
Investigations into Inductive-Recursive

Definitions

Lorenzo Malatesta

Doctor of Philosophy

University of Strathclyde

Department of Information and Computer Science

2015

Declaration

This thesis is the result of the author’s original research. It has been com-

posed by the author and has not been previously submitted for examination

which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by the University of Strath-

clyde’s Regulation 3.50. Due acknowledgement must always be made of the

use of any material contained in, or derived from, this thesis.

iii

Abstract

The theory of recursive functions where the domain of a function is induc-

tively defined at the same time as the function is called induction-recursion.

This theory has been introduced in Martin-Löf type theory by Dybjer [37]

and further explored in a series of papers by Dybjer and Setzer [38, 39, 40].

Important data types like universes closed under dependent type operators

are instances of this theory.

In this thesis we study the class of data types arising from inductive-recursive

definitions, taking the seminal work of Dybjer and Setzer as our starting

point. We show how the theories of inductive and indexed inductive types

arise as sub-theories of induction-recursion, by revealing the role played by a

notion of of size within the theory of induction-recursion. We then expand the

expressive power of induction-recursion, showing how to extend the theory

of induction-recursion in two different ways: in one direction we investigate

the changes needed to obtain a more flexible semantics which gives rise to

a more comprehensive elimination principle for inductive-recursive types. In

another direction we generalize the theory of induction-recursion to a fibra-

tional setting. In both extensions we provide a finite axiomatization of the

theories introduced, we show applications and examples of these theories not

previously covered by induction-recursion, and we justify the existence of

data types built within these theories.

v

Contents

1 Introduction 1

1.1 Dependent types for proofs and programs 1

1.2 A theory of inductive definitions 2

1.2.1 Indexed inductive types 4

1.2.2 Inductive-recursive definitions 6

1.2.3 Syntax and semantics of inductive types 6

1.3 Type, sets and categories . 7

1.4 Overview . 9

2 Background 11

2.1 Type theory in a Logical Framework 11

2.2 Inductive definitions and their categorical semantics 20

2.2.1 Initial algebra semantics 24

2.2.2 Initial algebra semantics of inductive types 28

2.2.3 Initial algebra semantics of indexed inductive types . . . 37

3 Induction-recursion 45

3.1 Universes . 45

3.1.1 Universes in set theory 46

3.1.2 Universes in category theory 48

3.1.3 Universes in type theory 49

3.2 Inductive-recursive definitions 55

3.2.1 Syntax of induction-recursion 56

3.2.2 Semantics of induction-recursion 58

3.2.3 The Fam construction 58

3.2.4 A coding scheme for IR based on Cont 64

vii

CONTENTS CONTENTS

3.2.5 Introduction and elimination rule for IR-types 65

3.2.6 Indexed induction-recursion 66

3.2.7 Examples . 69

3.3 A set-theoretic model . 73

3.3.1 The interpretation of the Logical Framework 74

3.3.2 Existence of initial algebras 78

3.4 Summary and discussion . 83

4 Small induction-recursion 85

4.1 Introduction . 85

4.2 The category of Small IR codes 87

4.2.1 Small IR-codes . 87

4.2.2 Small IR-morphisms . 88

4.3 The equivalence between Small IR and Poly 96

4.3.1 From Poly to Small IR 97

4.3.2 From Small IR to Poly 98

4.3.3 Poly ∼= Small IR . 101

4.3.4 Small indexed induction-recursion 102

4.4 Internal IR . 105

4.5 Conclusion . 106

5 Positive induction-recursion 107

5.1 Introduction . 107

5.2 Positive induction-recursion 108

5.2.1 Inductive-inductive definitions 109

5.2.2 A finite axiomatization of IR+ 110

5.3 The elimination principle for IR+ 117

5.4 Application: a container representation of nested types 119

5.4.1 A grammar for nested types 121

5.4.2 Representing nested types as containers 122

5.5 Comparison to plain IR . 123

5.6 Existence of initial algebras 124

CONTENTS ix

6 Fibred induction-recursion 127

6.1 Introduction . 127

6.2 Fibrations in a nutshell . 128

6.3 Fibred IR-codes . 132

6.4 Fibred IR-functors . 133

6.5 Examples . 137

6.6 Existence of initial algebras 143

7 Conclusion 147

7.1 Summary . 147

7.2 Future work . 148

Bibliography 150

Acknowledgments 159

Chapter 1

Introduction

1.1 Dependent types for proofs and programs

Both in computer science and in constructive mathematics dependency is a

ubiquitous and central notion. For example, whenever we refer to a family

of sets indexed by some other set we are exploiting the concept of a type

dependent on values of some other type. The possibility to explicitly refer to

dependent types considerably broadens the expressive power of a formal lan-

guage. The paradigm of such a dependent system is Martin-Löf type theory

[74, 73, 80]. Two other ingredients, beside the notion of dependency, make

dependent type theories expressive and versatile as formal languages: the

first is the possibility to use these theories both as programming languages

and as formal systems to reason about constructive mathematics. And, in-

deed, dependent type systems have proved themselves extremely successful

in fulfilling these two purposes: proof assistants based on dependent type

theories are nowadays used both to certify programs [26] and to formalize

mathematics [56]. This feature of dependent systems comes directly from the

Brouwer-Heyting-Kolmogorov explanation of the logical operations and it is

validated by the Curry-Howard isomorphism: we can regard an inhabitant a

of a type A either as a proof of a proposition A, or as a program satisfying

a specification A.

The other ingredient making dependent type theories so expressive and there-

fore ideal languages to develop both constructive mathematics and writing

1

2 Introduction

correct programs is given by inductive types. We focus on them in the next

section.

1.2 A theory of inductive definitions

We could try to introduce inductive types by looking at their historical de-

velopment but, as noted by Coquand and Dybjer [28], it is difficult to trace

back the origin of this notion since it permeates the history of proof theory, a

large part of computer science and, to a large extent, all constructive math-

ematics. So we will rather try to introduce them informally and by means of

examples.

An inductive definition of a type consists in giving some rules to generate

elements of the type and then specifying that terms in the type have been

generated according to these rules only. The inductive type is then defined

as the least type closed under the rules; put otherwise, this means that the

type has been freely generated by the rules.

In logic and computer science the use of inductive definitions is pervasive.

Consider the following simple examples in logic:

• the syntax of a formal language: we define the terms of a language as

the smallest set of expressions containing variables and constants and

closed under the term formation rules.

• The theorems of a formal deductive system. Given a formal system H,

let Th(H) be the collection of its theorems. Then Th(H) is the smallest

set of well-formed formulas closed under the inference rules.

In computer science inductive types are the bricks of a dependently typed pro-

gramming language: they represent the building blocks on which any other

type is built1. Inductive definitions are therefore fundamental to dependent

type theories which are both logical systems and frameworks for program-

ming. And, indeed, Martin-Löf type theory can be seen as an intuitionistic

1Pushing on this metaphor we could say that recursion is the mortar the dependently

typed programmer has at her disposal for computing.

Introduction 3

theory of iterated inductive definitions developed in a framework of depen-

dent types: each type is defined inductively by its introduction rule which

prescribes how canonical terms of the type are generated, while the elimina-

tion and computational rules, derived from the introduction rule, express a

recursion principle specifying its action on canonical elements.

In classical set theory we can represent an inductive type as the set obtained

as the intersection of all collections satisfying the condition of closure under

the given rules. But this informal description of an inductive type from

above does not do justice to the intuition that inductive types are essentially

built from below as the union of stages in a process. Indeed the former is

a rather impredicative description: it defines an inductive set quantifying

over the collection of all sets satisfying the closure condition. Nevertheless,

inductive definitions can be understood directly in their own terms, and they

are first-class citizens in generalized predicative systems such as Martin-Löf

type theory.

The simplest inductive definition is that of the set of natural numbers. From

a constructivist perspective we define the natural numbers, also known from

Cantor as the first number class, as an inductive type as follows:

Example 1.1 (First number class). The set of natural numbers N is built

according to the following rules:

• 0 is a natural number,

• if n is a natural number then so is s (n). �

Once we have defined Ω0 =def N, we can go further and inductively define

also the second number class Ω1, i.e. the set of countably infinite ordinals,

also known as Brouwer ordinals. The rules are the following:

Example 1.2 (Second number class). The type of Brouwer ordinals Ω is

built according to the following rules:

• 0 is a Brouwer ordinal,

• if α is a Brouwer ordinal then so is s (α),

• if f : Nat → Ω is a countable sequence of Brouwer ordinals then so is

lim (f). �

4 Introduction

We could be tempted to indulge this Cantorian initiative. And, indeed, we

can iterate the process just described: if we have build the n-th number class

Ωn we get the (n+ 1)-th number class Ωn+1 by adding on top of the rules for

Ωn the following rule

• if f : Ωn → Ωn+1 is an Ωn sequence of elements of the (n+1)-th number

class Ωn+1, then so is limn+1 (f).

But a pattern seems now to emerge. We can use the the set of natural

numbers N, to index number classes. This way we could define a whole

collection of inductive types representing number classes in one go. We show

in the next section how to do it.

1.2.1 Indexed inductive types

Indexed inductive definitions exploit two distinctive features of Martin-Löf

type theory already mentioned: type dependency and inductive types. In-

dexed inductive types represent the next level of sophistication of an in-

ductive type where we allow for the simultaneous definition of a family of

inductive types indexed over some other type. This extra feature allows to

store relevant computational information in the indices of an inductive type.

Let us illustrate by means of some examples how indexed inductive definitions

can be used to build more sophisticated data types.

Example 1.3 (Finite sets). The type of finite sets is a data type indexed

over N. For every n : N, the set fin(n) represents the set of natural numbers

below n. It is built according to the following rules:

• for every natural number n, zero is an element in fin(s(n)).

• If we have an element x of fin(n) then succ(x) is an element of fin(s(n)).

�

When fin(n) has been defined for an arbitrary natural number n, we can use

it for example as a set of variables for the untyped λ- calculus. This way we

can build the set of well-scoped untyped λ-term as follows:

Introduction 5

Example 1.4 (untyped λ-terms). The type of untyped λ-terms is a N-

indexed inductive type, constructed according to the following rules:

• variables, represented as elements of fin(n), are λ-terms;

• if we have two λ-terms t, u with at most n free variables then we can

use function application, App (t, u), to build a λ-term with at most n

free variables;

• if we have a λ-term with at most n + 1 free variables we can use λ-

abstraction to build a term with at most n free variables. �

Note that λ-abstraction uses lambda terms with n+ 1 free variables to build

terms with n free variable so that the entire family needs to be built simul-

taneously. We finally come back to the N-indexed type of number classes

mentioned in the previous section.

Example 1.5 (A family of number classes). The type of number classes is

a type indexed over N. For every n : N, the type Ω(n) represents the n-th

number class. It is built according to the following rules:

• 0 is an element of Ω(n);

• if we have an element x in Ω(s(n)) then succ(x) is an element of Ω(s(n));

• if we have a sequence f : Ω(n)→ Ω(s(n)), then limn+1(f) is an element

of (Ω(s(n))). �

At this point we already engaged in a Cantorian initiative and we now want

to pursue this construction. We have used natural numbers to build a N-

indexed family of number classes. But we could refine our construction by

using any already given number class as index of our families to get larger

families of number classes, and carry on this way. But, this would not be

really satisfactory: maybe we do not want to fix in advance an index of this

family. Can we build a family whose indices are the number classes we are

currently building up? If this is possible then we would have to build the

index of the family at the same time of the family we are currently building.

In the next section we explain how this is indeed possible using inductive-

recursive definitions (see also Section 3.2.7 for more details on the above

example).

6 Introduction

1.2.2 Inductive-recursive definitions

When defining an indexed inductive type, indexed over A, we think of A as

an index for a family of inductive types B(a) where a is an element of A.

Another approach is to regard a family as a (large valued) recursive function

B :A→ Set. That is, we exploit the inductive definition of A to recursively

define B. But A might not be already given in advance as hinted at the

end of the previous section. That is, the inductive definition of A might

depend on the recursively defined function B. The theory of such functions

B :A → Set, and more generally of functions with codomain any (possibly

large) type D, where as we build up the function B recursively, we also

build up the type A inductively is called induction-recursion. Data types

built using these functions are called inductive-recursive types. This thesis

is about this class of types.

The theory of induction-recursion has been introduced by Dybjer [36] and

then further refined by Dybjer and Setzer in a series of papers [38, 39, 40].

Important data types like universes closed under dependent type operators

are instances of induction-recursion and the theory is so expressive that al-

most every known type is an instance of it (an exception is given by the

internal Mahlo universe constructed by Setzer [88]).

Data types as presented in this thesis line up in an increasing hierarchy of

complexity: at the bottom lie simple inductive types like the natural num-

bers, lists and trees. Then, with indexed inductive types we can build data

types indexed by extra information that can be used to express properties

of data having those types. Examples are given by vectors, untyped lambda

terms, general tree types [80]. Finally, inductive-recursive types represent

the most advanced form of data types where we allow for the definition of

indexed data type where the indices are generated at the same time as the

data.

1.2.3 Syntax and semantics of inductive types

So far we have seen examples of (indexed) inductive types. We may be

tempted to add rules for each specific inductive type we can come up with to

our dependent type theory. This is not an economic approach and, arguably,

Introduction 7

nor a satisfactory one. By contrast, different approaches, in form of schemes,

have been proposed to capture the notion of an (indexed) inductive type in

a dependent type system. A precursor of these schemes can be traced back

to Martin-Löf [72] who formulated it in first order logic. Dybjer [35] gave a

scheme for indexed inductive types in Martin-Löf type theory while Coquand

and Paulin-Mohring [29] gave one for the Calculus of Constructions. More

recently Benke et al. [17] gave a scheme for indexed inductive types inspired

by those given by Dybjer and Setzer [38, 39, 40] which are the first containing

schemes covering inductive-recursive types.

A more semantical approach is given by indexed containers (Section 2.2.3)

and dependent polynomial functors (Section 2.2.3) and it is inspired by the

language of category theory. In this thesis we deliberately take this ap-

proach by using initial algebra semantics (see Section 2.2.1) which nowadays

has become one of the cornerstones of the theory of modern functional pro-

gramming languages. This approach provides a well-developed theory of data

types which is modular, expressive and usable at different levels: it is used

as a framework both by researchers in the mathematical foundations of pro-

gramming language semantics, by programming language designers and even

by programmers themselves (under the guise of the Algebra of Programming

School [18]). In this thesis, a theory of data type will always be given by

a syntax (which we sometimes refer to as a grammar) and a corresponding

functorial semantics which assigns to each syntactic object a functor (which

we also refer to as its extension).

1.3 Type, sets and categories

Martin Löf type theory has proved to be a robust foundational framework.

In our opinion this claim is validated not so much by the evidence that a

large amount of mathematics can be developed within it (reductionism), but

rather by the deep connections that this theory has interweaved with other

branches of mathematics and in particular with other foundational theories

(structuralism). Using a metaphor, we can think of Martin-Löf type theory

as the base of a prism of glass. The light coming from outside can hit a type

and refract it as a set, as a proposition, as an object of a category, or as

8 Introduction

a specification for a program. Though simple, this metaphor is imprecise.

Trying to make precise the connection between type theory, set theory, and

category theory has been a major theme of recent research. The development

of homotopy type theory [92] has redesigned this pyramid by inserting a new

face to this solid represented by homotopy theory which allows us to refract

a type as a space.

Type theory will be the basis of this thesis. We will mainly exploit its rela-

tionship with category theory by using type theoretic reasoning to talk about

categories, and vice versa. We will work in extensional type theory since this

will greatly simplify this relationship. However, it is important to notice that

the theory of induction-recursion makes perfect sense in intensional type the-

ory as well, and alternatively, we could have used setoids and the category of

setoids to overcome the difficulties arising from doing category theory within

intensional type theory [60, 63, 78].

To build models of type theory augmented with schemata for inductive-

recursive definitions we turn our pyramid and let it rest on classical set

theory. To emphasize this we use different fonts for the categories of sets:

(i) Set for the category of constructive sets (or small types) built from the

Set-judgments of the type theory we present in Section 2.1; (ii) Set for the

category of (not-constructive) sets, built from ZFC possibly augmented with

strong axiom of infinity (see Section 3.1.2 and 3.3).

All of the consistency proofs presented in this thesis will use the categories of

sets built from the classical theory of sets ZFC. Nonetheless, since this thesis

is developed in a constructive settings, we are naturally led to work with the

category of constructive sets Set whenever possible. To minimize confusion

we always explicitly point the reader’s attention to which categories are in

use.

We refer the reader to [39], Section 2.4 and in [40] Section 4 for details of

the construction of the syntactic category Set and of other categories used to

model induction-recursion. We do not pursue investigation into categorical

properties of the category Set since this would lead us out of the scope of this

thesis. For our purposes it will suffice to assume that Set is a locally cartesian

closed category with W-types as ensured here by the rules for Set-judgments

(2.2) - (2.18) in Section 2.1 and Section 2.2. Notice, that, with abuse of

Introduction 9

notation, we use the same font both for the category of (constructive) sets

and for the type of small types.

1.4 Overview

The rest of this thesis is structured as follows:

• Chapter 2 introduces Martin-Löf type theory formulated in a Logical

Framework. We focus on the theories of inductive and indexed in-

ductive types in Section 2.2, also covering standard material on initial

algebra semantics.

• Chapter 3 introduces the theory of induction-recursion as originally

formulated by Dybjer and Setzer. We begin with an introduction to

universes as a paradigmatic example of an inductive-recursive type in

Section 3.1. We develop a syntax and a corresponding semantics for

the theory of induction-recursion in Section 3.2. We recast the set-

theoretical model built by Dyber and Setzer to prove the consistency

of the theory in Section 3.3.

• Chapter 4 is based on joint work with T.Altenkirch, N. Ghani, P. Han-

cock and C. McBride [57]. In this chapter we introduce a sub-theory of

induction-recursion that we dub “small induction-recursion”. We build

a category of small inductive-recursive definitions and prove full and

faithfulness of the interpretation functor. The main result in the chap-

ter is an equivalence between the category of dependent polynomial

functors and the category of small inductive-recursive functors.

• Chapter 5 is based on joint work with Fredrik Nordvall Forsberg and

Neil Ghani [53]. In this chapter we introduce a variant of induction-

recursion, which we call “positive induction-recursion”, motivated by

an extension of the original semantics of induction-recursion. We in-

troduce the syntax and the semantics of positive induction-recursion in

Section 5.2. We gave examples of applications of our theory in Sections

5.3 and 5.4. We justify the existence of positive inductive-recursive

types in Section 5.6.

10 Introduction

• Chapter 6 is based on joint work with Neil Ghani, Fredrik Nordvall

Forsberg and Anton Setzer [54]. In this chapter we abstract the theory

of induction-recursion to a fibrational setting. We obtain a theory

of generalized inductive-recursive types which we call “fibered data

types”. We give the syntax and the semantics for this theory in Section

6.3 and 6.4 and we give examples of fibered data types in Section 6.5.

We justify their existence in Section 6.6.

Contribution

Parts of the the thesis has been published in peer reviewed conferences. My

contribution to the publications are:

[57] Working on initial ideas by Thorsten Altenkirch I developed the math-

ematical content of the paper and wrote a first draft. The final version

of the paper was edited by Peter Hancock and Conor McBride.

[53] Working on an initial idea of Neil Ghani I developed the mathematical

content of the paper jointly with Fredrik Nordvall Forsberg. The final

version was edited by Fredrik Nordvall Forsberg and me.

[54] The paper was entirely written by Fredrik Nordvall Forsberg and me

after an initial idea of Neil Ghani.

Chapter 2

Background

Abstract In this chapter we lay down the basis on which the rest of the

thesis is built by recalling some standard material. We start by introducing

the theory of types which will serve as a framework for our investigations

(Section 2.1). We then analyze the notion of an (indexed) inductive definition

(Section 2.2) focusing on the categorical approach given by initial algebra

semantics.

2.1 Type theory in a Logical Framework

In this Section we introduce the type theory we will use as a basis for the

rest of the thesis. We adopt a presentation of Martin-Löf type theory within

a Logical Framework as in [80] part III. This formulation will turn out to be

essential in Chapter 3, where we extend the type theory presented here with

rules for inductive-recursive definitions. We use the extensional version of

Martin-Löf type theory, rather than the intensional one (see Rule 2.13 and

Rule 2.14 and the discussion on page 19 for more on this).

The core of Martin-Löf type theory is a λ-calculus with dependent types. The

first versions [74, 73] were formulated as free-standing theories of types. The

Logical Framework was introduced later, suggesting the perspective of con-

ceiving type theory as a meta-theory where other theories can be interpreted,

allowing for a modular specification of different theories within it.

From our perspective the main advantage of the introduction of the Logical

11

12 Chapter 2

Framework is the possibility of having a theory of sets internal to a theory

of types. Notice that we do not follow the presentation of the theory of

sets as presented in [80] part III. There, sets are introduced by defining

constants of different types and asserting equalities between elements in the

sets. Here, instead, we introduce sets in the more readable polymorphic

style (see Section 2 in [48] for more on the polymorphic vs monomorphic

presentation of Martin-Löf type theory). We hope that, even if concise, our

presentation will help the reader not familiar with type theory to get a better

understanding of the theory.

Martin-Löf type theory is a formal system about types and terms. Its primary

purpose is to allow one to derive judgments about these entities. There are

four basic forms of judgments:

(1) A : type (2) a :A

(3) A = B : type (4) a = b :A

whose intended reading is the following: (1) A is a type, (2) a is a term of

type A, (3) A and B are equal types (4) a and b are equal terms of type

A. The theory allows us to derive hypothetical judgments, i.e. judgments

depending on some assumptions. A collections of assumptions is called a

context Γ and consists of a list of typing judgments:

x1 :A1, x2 :A2(x1), . . . , xn :An(x1, x2 . . . xn−1)

A well-formed context is one for which for every i < n the judgment Ai : type

holds in the preceding context x1 :A1, . . . , xi−1 :Ai−1.

We write hypothetical judgments depending on a context Γ as follows:

Γ `A : type Γ ` a :A

Γ `A = B : type Γ ` a = b :A

where the turnstile separates the context Γ from the judgment. To increase

readability, we omit both of them if the context Γ is not discharged in a rule.

Background 13

Given judgments

Γ ` a1 :A1

Γ ` a2 :A2(a1)
...

Γ ` an :An(a1, a2 . . . an−1)

Γ, x1 :A1, x2 :A2(x1), . . . , xn :An(x1, x2 . . . xn−1) ` B(x1, x2 . . . xn) : type

Γ, x1:A1, x2:A2(x1), . . . , xn:An(x1, x2 . . . xn−1)`b(x1, x2 . . . xn):B(x1, x2 . . . xn)

we simply write

Γ ` B(a1, a2 . . . an) : type

Γ ` b(a1, a2 . . . an) : B(a1, a2 . . . an)

for the simultaneous substitutions B[a1/x1, a2/x2, . . . , an/xn] and b[a1/x1,

a2/x2, . . . , an/xn] of the terms a1, a2 . . . an inB(x1, x2 . . . xn) and b(x1, x2 . . . xn)

respectively. We identify types and terms up to α-conversion.

We are now led to add judgments expressing that Γ is a valid context and

that two contexts Γ and ∆ are equal:

`Γ context ` Γ = ∆ context

Valid contexts are formed according to the following rules:

Rule 2.1 (Contexts).

() context

Γ context Γ ` A : type

` (Γ, x :A) context

where () denotes the empty context and x is assumed to be fresh for Γ. �

To simplify the presentation we split the rules of the system in different

groups:

• general rules forming the equality, substitution and variable assump-

tion rules;

• rules for the type of small types. These rules allow for the definition

of the (large) type Set of all small types (we also refer to small types

simply as sets);

14 Chapter 2

• rules for certain constant types consisting of the minimal collections

of basic types needed to start with to build all the other types. In

particular at this stage we do not need to include any infinite set we

will define them later via induction-recursion.

• rules for set/type formers needed to introduce dependent products and

coproducts types;

• rules for equality types which allow for the formation of a type whose

inhabitants witness that elements of a certain type are equal.

Both the rules for constant sets and the rules for set/type formers follow a

common pattern. They are given in four steps:

- formation rules which introduce new sets/types;

- introduction rules which describe how canonical elements of the type

are formed;

- elimination rules which tell us how to use elements of the type to define

recursive functions out of it.

- computation rules which explain how functions defined by using the

elimination rules act on canonical elements of the type.

General rules

Rule 2.2 (Equality). Equality is an equivalence relation on types and terms:

A : type
A = A

B = A : type
A = B : type

A = B : type B = C : type
A = C : type

a :A
a = a :A

b = a :A
a = b :A

a = b :A b = c :A
a = c :A

�

Rule 2.3 (Conversion).

a :A A = B : type
a :B

a = b :A A = B : type
a = b :B

�

Background 15

Rule 2.4 (Assumption, weakening). In the following we indicate with I any

judgment which can appear on the right of the turnstile

Γ ` A : type
Γ, x :A ` x :A

Γ ` I
Γ, x :A ` I �

Rule 2.5 (Substitution rules). Substitution in types:

x :A ` B(x) : type a :A

B(a) : type

x :A ` B(x) = D(x) : type a = c :A

B(a) = D(c) : type

Substitution in terms:

x :A ` b(x) :B(x) a :A

b(a) :B(a)

x :A ` b(x) = d(x) :B(x) a = c :A

b(a) = d(c) :B(a)
�

The type of small sets

We now give rules for the type Set of small sets. Further down we will give

rule asserting closure of Set under certain set formers

Rule 2.6 (Set).

Set : type
A : Set

El(A) : type
A = B : Set

El(A) = El(B) : type

Given A : Set, we simply write a :A as a shorthand for a : El(A) if no ambiguity

can arise; in other words we allow ourselves to treat the large universe (Set,El)

as if it was formulated à la Russell (cf. Section 3.1.3). �

Constant types

We now introduce rules to postulate the existence of basic sets. Notice that

we use large elimination for the set N2, i.e. we allow elimination into type

(rather then Set) for predicates defined on the set N2: this will be needed

later in Remark 2.12 and Notation 3.25 to define + - types and to define the

sum of two inductive-recursive definitions.

Rule 2.7 (N0, N1, N2). Formation rules:

N0 : Set N1 : Set N2 : Set

16 Chapter 2

Introduction rules: there is no introduction for N0.

01 : N1 02 : N2

12 : N2

Elimination rules:

x : N0 ` P (x) : Set a : N0

case0(a) :P (a)

x : N1 ` P (x) : Set
a : N1

b :P (01)

case1(a, b) :P (a)

x : N2 ` P (x) : type a : N2

b0 :P (02)
b1 :P (12)

case2(a, b0, b1) :P (a)

Computation rule:

x : N1 ` P (x) : Set b :P (01)

case1(01, b) = b :P (01)

x : N2 ` P (x) : type i2 : N2

b0 :P (02)
b1 :P (12)

case2(i2, b1, b2) = bi :P (i2)
i = {0, 1}

�

Type/set formers

Next we introduce Π-sets and Π-types. We deliberately use the same notation

for both since this allows us to avoid duplicating the same rules.

Rule 2.8 (Dependent products). Formation rules:

A : type x :A ` B(x) : type

(Πx :A)B(x) : type

A : Set x :A ` B(x) : Set

` (Πx :A)B(x) : Set

Introduction rule:
x :A ` b(x) :B(x)

λx :A. b(x) : (Π x :A)B(x)

Elimination rule:
f : (Πx :A)B(x) a :A

f(a) :B(a)

Background 17

Computation rules:

x :A ` b(x) :B(x) a :A

(λx :A. b(x))(a) = b(a) :B(a)
β pi

x :A ` b(x) = c(x) : (Π x :A)B(x)

λx :A. b(x) = λx :A. c(x) : (Π x :A)B(x)
ξ pi

b : (Πx :A)B(x)

λx :A. b(x) = b : (Πx :A)B(x)
η pi

�

We introduce now the rules for Σ-sets and Σ-types using the same notation

for both as we did for Π-sets and Π-types.

Rule 2.9. (Dependent coproducts) Formation rule:

A : type x :A ` B(x) : type

(Σx :A)B(x) : type

A : Set x :A ` B(x) : Set

(Σx :A)B(x) : Set

Introduction rule:
a :A b :B(a)

(a, b): (Σx :A)B(x)

Eliminations rule:

p : (Σx :A)B(x)

π0(p) :A
fst pr

p : (Σx :A)B(x)

π1(p) :B(π0(p))
snd pr

Computation rule:

a :A, a :A ` b :B(a)

π0(a, b) = a :A

a :A a :A ` b :B(a)

π1(a, b) = b :B(a)

p : (Σx :A)B(x)

p = (π0(p), π1(p)) : (Σx :A)B(x)
η sig

�

18 Chapter 2

Notation 2.10. In the rest of the thesis we adopt some conventions about

dependent product and coproducts which we summarize here: when the type

A can be inferred from the context we write λx. b for λx :A. b(x). When

writing codes for inductive, indexed inductive and inductive-recursive defi-

nitions we write a function λ a. γ(a) simply as a 7→ γ(a). For simultaneous

abstractions λx. λ y. b(x, y) and applications f(a)(b) we write λx, y. b(x, y)

and f(a, b) respectively.

We sometimes abbreviate (Πx :A)B(x) and (Σx :A)B(x) simply as (ΠA)B

and (ΣA)B; if B does not depend on x :A we write A → B and A × B for

(Π a :A)B and (Σ x :A)B respectively.

Since we have introduced function types and the universe Set we can now

use an alternative notation for a family of sets x :A ` B(x) : Set.

Notation 2.11 (families). A family of sets x :A ` B(x) : Set can be equiv-

alently presented as given by a pair (A,B) : (ΣA : Set)(A → Set). Indeed,

we can derive the latter judgment form the former by using introduction for

Π-types, the rule η pi and the introduction rule for Σ-types. Vice versa we

can derive the former from the latter by elimination for Σ-types and Π-types

and the rule 2.4.

We do not include +-types among our set formers simply because they can

be defined by using Σ-sets and large elimination for N2.

Remark 2.12 (Sums). Given A : Set, B : Set we can define A+B as

A+B =def (Σx : N2) case2(x,A,B)

With this definition, the injections inl :A → A + B and inr :B → A + B

are defined as inl =def λ a :A. (02, a) and inr =def λ b :B. (12, b) respectively.

Given maps f :A→ C and g :B → C the coproduct map [f, g] :A+B → C

is given by [f, g] =def λx :A+B. case2(π0(x), f(π1(x)), g(π1(x))).

Similarly note that we have not included any finite sets apart from N0, N1

and N2. All the other finite sets Nn can be defined from N1 and N2 using

sums: for example N3 = N2 + N1.

Background 19

Extensional rules

We finish this presentation with rules for identity types and a brief discus-

sion about extensional rules which may or may not be added to the system

considered so far. Identity types represent a notion of equality internal to

the system. They come in two shapes, intensional or extensional. The differ-

ence between these is so relevant that they actually give rise to two different

systems respectively: intensional type theory and extensional type theory.

The latter identifies internal and judgmental equality, with far-reaching con-

sequences. Models for extensional type theory have been intensively studied

[87, 27, 59, 30], but there are also drawbacks: type-checking is undecidable,

and the theory fails to be strongly normalizing. Most of this thesis will use

categorical reasoning and this will be greatly simplified by working in the

extensional setting.

Rule 2.13 (Identity types). Formation rule:

A : type a :A b :A

a ≡A b : type

Introduction rule:
A : type a :A

refl(a) : a ≡A a

Elimination rule:

A : type x, y :A, q :x ≡A y ` P (x, y, q) : Set

a, b :A p : a ≡A b x :A ` c(x) :P (x, x, refl(x))

J(a, b, p, c) :P (a, b, p)

Computation rule:

A : type x, y :A, q :x ≡A y ` P (x, y, q) : Set
a :A x :A ` c(x) :P (x, x, refl(x))

J(a, a, refl(a), c) = c(a) :P (a, a, refl(a)) �

Notice that within the proposition-as-types perspective the above elimination

rule states that in order to prove a statement about an identity type it suffices

to prove it on diagonal elements, i.e. on terms of the form (x, x, refl(x)).

We now state the rules turning intensional type theory into its extensional

versions.

20 Chapter 2

Rule 2.14 (Equality reflection rule).

p :x ≡A y
x = y :A

eq-reflection
p : a ≡A a

p = refl(a) : a ≡A a
UIP �

As proved by Hofmann and Streicher in [62] these rules are not derivable

from the rules already stated. The counter model built in [62] to prove this

has paved the way for further investigations of homotopical models for the

intensional version [92].

Finally let us present function extensionality asserting that pointwise propo-

sitionally equal functions are themselves propositionally equal

Rule 2.15 (Function extensionality).

f, g : (Πx :A)B(x) p : (Πx :A)f(x) ≡B(x) g(x)

funext(f, g, p) : f ≡(Πx :A)B(x) g �

This rule which reflects common usage of functions in mathematics can

be safely added without breaking decidability of type-checking but it seem

harder to justify from a computational point of view where terms are regarded

as algorithms: two functions which are pointwise equal can have quite dif-

ferent algorithmic content (see e.g. Section 5 in [48] for more on this). This

rule is derivable from Rule 2.14.

2.2 Inductive definitions and their categori-

cal semantics

The theory of dependent types described so far is a solid system for rea-

soning about dependent types but the range of sets and types which can

be built within it is particularly narrow: for example, observe that the the-

ory described so far does not allow us to build any infinite set. The aim of

this Section is to increase expressiveness of the system by adding scheme for

inductive types. We start by formulating in a natural deduction style the

rules for the basic examples presented in Section 1.2 and then by introducing

comprehensive schemata for inductive types. While introducing examples

of inductive types and schemata for defining them we will pay attention to

Background 21

the categorical approach for describing them represented by initial algebra

semantics.

The rules in Example 1.1 translate directly to the introduction rules of the

type N of natural numbers from which we can derive the corresponding elim-

ination and computation rules:

Rule 2.16 (Natural numbers). Formation rule:

N : Set

Introduction rules:

0 : N
n : N

s (n) : N

Elimination rules

a : N d :P (0)
n : N ` P (n) : Set

n : N, y :P (n) ` e(n, y) :P (s(n))

natrec(a, d, e) :P (a)

Computation rules:

d :P (0)
n : N ` P (n) : Set

n : N, y :P (n) ` e(n, y) :P (s(n))

natrec(0, d, e) = d :P (0)

a: N d :C(0)
n : N ` P (n)

n : N, y :P (n) ` e(n, y) :P (s(n))

natrec(s(a), d, e) = e(a, natrec(a, d, e)) :P (s(a)) �

Similarly, we can turn the rules given in Example 1.2 in the introduction

rules for a type Ω (for simplicity we omit the corresponding elimination and

computation rules).

