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Abstract 

The increasing interest from the science community to obtain greater quality and quantity 

of data from Earth and other planets in the Solar System drives research towards 

developing new means of performing space-based observation.  This thesis attempts to 

address some aspects of this issue by developing novel spacecraft orbits to enhance the 

opportunities for remote sensing of Earth and the inner planets. 

Within this thesis, particular emphasis is placed on investigation of a system that can 

overcome the critical data deficit for the high-latitude regions of the Earth.  These newly 

proposed highly-elliptical orbits are termed Taranis orbits (Celtic God of thunder) and can 

offer completion of the Global Observing System using fewer spacecraft and to higher 

resolution than any other proposed system.  Various low-thrust propulsion technologies are 

considered to enable the Taranis orbits, with electric propulsion found to be the most 

beneficial following mission analysis.  Design of constellations for high-latitude remote 

sensing is also conducted which highlights both 12 and 16 h orbits to meet the defined 

requirements of a polar orbiting mission. 

Similar methods are also used to develop elliptical sun-synchronous orbits at Earth and 

novel orbits around Mars, Mercury and Venus to enable new and unique investigations. 
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Chapter 1 

1 Introduction 

Spacecraft have delivered vital information about the Earth, its nearest neighbours and 

lesser explored bodies in the Solar System since the beginning of the space-age, allowing an 

understanding of the history and evolution of Earth and other planetary bodies and 

providing detailed weather forecasting, surveillance, navigation and communication 

systems.  However, as the demand grows to increase the quality and quantity of this data, 

conventional orbit slots employed by spacecraft to provide this information become more 

congested.  New means of performing planetary observation, making use of the evolution 

of spacecraft technology, are therefore sought to enable new and unique investigations. 

1.1 Earth Observation Systems 

Platforms in orbit around the Earth provide fundamental services such as communication, 

navigation, surveillance, and observation.  Earth Observation (EO) spacecraft image the 

Earth’s surface and seas and monitor more than twenty of the fifty recognised Essential 

Climate Variables (ECVs) identified by the Committee on Earth Observation Satellites as 

being largely dependent on space-based observation [1, 2].  ECVs such as solar fluctuations, 

ocean surface temperature and volcanic activity are parameters defined by the Global 

Climate Observing System and are required for the validation of, and assimilation into, 

Earth system models to predict future climate trends [1, 2]. 
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1.1.1 Current Systems 

To date, EO missions have been conducted from two main types of orbit; Low-Earth orbit 

(LEO) and geostationary Earth orbit (GEO), which constitute the Global Observing System 

(GOS) detailed in Figure 1-1.  LEOs are typically circular, polar orbits with altitudes ranging 

from below 1,000 km to around 2,000 km, with typical altitudes in the range of 500 – 800 

km, and offer high-resolution observations [3].  These orbits are often sun-synchronous: the 

orbit’s nodal precession rate matches the Earth’s mean orbital rate around the Sun such 

that the lighting along the ground-track remains approximately constant over the mission 

duration.  This property is useful both in terms of the spacecraft design, due to the 

significant simplification of the thermal environment, and for comparison of images, to 

enable repeat observations of a target over an extended period under similar illumination 

conditions, making them particularly useful for EO missions including CryoSat, the Soil 

Moisture Ocean Salinity satellite (SMOS), and the Gravity field and steady-state Ocean 

Circulation Explorer mission (GOCE) [4-7].  These orbits are however, essentially a finite 

resource and new solutions are therefore being sought to enhance the opportunities for 

observation; discussed in greater detail in Section 2.1.4 and Chapter 6. 

Conversely, GEOs are circular orbits around the Earth’s equator with altitudes in the region 

of 36,000 km and orbital period equal to the rotational period of the Earth [8].  They 

provide the large scale contextual information that is lacking from LEOs and are most often 

used for communication and weather satellites, such as Meteosat and GOES-O1 [9].  

Nevertheless, GEO slots are becoming increasingly congested, thus new solutions are being 

investigated to ease this congestion; discussed further in Chapter 2.  Despite the popularity 

of GEOs, observations are critically limited beyond approximately 55 degrees latitude due 

                                                           
1
 GOES-O homepage at http://www.nasa.gov/mission_pages/GOES-O/main/index.html Accessed on 

October 4th 2012 

http://www.nasa.gov/mission_pages/GOES-O/main/index.html
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to the rapidly decreasing horizontal resolution with increasing latitude [10].  This, combined 

with the poor temporal resolution of spacecraft in LEO results in a data-deficit over the 

critical polar regions of the Earth.  This deficit can be partially addressed using composite 

images, however a ‘ring’ of missing observations still occurs between latitudes of 

approximately 50 and 70 degrees [11].  Composite images include data from geostationary 

and polar orbiting spacecraft and are widely available for temporal resolutions of 3 hours 

which, following recent developments, has been reduced to 1 hour [11, 12]. However, 

deriving high-quality climate records, including monitoring of atmospheric motion vectors, 

requires a data refresh rate of at least 15 minutes as is typically required for so-called 

continuous meteorological observations.  It is noted that next generation GEO platforms 

are capable of providing data refresh rates of 5 minutes.  Composite images therefore do 

not fully overcome the data deficit at the high-latitude regions of the Earth, leaving critical 

climate and meteorological datasets lacking in vital polar regions. 

 

Figure 1-1  Global Observing System showing GEO and LEOs (image credit Malcolm 

Macdonald) 

GEO 

LEO 
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1.2 High-Latitude Observation 

In recent years, there has been significant interest in building an observation system to 

accurately track environmental processes in the polar and frigid zones [13].  The rapidly 

changing environment of, in-particular, the Arctic is of great meteorological and climate 

significance as the climate in these regions has been shown to have a disproportionate 

impact on global weather and climate predictions [14-16].  Furthermore, the Arctic is a 

significant region for transportation of volcanic ash, air pollution, fog, and for sea-ice 

movement, and is thus a region of high priority science.  Moreover, exploitation of oil and 

mineral resources in the Arctic regions is set to increase in the coming years as hidden 

energy reserves are revealed.  There is also increasing demand for reliable communication 

and data relay in the remote polar regions, with ESA initiating the ArcticOM study to map 

future demand and identify communication gaps in the Arctic, with a view to using this 

region as a possible commercial shipping route [17].  

It is clear from Section 1.1.1 that no current EO system can provide the level of temporal or 

spatial resolution required at the high-latitudes and the current use of composite images to 

map these areas still results in a ring of missing observations between latitudes of 

approximately 50 and 70 degrees, as detailed in Figure 1-2 [11].  Critical climate and 

meteorological datasets at the Earth’s frigid and neighbouring temperate zones are 

therefore lacking. 



 
 

5 

 

Figure 1-2  Ring of missing Atmospheric Motion Vectors from ~ 50 to ~70 degrees (image 

credit Lazzara et al. in [11]) 

The emerging commercial shipping activity in the North-East passage has caused various 

bodies to recognise the gaps in telecommunications at high-latitudes and express interest 

in the creation of an Arctic communication system for several applications.  The Arctic 

Marine Shipping Assessment (ASMA, 2009) conducted by the Arctic Council stated that 

“There are serious limitations to radio and satellite communications and few systems to 

monitor and control the movement of ships in ice-covered waters” [18].  Similarly, the 

MarSafe North study identified the requirement for a comprehensive Arctic observing 

system for high-latitude maritime telecommunications [19]. 

In addition to telecommunications, the high-latitude data deficit is required to be filled for 

many EO applications.  A comprehensive Arctic-observing system would allow improved 

monitoring of ECVs to enhance understanding of climate change modelling.  Temperatures 

GEO 

LEO 
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in the polar regions are also increasing several times faster than the global average [20]; 

sea-ice coverage is also decreasing, creating a feedback effect on the climate [21, 22].  

Enhanced polar observation, provided by a Taranis constellation of spacecraft for example, 

would enable: 

 Acquisition of cloud-motion wind vectors – These form an important input to weather-

forecasting systems.  90 degree inclination Taranis orbits could fill the gap in 

information caused by the degradation of information from geostationary orbits above 

latitudes around 55 degrees and the narrow swaths of data from LEO. 

 Monitoring of sea ice – As this changes rapidly from day to day, continuous coverage 

from a Taranis orbit means that the probability of seeing through a gap in the clouds at 

any given location is much higher than from a LEO mission. 

 Observation of tropospheric chemistry in the polar regions – Tropospheric chemistry is 

often driven by sporadic pollution events and/or has a strong diurnal cycle.  Observing 

this from LEO misses much of the cycle due to the intermittent nature of the 

opportunities provided.  Taranis orbits have the potential to make these observations 

with a high repeat rate. 

 Observation of stratospheric ozone – The causes of ozone depletion are well 

understood but the dynamical context in which they take place is very variable in the 

Northern Hemisphere.  Also, the way in which polar ozone responds to climate change 

is currently difficult to predict. 

 Volcanic Ash – The distribution of smoke and ash is of particular interest for aviation 

and air quality, with volcanic ash posing a significant geohazard to the economy. 
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 Telecommunications – A reliable communications system is required in the remote 

polar regions for various applications such as commercial shipping. 

In addition to these observations, improved polar observation would also allow enhanced 

surface observations due to the collection of all possible clear-sky pixels, whilst key polar 

observations would be radically improved through observation of parameters such as sea 

surface temperature, snow cover, vegetation properties and wild fires.  

It is apparent that an observation system capable of continuously imaging the high-latitude 

regions of the Earth with sufficient resolution would offer significant benefits for a number 

of applications.  Consequently, this thesis will investigate possible new orbit solutions to 

build a comprehensive Arctic observing system and fulfil the gap in data for high-latitude 

regions, allowing improved monitoring of ECVs to enhance understanding of climate change 

modelling.  Comparison is firstly made in the subsequent sections between current Arctic 

observing system concepts, including conventional highly-elliptical Molniya orbits, the 

Polesitter concept and displaced eight-shaped orbits.  

1.2.1 Highly-Elliptical Orbits 

The World Meteorological Organization has recently identified highly-elliptical orbits (HEOs) 

as a possible solution to the lack of adequate observations of key high-latitude regions as 

part of the vision for the GOS in 2025, where, the concept of an HEO mission ‘for quasi-

permanent monitoring of high-latitudes and polar regions’ has been proposed [13].  HEOs, 

such as the Molniya (Russian: lightning) orbit, have been used extensively by the Russian 

Federation for high-latitude communication since 1965 [23], however they have never 

previously been employed for EO missions.   

The mass distribution of the Earth is not uniform; there is a bulge at the equator, a slight 

pear shape and flattening of the poles, which causes periodic variations in all of the orbital 
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elements of a spacecraft.  The most significant spherical harmonic term is the second-

degree zonal harmonic, J2, which accounts for the oblateness of the planet and causes 

secular variations in the right ascension of the ascending node and argument of perigee.  

However, the Molniya orbit has a fixed ‘critical inclination’ of either 63.43 or 116.6 degrees 

which negates the drift in argument of perigee usually caused by the Earth’s equatorial 

bulge (J2 effect) [24].  The derivation of these critical inclination values is given in more 

detail in Section 3.2.1.  These orbits have an orbital period approximately equal to one-half 

of a sidereal day, with apogee altitudes comparable to the altitude of GEO platforms.   

Although Molniya orbits have only previously been used for high-latitude communication 

missions, their benefits for remote sensing have been considered for a number of years.  In 

1990, Kidder et al. discussed how Molniya orbits can function much like high-latitude 

geostationary orbits to improve the temporal frequency of polar observations [23].  In their 

2000 paper, Draim et al. also state that constellations of spacecraft on highly-elliptical, 

Molniya-like, orbits may become the new paradigm for telecommunications space systems 

as well as offering benefits for many other applications [25].  Significantly, elliptical systems 

can be designed to give coverage of particular latitudes and continuous global coverage for 

telecommunication and imaging applications can be achieved at a lower cost than using 

existing orbit solutions, such as LEOs as a result of the fewer spacecraft required [25, 26].   

In view of the direction of the GOS to include a constellation of spacecraft in HEOs to 

complement current EO systems, an HEO system is being proposed by Canada for launch by 

2017 [27].  This Polar Communication and Weather (PCW) mission consists of two 

spacecraft in 16 h, Molniya-like, orbits in a single orbit plane which give Observational 

Zenith Angles (OZAs) not exceeding 70  degrees to provide broadband services to regions of 

Canadian interest [27-29]. 



 
 

9 

The Russian Federation is also proposing a more ambitious Arctic observation system 

known as ‘Arktika’ which consists of spacecraft in GEO, LEO and HEOs to obtain real-time 

information such as wind velocity and direction, precipitation and ice conditions for 

weather forecasting, flight safety and navigation in the high-latitude regions [30]. 

Although Molniya orbits can provide enhanced high-latitude observation, they cannot 

provide hemispheric observations to the latitudes required to fully overcome the identified 

data-deficit, from a single spacecraft.  A spacecraft at apogee on a Molniya orbit observing 

to 55 degrees latitude, where observations from GEO begin to breakdown [10], has a peak 

OZA around 10 degrees higher than when the same location is observed from GEO, shown 

in Figure 1-3.  The problem of viewing frigid and neighbouring temperate regions is 

therefore not fully resolved with the use of spacecraft on the Molniya orbit as no single 

platform can provide hemispheric observations that can be coupled with the observations 

obtained from GEO.  Observations would therefore continue to be dependent on 

composite images that will be discontinuous in viewing geometry.  It is noted that 

throughout this thesis, a composite image is defined as a single image consisting of 

perspectives from more than one spacecraft.  The viewing geometry and number of 

spacecraft required using the Molniya orbit will be described in more detail in Chapter 5.   
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Figure 1-3  Observation over the pole from Molniya orbit at apogee with 63.43 degree 

inclination 

1.2.2 Non-Keplerian Orbits 

Recent investigations have been conducted into the use of the Polesitter mission concept, 

first introduced in 1980, to allow continuous, high-latitude observation [31].  This concept 

will be discussed in greater detail in Chapter 2, but essentially involves placing a spacecraft 

above one of the Earth’s poles at around 2 million km altitude, by means of continuous 

acceleration, to allow hemispheric observations [32, 33]. 

A similar concept to the Polesitter mission is the solar sail displaced eight-shaped orbit, 

which will also be discussed in further detail in Chapter 2, has recently been considered by 

Ceriotti et al. [34].  Displaced eight-shaped orbits use the acceleration generated from solar 

sails to displace the Lagrangian points, L1 and L2, however as with the Polesitter concept, 

the spacecraft is around 1 and 2 million km from Earth. 

Observational Zenith 
Angle (OZA) 
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1.2.3 High – Latitude Observation Requirements 

A list of requirements for a polar remote sensing constellation has been developed, based 

on the requirements outlined for other Arctic observation missions [27, 28].  Further 

detailed discussion of these requirements is also given in Chapter 5, these are as follows: 

R1.  The constellation shall provide continuous coverage above 55 degrees latitude as a 

minimum. 

R2.  The rate of change of argument of perigee of the orbit shall be zero. 

R3.  The apogee altitude of the orbit shall be less than 45,000 km. 

R4.  The OZAs shall be less than or equal to the OZA from GEO. 

R5.  Above the target region, a single image shall be used to provide the required 

coverage. 

R6.  The mission shall comply with debris mitigation guidelines. 

1.2.4 Arctic Observation System Comparison 

Comparisons can be made between the mission concepts described in Sections 1.2.1 and 

1.2.2 in relation to the requirements outlined in Section 1.2.3.  A summary is given in Table 

1-1 to show the mission concepts that are capable of meeting the given requirements. 

Table 1-1 - Arctic observation mission concepts summary 

Mission Concept R1 R2 R3 R4 R5 R6 

Molniya orbit    X X  

Polesitter   X    

Eight-shaped orbit   X X X  

 



 
 

12 

It is clear from Table 1-1 that neither the Polesitter or displaced eight-shaped orbits can 

provide sufficient spatial resolution to meet the requirements defined in Section 1.2.3, 

these concepts therefore do not fully resolve the high-latitude data deficit.  It is also clear 

from Table 1-1 that the OZAs of the conventional Molniya orbit do not match those from 

GEO platforms when viewing the same location, this will however be discussed in more 

detail in Chapter 5.  The requirement for a new comprehensive Arctic observing system to 

fully resolve the high-latitude data deficit is therefore clear. 

1.3 Planetary Observation Systems 

In addition to EO, there is significant interest in the observation of other bodies in the Solar 

System.  Since the first successful flyby of Venus by Mariner 2 in 1962, robotic 

interplanetary missions have returned a wealth of valuable information about other 

planetary bodies [35].  Planetary exploration is vital to gain an insight into the formulation 

and evolution of, not only Earth, but also other planets in the Solar System.  It can aid the 

understanding of how life began on Earth, determine whether extra-terrestrial habitable 

environments exist in the Solar System, enhance quality of life through technology 

innovation and reinforce science, technology, engineering and mathematics (STEM) 

education. 

1.3.1 Mars 

Exploration of the Martian environment, in particular, sparked early interest with efforts 

made by both Russia and the US to flyby, orbit and land on the surface of Mars.  The first 

successful artificial Martian satellite, Mars 2, was placed in orbit in 1971, closely followed 

by the Russian Mars 3 and US Mariner 9 later that year2 [36].  The mid 1970s saw three 

further spacecraft placed in orbit around Mars: the Russian Mars 5 in 1973, and American 
                                                           
2
 The Mars Exploration Program Historical Log, found online at:  

http://mars.jpl.nasa.gov/programmissions/missions/log/ Accessed 27
th

 November 2012 

http://mars.jpl.nasa.gov/programmissions/missions/log/
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Viking 1 and Viking 2 in 1975 [37, 38].  The following two decades saw no successful 

missions to Mars, until the launch of Mars Global Surveyor (MGS) by the US in late 1996 

[39].  This mission delivered a vast amount of valuable information about the Martian 

atmosphere, surface and subsurface including photographs from the Mars Orbiter Camera 

of gullies and debris flow, and also produced evidence of the presence of water ice on both 

polar caps [40].  In the early 2000s, both NASA’s Mars Odyssey and ESA’s Mars Express 

reached orbit, with the former returning evidence of large amounts of hydrogen: an 

indication of vast quantities of water ice near the Martian South Pole, a discovery later 

confirmed by Mars Express [41-44].   

The most recent spacecraft to conduct exploration of Mars from orbit is the Mars 

Reconnaissance Orbiter (MRO) launched in 2006.  Still in operation, as of February 2013, it 

is responsible for the daily monitoring of Martian weather, investigation of the surface and 

searching for possible future landing sites [45].  Exploration over the past three decades by 

such systems has allowed a comprehensive and multidisciplinary view of Mars to be 

obtained.  Detailed information has been provided about the Martian surface geology and 

mineralogy, atmospheric composition and circulation, mineral composition, subsurface 

structure, radiation environment and weather.  However, each discovery about the Martian 

environment poses further questions, thus extensive investigation is still necessary. 

Natural orbits typically used for remote sensing applications at Earth, as described in 

Section 1.1.1, also exist at Mars.  For example sun-synchronous orbits, which have in the 

past been employed by spacecraft such as Mars Odyssey [46], MRO [47] and Mars Global 

Surveyor (MGS) [39], and Molniya-like orbits with fixed values of the critical inclination, 

which can also offer benefits for remote sensing of Mars by allowing the spacecraft to 

spend a large amount of time over a region of interest as a result of apoareion dwell. 
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Additional significance has recently been placed upon the exploration of Mars with the 

reformulation of the Mars Exploration Program, which aims to assess both near-term 

mission concepts and longer-term foundations of program level architectures for future 

robotic exploration of Mars.  The goals of the program are to discover whether life ever 

arose on Mars, characterise the climate and geology of the surface and ultimately prepare 

for human exploration, with the challenge of sending humans to orbit Mars in the decade 

of the 2030s.  Thus, missions must be developed which are responsive to the scientific goals 

of both the National Research Council Planetary Decadal Survey [48] and the ESA Aurora 

Programme3, and extensive investigation is required into the Martian surface, subsurface, 

lower atmosphere, winds and densities.  Research has consequently been conducted into a 

variety of Mars orbits to allow the best possible opportunities for remote sensing and in 

support of future Mars exploration [49].  This thesis therefore employs similar methods 

used to derive new orbits at Earth to also develop novel orbits around Mars to enable new 

and unique investigations. 

1.3.2 The Inner Planets 

The NASA Vision and Voyages Decadal Survey for 2013 – 2022 has identified three themes 

for the future development of planetary science, within which the importance of 

investigating the evolution of the inner planets and their atmosphere’s is highlighted [48].  

Exploration of Venus is emphasised to determine whether the ancient aqueous 

environment was conducive to early life and investigate if life ever emerged.  Furthermore, 

examination of the chemistry, geology and climates of the inner planets can lead to better 

understanding of climate change here on Earth.  Accordingly, the importance of exploration 

of Mercury and Venus is clear.  

                                                           
3
 http://www.esa.int/esaMI/Aurora/  Accessed 27th August 2012. 

http://www.esa.int/esaMI/Aurora/
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To date, there have been only two missions to Mercury: Mariner 10, a Mercury and Venus 

flyby mission launched in 1973: and the Mercury Surface, Space Environment, 

Geochemistry and Ranging (MESSENGER) mission which was launched in 2004 and reached 

orbit in 2011 [50].  The prime objectives of the MESSENGER spacecraft are to characterise 

the chemical composition of Mercury’s surface, determine the nature of the magnetic field, 

the geologic history and the structure and state of the core [51].  A joint ESA and JAXA 

mission to Mercury is also scheduled for launch in 2015 - the Mercury Planetary Orbiter 

(MPO), and the Mercury Magnetospheric Orbiter (MMO) are part of the BepiColombo 

mission to study the evolution, geology, structure, interior, composition, magnetic field, 

exosphere and magnetosphere of Mercury [52]. 

The better-explored Venus has missions dating back to 1962, with Mariner 2 the first space 

probe to encounter another planet [35].  Since this time, a number of flyby missions have 

returned scientific data including magnetic field fluctuations, temperature measurements, 

atmospheric data, detection of gamma ray bursts and composition and properties of 

Venusian rocks from Mariner 2 and 5 and Venera 11-14 [35, 53-55].  Early missions to 

Venus also included a number of orbiters such as Venera 9, 10, 15 and 16, the Pioneer 

Venus 1 orbiter and Magellan, which have provided data on the cloud layers of Venus, 

atmospheric parameters, mapping of the surface and gravity measurements [56-59].  More 

recently, the Venus Express spacecraft launched by ESA in 2005 is, for the first time, 

performing long-term comprehensive investigation of the Venusian atmosphere [60].  The 

Japanese solar sail mission IKAROS, (Interplanetary Kite-craft Accelerated by Radiation Of 

the Sun) launched in 2010, also performed a flyby of Venus [61]. 

Similar to Earth and Mars, orbits inclined at the critical inclination also exist at Mercury and 

Venus which, as previously detailed, can offer significant benefits for remote sensing of 
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other bodies in the Solar System.  However, although these Molniya-like orbits exist, the 

reciprocal of flattening of these planets is so low that natural perturbations are of no use 

for generating sun-synchronous orbits.  Investigation has therefore been conducted into 

the use of a solar sail to deliver a payload into a sun-synchronous orbit around Mercury 

[62].  The Mercury Solar Sailing Advanced Geoscience Exploration (MESSAGE) mission was 

proposed in the mid 1990s to enable a spacecraft to enter a sun-synchronous orbit to 

provide benefits for the spacecraft thermal environment and give complete coverage of the 

planet’s surface within two years [63].   

Within this thesis, novel orbits around Mercury and Venus are also presented to enhance 

the potential opportunities for observation. 

1.4  Thesis Objectives  

The objectives of this work are to: 

 Develop new highly-elliptical orbit solutions, to provide possible resolutions to the 

data deficit at the high-latitude regions of the Earth and for application to other as 

yet unspecified applications, through consideration of advanced orbital dynamics. 

 Examine the use of electric, chemical and hybrid solar sail / electric propulsion 

systems to enable new highly-elliptical mission concepts and determine the most 

beneficial. 

 Perform a trade space analysis of possible mission concepts, and conduct mission 

analysis to characterise the mission lifetimes and mass budgets. 

 Develop highly-elliptical sun-synchronous orbits around Earth, using low-thrust 

propulsion, through consideration of advanced orbital dynamics. 
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 Develop novel orbits around other bodies in the Solar System, including Mars, 

Mercury and Venus, by using techniques developed for Earth orbits, to enhance the 

opportunities for remote sensing. 

To achieve these objectives this thesis considers the application of acceleration, using 

locally optimal control laws [64], to develop novel orbits around the Earth to provide 

improved EO and enhanced data collection, focussing specifically on the remote sensing of 

high-latitude regions.  However it is noted that several new orbit concepts are developed 

which may be of benefit for other unspecified applications.  Consideration is given to the 

use of continuous acceleration to allow free-selection of the critical inclination of HEOs, 

while maintaining the zero change in argument of perigee condition essential to Molniya-

like orbits.  The value of the inclination can therefore be selected to fulfil the specific 

mission objectives.  Conventional chemical propulsion, electric propulsion (EP) and hybrid 

solar sail / EP are investigated to determine the most beneficial system to enable such 

missions.  Trade space analysis is also conducted to present various mission architectures 

which satisfy a set of mission requirements. 

The use of low-thrust propulsion to develop highly-elliptical, sun-synchronous orbits is also 

investigated.  In this case, acceleration is used to force a change in the ascending node 

angle whilst maintaining zero average change in the argument of perigee over the orbit. 

Parameters are again selected to best satisfy the mission objectives.  These newly 

developed orbits can potentially enhance the opportunities for EO and by maintaining a 

sun-synchronous condition can offer considerable simplification of the spacecraft thermal 

environment. 

Comparable methods are also used to develop new families of orbits around Mars, Mercury 

and Venus, where low-thrust propulsion is used for the extension of the critical inclination 
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of HEOs, the extension of circular and elliptical sun-synchronous orbits and to enable sun-

synchronous orbits around bodies where they are otherwise not feasible. 

The key contribution to knowledge of this thesis is that; 

Novel planetary observation systems are developed both at Earth and other 

planets, which at Earth allow completion of the GOS using fewer spacecraft 

and to higher resolution than any other proposed solution. 

1.5 Thesis Layout 

An introduction to Earth and planetary observation systems was given in Chapter 1, where 

the limitations of current EO systems for remote sensing of high-latitude regions of the 

Earth were discussed.  The necessity for new mission architectures to overcome this data 

deficit was also identified.  Thesis objectives state that investigation will be conducted into 

new EO systems to fulfil this gap in data, through the use of low-thrust propulsion.  Chapter 

2 therefore introduces various low-thrust propulsion systems, including EP, solar sailing and 

hybrid solar sail and EP systems, and their uses on previous missions. 

Chapter 3 will introduce novel HEOs at Earth, termed Taranis orbits, and presents the 

derivation of the orbits using a general perturbations solution, that is to say an analytical 

solution, which uses locally optimal control laws to apply continuous acceleration for the 

extension of the critical inclination.  The effect of the applied acceleration on the orbital 

elements is also considered.  A special perturbations, or numerical method is also used to 

verify the general perturbations solution, and a fuel optimal solution is generated using 

Pseudospectral optimisation.  Although this chapter develops several new orbit concepts 

for a variety of possible applications, a 90 degree inclination orbit, to meet the 
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requirements specified in Section 1.2.3, is the main focus for the mission design conducted 

in subsequent chapters. 

