the differences are generally minor

and only evident in the p30 — p70 range. The benchmark — gam model is very com-

petitive, and provides significant improvement over the naive benchmark — glm; the

only difference in these models is a simple change of base learner from a linear effect

to a penalised spline.

In Figures 6.4c and 6.4d the PIT histograms are presented; comparatively, the ad-

vanced parametric regression techniques result in better calibrated forecasts, especially

in the tails of the distribution because of the difficulty in estimating quantile regression

models in this region. Both benchmark models here show poor calibration, specifically

under-confidence. Comparing the benchmark—gam and the gamlss model, the relia-

bility is much improved for latter even though the models are somewhat similar; this

validates the choice of the Generalised Beta Prime distribution. However, the two also
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(a) Pinball loss — cross-validation data
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(b) Pinball loss — test data
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(c) PIT histogram — cross-validation data
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(d) PIT histogram — test data

Figure 6.4: Results for all lead times — significant wave height density forecasting by
regression model

have different input features, which can be found in the supplementary material.

Based on the cross-validation results, the density forecasts of significant wave height

obtained via gamboostLSS regression are selected for use in the later stages of the access

forecasting process, based on the principle that density forecasts should be sharp subject

to calibration. The gbm approach has a lower pinball loss, but the calibration is poor,

notably in both tails of the predictive distribution, and is excluded as a result. The

gamlss approach is well calibrated but has a higher pinball loss than gamboostLSS.
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For peak wave period regression, the pinball loss scores are shown in Figures 6.5a

and 6.5b for cross-validation and testing. In cross-validation, the lowest pinball loss is

more clearly defined using the gradient boosting machine regression technique. How-

ever, in testing the two boosting models return very similar pinball loss scores across all

the tested quantiles. It should be emphasised that the gbm quantile models are directly

optimised to minimise this score. A similar behaviour to the wave height case is found

for two benchmark models.

Figures 6.5c and 6.5d detail the PIT histograms for the peak wave period regression

models under testing and cross-validation. Clearly again in this case, the calibration

of the gbm model in the tail region is comparatively poor against the two advanced

parametric regression techniques. However, in testing all of the models here present

deviations from uniformity. The calibration of two benchmark models is again found to

be poor. Based on the cross-validation results, the forecasts based on the gamboostLSS

regression are selected for implementation due to producing sharp forecasts subject to

calibration.

In Figure 6.6 the sharpness, or average interval width, is plotted against forecast

lead-time for both significant wave height and peak wave period during testing. The

forecast models evaluated are the final gamboostLSS densities chosen for further im-

plementation. They show that the uncertainty grows with lead time, which is to be

expected. This is particularly pronounced for significant wave height, shown in Fig-

ure 6.6a, where the average interval size grows considerably; the 90% interval more

than doubles in average width from 0.5m at issue time to over 1.2m at 120 hours-

ahead. For this reason, and because we are motivated by day-ahead decision-making,

we only consider lead-times of up to 120h despite NWP with lead-times of 120h–240h

being available. For wave period in Figure 6.6b, the growth of the interval size is not

as pronounced, however the interval widths have a greater spread at the earliest lead

times.

An important aspect of using the gamboostLSS method, is that it is very memory

intensive; it was not possible to model the density forecasts using a conventional desk-

top computer (8 virtual cores, 3.6GHz CPU, 16GB RAM), a cloud instance was used
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(b) Pinball loss — test data
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(c) PIT histogram — cross-validation data
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(d) PIT histogram — test data

Figure 6.5: Results for all lead times — peak wave period density forecasting by re-
gression model

instead. However, this problem can be significantly reduced by reducing the number

of input features, reducing the number of cross validation folds, reducing the number

of boosting iterations, and by using a distribution defined by fewer parameters. The

gbm models were fit using a desktop, although 21 quantile models are required for each

fold. Finally the gamlss model is computationally cheap, due to the reduced number

input variables. Operationally, the time required to issue a forecast is negligible and

re-training models would be required infrequently.
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(a) Significant Wave Height
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(b) Peak Wave Period

Figure 6.6: Evaluation of the sharpness for gamboostLSS density forecasts vs lead-time
during testing. The width of the prediction intervals increases with lead-time as the
forecasts becomes less confident further into the future

Scenario Forecasting

As discussed in Section 6.2.2, for scenario forecasting three configurations are tested:

independence is a benchmark, linked indicates that the full temporal inter-dependency

between the significant wave height and peak wave period is modelled, and temporal is

where the dependency is modelled for each variable separately across the lead times.

Again, 4-fold cross-validation is used to determine the most appropriate dependency

structure.

In Table 6.1 the scenario forecast scores are presented, where the scores are first

separated by the multivariate target variable. For significant wave height it is evi-

dent in training and cross-validation there are improvements in modelling the temporal

dependency structure across all scores. Comparing the scores, as expected the improve-

ment of modelling the temporal dependency is more significant in the case of both the

variogram scores than the energy score because of the better discriminative ability of

covariance structures of the former. For evaluation of these forecasts 1000 scenarios are

used because, empirically, the mean and standard deviation of the energy score were

found to stabilise around this point. In the case of temporal scenarios for significant

wave height it takes approximately 0.6 seconds per issue time to generate 1000 samples

and transform them into the original domain using the desktop described previously.

Table 6.1 also details the results of the peak wave period scenario forecasting; these
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follow a similar profile to the significant wave height case. The temporal dependency

provides improvements against the independent case, especially when measuring im-

provement via the variogram scores.

So far, the results discussed are only for temporal dependency on a per-variable

case. The full multivariate distribution of wave height and period is also evaluated

in Table 6.1, where the value in modelling the linked dependency is compared against

the temporal and independent cases. Note, that the measurements and forecasts are

first standardised before calculation of these scores due the different scales of the two

quantities. Interestingly, accounting for the cross-variable correlations result in an

improved energy score in cross-validation compared to both cases, but the temporal

correlation performs best in testing. This is due a change in the cross-variable error

correlations in the test data; an ECMWF model update (cycle 43r3) occurs at the

beginning of our test period, with statistically significant improvements in both the

wave height and period variables, which likely causes this change.

The temporal correlation matrices for both wave height and period scenario fore-

Table 6.1: Multivariate forecast evaluation results. Linked means the temporal depen-
dency between significant wave height and peak period is modelled. Best results during
testing are in bold. Note that for the joint wave height and period target variable case,
the marginals and observations are first standardised before applying scoring rules

Target Variable Dependency Data ES VS-1 VS-0.5

Wave Height
Independent

CV 2.086 12.706 15.926
Test 2.009 13.618 15.494

Temporal
CV 2.059 3.106 5.763
Test 1.975 3.317 5.476

Wave Period
Independent

CV 7.872 169.469 51.650
Test 8.396 190.586 56.933

Temporal
CV 7.844 105.130 34.515
Test 8.376 130.679 40.209

Independent
CV 6.437 326.113 125.504
Test 6.317 321.320 125.481

Wave Height
Temporal

CV 6.419 272.391 97.766
& Wave Period Test 6.303 273.202 99.671

Linked
CV 6.415 268.780 97.119
Test 6.305 272.617 100.001
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casting cases are plotted in Figure 6.7; these are the matrices used to generate scenarios

over the test dataset. Here, the dependency characteristics of the uncertainty across

the lead time differs between the variables, in that the correlation between consecutive

lead times is clearly more prominent in the wave height case. However, they also share

some subtle characteristics; the correlation strength persists to a greater extent further

ahead in the forecast lead times, and there is clearly a strong diurnal pattern, especially

in the peak wave period case. Note that time-of-day, seasonal, and interaction effects

are included in the marginal distributions regression formulation.

The energy score improvements for the wave height scenario forecasting task are

plotted in Figure 6.8a, compared against the independence benchmark. Here, a sim-

ple block-bootstrapping approach is used to estimate the significance in the forecast

improvement [139]. The scores are split into non-overlapping blocks of 7-days length,

to account for correlation in the governing weather patterns. These blocks are re-

sampled with replacement and then forecast improvement is determined. This process

is repeated 1000 times to estimate the sampling variation of the score improvement in

Table 6.1. The results are presented via boxplots in Figure 6.8a and clearly illustrate

that modelling the temporal dependency is valuable; the sampling variation is greater

during testing because of the smaller size of the dataset. The improvement in peak wave

period forecasting against independence is also plotted on Figure 6.8b; it is reduced
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Figure 6.7: Temporal correlation matrices during testing
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compared to the significant wave height case.

A comparison of the energy score improvements for the wave height and period case

is shown on Figures 6.8c and 6.8d, against the independence benchmark. The results

confirm that in cross validation the linked dependency structure provides improvements

over the temporal case, however during testing the cross variable error dependency

changes and the simpler temporal dependency structure performs better. Again, this

is likely due to the ECMWF model update (cycle 43r3) which changes the structure of

the uncertainty inter-dependency between the variables. Time-adaptive estimation of

the covariance matrix could track changes such as this in the long-term, however this

behaviour is closer to a regime change.

Clustering & Logistic Regression

Wave direction forecasting for input to the vessel motion model is reduced into two

stages, clustering the measured wave buoy data and then applying logistic regression

to predict regime membership based on NWP data. Please refer back to Section 6.2.3

for more details. When using k-means clustering, the random assignment of the cluster

centres at the start of the algorithm can lead to different results if the data-set is small

or not amenable to a clustering algorithm. Therefore, in this case the algorithm was

set with different random seeds over 4 tests and 98.8% of data points in a large data-set

(>140,000 rows) are assigned to the same cluster.

The defined regimes are plotted in Figure 6.9a via a parallel coordinate plot which

allows for visualisation of circular variables [189]. Clearly the two regimes are separated

mostly by peak wave direction; waves from the north east which are driven by the swell

and waves driven by the prevailing south westerly winds. The swell driven waves also on

average have longer periods and both regimes have similar average wave heights. The

repeatability of the clustering using the measured data and the physical explanation

give confidence in the defined regimes at the site.

Post-processing results for the logistic regression are shown in Figure 6.9b via the

ROC curve for the testing and cross-validation phases; the AUROC is very close to one

for both cases, being 0.97 and 0.95 in cross-validation and testing respectively. This
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(b) pwp — temporal only
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(c) swh & pwp — cross validation
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Figure 6.8: Boxplots showing the block-bootstrap sample distributions of Energy Score
improvement for significant wave height (swh), peak wave period (pwp), and coupled
(swh & pwp) scenario forecasting. The benchmark in all cases is the independence case,
with no temporal correlation. Linked means the temporal inter-dependency between
significant wave height and peak period is modelled
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Peak Wave Direction Significant Wave Height Peak Wave Period

(a) Parallel coordinate plot showing the
regime membership of the measured data after
k-means clustering [189]. Clearly the regime
separation is mostly defined by peak wave di-
rection
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casts of the cluster membership for all lead
times. Results for the AUROC are 0.97 and
0.95 for the cross-validation and testing re-
spectively

Figure 6.9: Sea-state regime classification plots — regime forecasts are used in the
vessel motion model

means that for an optimally defined threshold probability, the classification provides a

high rate of positive predictions when the measured value is positive, and a low rate

of positive predictions when the measured value is negative. The optimal threshold

probability which is used to split the predicted probability space into the predicted

regimes is defined by the one which maximises accuracy, so assuming there is an equal

weighting to false positive predictions and the false negative predictions.

