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Abstract

This thesis considers the mathematical modelling of disease, using fractional dif-
ferential equations in order to provide a tool for the description of memory effects.
In Chapter 3 we illustrate a commensurate fractional order tumor model, and we
find a critical value of the fractional derivative dependent on the parameter values
of the model. For fractional derivatives of orders less than the critical value an un-
stable equilibrium point of the system becomes stable. In order to show changes
in the observed areas of attraction of two stable points in the system, we then
consider a fractional order SIR epidemic model and investigate the change from a
monostable to a bistable system. Chapter 4 considers a model for virus dynamics
where the fractional orders for populations are different, called an incommensurate
system. An approximate analytical solution for the characteristic equation of the
incommensurate model is found when the different fractional orders are similar
and close to the critical value of the fractional order of the commensurate system.
In addition, the instability boundary is found as a function of both parameters. A
comparison between analytical and numerical results shows the high accuracy of
this approximation. Chapter 5 consists of two parts, in the first part we generalise
the integer Fisher’s equation to be a space-time fractional differential equation
and consider travelling wave solutions. In the second part we generalise an integer
SIR model with spatial heterogeneity, which was studied by Murray [117], to a
space-time fractional derivative model. We apply the (G′/G)-expansion method
and find travelling wave solutions, although in this case we must consider the
Jumarie’s modified Riemann-Liouville fractional derivative. Finally, we consider
the effect of changing the orders of time and space fractional derivatives on the
location and speed of the travelling wave solution.
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Chapter 1

Introduction

Programs to develop and improve sanitation, vaccination methods and the provi-
sion of antibiotics in the 20th century have created confidence in the ability of hu-
man societies to control and eliminate many diseases. As a result, chronic diseases
such as cancer or infectious diseases have received great attention in industrialized
countries. These diseases have continued to spread in developing countries and
have become the main causes of death and the suffering of people. In addition,
diseases can adapt and develop, so that new diseases appear and existing diseases
reappear [97]. The deterioration of ecosystems due to human or animal invasions,
global warming, environmental debasement, expanded global travel, and changes
in economic patterns also often allow new and existing illnesses to spread [108].

Emerging and reemerging diseases have been the focus of many researchers from
numerous disciplines throughout the world. Mathematical models have played an
important role in analysing and predicting the spread of diseases. The process of
modelling uses various assumptions, variables, and parameters, and models can
provide various useful outcomes, such as basic reproduction numbers, replacement
numbers, thresholds, and contact numbers. Mathematical models and computer
simulations are therefore helpful tools for building and testing speculations, evalu-
ating quantitative guesses, responding to explicit inquiries, deciding sensitivities to
changes in parameter values, and assessing key parameters from information. For
instance, understanding the transmission qualities of disease in networks, locations,
and nations can give better ways to deal with the transmission of these infections.
The mathematical and statistical study of disease progression and transmission
can add to epidemiological understanding, propose the essential information that
ought to be gathered to distinguish patterns, make general forecasts, and evaluate
the uncertainty in these forecasts [77, 78].

In many complex models, we move from a description of a real world system
to an equation, often using a flow diagram as a visualisation and modelling tool.
Flow diagrams are simple in design but structured to illustrate complicated phys-
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ical aspects of the system and relationships or interactions between them. By
allowing a logical analysis of the system, these diagrams assist us in formulating
equations [148]. For each of the systems we consider in this thesis, we will use a
flow diagram to visualise the model.

In this thesis we will consider a particular mathematical model of memory in
biological systems, and the impact of memory on the behaviour of the system.
For instance, human memory, and the behaviour that is affected by memory can
impact the various processes, evolution and control of the spread of diseases within
human populations. An individual’s experience, knowledge and retrieved memory
can affect their response during the spread of disease within the human popula-
tions [154].

Many different approaches to modelling memory effects have been used in
mathematical models of disease spread. For instance, delay differential equations
(DDEs) have often been exploited for modelling memory effects. In this type of
system there are time delay terms which allow the current state of the system to
depend on the state a fixed time in the past. However, DDEs are often only appli-
cable if the memory effects need to reflect the dependence on a state at a specific
time in the past. For instance, the modelling of a disease with an incubation period
could allow the current infection rate to depend on the level of contact between
the infected and non-infected population at fixed time (the incubation period) in
the past. However, there is also a need for a model of continuous memory, i.e.
an effect of experiences over a continuous period of time. Accordingly, fractional
differential equations (FDEs) have been used [12], since they are non-local opera-
tors [154]. The fractional derivative of a function provides information about the
function value at all times from an earlier point in time up to now, while an integer
derivative provides information about the function’s behaviour at only the current
time [29].

In more general terms, fractional calculus is often used to generalise deriva-
tives and integrals to an arbitrary order, integer or non-integer, real or complex.
Although classical calculus provides powerful tools for modelling many phenom-
ena studied in applied sciences, they do not allow rigorous consideration of some
abnormal dynamics within certain complex systems encountered in nature. Ex-
perimental results show that several processes linked to these complex systems
have a non-local dynamic behaviour, involving long-term effects, and fractional
derivatives have been shown to have similarities with some of these characteristics
[116].

Research on fractional calculus dates back more than three centuries. The con-
cepts of fractional derivatives and integrals are often associated with Riemann and
Liouville, although the generalisation of derivatives to fractional orders is older.
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The beginnings of fractional calculus lie in a simple discussion between mathe-
maticians when, in 1695, L’Hôpital raised a question with Leibniz inquiring about
the significance of dny/dxn when n = 1/2. Leibniz, in his response, considered a
possible theory of non-integer derivatives and wrote to L’Hôpital: ‘An apparent
paradox, from which one day useful consequences will be drawn.’ It was not until
1990 that the first ‘useful consequences’ appeared [116].

Euler later considered this problem. In his article [55] where he introduces
his famous Gamma function which generalises the factorial function, he considers
rational numbers (termed fractional) and not arbitrary real numbers. The current
denomination of derivatives as ‘fractional’ to express derivatives of an arbitrary
order could thus find its historical origin in this work. The first real application
of fractional calculus seems to be proposed by Abel in 1823 [2]. He showed that
the generalised tautochrone problem might be written as a non-integer differential
equation and expressed the solution using an integral equation. The first serious
attempt to provide a logical definition for fractional derivatives is due to Liouville
who published a series of nine research documents related to this subject between
1832 and 1837 [105]. Independently, Riemann proposed his own approach which
was essentially the same as that of Liouville. Since that time this approach has
been termed the ‘Riemann-Liouville’ approach.

Further approaches have been adopted to generalise the notion of derivatives
to non-integer orders. For instance, the limit of the growth rate of a function is
generalised in the Grunwald-Letnikov formula [70, 96], which is useful to obtain a
numerical approximation of fractional derivatives and integrals [68]. The existence
of different formulations raises the question of their equivalence. In fact, those of
Grunwald-Letnikov and Riemann-Liouville are identical, although the proof is long
and is presented in detail in the work of Samko, Kilbas and Marichev [134].

Heaviside provided the first concrete application of fractional calculus in 1892
in solving the one-dimensional heat equation. This approach was not rigorous (and
was not justified until 1919) but nevertheless provides the correct solution to the
problem. When considering periodic functions, it is useful to define fractional inte-
gral and derivative operations so that the period of the function is conserved after
their application. Consequently, Weyl’s definition was introduced [162]. Further-
more, the fractional integrals used in the Riemann-Liouville definition are defined
on a bounded interval. However, for certain problems, defining fractional operators
on an unbounded interval is required, and in this case, the Marchaud approach
should be used [107].

Although fractional differentiation in the Riemann-Liouville sense was an im-
portant step forward in this field, several authors including Caputo realized that
this definition must be revised. In fact, applications in visco-elasticity, mechan-
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ics of solids and rheology require physically interpretable initial conditions which
are not easy in the case of the Riemann-Liouville approach. The initial condi-
tions in the sense of the Caputo approach [30] are expressed in terms of integer
order derivatives, while those in the sense of Riemann-Liouville are expressed by
fractional operators which may have no defined physical meaning [92], and this is
often why the Caputo approach is preferred. Ishteva [81] examined the fundamen-
tal proprieties of Caputo derivatives and addressed this comparison in more detail.

Over the years many approaches to fractional calculus have been proposed, and
Podlubny [125] provides a good review of these approaches, as well as several prac-
tical problems. There have been highly significant contributions by great mathe-
maticians such as Lagrange in the eighteenth century, Laplace, Fourier, Hadamard
and Heaviside in the nineteenth century, as well as Hardy, Littlewood and finally
Riesz in the twentieth century. It seems that the many different, and often contra-
dictory, definitions have prevented greater success of the theory, which has not yet
been unified into a single approach. Moreover, the absence of a clear geometrical
or physical interpretation of fractional derivatives has largely contributed to the
fact that this field of research has remained on the sidelines.

Over recent years, interest in fractional differential equations has increased
considerably, the first conference on fractional calculus and its applications tak-
ing place at the University of New Haven in 1974 [131]. The same year, Oldham
and Spanier [120] published a key work which was totally devoted to fractional
calculus, and where they summarised a wide range of concerns in relation to frac-
tional calculus. In late 1996, a round table meeting was held on ‘Physical and
Geometrical Meaning and Applications of Fractional Calculus Operators’, where
the attendees conjectured about the existence of a geometrical representation of
fractional derivatives [93]. In particular, fractional derivatives have been used as
a tool to describe memory. In 2002, a physical interpretation of fraction deriva-
tives as a model of memory was presented but was not compared to experimental
results [126]. However, in [49] Du et al. noticed that a number of memory phe-
nomena, from various disciplines such as biology, mechanics and psychology, are
well modelled as two stage processes. Firstly a short permanent retention phase,
and secondly a phase that is governed by a simple fractional derivative model. In
this work they compared various models to experimental data and found that the
memory phenomena are best fitted using the fractional derivative model. From the
fitting of theoretical models to experimental data they found that the fractional
derivative order can be interpreted physically as an index, or measure, of memory.

Several analytical methods such as Fourier transforms, model synthesis, eigen-
vector expansion, Laplace transforms, Mellin transforms, fractional Green’s func-
tions, and the power series method have been applied to solve FDEs. However,
most of the aforementioned methods are only applicable to solve linear FDEs and
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fail to solve the non-linear FDEs, some of which we consider in this thesis. There-
fore, there has been an increasing interest in developing new numerical methods
that could be applicable to both linear and non-linear FDEs, such as Podlubny’s
numerical method, the Predict Evaluate-Correct Evaluate (PECE) method, and
the generalised Euler method. [42].

In this thesis we consider the application of fractional derivatives to model
memory and spatial inhomogeneity in a number of biological systems. Indeed
biology is an expanding field of application of fractional calculus. The qualita-
tive behaviour of ordinary differential equation systems describing diseases and
infections has been studied for a long time although researchers have encoun-
tered some difficulty in accurately understanding a number of results. Among
those researchers are Ding and Ye [48] who obtained a system of fractional order
derivatives to model HIV infection of CD4+ T-cells after modifying a previous
model proposed by Culshaw and Ruan [41]. Rihan [129] provided additional re-
sults after introducing a fractional model for describing the interaction of infection
with the immune system, including a consideration of memory. One of the most
frequently used models to interpret the characteristic of epidemic diseases is the
Susceptible-Infected-Recovered (SIR) model, which was first introduced by Ker-
mack and McKendrick [90]. Many different extensions of this model have since
been employed to describe such epidemics. In [127], the authors discuss the insuffi-
ciency of classical models and thus propose a novel approach to a Dengue epidemic
using fractional derivatives. This turns out to be a more accurate approach, and
allows the authors to gain a deeper understanding and more realistic results con-
cerning the transmission mechanism. Similar multi-compartmental models have
also been proposed. In regard to epidemics that incorporate latency and recovery
periods, it is appropriate to include a fourth compartment. For instance, González-
Parra et al. [67] proposed a SEIR model (E for people incubating the virus) to
test its agreement with real data for influenza A (H1N1). Estimating the model
parameters allowed them to conclude that the choice of fractional order derivatives
coincided closely with the realistic data. Against that background, Casagrandi et
al. [32] introduced an alternative SIRC model (C for cross-immune individuals) to
address epidemiological questions related to influenza A viruses. More results on
that subject were discussed in the work of El-Shahed and Alsaedi [53].

This thesis is organized into six main chapters. Chapter 2 includes the basic
concepts and mathematical principles of fractional derivatives, explains the spe-
cific approaches and tools needed to understand fractional calculus properties, as
well as an introduction to the biological models we consider. Chapter 3 is in two
parts, the first part presents the behaviour of a fractional order tumor model, and
studies the properties of the system, where changing the parameters of the sys-
tem leads to changes in stability, and the second part presents the behaviour of a
fractional order SIR model, where non-linear interactions between individuals can
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cause multiple stable states. In these systems we see that fractional derivatives
can lead to multistability. In Chapter 4 we study a fractional system of viruses
propagation, termed an incommensurate system, which means that the derivative
orders of the individuals are different. Considering a perturbation of the solution
to the characteristic equation of the commensurate system, we find an approximate
analytical solution for the characteristic equation of the incommensurate system.
The stability condition, which is a function of the fractional derivative orders in the
incommensurate fractional system, is then found from the approximate analytical
solution. A numerical method is also used to solve the incommensurate system,
and to compare with the analytical solution for the virus propagation system.
Chapter 5 discusses the existence of travelling wave solutions in fractional differ-
ential equations, and presents two models, the first one is the space-time fractional
Fisher’s equation, the second model is a space-time fractional SIR model. Through
an attempt to model memory in a biological context, the use of fractional time
derivatives was previously justified, and here we see the possibility of travelling
waves in such a system. In Chapter 5 we use the (G′/G)-expansion method for
determining new travelling wave solutions of the fractional PDEs, where we have
used Jumarie’s modified Riemann-Liouville derivatives. By plotting the location
and speed of the travelling wave solution we find the effect of changing the time
and space fractional derivatives on the travelling wave. Chapter 6 summarises the
results and discusses further development and research extensions.

6



Chapter 2

Mathematical Background

2.1 Introduction

This chapter will be devoted to elementary definitions and basic concepts relating
to fractional calculus and the models and methods we use in this thesis, including
models of biological systems and various analytic and numerical methods we use
to investigate these systems.

2.2 Basic Definitions

In this section, we give the most common definitions of fractional integrals and
derivatives and then show that only certain properties of the classical derivatives
can be generalised to the fractional case. Most of the definitions in this chapter
are taken from [134] to which we refer the reader for an in-depth analysis of the
subject, and we refer to [86, 120, 125] to introduce basic definitions and properties
of fractional calculus theory.

2.2.1 The Mittag-Leffler Function

The exponential function, ez, is very useful in the theory of integer order differen-
tial equations, forming the basis for eigenfunctions of the integer order derivative
needed to investigate stability of equilibrium points. A generalisation of this func-
tion was introduced by Mittag-Leffler [54] and, as we will see later, it has been
widely used in the context of fractional order differential equations.

Definition 2.2.1 Let z ∈ C. The Mittag-Leffler function with parameter α is
defined as

Eα(z) =
∞∑
k=0

zk

Γ(kα + 1)
,
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where α > 0 and Γ(.) is the Gamma function.

The Mittag-Leffler function with two parameters, α and β, has the form

Eα,β(z) =
∞∑
k=0

zk

Γ(kα + β)
,

where α > 0 and β > 0.

Using these definitions we see that Eα(z) = Eα,1(z) and E1(z) = E1,1(z) = ez.
As we will see below, when considering fractional order differential equations, the
Mittag-Leffler function serves a similar purpose as the exponential function for
integer order derivatives.

2.2.2 Grunwald-Letnikov Fractional Derivative

The Grunwald-Letnikov fractional derivative [92] of order α of a function f where
f : [a,∞)→ R is defined by

f (α)(x) = Dαf(x) = lim
h→0

h−α
∞∑
k=0

(−1)k
(
α
k

)
f(x− kt),

where

(
α
k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
. Since the summation upper limit is infin-

ity then the derivative f (α)(x) takes information from an infinite number of times

before. We see from the coefficient h−α
(
α
k

)
that if α = 1 then the fractional

derivative takes present time and time before but everything else equal to zero.
As α decreases, the fractional derivative places more weight on information from
further back in time. Therefore, α gives a measure of how important previous
information is. If α changes, the weighting of previous time changes. Thus, varia-
tion of α will model changes in memory from long memory (when α→ 0) to short
memory (when α → 1). So α is a simple description of how far back in time the
system can remember.

2.2.3 Riemann-Liouville Fractional Integral and Derivative

Some of the original, and most used, forms of fractional operators were developed
by Riemann and Liouville. Here we will summarise these definitions and list various
useful properties. First we consider the Riemann-Liouville fractional integral. Let
f be a continuous function on the interval [a, b], and let us consider the integral

I1
af(x) =

∫ x

a

f(t)dt.
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The second integral of f is then given by

I2
af(x) =

∫ x

a

(∫ u

a

f(t)dt
)
du.

Exchanging the order of integration we obtain

I2
af(x) =

∫ x

a

(∫ x

t

du
)
f(t)dt.

=

∫ x

a

(x− t)f(t)dt.

We can then define the nth iteration of the operator I,

Ina f(x) =

∫ x

a

dx1

∫ x1

a

dx2...

∫ xn−1

a

f(xn)dxn =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt.

Using the well-known property of the Gamma function, Γ (n) = (n − 1)!, finally
gives

Ina f(x) =
1

Γ (n)

∫ x

a

(x− t)n−1f(t)dt.

This formula makes sense even for non-integer values of n, and so we are able to
define a fractional version of I, which is termed the Riemann-Liouville integral.

Definition 2.2.2 The Riemann-Liouville integral is

Iαa f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt,

where α ∈ R.

There are several possible definitions of fractional derivatives [92, 125] and we
will discuss three of these in the section below. We first introduce possibly the
most frequently used, the Riemann-Liouville derivative.

Definition 2.2.3 If we consider the classical relation
d

dx
=

d2

dx2
◦ I1, we define a

fractional derivative with order 0 < α ≤ 1 as

dα

dxα
=

d

dx
◦ I1−α,

where I1−α is the Riemann-Liouville integral. More generally, if α > 0 and
m = [α] + 1 where [α] denotes the floor function value of α, we have

dα

dxα
=

dm

dxm
◦ Im−α, (2.1)

and therefore we obtain the definition of the Riemann-Liouville fractional deriva-
tive

RLDα
a f(x) = DmIm−αa f(x) =

dm

dxm
◦ Im−αa f(x),

where m− 1 < α ≤ m, α > 0 and x ≥ a.
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Equivalently, we distinguish two cases, where α 6= m or where α = m, so that,

RLDα
a f(x) =


1

Γ(m− α)

dm

dxm

∫ x

a

(x− t)m−α−1f(t)dt, if m− 1 < α < m

dm

dxm
f(x), if α = m

where x ≥ a, α > 0 and m ∈ N.

Riemann-Liouville fractional derivatives have many properties,

1. The differential operator RLDα is a left inverse of the integral operator Iα,
so that RLDα

a (Iαa f(x)) = f(x).

2. If α = 0 we have RLD0
af(x) = f(x), the identity operator.

3. The classical composition property is not true RLDα
a (RLDβ

af(x)) 6= RLDα+β
a f(x).

4. Left composition with an integer order derivative is true but it is non-
commutative,

RLDm
a (RLDα

a (f(x))) = RLDm+α
a (f(x)) 6= RLDα

a (RLDm
a (f(x))),

for m ∈ N.

5. The operator RLD is linear so that

RLDα
a (λf(x) + γg(x)) = λRLDα

a f(x) + γRLDα
a g(x),

where λ and γ ∈ C.

6. The fractional derivative of f(t) = (x− a)γ, for γ > −1, is

RLDα
a (x− a)γ =

Γ(γ + 1)

Γ(γ − α + 1)
(x− a)γ−α.

7. The fractional derivative of f(t) = c, where c is constant, is

RLDα
a (c) =

c

Γ(1− α)
(x− a)−α.

8. The Laplace transform of RLDα
a (f) is

L(RLDα
a (f(x)))(s) = sαF (s)−

m−1∑
k=0

sk(RLDα−k−1
a (f(a))).

Although this transfomation has been reported frequently in the literature
[120, 131], its practical application is limited by the absence of physical
interpretation of the limit values of fractional derivatives at the lower bound,
x = 0.
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The Riemann-Liouville derivative plays a significant role in the development
of the theory of fractional differentiation and it is widely employed in pure math-
ematics. However, practical applications of the theory require dealing with initial
conditions of concrete physical sense, which this approach does not allow. A cer-
tain solution for this conflict was proposed, in the sixties, by Caputo [31], which
we will discuss below.