Various propulsion systems are considered to enable the 90 degree Taranis orbit to 

determine the most beneficial.  Chapter 4 therefore examines the use of hybrid solar sail / 

EP and conventional chemical propulsion and compares these against a pure EP system by 

performing mission analysis to determine the available useful payload masses and possible 

mission lifetimes. 

Trade space analysis is conducted in Chapter 5 to allow the selection of a particular 90 

degree inclination orbit dependent upon the mission objectives and mission cost.  This 

chapter also presents validation of the visibility analysis using NOVA Satellite Tracking 

Software.  

Chapters 6 and 7 employ the methods used to develop a Taranis orbit system capable of 

meeting the specified requirements in the previous chapters to develop orbits for other 

unspecified applications at Earth and other bodies in the Solar System. 

Chapter 6 presents the addition of a further element of acceleration to force a change in 

the ascending node angle of the orbit, in addition to the zero average change in argument 

of perigee condition, to create sun-synchronous HEOs.   Once again these orbits are derived 

using a general perturbation solution and validated using a special perturbations technique. 

Chapter 7 will apply the methods used to derive novel orbits at Earth to develop new 

families of both highly-elliptical and sun-synchronous orbits at Mars, Mercury and Venus. 

Finally, Chapter 8 will review the thesis and outline the future work. 
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Chapter 2 

2  Low-Thrust Propulsion Systems 

Several newly proposed Earth and planetary observation systems rely on the application of 

continuous acceleration provided either by an EP system, solar sails or a hybrid solar sail 

and EP system: Each of these systems is subsequently presented, followed by a discussion 

of the possible applications 

2.1 Electric Propulsion 

First conceived over one-hundred years ago by Robert Goddard [65] electric propulsion has 

undergone significant development with the launch of the first experimental ion thrusters 

in the early 1960s [66].  EP has now become a mature technology with high Technology 

Readiness Level (TRL) and low Advancement Degree of Difficulty (AD2) [67, 68].  

These systems accelerate propellant to high exhaust velocities, produce thrust of typically 

around a fraction of a Newton per thruster [66], and can offer a reduction in the propellant 

consumption over conventional propulsion. This can, in turn, create increased capacity for 

useful payload or lower launch masses leading to reduced launch costs through the use of 

smaller launch vehicles. EP can be divided into three main categories; electrothermal, 

electromagnetic and electrostatic, where each is subsequently discussed in Sections 2.1.1 

through 2.1.3. 
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2.1.1 Electrothermal Propulsion 

Electrothermal propulsion systems, such as resistojets (Figure 2-1) and arcjets (Figure 2-2), 

electrically heat propellant causing it to expand through a nozzle to generate thrust [69].  

The specific impulse of a resistojet, which transfers heat to the propellant using a solid 

surface such as the chamber wall, is typically < 500 seconds [66].  For arcjets, which heat 

the propellant using an electric arc, the specific impulse is limited to around 700 seconds 

[66].  Resistojets were first operational in the 1980s where they were used for 

stationkeeping of communication platforms [69]. More recently, resistojets have been 

employed for attitude control, orbit insertion and de-orbit of spacecraft in LEO, such as 

spacecraft in the Iridium constellation [69, 70].  The first use of arcjets was subsequent to 

that of resistojets, with their use for north-south stationkeeping on geosynchronous 

platforms, such as the Telstar-4 series in the 1990s [69]. 

 

Figure 2-1  Resistojet schematic 
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Figure 2-2  Arcjet schematic 

2.1.2 Electromagnetic Propulsion 

Electromagnetic propulsion systems accelerate propellant through a combination of 

electric and magnetic fields to produce thrust [69].  These systems can be categorised as 

either Magnetoplasmadynamic (MPD) thrusters (Figure 2-3) or Pulsed Plasma Thrusters 

(PPTs) (Figure 2-4).  MPD thrusters use a very high current arc to ionise the propellant, 

which is then accelerated using electromagnetic forces in the plasma [66].  They typically 

operate at very high power levels and have demonstrated specific impulses between 1500 

and 8000 seconds [69], however at the time of submission of this dissertation, these have 

not yet gained any flight experience [71].  PPTs use a pulsed discharge to ionise a fraction of 

solid propellant ablated to a plasma arc and electromagnetic effects in the pulse to 

accelerate the ions to high exit velocities [66].  Ablative Pulsed Plasma Thrusters have an 

early history with their use on the Soviet Zond-2 spacecraft in 1964 and the United States 

LES-6 spacecraft in 1968 for Sun pointing control and east-west stationkeeping respectively 

[72, 73].  PPTs have also been used more recently on board NASA’s Earth Observing 1 (EO-

1) to provide spacecraft attitude control [74]. 
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Figure 2-3  Magnetoplasmadynamic thruster schematic 

 

Figure 2-4  Pulsed Plasma Thruster 

2.1.3 Electrostatic Propulsion 

Gridded-ion (Figure 2-5) and Hall thrusters (Figure 2-6) are the two primary electrostatic 

propulsion devices, which accelerate the propellant through application of electrostatic 

forces to ionised particles [69].  Ion-thrusters ionise a large fraction of the propellant and 

use grids to electrostatically extract ions from the plasma and accelerate them to extremely 

high exhaust velocities [69].  Such systems have specific impulse ranges between 2000 

seconds and 10,000 seconds [66].  Although technically complex, ion engines are the most 

developed and well tested EP devices and have been operational since their use on the 

Japanese ETS-6 in 1994 [66].  Since then the L-3 25 cm Xenon Ion Propulsion System (XIPS) 

have been used on the Boeing 702 communications satellite for near-Earth applications 
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including attitude control, North-South and East-West stationkeeping, de-orbit and 

momentum dumping [71].  The XIPS can operate at a low power of 2.7 kW producing  79 

mN of thrust or at high power level of 4.2 kW giving a thrust of 165 mN [75].   

Low-thrust, high specific impulse ion engines are particularly useful for deep-space missions 

where longer thrusting times are more acceptable.  Such as the 1998 Deep Space 1 (DS-1) 

technology demonstration mission, with a duration of over two years, it employed NASA’s 

Solar electric propulsion Technology Application Readiness (NSTAR) thruster, capable of 

providing between 20 and 94 mN of thrust at 2.3 kW of power [76-78].  Following 

successful demonstration, EP was the enabling technology for the Dawn mission to Ceres 

and Vesta, which employed NSTAR thrusters [71, 79].  

In 2003, JAXA employed four units of the microwave discharge ion engine, μ10, as the main 

method of propulsion onboard the HAYABUSA asteroid sample return mission.  The μ10 ion 

engine is capable of producing 8 mN of thrust at 350 W of electric power and during the 

two-year flight of Hayabusa each thruster was operational for around 25,800 hours 

consuming 22 kg of xenon propellant [80]. 

Current developments in ion thrusters include NASA’s Evolutionary Xenon Thruster (NEXT), 

which is designed to improve on the performance of the NSTAR thruster by achieving lower 

specific mass, higher specific impulse, greater propellant throughput, and increased power 

handling capability, thrust, and throttle range [71].  Testing has revealed this to be the case 

with NEXT shown to be capable of providing 236 mN of thrust at around 7 kW of power.  

Long duration life testing of an engineering model NEXT thruster has accumulated more 

than 9990 hours of operation at full power [81].  

NASA have also led the development of both the 20 kW Nuclear Electric Xenon Ion thruster 

System (NEXIS) for outer planet robotic missions, which has been shown to produce a 
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maximum thrust of 476 mN [82], and the High Power Electric Propulsion (HiPEP) thruster 

which has undergone ground testing and is capable of providing a maximum thrust of 670 

mN at a power level of 40 kW [83].   

In the UK, QinetiQ have developed the T5 ion thruster to provide a thrust range of 1 – 20 

mN at between 55 and 585 W of power across the thrust range, with a nominal thrust 

range between 15 and 25 mN [84].  The T5 thrusters have been used to provide drag 

compensation for the ESA GOCE mission [84].  GOCE was originally intended to last around 

20 months and was due to end when the 40 kg of Xenon propellant was consumed.  

However, unusually low solar activity has reduced the propellant usage and the mission has 

been extended until the end of 2013 [85].  The larger 4.5 kW T6 thruster developed by 

QinetiQ has also been shown to be capable of providing 230 mN of thrust [86]. 

Hall thrusters, which are essentially grid-less ion engines, have fewer parts and lower 

complexity than gridded ion thrusters [71] and have become a common method of EP since 

their first use by Russia in the 1970s, where two SPT-60 were employed on the Meteor 

satellite [87].  In recent times, ESA’s Small Missions for Advanced Research in Technology 

(SMART-1) mission travelled to the moon to search for water using EP provided by 

Snecma’s PPS-1350-G Hall thruster, which set a World record for Hall effect thrusters 

operating for more than 1700 hours in flight [88].  The nominal operating conditions of the 

thruster are 90 mN of thrust and 1.5 kW of power [89].   

The Advanced Extremely High Frequency (AEHF) satellites have also employed the 4.5 kW 

Aerojet BPT-4000 Hall thrusters, capable of providing a thrust of 295 mN [90], with 

projected design life of at least 7,000 hours at 4.5 kW, for orbit raising and stationkeeping 

in GEO [91].   
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The High Voltage Hall Accelerator has also been developed and tested by NASA to advance 

the Hall thruster technology readiness for science mission applications, with a view to 

providing a lower-cost EP alternative for future missions [92].  Testing has revealed the 

maximum power as 3.5 kW and a thrust range of 24 – 150 mN with a predicted lifetime 

exceeding 15,000 hours [92].   

 

Figure 2-5  Gridded-Ion thruster schematic 

 

Figure 2-6  Hall thruster schematic 
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opportunities for remote sensing.  Further benefits of EP include the variability of thrust 

levels [69], control of arrival conditions and reduction in the number of mission critical 

events [93].   

The recent developments in the performance of EP systems, particularly the electrostatic 

thrusters described in Section 2.1.3 and their ability to process large amounts of on board 

solar power, means they can enable a new range of missions which are otherwise not 

possible using conventional, high-thrust, chemical propulsion [69].  EP systems could enable 

multiple target missions, travelling to multiple targets using a single spacecraft, there are 

significant savings in spacecraft development and launch costs, considerable science return 

can also be achieved for a single spacecraft [71].  Such missions include the Dawn mission 

to Ceres and Vesta [94] and possible future sample return missions to Phobos and Deimos 

[95].  EP may also be used for heavy cargo and piloted missions to Mars [96, 97], the outer 

planets and beyond [69]. 

EP has also been considered for EO applications for a number of years, for example to 

enable non-Keplerian orbits (NKOs), which can offer additional opportunities for remote 

sensing.  NKOs are herein defined as those which take into account perturbations such as 

solar radiation pressure and artificial propulsion methods [98].   

In the late 1970’s/early 1980’s it was proposed by Driver to use the continuous low-thrust 

provided by an EP system to allow a spacecraft to be placed above one of the Earth’s poles, 

to give hemispheric views, a concept termed “Polesitter” [31].  This involved positioning a 

spacecraft between 1 and 3 million kilometres above the surface of the Earth where the 

minimum required acceleration occurred at an altitude range of 2.29 – 2.74 million 

kilometres depending on the time of year, where within this range the acceleration varies 

between 0.155 and 0.166 mm/s2 [99].  Driver also considered a spacecraft positioned closer 
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to Earth.  For example at 1.1 million kilometres altitude where the acceleration necessary to 

achieve such an orbit is shown to be relatively high at 0.35 mm/s2, which in turn limits the 

mission lifetimes to around two years [31].  The considerable distance of the spacecraft 

from the Earth also constrains the resolution and thus the potential applications of the 

Polesitter concept.  In the visible range, resolutions around 20 km are said to be achievable, 

with resolutions less than 1 km expected to be extremely unlikely for these systems [31].  In 

the infrared range, resolutions are limited to between 12 and 70 km for a spacecraft 

positioned at 2 million kilometres range depending on the instrument size [31].  In the 

microwave band significant issues arise, with an instrument of at least 7 m required to 

achieve a resolution less than 100 km with a spacecraft at an altitude of 2 million kilometres 

[31].  A further drawback of this concept is that twice a year the thrusters point back to 

Earth and the exhaust plume from the thruster may therefore interfere with the 

observations.   

A recent investigation has also considered the extension of Earth-centred sun-synchronous 

orbits using continuous acceleration, likely provided by an EP system, to enable free-

selection of the orbit inclination and altitude [100].  Within this work, the thrust magnitude 

is not defined as a function of the local gravity field but instead by the magnitude of the 

perturbations within that field, augmenting the Earth oblateness perturbation to modify 

the sun-synchronous orbit.  As the sun-synchronous orbit is essentially a finite resource, 

these newly developed orbits can increase the number of vantage points and enhance the 

potential opportunities for EO.  This study considered the extension of circular sun-

synchronous orbits with altitudes varying from 250 to 3000 km using accelerations from -1 

to 1 mm/s2 in step sizes of 0.1 mm/s2 to achieve the displacements.  It is noted however, 

that in order to achieve significant displacements a relatively large thrust is required.  
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2.2 Solar Sailing 

Highly reflective solar sails are another means of low-thrust propulsion.  Although first 

discussed in 1921 by Tsiolkovsky [101] and again in the first practical paper on the subject 

by Tsander in 1924 [102], they have only recently undergone testing, owing to the 

necessary advances in materials to make solar sailing a viable means of spacecraft 

propulsion.  Recently elements of this technology were successfully demonstrated in space 

on board both the Japanese IKAROS spacecraft (Figure 2-7)  [61, 103] and NASA’s NanoSail-

D mission (Figure 2-7) [104].   

   

Figure 2-7  IKAROS flying in deep space (left, image credit JAXA), NanoSail-D (right, image 

credit NASA) 

Solar sails exploit Solar Radiation Pressure and the subsequent momentum transfer 

generated by photons reflecting off a large sail to produce continuous propellant-less 

thrust.  The force supplied by a single photon is extremely small and so large, light sails are 

used to maximise the number and impact of incident photons and supply a useful level of 

thrust.  The main benefit of solar sailing is the lack of reaction mass required to propel the 

spacecraft. 
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2.2.1 Solar Sail Technology Development 

The early 20th century saw the first ideas emerge on the use of solar radiation pressure as a 

means of space propulsion by Konstantin Tsiolkovsky and Fridrikh Tsander [101, 102].  The 

initial concept was then revisited in the 1950s by the American engineer Carl Wiley, writing 

under the pseudonym Russell Sanders, who discussed the use of solar sails for orbit raising  

[105].  In the late 1950s Richard Garwin coined the term ‘solar sailing’ [106].   

Development of the concept was on going throughout the late 1950s/early 1960s and in 

1973 NASA launched Mariner 10, which flew by Mercury and Venus and made use of solar 

radiation pressure to control the attitude of the spacecraft [107].   

The first demonstrations of in orbit deployment of sail-like structures were in 1993 and 

1996 by the Russian Space Regatta Consortium with Znamya 2 [108] and NASA Goddard 

with the Inflatable Antenna Experiment (IAE) on board the Spartan mission 207 [109].  

Again in 1999, the successful deployment of a 20 m square sail was carried out by the 

German space agency DLR in association with ESA and INVENT GmbH [110].   

In the early to mid 2000s NASA made significant advancements in solar sail development.  

In conjunction with L’Garde, they embarked on a project which aimed to raise the TRL of a 

solar sail from 3 to 6, which involved the design, development and vacuum testing of a 10 

m square solar sail [111].  This effort subsequently led to the development of a 20 m square 

sail which was successfully deployed and tested inside NASA’s Plum Brook vacuum chamber 

in Ohio [112]. 

IKAROS, first introduced in Section 1.3.2, became the first spacecraft to successfully use a 

solar sail as the main method of propulsion in interplanetary space in 2010, where a 14 x 14 

m polyimide sail was employed to perform a flyby of Venus [61].  The IKAROS mission was 

successful in a number of criteria, namely: demonstrating the deployment of a large 
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membrane sail; generating electricity by thin film solar cells; demonstrating photon 

propulsion and guidance and navigation and control skills for solar sail propulsion. It will 

thus be used as the precursor to future Japanese solar sail concepts [113]. 

The late 2000s also saw NASA resources directed towards the development of solar sails for 

small satellite propulsion with the use of NanoSail-D, a subscale solar sail system on board a 

three-unit (3U) CubeSat measuring 30 x 10 x 10 cm and a mass of 4 kg.  NanoSail-D first 

launched in 2008 but due to failure of the rocket, never achieved orbit [114].  However on 

the second attempt in 2011 the sail was successfully deployed [104].   

Similar to NanoSail-D, CubeSail (Figure 2-8) is a nano-solar sail mission based on the 3U 

CubeSat standard which is being designed and built at the Surrey Space Centre, University 

of Surrey [115].  The CubeSail mission will deploy a 3 kg, 5 x 5 m sail to demonstrate the 

concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag sail 

[115].  The 3U CubeSat configuration is also being used to house LightSail-1, a project being 

developed by the Planetary Society which aims to demonstrate the viability of solar sailing 

as well as develop key technologies, such as sail deployment, sail management during flight 

and gossamer structure dynamics [116]. 
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Figure 2-8  CubeSail engineering model ground deployment (image credit Surrey Space 

Centre, University of Surrey) 

Previous missions demonstrating the use of solar sails for various purposes have been 

pioneering and will be used as a foundation for the future development of sail technology.  

In late 2011, NASA announced three proposals for flight demonstration.  These included the 

“In-Space Demonstration of a Mission-Capable Solar Sail”, a mission which builds on the 

previous tests by L’Garde and seeks to fly a 1200 m2 sail - the largest ever flown in space - to 

prove the viability of the technology.  This Solar Sail Demonstration could launch as early as 

20144.  Missions such as these will provide the necessary advances in technology to further 

develop the solar sailing concept to enable more advanced future solar sail missions. 

2.2.2 Design Parameters 

The acceleration produced by the solar sail is derived and in doing so the design 

parameters, which characterise the performance of the sail, are introduced.  These metrics 

determine the transfer time of the spacecraft to a particular target or whether a class of 

orbits is possible [108]. 

                                                           
4
 http://www.nasa.gov/mission_pages/tdm/solarsail/solarsail_overview.html. Accessed November 

20th 2012 

http://www.nasa.gov/mission_pages/tdm/solarsail/solarsail_overview.html
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From [108], the force exerted by photons on a solar sail of area As, with unit vector n 

directed normal to the surface of the sail, is given by 

 (2.1) 

where P is the pressure exerted on the surface due to the momentum transport by photons 

and ui is the direction of incident photons, shown in Figure 2-9.  The reflected photons will 

exert a force of equal magnitude on the surface, but in the specular reflected direction, -ur, 

given by 

 (2.2) 

Using the vector identity , the total force exerted on the sail is  

 (2.3) 

The total force on the sail can also be given using the expressions for the pressure exerted 

on the surface P (Eq. (2.4)), and the energy flux of photons (Eq. (2.5)) which is given in 

terms of the solar luminosity, Ls, the distance from the Sun, rs, and is scaled by the Sun-

Earth distance, Rs. 

 (2.4) 

where, c is the speed of light  
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where We is the mean solar irradiance measured at Earth’s distance from the Sun, which 

has a value of 1366.1 W/m2 [117].  

 

Figure 2-9  Perfectly reflecting solar sail 

The acceleration experienced by the solar sail can be given in terms of the sail loading, σs, a 

performance parameter defined as the sail mass per unit area (ms /As), and the sail pitch 

angle, α, which is the angle between the sail normal and the incident radiation, shown in 

Figure 2-9. 

 (2.7) 

An analogous parameter to the sail loading is the solar sail characteristic acceleration, 

defined as the actual acceleration experienced by a solar sail facing the Sun (α=0) at a 

distance of one astronomical unit (AU), the mean distance of the Earth from the Sun.  At 

this distance the magnitude of the solar radiation pressure, P, is 4.56 x 10-6 N/m2.  The sail 

characteristic acceleration is then given by  
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 (2.8) 

or 

 (2.9) 

where ηs is the overall efficiency of the solar sail used to account for the reflectivity of the 

sail film which is typically of the order 0.85 – 0.9 [108].  The mass of the solar sail in the sail 

loading expression consists of two components, the sail film and structure and the mass of 

the spacecraft.  The characteristic acceleration may now be written as 

 (2.10) 

Where mp is the spacecraft mass. The acceleration generated by a perfectly reflecting solar 

sail may also be written in terms of the solar gravitational acceleration as 

 (2.11) 

where G is the universal gravitational constant, Ms is the solar mass and β is defined as the 

sail lightness number, given by the ratio of the solar radiation pressure acceleration to the 

solar gravitational acceleration.  Using Eqs. (2.5), (2.7) and (2.11) the solar sail lightness 

number is given by 

 (2.12) 
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 (2.13) 

The critical sail loading, σ*, has a constant value of 1.53 g/m2 for our Solar System for the 

values of solar mass and solar luminosity.  The sail lightness number is equal to one when 

the mass per unit area is equal to the critical loading parameter; this however is an 

extremely challenging requirement to achieve. 

The design space for various solar sail missions, including those first introduced in Section 

2.2.1 and those which will be discussed in Section 2.2.3, are shown in Figure 2-10 and 

Figure 2-11.  The design space plots show the required sail loading and solar sail areas, with 

missions split into lower, upper and mean application bounds to show the nearest term and 

most advanced proposed solar sail missions.  The sail loading and area values and the 

corresponding characteristic accelerations for selected missions are also shown in Table 

2-1. 
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Figure 2-10 Solar sail mission catalogue application technology requirements (image credit 

Macdonald et al. in [67]). IHP = Interstellar Heliopause Probe; JAtP = Jupiter Fly-by with 

Atmospheric Probe release; MeSR = Mercury Sample Return; MeS-S = Mercury Sun-

Synchronous; SbSR = High-Energy Small-Body Sample Return; SPO = Solar Polar Orbiter; 

VenusSR = Venus Sample Return 

 

Figure 2-11 CubeSat solar sail design space (image credit Macdonald et al. in [67]) 
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Table 2-1 Solar sail mission applications and summaries; sorted from near to far term [118] 

Mission asc [mm/s2] σs [g/m2] As [m
2] 

GeoSail 0.10 35 1850 

Geostorm 0.31 15 6200 

Solar Polar Observer 0.42 8 23400 

Kuiper Belt 0.50 6 16900 

High-Energy Small Body Sample Return 0.50 6.5 31000 

Interstellar Heliopause Probe 1.50 < 2 60000 

 

2.2.3 Applications 

Developments in solar sail technology and recent successes in initial solar sail 

demonstration missions makes the prospect of using solar sails as a viable means of 

spacecraft propulsion in the near future more probable.  New mission concepts can be 

enabled using solar sails, while others may be significantly enhanced – for example high-

energy missions requiring very close solar passes or for missions which spend the majority 

of time within the inner solar system.  The use of solar sails for applications at Earth has 

also previously been considered. 

As early as 1981, Forward presented the concept of using a solar sail to displace a body 

north or south of the geostationary ring around the Earth [119, 120].  This initial idea was 

advanced by Baig and McInnes in 2010, where it was shown that solar sails could be placed 

around 25 km above the nominal geostationary ring whilst maintaining the 24 h orbit 

period [121].  These orbits were proposed as a possible solution to the increasing problem 

of the congestion of the conventional geostationary orbit and to reduce the propellant 

demands from EP systems [122]. 
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In the early 1990s Forward also recommended the use of a solar sail to provide the 

required thrust for the so-called ‘statite’ mission concept [123], previously described in 

Section 2.1.4 using EP.  In this case the spacecraft is positioned high above one of the 

Earth’s poles, using a solar sail to enable polar communications.  Notably, this work 

considered an ideal solar sail model; however, subsequent investigation of this concept 

using a partially reflecting solar sail has shown that the reflectivity of the solar sail has a 

significant effect on the volume of space where equilibrium solutions are possible [124].  

Extensive investigation has been conducted into this concept using other propulsion 

systems, which will be described further in Section 2.3.  

The GeoStorm mission concept arose in the late 1990s as a result of an enquiry from the 

National Oceanic and Atmospheric Administration (NOAA) to the Jet Propulsion Laboratory 

(JPL) for a possible solution to improve the warning time of impending space weather 

events, such as geomagnetic storms [125].  These events can pose a risk to electronics and 

telecommunication systems both on Earth and in LEO.  The proposed mission involved 

positioning a solar sail inside the L1 point at  0.98 au to provide real-time monitoring of 

solar activity and enhance the warning time of space weather events by a factor of three 

[125].  Investigation by McKay et al. into the use of EP to enable a similar mission shows 

that in this case the mission lifetime would be limited to around 3 years [98].  Thus, 

subsequent missions would be required after this time, making solar sails a more viable 

option for this type of mission.  Although the 1999 St-5 GeoStorm mission was not selected 

by NASA for flight demonstration, it was useful to highlight the potential performance 

[125]. 

The GeoSail mission, proposed in 2000 [126], aimed to achieve long residence times in the 

Earth’s magnetotail to allow high-resolution data of the plasma in a region subjected to a 
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variety of external solar wind conditions.  A solar sail is used to precess an elliptical, Earth-

centred orbit at a rate designed to match the rotation of the geomagnetic tail.  Previous 

research has shown that conventional, inertially fixed orbits with apogee inside the 

geomagnetic tail are limited to provide less than three months of science due to the 

rotation of the geomagnetic tail with the Sun-Earth line in an inertial reference frame [127].  

Solar sails have been shown to be the optimal propulsion systems to enable such a mission 

with mission lifetimes for chemical propulsion being restrictively low and the high 

propellant mass requirements of an EP system in this case [118-120].  However, issues may 

arise due to the interference of the solar sail with the science suite during mission 

operation [127]. 

A similar concept to the Polesitter mission is the solar-sail displaced eight-shaped orbit 

which has recently been considered by Ceriotti et al. [34].  The use of such orbits for high-

latitude observation was first proposed by Folta et al. in 2001 [128] and more recently 

displaced eight-shaped orbits have been investigated to provide similar applications [99].  

These orbits use continuous acceleration produced by a solar sail to displace the Lagrangian 

points, L1 and L2.  However, due to the oscillation above and below the ecliptic plane, 

continuous coverage of the Earth’s polar regions cannot be provided using a single 

spacecraft.  Two spacecraft are therefore required to provide continuous coverage of a 

single pole, with three necessary to view both poles continuously.  The significant distance 

of these orbits from the surface of the Earth, between 1 and 2 million km, means 

resolutions less than 500 m are highly unlikely in the visible region [99]. 

2.3 Hybrid Solar Sail / Electric Propulsion 

As explained previously, EP is a mature technology with high TRL and low AD2 [67, 68].  