Rule 2.17 (Brouwer ordinals). Introduction rules:

0 : Ω
α : Ω

s (α) : Ω

f : N→ Ω

lim (f) : Ω �

From a constructive viewpoint, where induction is a basic principle, it is

natural to allow for a wide class of inductively defined structures. As a

22 Chapter 2

paradigm of such a broadly comprehensive inductively generated structure

in Martin-Löf type theory we have the set of well-orderings or, shortly, W-

types [73]. A type (W x :A)B(x), also indicated (WA)B, represents the set

of well-founded trees whose nodes are elements a :A and whose branches

over such a node a are given by elements of a set a :A ` B(a). The rules

describing W-types in Martin-Löf type theory are the following:

Rule 2.18 (W-types). Formation rule

x :A ` B(x)

(W x :A)B(x) : Set

Introduction rule
a :A f :B(a)→ (W x :A)B(x)

sup (a, f): (W x:A)B(x)

Elimination rule

w : (W x :A)B(x)
w : (W x :A)B(x) ` P (w) : Set

a :A, f :B(a)→ (W x :A)B(x), g : (Π b :B(a))P (f(b)) ` h(a, f, g):P (sup (a, f))

wrec(w, h):P (w)

Computation rule

w : (W x :A)B(x)
w : (W x :A)B(x) ` P (w)

a:A, f :B(a)→ (W x :A)B(x), g : (Π b :B(a))P (f(b)) ` h(a, f, g) :P (sup (a, f))

wrec(sup (a, f), h) = h(a, f, λt.wrec(f(t), h))

�

An insightful perspective from which looking at a W-types (WA)B, is as a

direct generalization of the free term algebra construction from finite arities

to arbitrary arities specified by a signature: a set A of term constructors or

operators a :A, each with a small arity given by the set B(a).

In extensional type theory W-types can been used to encode inductively

defined types. For example we can encode the types N and Ω defined in

Rules 2.16 and in Rule 2.17 respectively:

Example 2.19. The type of natural numbers can be encoded by the W-type

(W x: N2)BN(x)

Background 23

where

BN(02) = N0 BN(12) = N1

0 = sup(02, λ x. case0(x)) s(n) = sup(12, λ x. case1(x, n))

and recursion operator defined by

natrec(a, d, e) = wrec(a, λ x, y, z. case2(a, d, e(y(01), z(01))))

Similarly the type of Brouwer ordinals is given by

(W x: N3)BΩ(x)

where

BΩ(03) = N0 BΩ(13) = N1 BΩ(23) = N

0 = sup(03, λ x. case0(x)) s(n) = sup(13, λ x. case1(x, n)) lim(f) = sup(23, f)

�

These examples show how easily inductive types can be defined in terms of

W-types. Indeed these are just two instances of a wide class of inductive

types which can be captured by W-types. As shown by Dybjer [36], all

strictly positive types – those types which are built up from set variables

and constants using as operators +, × and →, with the restriction that no

set variable occurs to the left of an arrow – can be captured by the W-

construction. Abbott et al. [2] have sharpened this result showing that

W-types are sufficient to capture also nesting of inductive types.

Notice that some extensionality is needed for the above reduction to hold:

the elimination and computation rules for the encoding of such inductive

types as W-types can not be derived in intensional type theory. This is

because of the functional component f in an element sup(a, f) : (W x :A)B(x)

which prevents us from deriving sup(a, f) = sup(a, g) if f and g are not

convertible to each other. Thus, in intensional type theory the W-types

encoding an inductive type contains elements which do not represent any

canonical element of the inductive type. This problem has been addressed

also in the context of homotopy type theory: in [15] Awodey et al. have shown

that the notion of weak W-type and a limited form of function extensionality

suffice to encode simple inductive types in the usual way.

24 Chapter 2

2.2.1 Initial algebra semantics

Initial algebra semantics [55] is one of the cornerstones in the categorical

analysis of data types. To provide a backdrop for the following discussion,

we give a brief summary of how initial algebra semantics can be used to

provide a semantics to data types.

Within the paradigm of initial algebra semantics, each data type is regarded

as the carrier of an initial algebra of a given functor; therefore we start

recalling the fundamental notion of algebra of a functor.

Definition 2.20. If C is a category and F :C→ C is an endofunctor on C,

then an F -algebra is a pair (X, h) where X is an object of C and h :FX →
X a morphism. We call X the carrier of the algebra and h the structure

map. �

Intuitively, if we think of F as building structure on top of X, then the

morphism h shows how to embed this new structure back into X. Thus we

can think of X as having enough structure to model the new structure built

by F . In other words, we can think of X as a model of the structure specified

by F .

For any functor F , the collection of F -algebras itself forms a category AlgF
which we call the category of F -algebras. In AlgF , a morphism from (X, h)

to (Y, g) is a map f :X → Y such that the following diagram commutes

FX X

FY Y

h

Ff f

g

If we think of X and Y as models of structure built by F , then an F -algebra

morphisms f : (X, h) → (Y, g) is nothing but an homomorphism between

such models, i.e. a structure preserving map. An initial or free F -algebra,

which we indicate by (µF, introF), is an initial object in the category AlgF .

As the adjective free above suggests, the idea is that the structure of µF has

been freely generated so as to make it the initial F -model. Initial algebras

Background 25

are of particular interest in the solution of recursive equations since they are

fixed points (cf. e.g. [90]). Being a fixed point is expressed categorically by

the following definition:

Definition 2.21. Given a functor F :C → C, an object X is called a fixed

point of F if there exists an isomorphism FX ∼= X. �

Any fixed point for a functor F is clearly an F -algebra. That the converse

is true for initial algebras is an useful observation due to Lambek [68]:

Lemma 2.22. An initial F -algebra is a fixed point for F .

Proof. Let (µF, introF) be an initial algebra for F . Then (F (µF), F (introF))

is an algebra for F , and by initiality of (µF, introF) we get a map g :µF →
F (µF) such that g ◦ introF = F (introF) ◦ F (g). Now, introF ◦ g is an F -

algebra morphism from (µF, introF) to itself and by initiality it has to be

the identity, i.e. introF ◦ g = id. But then we also have id = F (id) =

F (introF ◦ g) = F (introF) ◦ F (g) = g ◦ introF .

Initial algebras from below

The proof that initial algebras for a functor can be built from below can be

traced back to famous fixed point theorems like those of Kleene and Knaster-

Tarski. And, indeed, it is a simple and direct translation of the latter theorem

in categorical terms which will enable us to build initial algebras for the

functors we will consider throughout this thesis. Recall that for every functor

F on a category C with an initial object ⊥ and with filtered colimits we have

an associated initial chain.

Definition 2.23 (Initial chain). Given an endofunctor F on a category C
with filtered colimits and an initial object ⊥, define the initial chain of F by

transfinite recursion as follows:

F 0 = ⊥
Fα+1 = F (Fα)

Fα =
∨
β<α F

β for α limit. �

26 Chapter 2

This definition actually defines a chain since we can define ki,j :F i → F j for

i < j in the following way:

k0,1 = ⊥ → F (⊥)

ki+1,j+1 = F (ki,j)

ki,j = the colimit cocone for i limit.

Definition 2.24. We say that the initial chain for a functor F converges

after λ steps if kλ+1,λ is an isomorphism. �

Theorem 2.25 ([10], Theorem 3.1.4). Let C be a category with an initial

object ⊥ and with colimits of chains. If the initial chain of a functor F

converges in λ steps, then µF = F λ and introF = k−1
λ+1,λ.

Semantics for data types

Let us now come back to our starting motivation of using initial algebra

semantics to model data types through the language of category theory:

the object µF interprets the data type described by F , while the algebra

introF interprets the constructors of the data type. Initiality of (µF , introF)

can be used to express a recursion principle for the data type. Given an

F -algebra (X, h), by initiality of (µF , introF) we get an F -algebra homo-

morphism, sometimes referred to as catamorphism, fold(h), from the initial

algebra introF to the algebra h. We can express this recursion principle by

means of an operator fold : (F (X) → X) → µF → X, together with equa-

tions fold() ◦ introF = ◦ F (fold()) expressing that the map fold(h) is an

F -algebra morphism for a given F -algebra (X, h). Indeed, the actual com-

putational interpretation of fold(h) for h :F (X) → X is given by the above

equation fold(h) ◦ introF = h ◦ F (fold(h)). It tell us that in order to define a

function from the data type it suffices to recursively apply h along the con-

structors of the data type. Unicity of fold(h) translates directly to an η-rule

for the data type. The fold operator represents a simple form of the kind of

elimination rules we have already met. These are a priori more general since

they allow the construction of dependent recursive functions out of a data

type: we can eliminate on types which might depend on elements of our data

type. However, by using Σ-types it can be shown that these two rules are

Background 27

interderivable. We sketch how to derive the fold operator from the elimina-

tion rule and vice versa by means of examples. We start giving a closer look

to the first implication (elimination implies recursion via a fold operator) by

looking at the simple example of the type N. In Section 2.2.2 we show how

to derive the elimination rule from the fold operator in the case of W-types.

We refer the reader to [44, 51, 52] for an abstract framework where general

induction schemes can be formulated and proved equivalent to the existence

of initial algebras.

Natural numbers object

Let us illustrate how initial algebra semantics can be used to model inductive

types through the analysis of the simple example of the type of N. We start

by giving a purely categorical definition of the type N.

Example 2.26 (Example 1.1 continued). A natural numbers object N in a

category C with terminal object and binary coproduct is the carrier of an

initial algebra for the endofunctor F :C → C whose action on an object X

is given by F (X) = 1 +X. �

As before, once we have defined N we can proceed further and define Ω.

Example 2.27 (Example 1.2 continued). Given a natural number object

N in C and assuming that it is an exponentiable object of C we define a

Brouwer ordinals object as the initial algebra for the endofunctor G :C→ C
defined by G(X) = 1 +X +XN. �

Let us now look at these definitions from the perspective of initial algebra

semantics. In Set an initial algebra for the functor F is given by the pair

(N, introF) where the carrier N is given by the formation rule in 2.16 and

introF : N1 + N → N is the structure map defined as introF =def [0, s], where

0 =def λx .0 : N1 → N and s =def λn. s(n) : N → N are defined by the in-

troduction rules in 2.16. Similarly, the structure map introG of an initial

algebra (Ω, introG) for the functor G defined in Example 2.27 is given by

[0, s, lim]: N1 + Ω + ΩN → Ω. Notice how formation and introduction rules for

an inductive type can be used to build the corresponding algebra.

28 Chapter 2

Weak initiality of (N, introF) can be derived from the elimination rule in

2.16 by instantiating the latter for a non dependent type P : the premises of

the rules asserts that P has an F -algebra structure given by [λ 01. d, λ y. e]

while the conclusion state the existence of a function λn. natrec(a, d, e) : N→
P . The computation rule ensures that this map is indeed an F -algebra

morphism. This is a direct translation of (N, introF) being weakly initial in

Set as the following diagram displays:

N1 N N

P P

0 s

d

e

λn. natrec λn. natrec

Using rules 2.14, 2.15 and 2.16 we can show that the morphism

λn. natrec(n, d, e) : N→ P

is indeed unique. We can also show that the elimination and computation

rules in 2.16 are derivable from the property of (N, introF) being initial. But

since this argument is completely analogous to the one we will use in Section

2.2.2 for W-types we do not give it here.

2.2.2 Initial algebra semantics of inductive types

A major step in the categorical understanding of inductive types has been the

formulation of a categorical semantics for W-types. This has been a common

theme for different group of researchers in recent years [36, 77, 46, 3]. In

order to capture a notion of a W-type in a category endowed with sufficient

structure, we turn to the language of initial algebra semantics. But first we

need to identify the right class of functors to look at.

In this section we present different schemata which define – modulo minor

differences – the same class of functors. Initial algebras for these functors

are exactly the W-types. The three approaches we present are polynomials,

containers and Inductive-Definitions. The main difference among the three

Background 29

consists in the choice of the syntactic objects used to represent the functors

we aim to capture: polynomials use arrows, containers use families while

Inductive-Definitions use codes. Being aware that the presentation will end

up being redundant we hope the reader will profit from this. In the rest of

the thesis we use all of these three different schemes to present an inductive

type depending on which aspects we want to highlight.

Containers

The notion of container and container functor has been extensively studied

in Abbott’s PhD thesis [1] and further refined and applied by Abbott and his

coauthors in a series of papers [3, 2, 4]. Containers are first class objects of

Martin-Löf type theory because they are nothing but families of sets. Thus

they provide a rather direct way to reason about inductive types inside type

theory.

Definition 2.28. A container is a pair (S, P) where S : Set and P :S →
Set. �

A metaphor informs the choice of the name container: each data type defined

by a container consists of a set of shapes S and for each shape s :S a set of

positions P (s) where data can be stored. A family of sets (S, P) can also

be regarded as representing a (single sorted) signature: the set of shapes S

represents the set of term-constructors while, for s :S, the set of its positions

P (s) represents the arity of the constructor represented by s. We will come

back to this in the next section. Every container defines an associated functor

on Set, called its extension.

Definition 2.29. Given a container (S, P), its extension is the functor

JS ,PKC : Set→ Set whose action on a set X is given by

JS ,PKC X =def (Σ s :S) (P (s)→ X) �

Abbott [1] develops the theory of containers in a fibrational setting. As

explained in Section 2.18 in [47] the notion of container and its extension

is modulo minor differences the same as that of polynomial and polynomial

functor and most of the theory can be developed in a locally cartesian closed

30 Chapter 2

category with a terminal object (see Section 1 in [47]). Therefore, we now

introduce the category of containers and recall some of its rich structure

which will be used in the rest of the thesis; more categorical analysis will

come in the next section.

Definition 2.30. The category of containers Cont has as objects contain-

ers, and as morphisms (S, P) → (S ′, P ′) pairs (u, v) where u :S → S ′ and

v : (Π s :S)P ′(u(s))→ P (s). �

To simplify the presentation and the categorical analysis we now introduce

the category Cont of containers defined on Set. We will use the category

Cont to show the rich categorical structure of the category of containers.

Definition 2.31. The category Cont of containers defined on Set has as

objects pairs (S, P) where S ∈ Set and P :S → Set, and as morphisms

(S, P) → (S ′, P ′) pairs (u, v) where u :S → S ′ and v : (Π s :S)P ′(u(s)) →
P (s).

Given a container (S, P) : Cont, its extension is the functor JS ,PKC : Set→
Set whose action on a set X is given by [JS ,PKC X =def (Σ s :S) (P (s) →
X). �

Remark 2.32. The category Cont can be easily seen to be nothing but the

category Fam (Setop) (see Section 3.2.3).

Theorem 2.33 (full and faithfulness of J KC). The extension function

J KC : Cont→ [Set,Set]

mapping containers to functors can be extended to a full and faithful functor

mapping container morphisms to natural transformations.

Proof. Define the component at X of J(u, v)KC as follows:

(Ju, vKC)X : (Σ s :S) (P (s)→ X)→ (Σ s′ :S ′) (P (s′)→ X)

(Ju, vKC)X(s, f) =def (u(s), f ◦ (v(s)))

Since every container is a sum of representable functors full and faithfulness

is just a consequence of full and faithfulness of the Yoneda embedding.

Background 31

Remark 2.34. Notice that in Theorem 2.33 we refer to natural transforma-

tion rather than strong natural transformation as in Theorem 2.47 below.

This is because in Set every endofunctor can be endowed of a canonical

strength compatible with naturality squares, making every natural transfor-

mation between endofunctor of Set automatically strong.

Lemma 2.35. Cont is a cocomplete cartesian closed category.

Proof. Since Cont = Fam (Setop) and Setop has all small connected colimits

Cont is cocomplete (cf. point 4 in Remark 3.10). The initial object is given

by (N0, !), the terminal object by (N1, λ x.N1). The coproduct of two con-

tainers (S, P) and (S ′, P ′) is given by (S × S ′, λ x. (P (π0(x)) + P (π1(x))))

while their product by (S × S ′, λ x. (P (π0(x)) × P (π1(x)))). This easily

generalize to arbitrary families of containers. To define exponentiation in

Cont Altenkirch et al. [12] noted that for a functor F : Set → Set one has

F JN1,AKC ∼= F ◦(A+) where (A+) is the functor X 7→ (A+X). It then follows

F JS ,PKC ∼= F (Σ s :S)J1 ,P(s)KC ∼= (Π s :S)(F ◦ (P (s) +)) which is a container if F

is, since Cont is closed under products and composition as shown below.

Given containers (S, P) and (S ′, P ′), their composite (S, P) · (S ′, P ′) is the

container (R,Q), defined as follows:

R =def (Σ s :S)(P (s)→ S ′)

Q((s, f)) =def (Σ p :P (s))P ′(f(p)).

This composition is compatible with the extensions of the corresponding func-

tors, i.e. we have J(S ,P) · (S ′,P ′)KC
∼= J(S ,P)KC ◦ JS ′,P ′KC. This composite

operation can be extended to morphisms between containers and reflected

in the semantics by Theorem 2.33. This operation gives also a bicategorical

structure to Cont which we do not pursue here (cf. Section 4.4 in [1]).

We now state the main result which makes containers relevant for our dis-

cussion of inductive types.

Theorem 2.36 (Theorem 5.2.2 in [1]). W-types are initial algebras for con-

tainers, i.e. µJS ,PKC = (WS)P and introJS ,PKC
= sup : (Σ s :S)(P (s) →

(WS)P)→ (WS)P .

32 Chapter 2

We will come back on this result in the next section. Now we focus on some

examples of containers representing simple inductive types in type theory.

Example 2.37 (Example 1.1 continued). The container whose initial algebra

is the set of natural numbers is (SN, PN) where SN = N2 and PN :SN → Set is

defined as P (02) = N0 and P (12) = N1. Notice that N has two constructors

of arity 0 and 1 respectively. These correspond to the two shapes of SN and

their corresponding positions. It is immediate to check that the extension of

(SN, PN) is the functor F (X) = 1 +X. �

Example 2.38 (Example 1.2 continued). The container representing the

functor whose initial algebra is the set of Brouwer ordinals has shapes SΩ =

N3 and corresponding positions PΩ:SΩ → Set given by P (03) = N0, P (13) =

N1, P (23) = N. �

Polynomial functors

The class of functors whose initial algebras are the categorical version of W-

types has been identified by Moerdjik and Palmgren [77] as what they dubbed

polynomial functors. The theory has been further developed by Gambino et

al. [46, 47]. The starting point of their analysis is Seely’s correspondence

between Martin-Löf type theory and locally cartesian closed categories (lccc)

(see e.g. [87, 27, 59, 30]). Therefore, to begin with, recall that in every lccc

we have for every f in C→ the following chain of adjunctions:

Σf a ∆f a Πf

where ∆f is the reindexing functor given by pulling back along f . In the

internal logic of C a morphism f :X → A can be represented through its

fibers as (Xa)a :A, where each Xa is given by f−1(a) = (Σx :X)(f(b) ≡A a).

Given a morphism f :B → A in C, the action of ∆f and its adjoint can then

be explicitly computed as follows:

∆f ((Xa)a :A) = (Xf(b))b :B

Σf ((Xb)b :B) = ((Σ b :Ba)Xb)a :A

Πf ((Xb)b :B) = ((Π b :Ba)Xb)a :A

Background 33

These functors allow us to define for each morphism f :P → S in C a specific

endofunctor on C, the polynomial functor Pf associated to f .

Definition 2.39. Given a map f :P → S the polynomial functor Pf :C→ C
associated to f is defined as the composite

C = C/1 C/P C/S C/1 = C
Πf∆!B Σ!A

�

Using the internal logic of C, the action on an object X ∈ C is given explicitly

by

Pf (X) = (Σ s :S)(Ps → X)

where we have used Ps to indicate the fiber of f above s. Without much

surprise, this functor can be recognized to be the same as the extension of a

container (see Definition 2.29). The name “polynomial” is justifyied by Pf
being a sum of products.

We now reason in Set to convince the reader that the class of polynomial

functors is the right one to look at in order to capture a categorical version

of W-types. This will also lead to a proof of Theorem 2.36.

We start by giving some intuition on the structure of a W-type. Note, as we

already done for families, that we can think of a morphism f :P → S in Set/S

as specifying a signature: the codomain S of f represents the set of term-

constructors, while the fibre Ps of f above an element s :S represents the arity

of the constructor represented by s. The W-type, Wf =def (W x :S)P (x), as-

sociated to the signature specified by f , corresponds to its free term algebra.

We can depict terms in a tree-like structure: each term corresponds to a tree

where the nodes are the elements of S while the set of edges departing from a

node s :S are labelled by elements p :Ps. To build a new term of the set Wf ,

or, which is the same, a new well-founded tree of the right type, we choose

an element s :S and, to each edge p :Ps coming out from that node we stick

another term in Wf . This construction builds a new tree sup (s, f) : Wf for

every s :S and for every function g :Ps →Wf , and it can be easily recognized

to correspond to the constructor sup in Rule 2.18 for the W-types Wf .

Now let us come back to initial algebra semantics. As noted in Section 2.2.2,

the constructors of an inductive type have their semantical counterpart in

34 Chapter 2

the structure map of the initial algebra. An initial algebra for Pf in Set is

given by the pair (Wf , sup :Pf (Wf)→Wf) where Pf (Wf) = (Σ s :S)(Ps →
Wf). Deriving initiality from the elimination and computation rules in 2.18

is obtained by instantiating these rules in the simple case when the type

(w : Wf ` Q(w) : Set) appearing there does not depend on w : Wf (we use

Q here where we used P in the rules 2.18 in order to avoid confusion with

the domain of f which we indicated with P to highlight the similiaries with

containers). Since we spell out the details for the inductive type N in Section

2.2.1 we will not repeat the same argument here.

Let us see how to derive the elimination and computation rule from initial-

ity. We express initiality of (Wf , sup :Pf (Wf) → Wf) by means of the fold

operator and its properties:

fold : (Pf (X)→ X)→ Wf → X

fold(h, (sup(s, g))) = h(s, λ p :Ps. fold(h, g(b)))

From the premises of the elimination rule we can form the set (Σw : Wf)Q(w)

and endow it with a Pf -algebra structure: observe that, by the type-theoretic

axiom of choice, we have

ac : (Σ s :S)(Ps → (Σw : Wf)Q(w)) ∼=
(Σ s :S)(Σm :Ps →Wf)(Π p :Ps)Q(mp)

and define the algebra h′ :Pf ((Σw : Wf)Q(w)) → (Σw : Wf)Q(w) to be the

composite h′ =def h◦ac, where h is as in the premisses of the elimination rule.

By initiality of Wf we get a unique map fold(h′) : Wf → (Σw : Wf)Q(w)).

Notice that π1 ◦ fold(h′) has type (Πx : Wf)Q(π0(fold(h′)(x))). This is the

type of wrec as long as fold(h′) is a section of π0. This follows from π0 being

a Pf -algebra morphism into the initial algebra sup so that π0 ◦ foldh′ = idWf
.

Finally, the computation rule is validated since the map fold(h′) is a Pf -
algebra morphism from (Wf , sup).

As already done for Cont we could introduce morphisms between polynomi-

als and show that the assignment X 7→ Pf (X) extends to a full and faithful

functor, but we will end up repeating ourselves. We defer the introduction

of the category Poly till Section 2.2.3 where we will describe it as a special

case of the category of dependent polynomials.

Background 35

We conclude by noting that the correspondence between containers and poly-

nomials can be linked to the correspondence between the representation of

dependent types as morphisms or as families. This correspondence can be

synthetically represented as a fibered equivalence between opposite fibrations,

as pictured below

Fam (Set)(op) (Set→)(op)

Set

dis

()−1

πop codop

However, this short description relies on the not so short definition of an op-

posite fibration (see Definition 1.10.11 [64]). The two categories (Fam Set)op

and (Set→)op are (morally) obtained respectively from Fam (Set) and Set→

by inverting vertical morphisms only; the two fibered functors dis and ()−1

associate, respectively, to a family its display map, and to a map its inverse

image:

dis((S, P)) = (Σ s :S)P (s)
π0−→ S (2.1)

(f :P → S)−1 = (S, λ s. (Σ p :P)f(p) ≡S s) (2.2)

Inductive Definitions

We finish this tour on initial algebra semantics of inductive types by present-

ing a third alternative. We introduce a third approach mainly for pedagogical

reason: indeed, this third alternative complements the polynomial/container

approach by getting closer to the syntax of induction-recursion we are going

to introduce in the next chapter.

The main idea is to internalize the notion of inductive type by representing

the syntax for describing inductive types itself as an inductive type: we

first build inductively a (large) type, ID, of codes for inductive definitions.

Semantics for these codes is then obtained as before associating to each code

a functor. The construction of the type ID can be thought of as inspired

36 Chapter 2

by the universe construction: we build a set of names to represent inductive

types and then we map each name to the functor it actually denotes. We now

give the formation and introduction rules to form the type ID. Elimination

and computation rules do not add any insight and can be easily deduced, so

we omit them.

Definition 2.40. The formation rule for ID is the following:

ID : type

The introduction rules for ID-codes are the following:

(ι)

ι : ID

(σ)
A : Set f :A→ ID

(σ Af) : ID

(δ)
B : Set ϕ : ID

(δ B ϕ) : ID

�

Now to each term γ : ID we associate an endofunctor on Set by induction on

the structure of the codes. We call a functor which interprets a code, an

ID-functor.

Definition 2.41. For γ : ID, define the ID-functor JγKID : Set→ Set by induc-

tion on the structure of the codes as follows:

(ι) if γ = ι then

JιKID X = N1

(σ) if γ = σ Af for some A: Set, f :A→ ID then

JσA f KID X = (Σ a :A)Jf (a)KID X

Background 37

(δ) if γ = δ B ϕ for some B : Set, ϕ : ID then

JδB ϕKID X = (B → X)× JϕKID X �

By a simple induction on the structure of the code we can show that every

ID-functor is an ID code is a container/polynomial functor. Vice versa, as

a simple exercise we show that the code for the container represented by

family (S, P) (or equivalently by a polynomial functor represented by a map

f :P → S) in Set is

σ S(λ a 7→ δP (s)(λ 7→ ι))

We compute the action on X : Set of the corresponding functor according to

Definition 2.41 as follows:

Jσ S (λ s 7→ δP(s)(λ 7→ ι))KID X = (Σ s :S)JδP(s)(λ 7→ ι)KID X

= (Σ s :S)(P (s)→ X)× JιKID X

= (Σ s :S)(P (s)→ X)× N1

∼= J(S ,P)KC X

As the example above shows, induction on the structure of the code represents

an easy and structural method to reason and prove properties on the universe

of inductive types. The idea to represent inductive types internally through

the introduction of the type ID has proved particularly successful in the

context of generic functional programming [17] whose central idea is to define

generic functions by induction on the definition of a data type in order to

profit in terms of reusability and adaptiveness of the programs. An example

of this elegant way to program is represented by the work of Dagand [31, 32]

on ornaments which uses a close axiomatization to the one presented here.

2.2.3 Initial algebra semantics of indexed inductive types

As in the unindexed case we want to characterize the class of functors whose

initial algebras are indexed inductive types. Since indices are an integral part

of these types we are led to apply the initial algebra semantics machinery to

more sophisticated categories where indices can be naturally taken into ac-

count. The natural way is to consider indices and indexed types as members

38 Chapter 2

of the same category of types and therefore to consider the natural indexing

which a category possess over itself by means of the slice construction.

To give a simple example of how initial algebra semantics can be used to

model indexed inductive types in slice categories consider the type Lam and

fin as seen in Example 1.4 and 1.3 respectively. We can represent the rule in

a natural deduction style as follows:

Example 2.42 (Example 1.3 continued). The type of finite sets is repre-

sented by a N-indexed data type, Fin : Nat → Set with the following intro-

duction rules

zero : fin(s(n))

x : fin(n)

succ(x) : fin(s(n)) �

Example 2.43 (Example 1.4 continued). The data type Lam : Nat→ Set is

a N-indexed data type with introduction rules:

x : fin(n)

Var(x) : Lam(n)

t : Lam(n) u : Lam(n)

App(t, u) : Lam(n)

t : Lam(s(n))

Abs(t) : Lam(n) �

Note that in order to define Lam(n) we cannot use just those terms of Lam(n)

that have already been constructed. Indeed, λ-abstraction make use of el-

ements of type Lam(s(n)). Therefore we have to build the family of types

Lam simultaneously. Since this is a N-indexed type the functor will have

type L : Set/N → Set/N. Each N-indexed type is interpreted as a morphism

f :X → N which we might conveniently represent fiberwise as (Xn)n : N. For

example, letting lam =def (Σn : N)Lam(n) we can represent Lam by its first

projection l =def π0 : lam → N whose fibre at n, lamn, is the set Lam(n) of

λ-terms with n free variables.

Example 2.44 (Example 1.4 continued). Given an object X
f−→ N of

Set/N, the map l representing Lam arises as the carrier of an initial algebra

for the functor whose action on the fiber Xn is given by

L(Xn) = Finn +Xn ×Xn +Xn+1

where Finn = (Σx : (Σm : N)(fin(m))(π0(x) ≡N n). As before, note how

the structure map of the initial algebra interprets the constructors of Lam:

Background 39

an initial algebra for L is a pair (l : lam → N, introL) where the structure

map introL :L(l) → l can be represented by a N-indexed family of functions

(introL)n : Finn + lamn × lamn + lamn+1 −→ lamn. Each of these maps is

equivalent to a triple of maps varn : Finn → lamn, appn : lamn × lamn → lamn

and absn : lamn+1 → lamn which interpret respectively the three constructors

Var, App and Abs of the indexed type Lam. The initial algebra (l, introL) can

then be displayed as follows:

L(lam) lam

N

[var, app, abs]

F (l) l

�

We now present a generalization of polynomials and their semantics which

takes into account indices. Similarly we show how the family approach to

dependent types informs the generalization from containers to indexed con-

tainers. We will see in Chapter 4 how to generalize the coding scheme for

ID.

Dependent polynomial functors

Exactly as it happens in algebra with the polynomial ring K[X] over a field K,

once the notion of polynomial function in one variable has been grounded, one

is naturally led to consider the polynomial ring K[X1, X2, . . . , Xn] of polyno-

mials functions in many variables. In the same vein dependent polynomials

arise as a natural generalization of polynomials. In the context of category

theory the step from one to many variables is performed by the operation

of slicing. This means that we do not confine our attention to endofunctor

defined on a lccc C but we allow for more general functors between slices of

C. This simple generalization allows us to take into account different form of

indices. The more general definition of dependent polynomial albeit a simple

generalization from one to many variables revealed itself as a natural notion,

which have applications in different branches of mathematics [47].

40 Chapter 2

Definition 2.45 (Dependent polynomial). A dependent polynomial in a lccc

C is given by a triple of maps F = (r, t, q) in C which can be arranged in the

following diagram

I P S O
tr q

To each of these triple F = (r, t, q) we associate a functor, PF , called the

extension of F or the dependent polynomial functor associated to F and

defined as the composite

C/I C/P C/S C/O∆r Πt Σq

In the internal logic of C the action of the functor PF = Σq ◦ Πt ◦∆r on an

object (X
f→ I) = (Xi)i :I is given by(

Σ s :So)(Π p :Ps)Xr(p)

)
o :O

�

Dependent polynomials with fixed indices I and O form a category. Below,

we recall the definition of the morphisms in this category. This gives the

category Poly(I ,O) of dependent polynomials and morphism between them.

Definition 2.46. A morphism between dependent polynomials F = (r, t, q)

and G = (r′, t′, q′) is given by a diagram of the form

P S

I P ′ ×S′ S S O

P ′ S ′

t

r q

t′

r′ q′

w

v

idS

u

h

where the bottom square is a pullback of u and t′. Thus a morphism

(r, t, q) → (r′, t′, q′) amounts to giving u :S → S ′ with q = q′ ◦ u and

w :P ′ ×S′ S → P with r ◦ w = r′ ◦ v. �

Background 41

Since dependent polynomials are interpreted as functors we expect mor-

phisms between dependent polynomials to be interpreted as natural trans-

formation between the corresponding extensions. This is indeed the case:

Theorem 2.47 ([47] Theorem 2.12). Given dependent polynomials F =

(r, t, q) and G = (r′, t′, q′), every strong natural transformation PF
·−→ PG is

represented in an essentially unique way by a commuting diagram as pictured

in definition 2.46.

This theorem ensures that the assignment F 7→ PF extends to a full and faith-

ful functor which is also bijective on objects. If we indicate with PolyFun(I ,O)

the full subcategory of [C/I,C/O] whose objects are dependent polynomial

functors and whose morphisms are strong natural transformation between

them, we obtain the following:

Corollary 2.48 (Representation). Let I and O be objects of a lccc C. Then,

the categories Poly(I ,O) and PolyFun(I ,O) are equivalent.

The relevance of this theorem is twofold: it ensures that the syntactic repre-

sentation given by diagrams is correct, and it enables the use of diagrammatic

arguments when reasoning about polynomial functors.

The theory of polynomial and polynomials functors which we developed in

Section 2.2.2 now reduce to the special case of the theory of dependent poly-

nomials where the indices I and O are both chosen to be the terminal object

of C.

Dependent polynomials have several interesting closure properties. Indeed

they are closed under sums, products, composition, parametrised initial al-

gebras, and differentiation. In Chapter 4 we use binary products and sums of

a family of dependent polynomials, therefore we now recall them. The sum

of a K-indexed family of dependent polynomials {Fk = (rk, tk, qk) | k ∈ K},
for an arbitrary set K, is the dependent polynomial (Σ k :K)Fk given by the

following diagram

I (Σ k :K)Pk (Σ k :K)Sk O
[rk]k∈K (Σ k :K)tk [qk]k∈K

42 Chapter 2

where (Σ k :K)tk = [ink ◦ tk]k∈K . From this definition it follows P(Σ k :K)Fk
∼=

(Σ k :K)PFk .
Assuming that a lccc C has initial algebras for polynomial functor, Gambino

and Hyland, generalizing a result in [77], have shown that every dependent

polynomial in Poly(I , I) has an initial algebra (Theorem 14 [46]). Initial

algebras for dependent polynomial functors are categorical counterpart of

Peterson-Synek’s general tree types (cf. Chapter 16 in [80]). If we think a

W-type as the free term algebra for a single sort signature, then the general

trees are a generalization of W-types to account for multi-sorted signature: S

is still the set of constructors and Ps the arity of the constructors s, but now

we have also the ability to distinguish between different input and output

sorts thanks to the indices I and O. A term in the tree is built according to

the following rule: nodes are labelled by elements s :S and an index q(s) :O

representing the output sort; edges above a node s :S are given by elements

p :Ps. Such an element p :Ps is likewise indexed by r(p) : I. This index

represents an input sort for the constructror s :S.

Indexed containers

As dependent polynomials generalize the notion of polynomial, the notion

of indexed container [79, 14] is the natural extension of containers into the

realm of indexed data types. Again, the only difference with dependent

polynomials consists in an explicit use of families rather than morphisms

to model dependent types, thus avoiding the use of identity types which is

intrinsic when reasoning fiberwise.

