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Abstract

Wind turbine controllers require dynamic information about the turbine for design

and operation purposes. These dynamics are currently determined from simulation

models during the turbine design stages. Hence, the dynamics for a given operational

turbine will not be identical to those assumed by the controller due to manufacturing

and construction variations. Furthermore, turbine dynamics are known to change over

time due to environmental effects such as blade erosion. There are currently no known

methods by which such information can be determined for an operational turbine. This

thesis presents such a method.

The determination of sought dynamic information is formulated as a regression problem

involving data available to a wind turbine controller. The nature of the dynamics

identification problem is shown to necessitate a regression method which is able to

process data in batches, updating predictions as new data becomes available.

Gaussian process machine learning is chosen as the regression approach best suited for

application in this problem. However, a review of existing batched Gaussian process

theory results in the identification of gaps in the current knowledge base which render

existing methods unsuitable. A new approach to batched Gaussian process regression

is therefore developed, Sufficient-Subset Gaussian process iteration, which addresses

the questions for which existing theories come up short. In the process of developing

this new method fundamental contributions have been made to the areas of Gaussian

process polynomial regression and sparse Gaussian process approximation theory.

Sufficient-Subset Gaussian process iteration is applied to both simulated and real tur-
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Chapter 0. Abstract

bine data and shown to be able to identify the sought dynamics to within a 3% error

threshold. Additionally, a related regression formulation corresponding to maximum

efficiency tracking is shown to present a potential method for turbine monitoring and

fault detection.
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Chapter 1

Introduction

This thesis details the development of a technique for the identification of wind turbine

dynamic information relevant to control. The development of such a technique has

required fundamental questions concerning batched approaches to Gaussian process

machine learning to be addressed, and the development of a novel approach suitable

for application in the turbine dynamics problem.

This chapter will briefly summarise the contents of this thesis, as well as outlining

its principal contributions and publications to date.

1.1 Thesis Overview

Chapter 1, provides a brief overview of the thesis and its contributions to knowledge.

In Chapter 2, relevant background information is given concerning wind energy, wind

turbines and their control in various operating regions. The aerodynamic information

relevant to turbine control is shown to be related to data available to the controller,

and this relationship takes the form of two regression equations, loosely relating to

‘maximum efficiency’ and ‘above rated’ operation respectively. The characteristics of

the available data, and requirements of potential regression approaches are discussed.

A key requirement being the ability to handle batched data. This chapter concludes

by introducing the turbine simulation model and real turbine data used in this thesis.
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Chapter 3 gives an overview of the machine learning regression approach chosen for

use in the dynamics identification problem, Gaussian process machine learning. The

reasons for choosing this technique are also outlined.

Chapter 4 reviews existing approaches to Gaussian process machine learning for batched

data. It is shown that existing theory fails to answer some fundamental questions

concerning Gaussian process models in the batched setting. The answers to these

questions are required in order to fulfill the learning criteria outlined in Chapter 2 and,

hence, it is concluded that a new approach (and associated theory) is necessary. The

chapter therefore concludes by outlining two new possible approaches for further study,

these being combined-posteriors and posterior-to-prior iteration.

Chapter 5 consist of a comprehensive study of Gaussian process polynomial regression.

This is due to one of the turbine dynamics regression equations being polynomial in

form, while also representing a key case in which to understand batched approaches to

GPs. It is shown that, in the polynomial case, Gaussian process machine learning can

be formulated incredibly efficiently, and with linear scaling. A full maximum-likelihood

approach to polynomial GPs is developed which scales linearly and includes derivative

and Hessian information. The developed approach is then compared with Least-Squares

regression both theoretically and experimentally. Finally the two proposed approaches

to batched regression, from Chapter 4, are applied in the polynomial case. Combined-

posteriors is shown to exhibit anomalous behaviour and so is abandoned as a possible

method. The posterior-to-prior approach on the other hand is shown to be equivalent to

standard GP regression, but, with linear scaling and without increasing computational

or memory requirements as the number of processed datapoints increases.