However mission lifetimes are limited by the amount of propellant that can be carried.  
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Solar sailing, on the other hand, is essentially a propellant-less propulsion system and so 

can in theory maintain low-thrust indefinitely.  However, it has a high AD2 and cannot 

produce any thrust in the direction of the Sun.  Consequently, consideration has been given 

to hybrid EP and solar sail propulsion, first proposed by Leipold and Götz [129].  Such 

systems can reduce the propellant requirements of the EP system and use the EP to 

compensate for the limitations of the sail thrusting direction.  The use of a small solar sail 

on the spacecraft also contributes towards lowering the AD2 of solar sailing [67].   

The complementary nature of the two propulsion systems enables a new range of missions 

which require continuous low-thrust.  These hybrid solar sail / EP systems have been 

proposed for various applications including modifying the well-known Polesitter concept 

previously detailed in Sections 2.1.4 and 2.2.3.  The use of so-called hybrid propulsion to 

allow a spacecraft to be positioned above the L1 point to provide low-resolution polar 

imaging was first suggested in 2008 by Baig et al. [130] and was further developed by 

Ceriotti et al. from 2010 onwards [32, 33].  Such a system allows the spacecraft to be 

statically stationed above one of the Earth’s poles at around 2 million kilometres range, 

giving continuous observation of one of the Earth’s poles using a single spacecraft.  Hybrid 

solar sail / EP Polesitter orbits can offer reductions in the propellant requirements over 

conventional Polesitter concepts and therefore allow increased mission durations or 

additional capacity for useful payload.  However, the limitations of possible applications 

discussed in Sections 2.1.4 and 2.2.3 remain valid. 

Similarly, the concept of the displaced geostationary orbit above or below the conventional 

geostationary ring, as first outlined in Section 2.2.3, has also been considered using hybrid 

EP / solar sail propulsion [131, 132].  This allows displaced geostationary missions to be 

enabled where the use of a pure solar sail system is not feasible due to the obliquity of the 
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ecliptic.  The hybrid propulsion also offers a solution for the problem of the inability of the 

sail to thrust in the direction of the sun and again offers a reduction in the propellant 

requirements over an EP-only case. 

Hybrid solar sail / EP systems have also been suggested to create artificial equilibrium 

points in the circular restricted three body problem [130]. 
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Chapter 3 

3 Taranis Orbits 

This chapter introduces the development of novel HEOs at Earth, termed Taranis orbits.  

Section 3.2 derives the orbits using a general perturbations technique, which uses locally 

optimal control laws to apply the acceleration required to enable such orbits. This section 

also considers the effect of the applied acceleration on the orbital elements.  Section 3.3 

then presents an extended general perturbations solution to reduce the required 

acceleration magnitude.  Section 3.4 presents validation of the general perturbations 

solution using a special perturbations method.  Finally fuel optimal solutions are generated 

in Section 3.5 using Pseudospectral optimisation. 

3.1 Introduction 

Taranis, the Celtic God of thunder, is the name given to a novel family of orbits developed 

using continuous low-thrust propulsion.  These newly proposed orbits are essentially an 

extension of the conventional Molniya orbit (meaning lightning), and use applied 

acceleration to modify the critical inclination while maintaining the zero change in 

argument of perigee condition essential to HEOs.  Continuous acceleration is applied to 

allow the value of the inclination to be varied from the fixed values of 63.43 or 166.6 

degrees to any inclination required to optimally fulfil the mission objectives, while still 

maintaining the zero change in argument of perigee condition essential to these HEOs.  

Thus increasing the potential opportunities for remote sensing of Earth, in particular of the 

high-latitude regions. 
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The extension of HEOs using general and special perturbation techniques is presented.  

Optimisation of these results using pseudo-spectral optimisation methods is also 

conducted; this process removes the assumptions which are used to generate the initial 

analytical expressions and allows fuel optimal solutions to be generated. 

3.2 General Perturbations Solution 

3.2.1 Spacecraft Motion about an Oblate Body 

Taranis orbits employ acceleration to compensate for the drift in argument of perigee 

caused by the Earth’s gravitational field.  Thus, to investigate the effects of low-thrust 

propulsion applied to HEOs, the gravitational potential of a body is considered in Eq. (3.1) 

[133]. 

 (3.1) 

For a body possessing axial symmetry, the influence of periodic effects (tesseral and 

sectorial harmonics) can be neglected for most orbits and, with the notable exception of 

GEO this holds true for Earth.  The gravitational potential can therefore be written as 

 (3.2) 
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(3.3) 

Where  

     sin sin sins i u   (3.4) 

From Eq. (3.4), u is the argument of latitude ( + ω).  At Earth the values of J2 to J5 are 

1.082627x10-3, -2.53266x10-6, -1.61962x10-6 and -0.227296x10-6 respectively.  Considering 

only first order perturbations, a reasonable assumption at Earth, and using spherical 

triangle laws, Eq. (3.3) simplifies to 

 (3.5) 

The net impact of the perturbations caused by the oblate nature of the Earth must be zero 

to ensure the argument of perigee and thus the position of apogee remains unchanged.  

Using the Gauss form of the Lagrange Planetary Equation, in terms of a spacecraft centred 

Radial, Transverse and Normal (RTN) coordinate system the rate of change of argument of 

periapsis is written as [70] 
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 (3.7) 

The disturbing force components in the radial, transverse and normal directions due to J2 

are found by taking the partial derivatives of Eq. (3.5) with respect to r, u and i respectively 

as follows 
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This results in the following expressions for the R,T and N perturbations due to J2 in Eqs. 

(3.11) - (3.13) [8] 

 (3.11) 

 (3.12) 

 (3.13) 

Substituting Eqs. (3.11) - (3.13) into Eq. (3.6) and integrating over one orbital revolution 

results in the well-known expression for the change in argument of perigee 

 (3.14) 

To determine the critical inclination, Eq. (3.14) is set equal to zero and solved, resulting in 
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values show no rotation of the apsidal line, irrespective of the values of semi-major axis or 

eccentricity.  It is evident from Eq. (3.14) that altering the inclination from these critical 

values will result in a drift in the argument of periapsis due to the effect of J2 perturbations.  

Therefore, for each value of inclination there exists an acceleration magnitude that will 

negate this drift and allow free-selection of the inclination. 

3.2.2 Spacecraft Motion about an Oblate Body with Low-Thrust Propulsion  

Taranis orbits are developed through the addition of low-thrust terms to the disturbing 

force components in Eqs. (3.11) - (3.13).  This is achieved using the argument of periapsis 

locally optimal control, derived from the variational equation given in Eq. (3.6), by 

considering the sine and cosine terms in this equation.  Locally optimal control laws 

maximise the instantaneous rate of change of the particular orbital element, provide the 

thrust orientation in analytical form and give the distinct position of the orbit where the 

sign of the thrust is required to switch direction [64].   

The rate of change of argument of perigee, Eq.(3.6), can be written as 
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Which is in turn given by Eq. (3.16) 
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 (3.16) 

Maximising the thrust vector along ω maximises the right-hand side of Eqs. (3.15) and 

(3.16), thus the instantaneous rate of change of argument of perigee will be maximised.  
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From Eq. (3.16), it is clear that a switching relationship is required to maintain the desired 

rate of change of the argument of perigee.  The radial component of acceleration switches 

direction with cos(), the transverse acceleration switches direction with sin(), and the 

normal acceleration switches direction with sin( + ω).  The combined J2 and low-thrust 

perturbations in each of the radial, transverse and out-of-plane directions are thus given by 

 (3.17) 

 (3.18) 

 (3.19) 

The expression for the rate of change of the argument of periapsis with the application of 

low-thrust propulsion is determined by inserting Eqs. (3.17) - (3.19) into Eq. (3.6) to give 

 

(3.20) 

The change in argument of periapsis is found by integrating Eq. (3.20) over one orbital 

revolution, employing the assumption that the eccentricity is not equal to zero or one and 
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recognising the positions on the orbit where the low-thrust terms change sign.  The total 

change in argument of perigee is made up of four terms, consisting of the change in 

argument of perigee due to J2 effects and the effects of each of the R, T and N 

accelerations. The total variation in argument of perigee is given by 

 (3.21) 

where the gravitational component has previously been given in Eq. (3.14) and the radial 

and transverse acceleration components are given respectively as 

 (3.22) 

 (3.23) 

It is also noted from Eq. (3.19) that the out of plane acceleration component, unlike the 

radial and transverse terms, switches sign as a function of argument of latitude. 

Consequently, the value assigned to the argument of perigee becomes important in this 
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Substituting Eq. (3.14) and Eq. (3.22) - (3.25) into Eq. (3.21) results in two solutions for the 

change in argument of periapsis due to the applied acceleration.  It is noted that if no 

additional out-of-plane acceleration is considered, the change in argument of perigee is the 

same irrespective of the value of argument of perigee.  Initially, consideration is given to 

the application of continuous low-thrust in each of the RTN directions individually before 

multiple acceleration directions are studied.  Considering each direction in turn, the 

analytical expressions from Eq. (3.21) are solved using the values of orbital parameters in 

Table 3-1 to give the constant acceleration magnitude required to compensate for the 

effects of the J2 perturbation for a range of inclinations, out with the equatorial plane, 

between 5 and 175 degrees.  The results of which are shown in Figure 3-1. 

Table 3-1 Orbital parameters – 12 h Earth orbit 

Orbital Element Value 

Perigee Altitude 813 (km) 

Apogee Altitude 39540 (km) 

Ascending Node 330 (degrees) 
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Figure 3-1  Required acceleration along a single axis to maintain zero change in argument of 

perigee over the orbit for various inclination values of the given 12 h Taranis orbit 

The curves of minimum acceleration in any single axis required to alter the critical 

inclination of the orbit to a wide range of possible values for the orbit detailed in Table 3-1 

are shown in Figure 3-1.  It is noted that a singularity occurs at an inclination of 90 degrees 

when thrusting in the normal direction.  This can be explained by examining Eqs. (3.24) - 

(3.25), where it is shown that normal low-thrust terms in these expressions contain the 

term cot(i), which at an inclination of 90 degrees becomes undefined, causing the 

singularity.  It is also shown that to allow an inclination of 90 degrees by thrusting in any 

single direction a transverse acceleration of 0.094 mm/s2 is the lowest acceleration 

magnitude required.  Nevertheless, Figure 3-3 illustrates that this total magnitude can be 

reduced to 0.0834 mm/s2 by combining equal magnitudes of radial and transverse 

accelerations.  It is of note, however that the same cannot be said for combining the out-of-

plane acceleration with either the radial or transverse accelerations, as shown in Figure 3-4 

- Figure 3-7.  The cause of this is once again the occurrence of cot(i) in the low-thrust 
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expression in the normal direction in Eqs. (3.24) - (3.25), As a result of the cot(i) term, the 

magnitude of this term is dependent on the value of inclination selected thus increasing the 

total thrust magnitude in certain instances.  The combined multiple direction, equal 

magnitude thrust is sometimes greater than individual direction thrust magnitude, 

depending on the value of inclination.  Therefore this is a clear indication that the choice of 

the proportion of the total acceleration in each direction is not optimal.  The 90 degree 

inclination orbit detailed in Table 3-1, is illustrated in Figure 3-2. 

 

Figure 3-2 - 90 degree inclination Taranis orbit 
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Figure 3-3  Comparison of combined Radial and Transverse acceleration with individual 

direction magnitudes for a 12 h Taranis orbit, from Table 3-1 

 

Figure 3-4  Comparison of combined Radial and Normal acceleration with individual 

direction magnitudes for a 12 h orbit with argument of perigee equal to 0 degrees 
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Figure 3-5  Comparison of combined Radial and Normal acceleration with individual 

direction magnitudes for a 12 h orbit with argument of perigee equal to 270 degrees 

 

Figure 3-6  Comparison of combined Transverse and Normal acceleration with individual 

direction magnitudes for a 12 h orbit with argument of perigee equal to 0 degrees 
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Figure 3-7  Comparison of combined Transverse and Normal acceleration with individual 

direction magnitudes for a 12 h orbit with argument of perigee equal to 270 degrees 

Figure 3-1 - Figure 3-7 show the acceleration magnitude required for a 12 h Taranis orbit in 

each direction individually compared with the acceleration combined in two directions.  

Although the results so far have detailed a 12 h orbit, this method can also be used to apply 

low-thrust to alter the critical inclination of an orbit with any period.  A 16 h orbit is 

therefore also considered to examine the effect of changing the orbital period on the 

required acceleration.  The orbital parameters for the 16 h orbit are given in Table 3-2. 

Table 3-2 Orbital parameters – 16 h Earth orbit 

Orbital Element Value 

Perigee Altitude 813 (km) 

Apogee Altitude 50897 (km) 

Ascending Node 330 (degrees) 
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As in the previous 12 h orbit case, acceleration is first applied in each direction individually.  

The acceleration required along each individual axis to alter the inclination is given in Figure 

3-8. 

 

Figure 3-8  Required acceleration for acceleration along a single axis to vary the critical 

inclination of the given 16 h Taranis orbit 
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orbits of various periods presents the same trends as shown in Figure 3-1. The acceleration 
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Figure 3-9  Comparison of combined Radial and Transverse acceleration with individual 

direction magnitudes for a 16 h orbit, from Table 3-2 

 

Figure 3-10  Comparison of combined Radial and Normal acceleration with individual 

direction magnitudes for a 16 h orbit with argument of perigee equal to 0 degrees 
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Figure 3-11  Comparison of combined Radial and Normal acceleration with individual 

direction magnitudes for a 16 h orbit with argument of perigee equal to 270 degrees 

 

Figure 3-12  Comparison of combined Transverse and Normal acceleration with individual 

direction magnitudes for a 16 h orbit with argument of perigee equal to 0 degrees 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

A
cc

el
er

at
io

n
 M

ag
n

it
u

d
e 

[m
m

/s
2 ]

Inclination [deg]

Radial + Normal 
w=270deg

Radial Acceleration 
Magnitude

Normal Acceleration 
Magnitude w=270

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

A
cc

el
er

at
io

n
 M

ag
n

it
u

d
e 

[m
m

/s
2
]

Inclination [deg]

Transverse + Normal 
w=0deg
Transverse Acceleration 
Magnitude
Normal Acceleration 
Magnitude w=0

ω 

ω 

ω deg 

ω deg 



 
 

61 

 

Figure 3-13  Comparison of combined Transverse and Normal acceleration with individual 

direction magnitudes for a 16 h orbit with argument of perigee equal to 270 degrees 
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Figure 3-14  Combined radial and transverse acceleration 
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3.2.3 Change in Orbital Elements 

Analytical expressions are also developed for the remaining orbital elements, semi-major 

axis, eccentricity, inclination and ascending node angle using the Gauss form of the 

Lagrange Planetary Equations, in terms of a spacecraft centred RTN coordinate system [70].  

This process is carried out to ensure the desired zero secular rate of change of orbital 

elements is maintained in the presence of continuous low-thrust. 

Semi-major Axis 

 (3.26) 
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Eq. (3.27) is then integrated over one orbital revolution to find the change in semi-major 

axis to give 
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Integrating over one orbit, the change in eccentricity is written as 

 (3.31) 

 

Inclination 

 (3.32) 

Substituting the out-of-plane acceleration, Eq. (3.32) becomes 
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Once more, the locally optimal control law state that normal thrust switches sign 

depending on the argument of latitude; consequently Eq. (3.33) integrated over one 

revolution using both argument of perigee equal to 0 and 270 degrees gives the changes in 

inclination respectively as 

 
 2

2

0
0

4 sinna F
i









   
 

 (3.34) 

 
 2

2 2 2 2

30 2
2

2 2 2

cos
(4 1 2 1

1

1 1 1
12 Arctanh 3 ln 3 ln

1 1 1

na F
i e e e

e

e e e
e e e

e e e










        
   

         
       

          

 (3.35) 

 

 
2

0
0e


 

 
2

3

cos
nJ F

di r
N

d p
 

 
 



 
 

65 

Inserting values of orbital elements from Table 3-1 gives the change in inclination for both 

cases as 

 (3.36) 

 

Ascending Node Angle 

 (3.37) 

Inserting the expression for the normal perturbation results 
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Similar to the inclination, the change in ascending node must be considered using both ω = 

0 degrees and ω = 270 degrees giving the change in ascending node angle for each case 

respectively as 
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Note that if no out-of-plane acceleration is considered, the change in ascending node due 

only to J2 effects is given by 

 
2

0
0i


 

 
 

2

3

sin
sin nJ F

d r
N

d p i
 

 



 



 
 

66 

 
 

(3.41) 

Orbital element values are substituted into Eqs. (3.39) - (3.40) to quantify the drift in 

ascending node for HEOs, of varying inclinations, over the orbit due to applied normal 

acceleration. It is of note that when the appropriate orbital elements are substituted into 

Eqs. (3.39) - (3.40), the change in ascending node is equal for both of these expressions. 

Taranis orbits enabled using continuous normal acceleration are compared with orbits of 

various inclinations under the influence of J2 effects only (from Eq.  (3.41)), the results of 

which are shown in Figure 3-15. 

 

Figure 3-15  Ascending node drift per orbit for extended HEOs and a Molniya orbit 

Most significantly, Figure 3-15 shows that the 12 h, 90 degree inclination Taranis orbit 

experiences no drift in ascending node under the influence of J2 perturbations.  It is also 

shown that between the inclination ranges of 5 – 70 degrees and 120 – 175 degrees, 

Taranis orbits enabled using continuous normal acceleration have the same order of 
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magnitude change in ascending node as a conventional Molniya orbit.  However, as the 

inclination approaches 90 degrees, the change in ascending node increases rapidly and the 

singularity described in Figure 3-1 for the normal acceleration cases is also observed in 

Figure 3-15. 

3.3 Extended General Perturbations Solution 

Although the analysis presented in Section 3.2 considers the total acceleration magnitude 

from the general perturbations method assuming equal magnitudes of radial and 

transverse accelerations, the general perturbations solution can be extended to consider 

solutions where this assumption is no longer made.  This allows the minimum acceleration 

magnitude to be determined and an improvement on the previous solution to be made. 

Substituting the orbital element values from Table 3-1 into Eq. (3.21) and setting the 

change in argument of perigee equal to zero results in the following expression for the 

radial acceleration as a function of transverse acceleration 

41.58 10 1.676r tF F     (3.42) 

The transverse acceleration is assigned a range of values between 0 and 0.1 mm/s2 and the 

corresponding radial acceleration is found using Eq. (3.42).  The results shown in Figure 

3-21 give a range of possible solutions for the 90 degree Taranis orbit, while maintaining a 

constant argument of perigee over the orbit. 
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Figure 3-16  Radial and transverse accelerations, total acceleration magnitude for zero 

change in argument of perigee 

Figure 3-16 shows the possible solutions for the Taranis orbit for a range of transverse 

accelerations between 0 and 0.1 mm/s2.  Between Ft = 0.059 mm/s2 and Ft = 0.08 mm/s2 the 

total acceleration magnitude of the solution is less than the previous general perturbations 

solution, i.e. using the assumption that the acceleration magnitudes are equal in both the 

radial and transverse directions.  The previous equal magnitude general perturbations 

solution can also be seen in Figure 3-16 whilst it is also shown that the minimum 

acceleration magnitude occurs when the transverse acceleration is equal to 0.07 mm/s2 and 

the corresponding radial acceleration is -0.0406 mm/s2 (from Eq. (3.42)).  The radial and 

transverse control profiles for this orbit are shown in Figure 3-17 and Figure 3-18 

respectively. This results in a total acceleration magnitude of 0.0809 mm/s2, around a 3 % 

reduction from the previous general perturbations solution. 
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Figure 3-17 Radial control profile 

 

Figure 3-18 Transverse control profile 
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3.4 Special Perturbations Solution 

To verify the general perturbations solution, a special perturbations solution is generated. 

This numerical model propagates the spacecraft position by integrating a set of Modified 

Equinoctial Elements [134] using an explicit variable step size Runge Kutta (4,5) formula, the 

Dormand-Price pair (a single step method) [135].  Modified equinoctial elements (Eqs. 

(3.43) - (3.48)) have been developed to avoid the singularities that occur when using 

classical orbital elements when the inclination and eccentricity tend towards zero [134].  

Numerical simulations include only perturbations due to Earth oblateness to the order of J2 

and relative and absolute error tolerances are set to 10-8. 

 (3.43) 

 (3.44) 

 (3.45) 

 (3.46) 

 (3.47) 

 (3.48) 

Where the modified equinoctial elements are given in terms of the classical elements as 
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 (3.51) 

 (3.52) 

 (3.53) 

 (3.54) 

The numerical model proves that not only is the change in argument of perigee negligible 

due to the applied low-thrust, but the change in all other orbital elements also matches the 

analytical results.  Figure 3-19 shows the variation of semi-major axis, eccentricity and 

argument of perigee over five orbital revolutions of the 12 h Taranis orbit, inclined at 90 

degrees to the equator, enabled by combined radial and transverse accelerations with a 

total magnitude of 0.0809 mm/s2 i.e. the extended general perturbations solution. 

 
             (a)                                                                              (b) 

 
(c) 

Figure 3-19  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination Taranis orbit (a) Semi-major axis (b) Eccentricity (c) Argument of perigee 
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Figure 3-19 shows that although the semi-major axis, argument of perigee and eccentricity 

oscillate during one orbital period, all elements return to the same initial value after each 

orbit.  As expected, as no out-of-plane acceleration is included, no oscillation in the 

inclination or ascending node angle is observed, as shown in Figure 3-20. 

 

             (a)                                                                            (b) 

Figure 3-20  Zero change in orbital elements over five orbital revolutions of a 12 h, 90 

degree inclination Taranis orbit (a) Inclination (b) Ascending node angle 

3.5 Optimisation 

As discussed previously, the problem becomes more complex when low-thrust normal to 

the orbit plane is included, meaning it is no longer possible to obtain a general 

perturbations solution.  A Pseudospectral Optimal Control Solver (PSOPT) [136] is used to 

determine a numerically optimal solution combining low-thrust in all three axial directions 

in-order to quantify the optimality of the general perturbations solution.  PSOPT uses a 

direct collocation method including pseudo-spectral and local discretisation to solve the 

optimal control problem by approximating the time-dependent variables using polynomials.  

The previous assumption that the fraction of the total acceleration is equal in each 

direction is no longer made.  This, coupled with an objective function to maximise the final 
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The results of the special perturbations solution are used as the initial guess for the 

optimiser, which once again propagates the spacecraft trajectory using a set of modified 

equinoctial elements (Eqs. (3.43) - (3.48)) [134].  The spacecraft initial mass is set to 1000 

kg corresponding to the mass of GOCE [7], with a specific impulse of 4600 seconds, 

representative of the specific impulse of the QinetiQ T6 thruster [86], and a total 

continuous acceleration of 0.0809 mm/s2.  The analysis is initially conducted including 

perturbations due to the oblateness of the Earth to the order of J2.  This was subsequently 

extended to include J3 and J4, with no divergence found between the results.  The optimised 

control profiles in the radial, transverse and out-of-plane directions along with the initial 

guess provided to PSOPT are shown in Figure 3-21. 

Each optimised solution was obtained using 44 nodes.  It should be noted that due to the 

use of a variable step integrator within the special perturbations solution, the initial guess 

does not simply contain equally spaced nodes.  Furthermore, as an adaptive mesh is used 

within the PSOPT tool, the optimised nodes are not constrained by the initial guess. 

 

(a) 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 50 100 150 200 250 300 350 400

R
ad

ia
l A

cc
el

er
at

io
n

 [
m

m
/s

2
]

True Anomaly [deg]

Optimised

Initial Guess



 
 

74 

 

(b) 

 

(c) 

Figure 3-21  Analytical and optimised control profiles for the 12 h, 90 degree Taranis orbit, 

defined in Table 3-1. (a) Radial control profile (b) Transverse control profile (c) Normal 

control profile 
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The control profiles show that as the assumption of equal acceleration magnitude is no 

longer made, the total acceleration is now composed of radial, transverse and out-of-plane 

components, with the fraction of the total acceleration in each direction varying with true 

anomaly. To complete one revolution of the Taranis orbit, the previous special 

perturbations technique required 75 g of fuel, while the fuel optimal solution consumes 65 

g of fuel, resulting in a reduction in fuel consumption of 13.3 %.  Given that the analytical 

solution is suboptimal by 13.3 % it is likely to be considered an acceptable cost due to the 

significantly reduced complexity of flying a spacecraft using the general perturbations 

control profile over the optimised profile.  This also highlights the level of accuracy 

obtained using a relatively simple method of employing locally optimal control laws to 

apply continuous acceleration to enable Taranis orbits. 

3.6 Summary 

This chapter has introduced new HEOs, termed Taranis orbits, which use continuous low-

thrust propulsion to offer free selection of the critical inclination to best satisfy the mission 

objectives.  These orbits are derived using locally optimal control laws within a general 

perturbations solution, firstly considering acceleration applied in each of the radial, 

transverse and normal directions individually before combining the acceleration in multiple 

directions.  Initial analytical results show that to alter the critical inclination, combining 

equal magnitudes of acceleration in the radial and transverse directions produces the 

smallest acceleration magnitude.  An extended general perturbations solution no longer 

used the assumption that the acceleration magnitudes were equal and therefore allowed 

the total acceleration magnitude to be reduced.  A special perturbations solution was also 

shown to verify the analytical results.   
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Finally, pseudospectral optimisation was conducted to produce fuel optimal solutions, 

which was shown to offer a reduction of 13.3 % in the propellant required over one orbital 

revolution.  However, the small increase in propellant consumption of the analytical 

solution over the optimised solution is thought to be an acceptable cost due to the 

significant reduction in complexity of the control profiles. 

Although Taranis orbits allow free selection of the critical inclination independent of the 

orbital period, perigee or apogee altitudes, the most significant benefit has been identified 

as an orbit with a 90 degree inclination to provide a potential solution to the data deficit at 

high-latitude regions of the Earth.  This particular example is therefore considered in the 

subsequent chapters 
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Chapter 4 

4 Propulsion System Analysis for a 

12 hour Taranis Orbit 

Having derived the acceleration required to enable Taranis orbits with varying orbit periods 

and inclinations in Chapter 3, this chapter considers the use of different propulsion systems 

to provide the required acceleration and so determine the most feasible solution.  Section 

4.2 investigates the use of a hybrid solar sail / EP system to reduce the propellant 

requirements from an EP only system.  Mission analysis is conducted in Section 4.3 to 

quantify the mission lifetime and mass budgets for various configurations.  Subsequently 

the technology requirements for spacecraft are outlined in Section 4.4.  Finally, Section 4.5 

considers the use of a conventional chemical propulsion system to deliver the thrust and 

compares this to a pure EP system.   

4.1 Introduction 

EP has been successfully demonstrated on board a number of missions and as such is a 

mature technology; however mission lifetimes are limited by the amount of propellant that 

can be carried.  Consequently, consideration is given to the addition of a solar sail to the 

system to reduce the propellant requirements of the EP thruster when enabling Taranis 

orbits.  Hybrid solar sail / EP systems, discussed in Chapter 2, offer advantages which 

include the capability of the EP system to thrust in any direction to overcome the issues 

associated with the inability of the solar sail to thrust in the direction of the Sun, and the 
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use of a small solar sail on the spacecraft to lower the AD2 of solar sailing.  EP, hybrid solar 

sail / EP and chemical propulsion systems are considered to provide the acceleration 

required to enable a 12 h, 90 degree inclination Taranis orbit to determine the most 

beneficial means of propulsion.   