Definition 2.49 (Indexed container). An indexed container in Set with input

indices I : Set and output indices O : Set consists of a triple (S, P, n) where

S :O → Set

P : (Π o :O)(S(o)→ Set)

n : (Π o :O)(Π s :S(o))(P (o, s)→ I) �

The metaphor of shapes and positions still informs the idea of an indexed

container. Note, however, that in this case, both shapes and positions come

equipped with indices: each shape s :S(o), is equipped with an extra index

Background 43

o :O. And for such a shape s :S(o) we have a corresponding set of positions

P (o, s) where storing data which, likewise, come equipped with its own index

i : I through the function n.

We are now led to recall the notion of morphism between indexed containers

which corresponding to the type-theoretic data for a morphism in Poly(I ,O).

Definition 2.50. Given I, O : Set, a morphism between indexed containers

from (S, P, n) to (S ′, P ′, n′) is given by:

• a shape function : u : (Π o :O)(S(o)→ S ′(o));

• a position function: w : (Π o :O)(Π s :S(o))(P ′(o, (u(o, s)))→ P (o, s);

such that a coherent condition on input holds: for every o :O, s :S(o)

and p :P ′(o, (u(o, s))) we have n(o, s, (w(o, s, p))) = n′(o, (u(o, s)), p)

�

Indexed containers of input indices I and output indices O form a category

IC(I ,O). We write with bold fonts IC(I ,O) the corresponding notion of

an indexed container defined in Set. As it happens for polynomials and

dependent polynomials, the theory of containers presented in Section 2.2.2

is subsumed by that of indexed containers: containers are just those indexed

containers where the indices I and O are the singleton set N1. The category

Cont introduced in Section 2.2.2 is then the category IC(N1,N1).

The extension of an indexed container is defined as that of a dependent

polynomial, but it is more naturally given on indexed sets (or proof relevant

predicates).

Definition 2.51. The extension of an indexed container (S, P, n) is a functor

J(S ,P , n)KIC: Set I −→ Set O

whose action on an I-indexed set X : I → Set and output o :O is given by

the set

J(S ,P , n)KIC X o =def (Σ s :S(o))(Π p :P (o, s))X(n(o, s, p)) �

Chapter 3

Induction-recursion

Abstract In this chapter we present the theory of induction-recursion as

developed by Dybjer and Setzer in [38, 39, 40]. This theory extends the

theory of inductive and indexed inductive definitions as seen in the previous

chapter. We begin in Section 3.1 by looking at the notion of a universe as

the paradigmatic example of an inductive-recursive type. We then give an

axiomatic presentation of the theory of induction-recursion by building the

syntax and the semantics for inductive-recursive types in Section 3.2. Finally

we build a model within classical set theory augmented with a strong infinity

axiom in Section 3.3.

3.1 Universes

The term universe is pervasive in mathematics since it is linked to the idea of

universe of discourse. Boole [20] explains this use of the term in the following

passage:

Now, whatever may be the extent of the field within which all

the objects of our discourse are found, that field may properly be

termed the universe of discourse.

Informally universes are universes of discourse: collections of entities over

which certain variables of interest in some formal system may range; turning

this informal description – that can easily lead to circular arguments – into

45

46 Chapter 3

a formal one is something that any foundational theory had to deal with.

In this section we recall different, but closely related notions of universes,

which arose in the area of set theory and category theory. A common theme

underling these notions of universe is the distinction between small or closed

entities and large or open ones. Without any ambition of exhaustiveness,

we aim to give a gentle introduction to what can be considered the paradig-

matic example of an inductive-recursive definition: that is the idea of a type

theoretic universe.

3.1.1 Universes in set theory

In the theory of ZFC the set-theoretic universe, V =def {x |x = x} (compare

Section 2.3.1 in [45] or Section I.9 in [67] for this notation), the universe of

discourse, is described by axioms which are meant to characterize it. To give

an example consider the foundation axiom: it expresses the requirement that

every set in V is well-founded, i.e. no set has an infinite descending member-

ship sequence1. Via the cumulative hierarchy we can build the universe of

well-founded sets and express the axiom of foundation by requiring the two

universes to coincide:

Definition 3.1 (cumulative hierarchy). The cumulative hierarchy is defined

by transfinite recursion as follows

V0 = ∅
Vα+1 = ℘ (Vα)

Vλ =
⋃
β<λ Vβ for λ limit. �

By transfinite induction we can show that Vα =
⋃
β<α Vβ. The universe WF

is defined as WF =def

⋃
α Vα. The axiom of foundation is then equivalent

to the statement V = WF (cf. [67], Theorem 4.1). In a similar way we

can define by transfinite recursion the universe of constructible sets L. Let

L0 = ∅, Lα+1 = Def (Lα) and Lλ =
⋃
β<λ Lβ for λ a limit ordinal, where

Def(X) denote the set of definable subset of X, i.e those subset of X definable

by a property whose parameters and quantifiers range over X (for a definition

1For set theoretic universes with anti-foundation axioms see for example Aczel [8].

Induction-Recursion 47

of definability see e.g. Chapter V in [67]). Then L =def

⋃
α Lα and the axiom

of constructibility corresponds to the statement V = L.

However neither WF nor L can be asserted to be sets if we do not want to run

into paradoxes. They are indeed proper classes. These universes are built up

in stages indexed over the class ON of ordinal numbers and represent a view

of the universe V as open-ended and under-determined by the set theoretic

axioms. Already in Zermelo’s work, initial segments of WF were proposed as

models for the axioms of set theory. Zermelo [93] advocates a dynamic view

of sets that posits an endless succession of models of set theory:

“The two polar opposite tendencies of the thinking spirit, the idea

of creative advance and that of collection and completion, ideas

which also lie behind the Kantian ‘antinomies’, find their sym-

bolic representation and symbolic reconciliation in the transfinite

number series based on the concept of well-ordering. This series

reaches no true completion in its unrestricted advance, but pos-

sesses only relative stopping-points, just those ‘boundary num-

bers’ which separate the higher model types from the lower.”

The relative stopping-point Zermelo is referring to are the inaccessible car-

dinals (see Definition 3.29): indeed, if κ is an inaccessible cardinal, then Vκ

is a model of ZFC ([66], Proposition 1.2). This view of regarding inaccessible

cardinals as indices of the cumulative hierarchy corresponding to universes is

intimately tied in with the notion of a Grothendieck universe —a transitive

set U closed under pairs, powerset, and union of a family of elements of U

indexed by an element of U . Indeed, if U is as above with the additional re-

quirement ω ∈ U then the existence of a Grothendieck universe is equivalent

to the existence of an inaccessible cardinal. Clearly the existence of an in-

accessible cardinal cannot be proved inside ZFC otherwise ZFC would prove

its own consistency contradicting Gödel’s second incompleteness theorem.

Thus, the strong axiom of infinity, asserting the existence of an inaccessible

cardinal κ, is a genuine strengthening of ZFC, and can be considered the very

first step into the higher infinity, represented by the realm of large cardinals.

These axioms enable us to reflect properties of the open universe V into its

initial segments, that are then regarded as closed universes. One of the pi-

48 Chapter 3

oneers in this area, Paul Mahlo, investigated hierarchies of regular cardinals

formulated in terms of higher fixed point phenomena. Its universes will play

a pivotal role in the construction of the set theoretic model for the theory of

IR.

3.1.2 Universes in category theory

In category theory sizes do matter: the distinction between small and large

categories represents an important dichotomy raised at the very beginning

of any introduction to the subject. It is discussed for example by Eilenberg

and Mac Lane in their seminal work which dates the birth of the field ([41]

page 246). Let Set[V] be the category whose objects and morphisms are the

sets and the functions in V. The category Set[V] is inherently large, as any

other category arising from classes. But the notion of smallness can also be

regarded as a relative one: for example if we let Set[Vκ] to be the category

whose objects and morphisms are sets and function in Vκ for κ an inaccessible

cardinal, then we could call small any category whose collection of morphisms

is an object in Set[Vκ]. This is similar to the approach followed by Bourbaki

who introduced the notion of Grothendieck universe to accommodate larger

and larger categories in a set-theoretical framework. From this idea stems

the so called Grothendieck’s axiom, asserting that each set is contained in a

universe. Notice that, according to the axioms we want to validate, and the

number of constructions we want our universe to be closed under, different

levels of the cumulative hierarchy can be used: for example, Vω models all

the axioms of ZFC apart from infinity, and V2ω models all the axioms of ZFC

apart from replacement.

A well-studied and pivotal notion in category theory is that of a topos: it

offers, among other perspectives, the idea of a generalized universe of sets.

This way to regard a topos is attributed to Lawvere and it is validated by the

internal language associated to a topos [19]. Joyal and Moerdjik [65] realized

that an Heyting pretopos with a natural numbers object endowed with a

situable class of small maps could serve the purpose of a categorical frame-

work for both classical and intuitionistic set-theoretical universes. Their work

initiated the field of Algebraic Set Theory (AST for short). Heyting preto-

Induction-Recursion 49

poses and their associated internal language have been further investigated

by Maietti [70, 71] as a possible candidate for the notion of a categorical uni-

verse. More recently Moerdijk and Palmgren [78] have tried to deepen the

connection between AST and predicative systems by proposing ΠW-stratified

pseudotoposes as categorical universes apt to model Martin-Löf type theory

and CZF. Finally, by using a class of small maps analogous to that introduced

in AST, Streicher suggested a notion corresponding to that of a Groethendick

universe inside a topos [91].

3.1.3 Universes in type theory

We saw in Section 1.2 that inductive types can be thought of as built from

below as the union of stages in a process determined by some specific set

of rules (constructors). The idea behind a universe type is to reflect the

construction of inductive types: it encodes the process of construction of

inductive types by coding their rules (constructors). This meta-process al-

lows us to construct a type of types closed under certain type constructors

introduced at some earlier stage.

Universe types were introduced by Martin-Löf [74] to strengthen the language

of intuitionistic type theory and they soon became integral part of it [73]. To

understand how fundamental universes are in type theory it suffices to recall

Smith’s proof [89] that Martin-Löf type theory without universes cannot

prove ¬(a =A b) for any type A. In particular, this leads to the unprovability

of Peano’s fourth axiom, asserting that for any natural number n : N we

have ¬(s(n) = 0). Following the proposition-as-types paradigm, we can

understand the notion of a universe both as a collection of types closed under

certain operations, and as a set of constructively given infinitary formulas.

This latter meaning of universes has been used for example by Palmgren [84]

to give a modified realizability interpretation of infinitary constructive logic

in Martin-Löf type theory. However, here we are mainly concerned with the

former of these meanings, namely a universe as a type of types closed under

certain type constructors.

Being a collection of types, a type universe can be presented essentially in

two ways:

50 Chapter 3

(i) à la Russell, where we do not distinguish between denotans and de-

notatum, i.e. we identify the name of a set with the collection of its

elements. The formation rule for a universe U is:

U : Set
X : U
X : Set

(ii) à la Tarski, so called for the similarity with the definition of truth given

by Tarski: a universe is represented by a family of sets and we clearly

distinguish between the name of a set u : U and the actual collection

T(u) of elements it denotes. We then have the following formation rule:

U : Set
x : U

T(x) : Set

In what follows, we will always adopt formulations à la Tarski, regarding the

former as an informal version of the latter. Universes can then be presented

as families (U,T) where U is a set of codes, and T : U → Set is a decoding

function, that assigns its extension to every code; or, in other words, we can

think of U as a set of names and T as a map assigning to every name u : U

the set T(u) it denotes.

We specify that a universe contains certain ground types and reflects certain

type constructors via its introduction rules: these describe how canonical

elements of the universe are built. We introduce in U codes for ground types

and codes reflecting types constructors. Then T decodes them accordingly:

codes for ground types are mapped to their values and codes for type con-

structors applied to other codes are mapped to the value of the reflected

constructors applied to the corresponding types. We illustrate this by means

of a concrete example.

Example 3.2 (regular universes). We spell out introduction rules for a uni-

verse (UΣ(A,B),TΣ(A,B)) containing codes for a specific collection of sets

B(a), for a :A and closed under Σ-types. To increase readability in the fol-

lowing rules we refer to (UΣ(A,B),TΣ(A,B)) simpler as (U,T).

Induction-Recursion 51

Rule 3.3 (Regular universe).

a : A

B̂(a) : U
B̂(a) intro

â : U

T(B̂(a)) = B(a) : Set
B̂(a) reflection

a : U b : T(a) → U

Σ̂ a b : U
Σ̂ intro

a : U b : T(a) → U

T (Σ̂ a b) = (Σ T(a))(T ◦ b) : Set
Σ̂ reflection

�

A concrete example is given by a universe containing a code for natural

numbers and closed under Σ-types: we simply choose (A,B) to be (N1, BN)

where BN : N1 → Set is given by BN(01) = N. �

Universes described in Example 3.2 have been successfully used by Palmgren

[85] to define inductively generated formal topologies. They are called regular

universes since they represent the categorical counterpart of the notion of

regular cardinal in classical set theory and of regular set in constructive set

theory.

A universe can be closed not only under Σ-types but possibly also under

other type operators. Indeed, if we want to close our universe simultaneously

under other type constructors like +, Π or W, we simply add introduction

rules reflecting these constructors into U.

Rule 3.4 (Closure under type operators).

a : U a′ : U
a +̂ a′ : U

+̂ intro a : U a′ : U
T (a +̂ a′) = T(a) + T(a′) : Set

+̂ reflection

a : U b : T(a) → U

Π̂ a b : U
Π̂ intro

a : U b : T(a) → U

T (Π̂ a b) = (Π T a)(T b) : Set
Π̂ reflection

a : U b : T(a) → U

Ŵ a b : U
Ŵ intro

a : U b : T(a) → U

T (Ŵ a b) = (W T(a))T(b) : Set
Ŵ reflection

�

Notice the difference between the reflection rules for closing a universe under

a dependent type operator like Σ, Π and W, and the reflection rules for

52 Chapter 3

a non-dependent type operator like + : in the former we always have the

recursive function T appearing in the premisses of the rules, while this is not

the case for the latter.

Example 3.5 (finite universes). We define the first three finite universes.

Notice that in order to define these universes we need large elimination for

the sets N0,N1 and N2, since otherwise casei would not allow us to define a

recursive function with a large codomain.

• The empty universe (U0,T0), where U0 = N0 and T0: N0 → Set is the

unique map given by λx. case0(x).

• The singleton universe (U1,T1), where U1 = N1 TN1 : N1 → Set is given

by λ a. case1(a,N1)

• The boolean universe (U2,T2) where T2 : N2 → Set is the map defined

by λ a. case2(a,N0,N1). This is the universe used by Smith [89] to prove

independence of Peano’s fourth axiom from ML.

We can build a finitary universe by choosing our set of codes U to contain

codes for the sets N0,N1 and N2 which decodes accordingly, and adding rules

to close this universe under Σ and Π-types as in Rules 3.3 and 3.4. �

A noteworthy example of the use of universes in constructive mathematics

is represented by Aczel’s interpretation of CZF in Martin-Löf type theory,

dubbed as the set-as-trees interpretation (see e.g. [9]). The basic ingredient

of this interpretation is the construction of a type of iterative sets V as

defined in the following example.

Example 3.6 (The type of iterative sets). Let (U,T) be a type universe

containing codes for 0, N and closed under +, Σ, Π and identity types Id.

The type of iterative sets V is then V =def (W u : U)T(u). This definition

captures the inductive rule generating a universe of iterative sets ([7], page

22): “If A is a set of iterative sets then A is an iterative set”. V represents

a type theoretic version of the cumulative hierarchy of sets; we can use V to

encode in type theory membership diagrams as well-orderings which branch

over sets in a universe. �

Induction-Recursion 53

A universe, as it has been described so far by these example, is the smallest

set closed under certain specified set-forming operations. This suggests that

universes are similar to inductive types and that it should be possible to

capture the construction of the universes as a process itself and not just

treat it as a meta-process.

Hierarchy of universes and Super universes

Once we have built a universe (U,T) reflecting certain ground types and type

constructors, we can imagine to iterate this process: instead of building a

single universe, we can imagine having a tower of them built one above the

other. Thus, above a universe (U0,T0), we build another universe (U1,T1)

closed under the same type constructors and whose elements are all the sets

in (U0,T0) but also (U0,T0) itself; above (U1,T1) we build another universe

(U2,T2) in the same way, and so on.

This process allows us to see universes as uniform constructions as explained

by Palmgren [83]: assuming we have already built a universe (Un,Tn), then

we add rules to build the next universe (Un+1,Tn+1).

Un+1 : Set

x : Un+1

Tn+1(x) : Set

We specify in the introduction rules that (Un+1,Tn+1) contains as elements

all the sets in (Un,Tn) and also (Un,Tn) itself:

un : Un+1

Un intro
Tn+1(un) = Un Un reflection

a : Un

tn a : Un+1

Un−el intro
a : Un

Tn+1(tn a) = Tn(a)
Un−el reflection

Then we add rules specifying that (Un+1,Tn+1) is closed under the same type

operators which were already reflected in (Un,Tn): these rules are formulated

as in Rule 3.3 and 3.4.

The construction of (Un+1,Tn+1) depends on the family (Un,Tn) only. To

express that (Un+1,Tn+1) is built above the previous universe we coded the

family (Un,Tn) in (Un+1,Tn+1): the process described is the same as in Ex-

ample 3.2 where we built a universe closed by Σ and containing codes for a

54 Chapter 3

specific collection of sets B(a) where a :A. Notice, however, that this time

we do want to encode the entire family (Un,Tn): consequently we have also

added a code for the index set of the family, Un.

This process can be seen in itself as an operator taking a family (A,B) as

input and giving back the universe (U(A,B),T(A,B)) above it as output.

The universe operator has formation rules given by

A : Set B :A→ Set
U(A,B) : Set

x : U(A,B)

T(A,B, x) : Set

and introduction rules given by

Â : U(A,B)
Â intro

T(A,B, Â) = A Â reflection

a :A
t a : U(A,B)

B̂(a) intro
a :A

T(A,B, t a) = B(a)
B̂(a) reflection

In addition, we can add rules specifying that the universe (U(A,B),T(A,B))

is closed under certain type constructors. The hierarchy of universes de-

scribed above can be recovered as a recursive definition using (U0,T0) as

initial family and letting Un+1 =def U(Un,Tn) and Tn+1 =def T(Un,Tn).

The super universe

The analysis of universes as a uniform construction and the formulation of a

universe operator (U(,),T(,)) have set the ground to investigate a more

powerful notion of universes. Indeed the universe operator is now just an op-

erator acting on families: we can imagine to build a universe closed not only

by the usual type constructors but also under the universe operator. Palm-

gren [83] formalizes this intuition in the definition of a super universe. Let

(V, S) denotes the family of sets representing the super universe. We express

the essential property of closure under the universe operator by adding codes

for the universe operator. This operator does not take arbitrary families as

input but internal families, i.e. families which are coded in the super uni-

verse. An internal family in (V, S) is a pair (v, s) where v : V and s : S(v)→ V.

Notice that we have already used internal families when specifying introduc-

tion rules to reflect dependent type constructors like Σ,Π and W: in those

Induction-Recursion 55

cases we considered families (a, b), with a : U and b : T(u) → U, internal to

the universe (U,T) we were defining.

The introduction rules to reflect the type universe operator (U(,),T(,))

in (V, S) are:
v : V s : S(v)→ V

u(v, s) : V
Û(v,s) intro

v : V s : S(v)→ V

S(u(v, s)) = U(S(v), λ x. S(s(x)))
Û(v,s) reflection

v : V s : S(v)→ V z : S(u(v, s))

el(v, s, z) : V
Û(v,s)−el intro

v : V s : S(v)→ V z : S(u(v, s))

S(el(v, s, z)) = T(S(v), λ x. S(s x), z)
Û(v,s)−el reflection

These rules state that an element in V is either a code u(v, s) for an internal

family (v, s) or a code for an element el(v, s, z) in the universe built above

the lifting of an internal family, where the lifting of an internal family (v, s)

is the family (S(v), S ◦ s). Then S decodes these elements accordingly.

3.2 Inductive-recursive definitions

Some peculiarities in the universes’ construction do not allow us to include

universes among inductive or indexed inductive definitions: note indeed how,

in the introduction rules given in Example 3.2 to define a regular universe,

U and T depend on each other. T is recursively defined on U, and therefore

it obviously depends on it, but also U depends on T since T appears, in a

negative position, in the introduction rule for U. Therefore we have a mutual

dependency of U and T: we simultaneously define the set U inductively and

the function T recursively. This mutual dependency is even more evident if

we express the definition of (U,T) in Example 3.2 by means of equations.

Such a universe can be seen as the least family of sets (X,T) satisfying

X ∼= A+ (Σx :X)(T (x)→ X)

T (inl(a)) = B(a)

T (inr (x, f)) = (Σ y :T (x))(T (f(y))) .

(3.1)

56 Chapter 3

The analysis of more sophisticated types such as universe types, has led Dy-

bjer to formulate a schema which generalizes the notion of inductive families

(or indexed inductive type) [37]. The central insight of Dybjer was that in

order to accomodate universes in the realm of inductive definitions, we need

to enlarge this notion so as to capture definitions where we simultaneously

define a set X and a recursive function T :X → D from X into another type

D. This intuition led him to formulate the notion of an inductive-recursive

definition. The mutual dependency of X and T informs the use of the adjec-

tive “simultaneous” used by Dybjer [37] to describe an inductive-recursive

definition.

The definition of an inductive-recursive type goes very much like the one for

an inductive types in ID (Definition 2.40). Indeed, the theory of induction-

recursion, IR for short, consists of:

(i) an inductive definition of a syntax to represent IR-definitions of types;

(ii) a semantics mapping element of the syntax into functors.

Elements of the syntax are called IR-codes, while functors associated to IR-

codes are called IR-functors. An inductive-recursive type is the initial algebra

for an IR-functor.

3.2.1 Syntax of induction-recursion

The original presentation of induction-recursion given by Dybjer in [37] was

as an external schema. Dybjer and Setzer developed further the theory to

internalize the concept of inductive-recursive definition: in [38] a finite axiom-

atization of the theory was developed through the introduction of a special

type of codes for inductive-recursive definitions. This inductive definition of

inductive-recursive codes which we recall below is completely analogue to the

axiomatization of inductive definitions, ID.

IR-codes

For any type I, O we can form the type IR(I ,O), with formation rule:

I, O : type

IR(I ,O) : type (IR-formation)

Induction-Recursion 57

Similarly to what happens for the type ID we have three constructors which

build term (codes) for the type IR(I ,O).

Definition 3.7 (IR-codes). Let I, O: type. The type of IR(I ,O)-codes has

the following constructors

o :O
ι o : IR(I ,O) (IR-ι intro)

A : Set f :A→ IR(I ,O)

σ Af : IR(I ,O) (IR-σ intro)

A : Set F : (A→ I)→ IR(I ,O)

δ AF : IR(I ,O) (IR-δ intro)

�

Remark 3.8. In this definition we have departed from the original presen-

tation of Dybjer and Setzer [38, 39] in two minor ways:

1. Dybjer and Setzer consider inductive-recursive definitions for a unique

type parameterD, while in the above definition we build a type IR(I ,O)

where positive and negative occurrences of the type D are separated.

2. We have used the type Set where Dybjer and Setzer use stype which is

a type of small types, and it represents an intermediate level between

type and Set. In their axiomatization of the Logical Framework, the

type stype is a copy of Set, and it is introduced because they do not

have rules to introduce elements of Set but leave the task of defining

them to the theory of induction-recursion (see [37], page 4, and Section

3.2 in [39]).

We will come back to discuss this coding scheme in the next section, once we

have recalled the functorial semantics for these codes. For completeness we

now state the elimination an computation rules for the type IR(I ,O).

58 Chapter 3

Elimination for IR-codes

(Elimination rule):

γ : IR(I ,O)
γ : IR(I ,O) ` P (γ) : type
o :O ` a(o) :P (ι o)

A : Set, f :A→ IR(I ,O), g : (Π a :A)P (f(a)) ` b(A, f, g) :P (σ Af)
B: Set, F : (B→I)→ IR(I ,O), h: (Π g:B→I)P (F (g)) ` c(B,F, h):P (δ B F)

elimIR(I ,O)(γ, a, b, c) :P (γ)

(Computation rule). Under the same premises of the elimination rule the

following equalities hold:

elimIR(I ,O)(ι o, a, b, c) = a :P (ι o)

elimIR(I ,O)(σ Af, a, b, c) = b(A, f, λ x. elimIR(I ,O)(f x, a, b, c)) :P (σ Af)

elimIR(I ,O)(δ B F, a, b, c) = c(B,F, λ x. elimIR(I ,O)(F (x), a, b, c)) :P (δ B F)

Every time we prove a property of IR(I ,O)-codes we are appealing to these

rules, and, from now on, we will just write write “by induction on the struc-

ture of the codes. . . ” for such an argument.

3.2.2 Semantics of induction-recursion

Inductive-recursive definitions generalize both inductive and indexed induc-

tive definition. To capture the latter from a categorical perspective we used

initial algebra semantics. Therefore we expect the same tools to adapt to

inductive-recursive types. Below we define IR-functors by showing how to

associate to each IR-code a functor whose initial algebra is an inductive re-

cursive type. But first we need to understand what are the relevant categories

where these functors actually live. In the next section we survey all relevant

facts about the category of families which will be used for this purpose and

throughout the rest of the thesis.

3.2.3 The Fam construction

Definition 3.9. Given a category C the category Fam (C) has objects pairs

(X,T) where X : Set and T :X → C is a functor which we can think as an

Induction-Recursion 59

X-indexed family of elements of C. A morphism between objects (X,T) and

(Y,Q) is a pair (h, k) where h :X → Y is a function in Set, and k :T
·→

Q ◦ h is a natural transformation, whose component at x :X is a morphism

kx :T (x)→ Q(h(x)) in C. We picture such a morphism as follows:

X Y

C

h

T Q
k

�

We recall some of the properties of Fam (C) which will be used in the rest

of this thesis:

Remark 3.10. For any category C, the category Fam (C) automatically has

a rich structure:

1. Fam (C) is fibred over Set via the functor π : Fam (C) → Set defined

by π(X,T) = X and π(h, k) = h (see Example 6.6 in Section 6.2).

2. Fam (C) is the free Set-indexed coproduct completion of C; that is,

Fam (C) has all set-indexed coproducts and there is a unit C→ Fam (C)

universal among functors F :C→ D where D is a category with set in-

dexed coproducts. Given an A-indexed collection of objects (Xa, Ta)a :A

in Fam (C), its A-indexed coproduct which we write (Σ a :A) (Xa, Ta)

is the family

((Σ a :A)Xa, [Ta]a :A)

3. If a category C has (chosen) coproducts then we can define a func-

tor Σ : Fam (C) → C which sends a family of objects to their set-

indexed coproduct, and a family morphism (f, g) where f :A→ A′ and

gx :B(x)→ B′(f(x)) to the cotuple

Σ(f, g) = [inf(x) ◦ gx]x :A : (Σx :A)B → (Σx′ :A′)B′.

We call Σ(f, g) the generalised sum of g over f . If f = id, we simply

write (Σ a :A)ga for the sum. The functor Σ : Fam (C) → C is left

60 Chapter 3

adjoint to the functor η :C → Fam (C), sending an object c to the

family (N1, λ x. c).

4. Fam (C) is cocomplete if and only if C has all small connected colimits

(Carboni and Johnstone [24, dual of Prop. 2.1]).

5. Fam− is a functor CAT→ CAT; given F :C→ D, Fam F : Fam (C)→
Fam (D) is given by composition, i.e. Fam F (X,T) = (X,F ◦ T).

If we use constructive sets in Set in palce of elements of Set to index our

families, we get a constructive version of the families’ construction. This will

be the basic category used to interpret inductive-recursive definitions.

Definition 3.11. Given a category C the category Fam (C) has (i) objects

pairs (X,T) where X : Set and T :X → C is a functor; (ii) morphisms be-

tween objects (X,T) and (Y,Q) are pairs (h, k) where h :X → Y is a function

in Set, and k :T
·→ Q ◦ h is a natural transformation �

In several places we will make use of the following simple observation, which

will turn out to be crucial for the interpretation of IR-codes as functors.

Observation 3.12. When C is a discrete category a morphism between

families (X,T) and (Y,Q) consists of functions h :X → Y such that T (x) =

Q(h(x)) for all x in X.

Remark 3.13. Given a type D : type we can think D as the discrete cate-

gory |D| whose objects are its terms d :D and whose only morphism are the

identities refl : d ≡D d.

IR-functors

As already observed, a universe (U,T) is family of sets, i.e. U : Set and

T : U → Set. Thus on a categorical ground we are naturally led to consider

it as an object of Fam (Set). This, however, is not quite true: as we are

going to see, to define proper functors with an action on morphisms, as

well as on objects, we have to restrict the action of these functors to the

subcategory Fam|Set| whose morphisms are morphisms (h, k) in Fam (Set)

such that k = id (this observation can be traced back to Mendler [76] who

Induction-Recursion 61

firstly gave a categorical account of type universes). More generally, since

the recursive function T of an inductive-recursive type (U,T) can target an

arbitrary type D we will consider functors on Fam|D | where |D| is trivially

the discrete category associated to a type D (cf. Remark 3.13). We refer to

a morphism in Fam|D | simply as h instead of (h, id) (see Observation 3.12).

In particular, the functor interpreting a code γ : IR(I ,O) will have type

JγK : Fam|I | → Fam|O |

Definition 3.14 (IR-functors). Let I, O : type, γ : IR(I ,O) and (X,T) an

object of Fam|I |. Define JγK : Fam|I | → Fam|O | by induction on the structure

of the code as follows:

(ι) if γ = ι o for some o :O, then

Jι oK (X,T) = (N1, λ x . o)

(σ) if γ = σ Af for some A : Set, f :A→ IR(I ,O), then

JσA f K (X,T) = (Σ a :A) Jf (a)K (X,T)

(δ) if γ = δ B F for some B : Set, F : (B → I)→ IR(I ,O), then

JδB F K (X,T) = (Σ g :B → X) JF (T ◦ g)K (X,T) �

Notice that the interpretation of both a σ-code and a δ-code make essential

use of Set-indexed coproducts of families, as defined in Remark 3.10(2): in

particular, the interpretation of a code δ B F is a sum over the function space

(B → X) which is a set since both B and X are.

Remark 3.15. Dybjer and Setzer give the semantics in two steps by speci-

fying the action of a functor JγK on a family (X,T) in the two components2

(JγK0(X,T), JγK1(X,T)) where JγK0(X,T) : Set and JγK1(X,T) : JγK0(X,T)→
O. The use of coproducts in Fam|I | enable us to give a more compact defi-

nition of both the action on objects and on morphisms.

2They use (Arg(γ,X, T), Fun(γ,X, T)) and (FUγ (X,T),FTγ (X,T)) as notation for the

two components respectively in [38] and [39].

62 Chapter 3

Remark 3.16. We interpret codes as functors on Fam|D | while Dybjer and

Setzer [39] originally gave a semantics using functors on Type/D, where Type

is the syntactic category arising from the judgments of the logical framework.

In their axiomatization IR-functors are first introduced to act on families

(X,T), where X : Set, and then extended to act on large families (X,T),

where X : Type. However, since we want the initial algebra for an IR-functors

to be a family with small domain, i.e. with X : Set we can avoid this roundtrip

by considering functors on Fam|D | only.

We now give the action of IR functors on morphisms of families. Given

h : (X,T)→ (X ′, T ′) in Fam|I | we have: the action of the functor Jι oK on h

is nothing but the identity morphism on the family (N1, λ . o)

Jι oKh = idN1

The action of the functor JσA f K on h is given by the sum of the A-indexed

family of morphisms (Jf aKh)a∈A (cf. Remark 3.10(3))

JσA f Kh = (Σ a :A) Jf aKh

The action of JδB F K on h is the generalized sum (cf. Remark 3.10(3)) of

JF (T ◦ g)Kh over λ g. (h ◦ g) which we write as

JδB F Kh = Σ (λ g. h ◦ g, λ g. JF (T ◦ g)Kh) (3.2)

We spell out the details of this concise definition. This will help us to point

precisely where the restriction on discreteness arise, i.e. why we consider

functors on Fam|Set| in respect to Fam (Set) when, for example, I is Set. We

want to exhibit a morphism(
(Σ g :B → X)JF (T ◦ g)K(X,T)

)
→
(
(Σ g′ :B → X ′)JF (T ′ ◦ g ′)K(X ′, T ′)

)
Being a morphism from a coproduct we need a morphism for each component

JF (T ◦ g)K (X,T) of the sum. We can use post-composition with h :X → X ′

to get a function between the index sets of these sums, (λ g. h ◦ g) : (B →
X)→ (B → X ′). Now we make essential use of the assumption that we are

working in Fam|I | where the second component of a morphism is an identity:

Induction-Recursion 63

since T =X→I T
′ ◦ h we can deduce T ◦ g =B→I T

′ ◦ h ◦ g and use the action

of JF (T ◦ g)K = JF (T ′ ◦ h ◦ g)K on the morphism h given by the inductive

hypothesis. Composing JF (T ′ ◦ h ◦ g)Kh with the injection

inh◦g: JF (T ′ ◦ h ◦ g)K(X ′, T ′)→ (Σ g′ :B → X ′)JF (T ′ ◦ g ′)K (X ′, T ′)

give us the desired map: indeed [inh◦g ◦ JF (T ◦ g)Kh]g B→X is the same as

in equation (3.2) above, once we have expanded it with the definition of

generalized sum.

The axiomatization of IR we gave with the three constructors ι, σ and δ stems

from a careful analysis by Dybjer and Setzer [39] of the introduction rules of

the usual set-constructors in Martin-Löf type theory. Dybjer and Setzer dis-

tinguish between inductive and non-inductive arguments in the premisses of

a constructor. A non-inductive argument is an argument where elements of a

previously constructed set occur. For example, the premises of the introduc-

tion rule for the type (Σ a :A)B(a) consists of two non-inductive arguments:

an element a :A and an element b :B(a), where the second argument depend

on the first directly. An inductive argument is a premise where elements of

the set we are currently building occurs. For example in the introduction

rules for N the constructor 0 has no arguments and the constructor s has

one inductive argument n : N. Later premises cannot depend on an inductive

argument directly (since we are currently building the elements of the set

occurring in an inductive argument). But they can depend on it indirectly.

Here, the recursive function T defined simultaneously with the inductive set

U enter the scene. Consider the universe in Example 3.2: U has two con-

structors: the first has one non-inductive argument a :A, while the second

has two inductive arguments a : U and b : T(u) → U. The latter is an induc-

tive argument which depends on a previous inductive argument indirectly via

T. The three constructors ι, σ and δ corresponds to this analysis: the code ι

represents a base case, i.e. it represents those constructors with no argument

at all. The code σ represents constructors with non-inductive arguments and

the code δ represents those with inductive arguments.