Chapter 6 extends to the general case the lessons learned from posterior-to-prior it-

eration for polynomials. This is done through a principled consideration of covariance

matrix structure. The developed theory is shown to lead to a new approach to batched

Gaussian processes, Sufficient-Subset Gaussian process (SSGP) iteration. SSGPs are

developed into a practical regression method. Their implementation and theoretical
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properties are explored and tested with respect to accuracy and computational effi-

ciency, SSGPs are shown to scale linearly in the number of datapoints. Comparisons

between SSGPs, standard Gaussian process regression and existing batched approaches

are then performed. It is shown that SSGP theory provides comprehensive answers to

the questions posed in Chapter 4 for which existing theory comes up short. Finally,

it is shown that there is a lot of potential for SSGP theory to be further developed

beyond the point reached in the current work.

Chapter 7 applies the developed regression approaches to the turbine dynamics iden-

tification problem. In each case this is done for both simulated and measured data.

First, the correct processing and conditioning of measured data is discussed. Then

the regression problem for ‘maximum efficiency’ operation is considered. This is the

polynomial regression case, and so the developed approach of Chapter 5 is applied and

its performance compared to that of Least Squares regression. The Gaussian process

approach is shown to be superior. The ‘above rated’ regression problem is considered

next. In order to develop a general SSGP prior for wind turbine dynamic tables, theory

for the handling of functions with varying lengthscales in the Gaussian process context

is developed. Issues related to the distribution of available data across the operating

envelope are shown to lead to a necessary reformulation of the regression equation in

the ‘above rated’ region. An SSGP prior is constructed for the reformulated problem

and SSGP regression tested on simulated and real data.

Chapter 8 summarises the results of the thesis, draws conclusions and discusses future

work with respect to both SSGP theory and wind turbine dynamics identification.

Following this are the appendices and bibliography.

1.2 Contributions to Knowledge

The main contributions to knowledge of this thesis are:

• The development of a Gaussian process polynomial regression implementation
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which scales linearly in the number of measured datapoints and includes both

derivative and Hessian information for hyperparameter learning1.

• The development of a new approach to Gaussian process machine learning for

batched data, Sufficient-Subset Gaussian process iteration, the underlying theory

of which provides answers to some fundamental questions concerning such models.

• An iterative regression procedure for learning a wind turbine’s aerodynamic sen-

sitivity function from data available to a wind turbine controller, allowing for

predictions to be updated in time as new data becomes available.

1.3 Publications

E. Hart, W. E. Leithead and J. Feuchtwang, “Wind Turbine Cp,max and Drivetrain-

Losses Estimation using Gaussian Process Machine Learning”, Journal of Physics:

Conf. Series 1037 (2018) 032024.

E. Hart and W. E. Leithead, “Sufficient-Subset Gaussian Process Iterative Regression”,

Submitted to the Journal of Machine Learning Research - currently under revision.

1As will be discussed in the relevant section, some of the necessary theory for implementing such
a method has been known prior to this work, however, to the best of the author’s knowledge a full
implementation as presented here has never been documented before now.
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Chapter 2

Background, Motivation and

Problem Statement

The world is facing an existential crisis due to global warming, caused by human car-

bon emissions. The generation of electricity is responsible for a large percentage of

these emissions due to our reliance on fossil fuels such as coal and gas. The UK and

other countries around the world have committed to reducing their carbon emissions

in order to try and prevent further rises in global average temperatures and so avoid

the catastrophic effects which rising global temperatures would have on the world and

its ecosystems.

The required reductions in carbon emissions mean that electrical energy production

will need to eventually be sourced almost entirely from renewable resources, and the

sooner the better. Wind energy, along with solar, tidal and wave are some of the

renewable energy technologies undergoing the most research currently. Wind and solar

are far ahead of the rest in terms of development and uptake.

As of December 2017 there was 169 GW of installed wind energy capacity in the

EU [3]. 2017 was a record year for both onshore and offshore installations, with the

EU adding 12,484 MW onshore and 3,154 MW offshore [3]. Furthermore, wind energy

now covers over 11.6% of the EU’s electricity demand [3]. Therefore, wind energy is

playing a significant role in efforts to cut carbon emissions and current trends suggest

it will continue playing a significant role in the future.
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With limited space and popularity for onshore wind farms, the offshore sector is

going to grow considerably in the near future. This means larger turbines being placed

further away from maintenance and repair capabilities and in more hostile environ-

ments. Therefore, turbines must become more reliable and have greater load tolerances

along with a lower cost of energy [4]. The development of wind energy technology is

therefore crucial to ensuring the success of this industry and the associated reduction

in carbon emissions.