Two hybrid solar sail / EP cases are presented considering different constraining 

parameters.  Firstly, it is assumed that the launch mass of the spacecraft is fixed.  The mass 

of the solar sail added to the system is limited to be no more than the mass of propellant 

saved through the addition of the sail.  Consideration is also given to a system limited by 

the maximum thrust of the EP system, and so allowing the initial mass of the spacecraft to 

vary.  The additional mass gained from the addition of the solar sail is allocated in two 

ways.  In the first instance it is assigned solely to the solar sail.  Thus there will be no 

allocation for additional propellant on board and this example is given to show the baseline 

solar sail technology required.   In the second instance it is used in part for the solar sail and 

in part to increase the useful payload capacity.  The impact of the added solar sail on 

mission lifetime is considered along with the development of Strawman mass budgets to 

quantify the benefit, if any, of a hybrid EP / solar sail system over a pure EP system to 

enable a 12 h, 90 degree inclination Taranis orbit.  The technology requirements are also 

presented for the spacecraft and solar sail. 

The use of a chemical propulsion system to enable the 12 h Taranis orbit is also 

investigated, where in this case the acceleration is not continuous and the required  is 

provided by two impulses per orbit. 
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4.2 Hybrid EP / Solar Sail Propulsion 

To lower the demands placed upon the EP system, by lowering its required thrust, the use 

of hybrid EP / solar sail propulsion to maintain the Taranis orbit is considered.  The total 

acceleration needed to maintain a 12 h, 90 degree inclination Taranis orbit has been shown 

in Chapter 3 as 0.0809 mm/s2; using hybrid propulsion a fraction of this acceleration is now 

generated by the solar sail with the EP system supplying the remainder of the necessary 

acceleration.  The total required acceleration is given by 

 (4.1) 

Where the acceleration, as, generated by a perfectly reflecting solar sail is given in Eq. 

(2.11) in Section 2.2.2 and ap is the continuous acceleration provided by the EP system. 

4.2.1 Locally Optimal Control Laws 

Locally optimal control laws are used by the solar sail component of the force, and the EP 

system uses the simple switching law previously derived in Chapter 3.  In the absence of 

any low-thrust propulsion to maintain the 12 h Taranis orbit, the natural drift in argument 

of perigee due to the gravitational perturbation is -0.15 degrees per day (towards the 

ascending node).  Thus, it is required that the sail attempt to impart positive rate of change 

of argument of perigee to compensate for this drift. The argument of perigee locally 

optimal control law is derived from the argument of perigee variational equation, given in 

terms of classical orbital elements 

 (4.2) 
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 (4.3) 

The locally optimal control law therefore requires the solar sail thrust to be maximised 

along λω, [64].  The solar sail trajectory is planet-centred and so λω must be transposed into 

the Sun-sail line reference frame, shown in Figure 4-1, using standard transformation 

matrices. The transformation is performed in two stages; first, transformation from planet-

centred RTN to Earth-centred inertial using the inverse of the transformation matrix [137] 

 (4.4) 

 

Figure 4-1  Orientation of solar sail pitch and clock angles 
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The second stage is to transform from Earth-centred inertial to Sun-line coordinates, using 

the transformation matrix given in Eq. (4.5) [138].  Where, εobl, is the obliquity of the ecliptic 

and ϑ is an angle measured from the first point of Aries to the planet, shown in Figure 4-2. 

 (4.5) 

 

 

Figure 4-2 - Diagram representing the obliquity of ecliptic and angle measured from first 

point of Aries 
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refer to the x, y, and z components of the argument of perigee vector. The sail orientation 

to maximize the sail thrust vector is found, with the locally optimal sail pitch angle, shown 

in Figure 4-3, and given from [139] 

 
     

 

2 23cos 9cos 8sin
tan

4sin

  




  
  (4.7) 

The locally optimal sail clock angle, which is the angle measured within a plane normal to 

the Sun line from the projection of the orbit normal vector in that plane, is also shown in 

Figure 4-3 and is given as 

 (4.8) 

The solar sail thrust vector in Eq. (2.11) is found using [108] 

 (4.9) 

As the sail is in an Earth-centred trajectory the normal vector orientation given in Eq. (4.9) 
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Figure 4-3 Sail pitch and clock angles in a Sun-sail line reference frame 

Chapter 3 presented the derivation of a general perturbations solution to determine the 

total acceleration required to enable the Taranis orbits.  Special perturbations techniques 

were also shown to validate analytical solutions.  The analysis presented in this chapter 

uses the previously derived acceleration values and numerically integrate the Lagrange 

planetary equations including the motion of the solar sail. Various solar sail characteristic 

accelerations are considered to determine the sail that offers the most benefit in terms of 

the lowest acceleration demand on the EP system.  As the characteristic acceleration of the 

sail is increased, at some point the acceleration provided by the solar sail will be so high 

that the EP system will be required to counteract the sail acceleration, rather than 

supplement it.  Using a spacecraft with an initial mass of 1000 kg, Isp of 3000s 

corresponding to the launch mass of GOCE [7] and specific impulse of the T5 thruster [140] 

and considering four values of solar sail characteristic accelerations of 0.03, 0.05, 0.07, and 

0.1 mm/s2, the mass of the spacecraft is shown in Figure 4-4 over the first year of 

operation.  The remaining mass is also shown in Figure 4-5 as a function of the solar sail 

characteristic acceleration over various time intervals. 
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Figure 4-4  Fuel consumption of a spacecraft on a 12 h, 90 degree inclination over the first 

operational year using various solar sail characteristic accelerations 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
910

920

930

940

950

960

970

980

990

1000

Days

M
a
s
s
 [

k
g
]

 

 

asc=0.03mm/s2 

asc=0.05mm/s2 

asc=0.07mm/s

2 

asc=0.1mm/s2 

EP-only 



 
 

85 

 

Figure 4-5  Remaining spacecraft mass as a function of the solar sail characteristic 

acceleration – 12 h, 90 degree inclination Taranis orbit 

It is seen from Figure 4-4 and Figure 4-5 that, as expected, each solar sail considered offers 

some benefit over the EP-only case by decreasing the amount of propellant consumed and 

increasing the final spacecraft mass. It is noted that a solar sail with a characteristic 
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(2.10).  The maximum propellant mass saving over the first year, given by a sail 
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The acceleration provided by the solar sail varies throughout the year due to the tilt of the 

Earth’s rotational axis with respect to the orbit plane.  As a result the acceleration required 

by the EP system varies throughout the year as shown in Figure 4-6. 

 

Figure 4-6  EP acceleration required over one year – 12 h, 90 degree inclination Taranis 

orbit 

It can be seen that from April to August the acceleration from the sail decreases, the 

maximum demand on the EP system occurs during this time.  A significant decrease in the 

required EP acceleration is shown throughout the Northern Hemisphere winter.  The 

turning point described in Figure 4-4 is again explained in Figure 4-6, where it is shown that 

the acceleration generated by the solar sail with a characteristic acceleration of 0.1 mm/s2 

is so high that the EP thruster is required to counteract this. 

The solar sail control angles required to achieve the 90 degree inclination Taranis orbits and 

accomplish the stated reduction in total EP accelerations are shown in Figure 4-7 and Figure 

4-8 respectively. 
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Figure 4-7  Solar sail pitch angle required to enable 12 h, 90 degree inclination Taranis orbit 

 

Figure 4-8  Solar sail clock angle required to enable 12 h, 90 degree inclination Taranis orbit 
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manoeuvres are required by the solar sail, although there is very little detail in the 

literature about the slew rate capabilities of solar sails, it is expected that the rates required 

for the Taranis orbit are beyond the current capabilities of solar sail technology.  For 

reference, the Solar Polar Orbiter is required to deliver 10 degrees per day [141] which is 

clearly significantly lower than the rates required by the Taranis orbit. 

4.3 Mission Analysis 

Having derived the acceleration produced by various solar sails for the 12 h, 90 degree 

Taranis orbit, mission analysis is conducted to characterise the possible mission lifetimes, 

payload capacity and technology requirements to determine the propulsion system which 

offers the most benefit. 

4.3.1 Mission Lifetime 

By evaluating the performance of the 12 h Taranis orbit in terms of propellant 

consumption, possible mission lifetimes of the orbit facilitated by means of EP-only and 

hybrid EP / solar sail systems are determined.  Defining the differential equation for the 

mass of the spacecraft as 

 (4.10) 

where Th is the thrust magnitude of the EP system by 

 (4.11) 

In the hybrid EP / solar sail systems the continuous acceleration, ap, is found by taking the 

average acceleration required by the EP system over the first year, given in Table 4-1.  Then 

making the appropriate substitution of Eq. (4.11) into Eq. (4.10) results in the following 

integral 
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 (4.12) 

Evaluating the integrals and applying the condition that t0 = 0 gives the following expression 

for the mission lifetime 

 (4.13) 

where, the mass fraction mf/m0 is defined as 

 (4.14) 

Table 4-1  Average EP acceleration over a 12 month period 

Characteristic Acceleration [mm/s2] Average EP Acceleration [mm/s2] 

EP-only 0.0809 

0.03 0.0726 

0.05 0.0692 

0.07 0.0681 

0.10 0.0712 

 

It is noted from Table 4-1 that the acceleration required from the EP system decreases by 

less than the sail characteristic acceleration.  This is due to the useful sail acceleration 

magnitude being set by the square of the cosine of the pitch angle (from Eq. (2.7)).  The 

lifetime of the 90 degrees, 12 h Taranis orbit, detailed previously in Table 3-1 in Chapter 3, 

is thus determinable for a particular mass fraction and specific impulse.  The resulting 

possible mission lifetimes are shown in Figure 4-9 for the EP-only system and for each of 

the hybrid propulsion systems considered. 
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Figure 4-9  Taranis mission lifetime as a function of mass fraction for EP-only and various 

solar sail characteristic accelerations 

Figure 4-9 shows the possible mission lifetimes for the Taranis orbit as a function of mass 

fraction for specific impulses of 3000 and 4600 seconds representing the specific impulses 

of the QinetiQ T5 and T6 thrusters respectively [86, 140], using EP / sail systems with 

various solar sail characteristic accelerations.  For example, using a mass fraction of 0.5 the 

resulting mission lifetime for each system and both specific impulses is given in Table 4-2. 
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Table 4-2  Mission Lifetime for a 12 h, 90 degree inclination Taranis orbit for EP only and 

hybrid solar sail / EP systems for a mass fraction of 0.5 

Characteristic Acceleration [mm/s2] 
Isp = 3000s 

Lifetime  [years] 

Isp = 4600s 

Lifetime [years] 

EP-only 8.0 12.3 

0.03 9.0 13.7 

0.05 9.3 14.3 

0.07 9.5 14.6 

0.10 9.1 13.9 

 

It can be seen that employing a solar sail with a characteristic acceleration of 0.07 mm/s2 

can enable a mission of around a year and a half longer than a Taranis orbit enabled using a 

pure EP system, with a specific impulse of 3000 seconds.  An increase in lifetime of over two 

years is also shown to be possible by increasing the specific impulse to 4600 seconds.  This 

highlights the benefit of the hybrid solar sail / EP system due to the reduced propellant 

consumption in comparison to the EP-only system.  It is noted that as the propellant is 

depleted the acceleration generated by the solar sail will increase, however as noted 

previously from Figure 4-3, an increase in the solar sail acceleration above 0.07 mm/s2 

causes an increase in the propellant consumption, thus the mission lifetimes will in fact be 

shorter than detailed here.  As the increases in mission lifetimes for the hybrid solar sail / 

EP systems are shown in Figure 4-9 to be little over the EP only case, this is an initial 

indicator that hybrid solar sail / EP systems may not be the most beneficial means of 

enabling the 90 degree Taranis orbit. 
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4.3.2 Initial Spacecraft Mass 

The maximum allowable initial mass of the spacecraft is determined for the given level of 

thrust using the constant EP accelerations given in Table 4-1; with the maximum allowable 

mass shown in Figure 4-10, determined using the following expression 

 (4.15) 

 

Figure 4-10  Maximum allowable initial mass for the 12 h Taranis orbit in Table 3-1 for an EP 

only system and hybrid solar sail / EP systems with various sail characteristic accelerations 
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payload, larger thrust results in higher power requirements and therefore larger solar 

arrays and larger electric propulsion mass, this is considered further in Sections 4.3.3 and 

4.4.  

4.3.2.1 Fixed Launch Mass 

Firstly, the case where the launch mass of the spacecraft is fixed is considered.  By selecting 

three initial masses of spacecraft of 1000, 1500 and 2500 kg corresponding to the initial 

masses of GOCE [7], the PCW mission5, and ERS-16, the corresponding required initial thrust 

values are given in Table 4-3. 

Table 4-3  Maximum initial thrust values 

Characteristic 

Acceleration [mm/s2] 

1000 kg 

Initial Thrust  [mN] 

1500 kg 

Initial Thrust [mN] 

2500 kg 

Initial Thrust [mN] 

EP-only 80.9 121.4 202.3 

0.03 72.6 108.9 181.5 

0.05 69.2 103.8 173.0 

0.07 68.1 102.2 170.3 

0.10 71.2 106.8 178.0 

 

It is shown that for a particular initial mass of spacecraft, the addition of a solar sail reduces 

the thrust required by the EP thruster, with the maximum reduction in thrust of 32 mN 

occurring for the 2500 kg spacecraft using a solar sail with a characteristic acceleration of 

0.07 mm/s2.  Note that the additional mass incurred by adding a solar sail remains 

constrained by the fixed launch mass.  As such, the solar sail mass is constrained to be no 

more than the saving in propellant mass for a given mission lifetime. 

                                                           
5
 Presentation by the Canadian Space Agency at http://bprc.osu.edu/rsl/GIIPSY/documents/P7%20-

%20PCW_Space%20and%20Arctic.pdf  Accessed on May 24th 2013 
6
 ESA Operations page at http://www.esa.int/Our_Activities/Operations/ERS-2 Accessed on May 

24th 2013 

http://bprc.osu.edu/rsl/GIIPSY/documents/P7%20-%20PCW_Space%20and%20Arctic.pdf
http://bprc.osu.edu/rsl/GIIPSY/documents/P7%20-%20PCW_Space%20and%20Arctic.pdf
http://www.esa.int/Our_Activities/Operations/ERS-2
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4.3.2.2 Fixed Maximum Thrust 

The second case considers the maximum thrust of the EP system as the constraining 

parameter. The maximum allowable initial mass of the spacecraft for a particular thrust 

value is found using Figure 4-10, with the allowable mass shown to increase for each of the 

hybrid systems considered.  For example, fixing the available EP thrust at three particular 

values of 94, 150, and 210 mN (corresponding to the thrust available from the NSTAR 

thruster [76], the qualified thrust of the QinetiQ T6 thruster and the maximum thrust of the 

QinetiQ T6 thruster [86] respectively) results in the maximum allowable mass values given 

in Table 4-4. 

Table 4-4  Maximum allowable mass values 

Characteristic 

Acceleration [mm/s2] 

94mN 

Initial Mass [kg] 

150mN 

Initial Mass [kg] 

210mN 

Initial Mass [kg] 

EP-only 1162 1854 2596 

0.03 1295 2066 2893 

0.05 1358 2167 3035 

0.07 1380 2203 3084 

0.10 1320 2107 2949 

 

The addition of solar sails to create a hybrid solar sail / EP system is shown to be capable of 

offering a significant increase in the allowable mass of the spacecraft.  The maximum initial 

mass is determined using a solar sail of 0.07 mm/s2 with considerable increases in mass of 

around 218, 349 and 488 kg respectively for each available thrust.  Consideration must now 

be given to how this additional mass is assigned.  In the first instance this additional mass is 

considered to be the total mass of the solar sail added to the system.  It is noted that this 

case will produce no increase in mission lifetime over the EP-only case as there is no 

additional propellant on board.  However, the relevance of including this case is that it 
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provides the base line solar sail technology.  To produce any addition in mission lifetime, 

solar sail performance will have to be improved beyond this.  In the second instance, the 

additional mass is used to add an advanced light-weight solar sail to the system, providing 

the same characteristic acceleration allowing additional EP propellant or useful payload to 

be carried.  

4.3.3 Mass Budget Analysis 

Although the mission lifetime analysis characterises possible mission lifetimes of the 

Taranis mission in terms of propellant consumption, it should also be investigated whether 

these conditions allow a useful payload to be carried using a realistic solar sail. The initial 

mass of the spacecraft is composed of many elements [142]. 

0 sys prop tank EP power pay sm m m m m m m m        (4.16) 

From Eq. (4.16), the total mass of the onboard systems, msys, including data processing, 

telecommunications, guidance, navigation and control, structural mass, and any power 

system requirements beyond the EP system requirements is assumed to total 500 kg.  From 

Eq. (4.12), mprop, is the mass of the available propellant and is given as a function of the 

mission duration, t 

 (4.17) 

The mass of the propellant tanks, mtank, is a function of the propellant mass, mtank = 0.1 

mprop [143]. The mass of the EP thruster, mEP, is found as a function of the maximum power 

provided by the system, Pmax 

EP EP maxm k P  (4.18) 

max

0

prop

SP

T
m t

I g
 



 
 

96 

with the specific performance of the thruster given as kEP = 0.02 kg/W [144], and the 

maximum power 

max 0
max

2

SP

EP

T I g
P


  (4.19) 

The thruster efficiency, ηEP, is assumed to be equal to 0.7 [145].  In Eq. (4.16), mpower, is the 

mass of the spacecraft power system required to provide electrical energy to the EP 

system.  Thus, using a solar array the mass is given by 

 (4.20) 

A conservative estimate of the specific performance of the solar array, from [24], of kSA =  

1/45 kg/W was used.  Inserting the appropriate values into Eq. (4.12) to find the mass of the 

sub-systems, the remaining mass is the useful payload mass, mpay, for a range of mission 

lifetimes.  The process is again conducted for both the fixed launch mass and fixed 

maximum thrust cases. 

4.3.3.1 Fixed Launch Mass 

The maximum solar sail masses that can be added to the spacecraft, for the fixed launch 

mass case, are determined from the amount of propellant saved through the use of a 

hybrid low-thrust propulsion system (Figure 4-4).  The propellant mass saving per year in 

orbit for the four solar sail characteristic accelerations considered are given in Table 4-5. 

Table 4-5  Propellant mass saving per year for each solar sail characteristic acceleration 

Characteristic Acceleration [mm/s2] Mass Saving [kg] 

0.03 9.44 

0.05 13.56 

0.07 15.25 

0.10 12.22 

power maxSAm k P
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In order to obtain an estimate of the solar sail masses, in this instance, the sail mass is given 

by multiplying the mass saving during the first year multiplied by the EP only mission 

lifetimes, of 4.49, 6.24, and 7.63 years for 1000, 1500, and 2500 kg spacecraft respectively.    

Using Eqs. (4.16) - (4.20), the payload mass is plotted as a function of the mission lifetime. 

 

Figure 4-11  Payload mass as a function of mission lifetime for EP only and hybrid systems 

with varying sail performance – fixed launch mass 

Figure 4-11 allows the maximum mission lifetime to be determined; that is, where there is 

no longer any capacity of useful payload.  The maximum mission lifetimes for each initial 

spacecraft mass, for each of the solar sail characteristic accelerations considered, are given 

in Table 4-6. The mission lifetimes detailed in Table 4-6 are the maximum possible lifetimes 

for missions with no payload, thus to carry any payload, mission lifetimes will be shorter 

than shown here. 
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Table 4-6  Maximum mission lifetimes, given in years, for fixed launch masses for EP and 

hybrid propulsion systems 

Characteristic Acceleration [mm/s2] 1000 kg 1500 kg 2500 kg 

EP only 4.5 6.2 7.6 

0.03 4.6 6.6 8.3 

0.05 4.6 6.7 8.5 

0.07 4.6 6.8 8.6 

0.10 4.5 6.6 8.3 

 

A modest increase in the Taranis mission lifetimes are shown in Table 4-6 with the addition 

of various solar sails to the system.  The maximum increase in mission lifetime is shown to 

be one year for the 2500 kg spacecraft with a solar sail characteristic acceleration of 0.07 

mm/s2.  Table 4-6 shows that for the 1000 and 1500 kg spacecraft the increases in mission 

lifetime produced by the addition of the solar sail are negligible, with all increases less than 

half a year for all solar sails.  Thus it is shown from Table 4-6 that in order to obtain any 

significant increase in the mission lifetime using a hybrid system, the initial mass must be 

increased significantly. 

4.3.3.2 Fixed Maximum Thrust 

As constraining the mass of the spacecraft allows very little increase in the lifetime of the 

Taranis missions without significant development of the solar sails, the scenario where the 

maximum thrust of the EP system is the constraining parameter is now considered.  As 

discussed previously, two cases are considered: firstly, where the mass of the solar sail is 

assumed to be equal to the entire additional mass gained through the use of the sail for the 

given thrust value (from Figure 4-10); and secondly, where the solar sails are assumed to 

equal half of the additional mass. 
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Case 1 

Again, the additional mass gained from employing a hybrid solar sail / EP system is entirely 

dedicated to the solar sail in this case.  The payload mass as a function of mission lifetime is 

given in Figure 4-12 for each of the thrust values considered.  In this case the mission 

lifetime for each initial thrust is equal to the EP-only lifetime regardless of the sail 

characteristic acceleration as all of the additional mass is used to add the sail and not for 

any additional propellant. 

 

Figure 4-12  Payload mass a function of mission lifetime – fixed maximum thrust, case 1 

Figure 4-12 shows maximum mission lifetimes of around 5.2, 6.9, and 7.7 years respectively 

for each of the maximum thrust values.  Once again, Figure 4-12 shows there is no increase 

in mission lifetime from the EP-only case when a solar sail is added as the additional mass 

created by the lower acceleration is consumed fully by the solar sail and not for additional 

propellant. Thus, the solar sail technology required in this case is the base line, and to offer 
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any increase in the mission lifetime an improvement in solar sail technology will be 

required.  

Case 2 

In this instance, half of the additional mass gained by lowering the required acceleration 

from the EP system is assigned to the solar sail with the remaining half being used to 

increase the capacity for useful payload.  The resulting payload masses for each system are 

given in Figure 4-13. 

 

Figure 4-13  Payload mass as a function of mission lifetime for EP only and various solar sail 

characteristic accelerations – fixed maximum thrust, case 2 

The increase in the mission lifetime for each of the hybrid solar sail / EP systems considered 

are shown in Figure 4-13 for each of the initial thrust values, with the maximum mission 

lifetimes given in Table 4-7. 
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Table 4-7  Maximum mission lifetimes, given in years – fixed maximum thrust, case 2 

Characteristic Acceleration [mm/s2] 94 mN 150 mN 210 mN 

EP only 5.2 6.9 7.7 

0.03 5.8 7.5 8.3 

0.05 6.1 7.8 8.6 

0.07 6.2 7.9 8.7 

0.10 5.9 7.6 8.4 

 

It can be seen from Table 4-7 that although the maximum increase in mission lifetime is the 

same as the fixed launch mass case, more significant increases are shown for the smaller 

initial thrusts and for solar sails with smaller characteristic accelerations.  In addition to the 

greater increase in mission lifetime, the solar sails required to achieve this increase are 

considerably heavier and are thus more feasible solutions.  Where solar sails in the fixed 

launch mass case range between around 42 and 116 kg, the fixed thrust cases 1 and 2 

require launch masses between 135 - 488 kg and 67 - 244 kg respectively. 

4.3.4 Thrust Range Analysis 

Although the Taranis orbit requires a constant acceleration, in reality as the propellant is 

consumed, the mass of the spacecraft decreases, causing an increase in the acceleration 

from the EP system.  A variable thrust EP system is therefore required. The thrust range 

necessary from the EP system can be determined by finding the thrust at the beginning of 

the mission with all the propellant, and the thrust at the end of the mission with zero 

propellant.  These thrust ranges are shown for a range of mission lifetimes for each of the 

hybrid systems considered and the EP-only case for both the fixed launch mass case in 

Figure 4-14 and the fixed maximum thrust case in Figure 4-15. 
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As shown by Eqs. (4.17) - (4.20), the mass budget analysis in Section 4.3.3 is based on the 

value of the maximum thrust, thus as the thrust level is variable there is an over estimation 

of the power requirements, and in turn of the mass of the EP system, solar arrays, 

propellant and tank mass. Calculations show that the maximum over estimation of the 

power requirements ranges from 37 to 78 %. 

4.3.4.1 Fixed Launch Mass 

 

Figure 4-14  Thrust ranges required by the EP system – fixed launch mass 

In Figure 4-14 it is shown that the addition of a solar sail to the EP system decreases the 

thrust range required by the EP system.  For example, considering the 1500 kg initial mass, 
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74.2 mN at the end of the mission.  This is compared with 102.2 mN at the beginning of the 

mission and 69.4 mN at the end of the four years for the solar sail of characteristic 
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4.3.4.2 Fixed Maximum Thrust 

 

Figure 4-15  Thrust ranges required by EP system – fixed maximum thrust 
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4.4.1 EP Thrusters 

Assuming the total acceleration is constituted by two thrusters at any given time, one for 

each of the radial and transverse directions, the approximate required range per thruster 

for various mission durations, for the EP-only case and the hybrid solar sail / EP systems, 

are stated in Table 4-8. 

Fixed Launch Mass 

The reduction in thrust range required by the EP thrusters which occurs for all hybrid 

systems proposed is made clear from Table 4-8, where it is shown that the thrust range 

decreasing as the solar sail characteristic acceleration increases.  Notably, all of the thrust 

ranges shown in Table 4-8 are achievable using current technology.  The NSTAR thruster, 

which has undergone significant ground testing in addition to a flight test on the Deep 

Space 1 (DS1) spacecraft [76], is capable of providing between 20 and 94 mN of thrust.  

Thus, four NSTAR thrusters, one per required direction, are capable of providing the 

necessary thrust range for both the 1000 and 1500 kg initial masses, for all mission 

durations considered, and for the 2500 kg spacecraft for all hybrid systems proposed.  

Furthermore, the QinetiQ T6 thruster, is throttleable between 30 and 210 mN [86] and so is 

capable of providing the required thrust range for all of the mission durations for an initial 

mass of 2500 kg and all systems for a 4 year mission for the 1500 kg spacecraft. 
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Table 4-8 Maximum and minimum thrust per thruster 

Initial 

Mass 

[kg] 

Duration 

[years] 

EP 0.03mm/s2 0.05mm/s2 0.07mm/s2 0.1mm/s2 

Max 

[mN] 

Min 

[mN] 

Max 

[mN] 

Min 

[mN] 

Max 

[mN] 

Min 

[mN] 

Max 

[mN] 

Min 

[mN] 

Max 

[mN] 

Min 

[mN] 

1000 3 40 29 36 27 35 26 34 26 36 27 

1000 4 40 25 36 24 35 23 34 23 36 24 

1500 4 61 37 54 36 52 35 51 35 53 35 

1500 6 61 25 54 26 52 26 51 26 53 26 

2500 4 101 62 91 60 87 58 85 58 89 59 

2500 6 101 41 91 43 87 43 85 44 89 43 

2500 7 101 30 91 35 87 36 85 36 89 35 

Fixed Maximum Thrust 

Again, assuming the total acceleration is constituted by two thrusters at any given time, 

one for each of the radial and transverse directions, the approximate required range per 

thruster are stated in Table 4-9. 