64 Chapter 3

3.2.4 A coding scheme for IR based on Cont

Ghani and Hancock [50], following an observation of Altenkrich, give a dif-

ferent coding scheme for IR(I ,O)-codes based on containers. This also offers

an alternative but equivalent presentation of the semantics. The idea is to

keep the ι constructor and to merge the σ and the δ constructors together

into a single constructor σδ which now depends on a container (S, P). Simi-

larly the function f and the (large) function F respectively in the premises

of a σ-code and of a δ-code, are also merged into a single function G whose

domain is the extension of the container (S, P). To avoid possible confusion

between the semantics brackets for IR-functors and the container extensions

we adopt the following alternative notation for the latter:

Notation 3.17. We indicate with (S � P) the extension of a container (S, P)

(cf. Definition 2.29).

The introduction rule for the σδ constructor is the following

(S, P) : Cont G : (S � P) I → IR(I ,O)

σδ (S, P)G : IR(I ,O)

We interpret a code σδ (S, P)G : IR(I ,O) as the functor

Jσδ (S ,P) GK : Fam|I | −→ Fam|O |

whose action on a family (X,T) : Fam|I | is

Jσδ(S ,P)GK (X,T) =(Σ s :S) (Σ g :P s→ X) JG(s ,T ◦ g)K(X,T)

=Σ (s, g) : (S � P)X. JG(s ,T ◦ g)K(X,T)

=Σ (s, g) : (S � P)X. JG((S � P)T (s , g))K(X,T)

where in the last line we used the action of (S � P) on morphisms, given by

simple composition. We can now check that the two schemes actually define

the same class of functors.

Lemma 3.18. The coding scheme given in Definition 3.7 and the coding

scheme obtained by replacing the σ and δ constructors there by the single

σδ constructor as given above define the same class of functors.

Induction-Recursion 65

Proof. By induction of the structure of the codes we build maps ϕ and ψ

between the sets of codes obtained by the two schemes. In one direction ϕ

maps a code σδ (S, P)G to the code σS(s 7→ δ (P s)ϕ(G(s,))) which belong

to the original coding scheme given in Definition 3.7. In the other direction

ψ maps a code σ Af to the code σδ((A, λ a.N0))(x 7→ ψ(f(π0(a)))), and a

code δ B G to the code σδ(N1, λ x.B)(y 7→ ψ(G(π1(y)))). Checking that the

semantics is preserved follows immediately from the definitions.

3.2.5 Introduction and elimination rule for IR-types

We presented the theory of IR from the perspective of initial algebra seman-

tics: an IR-code γ : IR(D ,D) defines an IR-functors JγK : Fam|D | → Fam|D |;
the IR-type (Uγ,Tγ) : Fam|D | defined by γ is precisely the carrier of the initial

algebras (µJγK, introJγK) for this functor. We can express this principle in a

natural deduction style as follows (below we write an IR-functor as given by

a pair (JγK0, JγK1) as in Remark 3.15):

a : JγK0(Uγ,Tγ)

introJγK(a) : Uγ

a : JγK0(Uγ,Tγ)

Tγ(introJγK(a)) = JγK1(Uγ,Tγ) a

Thus, it is natural for us to assume a simple elimination rule corresponding

to the recursion principle given by the fold operator (see Section 2.2.1) asso-

ciated to an IR-functor. However, it is also possible to formulate an induction

principle for IR-types in terms of an elimination rule [39] analogous to those

given for the other types in the theory.

To this end, for each code γ : IR(I ,O), we define a set IHγ((X,T), P, x) by

induction on the structure of γ (see Section 3.5 in [39] for the details). This

set collects the inductive hypothesis for a predicate x :X ` P (x) : type on a

given family (X,T), and elements x : JγK0(X,T).

X : Set T :X → Set y :X ` P (y) : type x : JγK0(X,T)

IHγ(X,T, P, x) : type

66 Chapter 3

The induction principle for (Uγ,Tγ) can now be stated as follows:

u : Uγ

x : Uγ ` P (x) : type
a : JγK0(Uγ,Tγ), p : IHγ(Uγ,Tγ, P, a) ` g(introJγK(a), p) :P (introJγK(a))

elimJγK(u, P, g) :P (u)

(JγK−elim)

To deal with the recursive calls in the computation rule we need to be able to

define elements of IHγ((X,T), P, x) from the values of a recursively defined

function g on the inductive arguments u : Uγ. For this purpose Dybjer and

Setzer define a map IHγ
map:

X : Set T :X → Set x :X ` P (x) : type y :X ` g(y) :P (y)

IHγ
map(X,T, P, h) : JγK0(X,T)→ IHγ(X,T, P, x)

We can then state the computation rule as follows:

x : Uγ ` P (x) : type u: JγK(Uγ,Tγ)
a : JγK0(Uγ,Tγ), p : IHγ(Uγ,Tγ, P, a) ` g(introJγK(a), p):P (introJγK(a))

elimJγK(introJγK(u), P, g) =
g(u, IHγ

map((Uγ,Tγ), P, λx.elimJγK(x, P, g))(u)):P (introJγK(u))

(JγK−comp)

As proved by Dybjer and Setzer ([39], Theorems 4.4.1 and 4.4.3), the elim-

ination and computation rules stated above are equivalent to asserting that

(Uγ,Tγ) is an initial algebra for JγK. The proof of this fact follows a pattern

similar to the argument we have used in 2.2.2.

Remark 3.19. Notice that, since we want the elimination principle for IR-

types to account for recursive functions T :X → D, where D can be a large

type (as in the universe construction where D = Set), we need to adopt the

large elimination rule, where the predicate P in the rule is a type-valued

predicate (see also [37] for further discussion on this), rather than a Set-

valued predicate.

3.2.6 Indexed induction-recursion

Dybjer and Setzer did not stop just at inductive-recursive definitions but

they went on to define the next level of data types: they introduced [40] the

Induction-Recursion 67

theory of indexed induction-recursion, IIR for short. In a concise form: IIR-

types are to IR-types as indexed inductive types are to inductive types. That

is, within indexed inductive-recursive definitions we add indices on which

an inductive-recursive type might depend. This can be useful if we want to

define simultaneously a family of sets X : I → Set and recursive functions

T : (Π i : I)(X(i) → D(i)) out of it, in such a way that elements in different

sets of the family are mapped into different types. Noteworthy examples of

indexed inductive-recursive types are: (i) the Tait-style computability pred-

icates for dependent types used by Martin-Löf to prove normalization of

his system [74], (ii) Palmgren’s higher order universes [83] which general-

ize the super universe construction (cf. Section 3.1.3) and (iii) the Bove and

Capretta’s method to define nested general recursive functions in type theory

[22]. Below, we recall the syntax of IIR:

Definition 3.20 (IIR). Formation rule:

I, J : Set i : I ` D(i) : type j : J ` E(j) : type

IIR(D ,E) : type

Introduction rules:

j : J e :E(j)

ι(j, e) : IIR(D ,E) (IIR− ι− intro)

A : Set f :A→ IIR(D ,E)

σ Af : IIR(D ,E) (IIR− σ− intro)

B : Set g :B → I F : ((Π b :B)D(g(b)))→ IIR(D ,E)

δ B g F : IIR(D ,E)

(IIR− δ− intro)

�

Codes of type IIR(D ,E) are interpreted as functors between I-fold product

of categories of families defined in the following way:

68 Chapter 3

Definition 3.21. Given I : Set and discrete categories |D(i)| for i : I the

category (Π i : I)Fam|D(i)| has

- objects are pairs (X,T) where X : I → Set, T : (Π i : I)(X(i)→ D(i)),

- morphisms from (X,T) to (Y,Q) consists of a function h : (Π i : I)(X(i)→
Y (i)) such that T i = (Q i) ◦ h(i). �

Dybjer and Setzer [40] note that, assuming extensional rules, the category

(Π i : I)Fam|D(i)| can be presented as a category of families exactly like one

where IR-functors are interpretated.

Lemma 3.22. Assuming rules 2.14, the category (Π i : I)Fam|D(i)| is equiv-

alent to the category Fam (Σ i : I)|D(i)|, where (Σ i : I)|D(i)| is the I-indexed

coproduct category of the discrete categories |D(i)|. The latter has objects

pairs (U, T) where U : Set and T :U → (Σ i : I)D(i).

Proof. We give the two mappings on objects which are inverse to each other.

The action on morphisms easily follows.

ϕ : (Π i : I)Fam|D(i)| → Fam|(Σ i : I)D(i)|
ϕ(X,T) = ((Σ i : I)X(i), (Σ i : I)(T (i,−))

θ : Fam|(Σ i : I)D(i)| → (Π i : I)Fam|D(i)|
θ(Y,Q) = ((π0 ◦Q)−1, π1 ◦Q ◦ π0)

where we have used (Σ i : I)(T (i,−)) : (Σ i : I)X(i)→ (Σ i : I)D(i) in the def-

inition of ϕ to indicate the generalized sum of T (i,−) as defined in Remark

3.10, and π1 ◦Q ◦ π0 : (Π i : I)((π0 ◦Q)−1)(i)→ D(i) in the definition of θ to

indicate the function λ i : I.λ x : (Σ y :Y)(π0(Q(y)) ≡I i). π1(Q(π0(x)))

Dybjer and Setzer [40] uses these two equivalent categories to distinguish

between a general and a restricted version of the theory of IIR, depending

on the role the index I plays: in the restricted version an IIR-functor on

(Π i : I)Fam|D(i)| is uniquely determined by its components, i.e. determined

by its projection on Fam|D(i)| and therefore I acts parametrically. In the

general version the indices i : I for elements u :U(i) are not fixed in advance,

Induction-Recursion 69

but they are built on the way the elements u are introduced. The two corre-

sponding theory are equivalent assuming the extensional rules 2.14. There-

fore, we will not distinguish between restricted and general IIR, and we give

here the restricted version. We interpret a code γ : IIR(D ,E) as a functor

JγK : (Π i : I)Fam|D(i)| → (Π j : J)Fam|E (j)|

Definition 3.23 (IIR-functors). Let i : I ` D(i) : type and j : J ` E(j) : type

be valid judgments, γ : IIR(D ,E) and (X,T) an object of (Π i : I)Fam|D(i)|.
Define JγK : (Π i : I)Fam|D(i)| → (Π j : J)Fam|E (j)| by induction on the struc-

ture of the codes as follows:

if γ is ι (j, e) for j : J and e :E(j) then

Jι (j , e)KIIR(X,T) = λ j′. (j ≡J j′, λ . e)

If γ = σ Af for A : Set f :A→ IIR(D ,E), then

JσA f KIIR(X,T) = (Σ a :A)Jf aKIIR(X,T)

If γ = δ B g F for B : Set g :B → I, F : ((Π b :B)D(g(b)))→ IIR(D ,E), then

JδB g F KIIR(X,T) = (Σ f : (Π b :B)U(g(b)))JF (T (g(−),−) ◦ 〈id, f 〉)KIIR(X,T)

where the function T (g(−),−) ◦ 〈id, f〉 : (Π b :B)D(g(b)) in the last equation

is the function λ b. T (g(b), (f(b))). �

Remark 3.24. As already noted in Remark 3.15 the use of coproducts enable

us to give a more compact definition for IR-functors. Here we have used set-

indexed coproducts in (Π j : J)Fam|E (j)| to interpret both σ and δ-codes in

Definition 3.23.

3.2.7 Examples

We give some examples of inductive-recursive types to show the theory at

work. This selection of examples is not exhaustive in any possible way:

the theory is so expressive that almost every existing type is representable

within it (a remarkable exception is given by the internal Mahlo universe

70 Chapter 3

constructed by Setzer [88]). We refer the reader to [39, 40] for a richer

selection of examples.

To represent inductive-recursive types, we will simply exhibit the correspond-

ing IR-codes. As already explained the intended type is given by taking initial

algebra for the IR-functor which interprets the corresponding code. We begin

with a technical remark which facilitates readability of the codes. We use

the following convention:

Notation 3.25. Given codes γ, γ′ : IR(I ,O) let

γ + γ′ =def σN2(x 7→ case2(x, γ, γ′))

It is immediate to check that Jγ + γ′K ∼= JγK + Jγ′K

Inductive types as presented in Section 2.2 are all instances of the theory of IR.

Indeed they are degenerate inductive-recursive definitions of a family (X,T),

degenerate in the sense that the recursive function T does not contribute to

the definition of the type; in particular ID-types correspond to IR(D ,D) codes

where D = N1. In this case T is the unique map from the inductively defined

type X into N1. The following two are examples of degenerate inductive-

recursive definitions:

Natural numbers

The code for the set N of natural numbers is

ι01 + δN1(x 7→ ι 01) : IR(N1,N1)

W-types

The code γ defining the W-type (W x :A)B(x) is

γ =def σ A (a 7→ δ B(a) (f 7→ ι 01)) : IR(N1,N1)

Fresh lists

Let A be a set equipped with a relation 6' :A×A→ Set expressing that two

elements of A are different. We want to define a set L of lists of elements of

Induction-Recursion 71

A in which each element has at most one occurrence, i.e. lists of elements of

A where every element is different from every other in the list by the relation

6'. To this end, we simultaneously define a set of lists FrList and a function

Fresh : FrList → A → Set which tells when an element a :A is fresh for a list

l : FrList. FrList and Fresh are the least solution of the following equations:

X ∼= N1 + (Σ (xs, a):X × A)T (l, a)

T (inl 01) a ∼= λ b.N1

T (inr ((xs, a), p)) ∼= λ b. (b 6' a)× T (xs, b) .

The code which defines the endofunctor whose fixed point is (FrList,Fresh) is

given by the following IR(SetA, SetA)-code:

ι(λ a :A.N1) + σ A (a 7→ δ 1 (f 7→ ι(λ b :A.(b 6' a)× f(01, b))))

Universes

We have already stressed that universes have been a primary source of ex-

amples of inductive recursive definitions. We now give IR-codes for defining

universes closed by type operators.

The code γ for the universe described in Example 3.2 is

γN,Σ =defσ A(a 7→ ιB(a))

+ δN1 (X 7→ δ X(01)(Y 7→ ι((ΣX(01))Y))) : IR(Set, Set) (3.3)

If the universe is closed under other type constructors like Π or W we simply

add to γN,Σ the following codes

δN1 (X 7→ δ X(01)(Y 7→ ι((ΠX(01))Y))) (3.4)

δN1 (X 7→ δ X(01)(Y 7→ ι((WX(01))Y))) (3.5)

Super universes

As explained in Section 3.1.3 the universe construction can be uniformly

presented through a universe operator acting on families. Reflecting this

operator gives us a family closed under the universe construction, i.e. a

72 Chapter 3

super universe. Therefore a universe operator can be formally presented as

an operator

(U,T) : Fam|Set| → Fam|Set|

where

U : Fam|Set| → Set

T : ((A,B): Fam|Set|)→ U(A,B)→ Set

We can express that the super universe (S,V) is the least family containing a

given family (A,B), and closed by the universe construction, by the following

equations:

V ∼= N1 +A+ (Σ v:V)(S(v)→ V)

+ (Σv :V)(Σ s :S(v)→ V)U(S(v), λ x. S(s(x)))

S (in1(01)) = A

S (in2(a)) = B(a)

S (in3(v, f)) = U(S v, λ x. S(s(x)))

S (in4(v, f, z)) = T(U(S v, λ x. S(s(x))), z)

The IR(Set, Set)-code for a functor defining a super universe is therefore given

by

γsu =def ι A

+σ A (a 7→ ι(B a))

+δ 1(X 7→ δX(01)(Y 7→ ι(U(X(01), Y))))

+δ 1(X 7→ δX(01)(Y 7→ σU(X(01),Y)(z 7→ ι(T(U(X(01), Y), z)))))

An inaccessible (Peter Hancock)

In Example 1.5 we sketched how to built indexed families of number classes

by fixing the index of the family in advance. We now use induction-recursion

to build a family of number classes which are regular, and whose indices are

number classes of the family which is currently being defined. This example

has been shown to me by Peter Hancock. To this end we use containers to

represent the functors whose initial algebras are the number classes; therefore

the family (Ω,T) we will build will have type Fam|Cont|. We want this family

Induction-Recursion 73

to satisfy the following equations:

Ω ∼= N1 + Ω + (Σα : Ω)(µJT(α)KC
→ Ω)

T(in1(01)) = (SN, PN)

T(in2(α)) = T(α) + (N1, µJT(α)KC
)

T(in3(α, f)) = (Σ t :µJT(α)KC
)T(f(t))

Let us take a closer look at these equations: if α = in1(01) then the corre-

sponding number class T(α) is given by the container (SN, PN), representing

natural numbers (see Example2.37); indeed Ω(0) =def N = µX.(1 + X); if

α = in2(α′) than we build the corresponding number class by extending the

previously built number class T(α′) by the container with one shape and

µJT(α)KC
positions; this represents a successor operator Ω(α) 7→ Ω(α + 1) =

µX. (Ω(α) + XΩ(α)). Finally, if α = in3(α′, f) then T(α) is the sum over

µJT(α)KC
of the number classes in the image of f ; that is, we use sums of

containers to represent the limit operator Ω(λ) 7→ (Σ β < λ)Ω(β).

We can represent the family (Ω,T) by the following IR(Cont,Cont)-code:

γ(Ω,T) =def ι(SN, PN)

+ δN1(X 7→ (ι(X(01) + (N1, µJX (01)KC
))))

+ δN1(X 7→ δ µJX (01)KC
(Y 7→ ι(Σx :µJX (01)KC

)(Y (x)))

Peter Hancock dubbed the family (Ω,T) ‘inaccessible”: indeed, if we regard

number classes, here represented as containers T(α), for α : Ω as enumerating

regular ordinals, then (Ω,T) represents a family closed under the step to

the next regular, and therefore in a sense that can be made precise, an

inaccessible.

3.3 A set-theoretic model

In this section we recast the set-theoretic model built by Dybjer and Setzer

[38, 40] in order to prove the consistency of the theory of IR. We adapt Dybjer

and Setzer’s original model to a more categorical setting. This recasting will

pave the way to the initial algebras argument to come in Chapter 5 and 6.

Dybjer and Setzer’s model extends the type-as-(classical)-sets interpretation

74 Chapter 3

(see e.g. [9, 34]) by accommodating inductive-recursive defined sets. Since

IR allows one to build universes as fixed point, which in the type-as-sets

interpretation correspond to inaccessible cardinals, one naturally expect the

model to be strong enough to support the existence of inaccessible fixed

points. Thus, in addition to the usual axioms of ZFC Dybjer and Setzer

postulate the existence of one Mahlo cardinal to ensure that such a fixed

point can actually be reached.

We divide this section into two: in Section 3.3.1 we interpret the Logical

Framework extended with rules for IR; in Section 3.3.2 we adjust Dybjer and

Setzer’s original proof to a more categorical setting to actually prove existence

of initial algebras for the interpretation of IR functors in this model.

3.3.1 The interpretation of the Logical Framework

When building set-theoretic models, initial segments of the cumulative hier-

archy (see Definition 3.1) are crucial. On the one hand, as already discussed

in Section 3.1.1, they can play the role of actual models depending on the

properties we want to hold in the model. On the other hand, closure prop-

erties of a particular level Vα are uniquely determined by properties of the

ordinal α. Therefore, before giving the actual interpretation, we recall the

properties of some cardinals which play a relevant role when interpreting

type theory inside set theory.

Definition 3.26 (cofinality). A map f :α → β is said to be cofinal if it is

increasing and unbounded. The cofinality of β, cf(β), is the least α such that

there exists a cofinal map f :α→ β. �

Definition 3.27 (regular). An ordinal is regular if cf(κ) = κ. �

The cofinality of an ordinal is always a cardinal. Therefore regular ordinals

are cardinals. These cardinals are closed under union of smaller sets indexed

over smaller sets:

Lemma 3.28. A cardinal κ is regular if and only if it cannot be obtained as⋃
i<β αi where |β| < κ and |αi| < κ for all i < β.

Induction-Recursion 75

This property makes regular cardinal particularly relevant for fixed point

arguments (cf. [6]). And it also explains why regular universes, i.e. uni-

verses closed under Σ-sets, as seen in Example 3.2, are the type-theoretic

counterparts of regular cardinals.

Definition 3.29 (Inaccessible cardinal). A cardinal κ is weakly inaccessible

if it is regular and a limit cardinal, i.e. if α < κ then α+ < κ, where α+ is the

next cardinal after α. The cardinal κ is inaccessible (or strongly inaccessible)

if it is regular and a strong limit, i.e. if λ < κ then 2λ < κ. �

We assume the generalized continuum hypothesis which states that 2ℵα =

ℵα+1. Under this hypothesis the two notion of weakly inaccessible and inac-

cessible cardinal coincides.

In the types-as-sets interpretation, inaccessible cardinals can be used to in-

terpret (a hierarchy of) type theoretic universes [34, 9].

As already mentioned, we will need a Mahlo cardinal to build the model.

Therefore for the sake of completeness we recall its definition even if it will

not be needed for the argument. Instead we will exploit a crucial property

of Mahlo cardinals recalled below in lemma 3.32.

Definition 3.30. A set C ⊆ κ is closed in κ if, for α < κ, sup(C∩α) = α 6= ∅
then α ∈ C. The set C is unbounded in κ if for every α < κ there exists

β ∈ C with α < β. A set C ⊆ κ is stationary in κ, for κ an uncountable

cardinal, if C intersects every closed and unbounded set in κ. �

Definition 3.31 (Mahlo cardinal). A cardinal κ is Mahlo if the set {α <

κ |α is inaccessible} is stationary in κ. �

The crucial properties of Mahlo cardinal, used in the proof of Lemma 3.38

below, is the following:

Lemma 3.32. Every function f : M → M which is normal, i.e. increasing

and continous at limit, has an inaccessible fixed point.

The types-as-sets interpretation of the Logical Framework

The basic idea of the types-as-sets interpretation is to associate to all type

theoretic constructions their obvious set-theoretic counterparts in a strong

76 Chapter 3

enough classical axiomatic set theory: each type is interpreted as a set, the

judgement a :A as a ∈ A, a ≡A b as a truth value expressing that a and b are

(or are not) equal elements of A. Dependent sums and dependent function

types are interpreted as the set-theoretic cartesian coproduct and product

respectively.

To be more precise we interpret types as objects of Set[VM+inacc] where M+inacc

is the next inaccessible after the Mahlo cardinal M. However, as noted by

Dybjer and Setzer, all types could be interpreted inside Set[VΛ] where Λ

is the first (non regular) fixed point after M of the function λα.ℵα. For

simplicity we will not do this here.

To simplify the presentation we use a partial interpretation function J−K but

the interpretation of derivable judgement will be always defined (Theorem

3.33). Each expression A which contains free variables has an interpretation

JAKρ depending on an assignment ρ, that is a function mapping the set of

free variables to elements in VM+inacc . An assignment, ρ, can be extended

when needed: we write ρ[x 7→a] for the assignment ρ extended by mapping the

variable x to the set a:

ρ[x 7→a](y) =

{
a if y = x

ρ(y) otherwise

For every expression A of the Logical Framework and every assignment ρ we

will give an interpretation JAKρ, regardless if A : type or A :B is derivable or

not. The interpretation function, however, might be undefined.

We write JAKρ ' JBKρ for partial equality between interpreted expressions,

i.e. JAKρ ' JBKρ means JAKρ ↓↔ JBKρ ↓ and, when both are defined, written

JAKρ ↓, JBKρ ↓, we have JAKρ = JBKρ. Writing JAKρ:' B we mean that the

interpretation of A is defined to be B provided B is defined, and undefined

Induction-Recursion 77

otherwise. The interpretation is defined in the following way:

JtypeKρ =def VM+inacc JSetKρ =def VM

J(Π x : A)BKρ:' Π y ∈ JAKρ. JBKρ[x 7→y] J(Σ x : A)BKρ:' Σ y ∈ JAKρ. JBKρ[x 7→y]

Jλ x : A.bKρ:' λy: JAKρJbKρ[x 7→y] J(a, b)Kρ. ' (JaKρ, JbKρ)
Jb(a)Kρ:' JbKρ(JaKρ) Jπi(z)Kρ:' πiJz Kρ (i = 0, 1)

JN0Kρ =def ∅ JN1Kρ. ' {∅}
JN2Kρ =def {∅, {∅}} J01Kρ = J02Kρ =def ∅
J12Kρ =def {∅} JxKρ:' ρ(x)

Context are interpreted as sets of assignments as follows:

J()K =def ∅ J(Γ , x : A)K:' {ρ[x 7→ a] | ρ ∈ JΓ K ∧ a ∈ JAKρ}

Given this interpretation, we can state the following soundness theorem:

Theorem 3.33 (Theorem 1 in Section 6.2 in [38]). The interpretation of

valid judgments is always defined:

(a) If ` Γ context, then JΓ Kρ ↓, and if ` Γ = ∆ context, then JΓ Kρ ↓ and

J∆Kρ ↓ and it holds JΓ Kρ = J∆Kρ.

(b) If Γ ` A : type, then JΓ Kρ ↓, and ∀ ρ ∈ JΓ Kρ it holds JAKρ ∈ JtypeKρ. If

Γ ` A = B : type, then JΓ Kρ ↓, and ∀ ρ ∈ JΓ Kρ it holds JAKρ = JBKρ ∈
JtypeKρ.

(c) If Γ ` x :A, then JΓ Kρ ↓ and ∀ ρ ∈ JΓ Kρ JxKρ ∈ JAKρ. If Γ ` a = b :A,

then JΓ Kρ ↓ and ∀ ρ ∈ JΓ Kρ it holds JaKρ = JbKρ ∈ JAKρ

(d) falsehood is not derivable.

Interpretations of the theory of IR

To interpret terms which come from the extension of the Logical Frame-

work with the theory of IR we proceed as follows: we define JIR(I ,O)Kρ:'
JIRKρ(JI Kρ, JOKρ) where, given sets I, O ∈ VM+inacc the set JIRKρ(I, O) is the

least set such that

JIRKρ(I, O) = O

+ ΣA ∈ JSetKρ.(A→ JIRKρ(I, O))

+ ΣA : JSetKρ.(A→ I)→ JIRKρ(I, O)

78 Chapter 3

which we get by iterating κ times the appropriate functor corresponding to

the inductive definitions of the type IR(I ,O). Here κ is the least regular

which bounds the cardinality of A and of A → I for all A ∈ JSetKρ. Given

this set we define the interpretation of the constructors as follows

JιKρ o :' in0 o

JσKρAf :' in1(A, f)

JδKρB F :' in2(B,F)

Given an IR(I ,O)-code γ, the corresponding functor JγK is interpreted ac-

cordingly as a functor Fam JI Kρ→ Fam JOKρ where Fam JI Kρ is the category

whose objects are pairs (X,T) where X ∈ JSetKρ and T :X → JI Kρ, and

whose morphisms are commuting triangles. For simplicity in the following

we write Fam|D | in place of Fam JDKρ. In the next section we show that

these functors Fam|I | → Fam|O | indeed have an initial algebra.

3.3.2 Existence of initial algebras

To build an initial algebra for an IR functor JγK, where γ : IR(D ,D), we adopt

the standard argument: we consider the initial sequence (cf. Definition 2.23)

associated to JγK
(∅, !)→ JγK(∅, !)→ JγK2(∅, !) . . .

where (∅, !) is the initial object in Fam|D |. We prove that JγK is κ-continuous

for an ordinal κ we determine, and we iterate this sequence up to κ. The

initial algebra for the functor JγK is then given by the directed colimit of this

sequence.

Some technicalities in the above argument are introduced by the way IR-

functors are defined. The action of JδA F K on an input family (X,T) is a

coproduct whose index set is the function space A → X depending both

on A and on X, the index set of the input family (X,T). Therefore, as

we iterate the functor JδA F K on an input, the index set of this coproduct

grows (exponentially). For this reason, to ensure that the iteration of the

initial sequence will eventually reach a fixed point we first have to bound the

size of the index sets which might depend on the input family. Following

Dybjer and Setzer we recursively collect the index sets for a code γ and a

Induction-Recursion 79

family (X,T) into a set Aux(γ, (X,T)) (see Definition 3.34). We prove that

the functor JγK is κ-continuous (Lemma 3.37), under the assumption that an

inaccessible bound κ for the cardinality of the index sets exists. We crucially

use the assumption that a Mahlo cardinal exists and its property (Lemma

3.32) to discharge this assumption and find the sought inaccessible bound

for the index sets (Lemma 3.38). Finally, we conclude the proof using the

standard argument (Lemma 3.39).

Definition 3.34. Given an IR code γ and an object (X,T) of Fam|D |, the

set Aux(γ, (X,T)) which collects all possible index sets for the code γ and

the family (X,T) is defined by induction on the structure of γ:

Aux(ι d, (X,T)) = ∅

Aux((σ Af), (X,T)) =
⋃
a∈A

Aux(f a, (X,T))

Aux((δ AF), (X,T)) = {A} ∪
⋃

f : A→X

Aux(F (T ◦ f), (X,T)) �

Remark 3.35. Since all sets appearing in the IR codes live in JSetKρ = VM

we have that Aux(γ, (X,T)) ⊆ VM.

We define Aux differently compared to Dybjer and Setzer [38]: we collect all

the sets we are interested in, whereas they use products and coproducts to

build one big set that contain all interesting sets.

Notation 3.36. Given an ordinal α, we indicate with (Xβ, T β)β<α an α-

sequence of objects of Fam|D |, i.e. a sequence of objects of Fam|D | indexed

over ordinals less than α. A monotone α-sequence is an α-sequence such that

for each α < β, Xα ⊆ Xβ and Tβ ◦ injα = Tα where injα is the injection given

by Xα ⊆ Xβ. We indicate with
∨
β<α(Xβ, T β) the directed colimit of the

sequence (Xβ, T β)β<α, which is the family explicitly given by (
⋃
β<αX

β, Tα)

where Tα(x) =def T
β(x) for x ∈ Xβ ⊆

⋃
β<αX

β.

Lemma 3.37. Let κ be inaccessible and (Xα, Tα)α<κ be a monotone κ-

sequence of objects of Fam|D |. Assume for some α0 < κ that

Aux(γ, (Xα, Tα)) ⊆ Vκ (3.6)

80 Chapter 3

for all α0 ≤ α < κ. Then JγK is κ-continuous i.e.

JγK
∨
α<κ

(Xα, Tα) ∼=
∨
α<κ

JγK(Xα, Tα) .

Proof. We prove the Lemma by induction over γ:

• γ = ι d: we have

Jι dK
∨
α<κ

(Xα, Tα) = 1 =
∨
α<κ

1 =
∨
α<κ

Jι dK(Xα, Tα) .

• γ = σ Af . By hypothesis 3.6 we know Aux(σAf, (X
α, Tα)) ⊆ Vκ.

Therefore, by Definition 3.34 it follows Aux(f a, (Xα, Tα)) ⊆ Vκ for all

α0 ≤ α < κ and a ∈ A. We can now compute as follows:

JσA f K
∨
α<κ

(Xα, Tα) = (Σ a ∈ A)Jf (a)K
∨
α<κ

(Xα, Tα)

I.H.∼= (Σ a ∈ A)
∨
α<κ

Jf aK(Xα, Tα)

(1)
=
∨
α<κ

(Σ a ∈ A)Jf aK(Xα, Tα)

=
∨
α<κ

JσA f K(Xα, Tα)

where (1) holds since Σ is a left adjoint and therefore preserves colimits

(cf. Remark 3.10 item 3).

• γ = δ AF . By hypothesis (3.6) we know Aux(δ AF, (Xα, Tα)) ⊆ Vκ.

By Definition 3.34 it follows A ∈ Vκ and Aux(F (T ◦ g)(Xα, Tα)) ⊆
Vκ for all α0 ≤ α < κ and g :A → Xα. Since A ∈ Vκ then |A| <
κ. Therefore, by regularity of κ we can factor the function g :A →⋃
α<κX

α through one of the injections injβ :Xβ →
⋃
α<κX

α, i.e.

g = injβ ◦ f (3.7)

for some f :A → Xβ and β < κ. Without loss of generality we can

assume α0 ≤ β (if not, choose β′ =def α0; we still have f :A → Xβ′

since β < β′, hence Xβ ⊆ Xβ′).

Induction-Recursion 81

JδA F K
∨
α<κ

(Xα, Tα)
(1)
= JδA F K(

⋃
α<κ

Xα, T κ)

= (Σ g :A→
⋃
α<κ

Xα)JF (T κ ◦ g)K
∨
α<κ

(Xα, Tα)

I.H.∼= (Σ g :A→
⋃
α<κ

Xα)
∨
α<κ

JF (T κ ◦ g)K(Xα, Tα)

(2)∼= (Σ f :A→ Xα)
∨
α<κ

JF (T κ ◦ inα ◦ f)K(Xα, Tα)

(3)∼= (Σ f :A→ Xα)
∨
α<κ

JF (Tα ◦ f)K(Xα, Tα)

(4)∼=
∨
α<κ

(Σ f :A→ Xα)JF (Tα ◦ f)K(Xα, Tα)

=
∨
α<κ

JδA F K(Xα, Tα)

Where (1) holds by the definition of
∨
α<κ(X

α, Tα), (2) for equation

(3.7), (3) by definition of T κ and (4) since Σ is a left adjoint and

therefore preserves colimits (cf. Remark 3.10 item 3).

Lemma 3.37 tells us that we can prove JγK to be κ-continuous if we can find

a bound for the index sets appearing in a monotone κ-sequence. In the next

lemma we prove that, under the assumption that a Mahlo cardinal M exists,

such a bound can be found for the monotone sequence we are interested in,

namely the initial sequence associated to JγK.

Lemma 3.38. Let γ be an IR code and (Xα, Tα)α =def (JγKα(∅, !))α the

initial sequence of the associated functor. There exists an inaccessible κ such

that, for all α < κ:

Aux(γ,Xα, Tα) ⊆ Vκ

Proof. The strategy for the proof is as follows: we define an increasing func-

tion f : ON→ ON, which tells you how much further up the cumulative hier-

archy one need to go to bound Xα after one iteration of JγK. The important

property of f will be

if Xβ′ ⊆ Vβ then Xβ′+1 ∪ Aux(γ,Xβ′ , T β
′
) ⊆ Vf(β) (3.8)

82 Chapter 3

for all β′ < M. We then show that M actually bounds f , i.e. f : M→ M and

use the property of M (cf. Lemma 3.32) to find a fixed point κ of f . Finally

we show Aux(γ,Xα, Tα) ⊆ Vκ by induction on α.

The function f : ON→ ON is defined by transfinite recursion:

f(β) = min{α |(∀β′ < β)
(
f(β′) < α

)
∧

(∀β′ < M)
(
Xβ′ ⊆ Vβ =⇒ Xβ′+1 ∪ Aux(γ,Xβ′ , T β

′
) ⊆ Vα

)
}

The first conjunct makes sure that f is increasing, and the second makes

(3.8) true.