2.2.4 Caputo Fractional Derivative

The Caputo fractional derivative of order α of a function f where f : [a,∞)→ R
is defined by

CDα
a f(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t)dt,

where α > 0 such that: m − 1 < α ≤ m, m ∈ N, and f (m)(t) = dm

dtm
f(t). In this

thesis, we consider m = 1, and for simplicity of notation we denote CDα
a as Dα

a .

Definition 2.2.4 A simple reverse operation of the compositions in (2.1) allows
the definition of the Caputo fractional derivative as

Dα
a f(x) = Im−α ◦ dm

dxm
f(x),

where x ≥ a, α > 0 and m ∈ N, m− 1 < α ≤ m.

Equivalently, we distinguish two cases, where α 6= m and where α = m,

Dα
a f(x) =


1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t)dt, if m− 1 < α < m

dm

dxm
f(x), if α = m

where x ≥ a, α > 0 and m ∈ N.

Caputo fractional derivatives have many properties,

1. If α = 0 we have D0
af(x) = f(x), the identity operator.

2. The classical composition property is not true Dα
a (Dβ

af(x)) 6= Dα+β
a f(x).

3. Left composition with an integer order derivative is true but it is non-
commutative,

Dα
a (Dm

a (f(x))) = Dα+m
a (f(x)) 6= Dm

a (Dα
a (f(x))),

for m ∈ N.
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4. The operator Dα is linear so that

Dα
a (λf(x) + γg(x)) = λDα

a f(x) + γDα
a g(x)),

where λ and γ ∈ C.

5. The fractional derivative of f(t) = (x− a)γ, for γ > −1, is

Dα
a (x− a)γ =

Γ(γ + 1)

Γ(γ − α + 1)
(x− a)γ−α.

6. The fractional derivative of f(t) = c, where c is constant, is Dα
a (c) = 0.

7. The Laplace transform of Dα
a (f) is

L(Dα
a (f(x)))(s) = sαF (s)−

m−1∑
k=0

sα−k−1(Dk
a(f(a))).

The important differences between the Riemann-Louiville and Caputo ap-
proaches are that, firstly, the initial conditions of a fractional order differential
equation using Caputo derivatives can be written in the form of evaluations of
the functions and integer derivatives of the function. Secondly, the Caputo frac-
tional derivative of a constant function f(t) = c equals zero, while it equals
c(x− a)−α/Γ(1− α) in the sense of the Riemann-Louiville derivative.

2.2.5 Jumarie’s Modified Riemann-Liouville Derivative

With the aim of correcting the problem of the Riemann-Liouville derivative of a
constant, which for many reasons we would like to be zero, Jumarie [84] introduced
a revised definition of the Riemann-Liouville derivative.

Definition 2.2.5 Jumarie’s modified Riemann-Liouville derivative of order α is
defined by

Dα
a f(x) =



1

Γ(−α)

∫ x

a

(x− t)−α−1f(t)dt, α < 0

1

Γ(1− α)

d

dx

∫ x

a

(x− t)−α(f(t)− f(a))dt, 0 < α < 1

(fn(x))α−n, n ≤ α < n+ 1, n ≥ 1.

We note that the above expression coincides with the Riemann-Liouville defi-
nition in the case α < 0.

Jumarie’s modified Riemann-Liouville derivative has many properties [21, 85],
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1. The fractional derivative of f(t) = c where c is a constant is Dα
a (c) = 0,

α > 0.

2. The fractional derivative of f(x) = xv where v > 0 is

Dα
ax

v =
Γ(1 + v)

Γ(1 + v − α)
xv−α.

3. The fractional derivative of cf(x) where c is a constant is

Dα
a (cf(x)) = cDα

a f(x), α > 0.

4. The operator Dα
a is linear, so that Dα

a (af(x)+bg(x))) = aDα
a f(x)+bDα

a g(x),
where a and b are constants.

5. The operator Dα
a satisfies the product and chain rule,

Dα
a (f(x)g(x)) = g(x)Dα

a f(x) + f(x)Dα
a g(x),

Dα
a f [g(x)] = f ′[g(x)]Dα

a g(x) = Dα
a f(g)(g′(x))α.

2.3 Mathematical Models of Biological Systems

Mathematical models provide a way to describe the interaction between species
whether the species are animal or human populations, natural resources, or cells
[161]. However, in real life it is difficult to study the behaviour of interactions
between species over long periods of time, and for this reason mathematical models
are often useful. A simple single-species model might be

dN

dt
= births− deaths + migration, (2.2)

where N(t) is the species’ population at time t [118]. We will now consider various
possible forms of the terms for birth, death and migration.

2.3.1 Malthusian Growth

Malthus [104] proposed the simplest model of the form (2.2) when there is no
migration as follows,

dN

dt
= bN︸︷︷︸

births

− dN︸︷︷︸
deaths

= (b− d)N = rN, (2.3)

where r = b− d. The solution is then

N(t) = N0e
rt,
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where N(0) = N0 is the initial population. For this simple model we see that
if r < 0 (b < d) then the population decreases exponentially, if r = 0 (b = d) the
population remains constant at its initial value, and if r > 0 (b > d) the population
increases exponentially.

2.3.2 Logistic Growth

It is unrealistic to consider a population’s growth as always growing and there will
always be a limit, or carrying capacity, to exponential growth. A logistic growth
model can be used as a way to describe the population’s limited growth. From
[43], the classical logistic equation is

dN

dt
= rN

(
1− N

K

)
, (2.4)

where N is the population size, r = b − d is the difference between natural birth
and death rates, and K is a carrying capacity of the population. This equation
has solution

N(t) =
KN(0)

N(0) + (K −N(0))e−rt
.

Figure 2.1 indicates the behaviour of the solution to equation (2.4). At first when
N(0) � K the growth is exponential and then when the population size ap-
proaches the carrying capacity the growth rate approaches zero. For a large initial
population, i.e. N(0) > K, the population will decline until the carrying capacity
is approached.

Figure 2.1: Logistic growth (red curve) compared to exponential growth (blue
curve), from [43].
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2.3.3 Functional Response

Functional response is a term denoting how two species can interact in a predator-
prey system [50]. It describes the dependency of the predator consumption rate on
both the density of the prey. Holling (1959) introduced three forms of functional
response as follows

f(R) = aR,

f(R) = a
R

h+R
,

f(R) = a
R2

h2 +R2
,

called Holling type I, II and III respectively, where R is the population of prey,
f(R) is the rate of prey consumption, a is a maximum consumption rate, and h
is the density of the prey when the consumption per capita is half the maximum
value. In Holling type I, the feeding rate does not saturate as the prey density
increases, which means the consumption has a linear form, and a is the constant
predation rate, as used by Lotka and Volterra in the standard form of the integer
system, see Figure 2.2 (a). In Holling type II, as the number of prey increases, the
feeding rate saturates, with a maximum growth rate a. This maximum depends
on the handling time, so that, even if the number of prey is very large the predator
cannot eat the prey fast enough because of the time needed to handle and eat the
prey, see Figure 2.2 (b). Holling type III has a similar behaviour to the Holling
type II except, for low numbers of prey, the predators will rarely find prey (the so
called search time), so the form of the predation rate reduces to zero, see Figure
2.2 (c).

Figure 2.2: Plots of the functional response for (a) Holling type I, (b) II and (c)
III.

2.3.4 SIR Models

For models of the spread of infectious diseases, it is common to suppose that the
population can be divided into three compartments: the susceptible, S, who can
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catch the disease, the infected, I, who have caught and can transmit the disease,
and the recovered (or removed) population, R, who have recovered from the disease
and are now immune, or who have isolated until they have recovered, or who have
died due to the disease [117]. The assumptions made about the transmission of the
infection and incubation period are that the incubation period is short enough to
be negligible, and that the epidemic is of short duration so that the population can
be taken to be uniform. A simple dynamic model based on the above assumptions
is then

dS

dt
= −rSI, (2.5)

dI

dt
= rSI − aI, (2.6)

dR

dt
= aI, (2.7)

where r > 0 is the infection rate of the susceptible population and a > 0 is the
recovery or removal rate of infected population. Note that

d

dt
(S + I +R) = 0⇒ S + I +R = N, (2.8)

so that the total population N is a constant. The initial conditions are

S(t = 0) = S0 > 0, (2.9)

I(t = 0) = I0 > 0, (2.10)

R(t = 0) = 0. (2.11)

In this simple model it is clear from (2.5) that

dS

dt
= −rSI ≤ 0, (2.12)

so that S decreases from its initial value, S ≤ S0. From equation (2.6) we see that

dI

dt
= I(rS − a) > 0 if S >

a

r
,

dI

dt
= I(rS − a) < 0 if S <

a

r
.

(2.13)

Therefore, if S0 < a/r, then I will decrease for all time and I(t) → 0 as t → ∞.
However, if S0 > a/r then I will initially increase and then later, when S has
reduced to a/r, will start to decrease.

The maximum infected population can also be calculated. From (2.5) and
(2.6), we see

dI

dS
= −(rS − a)

rS
= −1 +

ρ

S
, (2.14)
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where ρ = a/r. Integrating and knowing that S = S0 when I = I0 gives

I = −S + ρ lnS + I0 + S0 − ρ lnS0.

If there is a maximum value of I for t > 0, i.e. when S0 ≥ ρ, then we see from
(2.6) that maximum, Imax, occurs at S = ρ. We therefore have,

Imax =

{
ρ ln ρ− ρ+ I0 + S0 − ρ lnS0, S0 ≥ ρ.

I0, S0 ≤ ρ.

2.4 Stability for Integer Systems

In this section we will consider the standard approach to finding equilibrium points
and the stability of these points for dynamical systems. This approach, using the
eigenvalues of the Jacobian matrix [118], will be the basis for our study of the
fractional systems that we will study later in this thesis. We consider a system of
ODEs, ẋ = f(x), where f : Rn → Rn and x ∈ Rn, i.e.

d

dt


x1

x2
...
xn

 =


f1 (x1, . . . , xn)
f2 (x1, . . . , xn)

...
fn (x1, . . . , xn)

 , (2.15)

where fi : Rn → R. We then make the following definitions,

Definition 2.4.1 An equilibrium (fixed) point of (2.15) is a point x? ∈ Rn that
satisfies fi (x?) = 0 for all 1 ≤ i ≤ n.

Definition 2.4.2 A solution x(t) of (2.15) with initial condition x(t = 0) = x0 is
stable if ∀ε > 0, there exists δ(ε) > 0 such that if x̄(t) is another solution of (2.15)
with x̄(t = 0) = x̄0 and ‖x̄0 − x0‖ < δ(ε), then

‖x̄(t)− x(t)‖ < ε, ∀t ≥ 0.

Definition 2.4.3 A solution of (2.15) is unstable if it is not stable.

Definition 2.4.4 A solution x(t) of (2.15) with initial condition x(t = 0) = x0

is asymptotically stable if: (a) it is stable, and (b) there exists γ > 0 such that
‖x̄0 − x0‖ < γ =⇒ ‖x̄(t)− x(t)‖ → 0 as t→∞.
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Linearisation of the system of ODEs about an equilibrium point will lead to

dx

dt
= Jx, (2.16)

where J is the Jacobian matrix evaluated at the equilibrium point. The solutions
of (2.16) are then

x = x0e
λt, (2.17)

where x0 is a fixed vector and the eigenvalues λ are the roots of the characteristic
equation

|J − λI| = 0, (2.18)

where I is the identity matrix.

Theorem 2.4.1 For the system of linear ODEs (2.16), if all the eigenvalues, λ,
have negative real parts, then the solution is stable. If at least one eigenvalue, λ,
has a positive real part, then the solution is unstable.

For example, consider the system of two ODEs

d

dt

[
x(t)
y(t)

]
= J

[
x(t)
y(t)

]
, (2.19)

where J is the Jacobian matrix evaluated at the equilibrium point. The stability
of the solution therefore depends on the eigenvalues, λ1, λ2 of J . The possible
behaviours of the solutions depend on the eigenvalues, and whether they are real
or complex, with negative or positive real parts. Table 2.1 shows all the possible
solution behaviours, termed node, saddle, spiral or centre. Figures 2.3, 2.4 and 2.5
illustrate these behaviours as plots of the xy-plane, the phase portraits.

Eigenvalues Type of Equilibrium Point Stability
λ1 > λ2 > 0 Node Unstable
λ1 < λ2 < 0 Node Asymptotically stable
λ2 < 0 < λ1 Saddle point Unstable
λ1 = λ2 > 0 Degenerate node Unstable
λ1 = λ2 < 0 Degenerate node Asymptotically stable
λ1, λ2 = r ± iµ Spiral (or Focus) point

r > 0 Unstable
r < 0 Asymptotically stable

λ1 = iµ, λ2 = −iµ Centre Stable

Table 2.1: The kinds of stability or instability corresponding to the eigenvalues of
the Jacobian matrix J .
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Figure 2.3: Qualitative behaviour when the matrix J in equation (2.19) has two
different nonzero real eigenvalues, λ1 < λ2 < 0, λ2 < 0 < λ1 and λ1 > λ2 > 0
respectively.

Figure 2.4: Qualitative behaviour when the matrix J in equation (2.19) has re-
peated real eigenvalue, λ1 = λ2 < 0 and λ1 = λ2 > 0 respectively.

Figure 2.5: Qualitative behaviour when the matrix J in equation (2.19) has
complex-conjugate eigenvalue pair λ = r± iµ, r < 0, r = 0, and r > 0 respectively.
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2.4.1 Routh-Hurwitz Conditions

Given the stability criteria discussed in the last section, in the subsequent chapters
we will be interested in the number of eigenvalues with negative real parts, to
ensure stability. One method we will consider, uses the Routh-Hurwitz conditions
[118]. If the system (2.16) is of nth order, then the characteristic equation is

P (λ) = λn + a1λ
n−1 + · · ·+ an = 0, (2.20)

where ai, i = 1, . . . , n are real. The necessary and sufficient conditions on the ai
such that the roots of P (λ) have Reλ < 0 are the Routh-Hurwitz conditions,

D1 = a1 > 0, D2 =

∣∣∣∣ a1 a3

1 a2

∣∣∣∣ > 0, D3 =

∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣ > 0,

Dk =

∣∣∣∣∣∣∣∣∣∣
a1 a3 · · · ·
1 a2 a4 · · ·
0 a1 a3 · · ·
0 1 a2 · · ·
0 0 · · · ak

∣∣∣∣∣∣∣∣∣∣
> 0, k = 4, . . . , n,

(2.21)

where ai = 0 for i > n. For example, for the cubic equation

λ3 + a1λ
2 + a2λ+ a3 = 0,

The condition Re λ < 0 is satisfied if

a1 > 0, a1a2 − a3 > 0, a3 > 0.

Definition 2.4.5 [6] The discriminant D(f) of a polynomial

f(x) = xn + c1x
n−1 + c2x

n−2 + .......+ cn,

is defined by D(f) = (−1)n(n−1)/2R(f, f ′), where f ′ is the derivative of f, and for
g(x) = xl+d1x

l−1+d2x
l−2+.......+dl, R(f, g) is the determinant of the correspond-

ing Sylvester (n+ l)× (n+ l) matrix. The Sylvester matrix is formed by filling the
matrix beginning with the upper left corner with the coefficients of f(x) and then
shifting down one row and one column to the right and filling in the coefficients
starting there until they hit the right side. The process is then repeated for the
coefficients of g(x).
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2.5 Stability for Fractional Systems

In this thesis we will use either the Caputo derivative or Jumarie’s modified
Riemann-Liouville fractional derivative. For these definitions, the derivative of
a constant is zero and so the equilibrium points for the fractional systems will be
the same as the equilibrium points for the integer system.

The general form of any fractional system, that has xk species with initial
conditions xk(t0) = bk, k = 1, ..., n, is

Dαkxk(t) = fk(x1, x2, ......, xn), (2.22)

where αk are the fractional derivative orders. When all the species have the same
memory, so that all fractional derivatives are of order α, the system is called com-
mensurate. When the species have different memory, and so not all αk are equal,
the system is called incommensurate.

2.5.1 Asymptotic Stability for a Commensurate Fractional
Differential Equation System

In this section we will introduce results related to the stability of a commensurate
fractional system. We first introduce a lemma that relates the stability of a com-
mensurate fractional system to the eigenvalues of the equivalent integer derivative
system. The proof of this result is relatively straightforward, and makes use of the
Mittag-Leffler function as the eigenfunction of the fractional system, and can be
found in [38] as well as other standard textbooks in the area.

Lemma 2.5.1 [38] Let x∗ be an equilibrium of the nonlinear system Dα
t x = f(x),

then x∗ is locally asymptotically stable if

|argλ| > α
π

2
,

for all eigenvalues λ of the Jacobian matrix J(x∗).
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Figure 2.6: The stability region for a fractional system, from [29].

2.5.2 Asymptotic Stability for an Incommensurate Frac-
tional Differential Equation System

In this section we will introduce the lemma that is related to the stability of an
incommensurate fractional system. A proof of this result can be found in [144].

Lemma 2.5.2 [144] Suppose that x = x∗ is an equilibrium point of the system

Dαi
t x = f(x), (2.23)

where i = 1, 2, ...n, and the fractional derivatives orders αi ∈ Q are not necessarily
equal. Suppose also that M is the lowest common multiple of the denominators ui
of the αi, where αi = vi/ui, the greatest common divisor of ui and vi is 1, and
ui, vi ∈ Z+. Then the equilibrium point is asymptotically stable if

|arg(λi)| >
π

2M
, (2.24)

for all roots λi of the equation

det(J − diag[λMα1 , λMα2 , ......., λMαn ]) = 0, (2.25)

where J is the Jacobian matrix of (2.23) at the equilibrium point x∗.

2.6 Numerical Methods for Solving Fractional

Differential Equations

Numerical methods have been widely used to solve all types of fractional differ-
ential equations. Several numerical methods, such as the variational iteration
method [141], least squares method [113], Galerkin method [22], Euler’s method
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[147], and Runge Kutta method [25], have all been successfully applied. In this
thesis, we use a method based on the Adams-Bashforth-Moulton approach, which
has been previously used for the numerical solution of similar differential equations
of fractional order. The Adams method is a multi-step method using a predictor-
corrector algorithm. Each of the methods in the multi-step class of numerical
methods can be either explicit or implicit [15], where the explicit type is known
as the Adams-Bashforth method, and the implicit type is known as the Adams-
Moulton method. Within the predictor-corrector scheme we use, the explicit for-
mula is used to predict the value, while the implicit formula is used to correct this
prediction, and this method is therefore called Adams-Bashforth-Moulton method.
Standard and higher orders of Adams-Bashforth-Moulton are widely adopted for
fractional differential equations [123], and Diethelm et al. [46, 47] provide more
detailed description of this method and its error analysis.

Here we use Matlab to encode this numerical method. Specifically, the Matlab
code flmm2 was used for solving the commensurate system in Chapter 3. This code
was initially developed by Lubich [72] and studied for stability by Garrappa [63],
where three different implicit methods were considered, the classical trapezoidal
rule or Tustin method, the Newton-Georgy formula and the backward differenti-
ation formula [64]. Similarly, we use the FDE-PI1-Ex code for solving equations
that describe the incommensurate system in Chapter 4, which was also described
in detail by Garrappa in [64].