6.4.2 Vessel Motion

Here, we explore the mapping of the relationship between the measured significant wave

height at the buoy and vessel motion measurements during transfer. Several vessel

motion models are tested, starting from basic linear regression models and leading

to truncated regression models with penalised smooth base learners in the gamlss

environment. Truncated regression is used to respect the reality that vessel heave peak

to peak measurements are always positive. The Akaike Information Criterion (AIC) is

used to measure goodness of fit

AIC = 2k − ln(L̂) , (6.7)
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Figure 6.10: Plot of vessel motion during push-on and concurrent ocean measurements.
The distributional model fit is for the tr-T-5 model in the south west regime with a fixed
peak period. Note that push-ons only occur in a small range of the possible significant
wave height forecast values and the variance is capped at the highest observed significant
wave height. See Sections 6.4.3 and 6.4.3 for more detail on dealing with this effect

which rewards the model with the highest likelihood function L̂, penalised by the num-

ber of parameters k used to estimate the model; overfitting is then less likely for the

model with the minimum AIC. As shown in Table 6.2, the minimum AIC of the models

tested is found using a student-t distribution, truncated at 0.

The marginal effect plot of significant wave height is shown in Figure 6.10 for

the best model (tr-T-5) with peak period and regime membership held constant; the

motivation behind using a model with conditional heteroscedasticity is clear, as the

uncertainty grows with significant wave height. Importantly, this model uses penalised

varying coefficient splines for the location and shape parameters, where the coefficients

vary by the regime membership. This allows for the regime membership to influence

the model fit more flexibly than varying the intercept terms and the resulting shape of

the uncertainty to change depending on the regime membership.
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6.4.3 Forecasting Vessel Motion during Transfers

Here, the outputs of the access forecasting methodology are described. From Figure 6.1

the last stage of the modelling is a visualisation stage, which is described. This involves

transforming the raw vessel forecast scenarios to make the uncertainty information more

interpretable.

Raw Output

To generate the vessel motion scenarios, the forecast sea-state scenarios and forecast

regime membership are used to drive the vessel motion model. This allows for a forecast

estimation of the heave motion of the vessel during transfer. In the presented case, the

mean output of the vessel motion model is taken for each scenario input by sampling

each generated distribution due to the asymmetric nature of the truncated distribution.

A scenario forecast, generated via the mean output of the vessel motion model, is

presented in Figure 6.11 and illustrates the motivation behind the visualisation stage;

this uncertainty information is difficult to interpret by any decision maker. However,

the raw output could be useful for driving scheduling optimisation tools for instance.

An important subtlety of the vessel motion model presented in Figure 6.10 is that

data is only collected in a sub-range of the significant wave height marginal distribution

at the site; this is a result of push-ons only being attempted in conditions conducive to

safe transfer. For forecast values outside this range a threshold significant wave height

feature (equal to the maximum observed significant wave height during push-on) is used

for the shape parameter in the vessel motion model. This means that stable predictions

are obtained across the full distribution of forecast significant wave height values at the

site. However, the vessel forecast scenarios above this threshold must be then processed

to represent a zero chance of transfer.

Uncertainty information during transfers is explored here, although the conditional

mean of displacement is used for the operational forecast. Future work should consider

the incorporation of uncertainty in the vessel motion model, for instance by sampling

the vessel motion distribution.
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Figure 6.11: Example scenario forecast of mean vessel motion during transfer

Visualisation

Numerous visualisation options are possible based on the forecast from Figure 6.11. The

motivation and end-user requirements must be considered before visualisation options

are explored; end-users require the forecast and associated uncertainty to be commu-

nicated as simply as possible, and the motivation is to make the forecast interpretable,

as well as processing the scenarios so that those which have a zero chance of success,

according to the historical data, are conveyed as such.

Here, a user-defined function for transforming the vessel scenarios into classes is

shown in Figure 6.12a. This transformation is flexible and can be based on the vessel

capabilities, specific mission, experience of the site, and appetite for risk. Addition-

ally, to distil the information content the detailed forecast visualisation focuses on the

upcoming day with extended lead times summarised to the right of the main plot.

An example of the resulting transfer quality forecast is shown in Figure 6.12b.

Here, the bars quantify the percentage of scenarios belonging to each class at every

time step. Details on conditions further into the horizon are shown via a panel plot
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Figure 6.12: Visualisation stage plots

where the colour of each panel indicates the dominant class over the next 4 work-days.

The advantage of the classification method is that every scenario is accounted for and

therefore the end user views a complete picture of the spread of possibilities at every

time step. Note that the economic impact of the forecasts is not currently considered,

which highlights an important avenue of future work arising from this research.

6.5 Conclusions & Future Work

This chapter describes a novel forecasting solution for predicting safety-critical condi-

tions during transfer for offshore operations with a case study at an east coast wind

farm in the UK. The proposed access forecasts predict vessel motion during transfer,

accounting for weather uncertainty, up to 5-days ahead. Sharp and calibrated den-

sity forecasts of peak wave period and significant wave height are generated by post-

processing Numerical Weather Predictions, with boosted generalised additive models

for location, scale and shape outperforming non-parametric methods. Scenario fore-

casts of these variables have then been produced using the Gaussian copula to model

temporal dependence and used as inputs to a data-driven vessel motion. Modelling

cross-variable dependency added value in terms of the multivariate skill scores during
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cross validation, but not in testing. A method of visualisation of these forecasts is also

suggested to best communicate the information content for end users.

Future work on the methodology should consider the feasibility of a turbine (or

region) specific forecast for large wind farms where access is constrained by local

bathymetry. Alternatives to the vessel motion model where data is not available should

be considered, as well as investigating the value in transforming the motion to the point

of contact with the fender and ladder. Embedding the forecasts into a schedule opti-

misation tool or a cost/loss model with a corresponding power forecast could further

support offshore wind farm operations and be used off-line to demonstrate the value in

accounting for the uncertainty in access conditions. Future visualisation options should

also incorporate the results of any cost/loss model, which would enable decision makers

to anticipate the economic impact of dispatch decisions based on the forecasts.

Extending the forecast horizon beyond 5 days is of interest, though it may be

necessary to consider lower temporal resolution forecasts, e.g. daily accessibility, due

to the reduced skill in NWP at these lead-times.

Some important meteorological factors that restrict offshore access have not been

considered here, such as lightning, visibility, and surface wind speeds; forecasts of

these should be provided to decision-makers. The forecasting in this paper is based

on summary statistics of the wave field; an interesting extension would be to use the

forecast wave spectrum from the NWP, which would enable a more complete picture

of expected conditions.

Regarding sea-state forecasting, the high-dimensional nature of the dependency

structures mean that alternative copulas are somewhat limited. Options include: cop-

ula vines, though this would increase computation cost significantly for both fitting

and sampling; the empirical copula, in which training data are re-sampled to produce

scenarios; or using the Gaussian copula with parametric covariance matrices, though

the diurnal patterns observed in the empirical covariance (Figure 6.7) suggest that this

would not be trivial. Lastly, the dependency structure of the scenario forecasts could

be made conditional on the dominant forecast direction regime at the site, which could

improve the quality of the scenarios.
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Regime Switching Multivariate

Wind Power Forecasting

In the previous chapter we discussed the potential in future work for regime-switching

covariance dependencies to be leveraged in an offshore access forecasting context. Here,

we investigate their potential for day-ahead multivariate forecasting of wind power; we

forecast simultaneously 92 utility scale wind farms over 97 lead times in the GB network

accounting for temporal and spatial correlations. Therefore, we model a high dimen-

sional distribution in which we have the classic p >> n problem, i.e. the dimension

is much greater than the sample of observations. To this end, calibrated density fore-

casts of wind power are produced and evaluated using non-parametric methods at each

wind farm, the temporal and spatial dependencies are then mapped using a Gaussian

copula, and a regime switching method is elaborated. The multivariate forecasts are

finally evaluated via proper scoring rules.

As discussed in Section 2.4.3, current literature on multivariate wind power fore-

casting is currently focused on advancing the Gaussian copula method first published

in [69]. The reason this technique is so successful is because of the ability to model very

high-dimensional problems effectively, and the apparent absence of tail dependencies in

the data. Another advantage is that the dependency is described by a single covariance

matrix; this matrix can also be parameterised and/or regularised which is essential for

very-high dimensional problems.
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Parameterising the covariance matrix has been shown to improve the multivariate

scoring rules, even for relatively low dimensional problems [72, 92]. This is due to

the fact that empirical covariance estimates can often be noisy, and the parametric

description effectively acts to regularise the estimate; the covariance only depends on

a handful of estimated parameters, whereas the empirical covariance dependency is

described by d(d−1)/2 estimates, where d is the dimension. Additionally, non-separable

parametric descriptions of covariance have been applied to wind speed data [93], where

the interaction in between the spatial and temporal covariance is modelled. However,

to the best of the author’s knowledge have not been applied for day-ahead multivariate

wind power forecasting.

In the literature there are also few studies which explore multivariate wind power

forecasting at a significant spatial and temporal scale. In [91] the authors explore

multivariate wind power forecasting in Denmark at 15 regions over 43 lead times and

model the spatial-temporal dependencies via sparse precision matrices and direction-

dependent correlations. Here, we model 92 of the large-scale wind balancing mecha-

nism units (BMUs) in the GB grid, over 97 lead times. We also evaluate the potential

for regime-switching dependency, where the surrounding literature is discussed in Sec-

tion 2.4.3.

The contribution of this chapter is in the demonstration of the methodology at

such high dimensions of space and time, because this is similar to the scale faced by

future end-users of the forecasts, such as power system operators for reserve sizing

or managing transmission power flows. We also explore a non-separable parametric

estimations of the space-time covariance, and demonstrate a simple regime switching

method based on clustering of the average day-ahead wind vectors into westerly and

easterly dominated regimes. All multivariate forecasts are evaluated using proper and

strictly proper scores and the uncertainty associated with the results explored. Lastly,

we explicitly measure the improvement due to accounting for the temporal only and

spatio-temporal covariances.

In Section 7.1, the forecasting methodology is outlined, including density forecast-

ing, dependency modelling, and regime switching components. Results are outlined and
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discussed for the case study in Section 7.2, followed by conclusions and future work in

Section 7.3.

7.1 Forecasting Methodology

Here, we detail the method for: generating the marginal density forecasts via multiple

quantile regression and the tail shape estimation; defining and sampling from a mul-

tivariate distribution; the non-separable covariance functions used to parameterise the

spatio-temporal dependency; and finally the regime switching method used.

7.1.1 Density Forecasting

To generate the density forecasts at each BMU a small set of inputs are used for

the multiple quantile regression models to keep the computational time reasonable.

Specifically, we extract NWPs at the closest grid point to each location and use inputs

of wind speed and direction at 10m, as well as time-of-day and day-of-year. Also,

three spatial engineered features are extracted from a grid of NWP data around each

location: the mean, maximum, and minimum wind speeds at 100m, which is shown to

be successful in the literature [31]. The NWP data sourced from ECMWF is on a 0.1◦

grid covering the UK, and the spatial features are calculated using a 0.4◦ by 0.4◦ box,

i.e. using 16 grid points.