Sections 2.1-2.4 give an overview of wind turbine technology and theory relevant to

this work. Section 2.5 then introduces the key motivating thesis question. In Section

2.6 it is shown that this question can be formulated as a regression problem. Learning

requirements and data characteristics with respect to the developed regression equations

are then discussed.

2.1 Wind Turbines

Wind energy had been used for hundreds of years in the form of windmills for milling

grain [5]. Modern wind turbines which convert wind energy to electricity look similar

enough to windmills that they are recognisably using the same principles to transfer

kinetic energy in the wind into rotational energy in the rotor and shaft. Wind turbine

technology has now standardised and nowadays wind turbines tend to be three bladed,

horizontal axis machines as in Figure 2.1.

2.1.1 Types of Wind Turbines

Various modes of wind turbine operation have been developed and implemented over

the years; these include methods for limiting the maximum power and loads in high

wind speeds, as well as for improving aerodynamic efficiencies. These methods are

combinations of Variable/Constant speed and Pitch/Stall regulation. Constant speed

wind turbines are connected directly to the grid and therefore operate at synchronous

speed with very little variation; Variable speed turbines are isolated from the grid by

power converters, allowing for variable speed operation of the wind turbine. Variable

speed operation allows for greater aerodynamic efficiency across the operating envelope
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Figure 2.1: Wind turbine

of the wind turbine, as will be discussed in Section 2.4. Pitch and Stall regulation

of a wind turbine are techniques for limiting the maximum power (and hence loads)

generated by the wind turbine in high wind speeds. Stall regulation requires that the

wind turbine blades are designed to enter stall (thus losing aerodynamic efficiency and

preventing load/power increases) at the wind speed where power is to be limited. Stall

regulation relies heavily on accurate design, if design/manufacturing errors are present

they cannot be fixed retrospectively. Stall regulation does however benefit from being

entirely passive, not requiring the input of other systems in the turbine. Pitch regulation

limits power and loads via rotation of the blades at their base in order to alter the angle

of attack for the blades. This requires motorized pitch actuators which can be a source

of downtime if they fail. Variable Speed Pitch Regulated (VSPR) turbines have greater

control capabilities and efficiencies compared to the other possible choices and so this

has become the dominant wind turbine type. This work will therefore be considering

VSPR wind turbines.

2.1.2 VSPR Wind Turbines

The equation describing the power extracted from the wind by a VSPR wind turbine

is,

P =
1

2
ρAv3CP , (2.1)
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where ρ is the density of air, A is the rotor swept area, v is the rotor effective wind

speed and CP is the power coefficient [6]. The power coefficient, CP , gives the fraction

of the power in the wind that is converted to mechanical work by the turbine. The

value of CP depends on the tip speed ratio, λ, and the blade pitch angle, β. The tip

speed ratio is defined as being the ratio of the blade tip speed to the incoming wind

speed;

λ =
ωrR

v
,

with ωr the rotor rotational speed and R the rotor radius. We therefore have CP =

CP (λ, β), and this dependence is due to the fact that aerodynamically the lift and drag

for each wind turbine blade section will depend on the apparent wind speed, being

the vector sum of the incoming wind velocity and the blade velocity, seen by that

section. It is λ and β which determine the apparent wind speed and aerodynamic

response, and hence CP . Generally speaking the pitch angle is only ever changed in

above rated operation, once the turbine has reached its maximum or rated power, below

this it remains fixed at the value for which the highest efficiency of the turbine can be

obtained; therefore, the dependence on β for CP is often dropped when considering

below rated operation and instead we simply have CP = CP (λ). Figure 2.2 shows

the CP − λ curve for the Supergen Exemplar 5MW wind turbine model. In the figure

λ
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Figure 2.2: Cp-λ curve.

the maximum value of CP is 0.4885, occurring at a tip speed ratio of 7.9. The tip
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speed ratio at which CPmax occurs will be referred to as λmax, as shown in the figure.

Therefore, for this particular turbine λmax = 7.9. There is a theoretical maximum CP

value of 0.593 (known as the Betz limit), however, in practice wind turbine CP values

tend to fall quite far below this value [6].