Notice that f : M → M follows from inaccessibility of M. Indeed, for β < M

and for each β′ validating (3.8), the set B =def {Xβ′ ⊆ Vβ | β′ < M} ∈
Vβ+1 ⊆ VM. Using Remark 3.35, we also have, for each β′ ∈ M, Xβ′+1 ∪
Aux(γ,Xβ′ , T β

′
) ⊆ VM and hence Xβ′+1 ∪ Aux(γ,Xβ′ , T β

′
) ⊆ Vαβ′

for some

αβ′ < M since M is a limit. Thus f(β) ≤ supβ′ αβ′ < M since M is regular.

So f is an increasing function on M, however f need not be continuous at

limits, hence not normal and the property of M stated in Lemma 3.32 might

not apply. To fix this, we define a new function θ: if α < M let θ(α) = fα(0).

We can now prove that θ: M → M, and θ is normal. We have θ(α) < M for

α < M by transfinite induction over α. The base case and successor case

are clear, since f : M → M. If λ < M is a limit, then θ:λ → M is a normal

function so that θ(λ) = supβ<λ θ(β) < M by the regularity of M. Finally θ is

increasing since f is, and continuous at limits by definition.

Hence by the Mahlo property, θ has an inaccessible fixed point κ < M.

Finally, we can prove that κ bounds f , i.e. f :κ→ κ. Assume α < κ. Since

κ is a limit, α < β for some β < κ. Furthermore since θ is strictly increasing

then β ≤ θ(β). We can thus conclude noticing:

f(α) < f(β) ≤ f(θ(β)) = θ(β + 1) < θ(κ) = κ

This, combined with (3.8) gives us, for all β < κ:

if Xβ′ ⊆ Vβ then Xβ′+1 ∪ Aux(γ,Xβ′ , T β
′
) ⊆ Vκ (3.9)

We are left to check that for any element Xα of the initial sequence Xα ⊆
Vκ for all α < κ; by (3.9), it then immediately follows the thesis, i.e.

Induction-Recursion 83

Aux(γ,Xα, Tα) ⊆ Vκ. We prove Xα ⊆ Vκ, for all α < κ, by induction

on α:

• If α = 0, then X0 = ∅ ⊆ Vκ.

• If α = β+ 1, then Xβ ⊆ Vκ by the induction hypothesis, and therefore

Xβ ⊆ Vλ for some λ < κ, since κ is a limit. By (3.9) we get Xβ+1 ⊆ Vκ.

• If α = λ limit, then Xλ =
⋃
β<λX

β and, by induction hypothesis

Xβ ⊆ Vκ for all β < λ. If x ∈
⋃
β<λX

β then x ∈ Xβ for some β < λ

and therefore x ∈ Vκ by the induction hypothesis.

Theorem 3.39. Let γ be an IR code. The functor JγK has an initial algebra.

Proof. By Lemma 3.37, we get a κ such that Lemma 3.38 holds, i.e. JγK is κ

continuous. Thus
∨
α<κ(X

α, Tα) is a fixed point for JγK:

JγK
∨
α<κ

(Xα, Tα) =
∨
α<κ

JγK(Xα, Tα)

=
∨
α<κ

(Xα+1, Tα+1)

=
∨
α<κ

(Xα, Tα) ,

and by Theorem 2.25 it is an initial algebra.

Thus, we can now conclude that the model interpreting the Logical Frame-

work suffices also to interpret inductive-recursive sets.

Corollary 3.40. The interpretation of the Logical Framework as given in

Section 3.3.1 is sound with respect of the theory of IR, asserting existence of

initial algebras for IR-functors.

3.4 Summary and discussion

In this section we recalled the basics of the theory of IR. We specified its

syntax in terms of codes and its semantics in terms of functors between

families of sets. We gave examples of inductive-recursive defined sets and we

84 Chapter 3

recalled Dybjer and Setzer set-theoretic model of the theory, adjusting the

proof to adapt to a more categorical framework.

As for possible future work there seems to be space to improve the set-

theoretic model. Indeed the current model seems to require much more

proof theoretic strength than is actually needed. Dybjer and Setzer [38]

have suggested that a constructive model could be obtained via a realizabil-

ity interpretation in Kripke-Platek set theory extended by a recursive Mahlo

ordinal and ω admissibles above. Another possibility would be to extend

Aczel’s interpretation of MLW+u<ω in CZF+u<ω by a constructive version of

Mahlo cardinals [88]. This setting would also open the possibility to investi-

gate the set-as-trees (see e.g. [45]) interpretation of constructive set theories

into a type theory extended with IR.

Chapter 4

Small induction-recursion

Abstract In this chapter we introduce and investigate a sub-theory of IR

which we dub small induction-recursion or Small IR for short. We introduce a

coding scheme for the syntax and a functorial semantics for small inductive-

recursive definitions. By introducing morphisms in the syntax of Small IR

we are able to define a category and to prove an equivalence between the

category of IRsm(I ,O) and the category Poly(I ,O) for any set I and O.

4.1 Introduction

In section 2.2.3 we showed on the one hand how dependent polynomials and

indexed containers and their respective functorial interpretations represent

neat and well-structured semantics for indexed inductive types. On the other

hand, in Chapter 3 we saw how the theory of induction-recursion provides

another extremely powerful tool to define even more sophisticated types,

among which we remarkably find universes.

It is natural to ask what the relationship between these different theories of

data types is. The equivalence between dependent polynomials and indexed

containers is well established. But what is their relationship with induction

recursion? Can we characterise those inductive-recursive definitions which

correspond to dependent polynomials and indexed containers? The aim of

this Chapter is to address precisely these questions. As we will see, dependent

polynomials and indexed containers correspond exactly to inductive-recursive

85

86 Chapter 4

definitions, where the smallness refers to the size of the target-type D of the

recursively defined function T :X → D simultaneously defined with the type

X. To appropriately state this correspondence in terms of an equivalence

of categories we introduce in Section 4.2 the category IRsm(I ,O) of small

inductive-recursive codes with indices I and O or IRsm(I ,O)-codes for short,

or simply Small IR-codes if the indices can be inferred from the context.

One of the contribution of this section is then the definition of morphisms

between IRsm(I ,O)-codes which smoothly scale also to the (large) setting of

IR(I ,O)-codes. As it happens in the theories of dependent polynomials and

indexed containers, we establish a tight correspondence between syntactic

morphisms and semantics morphisms: indeed morphisms of IRsm(I ,O)-codes

full and faithfully represent natural transformations between functors which

interpret the corresponding codes. The main result of this chapter in Section

4.3 consists in establishing an equivalence between the category Poly(I ,O)

of dependent polynomials and the category IRsm(I ,O) of small inductive-

recursive codes respectively with same indices I and O as pictured in the

following commuting diagram representing the statement of Theorem 4.17:

IRsm(I ,O) Poly(I ,O)

[Set/I, Set/O]

φ

ψ
J KIR J KPoly

This result is not merely of theoretical importance: at a practical level, while

systems such as Agda accept induction-recursion, some systems, e.g. Coq,

do not. This result gives a simple way to add small induction-recursion to

Coq by showing how to translate such definitions into indexed containers or

dependent polynomials. Programmers are then free to convert definitions

between the two forms, according to which works better for their own appli-

cations.

Small Induction-Recursion 87

4.2 The category of Small IR codes

A category is always given by specifying its objects and its morphisms.

Therefore we start our investigation of the category of Small IR with the

definition of its objects, i.e. the IRsm(I ,O)-codes.

4.2.1 Small IR-codes

Definition 4.1. A Small IR-code is an IR(I ,O) code where both the indices

I and O are of type Set. To emphasize this we indicate with IRsm(I ,O) the

type IR(I ,O) where I, O : Set. �

Small IR-functors

The restriction on the size of the indices of a Small IR-code allows us to

regard the semantics introduced in Section 3.2.2 from another perspective.

Indeed, when I : Set, the category Fam|I | simply becomes the slice category

Set/I. This simple observation lets us have more freedom in the semantics of

Small IR: not only we can interpret these codes as functors Set/I → Set/O,

but thanks to the equivalence between slices and indexed sets we can also

interpret Small IR codes as functors SetI → SetO. Below we recall these two

semantics.

Definition 4.2 (slice semantics). Let I, O : Set, γ : IRsm(I ,O), and (X, f) an

object of Set/I. The action of the functor

JγK : Set/I → Set/O

on the object (X, f) is defined by induction on the structure of the code as

follows:

Jι oK (X, f) = (N1, λ . o)

JσA hK (X, f) = (Σ a :A) Jh(a)K (X, f)

JδB F K (X, f) = (Σ g :B → X) JF (f ◦ g)K (X, f) �

We now give the alternative presentation of the semantics of Small IR based

on indexed sets: we interpret a code γ : IRsm(I ,O) as a functor LγM : SetI →

88 Chapter 4

SetO. This interpretation is obtained by pre and post composing the functors

in Definition 4.2 respectively with the two functors dis and ()−1 as defined by

equations (2.1) on page 35: we then obtain the semantics of Small IR which

deploys indexed sets rather than morphisms in a slice.

Lemma 4.3 (indexed sets semantics). Let I, O : Set and γ : IRsm(I ,O). The

action of the functor

LγM: SetI → SetO

defined by LγM =def ()−1 ◦ JγK ◦ dis on the object X : I → Set is given by

induction on the structure of the code as follows:

Lι o ′MX o = (o ≡O o′)
LσA f MX o = (Σ a :A) Lf (a)MX o

LδB F MX o = (Σ g :B → I) ((Π b :B)X (g(b)))× LF (g)MX o

Proof. Induction on γ : IRsm(I ,O).

4.2.2 Small IR-morphisms

We specified the objects of the category IRsm(I ,O) in the previous section.

Below we define morphisms between these objects, which we indicate as

IRsm(I ,O)-morphisms or Small IR-morphisms for short. The key idea for

their definition will be to mirror the categorical structure of the semantics

given by functors and natural transformation back into the syntax. This

approach ensures that every morphism give rise to a natural transformation

between the corresponding IRsm(I ,O)-functors, and, in particular, pave the

way to our representation theorem (Theorem 4.10).

A key observation for the appropriate definition of Small IR-morphisms is

a categorical description for functors interpreting δ-codes. The following

lemmas give this characterization.

Lemma 4.4. Given an object (X, f) in Set/I, there is a natural isomorphism

Jδ B F K (X, f) ∼= (Σ g :B → I) Set/I
(
(B, g), (X, f)

)
⊗ JF (g)K (X, f)

Small Induction-Recursion 89

Here ⊗ indicates the tensor product: given a set A and an object (X, f) of

Set/I the object A ⊗ (X, f) is the coproduct (Σ a :A) (X, f), i.e the A-fold

coproduct of the object (X, f).

Proof. We have a natural isomorphism

Jδ B F K (X, f)

= (Σh :B → X) JF (f ◦ h)K (X, f)

∼= (Σ g :B → I) (Σh :B → X) (g ≡B→I f ◦ h)× JF (g)K (X, f). (4.1)

Then observe that Σh : (B → X)(g ≡g :B→I f ◦ h) ∼= Set/I
(
(B, g), (X, f)

)
.

Notice how equation (4.1) uses an identity type to encode the action of

JδA F K in the style of Henry Ford1: ‘choose any g you want as long as it

is f ◦ h’. Lemma 4.4 lets us shed some light on the semantics of δ-codes.

Indeed we can characterize the functor arising from a δ-code through a uni-

versal construction: that of left Kan extension. To this end recall that given

functors F :A→ C and G :A→ B the left Kan extension of F along G is the

functor LanGF :B → C with the universal property that for every functor

H :B→ C there is a bijection CB(LanGF,H) ∼= CA(F,H ◦G) natural in H.

If (B, g) is an object in Set/I we use ((B, g) +), in the following lemma, to

indicate the functor

((B, g) +) : Set/I −→ Set/I

(X, f) 7−→ (B +X, [g, f])

which gives, for every object (X, f), its coproduct with the object (B, g).

Theorem 4.5. There is a natural isomorphism

Jδ B F K ∼= (Σ g :B → I)Lan((B,g)+)JF (g)K

Proof. Recall that in the presence of enough categorical structure left Kan

extension can be computed by means of coends: for F :A → C, G :A → B
we can compute LanGF as follows:

(LanGF) b =

∫ a :A
F (a)× B(Ga, b) (4.2)

1The metaphor is due to Conor McBride (see e.g. [13]).

90 Chapter 4

The particular case which interest us is represented in the following diagram

Set/I Set/I

Set/O

((B, g) +)

JF (g)K Lan((B,g)+)JF (g)K

and we can compute Lan((B,g)+)JF (g)K as follows:

Lan((B,g)+)JF (g)K(X, f) =

(Σ (Y, l) : Set/I)JF (g)K(Y, l)× Set/I
(
(B + Y, [g, l]), (X, f)

)
(4.3)

JδB F K (X, f :X → I)

(1)∼= (Σ g :B → I)Set/I
(
(B, g), (X, f)

)
⊗ JF (g)K (X, f)

(2)∼= (Σ g :B → I)
(
(LanIdJF (g)K)(X,F)

)
× Set/I

(
(B, g), (X, f)

)
(3)∼= Σg :B→I

(
Σ(Y,l) :Set/IJF (g)K(Y, l)×Set/I

(
(Y, l), (X, f)

))
×Set/I

(
(B, g), (X, f)

)
(4)∼= Σg :B→IΣ(Y,l) :Set/I

(
JF (g)K (Y, l)× Set/I

(
(B + Y, [g, l]), (X, f)

))
(5)
= Σg :B→IΣ (Y, l) : Set/I

(
JF (g)K (Y, l)× Set/I

(
((B, g) +)(Y, l), (X, f)

))
(6)∼= (Σ g :B → I)

(
Lan((B,g)+)JF (g)K

)
(X, f)

where (1) holds by Lemma 4.4, (2) since every functor is its own left Kan

extension along the identity functor Id, (3) is given by equation (4.3), (4)

by associativity of products and the universal property of coproduct, (5) by

definition of ((B, g) +) and (6) by equation (4.3).

This ensures that the definition of IRsm(I ,O)-morphisms we are going to

give is well defined. Finally, in order to make sense of the definition of

IRsm(I ,O)-morphisms, we need to check that IRsm(I ,O)-functors are closed

by pre-composition with functors of the form ((B, g) +). We do this in the

next lemma.

Small Induction-Recursion 91

Lemma 4.6. Given a IRsm(I ,O)-code γ, and an object (B, g) of Set/I, there

exists an IRsm(I ,O)-code, γ � ((B, g) +), s.t.

Jγ � ((B, g) +)K ∼= JγK ◦ ((B, g) +)

Proof. We proceed by induction on the structure of the code γ : IRsm(I ,O).

The proof will follow the coding scheme based on containers introduced in

Section 3.2.4 and its corresponding semantics. If γ is ι o for some o :O, then

define (ι o) � ((B, g) +) simply as ι o. For (X, f) in Set/I we have

(
Jι oK ◦ ((B, g) +)

)
(X, f) = Jι oK(B +X, [g, f])

= (1, λ . o)

= Jι oK(X, f)

= J(ι o) � ((B , g) +)K(X, f)

Let γ be the code σδ(S, P)G for (S, P) : Cont and G : (S � P) I → IR(I ,O).

We let (σδ(S, P)G) � ((B, g) +) =def σδ(R,Q)J for the container (R,Q) and

the map J : (R � Q)I → IRsm(I ,O) given below. Since

(
Jσδ(S ,P)GK ◦ ((B, g) +)

)
(X, f) =

= (Σx : (S � P)(B +X))JG(((S � P)[g , f])x)K(B +X, [g, f]),

by the semantics of σδ-codes, we want (R � Q) ∼= (S � P)(B + X) which

can be achieved by (R,Q) =def (S, P) · (B+ N1, [λ .N0, idN1]), using container

composition defined in Section 2.2.2. This definition gives us the following

isomorphism:

ϕ : (S � P)(B +)
∼=←→ (R � Q) :ψ (4.4)

Let J : (R � Q)(I)→ IR(I ,O) be the function

J(y) =def

(
(G ◦ J(S ,P)K[g, idI] ◦ ψI) (y)

)
� ((B, g) +)

92 Chapter 4

constructed using the inductive hypothesis. We then have

Jσδ(S ,P)GK ◦ ((B, g) +)

= (Σx : (S � P)(B +X))JG
(
((S � P)[g , f]) x

)
K(B +X, [g, f])

(1)
= (Σ x : (S � P)(B +X))

JG
(
(S � P)[g , idI](idB + f)) x)

)
K(B +X, [g, f])

(2)∼= (Σx : (S � P)(B +X))

JG
((

(S � P)[g , idI] ◦ (S � P)(idB + f)
)

x
)
K

C
(B +X, [g, f])

(3)∼= (Σ y : (R � Q)X)

JG
((

(S � P)[g , idI] ◦ ψI ◦ (R � Q)f
)

y
)
K(B +X, [g, f])

(4)∼= (Σ y : (R � Q)X)JJ
(
((R � Q) f) y

)
K(X, f)

= Jσδ(R,Q)J K(X, f)

where (1) holds by [g, f] = ([g, idI] ◦ (idB + f)), (2) by the functoriality of

(S � P), (3) by the isomorphism (4.4), and (4) by definition of J .

We are now ready to define IRsm(I ,O)-morphisms by induction on the struc-

ture of the codes as follows.

Definition 4.7. Given codes γ, γ′ : IRsm(I ,O) the homset IRsm(I ,O)(γ, γ′) is

defined as follows.

Morphisms from ι-codes:

1a.
p : o ≡O o′

Γι,ι(p) : IRsm(I ,O)(ι o, ι o′)

1b.
a :A r : IRsm(I ,O)(ι o, f(a))

Γι,σ(a, r) : IRsm(I ,O)(ι o, σ A f)

1c.
g :B → N0 r : IRsm(I ,O)(ι o, F (!I ◦ g))

Γι,δ(g, r) : IRsm(I ,O)(ι o, δ AF)

Small Induction-Recursion 93

where !I : N0 → I is the unique morphism from the initial object N0 to the

set I.

Morphisms from σ-codes:

2.
γ : IRsm(I ,O) r : (Π a :A)IRsm(I ,O)(f(a), γ)

Γσ,γ(r) : IRsm(I ,O)(σ Af, γ)

Morphisms from δ-codes:

3.

γ : IRsm(I ,O) r : (Π g :B → I)IRsm(I ,O)(F (g), γ � ((B, g) +))

Γδ,γ(r) : IRsm(I ,O)(δ B F, γ)

�

We now explain how IRsm-morphisms are interpreted as natural transforma-

tion between IRsm-functors.

Lemma 4.8. The interpretation functions

J K : IRsm(I ,O) −→ [Set/I, Set/O]

L M : IRsm(I ,O) −→ [Set I , Set O]

can be extended to IRsm(I ,O)-morphisms, i.e. every morphism τ : IRsm(I ,O)(γ, γ′)

defines a natural transformation JτK : JγK ·−→ Jγ′K.

Proof. By induction on the structure of IRsm(I ,O)-morphisms we define the

component of JτK at (X, f) Set/I as follows:

JΓι,ι(p)K(X,f) = idN1

JΓι,σ(a, r)K(X,f) = ina ◦ JrK(X,f)

JΓι,δ(g , r)K(X,f) = in!X◦g ◦ JrK(X,f)

JΓσ,γ(r)K(X,f) = [Jr(a)K(X,f)]a :A

JΓδ,γ(r)K(X,f) = [Jr(g)K(X,f)]g :A→I

Naturality of these transformation consists of a simple diagram chasing. Us-

ing the definition of LγM in Lemma 4.3 the assignment given above smoothly

extends to the indexed set semantics.

94 Chapter 4

Remark 4.9. Notice that we work with simple natural transformations and

not with strong natural transformation because the defnition of canonical

strength for a functor in Set smoothly scales in the case of functors defined

in Set and similarly for the respective slices categories.

The following theorem is the key ingredient to ensure that the structure of

the codes given by the above definition is reflected in the functorial semantics

given in Definition 4.2 and in Lemma 4.3.

Theorem 4.10. The interpretation functions J K and L M are injective and

surjective on morphisms.

Proof. We prove the theorem by induction on the structure of Small IR mor-

phisms using the interpretation J K. Since the functors dis and ()−1 in equa-

tions (2.1) are full and faithful we also get injectivity and surjectivity of

L M.

1a. The components of a natural transformation η : Jι oK ·→ Jι o ′K are all

equal to the following morphism in Set/O

N1 N1

O

o o′

Such a morphism clearly exists if and only if o ≡O o′.

1b. Injectivity is immediate. We show that each natural transformation

η : Jι oK ·→ JσA f K is uniquely determined by an element a :A and a

morphism r : IRsm(I ,O) (ι o, f(a)). Let η be such a natural transforma-

tion. By naturality of η we have

[Jf (a)Kh]a :A ◦ η(X,k) = η(Y,g) (4.5)

for every h : (X, k) → (Y, g) in Set/I. It then follows that for every

(X, k) we have π0(η(X,k)(01)) = a for some fixed a :A, in particular

Small Induction-Recursion 95

define a =def π0(η(N0,!)(01)). Composing both sides of (4.5) with the

second projection we get equations

π1 ◦ [Jf (a)Kh]a :A ◦ η(X,k) = π1 ◦ η(Y,g)

asserting that π1 ◦ η : Jι oK ·→ Jf (a)K is a natural transformation. By

the inductive hypothesis, π1 ◦ η is equal to JrK for some r : IRsm(I ,O)

(ι o, f(a)). Hence we have η = JΓι,σ(a, r)K.

1c. Injectivity is immediate. We exploit the universal property of the initial

object (N0, ! : N0 → I) : Set/I to show that each natural transformation

η: Jι oK ·→ JδB F K is uniquely determined by a map g :A → N0 and a

map r : IRsm(I ,O) (ι o, F (!I ◦ g)). Given such a natural transformation

η, its components are uniquely determined by ηN0,!, since, by naturality,

we have

η(X,k) = JδB F K !(X,k) ◦ η(N0,!)

Then observe that π0(η(N0,!)(01)) :A→ N0 and

JF (!I ◦ π0(η(N0,!)(01)))K !(X,k) ◦ π1 ◦ η(N0,!)

is the component at (X, k) of a natural transformation which by the

inductive hypothesis is equal to JrK for some r : IRsm(I ,O)(ι o, F (!I ◦
π0(η(N0,!)(01)))). Therefore we have JηK = JΓι,δ(g , r)K.

2. If we indicate by [Set/I, Set/O](JσA f K, JγK) the set of natural trans-

formation between the functors JσA f K and JγK, we can compute as

follows:

[Set/I, Set/O](JσA f K, JγK) = [Set/I, Set/O](Σ a :A Jf (a)K, JγK)

= (Π a :A) [Set/I, Set/O](Jf (a)K, JγK)
(?)
= (Π a :A) IRsm(I ,O)(f(a), γ)

= IRsm(I ,O)(σ Af, γ)

where (?) comes from the inductive hypothesis.

96 Chapter 4

3. Compute as follows:

[Set/I, Set/O](JδB F K, JγK)
(1)∼= [Set/I, Set/O](Σ g :B → I. Lan((B,g)+)JF (g)K, JγK)
(2)∼= (Π g :B → I)[Set/I, Set/O](JF (g)K, JγK ◦ ((B, g) +))

(3)∼= (Π g:B → I) [Set/I, Set/O](JF (g)K, Jγ � ((B , g) +)K)
(4)∼= (Π g:B → I) IRsm(I ,O)(F (g), γ � ((B, g) +))

= IRsm(I ,O)(δ B F, γ)

where (1) holds by Theorem 4.5, (2) by the universal property of left Kan

extensions, (3) by Lemma 4.6 and (4) by the inductive hypothesis.

Full and faithfulness of the functions J K and L M allows us to reflect compo-

sition of functors to composition of codes. Hence, as a corollary we have the

following important result.

Corollary 4.11. IRsm(I ,O)-codes and their morphisms define a category.

The interpretations J K and L M define a full and faithful functor.

Remark 4.12. Notice that the definition of morphisms we gave in Definition

4.7 scales also to the large setting, i.e. it applies also to general IR(I ,O)-

codes. The very same proof of Theorem 4.10 also goes through in the general

case, i.e. we have a full and faithful functor

J K : IR(I ,O) −→ [Fam|I |,Fam|O |]

Since we are not going to use general IR(I ,O)-morphisms in this thesis we

preferred to introduce them here, instead of introducing them earlier and

then deriving IRsm(I ,O)-morphisms as a special case.

4.3 The equivalence between Small IR and Poly

We divide this section into three: i) we first show how to translate dependent

polynomials, and hence indexed containers, into IR-codes; and ii) we show

Small Induction-Recursion 97

how every Small IR-code can be translated into a dependent polynomial. Cru-

cially, we show that these translations preserve the functorial semantics of

dependent polynomials and IR codes. Finally iii) we show how the isomor-

phism established in i) and ii) can be extended to a proper equivalence.

4.3.1 From Poly to Small IR

In Section 3.2.7 we saw that the IR(N1,N1)-code

σ A (a 7→ δ B(a) (f 7→ ι 01))

represents the W-type (W x :A)B(x). Indeed the IR-functor corresponding to

this code is nothing but the extension of the container (A,B). We now extend

this correspondence to indexed containers and dependent polynomials, i.e.

we exhibit codes representing arbitrary dependent polynomials and indexed

containers. Crucially the IR-code representing a dependent polynomial with

indices I and O is a Small IR-code with the same indices.

Lemma 4.13. Every dependent polynomial functor is a Small IR functor.

Proof. To prove the lemma we build a function ψ : Poly(I ,O) → IRsm(I ,O)

which assigns to every dependent polynomial L, a code γL, whose interpre-

tation, JγLK, is isomorphic to the extension PL of the dependent polynomial

L. The code φ(L) representing L = I
r←− P

t−→ S
q−→ O is:

γL =def σS (s 7→ δ Ps (h 7→ σ ((Π p :Ps)h(p) ≡I r(p))(7→ ι(q s)))))

To check that the corresponding Small IR-functor is isomorphic to PL, recall,

from Remark 3.15, that, for a code γ : IRsm(I ,O), the functor JγK : Set/I −→
Set/O can be thought as a pair (JγK0, JγK1) where JγK0: Set/I → Set and

JγK1: (X, f) : Set/I → JγK0(X, f)→ O. The fiber of JγK(X, f) at o :O is then

given by the set

(Σx : JγK0(X, f)) (((JγK1(X, f))x) ≡O o)

In particular notice that the fiber at o :O is given by those elements of JγK0

which have accumulated an o in the ι-code at the end. We can then compute

98 Chapter 4

the interpretation of the code γL using the semantics of Small IR given in

definition 4.2 as follows:

JσS (s 7→ δ Ps (h 7→ σ ((Π p : Ps) h(p) ≡I r(p))(7→ ι(q(s)))))K0(X, f)

= (Σ s :S) Jδ Ps (h 7→ σ ((Π p : Ps) h(p) ≡I r(p))(7→ ι(q(s))))K0(X, f)

= (Σ s :S) (Σ g :Ps → X) Jσ ((Π p : Ps) f (g(p)) ≡I r(p))(7→ ι(q(s)))K0(X, f)

= (Σ s :S) (Σ g :Ps → X) (Σm : Π p :Ps. f(g(p)) ≡I r(p)) Jι(q(s))K0(X, f)

∼= (Σ s :S) (Σ g :Ps → X) (Π p :Ps) f(g(p)) ≡I r(p)
(1)∼= (Σ s :S) (Π p :Ps)(Σx :X) (f(x) ≡I r(p))
(2)
= (Σ s :S) (Π p :Ps)Xr(p)

Where (1) holds by the axiom of choice and (2) by the definition of the fibre

∆rf at p. Each element (s, u) : JγLK0(X, f) is then mapped by JγLK1 to the

element q(s) :O. Thus, the fiber at o :O of JγLK is given by

(Σx : JγLK0(X, f))(((JγLK1(X, f))x) ≡O o)
= (Σx : (Σ s :S) (Π p :Ps. Xr(p))) (((JγLK1(X, f))x) ≡O o)
∼= (Σ s :S) (Π p :Ps. Xr(p))× (q s ≡O o)
(?)
= (Σ s :So) (Π p :Ps)Xr(p)

where (?) is by the definition of the fiber of q at o :O.

Similarly, given an indexed container (S, P, n), the code γ(S,P,n) : IRsm(I ,O)

representing it is the following

γ(S,P,n) =def σ O (o 7→ σ S(o) (s 7→ δ P (o, s) (f 7→ σ (f ≡P→I n(o, s) 7→ ι o))))

(4.6)

It can be easily checked that the interpretation of the code γ(S,P,n) : IRsm(I ,O)

is isomorphic to the extension of the indexed container JS ,P , nKIC by using

the semantics of Small IR given in definition 4.3.

4.3.2 From Small IR to Poly

We now exhibit three indexed containers in IC(I ,O) and the corresponding

dependent polynomials in Poly(I ,O) which simulate the three constructors

Small Induction-Recursion 99

for a IRsm(I ,O)-code. In the following definition we indicate with a su-

perscript the IRsm(I ,O)-code represented by the corresponding dependent

polynomial.

Definition 4.14. We build a function φ : IRsm(I ,O)→ IC(I ,O) by recursion

on the structure of the code which assigns to each code γ : IRsm(I ,O), an

indexed container (Sγ, P γ, nγ) as follows:

if γ is ι o for some o :O then φ(ι o) =def (Sι o, P ι o, nι o) is given by :

Sι o :O → Set P ι o : (Π o′ :O)(Sι o(o′)→ Set)

Sι oo′ =def (o′ ≡O o) P ι o(o, s) =def N0;

nι o : (Π o′ :O)(Π s :Sι o(o′))(P ι o(o, s)→ I)

nι o(o′, s) =def !I

As a dependent polynomial we can represent it as follows:

I N0 N1 O
!N1!I o

If γ is σAf for some A : Set, f :A → IRsm(I ,O) then let h =def φ ◦ f and

define φ(σAf) =def (SσAh, P σAh, nσAh) as follows

SσAh:O → Set P σAh: (Π o :O)(SσAh(o)→ Set)

SσAh(o) =def (Σa :A)Sh(a)(o) P σAh(o, a, s) =def P
h(a)(s);

nσAh : (Π o :O)(Π s :SσAh(o))(P σAh(o, s)→ I)

nσAh(o, s) =def [nh(a)]a :A

As a dependent polynomial we can represent it as follows:

I (Σ a :A)P f(a) (Σ a :A)Sf(a) O
tσ Af[rf(a)]a:A [qf(a)]a:A

where tσ Af =def (Σ a :A) tf(a)

If γ is δAF for some A : Set, F : (A→ I)→ IRsm(I ,O) then let H =def φ ◦ F
and define φ(δAF) =def (SδAH , P δAH , nδAH) as follows:

SδAH :O → Set P δAH : (Π o :O)(SδAH(o)→ Set)

SδAHo =def (Σ g :A→ I)SH(g)(o) P δAH(g, s) =def A+ PH(g)(s);

nδAH : (Π o :O)(Π s :SδAH(o))(P δAH(o, s)→ I)

nδAH(o, s) =def [[g, nH(g)]]g :A→I

As a dependent polynomial we can represent it as follows:

100 Chapter 4

I (Σ g :B → I)(B × SF (g)) + P F (g) (Σ g :B → I)SF (g) O
tδ B Frδ B F qδ B F

where

rδ B F = [[g ◦ π0, r
F (g)]]g :IB tδ B F = (Σ g :B → I) [π1, t

F (g)] qδ B F = [qF (g)]g :IB

�

The three indexed containers in Definition 4.14, represent the three basic

cases to simulate an IRsm(I ,O)-functor.

Lemma 4.15. Every Small IR-functor is a dependent polynomial functor.

Proof. To simplify calculations we use indexed containers and the semantics

of Small IR as given in Lemma 4.3. To prove the theorem we show that φ

preserve the semantics, i.e. Lφ(γ)M ∼= JS γ, pγ, nγKIC:

Jφ(ι o)KIC X o′ = J(Sι o, P ι o, nι o)KIC X o′

= (Σ s :Sι o(o′)) (Π p :P ι o(o′, s))X (nι o(o′, s, p))

= (Σm: (o′ ≡ o)) (Π p : N0)X (nι o(o′, s, p))

(1)∼= (o′ ≡O o)
= Lι oMX o′

where (1) holds since N0 is an initial object.

Jφ(σ Af)KIC X o = J(SσAh, P σAh, nσAh)KIC X o

= (Σ s :SσAh(o)) (Π p :P σAh(o, s))X (nσAh(o, s, p))

= (Σ a :A) (Σ s :Sh(a)(o)) (Π p :P h(a)(o, s))X (nh(a)(o, s, p))

= (Σ a:A) J(Sh(a), P h(a), nh(a))KIC X o

= (Σ a :A) Jφ(f(a))KIC X o

(1)∼= (Σ a:A)Lf (a)MX o

= LσA f MX o

Small Induction-Recursion 101

where (1) holds by the inductive hypothesis.

Jφ(δ AF)KIC X o = J(Sδ AH , P δ AH , nδ AH)KIC X o

= (Σ s :Sδ AH(o)) (Π p :P δ AH(o, s))X (nδ AH(o, s, p))

= (Σ g :A→ I) (Σ s :SH(g)(o)) (Π p :A+ PH(g) s)

X[g, nH(g)(o, s)](p)

(1)∼= (Σ g :A→ I) (Σ s :SH(g)(o)) ((Π a :A)X (g a))×
(Π p :PH(g)(o, s))X(nH(g)(o, s, p))

∼= (Σ g :A→ I) ((Π a :A)X (g a))×
(Σ s :SH(g)(o)) (Π p :PH(g)(o, s))X (nH(g)(o, s, p))

= (Σ g :A→ I) ((Π a :A)X (g(a)))×
J(SH(g), PH(g), nH(g))KIC X o

= (Σ g :A→ I)((Π a :A)X (g(a)))× Jφ(F (g))KIC X o

(2)∼= (Σ g :A→ I) ((Π a :A)X (g(a)))× LF (g)MX o

= LδA F MX o

where (1) holds by the universal property of coproducts and (2) by the in-

ductive hypothesis.

4.3.3 Poly ∼= Small IR

In the previous sections we have seen that every Small IR-functor gives rise to

an isomorphic dependent polynomial functor and vice versa. What can we

say about natural transformations between these functors? In this section

we show that extending the above isomorphism to an equivalence between

the two categories IRsm(I ,O) and Poly(I ,O) is an immediate consequence of

the categorical apparatus developed in Section 4.2.

We sum up the results of the previous sections in the following corollary.

Corollary 4.16. For every γ: IRsm(I ,O) and, for every (r, t, q): Poly(I ,O)

there exist functions φ and ψ such that:

102 Chapter 4

(1) Jψ(φ(γ))K ∼= JγK,

(2) Pφ(ψ(L))
∼= PL

Proof. The results in the previous section allow us to establish an isomor-

phism between the classes of functors defined by IRsm(I ,O) and Poly(I ,O):

• in Section 4.3.1, we have defined a function ψ : Poly(I ,O)→ IRsm(I ,O);

such that P ∼= J K ◦ ψ

• in Section 4.3.2 we show how to build φ: IRsm(I ,O)→ Poly(I ,O), such

that J K ∼= P ◦ φ.

