RECENT TEMPERATE CARBONATE DEPOSITS ON THE CONTINENTAL SHELF NORTH AND WEST OF SCOTLAND: DISTRIBUTION, SEDIMENTOLOGY AND RESERVES

Volume 2 : Figures, Tables & Appendices

A thesis submitted for the degree of Doctor of Philosophy

> by N. Henry Allen B.Sc. (Edinburgh)

> > June 1983

Department of Applied Geology University of Strathclyde Glasgow

CONTENTS - VOLUME 2

FIGUR	ES	Page
1.	Area of investigation	293
2.	Illustration of nomenclature; 'carbonate deposit' and 'area of	
	carbonate-rich sediment'	294
3.	Summarised bathymetry of the Scottish Continental Shelf	295
4.	Quaternary-Recent sealevel changes	296
>.	Sub-rieistocene geology of Scotland and the adjacent continental	207
б.	Back outcrop	298
7.	Hud content	299
8.	Sediment type	300
9.	Tides	301
10.	Example of tidal current diagram showing variation of diurnal	
	pattern over a neap-spring cycle and showing relationship of PNET	302
11.	Parabolic current profile and the van veen formula	202
13.	Extreme wave nerghts in waters around the British Isles	305
14.	Particle speed factor	306
15.	Net surface water movements	307
16.	Estimated net water movements near the bottom	308
17.	Mean sea temperatures	309
18.	Mean sea salinities	310
19.	Sections Corporate content on the north and west Scottish	314
20	Concretencer Sherr Forversion grade for Staffa, by weight to Staffa, by volume for	211
20.	loose sands and gravels	312
21.	Typical Inner Hebridean carbonate	313
22.	Typical West Hebridean Platform carbonate	313
23.	Typical Orkney sandbank carbonate	314
24.	Typical West Shetland carbonate	314
25.	Gulf of Corryvreckan deposit	315
	(a)Location and bachymetry (b)May, surface tidal currents and wave fetch	
26.	Side-scan sonar record across the Gulf of Corryvreckan deposit	316
27.	Sparker line across the Gulf of Corryvreckan deposit	316
28.	Biogenic composition of Inner Hebridean carbonates	317
29.	Passage of Tiree and Hawes Bank deposits	318
	(a)Location and bathymetry	
70	(b)Max, surface tidal currents and wave fetch	710
20.	(a) action and abveicel conditions	213
	(b)Max. surface tidal currents and wave fetch	
31.	Sligachan - Scalpay deposit	320
	(a)Location and bathymetry	
	(b)Max. surface tidal currents and wave fetch	
32.	Kupha Nan Liach deposit	321
	(b)May, surface tidal ourrests and wave fetch	
33.	Shiant deposit	322
	(a)Location and bathymetry	
	(b)Max. surface tidal currents and wave fetch	
34.	Location map for other coastal carbonate deposits in the Inner	
	Hebridean area	323
55. 14	Larbonate content of inner Hebridean sediments including beaches	524
20.	Leojous Liorade eradeure combnaterou ol calpoustas niet erucreue	325
37.	Stanton Banks and Berra Head deposits	
- • •	(a)Location and bathymetry	326
	(b)Max. surface tidal currents and wave fetch	327
38.	Sparker line across Stanton Banks	328
39.	Pisces photograph, boulders on Stanton Banks	329
40.	Fisces protograph, carbonate megaripple on Stanton Banks	329
41.	Diogenic composition of Meoridean Shelf carbonates Side acan sonar record sonors the noutbers part of the Renne Head	220
46.	deposit	331
43.	Side-scan sonar record across the eastern flank of the Barra Head	
	deposit	332
44.	West Hebridean Platform deposit	
	(a)Location and bathymetry	333
	(D)max, SUFFACE tidal currents and wave fetch Butt of Lewis desceit	334
47	(a) contion and bathymetry	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(b)Max. surface tidal currents and wave fetch	

• •

FIGURES

		9 -
46.	Carbonate content of southern West Hebridean Shelf sediments	
47.	including beaches Carbonate content of northern West Hebridean Shelf sediments	336
	including beaches	337
48.	Cape Wrath deposit (a)Location and bathymetry	338
	(b)Max. surface tidal currents and wave fetch	
49.	Echosounder profile across Cape Wrath deposit	339
51.	Nun Bank and Solan Bank denceits	340
	(a)Location and bathymetry (b)Max, surface tidal currents and wave fetch	241
52.	Fair Isle Channel, North Orkney, East Orkney, West Pentland Firth,	
	Sandy Riddle, Moray Firth deposits	740
	(b)Max. Surface tidal currents and wave fatch	342
	(c)Locations of Figures: peophysics and TV stations	344
53.	Side-scan sonar across rocky ridge, SW Fair Isle Channel deposit	345
54.	Side-scan sonar across rocky ridge, W Fair Isle Channel deposit	346
55.	Underwater photograph of carbonate megaripples, Fair Isle Channel	347
57.	linderwater photograph of carbonate megarippies, rair isle thannel	347
58.	Sparker line across Fair Isle Sendwave Field	248
59.	Carbonate content of Northern Shelf and Orkney sediments,	343
60.	Sediment distribution around N Ronaldeau Spring 1974	350
61.	Sediment distribution around N Ronaldsay, July 1974	351
62.	Sparker line through bank of superficial sediment north of Papa Westray	772
63.	Echosounder profile across N Ronaldsav north bank	353
64.	Sparker line through N Ronaldsay north bank	354
65.	Biogenic composition of Orkney and Moray Firth carbonates	355
66.	Side-scan sonar along edge of inner platform, East Orkney deposit	356
67.	Side-scan sonar along edge of inner platform, tast urkney deposit	357
60.	Sparker line through cast Orkney Sandwave Field	358
70.	Plot of barnacle v. brvozoan content. Orkney carbonates	320
71.	Orkney Sounds location map	360
72.	Echosounder profile across West Pentland Firth deposit	361
73.	Underwater photograph of seabed south-west of Sandy Riddle	362
74.	Bathymetry of Sandy Kiddle Sadiment distribution around Sandy Riddle	363
76.	Pinger profile & across Sandy Riddle	364
77.	Pinger profile B across Sandy Riddle	365
78.	Pinger profile C across Sandy Riddle	366
79.	Profile series across Sandy Riddle	367
80.	Underwater photograph of carbonate megaripple, W flank of Sandy Riddle	368
81.	Sparker line through Sandy Riddle	368
82.	Petrographic variation along the length of Sandy Riddle	369
83.	West Shetland, Northeast Shetland, Shetland - Out Skerries, and Yell Sound deposits	
	-Location and bathymetry	370
84. 85	-max. sufface tigst currents and wave fetch Consul photograph, encrusted rocks. St Meanue Ray	371
86.	Consub photograph, encrusted rocks, St Magnus Bay	372
87.	Consub photograph, encrusted rocks, St Magnus Bay	372
88.	Consub photograph, carbonate gravel, St Magnus Bay	373
89.	Boomer line through the West Shetland deposit, N of Fouls	374
90.	Consub photograph, carbonate megaripples, E of Foula	375
91.	Consub photograph, carbonate megaripples, E of Foula	375
92.	Consub photograph, carbonate megarippies, t of Foula	376
94.	Biogenic composition of Shetland cerbonates	376
95.	Variation diagram for foraminiferal content v. water depth,	3//
96.	Side-scan soner record across Shetland - Aut Charries deposit	378
97.	Consub photograph of the seabed. Shatland - Out Skerries deposit	379
98.	Carbonate content of Shetland sediments, including beaches	381
99.	Balta Sound carbonates, Shetland	382
100.	St Ninian's isle carbonates, Shetland	382
107.	variation in barnacie content on the SCS Variation in bivelve content on the SCS	383
102.	Variation in echinoid content on the SCS	384
104.	Variation in serpulid content on the SCS	385
105.	Variation in bryozoan content on the SCS	387
106.	variation in foraminiferal content on the SCS	388

.

FIGURES

· •

107.	Contoured barnacle content. N Shelf & Orkney	389
108.	Contoured bivalve content, N Shelf & Orkney	390
109.	Contoured echinoid content, N Shelf & Orkney	391
110.	Contoured gastropod content, N Shelf & Orkney	392
111.	Contoured serpulid content, N Shelf & Orkney	393
112.	Contoured bryozoan content, N Shelf & Orkney	394
113.	Contoured foraminiferal content, N Shelf & Orkney	395
114.	Variation of barnacle v. water depth	396
115.	Variation of bryozoan v. water depth	396
116.	Variation of calcareous alga v. water depth	397
117.	Variation of foraminifera v. echinoid	397
118.	Variation of foraminifera v. bryozoan	398
119.	Variation of echinoid v. barnacle	398
120.	Variation of bryozoan v. barnacle	399
121.	Variation of gastropod v. bivalve	399
122.	Variation of polish v. roundness	400
123.	Varistion of boring v. polish	400
124.	Variation of Maturity Index v. roundness	401
125.	Variation of Maturity Index v. polish	401
126.	Variation of Maturity Index v. staining	402
127.	Variation of grain size v. foraminifera	402
128.	Veriation of staining v. bernacle	403
129.	Variation of roundness v. serpulid	403
130.	Variation of Maturity Index v. serpulid	404
131.	Veriation of staining v. bryozoan	404
132.	Variation of boring v. bryozoan	405
133.	Variation of Maturity Index v. bryozoan	405
134.	Variation of roundness v. foraminifera	406
135.	Variation of Maturity Index v. foraminifera	406
136.	Settling curves for carbonate fragments	407
137.	Threshold curve for quartz modified for shelly carbonate	407
138.	Critical suspension curves for quartz	408
139.	Critical suspension curves superimposed on threshold curves	408
140.	Interpreted net transport on the SCS	409
141.	Carbonate transport, E Orkney	410
142.	Variation of surface & near-seabed tidal current velocities	
	across Sandy Riddle	411
143.	Thicknesses of carbonate deposits and main transport directions	412
144.	Theoretical average radiometric ages from mixed bulk samples of	
	carbonate	413
145.	Subsample for radiometric dating: heavily bored bivalves	414
146.	Subsemple for rediometric dating: rounded bivalves	414
147.	Subsample for radiometric dating: angular bivalves	415
148.	Subsample for radiometric dating: unbored, unabraded barnacles	415
149.	Subsample for radiometric dating: stained/abraded barnacles	416
150.	Supsample for radiometric dating: stained/abraded barnacles	416
121.	Supsample for regiometric dating: serpulids	417
152AB	lypes or carbonate deposit on the SUS	418/9
15588	nypothetical future of 505 carbonates with varying sealevel	420/1
124	Nypointical fucure of platform flank carbonates	422
122	Summary of origin of carbonate sediment on the SCS	423

TABLES

·

1.	Main sources of beach data	424
2.	Summary of textural scales used for bioclastic carbonate grains	425
3.	Petrographic averages of some areas of carbonate-rich sediment	426
4.	Summary of petrographic data for the carbonate deposits and	
	surrounding sediments	427
5.	Carbonate deposits ranked by barnacle content	428
6.	Variation in barnacle content between accumulation sites and	
	sediment supply	429
7.	Variation in staining between sandbank carbonates and	
	surrounding carbonates	429
8.	Carbonate deposits ranked by bivalve content	430
9.	Carbonate deposits ranked by echinoid content	431
10.	Carbonate deposits ranked by gastropod content	432
11.	Carbonate deposits ranked by serpulid content	433
12.	Carbonate deposits ranked by bryozoan content	4 3 4
13.	Carbonate deposits ranked by foraminifers content	435
14	Carbonate deposits ranked by grain size	436
15	Carbonate deposits ranked by sorting	437
16.	Carbonate deposits ranked by roundness	477
17.	Carbonate deposits ranked by polish	4 3 0
18.	Carbonate deposits ranked by staining	4 / /
19.	Carbonate deposits ranked by boring	440
20.	Carbonate deposits ranked by Matumity Index	441
		44Z

TABLES

21.	Differences between textural properties of deposits and	
	surrounding sediments	443
22.	Correlation coefficients for petrographical characteristics	444
23.	Factor analysis of petrographical characteristics	445
24.	Summary of petrographical variation of SCS carbonates in	
	relation to their environments	446
25.	Results of flume experiments for combined unidirectional	
	and oscillatory currents	447
26.	Threshold velocities for shell sand v. quartz sand	448
27.	Estimated current velocities. N & W Fair Isle Channel	449
28.	Particle size thresholds, Fair Isle Channel	450
29.	Estimated bottom-current velocities. N Orkney	451
30.	Estimated bottom_current velocities F Orkney	452
31	Estimated bottom-current velocities, Pentland Firth-Moray Firth	453
32.	Estimated bottom-current velocities, Gulf of Corryvreckan	454
33.	Estimated bottom-current velocities, Passage of liree	455
34.	Estimated bottom-current velocities, Stanton Banks	456
35.	Estimated bottom-current velocities, Duter Hebrides	457
36.	Estimated bottom-current velocities, Northern Shelf	458
37.	Summary of radiometric ages derived from SCS carbonates	459
38.	Faunal composition of bulk sample 58-03/2	460
39.	Classification of SCS carbonate deposits	461
40.	Carbonate sedimentation rates	467
41.	Carbonate productivity	462
47	Summary of mineralogy of main bioglastic components	462
43	Inferred composition of the carbonate deposite	464
42.	Major element angly ac of contents adjusts	465
 // 5	Fatingtad avtraction natas for different denosite	465
42.	rarimaraa averareton tareg int Atlietenr nehootes	

APPENDICES

.

1.	List of acronyms and abbreviations	467
2.	Summary of research cruises	468
3.	Sediment mobility calculations, Fair Isle Channel	469
4.	Hydraulic analysis of megaripples	471
5.	Calculation of accumulation and production rates	475
6.	Resin peels of vibrocores used in the study of some shelly	
	sediments on the Scottish shelf (Allen, Fannin, & Farrow 1979)	478
7.	Bioclastic carbonate sedimentation on a high-latitude, tide-	
	Allen & Akpan, in prepn.)	487
8.	Proposed wave energy schemes for the west coast of the Outer	
	Hebrides : their effects on sedimentation	530
9.	Particle size and carbonate analyses of samples from the SCS	
	study-area	541
10.	Carbonate petrography of selected samples from the SCS	
	study-area	561

ENCLOSURE

 Sediment carbonate content on the north and west Scottish Continental Shelf, 1 : 1,000,000 scale .

FIGURES

·

·

- 293 -

.

- 296 -

- 301 -

- 302 -

- 303 -

MB - Morecambe Bay, SK - Smith's Knoll (after Draper, 1967)

- 305 -

- 306 -

- 309 -

- 310 -

Figure 21 Typical Inner Hebridean carbonate, rich in bivalve and barnacle debris. Rubha Nan Clach deposit (see Fig. 32a).

Figure 22 Typical West Hebridean Platform carbonate (see Fig.44), containing bivalve, barnacle, echinoid, gastropod, serpulid and bryozoan debris.

Figure 23 Typical Orkney sandbank carbonate containing well rounded, polished debris, mainly bivalve, barnacle and serpulid. North Ronaldsay north bank, North Orkney deposit (see Fig. 52a).

Figure 24

Typical West Shetland carbonate (see Fig. 83a), rich in bivalve, barnacle, and serpulid debris along with echinoid and bryozoan material.

Figure 26 Side-scan sonar record (poor quality) across Gulf of Corryvreckan deposit (see Fig. 25a), showing rocky seabed plunging into the Firth of Lorne basin, with sediment -filled gullies (eg. centre and left).

Figure 27 Sparker line across Gulf of Corryvreckan deposit (see Fig. 25a), showing rockhead generally very close to the seabed so that sediment cover must be very thin.

- 317 -

- 322 -

Carbonate content of Inner Hebridean Sediments including beaches (See Table 1 for beach references)

Sector Sector

Sparker line across Stanton Banks (see Fig. 37a) showing rockhead emerging from superficial sediment cover. The carbonates form a veneer over the shoal and down its flanks, but are too thin to resolve.

Figure 39 Underwater photograph taken from Pisces on Stanton Banks (see Fig.37a) showing boulder-strewn seabed, typically encrusted with carbonate secreting organisms and heavily populated by ophiuroids. Pure carbonate can be seen filling the crevices between the rocks. Field of view approx. 1m.

Figure 40 Underwater photograph taken from Pisces on Stanton Banks (see Fig. 37a) showing starved wave-generated carbonate megaripple with a wavelength of about 1m. Depth 77m

Figure 42 Side-scan sonar record across the southern part of the Barra Head deposit (see Fig. 37a), showing extensive rocky areas surrounded by large patches of carbonate sediment.

Figure 43 Side-scan sonar record across the eastern flank of the Barra Head deposit (see Fig 37a) showing sediment cover becoming more continuous as seabed drops off into the Minch basin. Carbonates become progressively more terrigenous down-slope from west to east.

;

Echosounder profile across Cape Wrath deposit showing sandbanks and large sandwaves indicating sediment thicknesses of up to 30m.

- 340 -

- 343 -

- 344 -

Figure 53 Side-scan sonar record across the rocky ridge at the south-western limits of the Fair Isle Channel deposit. The feature, scored with gullies containing carbonate, separates the more terrigenous sediments on the Northern Shelf in the west (L.H. side) from the carbonates lying on the platform in the Fair Isle Channel (R.H. side). See Figs. 52a & 52c).

£

345

L

Figure 54 Side scan sonar record across the rocky ridge at the western limit of the Fair Isle Channel deposit. The ridge, with gullies and hollows filled with carbonate sediment, emerges from the more terrigenous sediments of the Northern Shelf (top left). NB. The two sections are part of the same line but there is a gap between them (see Figs 52c & 52a).

Figure 55 Underwater photograph of wave-generated gravelly carbonate megaripples in a water depth of 80m, Fair Isle Channel (see Fig.52c - station TV2).Wavelengths are 1-2m and heights 10-20cm. See pp.191 - 198 & Appendix 3 & 4). July 1977.

Figure 56

Underwater photograph of carbonate megaripples in the Fair Isle Channel, a/a. Note that heavily encrusted boulders project out of the gravel, suggesting that they are not covered for substantial periods.

Figure 57 Underwater photograph of the seabed in the Fair Isle Channel near the megaripple field (see Fig.52c - station TV2, and Figs 55 & 56). The ground is rocky and heavily colonised but there is a transitory 'sprinkling' of fine - medium carbonate sand. Water depth 80m. See also pp. 191–198 & Appendix 3, Table 47. Field of view approx. 1m.

Figure 58 Sparker line across the Fair Isle Sandwave Field (see Figs. 52a & 52c) showing the development of carbonate sandwaves on the eastern flank of the Fair Isle Channel platform.

Figure 59 Carbonate content of Northern Shelf and Orkney sediments, including beaches (See Table 1 for beach references)

350 -

1

.

- 351 -

Figure 62 Sparker line through bank of superficial sediment lying on the north-west side of the ridge running north-east from Papa Westray, North Orkney deposit (Fig. 52c,). Although its surface is covered with carbonate sediment, its smooth nature (with no sandwaves) suggests that it is either mainly moraine or a degraded sandbank.

1000

Figure 63 Echosounder profile across North Ronaldsay north bank North Orkney deposit (Figs. 52a & 52c) with carbonate sandwaves up to 15m high, and steep sides facing west. (July 1977). See also Figs. 60 & 61.

Figure 64 Sparker line through North Ronaldsay north bank, North Orkney deposit (Figs. 52a & 52c) showing the sandwaves to be up to 7m high and thickness of superficial sediment to be at least 20m (Spring 1974). See also Figs. 60 & 61.

- 355 -

Figure 66 Side-scan sonar record along the edge of the inner platform,East Orkney Deposit (see Figs. 52a &52c). Large gullies in the rocky seabed contain carbonate sediment spilling out eastwards down the flank of the platform. See Appendix 7 fig. 4.

Figure 67 Side scan sonar record along the edge of the inner platform, East Orkney Deposit (see Figs. 52a & 52c). Large gullies in the rocky seabed contain carbonate sediment spilling out eastwards down the flank of the platform. See Appendix 7, fig 4.

Figure 68 Sparker line through the East Orkney Sandwave Field on the platform flank, East Orkney deposit (see Figs. 52a & 52c). Large carbonate sandwaves are developed on the slope particularly where major bedrock reflector are subcropping. See Appendix 7, fig. 4.

Figure 69 Sparker line through the East Orkney Sandwave Field on the platform flank, East Orkney deposit (see Figs. 52a &52c). Carbonate sandwaves are developed on the slope but the deeper ones appear to be degraded, possibly after winter storms (line shot in Spring 1974). See Appendix 7, fig.4.

Figure 72 Echosounder profile across the West Pentland Firth deposit (see Figs. 52a &52b). Large sandbanks and sandwaves are developed at the western end of the rocky tidally-scoured channel. The bedforms have sharp profiles and are strongly asymmetrical in the east but towards the west they become symmetrical and then more rounded and degraded in appearance. This probably represents the transition from east-going storm-wave dominated transport in the west to local west-going tidally dominated transport in the east.

Underwater photograph on the seabed to the south-west of Sandy Riddle(see Fig. 52c).Although there is a 'sprinkling' of fine-medium carbonate sand between them, the boulders are extremely heavily encrusted with barnacles and serpulids and there is clearly no build-up of sediment. Note also the preponderance of grazing echinoids. Picture taken at 'slack' tide, water depth approx. 70m. Field of view approx. 1m.

SOUTH RONALDSAY
Pentiand Skerries & & & & & & & & & & & & & & & & & & &

Scale 1:100,000 <u>kms 3</u> Figure 74 Bathymetry of Sandy Riddle based on survey from RRS John Murray July 1977

17

Figure 76 Pinger profile across the carbonate sandbank, Sandy Riddle. Line A (see Fig 75).Sandwaves 10 m high have steep sides facing east.

Figure 77 Pinger profile across the carbonate sandbank, Sandy Riddle. Line B (see Fig. 75). Sandwaves are 10m high and have steep sides facing west.

Figure 78 Pinger profile across the carbonate sandbank, Sandy Riddle. Line C (see Fig. 75). Sandwaves are 10m high and have steep sides facing west.

- 367 -

Underwater photograph of a carbonate megaripple on the south-west flank of the sandbank, Sandy Riddle. The feature has a relief of 30-50cm. Note the reworked lip on its crest(picture taken just after 'slack' tide. Water depth approx. 50m.

Figure 81 Sparker line through the carbonate sandbank, Sandy Riddle, showing that the feature consists entirely of superficial sediment approx. 30m thick at this location (see Fig 52c & Fig. 75).

- 369 -

Figure 85 Consub photograph taken in St Magnus Bay, West Shetland deposit (see Fig. 84). Water depth 108m. Rocks are extensively encrusted by serpulids and other calcareous organisms. Also heavily populated by echinoids and crustacea. Field of view approx 50cm.

Figure 86 Consub photograph taken in St Magnus Bay, West Shetland deposit (see Fig. 84). Water depth 108m. Besides serpulid encrustations, barnacles are fairly common.

Field of view approx. 30 cm.

Consub photograph taken in St. Magnus Bay, West Shetland deposit (see Fig. 84). Water depth 100m. Encrusted with serpulids and heavily populated by echinoids, ophiuroids and asteroids. *Field of view approx. 70cm.*

Figure 88

Consub photograph of large accumulation of shell gravel, in St Magnus Bay at 100m.Debris is very discoloured and may be relict from times of lower sealevel. Probably comprises mainly <u>Modiolus</u> and <u>Glycymeris</u>.

Field of view approse. 70 cm (foreground).

Consub photograph of asymmetrical (? tidal-current generated) carbonate megaripples east of Foula, West Shetland deposit (see Figs 83 & 84). Heights approx. 30cm and wavelengths 1m. Note small-scale ripples in troughs at right-angles to the megaripples. Water depth 38m.

Figure 91 Consub photograph of carbonate megaripples east of Foula. See above.

Figure 92 Consub photograph of carbonate megaripples east of Foula. See Fig. 90 for description.

Figure 93 Consub photograph of carbonate sediment in the vicinity of the megaripple field east of Foula, West Shetland deposit (see Figs 83 & 84). Water depth 38m.

- 377 -

Figure 96 Side-scan sonar record across Shetland - Out skerries deposit, east of Whalsey, showing linear sand/gravel patches developed between rock outcrops.

Figure 97 Consub photograph of the seabed west of Helli Ness, Shetland - Out Skerries deposit (see Figs 83 & 84). The carbonate gravel is spread thinly over a cobbly base. Numerous whole valves are also visible. Note the fragment of the branching coral Lophelia (top right). Water depth 96m.

Figure 101 Variation in average barnacle content between carbonate deposits on the SCS. Values represent % in identifiable carbonate fraction

Variation in average bivalve content between carbonate deposits on the SCS.

Values represent % in identifiable carbonate fraction

Variation in average echinoid content between carbonate deposits on the SCS. Values represent % in identifiable carbonate fraction

.

Variation in average serpulid content between carbonate deposits on the SCS. Values represent % in identifiable carbonate fraction

Figure 105 Variation in average bryozoan content between carbonate deposits on the SCS. Values represent % in identifiable carbonate fraction

.

Figure 106 Variation in average foraminiferal content between carbonate deposits on the SCS. Values represent % in identifiable carbonate fraction

- 389 -

- 390

ł

- 391

I.

L

- 394

T

- 395 -

- 399 -

- 404 -

- 406 -

- 407 -

- 410

- 413 -

Figure 145 Subsample from 58-03/2 (East Orkney deposit): heavily bored bivalve fragments. Yielded a ¹⁴C age of 4570 yrs BP.

Figure 146 Subsample from 53-03/2 (East Orkney deposit): rounded bivalve fragments. Yielded a ¹⁴C age of 4410 yrs. BP.

Figure 147 Subsample from 58-03/2 (East Orkney deposit): angular bivalve fragments. Yielded a ¹⁴C age of 3780 yrs BP. NB. The echinoid fragment is a contaminant which was removed prior to dating.

Figure 148 Subsample from 58-03/2 (East Orkney deposit): unbored relatively unabraded barnacle fragments. Yielded a ¹⁴C age of 3290 yrs BP.

Figure 149 See below.

Figure 150 (&149) Subsample from 58-03/2 (East Orkney deposit): heavily stained and/or abraded barnacle fragments. Yielded a ¹⁴C age of 3270 yrs BP.

Figure 151 Subsample of 58-03/2 (East Orkney deposit); serpulid fragments. Yielded a ¹⁴C age of 4060 yrs BP.

- 420

1

- 423

1

TABLES

Area	Reference
Sutherland	Ritchie & Mather 1969
Caithness	Mather 1970
Lewis and Harris	Ritchie & Mather 1970
Barra and Uist	Ritchie 1971
West Inverness-shire & N. Argyll	Mather & Crofts 1972
Wester Ross	Crofts & Mather 1972
Mainland Argyll	Crofts & Ritchie 1973
Orkney	Mather et al. 1974
Shetland	Mather & Smith 1974
Islay, Jura and Colonsay	Ritchie & Crofts 1974
Northern Inner Hebrides	Mather et al. 1975

TABLE 1. Main sources of beach data

Grain size (GaSz)

<u>Dia(mm)</u>	Description	Numerical Value
.0625125	Very fine sand	1
.12525	Fine sand	2
.25 - 1	Medium sand	3
1 - 2	Coarse sand	4
2+	Grave1	5

ROUNDNESS (Ro	und)	DEGREE OF BORING (Bor)							
Description	Numerical Value	Description	Numerical Value						
very angular	1	No borings	0						
angular	2	Little boring	1						
subangular	3	Some boring	2						
subrounded	4	Moderate boring	3						
rounded	5	Heavily bored	4						
well rounded	6								
POLISH (<u>Pol)</u>	SORTIN	IG (Sort)						
Description	Numerical Value	Description	Numerical Value						
No polish	0	Poorly sorted	1						
Little polish	1	Moderately sort	ed 2						
Some polish	2	Well sorted	3						
Mod polish	3	MATURTTY IN	NEV /M See p 25)						
Well polished	4	<u>MATURITY IN</u>	Numerical Value						
		Description							
STAINING	<u>(Stain)</u>	Extremely high	> 3						
Description	Numerical Value	Very high	12-13						
		High	11-12						
No staining	0	Moderate	10-11						
Little staini	ng 1	Low	9-10						
Some staining	2	Very low	8-9						
Moderate stai	ning 3	Extremely low	<8						
Heavily stain	ed 4	_							

.

TABLE 2. Summary of scales used for describing textural characteristics of bioclastic carbonate grains.

Composition

		Barn	<u>Biv</u>	Ech	<u>Gast</u>	Serp	Bry	<u>C. Alg</u>	Foram	Ditrupa
Iona Spit	%	42	27	11	7	3	5	0	١	-
Hebridean Slope	%	1	37	9	4	1	19	0	6	22
Northern Slope	%	2	42	7	3	6	12	0	7	18

Texture

.

•	<u>Grv</u>	Sand	Mud	Grisz	Sort Rnd	<u>Po1</u>	<u>Stain</u>	Bor	M
Iona Spit	2%	95%	3%	3.5	1.0 4.0	3.0	4.0	0	11.25
Heb ridean Slop e	6%	94%	N	4	2.0 3.0	3.0	1.0	0.8	11.96
Northern Slope	8%	92%	N	3.1	1.9 3.0	2.1	1.6	1.1	9.6

TABLE 3. Petrographic averages of some areas of carbonate-rich (50-75% CaCO₃) sediment,

CDSS NO.	NAME OF DEPOSIT	SYNBOL	WATER	DEPTH		BARNACLES	S RIVALIVES		S ECHINOIDS	S CASTINDODS		SERPULIOS	1010		CALC SALC	ALGAE	FORME		CARB		GRÅVEL		SAND	* Q		GN S2		SORT		ROUND		POL		STAIN	ava	una.	MATI INI (1	URITY DEX N)
			Deposit >755	×755	×755	< 75S	×755	¢755	251 ×	> 75%	<751	*75%	× 755	< 75%	×75%	, <u>1</u> 5,	*755 *755	, 75£	<75£	>75%	<75%	×75%	<75%	×75%	~75\$ >75>	<75X	×75X	<75X	×75£	×75X	×75£	<75 X	>75%	<75 %	×75%	<75X	×75X	<75 X
1 2 3 4	Gulf of Corryvreckan Passage of Tiree Hawes Bank Sound of Eigg	00 PT HB SE	150 58 58 21	92 57 43	14 45 41 43	30 19 34	68 29 23 32	14	1 4 4 4 2 3 4	3 6 4	4 10 2	3 7 3 2 14 6 3	9 6 2 2 2	10 4 3	1 2 1 6		0 3 2 1 3 1 3	85 91 83 90	54 46 48	65 30 15 31	15 34 24	35 67 85 64	69 65 63	N 3 1 N 5 1	4.9 6 3.0 1 3.0 2 3.9	5 3.2 3.3 5 3.2	2.0 1.0 1.9	1.3 1.2 1.2	3.0 3.2 5.0 3.0	2.3 3.6 2.3	3.0 2.5 4.0 2.0	1.0 2.8 2.1	2.0 2.9 4.0 3.0	2.6 2.2 1.9	1.0 1.8 1.0 1.0	2.0 1.0 1.2	9.75 10.75 14.10 9.75	9.60 10.25 8.45
67	Sligachan - Scalpay Rubha Nan Clach Shiant	RA RU Si	16 50 50	55	51	34	24	"	4 6	8	3	82	3	8	1	۱	15	86 85 86	31	21	39	78	58	2	2 3.1	3 2.8	1.0	1.8	2.5	2.0	1.0	2.0	2.0	0.5	2.0	0.5	8.60	6.90
8 9 10 11 12 13 14 15 16 17	Southeast Shiant Sandbank Sound of Iona Stanton Banks Barra Head West Hebridean Platform Butt of Lewis Cape Wrath Nun Bank Solan Bank Fair Isle Channel		30 8 137 70 60 64 70 70 70 70 100	138 102 57 65 70 75 115	77 4 15 13 10 27 13 6 6	10 10 6 8 11 7 2	12 33 5 34 5 25 3 41 5 40 5 34 4 40 3 34 34	i0 i0 i9 i3 i3 i5 11 2	3 5 4 3 10 7 6 5 7 0 10 9 5 9	# 5 1 7 5 4 8 5	2 3 4 2 5 4 3 1 1 3 1 1	6 21 9 6 3 13 8 3 9 10 6 15 6 0	H 14 25 12 21 7 17 17 26	9 12 19 15 8 12 12	1 2 1 0 1 0 0 0	0 2 1 0 2 0 0 0	N 2 2 6 11 N 20 5 6 6 7 5 8 2 2 5	80 88 90 87 87 86 84 78 84 84	73 42 39 61 43 47 63	9 7 25 6 15 15 5 21	1 36 3 19 11 19	91 92 75 94 85 84 95 79	95 76 64 96 81 89 81	0 1 1 0 1 1 0 0	4 4.0 3 3.0 0 3.7 N 2.9 N 3.8 0 3.9 0 4.2 3.9	3.5 3.0 3.7 2.4 3.6 3.7 3.5	1.5 1.8 1.4 1.3 1.6 2.3 1.3	1.0 1.3 1.0 2.1 1.4 1.2 1.0	4.3 3.6 4.0 3.5 3.7 3.9 4.5 3.4	4.0 2.3 4.3 2.5 3.8 3.6 2.5	3.0 3.6 3.2 3.6 2.7 2.9 3.3 2.3	3.0 2.3 2.7 3.5 2.7 2.6 1.0	3.0 0.9 0.8 1.0 1.7 0.4 0.7 0.8	2.0 1.3 2.3 2.1 1.9 1.2 4.0	2.0 0.2 0.8 0.2 0.7 0.0 1.3 0.5	1.0 1.5 0.3 0.1 1.1 0.9 4.0	12.80 9.09 9.30 9.35 9.35 7.90 10.85 7.70	10.25 7.75 9.90 9.85 10.25 8.85 12.75
18 19 20 21	Fair Isle Sandwave Field North Orkney North Ronaldsay - North Bank East Orkney	FI NO NN EO	100 48 49 61		27 24 16		43 37 51			6 4 2	1:		6 3 16		0 0 0		1 0 7	84 95 98 88		25 32 9		75 68 91	a	0 0), 1	3.9 4.0 2.8) }	1.1 1.0 1.6		5.1 5.3 2.7		3.8 4.0 2.7		1.8 2.3 2.3		1.4 1.3 1.0		11.85 12.40 10.05	
22 23 24	North Ronaldsay - East Bank Ortney Sounds Baas of Linton	NE SI LI	40 20		18 34		50 17			22			3 2		4 2			95 85 96		31 3	2	69 97	98	0 0	4.0 4.0	1	1.3 2.0		4.5 5.0		2.7 4.0		1.3 3.0		1.7 1.0		10.65 13.50	
25 26 27 28 29	Dovie Sand West Pentland Firth Sandy Riddle Moray Firth West Shetland Foula	852228	16 71 51 70 91	77 78 68 95	28 37 19 9	23 22 21 6	14 3 12 2 14 3 17 4		3 3 6 12	6 5 2 3	5 8 2 17 4 5 3 18	7 21 4 12	7 10 16 8	21 14 5 8	0 C 0 C 0 C		3 3 1 0 1 13 7 14	65 94 96 86 84 86	66 67 60 47	18 34 12 24	10 40 11 16	82 9 66 6 88 1 76 1	90 60 88 84	N 1 0 (N 1.(N 1	N 3.7 0 3.9 0 3.3 N 3.8	2.5 3.4 3.0 3.2	1.2 1.8 1.0 1.3	1.0 2.3 1.0 1.3	3.9 4.3 3.0 3.6	2.0 3.1 2.0 2.8	3.4 3.9 2.6 1.8	4.0 3.0 1.0 2.1	2.8 2.4 1.4 2.4	0.0 2.3 2.5 1.8	1.0 0.4 1.8 2.6	0.0 0.8 4.0 2.1	11.25 11.40 9.35 11.40	6.25 10.65 11.00 9.95
31 32 33	Northeast Shetland Shetland - Out Skerries Yell Sound	ST SX SS	100 64 74	42 73)) 5	13	16 54 59 51	12	7 15	4	5 14 3 11	4	6 5	3 10	0 0		7 14 5 10	85 85 87	69 57	15 14	15 7	85 (86)	81 92	N A N 1	4 3.8 1 3.5	3.0 3.3	1.3 1.0	1.3 1.3	3.4 2.7	2.9 2.1	2.1 1.3	2.3 2.0	2.4 1.6	1.5 1.5	2.1 3.3	2.0 2.3	10.85 9.20	9.85 9.00
	REGIONAL AVERAGES											i																										
	Inner Hebrides (exclud. CO) Hebridean Shelf Northern Shelf Orkney (N) Orkney (E-S) & Moray Firth Shetland (W&E)		47 83 80 49 63 82	62 91 87 74 67	45 11 13 26 25 10	29 9 7 22 10	27 4 33 4 37 4 40 43 3 45 5	4 4 9 7 3 8 5 9 1 10	4 6 7 9	6 7 6 5 4 4	6 11 5 19 7 14 4 1 4 1	6 11 8 11	3 18 17 4 12 8	6 14 11 17 5	3 2 1 1 0 0 0 0 0 0	2	1 3 3 10 5 6 1 5 5 7 13	86 88 83 97 88 85	45 54 51 64 58	24 12 14 29 21 18	28 13 16 16 13	73 88 86 71 80 82	64 83 84 84 86	3 0 0 0 N	6 3.7 4 3.4 0 4.0 4.0 N 3.4 1 3.7	3.1 3.2 3.6 3.0 3.2	1.1 1.6 1.6 1.1 1.4 1.3	1.4 1.4 1.2 1.4 1.4	3.4 3.9 3.9 5.2 3.5 3.2	2.6 3.3 3.3 2.4 3.2	2.4 3.4 2.8 3.9 3.3 1.9	2.0 2.7 2.1 2.7 2.4	3.0 1.4 0.9 2.0 2.2 2.4	1.8 1.9 2.4 1.6 1.6	1.5 0.8 0.6 1.4 1.1 2.3	1.2 0.7 2.0 1.6 2.3	10.80 10.14 8.95 12.13 10.51 10.62	8.80 9.44 10.62 9.30 10.60

- Table 4. Summary of petrographic data for carbonate deposits (> 75% $CaCO_3$) and surrounding sediments (<75% $CaCO_3$).
- NB. Figures quoted are normally'averages'from several samples. However they are not statistically rigorous (see pp. 31-32).

N means <1%

RANK	DEPOSIT	% BARNACLES	ENVIRONMENT	MAIN INFLUENCE
1 2 3 4 5 6 7	Rubha Nan Clach Passage of Tiree Sound of Eigg Hawes Bank Sandy Riddle Baas of Linton Wast Pentland Firth	51 45 43 41 37 34 28	Atlantic influenced tidal coastal platform Atlantic influenced tidal passage, platform Tidal Channel - some Atlantic influence Atlantic dominated coastal shoal Tidal coastal sandbank, N. Sea influenced Tidal coastal sandbank, N. Sea influenced	COASTLINE DOMINATED
8= 8= 10 11 12 13	Cape Wrath North Orkney N. Ronaldsay North Bank Moray Firth Orkney Sounds East Orkney	27 27 24 19 18 16	Atlantic influenced tidal coastal shelf Atlantic dominated tidal coastal platform Tidal, coastal sandbank, Atlantic & N. Sea influenced North Sea dominated, tidal, coastal shelf Tidal channels - some N. Sea influence North Sea dominated, tidal coastal platform	CT
14 15 16= 18 19 20 21= 21= 23 24	Barra Head Gulf of Corryvreckan West Hebridean Platform Nun Bank Shetland-Out Skerries Butt of Lewis West Shetland Solan Bank Fair Isle Channel Yell Sound Stanton Banks	15 14 13 13 11 10 9 6 6 5 4	Atlantic dominated tidal platform Deep tidal channel Atlantic dominated platform Atlantic dominated platform Atlantic dominated shoal N. Sea & NE Atlantic dominated platform Atlantic dominated tidal platform Atlantic dominated platform Atlantic dominated offshore shoal Atlantic dominated offshore tidal platform Tidal channel-NE Atlantic & N. Sea influenced Atlantic dominated offshore shoal	COASTAL

• ·

TABLE 5.Carbonate deposits and their environments ranked by
barnacle content.

.

- 42:8 -

•

Accumulation site (sand banks)	Ave % Barnacles	'Upstream'	Ave % Barnacles
North Ronaldsay - north bank	24	North Orkney	27
Sandy Riddle	37	West Pentland Firth East Orkney	37 16

TABLE 6.. Variation in barnacle content between apparent sites of carbonate accumulation and sediment supplying them.