Table 4-9  Maximum and minimum thrust per thruster 

Initial 

Thrust 

[mN] 

Duration 

[years] 

Max Thrust 

[mN] 

EP-only 0.03mm/s
2
 0.05mm/s

2
 0.07mm/s

2
 0.1mm/s

2
 

Min [mN] Min [mN] Min [mN] Min [mN] Min [mN] 

94 3 47 33 35 36 36 35 

94 4 47 29 31 32 32 31 

150 4 75 46 49 51 51 50 

150 6 75 30 36 38 38 36 

210 4 105 64 69 71 71 70 

210 6 105 43 50 53 54 51 

210 7 105 32 40 44 45 42 

The reduction in thrust range required by the EP thrusters for all of the hybrid systems 

proposed is again evident from Table 4-9.  It is shown that four NSTAR thrusters, one per 

required direction, are capable of providing the thrust range required for both the 94 mN 
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and 150 mN initial thrust systems, for all durations of mission considered, and for both EP-

only and hybrid systems.  The QinetiQ T6 thruster is also capable of providing the required 

thrust range for all of the systems for all mission lifetimes with the exception of a 4 year 

mission using the EP-only system with an initial thrust of 94 mN. 

4.4.2 Solar Arrays 

To enable the 90 degree Taranis orbit, the power requirements of the spacecraft must be 

considered.  The sizing of the required solar arrays is based on an end-of-life (EOL) solar 

array efficiency of 0.25 at 1 au [146].  The power required by each spacecraft of different 

initial thrust values, the mass of the solar arrays (from Eq. (4.20)) and the required solar 

array area, found using the solar flux of 1370 W/m2 at 1 au, are given in Table 4-10 - Table 

4-14 for the fixed launch mass and Table 4-15 for fixed maximum thrust.   

Fixed Launch Mass 

The maximum thrust used to determine the power requirements are also given in Table 

4-10 - Table 4-14.  A modest reduction in both mass and required area of the solar arrays by 

the use of hybrid solar sail / EP system is shown in Table 4-10 - Table 4-14 with the required 

area decreasing as the solar sail characteristic acceleration is increased.  Results show that 

the required sizes of the solar arrays, for all cases, are modest and feasible using current 

solar array technology.  The solar arrays in this case are significantly smaller than those of 

Rosetta, totalling 61.5 m2 for a 3000 kg spacecraft [147], and are comparable to the 10 m2 

arrays of SMART-1 for a 370 kg spacecraft [148]. 
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Table 4-10  Solar array sizing – EP only 

Initial Mass 

[kg] 

Max. Thrust 

[mN] 

Max. Power 

[kW] 

Solar Array Mass 

[kg] 

Solar Array Area 

[m2] 

1000 80.9 1.7 38 5 

1500 121.4 2.6 57 8 

2500 202.3 4.3 94 13 

 

Table 4-11  Solar array sizing – asc = 0.03 mm/s2 

Initial Mass 

[kg] 

Max. Thrust 

[mN] 

Max. Power  

[kW] 

Solar Array Mass 

[kg] 

Solar Array Area 

[m2] 

1000 72.6 1.5 34 5 

1500 108.9 2.3 51 7 

2500 181.5 3.8 85 11 

 

Table 4-12  Solar array sizing – asc = 0.05 mm/s2 

Initial Mass 

[kg] 

Max. Thrust 

[mN] 

Max. Power 

[kW] 

Solar Array Mass 

[kg] 

Solar Array Area 

[m2] 

1000 69.2 1.5 32 4 

1500 103.8 2.2 48 6 

2500 173.0 3.6 81 11 

 

Table 4-13  Solar array sizing – asc = 0.07 mm/s2 

Initial Mass 

[kg] 

Max. Thrust 

[mN] 

Max. Power 

[kW] 

Solar Array Mass 

[kg] 

Solar Array Area 

[m2] 

1000 68.1 1.4 32 4 

1500 102.2 2.1 48 6 

2500 170.3 3.6 80 11 
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Table 4-14  Solar array sizing – asc = 0.1 mm/s2 

Initial Mass 

[kg] 

Max. Thrust 

[mN] 

Max. Power 

[kW] 

Solar Array Mass 

[kg] 

Solar Array Area 

[m2] 

1000 71.2 1.5 33 4 

1500 106.8 2.2 50 6 

2500 178.0 3.7 83 11 

 

Fixed Maximum Thrust 

Table 4-15 shows that, as with the fixed launch mass case, the required sizes of the solar 

arrays, for all cases, are feasible using current solar array technology. 

Table 4-15  Solar array sizing – fixed maximum thrust  

Initial Thrust 

[mN] 

Maximum Power 

[kW] 

Solar Array Mass 

[kg] 

Solar Array Area 

[m2] 

94 2.0 44 6 

150 3.2 70 9 

210 4.4 98 13 

 

4.4.3 Propellant Tanks 

Finally, the storage requirements for the requisite propellant mass for given mission 

durations are examined. The propellant mass for each initial thrust value considered are 

determined using Eq. (4.17) and are shown in Table 4-16 and Table 4-17. 

Fixed Launch Mass 

The reduced propellant mass for the hybrid solar sail / EP systems, over pure EP systems, 

are detailed in Table 4-16.  The NASA Dawn mission Xenon tanks have a capacity of 425 kg 

of propellant, the Taranis spacecrafts (both EP-only and hybrid systems) propellant mass 
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requirements can be accommodated using a single propellant tank for a four year mission.  

For a six year mission this is increased to two tanks for all proposed systems.  Finally, four 

tanks are required for all seven year missions.  As the single tank volume is 0.27 m3, the 

equivalent tank radius for a spherical tank is 0.4 m and so the total propellant mass 

requirements for the possible Taranis platforms can be accommodated in a modest volume.  

Note that results are included for the 0.1 mm/s2 solar sail to show the increase in propellant 

mass from the 0.07 mm/s2 sail. 

Table 4-16  Propellant mass – fixed launch mass 

Initial Mass 

[kg] 

Mission 

Duration 

[years] 

EP-only 0.03mm/s2 0.05mm/s2 0.07mm/s2 0.1mm/s2 

Propellant 

Mass [kg] 

Propellant 

Mass [kg] 

Propellant 

Mass [kg] 

Propellant 

Mass [kg] 

Propellant 

Mass [kg] 

1000 4 347 311 297 292 305 

1500 6 780 700 668 657 687 

2500 7 1578 1362 1298 1277 1335 

 

Fixed Maximum Thrust 

Table 4-17 shows that the propellant mass requirements can be accommodated using a 

single propellant tank for four year missions and three propellant tanks for the six year 

mission and finally four tanks for the seven year missions.  

Table 4-17  Propellant mass – fixed maximum thrust 

Initial Thrust [mN] Mission Duration [years] Propellant Mass [kg] 

94 4 403 

150 6 965 

210 7 1576 
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4.4.4 Solar Sail 

Following design of the spacecraft components, possible design of the solar sails is 

considered.  Sizing of the solar sail is conducted to determine the technology development, 

if any, needed to allow the proposed hybrid low-thrust propulsion missions to become 

feasible.  

Fixed Launch Mass 

The design space for each of the solar sails for all initial masses considered are shown in 

Figure 4-16 - Figure 4-18.  Eq. (2.10) is used to determine the sail area for each 

characteristic acceleration considered, assuming a sail efficiency of 0.85 [108], solar 

radiation pressure equal to 4.56 x 10-6 N/m2 and varying the sail loading. 

 

Figure 4-16  Design space for various characteristic accelerations – 1000 kg initial mass 
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Figure 4-17  Design space for various characteristic accelerations – 1500 kg initial mass 

 

Figure 4-18  Design space for various characteristic accelerations – 2500 kg initial mass 
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these plots reveals an increase in the solar sail area and a significant decrease in the sail 

loading as the initial spacecraft mass increases.  Comparison of Figure 4-16 - Figure 4-18 

with Figure 2-10 clearly shows the solar sails required to enable the Taranis orbit lie within 

the mid to far term technology region and thus require significant technology development 

before becoming feasible. 

Fixed Maximum Thrust 

Case 1 

The design space for each of the solar sails for each initial thrust case is shown in Figure 

4-19 - Figure 4-21.  These figures give the required solar sail area, again assuming a sail 

efficiency of 0.85 [108]. 

 

Figure 4-19  Design space for various characteristic accelerations – case 1, 94 mN initial 

thrust 
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Figure 4-20  Design space for various characteristic accelerations – case 1, 150 mN initial 

thrust 

 

Figure 4-21  Design space for various characteristic accelerations – case 1, 210 mN initial 

thrust 
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The design space for each of the solar sails considered for initial thrusts of 94, 150 and 210 

mN is given in Figure 4-19 - Figure 4-21 respectively, where once again the shaded area 

bounds the design limit.  It is shown that although the sail area is of the same order of 

magnitude as those required for the fixed mass case, the sail loading is significantly higher.  

Thus, from comparison with Figure 2-10 the solar sails in this case (Figure 4-19 - Figure 

4-21) are within near or midterm technology.  Comparison of the design space for each 

initial thrust value again reveals that as the initial thrust increases the required solar sail 

area also increases.  Once again, the solar sails in Figure 4-19 - Figure 4-21 show the 

baseline solar sail technology required as all additional mass is assigned to the solar sail. 

The sails in case 2 will therefore have to demonstrate an advance in technology. 

Case 2 

In this instance, lighter solar sails constituting half of the additional mass are considered for 

each of the given characteristic accelerations, again assuming an efficiency of 0.85 [108] 

and varying the sail loading to determine the requisite area, the results for all initial thrust 

values investigated are shown in Figure 4-22 - Figure 4-24. 
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Figure 4-22  Design space for various characteristic accelerations – case 2, 94 mN initial 

thrust 

 

Figure 4-23  Design space for various characteristic accelerations – case 2, 150 mN initial 

thrust 
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Figure 4-24  Design space for various characteristic accelerations – case 2, 210 mN initial 

thrust 
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 (4.21) 

As previously stated in Section 4.2.1, at an inclination of 90 degrees the natural drift in 

argument of perigee is - 0.15 degrees per day.  To compensate for this change in argument 

of perigee chemical thrusters would be required to provide two equal impulses per orbit.  

The total Δ  through the application of the two impulses is given by [149] 

 
(4.22) 

The respective Δ and propellant mass fraction, Δm/m0, calculated using the rocket 

equation, for one year of operation are shown in Table 4-18, with results extended over 

various mission durations shown in Figure 4-25. 

Table 4-18  requirements for one year of operation 

Propulsion System  [km/s] Propellant Mass Fraction 

Electric (Isp = 3000 – 4600s) 2.55 0.083 – 0.055 

Chemical (Isp = 200 –340s) 1.96 0.632 – 0.444 
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Figure 4-25  Electric and chemical  comparison 

The benefit of using EP to enable Taranis orbits as opposed to conventional chemical 

propulsion is highlighted in Figure 4-25, where it is shown that although chemical 

propulsion is feasible for low mission durations, it becomes impractical for longer duration 

missions.  Above 5 years, the chemical propellant mass fraction begins to tend to one, with 

low-thrust propulsion enabling much greater mission lifetimes. 

4.6 Summary 

Hybrid solar sail / electric propulsion and high-thrust chemical propulsion systems have 

been considered to maintain the novel 12 h Taranis orbit, inclined at 90 degrees to the 

equator, and comparison made with the use of a pure electric propulsion system. 

Hybrid solar sail and electric propulsion systems, in theory, lower the demand on the 

electric propulsion system by reducing the propellant consumption, thus increasing the 

possible lifetime of the mission or the capacity for useful payload.  The addition of the solar 

sail to the system could lower the advancement degree of difficulty of the solar sail, while 
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the electric thruster compensates for the solar sail’s inability to thrust in the direction of 

the Sun.  Two constraining parameters were considered, firstly the case where the launch 

mass of the spacecraft is fixed; and secondly where the maximum thrust of the electric 

propulsion thruster constrains the system.  When the launch mass of the spacecraft is fixed, 

the increase in the mission lifetime from the pure electric propulsion system is negligible 

and there is no tangible benefit from the addition of a solar sail.  The solar sails required to 

achieve these increases in lifetime are extremely large, light sails.  Thus considerable 

developments in solar sail technology are necessary to make these missions feasible.  In the 

case of the fixed maximum thrust, the increase in mission lifetime is greater than that 

achieved using a fixed launch mass.  In addition to this, the physical size of the solar sails 

required are of the same order of magnitude as the fixed launch mass sails, however, these 

are much heavier sails making them more feasible solutions.  It has therefore been shown 

that the gain from the addition of a solar sail to the system is negligible to enable the 12 h, 

90 degree inclination Taranis orbit.  It is also noted that whilst the analysis considers 

constant sail acceleration, the sail will in fact generate excess acceleration as propellant is 

consumed, requiring an equivalent increase in the acceleration from the EP system.  

Therefore the mission lifetimes calculated in this chapter are in fact biased towards the use 

of the solar sail, this further substantiates the original conclusion that hybrid solar sail / EP 

systems are of no benefit to enable the Taranis orbit. 

A chemical propulsion system was also considered to maintain the zero change in argument 

of perigee condition of a 90 degree, 12 h Taranis orbit.  The chemical thruster provides two 

impulses per orbit to maintain the zero rate of change of argument of periapsis over the 

orbit and is shown to be feasible to enable mission durations less than five years.  However, 

this becomes impractical for longer duration missions. 
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Electric propulsion is therefore considered the most viable means of propulsion to enable a 

12 h, 90 degree inclination Taranis orbit for high-latitude observation. 
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Chapter 5 

5 Trade Space Analysis for a Polar 

Remote Sensing Constellation 

The requirements for a polar monitoring platform have previously been derived in Chapter 

1, these are outlined again in Section 5.2 for clarity, and a more detailed requirements 

analysis is conducted in Section 5.3.  Section 5.4 is divided into two sub-sections 

considering continuous observation of constellations of spacecraft on various Taranis orbits 

to both 55 and 50 degrees latitude respectively.  Section 5.5 displays the view of Earth as 

seen by a spacecraft on a 12 h, 90 degree Taranis orbit, to illustrate the rotation of the 

Earth below the spacecraft at apogee.  Finally, validation of the visibility analysis is 

conducted in Section 5.6 using NOVA Satellite Tracking Software. 

5.1 Introduction 

The importance of building an observation system capable of providing high resolution 

imaging of high-latitude regions of the Earth has previously been detailed in Chapter 1.  

This chapter therefore considers the design of a 90 degree inclination Taranis orbit 

constellation for high-latitude sensing by considering spatial resolution, possible launch 

options, the radiation environment, EoL debris mitigation measures and the required 

number of spacecraft to give continuous coverage of defined high-latitude regions. 

As explained in Chapter 1, in order to complete the GOS, the minimum requirement of the 

constellation is continuous observation to 55 degrees latitude to compensate for the 



 
 

122 

limitations of GEO platforms beyond this point [10].  Consideration is also given to a 

constellation capable of continuously observing to 50 degrees latitude to increase the 

overlap in data from GEO-based instruments.  This chapter considers the design of a 

constellation capable of continuously sensing one of the Earth’s polar regions, in this case 

the North Pole.  Thus in order to complete the GOS, a duplication of this constellation is 

required for the South Pole. 

5.2 Requirements for Selecting Polar Remote Sensing 

Constellation 

The key requirements for selecting the most beneficial Taranis orbit for spacecraft in the 

constellation, as defined in Chapter 1, are as follows: 

R1.  The constellation shall provide continuous coverage above 55 degrees latitude as a 

minimum. 

R2.  The rate of change of argument of perigee of the orbit shall be zero. 

R3.  The apogee altitude of the orbit shall be less than 45,000 km. 

R4.  The OZAs shall be less than or equal to the OZA from GEO. 

R5.  Above the target region, a single image shall be used to provide the required 

coverage. 

R6.  The mission shall comply with debris mitigation guidelines. 

Although the following is not a strict requirement, it is a condition that should be 

considered when designing the constellation: 
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 To avoid the highest density region of high-energy protons the altitude of the semi-

latus rectum should be > 15,000 km. 

5.3 Requirement Analysis 

R1.  The constellation shall provide continuous coverage above 55 degrees latitude as a 

minimum. 

In order to complete the GOS and allow continuous coverage of the Earth at any time, the 

Taranis constellation is required to provide continuous observation of the regions above 55 

degrees latitude.  This is the minimum level of coverage required by the constellation, as at 

around 55 degrees latitude observations from geostationary platforms are considered to be 

of unacceptable quality [10].  However, to provide a significant overlap with data from GEO, 

the design of a constellation capable of imaging continuously to 50 degrees latitude is also 

considered. 

R2.  The rate of change of argument of perigee of the orbit shall be zero. 

This is a condition which is satisfied by both the conventional Molniya orbit and a Taranis 

orbit.  However, whilst the inclination of the Molniya orbit is fixed at either 63.43 or 116.6 

degrees the Taranis orbit, through the use of continuous low-thrust propulsion, can be 

given any inclination.  A Taranis orbit with an inclination of 90 degrees and argument of 

perigee of 270 degrees places the apogee of the orbit directly above the Earth’s North Pole.  

Thus, the spacecraft will spend the longest period of time above this region, giving 

enhanced observation of the polar regions.  This analysis therefore considers 90 degree 

inclination Taranis orbits. 

R3.  The apogee altitude of the orbit shall be less than 45,000 km. 
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In order to ensure adequate spatial resolution with current imaging platforms, the limit 

placed on the apogee altitude is selected as 25 % higher than GEO altitude.  This matches 

the limit currently being used by other HEO mission concepts, including the PCW mission 

[27, 28]. 

The requirement on the apogee altitude to be below 45,000 km can be converted into a 

valid region of values for the semi-major axis using  

 (5.1) 

where, Ha, is the apogee altitude of the spacecraft.  The corresponding orbital period, Ts, is 

then determined using 

 (5.2) 

R4.  The OZAs shall be less than or equal to the OZA from GEO. 

In order to ensure data product quality the OZA of the defined latitude limit, when viewed 

from GEO, is calculated and is then used as the OZA for the Taranis orbit.  This is achieved 

by calculating the minimum elevation angle, using Eqs. (5.3) - (5.5), where the parameters 

used are introduced in Figure 5-1. 
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Figure 5-1  Angular relationships between spacecraft, target and Earth centre 

Firstly, the angular radius of the Earth, , is calculated using 

 (5.3) 

where, 0, is the Earth central angle and H is the altitude of the spacecraft.  The nadir angle, 

η, is determined as 

 (5.4) 

The angular radius of the Earth and the nadir angle are used to obtain the minimum 

elevation , as 

 (5.5) 

Considering a GEO at an altitude of approximately 36,000 km results in minimum elevation 

angles of 27 and 33 degrees, or corresponding OZAs of 63 and 57 degrees viewing to 

latitudes of 55 and 50 degrees respectively.  Employing these minimum OZAs for the 

Taranis orbits ensures that these provide at the very least data of equal quality to that 
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produced by geostationary systems viewing the same location.  It is important to note that 

spacecraft on a Molniya orbit are incapable of providing data of equal quality to those 

produced by geostationary systems to latitudes of 55 and 50 degrees.  For example, a 

platform on Molniya orbit observing to 55 degrees has a peak OZA observing ‘over’ the pole 

approximately 10 degrees higher than when the same location is observed from GEO. This 

is further explained in Section 5.4.1.  Thus, Taranis orbits are required to complete the GOS.  

Similarly, viewing to 50 degrees latitude a Molniya orbit has an OZA of 75 degrees, i.e. 42 

degrees higher than when viewed from GEO.  This highlights the benefit of using a Taranis 

orbit constellation to enhance the observations of the poorly observed high-latitude 

regions of the Earth to complete the GOS and further emphasises the contribution of this 

thesis. 

R5.  Above the target region, a single image shall be used to provide the required 

coverage. 

Observation of the polar regions is currently approximated using composite images.  

Therefore to offer an improvement from current systems composite images are not 

considered to be acceptable. 

R6.  The mission shall comply with debris mitigation guidelines. 

Development of a debris mitigation plan is required by the European Cooperation for Space 

Standardization (ECSS) for all spacecraft from Phase 0 studies onwards [150]. 

Guidelines identify protected regions for LEO up to altitudes of 2,000 km and around 

geostationary altitude in bands extending 200 km above and below 35,678 km as well as 

plus and minus 15 degrees in latitude [151].  Thus, at the EoL, spacecraft should be 

removed from these regions.  
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Post mission disposal options include maneuvering to an orbit in which atmospheric drag 

will limit the orbital lifetime to less than 25 years after completion of operations.  Re-

orbiting the spacecraft to an orbit out with these protected regions or direct retrieval of the 

spacecraft may also be considered as a disposal option.  Debris mitigation measures are 

considered when quantifying the design space for a HEO constellation. 

It is worth noting that as the Taranis platform will only have a low-thrust propulsion system, 

the spacecraft is unable to target a specific point at which to re-enter.  As a result 

uncontrolled re-entry must be assumed from the outset and the spacecraft designed to 

burn up completely in the Earth’s atmosphere. 

To determine the time taken for a spacecraft to re-enter the Earth’s atmosphere due to 

atmospheric drag, these effects are included within the numerical simulation using the 

expression for the acceleration due to atmospheric drag given in Eq.(5.6), expressed in an 

RTN coordinate system.  

2

0

1

2
atmos D

A
a C V

m
  (5.6) 

Where, 0 is the density as a function of altitude, implemented into the numerical model 

using the U.S. Standard 1976 atmosphere model, CD is the drag coefficient, which is 

assumed to equal 2 i.e. the drag of a flat plate [152] and A is the spacecraft area. 

  Radiation Environment 

To avoid the highest density region of high-energy protons the altitude of the semi-latus 

rectum should be > 15,000 km. 

One downside to HEOs is the potentially hazardous radiation environment, caused by solar 

flares, cosmic particles, and the spacecraft crossing the Van Allen radiation belts twice per 

orbit.  These sources can have various effects on the spacecraft, for example on materials, 

coatings, and epoxies [153]: However, the two elements of platforms most susceptible to 
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damage are microelectronics, degraded by the ionizing effects of colliding particles [154], 

and solar cells.  Solar cells are constructed from materials that are susceptible to both 

ionizing and non-ionizing radiation and can thus be degraded due to displacement or bulk 

damage of atoms within their crystal structure by the non-ionizing component of particle 

radiation [154].  Solar cells are also shown to suffer higher degradation due to lower energy 

protons, which can stop within the solar cell and cause a large amount of damage 

concentrated at the end of the proton track7. 

Collision with highly energetic particles can cause radioactive radiation, or activation, which 

leads to increased background noise in sensitive measuring equipment [154].  Gamma ray 

observers and x-ray detectors are particularly susceptible to this background noise [155].  

Displacement damage is also responsible for reduced sensitivity of highly sensitive Charge 

Coupled Devices (CCDs) used in image sensors, resolution degradation in solid state 

detectors, and greater inefficiencies in Light Emitting Diodes (LEDs) [155].  Ionisation and 

atomic displacement processes in extreme cases can lead to complete loss of 

optoelectronic components such as optocouplers used in modern space-borne scientific 

instruments. These are also prone to damage by energetic solar-protons
7
.  Single event 

effects can cause a change in state of memory cells and could trigger certain devices into a 

state of high current drain which may lead to burn-out and hardware failure [155].  The 

trend in recent years towards smaller, faster electronics and more sensitive detectors 

means these components are more susceptible to damage from single particles than with 

previous larger systems.  The use of larger spacecraft means single particles could only 

affect a limited volume, thus only cumulative damage resulting from multiple interactions 

could cause loss of the spacecraft.   

                                                           
7
 SPENVIS Documentation  http://www.spenvis.oma.be/ 
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Although the spacecraft experiences effects from both electrons and protons, the main 

threat to microelectronics comes from high-energy protons [156].  It follows that in order 

to minimise the effects of radiation, the spacecraft should avoid the region containing 

protons with energy E > 10 MeV.  The altitude distribution of proton flux in the equatorial 

plane is given in Figure 5-2, and shows the regions in space where the peak density of high-

energy protons occur. 

 

Figure 5-2  Example of vertical profile of trapped proton spectrum in the equatorial plane 

found using SPENVIS 

The radiation environment encountered by spacecraft on each of the Taranis orbits 

considered in this paper has been determined using ESA’s online Space Environment 

Information System (SPENVIS).  Trapped proton and electron environments presented in 

this thesis are modelled using NASA models AP-8 [157] and AE-8 [158] respectively.  To give 

the most conservative analysis of the radiation environment, and to follow ESA guidelines 
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[159], the trapped proton environment is modelled at solar minimum conditions while the 

trapped electron environment uses solar maximum conditions. 

Figure 5-2 shows that the proton flux for high-energy protons (> 10 MeV) falls to below 100 

particles per cm2 per second, a standard used by other HEO missions [27, 28], at an altitude 

of 15,000 km.  Therefore, to avoid a high density of highly energetic protons and reduce the 

risk of damage to the spacecraft, therefore for an argument of perigee of 90 or 270 

degrees, the semi-latus rectum altitude should be above 15,000 km.  

The requirement on the semi-latus rectum altitude, p, can be stated as 

 (5.7) 

As with Eq. (5.1), the semi-latus rectum limit can be expressed in terms of the orbital period 

and eccentricity.  This is then plotted alongside the apogee altitude limit, from Eq. (5.1), in 

Figure 5-3, to illustrate the valid region for orbit solution.  The possible eccentricities for the 

low-radiation orbits are shown to be limited to between 0 and around 0.55. 

 

Figure 5-3  Valid region, displaying apogee altitude and semi-latus rectum limit 
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5.4 Visibility Analysis 

The number of spacecraft required to provide continuous observation of the frigid and 

neighbouring temperate zones, to latitudes of 55 and 50 degrees, from a Taranis orbit 

inclined at 90 degrees to the equator, is determined. 

The continuous visibility analysis is achieved using numerical analysis to determine the time 

spacecraft on Taranis orbits, of varying orbit periods, can view ground stations located at 

longitude intervals of 10 degrees, at latitudes of 55 and 50 degrees.  This is done by 

numerically determining the spacecraft elevation with respect to each ground station, and 

if this value is greater than the minimum value specified the spacecraft is said to be in view 

of all ground stations and thus can provide coverage of the specified region.  The number of 

spacecraft in the constellation is then varied, and if all ground stations are in view of at 

least one spacecraft, the observation of the given region is said to be continuous.  This 

process is repeated to build up the trade space shown in Figure 5-13. 