The goal of the density forecasting task is to generate calibrated and sharp proba-

bilistic forecasts for each BMU and lead time. We approximate the cumulative distri-

bution function (CDF) for k ∈ {1, 2, ...,K} locations and t ∈ {1, 2, ..., T} lead times

F̂k,t(yk,t) = P (Yk,t ≤ yk,t) , (7.1)

where F̂ is a strictly increasing function, by multiple quantile regression. For a given

probability level α, a quantile forecast can be defined as

ŷ
(α)
k,t = F̂−1

k,t (α) (7.2)
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where α ∈ [0, 1]. By using a collection of quantiles, in this case probability levels of:

αj ∈ (0.01, 0.02, 0.03, 0.04, 0.05, 0.1,..., 0.95, 0.96, 0.97, 0.98, 0.99), monotone cubic

spline interpolation is used to guarantee a valid CDF at each lead time [177]. A higher

resolution of quantiles in the tail regions of the distribution is used because empirically,

it was found that modelling more quantiles improved the calibration. This is because

we rely less on interpolation in a region which can have a high degree of change in

power values, and we have a large bank of historical data (5 years of forecasts with two

issue times per day) in the case study to estimate the tail regions relatively well via

quantile regression, as shown in Section 7.2.

Outside the tail quantile estimates we use a dynamic exponential interpolation

to join the upper and lower quantile estimates to the boundary values of maximum

and zero power respectively, relatively similar to [190]. The interpolation is dynamic

in that the left and right tail shape depends on the current lower (q01) and upper

(q99) estimates respectively from the multiple quantile regression. Since the power is

y ∈ [0, 1], where 1 is the normalised maximum power, the quantiles are constructed as

ŷ(α) =



0 α = 0

ŷ(0.01)i α = iŷ(0.01)
(

0.01
ŷ(0.01)

)i− 1

1−ŷ(0.01)

, ∀i

ŷ(α) α ∈ αj

ŷ(0.99) + (1− i)(1− ŷ(0.99)) α = 1− i(1− ŷ(0.99))
(

0.01
1−ŷ(0.99)

)i− 1

ŷ(0.99)

,∀i

1 α = 1

(7.3)

where i ∈ (0, 1), and if ŷ(0.01) < 0.01 or 1 − ŷ(0.99) < 0.01 we simply set these values

to 0.01 in the interpolation. Note the lead time and location index is dropped to avoid

notational clutter. This construction means that the tail shape is dependent on the

current estimates of the upper and lower quantile regression forecasts. If we take the

lower tail as an example, the tail shape is linear when the ŷ(0.01) estimate is very close to

the zero-boundary, and as ŷ(0.01) moves further away from the zero-boundary the shape

become more exponential. An example of the tail shapes for different values of upper
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Figure 7.1: Illustration of the dynamic exponential tails, which are conditional on the
upper/lower quantile forecasts for the upper and lower tail respectively. The tail shape
becomes more exponential as the reference quantile moves further from the boundary.
Note that the x axis here is not power but the i or 1−i variable, the ranges are therefore
not-scaled

and lower quantiles is shown on Figure 7.1. This aspect of the modelling is definitely

a potential area of improvement for future work, by using applicable techniques such

as generalised pareto tails; although parametric techniques are complicated by the

boundaries, and balancing the correct upper/lower cut-off for the quantile predictions

to generate enough training data to fit coefficients.

For multiple quantile regression we use gradient boosting machines, introduced in

Section 4.2.2, as the statistical learning technique to map the input NWP feature to

prediction relationship. This motivated by the success of this algorithm in the litera-

ture [30,31]. An example predictive CDF for several lead times is shown in Figure 7.2

using the multiple quantiles, spline interpolation, and tail method described.

7.1.2 Scenario Forecasting

Ultimately, the end goal of this study is to generate spatially and temporally coherent

scenario forecasts at the BMU level in the GB grid. Again, the Gaussian copula,

introduced in Section 5.1.3, is used although the marginals of the copula are now

density forecasts separated by lead time and location, i.e. we model the spatio-temporal

dependency. Since we have a significantly different framework than in Sections 5 and 6,
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Figure 7.2: Density forecasts as CDFs at clyde central wind farm issued at 2017-04-01
UTC, where estCap. is the estimated capacity. The density forecast is constructed
with multiple quantiles and monotonic spline interpolation at each lead time. The
approximated CDFs show the high resolution of quantile estimates in the tail regions
of the distribution

we will update the definition of the copula framework. Sklar’s theorem [168] states that

for a KT -dimensional cumulative distribution F (·) with continuous marginals Fk,t(·)

there exists a unique copula function C(·) such that

F (y1,1, y1,2, ..., yK,T ) = C (F1,1(y1,1), F1,2(y1,2), ..., FK,T (yK,T )) , (7.4)

where K is the number of locations and T is the number of lead times, which decouples

the problem into modelling the marginal distributions for each lead time and location,

and estimating the dependence between all the marginals via a copula function; based

on the uniformly distributed marginals from the Probability Integral Transform, uk,t =

Fk,t(yk,t). Therefore, the calibration of the density forecasts is strongly related to the

quality of the dependence modelling. As introduced in Section 5.1.3, after defining the

copula we can sample from the multivariate distribution and issue scenario forecasts,

by transforming the samples into the original power domain using the inverse CDF at

each location and lead time F−1
k,t (·).
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Analogous to the previous case, the Gaussian copula in this case is given by

C(F1,1(y1,1), F1,2(y1,2), ..., FK,T (yK,T )) =

ΦΣ

(
Φ−1(F1,1(y1,1)),Φ−1(F1,2(y1,2)), ...,Φ−1(FK,T (yK,T ))

)
(7.5)

where ΦΣ(·) is the KT -dimensional normal distribution function with covariance matrix

Σ and zero mean. Therefore, even for this potentially very high dimensional distribu-

tion, the spatio-temporal dependency is characterised by a single covariance matrix.

Again, the covariance matrix can be estimated by calculating the sample covariance

matrix of the normally distributed marginal variables vk,t = Φ−1 (Fk,t(yk,t)), where

where Φ−1(·) is the inverse standard normal distribution function, and vk,t ∼ N (0, 1).

However, in the case study considered here, the dimension of the covariance matrix KT

is much greater than the number of samples available to estimate the matrix, without

even considering practical issues such as missing data, which means that the sample

covariance matrix is singular and estimates are noisy.

The singular sample covariance effectively means that it is not possible to sample

from the multivariate Gaussian and transform samples into the original power domain.

Therefore, we consider a parametric covariance structure which reduces the number of

parameters in estimation of the dependence drastically, and has the added benefit of

regularising the covariance estimate which is essential in very-high dimensional prob-

lems. This approach has been shown successful in related studies based on temporal

scenario forecasting [72, 92] and spatio-temporal forecasting [191]. The parametric co-

variance between lead time t at location k and lead time t′ at location k′ is defined

as

Σ(k,t),(k′,t′) = cov(vk,t, vk′,t′) =

1− ν
1 + a|δt|2τt

[
exp

(
− |δk|
τk(1 + a|δt|2τt)β/2

)
+

ν

1− ν
1(|δk| = 0)

]
(7.6)

where δt is the time difference between lead time t and t′ in hours, δk is the distance

between location k and k′ in kilometres, and 1(.) is the indicator function. This is a non-
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separable parametric description of the space-time covariance [192], as a combination

of a Cauchy temporal function, parameterised by the a and τt components, and an

exponential spatial function with a nugget effect, governed by the τk and ν parameters.

The parameter β describes the interaction between the spatial and temporal covariance,

and setting β = 0 results in a separable description of the covariance. An example

surface plot of the difference between a separable and non-separable covariance function

is shown on Figure 7.3. This method is flexible in that alternative functions can be

used to fit empirical covariance matrices with different characteristics. For instance,

the nugget effect can be excluded and the temporal and/or spatial functions could be

replaced by any valid parametric covariance function [192].

The nugget effect is included because empirically it was found that the spatial

covariance drops significantly around the origin, then tails off slowly. In [93, 192], the

Figure 7.3: Contour plots of a parametric covariance using equation 7.6 with paramaters
a=0.4, τt = 0.7, τk = 60, ν = 0, and finally β = 0 for the left plot and β = 1.25 on
the right. The interaction parameter allows for more flexibility when modelling the
covariance
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authors argue that this discontinuity corresponds to measurement error and/or small

scale spatial variability in wind speeds, based on a case study on Irish wind speed data.

Since the power data collected here is subject to grid code governance, it is most likely

the latter in this case.

All the coefficients which govern the dependency are estimated directly using non-

linear least squares regression since the covariance function is clearly not linear in

terms of the parameters. The coefficients are estimated using iterative optimization to

minimise the residual sum of squares, where the target values are extracted from the

lower triangle of the empirical covariance matrix and paired with the associated time-

distance information for each BMU and lead time. The parametric covariance matrix

can then be constructed using the time-distance information and coefficient estimates.

Note that the number of parameters describing the spatio-temporal dependency drops

from KT (KT − 1)/2 estimates to 5 coefficients.

There are other methods to regularise covariance estimates, or to find positive-

definite matrices in very-high dimensional problems, such as the Ledoit-Wolf shrinkage

estimator [193], the nearest valid matrix method [194], and the graphical lasso [195].

The latter requires a non-negative definite matrix, which was not the case in this study.

Additionally, wind power forecasting is at an advantage compared to for instance,

financial modelling, in that the covariance is governed by physical spatial and temporal

interactions, it is particularly suitable to the approach described here.

Four configurations of the dependency are tested: 1) Independence — the bench-

mark where no correlation is embedded in the high dimensional dependence, 2) Tem-

poral — where only the temporal correlation is considered between lead times, 3)

Spatiotemporal — where the full dependence between each lead time and location is

included, and finally 4) RS-Spatiotemporal, where simple regimes, elaborated in the fol-

lowing subsection, are defined for the forecast issue times and different spatio-temporal

correlations are estimated in each.

The Temporal covariance matrix in this case was found by setting the spatial compo-

nents of the Spatiotemporal matrix to zero; there was very little difference between this

and re-estimating the covariance matrix for the purely temporal case during the case
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study, i.e. assuming a separable covariance function, as shown in Appendix Figure D.2.

This framework also allows for a explicit quantification of the value in including spatial

correlations, because the temporal components of the Spatiotemporal and Temporal

dependency structures are identical.

7.1.3 Regime Switching

As discussed in Section 2.4.3, regime-switching is a method to make models dependent

on the current behaviour of the target time-series or on exogenous variable(s). The

benefit is that the model can react faster to changing conditions, as opposed to hav-

ing fixed models or by tracking slower changes in behaviour via (for instance) online

updates. It is hypothesised that the spatial and temporal dependence between wind

BMUs and lead time changes due to large-scale atmospheric regimes.

Regime-switching models in short-term wind forecasting have been employed to

capture structural differences in wind power time series due to localised weather phe-

nomena and characteristics of wind turbine power curve [95, 96, 98]. These models

utilise exogenous variables, such as wind direction [98], or atmospheric regimes [96], or

model some unobserved hidden-Markov process [95] to condition the forecasts.

In this case, we define the regimes by clustering the 100m meridional and zonal wind

vector forecasts, averaged over each issue time (l) and all locations θl = (ũ100
l , ṽ100

l ).

The k-means algorithm [156] is then used to define 2 regimes. The algorithm generates

two disjoint regions R that collectively cover the input space spanned by θl. Distinct

covariance matrices Σ(sl) are calculated, using the non-separable parametric approach

described previously, and scenario forecasts are generated according to the defined

regime for each lead time, where

sl =


1 for θl ∈ R1

2 for θl ∈ R2

, (7.7)

which are dominated by either easterly (R1), i.e. winds travelling from the east, or

westerly (R2) average wind speed forecasts in the case study.
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This approach is obviously very simplistic, and we lose a lot of valuable information

when averaging the wind speed vectors to this sort of resolution; however, using the

scenario forecasting method described above requires the matrices to be defined for a

complete issue time. Future work should consider defining the regimes using approaches

similar to [96,196,197], leveraging techniques such as principle component analysis, self-

organising maps, and different meteorological variables.