Carbonate sandbank	Ave Stain	Nearby carbonates	Ave Stain
Baas of Linton	3.0	Orkney Sounds	1.3
Sandy Riddle	2.4	Moray Firth	1.4
North Ronaldsay - north bank	2.3	North Orkney	1.8

TABLE 7. Variation in degree of staining between carbonate sandbanks and surrounding, or nearby carbonate sediment.
RANK	DEPOSIT	6 BIVALVES	ENVIRONMENT	M/A IN
1	Gulf of Corryvreckan	68	Deep tidal channel	
2	Orkney Sounds	60	Tidal channels, some N. Sea influence	٨
3	Yell Sound	59	Tidal channel, NE Atlantic & N. Sea influenced	T
4	East Orkney	51	N. Sea dominated tidal coastal platform & shelf	N N
5=	Baas of Linton	47	Tidal coastal sandbank, N. Sea influenced	Ĕ
5=	West Shetland	47	Atlantic dominated platform	
7	Shetland-Out Skerries	46	N. Sea & N.E. Atlantic dominated platform	ЗË.
8=	West Pentland Firth	44	Tidal passage, Atlantic dominated	о Б
8=	Moray Fîrth	44	N. Sea dominated tidal coastal shelf	B
10	North Orkney	43	Atlantic dominated tidal coastal platform	
11	Butt of Lewis	41	Atlantic dominated tidal platform	¥
12=	Cape Wrath	40	Atlantic influenced tidal coastal shelf	1
12=	Solan Bank	40	Atlantic dominated offshore shoal	1
14	N. Ronaldsay North Bank	37	Tidal coastal sandbank, Atlantic & N. Sea influenced	
15=	Nun Bank	34	Atlantic dominated shoal	
15=	Fair Isle Channel	34	Atlantic dominated offshore tidal platform	
15=	Barra Head	34	Atlantic dominated tidal platform	
18	Stanton Banks	33	Atlantic dominated offshore shoal	
19=	Sandy Riddle	32	Tidal coastal sandbank, N. Sea influenced	٨
19=	Sound of Eigg	32	Tidal channel, some Atlantic influence	
21	Passage of Ťiree	29	Atlantic influenced tidal passage, platform	N N
22	West Hebridean Platform	ı 25	Atlantic dominated platform	ĔL
23	Rubha Nan Clach	24	Atlantic influenced tidal coastal platform	ΞD
24	Hawes Bank	23	Atlantic dominated coastal shoal	EOGR/
	TABLE 8	Carbonate den	osits and their environments ranked by	30

TABLE 8.

Carbonate deposits and their environments ranked by bivalve content.

MAIN INFLUENCE

L.

TIDAL CURRENT

 \mathbf{V}

1 430

T

RANK	DEPOSIT %	ECHINOIDS	ENVIRONMENT	MAIN INFLUENCE
1 = 1 = 3 4 5= 5= 7 8	West Hebridean Platform Yell Sound Shetland-Out Skerries Nun Bank Solan Bank Fair Isle Channel West Shetland Butt of Lewis	13 13 12 10 9 9 8 7	Atlantic dominated platform Tidal channel, NE Atlantic & N. Sea influenced N. Sea & N.E. Atlantic dominated platform Atlantic dominated shoal Atlantic dominated offshore shoal Atlantic dominated offshore tidal platform Atlantic dominated platform	OPEN ATLANTIC. OFFSHORE. NON TIDAL.
9 10= 10= 10= 10= 15= 15= 15= 15= 15=	Moray Firth Stanton Banks Cape Wrath North Orkney Orkney Sounds Baas of Linton Passage of Tiree Hawes Bank Rubha Nan Clach Barra Head East Orkney	6 5 5 5 5 5 4 4 4 4 4	N. Sea dominated tidal coastal shelf Atlantic dominated offshore shoal Atlantic influenced tidal coastal shelf Atlantic dominated tidal coastal platform Tidal channels-some N. Sea influence Tidal coastal sandbank, N. Sea influenced Atlantic influenced tidal passage, platform Atlantic dominated coastal shoal Atlantic influenced tidal coastal platform Atlantic dominated tidal platform N. Sea dominated, tidal, coastal platform	FSHORE, ATLANTIC EFFEC
15= 21= 21= 23 24	West Pentland Firth Sound of Eigg Sandy Riddle N. Ronaldsay North Bank Gulf of Corryvreckan	4 3 3 2 1	a shelf Tidal passage, Atlantic dominated Tidal channel, some Atlantic effect Tidal coastal sandbank, N. Sea influenced Tidal, coastal sandbank, Atlantic & N. Sea influenced Deep tidal channel	COASTAL. TIDAL.

TABLE 9.Carbonate deposits and their environments ranked
by echinoid content.

.

				10
1	West Hebridean Platform	11	Atlantic dominated platform	
2=	Rubha Nan Clach	8	Atlantic influenced tidal coastal platform	
2=	Solan Bank	8	Atlantic dominated offshore shoal	
4	Butt of Lewis	7	Atlantic dominated tidal platform	
5=	Passage of Tiree	6	Atlantic dominated coastal passage/platform	
5=	Sound of Eigg	6	Tidal channel - some Atlantic influence	
5=	Stanton Banks	6	Atlantic dominated offshore shoal	
5=	North Orkney	6	Atlantic dominated tidal coastal platform	
5=	West Pentland Firth	6	Tidal passage, Atlantic dominated	
10=	Barra Head	5	Atlantic dominated - tidal platform	
10=	Cape Wrath	5	Atlantic influenced tidal coastal shelf	
10=	Fair Isle Channel	5	Atlantic dominated offshore tidal platform	
10=	Sandy Riddle	5	Tidal coastal sandbank, N. Sea influenced	NO
14=	Hawes Bank	4	Atlantic dominated coastal shoal	RE
14=	Nun Bank	4	Atlantic dominated shoal	NL.
14=	N. Ronaldsay North Bank	4	Tidal, coastal sandbank, Atlantic & N. Sea influenced	
14=	Shetland-Out Skerries	4	N. Sea & NE Atlantic dominated platform	
18=	Gulf of Corryvreckan	3	Deep tidal channel	
18=	West Shetland	3	Atlantic dominated platform	
20=	East Orkney	2	N. Sea dominated, tidal coastal platform & shelf	
20=	Orkney Sounds	2	Tidal channels, some N. Sea influence	
20=	Baas of Linton	2	Tidal coastal sandbank, N. Sea influenced	
20=	Moray Firth	2	N. Sea dominated tidal coastal shelf	
24	Yell Sound	1	Tidal channel, NE Atlantic and N. Sea	
			influenced	

TABLE 10.Carbonate deposits and their environments ranked
by gastropod content.

.

1

RANK DEPOSIT

% GASTROPODS

ENVIRONMENT

MAIN INFLUENCE

?

NOT RECOGNISABLE

RANK	DEPOSIT	% SERPULIDS	ENVIRONMENT	MAIN INFLUENCE
1	Stanton Banks	36	Atlantic dominated offshore shoal	ATLANTIC.
2	N. Ronaldsay North Bank	29	Tidal, coastal sandbank, Atlantic &	OFFSHORE.
	•		N. Sea influenced	
3	West Hebridean Platform	23	Atlantic dominated platform	\wedge
4	Hawes Bank	22	Atlantic dominated coastal shoal	
5	West Shetland	18	Atlantic dominated platform	
6=	Nun Bank	16	Atlantic dominated shoal	
6=	Solan Bank	16	Atlantic dominated offshore shoal	
8=	Shetland - Out Skerries	14	N. Sea and NE Atlantic dominated platform	
8=	Fair Isle Channel	14	Atlantic dominated offshore tidal platform	
10	North Orkney	13	Atlantic dominated, tidal coastal platform	
11	Sandy Riddle	12	Tidal coastal sandbank, N. Sea influenced	
12	Yell Sound	11	Tidal channel, NE Atlantic & N. Sea influenced	A EF
13=	Barra Head	9	Atlantic dominated tidal platform	EI AI
13=	Cape Wrath	9	Atlantic influenced tidal coastal shelf	IFA .
15=	W. Pentland Firth	8	Tidal passage, Atlantic dominated	
15=	Butt of Lewis	8	Atlantic dominated tidal platform	ND ND
15=	Rubha Nan Clach	8	Atlantic influenced tidal coastal platform	ш <
18	Passage of Tiree	7	Atlantic influenced tidal passage, platform	- R - A
19=	Sound of Eigg	6	Tidal channel, some Atlantic influence	S S
19=	Orkney Sounds	6	Tidal channels, some N. Sea influence	A A
19=	Baas of Linton	6	Tidal coastal sandbank N. Sea influenced	0 0
22	Moray Firth	5	North Sea dominated tidal coastal shelf	
23	East Orkney	4	N. Sea dominated, tidal coastal platform	× •
24	Gulf of Corryvreckan	3	& shelf Deep tidal channel	N. SEA. COASTAL.

.

.

TABLE 11.Carbonate deposits and their environments ranked
by serpulid content.

- 433 -

RANK	DEPOSIT	% BRYOZOA	ENVIRONMENT	MAIN INFLUE	ENCE
1	Fair Isle Channel	26	Atlantic dominated offshore tidal platform	"DEEP"	
2	Barra Head	25	Atlantic dominated tidal platform	OFFSHC	ORE
3	Butt of Lewis	21	Atlantic dominated tidal platform		\sim
4=	Nun Bank	17	Atlantic dominated shoal		T
4=	Solan Bank	17	Atlantic dominated offshore shoal		
6=	Moray Firth	16	N. Sea dominated tidal coastal shelf	1	
6=	East Orkney	16	N. Sea dominated tidal coastal platform & shelf		
8	Stanton Banks	14	Atlantic dominated offshore shoal		
9	West Hebridean Platform	12	Atlantic dominated platform		1
10	Sandy Riddle	10	Tidal coastal sandbank, N. Sea influenced		
11	Gulf of Corryvreckan	9	Deep tidal channel	ы Ш	
12	West Shetland	8	Atlantic dominated platform	E	
13=	West Pentland Firth	7	Tidal passage, Atlantic dominated		5
13=	Cape Wrath	7	Atlantic influenced tidal coastal shelf	- 도 년	
15=	Passage of Tiree	6	Atlantic influenced tidal passage, platform		
15=	North Orkney	6	Atlantic dominated, tidal coastal platform	ы Н	
15=	Shetland - Out Skerries	6	N. Sea & NE Atlantic dominated platform	a	2
18	Yell Sound	5	Tidal channel, NE Atlantic & N. Sea influenced	ER L	5
19=	Rubha Nan Clach	3	Atlantic influenced tidal coastal platform	A A	5
19=	N. Ronaldsay North Bank	3	Tidal, coastal sandbank, Atlantic & N. Sea influenced	3 0	
19=	Orkney Sounds	3	Tidal channels, some N. Sea influence	L	\mathbf{V}
22=	Hawes Bank	2	Atlantic dominated coastal shoal		
22=	Sound of Eigg	2	Tidal channel - some Atlantic influence	"SHALL	.0W"
22=	Baas of Linton	2	Tidal coastal sandbank, N. Sea influenced	INSHOR	RE

1

.

TABLE12.Carbonate deposits and their environments ranked
by bryozoan content.

•

•

1

RANK	DEPOSIT %	FORAMINIFERA	ENVIRONMENT	MAIN INFLUENCE
1 2= 2=	Moray Firth West Shetland Shetland - Out Skerries	8 7 7	N. Sea dominated tidal coastal shelf Atlantic dominated platform N. Sea & NE Atlantic dominated platform	OPEN SHELF. LOWER CURRENTS
2=	East Orkney	7	N. Sea dominated, tidal coastal platform & shelf	
5=	Cape Wrath	6	Atlantic influenced tidal coastal shelf	
5=	Barra Head	6	Atlantic dominated tidal platform	
7=	Butt of Lewis	5	Atlantic dominated tidal platform	
7=	Nun Bank	5	Atlantic dominated shoal	
7=	Fair Isle Channel	5	Atlantic dominated offshore tidal platform	
7=	Yell Sound	5	Tidal channel, NE Atlantic & N. Sea influenced	
11=	Passage of Tiree	3	Atlantic influenced tidal passage/platform	
11=	West Pentland Firth	3	Tidal passage, Atlantic dominated	
13=	Stanton Banks	2	Atlantic dominated offshore shoal	
13=	Solan Bank	2	Atlantic dominated offshore shoal	
15=	Hawes Bank	1	Atlantic dominated coastal shoal	E S
15=	Sound of Eigg	1	Tidal channel, some Atlantic influence	·,
15=	Rubha Nan Clach	1	Atlantic influenced tidal coastal platform	
15=	North Orkney	1	Atlantic dominated tidal coastal platform	Ido S
15=	Orkney Sounds	1	Tidal channels, some N. Sea influence	
15=	Baas of Linton	1	Tidal coastal sandbank, N. Sea influenced	
15=	Sandy Riddle	1	Tidal coastal sandbank, N. Sea influenced	
22=	West Hebridean Platform	0	Atlantic dominated platform	
22=	Gulf of Corryvreckan	0	Deep tidal channel	COASTAL
22=	N. Ronaldsay North Bank	0	Tidal coastal sandbank, Atlantic & N. Sea influenced	HIGH CURRENTS

٠

TABLE 13. Carbonate deposits and their environments ranked by foraminifera content.

1 435 ł

.

٠

RANK	DEPOSIT G	RAIN SIZE	ENVIRONMENT	MAIN INFLUENCE
$1 \\ 2 \\ 3= \\ 3= \\ 3= \\ 7= \\ 7= \\ 7= \\ 11= \\ 11= \\ 11= \\ 11= \\ 17= \\ 17= \\ 19= \\ 19= \\ 21 \\ 22 \\ 23$	Gulf of Corryvreckan Solan Bank Stanton Banks N. Ronaldsay N. Bank Orkney Sounds Baas of Linton Nun Bank Fair Isle Channel North Orkney Sandy Riddle Passage of Tiree Hawes Bank Rubha Nan Clach Cape Wrath West Shetland Shetland - Out Skerries West Hebridean Platform West Pentland Firth Sound of Eigg Yell Sound Moray Firth Barra Head Butt of Lewis	4.5 4.2 4.0 4.0 4.0 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	Deep tidal channel Atlantic dominated offshore shoal Atlantic dominated offshore shoal Tidal coastal sandbank, Atlantic & N. Sea influenced Tidal channels, some N. Sea influence Tidal coastal sandbank, N. Sea influenced Atlantic dominated shoal Atlantic dominated offshore tidal platform Atlantic dominated tidal coastal platform Tidal coastal sandbank, N. Sea influenced Atlantic influenced todal passage/platform Atlantic influenced todal passage/platform Atlantic influenced tidal coastal platform Atlantic influenced tidal coastal platform Atlantic influenced tidal coastal shelf Atlantic influenced tidal coastal shelf Atlantic dominated platform N. Sea & Atlantic dominated platform Tidal passage, Atlantic dominated Tidal channel, some Atlantic influence Tidal channel, NE Atlantic & N. Sea influenced N. Sea dominated tidal coastal shelf Atlantic dominated tidal platform	CURRENT & TRANSPORT EFFECT
24	East Orkney	2.8	N. Sea dominated, tidal coastal platform & shelf	LOWER CURRENTS

.

TABLE14.Carbonate deposits and their environments ranked by
average grain size.

- 436 -

RANK	DEPOSIT	SORTING	ENV IRONMENT	INFLUENCE
1	Solan Bank	2.3	Atlantic dominated offshore shoal	
2=	Gulf of Corryvrechan	2.0	Deep tidal channel	
2=	Baas of Linton	2.0	Tidal coastal sandbank, N. Sea influenced	
4=	Barra Head	1.8	Atlantic dominated tidal platform	
4=	Butt of Lewis	1.8	Atlantic dominated tidal platform	
4=	Sandy Riddle	1.8	Tidal coastal sandbank, N. Sea influenced	
7=	Nun Bank	1.6	Atlantic dominated shoal	
7=	East Orkney	1.6	N. Sea dominated, tidal coastal platform & shelf	
9=	Hawes Bank	1.5	Tidal channel - some Atlantic influence	
9=	Stanton Banks	1.5	Atlantic dominated offshore shoal	2
11	West Hebridean Platform	1.4	Atlantic dominated platform	i
12=	Cape Wrath	1.3	Atlantic influenced tidal coastal shelf	NOT
12=	Fair Isle Channel	1.3	Atlantic dominated offshore tidal platform	
12=	Orkney Sounds	1.3	Tidal channels, some N. Sea influence	RECOGNISABLE
12=	West Shetland	1.3	Atlantic dominated platform	
12=	Shetland - Out Skerries	1.3	N. Sea & NE Atlantic dominated platform	
17	West Pentland Firth	1.2	Tidal passage, Atlantic dominated	
18	North Orkney	1.1	Atlantic dominated, tidal coastal platform	
19=	Passage of Tiree	1.0	Atlantic influenced tidal passage/platform	
19=	Sound of Eigg	1.0		
19=	Rubha Nan Clach	1.0	Atlantic influenced tidal coastal platform	
19=	N. Ronaldsay North Bank	1.0	Tidal coastal sandbank, Atlantic & N. Sea influenced	
19=	Moray Firth	1.0	N. Sea dominated tidal coastal shelf	
19=	Yell Sound	1.0	Tidal channel, NE Atlantic & N. Sea influenced	

TABLE 15.Carbonate deposits and their environments ranked by
sorting (visually assessed)

- 437 -

.

MAIN

RANK	DEPOSIT	ROUNDNESS	ENVIRONMENT	MAIN INFLUENCE
1	N. Ronaldsay North Bank	5.3	Tidal, coastal sandbank, Atlantic & N. Sea influenced	EXPOSURE TO CURRENTS
2	North Orkney	5.1	Atlantic dominated, tidal, coastal platform	STRONG CURRENTS
3=	Hawes Bank	5.0	Atlantic dominated coastal shoal	•
3=	Baas of Linton	5.0	Tidal coastal sandbank, N. Sea influenced	
5=	Solan Bank	4.5	Atlantic dominated offshore shoal	
5=	Orkney Sounds	4.5	Tidal Channels, some N. Sea influence	
7=	Stanton Banks	4.3	Atlantic dominated offshore shoal	E
7=	Sandy Riddle	4.3	Tidal coastal sandbank, N. Sea influenced	E
9	West Hebridean Platform	4.0	Atlantic dominated platform	EX
10=	Nun Bank	3.9	Atlantic dominated shoal	ວ <u>ບ</u>
10=	West Pentland Firth	3.9	Tidal passage, Atlantic dominated	E E
12	West Shetland	3.8	Atlantic dominated platform	
13	Cape Wrath	3.7	Atlantic influenced tidal coastal shelf	
14	Barra Head	3.6	Atlantic dominated tidal platform	
15	Butt of Lewis	3.5	Atlantic dominated tidal platform	IN ISI
16=	Fair Isle Channel	3.4	Atlantic dominated offshore tidal platform	
16=	Shetland - Out Skerries	3.4	N. Sea & NE Atlantic dominated platform	S E
18	Passage of Tiree	3.2	Atlantic dominated tidal passage/platform	
19=	Gulf of Corryvreckan	3.0	Deep tidal channel	
19=	Sound of Eigg	3.0	Tidal channel - some Atlantic influence	L L L L L L L L L L L L L L L L L L L
19=	Moray Firth	3.0	N. Sea dominated tidal coastal shelf	
22=	East Orkney	2.7	N. Sea dominated, tidal coastal platform & shelf	DEGI
22=	Yell Sound	2.7	Tidal channel, NE Atlantic & N. Sea influenced	
22=	Rubha Nan Clach	2.7	Atlantic influenced tidal coastal platform	А

TABLE 16.

Carbonate deposits and their environments ranked by carbonate grain roundness.

.

- 438 -

Rank	DEPOSIT	POLISH	ENVIRONMENT	IN	MAIN FLUENCE
]=	Hawes Bank	4.0	Atlantic dominated coastal shoal	EXPOS	URE TO
1=	N. Ronaldsay North Bank	4.0	Tidal, coastal sandbank, Atlantic & N. Sea influenced	CUR	RENTS
]=	Baas of Linton	4.0	Tidal, coastal sandbank, N. Sea influenced	STRONG	CURRENTS
4	Sandy Riddle	3.9	Tidal coastal sandbank, N. Sea influenced		A
5	North Orkney	3.8	Atlantic dominated tidal coastal platform		Ϋ́Γ
6=	Butt of Lewis	3.6	Atlantic dominated tidal platform		
6=	Barra Head	3.6	Atlantic dominated tidal platform		1
8	West Pentland Firth	3.4	Tidal passage, Atlantic dominated	6	
9	Solan Bank	3.3	Atlantic dominated offshore shoal	Ë	ł
10	West Hebridean Platform	3.2	Atlantic dominated platform	E	1
11=	Gulf of Corryvreckan	3.0	Deep tidal channel	URI	
11=	Stanton Banks	3.0	Atlantic dominated offshore shoal	ວັ	
13	Nun Bank	2.9	Atlantic dominated shoal	0	Ē
14=	Cape Wrath	2.7	Atlantic influenced tidal coastal shelf	Ξ	
14=	East Orkney	2.7	N. Sea dominated, tidal coastal platform & shelf	URE	STH
14=	Orkney Sounds	2.7	Tidal channels, some N. Sea influence	0SI	Ň
17	Moray Firth	2.6	N. Sea dominated tidal coastal shelf	ХÞ	I RI
18	Passage of Tiree	2.5	Atlantic influenced tidal passage/platform	ί.i	l iv
19	Fair Ísle Channel	2.3	Atlantic dominated offshore tidal platform	ц.	p
20	Shetland - Out Skerries	2.1	N. Sea & NE Atlantic dominated platform	ō	EN EN
21	Sound of Eigg	2.0	Tidal channel, some Atlantic influence	ш	RR .
22	West Shetland	1.8	Atlantic dominated platform	RE	13
23	Yell Sound	1.3	Tidal channel, NE Atlantic & N. Sea influenced	ц Ц	_
24	Rubha Nan Clach	1.0	Atlantic influenced tidal coastal platform	ā	1
					λ

1

TABLE 17.

Carbonate deposits and their environments ranked by degree of polish of carbonate grains.

.

439 -

1

RANK	DEPOSIT	STAINING	ENVIRONMENT	MAIN
1	Hawoc Bank	4.0	Atlantic dominated coactal cheal	
1	nawes Dalik Stanton Banka	4.0	Atlantic dominated offehous sheal	DANKS
2=	Stantun Danks	3.0	Allallic dominated offshore shoal	ă CUOAL C
2=	Sound of Elgg	3.0	Tidal channel, some Atlantic influence	SHUALS
<u> </u>	Baas of Linton	3.0	lidai coastal sandbank, N. Sea influenced	$\mathbf{\Lambda}$
5	Passage of liree	2.9	Atlantic influenced tidal passage/platform	•
6	West Pentland Firth	2.8	Tidal passage, Atlantic dominated	
7=	Sandy Riddle	2.4	Tidal coastal sandbank, N. Sea influenced	
7=	West Shetland	2.4	Atlantic dominated platform	I
7=	Shetland - Out Skerries	2.4	N. Sea & NE Atlantic dominated platform	Z,
10=	N. Ronaldsay North Bank	2.3	Tidal coastal sandbank, Atlantic & N. Sea	0 I
			influenced	AT
10=	East Orkney	2.3	N. Sea dominated, tidal coastal platform &	
••		• •	shelf	, Ă
12=	Gulf of Corryvreckan	2.0	Deep tidal channel	Ш
12=	Rubha Nan Clach	2.0	Atlantic influenced tidal coastal platform	¥'
14	North Orkney	1.8	Atlantic dominated tidal coastal platform	کد ۱۰۰۱
15	Cape Wrath	1.7	Atlantic influenced tidal coastal shelf	5
16	Yell Sound	1.6	Tidal channel, NE Atlantic & N. Sea influenced	щ
17	Moray Firth	1.4	N. Sea dominated tidal coastal shelf	RE RE
18	Orkney Sounds	1.3	Tidal channels, some N. Sea influence	<u> </u>
19.	Butt of Lewis	1.0	Atlantic dominated tidal platform	
20	Barra Head	0.9	Atlantic dominated tidal paltform	~ ↓ ~
21=	West Hebridean Platform	0.8	Atlantic dominated platform	
21=	Fair Isle Channel	0.8	Atlantic dominated offshore tidal platform	SOUNDS
23	Solan Bank	0.7	Atlantic dominated offshore shoal	å
24	Nun Bank	0.4	Atlantic dominated shoal	PLATFORMS

•

TABLE 18.

Carbonate deposits and their environments ranked by degree of staining of carbonate grains.

- 440 -

.

.

RANK	DEPOSIT	DEGREE OF BORING	ENVIRONMENT	MAIN INFLUENCE
1	Yell Sound	3.6	Tidal channel, NE Atlantic & N. Sea influenced	
2	West Shetland	2.6	Atlantic dominated platforms	SHETLAND
3	Shetland - Out Skerries	2.1	N. Sea & NE Atlantic dominated platform	^
4=	Rubha Nan Clach	2.0	Atlantic influenced tidal coastal platform	
4=	Stanton Banks	2.0	Atlantic dominated offshore shoal	
6=	Passage of Tiree	1.8	Atlantic influenced tidal passage/platform	I
6=	Moray Firth	1.8	N. Sea dominated tidal coastal shelf	ł
8	Orkney Sounds	1.7	Tidal channels, some N. Sea influence	
9	North Orkney	1.4	Atlantic dominated tidal coastal platform	1
10=	Solan Bank	1.3	Atlantic dominated offshore shoal	ORKNEY
10=	N. Ronaldsay North Bank	1.3	Tidal coastal sandbank, Atlantic & N. Sea influenced	AL
12=	Gulf of Corryvreckan	1.0	Deep tidal channel	
12=	Hawes Bank	1.0	Atlantic dominated coastal shoal	H
12=	Sound of Eigg	1.0	Tidal channel, some Atlantic influence	L R
12=	East Orkney	1.0	N. Sea dominated tidal coastal platform & shelf	Ö I
12=	Baas of Linton	1.0	Tidal coastal sandbank. N. Sea influenced	E I
12=	West Pentland Firth	1.0	Tidal passage, Atlantic dominated	e.
18	West Hebridean Platform	0.8	Atlantic dominated platform	HEBRIDES
19	Cape Wrath	0.7	Atlantic influenced tidal coastal shelf	&
20	Fair Isle Channel	0.5	Atlantic dominated offshore tidal platform	NORTHERN
21	Sandy Riddle	0.4	Tidal coastal sandbank, N. Sea influenced	SHELF
22=	Barra Head	0.2	Atlantic dominated tidal platform	
22=	Butt of Lewis	0.2	Atlantic dominated tidal platform	1
22=	Nun Bank	0.2	Atlantic dominated shoal	\checkmark

TABLE 19.

Carbonate deposits and their environments ranked by degree of boring.

- 441

· 1

RANK	DEPOSIT	MATURITY INDEX	ENVIRONMENT	MAIN INFLUENCE
1	Hawes Bank	14.10	Atlantic dominated coastal shoal	HIGH EXPOSURES
2	Baas of Linton	13.50	Tidal coastal sandbank, N. Sea influenced	TO CURRENTS.
3	Stanton Banks	12.80	Atlantic dominated offshore shoal	STRONG CURRENTS
4	N. Ronaldsay North Ban	k 12.40	Tidal coastal sandbank, Atlantic & N. Sea influenced	ACCUMULATION SITES
5	North Orkney	11.85	Atlantic dominated tidal coastal platform	_
6=	Sandy Riddle	11.40	Tidal coastal sandbank, N. Sea influenced	\wedge
6=	West Shetland	11.40	Atlantic dominated platform	ł
8	West Pentland Firth	11.25	Tidal passage, Atlantic dominated	0
9=	Solan Bank	10.85	Atlantic dominated offshore shoal	₽-1
9=	Shetland - Out Skerries	10.85	N. Sea & NE Atlantic dominated platform	E E
11	Passage of Tiree	10.75	Atlantic influenced tidal passage/platform	SU
12	Orkney Sounds	10.65	Tidal channels, some N. Sea influence	04
13	East Örkney	10.05	N. Sea dominated, tidal coastal platform/shelf	Ш
14=	Gulf of Corryvreckan	9.75	Deep tidal channel	ну
14=	Sound of Eigg	9.75	Tidal channel, some Atlantic influence	
16=	Butt of Lewis	9.35	Atlantic dominated tidal platform	R E
16=	Cape Wrath	9.35	Atlantic influenced coastal shelf	UR GR
16=	Moray Firth	9.35	N. Sea dominated coastal shelf	
19	West Hebridean Platform	9.30	Atlantic dominated platform	Λ
20	Yell Sound	9.20	Tidal channel, NE Atlantic & N. Sea influenced	EXPOSURE TO
21	Barra Head	9.09	Atlantic dominated tidal platform	CURRENTS.
22	Rubha Nan Clach	8.60	Atlantic influenced tidal coastal platform	WEAKER CURRENTS.
23	Nun Bank	7.90	Atlantic dominated shoal	SLOWER, LOCAL
24	Fair Isle Channel	7.70	Atlantic dominated offshore tidal platform	TRANSPORT.

TABLE 20.

Carbonate deposits and their environments ranked by Maturity Index (M)

- 442 -

	Deposit		QGN 52	∆ sort	∆ round	D 0L	A STAIN	∆ BOR	۸
1.	Gulf of Corryvreckan		-	-	-	-	-	-	-
2.	Passage of Tiree		+0.6	-0.3	+0.9	+1.5	+0.3	-0.2	+1.15
3.	Hawes Bank		+0.5	+0.3	+1.4	+1.2	+1.8	0.0	+3.85
4.	Sound of Eigg		+0.3	-0.2	+0.7	+0.1	+1.1	-0.2	+1.30
5.	Sligachan - Scalpay		•	•	Insuff	icient d	ia ta	-	-
6.	Rubha Nan Clach		+1.0	-0.8	+0.5	-1.0	+1.5	+1.5	+1.7
7.	Shiant		-	-	Insuff	icient d	lata	-	-
8.	Southeast Shiant Sandbank		-	-	Insuff	icient d	lata	-	-
9.	Sound of Iona		-	-	Insuff	icient d	lata	-	-
10.	Stanton Banks	*	+0.5	+0.5	+0.3	0.0	-1.0	+1.0	+2.55
11.	Barra Head		0.0	+0.5	+1.3	+1.3	- 1.4	-1.3	+1.36
12.	West Hebridean Platform	*	0.0	+0.4	-0.3	+0.5	-1.5	+0.5	-0.60
13.	Butt of Lewis		+0.5	-0.3	+1.0	+0.1	-1.1	+0.1	-0.50
14.	Cape Wrath		+0.2	-0.1	-0.1	0.0	-0.2	-0.4	-0.90
15.	Nun Bank		+0.2	+0.4	+0.3	+0.3	-0.8	+0.9	0.95
16.	Solan Bank	*	+0.7	+1.3	+2.0	+2.3	- 3.3	-2.7	-1.90
17.	Fair Isle Channel		A11 s	ediments	in vici	nity are	>75% Ca	C0_	
18.	Fair Isle Sandwave Field			н			6	3	
19.	North Orkney				ti 11	48			
20.	N. Ronaldsay North Bank		н	98	н н	11			(-0.55)
21.	East Orkney					11	H		、 ,
22.	N. Ronaldsay East Bank		н	н	н н	н	и		
23.	Orkney Sounds		w	*	н н	**			
24.	Baas of Linton			н	н М	11	н		(-2.85)
25.	Dowie Sand		-	-	Insuff	icient d	iata	-	-
26.	West Pentland Firth	*	+1.2	+0.2	+1.9	-0.6	+2.8	+1.0	+4.00
27.	Sandy Riddle		+0.5	-0.5	+1.2	+0.9	+0.1	-0.4	+0.75
28.	Moray Firth	*	+0.3	+0.0	+1.0	+1.6	-1.1	-2.2	-1.65
29.	West Shetland		+0.6	+0.0	+0.8	-0.3	+0.6	-0.5	+1.45
30.	Foula		-	-	Insuff	icient o	ata	-	-
31.	Northeast Shetland		-		Insuff	icient o	ata	-	-
32.	Shetland - Out Skerries		+0.8	0.0	+0.5	-0.2	+0.9	+0.1	+1.00
33.	Yell Sound		+0.2	-0.3	+0.6	-2.7	+0.1	+1.0	+0.20

<u>NB</u>. (a) \triangle TEX = TEX(75) - TEX(50)

(b) *implies that data on surrounding carbonate rich (50-75%) sediment is very limited - eg. only one sample.

(c) values for M in brackets are difference between M for the carbonate sandbank and surrounding carbonate sediments.

TABLE 21. DIFFERENCES BETWEEN TEXTURAL PROPERTIES OF DEPOSITS (> 75% $CaCO_3$) AND SURROUNDING SEDIMENTS (50-75% $CaCO_3$)

	DEPTH	BARN	BIV	ECH	GAST	SERP	BRY	CALAL	FORAM	GNSI	SORT	ROUND	POL	STAIN	BOR	MI	
DEPTH		-0.5598 P=0.002	0.1878 P=0.190	0.0732 P=0.367	0.0166 P≠0.469	0.2993 P=0.078	0.4346 P=0.017	-0.4912 P=0.007	0.2049 P=0.168	0.2226 P≖0.148	0.2120 P=0.159	-0.2844 P=0.089	-0.1419 P=0.254	-0.1177 P=0.292	0.1012 P=0.319	-0.1905 P=0.186	
BARN			-0.4323 P=0.017	-0.5794 P=0.002	0.1444 P=0.250	-0.2863 P=0.087	-0.5974 P=0.001	0.4448 P=0.015	-0.4290 P=0.018	0.0726 P=0.368	-0.3043 P=0.074	0.0737 P=0.366	0.0534 P=0.402	0.5587 P=0.002	-0.0917 P=0.335	0.2768 P=0.095	
BIV				0.0019 P=0.497	-0.6517 P=0.000	-0.4322 P=0.017	-0.0939 P=0.331	-0.0295 P=0.446	0.1675 P=0.217	0.0950 P=0.329	0.1647 P=0.221	-0.1657 P=0.220	-0.1128 P=0.300	-0.1220 P=0.285	0.2979 P=0.079	-0.0485 P=0.411	
ECH					0.1225 P=0.284	0.2247 P=0.146	0.2397 P=0.130	-0.3168 P=0.066	0.3819 P=0.033	-0.0821 P=0.351	-0.0389 P=0.429	-0.1649 P=0.221	-0.3580 P=0.043	-0.4774 P=0.009	0.2701 P=0.101	-0.3564 P=0.044	
GAST						0.2873 P=0.087	0.1652 P≠0.220	0.0047 P=0.491	-0.3717 P=0.037	0.0620 P=0.387	0.0547 P=0.400	0.0939 P=0.331	0.1054 P=0.312	-0.2042 P=0.169	-0.2949 P=0.081	-0.1306 P=0.271	
SERP							0.01 98 P=0. 46 3	-0.3452 P=0.049	-0.2085 P=0.164	0.2820 P=0.091	-0.0455 P=0.416	0.4866 P=0.008	0.2142 P=0.157	0.1199 P=0.288	0.1242 P=0.282	0.3806 P=0.033	
BRY								-0.3637 P=0.040	0.4741 P=0.010	-0.3919 P=0.029	0.3990 P=0.027	-0.2115 P=0.161	0.1080 P=0.308	-0.6501 P=0.000	-0.4644 P=0.011	-0.5190 P=0.005	
CALAL									-0.3346 P=0.055	-0.0018 P=0.497	-0.1435 P=0.252	-0.0523 P=0.404	-0.1284 P=0.275	0.1991 P=0.175	-0.0723 P=0.369	-0.0006 P=0.499	
FORAM										-0.5815 P=0.001	-0.1082 P=0.307	-0.5238 P=0.004	-0.3761 P=0.035	-0.2505 P=0.119	0.1261 P=0.279	-0.4311 P=0.018	
GNS I											0.1364 P=0.263	0.4171 P=0.021	0.0909 P=0.336	0.1257 P=0.279	0.1302 P=0.272	.).2975 P=0.079	
SORT												0.2487 P=0.121	0.4967 P=0.007	-0.2045 P=0.169	-0.4813 P=0.009	0.1400 P=0.257	
ROUND													0.7960 P=0.000	0.1475 P=0.246	-0.2617 P=0.108	0.7057 P=0.000	
POL														0.0888 P=0.340	-0.6058 P=0.001	0.5668 P=J.002	
STAIN															0.2825 P=0.091	0.7353 P=0.000	
80 R																0.1593 P=0.229	
MI																	

TABLE 22. Pearson Correlation Coefficients for average petrographiccharacteristics of carbonate deposits.

.

- 444 -

.

	Factor 1 (35.7%)	Factor 2 (28.8%)	Factor 3 (18.6%)	Factor 4 (16.9%)
Depth	0.58786	0.01700	-0.01399	-0.08850
Barnacles	-0.93494	0.10175	-0.11669	0.25396
Bivalves	0.16519	-0.01582	0.00956	-0.97821
Echinoids	0.56004	-0.17637	-0.24263	0.11011
Gastropods	0.02787	0.04659	0.12466	0.66991
Serpulids	0.48350	0.60192	-0.10093	0.47464
Bryozoa	0.60607	-0.56187	0.49704	0.19210
Calc. Algae	-0.59617	-0.05048	-0.05388	-0.03417
Foraminifera	0.38557	-0.62756	-0.17003	-0.17332
Grain size	0.02548	0.62156	-0.01962	-0.06895
Sorting	0.21615	0.07163	0.64265	-0.12781
Roundness	-0.06213	0.72721	0.44187	0.14133
Polish	-0.09315	0.43493	0.79530	0.08215
Staining	-0.45637	0.38462	-0.24983	-0.05441
Boring	0.14881	0.18823	-0.83918	-0.28298
Factor	1 : Nearshor	e versus offsho	re conditions	
Factor	2 : Maturity	- current acti	vity/age, etc	•
Factor	3 & 4 : Not	determined		

TABLE 23. Factor analysis of petrographical characteristics using a Varimax rotated factor matrix.

- 446 -

	Critical T	nreshold Velocii	ties	Critical t Wave perio	hreshold combinatio	ons of velociti Wave period	es = 15 secs	Empirical "Co equivalent un velocity" (CV with "unidire current only"	mbined idirectional '). Compare this cctional
Mean sediment grain diameter (mm)	Unidirectional current only cm/sec	Wave currents only (5 sec) cm/sec	Wave currents only (10 sec) cm/sec	Wave current velocity cm/sec (WV)	Unidirectional current velocity cm/sec (TV)	Wave Cyrrent velocity cm/sec (WV)	Unidirectional current velocity cm/sec (TV)	5 sec waves CV≖TV+0.3WV	15 sec waves CV=TV + 0.7WV
1.134	26.7	35.0	30.3*	4.00 8.00 12.00 18.0 24.0	27.1 24.6 22.9 21.5 20.3	2.67 4.20 6.00 9.45 10.0 12.0 16.8 20.0 20.9	24.7 24.1 23.1 19.4 18.9 17.5 13.9 12.7 9.3	28.3 27.0 26.5 26.9 27.5	26.6 27.0 27.3 26.0 25.9 25.9 25.7 26.7 23.9
0.771	24.3	31.9	t	4.00 8.00 12.00 18.00 24.00	23.5 22.5 21.3 19.8 17.4	2.67 6.00 10.0 12.0 16.0 20.0	21.6 19.8 17.7 15.9 13.1 10.9	24.7 24.9 24.9 25.2 24.6	23.5 24.0 24.7 24.3 24.3 24.3 24.9
C.363	21.9	27.0	27.0	4.00 8.00 12.0 18.0	21.6 20.4 18.0 15.5	2.67 6.00 10.0 12.0 16.0 20.0	19.4 17.4 15.9 14.3 11.2 9.2	22.8 22.8 21.6 20.9	21.3 21.6 22.6 22.7 22.4 23.2
0.142	15.6	17.3	25.4	4.0 8.0 12.0 18.0	18.3 17.7 16.4 8.1	2.67 6.00 10.00 12.0 16.0 20.0	15.6 14.0 12.5 10.9 9.6 6.9	19.5 20.1 20.0 13.5	17.4 18.2 19.5 19.3 20.8 20.9

* Affected by flume resonance

+ Restricted by flume resonance

1

TABLE 25. Results of the flume experiments of Hammond & Collins(1979) for combined unidirectional and oscillatory current thresholds. Values in the two right hand columns are derived from the empirical formulae for 'CV', originated in this thesis to estimate an equivalent unidrectional current threshold, given a wave current velocity, and a superimposed unidrectional current velocity.

- 447 -

Sieved grain size (mm)	Threshold current for quartz sand (cm/sec)	Threshold current for shell sand (cm/sec)
0.5-1.0	27	13
1.0-2.0	36	20
2.0-4.0	39	22

TABLE 26. Crude threshold velocities for shell sand (sample 58-03/2) and quartz sand, derived at Strathclyde.