The equivalence of the two categories IRsm(I ,O) and Poly(I ,O) is an imme-

diate consequence of the previous results combined with full and faithfulness

of the respective interpretation functions:

Theorem 4.17. The two categories IRsm(I ,O) and Poly(I ,O) are equivalent.

Proof. Full and faithfulness of φ (or, equivalently of ψ) is immediate from

full and faithfulness of the functorial semantics:

IRsm(I ,O)(γ, γ′) ∼= [Set/I, Set/O](JγK, Jγ′K) (theorem 4.11)

∼= [Set/I, Set/O](Pφ(γ), Pφ(γ′)) (lemma 4.15)

∼= Poly(I ,O)(φ(γ), φ(γ′)) (corollary 2.48)

Now, since a dependent polynomial, (r, t, q) is isomorphic to φ(γ) for some

γ : IRsm(I ,O) by (2) in Corollary 4.16, this is enough to conclude the stated

equivalence (see e.g. Theorem 1, par. 4, ch. IV in [69]).

4.3.4 Small indexed induction-recursion

In this section we show how the theory of small indexed inductive-recursive

definitions, or Small IIR for short can be reduced to Small IR. The very same

reduction applies also for the more general theory of IIR which can be reduced

to the theory of IR as hinted by Dybjer and Setzer in [40] (end of Section

4.5). This simple result will automatically transfer the results of the previous

Small Induction-Recursion 103

sections to Small IIR allowing to conclude a generalisation of the equivalence

stated in theorem 4.17.

The smallness conditions for IR allows us to interpret Small IR-codes as func-

tors in slice categories. The same observation applies here: a Small IIR-code

γ : IIRsm(D ,E), for D : I → Set and E : J → Set (cf. Definition 3.20) is

interpreted as a functor

JγKIIR : (Π i : I) Set/D(i) −→ (Π j : J) Set/D(j)

Now, by exploiting the equivalence in Lemma 3.22 in this setting we get an

equivalence between categories

ϕ : (Π i : I) Set/D(i) ∼= Set/(Σ j : J)E(j) : θ (4.7)

Thus, a Small IIR-codes can be equivalently be interpreted as a functor

LγMIIR: Set/(Σ i : I)D(i)→ Set/(Σ j : J)E(i) (4.8)

by letting LγMIIR = ϕ ◦ JγKIIR ◦ θ, where ϕ and θ are the two components of

the equivalence 4.7.

Now, observe that we can translate IIR-codes into plain IR-codes as follows:

Definition 4.18. For a code γ : IIRsm(D ,E) define the corresponding code

pγq : IRsm((Σ i : I)D(i), (Σ j : J)E (i)) by induction on the structure of γ as

follows:

pι(j, e)q = ι(j, e)

pσ Afq = σ A(a 7→ pf(a)q)

pδ B g Fq = δ B(f 7→ σ(g ≡B→I π0 ◦ f)(p 7→ pF (π1 ◦ f)q)) �

The translation in Definition 4.18 enable us to state the reduction of Small

IIR to IR:

Lemma 4.19. For every code γ : IIRsm(D ,E) it holds LγMIIR
∼= JpγqK.

Proof. The interesting case is LδB g F MIIR
∼= Jpδ B g FqK. We use ϕ as defined

in equation (4.7) to compare the functors:

ϕ ◦ JδB g F KIIR, Jpδ B g FqK ◦ ϕ : [(Π i : I)Set/D(i), Set/(Σ I : I)D(i)]

104 Chapter 4

Given (X,T) : (Π i : I)Set/D(i) calculate as follows:

Jpδ B g FqK(ϕ(X,T))

= JδB(f 7→ σ(g ≡B→I π0 ◦ f)(p 7→ pF (π1 ◦ f)q))K(ϕ(X,T))

= (Σ f :B → (Σ i : I)X(i))(Σ p : g ≡B→I π0 ◦ (Σ i : I)T (i,−) ◦ f)

JpF (π1 ◦ (Σ i : I)T (i,−) ◦ f)qK((Σ i : I)X(i), (Σ i : I)T (i,−))

(1)∼= (Σ f ′ :B → I)(Σh : (Π b :B)X(f ′(b)))(Σ p : g ≡B→I f ′)
JpF (π1 ◦ (Σ i : I)T (i,−) ◦ 〈f ′, h〉))qK((Σ i : I)X(i), (Σ i : I)T (i,−))

(2)∼= (Σh : (Π b :B)X(g(b)))JpF (T (−,−) ◦ 〈g, h〉)qK((Σ i : I)X(i), (Σ i : I)T (i,−))

(3)∼= (Σh : (Π b :B)X(g(b)))ϕ(JF (T (g−,−) ◦ 〈id, h〉)K(X,T))

(4)∼= ϕ((Σh : (Π b :B)X(g(b)))JF (T (g−,−) ◦ 〈id, h〉)K(X,T)) = ϕ ◦ JδB g F KIIR

where (1) holds by the axiom of choice and by π0◦(Σ i : I)T (i,−) ≡((Σ i :I)X(i))→I

π0, (2) by using p : g ≡B→I f ′ and by currying π1 ◦ (Σ i : I)T (i,−), (3) by the

inductive hypothesis and (4) since ϕ is part of an equivalence, hence a left

adjoint and therefore preserves colimits.

Given this embedding, we can endow Small IIR with the categorical machinery

developed for Small IR in Section 4.2. We therefore can straightforwardly

define a category of IIRsm(D ,E)-codes and their morphisms. Theorem 4.17

immediately give us the following corollary.

Corollary 4.20. The category IIRsm(D ,E) and the category

Poly((Σ i : I)D(i), (Σ j : J)E (j)) are equivalent.

A remarkable example of the use of Small IIR is the Bove-Capretta method to

model nested general recursion in type theory [21, 22]. The idea is to define a

recursive function and its domain simultaneously. Thus, for a partial function

f : (Π i : I)D(i) we can build a code γf : IIR(D ,D) where the domain of f is

represented by µJγf K0 and the function f by µJγf K1. For those i : I such that

µJγf K0 is inhabited we can then compute the values of f by using µJγf K1.

Remark 4.21. Dybjer and Setzer [40] have used indexed induction-recursion

to give a finite axiomatization of indexed inductive definitions. In particular,

Small Induction-Recursion 105

they identifies the large type of indexed inductive definitions IID with the

type IIR(λ N1, λ N1), i.e those for which D(i) = N1 for every i : I. Their ax-

iomatization which uses IIR can be reconciled with ours, which uses Small IR,

by noting that codes of type IIR(λ N1, λ N1) correspond to IRsm(I , I)-codes,

where the set I is the index for the indexed inductive-recursive definitions

in IIR(λ N1, λ N1). Indeed, using the semantics of Small IR given in Lemma

4.3, it is immediate to check that the two sets of codes represent the same

classes of functors.

4.4 Internal IR

In the previous sections we saw that the theory of indexed inductive types

sits within the theory of inductive-recursive type as a proper sub-theory.

Notably, universes are inductive-recursive types which lie beyond indexed

inductive types since they are defined as initial algebras of codes IR(Set, Set)

and thus not by a Small IR-code.

In this section we sketch how it is possible to build internal universes by

using Small IR if we assume that a universe built by IR is already at our

disposal. This will also help to clarify why the reduction of Small IR to the

theory of dependent polynomials presented in the previous sections does not

go through for general IR-codes.

Let (U,T) : Fam|Set| be a universe built using an IR(Set, Set)-code. To keep

things simple, let say that U has a code N̂ : U for the set of natural numbers,

i.e. T(N̂) = N, and it is closed under Σ-types, i.e. for every (u, g) : (Σu : U)

(T(u)→ U) there exists a code Σ̂(u, g) : U such that T(Σ̂(u, g)) = (Σ x: T(u))

T(g(x)). By using Small IR, we now build an internal universe which contains

a code for N̂ and which is closed under internal Σ-types, i.e. Σ̂-types in U.

The code for this internal universe is a Small IR-code, which uses the universe

(U,T) for its definition:

γΣ̂,N̂ =def ι N̂ + δ 1(u 7→ δ(T(u))(g 7→ ι(Σ̂(u, g)))) : IRsm(U,U)

The initial algebra (µJγ
Σ̂,N̂

K, introJγ
Σ̂,N̂

K) for the corresponding functor JγΣ̂ ,N̂K :

106 Chapter 4

Set/U→ Set/U is the least solution of the following equations:

X ∼= N1 + (Σx :X)(T(f(x))→ X)

f (inl(01)) ∼= N̂

f (inr (x, g)) ∼= Σ̂(f(x)(f ◦ g)).

where (X, f) is an object of Set/U. Since γΣ̂,N̂ is a Small IR-code we can apply

the equivalence between IRsm(U,U) and Poly(U,U) and build the correspond-

ing dependent polynomial representing the universe (µJγ
Σ̂,N̂

K, introJγ
Σ̂,N̂

K). How

is this possible? The idea is that we have already exploited the power of IR

when building the universe (U,T): in particular this bought us a small set

of codes U : Set which we can then use as the target of a recursive func-

tion f :X → U built with Small IR. By computing φ(γΣ̂,N̂) as in Definition

4.14, we obtain an indexed container whose set of shapes SγΣ̂,N̂ is the set

(Σu : U)(T(u) → U). Since both U and T(u) are sets for every u : U, then

also SγΣ̂,N̂ is. Notice that this would not be the case if we were starting the

construction with the large universe (Set,El) because we would end up with

a large quantification on Set.

4.5 Conclusion

In this section we have precisely characterized the sub-theory of IR corre-

sponding to indexed inductive types by the equivalence between the cate-

gories IRsm(I ,O) and Poly(I ,O) (Theorem 4.17). By exploiting this equiva-

lence we can transport the rich closure properties of dependent polynomials

and indexed containers. In particular, we can transport composition and

give a partial answer to the open question if IR-functors are closed under

composition or not.

In recent work Capretta [23] has investigated small induction-recursive types

from a coalgebraic perspective, dubbing them wander types. The results in

this chapter ensure that final coalgebra for small inductive-recursive defini-

tion always exists since they are nothing but final coalgebra for dependent

polynomial functors.

Chapter 5

Positive induction-recursion

Abstract In this chapter we introduce a generalization of IR, which we

call positive induction-recursion which allows for the definition of data types

as initial algebras of certain functors Fam (C) → Fam (C), thus lifting the

restriction in the theory of IR where C has to be discrete. This leads us to

introduce simultaneously codes for such data types, and morphisms between

them. We then give a functorial semantics and show application and concrete

examples of the resulting theory. We justify the existence of these data types

by adapting the set-theoretic model for IR to our setting.

5.1 Introduction

In Chapter 4 we studied a sub-theory of IR which precisely captures indexed

inductive types. In this chapter we come back to the large class of inductive-

recursive definitions (Definition 3.7), and again we use the categorical se-

mantics to explore a generalization of both the syntax and the semantics of

IR.

In Chapter 3 we saw that the families construction, which is pervasive in

the fibrational semantics of dependent type theories [64], plays also a cen-

tral role in the semantics of IR. As explained in Section 3.2.2, IR-functors

are naturally defined on the category Fam|D | of families of elements of a

(possibly large) type D. For example universes of sets closed under certain

operations, such as dependent sums and products, arise as initial algebras

107

108 Chapter 5

of endofunctors on Fam|Set|. Following the family approach we could try

to extend this interpretation to obtain functors on the category Fam (C) of

families of an arbitrary category C. But, there are at least two complications

which prevent us in doing this: on the one hand we saw in Section 3.2.2 page

60 that the definition of the action of IR-functors on morphisms already re-

lies on the discreteness of the type D; on the other hand IR-functors such as

those building universes closed under dependent products, contain a mixture

of covariance and contravariance intrinsic in the Π operator which forces us

to restrict to those morphisms of Fam (C) whose second component is an

identity. In this chapter, we explore a generalization of IR by investigating

the necessary changes of IR needed to provide a more general semantics of

functors between arbitrary families. Thus, we consider a new variation of

inductive-recursive definitions which we call positive inductive-recursive def-

initions, or IR+ for short, which enables us to define data types as initial

algebras of certain functors Fam (C) → Fam (C). We organize this chapter

as follows: (i) in Section 5.2 we introduce syntax and semantics of IR+; (ii)

in Section 5.3 we study the elimination principle for IR+ by showing some of

its applications; (iii) in Section 5.4 we use positive inductive-recursive defi-

nitions to shed new light on nested data types; (iv) in Section 5.5 we give

a detailed comparison with the theory of IR. Finally, (iv) in Section 5.6 we

adapt Dybjer and Setzer’s model construction to our setting.

5.2 Positive induction-recursion

Given types I and O, the syntax of IR introduced in Section 3.2.1 allows us to

build codes which are interpreted as functors Fam|I | → Fam|O |. Thus, when

interpreting IR-codes we perform the Fam construction on discrete categories

only. But what happens, if I and O have a richer structure, as for example

the type Set has, and we try to keep track of this structure? Why can’t we

consider endofunctor defined on Fam (Set) and not only on its subcategory

Fam|Set|? As already seen in Section 3.2.2 to prove functoriality of the

interpretation of a δ-code, this restriction is unavoidable, and there is no

immediate generalization for our functors: indeed the action of a δ-code on a

morphism (h, k): (X,T)→ (Y,Q) in Fam|I | crucially depends on the second

Positive Induction-Recursion 109

component k being an identity as displayed in the following diagram:

X Y

I

h

T Q
k

But what happens if the diagram above does not commute on the nose and

I is not simply a discrete category? Can we consider a more general natural

transformation k :T ⇒ Q ◦ h which is not merely the identity?

We now investigate what are the necessary changes to the syntax of IR needed

to use morphisms (h, k) in Fam I , for I not necessarily a discrete category.

The insight which guides us when introducing the syntax of IR+ is to deploy

a proper functor F , as opposed to a function, in the introduction rule for a

δ-code. This enables to relax the restriction mentioned above. Recall that,

when giving the action of δ B F : IR(I ,O) on morphisms we rely crucially

on the equality T ≡X→I Q ◦ h to use the inductive hypothesis on the code

F (T ◦ g) where g :B → X is a given function. If F : (B → I) →Cat IR+(C)

is now a functor, and not just a function, we do not have to rely on the

equality T ◦ g ≡B→I Q ◦ h ◦ g between objects in CB as before, but we can

use the second component of a morphism (h, k) in Fam (C) to get a map

T ◦ g → Q ◦ h ◦ g in CB; by applying F to this map we get a morphism

between codes F (T ◦ g) → F (Q ◦ h ◦ g) and we can then use the inductive

hypothesis on the code F (Q ◦ h ◦ g).

For F to be a functor, IR+(C) has to be a category. Thus, we are forced

to introduce codes and morphisms between them simultaneously: to this

purpose we use induction-induction [82] which we briefly recall below.

5.2.1 Inductive-inductive definitions

The theory of inductive-inductive type has been recently introduced by Nord-

vall Forsberg and Setzer [43]; a comprehensive study of this principle can be

found in Nordvall Forsberg’s thesis [81].

Inductive-inductive definitions are close relatives of inductive-recursive defi-

nitions, and share with them the mutual definition of a set X and of a family

110 Chapter 5

T :X → Set. The distinctive feature of the inductive-inductive definition

of a family (X,T), is that the family T is generated inductively and not

recursively. That is, we build both X and T inductively using constructors

introF :F (X,T)→ X and introG : (Πx :G(X,T, introF))T (h(x)) where F and

G are strictly positive functors, and h :G(X,T, introF)→ X is a map which

selects the index h(introG(x)) :X for the element introG(x).

Inductive-inductive definitions admit a finite axiomatization similar to the

one given in Section 3.2 for IR-codes, but slightly complicated by the fact

that one has to introduce two types of codes, one for the index set X, and

one for the family T :X → Set.

The inductive definition of T allows for a more general elimination prin-

ciple compared to that for inductive-recursive types. We saw in Section

3.2.5 that the elimination principle for an inductive-recursive type (X,T) is

given for predicates x :X ` P (x) : type. However, in an inductive-inductive

type (X,T) both X and T are given by constructors, and therefore a pred-

icate on (X,T) can now depend on both of them, i.e. the induction prin-

ciple is given for pairs of predicates (P,Q) where x :X ` P (x) : type and

x :X, y :T (x), z :P (x) ` Q(x, y, z) : type1. Notice that Q can also depend on

P . Nordvall Forsberg [81] (Section 3.2.5) suggests to summarize the situa-

tion by the slogan “the elimination principle for an inductive-inductive type is

recursive-recursive”. We will exploit this elimination principle when defining

the semantics for IR+.

5.2.2 A finite axiomatization of IR+

We give an axiomatic presentation of IR+ analogous to the one given in Def-

inition 3.7 for the syntax of IR; however, we now have mutual introduction

rules to build both the type of IR+(C) codes and the type of IR+(C) mor-

phisms, for C a given category.

Definition 5.1. Given a category C we simultaneously define the type of

positive inductive-recursive codes on C, IR+(C): type and the type of mor-

phisms between these codes IR+(C)(,): IR+(C) → IR+(C) → type by the

1In general we do not need large elimination for induction-induction, but it will turn

useful for our purposes.

Positive Induction-Recursion 111

following introduction rules:

• IR+(C) codes:
c :C

ι c : IR+(C)

A : Set f :A→ IR+(C)

σ Af : IR+(C)

A : Set F : (B → C)→Cat IR+(C)

δ B F : IR+(C)

• IR+(C) morphisms:

identity morphisms

γ : IR+(C)

idγ: IR+(C)(γ, γ)

morphisms from ιc:
f :C(c, c′)

Γι,ι(f): IR+(C)(ι c, ι c′)

a :A r : IR+(C)(ι c, f(a))

Γι,σ(a, r) : IR+(C)(ι c, σ A f)

g :B → N0 r : IR+(C)(ι c, F (! ◦ g))

Γι,δ(g, r) : IR+(C)(ι c, δ B F)

morphisms from σ Af :

γ : IR+(C) r : (Π a :A)IR+(C)(f(a), γ)

Γσ,γ(r) : IR+(C)(σ Af, γ)

morphisms from δ B F

γ : IR+(C) ρ : Nat(F, cγ)

Γδ,γ(ρ): IR+(C)(δ B F, γ)

112 Chapter 5

a :A ρ : Nat(F, cf(a))

Γδ,σ(a, ρ) : IR+(C)(δ B F, σ A f)

f :B → A ρ : Nat(F,G(◦ f))

Γδ,δ(f, ρ) : IR+(C)(δ AF, δ B G)

In the last three clauses we have indicated with cγ:CA → IR+(C) the constant

functor with value γ. �

We now need to make sure that 5.1 really defines a category, i.e. that com-

position of IR+ morphisms can be defined, and that it is associative and has

identities.

Lemma 5.2. Given a category C, the set of codes and morphisms as given

in Definition 5.1 makes IR+(C) into a category.

Proof. We show how to define a composite operation � : IR+(C)(γ′, γ′′)×
IR+(C)(γ, γ′)→ IR+(C)(γ, γ′′).

idγ � Γγ′,γ = Γγ′,γ

Γγ,γ′ � idγ = Γγ,γ′

Γι,ι(g)� Γι,ι(f) = Γι,ι(g ◦ f)

Γγ,γ′ � Γσ,γ(r) = Γσ,γ′(λ a.(Γγ,γ′ � f(a))

Γγ,γ′ � Γδ,γ(ρ) = Γδ,γ′(cΓγ,γ′
· ρ) (a)

Γι,ι(g)� Γι,σ(a, r) = Γι,σ(a, r � Γι,ι(g))

Γι,ι(f)� Γι,δ(g, r) = Γι,δ(g, r � Γι,ι(f))

Γσ,γ(s)� Γι,σ(a, r) = r � s(a)

Γσ,γ(r)� Γδ,σ(a, ρ) = Γδ,γ(cr(a) · ρ) (b)

Γδ,γ(ρ)� Γι,δ(g, r) = ρ(!◦g) � r
Γδ,γ(τ)� Γδ,δ(f, ρ) = Γδ,γ(τ(◦ f) · ρ) (c)

Γδ,σ(a, ρ)� Γι,δ(g, r) = Γι,σ(a, ρ!◦g � r)(c)
Γδ,σ(a, τ)� Γδ,δ(f, ρ) = Γδ,σ(a, τ(◦ f) · ρ) (d)

Γδ,δ(g, ρ)� Γι,δ(f, r) = Γι,δ(f ◦ g, ρ!◦f � r)
Γδ,δ(g, τ)� Γδ,δ(f, ρ) = Γδ,δ(f ◦ g, τ(◦ f) · ρ) (e)

Positive Induction-Recursion 113

In the clauses above we used · for composition of natural transformation.

Also, we used cΓγ,γ′
: cγ

·→ cγ′ in clause (a) for the natural transformation with

constant components Γγ,γ′ and similarly for clause (b) while τ(◦f) in clause

(c), (d) and (e) indicates the whiskering of τ :G
·→ cγ and (◦ f):CA → CB.

Associativity is proved by induction and we omit the details.

The careful reader might have noticed a possible redundancy in Definition

5.1: when defining morphisms out of δ codes we gave the introduction rule

Γδ,γ(g) for morphisms with codomain an arbitrary code γ, but we also in-

cluded Γδ,σ(b, ρ) and Γδ,δ(g, ρ), representing morphisms from a δ code into a

σ code and another δ code respectively. The reason is the following: it is

necessary to have both these forms of morphisms out of a δ code when recur-

sively defining composition of IR+. Since more morphisms makes it easier to

define codes, we are also interested in allowing as many morphisms as pos-

sible. The semantics we are going to give explains how elements of IR+(C)

decode as functors on Fam (C), while morphisms between such codes decode

to natural transformations between the corresponding functors. The defini-

tion of morphisms above is rather different from the definition of morphisms

between Small IR-codes given in Definition 4.7. Indeed, the latter crucially

depends on the characterization of the interpretation of a δ-code as a sum of

left Kan extensions (see Theorem 4.5): this characterization does not triv-

ially extend to the more general setting of Fam (C), and, as a consequence,

we loose the analogous result of full and faithfulness for the interpretation

functor (Theorem 4.10). Indeed already the redundancy in the definition of

morphisms out of a δ code mentioned above shows that it is not possible to

expect the interpretation functor to be faithful.

The semantics of IR+ closely follows the semantics of IR given in Section

3.2.2; as before we make essential use of coproducts in Fam (C) which are

intrinsically inherited by the Fam construction (see Remark 3.10). A functor

which is isomorphic to a functor induced by an IR+-code will be called an

IR+-functor.

The crucial feature which separates the semantics of IR+ from the seman-

tics of IR is the following: when explaining the semantics of IR we can first

interpret IR-codes as functors and only later we define morphisms between

114 Chapter 5

codes which are interpreted as natural transformations between the corre-

sponding functors. In IR+ the type of of codes and the type of morphisms

between codes are simultaneously defined in an inductive-inductive way, and

therefore they are also decoded simultaneously as functors and natural trans-

formations respectively. This is exactly what the elimination principle for an

inductive-inductive definition gives us.

Theorem 5.3 (IR+ functors). Let C be a category.

(i) Every code γ : IR+(C) induces a functor JγK : Fam (C)→ Fam (C).

(ii) Every morphism r: IR+(C)(γ, γ′) for codes γ, γ′ : IR+(C) gives rise to a

natural transformation JrK: JγK ·−→ Jγ′K.

Proof. While the action on objects is the same for both IR+ and IR functors,

the action on morphisms is different when interpreting a code of type δ B F :

in the semantics of IR+ we exploit the fact that F : (A→ C)→ IR+(C) is now

a functor by using its action on morphism (which we, for the sake of clarity,

indicate with F→). We give the action of IR+ functors on morphisms only,

and refer to the semantics given in Section 3.2.2 for the action on objects of

Fam (C).

The action on morphisms is given as follows. Let (h, k): (X,T)→ (Y,Q) be

a morphism in Fam (C), we define JγK(h, k) by recursion on γ:

Jι cK(h, k) = (idN1 , id)

JσA f K(h, k) = (Σ a :A)(Jf (a)K(h, k) = [ina ◦ Jf (a)K(h, k)]a :A

JδB F K(h, k) = (Σ(λ g. h ◦ g), λ g.JF (Q ◦ h ◦ g)K(h, k) ◦ JF→(g∗(k))K(X,T))

= [inh◦g ◦ JF (Q ◦ h ◦ g)K(h, k) ◦ JF→(g∗(k))K(X,T)]g :B→X

In the last clause we use the notation for a generalized sum of morphisms

(see Remark 3.10(3)) and we indicated with g∗(k) :T ◦g ·−→ Q◦h◦g the nat-

ural transformation with component g∗(k)b = kg(b) :T (g(b)) → Q (h (g(b)));

notice that, from a fibrational perspective (cf. Section 6.2), such a natu-

ral transformation is nothing but a vertical morphism above B obtained by

reindexing (idX , k) : (X,T) → (X,Q ◦ h) along g in the families fibration

π : Fam (C) → Set. To help the reader’s intuition we draw the commuting

diagram representing the inductive hypothesis of the last clause:

Positive Induction-Recursion 115

JF (T ◦ g)K(U, T) JF (Q ◦ h ◦ g)′K(U, T)

JF (T ◦ g)K(U ′, T ′) JF (Q ◦ h ◦ g)′K(U ′, T ′)

JF→(g∗k)K(X,T)

JF→(g∗k)K(Y,Q)

JF (T ◦ g)K(h, k) JF (Q ◦ h ◦ g)K(h, k)

The definition of JδB F K(h, k) above is given by the generalized sum of the

family of morphisms obtained by composing two sides of the above diagram

over the morphism h ◦ : (B → X)→ (B → Y) mapping the index set of the

source to the index set of the target.

We now explain how IR+ morphisms are interpreted as natural transforma-

tions between IR+ functors by specifying their component at (X,T): Fam (C).

JidγK(X,T) = (idJγK)(X,T)

JΓι,ι(f)K(X,T) = (idN1 , f): (N1, λ. c)→ (N1, λ. c
′)

JΓι,σ(a, r)K(X,T) = ina ◦ JrK(X,T)

JΓι,δ(g , r)K(X,T) = in!X◦g ◦ JrK(X,T)

JΓσ,γ(r)K(X,T) = [Jr(a)K(X,T)]a :A

JΓδ,γ(ρ)K(X,T) = [JρT◦gK(X,T)]g :B→X

JΓδ,σ(a, ρ)K(X,T) = Σ(ca, JρT◦gK(X,T))

= ina ◦ [JρT◦gK(X,T)]g :B→X

JΓδ,δ(f , ρ)K(X,T) = Σ (λ g. g ◦ f, λ g. JρT◦gK(X,T))

= [ing◦f ◦ JρT◦gK(X,T)]g:A→X

where we have used ca : (B → X) → A in the seventh equation for the con-

stant function value a :A Naturality of these transformations can be proved

by a routine diagram chasing.

Example 5.4 (A universe closed under dependent sums in Fam (Setop)). In

Section 3.2.7 we defined in (3.3) an ordinary IR-code for a universe closed

under sigma types. We can extend this code to an IR+ code

γN,Σ = ιN +IR δN1 (X 7→ δ X(01)(Y 7→ ι((Σx :X(01))Y (x)))): IR+(Setop)

116 Chapter 5

where now G =def Y 7→ ι ((ΣX(01))Y) and F =def X 7→ δ X(01)G needs to

be functors. From a morphism f :Y → Y ′ in [X(01), Setop], represented as

an X(01)-indexed collection of morphisms fx:Y (x)→ Y ′(x) in Setop, we get

a morphism (Σx :X(01))fx : (ΣX(01))Y → (ΣX(01))Y ′ in Setop. Therefore

we can define

G(f): ι((ΣX(01))Y)→ ι((ΣX(01))Y ′)

by G(f) = Γι,ι((Σx :X(01))fx).

We also need F to be a functor. Given f01 :X(01) → X ′(01) in N1 → Setop,

we need to define F (f): δ X(01)G → δ X ′(01)G. According to Definition

5.1, it is enough to give f01 :X ′(01) → X(01) and a natural transformation

ρ from G to G(− ◦ f01). We can choose ρ to be the natural transformation

whose component at Y : [X(01), Setop] is given by ρY = Γι,ι(Σ(f01 , id)), where

Σ(f01 , id) =def [inf01
(x)]x :X′(01) : (ΣX ′(01))(Y ◦f01)→ (ΣX(01))Y . Notice that

working in Setop made sure that f01 was going in the right direction. �

Example 5.5 (A universe closed under Π-types in Fam (Set
∼=)). In Section

3.2.7 we saw how to extend the code for a universe closed under Σ-types to

to a code for a universe which is also closed under Π-types in Fam|Set|. The

code (3.4) we used was the following:

γN,Π = δN1(X 7→ δ X(01)(Y 7→ ι((ΠX(01))Y))) : IR(Set)

If we try to extend this to a IR+ code in Fam (Set) or Fam (Setop), we run

into problems. Basically, given a morphism f :X ′ → X, we need to construct

a morphism (ΠX ′)(Y ◦ f) → ΠX Y , which of course is impossible if e.g.

X ′ = N0, X = N1, and Y (01) = N0.

Hence the inherent contravariance in the Π-type means that γN,Π does not

extend to a IR+(Set) or IR+(Setop)-code. However, if we move to the groupoid

Set
∼=, which is the subcategory of Set with only isomorphisms as morphisms,

we do get an IR+(Set
∼=)-code describing the universe in question, which is still

living in a category beyond the strict category Fam|Set|, namely Fam (Set
∼=).

It would be interesting to understand the relevance of positive induction-

recursion to homotopy type theory where groupoids and their higher order

relatives play such a prominent role.

�

Positive Induction-Recursion 117

5.3 The elimination principle for IR+

From Example 5.4 we know that the IR-code γN,Σ defining a universe contain-

ing the set of natural numbers N and closed under Σ-type can be extended

to a IR+-code of type IR+(Set
∼=) or IR+(Setop). Thus, the code γN,Σ can be in-

terpreted as an endofunctor on Fam (Set
∼=) or on Fam (Setop) respectively. In

this section we aim to explore by means of an example what the elimination

principle for IR+-codes can be used for: we show how the simple elabora-

tion of the code γN,Σ to a code of type IR+(Set
∼=) offers us the possibility to

implement a more sophisticated recursion principle on the universe we are

currently building.

Indeed, by working in Fam (C) instead of Fam |C|, we are allowing many

more algebras compared to ordinary inductive-recursive definitions, or put

differently, we get a stronger elimination principle.

Example 5.6. To see why a stronger elimination principle is sometimes

necessary, consider the initial algebra ((U∗,T∗), (intro0, intro1)) for a code

γN1,N,Σ : IR+(Set
∼=) representing a universe containing the set N1, the set N

of natural numbers and moreover closed under Σ-types. The universe U∗

contains many codes for “the same” set, up to isomorphism. For instance, it

contains codes for each of the following isomorphic sets:

1 ∼=(Σ1)1 ∼= (Σ1)(Σ1)1 . . .

N ∼=(ΣN)1 ∼= (Σ1)N ∼= (Σ1)(Σ1)N . . .

Moreover, for each Σ-type the following isomorphism holds:

(Σ c : (Σ a :A)B(a))C(z) ∼= (Σ a :A)(Σ b :B(x))C(a, b) (5.1)

Therefore, for each Σ set with at least two nested Σ’s, the universe U∗ con-

tains a code for both these ways to parenthesize a Σ-type. It might be

advantageous to instead keep a single representative for each isomorphism

class. We might hope to do so using the initiality of (U∗,T∗), and indeed, the

elimination principle for positive inductive-recursive definitions allows us to

do exactly that.

First of all we need to decide what normal forms for elements in the universe

we want. We can specify this by defining a predicate NF : U∗ → Set on the

118 Chapter 5

universe (U∗,T∗), which decides if a set is in normal form: we decree that

the codes for the sets N1 and N are in normal form, and a code for (ΣA)B

is in normal form if A is in normal form, B(a) is in normal form for for each

a :A, A is not 1 and B(a) is not 1 for all a:A, and finally it is of the form of

the right hand side of (5.1) (the left hand side would work equally well). We

now define a new family (UNF, TNF), containing sets in normal forms only, by

letting

UNF =def (Σu: U∗)NF(u)

TNF(u, p) =def T∗(u)

We can also define a morphism (φ, η) : Jγ1,N,ΣK(UNF, TNF) → (UNF, TNF) in

Fam (Set
∼=) which endows (UNF, TNF) with an Jγ1,N,ΣK-algebra structure. For

this, it is crucial that we are working in Fam (Set
∼=) and not Fam |Set|, since

we can only expect that a Σ-type of normal forms is isomorphic to a normal

form, not equal to one; i.e. if A is in normal form, and B(a) is in normal

form for all a :A, then (ΣA)B is not necessary normal (as e.g. A = 1 shows),

but we can always find a normal form isomorphic to (ΣA)B. The function

φ maps A and B to this normal form, and η is a proof that it is indeed

isomorphic to (ΣA)B.

By initiality of (U∗,T∗) we automatically get a morphism (nf, correct) making

the following diagram commute:

Jγ1,N,ΣK(U∗,T∗) (U∗,T∗)

Jγ1,N,ΣK(UNF, TNF) (UNF, TNF)

(intro0, intro1)

Jγ1,N,Σ K(nf, correct) (nf, correct)

(φ, η)

The map (nf, correct) recursively computes the normal form for each set in

the universe (U∗,T∗). Indeed, nf: U∗ → UNF maps each name u of a set

T∗(u) in the universe to the name of the corresponding set in normal form,

while the natural transformation correctu: T∗(u) ∼= TNF(nf(u)) ensures that

the code actually denotes isomorphic sets.

�

Positive Induction-Recursion 119

Example 5.7. As another example of the use of elimination principles be-

yond ordinary inductive-recursive definitions, we can define functions be-

tween universes with different ground sets. Consider two universes U1, U2

closed under the same type-theoretic operations, but containing different

ground sets B1, B2. Given a function B1 → B2, we would like to be able to

extend this function to a function U1 → U2 between all of the two universes.