7.2 Case Study

The proposed methodology is tested on almost all the large wind generating units in

the GB network, during the time-period of available data. Specifically we forecast at

the BMU level, therefore some of the larger wind farms are separated into several units.

Measured power data availability covered the period of Jan 2015 — Sep 2019, and wind

farms which have less than 28 months of available data are removed from the exercise

to allow for sufficient data present in both training and testing phases. We also remove

the first 6 months of data from new BMU units as they are brought online to account

for commissioning, and 5 BMUs were removed completely from the analysis because

of data issues during the testing period. This left 92 BMUs which are included in the

study, as shown on Figure 7.4 which maps each unit location, and the full list of BMU

identification codes and associated site names can be found Appendix Table D.

Generation data from the BMUs are at 30-minute resolution with instances of cur-

tailment flagged and excluded from the forecasting exercise. Data is also normalised

and adjusted for availability so the impact of outages on evaluation results is minimised.

This is an important step for the larger offshore wind farms, where the availability has

a significant impact on the above-rated wind speed region of the forecast (and mea-

sured) power curve. The availability is estimated using the measured data and wind

speed forecasts by finding the maximum power during periods when the BMU is in

the rated region of the power curve, i.e. during high wind speeds with no change in

the power measurements; the estimated availability is carried forward until a new esti-

mate is available. At some BMUs, e.g. Whitelee (T WHILW-1), this method doesn’t

work well because the unit doesn’t reach rated capacity often, in which case a rolling
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Figure 7.4: Each wind Balancing Mechanism Unit (BMU) location in the GB grid.
Note that the larger wind farms are decomposed into several BMUs

maximum is used with a two month window.

We also re-define boundary values, so that y ∈(0,1), i.e. perfect boundary values

are redefined by sampling approximately 0 or 1 values; for the lower boundary values

y0 we sample from a uniform distribution y0 ∼ U(0.001, 0.005), and the mirror image

for boundary values at 1. This vastly improved the estimation of the lower tail region

of the density forecasts, but also has an impact on the reliability results. Reliability, as

defined in equation 3.10, is specifically for continuous variables, and at sites with a sig-

nificant proportion of observations at the boundaries, it becomes difficult to determine

calibration without processing or excluding the boundary values.

NWP data from the European Centre for Medium-Range Weather Forecasts is
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extracted in a grid around each unit from 0 to 48 hours ahead in hourly intervals, with

2 issue times per day. As mentioned previously, the NWP data sourced from ECMWF

is on a 0.1◦ grid, and the spatial features are calculated using a 0.4◦ by 0.4◦ box.

Linear interpolation is used to match the resolution of the hourly forecasts and half

hourly power data. Although spline interpolation could equally be used, an analysis on

the impact of the interpolation method on forecast skill is not the within the scope of

this study. The methodologies described are implemented in R [170] using the package

ProbCast [198]; ProbCast functions to implement this methodology were written and

expanded on by the author.

For the regression and dependency modelling the data is partitioned into approxi-

mately 3.75 years for training (Jan 2015 – Sep 2018) and 1 year for testing (Oct 2018 –

Sep 2019), which allows for sufficient data for training density forecasts and modelling

the spatio-temporal dependence, and an entire year to evaluate the subsequent fore-

casts in out-of-sample tests. Note that the dimensions of this case study (92 sites with

97 lead times) mean that we would need over 12 years of historical data at each site to

estimate an invertible sample covariance matrix in the scenario forecasting stage, not

accounting for missing data, with two NWP issue times per day.

We base our development of the forecasting models using 4-fold cross-validation

over the training data only; the folds are assigned in blocks of weekly issue times to

preserve the temporal characteristics of the time-series, as discussed in Section 3. This

gives 4.75 years of out-of-sample forecasts on which to verify the forecasts and base our

conclusions, including 1 year of blind testing data not used in any of the modelling. The

marginal density forecasts are first evaluated to demonstrate calibration and sharpness

at each site, and then the multivariate forecasts are evaluated.

The marginal density forecasts of power are evaluated according to the principle

that the forecast should be optimally sharp subject to calibration [127]. This concept

and the appropriate univariate and multivariate scoring rules are discussed extensively

in Section 3. We use the pinball loss metric and reliability diagrams to measure quantile

sharpness and calibration, and the Probability Integral Transform (PIT) validate the

calibration of the full distribution, motivated by the direct impact of this variable on
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the dependency structure quality.

Scenario forecasts are evaluated via multivariate probabilistic forecast verification

methods. Two metrics capable of evaluating the trajectories are the Energy Score (ES)

and the p-Variogram Score (VS-p); both are evaluated per issue time of the forecast.

For more information regarding these scores, the reader is referred to Section 3.2.2.

In this case, calculating the multivariate scores is very computationally expensive due

to the large dimensions of the problem. In fact, it was a bottle neck in the whole

process. Therefore, we only consider the energy score and an unweighted version of the

variogram score; due to wind farm curtailment and data cleaning the weight matrix of

the variogram score in practice has to be re-estimated at every issue time, and adds a

substantial time to the already lengthy calculation.

To test the significance of forecast improvement the Diebold-Mariano (DM) test is

used [144], in parallel to block-bootstrap resampling of skill scores. In the former case,

if we define the ES at issue time l, the mean loss differential is

d̄ =
1

L

L∑
l=1

es1
l − es2

l (7.8)

between forecast model 1 and 2. Then the DM test statistic is

DM =
d̄√

1
L(γo + 2

∑H−1
h=1 γh)

, (7.9)

where γh is the autocovariance of the loss differential time series at lag h, and the total

number of lags H should be large enough to properly account for autocorrelations.

The basis of the DM test is that under the null hypothesis, i.e. if there is no difference

between forecast performance, then asymptotically DM ∼ N (0, 1) as the total number

of samples L increases. The significance of the resulting DM statistic is then found by

calculating the associated p-value and comparing it to a defied confidence level. Typ-

ically, the null hypothesis can be rejected when the p-value is below a 0.05 confidence

level.
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7.2.1 Univariate: Density Forecasting

Here, we detail the results of the univariate density forecasting task at the BMU level

which constitute the marginals of the Gaussian copula. These are the forecasts gener-

ated by post-processing NWP data and site level measurements using multiple quan-

tile regression and tail interpolation. Although these forecasts don’t contain spatio-

temporal information it is important to demonstrate calibration of the marginals, es-

pecially in the tails, since it has a large impact on the quality of the multivariate

dependency structure.

The hyper-parameters of the quantile regression models were set to generate sparse

tree-ensembles, by reducing the depth of the trees and penalising the importance of

each tree to a high extent at every BMU. This reduces the likelihood of over-fitting and

empirically was found to generate well calibrated quantile forecasts in cross-validation

across all BMUs. Although there’s no doubt that using cross-validation at each site

and each quantile would improve the sharpness of the density forecasts, this is not

computationally feasible with the available resources in this case.

The reliability diagrams are shown in Figure 7.5 for both the cross validation and

testing dataset over all lead times considered. The out-of-sample forecasts are very well

calibrated in cross validation, due to the model formulation and the volume of data we

have at each site to determine the reliability. However, in the testing individual BMUs

are seen to deviate from calibration and on average there is a tendency to over-forecast

the quantiles in the mid-range of the distribution. It is suggested that this is because,

at least in part, that a whole year of forecasts are issued without re-training, and the

dynamics of some wind farms are changing. For instance, at the beginning of our

test set the new Walney extension is brought online, and the older Walney BMUs are

among the worse calibrated in testing. This aspect of the modelling could be improved

by considering a rolling window for instance.

More reliability results are presented in Figure 7.6, this time separated into lead

time groups. The results here show that at the earlier lead times in both cross-validation

and testing that the upper quantiles are over-forecast, although to a lesser extent in

the cross-validation. Note that the typical shape of the reliability diagrams are found
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Figure 7.5: Univariate evaluation: reliability diagrams over all lead times during both
cross validation (CV) and testing datasets. The models are very well calibrated in cross-
validation; however not as well calibrated in testing. This is because of the volume of
data we have in cross validation, and that we are forecasting a whole year at each site
during testing with no re-training

at the later lead time groups, where the lower quantiles are marginally above optimal

levels and the upper quantiles slightly below. The earlier lead time forecasts could

be improved by including lagged-observations, or by including a lead time dependent

variable in the regression, although this is outwith the remit of this study.

The accuracy at the discrete quantiles is measured via pinball loss, and is shown

on Figure 7.7 for both the cross validation and testing dataset over all lead times

considered. There is clearly a wide range of sharpness characteristics across the BMUs,

which is down to the local wind speed characteristics of each BMU. For example, sites

characterised by complex and highly variable wind conditions will obviously be more

difficult to forecast. However, looking at the average results the characteristics are very

similar for the cross-validation and testing case which shows that the models on average
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Figure 7.6: Univariate evaluation: reliability diagrams in lead time groups during both
cross validation (CV) and testing datasets

generalise well to unseen data. Taking the median quantile in both cases we can see

that the average pinball loss is around 5% of estimated capacity, which translates to a

mean absolute error of 10% for the median quantile over all lead times. As expected,

the average pinball loss increases by lead time group, the results of which can be found
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Figure 7.7: Univariate evaluation: pinball loss over all lead times during both cross
validation (CV) and testing datasets. The average pinball loss is very similar in both
cases which means that the model generalised well to unseen data

in Appendix Figure D.1.

As discussed previously, the PIT transformed variables are key to the quality of

the copula model used to generate scenario forecasts. Therefore, we also evaluate the

calibration of the approximated CDFs, i.e. the continuous distribution, using PIT

histograms. These are presented in Figure 7.8 for a subset of BMUs during cross

validation. It is these PIT transformed variables that are used to define the copula for

issuing scenario forecasts over the test dataset. The figure shows that the distribution

forecasts are well calibrated at these sites; there are only minor deviations from the

ideal level; these results are mirrored by the reliability diagrams discussed previously,

but importantly show the calibration of the tail regions more clearly. The subset of

BMUs are chosen so we have a view of the results throughout the GB network: onshore

in Scotland and offshore off the east and west coast of GB. The PIT histograms on a
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Figure 7.8: Univariate evaluation: PIT histograms of a subset of the BMUs considered
during cross validation. The calibration of the full distribution has a big impact on the
quality of the copula model

complete per-location basis can be found in Appendix Figure D.3.

Another important evaluation point is the calibration the extreme quantiles located

in the tails of the distribution. Although these are included implicitly in the PIT

histogram, we focus explicitly on this because, as discussed in Section 2.3.2, the tails

are often the most important area of interest for decision makers. In Figure 7.9 quantile

bias plots are given for both the upper and lower tail region over cross validation; the
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dynamic tail interpolation method results in relatively well calibrated extreme quantiles

considering the simplicity of the method, when compared with calibration results from

other state-of-the-art approaches [178]. However, it is important to emphasise that the

tails in the current work are merely interpolated and will likely be improved by using

techniques from extreme value theory. Additionally, in this case we focused only on the

calibration of the extreme quantiles (beyond the p1 and p99 quantiles); future work

should also consider sharpness as well, where the conditional truncated generalized

Pareto distribution has been very recently proven successful [178].