2.7 Description of (G′/G)-Expansion Method

In Chapter 5 of this thesis we will investigate travelling waves in fractional differ-
ential equations. In order to construct solutions we will use the (G′/G)-expansion
method, first introduced by Wang et al. [155] to find the travelling wave solutions
of various nonlinear PDEs. The method was then extended by Bin [23] for solv-
ing nonlinear fractional PDEs. Here we will outline this method. Suppose that a
fractional PDE is given by

P (u,Dα
t u,D

2β
x u,D

2γ
y u) = 0, (2.26)

where u = u(t, x, y) is an unknown function, 0 < α, β, γ ≤ 1, are fractional deriva-
tive orders and P is a polynomial in u(t, x, y) and fractional partial derivatives of
u.
Step 1: Eq.(2.26) can be converted to an ordinary differential equation,

Q(u, u′, u′′) = 0, (2.27)

by the fractional transformation [75, 100], u(t, x, y) = u(Z), where

Z = − Ltα

Γ(α + 1)
+

Kxβ

Γ(β + 1)
+

Myγ

Γ(γ + 1)
, (2.28)
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and L, K, and M are arbitrary constants.
Step 2: Eq.(2.27) is then integrated as many times as possible using known con-
ditions to determine constants of integration.
Step 3: Suppose that the solution of the resulting equation can be expressed as a
polynomial of (G′/G) in the form

u(Z) =
m∑
i=0

αi

(
G′

G

)i
, (2.29)

where αi (i = 0, 1, ...m) are constants, and G = G(Z) is the solution of the follow-
ing second order linear ODE,

G′′(Z) + λG′(Z) + µG(Z) = 0, (2.30)

where λ and µ are, as yet unknown, constants.
Step 4: The positive integer m can be determined by using the homogeneous bal-
ance between the highest order derivatives and the nonlinear terms appearing in
the equation found in Step 2.
Step 5: Substituting eq.(2.29) and eq.(2.30) into eq.(2.27), and equating the
coefficients of the obtained polynomial, gives a set of algebraic equations for
αi (i = 0, 1, ...m, ) L, K, M, λ, and µ.
Step 6: The general solution of eq.(2.30) is then

G′

G
=



−λ
2

+

√
λ2 − 4µ

2

c1 sinh
(
Z
√
λ2−4µ

2

)
+ c2 cosh

(
Z
√
λ2−4µ

2

)
c1 cosh

(
Z
√
λ2−4µ

2

)
+ c2 sinh

(
Z
√
λ2−4µ

2

)
 , if λ2 − 4µ > 0,

−λ
2

+

√
4µ− λ2

2

−c1 sin
(
Z
√

4µ−λ2
2

)
+ c2 cos

(
Z
√

4µ−λ2
2

)
c1 cos

(
Z
√

4µ−λ2
2

)
+ c2 sin

(
Z
√

4µ−λ2
2

)
 , if λ2 − 4µ < 0,

−λ
2

+
c2

c1 + c2Z
, if λ2 − 4µ = 0.

(2.31)
Step 7: By substituting αi (i = 0, 1, ...m), L, K, M , into eq.(2.31) and then into
eq.(2.29), the solution of eq.(2.26) can be obtained.
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Chapter 3

Commensurate Models

In this chapter, we consider two models: the first is a fractional order model for
the tumor-immune system using a prey-predator-like model, and the second is a
fractional SIR epidemic model with saturated treatment rate. We obtain all the
conditions of the existence of equilibrium points, and the asymptotic stability of
these points is studied, along with a numerical simulation.

3.1 A Fractional Order Model for the Tumor-

Immune System Response

This section deals with a fractional order model that explores the immune response
to a tumor, that can be modelled as a prey-predator system. As discussed in
Chapter 1, fractional order derivatives can be used to model a form of system
memory, which may be more realistic compared to the integer order, because of
the non-local properties of fractional derivatives. The model considered in the
present study is a generalisation of that introduced by Kaur and Ahmad [89],
changing the order of the model from integer to fractional. Local asymptotic
stability of the possible equilibrium points is studied and the generalised Adams-
Bashforth-Moulton method is then used to numerically solve and simulate the
system.

3.1.1 Introduction

Cancer is a group of diseases involving abnormal cell growth, with the potential
to invade or spread to other parts of the body and form tumors, which can be
benign (non-cancerous) or malignant (cancerous). It has been observed that can-
cer cell populations decrease considerably due to the proliferation of lymphocytes
mediated by immunotherapy. We can therefore control the cancer cell population
relatively easily if the form of cancer is immunogenic, that is, the cells possess
distinctive surface markers called tumor-specific antigens [4].

25



Recent progress in mathematical biology, especially in the field of cancer, mean
that mathematical models of tumor growth can give analytical insight into the
elements of the human immune system that influence cancer treatment. Math-
ematical models also help us understand the growth mechanisms of the tumor
in order to predict its future behaviour. However, the problem lies in formulat-
ing mathematical models that preserve a realistic dynamic nature of such real-life
systems. It has been shown that ordinary differential equations sometimes fail to
capture real world data due to the lack of non-local effects [66]. For this reason, the
concept of fractional calculus has been introduced, since it involves differentiation
using non-local operators. Fractional derivatives have the capacity of representing
dissipative effects and capturing the memory effects which are detected in many
biological systems.

Possibilities for research in this field are wide reaching. Some researchers have
studied the interaction between the immune system cells and cancer cells. For
instance, Ucar et al. [150] used the Caputo fractional derivative to generalise the
integer order model presented by Castiglione and Piccoli [33] in order to analyse the
activities and behaviour of cells through the modification of the fractional deriva-
tive parameter. As with many authors, they obtained numerical solutions for this
type of system by applying the Adams-Bashforth-Moulton algorithm. Their main
focus was on dendritic cells and IL-2, although, the model also tested how CD4+
T cells and CD8+ T cells fight tumor cells. They studied the interaction between
cancer cells and immune systems cells and demonstrated that for some values of
the fractional order the effectiveness of both types of cells varies. Specifically,
cancer cells noticeably decrease as the fractional order decreases. Balci et al. [17]
have compared Caputo and conformable fractional derivative models to determine
which is better suited to model the interaction between immune system cells and
cancer cells. They proved that the discrete version of the conformable fractional
order model depicts a wider class of tumor growth dynamics than those of the
Caputo fractional order model and is a more convenient model due to the chaotic
and oscillatory tumor growth prior to treatment. For treatment and chemotherapy
of tumors in the case of bladder cancer, Baba [16] studied the effect of Bacillus
Calmette-Guerin (BCG) on the control of bladder cancer and developed a model
that demonstrated effects seen in experiments. The author obtained two equilib-
rium points, a tumor-free equilibrium and an endemic equilibrium. Unfortunately,
the author demonstrated that the cancer-free equilibrium is unstable. However,
he proved that BCG is quite effective in controlling bladder cancer. Akman Yildiz
et al. [8] presented a novel mathematical model to describe the effect of obesity
on malignant tumor growth during the course of chemotherapy and immunother-
apy. They described an optimal control problem in order to diminish the tumor
population and decrease drug dose over a finite duration using the Caputo time
fractional derivative. The authors demonstrated the existence and stability of two
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equilibrium points, a tumor-free equilibrium and coexisting equilibrium, and used
a specific method to discretize the cancer-obesity model.

In Rihan et al. [130], the authors proved that fractional order differential
equations are, at their worst, as stable as their integer-order equivalents when
modelling immune system behaviour. However, an increase in the complexity of
the monitored behaviour was noted as their calculations constantly relied on all
prior states of the solution. Gomez-Aguilar et al. [66] offered an analysis of a
three-dimensional fractional-order dynamical model for the evolution of cancer
growth. The model used the Caputo-Fabrizio-Caputo derivative and a new frac-
tional derivative with a Mittag-Leffler kernel in the Liouville-Caputo derivative.
They obtained the solution through an interactive approach that involved using the
Laplace transform and, for the Atangana-Baleanu-Caputo fractional order deriva-
tive, using the Sumudu transform.

Mathematical models have also been used to analyse the possible causative
mechanisms of cancer, escape from immune-induced dormancy, and decaying effi-
cacy in both immune predation and immune recruitment are analysed with results
suggesting that decline in recruitment is a stronger determinant of escape than
increased resistance to predation [163].

Also, Iyiola et al. [82] investigated the need for fractional order derivatives as
compared to the classical first order derivative for cancer tumor models. Numerical
simulations have also confirmed the advantages of using fractional-order differen-
tial models in biological systems over differential equations with integer order such
as dynamics of tumor-immune system and HIV infection of CD4+ T cells [129].

In this section, we will consider a fractional order model for the tumor-immune
system response, based on a prey-predator model. We give a detailed analysis for
the asymptotic stability of the model.

3.1.2 Model Formulation

Kaur and Ahmad [89] studied the interaction between tumor cells, modelled as
prey, and the immune systems resting and hunting cells, modelled as predators, as
follows,

dT

dt
= q + r1T

(
1− T

k1

)
− α1TH,

dH

dt
= βHR− d1H − α2HT,

dR

dt
= r2R

(
1− R

k2

)
− βHR− d2R +

ρTR

T + η
,

(3.1)
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where T (t) is the concentration of tumor cells in the given area at time t, H(t) the
concentration of hunting T cells, and R(t) the concentration of resting T cells, the
parameter q is the conversion rate of normal cells into tumor cells, r1 is the growth
rate of tumor cells, k1 is the maximum carrying capacity of tumor cells, α1 is the
rate of predation of tumor cells by hunting cells, β is the conversion rate of resting
cells into hunting cells, d1 is the apoptosis rate of hunting cells, α2 is the rate of
predation of hunting cells by tumor cells, r2 is the growth rate of resting cells, k2 is
the maximum carrying capacity of resting cells, d2 is the apoptosis rate of resting
cells, ρ is the proliferation rate of resting cells, and η is the half-saturation for
the proliferation term. See Figure 3.1 for a schematic description of the process
modeled by the system (3.1).

Figure 3.1: Schematic diagram of the system (3.1).

The following dimensionless variables can be defined to reduce the number
of system parameters t∗ = qt/k1, T ∗ = T/k1, H∗ = α1k1H/q, R∗ = R/k2.
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Dropping the stars yields the following model:

dT

dt
= 1 + a1T (1− T )− TH,

dH

dt
= a2HR− a3H − a4HT,

dR

dt
= a5R(1−R)− a6HR− a7R +

a8TR

T +K
,

(3.2)

where

a1 = r1k1/q, a2 = βk1k2/q, a3 = k1d1/q,

a4 = α2k
2
1/q, a5 = r2k1/q, a6 = β/α1, (3.3)

a7 = k1d2/q, a8 = k1ρ/q, K = η/k1.

We will now introduce fractional order derivatives to the ODE model (3.2),
leading to a new system described by the following set of equations:

Dα
t T = 1 + a1T (1− T )− TH,

Dα
t H = a2HR− a3H − a4HT,

Dα
t R = a5R(1−R)− a6HR− a7R +

a8TR

T +K
,

(3.4)

where Dα
t is the Caputo fractional derivative defined in Definition (2.2.4). In the

next few sections we consider the equilibrium points of the system (3.4) and the
conditions of the existence and stability of these points.

3.1.3 Equilibrium Points

To evaluate the equilibrium points of the system (3.4) we set Dα
t T = 0, Dα

t H = 0,
Dα
t R = 0, and solve equations (3.4) to give the equilibrium points:

E1(T1, 0, 0) where T1 = 1
2

(
1 +

√
1 + 4

a1

)
so there are no hunting or resting cells.

E2(T2, 0, R2) where T2 = 1
2

(
1 +

√
1 + 4

a1

)
, R2 = 1

a5

(
a5 − a7 + a8T2/(T2 + K)

)
so

there are no hunting cells.

E3(T3, H3, 0) where T3 = −a3

a4

, H3 =
1

T3

+ a1(1− T3) so there are no resting cells.

E4(T4, H4, R4) where R4 = 1
a2

(a3 + a4T4), H4 = 1
a6

(
a5 − a5

a2
(a3 + a4T4) − a7 +

a8T4/(T4 +K)
)

and T4 satisfies the following cubic equation:

c3T
3
4 + c2T

2
4 + c1T4 + c0 = 0, (3.5)
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where

c3 = a1a6 −
a4a5

a2

,

c2 = a5 − a7 + a8 −
a5

a2

(a3 + a4K)− a1a6(1−K),

c1 = a5K −
(
a7K +

a5a3K

a2

+ a6(a1K + 1)
)
,

c0 = −a6K < 0.

To be a physically realistic equilibrium point, each of the concentrations T (t),
H(t), R(t) must be greater or equal to zero. The equilibrium point E1 is al-
ways physical since a1 > 0, so T1 > 0. The equilibrium point E2 is physical if
a5 + a8T2/(T2 + K) > a7 to ensure that R2 is positive. However, the equilibrium
point E3 is always unphysical since a3 > 0, a4 > 0, so T3 < 0. The existence of the
equilibrium point E4 depends on the positivity of T4, H4 and R4, which is more
complicated and is now discussed in detail.

For a physically realistic state we must, as well as having T4 > 0, which au-
tomatically ensure that R4 > 0, have a5 + a8T4/(T4 + K) > a5

a2
(a3 + a4T4) + a7

to ensure that H4 > 0. In order to understand the positivity of T4 we must de-
termine the number of real roots of the cubic equation (3.5), which we will do by
considering the discriminant of the equation (see Definition (2.4.5)), namely

∆ = −

∣∣∣∣∣∣∣∣∣∣
c3 c2 c1 c0 0
0 c3 c2 c1 c0

3c3 2c2 c1 0 0
0 3c3 2c2 c1 0
0 0 3c3 2c2 c1

∣∣∣∣∣∣∣∣∣∣
= 18c3c2c1c0 + (c2c1)2 − 4c3

1c3 − 4c3
2c0 − 27c2

3c
2
0.

(3.6)
If ∆ > 0, then there are three real roots and if ∆ < 0 then there is only one
real root [152]. The number of real and positive roots of (3.5) can be found by
using the sign of the discriminant in (3.6) together with Descartes’ Rule of Signs
[14]. We will concentrate on the equilibrium point E4 because, as we will see
later, there are more possibilities for stable equilibria. In particular, we will later
see that the stability of E1 and E2 are not affected by changing the fractional
order α, but a change of stability is possible for E4 by changing α. From the
discriminant and using Descartes’ Rule of Signs we find that it is possible to have
three positive real roots or one positive real root for the cubic equation (3.5),
when ∆ > 0 and the change of signs in the equation is equal to three, i.e. c3 > 0,
c2 < 0, c1 > 0, which is equivalent to a condition on the growth rate of tumor
cells, max(M1,M2) < a1 < M3 if K < 1 or M1 < a1 < min(M2,M3) if K > 1,
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where

M1 =
a4a5

a2a6

,

M2 =
a2(a5 − a7 + a8)− a5(a3 + a4K)

a2a6(1−K)
,

M3 =
a5 − a7

a6

− a5a3

a2a6

− 1

K
.

However, these conditions for finding three real roots for the cubic equation (3.5)
are necessary but not sufficient, so if these conditions are met, we might not have
three real roots (there could be only one positive root). We also find that the
equation (3.5) has one positive real root when the change of signs in the equation
is equal to one, i.e. c3 > 0, which is equivalent to the condition on the growth rate
of tumor cells, a1 > M1. In addition, we find that there are three possibilities to
have two positive real roots or no positive real root for the cubic equation (3.5),
when ∆ > 0 and the change of signs in the equation is equal to two: c3 < 0,
c2 > 0, c1 < 0, which is equivalent to a condition on the growth rate of tumor
cells, M3 < a1 < min(M1,M2) if K < 1 or max(M2,M3) < a1 < M1 if K > 1;
c3 < 0, c2 < 0, c1 > 0, which is equivalent to a condition on the growth rate of
tumor cells, M2 < a1 < min(M1,M3) if K < 1 or a1 < min(M1,M2,M3) if K > 1;
c3 < 0, c2 > 0, c1 > 0, which is equivalent to a condition on the growth rate of
tumor cells, a1 < min(M1,M2,M3) if K < 1 or M2 < a1 < min(M1,M3) if K > 1.

3.1.4 Stability

The local asymptotic stability analysis of the equilibrium points can be investigated
by using the Jacobian matrix of (3.2),

J(T,H,R) =


a1 − 2a1T −H −T 0
−a4H a2R− a3 − a4T a2H
a8RK

(T +K)2
−a6R a5 − 2a5R− a6H − a7 +

a8T

T +K

 .
Lemma 2.5.1 will now be used to define the conditions of the stability for each of
the equilibrium points.

For E1, the Jacobian matrix J(E1) is

J(E1) =



−a1

√
1 + 4

a1
−1

2

(
1 +

√
1 + 4

a1

)
0

0 −a3 − a4
2

(
1 +

√
1 + 4

a1

)
0

0 0 a5 − a7 +

a8
2

(
1 +

√
1 + 4

a1

)
1
2

(
1 +

√
1 + 4

a1

)
+K


,
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and E1 is locally asymptotically stable if all the eigenvalues, λ1i, i = 1, 2, 3, of the
Jacobian satisfy the condition |arg(λ1i)| > απ/2. However, all the eigenvalues are
real,

λ11 = −a1

√
1 +

4

a1

< 0,

λ12 = −
(
a3 +

a4

2

(
1 +

√
1 +

4

a1

))
< 0,

λ13 = a5 − a7 +

a8
2

(
1 +

√
1 + 4

a1

)
1
2

(
1 +

√
1 + 4

a1

)
+K

> 0.

The eigenvalues λ11 and λ12 are negative, but the sign of λ13 depends on the ex-
istence condition of E2. We see that λ13 > 0, so that E1 is unstable, if E2 exists,
and E1 is stable if E2 does not exist.

For E2, the Jacobian matrix J(E2) is

J(E2) =


a1 − 2a1T2 −T2 0

0 a2R2 − a3 − a4T2 0
a8R2K

(T2 +K)2
−a6R2 a5 − 2a5R2 − a7 +

a8T2

T2 +K

 .
As with E1, the eigenvalues are real,

λ21 = −a1

√
1 +

4

a1

< 0,

λ22 = a2R2 − a3 − a4T2,

λ23 = −
(
a5 − a7 +

a8T2

T2 +K

)
.

The eigenvalue λ21 < 0 and the sign of λ23 depends only on the existence condition
of E2. We see that λ23 < 0 if we assume that E2 exists. Therefore, the stability of
E2 depends only on the sign of λ22, so that E2 is stable if λ22 < 0 and unstable if
λ22 > 0.

For E4, the Jacobian matrix J(E4) is

J(E4) =


a1 − 2a1T4 −H4 −T4 0

−a4H4 a2R4 − a3 − a4T4 a2H4

a8R4K

(T4 +K)2
−a6R4 a5 − 2a5R4 − a6H4 − a7 +

a8T4

T4 +K

 ,
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and the eigenvalues are solutions of the equation

λ3 + A1λ
2 + A2λ+ A3 = 0, (3.7)

where

A1 = −(A+B),

A2 = AB + a2a6R4H4 − a4H4T4,

A3 = a4BH4T4 +
a2a8KH4T4R4

(T4 +K)2
− a2a6AH4R4,

where A = a1 − 2a1T4 −H4 and B = a5 − 2a5R4 − a6H4 − a7 + a8T4/(T4 +K).
Therefore, E4 is locally asymptotically stable if all the roots of this polynomial
equation (3.7) satisfy |arg(λ4i)| > απ/2, i = 1, 2, 3. No serious analytical progress
can be made in this case, and so we will later investigate the existence and stability
of these equilibrium points numerically.

To summarise, the equilibrium point E1 is always unstable (a saddle point) if
the equilibrium point E2 exists and, therefore, E1 and E2 cannot be stable for the
same parameter values. We also found that E2 is locally asymptotically stable
if the eigenvalue λ22 is negative. However, the equilibrium point E4 is only lo-
cally asymptotically stable if all the roots of the polynomial equation (3.7) satisfy
|arg(λ4i)| > απ/2, i = 1, 2, 3.

3.1.5 Numerical Simulation

This section is devoted to the numerical study of the mathematical model presented
in (3.4), using Matlab and Maple, and taking the values of our parameters from
reference [89], a1 = 1.82, a2 = 0.239, a3 = 0.2, a4 = 0.04, a5 = 0.0191, a6 = 0.5,
a7 = 0.01, a8 = 2 and K = 1. We also compare between our parameters and
the parameters in references [44, 136, 137]. From reference [44], the parameters
K and a8 are exactly same our parameters K and a8. From reference [136], by
comparing their model with our model we found that q = 10, r1 = 0.9, k1 = 0.8,
α1 = 0.3, β = 0.1, d1 = 0.02, r2 = 0.8, k2 = 0.7 and d2 = 0.03. Substituting these
values into our dimensionless variables (3.3), we found a1 = 0.072, a2 = 0.0056,
a3 = 0..0016, a5 = 0.064, a6 = 0.33 and a7 = 0.0024, these results were similar
to our parameters. We also nondimensionalise the model in [137] and use their
parameters we found a1 = 1.82, a2 = 1.30, a3 = 0.416, a4 = 0.173, a5 = 1.055,
a6 = 0.392 and a7 = 0.416, these results were almost equal our parameters. Figures
3.2 - 3.4 have been obtained for different values of α. In these figures we have taken
the initial conditions T (0) = 1, H(0) = 1 and R(0) = 1.5, and our parameter values
as mention above. For these parameter values, the positive equilibrium points will
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be E1 = (1.39, 0, 0), E2 = (1.39, 0, 61.45) and E4 = (0.77, 1.72, 0.97). It should be
noted here that the equilibrium point E4 has the lowest concentration of tumor
cells, and so we take particular notice of when this solution is a stable equilibrium.
For the integer system (3.2), E1 and E2 are unstable, and E4 is unstable because
two of the eigenvalues of the Jacobian matrix are complex with positive real parts.
The instability of E4 in the integer system is shown in Figure 3.2 where we see
that a limit cycle is approached as t→∞.