For example, we could have a universe (UN,Σ, TN,Σ), closed under Σ-types

and containing the natural numbers N, and another universe (UZ,Σ, TZ,Σ)

also closed under Σ-types but instead containing the integers Z as ground

set. Clearly these two universes are closely related and there ought to exist a

function between them in Fam (Setop) (where the contravariance come from

for the negative occurrence of U in the code for the sigma type). By the

elimination principle for positive inductive-recursive definitions, it suffices to

provide a function between the ground sets, i.e. a function from Z into N,

and there are clearly plenty of such functions, for instance the absolute value

function or the square function. In detail, every function f :Z → N induces

a Fam (Setop)-morphism

JγN,ΣK(UZ,Σ, TZ,Σ) −→ (UZ,Σ, TZ,Σ)

showing that (UZ,Σ, TZ,Σ) has an JγN,ΣK-algebra structure. Therefore, initial-

ity of (UN,Σ, TN,Σ) gives us a map (UN,Σ, TN,Σ)→ (UZ,Σ, TZ,Σ) which uses f to

recursively compute the embedding of (UN,Σ, TN,Σ) into (UZ,Σ, TZ,Σ). �

5.4 Application: a container representation

of nested types

Nested data types [5] have been used to implement a number of advanced data

types in languages which support higher-kinded types, such as the widely-

used functional programming language Haskell. Among these data types are

those with constraints, such as perfect trees [58]; types with variable bind-

ing, such as untyped λ-terms [42]; cyclic data structures [49]. In Example

1.4 the type of untyped lambda terms have been introduced as a paradig-

matic indexed inductive definition. There we used the type N as index-type

120 Chapter 5

stratifying lambda terms according to the number of free variables occurring

in a term. But, in a functional language like Haskell which does not support

dependent types, the type Lam can instead be presented as a nested data

type. In Haskell we can define Lam : Set→ Set as follows:

data Lam A = Var A | App (Lam A) (Lam A) | Abs (Lam (Maybe A))

The type Lam A is the type of untyped λ-terms over variables of type A up

to α-equivalence. Here, the constructor Abs models the bound variable in an

abstraction of type Lam A by the Nothing constructor of type Maybe A, and

any free variable x of type A in an abstraction of type Lam A by the term

Just x of type Maybe A.

Note the important difference with the representation of Lam given in Exam-

ple 1.4: there the domain of Var is Fin n for n : Nat, while here the domain

of Var is a type variable A. However, both these presentations emphasize

the intrinsic feature of the type Lam: elements of the type Lam (Maybe A)

are needed to build elements of Lam A so that, in effect, the entire family of

types determined by Lam has to be constructed simultaneously. Thus, rather

than defining a Nat-indexed family of inductive types, the type constructor

Lam defines an type-indexed inductive family of types.

This section uses IR+ to show that nested data types like Lam are repre-

sentable as containers (see Section 2.2.2). This fact allows one to apply

the rich structure of containers to nested data types, e.g. one could classify

the natural transformations between them and operate on them using, for

example, the derivative. We sketch the overall development as follows:

• in Section 5.4.1 we define a basic grammar Nest for defining nested

types and a decoding function L−M: Nest→ [Set, Set]→ [Set, Set].

• In Section 5.4.2 we show that LNM restricts to an endofunctor LNMCont on

the category Cont of containers. We then use IR+ to define LNMCont and

conclude that its initial algebra µLNMCont is a container whose extension

is exactly µLNM.

Positive Induction-Recursion 121

5.4.1 A grammar for nested types

We now present a possible syntax for defining nested data types. It is not

the most sophisticated grammar, since our point is not to push the the-

ory of nested data types, but rather to illustrate an application of positive

induction-recursion to nested data types. The grammar we use is

F = Id | K(S,P) | F + F | F × F | F ~ F

where (S, P) is any container. The intention is that Id stands for the identity

functor mapping a functor to itself, K(S,P) stands for the constant functor

mapping any functor to the interpretation of the container (S, P), + stands

for the coproduct of functors, × for the product of functors and ~ for the

pointwise composition of functors. These intentions are formalised by a se-

mantics for the elements of our grammar given as follows

L−M : Nest→ [Set, Set]→ [Set, Set]

LIdM F = F

LK(S,P)M F = J(S ,P)KC

LF + GM F = LFM F + LGM F
LF × GM F = LFM F × LGM F
LF ~ GM F = LFM F ◦ LGM F

For example, the functor

L F X = X + (FX × FX) + F (X + 1)

whose initial algebra is the type Lam is of the form LNLM where

NL = K(N1,N1) + (K(N1,N2))~ Id + Id~ (K(SN,PN))

where (1, 1) is the container with one shape and one position which represents

the identity functor on Set, (1, 2) is the container with one shape and two

positions which represents the functor mapping X to X × X and (SN, PN)

is the container described in Example 2.37 representing the functor on Set

mapping X to X + 1.

122 Chapter 5

5.4.2 Representing nested types as containers

We start showing that every element N of Nest can be interpreted as an

operator on containers LNMCont : Cont −→ Cont as exemplified by the following

diagram

Cont [Set, Set]

Cont [Set, Set]

J−KC

J−KC

LNMCont LNM

We can check that Cont is indeed closed under LNM, for N an element in Nest

(by which we mean that the image of LNM restricted to Cont is still an object

of Cont), by induction on the structure of N by noting that containers are

closed under coproduct, product and under composition. Thus, for example,

we define (SL, PL) = LNLMCont(S, P), where

SL = 1 + (S × S) + (Σs :S) (P (s)→ 2)

PL (in1 01) = N1

PL (in2 (s, s′)) = P (s) + P (s′)

PL (in3 (s, f)) = (Σ p :P (s)) case2(f(p),N1,N0)

Now, we want to show that for every code N : Nest, the functor LNMCont is

an IR+ functor. The key idea is to exploit the identification of Cont with

Fam (Setop) (see Remark 2.32). If we examine the constructions on families

used to build LNMCont we note that the only delicate construction is the use

of Σ-types to model the composition operator used in the definition of nested

types and derived by container composition as shown, for example, in the

definition of SL and PL. But, as we have seen in Example 5.4, families closed

under Σ-types are canonical examples of a IR+ construction. Thus, as shown

in Section 5.6, we can define the initial algebra of the IR+ functor LNMCont

in the usual way as the colimit of the initial chain. We are left to show

that the extension of the container µLNMCont built this way is the functor

µLNM : Set→ Set. From Lemma 5.11 in Section 5.6 we know that the initial

algebra chain of an IR+ functor is made from cartesian morphisms only (see

Positive Induction-Recursion 123

Definition 6.1), and since J−KC preserves initial objects and filtered colimits

of cartesian morphisms ([1] Propositions 4.5.1 and 4.6.7), we can indeed

conclude that JµLN MContKC
∼= µLNM showing that all nested types indeed are

definable using containers.

5.5 Comparison to plain IR

We now investigate the relationship between IR+ and IR. On the one hand

we show in Proposition 5.8 how to embed Dybjer and Setzer’s original coding

scheme for IR into IR+; this way we can see IR as a subsystem of IR+. On the

other hand we show in Proposition 5.9 that on discrete categories the two

schemas agree having the same functorial interpretation.

Recall from Remark 3.13 that every type D can be regarded as a discrete

category |D|. In the other direction, every category C gives rise to a type

|C| whose elements are the objects of C.

Proposition 5.8. There is a function ϕ : IR(D)→ IR+|D| s.t.

JγKIR(D)
∼= Jϕ(γ)KIR+|D|

Proof. The only interesting case is when γ is a δ-code. Therefore, let γ

be δ B F : IR(D). Recursively applying φ we get a map F : (B → |D|) →
IR+(|D|). We need to ensure that F is indeed a functor, but since |D| is

a discrete category and B is a set, (B → |D|) is also discrete. Hence the

mapping on objects F : (B → |D|) → IR+(|D|) can trivially be extended to

a functor (B → |D|)→ IR+(|D|). It is easy to see that the two semantics do

agree: they have the same action on objects and on morphisms whose second

component is an identity, which are the only morphisms of Fam|D | since |D|
is discrete.

This proposition shows that the theory of IR can be embedded in the theory

of IR+. In the next proposition we make this result more precise: using the

embedding | − | : CAT → SET which assigns to each category the collection

of its objects and to each functor its action on objects only, we show that

forgetting about the extra structure in IR+ simply gets us back to plain IR.

124 Chapter 5

Proposition 5.9. Let | − | : CAT → SET be the functor assigning to each

category the collection of its objects and to each functor its action on objects

only. There is a function ψ : IR+C→ IR |C| such that for all γ : IR+C

Jψ(γ)KIR |C|
∼= JγKIR+C |Fam|C|

where JγKIR+C |Fam|C| indicates the restriction of JγKIR+C to the subcategory of

Fam (C) obtained by restricting morphisms to those whose second component

is an identity. Furthermore, ψ ◦ ϕ = id.

The proof is again a simple induction on the structure of the codes.

5.6 Existence of initial algebras

We briefly revisit the initial algebra argument given in Section 3.3.2. In-

specting the proof, we see that it indeed is possible to adapt it also for the

more general setting of positive inductive-recursive definitions by making the

appropriate adjustments.

Call a morphism (h, k) : (X,T) → (Y,Q) in Fam (C) splitting if k = idT ,

i.e. Q ◦ h = T . As we will make it clear in Section 6.2, splitting morphisms

are specific Cartesian morphisms for the family fibration π : Fam (C)→ Set.

Therefore Fam|C| is the subcategory of Fam (C) with the same objects, but

with morphisms the splitting ones only (cf. Observation 3.12).

Inspecting the proofs in Section 3.3.2, we see that they crucially depend on

morphisms being splitting in several places. And, indeed, the morphisms

involved in the corresponding proofs for IR+ actually are splitting.

As is well-known, a weaker condition than κ-continuity is actually sufficient:

it is enough that the functor in question preserves the specific colimit of the

initial κ-chain. We thus show that the initial chain of a IR+ functor actually

lives in Fam|C|, which will allow us to modify Dybjer and Setzer’s proof

accordingly.

Lemma 5.10. For every code γ : IR+ C the induced functor JγK: Fam (C)→
Fam (C) preserves splitting morphisms, i.e. if (f, g) is splitting, then so is

JγK(f, g).

Positive Induction-Recursion 125

Proof. By induction on the structure of the code. The interesting case is

γ = δ B F . Let (h, id) : (X,P ◦ h) → (Y, P) be a splitting morphism. We

have

JδB F K(h, id) = [inh◦g ◦ JF (P ◦ h ◦ g)K(h, id) ◦ JF→(g∗(id))K(X,T)]g :B→X

= [inh◦g ◦ JF (P ◦ h ◦ g)K(h, id)]g :B→X

where JF (g∗id)K(X,T) = id since both g∗, F and J K are functors. By the induc-

tive hypothesis, each JF (P ◦ h ◦ g)K(h, id) is splitting. Furthermore injections

are splitting in Fam (C). Since splitting morphisms are closed under compo-

sition and the cotuple of splitting morphisms is also a splitting in Fam (C)

we conclude that JδB F K(h, id) is a splitting morphism.

Lemma 5.11. For each γ : IR+ C, the initial chain consists of splitting mor-

phisms only.

Proof. Recall from Section 2.2.1 that the connecting morphisms ωj,k: JγK
j(⊥)→

JγKk(⊥) are uniquely determined as follows:

• ω0,1 = !JγK(⊥) is unique.

• ωj+1,k+1 is JγK(ωj,k): JγK(JγK
j(⊥))→ JγK(JγKk(⊥)).

• ωj,k is the colimit cocone for j a limit ordinal.

We prove the statement by transfinite induction on j. For γ = ⊥ the state-

ment is trivially true. At successor stages, we can directly apply Lemma 5.10

and the inductive hypothesis. Finally, at limit stages, we use the fact that

the colimit lives in Fam|C|, so that the colimit cocone is splitting.

Inspecting the proofs that IR-functors have an initial algebra in Section

3.3.2, we see that it now goes through also for IR+ if we insert appeals to

Lemma 5.11 where necessary. To finish the proof, we also need to ensure

that Fam (C) has κ-filtered colimits; this is automatically true if C has all

small connected colimits (compare Remark 3.10), since Fam (C)is then co-

complete. Note that discrete categories have all small connected colimits for

trivial reasons.

126 Chapter 5

Theorem 5.12. Assume that a Mahlo cardinal exists in the meta-theory. If

C has connected colimits, then every functor JγK for γ: IR+ C has an initial

algebra.

Chapter 6

Fibred induction-recursion

Abstract In this chapter we introduce a theory of fibered data types which

broadens the class of data types definable by the theory of IR. Fibered data

types are inductive-recursive types regarded as objects of the total category

of a fibration. We give a syntax which defines codes for fibered data types

and a corresponding semantics which interprets these codes as functors on the

total category of a fibration. We present examples of fibered data types and

we justify their existence by adapting the original initial algebra argument

for inductive-recursive types.

6.1 Introduction

In this chapter we introduce fibrations as they offer a conceptual cleaner

treatment of induction-recursion which, simultaneously, significantly broad-

ens the class of data types which can be defined by induction-recursion.

Fibrations proved to be extremely successful in modeling type theories (see

for example Jacobs’ monograph [64]). In particular, when discussing de-

pendent types it becomes natural to distinguish between a base category of

indices and a total category of indexed objects. This perspective offers a

clean categorical infrastructure to capture indexed data types and, as we

argue in this chapter, also inductive-recursive types.

The characteristic feature of an inductive recursive type, as already remarked

in several places, is the simultaneous definition of a type X and of a recursive

127

128 Chapter 6

function T :X → D. With respect to this, the advantage of using fibrations

to organize these data types is then twofold: on the one hand we get a more

abstract and versatile setting by regarding X as an index, and therefore as

an object of the base category of a fibration, and T :X → D as an indexed

object, i.e. an object of the total category of a fibration- “above” X. On the

other hand, we can reflect the interplay arising from the mutual definition of

X and T by the use of objects in the base category to define the action of IR

functors on objects of the total category.

A more concrete motivation for the use of fibrations to model induction-

recursion arises when we ask what happens if we wish to define some other

form of indexed structure where the indices are generated at the same time

as the data so indexed. For example, we may wish to define in an inductive-

recursive way any of the following structures:

• An extensional family T :X → Setoid where X is a setoid and T pre-

serves the setoid structure of X.

• A presheaf T :C→ Set where C is a category and T is a functor.

• A category with families which is a functor T :Cop → Fam (Set) where

C is a category thought of as a category of contexts.

• An indexed category/split fibration T :Cop → Cat.

These structures are not covered by any of the schemas seen in the previous

chapters. Therefore, after a brief recap on fibrations, we start looking for a

generalization of the original IR constructors suitable to be interpreted in the

setting of a fibration. This analysis will also suggest the necessary structure

a fibration needs to possess in order to get a sound interpretation of these

constructors as functors between the total category of the fibration. At that

point we will see the above mentioned structures as instances of our schema

and precisely as initial algebra of functors defined by our new constructors.

6.2 Fibrations in a nutshell

The aim of this chapter is to obtain inductive-recursive definitions for dif-

ferent structures by appropriately instantiating a single, generic theory of

Fibred Induction Recursion 129

induction-recursion. To pursue such a uniform approach we turn to the lan-

guage of fibrations [64]. In this section we collect some standard material

about fibrations which will be used in the rest of this chapter.

Definition 6.1. Let p :E→ B be a functor. A morphism g :Q→ P in E is

said Cartesian over a morphism f :X → Y in B if p(g) = f , and for every

g′ :Q′ → P in E for which p(g′) = f ◦ v for some v : p(Q′) → X there exists

a unique h :Q′ → Q in E such that p(h) = v and g ◦ h = g′. �

We indicate with f §P a Cartesian morphism over a morphism f with codomain

p(P). Cartesian morphisms can be easily recognized to be unique up to

isomorphism. If P is an object of E, then we write f ∗P for the domain of f §P .

Cartesian morphisms are the essence of fibrations, as the following definition

shows.

Definition 6.2. Let p :E→ B be a functor. Then p is a fibration if for every

object P of E and every morphism f :X → p(P) in B there is a Cartesian

morphism f §P :Q→ P in E such that p(f §P) = f . �

If p :E → B is a fibration, we call B the base category of p and E the total

category of p. In the rest of the chapter we assume the base category is locally

small; this will enable us later to take coproducts indexed by the morphisms

of specific hom-sets (cf. Lemma 6.9). Objects of the total category E can be

thought of as indexed entities while objects of the base category B can be

thought of as indices. Therefore the functor p can be thought of as mapping

each indexed structure P in E to the index p(P) of P . We say that an object

P in E is above its image p(P) under p, and similarly for morphisms. For any

object X of B, we write EX for the fibre above X, i.e., for the subcategory of

E consisting of objects above X and morphisms above idX .

A fibration is called cloven if it comes with a choice of Cartesian liftings, and

split if this choice is further done functorially, i.e. id∗ = id and (v◦u)∗ = u∗ v∗.

If the fibration p :E → B is cloven, and f :X → Y is a morphism in B,

then the function mapping each object P of E to f ∗P extends to a functor

f ∗:EY → EX . We call the functor f ∗ the reindexing functor induced by f .

In general, given an arbitrary fibration p :E → B we can always obtain a

new fibration, called the groupoid fibration associated to p, by restricting

130 Chapter 6

the morphisms of E to be just the Cartesian morphisms of p. Indeed, from E
we obtain a category Ec whose objects are the same as those of E and whose

morphisms are the Cartesian morphisms of p.

Lemma 6.3. The functor pc :Ec ↪→ E→ B obtained by restricting p to the

category Ec is a fibration.

Proof. Ec is a subcategory of E since all isomorphisms are Cartesian and

Cartesian morphisms are closed by composition. The fact that Ec → B is

a fibration is just a consequence of an abstract formulation of the pullback

lemma in terms of fibrations stating that given composable morphisms g and

f , if both g and g ◦ f are cartesian, then also f is cartesian.

When p is split, we can further consider the subcategory Esp of Ec consist-

ing of Cartesian morphisms coming from the splitting only. In this case we

restrict the morphisms of Ec to a choice of Cartesian morphisms such that

id∗ = id and (v◦u)∗ = u∗ v∗ for every morphism u and v in Esp. Morphisms in

Esp are called splitting morphisms. As is common when modelling type theo-

ries, we will only be concerned with split fibrations. This is not a restriction,

since every fibration is equivalent to a split one (Jacobs [64] Corollary 5.2.5).

Of course, Lemma 6.3 applies to psp :Esp ↪→ E → B as well. We collect two

immediate but useful facts about Esp in the following lemma:

Lemma 6.4. Let K:E→ B be a split fibration.

1. If f is a splitting morphism, then (pf)§ = f .

2. Each fibre Esp
A is discrete.

Proof. The first item is obvious since a splitting is nothing but a choice of

Cartesian morphisms. The second is just a consequence of the fact that

the fibre of Ec are groupoids since vertical cartesian morphisms are always

isomorphisms.

That Fam|D | is fibred over Set, as noted in Remark 3.10, is the crucial

observation which allowed us to realise that induction-recursion can be recast

in a fibred setting. But before we get to that, we now give some examples of

fibrations which will be used later in this chapter.

Fibred Induction Recursion 131

Example 6.5 (The domain fibration). Let B be a category. The arrow cat-

egory of B, denoted B→, has the morphisms of B as its objects. A morphism

in B→ from f :X → Y to f ′ :X ′ → Y ′ is a pair (α1, α2) of morphisms in

B such that f ′ ◦ α1 = α2 ◦ f . The domain functor dom maps an object

f :X → Y of B→ to the object X of B. This functor is always a fibration

called the domain fibration; the reindexing of an object f :X → Y above X

by a morphism g :X ′ → X in B being simply the composite f ◦ g :X ′ → Y .

For each object A of B there is an obvious domain fibration domA:B/A→ B
obtained by the restriction of dom to the fiber above A. �

Example 6.6 (The families fibration). In Definition 3.9 we defined the cat-

egory Fam (C) for any category C. The functor π : Fam (C) → Set mapping

(X,T) to X is a split fibration called the families fibration. Given a family

T :X → C above X and a morphism f :X ′ → X in Set, the reindexing of T

by f is the family T ◦ f :X ′ → C with the splitting arrow (f, id) :T ◦ f → T

having as first component f and as second component the X ′-indexed col-

lection of identity morphisms. �

The following definition introduce a generalization of the families fibration

which will turn useful in Section 6.5 when we verify that our examples meet

the required conditions to interpret the functors we are interested in.

Definition 6.7. Let A be a category, F :A → CAT a functor and D a

category. The lax comma category F ↓lax D has objects pairs (X,T) where

X is an object in A and T is a functor F (X)→ D. A morphism from (X,T)

to (X ′, T ′) is a pair (f, g) where f :X → X ′ and g :T
·→ T ′ ◦ F (f). �

Proposition 6.8. The category E =def F ↓lax D is fibred over A via a split

fibration p :E → A. The subfibration psp :Esp → B is given by the comma

category F ↓ D. If A has coproducts and F preserves them, then also Esp

has coproducts.

Proof. The fibration p :E→ A maps an object (X,T) to X and a morphism

(f, g) to f . Given a morphism f :Y → p(X,T) in A, we choose (f, id): (Y, T ◦
F (f)) → (X,T) to be the Cartesian morphism above f . This choice is

clearly functorial in f , and thus the splitting morphisms are exactly those

with second component identities, or equivalently, morphisms in F ↓ D.

132 Chapter 6

Now assume A has coproducts and that F preserves them. Then, coproducts

in F ↓ D are given by (X,T) + (X ′, T ′) =def (X + X ′, [T, T ′] ◦ φ) where

φ :F (X + X ′) → FX + FX ′ witnesses that F preserves +. Injections are

given by inl = (inlX+X′ , id), and inr = (inrX+X′ , id).

6.3 Fibred IR-codes

We look once more at the three constructors for IR-codes given in Definition

3.7, and contemplate how we can generalise them to an arbitrary fibration.

For simplicity we look at IR(D ,D)-codes, i.e. IR-codes with same input

and output parameter D. The key idea which guides this abstraction is to

regard the original schema given in Definition 3.7 from the perspective of the

family fibration π : Fam (D)→ Set. We abstract on this fibrational structure

stepwise considering one constructor at a time.

(ι) The first of the three IR constructors is ι whose effect is to define a

constant functor returning a given family. Because families are objects

of the total category of the families fibration, we can generalise the ι

constructor to an arbitrary fibration p :E→ B by the following rule

P :E
ι P : IR (p)

whose intent is that ιP is a code for the constantly P valued functor

on the total category of the fibration p.

(σ) The second IR constructor is σ whose effect is to take set-indexed co-

products of functors given by codes. Such an A-indexed collection of

codes can be given by a function f :A → IR (p). Hence we can gen-

eralise the σ constructor to an arbitrary fibration p :E → B by the

following rule
A : Set f :A→ IR (p)

σ Af : IR (p)

(δ) The third of the three IR constructors is δ. The premise of this construc-

tor is a function (B → D)→ IR(D ,D) for a fixed index B. Notice that

Fibred Induction Recursion 133

(B → D) is just the fibre above B in the families fibration Fam (D).

Thus we may abstract δ to an arbitrary fibration p :E→ B as follows:

B :B F : |EB| → IR (p)

δ B F : IR (p)

We can already appreciate the fibrational framework as paying dividends in

terms of cleaning up the syntax of IR-codes.

6.4 Fibred IR-functors

Now we turn to the semantic content of our fibred IR-codes. Since our syn-

tax has been shaped abstracting on the fibrational content revealed in the

original scheme for IR, the natural setting for the interpretation of fibered

IR-codes should be a fibration p :E → B. However, recall that an IR(D ,D)-

code, as defined in Definition 3.7, is always interpreted as an endofunctor on

Fam|D |, where D is regarded as a discrete category. As seen in Chapter 5, to

find a semantics which interprets codes as endofunctors on Fam (C), for not

necessarily discrete categories C, we need to modify also the syntax of IR.

Therefore, to match the original semantics for IR-codes, we expect to inter-

pret a code γ : IR (p) not as a functor on the total category E of the fibration

p, but as a functor JγK on a subcategory of E. To highlight the structure of

this subcategory we separate the analysis of the action of a fibered IR-functor

JγK on objects and on morphisms of E.

In our abstraction, both σ and δ build Set-indexed coproducts of functors;

in particular, as we are going to show in the next lemma, the interpretation

of a δ codes use hom-sets in B as index-sets of these coproducts. Therefore

we require E to have set-indexed coproducts and B to be locally small.

Lemma 6.9. Let p :E → B be a split fibration. Assume E has Set-indexed

coproducts and B is locally small. Every fibred IR-code γ : IR (p) induces a

mapping JγK on the objects of E.

Proof. We go through each of the constructors in turn and we show its action

on an object Q in E.

134 Chapter 6

• If P is an object of E, then the code ι P defines the constantly P valued

map on objects of E. Formally,

Jι PKQ = P

• Let A be a set and f :A→ IR (p) a function assigning to each element

a :A a fibred IR-code f(a): IR (p). By the inductive hypothesis, for every

a :A we have an object Jf (a)K Q of E. Since E has set-indexed coprod-

ucts, we can take the coproduct of these objects to define JσA f K Q.

Formally,

JσA f KQ = (Σa :A) Jf (a)KQ

• Let B an object of B and F : |EB| → IR (p) a map assigning to each

object P in the fibre above B a code F (P) : IR (p). Using p we can

map Q to the object p(Q) in the base and we can consider the maps

g :B → p(Q) in B. For each such g, we can reindex Q along g to

get an object g∗Q in the fibre above B. We can then apply F to this

object to get a code F (g∗Q) : IR (p) and inductively compute the action

of this code on Q. Notice that since B is locally small, the collection of

morphisms B(B, p(Q)) forms a set and so we can take the set-indexed

coproduct over the choice of g and thus obtain the action of JδB F K on

Q. Formally,

JδB F KQ = (Σg :B → p(Q)) JF (g∗Q)KQ

Now we are left to show the action on morphisms of the interpretation of a

code γ : IR (p). We already observed in Section 3.2.2 that universes arise as

initial algebras for functors defined not in Fam (Set), but on its subcategory

Fam|Set|. The same issue arises here, and we can then wonder if this condition

can be lift at the level of the fibrational infrastructure. And indeed the answer

is quite straightforward: the morphisms IR-functors act on are the splitting

morphisms of the families fibration. So, the natural generalisation of this

condition on morphisms between families that works in an arbitrary fibration

is simply that JγK acts only on the splitting morphisms of the fibration p. Our

goal then, is to show that for a split fibration p :E→ B, each code γ : IR (p)

Fibred Induction Recursion 135

gives rise to a functor JγK :Esp → Esp. Since coproducts play an important

role in the interpretation we gave on objects, we need for them to interact

nicely with the splitting morphisms. Recall from Remark 3.10 that (chosen)

coproducts in a category E give rise to a functor Σ : Fam (E)→ E which sends

a family morphism (f, g) where f :A → A′ and gx :B(x) → B′(f(x)) to the

cotuple

Σ(f, g) = [inf(x) ◦ gx]x :A : Σ(A,B)→ Σ(A′, B′).

which we called the generalised sum of g over f .

Lemma 6.10. Let p :E → B be a split fibration. If E has set-indexed

coproducts, and if a generalised sum of splitting morphisms is splitting, then

every IR-code γ : IR (p) induces a functor JγK :Esp → Esp.

Proof. In Lemma 6.9, we saw how JγK maps objects of E to objects of E. As

the objects of E and Esp are the same, this defines the action of JγK on the

objects of Esp. So now let us define the action of JγK on a splitting morphism

h :Q→ Q′ by looking at the three constructors for fibred IR-codes in turn.

• If c = ι P , then JιPK was defined to be the constantly P valued map

on objects of E. Therefore we can define

Jι PK h = idP

• If c = σ Af , then we defined JσAf KQ = (Σa :A) Jf (a)KQ For the

inductive hypothesis we have for every a :A a splitting morphism

Jf (a)Kh : Jf (a)KQ→ Jf (a)K Q′

By assumption, the sum of all these morphisms is splitting and hence

we can define

JσA f Kh = (Σa :A) Jf (a)Kh

• If c = δ B F , then we defined JδB F KQ = (Σ g :B → p(Q)) JF (g∗Q)KQ.

Now we have to exhibit a map(
(Σ g :B → p(Q)) JF (g∗Q)KQ

)
→
(
(Σ i :B → p(Q′)) JF (i∗Q ′)KQ′

)

136 Chapter 6

Post-composition with p(h) induces a function (p(h))◦− :B(B, p(Q))→
B(B, p(Q′)) between the hom-sets which index these coproducts. By

the induction hypothesis, we have a family of splitting morphisms

JF (g∗Q)Kh : JF (g∗Q)KQ→ JF (g∗Q)KQ′ for g :B(B, p(Q)).

From Lemma 6.4, we know that Q = (p(h))∗Q′ (since h = (K(h))§),

hence

g∗Q = g∗((p(h))∗Q′) = ((p(h)) ◦ g)∗Q′

where the second equalities comes from Esp being split. Thus, we can

rewrite the codomain of JF (g∗Q)Kh obtaining

JF (g∗Q)Kh : JF (g∗Q)KQ→ JF (((p(h)) ◦ g)∗Q ′)K Q′

This B(B, p(Q))-indexed family of maps in Esp is exactly what is needed

to form the generalised sum

Σ
(
(p(h)) ◦ −, JF (−∗Q)Kh

)
which we take as definition of JδB F Kh.

Remark 6.11. Inspecting the proof, we see that it would go through with

any functor S: Fam (Esp) → Esp instead of Σ, but we expect coproducts to

most closely model the data types we are interested in. Note that if the sub-

category Esp is closed under coproducts, then a generalized sum of splitting

morphisms is automatically splitting.

We can also offer the following alternative proof, based on an “impredicative”

decoding of a δ-code1 similar to the decoding given in Lemma 4.4. We make

use of the following lemma, which allows us to switch between global structure

in the total category and local structure in the fibre.

Lemma 6.12 ([64], 1.4.10). Let p :E→ B be a cloven fibration. There is a

natural isomorphism

E(X, Y) ∼= (Σ g : pX → p Y)Ep(X)(X, g
∗(Y))

1The adjective impredicative comes from the reformulation of the interpretation of a

δ-code based on the quantification over the a priori “large” collection |EB |.

Fibred Induction Recursion 137

If the fibration p is split, by Lemma 6.4 all fibres of psp are discrete and we

can rephrase the isomorphism from Lemma 6.12 for psp:Esp → B as

Esp(X, Y) ∼= (Σ g : pX → p Y) (X ≡Ep(X)
g∗Y) (6.1)

Using (6.1), we can reformulate the decoding of a δ code as:

JδB F KQ = (Σg:B → pQ) JF (g∗Q)KQ
∼= (ΣX : |EB|) (Σg : p(X)→ p(Q)) (X ≡EB g

∗Q)× JF (X)KQ
∼= (ΣX : |EB|)Esp(X,Q)× JF (X)KQ (6.2)

Here, we have used an identity type in (6.2) to encode a constraint in the

style of Henry Ford (as already seen in equation (4.1)): ‘choose any X you

like as long as it is g∗Q’. The isomorphism (6.2) can also be used to recast

the action of JδB F K on a (splitting) morphism h :Q → Q′ : It is a sum of

pairs of actions, where we can go from Esp(X,Q) to Esp(X,Q′) by composing

with h, and from JF (X)KQ to JF (X)KQ′ by the induction hypothesis. If h

was an arbitrary morphism, there would be no guarantee that the composite

would still be splitting.

We call fibered data type the initial algebra of JγK for a fibered IR-code γ.

We will show in Section 5.6 that this exists, under certain conditions on

the fibration p :E → B. But first, let us look at some examples of fibred

inductive-recursive definitions.

6.5 Examples

In this section we present some examples of data type definable within the

theory of Fibred IR. We will see how the theory of fibered induction-recursion

covers all data types we have seen so far (with the exception of those data

types defined by positive induction-recursion as seen in Chapter 5), and how

it allows us to define more complex structures not previously included within

the schemes in the previous chapters. We postpone to the end of this section

(see Lemma 6.20 and Lemma 6.21) the necessary checking that all fibrations

involved in these examples satisfy the conditions of Lemma 6.10.

138 Chapter 6

We start with the families fibration (Example 6.6) because, when we spe-

cialise fibred induction-recursion to this fibration, we get a system of codes

with exactly the same expressive power as Djbyer and Setzer’s IR.

Theorem 6.13 (IR and the families fibration). Let π : Fam|D | → Set the

families fibration described in Example 6.6. The scheme for IR (π)-codes

defines a class of functor equivalent to the scheme defined by the coding

scheme for IR(D ,D)-codes given in Definition 3.7.

Proof. Firstly, we start comparing the syntax of the IR(D ,D)-codes as de-

fined in Section 3.2.1 and the syntax IR (π)-codes. The main difference

between the two coding schemas is in the ι constructors. Indeed, the ι-

codes in Definition 3.7 produce families with exactly one index while our

fibred IR-codes a priori are more general as they produce families with ar-

bitrary indices. However a family T :X → Set is isomorphic to the co-

product of the X-indexed set of families whose x’th family is given by

(N1, λ . T (x)), that is (X,T) ∼= (Σx :X) (1, λ .T u). Hence we can simu-

late a code ι (X,P) : IR (π) within the scheme given in Definition 3.7 by a

σ-code built on top of the ι-code, precisely we represent ι (X,P) : IR (π) by

the code σX(x 7→ ι (P (x))): IR(D ,D). Our σ-codes are exactly the same, as

our δ-codes: indeed, a function F : |EA| → IR (p) is exactly, in the families

fibration, a function F : (A → D) → IR (π), since the fibre above A in the

fibration π is nothing but the set (A→ D).

Next, we look at the semantics of IR-codes, it is clear that both sets of codes

interpret ι as constant functors and σ as coproducts. As for the δ-constructor,

these are seen to define the same functors once we realise that, in the families

fibration, if we reindex a family P :X → Set by a function g :Y → X, we

have g∗(X,P) = (Y, P ◦ g).

In chapter 4 we saw that both simple and indexed inductive types can be

obtained as specific sub-theories of IR. Here we want to show that they are

instances of fibred induction-recursion: to this purpose we use containers and

indexed containers.

Theorem 6.14. Containers are fibred inductive-recursive codes for the iden-

tity fibration Id : Set → Set while indexed containers coincide with the class

of fibred IR-codes for domain fibrations of the form domI : Set/I → Set.

Fibred Induction Recursion 139

Proof. Consider first containers: they are fibred inductive-recursive codes

for the identity fibration Id : Set → Set because in this fibration the fibre

EA is a singleton {A} for each A, so that the dependency in the δ codes

trivialises and thus every code can be reduced to a “container normal form”

σ S(s 7→ δ P (s)(7→ ιN1).

An indexed container (S, P, n) : IC(I , I) can be represented by a fibred IR-

code in IR(domI) where domI is defined as in Example 6.5. We see again

that indeed N1-indexed containers and ordinary containers coincide, since

domN1 is equivalent the identity functor on Set/N1
∼= Set.

We can now look back at the results in Chapter 4 from a fibrational perspec-

tive. The scheme defined there has been dubbed small where the “smallness”

was referring to the type-theoretic size of the parameter type D. Here we

can show that the “smallness” can also refer to a property of the underly-

ing fibration. To this end recall the definition of a split generic object in a

fibration:

Definition 6.15. Given a split fibration p :E → B, we say that an object

Ω ∈ B is a split generic object if for any X in B there are isomorphisms

θX :B(X,Ω) ∼= |EX |

natural in X, i.e. θX(f ◦ g) = g∗(θY (f)) for g :X → Y and f :Y → Ω. �

Generic objects can be used to characterize small fibrations as the following

lemma shows.