,,, _,			W. Fair I	sle Channel	N. Fair Is	le Channel	
		Water Depth	60 m	110 m	60 m	110 m	
Tidal Current (cm/sec)	PN1.0		21	19	32	29	
	^{PS} 1.0		37	33	58	51	
Wave	0.1% exceedance		75	40	75	40	
Current	1.0% exceedance		50	30	50	30	
(cm/sec)	50% exceedance		5	1	5	1	
	0.1%, PN		126	75	137	85	
	0.1% max, PS		268	156	289	174	
CV	1%, PN		91	60	102	71	
	1% max, PS		191	122	212	143	
(cm/sec)	50% PN		28	22	39	30	
	50% max, PS		52	36	73	54	
	PNET		4	1%	3	8%	

Table 27. Tidal, wave, and combined equivalent unidrectional (CV) current velocities in N&W Fair Isle Channel. (For S. Fair Isle Channel see North Orkney).

CASE	OCCURRENCE	INCIDENCE	^{CV} 1.0 (cm/sec)	THRESHO	LD size ^(mm)	SUSPEI GRAIN	VSION(mm) SIZE
				Quartz	Carbonate	Quartz	Carbonate
0.1%, PN	- Extreme winter storm	-Exceeded by at least l wave in 4.	90	2.5	20+	0.26	0.9 - 2.0
0.1% max, P 5	once in 3 years -	-maximum attained	189	12	100+	0.6	2 - 20*
1%, PN	Severe winter storm	-Exceeded by at least 1 wave in 4	59	1.4	4+	0.25	0.77- 1.8
1% max, PS	3-4 times per year	-maximum attained	142	9	100+	0.43	1 - 3
50%, PN	-Exc 'Rough' sea 178 1 w	ceeded by at least wave in 4	23	0.04	0.05	0.04	0.05
50% max, PS	days per year -max	kimum attained	41	0.23	0.5-1	0.23	.5-1

TABLE 28. Particle size thresholds for varying weather conditions in the west Fair Isle Channel at 80-90 m depth. (See also Figs.55-57Tables27,29and Appendix 3 , Tables46 & 47).

- 450 -

		NO	RTH ORKNEY (60	m)	NORTH RO and Nort	NALDSAY north bank h Orkney	(30m)
		Current cm/sec	Carbonate Theshold Gn Sz (mm)	Carbonate Suspension Gn Sz (mm)	Current	Carbonate Threshold Gn Sz (mm)	Carbonate Suspension Gn Sz (mm)
T1 da 1	PN1.0	46	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		53		
ITUAT	^{PS} 1.0	69			80		
	0.1%	75			120		
Wave	1.0%	45			85		
	50%	5			17		
	0.1%, PN	151	100+	1-3	214	100+	2-5
	0.1%max,	PS 300	100+	3+	450	100+	4+
CV.	1%, PN	116	100+	1-2	172	100+	1.5-4.5
LV	1%max, PS	208	100+	2-5	342	100+	3+
	50%, PN	53	1-3	0.6-1.2	77	2	.7-1.5
	50%max,P	s 84	10+	0.7-1.5	132	7-100+	.8-1.8

Table 29. Tidal, wave and combined equivalent unidirectional (CV) velocities, with carbonate particle size thresholds, for North Orkney.

- 451

1

			Nearsh	ore	Offs	hore
		Water Depth	(E. OF SUR 30m	50m	70m	90m
Tidal Current	PN1.0		52	47	40	38
(cm/sec)	^{PS} 1.0		76	69	25	23
Wave	0.1% exceedance		45-125	35-95	25-70	10-45
current	1% exceedance		30-90	20-60	10-40	5-30
(cm/sec)	50% exceedance		8-20	4-10	0-4	0
	0.1%, PN		112-227	96-180	60-723	37-86
	0.1% max, PS		214-461	177-362	117-256	69-177
CV	1%, PN		94-178	79-131	39-81	30-65
(cm/sec)	1% max, PS		168-353	131-254	71-163	53-92
	50%, PN		63-80	53-61	25-30	23
	50% max, PS		101-158	81-100	40-52	38
	PNET		41%			

Table 30. Tidal, wave and combined equivalent unidirectional (CV) bottom current velocities, East Orkney.

		Location Water Depth	WPF 80m	• S-S 70m	SR/CH 50m	SR 20m	EPF/MF 30m	MF 50m
Tidal current	PN1.0		39	139	148	57	21	19
(cm/sec)	^{PS} 1.0		72	224	239	85	39	23
	0.1% exceedance		50	50	25+	75+	45+	25+
Wave current	1% exceedance		35	35	15+	50+	35+	15+
(cm/sec)	50% exceedance		4	4	0+	15+	7+	0+
	0.1%, PN		109	209	183	162	84	54
	0.1% max, PS		226	378	306	316	178	100
CV	1%, PN		88	188	169	127	70	40
(cm/sec)	1% max, PS		180	332	285	239	147	46
	50%, PN		45	145	148	78	31	19
	50% max, PS		84	236	239	131	61	23
	PNET	,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	40%	33%	<u>, ,</u>		65%	

Table 31. Tidal, wave, and combined equivalent unidirectional (CV) bottom current velocity,

Pentland Firth and Moray Firth area. Key to Localities: WPF= West Pentland Firth, S-S=Stroma-Stroma gap, SR/CH= channel west of Sandy Riddle, SP=Sandy Riddle, EPF/MF=East Pentland Firth-Moray Firth transition, MF=Moray Firth. Refer also to Figs.526871

	Water D	epth = 120 m
Tidal ^{PN} Current	.0	85
(cm/ PS sec)	.0	170
Wave	0.1% exceedance	25
Current	1% exceedance	15
(cm/sec)	50% exceedance	0
	0.1%, PN	120
	0.1% max, PS	247
CV	1%, PN	106
(cm/sec)	1% max, PS	216
	50%, PN	85
	50% max, PS	170

٠

A.

٠

Table 32. Tidal, wave and combined equivalent unidirectional (CV) bottom-current velocities, Gulf of Corryvreckan.

		SOUTH END	NORTH END
	Water D	epth 55m	55m
Tidal current	^{PN} 1.0	20	30
(cm/sec)	^{PS} 1.0	35	55
Have	0.1% exceedance	75	60
wave current (cm/sec)	1% exceedance	50	45
	50% exceedance	5	5
	.1%, PN	114	98
	.1% max, PS	247	211
CV	1%, PN	79	77
(cm/sec)	1% max, PS	170	165
	50%, PN	16	21
	50% max, PS	31	41
	PNET	75%	60%

Table 33. Tidal, wave, and combined equivalent unidirectional bottom-current velocities,

Passage of Tiree.

	Water Depth	1 30m	90m	40m	
Tidal current	PN	12	13	15	
(cm/sec)	PS	20	21	25	
	0.1% exceedance	40	50	110	
Wave current	1% exceedance	25	40	90	
(cm/sec)	0% exceedance	0	5	15	
	0.1%, PN	68	83	169	
cv	0.1% max, PS	143	175	354	
(cm/sec)	1%, PN	47	69	141	
	1% max, PS	97	144	302	
	50% PN	12	20	36	
	50% max, PS	20	36	71	
	PNET		38%		

Table 34. Tidal, wave, and combined equivalent unidirectional (CV) bottom-current

velocities, Stanton Banks.

- 456

L

		Location Water Depth	BH 60	IWHP 40	OWHP 80	BL 60	
Tidal current	PN		18	12	5	12	
(cm/sec)	PS		32	22	10	21	
	0.1% exceedance	<u> </u>	75	100	50	75	
Wave current	1% exceedance		50	75	30	50	
(cm/sec)	50% exceedance		8	10	5	8	
	0.1%, PN		123	152	75	117	
CV	0.1% max, PS		263	330	164	252	
(cm/sec)	1%, PN		88	117	47	91	
	1% max, PS		186	253	102	175	
	50% PN		29	26	12	23	
	50% max, PS		57	53	25	46	
	PNET		57%	46%	46%	39%	

Table 35. Tidal, wave, and combined equivalent unidirectional(CV) bottom current velocities, Outer Hebrides.

> Key to Locations: BH= Barra Head, IWHP= Inner West Hebridean Platform, OWHP=Outer West Hebridean Platform, BL= Butt of Lewis.

I.

		Location Water Depth	Cape Wrath 60m	Nun & Solan Banks 70m
Tidal current	PN1.0		35	18
(cm/sec)	^{PS} 1.0		69	34
Maua cumpont	0.1% exceedance		75	70
	1% exceedance		50	50
(cm/sec)	50% exceedance		8	8
	0.1%, PN		140	116
	0.1% max, PS		300	250
CV	1%, PN		105	88
(cm/sec)	1% max, PS		223	188
	50%, PN		46	29
	50% max, PS		94	59
	PNET		55%	

Table 36. Tidal, wave and combined equivalent unidirectional (CV) bottom-current

.

velocities, Northern Shelf.

- 458 -

SAMPLE NO.	SAMPLE DESCRIPTION	LOCATION	POSITIC LAT.	IN LONG.	WATER DEPTH (m)	MEAN RADIONETRIC AGE	'CORRECTED' AGE	REFERENCE
C74 144/1	Buik sample, gravel only	N. Fair Isle Channel	59-53-06N	2-04-03W	92	5406 <u>+</u> 50	5006	Wilson (1979a
JM 72 97/1	Bulk sample, gravel only	W. Pentland Firth	58-40-00	1 3-27-82W	75	2752+55	2352	•
\$71 142/1	Bulk sample, gravel only	W. Barra Head	56-45-16	l 7-54-34W	99	4072+55	3672	•
JM 109	Glycymerie glycymerie, valve	N.E. Passage of	56-40N	6-16W	30	789 <u>+</u> 86	389	Cucci (1979)
JM 36	Arctica islandica valve	Colonsay-Jura	55-59N	6-3W	23	828 <u>+</u> 86	428	•
027	Barnacle plates from shell	Oronsay-Islay	55-59N	6-15W	20	558 <u>+</u> 86	158	•
035	Peaten maximus valve	Sound of Jura	55-51N	5-50W	42	632 <u>+</u> 86	232	•
DF7	Balanid fragments, worn, abraided and strongly iron stained	N.W. North Sea	56-26N	01-53W	60	10865+160	10465	Owens (1981)
OF 13	Aconthiocardia cohinata value, worn, abraded, strongly iron stained.	N.M. North Sea	56-47N	01-179	68	6370 <u>+</u> 160	5970	•
SF 43	Bulk sample, dominantly <i>Nollweam</i> , worn, abraded & mostly iron stained	N.W. North Sea	57-05N	01-12W	62	3070 <u>+</u> 80	2670	•
SF 44	Bulk sample, <i>Belanue</i> fragmentary, worn and commonly iron stained.	N.W. North Sea	57-02N	01-10W	61	4270 <u>+</u> 90	3870	•
SF 46	Bulk sample, sand, badly worn & commonly iron stained	N.W. North Sea	57-0 8 N	01-0 9 M	63	4220 <u>+</u> 100	3820	•
SF 215	Bulk sample, sand, badly worn & commonly iron stained	N.W. North Sea	57-21N	01-39W	65	6170 <u>+</u> 100	5770	•
?	Shell gravel, fragments grey and pitted	Western SCS	1	}	130	8335 <u>+</u> 60	7935	Wilson 1982
Same as above	Selected barnacle plates	Same as above	Same a	is above	130	11560 <u>+</u> 80	11160	•
58 03/2	Bulk sample, shell sand & gravel (see Table)	4 km E or Copinsay, Orkney	58-54N	2-36W	64	3900 <u>+</u> 60	3500	Allen This Thesis
58 03/2	Heavily bored bivalve fragments	•	•	•	•	4570+70	4170	•
58 03/2	Rounded bivalve fragments, not bored.	•	٠	•	٠	4410 <u>+</u> 60	4010	•
58 03/2	Angular bivalve fragments, not bored.	•	•	•	•	37 89<u>+</u>70	3380	•
58 03/2	Barnacle fragments, abraded and stained.	•	•	•	•	3270±110	2870	•
58 03/2	Sernacle fragments, not abrade not stained.	d •	•	•	•	3290 <u>+</u> 60	2890	•
58 03/2	Serpulid fragments	•	•		-	4060+70	3660	•
58 03/2	Gastropod fragments	•	•	•	•	3480+60	3080	•
58 03/2	Bivalves alive on collection	•	•	•	•	158+10.5%	-	•
NS 15 SD (A)	Whole single value of Actica Islandics not bored	Northern Shelf	59-06X	4-09W	80	1460+70	1060	•
NS 15'50 (8)			•		•	1590+ 250	1190	•
NS 15 50 (C)	Two fragments heavily bored	_	-	_				_
	APELOS LEGENSION	-	•	•	· •	5860+ 140	5460	•
M2 19 20 (U)		-	•	•	-	5340+210	4340	-

Table 37

Summary of ¹⁴C radiometric ages for carbonate collected from surface sediments on the SCS

Sample 58-03/2

Position: 58° 54.1'N, 2° 36.3'W. E. of Copinsay, Orkney Water Depth: 64 m Gravel: 55%. Sand: 45%. Mud: 0%. Carbonate: 84% Carbonate components - Barnacles: 14%, Bivalves: 50%, Echinoids: 3%, Gastropods: 7%, Serpulids: 24%, Bryozoa: 1%. Taxonomic identifications (by D.K. Graham, IGS): GASTROPODA Balcis? Calliostoma zizyphinum (Linne) Cantharidus montagui (Wood) Cingula semicostata (Montagu) Emarginula reticula (Sowerby) Gibbula cineraria (Linné) G. tumida (Montagu) Mangelia costulata (Risso) Nassarius incrassatus (Strom) Natica montagui (Forbes) Rissoa parva (da Costa) Trophon truncatus (Strom) BIVALVIA Arca tetragona (Poli) Astarte triangularis (Montagu) Crenella decussata (Montagu) Gari tellinella (Lamarck) Glycymeris glycymeris (Linné) Heteranomia squamula (Linné) Modiolus phaseolinus (Philippi) Modiolus sp Nucula turgida (Leckenby & Marshall) Parvicardium ovale (Sowerby) Spisula elliptica (Brown) Venus fasciata (da Costa) V. ovata (Pennant) V. striatula (da Costa) **ECHINODERMATA** Echinocardium cordatum Echinocyamus pusillus Echinus ?

> Table 38. Compositional details of IGS sample 53-03/2 GS, which was used for ¹⁴C dating experiments (pp.224-233) and flume studies (pp. 179,182).

SHOALS - ROCKY HIGHS

 Stanton Banks
 Offshore
 Pobie Banks (Northeast Shetland) (and Shetland Out)

 Solan Bank
 (and Shetland Out)

 Nun Bank
 Shiant

 Hawes Banks
 Coastal

OCEANWARD HUMMOCKY PLATFORM

Barri	a Head	
West	Hebridean	Platform
Butt	of Lewis	

PLATFORMS - ROCKY PAVEMENTS

Fair Isle Channel

461 -

Passage of Tiree

West Shetlands

COASTAL PLATFORMS

Sligachan-Scalpay (Butt of Lewis) Rubha Nan Clach (Sound of Eigg) Cape Wrath North Orkney East Orkney Moray Firth Greenstone Point

TIDAL SANDBANKS

N. Ronaldsay North bank N. Ronaldsay east bank Sandy Riddle Baas of Linton Dowie Sand Dunnet Bay {West Pentland Firth } {Cape Wrath}

PLATFORM FLANK & ADJOINING SHELF

Fair Isle - Orkney sandwave field and adjoining N. Sea Basin.

TIDAL CHANNELS BAYS AND SJUNDS

- (i) Entrance to Tidal Channels and Bays and Sounds
 - West Pentland Firth Gulf of Corryvreckan Yell Sound Orkney Sounds Sligachan - Scalpay Loch Brackadale Loch Dunvegan Plockton-Kyle of Lochalsh Loch Broom
- (ii) Within Tidal Channels and Bays and Sounds
 - Yell Sound Orkney Sounds
- (iii) Island Coast Channels

Sound of Iona	Sum
Sound of Eigg	8a1
Loch Eishort	St.
Loch Dunvegan	Sou

BEACHES

Colonsay Coll & Tiree Mull & Ardnamurchan Eigg Outer Hebrides Loch Dunvegan (Skye) Greenstone Point Faraid Head Caithness Orkney Shetland ummer Isles (Loch Broom) alta Sound t. Ninian (Tombolo) ound of Taransay

(Ritchie & Crofts 1974) (Mather et al. 1975) (Mather & Crofts 1972) (Mather & Crofts 1972) (Mather et. al. 1975) (Ritchie 1971, & Ritchie&Mather 1970) (Mather et. al. 1975) (Crofts & Mather 1972) (Ritchie & Mather 1969) (Mather 1970) (Mather et. al. 1974) (Mather & Smith 1974)

 TABLE
 39. Carbonate deposits on the SCS classified according to type.
 NB.
 A few fit

 more than one category.
 Those in curly brackets are less clear-cut cases.

Table 40. CARBONATE SEDIMENTATION RATES

AREA	g/m²/yr		cm/1000 yrs	
	Range	Most Likely	Range	Most Likely
SCS Whole Area >50% CaCO ₃	4-135	24	0.5-76.9	3.0
SCS Offshore deposits >75% CaCO ₃	4-173	37	0.5-21.6	4.6
SCS Orkney area >75% CaCO ₃	18-312	77	1.8-39.0	9.6
SCS Sandy Riddle >75% CaCO ₃	125-1834	581	15.7-229.3	72.6
SCS East Orkney, FIC platform edge	114-646	248	14.3-80.8	31
New Zealand Cenozoic (Nelson 1978)	8-40	16	1-5	2
Warm Water Shelf Carbonates. (Nelson 1978)	80-800	-	10-100	-

NB. FIC = Fair Isle Channel

.

Table 41. CARBONATE PRODUCTIVITY

	g/m ² /yr range	most likely
Whole SCS >50% CaCO ₃	4-135	24
Orkney Area	14-312	97
Sound of Iona Barnacles Sound of Iona Calc Algae (Cucci 1979)	20-40	30 -
Barbados tropical fringing reef (Stearn et. al. 1977)	-	1500

Component	:	Mineralogy
Barnacles	:	LMC
Bivalves	:	A&LMC
Echinoids	:	Mainly HMC (spines are LMC)
Gastropods	:	A or LMC
Serpulids	:	Mostly HMC (trace A)
Bryozoa	:	A
Calcareous Alga	:	HMC
Foraminifera	:	HMC&LMC

TABLE 42. Summary of $CaCO_3$ mineralogy of the main bioclastic components.

A= aragonite; LMC= low magnesium calcite; HMC= high magnesium calcite.

TABLE	43.	Inferred	Composition	of	Carbonate	Deposits.
-------	-----	----------	-------------	----	-----------	-----------

	Mineralogy	Mg Levels	Main Components
Gulf of Corryvreckan	Dominantly A&LMC	very low	Biv & Barn
Passage of Tiree	" A&LMC.	low	Biv & Barn
Hawes Bank	A, LMC&HMC	mod-high	Barn,Serp,Biv.
Sound of Eigg	Dominantly A&LMC	low	Barn, Biv.
Rubha Nan Clach	Dominantly A&LMC	low-mod	Barn&Biv, Serp & Foram
Stanton Banks	HMC, LMC & A	mod-high	Biv,Serp,Bry
Barra Head	Dominantly A, LMC,	low	Biv,Bry,Barn
W Heb. Platform	A, HMC, LMC	mod-high	Serp,Biv,Ech, Barn
Butt of Lewis	LMC, A, HMC	low-mod	Biv,Bry,Serp, Barn Foram
Cape Wrath	Dominantly LMC&A,	low-mod	Barn,Biv,
Nun Bank	LMC, A, HMC	mod	Biv, Barn, Bry,
Solan Bank	LMC, A, HMC	low-mod	Biv,Bry,Serp,
Fair Isle Channel	LMC, A, HMC	mod	Biv,Bry,Serp,
North Orkney	LMC, A, HMC	low-mod	Biv,Barn,
N. Ronaldsay, N. Bank	LMC, A, HMC	mod-high	Biv,Serp,Barn
East Orkney	Dominantly LMC&A	low	Biv,Barn,Bry
Orkney Sounds	Dominantly LMC&A	low-high	Biv,Barn,
W. Pentland Firth	LMC, A, HMC	low-mod	Biv,Barn,Serp,
Sandy Riddle	LMC, A, HMC	low-mod	Biv,Barn,Bry,
Moray Firth	Dominantly LMC,A	low	Biv,Barn,Bry
West Shetland	LMC, HMC, A	mod-high	Biv,Serp,Bry,
Shetland-Out Skerries	LMC, A, HMC	mod	Biv,Ech,Serp,
Yell Sound	LMC,HMC, A	mod	Barn, Foram Biv,Serp, Ech, Foram

V. low, mod, and high are all relative.

'High' may still involve MgO levels of <4%.

Sample	No: SH 305	MF 840	MF 2060	MF 2078	60/01 297	Commercial Maerl
	Barra Head	(Moi	ray Fin	rth)	Shetland Out Skerries	Brittany, France
CaO	47.7	47.4	48.3	49.6	27.5?	42.33
Mg0	1.9	1.5	1.6	1.2	3.0	3.19
A1203	1.5	1.1	1.0	0.8	0.1	1.16
Fe203	0.4	0.7	0.6	0.4	0.6	0.68
к ₂ 0	0.2	0.3	0.2	0.4	0.1	0.18
Na ₂ 0	-	-	-	-		0.35
sio ₂	6.1	7.9	6.7	6.4	3.1	9.76
P205	0.07	0.10	0.89	0.06	-	0.08
so3	0.50	0.64	0.65	0.56	-	1.10
c0 ₂	37.6	37.7	38.6	39.4	40.6	39.01

Table 44. Major element analyses for samples of carbonate sediment.

(IGS 'in-house' data).
Deposit	Total Reserves <u>(tonnes or 10⁶g)</u>	Likely net accumulation rate=equilibrium extraction rate (tonnes/day)	10 year extraction rate (tonnes/day)	50 year extraction rate (tonnes/day)	100 year extraction rate (tonnes/day)
Hawes Bank	2.8 x 10 ⁶	1.3	768	156	79
Passage of Ti ree	18.6 x 10 ⁶	8.5	5104	1028	579
Barra Head-West Hebridean Platform- Butt of Lewis	401 x 10 ⁶	183	110046	22101	11188
Cape Wrath	102 × 10 ⁶	47	27992	5674	2841
East Orkney & Fair Isle Channel	1721 x 10 ⁶	786	472293	95087	47937
Sandy Riddle	104 x 10 ⁶	48	28541	5746	2897
Whole Orkney Area	2920 x 10 ⁶	1333	801333	161333	81333

Table 45. Estimated extraction rates for a selection of

deposits and areas of different sizes.

APPENDIX 1

.

List of acronyms and abbreviations

•

.

.

Barn	barnacle
Biv	bivalve
Bor	boring
Bry	bryozoan
C. Alg	calcareous alga
CDSS	Carbonate Deposit Summary Sheet
CV	combined equivalent unidirectional current velocity
Ech	echinoid
Foram	foraminifera
Gast	gastropod
GnSz	grain size
Grv	gravel
IGS	Institute of Geological Sciences
10S	Institute of Oceanographical Sciences
м	Maturity Index
N	negligible (<<<1%)
OWS	ocean weather ship
Ρ	probability (of a correlation co-efficient being 'correct')
PN	p eak neap tidal current velocity
PNET	p eak neap excee dance time
Pol	polish
PS	p eak spring tidal current velocity
PSA	particle size analysis
Rnd	roundness
SCS	Scottish Continental Shelf
Serp	serpulid
sort	sorting
SPPS	significant peak particle speed
stain	staining
τv	tidal (unidirectional) current velocity
UKCS	United Kingdom Continental Shelf
WV	wave (oscillatory) current velocity

APPENDIX 2

•

Summary of research cruises

.

-

Summary of research cruises

During the research period I took part in the following offshore work.

Date	Ship	Operator	Location
1977	R.R.S. Challenger	N.E.R.C. (Dr J Hall)	Firth.of Lorne
1977	R.R.S. John Murray	N.E.R.C. (Dr G Farrow	Orkney
		& T P Scoffin)	
1977	F.R.V. Scotia	D.A.F.S. (Dr R G J Shelton)	W. Heb. Shelf
1977	M.V. Emerald	I.G.S. (Dr D Evans)	Central N.Sea
1978	M.V. Cape Shore	I.G.S. (Dr J A Chesher)	W. Shetland
1978	F.R.V. Scotia	D.A.F.S. (Dr R G J Shelton)	Rockall and Nun Bank
1979	M.V. Whitehorn	I.G.S. (Dr D Evans)	Orkney and N.Shelf

APPENDIX 3

Sediment mobility calculations, Fair Isle Channel

•

Table: 46

Gravelly carbonate megaripples: mobility calculation (see Figs. 55,56)

Location: TV 2, Fair Isle Channel (Fig. 52c).

80m Depth: GnSz: Up to 2-20mm Equiv. Qz GnSz : 1mm PN_{1.0}:20 cm/sec PNET: 41% Required threshold current (from Fig. 139) : 70cm/sec Using $TV_{1,0} = PN_{1,0}$ $CV_{1,0} = TV_{1,0} + 1.4 WV$ (assuming long period waves) Hence the WV required to move all sizes of sediment = $\frac{70-20}{1.4}$ cm/sec = 36 cm/sec. Using Draper's 90m curve (Fig.13) for Sevenstones (an underestimate for this location). % exceedance for 36cm/sec = 0.5%; equivalent to about 2 days per year for 41% of the time. In other words, the sediment at this location will be moving for at least 20 hours per year. For the other 59% of these 2 days, when TV <PN, assume TV = 0, Then CV = 1.4 WV

WV = 50cm/sec, which has a 0.1% exceedance time i.e. 1 day in 3 years, or on average at least 8 hrs./year so total movement time = at least 20 + 8 hrs.

= <u>28</u> hrs/year minimum

Table: 47

'Sprinkling' of fine, carbonate sand: mobility calculation (see Fig. 57)

Location: TV2, Fair Isle Channel (Fig. 52c). Depth: 80m GnSz: 0.25 - 1mm Equiv. Qz GnSz : 0.15 - .3mm PN_{1.0}:20 cm/sec PNET: 41% Required threshold current (from Fig. 139): 40cm/sec This is also the suspension threshold Using $TV_{1,0} = PN_{1,0}$ and $CV_{1.0} = TV_{1.0} + 1.4WV$ then WV = $\frac{40-20}{1.4}$ = 14cm/sec % exceedance for 14 cm/sec = 4%; equivalent to 14½ days per year for 41% of the time. That is at least 143 hours/year. For the other 59% of the time when TV <PN, assume TV = 0 Then CV = 1.4 WVWV = 29 cm/sec - which has a 1% exceedance time. i.e. 3½ days/year, or 84 hrs/year. Also, for 96% of time when WV not exceeding 14 cm/sec, assume WV = 0, and PS_{max} = 37 cm/sec

So even in calm weather some transport takes place during peak spring tides, say 1-2 hrs/day on 8 days/month i.e. <u>144 hrs/year</u>. So total movement (suspension) time = 143 + 84 144 hrs/year = 371 hrs/year. APPENDIX 4

Hydraulic analysis of megaripples

.

```
Table: 48
```

Hydraulic analysis of megaripples, using bedforms only

Location: TV2, Fair Isle Channel (Fig. 52c). Data: photographs, Figs. 55 & 56 Wavelength (L): 2m Height: 0.2m Equiv. Qz GnSz (D):0.001m GnSz: 0.002 -.02m Vertical Form Index (VFI): 10 $\frac{L}{D}$: 2 x 10³ Referring to J.R.L. Allen (1979) Reading from Fig.157 (J.R.L.A's. fig. 2): Possible range for $\frac{d}{D} = 2.0 \times 10^3$ to 5 x 10⁴ and for near-bed orbital diameter (d) = 2.0 to 50m Reading from Fig.156 (J.R.L.A's. fig. 1): for VFI = 10 and D = 0.001m, Ripple formation is possible for orbital velocities between 0.25 and 0.78m/sec. Plane bed with sediment movement will develop in currents above 0.78 cm/sec. VFI suggests that the megaripples are rolling grain ripples. Also, using $T = \frac{\pi d}{U_{max}}$, If $U_{max} = 0.78 \text{ m/sec}$, & if d = 2.0 then <u>T = 8 secs</u>. & if d = 50m, then T = 200 secs.

& if T = 15 secs, d = 3.7m

conditions.

```
From Fig. 13 (Sevenstones), orbital velocities at 80m are:
0.5m/sec at 0.1% exceedance (max = 1.1 m/sec).
0.35m/sec at 1.0% exceedance (max = 0.77 m/sec).
```

Thus conditions are right for formation of these bedforms during at least three or four storms per year. During the more severe storms, velocities will frequently exceed 0.78cm/sec, thus initiating plane bed movement.

Also, from Komar (1976b), p. 45:

$$d = H_e^{kz_0}$$

and
$$k = \frac{2\pi}{(9/2)\pi} T^2$$

where d = orbital diameter near seabed

H = wave height
z_o= - (water depth)
T = wave period (secs)
g = acceleration due to gravity = 098 m/sec²

For the severe storms

Assume H = 25m

$$T = 15 \text{ secs}$$

then $k = \frac{2\pi}{(.98)/2\pi}$ = 1.79 × 10⁻²
 $d = \frac{-25e}{(1.79 \times 10^{-2} \times -80)}$
 $d = 5.9m$ (i.e. in the range predicted in Table 48)
Cross checking with J.R.L. Allen (1979):
 $T = \frac{\pi d}{U_{max}}$
 $T = \frac{\pi \times 5.9}{.78}$

T = 23 secs.

Figure 156. Summary of the occurrence of wave ripple marks, from J.R.L.Allen(1979a), fig.1.

For the Fair Isle Channel (FIC) megaripples, the equivalent quartz diameter for the carbonate particles is 1×10^{-3} which suggests that oscillatory currents of between 0.25 & 0.78 m/sec could produce rolling grain ripples with a VFI of 10.

Non-dimensional orbital diameter (d/D)

Figure 157. Summary diagram of the occurrence of wave ripple marks, from J.R.L.Allen(1979a), fig.2.

For the Fair Isle Channel (FIC) megaripples,L/d is 2 x 10^3 so that theoretical range of d/L is 2 x 10^3 to 5 x 10^4 .

APPENDIX 5

Calculation of accumulation and production rates SCS

•

•

NAME	<u>Total</u>	Weight MIN.	(x10 ¹² g)	AREA (×10 ⁶ 2)
Gulf of Corryvreckan	14.7	0.7	3.7	10
Passage of Tiree	155	1.4	18.6	200
Hawes Bank	29.3	0.3	2.8	39
Sound of Eigo	6.9	0.1	6.8	9
Sligachan-Scalpay		Mini	mal	?
Rubha Nan Clach	20.1	0.18	1.93	26
Shiant	394	3.5	37.8	509
SE Shiant Sandbank	242	5.8	59.9	8
Sound of Iona	15.5	1.4	7.1	20
Station Banks	133	1.3	12.9	172
Barra Head	305	2.8	30.0	390
West Hebridean Platform	3739	35.0	366	4920
Butt of Lewis	50.1	0.5	4.8	66
Cape Wrath	311	9.5	102.7	138
Nun Bank	909.8	0.6	6.7	90
Solan Bank	155	1.4	15.4	216
Fair Isle Channel	5319	47.2	510	6855
Fair Isle Sandwave Field	d 291	51.6	112	75
North Orkney	1824	8.7	885	1140
North RonaldsavN bank	158	21	88	27
East Orkney	3984	583	1609	1480+700=2180
North RonaldsavE bank	64	8.8	270	12
Arkney Sounds	112	4.8	27.2	70
Baas of Linton	30.4	2.7	9.3	43
Dowie Sand	31.8	5.0	11.3	73
West Pentland Firth	620	11.6	123	234
Sandy Riddle	328	22.4	104	30
Moray Firth	1680	48.7	260	700
West Shetland	1552	13.8	148	2000
Foula	147	6.5	70.7	95
Northeast Shetland	1358	12.0	130	1750
Shetland - Out Skerries	673	6.0	64.5	867
Yell Sound		NOT	ESTIMA	TED
Total wt. g Wt./area g/m ²	23811×10 1037 ×10	12 3 919x10 40x10	$ \begin{array}{c} 12 \\ 5099 \times 10 \\ 3 \\ 22 \times 10 \\ 22 \\ 1 \end{array} $	22963×10 ⁶
Accumulation over				
$6000 \text{vrs}, q/m^2/\text{vr}$	173	7	3.7	
-ditto over 10.000 vrs		,		
g/m ^Z /yr.	104	4	22	

Table: 50. Total carbonate in SCS deposits (>75% CaCO3)

Table: 51. Total CaCO₃ in high-carbonate (50-100% CaCO₃) N & W Scottish beaches Using, for convenience, beaches >40% CaCO₃ Assume average CaCO3 of 70% by wt. Total area = $181 \times 10^6 \text{m}^2$ (from Mather & Ritchie 1977) Min. Likely Max. Possible thickness(m) 1 2 4 724×10⁶ 181×10⁶ 362×10⁶ 474×10¹² 119×10¹² 237×10¹² Volume (m^3) wt. (g) Accumulation rate 436 109 218 $(q/m^2/yr \text{ over } 6000 \text{ yrs})$

Table: 52 Orkney area carbonates

Total area of deposits = $3809 \times 10^6 \text{ m}^2$

	Max.	<u> </u>	<u>Likely</u>
Total wt. (g)	7152×10 ¹²	687×10 ¹² 3	2920×10 ¹² 3
Wt./area (g/m²)	1878x10 ⁻⁷	180x10 ⁻	767x10 ⁻
Accumulation rate:			
(g/m ² /yr. over 6000 yrs)	312	30	128
(g/m ² /yr. over 10,000 yrs) 188	18	77

If area of carbonate production is similar to area of accumulation then these: will also be production rates.

But if debris brought in from wide area of production, say $5000 \times 10^{6} \text{m}^2$, then

·	Max.	M1N.	LIKELY
Wt/area (g/m ²)	1430 x 103	137×103	584×103
Production rates			
(g/m ² /yr over 6000 yrs)	238	23	97
(g/m ² /yr over 10,000 yrs)	143	14	58

Table:53.Accumulation/Production rates for SCS high-carbonatesediments (50-100% CaC03)

	Max. (x10'2g)	Min. (× 10 ¹² 9)	Likely (× 10 ¹² g)	Area (x10 ⁶ m ²)
All deposits (> 75%CaCO ₃)	23811	919	5099	22963
Carbonate-rich (50-75% " ")	13783	689	1378	21808
Beaches (40/50-100%) (Nearshore production areas)	474	119	237	200 (+1800)

Total weight	38068×10 ¹² g	1727×10 ¹² g	6714×10 ¹² g	46771×10 ⁶ m ²
wt./area (g/m ²)	813.9	36.9	143.6	

Accumulation	rates	$(q/m^2/vr)$
		1 1 1 2 1

over 6000 yrs.	135	6	24
over 10,000 yrs	81	4	14

•

APPENDIX : NOT COPIED

ON INSTRUCTION FROM

UNIVERSITY

APPENDIX 7

Bioclastic carbonate sedimentation on a high-latitude, tidedominated shelf : northeast Orkney Islands, Scotland.

Farrow, G. E., Allen, N. H. and Akpan, E. B. Submitted to J. sediment. Petrol., April 1983. BIOCLASTIC CARBONATE SEDIMENTATION ON A HIGH-LATITUDE, TIDE-DOMINATED SHELF : NORTHEAST ORKNEY ISLANDS, SCOTLAND

GEORGE E. FARROW Department of Geology, Glasgow University, Glasgow, G12 80Q, Sootland N. EERRY ALLER¹ Department of Applied Geology, Stratholyde University, 75 Montrose Street, Glasgow, G1 1XJ, Sootland ETTE BEN AKPAN² Department of Geology, Glasgow University, Glasgow, G12 80Q, Sootland

Rumning Heading: Farrow, Allen and Akpan Carbonate Sedimentation: Orkneys Shelf

now at: Britoil plc, 150 St Vincent Street, Glasgow, G2 5LJ.
 now at: Department of Geology, University of Calabar, Calabar, Higeria.

paper received: December 27, 1982 revision accepted:

of the tidal asymmetry combined with the net inflow of Atlantic water into the North Sea. tidal flow. Regional sandware orientations reveal a clockwise transport of compared with 3 cm/1000 yrs for the entire Scottish continental shelf. Major Overall the Orkney shelf sedimentation rate is approximately 10 cm/1000 yrs, at 59°N, accumulating locally into 30 m-high banks at rates up to 540 $g/\pi^2/yr$. Abstract: Shall-sands and gravels cover much of the shallow Orkneys shelf sendbenks are located off headlands that produce circulation loops in the ediment around the islands, probably resulting from storm-wave reinforcement

and chiamid spanges and grasing by chitans is common but not depth restricted. weakened by echinoid biting, algal boring and limpet grasing. Boring by fungi shell-sands. Within the exphotic some (down to 40 m) dead shells are shell gravels, commonly containing <u>(lycymeris</u>, pass laterally into comminuted Carbonate production is high from the Modicius Epifeuma. Modicius

lower-energy offshore environments, while more durable barnacle and serguid but 94-99 percent in sandwaves. Mean values for the sain skeletal components calcitic and have a high preservation potential. debris is concentrated in sandware fields. The sediments are dominantly algal gravels occur in sheltered areas less than 20 m deep. Bryosoa typify 5 Sediments contain 89-95 percent carbonate on the level bottom offshore, bivalves 46%, barnacles 16%, brycsonns 11%, serpulids 7%. Calcareous

Key Words: sediment Modiolue. transport, sendwaves, sedimentation rate, bloerosion,

- 488 -

INTRODUCTION

- 1 -

Background and Aims

Carbonate sediments are forming widely on continental shelves in high latitudes, both north and south of the Equator (Scoffin et al., 1980, p.345; Rao, 1981a, b). Almost half the entire Scottish continental shelf is covered with carbonate-dominated sediment, that around the Orkneys being the purest.

The present paper has five aims:- 1. To demonstrate the mobility of the carbonate sands; 2. To identify the dominant skeletal contributors; 3. To describe the agents of bicerosicn; 4. To produce a sedimentation model; 5. To assess rates of carbonate accumulation.

Geological Setting

The Orimeys contrast sharply with other Souttish areas that have been strongly glaciated, like the Immar Hebrides (Farrow et al., 1978; Farrow, 1983) for here the sea floor has a smoother topography. A shallow platform of Devonian rooks borders the eastern side of the Orkneys. Within a few kilometres of the coast the seabed drops steeply to a generally flat area that coincides with the edge of a Permo-Triassic subcrop. Depth increases gradually offshore from 30 m to 100 ms within the Sound's it is generally less than 30 m (Fig. 1).

Fatches of Quaternary boulder clay crop out locally on the islands, giving rise to arkosic beach sands and stretches of lithic gravel with isolated boulders.

Physical Conditions

The following summary is extracted from the excellent series of maps published recently by Lee and Ranster (1981).

Fig. 1

Temperature and Salinity. — The mean surface temperature in winter is $7^{\circ}C$ (February) and in summer 12.5°C (August). Bottom temperatures are identical to the surface temperature in winter but one degree cooler in August. The salinity is constant at 35% throughout the year.

- 2 -

Tides.-In the Atlantic Ocean tidal currents are very weak, but as the tidal wave reaches the shallower areas of the European continental shelf their magnitude increases greatly. This effect is particularly noticeable where the tide is forced through narrow channels, as in the Orkneys (Fig. 2a). It should be noted that these areas with strong tidal currents are not generally associated with an abnormally large tidal range (Fig. 2b). Maximum springtide currents are more than four knots (2 m/sec) between the northern islands although the tidal range is only 2.5 m. With such a strong tidal flux there is no summer stratification of the water column.

<u>Winds and Waves</u>. — January is the most gale-prone month, with winds setting from the south or southeast. Substantial currents are associated with winds (Johnson, 1978, p.215). The worst wave to be expected in 50 years is predicted to reach a height of 30 m and possess a period of 15.5 seconds.

Methods of Study

The area was studied during July 1977 on R.R.S. John Marray Cruise 10. Extensive CRE Pinger (3.5 kHs), Kelvin Hughes MS 47 Side-Scan Sonar and SIMRAD scho-sounder lines were run. Bedforms were mapped and their distribution compared with that obtained from analysis of lines run in the spring of 1974. 150 bottom samples were collected (Fig. 3). Stations on rock were sampled with a large rock dredge; the soft grounds with a Day grab or anchor dredge. Much of the terrain was rough, with several dredges being lost and eight stations yielding no samples.

Shipboard identifications of the larger macrofauma included both live and dead mollusos, the densities recorded being at best semi-quantitative,

Mg. 2

Pig. 3

though valuable in showing the abundance of living <u>Glycymeris</u> over much of the area. Because of variable recovery with the Day grab, deeply buried living infauna such as <u>Latraria</u> must have been missed; their presence being indicated by dead shells.