Figure 3.2: The instability of the integer system (3.2) around E4, (a) tumor, hunt-
ing and resting cell concentration as a function of time showing the convergence
to a limit cycle. (b) The phase plane plot of (a).

To study the stability of E4 for the fractional system (3.4), we know from
Lemma 2.5.1 that the equilibrium point is locally asymptotically stable if all the
eigenvalues of the Jacobian matrix of E4 satisfy the condition |arg(λ4i)| > απ/2,
i = 1, 2, 3. For the complex eigenvalue with positive real part, namely λ41, we
obtain a critical value of the fractional order α∗ = 2

π
|arg(λ41)| = 0.984, and

therefore the system will be stable about E4 if α < α∗. We see from Figure 3.3
for α > α∗, i.e. α = 0.992 and α = 0.989, E4 remains unstable, but from Figure
3.4 when α is below α∗, i.e. α = 0.94 and α = 0.9, the equilibrium point becomes
stable.
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Figure 3.3: The instability of the fractional system (3.4) around E4 when (a)
α > α∗ = 0.984, i.e. α = 0.992, tumor, hunting and resting cell concentration as
a function of time showing the convergence to a limit cycle. (b) The phase plane
plot of (a). The instability of the fractional system (3.4) around E4 when (c)
α > α∗ = 0.984, i.e. α = 0.989, tumor, hunting and resting cell concentration as
a function of time showing the convergence to a limit cycle. (d) The phase plane
plot of (c).
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Figure 3.4: The stability of the fractional system (3.4) around E4 when (a) α <
α∗ = 0.984, i.e. α = 0.94, tumor, hunting and resting cell concentration as a
function of time showing the convergence to E4. (b) The phase plane plot of (a).
The stability of the fractional system (3.4) around E4 when (c) α < α∗ = 0.984,
i.e. α = 0.9, tumor, hunting and resting cell concentration as a function of time
showing the convergence to E4. (d) The phase plane plot of (c).

It is clear that if we wish to ensure the stability of the low-tumor cell con-
centration state, E4, we are interested in mechanisms that either allow α to be
reduced to below α∗, or for α∗ to be increased above the intrinsic value of α for
the system. This latter possibility is investigated in the following section.

3.1.6 Parameter Dependence of α∗

In this section we consider the dependency of α∗ on the parameter values a1 -
a8 and K. In each situation we keep all but one parameter constant, using the
values in Section 3.1.5. We can classify our results under three major groups:
the first group includes a1, a3, a5 and a7, the second includes a2, a4 and a8, and
finally the third includes a6 and K. Each of the accompanying figures (Figures
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3.5 - 3.7) includes two columns; the first shows the eigenvalue of the integer sys-
tem (the red line), while the second shows the value of α∗ as one parameter is
varied (the blue line) and the red line indicates the integer, α = 1, bound. For
the region below the blue line the system will exhibit a stable E4 equilibrium point.

The dependency of α∗ on parameters in the first group, a1, a3, a5 and a7 is
shown in Figure 3.5. As we can see from Figure 3.5 (a, c, e, g), the integer system
is unstable when approximately a1 < 5, a3 < 2.5, a5 < 0.04 and a7 < 0.7 respec-
tively. On the other hand, for the fractional system we can see from Figure 3.5
(b, d, f, h) that if the values of a1, a3, a5 and a7 increase, then α∗ will increase.
Therefore, for the parameters a1, a3, a5 and a7 a reduction in the parameter value
will tend to destabilise the system, with a reduction in α delaying this destabili-
sation to lower parameter values.
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Figure 3.5: (a), (c), (e) and (g) are the real part of the eigenvalue of E4 of the
integer system (3.2) for different values of a1, a3, a5 and a7 respectively. (b), (d),
(f) and (h) are the dependency of α∗ on the growth rate of tumor cells, a1, the
apoptosis rate of hunting cells, a3, the growth rate of resting cells, a5, and the
apoptosis rate of resting cells, a7, for the fractional system (3.4) respectively.
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The dependency of α∗ on parameters in the second group, a2, a4 and a8 is
shown in Figure 3.6. As we can see from Figure 3.6 (a, c, e), the integer system is
unstable when a2 > 0.1 and a8 > 0.9 approximately, and the integer system is un-
stable for all values of a4. Furthermore, for the fractional system we can see from
Figure 3.6 (b, d, f) that if the values of a2, a4 and a8 increase, then α∗ decreases
and so the stability of the system decreases. For a2, a4 and a8 an increase in the
parameter value will destabilise the system although a lower value of α will delay
that destabilisation to higher values of a2, a4 and a8.
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Figure 3.6: (a), (c) and (e) are the real part of the eigenvalue of the equilibrium
point E4 of the integer system (3.2) for different values of a2, a4 and a8 respectively.
(b), (d) and (f) are the dependency of α∗ on the conversion rate of resting cells into
hunting cells, a2, the rate of predation of hunting cells by tumor cells, a4, and the
proliferation rate of resting cells, a8, for the fractional system (3.4) respectively.

The dependency of α∗ on parameters in the third group, a6 and K is shown in
Figure 3.7. As we can see from Figure 3.7 (a, c), the integer system is unstable
when approximately 0.1 < a6 < 1.5 and K < 4 respectively. Furthermore, for the
fractional system we can see from Figure 3.7 (b, d) that for these parameters the
dependency of α∗ is non-monotonic. For a fixed value of α it is therefore possible
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to obtain a stable E4 state for both low and high values of the parameters. This is
a particularly interesting result and it would be useful to test this further to gain
biological insight, from considering these two possible areas of stability.

Figure 3.7: (a) and (c) are the real part of the eigenvalue of the equilibrium point
E4 of the integer system (3.2) for different values of a6 and K respectively. (b)
and (d) are the dependency of α∗ on the ratio of conversion rate of resting cells
into hunting cells to the rate of predation of tumor cells by hunting cells, a6,
and the half- saturation for proliferation term, K, for the fractional system (3.4)
respectively.
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3.2 A Fractional SIR Epidemic Model with Sat-

urated Treatment Rate

As mentioned previously, fractional-order derivative models can be used to try
and capture memory effects. One important area where memory effects could
be influential is in epidemiology. In this case human memory may affect the
speed of disease in a population. The literature includes many epidemiological
models involving fractional-order derivatives, many of which are related to SIR-
type models. In this section, we consider a fractional order model of a SIR epidemic
model with a saturated treatment rate. This is a generalisation of Zhonghua and
Yaohong [180], and consists of three component populations: susceptible, infected,
and recovered. We have obtained the conditions for the existence and stability of
equilibrium points, and the generalised Adams-Bashforth-Moulton method is then
used to numerically solve the system of fractional differential equations.

3.2.1 Introduction

Mathematical modelling is a valuable approach in epidemiology, and it has been
possible to restrict and reduce the outbreak of epidemic diseases such as measles,
tuberculosis, and flu by analysing various treatment functions. In SIR models
there are many different ways that treatment, such that infected individuals are
moved to the recovered state, can be incorporated. This removal rate of infected
individuals is often assumed to be directly proportional to the size of the infected
population. Thus, resources such as medications, drugs, hospital capacity, and
isolation chambers are presumed adequate. However, this assumption does not
take into account the challenge that each community has a different, and limited
capacity for treatment. To examine the impact of such a limited treatment capacity
on the propagation of epidemic diseases, Wang and co-workers considered both a
constant treatment rate [158]

h(I) =

{
β, I > 0
0, I = 0

and a limited capacity treatment rate [156]

h(I) =

{
βI, 0 ≤ I ≤ I0

βI0, I > I0

where I0 represents the level of infection at which the health care system reaches its
maximum capacity. Therefore, the treatment rate is proportional to the number
of the infected I only until the maximum treatment capacity is attained, taking
the maximum value βI0 thereafter.
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Zhang and Liu [177] proposed a continuously differentiable version of such a
treatment function

h(I) =
βI

1 + kI
,

where β > 0, is the treatment rate as I → 0 and k = 1/I0 models the delay in
treating the infected. The treatment function h(I) approaches βI when I is suffi-
ciently small, and approaches β/k = βI0 in the event that I is large. This model
is more faithful to a real situation and has the advantage of being continuous and
differential. Similar treatment functions have been used by Zhou and Fan [181]
and Zhang et al. [175].

3.2.2 Model Formulation

In this section we will consider the SIR model used in Zhonghua and Yaohong
[180]

dS

dt
= A− dS − λSI,

dI

dt
= λSI − (d+ γ)I − βI

1 + kI
,

dR

dt
= γI +

βI

1 + kI
− dR,

(3.8)

where S, I, and R denote the numbers of the susceptible, infected and recovered
individuals at time t, A is the recruitment rate of the population, d is the nat-
ural death rate of the population, γ is the natural recovery rate of the infected
individuals, λSI is the bilinear transmission term, λ being the average number of
contacts per infected person per unit time. In this model, the term βI/(1 + kI)
models the treatment of the infected individuals, where β is the treatment rate
when the number of infected is low, and k is a measure of the extent of the infected
being delayed for treatment and β/k is the maximum treatment rate. See Figure
3.8 for a description of the process modeled by (3.8).
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Figure 3.8: Schematic diagram of the system (3.8).

As noted in [180], the first two equations are independent of the third equation,
so we may focus on the subsystem

dS

dt
= A− dS − λSI,

dI

dt
= λSI − (d+ γ)I − βI

1 + kI
.

(3.9)

In order to model memory effects, we will introduce fractional order derivatives
to the ODE model (3.9), leading to the system

Dα
t S = A− dS − λSI,

Dα
t I = λSI − (d+ γ)I − βI

1 + kI
,

(3.10)

where Dα
t is the Caputo fractional derivative defined in Definition (2.2.4). In the

next few sections we consider the equilibrium points of the system (3.10) and the
conditions of the existence and stability of these points.

3.2.3 Equilibrium Points

Setting Dα
t S = 0, Dα

t I = 0, we find three possible equilibrium points: a disease
free equilibrium E0(A/d, 0), i.e. where S = A/d and I = 0, and two endemic
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equilibria E1(S∗1 , I
∗
1 ) and E2(S∗2 , I

∗
2 ), where S∗j = A/(d + λI∗j ), j = 1, 2, and I∗j

satisfies the equation

(nλk)I∗2 + (−λAk + ndk + nλ+ βλ)I∗ + (−λA+ nd+ βd) = 0, (3.11)

where we have set n = d+ γ. The solutions for I∗ are

I∗1 =
λAk − ndk − (β + n)λ+

√
∆

2nλk
, (3.12)

I∗2 =
λAk − ndk − (β + n)λ−

√
∆

2nλk
, (3.13)

where

∆ = (−λAk + ndk + (β + n)λ)2 + 4nλk(λA− (β + n)d). (3.14)

These solutions for I∗ can be rewritten as

I∗1 =
2

kb2

(
R1 − 1

R1

+

√(R1 − 1

R1

)2

+ b2
(R0 − 1

R0

))
, (3.15)

I∗2 =
2

kb2

(
R1 − 1

R1

−
√(R1 − 1

R1

)2

+ b2
(R0 − 1

R0

))
, (3.16)

where

R0 = λA/(d(β + n)), (3.17)

which we prove below is the basic reproduction number,

R1 = λAk/(ndk + λ(β + n)), (3.18)

and

b = 2
√
n/(Ak). (3.19)

These equilibria will only exist in the real world if S > 0, I > 0. The equilib-
rium point E0 is physical since A > 0 and d > 0, but to discuss the existence of
E1 and E2, we must consider the parameters R0, R1 and b = 2

√
n/(Ak).

We first show that R0 = λA/(d(β + n)) is the basic reproduction number. Using
the next generation method [76] to find the basic reproduction number for the
system (3.10), we consider the system of the form

dx

dt
= f(x)− v(x),
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where x = [S, I]T ,

f(x) =

[
f1

f2

]
=

[
λSI

0

]
, v(x) =

[
v1

v2

]
=

 nI +
βI

1 + kI
−A+ dS + λSI

 .
The Jacobian matrices of f(x) and v(x) at E0 are then given by

F (x) =

[
λA

d
0

0 0

]
, V (x) =

[
n+ β 0
λA

d
d

]
.

The eigenvalues of F ·V −1 are then δ1 = λA/ (d (n+ β)) and δ2 = 0. The basic
reproduction rate is given by R0 = max (δi), i = 1, 2, so that R0 = λA/ (d (n+ β)).

E0 is always physical, but E1,2 are physical if they are real and positive. E1,2

are real if (1−R1

R1

)2

+ b2
(R0 − 1

R0

)
≥ 0,

or equivalently

R0 ≥
b2R2

1

R2
1(1 + b2)− 2R1 + 1

= F (R1),

where b = 2
√
n/(Ak). Note that F → b2/(1 + b2) as R1 → ∞. Table 3.1 shows

when E1, E2 are positive from the expression for I∗1 and I∗2 , i.e. equations (3.15)
and (3.16).

R1 < 1 R1 = 1 R1 > 1
R0 > 1 E1 > 0, E2 < 0 E1 > 0, E2 < 0 E1 > 0, E2 < 0
R0 = 1 E1 = 0, E2 < 0 E1 > 0, E2 = 0
R0 < 1 E1 < 0, E2 < 0 E1 > 0, E2 > 0

Table 3.1: The signs of E1 and E2 depending on the expressions for I∗1 and I∗2 .

Figure 3.9 summarises the physical states, i.e. real and positive equilibrium
points for the system, where the blue curve denotes R0 = F (R1). E1 and E2

above the blue curve are real-valued equilibrium points, but E1 and E2 below the
blue curve have non-zero imaginary components and so are not physically realistic
equilibrium points. So E1 and E2 may exist only above the blue curve.
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Figure 3.9: Diagram showing physical states of the system (3.10) as a function of
R0 and R1.

3.2.4 Stability

As discussed in Chapter 2, the local asymptotic stability analysis of the equilibrium
points can be investigated by using the Jacobian matrix of the system. From (3.10)
the Jacobian is

J(S∗, I∗) =

 −d− λI∗ −λS∗

λI∗ λS∗ − n− β

(1 + kI∗)2

 .
From the equilibrium form of the second equation in (3.10), we have
λS∗ − n = β/(1 + kI∗) , so that

J(S∗, I∗) =

 −d− λI∗ −λS∗

λI∗
kβI∗

(1 + kI∗)2

 .
As mentioned in Chapter 2, an equilibrium point is asymptotically stable if

the eigenvalues of the Jacobian, θi, satisfy |arg (θi)| > απ/2, i = 1, 2. For E0, the
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Jacobian matrix J(E0) = J(A/d, 0) is

J(E0) =

[
−d −λA

d
0 (β + n)(R0 − 1)

]
,

for which the eigenvalues are real, θ01 = −d < 0 and θ02 = (n+ β)(R0− 1). Hence
if R0 < 1 the disease free equilibrium E0 is asymptotically stable, while if R0 > 1
the disease free equilibrium E0 is unstable. Since the eigenvalues of the Jacobian
of the disease free equilibrium E0 are always real, then arg (θ0i) = 0 or π and its
stability will be unaffected by the fractional derivative order.

In contrast to the disease free equilibrium E0, the stability of the endemic
equilibrium points E1 and E2 can be affected by the fractional derivative order.
The characteristic equation of J(Ei) is

θ2 + fiθ + gi = 0, (3.20)

where

fi = d+ λI∗i −
kβI∗i

(1 + kI∗i )2
, (3.21)

gi =
λ2A

d+ λI∗i
I∗i

(
1− kβ(d+ λI∗i )2

λ2A(1 + kI∗i )2

)
. (3.22)

The stability condition of the endemic equilibrium points Ei, i = 1, 2, therefore
depends on fi and gi.

Using the Routh-Hurwitz criterion and Lemma 2.5.1 mentioned in Chapter 2,
we find that

1. If fi > 0 and gi > 0, then (3.20) has no changes of sign of the coefficients and
so there are two roots with negative real parts, and the equilibrium point is
asymptotically stable for all α ∈ (0, 1].

2. If fi > 0 and gi < 0, and so gi < f 2
i /4, then (3.20) has real roots. Since there

is one change of sign of the coefficients of (3.20), there is one positive real
root, and the equilibrium point is unstable for all α ∈ (0, 1].

3. If fi < 0 and 0 < gi < f 2
i /4, then (3.20) has real roots, and since there are

two changes of sign of the coefficients of (3.20), so there are either two or
zero positive real roots. Since the roots are real the fractional order will not
change the stability.
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4. If fi < 0 and gi > f 2
i /4, then (3.20) has two complex conjugate roots with

real part −fi/2, which is positive since fi < 0. Then the condition of stability
of the fractional system is |arg(θij)| = cos−1(−fi/(2

√
gi)) > απ/2, j = 1, 2,

α ∈ (0, 1], and the maximum value of α, for which stability is ensured, occurs
at

α∗ =
2

π
cos−1

( −fi
2
√
gi

)
. (3.23)

Here we will rewrite fi and gi as only functions of R0, R1, b, d, n. Using
equations (3.15) - (3.18), fi and gi can be rewritten as

fi = d+
dyz

4nR1

−
2z

(
y

2R1

− nR0

)
b2R0

(
2z

b2
+ 1

)2 , (3.24)

gi =
d2y2z

2R1(dyz + 4dnR1)
− b2

R0(2z + b2)2

(
2z

(
y

2R1

− nR0

)(
dyz

4nR1

+ d

))
,

(3.25)

where

y =
4n

b2

(
R0 +

√
R2

0 − b2R2
1R0

)
, (3.26)

z =
R1 − 1

R1

+

√(
R1 − 1

R1

)2

+ b2

(
R0 − 1

R0

)
. (3.27)

We can summarise all these stability results in Figure 3.10, where we have taken
parameters from Case 1 in Section 3.2.5, i.e. A = 76.5, d = 0.5, n = 7.5, and
k = 0.5. Using equation (3.19) we have b = 0.8856. The green area indicates the
area in which fi > 0 and gi > 0 together, and the cyan area indicates the area
where fi < 0 and gi > f 2

i /4 together.
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Figure 3.10: Diagram showing stability regions of equilibrium points for Case 1 in
the numerical simulation. The green area shows the area that satisfies fi > 0 and
gi > 0 together, so that E1 is stable, the cyan area shows the area that satisfies
fi < 0 and gi > f 2

i /4 together, so that E1 is stable if α < 2/π cos−1(−fi/(2
√
gi)).

E0 is unstable in the area R0 > 1. The red circle in the cyan area indicates the
stable equilibrium point E1 in this case.

Similarly, for Figure 3.11, where we have taken parameters from Case 2 in Sec-
tion 3.2.5, i.e. A = 3, d = 0.01, n = 0.08, and k = 0.8. Using equation (3.19) we
have b = 0.3651. The green area indicates the area in which fi > 0 and gi > 0
together, and the cyan area indicates the area where fi < 0 and gi > f 2

i /4 together.
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Figure 3.11: Diagram showing stability regions of equilibrium points for Case 2
in the numerical simulation. The green area shows the area that satisfies fi > 0
and gi > 0 together, so that E1 or E2 are stable, the cyan area shows the area
that satisfies fi < 0 and gi > f 2

i /4 together, so that E1 or E2 are stable if α <
2/π cos−1(−fi/(2

√
gi)). E0 is stable in the area R0 ≤ 1. The red circle in the cyan

area indicates the particular stable equilibrium point E1 for the parameters used
in this case.

In the integer system it was previously reported that, when both endemic equi-
libria exist, i.e. when R0 < 1 , R1 > 1, and ∆ > 0, either one of the two endemic
equilibria is asymptotically stable and the other endemic equilibrium is unstable
or both of them are unstable [180]. Therefore, in the integer system it is not
possible to have both endemic equilibria stable for the same parameter values.
However, due to the stabilising effects of reducing the fractional derivative order
α, it is possible for the system to exhibit two stable endemic equilibria. Having
two stable endemic equilibria is significant for the possible control of the spread
of a disease using hysteresis behaviour of a bistable system. On the other hand,
if the disease-free equilibrium is the unique stable equilibrium of the system, then
the system will converge to the stable disease-free equilibrium from any starting
initial condition [128]. In a bistable system the choice between two endemic equi-
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libria will depend on the initial state. Since the initial state could be manipulated
(by harvesting, culling and control of the disease) it will be possible to determine
which stable state the system approaches in the long-term [157].