Lemma 6.16 ([64], Corollary 9.5.6). A fibration is small if and only if it has

a generic object and it is locally small.

A domain fibration domI always yields a split generic object, namely the

object I. In addition, domain fibrations are always locally small. These

two features together make domain fibrations small. We can now appreci-

ate from a different perspective why the scheme defined in Chapter 4 has

been dubbed small : when describing inductive and indexed inductive types

from the perspective of fibered IR, the fibrations involved are exactly small

fibrations.

140 Chapter 6

Example 6.17 (A universe of Setoids). A setoid (|A| ,') in type theory is

a type |A| together with an equivalence relation ' on |A| (that is, a relation

' together with proofs of reflexivity, transitivity and symmetry). Setoids

are often used when developing mathematics in type theory [16], as they

can simulate both quotient types and function extensionality. Naturally,

we would like to consider universes also in this setting. By instantiating

fibred induction-recursion in a fibration of families of setoids, we can get

such universes without any more effort than if we were working with mere

sets.

Following Palmgren [86], a family of setoids B :A → Setoid consists of an

index setoid A = (|A| ,') together with an |A|-indexed family of setoids

B(a) : Setoid, for a : |A|, such that if p is a proof that x ' y, then B(x)

and B(y) are “the same”, i.e. there is a “reindexing” bijection φp :B(x) →
B(y) (in a coherent way). Setoids naturally form a category Setoid, with a

morphism f : (|A| ,'A) → (|B| ,'B) being a function |f | : |A| → |B| which

respects the equivalence relations. We can form a category Fam(Setoid) of

families of setoids which is fibred over Setoid in the same way Fam (Set) is

fibred over Set. In particular, the objects in the fibre EA are families of

setoids B :A→ Setoid with index setoid A.

Using fibred induction-recursion instantiated to this fibration, we can now

write down a code γB,Σ for a universe of setoids containing codes for the

setoids B(a), for a : |A|, and closed under Σ-setoids. The code γB,Σ is the

following

σ |A| (a 7→ ι(1, λ .B(a))) + δN1(A 7→ δ A(01)(B 7→ ι(1, λ .ΣSetoid (A(01))B)))

where 1 is the unit setoid with the obvious equivalence relation. For A : Setoid

andB :A→ Setoid, the sigma setoid is defined by ΣSetoidAB = (Σ |A| |B| ,'Σ

) where (x, y) 'Σ (x′, y′) if (∃p:x 'A x′)(φp(y) 'Bx′ y
′).

The code γB,Σ describes a universe (U,T) which contains all the setoids B(a)

and is closed under sigma setoids; the underlying family of sets (|U| , |T|)
satisfies equations (3.1) but all operations now automatically preserve the

equivalence relations. �

Example 6.18 (The Category with Families Fibration). Categories with

families [61] were introduced by Dybjer as a variant of Cartmell’s categories

Fibred Induction Recursion 141

with attributes : their aim is to model type theory from a closer perspec-

tive to its syntax. A category with families consists of a small category C
and a functor F = (Ty,Te) :Cop → Fam (Set) with some extra structure -a

comprehension- modeling extension of a context by types in that context.

We think of C as a category of contexts, and of Te(Γ) : Ty(Γ) → Set as a

family of terms, indexed by the type Ty(Γ), all in the context Γ.

The (large) category CwF of categories with families and structure’s preserv-

ing morphisms between them forms a fibration with base category Cat, the

category of all small categories. The fibre above C consists of the functors’

category [Cop,Fam (Set)] with their extra structure and the reindexing of

(D, G) along f :C→ D is given by (C, G ◦ f op).

An important category with families for a given type theory is the one formed

from the syntax of the theory itself, i.e. its term model. The construction

thereof for dependent type theories is famously induction-recursion like in

nature; types are indexed over contexts, but contexts can only be extended

by well-formed types. McBride [75] implements the syntax of dependent type

theory this way in Agda using induction-recursion, while Danielsson [33] and

Chapman [25], using induction-induction (see Section 5.2.1).

An example similar to that of CwF is given by the presheaves fibration: here

again the base category is given by Cat and reindexing of X :Cop → Set

along f :C → D is still given by precompostion with f op. By using fibered

induction-recursion in the presheaf fibration we can define universes that

automatically come equipped with a notion of substitution: indeed, as shown

by Fiore et al. [42], we can automatically take into account the substitution

structure by turning indices and contexts into the structure of presheaves. �

Example 6.19 (Fibred IIR). Recall from Section 3.2.6 that within the frame-

work of indexed induction-recursion we add another layer of indices by letting

the parameter D to be indexed by a set I.

Now, let I be a set of indices for types D(i). Dybjer and Setzer’s scheme

for indexed induction-recursion with same input and output parameter D,

IIR(D ,D), gives rise to endofunctors of type

(Π i : I) Fam|D(i)| −→ (Π i : I) Fam|D(i)|

The scheme for IIR(D ,D)-code arises as an example of fibred induction-

142 Chapter 6

recursion for the fibration πI : (Π i : I) Fam|D i | → [I, Set] where the base cat-

egory consists of I-indexed set X : I → Set, and the fibre above X is the (dis-

crete) category whose objects are pairs (X,T) for T : (Π i : I)(X i→ D i). �

Lemma 6.20. The families fibration (Example 6.13), the domain fibration

(Example 6.5), the families of setoids fibration (Example 6.17) and the cate-

gories with families fibration (Example 6.18) are split, and the subcategories

of splitting morphisms in the total category have coproducts.

Proof. All fibrations mentioned are instances of the situation in Proposi-

tion 6.8:

• The families fibration Fam (C) → Set arises as A = Set, F (X) =

discrete category on X and D = C.

• The families of setoids fibration arises as A = Setoid, F (X) the category

with objects the elements in the carrier of X and morphisms proofs of

relatedness and D = Setoid.

• The categories with families fibration arises as A = Cat, F (X) = Xop

and D = Fam (Set).

• The domain fibration domI : Set/I → Set arises as A = Set, F (X) =

discrete category on X and D = discrete category on I. When I is a

singleton the domain fibration is equivalent to the identity fibration.

In all cases A has coproducts and F preserves them.

Lemma 6.21. The fibration p : (Π i : I)Fam|Di | → [I, Set] from Example 6.19

is split and it has set-indexed coproduct.

Proof. The fibration p : (Π i : I)Fam|Di | → [I, Set] can be regarded as the

product of the I-indexed family of fibrations πi : Fam|Di | → Set. It is split

since the product of split fibrations is split. The fibrationp has also set-

indexed coproducts given pointwise: if (X,T) and (Y,Q) are objects of

(Π i : I)Fam|Di | their coproduct, (X + Y, [T,Q]), is given by (X + Y)(i) =

X(i) + Y (i) and [T,Q](i, z) = [T (i), Q(i)](z).

Fibred Induction Recursion 143

6.6 Existence of initial algebras

We now want to show that fibered IR-functors indeed have initial algebras,

under some conditions on the fibration p :E → B. We do this by adapting

the proof in Section 3.3 to the fibrational setting.

An important point for both their and our proof is keeping track of the

“size” of the index objects appearing in the codes. In particular, the size

of the index object B in a code δ B F may depend on the input object Q

we pass to the functor, as it can be observed, for example, when defining a

universe closed under certain type constructors (see Section 3.2.7). Therefore

we follow Definition 3.34 and collect all the index objects in a class Aux(c,Q).

Definition 6.22. For a fibred IR-code γ and object Q in E, define the col-

lection Aux(γ,Q) ⊆ |B| by induction over γ:

Aux((ι P), Q) = ∅

Aux((σ Af), Q) =
⋃
a∈A

Aux(fa,Q)

Aux((δ AF), Q) = {A} ∪
⋃

g : A→p(Q)

Aux(F (g∗Q), Q) �

We now observe that if for certain Q all A ∈ Aux(c,Q) are “small” in a

suitable sense then JγK is κ-continuous, i.e. preserves κ-directed colimits.

In Section 3.3, to express that A ∈ Aux(c,Q) is small, we used A ∈ Vκ, from

which it follows |A| < κ. Here we replace this condition by the categorical

notion of smallness given by κ-presentability. We recall its definition below.

Definition 6.23. An object A of B is κ-presentable if B(A,−):B → Set

preserves κ-directed colimits. �

Explicitly, the object A is κ-presentable if and only if for each colimit co-

cone
∨
i :I Qi, where I a κ-directed poset, every map f :A →

∨
i :I Qi factors

uniquely as f = ini ◦ g for some g :A → Qi. When B is Set, an object A is

κ-presentable if and only if it has cardinality |A| < κ.

We can now reformulate Lemma 3.37 as follows:

Lemma 6.24. Let
∨
i :I Qi be a κ-directed colimit for a diagram Q: I → Esp

with all A ∈ Aux(γ,Qi) κ-presentable. If psp :Esp → B preserves
∨
i :I Qi,

then so does JγK:Esp → Esp.

144 Chapter 6

Proof. The proof of the lemma is entirely similar to the proof of Lemma 3.37.

We give details for γ = δ AF .

JδAF K(
∨
i :I

Qi) = (Σ f :A→ p(
∨
i :I

Qi))JF (f ∗
∨
i :I

Qi)K(
∨
i :I

Qi)

(1)∼= (Σ g :A→
∨
i :I

p(Qi))JF (([p(ini)]i :I ◦ g)∗
∨
i :I

Qi)K(
∨
i :I

Qi)

(2)∼= (Σh :A→ p(Qj))JF (([p(ini)]i :I ◦inj ◦h)∗
∨
i :I

Qi)K(
∨
i :I

Qi)

(3)∼= (Σh :A→ p(Qj))JF (((p(inj)) ◦h)∗
∨
i :I

Qi)K(
∨
i :I

Qi)

(4)∼= (Σh :A→ p(Qj))JF (h∗Qj)K(
∨
i :I

Qi)

I.H.∼=
∨
j

(Σh :A→ p(Qj))
∨
i :I

JF (h∗Qj)K(Qi)

(5)∼=
∨
i :I

(Σh :A→ p(Qj))JF (h∗Qj)K(Qi) =
∨
i :I

JδAF K(Qi)

where (1) holds since p preserves directed colimits, and (2) sinceA ∈ Aux(c,Q)

is κ-presentable, so that g factors through one of the Qj. Equation (3)

holds because again p preserves filters colimits and therefore [p(ini)]i :I ◦ inj =

K(inj); equation (4) holds by Lemma 6.4. Finally, (5) holds since Σ is a left

adjoint as noticed in Remark 3.10.

In order to ensure that the first hypothesis of the previous lemma holds for

the colimit we need, i.e. that all A ∈ Aux(c,Qi) are κ-presentable, for κ the

length of the initial sequence, we need the same meta theoretical assumption

used in Section 3.3: we assume that there exists a Mahlo cardinal M. We

also assume that all indexing sets in the coproducts used in the decoding

have cardinality at most M. But before proving that we can actually find a κ

satisfying the hypothesis of lemma 6.24 we need two other lemmas ensuring

that we use just M-presentable objects as indices of our coproducts. The

following two lemmas take care of this.

Fibred Induction Recursion 145

Lemma 6.25 (Adámek and Rosicky [11], 1.16). A colimit of a λ-small dia-

gram of λ-presentable objects is λ-presentable.

Lemma 6.26. Let p :E → B be a split fibration with coproducts in Esp.

Assume that psp preserves them, and that p(P) is M-presentable for every P

occurring in a ι code in γ. Then p(JγK(Q)) is M-presentable for all Q in Esp.

Proof. If γ = ι P , then p(Jι PK(Q)) = p(P) is M-presentable by assump-

tion. If γ = σ Af or γ = δ AF , then p(JγK(Q)) is a coproduct of objects

which are M-presentable by the induction hypothesis, hence M-presentable

by Lemma 6.25.

We can now formulate the analogue to Lemma 3.38.

Lemma 6.27. Let γ: IR (p) and (Qα) the initial sequence of the induced func-

tor JγK. Assume that if Qα is M-presentable, then all objects in Aux(γ,Qα)

are M-presentable. Then there exists an inaccessible κ such that all A ∈
Aux(γ,Qα) are κ presentable for all α < κ.

Proof. The proof goes as in that of Lemma 3.38: we define an increasing

function f : ON → ON, which tells us the smallest cardinal κ one needs to

go up to still be κ-presentable after one iteration of JγK. We modify the

definition of f accordingly. The important property of f will be

if p(Qβ′) is β-presentable then

all A ∈ {p(Qβ′+1)} ∪ Aux(γ,Qβ′) are f(β)-presentable
(6.3)

for all β′ < M. We define f : ON→ ON by transfinite recursion as follows:

f(β) = min{α |(∀β′ < β)
(
f(β′) < α

)
∧

(∀β′ < M)
(
p(Qβ′) is ℵβ-presentable =⇒

all A ∈ {p(Qβ′+1)} ∪ Aux(c,Qβ′)

are ℵα-presentable.
)
}

The first conjunct makes sure that f is increasing, and the second makes

(6.3) true.

We then proceed as in the proof of Lemma 3.38 by showing that M actually

bounds f i.e. f : M→ M and use the Mahlo property to find a fixed point κ

of f . We can therefore obtain the following reformulation of (6.3)

146 Chapter 6

if p(Qβ′) is β-presentable then

all A ∈ {p(Qβ′+1)} ∪ Aux(c,Qβ′) are κ-presentable
(6.3′)

for all β < κ (since f(β) < κ).

Finally, we prove that p(Qα) is κ-presentable for all α < κ by induction on

α.

• If α = 0, then p(Q0) = p(⊥) = ⊥ which is κ-presentable for all κ.

• If α = β+1, then Qβ is κ-presentable by the induction hypothesis, and

we are done by (6.3′).

• If α = λ limit, then Qλ =
∨
β<λQβ is κ-presentable by the induction

hypothesis and Lemma 6.25.

By (6.3′), it immediately follows that all A ∈ Aux(c,Qα) are κ-presentable.

Theorem 6.28. Under the assumptions of Lemma 6.27, if Esp has κ-directed

colimits for κ as in Lemma 6.27, and psp preserves them, then the functor

JγK:Esp → Esp has an initial algebra.

Proof. Lemma 6.27 ensures that we can find an inaccessible κ such that the

hypothesis of Lemma 6.24 are validated. Therefore, JγK is κ-continuous and

we can build the initial algebra of JγK as the colimit of the initial sequence.

Chapter 7

Conclusion

Abstract In this chapter we sum up the results obtained in this thesis and

discuss possible lines of research for the future.

7.1 Summary

Induction-recursion represents an extremely powerful which sits on top of a

hierarchy of more and more sophisticated inductive types.

In this thesis we have provided support for this claim and broadened our

understanding of the theory of IR: i) we have shown how the theories of in-

ductive and indexed inductive types can be seen as sub-theories of induction-

recursion. This analysis have revealed the importance played by a notion of

of size within the theory of IR. ii) We have expanded the expressive power

of IR, showing how to extend the theory of induction-recursion in two or-

thogonal ways: in one direction we explored the changes needed to obtain a

more expressive semantics which gives rise to a more comprehensive elimi-

nation principle for inductive-recursive types. In another direction we have

revealed a fibrational structure of the theory which suggested a generaliza-

tion of induction-recursion to a fibrational setting. In both cases we: (a)

gave a finite axiomatization of the theories introduced; (b) brought evidence

of novel applications of these theories not covered by the already expressive

theory of induction-recursion, and finally (c) justified the existence of data

types built within these theories.

147

148 Chapter 7

7.2 Future work

We discuss some other topics which might set for a better understanding of

the theory of induction-recursion.

Composition and normal forms

The theory of (indexed) inductive types benefits, among many others, of a

very natural property, namely composition: if we have dependent polynomi-

als F : Poly(I ,M) and G : Poly(M ,O) we can build a dependent polynomial

G · F : Poly(I ,O) such that PG·F ∼= PG ◦ PF . Thus, it is natural to ask if a

similar property holds for general inductive-recursive types, i.e, given codes

γ : IR(I ,M) and γ′ : IR(M ,O) does there exist a code γ′′ : IR(I ,O) such that

Jγ′′K ∼= Jγ′K ◦ JγK?
We gave a partial answer to this question in Chapter 4 by exploiting the

closure property of dependent polynomials. But, the answer to the same

question for general IR-code still remains open. This answer would shed light

on a normal form for IR-codes. The question is so simple to state as the

details to answer it are intricate. Some calculations seem to suggest that it is

possible to give a positive answer for a subset of the codes. Another approach

that one might consider is by modifying the syntax of IR. Conor McBride

(private communication) have explored other systems of codes containing

the IR-codes as a proper sub-system and for which proving composition is

easier. However, this does not settle an answer to the above question since

closure under composition of an host system does not imply that one of its

subsystem shares this property.

An alternative approach to fibered induction-recursion

In the abstraction of IR to a fibrational setting given in Chapter 6 we chose as

starting point the family fibration π : Fam|D | → Set. This approach was nat-

urally suggested by the axiomatization of the syntax and the semantics given

in Chapter 3. However, the original semantics of IR given by Dybjer and Set-

zer in [39] interprets a code γ : IR(I ,O) as a functor JγK : Type/I → Type/O

where Type is the syntactic category arising from the judgements of the Log-

Conclusion 149

ical Framework. We have already discussed some drawbacks of moving into

the larger category of types in Remark 3.16. Here we want to sketch how to

combine these approaches to get the best of both worlds. Indeed, it is imme-

diate to see that the embedding Fam|D | ↪→ Type/D define a full and faithful

subcategory of Type/D of objects with a small domain. Moreover the host

category of Type/D sits inside Type→ as the fiber above D in the codomain

fibration. In this setting we can get back the interplay between indexed ob-

jects in the fiber and indices in the base category as seen in Chapter 6 via

the domain fibration. The interplay between the domain and the codomain

fibration can then be used to abstract IR in the setting of comprehension

categories (with unit) which are well studied models of dependent type the-

ory. Another motivation to develop this framework is given by the possibility

to compare it with that of Algebraic Set Theory [65] where the distinction

between small and large objects, which seems central to IR, is taken as a

fundamental one: indeed the large category Type more naturally matches a

category of classes where the class of small maps can be singled out via the

generic object given by the the map dis(El): (ΣA : Set)El(A)
π0−→ Set.

Final coalgebras

In this thesis we have been concerned with initial algebras for IR-functors

and variants thereof. What about their dual, namely final coalgebras? We

mentioned in Chapter 4 that for Small IR-functors these objects have already

been investigated by Capretta under the name of wander types [23] and they

capture previously known-constructions such as mixed induction-coinduction

and continuous stream processors. A general theory of final coalgebras for

IR-functors still needs to be developed.

Bibliography

[1] Michael Abbott. Category of Containers. PhD thesis, University of

Leicester, 2003.

[2] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing

nested inductive types using w-types. In ICALP, pages 59–71, 2004.

[3] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Con-

structing strictly positive types. Theoretical Computer Science, 342(1):3

– 27, 2005.

[4] Michael Abbott, Thorsten Altenkirch, Conor McBride, and Neil Ghani.

∂ for data: Differentiating data structures. Fundam. Inform., 65(1-2):1–

28, 2005.

[5] Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Iteration and coiter-

ation schemes for higher-order and nested datatypes. Theoretical Com-

puter Science, 333(1-2):3–66, 2005.

[6] Peter Aczel. An introduction to inductive definitions. In Barwise Jon,

editor, Handbook of Mathematical Logic. Elsevier, 1977.

[7] Peter Aczel. The type theoretic interpretation of constructive set theory:

Inductive definitions. Logic, Methodology and Philosophy of Science,

7:17–49, 1986.

[8] Peter Aczel. Non-well-founded-sets, volume 14 of CSLI Lecture Notes.

CSLI Pubblications, 1988.

[9] Peter Aczel. On relating type theories and set theories. In TYPES,

pages 1–18, 1998.

151

152 Bibliography

[10] Jiri Adámek, Stefan Milius, and Lawrence Moss. Initial algebras and

terminal coalgebras: a survey. Draft, June 29 2010.

[11] Jiri Adámek and Jiri Rosicky. Locally Presentable and Accessible Cate-

gories. Prentice-Hall, 1994.

[12] Thorsten Altenkirch, Paul Levy, and Sam Statton. Higher order con-

tainers. In CiE, 2010.

[13] Thorsten Altenkirch and Conor McBride. Towards observational type

theory. Manuscript, available online, February 2006.

[14] Thorsten Altenkirch and Peter Morris. Indexed containers. In LICS,

pages 277 –285, 2009.

[15] Steven Awodey, Nicola Gambino, and Kristina Sojakova. Inductive

types in homotopy type theory. In LICS, pages 95–104, 2012.

[16] Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type

theory. Journal of Functional Programming, 13(2):261–293, 2003.

[17] Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic

programs and proofs in dependent type theory. Nord. J. Comput.,

10(4):265–289, 2003.

[18] Richard Bird and Oege de Moor. Algebra of programming. Prentice-Hall,

1997.

[19] Andre Boileau and André Joyal. La logique des topos. The Journal of

Symbolic Logic, 46(1):6–16, 1981.

[20] George Boole. An Investigation of the Laws of Thought on Which are

Founded the Mathematical Theories of Logic and Probabilities. Dover

Pubblications, 1958.

[21] Ana Bove and Venanzio Capretta. Nested general recursion and partial-

ity in type theory. In TPHOLs 2001, volume 2152 of Lecture Notes in

Computer Science, pages 121–135, 2001.

Bibliography 153

[22] Ana Bove and Venanzio Capretta. Modelling general recursion in type

theory. Mathematical Structures in Computer Science, 15(4):671–708,

2005.

[23] Venanzio Capretta. Wander types: A formalization of coinduction-

recursion. Progress in Informatics, (10):47–64, 2013.

[24] Aurelio Carboni and Peter Johnstone. Connected limits, familial rep-

resentability and Artin glueing. Mathematical Structures in Computer

Science, 5(04):441–459, 1995.

[25] James Chapman. Type theory should eat itself. Electronic Notes in

Theoretical Computer Science, 228:21–36, 2009.

[26] Adam Chlipala. Modular development of certified program verifiers with

a proof assistant,. J. Funct. Program., 18(5-6):599–647, 2008.

[27] Pierre Clairambault and Peter Dybjer. The biequivalence of locally

cartesian closed categories and Martin-Löf type theories. In TLCA,

pages 91–106, 2011.

[28] Thierry Coquand and Peter Dybjer. Inductive definitions and type the-

ory: an introduction. In FSTTCS, pages 60–76, 1994. (Preliminary

Version).

[29] Thierry Coquand and Christine Paulin. Inductively defined types. In

Conference on Computer Logic, pages 50–66, 1988.

[30] Pier-Louis Curien, Richard Garner, and Martin Hofmann. Revisiting the

categorical interpretation of dependent type theory. To appear, 2013.

[31] Pierre-Évariste Dagand and Conor McBride. A categorical treatment of

ornaments. In LICS, pages 530–539, 2013.

[32] Pierre-Évariste Dagand and Conor McBride. Transporting functions

across ornaments. J. Funct. Program., 24(2-3):316–383, 2014.

[33] Nils Anders Danielsson. A formalisation of a dependently typed language

as an inductive-recursive family. LNCS, 4502:93–109, 2007.

154 Bibliography

[34] Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory

and their set-theoretic semantics. In Huet Gerard and Gordon Plotkin,

editors, Logical Framework, pages 280–306. Prentice Hall, 1991.

[35] Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–

465, 1994.

[36] Peter Dybjer. Representing inductively defined sets by wellorderings in

Martin-Löf’s type theory. Theoretical Computer Science, 176(1-2):329–

335, 1997.

[37] Peter Dybjer. A general formulation of simultaneous inductive-recursive

definitions in type theory. Journal of Symbolic Logic, 65(2):525–549,

2000.

[38] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-

recursive definitions. In Typed lambda calculi and applications: 4th in-

ternational conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999: pro-

ceedings, pages 129–146. Springer Verlag, 1999.

[39] Peter Dybjer and Anton Setzer. Induction–recursion and initial algebras.

Annals of Pure and Applied Logic, 124(1-3):1–47, 2003.

[40] Peter Dybjer and Anton Setzer. Indexed induction–recursion. Journal

of logic and algebraic programming, 66(1):1–49, 2006.

[41] Samuel Eilenberg and Saunders Mac Lane. A general theory of nat-

ural equivilances. Transaction of the American Mathematical Society,

58(2):231–294, 1945.

[42] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and

variable binding. In Proc. Logic in Computer Science, pages 193–202,

1999.

[43] Fredrik Nordvall Forsberg and Anton Setzer. Inductive-inductive defi-

nitions. In CSL, pages 454–468, 2010.

[44] Clément Fumex. Induction and conduction schemes in category theory.

PhD thesis, University of Strathclyde, 2012.

Bibliography 155

[45] Nicola Gambino. Sheaf Interpretations for Generalised Predicative In-

tuitionistic Systems. PhD thesis, University of Manchester, 2002.

[46] Nicola Gambino and Martin Hyland. Wellfounded trees and dependent

polynomial functors. In Types for Proofs and Programs, volume 3085 of

Lecture Notes in Computer Science, pages 210–225. Springer, 2004.

[47] Nicola Gambino and Joachim Kock. Polynomial functors and polyno-

mial monads. In Mathematical Proceedings of the Cambridge Philosoph-

ical Society, volume 154, pages 153–192. Cambridge University Press,

2013.

[48] Richard Garner. On the strength of dependent products in the type

theory of Martin-Löf. Ann. Pure Appl. Logic, 160(1):1–12, 2009.

[49] Neil Ghani, Makoto Hamana, Tarmo Uustalu, and Varmo Vene. Rep-

resenting cyclic structures as nested types. Presented art Trends in

Functional Programming, 2006.

[50] Neil Ghani and Peter Hancock. An algebraic implementation of

induction-recursion and indexed induction-recursion. Submitted to

Mathematical Structures in Computer Science, 2011.

[51] Neil Ghani, Patricia Johann, and Clément Fumex. Generic fibrational

induction. Logical Methods in Computer Science, 8(2), 2012.

[52] Neil Ghani, Patricia Johann, and Clément Fumex. Indexed induction

and coinduction, fibrationally. Logical Methods in Computer Science,

9(3), 2013.

[53] Neil Ghani, Lorenzo Malatesta, and Fredrik Nordvall Forsberg. Positive

inductive-recursive definitions. In Stefan Heckel, Reiko Milius, editor,

Algebra and Coalgebra in Computer Science, CALCO 2013, volume 8089

of Lectures Notes in Computer Science, pages 19–33, 2013.

[54] Neil Ghani, Lorenzo Malatesta, Fredrik Nordvall Forsberg, and Anton

Setzer. Fibred data types. In 28th Annual ACM/IEEE Symposium on

Logic in Computer Science, LICS 2013, pages 243–252, 2013.

156 Bibliography

[55] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial

algebra semantics and continuous algebras. Journal of the Association

for Computing Machinery, 24(1):68–95, 1977.

[56] Georges Gonthier. The four colour theorem: Engineering of a formal

proof. In Computer Mathematics, 8th Asian Symposium, ASCM 2007,

Singapore, December 15-17, 2007. Revised and Invited Papers, page 333,

2007.

[57] Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and

Thorsten Altenkirch. Small induction recursion. In Masahito Hasegawa,

editor, Typed Lambda Calculi and Application, TLCA 2013, volume 7941

of Lectures Notes in Computer Science, pages 156–172, 2013.

[58] Ralf Hinze. Functional pearl: Perfect trees and bit-reversal permutation.

Journal of Functional Programming, 10(3):305–317, 2000.

[59] Martin Hofmann. On the interpretation of type theory in locally carte-

sian closed categories. In CSL, pages 427–441, 1994.

[60] Martin Hofmann. Extensional concept in intensional type theory. PhD

thesis, University of Edinburgh, 1995.

[61] Martin Hofmann. Syntax and semantics of dependent types. In Seman-

tics and Logics of Computation, pages 79 – 130. Cambridge University

Press, 1997.

[62] Martin Hofmann and Thomas Streicher. The groupoid interpretation of

type theory. In Giovanni Sambin and Jan M. Smith, editors, Twenty-

Five Years of Constructive Type Theory, volume 36 of Oxford Logic

Guides, pages 83–111, Oxford, 1998. Clarendon Press.

[63] Gérard P. Huet and Amokrane Säıbi. Constructive category theory. In

Proof, Language, and Interaction, pages 239–276, 2000.

[64] Bart Jacobs. Categorical Logic and Type Theory, volume 141 of Studies

in Logic and the Foundations of Mathematics. North Holland, Elsevier,

1999.

Bibliography 157

[65] André Joyal and Ieke Moerdijk. Algebraic Set Theory, volume 220 of

London Mathematical Society Lecture Notes Series. Cambridge Univer-

sity Press, 1995.

[66] Akihiro Kanamori. The Higher Infinity. Springer Monographs in Math-

ematics. Springer Verlag, 2003.

[67] Kenneth Kunen. Set Theory: An Introduction to Independent Proofs.

North Holland, 1980.

[68] Joachim Lambek. A fixpoint theorem for complete categories. Mathe-

matische Zeitschrift, 103(2):151–161, 1968.

[69] Saunders Mac Lane. Categories for the Working Mathematician. Num-

ber 5 in Graduate Texts in Mathematics. Springer-Verlag, 1971.

[70] Maria Emilia Maietti. The Type Theory of Categorical Universes. PhD

thesis, University of Padova, 1998.

[71] Maria Emilia Maietti. Modular correspondence between dependent type

theories and categories including pretopoi and topoi. Mathematical

Structures in Computer Science, 15(6):1089–1149, 2005.

[72] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated in-

ductive definitions. In J. E. Fenstad, editor, Proceedings of the Second

Scandinavian Logic Symposium, pages 179–216. North-Holland, 1971.

[73] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, Naples, 1984.

[74] Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin

and Jan M. Smith, editors, Twenty-Five Years of Constructive Type

Theory, volume 36 of Oxford Logic Guides, pages 127–172, Oxford, 1998.

Clarendon Press. (Preprint from 1972).

[75] Conor McBride. Outrageous but meaningful coincidences: dependent

type-safe syntax and evaluation. In ICFP-WGP, pages 1–12, 2010.

[76] Nax Paul Mendler. Predicative type universes and primitive recursion.

In LICS, pages 173–184, 1991.

158 Bibliography

[77] Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. Ann.

Pure Appl. Logic, 104(1-3):189–218, 2000.

[78] Ieke Moerdijk and Erik Palmgren. Type theories, toposes and construc-

tive set theory: predicative aspects of ast. Annals of Pure and Applied

Logic, 114:155–201, 2002.

[79] Peter Morris, Thorsten Altenkirch, and Neil Ghani. Constructing

strictly positive families. In CATS, pages 111–121, 2007.

[80] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in

Martin-Löf ’s type theory: an introduction. Clarendon Press, 1990.

[81] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis,

University of Swansea, 2013.

[82] Fredrik Nordvall Forsberg and Anton Setzer. A finite axiomatisation

of inductive-inductive definitions. In Logic, Construction, Computation,

volume 3, pages 259 – 287. 2012.

[83] Erik Palmgren. On universes in type theory. In Giovanni Sambin and

Jan Smith, editors, Twenty five years of constructive type theory, pages

191 – 204. Oxford University Press, 1998.

[84] Erik Palmgren. Internalising modified realisability in constructive type

theory. Logical Methods in Computer Science, 1:1–7, 2005.

[85] Erik Palmgren. Regular universes and formal spaces. Ann. Pure Appl.

Logic, 137(1-3):299–316, 2006.

[86] Erik Palmgren. Proof-relevance of families of setoids and identity in

type theory. Archive for Mathematical Logic, 51:35 – 47, 2012.

[87] Robert Seely. Locally cartesian closed categories and type theory. In

Mathematical proceedings of the Cambridge philosophical society, vol-

ume 95, pages 33–48, 1984.

[88] Anton Setzer. Extending Martin-Löf type theory by one Mahlo-universe.

Archive for Mathematical Logic, 39(3):155–181, 2000.

Bibliography 159

[89] Jan M. Smith. The independence of Peano’s fourth axiom from Martin-

Löf type theory without universes. The Journal of Symbolic Logic,

53(3):840–845, 1988.

[90] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solu-

tion of recursive domain equations. SIAM J. Comput., 11(4):761–783,

1982.

[91] Thomas Streicher. Universes in toposes. In Laura Crosilla and Peter

Schuster, editors, From Sets and Types to Topology and Analysis. Oxford

University Press, 2005.

[92] The Univalent Foundations Program. Homotopy Type Theory: Univa-

lent Foundations of Mathematics. http://homotopytypetheory.org/

book, Institute for Advanced Study, 2013.

[93] Ernst Zermelo. On boundary numbers and domains of sets: New inves-

tigation in the foundation of set theory. In Ewald William, editor, From

Kant to Hilbert: A Source Book in The Foundation of Mathematics,

volume 2, pages 1219 – 33. Oxford University Press, 1996.

Acknowledgments

This thesis (or the idea of it) has accompanied me for the last three years.

It has been the obsession of this journey called PhD.

In Scotland I met several people who shared with me part of this trip. They

all contributed to this thesis at different levels. I am grateful to those who

were always by my side throughout the uncertainties that traveling to new

lands always brings.

I have to thanks my advisor Neil Ghani. He suggested me the topic of the

thesis, and showed me some good math. His expertise in academic life helped

me to survive this PhD.

I have greatly benefit as a researcher and as a human being from my (re-

tired) second supervisor Peter Hancock. I am grateful for his guidance in the

research. He shared with me not only some good science but also some good

philosophy.

I would like to thanks my examiners Nicola Gambino and Ross Duncan for

their feedback on this thesis and the interest they showed when I discussed

this thesis during the viva.

I have further benefited from discussion about the topics of this thesis with

several people: Thorsten Altenkirch, Marcelo Fiore, Conor McBride, Anton

Setzer and Thomas Streicher.

I am tremendously grateful to Fredrik Nordvall Forsberg: he supported me

as a friend, as a colleague and as a (unofficial) supervisor. I learnt the art of

doing research mostly by sharing ideas with him: his Scandivian enthusiasm

and the gentle skepticism he uses to consider new ideas have helped me to

keep my feet on the ground and produce actual research. Grazie!

The Mathematically Structured Programming group in Strathclyde has been

my second house for (at least) a couple of years. I would like to thanks all

161

162 Acknowledgments

of its members for the math I have been exposed, the recursion on the tale,

the beers and the friendship. I am grateful to Bob Atkey, Pierre-Evariste

Dagand, Adam Gundry, and Clemens Kupke. I am especially grateful to

Clèment Fumex, Stevan Andjelkovic Guillame Allais, Stuart Hannah and

Christopher Gibbson for their friendship.

Luigia and Pietro patiently waited for me during the drafting process and

always supported me during this trip. This thesis would not exists without

them.