Example density forecasts visualised as fan plots are shown in Figure 7.10 for the

same subset of BMUs at a single issue time. This plot intuitively shows why mod-
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Figure 7.9: Univariate evaluation: quantile bias diagrams of the extreme quantiles over
all lead times during cross validation. We show α ∈ {0.001, 0.00125, 0.0025, 0.005, and
0.01} for the lower tail, the maximum of the set is modelled using quantile regression
and the rest are found using a dynamic exponential interpolation method. The mirror
image of these quantiles are plotted for the upper tail. Given the scale of the bias,
the extreme quantiles are relatively well calibrated considering the simplicity of the
interpolation method.
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elling the dependencies in the multivariate distribution is essential; there is clearly high

spatio-temporal relationship between the BMUs in close proximity at this issue time, as

expected. Additionally, there is also high uncertainty at the Westermost Rough BMU

(T WTMSO-1), where the forecast wind speeds are in the mid-range of the wind farm

power curve throughout the lead times. In fact, this BMU is gives the highest pinball

loss out of all considered in both cross validation and testing, indicating that the local

atmospheric conditions are not captured well by the global weather models at this site.

7.2.2 Multivariate: Scenario Forecasting

Here, we detail the results of the multivariate power forecasting task, i.e. the sce-

nario forecasts generated via sampling from the Gaussian copula. To refresh, four

dependency models are tested: Independence is the benchmark model, Temporal is

where only the temporal correlation is considered between lead times, Spatiotemporal

is where the full dependence between each lead time and location is modelled, and

finally RS-Spatiotemporal is the regime switching covariance model where the depen-

dency is conditional on two wind direction dominated regimes — easterly or westerly.

For each issue time 500 samples are taken, which is not a great amount considering

the dimension of the distribution to fully explore the space. However, applying the

scoring rules with more samples was not possible given time and computing resource

constraints. This practical restraint is discussed in [191], where it is discussed that

there is therefore an associated uncertainty contribution to the score when the number

of samples is small relative to the dimension. This is another motivating factor in the

use of bootstrapping to estimate the sampling distribution of the score in this chapter.

Also, results in [138] show that the number of samples and the nature of the difference

between the true and modelled correlation structure impacts the stabilisation of the

average energy score results; among other points, the authors recommend taking as

many samples as computationally feasible to achieve the best discriminatory power.

In Table 7.1 the multivariate scores are presented. It is important to emphasise

here, that the differences between the models are solely in the dependency structure,

and therefore the difference in evaluation scores is down to this and random sampling
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Figure 7.10: Univariate density forecasts as fan plots at the subset of BMU locations
issued at 2018-02-25 12:00 UTC. The same legend as Figure 6.3a applies
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Table 7.1: Multivariate forecast evaluation results. Best results during testing and
cross-validation are in bold. The evaluation results are based on 500 scenarios at each
issue time

Dependency Data ES VS-0.5

independence
CV 8.2270 1252757
Test 9.3489 1929561

temporal
CV 8.2252 1252010
Test 9.3471 1928611

spatiotemporal
CV 8.2201 1250580
Test 9.3422 1926398

RS-spatiotemporal
CV 8.2198 1250480
Test 9.3413 1926087

variation. The first thing to note is that there is very little relative change between the

scores for the different dependency models. It has been discussed in the literature that

the energy score has low discriminatory power, especially in high dimensions, which is

clearly evident here [136,191]; the Spatiotemporal model generates completely different

trajectories, with more realistic temporal and spatial characteristics, compared to the

Independence case, but the relative change is very small.

For the variogram score the small relative change is likely due to the fact we employ

no weighting. Therefore, a lot of the contributions to the score comes from pairwise dif-

ferences that we know are not correlated, e.g. pairwise difference between components

of the vector that are far away in time and/or space.

However, as discussed in [138] a small relative change does not exclude the pos-

sibility that the forecasts are significantly different, in a statistical sense. The score

improvements are plotted in Figure 7.11 against the independence benchmark. Here, a

simple block-bootstrapping approach is used to estimate the significance in the forecast

improvement [139], where issue times are split into non-overlapping blocks of 7-days

length. The blocks are then re-sampled with replacement and then forecast improve-

ment is determined. This process is repeated 1000 times to estimate the sampling

variation of the score improvement in Table 7.1.

Figure 7.11 shows that the skill scores are indeed significantly different from zero,

for the three methods of dependence compared to the independence case. There is also

marginal improvement using the regime-switching method over the spatiotemporal case;
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Table 7.2: Multivariate evaluation: Diebold-Mariano test statistics based on the energy
score differential on the out-of-sample cross validation data, where p values are shown
in bold

independence temporal spatiotemporal RS-spatiotemporal

independence -
6.465 12.447 12.282
<0.001 <0.001 <0.001

temporal
-6.465

-
8.144 8.455

<0.001 <0.001 <0.001

spatiotemporal
-12.447 -8.144

-
0.442

<0.001 <0.001 0.659

RS-spatiotemporal
-12.282 -8.455 -0.442

-
<0.001 <0.001 0.659

however this is clearly not significant. Although results are promising, and perhaps

higher fidelity definition of the governing regimes would be beneficial. Accounting

for the spatial components in the multivariate distribution is seen to be significantly

better than the purely temporal case. This is due to the nature of the considered sites

on the GB network; wind farms are typically clustered together in groups, as shown in

Figure 7.4, with complex terrain and atmospheric conditions. The two scoring rules are

also in agreement with the evaluation of the different dependencies, with the variogram

score consistently giving a marginally higher improvement over independence. Lastly,

we see a greater sampling uncertainty in the test dataset due the smaller sample size.

These conclusions are also supported by the Diebold-Mariano test, where the num-

ber of issue time lags considered for calculating the autocovariance of the error differ-

ential is 7 days. The test statistic and corresponding p-value are given in Table 7.2 over

the out-of-sample forecasts in the cross-validation dataset. The results show that the

null hypothesis of equal predictive performance is rejected in all combinations of the

dependency, except for the spatiotemporal and RS-spatiotemporal test, which concurs

with the results in Figure 7.11a. The corresponding results for the test evaluation are

similar in characteristic and can be found in Appendix Table D.2.

The covariance matrix that describes the dependency structure in the Gaussian

copula is shown on Figure 7.12a for the spatiotemporal case, again over a subset of

BMUs to show the resulting characteristics. The parametric model is clearly successful

in regularising the dependency, most of the covariance is set to approximately zero.
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(a) energy score - cross validation
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(b) energy score - testing

V
S

−
p
 i
m

p
 [
%

]

temporal spatiotemporal RS−spatiotemporal

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

(c) variogram score - cross validation
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(d) variogram score - testing

Figure 7.11: Multivariate evaluation: boxplots showing the block-bootstrap sample
distributions of multivariate score improvement for the different dependencies tested,
over the independence benchmark. The improvements are relatively small, but signifi-
cantly different from zero. There is marginal improvement using the regime-switching
method over the spatiotemporal case; however this is not significant. Note that the
variogram score is unweighted, subsequently the improvement is relatively small here
as well. Both scores are in agreement in terms of forecast performance

However, we see that there is a strong temporal correlation of errors in consecutive lead

times, as expected. Also, the spatial correlations relatively are strong at concurrent

lead times, shown by the block of onshore wind farms based in central Scotland.

The sample covariance estimate is shown in Figure 7.12b for comparison, and we

can see that clearly the sample estimate is noisy, and often results in (slightly) negative

estimates. This also shows that the parametric model captures the characteristics of

the empirical covariance relatively well, although, as configured cannot capture the

clear growth in correlation as the lead times progress at each site. Also, we can see
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(a) Parametric estimate (b) Sample estimate

Figure 7.12: Spatiotemporal covariance matrices on a subset of BMUs, the full matrix
used to generate scenario forecasts on the testing dataset is shown on Figure 7.13. The
parametric model regularises the covariance structure, compared to the sample esti-
mate. Figure 7.12b is used to learn the coefficients for the parametric model, and white
space indicates where the sample covariance is negative. Please refer to Figure 7.14 for
higher resolution axis labels

that the spatiotemporal correlation between the two Clyde BMUs is slightly under that

of the empirical findings.

The full covariance matrix for the spatiotemporal case across all lead times and

BMUs is shown on Figure 7.13. This plot also shows perhaps why we see a small relative

change in the energy score; at this resolution we can see that most of the pairwise lead

times and locations considered are uncorrelated. However, the correlations that are

present are very important for generating realistic and useful scenario forecasts.

To further understand the differences between the spatiotemporal and the regime-

switching dependency models, the fitted coefficients from Equation 7.6 over the cross-

validation dataset are given in Table 7.3, along with (approximate) 95% confidence

intervals based on linearised standard errors. Although it is difficult to gauge the impact

of the differences in the absolute values of these coefficients, we can draw a number of

conclusions from the table. Firstly, there is clear separation in the coefficient confidence

interval ranges; only the confidence intervals for the β parameter in the westerly regime
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Figure 7.13: Parametric covariance matrix of all BMUs used to generate scenario fore-
casts on the testing dataset

and the typical spatiotemporal case overlap. However, it is important to note that the

intervals are only intended as a guide; it was not possible to explore the sampling

distribution of the coefficients, via bootstrapping for instance, due to the associated

computational expense.

More specifically, Table 7.3 also shows that over the testing dataset the temporal

coefficients, τt and a, are greater in the westerly regime, meaning that temporal cor-

relation strength of the errors is weaker than in easterly regime because of the model
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Table 7.3: Fitted coefficients (est.) for the parametric covariance models based on
Equation 7.6, which describes the uncertainty dependency used to issue scenario fore-
casts over the test dataset, along with approximate 95% confidence intervals

coefficient spatiotemporal RS-spatiotemporal RS-spatiotemporal
easterly westerly

2.5% est. 97.5% 2.5% est. 97.5% 2.5% est. 97.5%

a 0.4612 0.4617 0.4623 0.4033 0.4041 0.4050 0.4788 0.4795 0.4802
β 1.1816 1.1828 1.1840 1.2261 1.2280 1.2299 1.1800 1.1813 1.1827
τk 77.7534 77.8096 77.8659 79.7072 79.8041 79.9010 76.9494 77.0130 77.0766
τt 0.7220 0.7223 0.7226 0.6717 0.6722 0.6727 0.7507 0.7511 0.7515
ν 0.4136 0.4139 0.4143 0.4474 0.4479 0.4484 0.3981 0.3985 0.3989

formulation. The spatio-temporal interaction term β is also stronger in the easterly

regime, and the purely spatial correlation strength is marginally weaker. These re-

sults are also found in Figure 7.14, again on the subset of BMUs, where the difference

between the covariance in the easterly and westerly regimes is visualised.

An important aspect to emphasise is the computational cost of calculating the mul-

tivariate skill scores. Although components of the entire methodology are potentially

computationally expensive, such as fitting the marginals or issuing the scenario fore-

casts in this sort of high dimensional problem, really it was the multivariate forecast

evaluation that was the bottleneck in the process; it took approximately 1 hour to

evaluate a single issue time with 500 samples on one CPU, using the ES and the un-

weighted VS-p. Parallelization and cloud computing were used throughout the study

to manage such aspects, e.g. by evaluating unique issue times in parallel, however

research is required in the area of multivariate scoring rules for metrics with better

discriminatory power and faster computational characteristics.