In this thesis a composite image is defined as a single image made up of images from two 

perspectives at the same time.  If composite images are considered acceptable, the Molniya 

orbit can image polar regions using three spacecraft on three different orbit planes.  This 

requires three separate launches.  However, two spacecraft on a 12 h Taranis orbit can view 

continuously to 55 degrees latitude using composite images; importantly this is possible 

using a single launch assuming orbit phasing is used to separate the spacecraft 

appropriately around the orbit.  This is illustrated using outputs from the satellite 

visualisation tool SaVi8.  Figure 5-4 - Figure 5-6 show the coverage from two spacecraft on a 

single plane of a 12 h, 90 degree inclination Taranis orbit, at 4, 8 and 12 hours into the orbit 

respectively using a minimum elevation of 27 degrees.  The key shown on these figures 

                                                           
8
 http://personal.ee.surrey.ac.uk/Personal/L.Wood/software/SaVi/ Accessed on 27

th
 May 2013 

http://personal.ee.surrey.ac.uk/Personal/L.Wood/software/SaVi/
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illustrate the number of spacecraft that can view a given location.  It is clear from these 

results that two spacecraft on a single plane of the 12 h Taranis orbit are capable of imaging 

continuously to 55 degrees latitude.  The coverage from a 12 h Molniya orbit is also shown 

in Figure 5-7 - Figure 5-12.  Where, Figure 5-7 - Figure 5-9 clearly show that three spacecraft 

on a single plane of a 12 h Molniya orbit, cannot provide continuous coverage to 55 degrees 

latitude.  Therefore the Molniya orbit requires three spacecraft on three separate orbit 

planes to provide continuous coverage to 55 degrees latitude, as shown in Figure 5-10 - 

Figure 5-12. 

 

 

 

50 deg 

60 deg 

50 deg 

60 deg 

Figure 5-4 - Coverage from two s/c on single plane of 12 h Taranis orbit at 4 

hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 

Figure 5-5 - Coverage from two s/c on single plane of 12 h Taranis orbit at 8 

hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 
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Figure 5-6 - Coverage from two s/c on single plane of 12 h Taranis orbit at 12 

hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 

Figure 5-7 - Coverage from three s/c on single plane of 12 h Molniya orbit at 

4 hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 

Figure 5-8 - Coverage from three s/c on single plane of 12 h Molniya orbit at 

8 hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 
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Figure 5-9 - Coverage from three s/c on single plane of 12 h Molniya orbit at 

12 hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 

Figure 5-10 - Coverage from three s/c on three orbit planes of 12 h Molniya 

orbit at 4 hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 

Figure 5-11 - Coverage from three s/c on three orbit planes of 12 h Molniya 

orbit at 8 hours around orbit (regions showing coverage from one s/c are not 

necessarily from the same s/c) 



 
 

135 

 

 

 

Therefore, despite the merits of the Molniya orbit for EO, the problem of viewing frigid and 

neighbouring temperate regions is not fully resolved as no single platform can provide 

sufficiently hemispheric observations.  This highlights the importance of new high-latitude 

observation systems such as platforms on 90 degree inclination Taranis orbits. 

5.4.1 Observation to 55 degrees latitude 

Within the valid regions shown in Figure 5-3, combinations of perigee and apogee altitudes 

are possible to give orbits of varying period.  Visibility analysis is then conducted to 

determine the number of spacecraft required to give continuous observation of the region 

above 55 degrees latitude using the OZAs, which allow observation to the same quality as 

that produced by geostationary systems.  This is shown in Figure 5-13.  

Figure 5-14 illustrates the output from the numerical analysis in MatLab, which is used to 

determine the number of spacecraft required in a constellation to provide continuous 

observation, the selected example shows four platforms on a single orbit plane equally 

spaced around a 16 h, 90 degree Taranis orbit with perigee altitude of 41,740 km. Figure 

50 deg 

60 deg 

Figure 5-12 - Coverage from three s/c on three orbit planes of 12 h Molniya 

orbit at 12 hours around orbit (regions showing coverage from one s/c are 

not necessarily from the same s/c) 
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5-14 is created by outputting a value of 1 where the elevation of the spacecraft is above the 

minimum value specified for all ground stations spaced around 55 degrees latitude, thus 

when at least one spacecraft is in view of all ground stations visibility is said to be 

continuous.  Four spacecraft on a 16 h conventional Molniya orbit i.e. 63.43 degree 

inclination are shown in Figure 5-15, to further illustrate that no single platform can 

observe to 55 degrees latitude with the required OZA. 

 

Figure 5-13  Observation to 55 degrees, showing apogee altitude limit, semi-latus rectum 

limit and required number of spacecraft (s/c) 
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Figure 5-14 – 4 spacecraft Taranis constellation visibility – 16 h orbit 

Figure 5-15 - 4 spacecraft Molniya constellation visibility - 16 h orbit 
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The most beneficial orbit in terms of the number of spacecraft, from Figure 5-13, occurs at 

the point closest to the intersection of the apogee altitude and semi-latus rectum limit 

lines.  At this point, the orbit period is shown to be around 16.6 hours.  However, in order 

to provide an integer number of revolutions in an integer number of sidereal days such that 

the ground-track will repeat in a relatively short time, the orbit period is reduced to 16 

hours.  This gives a repeat ground-track in two days. 

The most suitable perigee altitude for the 16 h orbit is then selected to minimise both the 

number of required spacecraft and the radiation dose from high-energy protons.  As the 

perigee altitude increases, the radiation from high-energy protons decreases.  This is 

illustrated in Figure 5-16, where it is shown that the total proton flux for the 16 h orbit with 

a perigee altitude of 8,000 km is almost completely absorbed after approximately 7 mm of 

aluminium shielding; this is compared with only 2 mm for a perigee altitude of 10,000 km.  

However, as perigee altitude increases, apogee altitude decreases, thus eccentricity and the 

time above high-latitude regions decreases, therefore these orbits may require a greater 

number of spacecraft to provide continuous observation.  The orbit parameters for the 16 h 

Taranis orbits and the required number of spacecraft in the constellation are given in Table 

5-1.  This table also gives the total magnitude of acceleration required by the EP system to 

alter the critical inclination to 90 degrees for the given orbital parameters.  The method for 

determining the total required acceleration has been previously derived in Chapter 3. 
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Figure 5-16  Comparison of trapped proton dose for 16 h Taranis orbits of varying perigee 

altitudes found using SPENVIS 

Table 5-1  Comparison of 16 h Taranis orbits of varying perigee altitudes 

 Perigee Altitude 

8,000 km 

Perigee Altitude 

10,000 km 

Perigee Altitude 

11,000 km 

Apogee Altitude 43,740 km 41,740 km 40,740 km 

Eccentricity 0.5543 0.4922 0.4612 

Required Acceleration 11.3 μm/s2 8.34 μm/s2 6.97 μm/s2 

No. Spacecraft 4 4 5 

 

Table 5-1 shows that four spacecraft are required to give continuous observation for 

perigee altitudes between 8,000 and 10,000 km.  Since the radiation from high-energy 

protons decreases with increasing perigee altitude, a perigee altitude of 10,000 km is more 

beneficial.  Although increasing the perigee altitude to 11,000 km further reduces the 

radiation dose, the number of spacecraft required in the constellation is seen to increase 
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from four to five.  For this reason, a 16 h Taranis orbit with perigee altitude of 10,000 km 

and apogee altitude of 41,740 km is selected as the most beneficial for high latitude 

observation when taking into consideration both the radiation dose and apogee altitude 

constraints. 

It is shown in Figure 5-13 that when taking the radiation dose into consideration, a 

minimum of four spacecraft are necessary to provide continuous observation to 55 degrees 

latitude.  An investigation is therefore conducted to determine to what extent the perigee 

altitude needs to be lowered to provide continuous observation to 55 degrees latitude 

using only three spacecraft.  Although lowering the perigee of the orbit will increase the 

radiation dose from high-energy protons, it is anticipated that it may be more cost efficient 

to employ additional radiation shielding if the number of spacecraft can be reduced.  

Furthermore, launching to a perigee altitude of 10,000 km is expected to be both difficult 

and costly. 

Visibility analysis is once again conducted to 55 degrees, simply placing a restriction on the 

maximum apogee altitude of the orbit to determine the number of spacecraft required in 

this case.  Visibility analysis showing orbits with constant perigee altitudes of 300, 1,000 

and 2,000 km are shown in Figure 5-17.  Disregarding the radiation constraints, it is found 

that the minimum number of spacecraft required for continuous observation to 55 degrees 

can be reduced to three.  This holds true for minimum apogee altitudes of 28,000, 30,000 

and 33,000 km for each of the 300, 1,000 and 2,000 km perigee altitudes respectively, 

below which the number of required spacecraft increases to four.  The maximum perigee 

altitude that can allow continuous observation maintaining the use of three spacecraft is 

7,500 km with an apogee altitude on the 45,000 km limit.  The corresponding figure output 

from the visibility analysis to determine the number of spacecraft required for continuous 
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observation is shown in Figure 5-18.  This shows three equally spaced platforms on a single 

orbit plane on a 12 h Taranis orbit orbit with a perigee altitude of 300 km, it is clear that 

three spacecraft can provide continuous observation to 55 degrees latitude.  Once again 

the same analysis is conducted for a Molniya orbit with an inclination of 63.43 degrees, 

where it is shown in Figure 5-19 that no single platform can observe to 55 degrees using the 

required OZA. 

 

Figure 5-17  Observation to 55 degrees, showing apogee altitude limit and required number 

of spacecraft (s/c) 
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Figure 5-18 - 3 spacecraft Taranis constellation visibility - 12 h orbit 

Figure 5-19 – 3 spacecraft Molniya constellation visibility – 12 h orbit 
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In a similar manner to the 16 h ‘low-radiation’ orbit, consideration must be given to the 

selection of orbit period and subsequently the perigee altitude. In the region where three 

spacecraft are required in Figure 5-17, orbit periods of 12 and 9 hours are of interest as 

these allow repeat ground-tracks within one and three days respectively, and therefore 

simplified spacecraft operations. 

5.4.1.1 12 hour orbits 

In order to comply with debris mitigation guidelines, at EoL the spacecraft can either be re-

orbited to an orbit with perigee altitude > 2,000 km, or de-orbited to an orbit where 

perigee altitude is ≤ 300 km and where it will naturally degrade due to atmospheric drag 

and re-enter the Earth’s atmosphere within 25 years.  It is clear that a spacecraft in an 

initial orbit with perigee altitude below 300 km or above 2,000 km will not require a 

manoeuvre at EoL.  If, however, the perigee altitude is within this range, comparison must 

be made between the amount of propellant required to de-orbit or re-orbit the spacecraft 

at EoL versus the propellant required to maintain an orbit throughout its life at 300 km 

perigee altitude due to the degrading effects of atmospheric drag. 

If a perigee altitude of 2,000 km is selected, such that a re-orbit manoeuvre is avoided, the 

corresponding apogee altitude, for a 12 h orbit, is 38,500 km.  If at EoL the spacecraft is 

simply decommissioned in this orbit and all systems are powered down, the orbit will drift 

as the continuous low-thrust previously preventing this is turned off, and over long periods 

of time may intersect the GEO ring, thus violating debris mitigation guidelines.  This 

therefore drives the orbit selection towards an orbit with a lower perigee altitude. 

Generally, spacecraft on orbits with perigee altitudes below 1,000 km are susceptible to the 

degrading effects of atmospheric drag and therefore require propellant to maintain the 
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orbit throughout its lifetime.  However, spacecraft on 12 h orbits with perigee altitudes 

higher than approximately 300 km will require an EoL de-orbit manoeuvre to reduce the 

perigee altitude to this value to allow it to re-enter the Earth’s atmosphere within 25 years, 

this was validated through numerical simulation.  An investigation is therefore conducted 

to compare the propellant required to transfer the perigee altitude from 1,000 to 300 km 

versus the propellant necessary to maintain an orbit at 300 km perigee to mitigate the 

effects of atmospheric drag.  This is achieved by comparing the orbit manoeuvre size from 

numerical analysis, by considering the Δν required in each case, where Δν is a measure of 

the amount of propellant used to change from one trajectory to another, with units m/s. 

Firstly considering the Δν required to maintain an orbit with perigee altitude at 300 km and 

apogee altitude of 40,170 km (12 h orbit) due to the effects of atmospheric drag.  Eq. (5.6) 

is implemented in the numerical analysis to determine the average acceleration due to 

atmospheric drag over one year, using a spacecraft mass of 1000 kg, drag coefficient of 2 

and area of 6 m2 which is based on the solar array size for this particular orbit.  Eq. (4.21) is 

then used to determine the Δν to maintain the orbit due to the atmospheric drag effects, 

which was found to equal 17 m/s per year. 

This value of Δν can then be compared with that required to transfer the spacecraft from a 

perigee altitude of 1,000 to 300 km, determined using Eq. (4.21), where the acceleration in 

this case is specified as 0.076 mm/s2 i.e. the acceleration required to maintain zero change 

in argument of perigee of the Taranis orbit with a perigee altitude of 1,000 km and apogee 

altitude of 39,479 km. The radius of pericentre locally optimal control law (Eq. (5.9)) derived 

from the radius of pericentre variational equation, in terms of classical orbital elements, is 

then used to maximise the instantaneous rate of change of the radius of pericentre, giving 

the transfer time which results in a Δν of 94 m/s.  It is therefore shown to be more 
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beneficial in terms of propellant requirements to maintain the orbit with a perigee altitude 

of 300 km and apogee altitude of 40,170 km for mission lifetimes less than 5 and a half 

years.  
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5.4.1.2 9 hour orbits 

It is shown from Figure 5-17 that to enable a Taranis constellation using a 9 h orbit while 

maintaining the use of three spacecraft, the perigee altitude is limited to 1,000 km.  For a 9 

h orbit, perigee altitudes below around 200 km will ensure the spacecraft naturally re-

enters the Earth’s atmosphere within 25 years, this was again simulated using a numerical 

simulation implementing the U.S. Standard 1976 atmosphere model, as introduced in 

Section 5.3.  Note that the reduction in perigee altitude to allow re-entry within 25 years is 

due to the shorter time period the spacecraft spends in the region where atmospheric drag 

has an effect when the orbit period is reduced.  Comparison is again made between the 

propellant requirements to maintain an orbit with a perigee altitude of 200 km due to the 

effects of atmospheric drag and to transfer the spacecraft at EoL from a perigee altitude of 

1,000 to 200 km.  
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The Δν required to maintain a 9 h orbit with perigee and apogee altitudes of 200 and 

31,000 km respectively due to the effects of atmospheric drag is calculated again using the 

numerical analysis.  The spacecraft is assigned a mass of 1000 kg, drag coefficient of 2 and 

area of 8 m2 which is again based on the solar array area, to find the average atmospheric 

drag acceleration over one year.  Eq. (4.21) is once again used to calculate a required Δν of 

158 m/s per year to maintain the perigee altitude at 200 km for the 9 h orbit. 

This is once again compared with the Δν required to transfer from a perigee altitude of 

1,000 to 200 km, to allow the spacecraft to re-enter the atmosphere within 25 years, 

calculated using Eq. (4.21).  For this Taranis orbit an acceleration of 0.1 mm/s2 is required to 

maintain the zero change in argument of perigee condition and so this value is therefore 

used for the pericentre altitude transfer at EoL.  The pericentre altitude locally optimal 

control law in Eq. (5.9) is again used to determine the transfer time producing a Δν of 154 

m/s.  The significant amount of propellant required to maintain a 9 h orbit with a perigee 

altitude of 200 km due to the significant increase in atmospheric drag effects means it is 

more cost efficient to perform an EoL manoeuvre to transfer the perigee altitude.   

Comparing the propellant requirements with those of the 12 h orbit reveals that 

considerably more propellant is required to achieve a 9 h Taranis orbit, and so a 12 h orbit 

with perigee altitude of 300 km is considered herein. 

5.4.1.3 Spacecraft Environment 

Comparison between the trapped proton dose for a conventional Molniya orbit, the 16 h 

‘low-radiation’ Taranis orbit with perigee altitude of 10,000 km and the 12 h ‘high-radiation’ 

Taranis orbit with perigee altitude of 300 km are shown in Figure 5-20. 
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Figure 5-20  Trapped proton dose for Molniya orbit, and 12 h and 16 h Taranis orbits found 

using SPENVIS 

It can be seen that the proton dose from the 16 h Taranis orbit is significantly lower than 

both the Molniya orbit and the 12 h Taranis orbit.  It is shown that the 12 h Taranis orbit 

receives a radiation dose from high-energy protons comparable to the conventional 

Molniya orbit.  However, a comparison is then made between the total ionising dose for 

each of these orbits and a GEO in Figure 5-21, where the notional radiation limits for 

commercial off the shelf (COT), space qualified, and radiation hardened components are 

also shown.  It can be seen that for typical aluminium absorber thicknesses, between 2 and 

4 mm [3], COT components cannot be used for either the 12 or 16 h Taranis orbit platforms.  

However, the values of radiation are below those requiring radiation hard materials.  The 

radiation environments of spacecraft on each of the Taranis orbits are shown to be similar 

to that experienced by a spacecraft in GEO, with the exception of a higher trapped proton 

dose for the low perigee altitude HEOs.  The additional cost required to launch to the 16 h, 
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lower radiation orbit and the extra spacecraft required is expected to be significantly more 

than employing additional shielding and launching to a substantially lower perigee altitude. 

 

Figure 5-21  Total ionising dose for various orbits with mission durations of 5 years, showing 

notional radiation limits found using SPENVIS 

5.4.2 Observation to 50 degrees latitude 

The previous analysis details the minimum requirements to complete the GOS as 

observations from GEO begin to degrade at around 55 degrees latitude.  However, it may 

be beneficial to provide a more significant overlap in sensing from GEO.  Thus, the analysis 

is repeated to identify the Taranis constellation capable of providing continuous 

observation to 50 degrees latitude and equal quality sensing to that produced by GEO. 

Considering radiation and apogee altitude constraints, the number of spacecraft required 

to give continuous observation is shown in Figure 5-22 for orbits with constant perigee 

altitudes of 8,000 and 10,000 km.  Figure 5-22 shows that the number of spacecraft 

increases significantly in this case.  For example, a 16 h orbit requires a minimum of seven 
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spacecraft.  Considering the 16 h orbit with a perigee altitude of 10,000 km previously 

identified from Figure 5-22 requires eight spacecraft to continuously observe one polar 

region and thus sixteen spacecraft to complete the GOS. 

 

Figure 5-22  Observation to 50 degrees, showing apogee-altitude limit, semi-latus rectum 

limit and required number of spacecraft 

Once again, the radiation constraint is neglected in order to determine the reduction in the 

required number of spacecraft.  The results of the visibility analysis showing only the 

maximum apogee altitude limit are given in Figure 5-23.  It is shown that a minimum of four 

spacecraft are required for continuous observation to 50 degrees using an orbit with 13.5 h 

period and perigee altitude of 300 km. 
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Figure 5-23  Observation to 50 degrees, showing apogee-altitude limit and required number 

of spacecraft 

In order to allow a repeat ground-track and so simplify spacecraft operations, orbit periods 

of 9 or 12 hours are desirable.  From Figure 5-23 it is clear that to enable a 9 h orbit, seven 

spacecraft are required to allow continuous remote sensing.  This clearly discounts a 9 h 

orbit for observation to 50 degrees latitude.  A 12 h orbit with a perigee altitude of 300 km 

is again expected to be the most beneficial, depending on the mission lifetime, as the 

propellant requirements to maintain this orbit due to atmospheric drag are less than those 

required to transfer the perigee altitude to an orbit which will re-enter within 25 years. 

A constellation of five spacecraft can therefore provide the desired level of coverage, giving 

a reduction of three spacecraft if additional radiation shielding is employed on the 

spacecraft.  Once again this is expected to be more cost efficient than launching three 

additional spacecraft to a considerably higher perigee altitude. 
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5.5 Orbit Visualisation 

In order to illustrate the view as seen by the spacecraft at apogee on a 12 h, 90 degree 

inclination Taranis orbit, the images are shown in Figure 5-24 were generated using the 

Celestia software package. 

 
 (a)                                                                     (b) 

 
 (c)                                                                            (d) 

 
 (e)                                                                         (f) 

 
 (g)                                                                         (h) 
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(i) 

Figure 5-24  Images of Northern hemisphere as seen from a Taranis spacecraft from (a) 

Apogee – 4 h (b) Apogee – 3 h (c) Apogee – 2 h (d) Apogee – 1 h (e) Apogee (f) Apogee + 1 h 

(g) Apogee + 2 h (h) Apogee + 3 h (i) Apogee + 4 h 

Figure 5-24 shows the rotation of the Earth below a Taranis spacecraft on a 12 h orbit  4 

hours from apogee.  It is clear that near apogee very little rotation of the Earth is observed, 

allowing an almost geostationary view of the high-latitude regions which can offer 

significant benefits for remote sensing of these regions.  

5.6 Validation of Results 

As stated in Section 5.4, visibility analysis of spacecraft on Taranis orbits is conducted using 

the same numerical technique described in Section 5.4 to determine the time spacecraft 

can view ground stations located at 10 degree longitude intervals at particular latitudes, 

using the required maximum OZAs.  NOVA Satellite Tracking Software is considered to 

validate these numerical results. 

Nova Satellite Tracking Software is available from Northern Lights Software Associates 

(NLSA) and is used by industry and the US Air Force9.  It provides real-time satellite tracking 

information for all artificial satellites and gives accurate, clear positioning of spacecraft. 

                                                           
9
 http://www.nlsa.com/index.html Accessed on 14th January 2013 

http://www.nlsa.com/index.html
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5.6.1 NOVA Satellite Tracking Software 

An existing spacecraft on a conventional Molniya orbit, Molniya 3-47, with orbital 

parameters given in Table 5-2, was selected for comparison with the numerical method 

described earlier in Chapter 5. 

Table 5-2  Orbital parameters for the Molniya 3-47 spacecraft, from NOVA software 

Orbital Element Value 

Semi-Major Axis 2.66x104 (km) 

Eccentricity 0.7426 

Inclination 63.15 (degrees) 

Right Ascension of Ascending Node  350 (degrees) 

Argument of Perigee 254 (degrees) 

 

The ground station used for communication with the Molniya spacecraft was selected to be 

Barrow, Alaska with the parameters given in Table 5-3. 

Table 5-3  Location parameters for ground station in Barrow, Alaska 

Parameter Value 

Latitude 71.33 (degrees) 

Longitude -156 (degrees) 

Altitude 13 (m) 

 

NOVA software outputs the time the spacecraft spends above the horizon, in view of a 

particular ground station.  In this case, the Molniya 3-47 spacecraft was in view of the 

ground station in Barrow, Alaska for 10.1 hours during the first pass of the spacecraft. 
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5.6.2 Numerical Analysis 

The Molniya orbit analysed in Sections 5.6.1 is considered using the existing numerical 

model introduced in Section 5.4.  The orbital parameters are the same as those in Table 5-2 

and the spacecraft elevation over time is shown in Figure 5-25. 

 

Figure 5-25  Molniya spacecraft elevation over time, from numerical analysis 

From Figure 5-25 it is shown that the maximum and minimum time the spacecraft is in view 

of the ground station at Barrow, Alaska is 10.1 and 8.8 hours respectively.  The solution 

obtained using NOVA satellite tracking software is therefore equal to that of the first pass 

of the spacecraft shown in Figure 5-25.  Thus the numerical analysis used to determine the 

number of spacecraft required on Taranis orbits to give continuous observation is shown to 

be valid. 
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5.7 Summary 

This chapter has considered the design of a constellation of spacecraft on highly-elliptical 

Taranis orbits to provide continuous remote sensing above 55 degrees latitude as a 

minimum requirement, due to the degradation of imaging from geostationary systems 

beyond this point. 

Requirements for the constellation have been outlined which include constraints on the 

maximum apogee altitude of the orbit, the maximum observational zenith angle, the 

restriction of the use of composite images and the rotation of the argument of perigee of 

the orbit, in addition to the requirement of the mission to comply with debris mitigation 

guidelines.  Consideration is also given to the radiation environment of the spacecraft, 

although this is not considered to be a strict requirement. 

Following analysis using these requirements the orbit selected for the constellation is a 16 h 

orbit with a perigee altitude of 10,000 km and apogee altitude of 41,740 km, which requires 

four spacecraft for continuous remote sensing.  This is determined by taking into 

consideration the radiation environment experienced by the spacecraft and so is referred 

to as the ‘low-radiation’ orbit.  In order to reduce the number of spacecraft, the perigee 

altitude is lowered and the constraints to minimise the effects from high-energy protons 

are neglected.  In this case, a 12 h orbit with a perigee altitude of 300 km is selected as the 

most beneficial; this is known as the ‘high-radiation’ orbit.  Although constraints to 

minimise the radiation have been neglected in this case, the total ionising dose of both the 

16 and 12 h Taranis orbits are found to be comparable to that experienced by geostationary 

platforms.  Launching three spacecraft on the 12 h orbit and employing additional radiation 

shielding is anticipated to be significantly less costly than launching an additional spacecraft 

to a considerably higher perigee altitude on a 16 h orbit.  Observation to 50 degrees 
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latitude is also considered, where constellations require eight spacecraft on a 16 h, ‘low-

radiation’ orbit and five spacecraft neglecting constraints to minimise the radiation on a 12 

h orbit. 

Validation of the visibility analysis is also conducted using NOVA Satellite Tracking Software.  

The analysis considered a spacecraft on a conventional Molniya orbit with orbital 

parameters given from NOVA to determine the time the spacecraft was in view of a ground 

station located in Barrow, Alaska.  Comparison was made between these results and those 

obtained from a numerical analysis using Matlab, which were shown to be in agreement 

with those obtained from NOVA.  The numerical simulation used to determine the number 

of spacecraft required in a constellation is therefore shown to be accurate. 
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Chapter 6 

6 Sun-Synchronous Elliptical Orbits 

Chapters 3 - 5 have considered the development of novel, highly-elliptical Taranis orbits 

and the subsequent design of constellations of spacecraft on these orbits to fill the gap in 

data that occurs at high-latitude regions of the Earth.  These newly proposed orbits use 

continuous acceleration to alter the critical inclination and achieve the zero change in the 

argument of perigee essential to highly-elliptical orbits.  In this chapter similar methods are 

used to develop novel, highly-elliptical, sun-synchronous orbits.  Section 6.2 presents a 

general perturbations solution which is then validated using a special perturbations method 

in Section 6.3. 

6.1 Introduction 

This chapter extends the theory of the highly-elliptical, Taranis orbits introduced in Chapter 

3 to develop sun-synchronous Taranis orbits, using methods detailed in recent research for 

the extension of sun-synchronous orbits [100].  Within this work, the thrust magnitude 

required is not defined as a function of the local gravity field but instead by the magnitude 

of the perturbations within that field, augmenting the Earth oblateness perturbation to 

modify the sun-synchronous orbit and allow free selection of the orbit inclination and 

altitude.  Previously, in Chapter 3, Taranis orbits have been developed using continuous 

radial and transverse accelerations.  Consequently sun-synchronous Taranis orbits are 

achieved by the addition of a further element of low-thrust, directed out of the orbit plane.   

This ensures the rate of change of the ascending node of the Taranis orbit matches the 
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mean rotation of the Sun within an Earth-centred inertial frame.  It is likely that sun-

synchronous HEOs will offer benefits in terms of simplified instrument design as a result of 

the predictable thermal environment. 