Sediment samples were returned to the laboratory, where percent $CaCO_3$ was determined by acid digestion, and principal components identified in the 63 μ m - 2 mm fraction, following splitting and slit sieving (Lees et al., 1969). More than 333 grains were scattered onto a sticky plate, and identified and counted under the bincoular microscope according to Milliman's (1974) oriteria.

366 shells from 26 stations were examined for bioerosion. All were studied under the binocular microscope: some were X-rayed, others impregnated with Epo-tex resin for study of boring casts, and many were prepared for SEM examination.

SIDE-SCAN SONAR ANALYSIS

Good geophysical coverage (particularly side-scan sonar) is available to assess seabed morphology, sediment distribution and sediment thickness (Fig. 4). The quality of the sidescan data is generally good enough to delineate the main boundaries. Comparison of the 1974 and 1977 records reveals major differences in sediment distribution, highlighting the mobility of the carbonate sediment (Allen, 1983).

Rook and Sediment Distribution

Large areas of bare rock are exposed around the islands where tidal and storm currents are particularly strong as a result of shallowing, narrowing or obstructions such as islands and peninsulas. A rocky platform 3 to 10 km wide extends along the eastern sides of North Ronaldsay, Sanday, Stronsay and Mainland. Localized patches of sand and gravel lie in hollows and crevices.

- 3 -

Fig. 4 A much larger area of rock was exposed in Spring 1974 than was seen in July 1977 (Fig. 4). Similarly, the broad ridge running northeast from Papa Westray (clearly seen in the bathymetry, Fig. 1) was mantled in sediment covered with megaripples in July 1977 (Fig. 4) but was exposed rock in the Spring of 1974. This again illustrates the extreme mobility of the carbonate material.

> Extensive tracts of shelly coarse sands and gravels frequently coour adjacent to the current-swept rocky areas. They may have a maximum thickness of up to 30 m (e.g. sand bank northwest of North Ronaldsay), but on average (Allen et al. 1979) the material is probably between 2 and 5 m thick, Fine and medium sands occur on the open, deeper shelf where currents are weaker: their thickness is unknown but is unlikely to be more than a few metres. Muddy sands and sandy muds occur inshore in sheltered backwaters such as Wide Firth and the Bay of Kirkwall where they blanket an uneven rocky substratum to a depth of more than 10 m in places.

Bedforms and Sediment Transport

Open Shelf. -- On the flat, open shelf there are sand waves, sand ribbons and megaripples which indicate clockwise sediment movement around the islands (Fig. 4). On the northern side the sand waves strike north - south and face east: megaripples have an oblique orientation, striking north-northeast south-southwest: sand ribbons trend west - east. East of the islands the sand waves strike west - east and face south: megaripples have a northeast southwest strike: sand ribbons trend north - south.

Sand Banks. -- The large sand banks all have dense sand wave systems on their Fig. 5 backs; a good example being the bank 5 km northwest of North Ronaldsay (Fig. 5). Here the sand waves are up to 15 m high with wavelengths of 200 m: all strike northwest - southeast and most face southwest. However the sand waves on the southeastern side of the bank are facing northeast. This indicates a circulation of sediment around the bank similar to that described from North Sea banks (Houbolt, 1968; McCave, 1971). Megaripples associated with the sand

- 4 -

waves are orientated north - south. Both surveys show the bank to be ovoid in plan, but in 1974 it was totally surrounded by bare rock, whereas in 1977 it was distinctly narrower and connected with the sand field in the west by a tongue of sediment (Fig. 4). The 1974 sparker profiles show the bank to be about 20 m thick. A substantial thickness of carbonate sediment contained within this feature, the whole of which may well consist of carbonate sand. However it could have a core of moraine, or even reworked terrigenous sand produced during and immediately after the initial, rapid Holocene transgressive period. Taking this into account, the thickness adopted for the sand bank is 5 m (Table 3). Other banks exist east of Shapinsay, south of Stronsay, east of North Ronaldsay and northeast of Westray (Fig. 4). Their origin must likewise remain in doubt until long vibrocores have been recovered from them. Margins of the Rocky Flatform. -- East of Sanday and Stronsay pockets and thin veneers of sediment cover the rocky platform. At the edge of this platform there are wide sediment-filled orevices and gulleys controlled by fractures and faults in the bedrook (Fig. 4). The galleys lead southeastwards to a slope which is covered with sediment. At the base of the slope where the seabed levels off there is an extensive field of sand waves that face southwards. This pattern suggests that sediment is migrating from the rocky platform onto the shelf, where it joins the southerly-moving system described above.

Bave and Sounds. - The distribution and orientation of bedforms in the inner areas is more complex and the sonar coverage less adequate for detailed discussion. However, it can be noted that in North Sound there occur many sand waves, megaripples and sand ribbons which reflect complex ourrent patterns produced by the convergence of many different channels. Some of the sand waves have simuous creats and are lumate, while many are virtually symmetrical.

- 5 -

SEDISTNY MOBILITY AND AREAS OF ACCUMULATION

North Ronaldsay North Bank

Very pure carbonate (98%) sediment is widespread in this area. It is coarse with a high gravel content (25%). Tidal current conditions are not well documented, but they are strong over these nearshore areas (up to 150 cm/sec) and extreme in some places (300 cm/sec Admiralty Pilot, 1975. off the northern end of North Ronaldsay) / During most weather conditions, material up to coarse sand size will be moved as bedload and suspended load by peak tidal current flow, along with gravel - grade material (Allen 1983) as bedload. During severe and extreme storms even considerable quantities of gravel - grade material may be moving as suspended load. This calculated high mobility explains the radical difference in sediment distribution recorded by surveys taken during different seasons in different years, and it also explains the existence of large areas of bare rock.

The high predicted mobility is compatible with the existence of many large-scale bedforms in the area (Figs 4, 5). In the deeper more offshore parts there are low (1-2 m height), asymmetrical sand waves indicating eastward sediment transport, but the North Ronaldsay North sand bank has a large sand-wave field on it with west-facing steep slopes indicating sediment transport in that direction (Fig. 5). Only on the southeastern tip of the bank are east-facing sand waves recorded. Thus the sand bank is located where the local transport direction is west-going, opposing the predominant eastgoing path to the north. The bank may therefore be sited in a large-scale tidal vortex of the kind often associated with tidal flow round headlands (Pingree and Maddock, 1979) so that the bank was generated and sustained as a result of a sediment circulation loop resulting in net sediment accumulation. The sediment on this samplenk is considerably more mature than the sediment in the surrounding area, again suggesting that it is a depositional site, where sediment, once captured by the sami bank, remains trapped in a circulatory

- 6 -

system for some considerable time.

Essentially the bedforms are formed by tidal currents, presumably at times assisted by oscillatory currents which increase the suspended load. However, the extreme currents generated by waves during storms are probably very destructive, particularly in shallow water such as at the tops of sand waves on the North Ronaldsay North sand bank, where sediment is probably removed from the top of the bank. This explains why at the end of the winter in 1974 it was broader, with lower sand waves (5-7 m) than in the summer of 1977 (sand waves 7-10 m). The destructive effect of storm waves on sand waves has been noted by MoCave and Langhorne (1982) and Johnson (1978, p.251-5). Farrow (1974, pl. 6) has noted similar flattening of shellbanks in the shallow waters of Barra, Outer Hebrides.

Kast Orkney Shelf

This send-wave some (Fig. 4) lies on the slope at the edge of the Orimey platform (Fig. 1), where ourrents are such that carbonate sediment up to 1 mm in diameter will be commonly moved, much of it in suspension(Allen 1983).Sand greater than 1 mm and gravel - grade material will be moved as bedload during the stronger tidal ourrents and storms, and a certain amount will also be in suspension. The slope is the immediate dumping ground' for material being swept off the platform. Depending on the time, weather, water depth, and grain size, more and more of the sediment is dropped out of suspension and moved on into deeper water as bedload, at progressively slower rates. At any one locality the highest ourrents will occur at the crests of the sand waves, explaining the marked difference in grain size between the sand waves and the surrounding sediment.

There is no doubt that sand-wave formation is a result of complex physical inter-relationships. The existence of the sand-wave field appears to fit the oriteria of MoCave (1971) for sand-wave formation which are (1) adequate tidal current velocity, (2) low-moderate wave activity, (3) a strong

- 7 -

elongation of the tidal current ellipse. He also pointed out that the · existence of megaripples superimposed on sand waves indicates a combination of bedload and suspension transport.

On the deeper-water limits of this particular field, the formation of sand waves appears to have been closely related to original seabed morphology. All along the slope at a depth of about 80 m, a series of strong bedrook seismic reflectors outcorp on the seabed and presumably originally formed marked ridges. Large sand waves are invariably seen lying superimposed on these features. Before the formation of the sand waves these features would themselves have acted as large 'bedforms' causing flow coparation at their crests and relatively low currents in their less, providing ideal conditions for sand wave formation.

Mapped bedform orientations and facing directions consistently indicate southward sediment transport on the east side of Orkney (Fig. 6). However, further to the north and east the zone of carbonate spreads out eastwards into the North Sea beyond the limits of the investigated area, indicating a stronger east and southeast component as a result of the currents coming through the Fair Isle Channel. These currents are essentially non-tidal in origin (Stride, in Lee and Ramster, 1981, p.2.26) and long-term sand transport is ascribed to the net flow of Atlantic water into the North Sea, cesentially caused by the North Atlantic Drift.

Craig (1959, fig. 11, p.16) estimated near-bottom water drift as 3 km per day to the south, (compared with 6 km per day northwest of Orkney).

On the basis of this, a sediment transport rate of soveral kilometres per year is possible.

Fig. 6

DISTRIBUTION OF CARBONATE-PRODUCING ORGANISMS

- 9 -

Having established that large bodies of mobile carbonate sand exist around the Orkneys we now outline the distribution of the major producers of skeletal carbonate. 150 bottom samples were collected for this purpose and have been categorized into eight broad groups that depend only on gross obsracteristics for their differentiation (Fig. 7). It is important that their coourrence be set in the dynamic context of the mobile carbonate carpet indicated by the side-scan analysis. Faunal details will be found in Appendix Table 1.

Rocky Areas

Carbonate production is high from shallow kelp-dominated rocky regions (Fig. 8). Herbivorous gastropods and echinoids are common. Below 24 m ophiuroids dominate, with accessory schinoids and mollusos. A variety of bivelves dominates the rocky open shelf at about 80 m, including <u>Arca</u> tetracona.

The type of substratum most heavily encrusted with carbonate-producing epifamma is a floor of lithic cobbles, especially when shallower than 30 m. Here barnacles and serpulids are very abundant. Offshore, <u>Alcounium distitatum</u> and hydroids dominate, neither of which produce significant carbonate. Cartain bryosca encrust the hydroids and form distinctive hollow-centred nodules (Fig. 9 right): they also form compound structures with serpulids (Fig. 9 left).

Calcaroous Alasl Gravels

Extremely prolific beds of free-living calcareous algae occur in Wide Firth (Figs 1, 7, 10) in a tidally-ewept but island-encircled situation less than 20 m deep. No deposits were sampled on the open shelf, however. There is considerable variation in growth form, not directly depth related but more probably current related (Fig. 10). A typical shallow gravel fourme of sturdy

Tig. 7

Fig. 8

Fig. 9

Fig. 10

bivalves and gastropods is associated (Appendix Wable 1).

The facies variants described by Bosence (1976, 1979) are present, with his clean algal gravel (1979, p.456-8) better developed than in Ireland in the more strongly tidal Firths as in the Sound of Islay (Farrow et al., 1979, fig. 4).

Modiolus Boifauna

Living spreads of the byssally attached horse mussel <u>Hodiolus modiolus</u> form a highly characteristic type of see-bottom, with very high carbonate production from the bivalves. Side-scan records show them to be living on rock. The <u>Hodiolus</u> Dpifauma is fully developed, as classically illustrated by Thorson (1957, p.462) with associated serpulids, ophiuroids and gastropods. <u>Hodiolus</u> was more commonly encountered living in the Sounds than on the open shelf, where its debris was widely dispersed (Fig. 11).

Modiolus Shell Gravels

FLg. 12

Fig. 11

Gravels composed of <u>Modiolus</u> debris (Fig. 12) were the second most frequently encountered type of sediment after the shell-sands. They occur over a similar depth range to the living <u>Modiolus</u> (20 to 60 m), but are best developed between 20 and 50 m. Half the stations yielded the living bivalve <u>Givenments flyeyments</u> (Fig. 11) which was more abundant at the greater depths $(50/m^2$ between 60 and 80 m; $28/m^2$ between 20 and 40 m). This is the second major carbonate-producing bivalve. Other famal elements were distinctly rarer but included other robust filter-feeding bivalves.

Shell-cands

Shell-sands were the most frequently encountered type of sea-bottom, generally found in the form of sand waves (Figs 4, 5). They occur down to and below 100 m. Sand cels (<u>Annodytes</u> sp.) were sometimes encountered in high densities but the sand waves were generally barren. Where the sand was of

- 10 -

medium grain-size and the bottom level, an infauna of bivalves, irregular echinoids and worm tubes was developed.

Although they are <u>accumulations</u> of remarkably pure carbonate, the shellsands themselves support a <u>negligible</u> carbonate-producing fauma. All the carbonate has been transported from elsewhere.

Muddy Sands

These are developed in very shallow backwaters of the Firths (Fig. 7) and on deeper parts of the open shelf away from the main tidal streams. The shallow regions are characterized by a range of agglutinated worm tubes and thin-shelled infaunal bivalves with low carbonate-producing potential. Scaphopods and serpulids appear offshore.

CARBONATE PETROGRAPHY

Carbonate supplied by the living blota is likely to be dominated by bivelves; with barnacles, serpulids, gastropods and echinoids associated in shallower water. We now assess the petrographic evidence for the relative significance of these contrasted skeletal groups as sediment contributors.

Total Percentage Carbonate and its Areal Variation

Fig. 13

All sediment samples showed very high $GaCO_3$ percentages except for some mearshore sediments in the Wide Firth Area, and a group of samples in North Sound (Fig. 15). The abnormally low 45-55% $GaCO_3$ level in the latter area may be due to dilution by the reworking of glacial drift, or due to its sheltered position. Elsewhere values range from 90 to 100% $CaCO_3$. Sand-wave fields, where the sediment is coarser, have higher values than adjacent level-bottom sands.

Bioclastic Components

The following components were counted for each sample:- barnacles,

- 11 -

have been recalculated as a percentage of the total carbonate fraction. 20%). Figures quoted have not been adjusted to allow for the unknowns, but bivalves, gastropods, echinoderms, calcareous worm-tubes, bryczoans, calcarsous algas, terringenes and unknown (the last category varying from 0 to

with only very few formainifera; calcareous algae are locally important. celoareous worms (7%). Accessory components include gastropods and schinoderns samples beings- bivalves (46%), barnacles (16%), bryosomus (11%) and Nour constituents make up the bulk of the carbonate, means of all

commently reaching more than 50% in the sands (Fig. 14a), and almost 100% in vave fields than in level sand areas. sauy Modicius shell gravels (Table 1). Mynive debris is the dominant carbonate component of nearly all samples, The bivalve fraction is less in sand-

PL6. 14

Stronsay, and are also enriched in the sand-wave area off North Ronaldsay, but only rarely do they make up more than 30% of the carbonate fraction. are less common on level sand areas. Barnacles show a mearshore distribution (Fig. 14b), particularly east of

highest in level sand areas, particularly in the deeper water though they also occur in the shelter of North Sound. Bryosoen values are much reduced in sand-wave sediments. Bryosos, in contrast, show an offshore distribution (Fig. 140) and are

sharply in send waves, reaching 35% at one station (Fig. 14d). wally rather low, especially in offshore level sands, though they increase Calcareous worms include both serpulids and spirorbids. Values are

Debris is localized around living patches and has not been recorded from the open shelf. components, being limited to the Sounds at depths of less than 20 m (Figs 1, 7). Calcarsons alone cover a restricted area compared with the previous Gravels may be 95% algal in some instances, but in others 16%

regular solunoid remains may occurs average figures are shown in Table 2. The carbonates of North Orimey contain abundant bivalves (47%) barnacles

(27%) and servulids (13%) (Table 1). Those on the North Ronaldsay north bank

ŧ

Table 1

- 12 -

500 -

1

This may be due to the greater resistance of servilid material to biological are much richer in serpulid debris (29%) than the surrounding carbonates. of ourrent-ewept rook platform where there is high serpulid productivity. and mechanical breakdown, or may simply reflect the proximity to a large area

녂

probably moths an important contribution to the sediment on the bank. of living and deed Modicius shells, the latter rapidly degrading. This Morthwest of the bank there is also a large area of shell gravel made up

sediment Δ is swept there from shallower water it is not extensively revorked but are not very nature, because of the predominance of the deeper water naterial. aid material to the send. infammal production (e.g. irregular echinoids and formainifers) continues to The average petrography of the East Oriney ourbonates suggests that they

Sediment Component Distribution

as a Function of Depth

in energy level, perhaps related to wave base. Barmaoles settle preforentially with the offshore bryosom distribution. This may be explained by contrasts poor chance of preservation, judging from Chave's (1964) tumble-sill experiments do not flowrish in such conditions (Hyland, 1970) and additionally stand a nd grow faster in stronger ourrent areas (Grisp, 1955, 1960). Many bryosoens Fig. 14 shows clearly the meanshore distribution of barmacles contrasted

Appearant Absence of Relict Carbonates

Fightrian transgression must have regulted in what is now open abelf having rate of transgreesion was initially repid, and there was possibly insufficient characteristic. However, nowhere on the open shalf of today were unsttached corralline algae found. rverlapped by transgressive and waves, though it must be remembered that the sembled the inter-island Sounds, where today calcareous algal gravels are The palaeogroups while configuration of the Orineys architelage during the It may be that such deposits exist but have been

- 501 -

time to form thick accumulations, for the coralline algae are slow growers (Aday, 1970). Relatively fresh pieces of <u>Phymatolithon calcareum</u> from the Sound of Ions (Inner Hebrides) have been dated at approximately 4000 B.P.

¹⁴C dates have been obtained for the Orkney carbonates (Allen, 1983) but their interpretation is by no means straightforwards they will be written up separately in due course. Subsamples may show a difference of 1300 years, supporting the idea already gained for somar study that the sediments have undargone frequent mixing. Furthermore, different biogenic components give different ages: bivalves > serpulids > gastropods > barnacles. No date, however, was earlier than Holcoene.

BIOMROSION

In attempting to understand the manner in which the gravel-sized material becomes broken down before being readily transported by wave and tidal ourrents a total of 366 shells and algal fragments were studied from 26 stations spanning a depth range of 12 to 102m (Appendix Table 2). Stations are numbered on Fig. 3. Shell-boring algae, fungi, worms, phoronids and sponges were identified, plus grasing echinoids and mollunces.

Fig. 15

Shell-boring algae were totally dominated by two species of chlorophytes, <u>Ostrobium queketii</u> and <u>Bucomontia seconlate</u> (Fig. 15). This contrasts with other areas of the Soottish shelf where the rhodophyte "conchocelis" is dominant (Glokie et al., 1979; Parrow and Clokie, 1979). Fungal borings were also widely identified.

X-ray radiography, particularly of the larger <u>Modicius</u> shells, revealed widespread damage inflicted by the boring sponges <u>Glique celats</u> and <u>C</u>. <u>yestifice</u> (Fig. 16). Commonly those parts of a shell not showing sponge borings were affected by phoronid or <u>Polydors</u> borings.

Fig. 17

Fig. 16

Two common types of radula marks were seen on shells, those of the limpet Access virgings (Fig. 17a) being readily distinguished from those of the shi ton <u>Lepidonleurus scellus</u> (Fig. 17b). The bites of regular echinoids

-14-

were also identified.

Bathymetric Distribution of Bioerosion Processes

Pig. 18

Fig. 19

The effects of the several dominant kinds of bioerosion are not randomly distributed across the shelf (Fig. 18). The maximum depth from which boring algae were recovered was 38 m, a limit shared by the limpet which feeds on the algae (Farrow and Clokie, 1979). This relationship, established in the Firth of Clyde, is further substantiated in the Orkneys, where a depth relationship between the area of shell bored by algae and that grassed by limpets can be demonstrated (Fig. 19). The biologically measured limit of the suphotic some around the Orkneys is thus 39 m. or slightly deeper since the normal indicator "conchocelis" is not present. Echinoid teeth marks were found only on shells from depths shallower than 30m, which also implies a herbivorous diet.

Boring by fungi, phoronids, <u>Polydors</u> and sponges was not seen to be limited by the suphotic sone, nor were the effects of chiton grasing (Fig. 18). Chiton redula marks were sporadically found at greater depth where they typically mibble muscle scars of <u>Glycovmeris</u> (Fig. 17b), possibly polishing off decaying muscle fibres. Such localisation of activity has already been reported by Voigt (1977), p.377) from a <u>Glycovmeris</u> dredged from 120 m in the western English Channel and we have subsequently discovered it on <u>Glycovmeris</u> from the Fleistcome Red Grag of Valton-on-the-Hase.

These contrasted bathymetric distributions appear to hold some palaececological promise; Akpan et al. (1982) having recently demonstrated that the algal boring/limpet grasing relationship was in existence in the Albian.

CARBONATE SEDINGET PRODUCTION BY THE Modiolus EPIFAUNA

Epifernal communities tend to be richer than infaunal ones, both in numbers of species and in total biomass. Kay and Enights (1975) have shown this for intertidal muscel beds in Southeast England, which have an average

-15-
Modicius Community, but in the parallel community in the lower Bay of Fundy, the effects of boring sponge attack. important paper on Soottish <u>Modicium</u> coourrences, has noted that populations injunding and <u>Placopectan manuflanious</u>: bivalves and burnacles, the two dominant all strongly calcified:- Modicing modicing, Belerge creverus, Chigars in terms of ourbonate sediment production that the top four producers are 193 $g/\pi^2/\gamma \pi$, is higher than for the intertidal mussel bed. It is of interest Wildish and Peer (1983, p.311-313) show that <u>Modiclus modiclus</u> is by far the total blomess of 125 grams/ n^2 compared with 21 grams/ n^2 for adjacent cockle sheletal components in high-latitude carbonates. are only viable in strong current areas where faster growth rate offsets and fama. net important organism, accounting for 86% of the production. secured was a staggering 1769 $g/n^2/y_{Ti}$ the average for the whole fame, There are no figures for sublittoral production by the Scottish Ogmely(1978), in an Peak production

Modicing is surrounded by bicolastic sand heaped into sand verves (Fig. 20a). Spinit would not be so ensceptible to storm or megaripple inundation, for with their admets spifamms of bernacles and servalids. during storms, especially from the east during vinter, In such situations the living populations are prome to sediment inundation North Ronaldsay and again in Strongay Firth, where a central area of live typically peripheral to major send bents. This is well seen northwest of quarium experiments on sumstrophic burial show that these bivalwes have high scope potential: in contrast to their sessils spifemal neighbours, they rould leave a deposit of <u>Hodiolus</u> shall gravel, soon to be settled by new rould result in their exterinophic desth (of. Schäfer, 1972, p.159), togsther oration. Live and entire deed shell coourrences of Modicing in the Orineys are Adjacent informal populations of <u>Olycomenia</u>, <u>Bolecurtia</u> and Subsequent viznoving

71g.20

These populations are within the explotic some and hence subject to the am effects of bicercsion (Fig. 18). This biological weakening, together

own escape through 20 on of sund.

¦7

diminution of grain size towards the sand waves (Fig. 20b). in situ breakdown of the skeletal carbonate, accounting for the rapid with the process of maceration (Alexandersson, 1979), results in a rapid

Rates of Carbonate Production

Quantification of the snount of carbonate present is difficult because

Table 2 P. period will be more realistic. is now considerably less than it was prior to 6000 yrs. MP. Thus the did not establish itself fully until 6000 yrss. JP., while there is also probably supporting some carbonate production from at least 10,000 yrs. landmass, and at the same time submarging large areas of the shelf under but prior to that, it was rising and progressively encroaching on the Soottiah has remained relatively stable for the last 6000 years (Flint, 1971, p.333), time period over which carbonate accumulation has taken place. Sea level of carbonate present (Table 2 1. Another problem has been to determine the possible to put a range on the likely thicknesses and hence volume and mass of the inherent thickness variations across the shalf. However it has been reached a state of equilibrium only after 6000 BP., it seems likely that the 10,000 years. On balance, because the sedimentary regime is likely to have sinisms economistion period is taken as 6000 years and the marines as deeper and deeper vater. werage carbonate sedimentation rates based on a 6000 year accumulation one evidence suggesting that productivity in the deeper parts of the shalf However present carbonate production in the shallower areas probably These deeper, outer parts of the shelf were therefore

Orkney Sounds, however, where were action is much reduced, is half that Origney Flatform and Bast Origney shalf (Table 2.) are within the range quoted 540 $g/a^2/yr$ (Table 2). Bren the values of 125 $g/a^2/yr$ for the entire North by Helson (1978) for verse-veter shelf ourbonates (Table ?). The value for the Soottish shelf (Table 3). Highest rates for the major sandbanks reach Rates of accumulation in the Orimeys have been faster than sverage for

Table 3

-17-

for the open shelf (Table 2). This demonstrates clearly the importance of bitch energy in schieving high rates of carbonage production.

This is illustrated most spectroularly such farther north than Orkney by the carbonate deposit on the wave-dominated Iceland shalf at Fakse. Here personnial dredging sufficient to support the entire Iceland commut industry has failed to deplete the bicolastic reverve (Branvell, 1977, p. 118).

CONCLUSIONS

- 1. Bicolastic carbonates more than 90% CaCO₃ cover many 1000s of Km² of continental shelf at 59^cN.
- 2. Bivalves, barnables, bryosoans and serpulids dominate.
- 3. Production is highest from the Modicius Epifsuna.
- Bioerosion by algal buring, limpet and schinoid graming is intense within the suphotic zone (down to 40s): sponge boring is ubiquitous.
- 5. Sediment is mobile down to 100m under the combined influence of wave and tidal oursents: sandpanks are lower and surrounded by base rook in winter but higher in summer.
- A not alcohoise sediment-transport path is indicated by sendence faming directions.
- 7. Major samplanks build up in circulation loops samed by beadlands obstructing the tidal flow, (of. Yellow Ses example recently described by Klein et al., 1962).
- 8. Carbonate accumulates at up to 540 $g/a^2/yr$ in samplenks but at an average of 97 $g/n^2/yr$ for the entire Oriney shelf. Local rates may thus reach those attained in the tropics as a result of the concentrating effects of wave and tidal transport (Table 4).

- 9. Sedimentation rates are of the same order as those estimated for New Zealand Oligocene skeletal carbonates by Nelson (1978), approximately 10 cm/1000yrs compared with 3 cm/1000 yrs for the entire Scottish shelf and 2 cm/1000 yrs for the New Zealand Camozoic (Table 3).
- 10. Orkney bicolastic carbonates have a high preservation potential, being dominantly composed of low-Magnesian Calcite, and represent an excellent modern analogue for ancient high-energy, earbonate sandwave complexes.

ACCOULEDGMENTS

The samples on which this paper is based were collected in difficult waters. We thank Captain Philip Walme and his officers for their fine seemanship, and our fellow scientists Terry Scoffin, Maurice Cucci, Maloolm Pye and Brien Brown for their help. Robin Powell and Bob Cumberland were responsible for geophysical gear. Brian Brown identified much of the famma: Maloolm Pye carried out the X-Raying: Stuart Laidlaw processed the sediment samples. Photographic work was by Douglas Macleon. Dennis Ardus kindly allowed us to use I.G.S. bathymetric data.

This work was made possible by a research grant from the Natural Mavironment Research Council (GR3/2699) awarded to Farrow and Scoffin, by an I.G.S. contract studentship awarded to Allen and by a Nigerian government studentship awarded to Akpan.

Responsibilities in the preparation of this menuscript were: G.E.F. bottom samples, carbonate-producing organisms, gravel-grade sediments, integration; M.H.A. geophysical data, sand-grade andiments, socumulation rates; E.B.A. biosrosion. We thank John D. Millingn and R.D. Kreise for their perceptive criticism, which has improved the paper.

-19-

HEFERENCES

-01-

- Admiralty Pilot, 1975, Oricney Islands: H.M. Hydrographic Office. idey, W. H., 1970, The effects of light and temperature on growth rates in boreal - subarotic corallines: Jour. Physol., v. 6, p. 269-276.
- Lipsm, E. B., 1981, Boological and palaeceoological studies of endolith Ph.D. thesis, University of Glasgov. boring, mollusoan grasing and schinoid feeding traces: Unpubl.
- Algen, I. B., Farrow, G. E., and Mourcis, N. J., 1982, Limpet graving on
- Alexandersson, E. T., 1979, Marine maceration of skaletal carbonates in Cretaceous algal-bored amonites: Falseontology, v. 25, p. 361-367.
- the Skagerrak, Borth Sea: Sedimentology, v. 26, p. 845-852
- Allen, N. H., 1983, Recent temperate carbonate deposits on the continental reserves: Unpubl. Ph.D. thesis, University of Stratholyde. abelf month and west of Sootland: distribution, sedimentology and
- Allen, N. H., Furnin, N. G. T., and Farrow, G. H., 1979, Resin yeels of vibrocores used in the study of some shelly sediments on the
- Scottisk sheif: Marine Geology, v. 33, p. MS7-M65.
- Bosence, D. V. J., 1976, Boological studies on two unattached coralline algas from western Ireland: Palasontology, v. 19, p. 265-305.
- -, 1979, Live and dead farmas from coralline algal gravels,
- Co. Gelvey: Pelseontology, v. 22, p. 449-478.
- Chave, I. E., 1964, Scaletal durability and preservation: In: Inbrie, J., Ernanell, M. (ed.), 1977, Atlas of the Oceans: Mitchell Sectley, London.
- and Newell, N. D. (eds.) Approaches to Paleoscology, p. 377-387.
- Clokie, J. J. P., Boney, A. D., and Farrow, G. E., 1979, Use of "comphoselis"
- as indicator organizat data from Firth of Clyde and Northwest Shelf:
- British Physol. Jour., v. 14, p. 120-121.
- Comely, C. A., 1978, Modifilus modifile from the Souttich west const.

ч

Biology: Op**belie, v.** 17, p. 167-193

Craig, R. E., 1959, Hydrography of Scottish coastal waters: Mar. Res. No. 2, 30pp. Scottish Home Dept., Edinburgh.

Jour. Anim. Ecol., v. 29, p. 95-116.

Farrow, G. E., 1974, On the ecology and sedimentation of the <u>Gardium</u> shellsands and transgressive shellbanks of Traigh Mnor, Island of Barg, Outer Hebrides: Trans. Royal Soc. Edinburgh, v. 69, p. 203-229.
1983, Recent sediments and sedimentation: In: Boyd, J. M.,

> and Bowes, D. R. (eds.) The Natural Environment of the Inner Rebrides: Proc. Royal Soc. Edinburgh, v. 83E, p. 91-105.

on the nearshore continental shelf of western Scotland: Proc. Royal Soc. Edinburgh, v. 76B, p. 55-76.

-----, Sooffin, T. P., Brown, B. J., and Cuoci, M. A., 1979, An underwater television survey of facies variation on the inner Soottish shelf between Colonsay, Islay and Juras Soottish Jour. Geol., v. 15, p. 13-29.

algal-bored shell material and the production of carbonate mud: Firth of Clyde, Scotland: Trans. Royal Soc. Minburgh, v. 70, p. 139-148.

Flint, R. F., 1971, Glacial and Quaternary Geology: New York, Wiley. Houbolt, J. J. H.C., 1968, Recent sediments in the southern bight of the

North Sea: Geol. en Mijnbouw, v. 47, p. 245-273.

Johnson, H. D., 1978, Shallow siliolastic sees: Chapter 9 in: Reading, H. G. (ed.) Sedimentary Environments: and Facies, p. 207-258.

Ear, D. G., and Enights, R. D., 1975, The macro-invertebrate fauna of the intertidal soft sediments of south-east England: Jour. Mar. Biol. Assoc. U.K., v. 55, p. 811-832.

- Klein, G. DeV, Park, Y.A., Chang, J. H., and Kim, C. S., 1982, Sedimentology of a subtidal, tide-dominated sand body in the Yellow Sea, southwest Korea: Mar. Geol., v. 50, p. 221-140.
- Lee, A. J., and Ramster, J. W. (eds.), 1981, Atlas of the seas around the British Isles: Min. Agriculture, Fish. and Food, H.M.S.O.
- Lees, A., Buller, A. T., and Scott, J., 1969, Marine carbonate sedimentation processes, Connemara, Ireland: University of Reading Geol. Department Report No. 2, 64pp.
- McCave, I. M., 1971, Sand waves in the North Sea off the coast of Holland: Marine Geology, v. 10, p. 199-225.
 - around the end of a tidal send bank; Sedimentology, 29, p. 95-110.
- Milliman, J. D., 1974, Recent Sedimentary Carbonates. Part 1: Marine Carbonates: Berlin, Springer.
- Helson, C. S., 1978, Temperate shelf carbonates in the Canoscia of New Zeeland: Sedimentology, v. 25, p. 737-771.
- Pingree, R. D., and Maddook, L., 1979, Tidal physics of headland flows and offshore tidal bank formation: Mar. Geol., v, 32, p. 269 .
- Rao, C. P., 1981a, Criteria for recognition of cold-water carbonate sedimentation: Berriedale Linestone (Lover Permian), Taemania, instrulia: Jour. Sed. Petrology, v. 51, p. 491-506.

- Ryland, J. S., 1970, Bryoscens: London, Butchinson.
- Schäfer, W., 1972, Ecology and Palaeoecology of Maxime Environments: Edinburgh, Oliver & Boyd.
- Sooffin, T. F., Alexandersson, E. T., Boves, G. E., Clokie, J. J. P., Farrow, G. E., and Milliman, J. D., 1980, Recent, temperate, subphotic, carbonate sedimentation: Rockall Bank, Northeast Altantic: Jour. Sed. Petrology, v. 50, p. 331-356.

Stearn, C. W., Scoffin, T. P., and Martindale, W., 1977, Calcium carbonate budget of a fringing reef on west coast of Barbados. 1. Zonation and productivity: Bull. Marine Sci., v. 27, p. 479-510.

Stride, A., 1982, Offshore tidal sands: Springer-Verlag, Berlin.

Thorson, G., 1957, Bottom communities (sublittoral or shallow shelf): In: Hedgpeth, J. W. (ed.) Gool. Soc. America: Memoir 67, p. 461-534.

- Voigt, E., 1977, On grazing traces produced by the radula of fossil and Recent gastropods and chitons: In: Crimes, T.P. and Harper, J.C. (eds.) Trace Fossils 2, Geol. J. Spec. Issue, 9, p. 335-346.
- Wildish, D. J., and Peer, D., 1985, Tidal current speed and production of benthic macrofauma in the lower Bay of Fundy: In: Gordon, D. C., and Hourston, A. S. (eds.) Proceedings of the Symposium on the Dynamics of Turbid Coastal Environments: Can. J. Fish Aquat Sci., 40 (Suppl. 1): 309-321.

Figure Captions

Fig. 1. - Bathymetric map of the Northeast Oriney Islands: (redrawn, with permission, from I. G. S. data).

Fig. 2. - Maps showing that although tidal currents (a) increase around the Orimeys, the tidal range (b) does not: (after Lee and Ranster, 1981).

Fig. 3. --- Map showing tracks of pinger and side-scan sonar traverses, and stations from which faunal and sediment samples were obtained. Numbered stations are those from which bioerosion studies were undertaken, and those which have samples illustrated in this paper.

Fig. 4. -- Map showing sea-bed characteristics determined by analysis of side-scen sonar records obtained in July 1977.

Fig. 5. — Simmad echo-sounder trace obtained in July 1977 across North Ronaldsay North Bank, showing west-facing sandwaves. These consist of 99% bicolastic carbonate rich in bivalves, sarpulids and barnacles (see Table 2: for location see Fig. 4).

Fig. 6. — Map showing tidal ourrents, fotoh and sediment transport paths deduced from side-scan somer survey of July 1977.

Fig. 7. - Generalised map showing sea-bed characteristics based on grab and dredge samples (of. Fig. 4). Notice the broad correspondence between the rooky area shown on the side-scan sonar map and the distribution of <u>Laminaria</u> (kelp) and ophiuroids. Fig. 8. — Common elements of the rock biots, plotted in 20 m blocks, showing the range over which they were recorded as dominant: (maximum width corresponds to seven occurrences).

Fig. 9. — Bryosoan growth forms: on left, encrusting bivalve shell and developing interlamination with serpulids: on right, nodular with hollow ares where attached to hydroids (Station 35, 56 m) x1.

Fig. 10. — Calcareous algal gravels: bulk sediment (left) and algal growth form (right). a) Station 96, 14 m, with robust growth forms. b) Station 92, 8.5 m, with more delicate, branching growth forms. Left x1.0. Right x0.6.

Fig. 11. — Map showing the distribution of live <u>Modiolus</u> Bpifauna, <u>Modiolus</u> shell grevel and densities of live <u>Glycowneris</u> (infauna).

Fig. 12. — Shell gravels composed principally of fragmented shell debris from the byseate bivalve <u>Modiclus modiclus</u>. a) coarse gravel that was inhabited by abundant <u>Givoyneris slyoyneris</u>, several <u>Venerunis zhomboides</u>. with the tubes of <u>Lanice comphilers</u> and <u>in situ Leminaris secoharina</u> (Station 89, 24 m). b) finer gravel from a level bottom inhabited by <u>Onhiura texturate. Yerns famoiate and Suigule elliptics</u>: notice the small well-preserved but transported <u>Args</u> sp. (Station 61, 35 m). c) fine gravel/ coarse send from the creat of a sendwave — no famma (Station 79, 8 m). x1.

Fig. 13. — Map of calcium carbonate percentages in the surface sediments, determined by sold digestion. Notice the normally very high values of well over 90% (reduced in stippled area possibly because of reworking of local glacial drift).

-25-

Fig. 14. — Maps showing the precentages of the principal skeletal contributors to the bioclastic sediments (areas with above-average concentrations are shaded). a) Bivalves. b) Barnacles. c) Bryozca. d) Calcareous worm-tubes. Notice that barnacle debris is highest nearshore, in exposed situations, whereas bryozcan debris occurs principally offshore. Worm-tubes are concentrated in sandwave areas.

Fig. 15. --- Epo-tex resin cast of vegetative filements of the boring chlorophyte alga <u>Europontia seconlata</u>, 13 µm in diameter. Smaller borings are probably fungal. Host abell is a fragment of the bivalve <u>Ensis</u> sp. Station.49, 16 m.

Fig. 16. -- X-Ray radiographs of dead shells of <u>Modiolus modiolus</u> and <u>Venerupis rhomboides</u> revealing extensive damage by the boring sponges <u>Oliona</u> <u>celsts</u> and <u>C</u>. <u>vastifics</u> (much the commoner). Notice also the much finerscale borings of phoronids. Station 108, 24 m. x1.

Fig. 17. — Grazing traces made by the radulae of — a) the limpet <u>Access</u> <u>yingines</u> on the surface of a <u>Modiolus</u> shell: notice the truncated "pin-pricks" of the cropped boring algae (Station 109, 18 m). b) the chitom <u>Lepidopleurus</u> <u>asellus</u> on the suscle-scar region of a <u>Glycymeris glycymeris</u> (Station 116, 79 m).

Fig. 18. — Diagram showing the bathymetric distribution of the dominant agents of bioexcasion on the Orkney shelf. The limit of the suphotic some may be taken as 39 m. Data shown in Appendix tables stations plotted on Fig. 3. (from Akepan, 1981)

Fig. 19. — Graph showing the close relationship between the degree of algal boring (x) and limpet grazing (c) and water depth. The limit of the suphotic some may be taken as 39 m. (from Akepan, '36').

-26-

Fig. 20. — Bioolastic carbonate sediment production from the <u>Modiolus</u> Bpifsuma. a) Upper right, integrates evidence presented earlier, 1. Location of dredge or grab samples yielding live or whole <u>Modiolus</u>, 2. Direction of dominant tidal transport, 3. Location of major sambank. b) Processes involved, from high initial epifsumal production, through biologically weakened gravel to mature bioclastic samd, rounded and sorted by tidal transport in circulation loop caused by headland.

in parenthesis)
and gravels (;
arbonate sands
. Orimey shalf c
contributors to
Steletal

•

	Average Sample Depth	Bernagle	Hulm	Pohi noid	Gestropod	Servilia	Brrosoe	Calcarwous Likee	Formini Cera
Morth Honaldaey Morth Bank	8 4 8	3	Я	8	4	8	ŕ	0	•
North Chimey Platform	84 H	21	Ð	2	م	5	ه.	o	-
East Ortney Ebaif (Modiolus Gravels	57 = (67 =)	15 (3)	15 (11)	4 (5)	2 (3)	6 (6)	16 (3)	(0) 0	7 (3)
Ordinay Sounda (Algal Gravala)	13 m (13 m)	18 (2)	69 (6)	5 (1)	2 (4)	6 (2)	3 (2)	4 (76)	- E
		•	¢:						

.