3.2.5 Numerical Simulation

In this section we numerically solve the fractional differential equations (3.10) us-
ing the Adams-Bashforth-Moulton method described in Chapter 2. We consider
two cases:

Case 1: E0 is unstable and E1 is unstable for integer order derivatives but can
be stabilised by reducing the fractional derivative order, but E2 does not exist.

Case 2: E0 is stable and both E1 and E2 exist and are unstable in the integer
order system. However, reducing the fractional order leads to E1 becoming stable.
In this case we therefore have the possibility of two stable equilibria, one disease
free and one endemic.

For Case 1 we have chosen parameters A = 76.5, d = 0.5, λ = 0.5, n = 7.5,
β = 20 and k = 0.5 that satisfy the conditions R0 = 2.78 > 1, R1 = 1.23 > 1,
f1 = −1.37 < 0, g1 = 19.6 > 0, g1 > f 2

1 /4. The positive equilibrium points are
E0 = (153, 0) and E1 = (27, 4.667), and the second endemic equilibrium point
does not exist because it is negative E2 = (−85,−2.8). The eigenvalues of J(E0)
are θ01 = 49 and θ02 = −0.5, so E0 is unstable, and the eigenvalues of J(E1) are
θ11 = 0.68 + 4.4i and θ12 = 0.68 − 4.4i, so, for an integer system E1 is unstable.
However, as described in the previous section, E1 can be stabilised by reducing
the fractional order to below a critical value α∗. For these parameters we found
that α∗ = 0.9. Figures 3.12 and 3.13 show the numerical solutions for S(t) and
I(t) for α = 0.99, α = 0.85 and α = 0.75, with the initial conditions S(0) = 40,
I(0) = 1. From these figures we see that while for that system (3.8) considered by
Zhonghua and Yaohong [180], E1 is unstable, the fractional system (3.10) is stable
for α = 0.85 and 0.75. When α is increased above α∗, the equilibrium point loses
its stability through a Hopf-like bifurcation and what appears to be a limit cycle
occurs in the neighborhood of the equilibrium point.
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Figure 3.12: Numerical solutions of S(t) and I(t) for the system (3.10). (a) For
α = 0.99 E1 is unstable and the system converges to a limit cycle, (b) when
α = 0.85 and (c) α = 0.75 the system converges to E1 = (27, 4.667) .
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Figure 3.13: Phase portraits corresponding to the solutions shown in Figure 3.12.
(a) When α = 0.99 E1 is unstable and the system converges to limit cycle, (b)
when α = 0.85 and (c) α = 0.75 the system converges to E1 = (27, 4.667).

In Case 2 we have chosen parameters A = 3, d = 0.01, λ = 0.001, n = 0.08,
β = 0.6 and k = 0.8 which satisfies the conditions R0 = 0.44 < 1, R1 = 1.818 > 1,
f1 = −0.03 < 0, g1 = 0.0005 > 0, g1 > f 2

1 /4. The positive equilibrium points are
then E0 = (300, 0), E1 = (137, 11.9) and E2 = (200, 5). The eigenvalues of J(E0)
are θ01 = −0.38 and θ02 = −0.01, so E0 is stable. The eigenvalues of J(E2) are
θ21 = 0.09 and θ22 = −0.005, so E2 is unstable, and the eigenvalues of J(E1) are
θ11 = 0.015 + 0.02i and θ12 = 0.015 − 0.02i. Therefore, although in the integer
system E1 will be unstable, in the fractional system this equilibrium point can be
stabilised by reducing α. The red circle in Figure 3.11 indicates the stable equi-
librium point E1 in this case. For these parameters we find the critical value of
the fractional order, α∗ = 0.53. Figures 3.14 and 3.15 illustrate the behaviour of
the system (3.10) with two stable equilibrium points. Figure 3.14 shows that E1

is stable for α < α∗ but, importantly, it also shows that for the same initial condi-
tions, as α decreases the stable equilibrium point that the system will approach at
long time can change. For α = 0.6 the system approaches E0 while for α = 0.4 the
system approaches E1. In order to investigate this effect further we will analyse
the system response to variations of the initial values measuring the final state
at t = tend = 120000. We mark the initial values according to whether the final
state is closest to E0 or E1. Figures 3.16 and 3.17 highlight our findings; the blue
colour indicates that a system with this initial state is eventually closest to E0 and
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a yellow colour is closest to E1. These figures make it possible to illustrate how
modifying the fractional derivative order may affect the effective domain of attrac-
tion of the equilibrium points. We use the term ‘effective domain of stability’ since
we measure proximity to the equilibrium points at t = tend. The actual stability
region, i.e. the initial states that leads to convergence to an equilibrium point as
t → ∞ will not depend on α. However, in a real system the state will need to
be measured at particular times and will never reach a t → ∞ state. As seen in
Figures 3.16 and 3.17 the transient ‘effective’ domain of attraction are dependent
on α. Figures 3.16 and 3.17 indicate that if the order is lower than the critical
value the system shifts between the two states at t = tend. If the order goes above
the critical value, the equilibrium E1 becomes unstable and thus the yellow region
is expected to collapse. However, since the regions are labelled according to the
state at t = tend and because of transient oscillating movement around E1, the
system is maintained close to E1 for a range of initial conditions.

Figure 3.14: Numerical solutions of S(t) and I(t) for the system (3.10). (a) For
α = 0.6 the system converges to E0 = (300, 0), (b) when α = 0.5 and (c) α = 0.4
the system converges to E1 = (137, 11.9).
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Figure 3.15: Phase portraits corresponding to the solutions shown in Figure 3.14.
(a) When α = 0.6 the system converges to E0 = (300, 0), (b) when α = 0.4 the
system converges to E1 = (137, 11.9).
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Figure 3.16: Effective domain of attraction for different values of α. If the initial
states S0, I0 are chosen from the blue region the system remains relatively close
to E0 at t = tend. For (a) to (d), E1 is unstable, but for (e) and (f), E1 is stable.
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Figure 3.17: Effective domain of attraction for different values of α. For (g) to (l),
E0 and E1 are stable, so if the initial states S0, I0 are chosen from the blue region
the system remains relatively close to E0. For initial states within the yellow region
the system remains relatively close to E1, at t = tend.
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3.3 Conclusion

In this chapter, we have considered two fractional order models. The first model is
the tumor-immune system prey-predator model. We have obtained the conditions
of the existence and studied stability conditions for the equilibrium points. We
have also illustrated the effect of changing α on the stability and Hopf-bifurcation
using a numerical simulation. Finally, we have investigated the dependency of α∗

on all the parameters in the system (3.4). In the second model, relevant conditions
of stability and bifurcation are laid down for the SIR system under consideration.
Importantly, it has been shown how the variation of the fractional order could
generate a monostable to bistable transition. Particular interest was paid to the
model and parameters in [180]. However, it should be noted that these main ef-
fects, both on stability and on domains of attraction, emanating from the variation
of the fractional order, would occur for any analogous system that has more than
one stable state. In particular, Figure 3.16 and Figure 3.17 provide key informa-
tion on the significant link between the values of the fractional order, compared
to the critical value α∗, and the resulting domain of attraction. Within a concrete
ecological framework, the value of α which models the memory characteristics of
species may be fixed, or it may vary (i.e. with age). Figure 3.16 and Figure 3.17,
and plots such as Figure 3.15, demonstrate that the long-term evolution of the
system may depend significantly on α, and may therefore be unpredictable.
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Chapter 4

Stability in an Incommensurate
Fractional-Order Model

4.1 Introduction

Over the last two decades, many researchers have been concerned with the study
of commensurate order systems, where the fractional orders of all time derivatives
are the same, as compared with incommensurate orders. Stability and stabilisation
issues were particularly addressed and most of the results were obtained based on
the Matignon criterion [110]. This theorem is the starting point for many results
in this field of study, for instance, in the work of Momani and Hadid [115], and
Matignon and Prieur [111].

Very few studies have investigated stability issues for incommensurate models.
One of the first attempts to investigate the stability of incommensurate fractional
systems was conducted by Bonnet and Partington in [26] which included consid-
eration of time delays. The authors were concerned with BIBO (Bounded-Input
Bounded-Output) stability in the general case and managed to establish links
between stability conditions and system pole locations. Later, Deng et al. [45]
extended the study for systems with numerous time delays. Stability conditions
were proved and the results were confirmed through illustrative examples. The
case of distributed delay systems was examined in [153], where, after considering
the Cauchy problem for a linear system, the authors proved the existence and
uniqueness of solutions. Both Caputo and Riemann-Liouville cases of fractional
derivatives have been considered when investigating the stability of the base solu-
tion of such systems.

BIBO stability issues were also investigated in the case of fractional systems
with incommensurate orders by Jiao and Chen [83] who considered a fractional
system with double incommensurate orders and, by using Laplace transforms,
proposed sufficient and necessary conditions to ensure the stability of such sys-
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tems and then improved their results by proposing a stability testing algorithm.
Sabatier et al. [133] also conducted BIBO stability analysis and applied Cauchy’s
argument principle to establish a graphical test allowing the evaluation of incom-
mensurate system stability. Despite the accuracy of the test in several examples,
it is challenging to implement such complicated procedures. Petras [124] has also
reported further findings about stability issues of incommensurate systems.

Several works have been interested in considering chaotic behaviour in incom-
mensurate fractional order systems. For instance, Tavazoei and Haeri [144] used
basic stability results to propose a necessary condition under which incommensu-
rate order systems could generate scroll chaotic attractors. Additional numerical
evaluations were performed to improve the reliability of the analytical method
in detecting chaotic behaviour. The control and the stabilisation of such chaotic
systems remains one of the major challenges when studying chaotic dynamics of
such systems. Zhang and Yang [132] tried to address this challenge by proposing
a systematic model capable of stabilising incommensurate fractional order chaotic
systems. The method was implemented on the basis of the Lyapunov stability
criterion and a substitution method, using only one state variable. It should be
noted that the simplicity of this method and its usefulness for both commensurate
and incommensurate systems means it is widely applicable.

Chaotic synchronization of fractional dynamics has attracted considerable at-
tention in recent times. An interesting scheme was introduced in [109], with the
aim of estimating state variables for incommensurate fractional order systems. Al-
though the authors applied the methodology to incommensurate chaotic models,
the proposed scheme may apply to a wide class of systems. Similarly, Chen et
al. [35] proposed a second order sliding mode control (SOSM) to allow chaos syn-
chronization of an incommensurate fractional order system, taking into account
uncertainty and the presence of external disturbances. The ability of this second
order algorithm to cancel chattering effects as well as its asymptotic stability was
proved using the Lyapunov theorem.

In this chapter we will generalise the commensurate fractional order model of
virus propagation in [52] to become an incommensurate model. We will find ap-
proximate analytical solutions for the eigenvalues of the characteristic equation of
this model and compare to the numerical results.

4.2 Model Formulation

Following [151, 180], the mathematical model for virus propagation in a situation
where treatment can assist recovery of the infected population can be written as
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a set of three coupled nonlinear ordinary differential equations as follows:

dS

dt
= A− µS − bSI + ωR,

dI

dt
= bSI − (µ+ g + δ)I − εI

1 + qI
, (4.1)

dR

dt
= gI +

εI

1 + qI
− (µ+ ω)R,

where S, I and R denote the numbers of the susceptible, infected and recovered
individuals at time t, respectively. In the equation for the evolution of the sus-
ceptible population, the parameter A denotes the recruitment or birth rate of the
population, µ is the natural death rate of the population, bSI is the bilinear trans-
mission term between susceptible and infected populations, b being the average
number of contacts per infected person per unit time, and due to the loss of im-
munity, at any time the recovered population becomes susceptible with constant
probability ω. Additional parameters in the evolution equation for the infected
population are g, the natural recovery rate of the infected individuals, δ the death
due to infection, and εI/(1 + qI) models the treatment of the infected individuals,
where ε is the treatment rate when the number of infected is low, and q measures
the extent of the infected being delayed for treatment and ε/q is the maximal
treatment resources supplied per unit time. All the parameters A, µ, b, g, δ, ω,
ε and q are positive and the Figure 4.1 shows a pictorial representation of the
process modeled by the system (4.1).

62



Figure 4.1: Schematic diagram of the system (4.1).

El-Shahed and Alissa [52] investigated the equivalent commensurate fractional
system of differential equations:

Dα
t S = A− µS − bSI + ωR,

Dα
t I = bSI − (µ+ g + δ)I − εI

1 + qI
, (4.2)

Dα
t R = gI +

εI

1 + qI
− (µ+ ω)R,

where Dα
t is the Caputo fractional derivative defined in Definition (2.2.4). They

studied the stability of equilibrium points and proved that a small change in the
fractional order, α, may affect the stability. The trajectories converge to the equi-
librium point when α < α∗ whereas when α is increased above α∗ the equilibrium
point loses its stability.

Here we describe the incommensurate system by the following set of fractional
order differential equations:

Dα
t S = A− µS − bSI + ωR,

Dβ
t I = bSI − (µ+ g + δ)I − εI

1 + qI
, (4.3)

Dγ
tR = gI +

εI

1 + qI
− (µ+ ω)R,
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where α, β and γ are the fractional orders of the Caputo time derivatives related to
the susceptible, infected and recovered populations. As discussed in the next few
sections we consider the equilibrium points of the system (4.3) and the conditions
of the existence and stability of these points.

4.3 Equilibrium Points

The equilibrium points of the system (4.3) are the same equilibrium points of the
system (4.1) that have already been written in [52]. Setting derivatives to zero, we
find three equilibrium points, namely, a disease free equilibrium E0(A/µ, 0, 0), with
no infected or recovered individuals, and two endemic equilibria E1(S∗1 , I

∗
1 , R

∗
1) and

E2(S∗2 , I
∗
2 , R

∗
2), where

S∗j =
Ψ

b
+

ε

b(1 + qI∗j )
,

R∗j =
I∗j
θ

(
g +

ε

1 + qI∗j

)
,

where j = 1, 2, Ψ = µ+ g + δ, θ = µ+ ω, and I∗j satisfy the following equation:

I∗2 + c1(1−R1)I∗ + c0(1−R0) = 0, (4.4)

where

c0 =
µθ(Ψ + ε)

qb(µΨ + ωθ)
,

c1 =
µb(Ψ + ε) + µbω(µ+ δ) + qµθΨ

qb(µΨ + ωθ)
,

R0 =
bA

µ (Ψ + ε)
,

R1 =
qbθA

µb(Ψ + ε) + µbω(µ+ δ) + qµθΨ
.

Here R0 is the basic reproduction number and the solutions for the equation (4.4)
are

I∗1 =
c1(R1 − 1) +

√
∆

2
, (4.5)

I∗2 =
c1(R1 − 1)−

√
∆

2
, (4.6)

where

∆ = c2
1(1−R1)2 − 4c0(1−R0). (4.7)
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These solutions have two special cases: if R0 = 1, then ∆ > 0, I∗1 = 0, I∗2 =
c1(R1 − 1), then there can be only one endemic equilibrium I∗2 ; if ∆ = 0, then
I∗1 = I∗2 = c1(R1 − 1)/2, so there can be only one endemic equilibrium, I∗1 = I∗2 .
All equilibria will only exist in the physical world if S > 0, I > 0 and R > 0. The
equilibrium point E0 is physical since A/µ > 0, and the equilibria E1 and E2 exist
if the solutions (4.5) and (4.6) are not negative, which depends on the signs of R0

and R1. By considering the values of R0 and R1 we see that

1. A disease free equilibrium point E0 always exists.

2. If R0 > 1, there exists a unique endemic equilibrium point E1(S∗1 , I
∗
1 , R

∗
1).

3. IfR0 = 1, R1 > 1, there exists a unique endemic equilibriumE2 = (S∗2 , I
∗
2 , R

∗
1)

and a disease-free equilibrium E1 = (S∗1 , 0, R
∗
1).

4. If R0 ≤ 1, R1 ≤ 1, no endemic equilibrium exists.

5. If R0 < 1, R1 > 1, and 4 > 0, there exist two endemic equilibria
E1 = (S∗1 , I

∗
1 , R

∗
1) and E2 = (S∗2 , I

∗
2 , R

∗
2).

6. If R0 < 1, R1 > 1, and 4 < 0, no endemic equilibrium exists.

4.4 Stability of the Commensurate System

The local asymptotic stability of the commensurate system (4.2) around E0 and E1

has been studied in [52] and we summarise these results here. The local asymptotic
stability analysis of the equilibrium points is investigated in the standard way by
using the Jacobian matrix

J =


−µ− bI −bS ω

bI bS −Ψ− ε

(1 + qI)2
0

0 g +
ε

(1 + qI)2
−(µ+ ω)

 . (4.8)

By finding the eigenvalues λi, i = 1, 2, 3 of the Jacobian matrices J(E0), J(E1) and
J(E2) and using the condition of stability for fractional systems, |arg λi| > απ/2,
it was found that

1. If R0 < 1 the disease free equilibrium E0 is asymptotically stable, while if
R0 > 1 the disease free equilibrium E0 is unstable.

2. If R0 = 1, R1 ≥ 1 the disease free equilibrium E0 is asymptotically stable.

3. E1 and E2 can be locally asymptotically stable if the roots of the character-
istic equation of J(E1) and J(E2) satisfy |arg λi| > απ/2, i = 1, 2, 3.
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In summary, for the commensurate system (4.2),

1. If R0 > 1, then E0 exists but is unstable, and a unique endemic equilibrium
point E1 exists and could be stable or unstable, depending on α.

2. If R0 = 1, R1 ≥ 1 the disease free equilibrium E0 exists and is stable, and a
unique endemic equilibrium point E1 exists and could be stable or unstable,
depending on α.

3. If R0 ≤ 1, R1 ≤ 1, then E0 exists but is unstable, and no endemic equilibrium
exists.

4. If R0 < 1, R1 > 1, and 4 > 0, then E0 exists and is stable, and there
exist two endemic equilibria E1 and E2 which could be stable or unstable,
depending on α.

5. If R0 < 1, R1 > 1, and 4 < 0, then E0 exists and is stable, and no endemic
equilibrium exists.

This behaviour is summarised in Figure 4.2.

Figure 4.2: Summary plot of the existence and stability of states in the commen-
surate system.

4.5 Stability of the Incommensurate System

The local asymptotic stability of the incommensurate system (4.3) around the
equilibrium points can be described using Lemma 2.5.2 and in this section we will
find the analytical solution for the characteristic equation of the incommensurate
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system for particular restrictions on α, β and γ. Specifically we consider the situ-
ation when α, β and γ are close to being equal.

The characteristic equation for the incommensurate system is∣∣∣∣∣∣
J11 − λα J12 J13

J21 J22 − λβ J23

J31 J32 J33 − λγ

∣∣∣∣∣∣ = 0,

or equivalently,

(J11 − λα)(J22 − λβ)(J33 − λγ)− J23J32(J11 − λα)− J13J31(J22 − λβ)

−J12J21(J33 − λγ) + J12J23J31 + J13J21J32 = 0, (4.9)

where Jij are the elements of the Jacobian matrix (4.8). For the commensurate
system we will assume α, β and γ are a rational number, so α = β = γ = n/p and

by setting Λ = λ
1
p , we obtain

(J11 − Λn)(J22 − Λn)(J33 − Λn)− J23J32(J11 − Λn)− J13J31(J22 − Λn)

−J12J21(J33 − Λn) + J12J23J31 + J13J21J32 = 0. (4.10)

Letting ∆ = Λn, we then have a cubic equation for ∆. The solution for the
eigenvalues of the commensurate system, which we denote by ∆∗, are obtained
from

∆∗3 − (J22 + J11 + J33)∆∗2 + (J11J22 + J33J22 + J33J11−J23J32 − J13J31 − J12J21)∆∗

−J11J22J33 + J23J32J11 + J13J31J22 + J12J21J33 − J12J23J31 − J13J21J32 = 0. (4.11)

We will now consider two cases, for which the system is nearly commensurate.
Specifically we consider a case where the fractional orders of the infected and re-
covered populations are equal and only the susceptible fractional order is different.
For this case we therefore set α = n/p, β = γ = m/p. In the second case we con-
sider all fractional orders to be different but related by α−β = γ−α so that α, β
and γ are in a geometric sequence. To simplify the analysis we also assume that
α, β and γ are almost equal. In both cases we set p to be p = 1/(β − α).