Finally, example scenario forecasts visualised in spaghetti plots are shown in Fig-

ure 7.15, for the same subset of BMUs and lead time as Figure 7.10. Although these

plots are difficult to interpret directly, they are useful for further processing and for

driving stochastic power system optimisation tools, where preserving the spatiotempo-

ral characteristics of the generation forecasts is essential.
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Figure 7.14: Difference between the regime-switching covariance matrices (easterly mi-
nus westerly) of a subset of BMUs during the testing dataset. The temporal dependency
persists for longer in the easterly regime and the spatial dependency is somewhat similar

7.3 Conclusions & Future Work

This chapter demonstrates a methodology for multivariate wind power forecasting, with

a novel very-high dimensional case-study. We leverage parametric models of covariance

to model a very-high dimensional distribution, generating scenario forecasts for 92 of

the wind balancing units on the GB network up to two days ahead, in a Gaussian

copula framework. There is clear significant improvement in the multivariate skill
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Figure 7.15: Multivariate scenario forecast as a spaghetti plot with 100 samples at the
subset of BMU locations. The forecast is issued at 2018-02-25 12:00 UTC, and scenarios
are blue and the corresponding measurement black
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scores of the spatio-temporal covariances compared to the independence and purely

temporal covariance cases, which demonstrates the importance of including the spatial

information at these scales. The novelty in this chapter comes from the demonstration

of the methodology at the space-time resolutions needed for future end-users of the

forecasts, such as transmission system operators, and in explicitly quantifying the value

of exploiting the spatial covariances in terms of strictly proper skill scores.

We also evaluate a regime-switching covariance model, where the covariance ma-

trix is conditional on regimes based on clustered average day-ahead forecasts of the

wind components. This gives two regimes based on prevailing easterly or westerly av-

erage wind direction. Although the results suggest a benefit, there is no statistically

significant improvement against the typical spatiotemporal case. Importantly, the mul-

tivariate evaluation scores are the computational bottleneck in the process, as found

elsewhere in the literature [191], which has two practical implications: the evaluation is

based on a relatively small set of scenarios compared to the dimension of the problem,

and there is no weighting applied to the variogram based score. Future work should

consider the impact of both these limitations on the evaluation results, as well as a

higher fidelity definition of the regimes. For example, principle component analysis,

self organising maps, and more diverse meteorological data than simple wind speed

forecasts at each wind farm, have proven successful for atmospheric regime modelling

in related studies [96, 197]. Another interesting extension would be to evaluate the

mean of the scenarios as a point forecast to gauge any improvement in forecasting

skill against the median of the marginal density forecast, given the introduction of the

spatio-temporal dependency structure in the multivariate forecast.
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Conclusions

Forecasting is now an essential component of power system operations. Participants

in electricity markets, system operators, asset owners, and all who make decisions

based on the future generation require these tools. Probabilistic forecasts quantify

the uncertainty associated with a forecast, and are essential for both risk management

and for participants in asymmetrically penalised electricity markets, regardless of their

risk appetite. In this work, methodologies for generating forecasts of wind power and

offshore access conditions are developed, linked by the growing challenge of modelling

and/or leveraging high dimensional data.

It is shown that exploiting high dimensional data can improve forecast skill, pro-

vide opportunities for novel forecasting products, and that the high dimensional forecast

outputs required at the system-wide scale are feasible. The latter point is especially rel-

evant to utilities and transmission system operators, and will be of growing importance

as the penetration of wind power increases on the network.

In Chapter 4 the value in post-processing ultra high resolution weather forecasts

for power prediction is demonstrated, by improving the accuracy of point forecasts

at Horns Rev I. The case study evaluates the performance of wind speed and power

forecasting at a single turbine in the array in an exploratory analysis, and then in-

vestigates the performance of overall wind farm power prediction. The exploratory

investigation uses single-input models to explicitly characterise the value in temporal

smoothing of Numerical Weather Prediction (NWP) sources, which is shown to improve
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performance. For wind farm power forecasting, using information from both standard

and ultra-high resolution NWP sources proved to give significant increases in accuracy,

especially with a feature selection stage, compared to using information content solely

from either single source which are comparable to each other.

Turbine-level data provides valuable information about how a wind farm responds

to different weather conditions, and the nature of forecast errors, which is not accessible

when only considering wind farm total power production. In Chapter 5, two methods

for improving wind power forecasting by leveraging data from individual wind turbines

are evaluated. The first is a feature engineering approach whereby deterministic fore-

casts for individual turbines are aggregated and used as supplementary input variables

to a conventional wind farm-level model. The second is a hierarchical bottom-up prob-

abilistic approach which forecasts the joint predictive distribution of generation from

all turbines in a copula framework, which is then used to produce a wind farm-level

forecast. Both methods are shown to increase forecast skill compared to two highly

competitive benchmarks, particularly at the site with complex terrain.

In Chapter 6, a novel forecasting tool for offshore operations is described. We fore-

cast safety-critical conditions during transfer of personnel during offshore operations,

and demonstrate its potential with a case study at an east coast wind farm in the

UK. The proposed access forecasts predict vessel motion during transfer, accounting

for weather uncertainty, up to 5-days ahead. Sharp and calibrated density forecasts of

peak wave period and significant wave height are generated by post-processing NWP,

with boosted generalised additive models for location, scale, and shape outperforming

non-parametric methods. Scenario forecasts of these variables are then produced using

the Gaussian copula to model temporal dependence and used as inputs to a data-driven

vessel motion model. A method of visualisation of these forecasts is also suggested to

best communicate the information content for end users.

Chapter 7 demonstrates a methodology for multivariate wind power forecasting,

with a case study at a system-wide scale. Parametric models of covariance are used to

model a very-high dimensional multivariate Gaussian distribution in a copula frame-

work, enabling scenario forecasts for 92 wind balancing units on the GB network. There
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is statistically significant improvement in the multivariate skill scores of the space-time

covariance model compared to the independent and purely temporal covariance cases.

A regime-switching approach is also proposed, where the covariance is conditional on

regimes based on clustered average day-ahead wind component forecasts. This gives

two regimes based on prevailing easterly or westerly average wind direction. Although

the results are promising, there is no statistically significant improvement of the regime

switching method against the spatiotemporal case; the simple regime definition and/or

the computational compromises required for forecast evaluation, such as the small num-

ber of scenarios relative to the dimension of the problem, are possible reasons for this.

The contribution of Chapter 7 is in the demonstration of the methodology at the

space-time resolutions needed for future end-users of the forecasts, such as transmis-

sion system operators, and in explicitly quantifying the value of exploiting the spatial

covariances in terms of strictly proper skill scores.

Future work related to the specific technical challenges of each chapter can be found

in the relevant sections. However, a common theme is the use of dynamic dependency

structures between forecast uncertainty in space and/or time, motivated by the idea

that the nature of the dependency is not constant and related to large-scale meteoro-

logical processes. Although a simple approach is explored in Chapter 7, higher fidelity

methods are clearly required.

More generally, although we focus on probabilistic forecasting methods, there is

a lack of uptake of this uncertainty information in practice, even for low-dimensional

problems; more work is needed in the communication of probabilistic forecasts to end-

users, in terms of both the value and the underlying statistical content. We can begin

to address this challenge via applied demonstration studies, the tailoring of forecasts

to specific use-cases, and close collaboration between forecast users and forecasters.
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Appendix A

Statistical Post-processing of

Turbulence Resolving Weather

Forecasts

This supplementary material contains extra results from the case study presented in

Chapter 4. We present the full list of initial input features and the reduced set of

selected features used for the wind farm level power prediction.

158



Appendix A. Statistical Post-processing of Turbulence Resolving Weather Forecasts

Table A.1: List of input features for wind farm level power prediction using either
ECMWF or GRASP data, or both sources as in the combined case. Specific heights
and locations are indicated in square brackets for before, after, and in the combined
feature selection case. TB is short for turbine, RA means rolling average, and RV
means rolling variance. The FFT features were calculated over a 400 minute window
on the disk averaged wind speed and the features extracted from the high frequency
band.

Source Feature Before After After (combined)

GRASP

Air density [30m, 50m, 70m, 90m, 110m]
Temperature [30m, 50m, 70m, 90m, 110m]
Wind Direction (wd) [30m, 50m, 70m, 90m, 110m]
Wind Speed (ws) [30m, 50m, 70m, 90m, 110m] [70m, 90m] [70m]
Disk averaged ws [TB 1, 2, ..., 79, all] [TB 78]
RA ws 300 min [30m, 50m, 70m, 90m, 110m] [70m]
RA ws 400 min [30m, 50m, 70m, 90m, 110m] [70m]
RA ws 500 min [30m, 50m, 70m, 90m, 110m]
RV ws 300 min [30m, 50m, 70m, 90m, 110m]
RV ws 400 min [30m, 50m, 70m, 90m, 110m]
RV ws 500 min [30m, 50m, 70m, 90m, 110m]
RA disk ws 300 min [TB 1, 2, ..., 79, all] [TB 77, 79] [TB 79, ]
RA disk ws 400 min [TB 1, 2, ..., 79, all] [TB 78] [TB 78, 79]
RA disk ws 500 min [TB 1, 2, ..., 79, all] [TB 59, 67, 78, 79] [TB 78, ]
RV disk ws 300 min [TB 1, 2, ..., 79, all]
RV disk ws 400 min [TB 1, 2, ..., 79, all]
RV disk ws 500 min [TB 1, 2, ..., 79, all]
Rolling FFT mean [TB 1, 2, ..., 79, all]
Rolling FFT sum [TB 1, 2, ..., 79, all]

ECMWF

Air density [30m, 50m, 70m, 90m, 110m]
Temperature [30m, 50m, 70m, 90m, 110m]
Wind Direction (wd) [30m, 50m, 70m, 90m, 110m]
Wind Speed (ws) [30m, 50m, 70m, 90m, 110m]
RA ws 300 min [30m, 50m, 70m, 90m, 110m] [70m, 90m] [70m, 90m]
RA ws 400 min [30m, 50m, 70m, 90m, 110m] [50m, 70m, 90m] [50m, 70m]
RA ws 500 min [30m, 50m, 70m, 90m, 110m] [50m] [30m, 50m, 90m]
RV ws 300 min [30m, 50m, 70m, 90m, 110m]
RV ws 400 min [30m, 50m, 70m, 90m, 110m]
RV ws 500 min [30m, 50m, 70m, 90m, 110m]
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Appendix B

Leveraging Turbine-level Data

for Probabilistic Wind Power

Forecasting

This supplementary material contains information on the feature lists and variable

importances at both wind farms, the mapped partial covariance at Wind Farm B,

details of bivariate copula family selections from the vine copulas, and full deterministic

results for both wind farms. Variable importance is a quantitative measure based on

the number of times a variable has been selected for splitting in the GBM, with a

weighting applied derived from the predictive improvement to the model from each

split averaged over all the trees [199]; it highlights the most useful predictor variables.

B.1 Wind Farm B

The feature list at Wind Farm B for all models is contained in Table B.1. This includes

the benchmark GBT models, the deterministic and probabilistic models used in the

feature engineering method, and the probabilistic turbine models in the bottom-up

probabilistic model.

Figures B.1 and B.2 illustrate the importance of selected variables across key quan-

tiles in the probabilistic GBT benchmark and probabilistic feature engineering wind
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Table B.1: Wind Farm B: list of input features by model - meteorological inputs at
100m (unless specified)

Model Features ID

All benchmarks
& individual
turbines both
deterministic and
probabilistic

Wind speed - 10m ws-10m
Wind speed ws
Wind direction - 10m wd-10m
Wind direction -
Leading ws (1 to 4 periods) ws-pl-[1-4]
Lagging ws (1 to 4 periods) ws-nl-[1-4]
Leading wd (-1 to -4 periods) -
Lagging wd (-1 to -4 periods) -
Average ws (0 to 4 periods) ws-av-pl
Average ws (0 to -4 periods) ws-av-nl
Average wd (0 to 4 periods) -
Average wd (0 to -4 periods) wd-av-nl
Standard deviation ws (0 to 4 periods) -
Standard deviation ws (0 to -4 periods) -
Standard deviation wd (0 to 4 periods) -
Standard deviation wd (0 to -4 periods) -
WS ratio (100m & 10m) -
WS gradient (-1 to 0 period) -
Direction difference (100m & 10m) -
Time of day splines (4) -
Persistence pers.