,

.

Latitude	59 ⁰ 25" N	59 ⁰ 25' N	59 ⁰ 00 א	59 ⁰ 04" N
Longitude	2 ⁰ 27 • W	2 ⁰ 40* W	2 ⁰ 30" W	2 ⁰ 57* W
Area	North Ronaldsey North Bank	North Orkney Platform	East Orkney Shelf	Orkney Sounds
Water Depth	<u>27 - 50</u>	<u>30 - 70 m</u>	<u>30 - 90 m</u>	<u>0 - 50 m</u>
Area of deposit (n ²)	27.1 x 10 ⁶	1140 x 10 ⁶	700 - 1480 x 10 ⁶	>70 x 10 ⁶ *
Carbonate Content (%)	99	90 - 99 (95)	75 - 98 (88)	75 - 98 (85)
Thickness (m)	1 - 23 (5)	JOI-2 (1)	0.1 - 6 (3)	$0.1 - 2 (0.5)^*$
Total volume (m ² x 10 ⁶)	26 - 191 (110)	11 - 2280 (1140)	848 - 4980 (1609)	7 - 140 (35)
Total weight (g x 10 ¹²)	21 - 158 (88)	9 - 1824 (995)	583 - 3984 (1609)	5 - 112 (27)
Accumulation rate	130 - 940 (541)	1 - 266 (129)	45 - 305 (123)	11 - 267 (65)
(g/m²/yr over 6000 yrs)	range average	range average	range average	range average
				* no good

٠

indications of thickness or area.

.

Table². Calculation of carbonate accumulation rates for four Orkney localities (after Allen, 1983)

•

.

· · ·

áres.	٤/	n ² /year	cm/100	cm/1000 years					
	zange	most likely	Lange	most likely					
Entire Scottish Continental Shelf with >50% CaCO ₃	4 - 135	24	0.5 - 16.9	3.0					
Orimey Islands > 7% CaCO _x	m 14 - 312	97	1.8 - 39.0	9.6					
Eorth Bonaldsay North Bank	130 - 940	540							
East Orkney Platform Edge	114 - 046	248	14.3 - 80.8	31.0					
Stronsey Firth Banks	250 - 400	400							
New Zealand Conosoic (Nelson 1978)	8 - 40	16	1-5	2					
Warm water Shelf CaCO ₃ (Nelson 1978)	eo - 900	· · · · · · · · · · · · · · · · · · ·	10 - 100						
Barbados Fringing Reef (Stearn et al. 1977)		1500	· · · · · · · · · · · · · · · · · · ·	-					

-30-

TABLE 3. Comparative Carbonate Production Rates for high-and low-latitude continental shelves (Allen 1983)

I.

- Appendix 1 Important carbonate-producing species on the Orkneys shelf, arranged by habitat.
- Rocky areas 24m

Echinoid: Echinus esculentus

Gastropods: <u>Gibbula cineraria, Rissos parva, Patina pellucida</u>

Bivalve: <u>Histella arctica</u> Barnacles: <u>Balanus</u> spp.

Rocky areas > 24m

- Schinoid: Strongylocentrotus droebachiensis
- Ophiuroida: <u>Ophiothrix fracilis</u> (dominant), <u>Ophiocomina niera, Ophiopholis</u> soulests, <u>Ophiura albida, Ophiactis balli</u>.

Gastropode: Gibbula spp., Galliostoma zizyphinum, Acmaes tessulate

Bivalve: <u>Chlamve varia</u>. Chiton: <u>Tonicella marmorea</u>. Bryoscan: <u>Flustra foliacea</u> Calcarecus vorns: <u>Spirorbis</u> sp., <u>Filograma implexa</u>

Rocky areas C.80m

Bivelves: Aron tetragona, Anomia ephippium, Chlanva distorta, Modiolus barbatus Histella artica, Musculus discore.

Crinoids: Antedon bifida. Brachiopods: Crenis snomals.

Algol Gravel 20m

Algee: Phymatolithon calcareum. Echinoid: Echinus esculentus

Bivalves: <u>Venerupis rhosboides</u>, <u>Venus fasciata</u>, <u>Gari tellinella</u>, <u>Ensis</u> (D., <u>Mvtilus edulis</u>

Gestropods: <u>Gibbula cineraria</u>, <u>G. magus</u>, <u>Patina pellucida</u>, <u>Acmesa Virtinea</u> <u>Modiolus Enell Gravel</u>

Bivalves: Modiolus Bodiolus, Givovmeris slyovmeris, Venerupis rhomboides, Venne

fasciata, Tellina orașsa, Dosinia ezoleța-

Gastropods: Calliostoma sisyphinum, Gibbula cineraria

Ophiuroid: Ophiura texturata. Serpulids, Barnacles

Shellsand

None

Moddy Sand

Bivelves thin-shelled, e.g. Threasire flernose, Gari ferrensis, not major producers.

31

	Mich brywaen enerwitation penhily inpedes cracing			Migh degree of bryoness so- erstation is probably respon- fale for low limpet graing	•												Shells probably not enhance peter to sampling			thells probably not extrand prior to excellar:		- Cuite statist a partie star mild	- Heart 1.c. Cf	Freed Lin	- Company of Cont	- Abendant 1.e. above 605	Orkney ees area.
Polyders weines	•	۱	ı	.1	•	*	•	۱	1	•	•	•	•	•	۴.	,	м	M	•	A	ı	H.	-	H	-	-	i in th
Purceid	•	•	۱	•	ı	M	•	•	ł	•	•	ı	۱	•	U	ı	×	M	٠	N	•	A	U	н	U	N	arnei a
Speace berings	M	ı	•	U	U	U	٩	•	U	ų	٩	Ħ	v	•	٩	U	M	•	U	M	"	4	U	A	U	H	ald at
Previous echimeta bitther	4	۲	ł	U	U		•	•	ų	U	*	R	Ħ	•	×	H	Ħ	Ħ	M	M	M	м	H	Ħ	Ħ	H	
X of whell rand by Chiton	0	ı	ı	2	to children Puting	2	R	is chica	R	8	•	S Nine	12.5	R	4	•	•	•	•	0	•	10	r,	•	19	•	
X of ris D Crack by Arrient	0	۰	ŧ	el	fing a	5	2	ahe] le graced	11	۶	•		ñ	٤	2	ĸ	č	٩	•	•	0	•	•	•	•	o .	
Typn of algoe	Green	Cret B	Green	Green	Green	Creck	Green	ersen Grace	Green	Crea	Į	Green	Green	Green	Green	Groek	,	•		١		•	ı	ı	ı	•	
X of chell bord by algae	100%	very Mich Intencity of boring		5	very Mch Intendity of algel boring	î	8	way Mch Latensi (7 of Lash	ĝ	8	י א	Mich algal boring	×	۶	8	Ŕ	•	0	3	۰	•	•	•	•	•	•	
No. of shells cumined	5	mainly calo- arcous algar (11 thed)	•	2	mainly lithes	2	R	mainly lithout + 2 shells	13	Q	8	fither for shell	*	R	24	5	•	~	5	•	fragrate	8	15	•	ŧ	ጽ	
Characteristic of sea bottom	Muddy cand	Ha erl	Maerl	<u>Hodiolus</u> gravel	Mari		Rodiolus gravel	(her)	Cobbl es	Intiolus gravel	Holiolus gravel		Rearee <u>Mediolue</u> gravel	Course Motialus gravel		Yodio)w Cravol + stoner			WET CLASS				chell gravel		base	haven name	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12	12.5	1	15.5	*	Ä	2	\$	\$	2	2	£	R	8	R	*	R	8	*	3	\$	2	£	8	*	ğ	•
Station Finder	8	124	8	*	6	¢	6	z	5	ş	ä	R	9	ş	1	20 20	,X	Ş	133	*	4	4	316	-	111	7	

•

•

- .

, interview Appendix 2.

•

•

•

Fig. 1

Fig. 2

Fig. 5

Fig. 6

Fig. 7

Fig. 9

Fig. 10a

1 cm

Fig. 10b

1 cm

Fig. 11

Fig. 12a

Fig. 12b

Fig. 12c

.

Fig. 13

Fig. 14

Fig. 15

,200,4

Fig. 17a

400,mm

Fig. 17b

APPENDIX 8

Proposed wave energy schemes for the west coast of the Outer Hebrides : their effects on sedimentation.

~

.

<u>Proposed wave energy schemes for the west coast of the Outer</u> Hebrides effects on sedimentation.

(based on a report prepared in 1979)

The area west of the Outer Hebrides has accumulations of very pure CaCO₃ occurring on a hummocky, rocky, waveswept platform which is a site of present-day CaCO₃ production by rock dwelling organisms. (see main thesis). As it is the possible test site for full scale wave energy converters, consideration of the effects on sedimentation is appropriate.

One of the most popular ideas for meeting future energy needs for the world is to capture energy from extra-terrestrial sources. The Moon induces tides, and the Sun produces radiation which can be captured directly, and also indirectly as the wind and wind-driven waves. It is commonly argued that these are 'free' and effectively inexhaustable sources of energy which have none of the environmental problems associated with the burning of fuels. However, the extra-terrestrial energy which falls on the Earth at present drives the circulation in the atmosphere and oceans. This circulation controls our climate and is the main physical process affecting sedimentation. If, for instance, solar energy is diverted out of these systems, then side effects on our environments must be expected. For example 5 x 10^{24} J/YR of solar radiation falls on the upper atmosphere of the Earth. Present world consumption is about 3×10^{20} J/YR, so that if technology enabled us to depend entirely on solar energy in the form of radiation, wind and waves, then we would be using of the order _ th of the energy that is falling on the Earth's 10. 000 upper atmosphere.

The use of the waves is one of the most promising methods of capturing the Sun's energy, and waves play a crucial role in shallow marine sedimentation. Any significant removal of wave energy from the sea along a coastline will cause changes in the pattern of sedimentation. It is possible that the changes might lead to either considerable net erosion or sediment accumulation. In the past six years methods of converting wave energy into electrical energy have advanced so far that it is now a serious proposition. The main problems still to be overcome are the reduction of production, installation and maintenance costs. A test site, west of the Outer Hebrides has the best conditions in Britain for the harnessing of wave energy (Salter 1977) (Fig.158) and several workers are considering the environmental effects of such a scheme (Probert & Mitchell 1979), with the main concern being the effects on the ecosystem. Of prime importance to this is the pattern of sedimentation. Hydraulics Research Station (Wallingford) have stated that there should be little detrimental effect and may be some build up of the beaches (Probert pers. comm.).

Several types of wave driven generators are being developed in Britain (Clark 1977). Only two types will be discussed here but it is likely that others will have similar effects because they all extract the same energy from the system.

Salter's 'nodding ducks' (Fig.159) are floating concrete devices which would be anchored in water about 100m deep, probably as a 'string' parallel to the coastline about 10km offshore (Salter *et al.* 1976). The arrays would not be continuous but the spacing is as yet undecided. They are expected to be extremely efficient at removing energy (up to 80%) from the entire water column during calm spells, while during storms they would have a much lower efficiency and nearly all the wave energy will pass the devices (Mollison 1976).

The Oscillating Water Columns (OWC Fig.160) are solid concrete structures which would be mounted on the seabed in up to 25m of water and project above sea level (Pickin pers comm, Roxburgh Engineering pers. comm.). They would form a barrier parallel to the coastline about 3km offshore. Again, the spacing of these devices is undecided. They would be very effective at preventing the waves reaching the sea behind them, but this sheltered area will be much smaller than that produced by the nodding ducks. Carbonate sedimentation in the area is discussed in the main thesis. For the nodding ducks, the effect on the degree of sediment movement by reduction in wave energy may not be great, as most of the movement takes place during storms. The ducks take only a small proportion of the energy from storm waves, so the reduction in bottom oscillatory storm currents will be small, producing little decrease in grainsize moved and rate of movement.

Nevertheless the energy converters will significantly change the hydraulic regime for the entire region between themselves and the shore, so that for either type of device, the nearshore and beach environments will experience immediate changes and may be the most affected parts of the coastal marine system. Many of the beach-machair complexes are considered to be already undergoing erosion (Mather & Ritchie 1977), and Ritchie (1971) has pointed out that the shore is in a delicate equilibrium which could easily be disturbed by artificial alterations to the coastline. Thus the installation of a wave energy scheme may have major implications for the shoreline and the machair which lies behind.

Normally sand is blown permanently behind the foreshore into the dune area and machair, while this lost sand is replenished from a nearshore bank or 'reservoir' of sediment which lies seaward of the intertidal zone (Mather & Ritchie 1977 and Fig. 161) If it is assumed that the Hebridean beaches behave as typical beaches facing an open ocean, then sediment should migrate seasonally between the nearshore bank and the beach (Komar 1976) with the net losses to the dunes and machair being replaced by supply from further offshore.

During the winter, when high energy, storm waves are common, sediment is moved seaward from the beach, onto the nearshore bank. Thus at the end of the winter the beach is in its most eroded state (Fig. 162). During the summer, lower energy swells derived from a long distance predominate. Sediment moves from the nearshore zone back onto the beach during this period. The beach therefore undergoes an erosive phase to produce a 'storm profile' in the winter, and a constructive phase to produce a 'swell profile' in the summer (Fig.162). The net process is actually determined by the balance between the destructive and constructive types of waves.

The Salter-type wave energy devices are designed to remove almost all the energy of the constructive, summer swells, but to leave the powerful destructive storm waves almost unaffected (Mollison *et al.* 1976, Salter 1976, Fig. 163). Thus the balance may be shifted in favour of the 'storm profile' leaving the coastline prone to extensive erosion.

The OWC can be mounted on the seabed comparatively nearshore and therefore has considerable operational advantages. It would act as a breakwater and very little wave energy would get past the structure. Hence it should protect the coastline from erosion. There is likely to be accumulation of sediment in the quiet lagoonal area between the devices and the shore which at present is rocky. Sediment may pile up on either side of the devices and this could cause severe engineering problems. The ecological implications are also considerable. The rocky seabed at present supports a very important kelp and lobster industry and these could be irreparably damaged.

It is very difficult to determine how quickly the sediment would accumulate in the lagoon. Many of the calcium carbonate secreting organisms may also be affected by the changes in the hydrodynamic environment and the production rate of $CaCO_3$ may change. Also as the rocky substrate becomes buried under sediment, so the nature of the $CaCO_3$ producing fauna will change.

These suggestions are based on the assumptions that nearcontinuous lines of barriers will be built, and that the beaches obey the Komar-type seasonal variation. It has not been decided how many and how big the gaps will be, and it is not known how the Hebridean beaches vary with the seasons (Ritchie pers. comm.). It is clear that further study of the beaches and the nearshore and offshore zones is necessary before any decision is made on the energy converters to be installed and that if any full scale scheme is implemented the sedimentary processes should be carefully monitored both on the beaches and offshore.

REFERENCES

- CLARKE, F.J.P. 1977. Status report on the alternative energy sources. Atom, 252.
- KOMAR, P.D. 1976. Beach Processes and Sedimentation. Prentice-Hall, New Jersey.
- MATHER, A.S. and RITCHIE, W. 1977. The beaches of the Highlands and Islands of Scotland. The Countryside Commission for Scotland, Perth.
- RITCHIE, W. 1971. The Beaches of Barra and the Uists. Report, Dept. of Geography, University of Aberdeen.
- MOLLISON, D., BUNEMAN, O.P., SALTER, S.H. 1976. Wave power availability in the NE Atlantic. *Nature, London, 263,* 223-226.
- PROBERT, K. and MITCHELL, R. 1979. Wave energy and the environment. New Scientist, 83, 371-373.
- SALTER, S. H. 1974. Wave Power. Nature, London, 249, 720-724.
- SALTER, S.H., JEFFREY, D.C. and TAYLOR, J.R.M. 1976. The Architecture of Nodding Duck Wave Power Generators. The Naval Architect, London, 21 January.

Figure 158 Sites of highest available wave energy (from Clarke, 1977).

•

Figure 159 Artist's impression and possible location of Salter's 'ducks' based on Salter et al. (1976).

- 44

Figure 160 Artist's impression and possible location Oscillating Water Column (OWC) generators based on Roxburgh Engineering (pers.comm.) and NERC Newsjournal, 2, No. 7.

Figure 161 The sand - beach system. Modified from Mather and Ritchie (1977).

.

(a) Summer (swell) profile.

(b) Winter (storm) profile.

Figure 162 Variation of a beach profile with the seasons, from Komar (1976).

Figure 163 Power density diagrams based on data from OWS station 'India'. Percentages on the right-hand side of the diagrams represent total frequency of occurrence of the power density ranges.Salter's devices would remove most waves between 0-80,reduce wave size between 80-320, and above 320 will have neglible effect. Based on Salter et al.(1976).

APPENDIX 9

Particle size and carbonate analyses of samples from the SCS study-area.

Sediment PSA & Carbonate Data

Explanation:

SAMPLE NUMBER is the IGS labelling system as at 1/12/79 NB.1 Samples are grab samples

LAT & LONG are °N latitude and °W(-) & °E(+) of the station position DEPTH is the water depth in metres SED TYPE refers to the ternary diagram for gravel:sand:mud;-

%G		15	the	₹	by	weight	of	gravel(2+n	\mathbf{m})	in t	the sa	ampte		
%S		is	the	8	11	11 -	11	sand(0.062	25-2	2 mm)	in th	ne sam	ple	
ЯM		is	the	୫	**	**	f f	mud (0-0.0	625	5 m m)	11 1	14 18		
80C 5	5&G	is	the	8	H		n	carbonate	in	the	sand	and g	rav	el
80C S	3	is	the	8	41	**	H	11	11	11	sand	only		
800 M	1	is	the	€	H	18	**	11	97	11	mud d	only		
80C 1	TOTAL	is	the	웅	**	11	#	**	11	11	in th	ne who	le	sample

<u>NB.2</u> Where a significant size-fraction has not been analysed for carbonate, this total can only be an approximation. <u>NB.3</u> Where a figure is preceded by 'E' it has been derived from a visual shipboard estimate only

	SAMPLE	LAT	Fund	PERTH	SEC	26	: 8	24	100	***	\$00	APP	
	1:U* 3\$£ 4			÷i.	TYPE				5 % G	\$	-	TOTAL	
	N 43												
	H 43.	57,5073	-A. 0784	101	5	1	82 88	17	••		•••		
	H 48.	57 5217	.7 0632	99	5	3	86	11		52		52	
	M 52.	57,5245	-7, \$1.31	77	4 Š	10	59	25		42		49	
	M 56.	57,5932	-7.1458	14.	M	1	6	93					
	M 60	57 5756	-7,196,	28.	мs	3	70	27	-	••		••	
	M 63	57.5297	-6.6975	160.	9 #5	2	71	29		2r		217	
•	M 68.	57,6142	-6, 98,15	165.	5	E.	85	15		30	•=	30	
	H 6G	57,5722	-7,1346	128.	\$	1	90	9	••		••		
	M 82	57,7190 57 7315	-0,8735 -6 5448	140.	. GSM	10 10	27	73		••	••	**	
	н АЗ	57.7576	-6 . 6+ 87	27.	5	10	00	J		87		87	
	H R4	57,7227	+6,7147	46	55	34	66	N.	-	77		77	
	M 85.	57,9396	-5,4965	33.	8	5	91	4	-			• •	
	P 57.	57,4484 57 0431	-5.25469 -5.2546		8		83				••	••	
	H 92	57.8913	-5.8367	50	ŝ	20	83	- N		< 1		~1	
	M 93.	57.8844	-5,9881	113.		1	73	26		-			
	M 95.	57.8276	-5,9983	135.	GSP	U	42	58				-	
	M 97.	57,9019	-6,1279	38.	2 M S	2	54	44	**	8 0		B H	
	H 181.	57.6343	-6.3864	41.	63	14	/ J #4	2		92		92	
	M 183.	57,7751	-6.31.92	70.	65	48	51	ī		85		85	
	H 185.	57,7789	-6,3431	82.	8	33	67	Ň	•••	91	-	91	
	H 188.	57,7715	-5,9797	147.	4	ß	5	95	•••		**		
	P 109.	57 3811	-5 9873	44,	546	57	38	.,		44	**	44	
	M 111	57,3277	-5,9825	32	SHG	78	26	4		92		92	
	H 115.	57,4219	-5,8597	66.	"#S	10	47	43				**	
	H 116.	57,4295	-5,8915	198.	GSM	5	19	76					
	r 119. M 192	57 4801	-3,9034	162.	м И	0	2	98	••		•••	••	
	M 129.	57.5798	-6.6484	155.		B	i	99					
	H 141.	57,6983	-5,9539	138,	H	ē	3	97					
	M 144.	57,9939	-5,7084	86.	8	7	86	1	••	28		28	
	M 145. M 164	57,9989	-5,7862	124,	H8:	2	54	46		**			
• .	M 152.	57.5543	-6.5256	64	6 S.M.	19	91 24.	73		23	•••	91	
	H 153	57,5386	-6, 4952	70	H	ŭ	3	97		69 66:	**		
	4 154.	57,5248	-6,4598	59	м	91	7	93		-			
	M 100. M 167	37,9 <u>179</u> 57 5023	-6,4393	63.	GSM	<u> </u>	32	68	-	••			
	M 158	57,5710	-6.4555	53.	GEM	ő	39	61					
	M 189.	57,5437	+6 4564	67	H	ē	3	97					
	M 160.	57,6044	-6,5753	60	G S	46	51	3		66	**	66	
	M 100,	57,3586 57,3490	+5,7683 -5,7317	88,	GSM	9	42	49		••		••	
	H 168.	57.3250	-0.7625	123.			11	80					
	M 169.	57.3188	-5.8457	154.			4	96					
	H 178.	57,2967	=5,8317	73	MS	ī	55	34		13		13	
	P 171.	57,3849	-5.8583	48,	MS	38	53	. 9	••	50	-	26	
	H 176	57.52933	-0,7717 -6.1288	56. 44	5	17	92 38	18		45	**	 66	
	H 177	57,5214	-6,8927	128.			4	96	••	••		••	
	H 178	57,5273	-6,6626	132,	۲	ē	2	98	-		**		
	F 179.	57,5244	-6,2399	78,	MS	14	63	52	••	••	-		
	M 181.	57,5740	+0,7215 -8,7548	105.	8	1	15	94 3 K	**		**		
	H 182	57,5980	•5,7935	46.	60 M2		6	94		••	**	44	
	M 185.	57,6158	-6.5197	66.	5	ž	84	14	**	52		52	
	H 1#6.	57,6367	-6,5+87	76.	GS	14	75	11	** **	47		47	
	# 187. # 180 ·	37,8485		67.	. 6 <u>3</u> .	- 24 -	74.	S		61 76		81	
	H 190	57,7249	-6.5874	63. AR	3	12	84	2		70 78		/ J 72	
	H 191.	57.7140	-6.0240	89	S	11	86	3		37	**	37	
	H 192,	57,7313	-6.6131	188.	8	3	97	N		29		29	
	M 193.	57,7456	-4,0339	91.	GS	16	64	15		42	••	42	
	H 196.	3/1/343 57,7878	-0.0041 -0.0041	117.	G 3	18	74 82	8 34	••	35 74	••	37	
	H 197	57,7963	-6.7343	43.	63	19.1	72	9	••	50	••	52	
	H 148	57,8165	-6.84AB	34,	65	18	72	10	-	48	•	48	
	M 281. M 285	57,8634	-8,9134	154.	MS	h	63	37		-	••	••	
	M 228	57.9540	-0.0977	73.	HS. Far	К.	70° 44	10		79 02	**	79	
	H 209	57.9745	-6.1247	\$6.	65	46	54	*		6P		7C 60	
	-								-			· •	

.

	SAMPLE Number	LAT	LONG	DEPTH M	SED TYPE	¥G	23	**	XCC 3eg	3CC 8	#CC #	APP SCC
	m 212	58 2099	-6.2183	40								TOTAL
	H 213	58,7221	•A 2479	116.		,	16	84				
	P 214.	58,2351	+6.2645	99	SHG	47	50	24	••	44		44
	M 215.	58,7476 68,3813	40.7083 -6.3586	114.	+5	1	61	JA		41		41
	H 297	58,1377	-6.7399	100.	- 3 M	2 h	12	47 68	••			
	H 218.	58,1637	-0,2009	98	5	N.	85	14		38		38
	1 219.	56,2053	-6,1116	134.	# \$	N	63	37	**		••	
	H 391	56,1589	-0.0200 -0.0753	136.	632	6	22	78	••			••
	P 222	54,1893	+6,0278	127.	, Ç	č	4	06			••	
	H 223	58,1641	-0.0124	123.	м	e	3	97				
	* 224,	54,1770	-5,9815	114,		C	25	96	••		••	**
	P 227.	56,1600	-5,9011	112.		6	15	85		••	••	
	H 220	58,1443	+5,6758	114.	GRM	0	26	74				
	H 230	58,1412	-5,8018	110.	HS	č	56	42				
	M 232.	58,1317	-5,8117	99.	MŚ	6	64	29				
	M 235.	57 8535	-5, 726	86.	5		98	2		59	••	59
	+ 237	57.7670	-6.2913	73.	65 63	10	e2 58	2		31 71	••	31
	P 236	58,1031	-5,7210	96	HS	1	73	26		1		1
	M 239.	58, 8927	-5,4656	88.	Mġ	5	75	25		10		10
	P 241.	58,7714	-5, 149	6.	MS	E	73	27				
	H 243	58 35C8	-3,7843	128	-3	Ň	73 64	47				
	# 244.	58 7428	\$5,5215	128	-5	i	89	16		11		11
	M 247.	57 9570	+6.2523	1.46	GSM	Ň	25	75				••
	H 248. H 251	57,7688 58 9356	-5,1916	76.	HS	4	79	17		24	**	24
	# 252	58, #506	-5.7812	116.		8	16	84	**		••	
	M 253.	58,2692	-5,7569	94.	MS	2	76	22		14		14
	M 254.	58,2640	-5,5745	154.	- 5	5	71	29		••		
	E 275.	50,1237	-5,5271	51.	PSG	57	43	N		71		71
	H 257	57.9428	-6.0429	74.	68	J 2 4 1	52	7		72 81	••	92
	M 259	57,3130	-5,0161	90.	MS	10	64	26		10	••	10
	M 260.	57.3780	+5 9747	46.	\$	2	88	10		10	-	16
	M 267	57,2455	-5,9228	36,	MS	N	72	50	-		••-	
	M 285	58.4686	-5,035/	27.	8	1.0	83	5	74		22	72
	H 297	58,1764	-5,6895	94		2	71	27	23	**	13	21
	M 316,	54,2894	-5,7382	178.	\$	Ĩ	87	12	24	••	19	24
	M 325.	57,5250	-6,4817	144,	M	1	15	84	••	••	••	••
	F 14.	58,2626	-3.2113	0J. 47			¥7	2		89	••	
	IF 18.	58,2346	-3,6940	31.	š	Ň	98	2			••	
	IF 27.	56,1586	-3.2078	62.	Š	N	99	Ň				
	" 01. IF A5	58,1475 58,2708	-3,6048	52,	5	12	87	N	••	15	**	15
	IF 172	58,1974	+2,9143	25.	8	13	82	N	•••	83		68
٠	IF 186,	58,2970	-3,1443	50	Š	27	73	N		67		67
	F 189.	58,2516	-3,0217	39.	8	3	97	N	•-	1		8
	4 110. F 112	50,1932 58 3010	-2,9309	40.	8	4	96	N	••	27	••	27
	199	54.2696	-2,1412	-0, 52	3	1	74 47	N M				
	F 289,	50,4022	-3,0302	52.	SMG	7ž	28	N	••	03		83
1	IF 210,	58,3437	-3,8843	52.	GS	40	68	N	••	83		83
	17 211. 17 212.	70,3474 58 9440	-2,9122	73,	8	1	99	N .	••	77	••	77
	F 213	58,1786	-2.7582	52.	3	1	77	N 54	**	10	••	15
	IF 217	58,17#2	-2,9481	38	ŝ	N	99	N		4		4
P	IF 327,	55,5472	-2,9936	73.	ŝ		12	P.	83			83
	17 328	58,5148	-2,9119	64	5	19	89	M	88	••	••	88
	F 381.	53,4781 58 3858	-2,5343	69.	5	-11	19	N	••	86	**	85
	F 382	54,3789	-2.8688	72.		-	TY.	ri N	••	79 68	**	20
	F 3P3,	58,4781	-2,7151	69	- i	à	95	N		44		6.0
	IF 384.	54,4224	-2,5716	59	5	1	98	L		62	-	62
	17 JU/. 15 388.	37,4538 58 KL74	-2,7227	· 8 .	8	7	93	N		74	••	74
	F 391.	59.6130	-2.6054	73.	3	-	70	Ni 1	71 60	-		61
Ľ	F 393.	58 5747	+2,7576	57	65	41	59	Ň	A9		**	69
	F 395.	58,5310	-2,9265	73.	GS	25	75	N	A4		**	84
	17 JUN.	57,5143 58 4446	•3, 996 1	62.		34	66	14		92	••	92
	F 398	58.4151	₽¢,7099 #2,8091	72.	3	5	42	N N	**	9 8		96
	F 397	54 3672	+2,9857	70.	5 9	×	71 94	N 4		97		64
	F 403	56,2165	-3,2956	44,	š	9	10	ï				**
-	17 475. 17 495	34,3197 84 3744	-3,0871	66,	5	1	99	t.		54	••	54
-		20.3744	-4.7764	77.	3	5	78	N	••	47		47

	SAMPLE	LAT	LONG	DEPTH	SED	26	13	2.8	\$00	XCC	xcc	APP
	NUMBER			м	TYPE				SIG	5	M	100
мF	428.	58,6088	-2. 8065	80.	65	79	21		72		••	1014
٩F	479	58 6433	-2,7321	75,		6	94	P	67	••		N.7
MF	413.	58,4037	-2,4553	70.	S	7	92	1		44	••	4 4
	410	50,004/	-7,3746	"?.	GS	37	03	- Pi		82		45
MF	421.	58 3070	+2.202/ +2.3622	67	63	* ?	33	- N	•••	••	••	••
MF	472.	58 3711	-2.4597	60	3	19				52		52
٩F	423.	58 3468	-2,5865	46	š	;	93	₽j.		35		35
HF	424.	58, 30 A.	-2,4730	50	5	1	99	ti.	•-	27		27
MF.	429.	58,2451	-2.2987	55.	5	1	99	N	••	52.		52
HF	458.	58 2903	+3,1093	05.	5	1	92	Ň	••	53	••	53
NE	460	58 1037	-3 2050	40	3	10 16	90 04	2		26	••	24
MF	477.	58 2527	-3.2923	42.	65	28	72	Ň		57		57
MF	481.	58,4463	-2 F 175	66.	65	27	73	t.		95		95
нF	486.	58,7626	•2,4225	78,	S	1	.98	1		45		45
HF	447.	58,7513	-2.7263	77.	5	7	93	C.	61			61
49	440.	50,8120	-2.7568	64,	GS	45	53	2	71	**		71
-	491.	26 4517	•2.6575	75.	5	1	97	2	78	**	••	78
4F	400.	58 2147	-2 0867	70.	3	2	9/ 85	1	•••			••
HF	5#0	58.7356	-2.2462	76			4.0	Ň				
NF	642.	55,1513	-2.1499	70.	3	â	97	3				
HF	659	58,2010	-2 7429	48	3	1	99	Ň		18		10
нF	674	58,29Ar	-2.2580	66.	5	6	94	N		10		18
H.F.	798.	58,5296	-2.6247	65,	5	5	94	1	61	-		61
NF	791.	58,5734	-2,5967	66.	5	12	87	1	59	**		59
	87D.	57,7131	-7,5974	64,	-		••		51		•-	21
45	870	37,0833 58 8348	-3 6563	06.			**		48		••	40
47	810.	58 4159	-2 5011	67	6	2	64	N N	10	•••		/0
45	2.	58,1555	-5.9945	110.	654	÷.	34	66		36		36
18	5.	58,3503	-5.8793	110	5	ī	95	4		16		16
NS.	7.	58,4943	-5,0005	135.	3	8	97	3	••	40		40
45	9.	58,7445	-4,8058	79	63	36	64	Pi	38	**		38
NS	10.	50,8235	-4,6767	85,	GS	24	75	14		45		45
NS	11.	50,9740	-4,5468	<u>^3</u> .	3	5	95	N	••	59	••	59
NG.	12.	30,4000	-4,4202	77.	•	••				44		44
NS	15.	59.1005		- 0°				••• •	43	U 1	••	43
18	16.	59.1847	#4- P133	123		- 7	0.0	N	56	10		54
NS.	18,	59,2592	-3 6437	79.	5	j.	91	0	16			86
NB	21,	59,5222	-3,2388	70	GS	78	38	ø	14			84
18	22.	59,5226	-3, 1999	95	8	5	95		87			47
NS	24.	29,4196	-3,1133	ñ.	63	25	75	6	8 1	87		•1
48	27.	59,3172 80 3827	-3,2593	110,	5		96	N	77	••	••	77
10	27	97,200/ 50 (975	-1 4178	83.	5	13		2	00			68
45	28.	59.1155	-3.5527	00.	546	55	41			17		17
NS	31.	58,8943	-4 2013	68.	SHG	66	32	Ň		43		43
NS	32,	58,4103	-4,1325	74		13	87	N	46			46
NB	34,	58, 5792	-4,4137	95,	5	1	99	N		31		31
45	35.	58, 5955	-4,1853	1#2,	5	2	98	N	'ee	23		53
110	37.	30,0070	-3.0055		8	17	03	N	86	••	••	85
43	30.	50,013C 58 5518	-3 4789	25.	3		99	N	15	71	1	15/71
NŠ	43.	50,7260	-3.5659	48. 76	68 61	30	61	N N	37 77			87
NS	41.	58,7725	+3.7189	AR.					21			21
18	42,	58,7558	-4 41:27	90					36	35		36
NS	43.	58,6297	-4 1468	75		•			54	••		54
18	44,	56,8933	-4,2908	60.					40			40
15	45,	57,6136	+4,5472	48			••		50			58
42	4D.	57,6277	-4,8025	45.	5	3	97	8	47	43	••	47
77	48	70,0812 18 2074	-4,9515	65.	8	7	93	1	58	**		AA.
NS	49.	56.627%		34.	3 M G		00 65	N (4		/ 1		7P
NS	50.	58 7387	-5.3545	80 a	2	80	77 24	¥ ⊾	24			62
NS	51.	58 8188	+6.5145	<i>v</i> ,	0 29	90 57	41		×	24		2
NŠ	52.	54 4992	-5,6452	v.	65	21	79	ĩ		13	••	13
NS	53.	EP.9777	+5.79AC	120	š	N	19	Ň		17	••	17
NS	54,	59.0540	-5.9137	88.		-			41			41
NS MA	73. Ef	57.1256		100.	68	42	56	P1	-	73		7 Š
에 문 23년	50 67	37,1875	-0.1875	122.	GS	37	63	N	59	73	••	59
43	61 -	37,1742 68 6067	7226	116.	5	5	95	3	72	88	••	72
NE	62.	58.5130	**************************************	₹7.	••	••	••		••	99		44
NS	67.	59.7370	-5.364S	76 . 11#		1999 14	44			/8		76
NŠ	68.	57,1:82	-5.1843	110a AR	5		**			84		
45	50	59,1700		5.	S	3	97	0	54			
49	70.	59 7543	-5.7E18	100					••	60		66
45	12.	59,4013	-n,0568	150.	8	7	93	4	03	34		A1
				-								•

SAMPLE Number	LAT	LONG	CEPTH N	SED TYPE	¥ű	15	X4	TCC 3EG	XCC S	*C C /1	APP LCC
NS 73.	59,4r3P	-0.1885	170.		••	••	••		50	••	10186
NS 74.	59 6173	45 9335	155		••				96		
NS 75	59 5415	=5,7P+3	135.			••	••		41		41
NS 76.	59,4685	-5.6512	130					38			38
NS ZR	-9,32+2	+5,3652	156.				••	25	28		25
NG 80	80 1760	+0,2008 -5 1805	145.			10	••	34	4.4	••	34
NS AL	59,170	-4 9JA4	96.	356	C 17	39	1		29	•••	29
NS #2	59.8417	-4.2063	95	5		0.	N	70			70
NS #3.	58,9713	-4.4733	60	Š	2	98	N	48	31		46
NS P4	59 2405	-4,5383	65	ŝ	9	91	e	75	61		75
NS PS	59,1953	-4.5498	90		-		••		35	••	35
NS 45.	59,2517	-4,67 20	115.	5	19	B1	6	63	62		63
NS 47.	59,3273	-4.8292	• 2			••		33	••	••	33
NS 76.	24,4.59	-4,9442	145.	3	1	99	N.	26	**	-	50
NS 00	57,4005 88 6853	-5,11/2	Idhe	3	1	97 00	1	30			30
NS 91.	59 6158	-5 1895	1 94	3	4	7 7	N 10	60	31		67
NS 92	59.6795	-5.5113	137					42	64		42
NS 93.	59,7488	-5.3825	160	8	1	99	- 6	73			73
NS 94.	59,7487	-5 0967	155.	ŝ	19	81	N	85			85
NS 95.	59,5658	-4,97.73	130.	Š	P	1 9 P	8	57	39		57
NS 96.	59,6168	-4,4373	145.					35		••	35
NS 97.	59,5437	-4.687	136.						14	**	14
NG 98,	39,4778	•4,5592	110.						19	••	19
NS 99.	59,6427	-4,4293	185,	· 68	37	62	1	••	23	••	23
-0 1-0. Ng 184	27,3333 77,3333		1*5.		••		•••		30	•••	30
NG 172	J9,2017 50 3937	-4 0083	115,	•••		**		27	25	••	27
NS 163.	59.3093	-4.1200	97	6.	31	84	N		22		10
NS IPA	59,2522	-3.8465	135.					44			44
NS 196	59,3995	-3,8592	150.		-				78	**	78
NS 197.	59,4668	-4,4198	145	3	1	99	N		33		33
NE 179.	59,6022	+4,2865	110.	5	P2	166	Ø	50	••	••	26
NS 111.	59,7460	-4,5488	110.	SMG	50	54	N		55		55
NS 112.	59,8168	-4,6835	130.	G 5	25	75	N	••	29	••	29
48 113.	28,4820	-4,5125	155,			••		46	••		46
NO 114,	24, 2035	-4,0745	140.	546	55	45	N	41	**	-	41
NO 1100 MR 117	37,7013 55.7685	-4 2613	135.	Ģ	185						
NS 118.	59-81-53	-4. 1389	122.	6 10	24	70	N	33.	18:		23
NS 119	59.7532	-4,0080	126	5	2	9.7	44 14	37			37
NS 120.	59,6633	-3.8492	143.	8	2	97	1		23		23
NS 122.	57,5482	-3,5598	130.						59		58
N8 123.	59,4710	+J.44#3	95,	8	2	98	N	81	-		81
NS 124,	59,4182	-3,2782	75.			••			95		45
N8 126.	59,8577	-2,9967	80,	65	42	56	N		86	-	86
MG 127.	JV,027J 60 8307	+3,1427 -1.5770	115.	5		92	N	12			-2
NR 136	40 8018	-3,0//2	125.		3	¥7	N	20	••	••	20
NS 132.	59.9683	=3.6552	110					10	49		10
NS 134.	59,8950	•3.4237	145.		6	94	N	32			37
N\$ 135	59,8245	-3,2943	68.	ŝ	š	97	ñ	56			86
NS 136	59,7570	-3,1668	64	SMG	65	35	8	82			#2
NS 137.	59,6703	-3,9453	89.	5	19	61		86			86
NS 138,	59,6193	-3,4435	75.	65	26	74	P.	87		•••	87
40 137 . Ng 140	28°6285 28°2285	•J,1927	75,	3	17	#3		26			65
78 144	27,2073 FERG 03	-J. 02125	160.		-3	75	S		31	**	31
.NS 142	50 88AA	-3 (1457	140.	43	38		R .	84	••		84
NS 144.	59.6720	+3,150K	70.	3	10	94	т 4	65 84			80
NS 145	58,9673	-3.5028	*r.	3		84	- F	22	10		70
NS 147	50.0668	-3.4932	77.	9 8	10	92	้ม	6 J 6 A	50		23
NS 148.	58,8002	-3,4954	85.			98	n	85	86		85
NS 149.	59,7392	-3,4452	87	8	17	63	Ň	84			84
NS 151.	58,8127	-3,8452	98					47	39	••	47
NS 152.	58,8246	-3,9931	85					42	33		42
NS 154,	58,6258	-4,37:15	HQ.	8	3	97	N	45	49		65
NS 175.	58,6972	=4,7263	77	58	31	68	1	83	69	••	83
M3 175.	57,6455	-4.95hR	65.	GS	38	62	n		64		64
NS 157	56,5763	-2*5555	65.	36M	76	24	te .		48		48
75 175. Ng 140	24,7212	-7,5;47	115.	**		-	••	••	24	••	24
48 141 88 141	38,007/ 82 7680		150.				••	••	17	-	17
NS 162	58.8171	-3,7910 -5 6578	122.	63		35	11		9		.9
NS 163.	58.4535	+6.15CH	112.	63	30	3/	2 0	37	12	17	JZ
NS 164.	5 974L	+6.3572	11E 1						90		3C 00
NS 165.	19.0410	-6.1977	125					46		••	46
NS 166.	57,1817	-6,7473	155	63	42	58	N		47	••	47
NS 168.	59,0350	-0,7565	142					4#			4.0
NS 169,	50,9825	-0.5870	1 10.	1	2	98	P.			••	
				-	-						