2.2 The Power Curve

A wind turbine is meant to operate according to its design power curve. The wind

turbine’s power curve relates the wind speed to the power coming out of the wind

turbine. The power curve for the Supergen Exemplar 5MW wind turbine is shown

in Figure 2.3; on this power curve can be seen a section where the power increases

with wind speed as in Equation 2.1, with CP = CPmax throughout, followed by a

short transitional section from about 11.5 − 12 m/s, before a final flat section where

the power is kept at its rated value. The considerations from which this power curve
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Figure 2.3: Power curve.

are designed for a given wind turbine include things such as the generator size, cost,

efficiency at various wind speeds and the wind resource available in the part of the

world the wind turbine will be operated. More importantly for the current work is

how, having designed a power curve, can the VSPR wind turbine be made to follow it?

This is discussed and expanded on in later sections.
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2.3 Effective Wind Speed

Thus far the terms wind speed and effective wind speed have been used interchangeably,

however, there are important distinctions to be made here and so these terms will now

be put on firmer footing. Intuitively, when the wind is blowing we would refer to the

wind speed as being the speed measured at a certain point by a cup anemometer or

similar device. Since the wind is continuous, turbulent and spatially non-uniform, this

type of wind speed should in fact be referred to as a point wind speed for obvious

reasons. The size of a wind turbine rotor means that it is simultaneously interacting

with a very large cross section of the wind field; hence point wind speeds will not be

particularly meaningful. When referring to effective wind speed, or just wind speed, for

a wind turbine we are loosely talking about an average wind speed across the rotor; for

example considering the power curve in Figure 2.3, a turbulent wind field is considered

to have an effective wind speed of 9 m/s if the amount of power it produces from

the turbine is the same as for a uniform wind field with point wind speeds of 9 m/s

everywhere.

2.4 Wind Turbine Operation and Control

Many industrial processes must be carefully controlled in order to ensure the process

is proceeding as required, and within operational limits. Wind energy is a particularly

challenging example of this. In order to connect to the grid, a wind farm must satisfy

a long list of safety, performance and power quality requirements. On top of this

the turbines themselves are huge financial assets exposed to very extreme conditions

and loading. It is imperative that they are kept within their operational limits and

shut down very quickly if something goes wrong. Apart from control for the sake of

protecting the assets themselves, wind turbine operation plays a very important role in

ensuring that the wind turbines are operated with maximum efficiency and behave as

dictated by their design power curve; high efficiencies are important since the financial

viability of this technology is key to its uptake and further development.
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2.4.1 Wind Turbine Operating Regions

The design power curve does not tell the full story when it comes to a wind turbine’s

designed behaviour. In VSPR wind turbine operation there are in fact six distinct

regions, determined by the incoming wind speed, all with different desired behaviours.

These six regions are as follows:

1. Below cut-in. In this region the wind speeds are too low to allow for useful

generation of power. The wind turbine is not operated here.

2. First constant speed region. In this region the wind speeds are high enough

to allow for power generation but only at a rotational speed which is inefficient

for the generator due to part loading. In this region the rotational speed is kept

constant, as the wind speed increases the turbine’s power output increases along

with the aerodynamic efficiency which approaches CPmax for the given constant

rotational speed.

3. Variable speed CPmax tracking region. In this region the control system’s

objective is to operate the wind turbine at maximum aerodynamic efficiency,

i.e. to keep the power coefficient at CPmax. This is achieved by varying rotor

rotational speed in order to ensure that λ remains at λmax as the wind speed

fluctuates. The rotor speed is controlled by setting the generator reaction torque.

4. Second constant speed region. Before rated power is reached, while operating

at maximum aerodynamic efficiency, a design point is chosen after which rota-

tional speed is kept constant. As the wind speed increases further the generated

power approaches rated level, while simultaneously the CP value falls away from

its maximum. The reason for leaving maximum efficiency operation before reach-

ing rated power is mainly due to there being a maximum allowed rotational speed

for the generator. From a pitch control viewpoint it is also important to consider

that close to λ = λmax a given change in pitch angle results in a much smaller

change in the aerodynamic efficiency as compared to when λ is far away from its

optimal value; hence, for power regulation at rated a great deal more pitching
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would be required if maximum efficiency had been maintained; this would result

in poorer control and the accelerated wearing out of pitch actuators.

5. Above rated power regulation. Once rated power is reached, pitch control

is used to prevent the power and loads from increasing above the set maximum

(rated) level. The rotational speed remains the same as that of the second con-

stant speed region.