Feature
engineering wind
farm probabilistic
model

Layer 1 aggregation (mean) L1-agg
L1 turbine forecasts (2,13,11,17,23,25) L1-T[#]
L1 turbine forecast variance (all) L1-var
Leading L1 aggregation (1, 2, 3) L1-agg-pl[#]
Lagging L1 aggregation (-1) L1-agg-nl1
Average L1 aggregation (0 to 4 periods) L1-agg-av-pl
Average ws (0 to 4 periods) ws-av-pl

farm model respectively. From the mapped parametric covariance of turbine 35 at

Wind Farm B, shown in Figure B.3, the layout of the wind farm discussed in the

results section of the main paper is shown.

Full deterministic results in terms of MAE and RMSE are presented in Tables B.2

and B.3 respectively. These are based on the median quantile (p50) in the final full

density forecast and are therefore optimised for MAE.

Copula family selection results are displayed in Table B.4 for the copula vine

method.
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Figure B.1: Wind Farm B: relative influence of input features: WF(xt) benchmark
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Appendix B. Leveraging Turbine-level Data for Probabilistic Wind Power Forecasting
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Figure B.3: Mapped parametric partial covariance at Wind Farm B of turbine 35 [2].
Latitude and longitude scales are indicative

Table B.4: Details of Copula Vine selections at Wind Farm B

Total Number Family

6 Gaussian copula
355 Student t copula (t-copula)
2 Clayton copula
46 Gumbel copula
65 Frank copula
8 Joe copula
6 rotated Clayton copula (180 degrees; “survival Clayton”)
51 rotated Joe copula (180 degrees; “survival Joe”)
11 rotated Clayton copula (90 degrees)
9 rotated Gumbel copula (90 degrees)
3 rotated Joe copula (90 degrees)
9 rotated Clayton copula (270 degrees)
20 rotated Gumbel copula (270 degrees)
4 rotated Joe copula (270 degrees)

164



Appendix B. Leveraging Turbine-level Data for Probabilistic Wind Power Forecasting
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Figure B.4: Wind Farm A: relative influence of input features – WF(xt) benchmark

B.2 Wind Farm A

The feature list at Wind Farm A for all models is contained in Table B.5. This includes

the benchmark GBT models, the deterministic and probabilistic models used in the

feature engineering method, and the probabilistic turbine models in the bottom-up

probabilistic model. Figures B.4 and B.5 illustrate the importance of selected variables

across key quantiles in the probabilistic GBT benchmark and probabilistic feature

engineering wind farm model respectively.

Full deterministic results in terms of MAE and RMSE are presented in Tables B.6

and B.7 respectively. These are based on the median quantile (p50) in the final full

density forecast and are therefore optimised for MAE.

Copula family selection results are displayed in Table B.8 for the copula vine

method.
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Appendix B. Leveraging Turbine-level Data for Probabilistic Wind Power Forecasting

Table B.5: Wind Farm A: list of input features by model - meteorological inputs at
100m (unless specified)

Model Features ID

All benchmarks
& individual
turbines both
deterministic and
probabilistic

Wind speed - 10m ws-10m
Wind speed ws
Wind direction - 10m wd-10m
Wind direction -
Leading ws (1 to 4 periods) ws-pl-[1-4]
Lagging ws (1 to 4 periods) ws-nl-[1-4]
Leading wd (-1 to -4 periods) -
Lagging wd (-1 to -4 periods) -
Average ws (0 to 4 periods) ws-av-pl
Average ws (0 to -4 periods) ws-av-nl
Average wd (0 to 4 periods) -
Average wd (0 to -4 periods) wd-av-nl
Standard deviation ws (0 to 4 periods) -
Standard deviation ws (0 to -4 periods) -
Standard deviation wd (0 to 4 periods) -
Standard deviation wd (0 to -4 periods) -
WS ratio (100m & 10m) -
WS gradient (-1 to 0 period) -
Direction difference (100m & 10m) -
Time of day splines (4) -
Persistence pers.

Feature
engineering wind
farm probabilistic
model

Layer 1 aggregation (mean) L1-agg
L1 turbine forecasts (30,43,46) L1-T[#]
Leading L1 aggregation (1) L1-agg-pl1
Lagging L1 aggregation (-1) L1-agg-nl1
Average L1 aggregation (0 to 4 periods) L1-agg-av-pl
Average L1 aggregation (0 to -4 periods) L1-agg-av-nl
Average ws (0 to 4 periods) ws-av-pl
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Figure B.5: Wind Farm A: relative influence of input features – WFT(xSUP
t ) feature

engineering wind farm probabilistic model

Table B.8: Details of Copula Vine selections at Wind Farm A

Total Number Family

41 Gaussian copula
628 Student t copula (t-copula)
5 Clayton copula

100 Gumbel copula
433 Frank copula
10 Joe copula
6 rotated Clayton copula (180 degrees; “survival Clayton”)

213 rotated Joe copula (180 degrees; “survival Joe”)
35 rotated Clayton copula (90 degrees)
2 rotated Gumbel copula (90 degrees)
37 rotated Clayton copula (270 degrees)
13 rotated Gumbel copula (270 degrees)
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Appendix C

Probabilistic Access Forecasting

for Improved Offshore Operations

This supplementary material contains information on the input features and formula-

tion for every model tested in the forecasting analysis.
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Appendix C. Probabilistic Access Forecasting for Improved Offshore Operations

Table C.1: List of input features and base learners by model — significant wave height
regression

Model Features Learner Location, Scale, Shape* Distribution

benchmark - glm Significant height of combined wind waves and swell (swh) linear θ1 Gamma

benchmark - gam swh p-spline θ1 Gamma

gbm

Wind direction — 10m

tree N/A N/A

Lead time
Maximum individual wave height
Mean square slope of waves
Mean wave direction
Mean wave period
Peak wave period
Significant height of total swell
Significant height of wind waves
swh
Wind speed — 10m
Average swh (-2 to 2 hours)
Average swh (-3 to 3 hours)
Average swh (-4 to 4 hours)
Variance swh (-2 to 2 hours)
Variance swh (-3 to 3 hours)
Variance swh (-4 to 4 hours)
Lagging swh (-1 to -4 periods)
Leading swh (1 to 4 periods)
Time-of-day
Day-of-year
Week-of-year
Month-of-year
Indicator of buoy location**

gamlss

swh p-spline θ1,θ2

Generalised Beta Prime

Lead time p-spline θ1

Mean wave direction cyclical p-spline θ1

Mean wave period*swh p-spline θ1

Time-of-day cyclical p-spline θ1

Month-of-year cyclical p-spline θ1

Indicator of buoy location** linear θ1

gamboostLSS

Wind direction — 10m cyclical p-spline

θ1,θ2,θ3,θ4 Generalised Beta Prime

Lead time p-spline
Maximum individual wave height p-spline
Mean square slope of waves p-spline
Mean wave direction cyclical p-spline
Mean wave period p-spline
Peak wave period p-spline
Significant height of total swell p-spline
Significant height of wind waves p-spline
swh p-spline
Wind speed — 10m p-spline
Average swh (-2 to 2 hours) p-spline
Average swh (-3 to 3 hours) p-spline
Average swh (-4 to 4 hours) p-spline
Variance swh (-2 to 2 hours) p-spline
Variance swh (-3 to 3 hours) p-spline
Variance swh (-4 to 4 hours) p-spline
Lagging swh (-1 to -4 periods) p-splines
Leading swh (1 to 4 periods) p-splines
Time-of-day, Day-of-year bi-variate (tensor) cyclical p-spline
Indicator of buoy location** linear

* For parametric regression models, learners applied to the location (θ1), scale (θ2), or shape parameters (θ3, θ4)
** At the site the buoy was moved midway through data-set
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Table C.2: List of input features and base learners by model — peak wave period
regression

Model Features Learner Location, Scale, Shape* Distribution

benchmark - glm Peak wave period (pwp) linear θ1 Gamma

benchmark - gam pwp p-spline θ1 Gamma

gbm

Wind direction — 10m

tree N/A N/A

Lead time
Maximum individual wave height
Mean square slope of waves
Mean wave direction
Mean wave period
pwp
Significant height of total swell
Significant height of wind waves
Significant height of combined wind waves and swell
Wind speed — 10m
Average pwp (-2 to 2 hours)
Average pwp (-3 to 3 hours)
Average pwp (-4 to 4 hours)
Variance pwp (-2 to 2 hours)
Variance pwp (-3 to 3 hours)
Variance pwp (-4 to 4 hours)
Lagging pwp (-1 to -4 periods)
Leading pwp (1 to 4 periods)
Time-of-day
Day-of-year
Week-of-year
Month-of-year
Indicator of buoy location**

gamlss

pwp p-spline θ1,θ2

Generalised Beta Prime

Significant height of combined wind waves and swell p-spline θ1

Lead time p-spline θ1

Mean wave direction cyclical p-spline θ1

pwp*Significant height of combined wind waves and swell p-spline θ1

Time-of-day cyclical p-spline θ1

Month-of-year cyclical p-spline θ1

Indicator of buoy location** linear θ1

gamboostLSS

Wind direction — 10m cyclical p-spline

θ1,θ2,θ3,θ4 Generalised Beta Prime

Lead time p-spline
Maximum individual wave height p-spline
Mean square slope of waves p-spline
Mean wave direction cyclical p-spline
Mean wave period p-spline
pwp p-spline
Significant height of total swell p-spline
Significant height of wind waves p-spline
Significant height of combined wind waves and swell p-spline
Wind speed — 10m p-spline
Average pwp (-2 to 2 hours) p-spline
Average pwp (-3 to 3 hours) p-spline
Average pwp (-4 to 4 hours) p-spline
Variance pwp (-2 to 2 hours) p-spline
Variance pwp (-3 to 3 hours) p-spline
Variance pwp (-4 to 4 hours) p-spline
Lagging pwp (-1 to -4 periods) p-splines
Leading pwp (1 to 4 periods) p-splines
Time-of-day, Day-of-year bi-variate (tensor) cyclical p-spline
Indicator of buoy location** linear

* For parametric regression models, learners applied to the location (θ1), scale (θ2), or shape parameters (θ3, θ4)
** At the site the buoy was moved midway through data-set
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Table C.3: List of input features and base learners — clustered peak wave direction
logistic regression

Model Features Learner Location, Scale, Shape* Distribution

gbm

Wind direction — 10m (wind-d)

tree N/A N/A

Lead time
Maximum individual wave height
Mean square slope of waves
Mean wave direction (mwd)
Mean wave period
Peak wave period
Significant height of total swell
Significant height of wind waves
Significant height of combined wind waves and swell
Wind speed — 10m
Average wind-d (-2 to 2 hours)
Average wind-d (-3 to 3 hours)
Average wind-d (-4 to 4 hours)
Variance wind-d (-2 to 2 hours)
Variance wind-d (-3 to 3 hours)
Variance wind-d (-4 to 4 hours)
Lagging wind-d (-1 to -4 periods)
Leading wind-d (1 to 4 periods)
Average mwd (-2 to 2 hours)
Average mwd (-3 to 3 hours)
Average mwd (-4 to 4 hours)
Variance mwd (-2 to 2 hours)
Variance mwd (-3 to 3 hours)
Variance mwd (-4 to 4 hours)
Lagging mwd (-1 to -4 periods)
Leading mwd (1 to 4 periods)
direction difference between mwd & wind-d
Time-of-day
Day-of-year
Week-of-year
Month-of-year
Indicator of buoy location**

* For parametric regression models, learners applied to the location (θ1), scale (θ2), or shape parameters (θ3, θ4)
** At the site the buoy was moved midway through data-set
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Appendix D

Regime Switching Multivariate

Wind Power Forecasting

This supplementary material contains extra results from the case study presented in

Chapter 7. We present the full list of BMUs considered, a comparison between the

non-separable and separable parametric covariance fits, more pinball loss results, the

PIT histograms for each BMU, and Diebold-Marioano results over the test dataset.