		SAMPLE Number	LAT	LUNE	DEPTH N	SED Type	ĩG	X.5	24	XCC Seg	200 5	302 M	APP
	NS	170.	58,9740	-0.4670	138.					46	40	••	10146
	NS	171.	54,4293	=0.36A7	27			**			63	••	63
	45	172.	58 7316	=h,2143	120.	5	8 7	165	N	••	37		37
	13	173.	70,0737 64 6346	=P_1137	127.		••		••	••	71	**	71
	NS	175	58,5256	#5.7787	115.	3 4	è	90	1		37		12
	NS	176	54,5235	-n.1747	92.	š	i	98	i	59			50
	NS	177.	58 6058	-+ 2108	110.		Ö	17	88				37
	15	176.	58,1402	-6,2573	90.	GSH	N	27	73	••	37		37
	43	180	57 90 30	-0.1237	120.	68	к А 1	30	71	••	4 }	••	41
	NS	1*1	57,9243	-5.8541	135.	GS	40	56			18		1.8
	NS	183.	57 93AC	-5,6271	75	C.S.	29	66	5			••	
	NS	184.	58,2017	-5,7340	135.	PS.	6	70	30	••		••	••
	42	1.5	56,2693	-5,8720	106.	GSM	N	45	55	••		••	
	45	147.	58.2037		117.		k k	80	73	6	••	12	
	NŠ	1#9	56, 7832	·n.1440	35.	Š	2	98	'e	46			46
	45	100	58,3442	-6,0356	145.	5	Ī	98	3	-		••	
	NG	195.	58,5152	-5,4172	65.	GS	43	57	N	54	75		54
	10	197.	58.3943	-5 -5 15;	110.	5		9-0			11	••	11
		226	58,2272	-5,9683	128.		Ň	52	48		26		26
	NS	2.71	56,1669	-6 .045	135.	и		4.	96	••			
	NS	272.	58,174R	-5,9382	110.	MS	0	52	48		24		26
	115. N.C.	273.	58,1036 68 2200	-5,5117	105.	MS	N	68	32	•••	16		16
	NS	276.	58.2298	-5.5772	110	3 A	4	84	16	**	1	••	
	NS	277	58, 3763	-5.6012	145	GSM	ĕ	49	51		19		19
,	NS	288	59,1425	-5,7275	110	M8	Ĩ	73	26		15	••	15
	NS	239,	58,2123	-5,8725	170	MS	N	54	46	19	••	22	50
	NS	211.	58 3582	-6 1347	115.	~5 e	N A	37 183	43	4.	19	••	12
	N8	216	53 5790	-5.6015	130.	ŝ	ø	98	2		20		26
	NS	218,	58,6097	-5,2983	F.	68	29	71	Ň				
	NS	219,	58,6113	=5,1232	ρ.	HSG	74	26	8		76	**	76
	N8 88	720,	56,6170	-3,8432	ę.	5	8	180	2	39		••	39
	NB	223.	58, 4987	-5.3542	72	6 0	40	914 513		9/	A-1		67
	NO	225	58, 1715	-6,2149	35		16	82	ż	-	75		75
	NB	225.	58,2633	-t. roz3	150.	HS	8	81	19	-	19	-	19
,	NS	229,	59,3290	-4,0429	53.	8	N	188	Ň	-	72	••	72
	NB	231	58.3060	-5,8913	Ø.	3	1	77	13		22		22
	NS	232.	54,3280	-5,7277	118.	5	2	14	1		18	••	18
	NS	233.	58,3842	-5,5648	0.	Š	Ĩ	96	3		19		19
	NS	235.	58,2985	-5,2342	193.	5	1	84	15		25	••	52
	NS	238	58.7483	-4 2743	d4,	3	2	97	N	33	••		35
	NS	241,	59,8778	-3.6295	197	3	Ň	99	i	54			54
	NS	244.	58,8562	-4,9635	92.	5	4	95	Ň	55	-		56
	NS	245,	59,2285	-6,9753	82.	65	44	56	C	36		••	30
	- 18	257	54.7505	-4.5449	53.	8	11			05	••	•••	65
	NS	262.	50,7518	-5.9995		ŝ	5	98	N	62			62
	45	284.	59,4843	-5.3715	180.				••	27			27
	NS	285.	58,9423	-5,4923	82,			••	••	27		••	27
	- 75 MR	200.	39,824C 48 8403		66.	••	**		••	28		**	26
	- NS	2*8	5*.0002	-5.7365	1,004					6 9			21
	NŠ	240	58, 4912	-> 510	190.		**		**				68
	NS	293,	58.0877	-5,7485	72.	65	18	79	3	47	••	71	48
	43	296.	58,6633	-5,9147	120.	5	e	99	1		••		
	NB	298.	58 7445	-A \$673	122.	5	N	70	4	84		48	0.3
	NS	299	54 7717	-6,1255	123.					4B			42
	NS	376.	54, *165	-6,2:40	115					34			34
	N5.	371.	58,5840	+6,0978	111.	8	N	9.8*	2	87	••	**	8(,
	173) 1621	384.	77,J17/ 59,2005	-2.7783 -2.7293	31.	5	4	9ñ 7×	N J-	••	89	34	<u>69</u>
	45	375	59.5189	-7 6892	۲. 11.	65 65	22	69	9		66	66	57
	NS	376.	59, 3246	-2,7213	41	45	47	53	Ø		96		95
	N8	377.	54,3395	-2.7592	h0.	GS	22	78	N		74	65	74
	N-5 N-8	311.	39,3674	+7,8140	52.	<u> </u> G	80	2.1	94 	••	90	66	94
	15	312	59,3230	-7,7613	40. 511	69 28	42	24 58	77 1-	**	94	92 54	54
	NS	313.	59,3125	-2.7492	50.	1	- e †1	197	ĥ	••	93 	98	83
	NS	314,	59,2847	-7.+P74	50	3HG	52	4.	ŧ!		28	44	20
	43	310,	37.2715 83 ARAT	-7,6533	42.	ç	A7	13	N	••	46	64	Ph
		317	59,3342	-2,2426	97. PD	65	42 24	75	•.	••	98 87	11	96
		-			7 4.4			· · ·	••		· · /	- 1	-/

	1	SAMPLE		LAT		LONG		CEPTH	SEP	2:G	. x3	2 M	XCC	\$6C	XCC	APP
	(NUHBER		_		-		м	TYPE				SEG	8	M	202
		-														TOTAL
4	5	319.		59,6574		-1,9388		107.	GS	32	6.6	•	••	41	55	41
	5	321		50 2505		-1 6135		115.	3	17	8.4	7. 1		75	79	76
N.	5	322.		59 775F		•1.4131		84.	65	33	ě7	N.		90	88	99
N	Ū	1.		58 8545	i	-4 9733		76	GS.	22	7 B	N.	58			58
to:	U	2.		54,4723	1	=5,1178		56	GS	44	56	ы	86	••	••	44
N:	U	5.		58,8852		-4,9236		53,	5	4	96	р	83			P 3
N	U	9 .		38,8643	ŀ	+4,9332		20.	5	2	98	r	53		**	53
Ngi Ma		10		58 0166		-5 0187		78.	3	12	92	14 1.	77	••		77
N	iu -	11.		56 2713		-5.0758		74.	3	14	90	N	27			27
4	U	12.		58.8247		•4.9928		87	5	10	90	N	43			43
N	U	13.		58,8367	,	-4.8798		45.	5	2	97	N	72	••		72
N	U	14.		56,8988	1	-4,6033		67.	5	9	91	N	60		••	61
N	U	15.		23,4900		-4,8317		73.	GS	30	70	N	53	••	••	53
		10.		20,0302		-6.0020		C4.	3		90	r	84	••	••	
		18.		58.8548	•	-0.0013 -8 4018		70.	3	L N	181	17 64	27			27
20	Ū	19.		58.9270		-5.0652		70.	63	29	21		43			43
N	Ū	25		50,9372		-8.0922		79	G.8	31	69	ē	65			65
N	U	21.		58,9636	F	-4,9155		58.	5	1	99		29	-		29
4	U	52.		78,9310		•4,9338		48.	GS	34	66	e	57	••	••	57
N	U	24.		28.9177	r F	-4,9435		42.	63	41	59	Ø-	94	-		94
		27		30,9875 81.1170		-4. 8497		/1.	5	2.	97 88	.	37	••	••	57
n e e e e e e e e e e e e e e e e e e e	iŭ -	28.		58.7928				81	5 9-	2	90		20			20
N	Ū	29.		58,8342		-5.1122	r F	77	5	;	93	P	24		98-	24
	R	26		59,254	-	+2,748		37.	Å	4	96	2	42		**	42
Ō	R	33		59,311		-2,387		13.	š	- 11	19	ē	98			98
0	R	35		59,413		-2.678		56.	GS	40	63	Ø	29	••		99
· D	10	37		39,447 80 · · ·		+2,47#		56.	68	26	76	Ø	99		••	99
0	R	45		59,400		-2.497		110.	5	1	83	C	72 04	••	••	92
0	R	46		58,995		-2.575		55.	8	18	82	μ. A	95			94 05
ō	R	48		58,982		-2.754		24	5	1	90		85			85
Ō	A	54		59,173		-2,735		9.	63	48	60	8	97			97
Q	R	56 .		59,267		-2,687		44,		Ň	188	ē	5.1	-		51
0	36	57		59,277		-2,717		39,	**			-	45			15
0	אי סר	2¥ 61		JY 387		-2,318		50.	5	N	100	N	48	-	•••	46
. 0	рлт 1 Р -	76		59 287		-2. AAT		35.	68	27	73	0	7 4		••	98
	R	79		59: 359		-2.775		, UC	5	- 1 1	9.7	С С	AP			DA DA
Ō	R	85		58,989		-2,863		15.					34			34
0	R	ŧ9		59,016		►2, P56		23,	G 8	49	51		98		••	95
0		73		59,332		-2,982		13,			**	••	49	••	**	49
0)R 19 .	90 1 P4		20 344		-3 -40		15.		••		••	14	•4		14
0	18 ·	111		59,192		-2 639		24,			0 4 0 4	••	80		••	83
ō	8	112		59.180		-2.512		32.	ŝ		0.0	N	77			77
Ó	R	116		59,255		-2.164		79.	š	23	17	9	99			99
0	R	117		59,211		-5,49		95	8		72	Ø	89		-	89
0) R 	118		59,867		-5,315		75,	5	4	96	8	95			92
0		120		57,303 58 219		+2,277		! !.	8	5	78	0	91	••		91
		121		59,823		#2.4A1		/3.	5	N 1	148		¥3	••		93
ō	R	131		59,415		+2.413		48.	0 5	11			9.0	••		
Ō	1	132		59,425		-2,435		39.	5	ii	19	ō	ĬŤ			99
Ŭ		134		59,439		-2,479		49	63	32	68	e	98			98
0	R	135	٠	39,431		•2,492		31.	68	35	65		99	-	44	99
		138		77,383 R8 A78		-2,545		63,	63	26	64		76	••	**	96
0	R	142		58.449		-2 764		12.	5	N	199	N	10-11 1-11	••	••	64
0		141		58.958	•	-2.687		14	3	I.	79	10 14	4/ 85			85
ō	R	160	÷ .	59,218		-2.484		67	e e e e e e e e e e e e e e e e e e e	1	99					89
Ö	R	161		58,954		-2,387	•	78	š	Ň	180		99			90
D)R	162		57,902		-2.52*		75.	8	3	97	Ň	86			46
0		103		55,836		-2,566		77,	8	1	98	1	75	••	••	75
	73. 19			30.0245 44 Kies	,	-2,7986		72.	, I		98.	Ğ	94		••	94
	ig i	3.		58. 6100		-2 8334		ø,	1		92 92	5	V7		••	97
, i i i i i i i i i i i i i i i i i i i	٠š	4		58,6492		-2. A001		v.,	3 886	14 64	- 1 2	100 U	64		••	44
	×5	5		58 5377	,	-2.4326	,	ជ.	<u>8</u>	15	85		15			95.
•	8	8,		58,6487	,	-2.4528)	42	65	30	73	à	96			96
ľ	5	9.		55,5561		-2, #241		74.	SHG	52	44	PI .	72		51	72
2	3	10.		27,6567	<u> </u>	-2,8021		34	GS	36	64	r	97	-	-	97
, , , , , , , , , , , , , , , , , , , ,	73 1.8	11.		57,5773 88 4444	1	-7,8347		Ø.	3#G	64	36	٢	11			91
	ič –	30.		58. 4015		-2,7071		36.	34G	56	44	Ø	74		••	94
Š	ic	32		54.4432	;	-6.4217	;	70. AQ	63 // e	10	777 5-2	P P	61 47			90
5	ić –	37.		58,5:44	1	-6.1178	1	125					31			4/
S	36	36.		58,4699)	-6.0974	•	78	5	1	30	1.	60			60

.

·

	SAMPLE	LAT	LONG	DEPTH	SED	xG	z S	2.4	\$CC	xcc	xcc	APP	
	NUMBER			M	TYPE				51 G	3	M	ICC TOTAL	
S	C 41.	57,9341	-9,1746	135.	••				23	••	••	23	
S	C 46.	57,4611	-7.3761	42.	G	39	61	ħ	••	50	••	81°	
	C 17.	57.9222	-7.3118	44 - 30	G 6	12	94	14 14	0.0	54	••	84 0:1	
5	C 51.	57,9828	-7. 3082	101.	Š	13	87	н	91		••	91	
5	C 50.	57.8349	-7.5264	75.	5	1	99	0	89	••	••	89	
31	C 61.	56,2891	-n_1904 -n.1552	29,	65	25	75	Pi N	41	** 64	••	H1	
5	c 62.	58 3136	-6 -45.	1.07		••			26		17	26	
3	C 84.	56,3105	-6,1839	18,	\$	N	166	8	66		••	60	
5 5	C 66.	58,3560	+6,1229	72. 41.	5 N	1	59	N	74		••	74	
3	C 57.	58 376B	-6,2775	72,	••		••		24	••		24	
3	C 68.	58,35AA	-0.0171	99.	**	••	••		14		**	14	
	C 70	58,4216	-5,9945	92.		•••			14 B			14	
3	C 71.	58,4181	-6.0607	80.			-		11		**	11	
3	C 72.	58,4217	-0,1228	48,	3	5	95	N	58		••	58	
5	C 74	58,4686	-6 7545	80.			**		35		••	35	
5	C 75.	58,469P	-6, #292	18.		-			25			25	
31	C 76. C 77.	38,5154 58 5104	-6,0575	42,	5	N	99	1	65	•••	••	65	
5	78.	58,5175	-0,1079	Ω,	3	N 1	100	N	89			89	
5	C 79.	58,5676	-6,1921	72.	S	25	74	1	89	-		89	
31	E 86. F 81.	58 5163	+6,1561	125.			••	••	28		••	28	
51	H 1.	56 6770	-6.3582	56.	63	22	77	1	86	••		88	
3	H 2.	55,7416	-6,25#3	128,	S	1	94	5	75		29	73	
31 51	n 9. H 7.	57.3993	-e. 1313 -6. 7737	98.	65	38	01 72	1		73	53	73	
5	й 8.	57,3588	.6,7372	62	GS	20	66	14	52		19	57	
31	9,	57,3260	-6,6818	36,	GS	42	56	2	57		49	57	
51	7 10. H 11.	57.3148	•5.0252 •6.5618	112.	25 5 M G	77	23	37	14		13	24	
SI SI	12.	57,2918	-6,5258	56.	63	30	69	1	95	••		95	
51	H 13.	57,2663	-6,4858	48.	**	••		••	61	••	**	61	
نې 12	7 14. H 15.	57,2892	-6.4192	44., 54.	3	11 M.	93	7	70	••	12	76	
. 51	1 18.	57,1318	-6,3285	196	GSM		37	64	-	25	53	50	
31	H- 22.	57 3747	-6.2448	180.	GSM	1	22	77		25	23	24	
	8 25.	56,9183	-6.1268	42.	а Н	N	15	85	32	44	22	25	
	H 27.	56,0417	-6,1115	32,	63	49	56	1	70			74	
15 · ·	4 ZV. 4 31.	30,8430 36,7088	+0,3075 -6.8752	43.	GS	34	66 93	N		73	•• 27	73	
51	32.	56, 2799	-4,6920	27	\$	Ň	95	5	••	39	24	38	
31	H 3E,	56,1673	-5,8113	150.	SMG	65	35	H	85			85	
51	N 46.	56.7715	+6.2155	35.	-3	4	85	29 31	68		23	18	
51	47.	56,7675	-6,2119	78	н	5	63	32	76		26	52	
31	1 49. H 80.	56.8776	+F,122P	27.	G 3	49	49	11	65		21	66	
31	61.	56,8187	-4,1593	99.	M8	14	62	24	34	94) 94)	17	33	
51	H 63,	56,7168	-6,2788	79.	63	16	76	9	92		10	85	
19 12	H 56	58,5558	=0,3005 =6,4735	40,	63	23	75	5	94	••	••	94	
81	H 69	56,3738	-4. 3292	58.	Ē	i	19	øi –	••	42	42	42	
31	N 85.	56,7832 56 8747	-6,2913	155,	MS	11	55	34	61		24	49	
54 54	96.	56.4897	-0.5782	72. 192.	5 68#	7	89 22	4	70 20	5.8	67	36 63	
51	91.	56,9575	-6,5532	91.		Ň	18	82	**	41	62	66	
31	H 96.	57,2128	-6.2593	7.	8	7	88	5	1	••	15	2	
1	4 122.	57. #632	-0,2220 -6,1167	77	65M	26	32	75	••	32	29	29	
51	115.	56,9937	-6, +217	91	58M-	e	22	78	-	40	29	31	
51	7 121. H 125.	58,7995	*****	53.	65	23	66	11	61	••	16	56	
31	127.	57,0665	-6.9268	171.	68* 68#	N	37 27	01 78	**	29 31	27 62	26	
31	128	57,2583	-7,1156	151.	HS.	1	23	26	15	₩.	2.6	18	
51	- 131. 4 141.	38,90 28 54,9368	=7,4328	76.	65	21	67	19	67		23	611	
31	+ 142.	58, 8712	-6, 9352	146.	087 65⊁	7	19	73 73		17	25 28	23 62	
51	4 143.	56 P21A	-6, :313	148				••				28	
51	- 160. 4 150.	38,7172 56.3943		*3.	684	22	18	60		64	51	31	
31	150.	56,340	-7.0357		577 5	1 1	96	3	78	21 21	3# 7.5	42 70	
\$1	4 163.	56,7753	=6,819P	89		••	••				•••	17	
3, 2;	4 165.	56,7950	-0.0137	157.	584	N 21	3/	73	**	36	44	47	
51	116.	66,8033	-6.0285	49	19 M	16	49	35	15		< 1	32	

	SAMPLE Number	LAT	LONG	DEPTH	SED Type	16	25	Z N	%CC 5±6	xcc	***	49 0 300
51	172.	57 2593	-6 8850	22			10					TUTAL
\$1	175	57 7153	.7 1.4.7	101	. н	ż	9	49	••	14	23	22
5H 611	177.	56,9158 KA 8433	-7,2922	195	654	N	44	50	••	30	34	35
5H	179	57_2038	+6,9135	140.	а м	4	14	82	4r		29	39
SH	182.	57,1835	+h, 4845	90	MS	12	67	21		••		
51i 84	185.	57,3020	-6,7983	35.	634	22	37	41		27	21	24
SH	187.	57 3:93	-7,6268	<u>в</u> ,	5	N	88	20	••	21	36	24
SH	168.	57,2437	-7,1032	128.	MS	10	46	44	••	-j	28	17
5M 5M	195.	57,2010 56,9597	•7,1223 •7 3455	114.	45 11	2	66 78	32		7	34	10
SH	195	56,8155	-7,4275	183.	25	Ň	60	48		49	29	36
SH	196.	56,8970	-7,3732	159.	M	5	3	97		12	5e	58
5H 5H	100	57,7577	#7.144T	131.	376 24	73 N	67	33	**	32 11	31	4.7
SH	281.	57.8523	-7,1977	195.	MS	5	63	31		j	3	Š
8H 2M	231.	50.7783 56 7415	-5 9853	0.	5	3	7P	7	••	10	26	19
84	236.	50,7640	-6,6418	38,	5	å	91	ý				
\$H	238.	56.2690	-6,1838	22.	68	44	52	4	91	••		91
51- 51	240.	56, 3843	-0, rype -0, 1243	23.	63 1	27	83	17	**	34	52	49
81	241.	55,2495	•6,1423	79,	MS	3	67	30		33	25	30
5H 614	256.	56.6672	-6.8428	59.	8	16	14	N	17		••	87
5H	256	56,5287	+6,6722	58,	48	1í	88	2	66			4 Y 6 1
SH	259.	56,5140	-6,6815	55,	2HG	59	35	9	92		35	87
3M 8M	203.	DD.4113	-6,4382 -5 6183	\$6,	GSM BMG		29	11	••	48	56	38
SH	266.	56,4748	-5,6372	132.	SMG	51	32	17		49	28	41
5H	268,	56,4737	-5,8995	26.	⊨s	19	51	36			**	
5H 5H	272.	56.2962	•0,2212	30.	3	N	00 190	N 1	••	11	32	11
\$H	273.	50,7957	-6,3283	48,	8	N	99	i	••	13	39	13
5H 9.1	274,	56,1540	-6,5553	56	8	N	97	3	••	22	56	22
SH	282.	56,5017	-6,4833	89.	MS	17	63	28	36	•=	33	35
5H	203.	56 5672	-6,5377	198,	GS	37	54	9	40	-	34	39
ал ЭН	288.	56.5698	-0,7398 -6,7398	20	5	18	949 6.9	85	67 68		•••	67
SH	292.	56,3927	-7,1730	55,	Š	Ň	99	18		64	69	64
311 SN	298.	58,3235	-6,9213	73,	8		85	15		42	25	39
SH	380.	56,2745	-6,5838	78.	GS	35	64	í		28	42	28
8H	321.	56,3223	-6,7048	74,	8	2	75	3	74			74
5H	325.	54,4278	-7.5257	75. 39.	87	4	76	24	••	46	43	45
84	366.	56 A216	-7,5292	77	š	Ā	96	Ň	93			93
31	388.	20,0137 56.6058	-7,4998 -7,4754	66,	M3	45	58 7 8	5	27	••	89 74	27
81	311.	55,7787	-7,4142	222.	MS	å	79	21	9/ 		 31	
5H 84	312.	56,7487	-7,5010	216.	8		82	18		-		
81	314.	56,6285	+7.2412	281.	M8.	1	59 54.	31 48		63	35	
8H	315.	56, 5847	-7,1987	139,		i	99	1				
87 8 H	319.	78,7126 56,5166	-8,7383 -8,7678		68	15	71	14	••	••		
81	320.	56,5298	-5,9535	34	#8	ē	76	24		+=		
· SH	321.	34,5188 54 5940	-6,0300	59,	#8	11	53	36	••			
8H	323.	56.5383	-5.6292	114,	63	23	72 43	17		**	**	
SH	324	56,5338	-5, #287	22,	ME	- 5	67	žē	40	-		
110 110 110	325.	30,367A 96 9402	-5,9388	45,	8		88	12	••			••
8H	327.	54,5445	-5,9278	48.	48. M8	4	49	46	••			
SH	322.	56,5393	-5,934A	38,	MŚ	14	59	27	45		5	31
3H	334	56.615E	-0,4413	31,	. 8		95 76	15	•••		•••	
SH	335.	58,6328	-6.1333	40	\$	ē	8.0	20		••	**	**
5H 94	337.	37,4558 56,7003	-5,2282	29.	G£	36	55		92		••	92
5 4	339,	56,7978	-6.2018	43.	۳ 23	75	22	20	74	••	15	** 73
3H	340.	58.9472	-6.2528	22.	GS	25	72	2			19	97
2H 2H	J=J. 346.	38,7940 56,7965	+0,4196 -6.44#7	99. Be		ç	83	17	••	••	••	
84	345	56,7937	-0,4002	93.		ĸ	4 5	35	39		29	34
5M	346.	58,7673	-0, 29KH	60	8 H G	70	15			••	••	**
54	340,	56,7677	-0,J#80 •0,3349	39.	63	16 78	75 2.1	5	67 Q4	••	29	64
311	351.	54,7730	-6.2497	101,	ns	12	57	31	••	••	••	98 98
									 .			

	SAMPLE Number	LAT	LUNG	DEPTH	SEC TYPE	XG	13	54	100 566	3 22	SCC M	765 766
• · ·												TOTAL
3H Sh	352.	50,7635	-6.2347	142.	5	4	85	15	75	••	54	67
5+	355	56,7513	+6.1713	94	GSH	6	25	25				**
SH	356.	56,7957	-6.1337	68.	м	6	19	81				
5H 5H	357. 358.	50,8003	+0,0315 +6.4420	44.	65 M	44	47	16	82	••	13	71
5H	359	56,4513	-6.8475	56.	4	e	19	41				••
SH	367.	56,8740	-6,5492	56	•	5	10	90		**	••	••
511	362.	50,8502 56,800P	-6.0207	53.	н Н	6 0	18	82 87	••	••		
SH	363,	56,9323	-6, 1573	51.	H	ด	••	93		••		
\$H	364.	56,9537	-6.423	62.	M	0	10	96		••		••
5H 5H	305. 366.	56,9120	-6.1263	78.	554	Г N	23	70	10	••	12	•••
SH	367.	56,9120	-6,1063	18	65	16	69	14	33			33
SH	368.	56,9120	-6.1163	18.	GSM	9	45	55	-	••	••	
5H	371.	56,9170	-6.5767	198.	652	0	44	20	••	••		
SH	372.	56,9396	-6.5.67	91.	MS	Ö	73	27		••	•	
51	375.	57,3265	-6.5272	100.	MS	8	67	40	••	••		
5H	378.	56,9252	-6.5830	92.	GSM	r	24	76	••	••	**	
SH	380.	56,8653	-6.5668	46,	SHG	66	32	2		17	55	19
\$H	361.	56,847A	-6,5673	70,	\$	0	82	18		17	26	19
8H	395.	56,6963	-7.1988	182.	GSM GSM	10	48	52	20	49	47	27
SH	483.	56,6147	-7,4567	187	MS	Ň	58	42				40
2H 2H	484,	50,3492 87 ARAK	-7,3515	140,	5	1	97	2	39		•••	39
SH	414	56,6747	-6.7107	25.	3	ġ	92	8	32			75
SH	415	56,6913	-5,6523	85,	8	e	07	13				
3H 8H	417	50,7237	+6,0418	52.	G	81	19	N T	58	••	••	56
SH	420,	56,7904	.7. 2245	154.	63 63	28	64	6	37		27	36
SH	421.	56,8765	-6,4215	65.	GS	25	58	56		63	28	54
SH	422,	50,9858 56 8071	-6,2752	67.	5	N	83	17	26	••	10	17
\$1	424	56,9133	-6.2142	37.	5	18	89	ə1 1	64			64
SH	426,	56,9157	-6,2278	132.	Й		38	78			-	
8H 5H	427	70,9262 56 6327	+0,2438	156.	M.	3	2	98 86	**	•••	.	••••
SH	436.	56,8772	-6,3267	94	68.	ē	29	71				
SH	432,	56,8317	-6,3332	50.	8	1	85	4	83		26	51
SH	435.	56.6452	•6.3272	50, 60.		16	8.	•3	14			
8H	437	56,3966	-6.5795	37,	ŝ	Ö	91	i		**		
5N	438,	58,4888 58,4052	-5,5065	96.	GSM	8	42	58	••			
SH	442.	56,4110	-5,6448	24.		ē	81	12				••
SH	441.	56,0325	-6,5160	48.	8	N	99	1	••	25	37	23
27 84	443.	56,1393	-0,7007	51,	5	N	99 81	1	••	12	33	12
SH	444,	56,2272	-6,9993	77	š	Ň	98	ź		21	29	21
\$M	445.	56,2888	-7.1325	90.	8	N	95	5	••	58	44	57
5M 2M	449.	3738 57.8873	=7.JV4\$ =6.1943	75,	5	N	34		••	69	45	68
SH	450,	57,2845	+6,3317	57	#8	9	65	26	17	••	25	73
SH	452,	57,3573	-6,2378	61.	M8		73	27	••	••	**	
18 Y	454.	57.2618	+6,112B	61.	р С.5.м	0	45	93 88	••	••		
SH	455,	57,2843	-6.+547	78.	H	ē	- 14 1	07				
SH	457.	56,9723	-5,8433	36,	8		95	5		••	**	••
5H	459.	57,7543	-5,4778	38. 50.	684	8	78	22 54	••	••	**	
8H	461.	57, 2783	-5,8415	79	м	è	2	98				
5h 44	462.	57,7682	-6,A145	144.	H	ų.	2	98		••		
57 5 H	464.	57,1138	-6.5286	87.	63# #8	0 6	40 28	-01' 38		**		••
SH	465	57,1145	-6,4828	54	18	ō	77	23		-	**	
8H ***	487.	57,159H 57 3324	-A.JF45	118.	3	. 8	87	13	••	••	••	
	476.	57,2367	-6,5478	50. 60.	8	18	97 84	241 7	••	••	•••	••
54	471.	57.2366	-6.5718	117.	ň	ē	9	91	••		**	
5H	472.	57.2355 57.2355	+6.5858	85.		0	94	6		••	••	
5H	476	57 2825	-6.6218	#6 -	-2	"	84	13		••	**	••
SH	477.	57 2430	-6.7160	69.	+5	n	55	34				
EN 24	478.	57.2104	-7.0133	101.	5	8	95	5	••			
3H 3H	482	57,1415	-7.0972	136-	24 24	2	67 67	20		**	**	••
\$11	анр.	57,1190	-7,1240	132.	5	ŏ	¥2	8	••	•••		••

	SAH	PLE	1	AT		Lanc		DEPTH	SE	2	X G	13	24	XCC	202	XCC	APP
	NUP	BER						M	17	PE				360	9		TOTAL
5	H 4#4		55.7	775		4732		115.		5	6	63	19				
5	H 485	•	56,7	7653		4252		84		MS	ī	76	23	36	••	34	35
5	H 487 H 480	•	56.2	7272	=(1,4742 1,745		145.		►S	6	68	35		••	••	••
3 5	H 490	•	56	127		6.7082		63, 64.		3	P	99	1	••	27		27
\$	H 491	•	56.1	195	•	5,8967		42,	_	NS	26	42	32				
5	H 492 H 492	•	50 1	1348 1688		5,9497		89. 70	G	SM e	5	29	66 1∡	••	88 14	22	3:
5	H 495	•	56,1	1760	-0	5,1218		26		ŝ	ž	97	1	••		67 44	**
\$	h 496	•	56.1	1083	-	N. 654"		43,	G	SH	5	28	72		••		
3	H 497 H 498	•	56	1787		5,7157		49.	G	57 63	۲ ۲0	28	72	••	84 26	45	
5	H 499	•	56	3143	-	5 4995		26	G	SH.	59	41	N			**	**
3	H 522	•	56	3(#2	•	5,9752		85,		MS	9	57	43		12	19	15
3) 5)	n 502 H 573	•	56.2	2593		N. 1735		74.	G	63 8M	K J	33	67	or 	24	20	21
5	H 524	•	56	2438	•	5 2455		65	-	8	8	93	7		46	54	40
5	H 326 H 808	•	56.	3688 1637	=	5,0507 5 0943		37.		H M	2	4	96	••	14		9
5	H 529	•	56	3643		1105		49		H.	e e	Ň	1.00		30	59	50
8	H 510	•	56	3580	•	0,1165		48		M		2	98	••	24	18	16
5	H 311 H 516	•	56.1	3322 1457		7 1363		54,		- 14	17 M	1	99		38 68	16	16
5	H 517	•	56,1	845	-1	1765		158	G	8H	Ň	41	59		38	28	33
5	H 518	•	56,1	1487	•	1,3275		196,	G	8#	N	43	57	••	40	95	56
5	H 921 H 522	•	57.5	2683	-	5.6494		93,		G3 G8	20	78	2		••		••
3	H 524	•	57	2692		5,6883		42,		8	14	12	4	**	••	••	
3	H 525	•	57.2	2614	•	5,7156		63,	~	68	19	63	18	-	••	••	••
5	H 527	•	57	1242	_	5,5767		70.	U	3.	2	89	' 9		••	••	
5	H 530	•	57	1333	•	5,6917		θ.		۲ŝ	11	46	42	••	••	••	
5	H 532	•	56.0	6572 6683	•	5,9885		58.		M M M	8	1	99	••	61	28	26
5 5	H 534	•	56.	5632	-	6.6967		64	9	jų.		-4	96		51	25	20
3	H 535	•	56,	6682		6,1475		196		H	8	3	91		58	49	46
	H 530 H 537	•	56.	4757	-	6,6365 8 7347		335,	6	- 5 	N	9.9	1	23	••	••	23
\$	H 536	•	58	1252	-	5,1269		34,	ų	1	ż	97	1	**			29
3	H 54P 1 841	•	5.5.	1107	-	6,0133		43,		\$:		56:	1.4	••			
3 S	H 542	•	56.1	1682		5.9438		28. 41.	G	1891. S	U N	33	15		••		••
5	H 543	•	55	1015	-	5,8653		129,		#8	3	87	48	-	46	45	45
	H 343 H 546	•	56.1	1402		5,8887 N 9132		88,	G	8M 	26	31	43		••	**	••
š	H 548	•	56.	2084	-	5,9663		94	G	5M	8	37	63		44	21	31
3	1 551	•	57.	4693	•	6,8613		147.		68	25	74	N	••	••		
ŝ	H 552	•	57	3506	-	5.7912		66.		63 68	29	73	1	93			03
8	H 554	•	57.	2786		6,7677		124		HS.	Ň	77	23				
	H 200 H 200	•	- 75 . - 56 . (1205 6232		5,5015 6 766P		69,		- 11		1	99	99- 12	24	58	20
i	H 564	•	56,	6643		6,8267		58		i	14	16	Ň	78		••	38 78
5	H 566	•	56,1	6183	-	6,9223		68.		H		15	85		53	36	36
	H 568	•	56.	435p	-	7.2345		156,	G	87 181	IN	03 34	37	**	17 34	28	21
	H 569	•	58.	1956	•	7,1743		558	G	8H	24	24	52	••	5.	28	39
S	H 570 H 571	•	57.	11/0 2152	•	7.0288		143.	-	25 PS	1	63	36	••	4	28	12
S	r 572	•	56	5472	-	7.4748		123.	a	5	-« N	99	1		15	47 ••	26
3	H 574	•	56	648	•	7,6345		115,		8	1	99	Ň		8		8
3	F 373 H 576	•	30,1 56.1	1123		7.5038		109.		68	48	51	1	••	25		25
1	H 577	•	55.	1642		7,4275		144.		5	Ň	99	Ň	74	10		16
5	H 582	• 1	56.1	8725	-	1.7687	•	65.		3		99	N		24	••	92
3	N 594	•	56.1	1058		6.9883		88. 20		3	9 8	95	5		12	-	12
5	H 585	•	54.1	542	•	7. 7843		85.		8	1	99	H	62			62
3	H 576 4 887	•	56.2	2025	•	7,2167		193.			ġ	198	•••	-	19	••	19
8 2	H 591	•	56.4	1833	•	7.4538		103.			78	77 99	N	99- 99-	49 38	••	49
ŝ	H 592	•	56.	363		7,5345		195.		8	Ň	95	5		43		13
8	H 593 H 894	•	56.2	7883 9883	•	7,6010		75.		5	1	9-9	PI	89	•••	••	99
3	H 645	•	53	5451	-	7.6167		84-		3 5	15	142	1	96	14		19
\$	H 651	•	58,	4533	-	7,6283		137		Ĩ	Ē	23	Ż		74		74
9.	M 852 M 851	•	38.	-233 7067	•	7.859 7.859A		144		3	15	84 8#	P 51	••	72	••	72
3	11 654	•	56	7550	-	7 9717		124		3	-5	95	1	43			44
5	H 655	•	56,1	1025	-	8,0813		145.		8	- ŭ	90	i		9		
3	1: 930	•	341	-90 /	•	••••••		155.		3		47	3		14	••	14

		SAMPLE NUMBER	LAT	LONG	DEPTH	3E0	ĩG	15	×.	100	***	xcc	APP	
						1155				364	3		TOTAL	
	SH SH	657. 658	56,9040 55 9657	-R.3258	153.	5	0	90	1		14	••	1.5	
	SH	659	54 9575	-4.2525	154.	5 5	r P	98	2		12		15	
	SH	660.	56,9107	-8,1047	153,	S	3	97	Ň		19		19	
	SH	664.	30,03/0 30,3650	=*_\417 =7.8217	153.	5	Ň	97	5	••	13		13	
•	SH	666.	56 6658	-8, #833	155		ċ	165			81		A1	
	SH	667 .	56,7533	-8.2167	155.	5	13	87	N	••	11	••	11	
	SH.	669.	56,8500	-6.4358	150.	5	2	98	N N		24	••	10	
	SH	670	56,9000	.F. 5692	154.	ŝ	R.	145	P.	••	2/	••	27	
	SH SH	672.	56,9588	-R_6948 -R_9228	153.	5 5×6	بر 57	99 43	1	••	37	••	37	
	SH	673.	56,8583	-8.7667	153.	5	Ű	187	ę		63	••	63	
	8H	674.	56,8496	-R.1597	153.	5	3	98	1		24	**	26	
	SH.	678.	56.6192	-8.1667	158.	. 3	ĩ	99			19	••	19	
	SH	679.	56.5717	-4,25#9	155.	8	Ó	178	N		43		43	
	SH	681.	56,5167	-0.7333 -8.1468	193.	3	0	80	4	••	47 84		48 55	
	8H	682.	56,5725	+8,2717	280.		h	96	4		45.	••	45	
	SH BM	683.	56,6075	-0.3833	183.	•	- F	108	••	••	21	-	21	
	SH	685	56,7183	-8.6192	138.		2	98			29	••	29	
	SH	686.	56,7683	-8,7495	145,	8	11		N		23		23	
	3H 3H	691.	30.7023 56.6500	-8,8333 -8,7141	138,	8	7	93 1 Pa	N	.	37	••	37	
	SH	692.	56,5980	-8,5867	170	**	ï	99		••	23	••	23	
	SH	693. 694	56,5383 56 5040	-8,4693	198			95	5		30		30	
	SH.	695	56,4572	-8,2583	103.	5	1	82	17	**	32	••	23 32	
	811	696.	56,3883	-8,1333	160	8	3	95	2		36		36	
	2H	597 .	50,3308	-8,8075	215,	HŞ		58	42	••	44	••	44	
	SH	720.	56,4242	-8,4502	165		ĩ	99			33	••	33	
	SH	781.	56,3503	-8,5358	162.		Ó	190	••		21		21	
· ·	SH	783.	56.4717	-F. 5567	163.		1	92 99	••		36 24		30	
	8H	784	56. 5358	-8,6833	198		Ż	9.8			36		30	
	874 8H	728.	56.5192		156		N-	76' 16'	•••		38		35	
	8H	789	56,4575	-8,7578	135	8	ĩ	94	1		23		23	
	5H 5H	718.	58,4107	-7,9167	210.	8	N	93	7	•••	42	••	42	
	8H	713.	56,5392	-7,7383	230	- MS	ĩ	74	25		41	••	41	
	SH.	714.	56,4883	-7,6183	173.	8	Ż	93	5		35		38	
	SH	717.	56,2287	-7.8858	145.	8	7	93	1 N	83	22	**	33	
	8H	718.	56,2383	•7,7742	103.	SMG	52	48	N		36		36	
	8H 8H	719.	58,3107	+7,5717	173,	5	N	99 98	N	••	22		22	
	84	721.	56,4383	-7,4988	158,		ě	198	Ň		34		34	
	8H 84	722.	56,3675 56 2 692	-7,3742	73,	Ģ	88	12	N	**	82		82	
	SH	724	56,2225	-7.0867	\$2.		e D	99	1		22		22	
	8H	726.	56,4P75	•6,9525	33,	Ğ	95	5	Ň	••	78		78	
	SH	729	56.3167	-0,0383 -0,78#P	85.		U A	83 94	15	**	42 54	••	42 54	
•	\$H	732.	56,2667	-6,5858	88.	8	13	87	N		52		62	
	5H 5H	731.	30,3833 56.4358	-6,6183	118,	**	0	162		••	54		54	
	8H	735	56, 8533	-7, 6968	117.	5	Ň	91	9	69	52 67	72	5C 69	
	SH	736.	56,2542	-7,5498	108,	8	1	98	1		16	-	16	
	311 811	734	30,273U 56,1533	•/, 4333 •/, 3273	120,		N 1	156	N	**	14	••	14	
*	SH.	740	56,8492	-7,3:33	133,		3	97 °	N		26	**	26	
	4¥ 84	741.	56,7833 56,1350	=7,4217 =7,5485	123,		85	18		••	27	••	27	
	SH.	745	56,1908	-7,7250	148.	5 1	N	97	3.	**	14- 44-	84. 84	14	
	8H	744	56,1750	-7.6582	110.	8	e	107	N	••	11		ii	
	971 811	746.	56,2667	-7,7428 -7,6358	13P.	5 *	1	95 94	4	73	•• 10	••	73	
	8H	747	56.8075	-7.5050	163,	5		100	Ŋ	••	19	••	19	
	ЗH ЗH	748.	30,455C 56,4912		2/5.	65	34	86 87	N	-	52	**	52	
	8H	750	56 350r	-8,7383	166.		2	9J 9J		**	47 55	••	47 84	
	5H	751.	54.3075	-8, 4167	158		2	98		-	33	••	33	
	911 914	754	54,2683	-4,3256	156	5 P G	р 68	189 37		••	39		39	
	81	750	56.2063	-4,1258	193,	5		72	2		22	••	22	
	214	750.	20,1212	-8,0/#8	146.	5×6	74	24	N	••	15		15	
								• .					•	