6. Above cut-out. In this region the wind speeds are too high for the wind turbine

to be operated within load design limits, the wind turbine is not operated here.

On entering this region the turbine is shut down by fully pitching the blades in

order to prevent torque generation and energy extraction.

The equation for the torque generated by a wind turbine’s rotor as a function of rotor

speed, effective wind speed and pitch angle is;

Qaer(β, ωr, v) =
P

ωr

=
1
2ρAv

3CP (λ, β)

ωr
(2.2)

=
1
2ρπR

3v3CP (λ, β)

ωrR

=
1

2
ρπR3v2CQ(λ, β). (2.3)

Where CQ is the torque coefficient which is defined as,

CQ(λ, β) :=
CP (λ, β)

λ
. (2.4)

These equations allow for a wind turbine’s Torque-Speed diagram to be plotted, as in

Figure 2.41, and on such a diagram the above operating regions can be clearly depicted.

The Torque-Speed diagram relates the wind turbine’s aerodynamic torque, Qaer, to its

rotational speed for different values of effective wind speed. On this diagram can be

plotted the turbine’s operating strategy along with other important curves such as the

1This Torque-Speed diagram is that of the Supergen Exemplar 5MW wind turbine.
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rated power curve, maximum aerodynamic efficiency curve and stall front2. Figure 2.5

shows the same diagram with the above operating regions 1-5 highlighted. The filled

circle as the control strategy hits the rated power curve is the point at which region 5

is entered and the use of pitch control is initiated.
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Figure 2.4: Torque-speed diagram for the Supergen Exemplar 5MW wind turbine
model. The design operating strategy is also plotted.

2.4.2 Wind Turbine Control

The CPmax Tracking Region

While CPmax tracking, the generator rotational speed is measured and the generator

reaction torque adjusted in order to keep the turbine operating on the design power

curve of Figure 2.3 or equivalently on the maximum efficiency curve of Figure 2.4.

Assuming that the wind turbine CP (or equivalently CQ) tables are known, the required

generator torque during operations can be determined from the turbine’s rotational

speed as follows: consider the equation for generator torque obtained from the equation

2These are the points at which the wind turbine blades will start transitioning to stall and for
non-stall regulated turbines are to be avoided for structural health reasons.
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Figure 2.5: Torque-speed diagram of Figure 2.4 with operating regions 1-5 labelled.

for aerodynamic torque (Equation 2.2) while CP = CPmax,

Qgen =
Qaer
N

=
1
2ρAv

3CPmax

Nωr

=

(
1

2N
ρAR3λ−3

maxCPmax

)
ω2
r

=

(
1

2N3
ρAR3λ−3

maxCPmax

)
ω2
gen,

with N the turbine gearbox ratio. Hence, during CPmax operation, the required gener-

ator reaction torque is proportional to the generator speed squared,

Qgen = aω2
gen

where the constant of proportionality is,

a =
1

2N3
ρAR3λ−3

maxCPmax.

The CPmax tracking control strategy can therefore be implemented with the control

loop shown in Figure 2.6. In practice the value of the constant a is adjusted slightly
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from that shown here in order to account for the effects of drivetrain losses.

Figure 2.6: Below rated control diagram.

Figures 2.7 and 2.8 show Torque-Speed diagram trajectories while CPmax tracking.

These trajectories were generated using the Supergen Exemplar 5MW wind turbine

model. The trajectories are from 16 minutes of operation in wind fields of 5% and 15%

turbulence intensities respectively.
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Figure 2.7: CPmax tracking trajectory on Torque-Speed diagram with 5% turbulence
intensity.

It can be seen from these figures that the ability of the controller to maintain operation

at CPmax is dependent on the turbulence intensity of the incident wind field, where

turbulence intensity is defined to be the ratio of the wind speed’s standard deviation

to its mean value. As would be expected intuitively, higher turbulence levels lead

to larger excursions from the maximum aerodynamic efficiency curve. Although the

trajectories leave that of CPmax operation, high performance levels are still obtained
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as demonstrated by the aerodynamic efficiencies remaining within 99.5% and 98% of

CPmax in Figures 2.7 and 2.8 for turbulence levels of 5% and 15% respectively.
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Figure 2.8: CPmax tracking trajectory on Torque-Speed diagram with 15% turbulence
intensity.