In the first case we describe above we therefore have α = n/p, β = γ = m/p,

with m = n+ 1, then equation (4.9), with Λ = λ
1
p , is

(J11 − Λn)(J22 − Λn+1)(J33 − Λn+1)− J23J32(J11 − Λn)− J13J31(J22 − Λn+1)

−J12J21(J33 − Λn+1) + J12J23J31 + J13J21J32 = 0. (4.12)

As in the commensurate system we set ∆ = Λn so that Λn+1 = ∆1+ 1
n , and set

ε = 1/n, we obtain

(J11 −∆)(J22 −∆1+ε)(J33 −∆1+ε)− J23J32(J11 −∆)− J13J31(J22 −∆1+ε)

−J12J21(J33 −∆1+ε) + J12J23J31 + J13J21J32 = 0. (4.13)
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If we assume that ε = 1/n� 1, i.e. small, so that the fractional orders are almost
equal, then we can find solutions ∆ by considering a perturbation [164] to the
commensurate system,

∆ = ∆∗ + ε∆̄, (4.14)

where ∆∗ is a solution of eq.(4.11). Substituting (4.14) into (4.13), we have(
J11 −

(
∆∗ + ε∆̄

))(
J22 −

(
∆∗ + ε∆̄

)1+ε
)(

J33 −
(
∆∗ + ε∆̄

)1+ε
)

−J23J32

(
J11 −

(
∆∗ + ε∆̄

))
− I13J31

(
J22 −

(
∆∗ + ε∆̄

)1+ε
)

−J12J21

(
J33 −

(
∆∗ + ε∆̄

)1+ε
)

+ J12J23J31 + J13J21J32 = 0. (4.15)

Taking Taylor expansion for
(
∆∗ + ε∆̄

)1+ε
about ε = 0, which is(

∆∗ + ε∆̄
)1+ε

= ∆∗ +
(
∆̄ + ∆∗ ln ∆∗

)
ε+O(ε2), (4.16)

therefore, (4.15) can be written as(
J11 −

(
∆∗ + ε∆̄

))(
J22 −

(
∆∗ +

(
∆̄ + ∆∗ ln ∆∗

)
ε
))

(
J33 −

(
∆∗ +

(
∆̄ + ∆∗ ln ∆∗

)
ε
))
− J23J32

(
J11 −

(
∆∗ + ε∆̄

))
−J13J31

(
J22 −

(
∆∗ +

(
∆̄ + ∆∗ ln ∆∗

)
ε
))
− J12J21

(
J33 −

(
∆∗ +

(
∆̄ + ∆∗ ln ∆∗

)
ε
))

+J12J23J31 + J13J21J32 +O(ε2) = 0.

Equating terms of order O(1) leads to the equation for ∆∗ whereas terms of order
O(ε) leads to a solution for the first order perturbation of ∆∗ due to the commen-
surate fractional orders,

∆̄ =
ln ∆∗

(
−2∆∗3 + ∆∗2 (2J11 + J22 + J33) + ∆∗ (−J11J22 − J11J33 + J13J31 + J12J21)

)
3∆∗2 − 2∆∗ (J11 + J22 + J33) + J11J22 + J22J33 + J11J33 − J23J32 − J13J31 − J12J21

.

(4.17)

In the second case we consider we let α = n/p, β = m/p, γ = r/p, where m = n+1

and r = n− 1. As in the previous case we have Λ = λ
1
p , ∆ = Λn and set ε = 1/n

to obtain

(J11 −∆)
(
J22 −∆1+ε

) (
J33 −∆1−ε)− J23J32 (J11 −∆)− J13J31

(
J22 −∆1+ε

)
−J12J21

(
J33 −∆1−ε)+ J12J23J31 + J13J21J32 = 0. (4.18)

Again using ∆ = ∆∗ + ε∆̄, and taking Taylor expansion for
(
∆∗ + ε∆̄

)1+ε
and(

∆∗ + ε∆̄
)1−ε

about ε = 0, we are able to find the first order perturbation to ∆∗
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to be

∆̄ =
ln ∆∗

(
∆∗2 (J33 − J22) + ∆∗ (J11J22 − J11J33 + J13J31 − J12J21)

)
3∆∗2 − 2∆∗ (J11 + J22 + J33) + J11J22 + J22J33 + J11J33 − J23J32 − J13J31 − J12J21

.

(4.19)

Since ∆ = Λn = λ
n
p = λα and ∆∗ = (Λ∗)n = (λ∗)

n
p = (λ∗)α, we have

λα = (λ∗)α + ε∆̄, (4.20)

where ∆̄ is given by (4.17) or (4.19) and where λ∗ is an eigenvalue solution of the
commensurate system.

4.6 Stability Boundary

In this section, we concentrate on our approximate analytic eigenvalue solution,
(4.20), and compare to the numerical solution of the original eigenvalue equation.
The eigenvalues of the commensurate system are found from the cubic equation
(4.11) and for the parameters we consider, there is one negative real eigenvalue
and two complex. We are interested in | arg (λα) | to study the stability of the
equilibrium point and therefore we need only consider one of the complex solutions,
(λ∗)α = a + ib, where a and b are related to the values of Jij where i, j = 1, 2, 3.
We can then write the solution for the eigenvalue of the incommensurate system
as

λα = (a+ ib) + ε (a1 + ib1) , (4.21)

where a1 and b1 are the real and imaginary parts for either (4.17) or (4.19) which
are related to the values of Jij. The condition for stability, | arg λ| > π/2, then
leads to

arg ((a+ εa1) + i (b+ εb1)) = tan−1 b+ εb1

a+ εa1

= tan−1

[
b

a
+

(
b1

a
− a1b

a2

)
ε+O(ε2)

]
.

By using the Taylor series expansion for tan−1, we have

arg ((a+ εa1) + i (b+ εb1)) = tan−1G1 +
G2

1 +G1
2 ε,

where G1 = b/a and G2 = (ab1 − a1b)/a
2. For the two cases that we consider,

ε = β/α−1. In the first case γ = β = n+1/p, and in the second case β = n+1/p,
γ = n − 1/p and γ = 2α − β. Therefore, the condition for the stability will then
be ∣∣∣∣tan−1G1 +

G2

1 +G1
2

(
β

α
− 1

)∣∣∣∣ > απ/2. (4.22)
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Equation (4.22) therefore gives us an approximation for the boundary β (α) of
the stability region in the αβ parameter plane, close to the critical order for the
commensurate system α∗.

β(α) = α (H1α +H2) , (4.23)

where

H1 =
π

2

(
1 +G2

1

G2

)
,

H2 = 1− 1 +G2
1

G2

tan−1G1.

With ∆̄ given by (4.17) or (4.19), we can get two approximate analytical solutions
β = β1(α) and β = β2(α) depending on the value of ∆̄ that is chosen.

In the next section we will determine the boundary of the stability region nu-
merically in order to compare with (4.23) for the two cases of ∆̄ given by (4.17)
or (4.19).

4.7 Numerical Solution

In this section, we will find the solution for the characteristic equation of the in-
commensurate system (4.9) numerically using Matlab and compare the stability
boundary for a particular equilibrium point to the approximate analytical solu-
tions (4.23).

El-Shahed and Alissa [52] studied the commensurate system (4.2), and chose
parameters A = 40, µ = 0.6, b = 0.4, q = 0.3, ε = 10, g = 5, δ = 0.2, and
ω = 0.2. For these parameters the equilibrium points are E0 = (66.7, 0, 0),
E1 = (28.5, 2.6, 34.6) and E3 = (−53.2,−4.6, 125.9), and the eigenvalues are
λ1,2 = 0.311137 ± 2.73893i and λ3 = −0.6. In [52] it was found that the sys-
tem (4.2) is asymptotically stable around E1 for all fractional derivative orders in
the interval (0, α∗) where α∗ can be determined from the system parameters to be
α∗ = 0.92799, and unstable for all fractional derivative orders that are greater than
α∗. For the same parameters as above, we will study the incommensurate system
(4.3) and investigate how the critical value α∗ changes as β and γ are allowed to
change.

Using the Matlab fsolve function and given the eigenvalue λ1 = 0.311137 +
2.73893i for the integer system (α = 1, β = 1, γ = 1) at E1 as an initial guess,
which is the only eigenvalue (together with its conjugate) that will be affected
by changes in fractional order, we will first vary the fractional orders individually

70



in order to observe their effects on λ1. Figure 4.3 illustrates particular α, β and
γ dependencies of the eigenvalue which in the integer system leads to instability.
In Figure 4.3 (a, b) we see that varying the value of α, and using fixed values
β = γ = 1, indicates the real part of the complex eigenvalue goes from positive
to negative as α decreases. Hence, for a value of α less than a critical value
α∗ = 0.92799, the system attains stability. Now considering equal integer orders
for both the susceptible and recovered species, α = γ = 1, we vary the fractional
order of the infected population between 0 < β < 1, see Figure 4.3 (c, d). Here we
see that the real part of the eigenvalue is always positive and so the system (4.3)
will never be stable around E1 for this case. The final case when the values of the
orders related to susceptible and infected populations are fixed to be α = β = 1,
and we vary γ, is shown in Figure 4.3 (e, f). As in the previous case, we see that
the real part of the eigenvalue is always positive so that the system (4.3) will never
be stable around E1 for any value of γ while α = β = 1.
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Figure 4.3: Numerical determination of one of the complex eigenvalues of the in-
commensurate system (4.3) at the equilibrium point E1: (a) Real and imaginary
parts of the complex eigenvalues as a function of α when β = γ = 1; (b) Corre-
sponding Argand diagram for (a); (c) Real and imaginary parts of the complex
eigenvalues as a function of β when α = γ = 1; (d) Corresponding Argand diagram
for (c); (e) Real and imaginary parts of the complex eigenvalues as a function of
γ when α = β = 1; (f) Corresponding Argand diagram for (e).
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Although we could numerically investigate the stability of the equilibrium point
E1 for the full range of fractional orders 0 < α, β, γ < 1, here we wish to consider
the accuracy of the two analytic approximations for the stability boundary β(α)
for the cases previously mentioned. In the first case we consider α 6= β = γ and
our analytic result (4.23) when ∆̄ is given by (4.17). The red line in Figure 4.4
indicates the approximate analytic solutions β1(α) in this case. The results of
varying both α and β = γ are shown, where the green region indicates instability
of the equilibrium point E1, i.e. there is an eigenvalue with positive real part. The
white region indicates stability of E1, i.e. there are no positive eigenvalues. The
blue line indicates the commensurate system α = β = γ.

Figure 4.4: Stability region depending on the values of fractional derivative orders.
The white region indicates stability around the equilibrium point E1. The green
region indicates instability around the equilibrium point E1. The line α = β = γ,
i.e. the case of the commensurate system, is shown in blue as well as the critical
value of α, i.e. the point α∗ in red, below which the commensurate system achieves
stability. The red line indicates the approximate analytical solution β1(α).

As found in [52], for the commensurate system (α = β = γ) the equilibrium
point E1 is unstable for α > α∗. However, the shape of the instability boundary
shown in Figure 4.4 indicates that even for α > α∗ it is possible for the incommen-
surate system to be stable. Figure 4.5 illustrates an example of this situation. In
Figure 4.5 we choose α = 0.93 > α∗, which leads to instability in the commensu-
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rate system, as seen in Figure 4.5 (b). However, by reducing β = γ below a critical
value (β3 as illustrated in Figure 4.5 (a)) the system can become stable about E1,
as seen in Figure 4.5 (c). Interestingly, the shape of the instability boundary in
Figure 4.4 means that if the fractional orders β, γ are reduced even further (past
β2 as indicated in Figure 4.5 (a)) then instability occurs again, as seen in 4.5 (d).

Figure 4.5: (a) Numerical determination of one of the complex conjugate eigen-
values associated with the incommensurate system (4.3) at equilibrium point E1.
The real part is shown as a red line and the imaginary part as a green line, while
α = 0.93 > α∗. The real part of the eigenvalue is negative for β2 < β < β3. (b)
For α = β = γ = 0.93, the system is unstable around the equilibrium point. (c)
For α = 0.93 and β = 0.5, the incommensurate system is asymptotically stable
around the equilibrium point. (d) For α = 0.93 and β = 0.3, the incommensurate
system is unstable around the equilibrium point.

In Figure 4.4 we have plotted the approximate analytical solution β = β1 (α)
in order to confirm the accuracy of the perturbation approach. As Figure 4.4
demonstrates β = β1 (α) closely approximates the numerically determined stabil-
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ity boundary, especially close to α = β = α∗, as expected. However, the form
of β = β1 (α) does not show the re-entrant instability behaviour for low values of
β = γ, as was demonstrated in Figure 4.5 (d). It may be that higher order terms
in the perturbation series would lead to similar behaviour but we leave this for
future investigations.

We now consider the second case discussed in Section 4.5, where we take into
account the variation of both α and γ = 2α − β and our analytic result (4.23)
when ∆̄ is given by (4.19). The red line in Figure 4.6 indicates the approximate
analytic solutions β2(α) in this case. As in Figure 4.4 the green region indicates
instability of the equilibrium point E1, i.e. there is an eigenvalue with positive real
part, and the white region indicates stability of E1.

Figure 4.6: Stability regions depending on the values of fractional derivative orders.
The white region indicates stability around the equilibrium point E1. The green
region indicates instability around the equilibrium point E1. The line α = β = γ,
i.e. the case of the commensurate system, is shown in blue as well as the critical
value of α, i.e. the point α∗ in red, below which the commensurate system achieves
stability. The red line indicates the approximate analytical solution β2(α).

The stability boundary in Figure 4.6 show a very similar shape to Figure 4.4
and so the same conclusion can be drawn. As before, the approximation solution
β = β2 (α) closely follows the numerical solution and confirms that β = β2 (α)
closely approximates the stability boundary, especially near α = β = γ = α∗, as
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expected.

4.8 Conclusion

In this chapter we have used perturbation theory to obtain approximate analyt-
ical solutions for the eigenvalues associated to the characteristic equation of the
incommensurate system. We have considered two special cases for the values of the
fractional orders, both close to the commensurate case, and used Matlab to obtain
numerical solutions in order to plot the full stability boundary and compare to the
analytic results. Through these studies we have developed a deeper understanding
of how altering the fractional order can have a stabilising or destabilising effect.
It is clear that given a system of three interacting species, we cannot immediately
recognize whether reducing fractional orders leads to a stable or unstable state.
We conclude by commenting that an incommensurate system would often be a
more accurate model of a system than a commensurate model since the inherent
memory effects can not be assumed to be the same for different species, or even
different sub-populations of a single species.
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Chapter 5

Travelling Waves

5.1 Introduction

Travelling waves have been widely studied since the first reaction-diffusion equa-
tions were introduced. Most of those models were concerned with the study of
the propagation of a pattern that evolves in time and space. The study of a
partial differential equation describing the evolution of such a pattern in a stable
environment, including the heat equation and Fisher-KPP (KPP for Kolmogorov-
Petrovsky-Piskunov) equation, was a key element to understanding more about
various mechanisms related to wave propagation. The heat equation, also known
as the diffusion equation, was established by Fourier to describe phenomena of
heat propagation and temperature evolution. Fourier then sought to determine
the value of the temperature, in a homogeneous environment, from a given initial
distribution of temperature in time and space. The Fisher-KPP equation, was in-
troduced in 1937 by the biologist Fisher [61] to describe the propagation of a new
advantageous gene in a population. The same year, mathematicians Kolmogorov,
Petrovski and Piscounov [95] were also interested in studying the speed of flames in
combustion patterns. This equation includes a source-saturation point, whereas in
the heat equation the dependent quantity propagates only by diffusion. Fisher’s
model was mainly concerned with a one-dimensional region, while Kolmogorov,
Petrovski and Piscounov proposed an equation in two spatial dimensions. The
first exact travelling wave solution was established by Ablowitz and Zeppetella
[3] in 1979 through the Painlev approach. In 1999, Brazhnik and Tyson [149] es-
tablished an explicit form of a travelling wave solution and managed to construct
other similar solutions approximately in two dimensions. Sanchez-Garduno [135]
sought to extend these preliminary results and establish more general results. In
1995, he considered a generalised reaction-diffusion equation and proved unique-
ness for the travelling wave solution. Numerical simulations were also conducted,
and sufficient conditions were found for the existence of front type solutions.

There are a huge number of phenomena in biology that show travelling waves,
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i.e. chemical concentration, mechanical deformation, electrical signal etc. Winfree
[165] includes a large number of examples of wave phenomena in biology, and Segel
[138] deals with many aspects of wave motion. Other general books on reaction-
diffusion equations, such as by Fife [58], Britton [27] and Grindrod [69], contain
many examples of travelling wave solutions. At present, many research papers are
concerned with travelling wave solutions of various PDEs. This interest has been
stimulated by the observation of waves in several fields: tumor growth, popula-
tion dynamics, ecology, epidemiology, biological invasions, as well as the spread of
flames, chemical waves, etc. They are also used to describe the interaction between
molecular diffusion, local growth and saturation. Thus, travelling waves remain
a common phenomenon in multiple branches of knowledge, and are considered as
solutions of PDEs that propagate with a constant speed, while maintaining their
shape in space.

Biology and ecology are key areas of many studies of wave propagation. In fact,
most of epizootic waves as well as cell invasion mechanisms and chemotaxis were
investigated using reaction-diffusion equations, mainly the Fisher-KPP. Many au-
thors have shown the existence of travelling wave solutions in such equations and
revealed more information concerning their properties such as wave speed, sta-
bility and asymptotic behaviour. Against this background, the interactions and
interchanges of information that describe prey-predator relationships have been
incorporated into coherent mathematical models (i.e. [62]). The development of
tumor cells was also the subject of many research papers (i.e. [103, 112]) and many
studies were conducted on chemotaxis systems (i.e. [106]).

In many cases of the spread of any biological quantity, diffusion plays a crucial
role. The standard diffusion equation in one space dimension is of the form

∂u

∂t
= D

∂2u

∂x2
, (5.1)

for a chemical of concentration u, and diffusion constant D. In contrast to simple
diffusion, when reaction kinetics and diffusion are coupled, travelling waves of
chemical concentration can exist. These travelling waves can affect a biochemical
change much faster than the diffusion processes governed by equation (5.1). The
general form of a reaction-diffusion equation, in a one-dimensional scalar case, is

∂u

∂t
= f(u) +D

∂2u

∂x2
, (5.2)

where f(u) represents the reaction kinetics. One classic case of equation (5.2) is

∂u

∂t
= ku(1− u) +D

∂2u

∂x2
, (5.3)

where k is a reaction rate. This equation was suggested by Fisher and is now
referred to as the Fisher’s equation.
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A travelling wave is a wave which travels without change of shape, and so if a
solution u(x, t) represents a travelling wave, and the speed of propagation of this
shape is a constant (denote by c), it will be of the form

u(x, t) = u(x− ct). (5.4)

If we set Z = x− ct we see that

∂u

∂t
= −c du

dZ
,

∂u

∂x
=
du

dZ
,

and so for the diffusion equation (5.1) we see that

D
d2u

dZ2
+ c

du

dZ
= 0⇒ u(Z) = A+Be(−cZ/D),

where A and B are integration constants. However, if u has to be bounded for all
Z, B must be zero, and u(Z) = A is not a wave solution. However, travelling wave
solutions can be found in equation (5.2), depending on the form of the term f(u).

In this chapter, we generalise the integer Fisher’s equation that was studied by
Fisher (1937) and prove that there are travelling wave solutions. In Section 5.3,
we generalise an integer SIR model with spatial heterogeneity for random motion
of rabid foxes that was studied by Murray [117]. In Section 5.4, we consider gener-
alised space-time fractional SIR models and apply the (G′/G)-expansion method
for finding travelling wave solutions using Jumarie’s modified Riemann-Liouville
derivative. A fractional transformation of coordinates has been utilised to convert
the fractional order PDEs to ODEs.

5.2 Travelling Wave Solutions for Fisher’s Equa-

tion

In the late 1930s, Kolmogorov, Petrovskii and Piskunov [95] were the first to in-
vestigate travelling wave solutions of a propagation model derived to describe gene
evolution. Well ahead of its time, their work is the founding article on travelling
wave theory in reaction-diffusion systems. Fisher [61] also introduced a model
for the frequency of a new advantageous recessive gene in a diploid population,
although this equation was first introduced by Fisher in [142]. He established that
this equation would have a solution in the form of a travelling wave with steady
speed. Kolmogorov, Petrovskii and Piskunov then verified the same result and ex-
tended their study to the long-term behaviour of the model. The integer Fisher’s
equation has the form,

∂u

∂t
= ku(1− u) +D

∂2u

∂x2
, (5.5)

79



where k and D are positive parameters.