•

	SAMPL Numbe	.E 4	LAT	LONG	DEPTH	SED Type	ĩG	23	2 H	100 310	xcc S	¥CC P	APP LCC
. 1	5H 757.		55.1043	-7.9744	128.	8	12		a.	03			TOTAL
	H 759		56 72 10	-R 0.742	148	5	N.	188	Ň		35		35
9	5Н 762.		56 2742	+8,1754	220		a -	100		••	24		24
	SH 761.		56,1912	-8,3092	167.	5	1	98	1	••	24	•-	24
	511 / N.Z		56 1217	=# <u>,</u> 2717	139.	GS	42	58	N	••	17	••	17
	SH 764		56.2478	#F_1000	120.	63	20	01	-	•••	40		40
	SH 765		56,0533	-7 0250	143.	GS	í	99			21		21
	SH 766		56 2:25	-7,7192	195.		ė.	178			45		45
	SH 769.		56,2250	-6,5067	58	8	N	195	N	••	17	•••	17
	5H 776		50,1742	-0,4217	55.	8	N	145			21	••	21
	W 772.		56 1413	40,300J 46 5558	00 e	63	34	47	20		26		89
	н 773		55 2750	-6.65.22	20.	5	Ň	90	N N		27		27
Ś	SH 774		56 7:75	-6,7758	75.	GŠ	45	54	1	48			48
	BH 777,		56,2423	-8,2393	185.	5	0	99	1		19		19
	SH 778		20,2433	-4,3517	145.	••		100		**	24	••	24
	34 779. RH 780		56 188A	•F,48/3	143,	5	10	88 40	2	••	28		24
	H 781		56.2400	-8.7347	158.	5	14	86	Ň		84		10
	H 782.	•	56,2933	-8,8547	108.	8	4	96	N	••	56		50
5	BH 783.		56,3358	-8,9575	168	5	6	94	N	54			54
	3H 784.		26,2850	-9,6242	183.	G8.	36	70	N		33	••	32
	H 785.		20,2343	-8,9355	173.	••	.1	99	-	••	45	••	45
	14 787.		56 8530	-0.0000	192.	3,	12	11	N		40	••	49
, in the second s	H 788		56,1187	-8.9098	182		12	88	-		54		• J • 4
	H 791		56,7583	-8.7740	163.		12	88	- N		55		55
	SH 792		56,3825	-8,8667	150.	Š	5	95			60	-	69
	3H 794,		56,7762	-8,5742	173.	MSG	64	36	N	96	••		94
	5M /90.		50,8233	-7 4877	163.	5	3	97	1		13	••	13
	SH 797.		56.7367	w7,2836	100.	3	1	82	12		49	**	49
	H 798		56,6650	•7.1567	153.	HS	Ň	51	49		41		41
5	SH 79₽.		55,6343	+7,2358	68.	5	Ĩ	99	N		35		35
	H 88C.		56,5867	-6,9075	35,	••	32	68			42		42
	SM 621.		50,6042	-6,7788	15.		84	16	-	••	66	•	66
	DH 660.		57 1419	-7,7303	93.	55	22	07	94	83			83
	SH 639		57.3332	-7.1813	196		1	43	16		24	28	25
	SH 64C.		56 9:54	-7,3068	1.61	GSM	Ň	47	53		45	38	37
	BH 841.		56,8854	-7,3225	194	GSH	N	43	57		34	29	31
	SH 842.		30,8736	-7,2004	179.	GSM	N	34	66		41	29	33
	H 845.		56.7766	-7.5513	79.	3	2	74) 1 46	4	80 80	•••		86
	BH 846		56,7784	-7.536P	95	ă	Ň	99	ĩ	92			82
1	H 848		56 7727	-7,5130	143.	Ĭ	2	94	4	61		42	61
	583.	1.	59,9814	-2,6048	64,	SMG	61	39	N	94			94
	78, - 3,	2.	30,9611 58 7877	-2,0051	64,	MSG	55	45	0	84	••	••	84
	58.+3.	5	58.7440	-2.6465	71.	3	2		',	39		••	39
	58.+3.	7	56, 5129	-2.4847	78		ĩ	98	i	31			31
	58,+3,	θ.	58,5524	-2,4622	79,	5	ī	95	4	41	**		41
	58,=3,	11.	56,2017	-2,9366	53,	E.MS			••				E. 50
	50,03. 68 -1	3/4	50,9700	-2,5232	79.	E.8	**	••		••			E,99
	563.	39.	58,9544	-2.8921	70.	5.3			•••			••	2,99
	58,+3,	40,	58,9982	-2,1569	83.	ē.š							£.99
	58,+3,	41,	58,9596	-2,1938	89,	E,8						••	E,99
	56,-3,	42,	59,9247	-2,1553	41.	E.8	**			**	••		E,99
	78,03,		20,9730	-2,2442	86 ,	Ę.,		**	**		••		£,99
	58.+3.	45	58.9921	•2.3343		L , 3						••	L,99
	58.+3.	46	58.9980	-2.4245	6 1.	E.3							E. 99
	58,-3,	47 .	. 54,9325	+2,4111		Ē.3							E. 99
	583.	48,	59,0734	-2,3331	86,	E, \$					••	••	E 99
	58,-3,	49,	56,9198	-2,4594	77	E.8	**	••	••		**	••	E, 95
	56.+3.	51.	58 9718	**************************************	73.	£.3		••					£,97
	563.	52	54 9427	-2.6118	58.	£ . 64							E 00
	583.	53,	54,9327	-7.6465	42.	E 65			-		••	•••	£.98
	58	54.	50.3012	-2, +432	57	E. 63		••			-		£ 99
•	58', sJ,	30. 87	37,7547 88 3847	-7,4686	69	£,68			**		**		£,99
	583.	58.	50.0017	D7,6075	79.	£.3	••		••	••	••	••	F.54
	503.	59	58 P#44	=2.3447	## .	E.3							E . 517
	SP.+3.	63.	58 AF 29	-2.2835		5.5			**				E. #5
	583.	61.	57,8580	-2,2397	¥3,	E GS				-			F. 00
	77,43, 48,43	67.	57.63.77 58 86 86	#2,177	80,	E. 5	••	••	-	••			E 30
	543.	64.	58.6474	-2.8640	72.	£,3	••	••	••			••	2.3
					"a •	642		~-	~•				E . 641

SAMPL	E	LAT	LONG	DEPTH	SED	¥ G	X.9	84	xec	xcc	***	APP		
NUMBE	*			M	TYPE				346	3	P	TOTAL		
583.	55,	58,8F74	-2,0395	84,	£,5			••		••	••	E.4.		
583.	67.	54 9177	-2,6747	22,	E.SPG	••		••			••	E. 43		
58.44	91.	58 9140	-7,976H -3 0822	29.	£,5	••	•••			••	••	1. S.		
584	5	58.9247	-3.0523	37	£5	**	**					E MI		
58,-4,	6	58,9346	-3,0090	33,	E.HS		• •		••	••	••	E AU		
58 -4.	, , , , , , , , , , , , , , , , , , ,	58,9035 58 8685	+3,8144	30.	f.*5	••	••	••		• •	••	1.70		
56 . 4	ě.	58,9952	-3,1949	33.	ELGSH	••						E . 41		
54.+4.	10.	55 9065	-3,1207	37.	E GSM		••		• •	`••		F . 51		
58 -4	11.	56,8091	-3,1526	40.	5.054	**						£ 50		
591	1	59,5842	+0,1083	118.	65	25	73	2		9	30	1.5		
59,-1,	2,	59,679A	• • • 1242	128	5	4	97	3		2	21	3		
591.	3.	59,6688	-7,1537	142,	5	11	89	11	••	4	13	5		
59.+1.		59.5558	+7.2250	144.	5 #5	N	74	26		5	11	7		
59.+1.	6	59,5433	-0,2617	137,	5	N	86	14		4	2.0	6		
59,-1.	7.	59,4645	-4.3795	131.	8	N	98	2		2	20	S		
59.01.	9.	59.1030		140.	5 MS	U N	74	26		3	13	12		
59,-1,	10.	59 8938	.# 7698	140,	HS.	ជ	78	22		10	29	12		
59,•1,	11.	59,2022	-0,7807	n.	MS	N	65	32		1.0	20	13		
591.	12.	59,9679	-F. 7737	133.	3	2	1 FF	9 8			28	14		
59,+1,	14,	59,9625	-4,5314	135,	5	3	99	ž	••	21	34	22		
591.	15.	59, 5726	-7,5451	132.	5.	1	94.	5	-	13	26	14		
59.+1.	17.	59,9566	-P.4203	137.	5	1	92	7			31	19		
59,-1,	18	59,9625	-4,25+5	139	8	1	93	6		12	59	13		
59,-1,	19.	59,8688	-0.2534	130.	5	1	96	4		7	30			
59.el.	24,	59 8125	-M 3313		3	N (98 94	2	••		28	h		
59 -1	22	59,7561	-0.4884	141.	Š	1	92	7		6	22	7		
59.+1.	23.	59 8740	-R.3339	120,	3	1	98	1	••	4	39	4		
59.+1. 591	24.	59,9599 50 6647	-2,3265	126,	3	1	97 84	1	•••	46	31	46		
59.=1.	26	59,8725	-A. 5776	130.	3	2	92	6		13	29	20		
59.=1.	27,	59,8625	-8,7898	121.	š	2.	96	Ž		74	35	74		
59	28,	59,9635	-4,7386	126.	5.	1	9.6	3	9-8-r	1.9	26	19		
591.	3.0,	59,8632	-8.9528	115.	5 8	1	97	2		241 314	36	36		
591.	31.	59,9246	-0.8141	124	š	Ň	96	4	-	15	33	16		
59,+1.	32.	55,9180 89 5007	-8,0579	135.		2	94	4		14	31	15		
591.	35,	59,7661	-2.0479	135.	3		85	14		lee		100		
59,-1,	36.	59,5005	-8,0774	136.	MŚ	Ň	62	38		92		92		
592.	1.	59,9827	=1.0173	196.	3	2	94	3	**	37	43	37		
59,-2,	- 7,	59,8644	-1,1329	182	Š	4	95	ĩ	**	51	95	51		
59,-2.	5.	59,8911	-1.8895	111.	8	2	97	1		39	44	39		
592.	?.	39,8673 59,8674	•1,1/22 •1,2327	195,	5		96	1	•••	47	48	47		
69.+2.	8,	59,4879	-1,2516	73.	3+6	55	44	ĩ		73		73		•
592.	9.	59,9187	-1,1649	97,	Gð	44	55	ī	**	69	46	49		
59.+2.	11	59,9323	-1,7732 -1,1205	194.		2	97	1	••	44	35	44		
59,+2,	12.	59,9360	-1,2221	79	ē	94		i		91	52	91		
59,+2,	13.	59,9678	-1,2424	66,	68	24	75	Ň	••	92	57	92		
59.+2.	10.	59.7563	-1,4990 -1,5256	W2,	5MG 5MG	86 68	34			98	••	96		
59,+2,	17.	59,7455	-1,9935	189	5	Š	97	ÿ		99		99		
59,-2,	18,	59,9934	-1,9906	86,		4	96	0	••	99	••	99		
59,02,	20.	38,9908 49 7444	-1,4915	139.		N	95	3	••			1.64		
593.	18	59 1400	-7.43N7		· E.G.					30		76 F.99		
593.	11.	59,2089	-2,4113	40	£,Ga			-	-		••	£,99		
593.	12.	39 <u>.20</u> 09 58 3674	-2.2115	80.	٤,٩	-		••	••		-	8,99		
59.+3	17.	59,2087	-2.5114	21	E.GS E.GS	ve Rej			90 00-			2,95		
593.	15,	59,2044	-2.5999	15,	£.3		••	••		**		E. 95	•	
39.+3. 691	10.	59.1787	+2,5339	25	E.SHG	-	••	••		••	-	E. 99	ı	
59.+3.	18.	59,1050	•2.489A	41.	5.3 342.3	**		**	••	**	••	L,99		
59,-3,	19.	59,8574	-2,5046	56	£,3	**		**				t,99		
5V.+3.	74.	59.8991	-2.8585	12.	£,63		••	••	••		**	E.97		
59,-3.	26	59.0056	-2.5960	21. 43.	E. 65		•••				••	E.90		
59,•3,	27.	19,1070	-2,4754	70	F,GS		••		••			t.99		
39,+3, 56,-1	27.	59.1 566	-2.3168	75	E.GS	••		••	••	••		5.98		
	• • •			72.	C,63					••	••	F* 4A		
								•			• • •			

•

	SAMPLI NUMBEI	E R	LAT	LONE	DEPTH H	SED Type	IG	13	ZH	100 586	XCC S	*CC	APP	
	50 -1	13	50 3:60	-2 1061	44								TOTAL	
	59,-3,	31.	59 25 HE	-2.2:98	7F.	EGS	•=	••					£.90	
	59 3.	32.	59,2553	-2,1145	93.	E.GS	••	••	••	••	••	••	4 99	
	593	34	59 2119	-7.2121	e.	E.03	••	••		••		••	E.99	
	593.	35.	59,2105	-2,2917	A6 .	£ . S		••	••	••	••		E.97	
	59.=3.	37.	59,0252	-2,1522	79. 70.	E.5 E.65		••				••	£,97 E,97 *	
	59.+3.	38	59 1352	-2,1032	84	E,GS			••			••	£ 97	
	59,=3. 50 _3	39.	59 23CA	-2,0078	79 .	E.\$MG	••	••	••	••		••	E.99	
	593.	41	59 4146	-2,1072	62.	E,GS	••		**			••	E.97	
	59,=3,	42.	59,4746	-2,1166	140.	E GS	**	**	••		••	••	E 20	
	593.	44.	59.5164	-2,2876	96.	E.63	**	••	**				£,99	
	593.	45.	59 56AT	-2,4132	83.	E SHG							E 98	
	59.+3.	40, 47.	59,5971 59,5917	+2,5912	96.	E.GS		**		••			£.3A	
	59,+3,	48,	59,5993	-2,9316	79	E,GS	-		+=		-		E.99	
	59,-3,	49,	59,3681	-2,3131	42.	E GS	••	••		••			E,99	
	593.	51.	59,2688	+2,7177	183.	E.GS		**	4- 	•••	••		E.99	•
	59,-3,	52,	59,1611	-2, 4042	83.	E,GS							E,99	
	59,-3, 59 -3.	53.	59,1086	-2,8789 -2 8869	75.	E.68	••	••	••	•••	••	**	£,99	
	59,-3,	55	59, 7621	-2, (946	76	E.GS		++-					E.99	
	59,+3,	56	59,2348	-5,4836	75,	Č, S			-	••	••	•••	E,99	
	59.+3.	57. 58.	59,7332	-2,3546	39. 59.	E.SHG	**	••		•••	••		E,98 F,00	
	59,-3,	59,	59,1435	-2,3783	65,	E,S		**	-	••			E,99	
	59.+3. 591.	67.	59,1404	-2,5107	35.	E,G8	••	••					£.95	
	59,-3,	62,	59,1273	-2,2933	80.	ξ.3					••		E.98	
	59,-3,	63.	59,3171	-2,0178	105	E,ĠS	••	••		••	••		E.00	
	593.	65.	59.5427	-2.8426	82. 115.	E,68		••		••	••	••	E.99	
	593.	66.	59,6519	-5.4343	1#3,	Ε.5		••		••			E 97	
•	59,•3. 59 -3.	67. 68	57,7532	+2,9491 +2 1398	112.	E,SHG	••	••		•••	•••		I,99	
•	59,-3,	69,	59,6220	-2,2233	91	E.68		•••				•••	£,99	
	59,-3.	78.	59 4773	-2,3886	1.03.	E,68			••	-	••	-	£,99	
	593.	73	59,7530	-2.0027	95.	E.8MG		99-					E.98	
	59,-3,	74.	59,5524	-2,5907	90,	£.68		•••	•••	•••			E.95	
	59.•J.	75.	39,7011 59,7080	-2,8448	77.	E.3	**	••	•• `	••	**	**	E,99	
	59,-3,	77.	59,8786	-2, 0126	66,	E.SMG					••		E. 85	
	593. 593.	78. 79.	59.6771 59 8816	-2,6174	84	ESHG		••	••			•••	£,95	
	59,-3.	88.	59,4777	-2,2213	142.	£.5			+-	•••		**	E.99	
	59,-3.	51.	59,876P	-2,9282	95.	E.S			••	**			E,97	
	593.	83.	59,9971	-2.1135	191.	£.3				••			E.99	
	593.	84.	59,9376	-2.2258	93,	Ĕ,S		••					E,50	
	59,-3.	63. 66.	59,8701 59,8224	+2,2237 +2,4134	193.	E.3	••	•••	••	••	••		E,99	
	59,-3.	87	59,7620	-2,4857		E,GS		•	**	••			Ē,98	
	59,-3,	66.	59,7115	-2,6144	89	É.8				••	-		E.5H	
	593.	98.	59 6670	-2.8373	\$7.	£.5		••	**	••		••	E.90	
	59,-3,	91.	59,6552	-2,9088	85,	2,8		••	••		-	**	E,50	
	59,•3. 59.•3.	93.	59,5289 59,4787	+2,4971 +2,9374	75,	E.SHG	••	••	••	••	**	**	E,4P	
	59, 4,	2,	59,4670	-3,5956	80.	£,3-0	••	••		••			€.95	
	59,•4, 50 -4	3,	59,5326	3,4811	72,	£,5	••	••		••			E,95	
	594.	7	59.2418	-3.4931	3;, 61).	E,G E,S3	**	••	900 400	••			E.34	
	59.+4.	8.	59,1121	-3,4945	76,	£.5	-		••	-	•••		E.75	
	07,04% 59,=4.	14	59,31574	+3,4085 +3,4852	79.	Ľ.8	••		••	•••	••		E.75	
	59 .4	15	59, 3639	-3,3913	124.	Ε.5	••				••	**	2.75	
	59 4 .	15.	59.3636	-3,24/5	123.	£ 8	••		••	••	••	••	E ac	
	59,-4,	19	59 5275	+3, FR#2	156-	E.G3			••	••		48- 48	E.70	
	59,+4,	ZP.	59,574H	-3,7493	158.	Ĕ.8	••		••	**	••	++	E. 71	
	59.+4.	22.	79,7373 59,4772	-3,8728 -3,9823	164.	E.3	••		••	**	••	••	£.70	
	59,-4,	23.	59,3643	-3.9/92	130	E,S		••	••	••	••	••	E 80	
	594. 594	24,	59.3100	-3,8041	135,	E.3	••	••	••	••	••	••	E 70	
	594.	26,	59, 1532	-3.9806	100.	E.3			••			••	E.99	
					÷ -	· •								

SAMPL	.E	LAT	LDI	DEPTH	SED	X G	23	24	101	300	xcc	APP
NUMBE	. R			M	TYPE				SLG	8	M	202
50 -4		43 1406	-1 6811	••			_					TOTAL
594.	28.	59 5540	-3.5922	85.	5.65							E.97
59 -4	29	50 4501	-3,1842	65.	£.5							E.99
59,-4,	33.	59 7298	-3,5004	108.	F,GS		••			••		E 50
59,-4,	34.	59 7-55	-3,6853	126	E.GS		••			••	••	E 40
59,+4,	35.	55,7685	•3.8737	126.	E.03	••		••	••		••	F, 99
59.44	37.	50 8256	-1 7961	122.	L.5		••				••	E . 2.
59.44	38	50 43 7	-3.6939	142.	E.S				••		••	E . 31
594	39	59 8268	-3.4824	115.	E.GS		••					6.41
59.+4,	48.	59,8338	-3,3961	90	F. GS		••					£ , /0
594.	41.	59,7917	-3,2472	88.	E.GS					••		2.70
59,-4,	42.	59,7566	-3,1154	ñē,	E,GS					**		1,99
594.	43.	59 7765	-3.0235	A5.	E.S	-	**	••			-	£,99
59,44,	44.	50 5360	-3,6130	80.	£.3		••		••	••		L 99
594.	46.	50 4312	-3.0358	77	2,03							L 97
59.44	47.	59.3825	-3.6942	82.	F.G.							5 00
681.	5	62,0051	-0.8782	121.	5	3	93	4		31	37	31
60,+1,	6.	67 2043	-0. 0725	120	i	6	12	12		48	36	46
60,-1,	7.	63,2786	-0,7555	99,	8	N	184	Ň		65		85
50.=l.		69,3626	-# 6942	50,	GS	39	6#	1	••	93	52	43
68L.	9,	63,3590	-\$,5942	141.	63	2.9	70	1		63	44	63
0₩,+1 ,	12.	07,0311	-0,9698	55,	3	1	71	5	••	41	72	39
00,04. 68 -1		61 4014	-4,7714	48.	2	3	¥3	4	••	73	42	73
681	16	62 5445	_# 792X	44	5 C		11	- 7	••	10	-2 	10
68.+1.	17.	62.5514	-F.5151	148.		3	65	13		57	57	47
60,-1,	18,	67,5383	-8,3822	84.	5	. N ;	108	Ň		37	53	37
681.	19.	67,5484	-0,2793	95,	5	2	97	1		92	49	92
681.	23.	63,5021	=0,1555	113.		-	••	••		65		66
68,-1,	21.	67,5621	-0,1171	113.	8	2	97	1	••	86	47	80
68 -1	22.	63 71 98	-0,1904 -0,1904	85,	68	23	77	N	**	94	60	94
44 -1	23.	63 7686	-9 1564	92,	43	43	3/	N		82	28	95
651.	25.	68.8328	-0.3238	100.	3	12	87			73	14	63
681.	26.	63.8316	-8.4664	113.	š		96	Ň		91	53	40
681.	27	67,7622	-0.6042	124.	Š	ī	99	N.		án -	78	8.0
60,-1.	29,	62 8574	-R.4992	117.		6	94	N	-	93	59	93
68,-1.	30.	5R.3596	-8,2961	0,	G\$ 1	39	62	1		64-	31	64
62,-1,	31.	67 BA94	-P. P781	84.	85	2	9:4:	4	••	46	29	44
	38,	63 8301	-8,8987	107,	, F	1	13		ew	98	23	58
68.01	34.	62.9853	-8.0582	130.		1				44. 91	30	49
601.	35,	67,9840	-0,1916	159	š	2	96	2		53	50	53
68,-1,	36,	62,9794	-A.3213	133.	8	16	14	Ň		72	19	72
68,-1,	37,	67,9375	-8,2389	172,	8	N	97	3		17	40	17
68,-1.	38,	67,8967	-0,2526	153.	8	5	94	1		30	43	30
02,-1,	39.	80,5999 60 0070	-2.3880	137.	5	13	87	N	-	66	75	66
58 -1	41	52 9465	_# 5089	122.	3	10	V 11	N	••	40	44	83
68.+1.	42	57.9823	-0.4822	148	ŭ S	š	94			47	81	20
601.	43,	63,9455	.8.6428	116.	5	16	64	Ň		i i	36	
68,-1,	44,	62,9938	.0,6827	105	š	12				10	80	
68,-1.	45.	62,9882	-8,9742	185.	8	5	75	N		74	50	74
	40,	07,7 5 37	-7,9519	119.	8	5	18	N		31	58	01
₩ ₩₩₩ 40 -1		67,9321	-7 417 -7 417	¥9.	3PG	87	31	Z	**	1	21	<u>A1</u>
	40	63 836R	-# 4774	¥7,	370 864	U/ AA	34	1	••	/2	34	72
· 68 .•1.	52.	62.8239	.5684	122	8-0		41	У		43	44	01 A 1
68.+1.	51.	67.7241		98.	6.9	28	12	Ň		83	56	83
60.+1.	52.	67.5917	-0.5200	0.		-1	97	2		86	4	66
68.+1.	53.	69,6546	.P.6143	117.	š	ž	97	ī		55	73	55
68,-1,	56.	62,5629	-0.7055	86.	. 5	5	95	- N .		79	50	79
68,-1,	57,	57,5153	=1,5759	135.	5	1	84	15	••	46	43	46
₽ ₽, •1.	24,	07,46F7	-11 AAEA	127,	\$	Ş	75	3	••	42	30	41
88°-1	57. 68	06.4174 63 3643	-0,0239 -0,623	· • • •	8	i	77	2	••	24	37	38
AE1-	61	60.3151	-0.6500	1.44		4 0		7		#7 4.4	3.0 4 1	M7
63.+1.	62.	NØ. 255H	-0.6453	127.	2 2	- 2	45			54	-J 81	
881.	64	60,1595	-0.0134	127		2		18		42	44	42
68.+1.	65,	60, 3847	-6.6967	124.	š	ī	94	5	-	17	44	17
68,+1,	66,	6 0 ,0C38	-t,7015	124.	8	ž	95	Ĵ	**	61	39	61
60.+1.	67.	60,2549	-P.7118	127.	5	9 -	85	6	••	52	43	24
6₽ . =1.	6Ħ,	D#,1172	-0.7260	118.	5	ļ	97	ŝ	**	29	SN	29
87, -1.	5¥. 73	50,1817 58 2841	-M.7482	113,	3	1	75	4	-	48	44	48
68.41.	71	68.2497	-0.0017	107.	Ű J	38	9.) 9.)	¥ A	••	97 88	30	25
501.	72	69. 323A	+C./309	A0.	5 83	23	76	1	**	37 94	47) 5 A	54
67.+1.	74	60, 1196	-0.3088	161	\$	2	98			46	13	45
£0.+1.	75	60, 106+	-0.2726	111	3	š	93	2	••	78	611	20 28
	-				-	-		-				

	SAMPLE NUMBER	LAT	LONG	DEPTH M	SED Type	rc	XS	Z.	100 366	XCC S	TCC H	APP SCC Tutal
	60.+1. 76.	62,2592	#P.2768	130.	5	1	94	5	••	35	56	12
	60 -1 77	63 1951	=P 2945	119	8	8	97	5		21	34	21
	60.+1, 76,	62,1434	+0.2751	134	3	3	91	e		34	35	30
	601. 79.	63.3773	-0,1979	124,	5	4	94	5	••	14	33	14
		00.1200 A 1 1150	-0.1971 -0.0587	135.	5	1	94	2	••	20	25	21
	68.=1. 62.	61 7915	-0.0520	13/.	3		92	ŝ		24	30	71
	62.+1. 84.	64.1957	+0.1155	110.	Š	2	95	3		33	42	13
	671. 85.	67.2492	-6.1357	121.	Š	ī	94	5		28	40	29
	68,-1, 55,	60 3:47	+P_1187	124.	5	i	94	4	••	31.	41	30
	6P.=1. 87,	67,3680	-8.1427	126.	5	3	93	4	••	44	44	46
	67.+1, 88,	63,4252	+0,1147	119,	5	N	98	5		41	43	414
	601. 89.	00,4570	-0.0295	۴.	. 5		95	1	••	46	52	48
	681. 91.	62 4754	-4 2781	114	3	17	81	2	••	14	77 60	4/
	60.+1. 92.	67.4253	.4.2499	127.	S	1	97	2		30	42	30
	681, 93,	63,3803	-0.2058	113.	5	3	96	ī		65	56	65
	621. 96.	63,4080	-A.4075	92.	8	15	85	Ň		99	87	99
	681. 98.	67,3343	-4.3969	195.	8	1	98	1	••	77	51	77
	68.41, 99,	07,2711	···· 4437	116.		1	98	1	••	42 	6H	82
	68 -1 102	62 1017	-8 3319	130.			81	2		33	11	30
	68.01. 103.	64,8340	-1.2960	131.	š	š	45	š		12	31	12
	601. 104.	63, 3740	-0.3915	119.	8	N	97	3		94	38	9.0
	62,-1, 105,	67,7866	-8,4266	0	SHG	74	24	ž		35	49	35
	68.+1, 176,	57,1674	+P 4976	8.	8	N	96	4	••	17	48	18
	001. 1P8.	63,2408		190.		.4	74	6	••	75	28	69
	68 -1 199,	60,2633	-0,8956	98,	5	5	85		**	63	19	61
	58.+1. 111.	67.2679	eH. 0303	¥C.		2		12		74	3/	22
	681. 113.	67.2495	·#.9734	65.	š	ī	93	6		58	34	57
	60,-1, 114,	62,2176	·P. 9645	65.	GS	22	76	Ż		92	51	91
	60.+1. 115.	68,2409	-0,7863	128.	3	2	92	6	••	61	39	611
	681. 116.	63,1504	-1,6783	115.	H\$	3	78	19		43	411	42
	OF,+1, 11/,	67,3970	-4 8349	185.	2		¥3	1	••	57	44	57
-2+	68.+1. 119.	62, 2383	-4.8268	110.	03 9	10	95	4		27	40	30
	681. 128.	62,1159		116.	š	12	14	4		28	38	28
	60,-1, 121,	67,1838	-9,7176	183	Š	12	47	1		96	59	96
	68,-1, 123,	67,2659	-0,5528	81.	68	27	71	2	89.	70	50	7 H
	68, +1, 124,	63,2713	-6,0746	92.		10	12	N	••	98'	54	98
	68.+1. 127.	67.3064	-8.5015	98.		· .	64	1		90 64	473 6.4	90 94
	601. 129.	68,4112	-7,4142	83.	š	ī	45	14		-		
	68,-1, 138,	63,4263	-8,4184	15.	Š	Ĵ	96	1		94	•2	94
	661, 131,	67,4284	-0,3056	85.	3	9	•1	N	••	93	54	93
	681 132. 681 133	63 4637	-0.3875	85.	3	1	73		••	76		70
	68.+1. 134.	62.4643	•R. 3546	81	63	16	AL	11	••	4 4	20	38
	6A1. 135.	62,4950			GS	36	64	Ň		15	54	85
	601, 136,	62,5073	-0,2786	101.	Ğ	83	14	4		45	46	45
	601. 137.	67,5392	-0,1531	111.	5	e	79	2	**	45.	46	45
	00,01, 130,	00,34/0		120.		1	97	2		52	51	52
	681. 140.	A3.6370	-8.8941	109.	3	1		N		00 4-3	25	80
	601. 141.	67 7228	-8.0432	111.	i	ŝ	26	1		12	54	82
	681. 142.	68,7713	-A. P712	111.	ī	Ī	ŤÍ.	i		60	58	69
	58,-1, 143,	63,7415	-4,9994	101,	8		91	Ň		13	55	93
	. OU1. 144.	86,8670	•8,8983	101.	8	3	77	N		88	85	
	AR -1 14A	64,7343	-3 3747	•3,	5		49	N		70	38	96
	68.+1. 147.	67.6789	-8.3294	131			47	-	••	47		40
	501. 145.	67,5452	.0.3464	1.41	63	28	21			24	58	71
	60.+1, 149,	67,6160	·# 2878	94	5	6	94	Ē.		90	52	98
	681. 151.	67,5642	-0,3365	92	8	5	95	N		93	36	93
	DB,-1, 134,	67,3769	-4,7019	73.	• ••••		-			37.		37
	68.01, 156.	67.3A38		₩₩. 7.2	68.]4 2#	78	N	•••	12	20	82
	691. 157.	57,3491	.8.7729	86.	2	- 7	93	10		7ď 93	51	74 A 1
	681. 158	67,3391	-1 7699	91	š	ī	99	11		91	46	91
	6P1. 167,	68,3251	.4.7622	96.	63	21	78	1		91	82	91
	DF.=], 162,	67,3034	-#.766	96,	SHG	54	29	17	••	18	25	19
	000-71. 10J. 60.01. 164	67.2777	-0,7307	94.		2	97	ļ	••	47	34	83
	67.+1. 165.	63,2548	aC .8836	1.32	3	2	13 85	13		/0 97	47 37	74
	601. 164	67.2345	-1.8993	111.	5	2	14		**	84	49	7A
	60,-1, 157,	60.2560	-0,5469	72.	8	ī	98	Ĩ	-	64	47	84
	60,-1, 160,	60,2342	-11,9761	A3.	GS	25	57	18		37	39	30
	0F+=1+ 170+ 67-=1, 171	*#_2024 60.1743	-0.93H2	91.		1	78	1	••	88	51	88
	671. 172	60.1322	-0.8914	127	73	۲ ۲	61	217 R	••	40	19	51
	• • • • • • •	• • • • •				-	- •	•		-4	۸a	- L

•

• •

SAMPLE	LAT	LONG	DEPTH	SED	XG	X S	28	xcc	302	100	APP	
NUMBER		-	M	TIPE			-	SIG	3	H	¥CC	
45				-			_		.	• •	TOTAL	
60 at 173	60,1000 FALL LA	-0.8717	131.	3		97	2		20	54	27	
62.+1. 175.	0.1.1.1.1.4	+1,7335	110.	3	1	96	ś		31	413	32	
60.=1. 176.	F.1.1751	-1.4122	118.	GS	28	72			77	N	12	
60,+1, 177,	67 2314	-1.7240	115.	5	3	95	2		36	39	36	
681. 178.	60,2452	-4,7141	127	5	6	92	2		61	30	611	
60,-1, 163,	65.5162	-1,7972	105.	5	5	90	5	••	89	29	46	
0P. +1. 1+2.	63,1377	-1.0-70	128.	65	27	77	3		69	43	68	
50 +1 150 -	63 5552	-0.4053	1/5.	5	1	95	1	••	24	38	24	
62.01.104	57.5426	+1.7535	77.	65	39	59	2		0.4	51	CIN	
621. 195.	52 6547	-0_P055	48	SHG	68	32	Ň	••	494	59	94	
69. 1, 196.	63 5A59	-0.7839	66.	5	3	97	N	••	97	5	97	
601. 198.	67,9318	-4.5927	1 97	3	. 16	84	N		84	59	54	
601. 204.	57,9373	-0.5920	126,	5	17	83	N	••	87	63	87	
	64,9933	-4343 -4 6644	143.	3	22	0 A	N		78	39	78	
68.41.2.3.	63.9142	-0.8296	181	5 G	93	7	N		81	60	81 	
681. 224.	64.7677	-0.7372	86	š		93	N		45	75	45	
68 -1. 275,	63 7848	-0,6762	173,	Ğ	82	18	N		75	71	75	
601. 2.14.	67.7253	-6.4384	116.	5	5	95	N		62	50	62	
681. 277.	62,7176	-# . 5392	129.	3	1	99	N	••	84	86	0.4	
681. 208.	57,/1/5	ef 4941	124,	8	<u> </u>	. 99	N		79	52	79	
50 -1 210	63 7887	-8 104A	¥7,	5 9 4 6		24		••	72	72	72	
681 - 212.	67.8312	-0.3575	141	300	13	er.	-		**	50	A.R.	
68.+1, 213.	67.9433	+4.3015	198.	8	ò	98	i		49	41	49	
60.=1, 214,	67,9934	-8.5446	154.	Š	5	95	Ň		93	62	93	
681. 215.	63,9955	-0.5841	132,	5	5	95	N		69	33	69	
681, 216.	53,9919	*2.7524	119,	8	19	•1	N	••	84	57	84	
68,01, 21/,	67,9527	-0.0200	110.	63	44	55	1		65	47	85	
64 at 223	63 8631	-5 8895	100.	63	30	25	- N - N		61	14	81 87	
68. #1. 221.	62.8377	-H.9723	95.	68	28	72	Ň		75	44	75	
60.+1. 222.	62.7632	-0.9875	69.	SMG	63	37	Ň		80	54	80	
601. 223,	60,7984	-8,9949	86.	8	5	92	11	••	51		51	
50, -1, 224,	62,5984	-0,9852	198.	65	26	74	N	-	84	63	84	
681. 225.	62,8692	-4,9373	96,	GS	80	19	N		74		74	
681, 226.	63,9091	-0,7359	172,	SHG	76	23	1		93	49	93	
58 at 228	60,9000 60 9043	-2 1948	141.		4	92	1		4.3	30 47	09	
68.01. 229	58,9098	-0.1533	161.	8	í	97	5		45	63	45	
501. 230	63, 9624	.P. 3694	132.	Š	4	95	ī		57	49	57	
68.+1, 231,	67,8269	*8,5922	108,	\$	19	98	Ň		91	69	91	
681, 232,	67,7792	-9,5228	113.	8	1	99	N	••	89	58	89	
00.01. KJJ.	44 4 4 93	-8.5294	132.	3	4	94	2		65	43	64	
68. •1. 235.	52.5535	-2.7818	111.	5	20	80	- N - M	**	70	44	70	
68.=1. 235.	62.5960	·C.7243	88.	GS	28	72	Ň		91	57	91	
681. 237.	57 5213	-#, 4931	128.	8	2	95	3	-	72	43	71	
68,-1, 238,	63,5864	-8,4285	91.	S	6	94	Ň	••	92	53	92	
60,-1, 239,	63,5663	-6,3295	56,	8	4	95	1	••	95	62	95	
	80,30%3 89 8474	-4 2122	99.	5	2	98			93	90	93	
68.01. 242.	62.6712	-8.2063	140.	3		4.	N	••	91	•1 AG	91	
68.+1. 244.	68,6759	-8.2393	115.	3	- 7 '	98	ĩ		64	72	14	
68,-1, 245,	62,7120	-8,5578	192.	68	24	75	Ň		66	50	66	
68,-1, 246,	63,7143	-8,5615	101.	8	1	99	N		82	61	82	
69, 1, 247,	67,7220	·F.6919		5	15	65	N		83	26	83	
DY, VI, 240,	64,7391 Ka 4117	- - ,7265 _a \$767	172,		2	79 79	18	••	41	39	41	
68.et. 251	69.53AB	.B.9423	/¥.	6	20 17	7 J	· 1		907 8 A	87	70 88	
66.+1. 253.	63,3860	-0.6291	97.	63	27	72	1		78	48	76	
681. 256.	63,1802	-# 9741	#1	3	3	97	Ň	••	92	51	92	
60,+1, 257,	67,1129	-8,9819	68.	8	19	÷1 -	H		69	49	69	
68,-1, 258,	69.1EV3	-11,7+93	121.	··· ••\$	-4	92	4		31	43	31 .	
00.01.759 ,	67,1027	-8,3171	115.	5	1	96	1	••	36	43	35	
68.e1 241	98,1222 62,1717	-H.3463	132,	9.	2	93 84	5	•••	24	74	25	
69.+1. 262.	67.2373	.7.2243	130.	6 2 2	33	45	2		23	37	23	
68.+1. 264.	60,1628	-4,0241	126.	, w ø 2	3	92	5		24	46	25	
67,-1, 245,	68.2389	-0,0231	1 * 2 .	š	ĩ	98	ĩ		31	42	31	
60, +1, 26b,	52,4061	.H. GANJ	126,	Š	Ĩ	98	Ĩ		7Ř	42	70	
6F.=1. 278.	67,1N62	-1.7923	108.	8	2		8	••	53	37	52	
00.01. 271. 68 -t 999	34.1237	-0,9279	198.	5	3	96	1		52	31	52	
68. +1 - 273-	60.8273	-0,9317 .A.071A	42.		•••		••	••	42		92	
5P.+1_ 274_	60.03*1	-0,7281	113	J R			2		35	-2	42	
60.+1, 274,	60,0631	-C. 51+ J	117.	Š	i	97	5	••	14	39	14	
GR1. 275.	60.C169	-0,5219	126	Š	i	97	2		25	32	25	
071, 277,	0 9.10 27	-0.2119	119.	946	56	41	1	••	22	45	55	
•												