6.2 General Perturbations Solution 

To develop sun-synchronous Taranis orbits, two conditions must be satisfied: firstly a sun-

synchronous orbit requires that the rate of change of the ascending node matches the 

motion of the Mean Sun, which at Earth is equal to 2 radians in 365.25 days; and secondly, 

Taranis orbits require that the rate of change of the argument of perigee remain unchanged 

in order that the position of apogee is not affected by the perturbations caused by the 

oblate nature of the Earth.  The first condition is described by the expression for the rate of 

change of the ascending node angle given in Chapter 3 by Eq. (3.37) and the Taranis 

condition is satisfied using Eq. (3.6).  These orbits are again derived using the disturbing 

force components in the radial, transverse and normal directions with the addition of low-

thrust terms, given by Eqs. (3.17) - (3.19). 

6.2.1 Ascending Node Angle 

A continuous acceleration is firstly added in the out-of-plane direction to ensure that the 

change in ascending node angle is equal to approximately 1 degree per day for any orbit 

under consideration and so maintain the sun-synchronous condition.  The expression for 

the rate of change of ascending node with the application of low-thrust is determined by 

inserting Eq. (3.19) into Eq. (3.37) to give Eq. (3.38), which is repeated for clarity 
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As first noted in Chapter 3, the normal low-thrust component switches sign as a function of 

the argument of latitude; consequently the value assigned to the argument of perigee 

becomes important.  Thus considering the argument of perigee equal to both 0 and 270 

degrees and integrating Eq. (3.38) over one orbital revolution results in two expressions for 

the change in ascending node angle.  These are given by Eq. (3.39) and (3.40) from Chapter 

3, which are shown again for clarity.  
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Switching the rate of change of ascending node per rotation to per second, Eqs. (3.39) and 

(3.40) are then given by Eqs. (6.1) and (6.2) respectively 
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If no acceleration is applied Eqs. (6.1) and (6.2) simplify to the standard expression for the 

sun-synchronous orbit 
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 (6.3) 

6.2.2 Argument of Perigee 

These sun-synchronous Taranis orbits are also required to give zero change in the argument 

of perigee over one orbital revolution.  Thus, continuous radial and transverse accelerations 

are added to maintain this condition and compensate for the applied out-of-plane 

acceleration.  This was first introduced in Chapter 3, where Eqs. (3.17) - (3.19) are 

substituted into Eq. (3.6) to give Eq. (3.20).  Again, the change in argument of perigee is 

found by integrating Eq. (3.20) over one orbital revolution.  The total change in argument of 

perigee is given by Eq. (3.21), shown again for clarity,  

 (3.21)  

Eq. (3.21) consists of the change in argument of perigee due to J2 and each of the R, T, and 

N accelerations previously given by Eqs. (3.22) - (3.25) respectively.  Although two solutions 

exist depending on the value of the argument of perigee, an argument of perigee of 270 

degrees is considered in the remainder of this chapter. 

Sun-synchronous Taranis orbits are developed by firstly substituting values of the orbital 

elements into Eq. (6.2) and solving for the normal acceleration, Fn.  This is substituted, along 

with the orbital element values into Eq. (3.21).  This is then solved for the required radial 

and transverse accelerations required to compensate for the applied out-of-plane 

acceleration and maintain the zero change in argument of perigee condition.  The radial, 

transverse, normal and corresponding total acceleration magnitude to achieve sun-

synchronous Taranis orbits of varying orbital period and inclination are given in Figure 6-1 - 

Figure 6-4, where the perigee altitude is 813 km. 
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Figure 6-1  Radial acceleration to achieve sun-synchronous Taranis orbits of varying period 

and inclination 

 

Figure 6-2  Transverse acceleration to achieve sun-synchronous Taranis orbits of varying 

period and inclination 
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Figure 6-3  Normal acceleration to achieve sun-synchronous Taranis orbits of varying period 

and inclination 

 

Figure 6-4  Total acceleration magnitude to achieve sun-synchronous Taranis orbits of 

varying period and inclination 
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A natural sun-synchronous orbit without the use of any low-thrust propulsion is shown to 

exist in Figure 6-4.  This occurs for a 3 h orbit at the conventional critical inclination of 116.6 

degrees.  The other results shown in Figure 6-4 are therefore an extension of this solution, 

and are only enabled through the use of applied acceleration. As explained in previous 

chapters, for improved high-latitude observation the most beneficial inclination is 90 

degrees, and the total acceleration magnitude required to enable a 12 h, 90 degree 

inclination sun-synchronous Taranis orbit is 0.478 mm/s2.  In this case, the majority of the 

acceleration is in the normal direction (0.470 mm/s2) and for a 1-ton spacecraft a maximum 

thrust of 478 mN is required.  Although this is higher than the thrust level required to 

achieve a 90 degree inclination Taranis orbit without the sun-synchronous condition, shown 

to require 81 mN in Chapter 3, sun-synchronous Taranis orbit thrust levels are still 

achievable using current or near-term technology.  For example the HiPEP thruster, which 

as detailed in Chapter 2 is capable of providing a maximum of 670 mN [83], whilst the 

NEXIS can provide a maximum thrust level of 476 mN [82]. 

Figure 6-4 also shows that, as with the acceleration magnitude for Taranis orbits in Figure 

3-14, as the orbital period increases the acceleration magnitude decreases.  To reach an 

inclination of 90 degrees a 24 h orbit requires 0.275 mm/s2, while a 6 h orbit requires 0.865 

mm/s2.  Thus, orbits with lower periods are expected to require development in EP 

technology before they become feasible. 

6.2.3 Change in Orbital Elements 

As with the previous Taranis orbit solutions, the change in remaining orbital elements is 

determined to ensure the desired zero secular rate of change of orbital elements is 

maintained in the presence of continuous low-thrust.  This derivation is the same as that 

presented for the Taranis orbits in Chapter 3 for the semi-major axis, eccentricity and 
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inclination in Eqs. (3.28), (3.31) and (3.36) respectively, which show the change in these 

elements to be zero over the orbit period.  Therefore no adverse affect is caused by the 

application of continuous low-thrust. 

6.3 Special Perturbations Solution 

To verify the solutions generated using the general perturbations method, a special 

perturbations solution is generated.  This method is the same as that presented in Section 

3.4, and uses a set of Modified Equinoctial Elements (Eqs. (3.43) - (3.48)) to propagate the 

position of the spacecraft.  The numerical model verifies that the change in semi-major axis, 

eccentricity, inclination and argument of perigee is negligible over one orbit revolution, and 

that the change is the ascending node angle is approximately equal to 1 degree per day.  

These results are shown in Figure 6-5. 
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(e) 

Figure 6-5  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination sun-synchronous Taranis orbit (a) Semi-major axis (b) Eccentricity (c) Inclination 

(d) Ascending node angle (e) Argument of perigee 

6.4 Summary 

The use of continuous low-thrust propulsion has been shown to enable highly-elliptical sun-

synchronous orbits around the Earth, termed sun-synchronous Taranis orbits.  These orbits 

are achieved by using continuous acceleration to alter both the natural critical inclination of 

highly-elliptical orbits to any inclination, and maintain the sun-synchronous orbit condition.  

As such, a sun-synchronous Taranis orbit inclined at 90 degrees can be enabled, allowing 

both improved high-latitude imaging and simplified instrument design through significant 

simplification of the thermal environment.  To enable a 12 h, 90 degree inclination orbit a 

total acceleration of around 0.5 mm/s2 is required.  Although this is considerably higher 

than the acceleration required to enable a 90 degree Taranis orbit without the sun-

synchronous condition (0.081 mm/s2), it is likely to be achievable using current or near term 

technology (for example the High Power Electric Propulsion Thruster). 
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Chapter 7 

7 Non – Terrestrial Observation 

Systems 

Chapters 3 - 6 have considered the development of new Earth Observation systems, in 

particular to fill the gap in data which occurs at the high-latitudes.  There has recently 

however been significant interest in non-terrestrial observation systems, particularly for 

observation of the Martian environment.  This chapter therefore uses the methods 

introduced in previous chapters to develop novel orbits around Mars, Mercury and Venus, 

in Sections 7.2, 7.3 and 7.4 respectively, to significantly enhance the remote sensing 

opportunities.  Each section consists of the extension of highly-elliptical orbits and the 

development of both circular and elliptical sun-synchronous orbits using general and special 

perturbations methods. 

7.1 Introduction 

Planetary observation is vital to gain an insight into the history of the Solar System and in 

turn the formulation of Earth and can be used to determine whether extra-terrestrial 

habitable environments exist in the Solar System.  Significant benefits can also be gained 

from the technology innovation as a result of these missions and through development in 

STEM education. 
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The Martian environment is of particular interest with recent missions including Mars 

Odyssey [46], Mars Express [43], MRO [45], and the Curiosity rover 10.  Such missions have 

allowed a comprehensive view of Mars to be obtained through data of the Martian surface 

geology, mineral composition, subsurface structure, radiation environment and weather.  

However additional significance has recently been placed on exploration of Mars with the 

reformulation of the Mars Exploration Program.  This program aims to assess both near-

term mission concepts and longer-term foundations of program level architectures for 

future robotic exploration.  As a result missions must be developed which are responsive to 

the scientific goals of both the National Research Council Planetary Decadal Survey [48] and 

the ESA Aurora Programme 11.  Section 7.2 therefore develops novel orbits of Mars to 

enable new and unique investigations and allow the necessary investigation into the 

Martian surface, subsurface and atmosphere for future human exploration. 

Similarly, the NASA Vision and Voyages Decadal Survey for 2013 – 2022 has identified three 

themes for the future development of planetary science, within which the importance of 

investigating the evolution of the inner planets and their atmospheres is highlighted [48].  

The importance of examining the chemistry, climates and geology of the inner planets is 

also highlighted to lead to a better understanding of climate change on Earth [48].  The 

importance of further exploration of Mercury and Venus is therefore clear. 

Previously in Chapter 1, it was stated that both sun-synchronous orbits and highly-elliptical 

orbits inclined at the critical inclination exist at Mars.  In contrast, at Mercury and Venus, 

although highly-elliptical orbits can be derived, the reciprocal of flattening is so low that 

natural perturbations are of no use for generating sun-synchronous orbits.  This chapter 

therefore uses methods presented in previous chapters to extend existing highly-elliptical 

                                                           
10

 http://www.nasa.gov/mission_pages/msl/index.html Accessed 15 January 2013 
11

 http://www.esa.int/esaMI/Aurora/  Accessed 27 August 2012 

http://www.nasa.gov/mission_pages/msl/index.html
http://www.esa.int/esaMI/Aurora/
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orbits at these bodies, extend natural sun-synchronous orbits around Mars, and enable 

sun-synchronous orbits around Mercury and Venus, as such significantly enhancing the 

opportunities for remote sensing of these bodies. 

7.2 Mars 

As on Earth the oblateness term, J2, is the dominating perturbation at Mars.  However the 

other first few harmonic coefficients have a greater effect at Mars as they are around 1 – 2 

orders of magnitude lower than J2 compared to 3 – 4 orders of magnitude lower at Earth.  

Thus, where Chapters 3 considered the free selection of the critical inclination at Earth 

independent of the orbit semi-major axis and eccentricity, the magnitude of the first few 

harmonic coefficients at Mars means these must be included when determining the critical 

inclination of Martian orbits.  The value of the critical inclination for orbits at Mars is 

therefore dependent on the semi-major axis and eccentricity.  The work presented in this 

section extends these natural orbits using the methods introduced in Chapter 3. 

Similarly to the work presented in Chapter 6, these solutions can be extended using an 

element of continuous acceleration directed out of the orbit plane to produce Martian 

highly-elliptical sun-synchronous orbits. 

New Martian orbits may be of use for communication relay for human missions, UAVs or 

detailed mapping of the Martian surface.  The transition from single spacecraft exploration 

of Mars to fleets of spacecraft both around Mars and on the Martian surface further 

highlights possible benefits of these novel orbits.  

7.2.1 Spacecraft Motion about Mars 

At Earth the most dominant perturbation is the oblateness term, J2, with a value of 

1.082627x10-3. As stated in Chapter 3 the harmonic coefficients J3 and J4 are around three 
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orders of magnitude smaller than the J2 term, with J3 = -2.53266x10-6, and J4 = -1.61962x10-

6, and thus have a negligible effect on the determination of the critical inclination.  At Mars, 

the J2 perturbation is also dominant, with a value of 1.95545x10-3.  However, zonal 

harmonics through to J5 are only around two orders of magnitude lower than the J2 

perturbation, with values of J3 = 3.14498x10-5, J4 = -1.53774x10-5, and J5 = 9.0793x10-6, and 

so will have an impact on the determination of the critical inclination at Mars.  As a result 

higher order terms must be taken into consideration in this instance. 

The gravitational potential of a body is described by Eq. (3.3), where in this case μ is the 

gravitational parameter of Mars, and Re in this equation is altered to RB, the radius of the 

body under consideration.  For Mars, RB = Rm.  Including perturbations to the order of J5 and 

using spherical triangle laws, Eq. (3.3) becomes 

 (7.1) 

This results in the expressions for the perturbing accelerations in the R, T and N directions 
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(7.4) 

7.2.2 Highly-Elliptical Orbits 

7.2.2.1 General Perturbations Solution 

In order to determine the critical inclination of highly-elliptical orbits at Mars Eqs. (7.2) - 

(7.4) are substituted into Eq. (3.6) and integrated over one orbital revolution.  Inserting 

orbital element values into the resulting formula, and setting this equal to zero, gives the 

value of the critical inclination.  For example, a 12 h orbit with a pericentre altitude of 800 

km and apogee altitude of 17,724 km including perturbations to the order of J4 results in 

critical inclinations of 63.29 and 116.71 degrees.  Increasing the perturbations to include J5 

alters the critical inclination values to 63.24 and 116.76 degrees.  Thus including the J5 

perturbation results in a difference of less than 0.1 % from the J4 results, and can therefore 

be neglected in order to significantly reduce the complexity of the solutions. 

Eqs. (7.2) - (7.4) are simplified and low-thrust terms are added to allow the extension of the 

solutions.  As in Chapter 3 low-thrust terms are added using locally optimal control laws 

[64]. 
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 (7.7) 

Eqs. (7.5) - (7.7) are again substituted into Eq. (3.3) and integrated over the orbit.  The 

resulting equation for the change in argument of pericentre is given by Eq. (3.21).  Chapter 

3 also states the benefit of including normal acceleration is negligible when altering the 

critical inclination of highly-elliptical orbits.  Thus this equation includes contributions from 

gravity perturbations to the order of J4 (Eq. (7.8)), and radial and transverse acceleration 

terms given previously by Eqs. (3.22) and (3.23) respectively. 

 
(7.8) 

Eq. (3.21) is set equal to zero and solved for the radial and transverse acceleration required 

to achieve any value of critical inclination for any given orbit, where the magnitude of 

acceleration in each direction is not assumed to be equal.  The resulting acceleration 

magnitudes are shown, for a variety of orbit periods between 6 and 24 hours to achieve 

inclinations between 5 and 175 degrees for a constant periapsis altitude of 800 km, to 

compensate for the drift in argument of pericentre caused by perturbations to the order of 

J4.  The radial, transverse and total magnitude of acceleration required are shown in Figure 

7-1 - Figure 7-3 respectively for an argument of pericentre value of 270 degrees, and in 

Figure 7-4 - Figure 7-6 for and argument of pericentre equal to 0 degrees.  Comparison of 
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Figure 7-1 - Figure 7-6 reveals very little difference between the acceleration magnitudes 

required for each value of argument of pericentre considered. 

 

Figure 7-1  Required radial acceleration for the extension of highly-elliptical orbits at Mars -

270 degree argument of pericentre 
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Figure 7-2  Required transverse acceleration for the extension of highly-elliptical orbits at 

Mars – 270 degree argument of pericentre 

 

Figure 7-3  Total acceleration magnitude for the extension of highly-elliptical orbits at Mars 

– 270 degree argument of pericentre 
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Figure 7-4  Required radial acceleration for the extension of highly-elliptical orbits at Mars -

0 degree argument of pericentre 

 

Figure 7-5  Required transverse acceleration for the extension of highly-elliptical orbits at 

Mars – 0 degree argument of pericentre 
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Figure 7-6  Total acceleration magnitude for the extension of highly-elliptical orbits at Mars 

– 0 degree argument of pericentre 
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over each orbital revolution, these elements return to the original value after each orbit. It 

is also shown that there are no changes experienced by inclination and ascending node 

angle. 

 

(a)                                                              (b) 

 

(c)                                                            (d) 

 

(e) 

Figure 7-7  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination orbit at Mars (270 degree argument of periapsis) (a) Semi-major axis (b) 

Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of pericentre 
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(a)                                                             (b) 

 

(c)                                                            (d) 

 

(e) 

Figure 7-8  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination orbit at Mars (0 degree argument of periapsis) (a) Semi-major axis (b) 

Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of pericentre 
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sun-synchronous orbits require the rotation in the ascending node to equal  2 radians in 

686.429 days.  As first outlined in Chapter 6, the extension of sun-synchronous orbits is 

achieved by substituting the expression for the normal perturbation including a gravity 

term, to the order of J4, and an additional continuous acceleration term (Eq. (7.7)) into the 

equation for the rate of change of ascending node (Eq. (3.37)) and integrating over the 

orbit.  As an out-of-plane acceleration is applied which is dependent on the argument of 

latitude, two solutions are again given for the change in ascending node angle, for 

argument of pericentre values of 0 and 270 degrees respectively.  The change in ascending 

node is given by  

 (7.9) 

where 

 
(7.10) 

 (7.11) 

 (7.12) 

Switching the rate of change of the ascending node angle per rotation to per second and re-
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 (7.13) 

 
(7.14) 

7.2.3.1 Circular Sun-Synchronous Orbits 

Firstly, considering the extension of circular orbits, the acceleration magnitude directed out 

of the orbit plane to achieve free-selection of the inclination for a range of orbit altitudes is 

given in Figure 7-9. 
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Figure 7-9  Required normal acceleration for the extension of circular sun-synchronous 

orbits at Mars 

Figure 7-9 shows that circular sun-synchronous orbits with free selection of the inclination 

can be enabled using continuous out-of-plane acceleration.  It is shown that orbits around 

90 degrees require feasible acceleration, and the further the inclination drifts from this 

region, the level of acceleration required becomes infeasible using existing thruster 

technology. 
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(3.21)) is maintained using continuous accelerations in each of the R, T and N directions.  

The radial, transverse, normal and total acceleration magnitude to achieve elliptical sun-

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180

A
cc

el
er

at
io

n
 [

m
m

/s
2 ]

Inclination [deg]

250km

500km

750km

1000km

1250km

1500km

1750km

2000km

2250km

2500km

2750km

3000km



 
 

181 

synchronous orbits of varying orbital period and inclination are given in Figure 7-10 - Figure 

7-13 for an argument of pericentre equal to 270 degrees and in Figure 7-14 - Figure 7-17 for 

an argument of pericentre of 0 degrees.  In both cases the results are shown for a constant 

pericentre altitude of 800 km.  Comparison of the results presented show that the value of 

argument of pericentre does not significantly affect the level of acceleration required to 

achieve elliptical sun-synchronous orbits at Mars and the acceleration magnitudes in both 

cases are of the same order of magnitude. 

 

Figure 7-10  Required radial acceleration for the extension of elliptical sun-synchronous 

orbits at Mars - 270 degree argument of pericentre 
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Figure 7-11  Transverse radial acceleration for the extension of elliptical sun-synchronous 

orbits at Mars - 270 degree argument of pericentre 

 

Figure 7-12  Normal radial acceleration for the extension of elliptical sun-synchronous 

orbits at Mars - 270 degree argument of pericentre 
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Figure 7-13  Total acceleration required for the extension of elliptical sun-synchronous 

orbits at Mars - 270 degree argument of pericentre 

 

Figure 7-14  Required radial acceleration for the extension of elliptical sun-synchronous 

orbits at Mars - 0 degree argument of pericentre 
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Figure 7-15  Required transverse acceleration for the extension of elliptical sun-

synchronous orbits at Mars - 0 degree argument of pericentre 

 

Figure 7-16  Required normal acceleration for the extension of elliptical sun-synchronous 

orbits at Mars - 0 degree argument of pericentre 
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Figure 7-17  Total acceleration required for the extension of elliptical sun-synchronous 

orbits at Mars - 0 degree argument of pericentre 

From Figure 7-13 and Figure 7-17 a 12 h orbit with an inclination of 90 degrees requires a 

total acceleration magnitude of 0.15 mm/s2 and 0.31 mm/s2 for argument of pericentre 

values of 270 and 0 degrees respectively, corresponding to initial thrust levels of 150 and 

310 mN for a 1-ton spacecraft.  Although these thrust levels are higher than that required 

for the orbits excluding the sun-synchronous condition, these levels are still within 

capabilities of emerging thrusters.  For example, the HiPEP thruster (maximum thrust 670 

mN) [83] or NEXIS (maximum thrust 476 mN) [82]. 

7.2.3.2.2 Special Perturbations Solution 

The solutions presented in Section 7.2.3.2.1 are validated using a special perturbations 

technique.  The oscillation of orbital elements for an orbit with an argument of pericentre 

of 270 degrees are shown in Figure 7-18 and in Figure 7-19 for an argument of pericentre of 

0 degrees. 
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(a)                                                              (b) 

 

(c)                                                         (d) 

 

(e) 

Figure 7-18  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination, sun-synchronous orbit at Mars (270 degree argument of periapsis) (a) Semi-

major axis (b) Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of 

pericentre 
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(a)                                                             (b) 

 

(c)                                                            (d) 

 

(e) 

Figure 7-19  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination, sun-synchronous orbit at Mars (0 degree argument of periapsis) (a) Semi-major 

axis (b) Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of pericentre 

7.3 Venus 
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propulsion can also be used for the extension of these orbits which is presented in Section 

7.3.1.  

Sun-synchronous orbits on the other hand do not naturally occur at Venus due to the low 

reciprocal of flattening.  Continuous acceleration is therefore considered to enable these 

orbits where they are otherwise not possible, highlighting the important difference in this 

work from that of previous chapters.  Enabling sun-synchronous orbits could considerably 

enhance the opportunities for remote sensing at Venus and allow significant simplification 

of the spacecraft thermal environment. 

7.3.1 Highly-Elliptical Orbits 

7.3.1.1 General Perturbations Solution 

As the gravitational terms of Venus to the order of J4 are of the same order of magnitude, 

development of orbits, like at Mars, must therefore include these higher order terms.  The 

extension of the critical inclination at Venus is therefore performed by inserting Eqs. (7.5) - 

(7.7) into Eq. (3.6), integrating over one orbital revolution, setting the resulting expression 

equal to zero and solving for the radial and transverse accelerations required to alter the 

inclination.  In these equations J2, J3 and J4 are equal to 4.458x10-6, -2.1082x10-6 and -

2.1471x10-6 respectively.  As higher order gravity terms are significant in the case of Venus, 

the values of the critical inclination of orbits are dependent on the semi-major axis and 

eccentricity of the orbit.  For example, a 12 h orbit with a pericentre altitude of 800 km and 

apocentre altitude of 36,810 km has critical inclinations of 85.3 and 94.7 degrees, 

significantly differing from the natural critical inclination values derived for both Earth and 

Mars for the same orbital parameters.  The radial, transverse and total acceleration 

magnitude required to alter these values of critical inclination to any inclination, for orbits 

of varying period and with a constant pericentre altitude of 800 km are presented in Figure 
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7-20 - Figure 7-22 for an argument of pericentre of 270 degrees and in Figure 7-23 - Figure 

7-25 for an argument of pericentre of 0 degrees. 

 

Figure 7-20  Required radial acceleration for the extension of highly-elliptical orbits at 

Venus - 270 degree argument of pericentre 
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Figure 7-21  Required transverse acceleration for the extension of highly-elliptical orbits at 

Venus - 270 degree argument of pericentre 

 

Figure 7-22  Total acceleration magnitude for the extension of highly-elliptical orbits at 

Venus - 270 degree argument of pericentre 
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Figure 7-23  Required radial acceleration for the extension of highly-elliptical orbits at 

Venus - 0 degree argument of pericentre 

 

Figure 7-24  Required transverse acceleration for the extension of highly-elliptical orbits at 

Venus - 0 degree argument of pericentre 
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Figure 7-25  Total acceleration magnitude for the extension of highly-elliptical orbits at 

Venus - 0 degree argument of pericentre 
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argument of periapsis shows negligible difference between the magnitude of acceleration 

required to alter the inclination for each case.  Considering an argument of periapsis value 

of 270 degrees, to enable a 12 h, 90 degree inclination orbit requires a total acceleration 

magnitude of 1.8x10-5 mm/s2.  For a 1000 kg spacecraft this corresponds to a considerably 

low thrust level of 0.0185 mN. 

7.3.1.2 Special Perturbations Solution 

The general perturbations solutions are once again validated using a numerical model.  A 12 

h orbit is selected to demonstrate the special perturbations solution, results of which are 

given in Figure 7-26 and Figure 7-27 for argument of periapsis values of 270 and 0 degrees 

respectively.  Once again, the semi-major axis and eccentricity show oscillations over the 

orbit, but values return to the original value after each revolution of the spacecraft, and 

both the inclination and ascending node angle show no drift over the orbit.  The argument 
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however, this is only around -6.3x10-4 and -3.5x10-4 degrees per orbit for argument of 

periapsis values of 270 and 0 degrees respectively which is thought to be an acceptable 

cost. 

 

(a)                                                             (b) 

 

(c)                                                             (d) 

 

(e) 

Figure 7-26  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination orbit at Venus (270 degree argument of periapsis) (a) Semi-major axis (b) 

Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of pericentre 
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(a)                                                             (b) 

 

(c)                                                             (d) 

 

(e) 

Figure 7-27  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination orbit at Venus (0 degree argument of periapsis)  (a) Semi-major axis (b) 

Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of pericentre 

7.3.2 Sun-Synchronous Orbits 

As stated previously, natural sun-synchronous orbits do not occur at Venus.  Sections 

7.3.2.1 and 7.3.2.2 therefore present the use of continuous acceleration to enable circular 

24856.6

24856.7

24856.8

24856.9

24857

24857.1

24857.2

24857.3

24857.4

0 360 720 1080 1440 1800

Se
m

i-
M

aj
o

r 
A

xi
s 

[k
m

]

True Anomaly [deg]

0.724346
0.724347
0.724348
0.724349

0.72435
0.724351
0.724352
0.724353
0.724354
0.724355

0 360 720 1080 1440 1800

Ec
ce

n
tr

ic
it

y

True Anomaly [deg]

88.5

89

89.5

90

90.5

91

0 360 720 1080 1440 1800

In
cl

in
at

io
n

 [
d

eg
]

True Anomaly [deg]

329

329.5

330

330.5

331

0 360 720 1080 1440 1800
A

sc
en

d
in

g 
N

o
d

e 
A

n
gl

e 
[d

eg
]

True Anomaly [deg]

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0 360 720 1080 1440 1800

A
rg

u
m

en
t 

 o
f 

P
er

ia
p

si
s 

[d
eg

]

True Anomaly [deg]



 
 

195 

and elliptical sun-synchronous orbits respectively, using low-thrust to achieve a rotation of 

the ascending node angle of 2 radians in 225 days. 