Since the time of Fisher, this equation has been used and extended by a large
number of researchers. Here we highlight a few examples of these extensions but
many more are provided in the review by Feng [56]. In terms of modified forms
of Fisher’s equation, authors have studied the stochastically perturbed Fisher’s
equation (i.e. [39]), Fisher’s equation with cut-off parameter (i.e. [146]) where so-
lutions were found for every considered value of the cut-off, and one-sided Fisher’s
equation (i.e. [94]). Other authors considered non-local version of Fisher’s equa-
tion (i.e. [119, 167]), versions with time delay (i.e. [102, 182]) and other kinds of
modified Fisher’s equation (i.e. [139]). In terms of novel analytic methods, au-
thors considered the Lie symmetry method (i.e. [56]), deployment of commutative
ring theory (i.e. [57]) and the complex method (i.e. [171, 172]). Probabilistic ap-
proaches were also adopted to study travelling wave solutions of Fisher’s equation
(i.e.[73, 74]). In [40], a new modelling approach was studied, in which Fisher’s
equation was considered as a kinetic transport model. Other authors showed a
particular interest in investigating characteristics of travelling wave profiles (i.e.
[59, 60]).

Numerical approaches have been used to investigate travelling wave solutions
of Fisher’s equation. These works were based on a variety of computational ap-
proaches including finite difference and finite element methods. Establishing accu-
rate and efficient numerical representation of solutions was the key element of the
research. In [178], this problem was tackled using the discrete singular convolution
(DSC) algorithm as a unified feature for studying Fisher’s equation. In fact, the
resulting DSC algorithm is a crucial computationally feasible method to predict
the long-term behaviour of the travelling wave.

In the next section, we will consider the integer Fisher’s equation (5.5), repeat-
ing the classical analysis of the stability of travelling waves [117]. In section 5.2.2
we then consider a fractional form of Fisher’s equation, showing that a classical
solution of the integer equation can be transformed to a solution of the fractional
Fisher’s equation.

5.2.1 Travelling Wave Solutions for Integer Fisher’s Equa-
tion

In this section, we will consider the integer Fisher’s equation (5.5), which after
suitable non-dimensionalisation

t∗ = kt, x∗ = x
( k
D

) 1
2
, (5.6)

80



becomes
∂u

∂t
= u(1− u) +

∂2u

∂x2
. (5.7)

In the spatially homogeneous situation, the steady states are u = 0 and u = 1,
which suggests that we should look for solutions (5.7) for which 0 ≤ u ≤ 1.
Indeed negative values of u often have no physical meaning. Using the substitution
Z = x− ct, equation (5.7) becomes

u′′ + cu′ + u(1− u) = 0, (5.8)

where ′ denotes d/dZ.

A typical wave solution will be where u at one extreme, say as Z → −∞, is at
one steady state and as Z →∞ it is at the other. We therefore have an eigenvalue
problem to determine the value, or values, of c such that a nonnegative solution u
of equation (5.8) exists and which satisfies

lim
Z→∞

u(Z) = 0, lim
Z→−∞

u(Z) = 1. (5.9)

By studying equation (5.8) for u in the (u, v) phase plane where

u′ = v, v′ = −cv − u(1− u), (5.10)

we see that the stability of the two equilibrium points for (u, v), namely, (0, 0) and
(1, 0), is determined by the Jacobian, J, given by

J =


∂f

∂u

∂f

∂v

∂g

∂u

∂g

∂v

 =

(
0 1

−1 + 2u −c

)
. (5.11)

At the equilibrium point (0, 0) we find the eigenvalues of the Jacobian

det(J − λI) = det

(
−λ 1
−1 −c− λ

)
= λ2 + cλ+ 1 = 0, (5.12)

so that

λ± =
−c±

√
c2 − 4

2
. (5.13)

If c2 < 4, then the eigenvalues λ are complex and hence the point (0, 0) is a stable
spiral. However, travelling waves are not possible in the case of a stable spiral
since in this situation the quantity I would oscillate between positive and nega-
tive values. Since I must be non-negative to remain physical, this case does not
correspond to a physically realistic travelling wave. However, if c2 ≥ 4, then the
eigenvalues λ are both real and negative, so (0, 0) is a stable node and travelling
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wave solutions are possible.

At the equilibrium point (1, 0), the eigenvalues are derived from

det(J − λI) = det

(
−λ 1
1 −c− λ

)
= λ2 + cλ− 1 = 0, (5.14)

so that

λ± =
−c±

√
c2 + 4

2
, (5.15)

which are always real with one positive and one negative. The point (1, 0) is there-
fore a saddle point.

A travelling wave with the wave travelling from the region where u = 0 to the
region where u = 1 is therefore possible for c2 ≥ 4. However, it is only for a few
special cases of the equation and the initial conditions that an analytic form of the
solution is known. In the next section we consider one of these examples.

5.2.2 Travelling Wave Solutions for Space-Time Fractional
Fisher’s Equation

In this section we generalise the non-dimensionalised Fisher’s equation (5.7) by
the following space-time fractional differential equation,

∂αu

∂tα
= u(1− u) +

∂2βu

∂x2β
, (5.16)

where 0 < α, β ≤ 1, are the fractional orders of the Jumarie’s modified Riemann-
Liouville time and space derivatives defined in Definition (2.2.5) respectively. We
seek travelling wave solutions with the following transformation

Z =
xβ

Γ(β + 1)
− ctα

Γ(α + 1)
, (5.17)

with the particular initial condition u(x, 0) =
(

1 + ex
β/
√

6Γ(β+1)
)−2

. This initial

condition has been selected to allow a simple solution, but it is expected that a
travelling wave would also emerge for a general initial condition. Equation (5.16)
can then be written as

∂2u

∂Z2
+ c

∂u

∂Z
+ u(1− u) = 0, (5.18)

and from [5], the solution is

u(Z) =
1

(1 + eZ/
√

6)2
, (5.19)
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if c = 5/
√

6 ∼= 2.04. Therefore, the solution of equation (5.16) is

u(x, t) =

(
1 + e

1√
6

( xβ

Γ(β + 1)
−

ctα

Γ(α + 1)

))−2

. (5.20)

Figure 5.1(a) shows the solution u(Z), which is also equivalent to the initial condi-
tion u(x, 0) as a function of x. The transition from the solution u = 1 for Z → −∞
and u = 0 for Z → ∞ is clear. In Figure 5.1(b) we have plotted u(x, t) for t = 2
and for different values of α and β. If we set u = 1/2 to be the mid-point of the
travelling wave, where Z =

√
6 ln (

√
2− 1), then we can also consider the slope of

the wave front at that point. See Figure 5.1(c).

Figure 5.1: (a) The solution u(Z) of Fisher’s equation. (b) The solution u(x, t)
when t = 2 for different values of α and β. (c) The slope of u(x, t) at the point
Z =

√
6 ln (

√
2− 1) (the mid-point of the wave) for different values of α and β.

From Figure 5.1(b) we see that, for a fixed time t, the position of the center of
the travelling wave, i.e. the point where u = 1/2, Z =

√
6 ln (

√
2− 1), is dependent
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on both α and β. We can find the location of the center of the travelling wave by
setting Z =

√
6 ln (

√
2− 1) in (5.17) to obtain

x(t) =

(
Γ(β + 1)

(√
6 ln (

√
2− 1) +

ctα

Γ(α + 1)

)) 1

β
. (5.21)

We can also calculate the speed of the travelling wave through the derivative of
x(t)

v(t) =
dx

dt
=

1

β

((√
6 ln (

√
2− 1) +

ctα

Γ(α + 1)

)
Γ(β + 1)

) 1
β
−1(

cαtα−1

Γ(α + 1)
Γ(β + 1)

)
.

(5.22)

We plot x(t) as a function of time for different α and β in Figure 5.2 (a, c, e).
Figure 5.2 (b, d, f) shows the speeds v(t) of the situations in Figure 5.2 (a, c, e) .
In Figure 5.2(b) we see that for α = β, the speed of the travelling wave increases as
time increases and then tends to constant speed, and that speed increases as α = β
decreases. In Figure 5.2 (d, f) we see that, if α > β, the speed of the travelling
wave increases as time increases whereas for α < β, the speed of the travelling
wave decreases. This critical dependence on the sign of α− β is unexpected. The
fractional order α may be linked to a memory effect and β is often used to describe
multiscale inhomogeneity in space. That the difference α − β may determine if
the travelling wave accelerates or decelerates is interesting and would be worthy
of further investigation, both experimental and theoretical.
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Figure 5.2: (a), (c) and (e) are the locations x(t) of the travelling wave when
α = β, α > β, α < β respectively. (b), (d) and (f) are the speeds of the travelling
wave when α = β, α > β, α < β respectively.
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5.3 Travelling Waves Solutions for SIR Models

As discussed in Chapter 2, SIR models are used in epidemiology to predict the
behaviour of an infectious disease within a population. This type of model was
first introduced by Kermack and McKendrik [90] in the form of a reaction-diffusion
system with three compartments, susceptible individuals, S, infected individuals,
I, and recovered individuals, R. Each one of these variables refers to a specific part
of the total population and their size may fluctuate over time.

The dynamics of SIR models have been explored extensively and considerable
progress has been achieved to understand and predict the spread of diseases. In
terms of delay in travelling waves in SIR models, Wang and Wu [160] analysed the
general SIR model with a time delay to investigate existence and non-existence
of travelling wave solutions to show whether a disease can spread. Time delay
effects on the minimum wave speed was also considered in [99]. Minimum wave
speed in a diffusive non-local model was also a subject of studies done by Bo et
al. [24], where they considered a system of differential equations with non-local
delays and proved the existence of travelling wave solutions. More recently, Wu
and Zhou [166] considered the effect of non-local delayed transmission on diffusive
SIR models with a standard incidence rate. Many authors established the exis-
tence of travelling wave solutions and studied their asymptotic behaviour by using
Schauder’s fixed point theorem (i.e.[98, 159, 166, 168]).

In this section, we consider a relatively standard integer SIR model with spa-
tial heterogeneity, and first show that there are travelling wave solutions for this
model. We then generalise this integer SIR model to be a space-time fractional
SIR model and consider new solutions, and the effects of the fractional derivative
orders.

5.3.1 Travelling Wave Solutions for an Integer SIR Model

SIR model for the spread of rabies in foxes, which included a model of random
movement of infected foxes is given in [117],

∂S

∂t
= −rIS, (5.23)

∂I

∂t
= D

∂2I

∂x2
+ rIS − aI, (5.24)

∂R

∂t
= aI, (5.25)
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where it is assumed that infected foxes move in a one-dimensional spatial domain
x ∈ (−∞,∞). Applying the non-dimensionalisation,

I∗ =
I

S0

, S∗ =
S

S0

, x =

√
D

rS0

x, t∗ = rS0t, λ =
a

rS0

, (5.26)

Since the S and I equations do not involve R we may consider the solutions to
only the first two equations,

∂S

∂t
= −IS, (5.27)

∂I

∂t
=

∂2I

∂x2
+ I(S − λ). (5.28)

Then, we seek travelling wave solutions with

S(x, t) = S(Z), I(x, t) = I(Z), (5.29)

where Z = x− ct and c > 0 is the wave speed. Substituting into (5.27) and (5.28)
gives

cS ′ − IS = 0, (5.30)

cI ′ + I ′′ + I(S − λ) = 0. (5.31)

We now assume that S → 1, I → 0, as Z →∞ and S → 0, I → 0, as Z → −∞, so
that we move from a state with no infections (S, I) = (1, 0) to a state where, after
the whole population has become infected and then recovered, we have everyone
recovered so that (S, I) = (0, 0).
Linearising (5.31) about S = 1 and I = 0 we obtain

I ′′ + cI ′ + I(1− λ) = 0, (5.32)

and consider the stability of the (S, I) = (1, 0) state. Setting v = I ′ we see that
(5.32) is equivalent to the system v = I ′, v′ = −cv− I(1− λ), and the Jacobian is
then

J =

[
0 1

λ− 1 −c

]
.

The eigenvalues of the Jacobian are found to be

µ =
−c±

√
c2 − 4(1− λ)

2
,

so that if λ > 1, we have one positive real µ and one negative real µ so that the
state (S, I) = (1, 0) is unstable;
if λ < 1 and c < 2

√
1− λ, we have µ = −c/2 ± iM and hence the equilibrium

point is a stable spiral;
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if λ < 1 and c > 2
√

1− λ, we have µ = −c/2 ±M with M < c/2 and hence the
equilibrium point is a stable node;
if λ < 1 and c = 2

√
1− λ, we have µ = −

√
1− λ and hence the equilibrium point

is a stable node.
Therefore, a travelling wave solution exists for λ < 1 and wave speeds, c ≥
2
√

1− λ.

We will now consider the possible existence of travelling wave solutions in frac-
tional derivative SIR models, i.e. one where there is a form of memory, modelled
by the fractional derivative in time, and possibly multiscale spatial effects mod-
elled by fractional derivative in space coordinates.

5.3.2 Travelling Wave Solutions for Space-Time Fractional
SIR Models

Additional spatial gradients can be included in both the susceptible and infected
populations. For instance, in [117] the following system is shown to exhibit trav-
elling waves,

∂S

∂t
=

∂2S

∂x2
− IS,

∂I

∂t
=

∂2I

∂x2
+ I(S − λ).

We might first consider a fractional form of these equations by replacing all time
derivatives by Caputo derivatives of order α < 1,

∂αS

∂tα
=

∂2S

∂x2
− IS,

∂αI

∂tα
=

∂2I

∂x2
+ I(S − λ). (5.33)

We can now seek travelling wave solutions with S(x, t) = S(Z), I(x, t) = I(Z),
with

Z = x− ctα/Γ(α + 1), (5.34)

where c > 0 is the wave speed, and use the same boundary conditions as before.
The model is then written as

c
dαS

dZα
+
d2S

dZ2
− IS = 0, (5.35)

c
dαI

dZα
+
d2I

dZ2
+ I(S − λ) = 0. (5.36)
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Linearising equation (5.36) about S = 1 and I = 0 we get

c
dαI

dZα
+
d2I

dZ2
+ I(1− λ) = 0. (5.37)

As before the stability of the solution is determined from the eigenvalues, µ, of the
associated Jacobian leading to

cµα + µ2 + (1− λ) = 0. (5.38)

There are travelling wave solutions for the system if this equilibrium point is
a stable node, which implies the solutions of (5.38) are real and negative, i.e.
µ = −R, for R ∈ R, R > 0, so that

c(−1)α(R)α + (R)2 + (1− λ) = 0.

However, for real solutions we must have (−1)α real, which implies α = 0,±1,±2, ....,
i.e. α is not a fractional order, and so there are no travelling wave solutions.

If we additionally include fractional spatial derivatives the situation changes.
When

∂αS

∂tα
=

∂2βS

∂x2β
− IS,

∂αI

∂tα
=

∂2βI

∂x2β
+ I(S − λ), (5.39)

we can seek travelling wave solutions with S(x, t) = S(Z), I(x, t) = I(Z), where

Z =
xβ

Γ(β + 1)
− ctα

Γ(α + 1)
, (5.40)

where c > 0 is the wave speed. The model can then be written as

c
dαS

dZα
+
d2βS

dZ2β
− IS = 0, (5.41)

c
dαI

dZα
+
d2βI

dZ2β
+ I(S − λ) = 0. (5.42)

Again, linearising equation (5.42) about S = 1 and I = 0 we get

c
dαI

dZα
+
d2βI

dZ2β
+ I(1− λ) = 0, (5.43)

and so the eigenvalues, µ, of the Jacobian satisfy

cµα + µ2β + (1− λ) = 0. (5.44)
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The equilibrium point will be a stable node when µ = −R, for R ∈ R, R > 0, so
that

c(−1)α(R)α + (−1)2β(R)2β + (1− λ) = 0.

Setting (−1)α = eiαπ = cos(απ) + i sin(απ), and (−1)2β = e2iβπ = cos(2βπ) +
i sin(2βπ), we therefore have two equations

cRα cos(απ) +R2β cos(2βπ) + (1− λ) = 0,

cRα sin(απ) +R2β sin(2βπ) = 0.

Solving these two equations together, we find the conditions for travelling waves
solutions are

R =
((λ− 1) sin(απ)

sin((α + 2β)π)

) 1

2β ,

c = −sin(2βπ)

sin(απ)

((λ− 1) sin(απ)

sin((α + 2β)π)

)1−
α

2β .

In the next section we will consider specific forms of the travelling wave solu-
tions of the form of (5.40).

5.4 Travelling Wave Solutions by using the (G′/G)-

Expansion Method

Nonlinear evolution equations, such as those found in SIR models, are often found
in descriptions of physical systems, and finding exact solutions of these evolution
equations is essential to understanding the behaviour of the physical systems. A
large number of methods for finding solutions have been proposed and we list these
here for further reference: the (G′/G)-expansion method and the new generalised
(G′/G)-expansion method (i.e. [7, 11, 19, 23, 155, 170]), the sub-equation method
and the modified sub-equation method (i.e. [13, 18, 114, 176]), the modified simple
equation method (i.e. [87, 88, 169, 173, 174]), the modified Kudryashov method
(i.e. [51, 79]), the Exp-function method and the generalised Exp-function method
(i.e. [20, 179]), the functional variable method (i.e. [34]), the first integral method
(i.e. [1]), the modified trial equation method (i.e. [28]), the Jacobi elliptic function
expansion method (i.e. [101, 143]), the homotopy perturbation method (i.e. [65]),
the tanh-function method and the modified extended tanh method (i.e. [122, 140]),
the sine-cosine method (i.e. [9]), the variational iteration method (i.e. [80]), the
spline collocation method (i.e. [10]), the solitary wave ansatz method (i.e. [71]),
the Fourier transform method (i.e. [121]), the Q-function method (i.e. [36, 37]),

90



as well as the Khater method (i.e. [91]).

In this section we first consider the generalised space-time fractional SIR model
in Section (5.4.1),

∂αS

∂tα
= −IS, (5.45)

∂αI

∂tα
=

∂2βI

∂x2β
+ I(S − λ1), (5.46)

where the spatial derivative is present only in the infected fox population and where
0 < α, β ≤ 1, are the fractional orders of Jumarie’s modified Riemann-Liouville
time and space derivatives defined in Definition (2.2.5) respectively. We introduce
the G′/G-expansion method using this system of equations, although, as we see
below, we eventually find that no travelling wave solutions are possible.

We then consider the generalised space-time fractional SIR model in Section
(5.4.2)

∂αS

∂tα
=

∂2βS

∂x2β
− IS, (5.47)

∂αI

∂tα
=

∂2βI

∂x2β
+ I(S − λ1), (5.48)

where the spatial derivative is present in both the susceptible and infected fox
populations and using the G′/G-expansion method, we find forms of the travelling
wave solutions.

The form of fractional derivative, that of Jumarie [84], is used for two important
properties: firstly that the derivative of a constant is zero, so that stability of equi-
libria can be easily undertaken, which is not possible with the Riemann-Liouville
derivative; and secondly so that the later introduction of a travelling coordinate
does not introduce space-dependent terms, which the Caputo derivative would.

5.4.1 The First Generalised Space-Time Fractional SIR
Model

Considering first the system of equations (5.45) and (5.46), we again use the sub-
stitute (5.40) to obtain

cS ′ − IS = 0, (5.49)

I ′′ + cI ′ + I(S − λ1) = 0, (5.50)

and will now use the G′/G-expansion method described in Section 2.7.
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We now suppose that the solutions for S and I can be expressed as

S(Z) =

m1∑
i=0

αi

(
G′

G

)i
,

I(Z) =

m2∑
i=0

βi

(
G′

G

)i
,

where G = G(Z) satisfies G′′+λG′+µG = 0 and where αi, βi, and c are arbitrary
constants. By calculating the homogeneous balance between the highest order
derivatives and nonlinear term in the equations (5.50), we find that m1 = 2 and
m2 = 1, so that

S(Z) = α0 + α1
G′

G
+ α2

(
G′

G

)2

, (5.51)

I(Z) = β0 + β1
G′

G
. (5.52)

To determine these constants α0, α1, α2, β0, β1 we substitute (5.51) and (5.52)
into equations (5.49) and (5.50) and collect all the terms with the same power of
(G′/G) to obtain

−α0β0 − cα1µ = 0,

−α0β1 − α1β0 − cα1λ− 2cα2µ = 0,

−α1β1 − α2β0 − cα1 − 2cα2λ = 0,

−α2β1 − 2cα2 = 0,

β1λµ− cβ1µ+ α0β0 − λ1β0 = 0,

β1λ
2 + 2β1µ− cβ1λ+ α0β1 + α1β0 − λ1β1 = 0,

β1λ− cβ1 + α1β1 + α2β0 = 0,

β1 + α2β1 = 0.