SAMPLE	LAT	LONG	DEPTH	SED	zü	X 3	<u>х</u> н	xcc	x CC	\$00	APP	
NUMBER			м	TYPE				SEG	5	۲	204	
60 -1 202	62 5418		۰.				•			A 14	TCTAL	
681. 293.	62,5614	-0 C4.2	80.	3	1.1	89	1		42	44	÷3 42	
60.+1, 794.	62 5852	-0.92 ···	47	S⊬G	52	45	Ň		84	57	84	
67,=1, 245,	67.5548	•1. Bt.36	54.	65	21	78	1	••	71	46	71	
601, 296.	63,5597	-1',8144	82 .	GS	42	57	N.	••	94	53	94	
68 -1 208	63 5051	-0 7413	50.	63	25	10	Ň		90	44	96	
6P1. 209	62 6179	-0.7347	78	a a	82	17	1		94	51	94	
601. 300.	62,5340	60 EV.14	56	C S	37	63	Ň		25	56	95	
681, 301,	6P.6379	-+,+239	40.	3		92	N	••	83		83	
691, 362.	07.0478	-0,8030 -4 7870	47.	5	3	98	1		86		86	
68.01. 324.	67.6786	-0.7153	95.	3-0	3	97	N.		56	40 41	5.	
601. 306.	63,2420	-0.3565	124.	Š	ī	97	2	••	31	44	31	
60,-1, 307,	68,1472	-1,3192	135.	5	2	89	9		21	44	23	
68,-1, 378,	67,1137	ev.4055	126.	5	1	95	4	••	211	39	21	
1 <u>1</u> 54 90	62,1193	-1.0302	59.	5		99 51	N 1	••	23	56	25	
68.+2. 3.	68. 2774	-1.6156	96.	SPG	66	33	ĩ		91	53	80	
687. 4.	67,0350	-1,0481	93.	Š	5	94	i		91	65	90	
682, 5,	68,0940	-1,8224	90.	SMG	57	46	3		85	64	84	
60,-2, 6,	63,1071	-1,8769		3		98	N	••	66	62	66	
07,-2, /.	6F 0218	-1 0137	70.	68	2.4.	10	~~~	••	40	51 50	50	
68. 2. 14.	68.3829	-1.4973	120.	S	2	91	,		56	90 80	5A	
602, 15,	68,7477	-1 5041	111	SHG	62	38	Ň		6#		60	
50,-2, 14,	68,9469	-1,9730	213,	5.	N	186	N	••	11		11	
68,-2, 19,	69,7517	-1,67	68.	3	78	22	N		77		77	
	62,0917 63 9058	-1 5833	80, 84	3		72	N N	78			78	
682. 24.	68.2917	-1.7250	76.	ă	ĩ	99	N	67			67	
69 2 25	68,2883	-1,7967	77	Š	6	94	11	76	-		76	
602, 26.	62,3917	-1,9450	71.	63	55	78	N	72			72	
68,-2, 27,	60,1750	-1,9667	73.	SMG	57	42	1	88	••		80	
60,=2, 2n, AA _2 29	02,1/30 63 1725	-1 2367	76	63	43	82	Fi M	90 63		**	90	
682. 37.	67.1643	-1.6617	77	š	1	99	N	55			55	
682, 31,	68,2456	-1,7733	75	Š	19	11	N	83			83	
682, 33,	63,2472	=1,9992	25.	SMG	63	36	2	**	84		84	
682, 35,	69,4942	-1.8525	196.		1	98	N	37	••		37	
00, •2, 41, 68, -2, 43,	62.4363	-1.5417	80 . AC	376.	03	3.0 200	1	27			27	
682. 44.	67.4378	-1.7233	84	68	38	62	N	98	-		98	
68,-2, 45,	58,5317	-1,8288	115.	G	91	6	3	-	63		63	
60,-2, 47,	60,6917	-1,6233	103.		5	98		1		•••	•1	
	62.6858	-1.7133	111.		2	44	N	78		••	78	
68.+2. 54.	62.4775	-1,4285	69.	68	34	66		76			76	
60.+2. 56.	62,4333	+1,3325	184.	5	6	93	1	83			83	
6 8,-2, 58,	63,9733	-1,6633	137.	8	3	97	N		25	59	25	
05,02, 34,	68,9730 48 8367	e1 6592	127.	8	5	78	N	35	••	••	55	
682. 61.	68.7583	-1.6692	184.	8	-	95	Ĩ	34	35	55	34	
68 -2 62	67,7617	-1,4492	120	š	ĩ	99	Ň	89		••	89	
682, 63,	68 7783	-1,1667	95.	SHG	69	31	N	••	62	78	62	
68 , •2, 64, 68 , •2, 57	60,424/ 62 9057	-1,1233	130.	8	29	66	N	63		-	63	
68. •2. 68.	62.97#1	+1.3321	118.	1	15	45	N	57		/0		
61 -2 69	63,9650	-1,5083	134.	8	3	97	N	**	46	47	45	
68,-2, 78,	68,9708	-1.8787	140,	8	4	96	N		31	49	31	
60, -2, 71,	60,9050	-1,9233	133,	68	20	79	1		22	50	22	
68,+2, 72,	5458 NJ	-1,9230	113.	Ģ	45 14	15	N	•••	48	55	40	
58.+2. 75.	68.5728	-1.2235	110.	50 1	12	68			A 3	27	40	
682. 78.	68.6243	-1.2363	91.	i	13	86	N	67			67	
68,+2, 79,	63 5979	-1,2661	73.	š	ĩ	97.	ï		41		61	
68,-2, 82,	63,5273	-1,2665	76.	\$	3	98	T	37		48	37	
00,•Z, E1,	67,5396 62,5396	=1,2784 =1,246A	69.	1	19	76	1	79	••	••	79	
682. AS	66.4138	-1.1095	90. 48	9	17	10	7	44 63	74	••	90 43	
60,-2, 96.	62.4445	-1,1200	÷2.	3	13	17	Ň	81		••	• 4	
69,-2, 92,	67,4983	-1,1733	47,	Ğ	99	1	N		83	-	83	
602. 94.	67.4650	-1,0033	40,	8	7	92	1		••		98	
DU.+2, 90.	68 1867	-1. 01 75	116.	5	15	14	1	71	40 64	••	9A	
682.100	60.3233	-1.0533	66.	63	21	60		84	99 92	-7	25	
67,-2, 101.	66. 3233	-1,0100	49	3	īi	69	••	86		••	86	
62,-2, 103.	60.2950	-1.0443	51.	8	5	86	•		91	87	89	
00,-7, 105, An -2 105	68,1750 A0 1700	-1,0057	К <u>р</u> .	5	2	97	1	75	••	57	75	
6P.+2. 189	60.20h2	+1,0005 +1.16AA	47.	3	14	80 67	N	77	**	••	94	
*******				•		~ •		• 2		- 1	/3	

	SAMPLE	LAT	LONG	DEPTH	SED	ZG	7 S	24	xcc	*CC	xcc	APP	
	NUMBER			M	TYPE				31G	8	*	XCC	
	682. 115.	F2.22#3	-1,1017	56.	5	18	82		86		••	40	
	60,-2, 111,	60 2350	-1,1755	P .	Š	11	81	6	75	••	39	67	
	60,-2, 113,	63,1033	-1,1900	40.	GS	44	56	<u>.</u>	56			hA	
		63 2602	-1-1493	24,	3	2	92	3	••	35	20	35	
	682. 116.	60.2283	-1.1133	69	S	ŝ	93	2	68		58	87	
	67,-2, 117,	57,7267	-1,1983	47,	5	N	99	Ň	67	••		67	
	62,+2, 115,	62,4033	-1,1417	0.	5	55	78	N	96	•• .	••	96	
	60 2. 127.	67.1372	-1.3851	98.	65	10	73		43	••	411	4 J 76	
	67 -2 121	50 1402	-1,4761	67	SHG	78	22	÷:	95		••	95	
	682. 122.	62,7456	-1,3913	49	G	91	Ģ	N	••	98	53	90	
	682. 123.	52,2238	-1,3892	,73,	3	6	94	N,	••	95	48	95	
	68. #2. 125.	68.8459	-1, -7 22	131.	3	1	75	24		3P 42	17	27	
	682. 126.	67 P485	-1,5807	116,	5	i	95	4		54	43	54	
	682. 127.	67,1935	-1,5483	98	5	7	92	1	-	44	44	44	
	50,-2, 120, 60,-2, 171	67, F360 40 337.	-1,4065	¥0.	5	_ ff 1	196	*	**	53	52	53	
	692. 133.	62.8925	-1,8797	73.	3	25	75		••	93	52	59 63	
	60,+2, 134,	62 , 2972	+1.4831	80.	s	- 3	97	N		88	61	88	
	60, -2, 136,	62.4955	-1,5870	89,	GS	33	67	N		64	51	64	
	68,-2, 137,	6J <u>.</u> 7904	-1,4978	93.	3	3	96	Ţ	••	83	54	83	
	68.02. 139.	60,2085	•1.7407	111	3	1	93	3		30 69	45	36 89	
	60,-2, 147,	63, 9533	-1,9261	91	8	11-	89	ĥ		67	62	67	
	62,-2, 143,	67,1802	-1,8947	71.	\$	3	97	N		94	87	94	
	68,-2, 144,	68,2197	-1,7382	84,	63	23	77	.0		94	61	94	
	60. 2. 145.	67.2648	-1.8986	35.	3 m G G	88	12	N	**	91	01 76	91	
	68,-2, 148,	62.3752	-1,9298	96	5	N	99	N	••	57	59	57	
	68,-2, 149,	63,4471	=1,9189	116.	8		98	2	**	28	39	28	
	68,-2, 158,	60,4331	=1,7914	184.	68	22	66	1	••	69	30	66	
	682. 152.	62.6433	-1 5043	110.	3	7	95	1		20 94	34 80	28	
;	602. 153.	68,6476	-1,2398	85	š	2	98	ī		28	30	29	
•	68,-2, 154,	67,7792	-1,2232	95	3	N 1		N	••	32	33	32	
	68,-2, 157,	67,7873 67 7040	-1.2360	52,	\$M6	71	2.9	N		76	58	76	
	682. 157.	68.7977	-1.3742	124	G8:	46.	53	i		66	92 57	56	
	68,+2, 158,	67,7214	-1,3763	126,	5	1	99	Ň	-	92	65	92	
	68,-2, 159,	60,7182	-1,5118	93,	6	97	5	1	**	88	75		
	00,02, 101, 66 -2, 162,	68 6280	-1 2533	22. 71	63	48	6 9	N 9	**	43	46	43	
	682, 163.	63 5758	-1,2867	182	GS	28	78	2		48	36	49	
	60,-2, 164,	68,5583	=1,2750	96.	GS	25	74	1	••	94	87	94	
	68,+2, 165,	69,5283	-1,3817	91.	8	15	03	2	••	69	35	68	
	58.e2. 157.	68.4837	#1.3617		5 6 9 M	3	10	2¥ 70		38	37	31	
	682. 168.	62,4167	-1,3492	24	GSM	i	35	61		56	29	38	
	68,-2, 169,	67,4388	-1,3375	46,	GSM	•	45	46	••		72	54	
	60,02, 170, 60,02, 171	82,4487 48,4833	-1,3117 -1,2475	42,	MS CAM	. 5	71	25	•	42	22	40	
	602. 172.	ER 4540	-1,3117	33.	61	25	56	19		34	24	J e 31	
	68, -2, 173,	63,4880	-1,2975	44,	- #8	2	56	43		24	33	24	
	62,+2. 174.	₩₽.4967 43 6×43	•1,2083	53,	68	36	59	11		38	34	35	
	AR2. 170.	68,5958	-1,270/ =1,2747	54 ,	5	1.00	40 70	N		34 45	74	34	
	60.+2. 177.	67,5317	-1,2200	68.	SHG	50	59	N		77	41	77	
	66,-2, 179,	68.6133	-1,2733	64 ,		12	Ì.	N		83	51	83	
	60,-3, 1,	6P,5P42	-2,0049	129,	3	N	99	1		12		12	
	67,=J, Z, A8.a3 A	78,7381 62,2088	-2,0552	120.	63	35 72	04 27	1		20	11	26	
	68.+3. 5.	60.2542	-2,1333	98.	65	30	68	1	**	42	42	¥0 42	
	68,-3, 6,	68,33PC	-2,1507	120.	· · · ·	Ĩ	98	i	**	33	23	33	
	683. 8.	62,3967	-2,1333	120.	5	1	98	1	•••	34	34	36	
	69,0J, 9, 68 -3 1#	07,4742 Ka 4867	•2, HOB7	115,	5	N .	77	1	-	19	35	19	
	68.+3. 11.	63.2084	-2,0788	23.	a 1	25	75	1 N		84	+3 53	57	
	68,+3, 13,	69,2102	-5, (933	87.	š	3.	97	N		85	50	05	
	683. 14.	63 9921	-2,1537	P1.	8	18	88	₽!		7#	59	74	
	65 -3, 10,	0W,3837 6% 1437	-2,8443	199.			97	1	•••	14	36	14	
	683. 17.	68.5378	-2,0761	137.	63		90 95	2		30	90	38	
	58,-3, 18,	62,0934	-2, 4615	130	SHG	72	29	ī		58	10	17	
		the second s	-	-				-			-		

APPENDIX 10

Carbonate petrography of selected samples from the SCS study-area.

•

Petrographic Data

Explanation:

No.	is	the	IC	S sample	number					
<u>NB.1</u>	Sample	es ai	re	grab sam	ples unles	s other	wis	se st	tated(V=vik	procore)
Ba	is	the	8	(volume)	barnacle	debris	in	the	carbonate	fraction
Bi	is	the	€	**	bivalve	11	11	11	11	11
Е	is	the	€	**	echinoid	8	"	**	11	"
G	is	the	£	**	gastropod		н	11	**	
S	is	the	욯	F9	serpulid	11	**	11	10	
Br	is	the	융	**	bryozoan	11	"	11	**	**
С	is	the	웅	99	calcareou	s alga	**	11	**	89
F	is	the	욯	**	foraminif	era	11	11	**	
D	is	the	€	99	Ditrupa		**	**	**	••

 $\underline{\rm NB.2}$ Where these add up to less than 98% then some other (minor) carbonate constituent is present

Uk	is who	the %(volume) ple	of u	nknown (unre		gnisa	able) carbo	onate in t	-he
NC	is who	the %(volume) ple	of n	on-carbonate	€(li	ithic	c) material	l in the	
qs	is	the(av	erage)v	isual	grain size	of	the	carbonate	fraction	
so	is	the	"	11	sorting	11		11	**	
rđ	is	the	11	11	roundness	11	н		11	
pl	is	the		11	polish	"		11	**	
st	is	the	**	11	staining	#1	**	10	**	
bo	is	the	11	"	boring	11	н	11	18	

<u>NB.3</u> See pp.y-36 and Table 2 for further explanation of textural parameters and scales used

NB.4 The data is mostly grouped under districts associated with carbonate deposits. For details of exact locations, water depths, PSA and carbonate analyses, see Appendix 9.

.

Gulf of	Cori	ryvr	ec	can													
No.	Ba	Bi	E	G	<u>s</u>	<u>Br</u>	<u>c</u>	F	Uk	<u>NC</u>	2	gs	<u>so</u>	<u>rd</u>	<u>p1</u>	st	bo
H38	14	68	1	3	3	9	1	0	2	2		4 1	2	3	3	2	1
assage	of 1	lire	ed	list	ric	<u>et</u>											
5H1 5H2	38 31	49 48	3 2	4 11	2 0	3 8	0 0	0 0	17 21	10 26		4 3	1 2	3 2	1	3 3	2 2
SH46	23	44	4	5	Ō	14	Ō	9	16	30		3 불	1	11	1	2	3
SH47	18	48	1	2	0	21	0	6	15	32		3	2	1 1	1	2	0
SH63	56	27	4	4	2	4	1	2	13	4		4	1	3	3	2	1
SH64	69	22	3	3	5	.7	0	0	16	2		4	1	3	3	4	3
SH66	29	33	4	0	7	18	0	6	6	4		4		2	3	3	2
5885	20	43	4	 	(E	2		2	1	20		2	1	21	1	د ۸	2
20220	20	42	2) 5		5	0	2	7	22		3	÷	11	÷	2	2
H259	52	12	3	ğ	ģ	ĭ	14	ī	10	-1		3	1	24	1	3	4
H282	33	53	4	ī	2	6	0	ż	9	49		3	1	ź	1	2	2
H283	27	58	2	0	1	7	0	3	7	58		3	1	21	1	2	2
5H347	26	34	6	4	17	6	4	4	9	37		3‡	1	3 ±	1	3	2
SH348	27	39	6	15	11	2	1	0	2	64		3 <u>†</u>	1	2	1	3	2
H352	30	32	3	1	0	24	0	8	13	18		4	4	-1		3	0
H353 H435	47	22	4	6	7	10	1	3	27	8		3	i	5	4	1	ŏ
awes Ba	nk á	list	rid	t										•			
H250	44	23	<u>`</u>		16	۵	1	٥	20	11		3 1	1	4 1	4	4	1
391	13	54	ő	30	0	ñ	0	1		76		24	1	24	3	2	ò
H413	27	58	2	2	3	3	ō	5	9	56		ż	2	4	4	3	Ō
H417	8	30	5	6	44	4	4	ō	3	58		4	1	41	1	2	3
H563	27	53	1	1	9	5	Ó	3	12	58		4	1	3	3	1	1
H564	38	23	3	5	28	1	0	2	13	18		4	2	5	4	4	1
H774	17	28	2	16	23	6	0	7	11	62		4	1	3‡	3	3	1
ound of	Eig	<u>19</u> d	ist	ria	<u>st</u>												
H27	41	24	7	8	6	2	13	0	15	21		4	1	3	1	2	1
1149 1150	55	44	4	0	4	2	1	2	10	5/		21	1	1 J	2	4	د
n39 461	40	59 59	J ∆	17	4	5	0	4	12	41		2	1	$2\frac{1}{2}$	2	∠	
H166	78	19	1	1	1	ò	ŏ	ŏ	5	52		ž	i	īł.	ĩ	ž	ĭ
H337	49	30	2	8	7	2	1	ō	9	8		3Ì	1	2	3	3	1
H339	35	39	5	7	9	- 4	1	0	4	56		- Ă	1	3	1	3	2
H340	37	35	3	5	5	2	12	2	9	3		3†	1	3	1	3	1
H357	52	4Z	0 E	4	0	0	0	0	4	23		5t	1	1	1	4	1
11367	26	22	2	28	0	2	ň	0 g	2	20 51		-1	1	11	7	1	2
H422	11	62	2	-4	1	5	õ	11	á	71		2	2	j1	3	ó	6
H424	42	30	3	8	8	2	1	4	12	38		3Ŧ	1	4	3	2	ō
H432	25	50	8	4	3	4	1	4	8	45		3	1	21	3	3	1
ubha Na	n Ci	Lach	<u>l</u>														
H11	52	18	4	7	7	4	2	5	4	70		4	2	3	3	1	1
2413	40 25	42	я Я		6	15	~	<u>د</u>	10	25		2	1	11	1	~	2
H14	55	24	4	ġ	4	3	1		د 14	18		31	1	12	i	2	2
H15	35	48	5	í	1	2	ò	7	3	70		2	2	2	ť	ō	ō
H16	25	54	7	1	Ó	10	Ő	2	2	47		2	2	11	3	ī	ī
n Ceani	ch d	list	ric	<u>et</u>													
270 H7	25 ∡2	35 17	5 8	7 8	2 1 9	7	13	6	16	23		4	1	3	1	1	4
5H8	41	23	3	7	7	14	1	Š	14	45		3	1	1 2	1	2	1
H9	49	22	5	4	9	6	i	2	12	48		3Ť	i	11	i	2	ż
SH10	6	50	2	28	1	11	0	2	18	54		1	3	Ž	3	0	0
SH552	39	39	7	5	5	5	ò	ò	8	29		3	1	3	1	2	3
SH553	31	42	9	3	8	4	1	1	5	19		4 🛨 🗌	1	21	1	2	2

•

Stanton	Ban	(5 (list	ric	<u>st</u>													
<u>No</u> .	Ba	<u>Bi</u>	E	G	<u>s</u>	Br	<u>c</u>	F		<u>Uk</u>	<u>NC</u>	gs	so	<u>rd</u>	<u>p1</u>	<u>st</u>	<u>bo</u>	
SH717	5	32	7	8	31	13	0	3		5	19	4 31	2	4 1/2	3	4	2	
SH745 SH757	2	33	2	3	41	15	ŏ	1		9	15	4	i	4	3	2	2	•
<u>Barra He</u>	ad o	list	tric	t														
SH128	5	29	7	6	3	5	0	41		3	80	-	-	-	-	-	-	
SH131 SH178	16 4	37 66	5	6 1	3	18 6	10 0	6 9		16 12	17 52	3	1	2 1 1	3	1	2 3	
SH193	13	55	5	2	0	5	5	12		7	43	2	1	11	1	1	1	
SH306	- 9	39	3	1	2	38	ŏ	7		13	į	3	i	31	3	i	ō	
SH307 SH308	4	58 64	6	5	1	14 15	0	9		11	26	2	2	11	3	0	ō	
SH328	21	70	4	1	2	2	Ó	1		21	46	3	1	11	1	1	2	
SH593 SH645	19	20	8	10	16	19	6	1		17	2	4	1	4	4	ŏ	1	
SH653	19	24	3	8	36	5	0	4		13	50 45	4 ₹∔	1	5 ₹∔	3	3	2	
SH826	16	20	1	11	37	4	10	ō		25	19	4	2	5	4	3	ō	
SH844 SH845	4	36	4	5	5	37 15	0	8 10		15	11	$1\frac{3}{1}$	1 3	1	- 3 - 4	0	0	
SH846	7	28	1	2	2	53	0	6		18	1	2 2	2	3	3	1	0	
51040	د	20	4	1	U	21	ſ	10		10	21	~ 2	2	£ 2	5	U	U	
West Heb	rid	ean	Pla	atfo	orm													
SC12	10	52	6	6	3	18	2	0		11	34	3	1	31	4	4	0	
SC30 SC32	3	34	17	9	17	17	0	4		6	61	4	1	41	3	2	1	
SC46	22	26	13	12	21	6	0	0		7	22	4	2	5	4	0	0	
SC50	12	23	11	11	32	10	ŏ	ò		11	10	3	i	4	4	ò	ŏ	
SC51 SC56	4	19 35	9 21	8	34 10	17	5	0		3 6	2 5	4	2	3	1 3	2	4	
Butt of	Lew	iso	list	ric	st													
SC38	7	43	4	8	15	24	0	0		12	13	3	1	4	4	0	0	
SC59 SC60	3	46 48	18	12	3	16	0	3		11 9	33	2	3	3	3	4	0	
SC61	15	52	9	6	7	10	0	1		4	32	3	1	3	3	3	Ö	•
SC65	9	62	6	9	3	9	ŏ	i		11	26	3	2	3	4	3	ŏ	
SC66	3	75	4	6	2	9	0	1		14	28 35	11	3	4 3 ‡	4	3	0	
SC73	15	57	7	4	5	8	ŏ	2		3	51	3	1	3	3	4	ŏ	
SC76 SC77	1	56 39	6 2	8	3	23 37	0	5		12	30	2	2		3	0	0	
SC78	15	39	12	7	9	14	Ő	3		5	9	3	2	4	4	2	Ő	
SC79 SC80	4	23 52	7	8 7	4	28 19	3 0	8		3	24	2	2	2	4	0	0	
NS176	5	46	3	0	0	32	0	14		6	32	2	2	2	0	0	Ő	
NS189	13	56	3	1	3	8	ŏ	16		10	57	3	1	41	4	2	1	
NS211 NS297	15	75 50	0	02	03	7 18	0	3		17	49 23	2	2	3	4	3	0	
NS301	4	51	7	ō	Ō	22	ō	14		11	13	11	3	2	3	ō	1	
Hebridea	n S.	lope	3															
SH783	1	37	9	4	1	19	0	6	22D	2	28	4	2	3	3	1	3	

•

Hebrides, miscellaneous																	
<u>No</u> .	<u>Ba</u>	<u>Bi</u>	E	G	<u>s</u>	Br	<u>c</u>	F	<u>Uk</u>	NC		gs	<u>so</u>	<u>rd</u>	<u>p1</u>	<u>st</u>	<u>bo</u>
M297	19	55	9	1	7	0	0	9	11	60		-	-	-	-	-	-
M316	11	60	8	3	3	4	0	11	4	78		-	-	-	-	-	-
NS209	5	30	6	0	1	4	0	55	14	66		2	1	3	1	0	0
SH21	38	43	4	1	0	3	0	11	7	48		2‡	1	2 🛔	1	0	0
SH89	23	50	4	3	1	6	1	5	6	56		3 🛔	1	1	2	0	1
SH96	11	74	7	7	0	0	0	0	1	96		-	-	-	-	-	-
SH121	39	42	3	2	1	7	1	1	7	14		-	-	-	-	-	-
SH158	21	56	5	0	0	11	0	6	10	37		3	2	3	3	1	0
SH238	58	27	3	3	3	5	0	0	3	2		3‡	2	3	1	3	3
SH238V	41	44	3	7	2	0	0	2	1	59		-	-	-	-	-	-
SH239	54	25	3	9	2	5	0	2	2	34		-	-	-	-	-	-
SH287	39	43	3	5	5	2	0	2	15	40		21	1	4 ‡	4	2	0
SH288	65	22	3	7	1	2	0	0	19	35		3	2	5	4	3	0
SH345	6	62	3	1	1	7	0	15	15	58		3	3	11	4	0	0
SH404	0	56	6	0	15	11	0	9	6	61		11	2	1 🛊	1	1	0
SH420	15	69	5	3	3	1	2	2	6	58		4	1	11	3	1	1
SH450	55	29	3	7	3	1	0	3	17	7		4	1	21	1	2	2
SH485	5	54	0	6	6	15	1	12	11	72		. 7	-	-	-	-	-
SH502	40	41	4	8	0	3	0	3	3	35		- 3 1	2	- Ş	3	3	1
SH536	9	77	0	1	1	0	0	7	7	74		_2	2	11	3	0	0
SH585	9	69	1	3	7	0	1	4	5	39		3ŧ	3	3	3	4	0
SH735	8	50	8	1	-1	23	0	8	11	18		2	2	11	1	0	0

•

.

.

.

•

Cape Wrath district UK NC Ē <u>S</u> Br <u>c</u> F gs so rd pl st bo <u>Ba Bi</u> G No. 70 42 1 3 2 ½ 5 17 1 5 3 2 M285 2 2 ō NS9 NS46 5 8 19 9 1 7 9 9 62 35 36 10 49 20 24 5 59 18 54 12 19 7 82 29 29 19 58 11 62 NS47 NS49 NS50 14 7 2 3 2 2 94 21 3 3 4 3 7 -2232120 - 2 2 0 NS154 NS155 2 5 8 5 NS195 0 5 0 0 6 6 9 12 17 9 86 70 52 46 NS220 3 1 ī 3 NS222 7 NS237 ō NS293 Nun Bank district 10 23 44 25 10 15 **NU** 1 7 5 Ó 10 7 NU2 õ NU5 12 15 14 3 12 õ ō 3 3 3 NU6 NU7 NU10 NU11 NU12 NU13 49 25 ŝ Ó Ā 7 6 17 19 3 4 4 3 1 46 15 Ō 2 0 3 NU 14 NU15 4 3 3 3 4 3 3 4 3 3 12 16 8 7 NU16 NU17 NU18 4 2 8 74 57 28 14 45 34 20 56 5 1 1 2 4 1 NU19 NU20 NU21 NU23 Ó 0 0 0 5 6 12 4 12 28 5 6 Ó 3 3 2 1 3] 3 NU24 NU26 Ó 6 9 13 17 3 1 1 3 4 0 0 0 3 3 4 4 ō 2 2 1 1 NU27 NU28 1 NU29 7 Ó NS244 NS252 Ā Solan Bank district 17 9 0 7 43 4 36 6 42 24 20 20 4 1 4 3 5 3 1 2 NS81 NS82 8 0 0 2 2 1 6 0 3 3 3 1 5 3 4 2 1 **NS84** NS86 30D Northern Slope NS72 NS109 NS115 2 16 8 44D 30D 23D 22D 3 3 3 1 3 1 2 3 0 22 7 3 1 1 2 44 3 36 Í Õ Ō 1 2 2 4 53 Ō Ō 3 40 NS117

.

.

Norther	n She	elf,	, ge	nei	al					•.						
No.	Ba	<u>Bi</u>	Ē	G	<u>s</u>	<u>Br</u>	<u>c</u>	F	Ük	NC	gs	<u>so</u>	<u>rd</u>	<u>p1</u>	<u>st</u>	bo
NS16	0	57	5	5	0	25	0	3	9	33	2	3	2 1	3	0	0
NS32	24	67	2	1	1	2	Ō	4	12	55	31	2	3	3	0	1
NS56	3	33	4	3	30	16	Ó	3	2	45	4	2	31	3	2	1
NS57	3	36	9	4	19	18	0	6	8	24	31	2	4	3	1	1
NS69	1	53	4	0	0	15	0	13	1	47	3	3	3	4	3	0
NS90	3	43	5	Ó	2	20	0	17	7	39	11	3	3	3	2	0
NS91	1	46	10	2	2	10	0	8	5	44	3	1	3	1	2	0
NS93	Ó	41	10	8	ō	12	Ō	8	7	21	31	2	2	1	2	3
NG94	5	17	2	2	ĩ	4	ŏ	Ĩ	2	17	4]	2	3	1	1	3
NS95	õ	44	14	7	i	12	ō	11	5	56	31	2	3 Į	1	1	2
NC238	Ă	72	2	Ó	ò	13	ŏ	ġ	12	70	21	2	<u></u>	1	2	1
NG245	14	42	2	ž	25	7	ĭ	á	10	54	- 5	2	3	3	2	ż
NS257	34	41	7	4	-3	7	ò	4	10	66	3	2	3]	3	ō	1
<u>Fair Is</u>	<u>le Cl</u>	hanı	nel													
NS18	8	26	10	5	5	40	0	6	6	11	3	2	2	1	0	0
NS21	13	33	4	14	22	14	0	0	1	2	5	2	4 1	3	0	0
NS22	2	37	8	- 4	6	37	0	5	2	3	31	2	3	3	2	0
NS24	12	28	7	- 4	7	16	0	7	3	16	3 1/2	2	3	1	2	1
NS25	9	40	10	4	7	21	0	7	5	13	31	2	31	3	0	1
NS26	5	47	12	3	3	16	0	7	5	28	2	1	3]	3	0	0
NS123	0	27	12	2	3	48	Ō	6	16	10	21	1	3	3	2	1
NS127	2	36	7	1	2	18	0	19	3	14	4	1	2]	1	2	1
NS135	3	42	18	3	12	23	0	0	5	13	4	1	3	4	2	1
NS136	13	27	3	8	32	17	0	0	1	2	4 1/2	1	31	3	0	0
NS137	5	39	8	4	21	21	Ó	1	2	11		1	4	4	0	1
NS138	6	23	12	6	17	35	Ō	1	3	1	4 🗄	1	3ŧ	1	0	0
NS139	2	33	8	6	23	26	õ	Ó	4	3	4	1	3	4	0	0
NS141	1	29	7	Ř	27	23	ŏ	6	2	10	4	1	4	1	1	1
NS144	4	39	11	3	7	29	ō	7	5	6	4	1	31	4	0	0
North O	rkney	Z														
OR6 1	31	34	4	10	15	6	0	0	3	1	4	2	4 1	4	0	0
OR35	20	45	7	- 5	11	11	0	1	3	1	31	1	4]	3	1	4
OR37	30	38	2	3	22	4	0	0	10	2	4	1	- 5	4	2	2
OR131	28	48	4	5	12	2	0	1	7	2	4	1	- 5	4	3	1
OR132	32	34	5	6	14	8	0	1	4	0	4	1	51	4	3	0
OR134	19	36	3	4	37	1	ō	ò	5	3	4	1	5]	4	3	1
OR135	24	38	2	4	28	4	ō	ō	ŝ	3	4	1	5]	4	2	1
OR137	23	52	3	5	14	3	ŏ	ō	3	7	4	1	5]	3	0	2
Orkney	Sound	<u>is</u>														
OR26	9	68	7	5	7	3	0	2	3	59	3]	1	31	3	2	0
ORSA	11	61	Å	2	8	3	10	1	5	8	4	1	4	3	1	ī
0856	Ä	64	2	1	1	20	ň	Å	2	50	2	2	2	3	2	ń
00530	1	70	ñ	'n	'n	21	ŏ	-	2	55	- 1	2	2	3	ī	ň
0837	24	47	š	2	š	2	2	1	2	12	Ā	5	5	Ā	ż	ĭ
08/3	24	71	5	2	Ē	Ē	4			5		1	41		ñ	
0889	20	60	2	1	- 5	<u>م</u>	.	1	2	<u> </u>		2	7 1	Å	ň	7
OK138	29	00	4	- 1	1	0	U	2	9	ય વ	្រះរ	4	- 4	-	J	U

. . . .

.

. ,

East Orkney

.

<u>No</u> .	<u>Bi</u>	Ba	E	G	<u>s</u>	<u>Br</u>	<u>c</u>	F	Uk	NC	<u>qs</u>	so	<u>rð</u>	<u>p1</u>	<u>st</u>	bo
MF490 MF491 MF809 MF810 OR33 OR44 OR45 OR46 OR46 OR48 OR76 OR111 OR112 OR112 OR116 OR118 OR119 OR120 OR121 OR140 OR141 OR160 OR161 OR162 OR163 58-03/1 58-03/2V	24 12 50 40 25 16 13 315 16 10 8 11 18 12 7 5 13 317 14 17	4370343442559955466466471007500	54515255534353463252122647	22215201304060000220000577	12 3 6 1 4 1 3 0 1 4 1 3 0 1 4 1 3 0 1 1 3 0 0 0 0 2 3 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0	4 364 317 69 117 19 131 225 16 81 316 52 1 1		48181827062819726880579000 162819726880579000	3 3 3 12 14 13 6 7 16 13 10 4 12 14 17 13 11 11 18 4 6 7 3 8	14 16 21 19 3 2 3 8 15 6 22 31 10 4 8 9 8 7 5 12 24 5 15 22	4 3 4 2 3 3 3 4 4 2 3 3 3 4 4 4 3 3 3 4 4 4 4	1222121111221223212321111111	4	1 3 3 3 4 3 3 3 1 3 3 3 3 3 3 1 4 3 3 3 3	423222223301333223333121	4 0 2 1 0 1 0 3 0 0 1 0 3 0 0 2 0 1 0 3 0 0 0 3 3 2 0 0 3 3 2
West Pent	:1 <u>a</u>	nd F	lirt	h												
NS37 NS39 NS40 NS147 NS148 NS149 NS294V	32 38 21 23 16 34 23	36 29 53 39 55 46 56	3 5 4 3 7 3 3	3955754	7 13 5 7 8 6 4	12 4 8 21 0 3 4	0 0 0 0 0 0	6 2 3 3 0 2 6	15 3 4 3 6 5	8 7 21 38 30 19 25	4 4 2 3 2 4	2 1 1 1 1 1 1	4 5 2 2 3 2 3 3 2 2	3 4 3 4 4 3 3	2 2 2 0 4 1	3 1 0 0 0 0
Sandy Rid	1ð1	2														
PS1 PS2 PS3 PS4 PS5 PS9 PS10 PS11 PS12 MF393 MF408 MF409 MF487	40 29 425 39 25 39 25 45 21 15 1 15 1	37 27 27 27 39 34 52 11 18 48 31 45	43224433236153	34655439574121	4 8 9 8 1 9 2 5 2 6 9 5 7 5 5 5 5 5	10 225 157 66 62 29 200 20	000000000000000000000000000000000000000	1 1 2 1 0 4 1 0 2 0 13 23	8 3 5 24 2 5 3 5 3 4 1 1 3 5	1 15 32 5 76 14 29 5 76 120 39	444-1443-144 3443-144-144-144 32	222122112-1332	4444454455-35444 334255-35444 21	4 4 4 3 4 4 1 4 4 - 3 3 3 3 3 3	2 2 1 2 4 4 1 3 2 - 1 3 2 2 2	0 0 2 0 2 0 2 - 1 1 0 0
Moray Fin	rth	dis	tri	<u>ct</u>												
MF327 MF328 MF388 MF391 MF395 MF790 MF791	29 21 19 27 12 12 14	34 51 42 35 67 28 43	8 7 8 10 5 2 3	5 2 7 2 1	9 9 5 2 3 1 2	14 10 19 11 8 30 18	000000000000000000000000000000000000000	1 4 7 25 19	4 5 5 4 5 3 2	7 17 34 32 21 15 47	3433333322	1 1 1 1 1 1	2 3 3 2 3 1 1	3 3 1 3 1 1	2 2 1 3 0 2 2	1 2 2 4 2 2 4

.

West Shetland district

.

•

<u>No</u> .	<u>Ba</u>	Bi	Ē	G	<u>s</u>	Br	<u>c</u>	F	Uk	<u>NC</u>	gs	<u>so</u>	<u>rd</u>	<u>p1</u>	<u>st</u>	bo
60-02/22	19 8 3 7 20 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 9 6 7 10 6 7 22 7 10 6 5 22 2 7 10 6 5 22 8 4 3 0 4 8 4 8 4 3 0 4 8 4 8 4 3 0 4 8 4 3 0 4 8 4 3 0 4 8 4 3 0 4 8 4 3 10 4 8 4 8 10 4 10 10 10 10 10 10 10 10 10 10	35555464443344 5248535433 34552465 617753512267997088832597455249820	3795326048+973289685649564956982 21 1121 1121 11	2116,366244134201111354622222133	3 1 2 3 1 4 3 1 2 2 3 6 1 3 6 1 3 9 1 9 6 0 6 8 4 2 7 9 1 9 6 0 6 8 4 2 7 9	7 18 9 4 9 2 10 13 1 6 3 9 9 3 3 2 4 8 4 4 5 4 4 2 1	000000000000000000000000000000000000000	3784321513034215787375211211032102	12 76 8 10 6 3 7 6 11 4 2 4 2 4 3 3 3 5 0 1 6 3 3 2 1 2 1 0	809455187146068395960822468804804 3114606839596082246880480 3114606839596082246880480		1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 3 4 4 1 <td>1333133333111131113113113111311</td> <td>3122020321033334223442211233043</td> <td>2002240423313432234234222234043</td>	1333133333111131113113113111311	3122020321033334223442211233043	2002240423313432234234222234043
Shetland	- (Dut	Sk€	erri	es	dis	tri	ct								
60-02/100 " /101 " /105 " /106 " /109 " /110 " /111 " /113 " /116 " /117 " /118	0 6 12 18 7 8 30 13 5 14	42 50 43 65 57 49 57 44 60 39	16 18 19 3 7 3 8 1 23 11 8	8 3 3 3 3 1 1 4 3 4	12 5 1 10 1 33 1 14 25	11 87 03 1 30 6 4 6	000000000000000000000000000000000000000	4 25 21 20 9 16 5	1 2 2 0 1 0 1 0 2 2 2 1	8 12 23 9 24 11 31 25 8 31 1	4 3 4 3 4 3 4 3 2 2 3	1 2 1 1 1 1 2 1	43-103 2000 1000 1000 1000 1000 1000 1000 1	3 1 1 3 1 3 1 4 3	3 2 3 1 1 4 0 3 1 2 3	22303241303
Yell Sou	und	dis	stri	<u>.ct</u>												
60-02/76 " /78 " /79 " /80 " /81 " /82 " /85 " /85 " /94 " /96	4 7 2 4 5 4 5 2 9 7	57 48 49 57 50 60 74 54 61	11 16 16 11 13 16 10 18 14	1 5 4 2 2 1 0 3 2	22 8 3 4 5 24 4 4 4 2	2 8 17 12 6 4 7 6 4 7	000000000000000000000000000000000000000	3 9 12 13 4 7 4 7 7	1 1 1 2 2 2 5 1	19 36 42 58 27 18 36 14 7 3	3 3 3 3 3 3 3 3 3 4 3 4 3 4 3 4 3	1 1 2 1 1 1 1 1	2222 2222 222 31122 31122 31122	3 3 1 1 1 1 1 1	2 2 2 2 2 3 0 0 2 1	2 4 1 0 3 4 4 4 3 4

•