Table D.1: List of wind balancing mechanisms units (BMUs) used in the case
study, with associated details from the UK Government renewable energy planning
database [3]. GC means generating capacity, which for the BMUs is subject to change.
NC is the site nameplate capacity

BMU id Site Name Country Lat Lon BMU GC Site Pn

[deg] [deg] [MW] [MW]

E ABRTW-1 Auchrobert Scotland 55.624 -3.984 35.988 36.000

E AIRSW-1 Airies Scotland 54.802 -4.658 38.000 35.000

E ASHWW-1 Andershaw Scotland 55.509 -3.846 35.000 36.000

E ASLVW-1 Assel Valley Scotland 55.226 -4.779 25.314 25.000

E BABAW-1 Baillie Scotland 58.568 -3.677 52.500 52.500

E BETHW-1 Beinn Tharsuinn Scotland 57.805 -4.329 29.750 29.800

E BRDUW-1 Braes O’Doune Scotland 56.270 -4.059 74.000 72.000

E BRYBW-1 Berry Burn Scotland 57.447 -3.475 66.700 66.700

E BTUIW-2 Beinn an Tuirc 2 Scotland 55.573 -5.587 43.700 43.700
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Table D.1: List of wind balancing mechanisms units (BMUs) used in the case
study, with associated details from the UK Government renewable energy planning
database [3]. GC means generating capacity, which for the BMUs is subject to change.
NC is the site nameplate capacity. (Continued)

BMU id Site Name Country Lat Lon BMU GC Site Pn

[deg] [deg] [MW] [MW]

E CLDRW-1 Clashindarroch 2 Scotland 57.366 -2.866 37.627 37.000

E CLFLW-1 Clachan Flats Scotland 56.288 -4.943 15.000 15.000

E DALSW-1 Dalswinton Scotland 55.184 -3.651 30.000 30.000

E GDSTW-1 Gordonstown Hill Scotland 57.462 -2.483 12.977 12.500

E GFLDW-1 Goole fields England 53.666 -0.889 32.684 32.800

E GLCHW-1 Glenchamber Scotland 54.963 -4.754 26.000 27.500

E GLOFW-1 Glens of Foudland Scotland 57.425 -2.636 26.700 26.000

E GNFSW-3 Gunfleet sands - demo England 51.703 1.192 11.700 12.000

E HBHDW-1 Harburnhead Scotland 55.809 -3.532 51.700 51.700

E HLTWW-1 Hill of Towie Scotland 57.623 -3.341 48.000 42.000

E HRHLW-1 Hare Hill ext. Scotland 55.363 -4.126 30.000 29.800

E MINSW-1 Minsca Scotland 55.122 -3.353 36.800 36.800

E TULWW-2 Tullo South ext. Scotland 56.827 -2.405 25.000 10.000

T ACHRW-1 A’Chruach 1 Scotland 56.153 -5.310 42.600 48.300

T ANSUW-1 An Suidhe Scotland 56.219 -5.219 19.354 19.300

T ARCHW-1 Arecleoch Scotland 55.069 -4.797 114.000 120.000

T BEINW-1 Beinneun Scotland 57.096 -4.965 108.800 85.000

T BLLA-1 Black Law Scotland 55.762 -3.763 119.355 124.000

T BLLA-2 Black Law ext. Scotland 55.762 -3.763 69.000 48.400

T BOWLW-1 Barrow England 53.991 -3.298 90.000 90.000

T BRBEO-1 Burbo Bank 2 England 53.480 -3.270 254.200 258.000

T CLDCW-1 Clyde Scotland 55.442 -3.543 225.400 350.000

T CLDNW-1 Clyde ext. Scotland 55.504 -3.548 197.800 172.800

T CLDSW-1 Clyde Scotland 55.442 -3.543 197.800 350.000

T COUWW-1 Cour Scotland 55.681 -5.485 20.500 20.500

T CRGHW-1 Carraig Gheal Scotland 56.339 -5.295 46.000 46.000

T CRMLW-1 Corriemoillie Scotland 57.669 -4.773 48.000 48.500

T CRYRW-2 Crystal Rig 2a Scotland 55.899 -2.529 138.000 138.000
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Table D.1: List of wind balancing mechanisms units (BMUs) used in the case
study, with associated details from the UK Government renewable energy planning
database [3]. GC means generating capacity, which for the BMUs is subject to change.
NC is the site nameplate capacity. (Continued)

BMU id Site Name Country Lat Lon BMU GC Site Pn

[deg] [deg] [MW] [MW]

T CRYRW-3 Crystal Rig ext. II Scotland 55.913 -2.545 13.800 20.700

T DDGNO-2 Dudgeon East England 53.117 0.613 90.000 402.000

T DNLWW-1 Dun Law Scotland 55.806 -2.846 29.750 17.200

T DRSLW-1 Dersalloch Scotland 55.304 -4.488 69.000 69.000

T DUNGW-1 Dunmaglass Scotland 57.251 -4.256 188.000 94.000

T EDINW-1 Edinbane Scotland 57.469 -6.432 41.400 41.400

T EWHLW-1 Ewe Hill ext. Scotland 55.107 -3.334 37.000 36.800

T FALGW-1 Fallago Rig Scotland 55.831 -2.688 144.000 144.000

T FARR-1 Farr Scotland 57.334 -4.103 92.000 92.000

T FARR-2 Farr Scotland 57.334 -4.103 92.000 92.000

T FSDLW-1 Freasdail Scotland 55.777 -5.471 22.200 22.500

T GLWSW-1 Galawhistle Scotland 55.540 -3.975 55.200 66.000

T GNAPW-1 Glen App Scotland 55.001 -4.990 22.000 22.000

T GNFSW-1 Gunfleet Sands England 51.731 1.218 108.000 108.000

T GNFSW-2 Gunfleet Sands II England 51.727 1.246 64.000 64.800

T GORDW-1 Gordonbush Scotland 58.059 -3.959 70.000 70.000

T GRGBW-1 Greater Gabbard England 51.918 1.928 167.000 504.000

T GRGBW-2 Greater Gabbard England 51.918 1.928 167.000 504.000

T GRGBW-3 Greater Gabbard England 51.918 1.928 167.000 504.000

T GRIFW-1 Griffin Scotland 56.581 -3.734 102.000 156.000

T GRIFW-2 Griffin Scotland 56.581 -3.734 102.000 156.000

T GYMR-15 Gwynt y Mor Wales 53.454 -3.627 148.000 576.000

T GYMR-17 Gwynt y Mor Wales 53.454 -3.627 148.000 576.000

T GYMR-26 Gwynt y Mor Wales 53.454 -3.627 148.000 576.000

T GYMR-28 Gwynt y Mor Wales 53.454 -3.627 148.000 576.000

T HADHW-1 Hadyard Hill Scotland 55.257 -4.732 130.000 120.000

T HMGTO-1 Humber Gateway A England 53.387 0.501 108.000 219.000

T HMGTO-2 Humber Gateway A England 53.387 0.501 111.000 219.000
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Table D.1: List of wind balancing mechanisms units (BMUs) used in the case
study, with associated details from the UK Government renewable energy planning
database [3]. GC means generating capacity, which for the BMUs is subject to change.
NC is the site nameplate capacity. (Continued)

BMU id Site Name Country Lat Lon BMU GC Site Pn

[deg] [deg] [MW] [MW]

T HRSTW-1 Harestanes Scotland 55.239 -3.574 142.300 136.000

T KILBW-1 Kilbraur Scotland 58.040 -4.059 67.500 47.500

T LARYW-3 London Array England 51.622 1.496 171.000 630.000

T LARYW-4 London Array England 51.622 1.496 171.000 630.000

T LCLTW-1 lochluichart Scotland 57.655 -4.817 69.000 51.000

T LNCSW-1 Centrica (Lincs) England 53.184 0.498 150.000 270.000

T LNCSW-2 Centrica (Lincs) England 53.184 0.498 150.000 270.000

T MILWW-1 Millennium Scotland 57.155 -4.884 65.000 40.000

T MKHLW-1 Mark Hill Scotland 55.128 -4.746 53.000 56.000

T OMNDW-1 Ormonde England 54.089 -3.439 150.750 150.000

T PNYCW-1 Pen Y Cymoedd Wales 51.656 -3.696 228.000 228.000

T RCBKO-2 Race Bank England 53.136 0.589 290.000 286.500

T RREW-1 Robin Rigg East Scotland 54.764 -3.696 90.000 90.000

T RRWW-1 Robin Rigg West Scotland 54.747 -3.729 90.000 84.000

T SHRSW-1 Sheringham Shoal England 53.135 1.148 158.400 317.000

T SHRSW-2 Sheringham Shoal England 53.135 1.148 158.400 317.000

T STRNW-1 Strathy North Scotland 58.490 -4.034 68.000 67.700

T TDBNW-1 Toddleburn Scotland 55.769 -2.877 55.200 27.600

T THNTO-1 Thanet England 51.430 1.633 150.000 300.000

T THNTO-2 Thanet England 51.430 1.633 150.000 300.000

T WDNSO-1 West of Duddon Sands England 53.985 -3.462 191.000 389.000

T WDNSO-2 West of Duddon Sands England 53.985 -3.462 191.000 389.000

T WHILW-1 Whitelee Scotland 55.681 -4.279 305.000 322.000

T WHILW-2 Whitelee ext. Scotland 55.677 -4.287 206.000 108.000

T WLNYO-2 Walney 2 England 54.081 -3.609 183.600 183.600

T WLNYW-1 Walney 1 England 54.039 -3.516 182.000 183.600

T WTMSO-1 Westermost Rough England 53.098 0.561 205.000 210.000
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CV Test
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Figure D.1: Pinball loss in lead time groups during both cross validation (CV) and
testing datasets
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Figure D.2: Comparison between separable and non-separable covariance model fits for
the purely temporal and purely spatial cases

Table D.2: Diebold-Mariano test statistics based on the energy score differential on the
testing data, where p values are shown in bold

independence temporal spatiotemporal RS-spatiotemporal

independence
- 3.150 7.175 6.093

0.002 <0.001 <0.001

temporal
-3.150 - 4.418 4.764
0.002 <0.001 <0.001

spatiotemporal
-7.175 -4.418 - 0.788
<0.001 <0.001 0.431

RS-spatiotemporal
-6.093 -4.764 -0.788 -
<0.001 <0.001 0.431
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Figure D.3: PIT histograms of all BMUs considered during cross validation, the number
of observations available are overlaid on the plots
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Figure D.3: PIT histograms of all BMUs considered during cross validation, the number
of observations available are overlaid on the plots
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Figure D.3: PIT histograms of all BMUs considered during cross validation, the number
of observations available are overlaid on the plots
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