Solving these equations we find

β0 = −λc− c2, β1 = −2c, λ1 = 0, µ = (λ2 − c2)/4,

α0 = (−λ2 + 2cλ− c2)/2, α1 = −2λ+ 2c, α2 = −2.

From solving G′′(Z) + λG′(Z) + µG(Z) = 0, we have

G′

G
=
−λ
2

+

√
λ2 − 4µ

2

(
C1 sinh

(
Z
√
λ2 − 4µ/2

)
+ C2 cosh

(
Z
√
λ2 − 4µ/2

)
C1 cosh

(
Z
√
λ2 − 4µ/2

)
+ C2 sinh

(
Z
√
λ2 − 4µ/2

)),
(5.53)
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where C1 and C2 are integration constants, but since λ2 − 4µ = c2 > 0 we have

G′

G
=
−λ
2

+
c

2

(
C1 sinh

(
Zc/2

)
+ C2 cosh

(
Zc/2

)
C1 cosh

(
Zc/2

)
+ C2 sinh

(
Zc/2

)). (5.54)

Substituting (5.54) into (5.51) and (5.52), we have

S(Z) = c2

((
C1 sinh(cZ/2) + C2 cosh(cZ/2)

C1 cosh(cZ/2) + C2 sinh(cZ/2)

)
−

1

2

(
C1 sinh(cZ/2) + C2 cosh(cZ/2)

C1 cosh(cZ/2) + C2 sinh(cZ/2)

)2

− 1

2

)
, (5.55)

I(Z) = −c2

(
1 +

(
C1 sinh(cZ/2) + C2 cosh(cZ/2)

C1 cosh(cZ/2) + C2 sinh(cZ/2)

))
. (5.56)

With the initial conditions S(0) = S0, I(0) = I0, we have

S0 = c2
((C2

C1

)
− 1

2

(C2

C1

)2

− 1

2

)
, (5.57)

I0 = −c2
(

1 +
(C2

C1

))
, (5.58)

and we can solve for the unknown constants, C2/C1 and c from which we can find
four values for the wave speed c,

c = ±1

2

√
−S0 − 2I0 ±

√
S2

0 + 4I0S0, (5.59)

However, since
√
S2

0 + 4I0S0 < S0 + 2I0, all the values of c are complex, showing
that no travelling wave solutions of this form are possible in this model.

5.4.2 The Second Generalised Space-Time Fractional SIR
Model

We now consider the system of equations (5.47) and (5.48) in a similar way. After
the transformation to the Z coordinate we have

S ′′ + cS ′ − IS = 0, (5.60)

I ′′ + cI ′ + I(S − λ1) = 0, (5.61)
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and suppose that the solutions can be expressed as polynomials of (G′/G). Cal-
culating the homogeneous balance between the highest order derivatives and non-
linear term in the equations (5.61), then leads to m1 = m2 = 2, and so

S(Z) = α0 + α1
G′

G
+ α2

(
G′

G

)2

, (5.62)

I(Z) = β0 + β1
G′

G
+ β2

(
G′

G

)2

, (5.63)

where α0, α1, α2, β0, β1, β2 and c are arbitrary constants. Substituting into
equations (5.60) and (5.61) and collecting all terms with the same power of (G′/G),
then gives

α1µλ+ 2α2µ
2 − cα1µ− α0β0 = 0,

α1λ
2 + 6α2λµ+ 2α1µ− cα1λ− 2cα2µ− α0β1 − α1β0 = 0,

3α1λ+ 8α2µ+ 4α2λ
2 − cα1 − 2cα2λ− α0β2 − α1β1 − α2β0 = 0,

2α1 + 10α2λ− 2cα2 − α1β2 − α2β1 = 0,

6α2 − α2β2 = 0,

β1µλ+ 2β2µ
2 − cβ1µ+ α0β0 − λ1β0 = 0,

β1λ
2 + 6β2λµ+ 2β1µ− cβ1λ− 2cβ2µ+ α0β1 + α1β0 − λ1β1 = 0,

3β1λ+ 8β2µ+ 4β2λ
2 − cβ1 − 2cβ2λ+ α0β2 + α1β1 + α2β0 − λ1β2 = 0,

2β1 + 10β2λ− 2cβ2 + α1β2 + α2β1 = 0,

6β2 + α2β2 = 0.

Solving these equations we find c = 5λ, µ = λ1 = α1 = β0 = β1 = 0, β2 = 6,
α0 = 6λ2 and α2 = −6. It should be noted here that a solution of this form
is only possible if λ1 = 0, i.e. if the susceptible population never recovers and
therefore we assume that the disease remains dormant in the body. Since µ = 0,
so that λ2 − 4µ = λ2 = (c/5)2 > 0, we have G = C1 + C2e

−cZ/5, and (G′/G) =

−cC2e
−cZ/5/

(
5(C1 + C2e

−cZ/5)
)

. Substituting these into equations (5.62) and

(5.63), we have

S(Z) =
6c2C1(C1 + 2C2e

−cZ/5)

25(C1 + C2e−cZ/5)2
, (5.64)

I(Z) =
6c2C2

2e
−2cZ/5

25(C1 + C2e−cZ/5)2
. (5.65)

Note that limZ→∞ S(Z) = 6c2/25, limZ→−∞ S(Z) = 0, limZ→∞ I(Z) = 0
and
limZ→−∞ I(Z) = 6c2/25. Using the initial conditions S(0) = S0, I(0) = I0, then

S0 =
6c2C1(C1 + 2C2)

25(C1 + C2)2
, (5.66)
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I0 =
6c2C2

2

25(C1 + C2)2
, (5.67)

and knowing that S0 + I0 = 1, allows us to solve the two equations and for C2/C1

and c2, giving
C2

C1

=
I0 ±

√
I0

S0

, c2 =
25

6
. (5.68)

Two of the solutions above, those with C2/C1 < 0, lead to populations that contain
singularities. However, there are still two possible travelling wave solutions of
(G′/G) polynomial form,

S1,2(Z) =
S0

(
S0 + 2(I0 +

√
I0)e±Z/

√
6
)

(
S0 + (I0 +

√
I0)e±Z/

√
6
)2 , (5.69)

I1,2(Z) =
(I0 +

√
I0)2e±2Z/

√
6(

S0 + (I0 +
√
I0)e±Z/

√
6
)2 , (5.70)

Figure 5.3 shows plots of these travelling wave solutions for S0 = I0 = 0.5, in
Figure 5.3(a), the disease turned the susceptible (S decreased) into infectious (I
increased), by moving the travelling wave to the left, and in Figure 5.3(b) the wave
moves to the right.

Figure 5.3: Plots of (a) S1 and I1 and (b) S2 and I2, the travelling wave solutions
in eqs (5.69) and (5.70), when S0 = I0 = 0.5.

Without loss of generality, we now consider only the solution S2, I2, the trav-
elling wave moving in the positive Z direction. If we define the location of the
travelling wave front, x = xf , as the point at which S2 = I2 = 0.5, then we find

Z = −
√

6 ln

(
(1 +

√
2)

(
1√
I0

− 1

))
, (5.71)
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and the location of the travelling wave front is

xf =

(
5Γ(β + 1)√
6Γ(α + 1)

tα −
√

6Γ(β + 1) ln

(
(1 +

√
2)

(
1√
I0

− 1

))) 1

β
. (5.72)

We note here that, due to the fractional derivative being defined only for x > 0,
i.e. we assume that in the region x < 0 the S and I populations are constant, the
expression in eq. (5.72) is also only defined for xf > 0. The plots of the location
xf of the travelling wave front are shown in Figure 5.4 (a), (c) and (e).

The speed and acceleration of the travelling wave front (S2, I2), are therefore

vf(t) =
1

β

5αΓ(β + 1)√
6Γ(α + 1)

tα−1

(
5Γ(β + 1)√
6Γ(α + 1)

tα −
√

6Γ(β + 1) ln

(
(1 +

√
2)

(
1√
I0

− 1

))) 1

β
−1

,

af(t) =
1

β

5α(α− 1)Γ(β + 1)√
6Γ(α + 1)

tα−2

(
5Γ(β + 1)√
6Γ(α + 1)

tα −
√

6Γ(β + 1)×

× ln

(
(1 +

√
2)

(
1√
I0

− 1

))) 1

β
−1

+
1

β

(
1

β
− 1

)(
5αΓ(β + 1)√

6Γ(α + 1)
tα−1

)2

(
5Γ(β + 1)√
6Γ(α + 1)

tα −
√

6Γ(β + 1) ln

(
(1 +

√
2)

(
1√
I0

− 1

))) 1

β
−2

.

The plots of the speed vf of the travelling wave front are shown in Figure 5.4 (b),
(d) and (f).

It is particularly interesting to note that if α = β, then vf = (c)

1

β , so that vf

is constant. Also, if α 6= β, and since Γ(β + 1) = βΓ(β), and Γ(α + 1) = αΓ(α),
we have

vf =

(
cΓ(β)

Γ(α)

) 1

β
(
β

α

) 1

β
− 1


t

(α
β
− 1

)
.

Therefore

v′f =

(
cΓ(β)

Γ(α)

) 1

β
(
β

α

)( 1

β
− 1
) (

α

β
− 1

)
t

(α
β
− 2
)
,

and so if α > β, then v′f > 0, and if α < β, then v′f < 0. We have therefore shown
that if α = β, the speed vf of the travelling wave solution is constant (see Figure
5.4 (b)). If α > β, the speed vf of the travelling wave solution increases with time
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(see Figure 5.4 (d)), and if α < β, the speed vf of the travelling wave solution
decreases (see Figure 5.4 (f)).
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Figure 5.4: (a), (c) and (e) are the location xf(t) of the front travelling wave
solution (S2, I2) when α = β, α > β and α < β respectively. (b), (d) and (f) are
the speed vf(t) of the front travelling wave solution (S2, I2) when α = β, α > β
and α < β respectively, with S0 = I0 = 0.5.
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It should be noted that further generalisations of the travelling wave system can
easily be incorporated. For instance, since the recovered equation is not coupled
to those for S and I, we may use the solution for the travelling waves in S and I
in a number of different R equations. Two example R equations are

∂αR

∂tα
= λ1I,

and

∂αR

∂tα
=

∂2βR

∂x2β
+ λ1I,

both of which can readily be solved given the solution for I. Furthermore, gen-
eralisations to two spatial dimensions can also be incorporated. In this case we
consider the system

∂αS

∂tα
=

(
∂2βS

∂x2β
+
∂2γS

∂y2γ

)
− IS,

∂αI

∂tα
=

(
∂2βI

∂x2β
+
∂2γI

∂y2γ

)
+ I(S − λ1), (5.73)

where 0 < α, β, γ ≤ 1, In a similar way as in the preceding section, we seek
travelling wave solutions of the form S(x, y, t) = S(Z), I(x, y, t) = I(Z), where

Z =
kxx

β

Γ(β + 1)
+

kyy
γ

Γ(γ + 1)
− ctα

Γ(α + 1)
, (5.74)

where kx, ky are unknown parameters. This leads to equations similar to eqs (5.60)
and (5.61)

(k2
x + k2

y)S
′′ + cS ′ − IS = 0, (5.75)

(k2
x + k2

y)I
′′ + cI ′ + I(S − λ1) = 0. (5.76)

A suitable rescaling of S, I and c, by the factor (k2
x + k2

y), then leads to exactly
eqs (5.60) and (5.61) and the solutions are then, again for λ1 = 0,

S1,2(Z) =
S0

(
S0 + 2(I0 +

√
I0)e±Z/(

√
6(k2x+k2y))

)
(k2
x + k2

y)
(
S0 + (I0 +

√
I0)e±Z/(

√
6(k2x+k2y))

)2 , (5.77)

I1,2(Z) =
(I0 +

√
I0)2e±2Z/(

√
6(k2x+k2y))

(k2
x + k2

y)
(
S0 + (I0 +

√
I0)e±Z/(

√
6(k2x+k2y))

)2 . (5.78)

The location of the travelling wave front is again defined as the locations where
S = I, but this is now a curve in the xy-plane defined by

Z = −
√

6(k2
x + k2

y) ln

(
(1 +

√
2)

(
1√
I0

− 1

))
, (5.79)
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which, using (5.79), is the line

y =

(
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)1

γ
(
− kxx

β
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ctα
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y) ln

(
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(
1√
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− 1

)))1

γ
.

(5.80)

Given that we must have x > 0 and y > 0 for the fractional derivatives to be valid,
we see that the travelling wave front enters the region x > 0, y > 0 only after the
time

t =

(√
6Γ (α + 1)

c
(k2
x + k2

y) ln

(
(1 +

√
2)

(
1√
I0

− 1

))) 1

α
, (5.81)

and that the front enters the region at the origin (x, y) = (0, 0).

We now consider four cases: (a) β = γ = 1; (b) β = γ 6= 1; (c) β > γ; (d)
β < γ. For Case (a), β = γ = 1, the equation of the contour line is

y = −kx
ky
x+

c

kyΓ(α + 1)
tα −

√
6

ky
(k2
x + k2

y) ln
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√
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(
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− 1

))
,

(5.82)

i.e. a straight line (see Figure 5.5 (a)). In Case (b), β = γ 6= 1, the equation of
the contour line is

y =

(
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(5.83)

For the last two cases, β > γ and β < γ no simplification is possible. However,
in the special cases γ = 0 and β = 0, respectively, we see that equivalent one
dimensional cases are recovered, namely
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) 1
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(5.84)

and
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(5.85)
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Plots of the travelling wave fronts in each of the above cases are included in
Figure. 5.5.

Figure 5.5: The location of the travelling wave front in the xy-plane when (a)
α = β = γ = 1, (b) β = γ = 0.5, α = 1, (c) β = 0.9 > γ = 0.5, α = 1, (d)
β = 0.5 < γ = 0.9, α = 1, for 0 < t < 10. The initial conditions are I0 = 0.16,
S0 = 0.84.

5.5 Conclusion

In this chapter we have considered various aspects of travelling wave behaviour in
fractional differential systems. The use of fractional time derivatives has previously
been justified through an attempt to model memory in both material science and
in a biological context, and in our situation we see that for non-integer derivatives
restricts the possibility of finding travelling waves. For a fractional Fisher’s equa-
tion we found that, for a time derivative fractional order α and a space derivatives
fractional order β, if α < β, the speed v(t) of the front travelling wave solution
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u(x, t) decreases in time, and conversely, if α > β the travelling wave accelerates.
It would be interesting to consider these situations further particularly if altering
the order of the spatial fractional diffusion could be used to show the progress
of a travelling wave. This would have important consequences for real-life situa-
tions such as the spread of diseases. We have also considered the generalisation
of an integer SIR model with spatial heterogeneity and proved that there may
be travelling wave solutions by using the (G′/G)-expansion method. In a similar
way to Fisher’s equation, we found changing the fractional order can accelerate or
decelerate the travelling wave. We have also seen, for two dimensional travelling
waves, anisotropic spatial diffusion (i.e. β 6= γ) will lead to nonlinear wave front
shapes. Again, it would be interesting to consider if such behaviour would be seen
in real-life situations. Of course, there can be other possible solutions to the mod-
els described in this Chapter. Not all solutions are of the travelling wave type. For
instance, solutions which are non-local, with the emergence of infection occurring
at periodic points in space, or constant spatial solutions, where the infection emer-
gences everywhere at the same time, are all possible. However, experience in the
outbreak of diseases show that initial infection occurs locally and then spreads out,
in a wave-like fashion. For this reason we have have concentrated in this Chapter
on travelling wave solutions.
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Chapter 6

Conclusion

6.1 Overall Conclusions

In this thesis, we considered fractional derivatives to study various diseases mod-
els, in order to capture the memory effect of individuals on the stability of the
systems. Chapter 2 provides a brief review of some mathematical principles of
fractional calculus and describes the methods that we used in this thesis. In Chap-
ter 3 we studied a fractional order tumor model and its properties, and found that
the stability of the system is affected by changing the model’s fractional order.
We also studied the parameter dependence of the critical value of the fractional
order. To investigate the transition from a monostable to a bistable system, we
considered an epidemiological model of susceptible, infected and recovered indi-
viduals (an SIR model). Crucially we found that variation of the fractional order
as well as the other system parameters, gives the possibility of transitioning from
a monostable system to a bistable system. The transient behaviour for this frac-
tional system, in particular the dependence of trajectories on the initial states was
identified. In addition, we also found that the observed domains of attraction for
the two stable equilibrium points change by changing the fractional order, which
is very important because if a disease state is unstable then memory can stabilise it.

Chapter 4 provides a broader and more complete investigation of this previ-
ous SIR model, by extending the model to be an incommensurate fractional order
system. This might be a more accurate model because each of the species in this
model has different memory which is more realistic than a commensurate system.
Using the incommensurate system, we have shown that a stable equilibrium point
can become an unstable point by decreasing the fractional order. This is an un-
expected result since within the commensurate system decreasing the fractional
order will only change an unstable point to be a stable point. To investigate this
behaviour further, we used perturbation theory to find approximate analytical so-
lutions for the characteristic equation of the incommensurate system, when the
values of the fractional orders are close to the commensurate case. We also found
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numerical solutions of the full system and showed that the stability boundary
compared very well with the analytic solutions. We therefore found that reducing
fractional orders may stabilise or destabilise the system. These results are again
important because increased memory effects can stabilise or destabilise the system.

In Chapter 5 we have investigated various aspects of travelling wave behaviour
in fractional differential equation systems. In this chapter we consider the frac-
tional time derivative modelling a memory effect in a biological system and the
spatial fractional system modelling multiscale inhomogeneities in the medium the
travelling wave is moving through. We found that non-integer order derivatives can
restrict the possibility of travelling waves unless there were non-integer derivatives
in both time and space variables. In the fractional Fisher’s equation we found that
if the fractional time derivative α was less than the fractional space derivative β,
the speed of the travelling wave solution decreases with time, and conversely, the
travelling wave speed increases if α > β. The study of these situations provides
a more realistic picture of a biological system moving through a complex environ-
ment, and can have consequences for real human life situations, such as the spread
of diseases. In this study, we also considered the generalization of a simple SIR
model, by incorporating spatial heterogeneity to study the spread of diseases. We
used the G′/G-expansion method to find travelling wave solutions, and in a similar
way to Fisher’s equation, we have shown that changing the fractional order can
consequently accelerate or decelerate the travelling wave. In a two-dimensional
travelling waves we have also shown that anisotropic spatial diffusion will lead to
nonlinear wave fronts. It would be interesting to consider whether the behaviour
obtained in our study would be the same in real-life situations.

6.2 Future Work and Extensions

Based on the obtained results in Chapter 3, the fine structure of the boundaries
of the domain of attraction could be an extension for the future, although this
investigation will depend on the value of tend. It would be interesting to find, for
example, fractal domains of attraction similar to those uncovered in systems of
delay-differential equations [145]. This is only speculation at the moment, partic-
ularly without a completely satisfactory link between a fractional derivative model
and the model of memory function. However, an understanding of the alterations
in the domains of attraction as a function of α may provide a useful tool for com-
parison between practical work and theoretical models.

Regarding Chapter 4, given the complicated stability boundaries we have found,
there are many new methods that could be used to control chaotic incommensurate
fractional order systems such as using feedback control. Studying the global sta-
bility of the incommensurate fractional order systems could then be investigated.
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In terms of Chapter 5, due to lack of time, many different methods to construct
travelling wave solutions for space-time fractional differential equation models have
been left as future work. Finally, travelling wave solutions for incommensurate
space-time fractional models could also be investigated.

In short, although our study provided a deeper understanding of the effects
of commensurate and incommensurate fractional derivatives in diseases systems,
further investigation of these systems and their consequences for real-life situations
would prove very interesting.
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[66] J. Gómez-Aguilar, M. López-López, V. Alvarado-Mart́ınez, D. Baleanu, and
H. Khan. Chaos in a cancer model via fractional derivatives with exponential
decay and Mittag-Leffler law. Entropy, 19:681, 2017.
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