Separability of Wind Turbine Aerodynamics

Before discussing above rated control of wind turbines, it is necessary to digress briefly

and introduce an important property of wind turbine dynamics, that of aerodynamic

separability.

There is no practical way to measure the effective wind speed seen by an operational

wind turbine and although there is an anemometer present on the nacelle, this is only

a point measurement and so is not going to be able to tell us what is happening across

the whole rotor. This is a potential problem for above rated pitch control since the

turbine dynamics depend on the effective wind speed as shown in Figure 2.9.

However, as shown in [1], it transpires that the aerodynamic torque term is in fact

separable in the sense that it can be written as the difference of two functions;

Qaer(β, ωr, v) = h(β, ωr)− g(v), (2.5)
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Figure 2.9: Above rated dynamics.

with the first function dependent only on the pitch angle and rotational speed, and

the second only dependent on the effective wind speed. Therefore, the above rated

dynamics as depicted in Figure 2.9 can be re-expressed as shown in Figure 2.10.

Figure 2.10: Above rated dynamics after applying separability.

The wind speed related function g(v) can be well approximated as a linear function,

as shown in [1] and [7]. Characteristic examples of the h and g functions are shown in

Figures 2.11 and 2.12 respectively. As will be discussed, separability plays a key role

in above rated wind turbine control.

Above Rated Power Regulation

Above rated wind turbine aerodynamics are highly non-linear and hence purely lin-

ear control techniques will provide poor performance. The general non-linear control

approach taken for wind turbines is gain-scheduling, this technique involves designing

linear controllers at some specific points of wind turbine operation and then generating

a continuous family of controllers by interpolating between them based on a scheduling

variable, usually pitch angle [8]. In practise this is achieved by counteracting changes in

18



Chapter 2. Background, Motivation and Problem Statement

Figure 2.11: Typical example of the g separability function [1].

Figure 2.12: Typical examples of the h separability function at various pitch angles,
taken from [1].

aerodynamic sensitivity3, ∂Q
∂β , at different operating points by including the reciprocal

term,
(
∂Q
∂β

)−1
, in the controller [8]. Thus the total gain of the system becomes constant

and linear controller design techniques can be used from this point onwards. Figure 2.13

shows the sensitivity function for the Supergen Exemplar 5MW wind turbine model

3This being the main source of non-linearity since the aerodynamic sensitivities change continuously
with wind speed, resulting in a continusouly changing gain in the above rated wind turbine dynamics.
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along with the line of best fit. In order to ensure smooth interpolation between linear

controllers, it is the reciprocal of this line of best fit which is used in the controller to

counteract non-linearities.
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Figure 2.13: Aerodynamic sensitivity function for the Supergen Exemplar 5MW wind
turbine model. The straight line best fit is also shown.

Note that implicitly in this gain-scheduling approach we are assuming that the

impact of wind speed variations on the control problem is no more than an additive

disturbance which can be attenuated with the correct controller design. This will of

course be true close to the locus of equilibrium operating points, this being the set of

values {(β, v)} at which we obtain rated power4, as follows from a Taylor expansion

along the locus. However, the size of the region where this approximation holds well

enough for this approach to be valid is not, based on series expansion theory alone,

guaranteed. Research and testing using the above gain-scheduling approach found that,

with the correct control structure, the additive relationship assumption relating wind

speed to the overall aerodynamics appeared to hold over much of the turbine’s operating

envelope, including away from equilibrium points. It was this observation which first

motivated the study of wind turbine separability, discussed in the previous section.

Rather than just a local theory of separation, it has been shown that wind turbines

4It is this set of points along which the controller is attempting to make the turbine traverse during
above rated operation, where the control task is that of maintaining rated power.
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exhibit a global separability property which holds over almost the whole of a turbine’s

safe operating range [1,7]. Separability theory for wind turbines therefore justifies why

gain-scheduling on pitch alone is an effective control approach. More importantly, it

gives what is effectively a global linearisation of wind turbine dynamics, this being the

correct realisation for controller design and implementation [9].