7.3.2.1 Circular Sun-Synchronous Orbits 

Eq. (7.13) is once again solved for the normal acceleration required to enable various 

circular sun-synchronous orbits around Venus and the results subsequently shown in Figure 

7-28. 

 

Figure 7-28  Normal acceleration required for the extension of circular sun-synchronous 

orbits at Venus 

In order to enable circular sun-synchronous orbits a significant increase in acceleration 

magnitude is shown in Figure 7-28 from the extension of the critical inclination solutions.  

For example, a 1000 km altitude orbit with an inclination of 90 degrees requires a 

significant acceleration of 3.45 mm/s2.   
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7.3.2.2 Highly-Elliptical Sun-Synchronous Orbits 

7.3.2.2.1 General Perturbations Solution 

Once again, two conditions are combined to develop elliptical sun-synchronous orbits 

around Venus.  Eqs. (7.13) and (7.14) are used to determine the normal acceleration 

necessary to force the required rotation in the ascending node angle, and Eq. (3.21) is used 

to determine the radial and transverse acceleration necessary to ensure zero change in the 

argument of periapsis over the orbit.  The required radial, transverse, normal and total 

accelerations are given in Figure 7-29 - Figure 7-32 for an argument of periapsis value of 

270 degrees and in Figure 7-33 - Figure 7-36 for an argument of periapsis value of 0 

degrees. 

 

Figure 7-29  Required radial acceleration for the extension of elliptical sun-synchronous 

orbits at Venus - 270 degree argument of pericentre 
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Figure 7-30  Required transverse acceleration for the extension of elliptical sun-

synchronous orbits at Venus - 270 degree argument of pericentre 

 

Figure 7-31  Required normal acceleration for the extension of elliptical sun-synchronous 

orbits at Venus - 270 degree argument of pericentre 
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Figure 7-32  Total acceleration required for the extension of elliptical sun-synchronous 

orbits at Venus - 270 degree argument of pericentre 

 

Figure 7-33  Required radial acceleration for the extension of elliptical sun-synchronous 

orbits at Venus - 0 degree argument of pericentre 
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Figure 7-34  Required transverse acceleration for the extension of elliptical sun-

synchronous orbits at Venus - 0 degree argument of pericentre 

 

Figure 7-35  Required normal acceleration for the extension of elliptical sun-synchronous 

orbits at Venus - 0 degree argument of pericentre 
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Figure 7-36  Total acceleration required for the extension of elliptical sun-synchronous 

orbits at Venus - 0 degree argument of pericentre 
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thrust for a 1000 kg spacecraft, which is currently beyond the capabilities of existing low-

thrust propulsion systems.  Development in EP thruster capabilities is therefore required 

before these orbits can become feasible. 
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angle of 0.8 degrees per orbit is shown to be achieved, with negligible changes in semi-

major axis, eccentricity and inclination over each orbital revolution.  As was the case with 

the extension of the critical inclination at Venus (Figure 7-26 and Figure 7-27), a small drift 

in the argument of periapsis is found when enabling elliptical sun-synchronous orbits.  A 

drift in ω of 1.12x10-3 and -3.21x10-3 degrees per orbit is detected for argument of periapsis 

values of 270 and 0 degrees respectively, which equates to around 0.5 and 1.5 degrees per 

Venusian year.  This is once again expected to be an acceptable cost.  The slight increase in 

the drift of the argument of periapsis exhibited for elliptical sun-synchronous orbits at 

Venus is caused by the oscillation of the semi-major axis, eccentricity and inclination in this 

case, which has an impact on the argument of periapsis.  The analytical solution makes the 

assumption that the changes in all elements are zero; the numerical simulation however 

indicates that in this case this assumption begins to break down. 

 

(a)                                                             (b) 

 

(c)                                                             (d) 
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(e) 

Figure 7-37  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination, sun-synchronous orbit at Venus (270 degree argument of periapsis)  (a) Semi-

major axis (b) Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of 

pericentre 
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(e) 

Figure 7-38  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination, sun-synchronous orbit at Venus (0 degree argument of periapsis)  (a) Semi-

major axis (b) Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of 

pericentre 

7.4 Mercury 

Mercury is the final planet under consideration.  In a similar way to the analysis presented 

for Venus the extension of orbits at the critical inclination is presented in Section 7.4.1, and 

the use of low-thrust to enable circular and elliptical sun-synchronous orbits which do not 

naturally exist at Mercury is presented in Sections 7.4.2.1 and 7.4.2.2 respectively.  These 

newly developed orbits can once again increase the opportunities for remote sensing, and 

sun-synchronous orbits can offer simplification of the spacecraft operations in terms of the 

thermal environment.  It is noted that previous work has considered the use of solar sails to 

generate sun-synchronous orbits at Mercury with the MESSAGE mission proposed in 1996 

[63]. 

7.4.1 Highly-Elliptical Orbits 

As Mercury is the least explored planet of the inner Solar System, detailed gravity field 

information is not yet available.  This section therefore considers spacecraft motion about 

Mercury using gravity perturbations to the order of J2 only, where J2 is equal to 6x10-5 [160].  
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It is therefore expected that the accuracy of this work could be significantly enhanced by 

the inclusion of higher order gravity terms when these become available.  This issue 

addressed in the future work section of this thesis in Chapter 8.  As perturbations only 

include J2 terms, the derivation of the natural critical inclination of orbits at Mercury is the 

same as that at Earth (from Eq. (3.14)) and therefore the critical inclination values are 63.43 

and 116.6 degrees irrespective of the orbit semi-major axis and eccentricity.  It is expected 

that these values will change significantly when higher order gravity terms are included.   

7.4.1.1.1 General Perturbations Solution 

The extension of the critical inclination at Mercury is conducted using Eq. (3.21) where the 

gravity perturbation is given in Eq. (3.14) and radial and transverse acceleration 

components are given by Eqs. (3.22) and (3.23) respectively.  The radial, transverse and 

total accelerations required to extend the inclination to a range of values, for various orbit 

periods with a constant periapsis altitude of 800 km are given in Figure 7-39 - Figure 7-41 

respectively. 
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Figure 7-39  Required radial acceleration for the extension of highly-elliptical orbits at 

Mercury 

 

Figure 7-40  Required transverse acceleration for the extension of highly-elliptical orbits at 

Mercury 
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Figure 7-41  Total acceleration magnitude for the extension of highly-elliptical orbits at 

Mercury 

Figure 7-41 shows curves of minimum total acceleration consisting of unequal radial and 

transverse components (from Figure 7-39 and Figure 7-40) to alter the critical inclination of 

the orbits to a wide range of values.  It is shown that to enable all of the considered orbits, 

very small acceleration magnitudes are required.  For example, considering a 12 h orbit 

with an inclination of 90 degrees requires a total acceleration magnitude of 0.0012 mm/s2.  

This equates to 1.2 mN of thrust for a 1-ton spacecraft, which can be provided by the 

QinetiQ T5 thruster which is capable of providing thrust levels between 1 and 20 mN [84]. 

7.4.1.1.2 Special Perturbations Solution 

The general perturbations solution is validated using the same numerical model used 

throughout the thesis.  The results are shown for five revolutions of a spacecraft on a 12 h 

orbit with an inclination of 90 degrees in Figure 7-42.  No variation in the inclination and 

ascending node angle is illustrated for the extension of the critical inclination at Mercury.  
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Oscillations in the semi-major axis, eccentricity and argument of periapsis are also displayed 

and show no variation over each orbit revolution. 

 

(a)                                                             (b) 

 

(c)                                                             (d) 

 

(e) 

Figure 7-42  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination elliptical orbit at Mercury (a) Semi-major axis (b) Eccentricity (c) Inclination (d) 

Ascending node angle (e) Argument of pericentre 
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7.4.2 Sun-Synchronous Orbits 

7.4.2.1 Circular Sun-Synchronous Orbits 

The development of circular sun-synchronous orbits at Mercury is achieved via the addition 

of out-of-plane acceleration to the equation for the rate of change of ascending node angle 

(Eq. (7.13)).  Perturbations only to the order of J2 are included and the ascending node 

angle in this instance is required to rotate 2 radians in 88 days, the required acceleration 

is shown in Figure 7-43 for various orbit altitudes. 

 

Figure 7-43  Normal acceleration required for the extension of circular sun-synchronous 

orbits at Mercury 

It is clear from Figure 7-43 that low-thrust propulsion could potentially be used to enable 

circular sun-synchronous orbits at Mercury where they otherwise do not naturally occur.  
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to enable circular sun-synchronous orbits at Venus, from Figure 7-28.  For example, a 1000 

km altitude orbit inclined at 90 degrees requires 3.29 mm/s2 of acceleration. 

7.4.2.2 Highly-Elliptical Sun-Synchronous Orbits 

7.4.2.2.1 General Perturbations Solution 

As the development of orbits at Mercury only includes gravity terms to the order of J2, Eqs. 

(3.39) and (3.40) used for the extension of sun-synchronous orbits at Earth give the change 

in ascending node angle for argument of periapsis values of 0 and 270 degrees respectively.  

Eq. (3.21) is then used to ensure zero rate of change of argument of periapsis over the 

orbit, where the normal acceleration components for argument of pericentre values of 0 

and 270 degrees and given by Eqs. (3.24) and (3.25) respectively.  The required 

accelerations in each axis and the corresponding total acceleration magnitude are 

presented for orbits with a constant pericentre altitude of 800 km in Figure 7-44 - Figure 

7-47 where an argument of periapsis value of 270 degrees, is considered and in Figure 7-48 

- Figure 7-51 for an argument of periapsis value of 0 degrees. 
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Figure 7-44  Required radial acceleration for the extension of elliptical sun-synchronous 

orbits at Mercury - 270 degree argument of pericentre 

 

Figure 7-45  Required transverse acceleration for the extension of elliptical sun-

synchronous orbits at Mercury - 270 degree argument of pericentre 
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Figure 7-46  Required normal acceleration for the extension of elliptical sun-synchronous 

orbits at Mercury - 270 degree argument of pericentre 

 

Figure 7-47  Total acceleration required for the extension of elliptical sun-synchronous 

orbits at Mercury - 270 degree argument of pericentre 
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Figure 7-48  Required radial acceleration for the extension of elliptical sun-synchronous 

orbits at Mercury - 0 degree argument of pericentre 

 

Figure 7-49  Required transverse acceleration for the extension of elliptical sun-

synchronous orbits at Mercury - 0 degree argument of pericentre 
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Figure 7-50  Required normal acceleration for the extension of elliptical sun-synchronous 

orbits at Mercury - 0 degree argument of pericentre 

 

Figure 7-51  Total acceleration required for the extension of elliptical sun-synchronous 

orbits at Mercury - 0 degree argument of pericentre 
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From Figure 7-44 - Figure 7-51 it is shown that the acceleration magnitudes required to 

enable elliptical sun-synchronous orbits at Mercury are comparable to those required at 

Venus.  The required magnitudes are, however, shown to be out with the capabilities of 

current electric propulsion systems.  Considering an argument of periapsis value of 270 

degrees, a 12 h elliptical sun-synchronous orbit inclined at 90 degrees to the equator 

requires an acceleration magnitude of 0.84 mm/s2 or 840 mN of thrust for a 1000 kg 

spacecraft. 

7.4.2.2.2 Special Perturbations Solution 

Numerical simulations are again run for comparison with the general perturbations 

solution.  The evolution of the orbital elements over five revolutions are shown in Figure 

7-52 and Figure 7-53 for argument of periapsis values of 270 and 0 degrees respectively.  

The results presented show negligible change in the semi-major axis, eccentricity and 

inclination in each case, with the rotation of the ascending node shown to agree with the 

analytical solutions with a rotation of around 2 degrees per orbit.  However, as was the case 

with Venus, a small drift in the argument of periapsis is exhibited, with a drift of around 

0.01 degrees per orbit for an argument of periapsis of 270 degrees and -0.017 degrees per 

orbit for an argument of periapsis of 0 degrees.  Although a drift is shown in each case, 

these amount to less than 2 degrees and less than 3 degrees per Mercury year respectively, 

which is expected to be an acceptable cost.  This drift is again caused by the oscillation in 

semi-major axis, eccentricity and inclination in the numerical solution, which is assumed to 

be negligable in the analytical solution.  The numerical simulation therefore highlights that 

this assumption begins to breakdown in this case. 
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(a)                                                             (b) 

 

(c)                                                             (d) 

 

(e) 

Figure 7-52  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination, sun-synchronous orbit at Mercury (270 degree argument of periapsis)  (a) Semi-

major axis (b) Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of 

pericentre 
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(a)                                                             (b) 

 

(c)                                                             (d) 

 

(e) 

Figure 7-53  Oscillation of orbital elements over five orbital revolutions of a 12 h, 90 degree 

inclination, sun-synchronous orbit at Mercury (0 degree argument of periapsis)  (a) Semi-

major axis (b) Eccentricity (c) Inclination (d) Ascending node angle (e) Argument of 

pericentre 
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7.5 Summary 

The importance of exploration of the inner planets of the Solar System to aid the 

understanding of the formulation of Earth and other planetary bodies, to determine 

whether extra-terrestrial habitable environments exist in the Solar System, and for 

technology innovation has been highlighted in this chapter. 

Continuous low-thrust propulsion has therefore been shown to extend highly-elliptical 

orbits at the critical inclination at Mars, Mercury and Venus; extend sun-synchronous orbits 

at Mars; and to enable circular and elliptical sun-synchronous orbits at Mercury and Venus, 

which otherwise do not naturally occur.  This chapter uses methods introduced in Chapters 

3 and 6 to significantly enhance the opportunities for remote sensing of the inner planets of 

the Solar System. 

The extension of the critical inclination at each planet is performed using continuous, 

unequal components of radial and transverse acceleration.  Considering 12 h highly-

elliptical orbits at each planet and extending the inclination to 90 degrees requires 0.05, 

0.0012 and 1.8x10-5 mm/s2 of acceleration for Mars, Mercury and Venus respectively, which 

for Mercury and Mars can be provided by existing electric propulsion systems. 

An additional component of acceleration directed out of the orbit plane to force a rotation 

in the ascending node angle of 2 radians in 686.429 days allows the extension of existing 

sun-synchronous orbits at Mars.  This enhances the observation opportunities and 

simplifies the spacecraft operations through simplification of the thermal environment.  

Although these orbits require higher acceleration than simply extending the critical 

inclination the acceleration, values are still within the limits of current thruster technology. 
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At Mercury and Venus, natural perturbations do not allow sun-synchronous orbits to exist; 

this chapter therefore presents the use of continuous acceleration to enable circular and 

elliptical Sun-synchronous orbits which otherwise are not possible, again offering 

simplification of the spacecraft thermal environment.  At Venus the ascending node angle is 

required to rotate 2 radians in 225 days and at Mercury by 2 radians in 88 days.  The 

acceleration magnitudes required for these orbits are, however, significantly higher than 

that required for the extension of the inclination and it is expected that considerable 

development in electric propulsion systems is required before these orbits become feasible. 
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Chapter 8 

8 Summary, Conclusions and Future 

Work 

8.1 Summary 

This thesis has addressed the following areas of work: 

1. Development of new orbit solutions to provide possible resolutions to the critical 

data deficit at the high-latitude regions of the Earth, through consideration of 

advanced orbital dynamics. 

2. Examination of the use of electric, chemical and hybrid solar sail / electric 

propulsion systems to enable new Earth Observation missions. 

3. Trade space analysis of possible mission concepts, and mission analysis to 

characterise the mission lifetimes and mass budgets. 

4. Development of highly-elliptical sun-synchronous orbits around Earth, through 

consideration of advanced orbital dynamics. 

5. Development of novel orbits around other bodies in the Solar System to enhance 

the opportunities for remote sensing. 

Firstly, Chapter 1 provided an introduction to Earth and planetary observation systems 

highlighted the limitations of current Earth Observation systems for remote sensing of high-

latitude regions of the Earth.  The necessity for new mission architectures to overcome this 
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data deficit was also identified.  Additionally, the importance of new systems to enable 

enhanced observation of the inner planets of the Solar System was discussed in this 

chapter.  The objectives of the thesis were outlined, and stated the necessity of the use of 

low-thrust propulsion systems to develop new orbits around Earth and the inner planets to 

significantly enhance the opportunities for remote sensing.  

Chapter 2 therefore provided an overview of various low-thrust propulsion systems and 

their possible applications and uses to date; this included electric propulsion, solar sailing 

and hybrid solar sail and electric propulsion systems.  

The main contribution to knowledge was presented in Chapter 3, where novel highly- 

elliptical orbits, termed Taranis orbits, were derived using continuous low-thrust propulsion 

to allow free selection of the critical inclination to best satisfy the mission objectives.  These 

orbits were firstly derived using a general perturbations solution applying the acceleration 

using locally optimal control laws.  Analytical solutions considered combinations of 

acceleration in each of the radial, transverse and normal directions, which revealed the 

most effective application of acceleration combining radial and transverse accelerations.  A 

special perturbations solution was also used to verify the general perturbations technique 

and optimisation of the solution conducted using pseudospectral optimisation to produce 

fuel optimal solutions.  Although Taranis orbits allow free selection of the inclination, the 

most significant benefit was identified as an orbit with an inclination of 90 degrees to 

provide a potential solution to the data deficit at high-latitude regions of the Earth and 

therefore address Aim 1.  This particular example was therefore considered in subsequent 

chapters. 

To address Aim 2, Chapter 4 examined the use of hybrid solar sail and electric propulsion 

systems and conventional chemical propulsion systems and compared these with a pure 
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electric propulsion system by performing mission analysis to determine the available useful 

payload masses and possible mission lifetimes.  Hybrid solar sail and electric propulsion 

systems, in theory, lower the demand on the electric propulsion system by reducing the 

propellant consumption, thus increasing the possible lifetime of the mission or the capacity 

for useful payload.  Two constraining parameters were considered in this chapter to 

determine if this was in fact true for Taranis orbits, firstly the case where the launch mass 

of the spacecraft is fixed, and secondly where the maximum thrust of the electric 

propulsion thruster constrains the system.  When the launch mass of the spacecraft is fixed, 

the increase in the mission lifetime from the pure electric propulsion system was shown to 

be negligible and as such there was found to be no tangible benefit from the addition of a 

solar sail.  The solar sails required to achieve these increases in lifetime are extremely large, 

light sails, and thus considerable developments in solar sail technology are necessary to 

make these missions feasible.  In the case of the fixed maximum thrust, the increase in 

mission lifetime was greater than that achieved using a fixed launch mass.  In addition to 

this, the physical size of the solar sails required are of the same order of magnitude as the 

fixed launch mass sails, however, these are much heavier sails making them more feasible 

solutions.  It has therefore been shown that the benefit of adding a solar sail to the system 

is very little to enable the 12 h, 90 degree inclination Taranis orbit, unless the initial mass is 

increased significantly.  The use of chemical propulsion to enable the orbits was also shown 

to be impractical for longer duration missions and electric propulsion was therefore shown 

to be the most viable means of propulsion to enable a 12 h, 90 degree inclination Taranis 

orbit for high-latitude observation.  It is also important to note that such an orbit can be 

enabled using existing electric propulsion systems. 

Chapter 5 considered the design of a constellation of spacecraft on highly elliptical Taranis 

orbits to provide continuous remote sensing above 55 degrees latitude as a minimum 
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requirement, due to the degradation of imaging from geostationary systems beyond this 

point.  Requirements of the constellation were defined which included constraints on the 

maximum apogee altitude of the orbit, the maximum observational zenith angle, the 

restriction of the use of composite images and the rotation of the argument of perigee of 

the orbit in addition to the requirement of the mission to comply with debris mitigation 

guidelines.  Consideration was also given to the radiation environment of the spacecraft, 

although this was not considered to be a strict requirement.  Analysis revealed a 

constellation of four spacecraft on 16 h orbit orbits with perigee altitudes of 10,000 km and 

apogee altitude of 41,740 km.  Such an orbit takes the radiation constraint into 

consideration and was therefore referred to as the ‘low-radiation’ orbit.  A ‘high-radiation’ 

12 h orbit with perigee altitude of 300 km orbit was also identified to reduce the number of 

spacecraft.  In this case, the constellation consists of three spacecraft.  Although this would 

require additional radiation shielding it was expected to be significantly less costly than 

launching an additional spacecraft to a considerably higher perigee altitude on a 16 h orbit.  

Observation to 50 degrees latitude was also considered, where constellations require eight 

spacecraft on a 16 h, ‘low-radiation’ orbit and five spacecraft neglecting constraints to 

minimise the radiation on a 12 h orbit.  This chapter also presented validation of the 

visibility analysis and thus the number of spacecraft in each constellation using NOVA 

satellite tracking software.  The results presented proved the numerical simulation used to 

determine the number of spacecraft to be accurate. 

The addition of a further element of acceleration to force a rotation in the ascending node 

angle of highly elliptical Taranis orbits to develop sun-synchronous Taranis orbits was 

presented in Chapter 6 to address Aim 4.  These orbits were achieved by using continuous 

acceleration to alter both the natural critical inclination of highly-elliptical orbits to any 

inclination, and to maintain the sun-synchronous orbit condition.  As such, a sun-



 
 

223 

synchronous Taranis orbit inclined at 90 degrees can be enabled, allowing both improved 

high-latitude imaging and simplified instrument design through significant simplification of 

the thermal environment.  Although the required acceleration to enable such an orbit is 

significantly higher than that required to enable a 90 degree Taranis orbit without the sun-

synchronous condition, it is likely to be achievable using current or near term technology. 

Finally, the use of continuous low-thrust propulsion to derive novel orbits at Mars, Mercury 

and Venus was presented in Chapter 7 to address Aim 5.  This work consisted of: the 

extension of the critical inclination of highly elliptical orbits at Mars, Mercury and Venus; 

the extension of sun-synchronous orbits at Mars; and development of circular and elliptical 

sun-synchronous orbits at Mercury and Venus, which otherwise do not naturally occur.  

This chapter used methods introduced in Chapters 3 and 6 to significantly enhance the 

opportunities for remote sensing of the inner planets of the Solar System and revealed that 

current electric propulsion systems could provide the required acceleration to achieve an 

inclination of 90 degrees for 12 h orbits at Mars and Mercury.  Although the extension of 

sun-synchronous orbits at Mars requires higher acceleration magnitude than simply 

extending the critical inclination, the acceleration values are still within the limits of current 

thruster technology.  At Mercury and Venus, natural perturbations do not allow sun-

synchronous orbits to exist; this chapter therefore presented the use of continuous 

acceleration to enable circular and elliptical sun-synchronous orbits which otherwise are 

not possible, again offering simplification of the spacecraft thermal environment.  However, 

the acceleration magnitudes required for these orbits was shown to be significantly higher 

than that required for the extension of the inclination and it is expected that considerable 

development in electric propulsion systems would be required before these orbits become 

feasible. 
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8.2 Limitations 

Some note should be made of the limitations of this work, and possible improvements that 

could be made.  The majority of the thesis focuses on a 90 degree inclination Taranis orbit 

enabled using continuous acceleration, however in the future, attention should be given to 

other inclinations to minimise the propellant consumption while still achieving the specified 

requirements.  Similarly, the assumption that the acceleration is continuous relies on the 

platform collecting science data while the thrusters are in operation, clearly it would be of 

significant benefit to introduce coast arcs to allow science instruments to operate without 

contamination from the propulsion system. 

8.3 Technology Development 

Several developments in technology are required to allow the Taranis mission concept to 

become feasible these are as follows: 

 Imaging from the Taranis orbit would require changes to be made over LEO or 

GEO missions due to the variation in altitude caused by the elliptical nature of 

the Taranis orbit.  These changes could include different algorithms for data 

acquisition, different mirror scanning techniques, a variety of on-board 

processing electronics, on-board software processing or only operating the 

instrument around apogee. 

 Design life of the thruster will also be a significant factor as the mission requires 

long duration thrusting.  Initial research into including coast arcs into the orbit, 

has shown for a nominal 5 year mission, a thruster design life of around 16,000 

hours is required. 
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 Although the radiation environment of HEO may be seen as problematic, a 

number of HEO mission have successfully survived a varying radiation and 

thermal environment, including NASA/NRO operated TWINS mission, which has 

an operational payload after several years of operation [161]. 

Although some technology developments are required to enable the Taranis mission 

concept, none of the identified obstacles are expected to be critical to prevent such a 

mission operating successfully. 

8.4 Conclusions 

Following summary of the research presented in Section 8.1, distinct conclusions can be 

drawn in relation to the objectives first stated in Chapter 1: 

1. Novel highly-elliptical orbits, termed Taranis orbits, have been developed 

successfully using low-thrust propulsion to alter the inclination to 90 degrees to 

allow the critical high-latitude data deficit to be filled using fewer spacecraft and to 

higher resolution than any other proposed system. 

2. Electric Propulsion was shown to be the most effective means of enabling the 

Taranis mission concepts. Notably these orbits can be enabled using existing 

thruster technology. 

3. Trade space analysis revealed high and low – radiation orbit constellations for 

imaging to 55 and 50 degrees latitude.  Continuous coverage to 55 degrees: four 

spacecraft on 16 h low-radiation orbit with perigee altitude of 10,000 km, three 

spacecraft on 12 h high-radiation orbit with perigee altitude of 300 km.  Continuous 

coverage to 50 degrees: eight spacecraft on low-radiation orbit, five spacecraft on 

high-radiation orbit.  
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4. Highly-elliptical sun-synchronous Earth orbits were developed, to allow both high-

latitude observation and significant simplification of the spacecraft thermal 

environment. 

5. Extension of existing Martian orbits has been performed using continuous low-

thrust to generate new highly-elliptical and sun-synchronous orbits.  Similarly, low-

thrust propulsion has been shown to extend highly-elliptical orbits and enable sun-

synchronous orbits at Mercury and Venus where they otherwise do not naturally 

occur. 

8.5 Future Work 

This thesis has introduced a system to improve high-latitude observation of the Earth, 

however, there is scope to expand the Taranis orbit concept further and improve the 

research in the following ways; 

 Preliminary work has been conducted, but is not included within this dissertation, 

to investigate the introduction of coast arcs into the Taranis orbit to reduce the 

thrusting time.  Consideration has been given to thrusting only when no science 

data is being collected by the on board instrumentation and coasting while the 

spacecraft is in shadow, however further research could be conducted in this area 

 Although a 90 degree inclination orbit has been extensively studied in this thesis, 

future work should include investigation into the most beneficial inclination to 

minimise the propellant consumption while still meeting the specified 

requirements 

 Detailed investigation into possible instrumentation for a Taranis platform. 

 Development of a suitable platform configuration for both a baseline and ideal 

mission using Computer Aided Design and Finite Element Analysis 
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 Research into the effect of the electric propulsion system on the local spacecraft 

environment 

 Investigation into the operation of the spacecraft and instrument in a high-

radiation environment 

 Investigation into possible launcher configurations for single and multiple 

spacecraft options 

 Communication link budget analysis and design of the ground segment. 

 Analysis of orbits at Mercury using higher order gravity data when this becomes 

available 

 Analysis of the effect of other perturbations, such as solar radiation pressure, on 

orbits at Mars Mercury and Venus. 

 Development of novel frozen orbits using low-thrust propulsion, for EO and 

planetary exploration 
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