2.4.3 Additional Controller Requirements and Advanced Control Tech-

niques

In addition to ensuring that a wind turbine follows its design operating trajectory,

wind turbine controllers are increasingly required to perform other roles relating to the

extension of the turbine’s lifetime and the flexibility of its operation. Some examples

of these requirements are:

• Load reduction [10]

• Damping of system resonances [10,11]

• Provision of electrical grid frequency support [12,13]

• Ensuring stable operation during grid disturbances [14].

In order to be able to accomplish the standard controller requirements, as well as these

additional ones, large numbers of new and innovative control techniques have been

developed, these include:

• The ‘Power Adjusting Controller’ (PAC) [15]

• ‘Coordinated Control’ of both pitch and generator torque in above rated condi-

tions [16]

• Individual Pitch Control and Individual Blade Control (IPC and IBC respec-

tively) [17,18]

• Effective wind speed estimation techniques [19]

• Control for islanded operation during grid disturbances [14].
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2.5 The Value of Aerodynamic Information

In all of the control methods discussed so far, including both the standard and ad-

vanced control techniques, wind turbine aerodynamic information in the form of CP

(or equivalently CQ) tables is required. The application of these control techniques

therefore requires access to a wind turbine’s aerodynamic information. This situation

is problematic for two reasons; the first being that the CP tables used to design con-

trollers are generated using a computational model of the turbine design and so are in

fact approximations, since no real-world turbine will identically match its design model.

The second issue arises due to the reluctance of manufacturers to share such commer-

cially sensitive information, a problem which becomes even less likely to be resolved

when considering the retrofitting of new controllers to existing and potentially out of

warranty turbines for the purposes of re-powering or lifetime extension. Furthermore,

it has been well documented that a wind turbine’s aerodynamic characteristics can

change dramatically over its lifetime due to environmental effects. For example, rain

and hail impacts can cause significant erosion to the blade leading edge, while ultra-

violet light exposure can seriously degrade turbine blade coatings, leading to further

possible surface damage [20,21]. It is therefore the case that a turbine’s aerodynamics

are changing steadily over its 20+ years of operational lifetime and so even if the design

aerodynamic’s approximate well those of the real-world turbine initially, this is unlikely

to remain so across the turbine’s lifetime.

For these reasons it would be highly desirable to be able to learn information about a

wind turbine’s aerodynamics from its operational data. This would allow for controllers

to be implemented using the correct aerodynamic information, and then updated as

those dynamics change in time; this would both increase the effectiveness of these

control techniques, while also widening their applicability to cases where no aerody-

namic information is known. Furthermore, the ability to track changing aerodynamic

efficiencies across a wind turbine’s lifetime would allow for a deeper understanding

of performance degradation which could prove useful in operation and maintenance

(O&M) and lifetime extension decision making processes.

To the best of the author’s knowledge, no such technique currently exists. This
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thesis therefore seeks to develop such a technique by looking to answer the following

question:

Can operational data available to a wind turbine controller be used in order to learn

turbine CP (equivalently CQ) table information to within an accuracy which is useful

for control applications?

Since the above question is very expansive, the answer being dependent on the intended

control application, we will define a more specific scope for the current thesis which

begins to tackle this problem. We therefore seek to determine:

Key Motivating Question: Can operational data available to a wind turbine

controller be used in order to learn a turbine’s CP (equivalently CQ) tables such that

the aerodynamic sensitivity function ∂Q
∂β can be calculated to within an accuracy of 3%?

An affirmative answer to the above question could lead to improved gain-scheduling for

wind turbines, tailored to individual turbines and updated as turbine dynamics change

in time. The accuracy level of 3% is experiential and chosen to reflect the accepted level

of confidence required in the wind industry for a technique to be considered sound.

Note that while the scope of the above question might appear narrow, it has tran-

spired that in the course of answering it, fundamental questions arise concerning the

applied machine learning technique, Gaussian process machine learning. This has led

to significant advances being made concerning the applicability and usability of these

methods in the course of this work.

2.6 Deriving the Regression Equations

In order to begin considering approaches to answering the question posed at the end

of the previous section we start by looking at the data available to a wind turbine

controller and how that relates to the information we are hoping to extract, i.e. the

turbine aerodynamics. In this section it is shown that the extraction of this desired

information can be formed as a regression problem.
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2.6.1 Dynamics for Operation at Rated Power and in Second Con-

stant Speed Region

For a wind turbine operating at above rated wind speeds, or in the second constant

speed region, the dynamics are approximately;

Qaer = NQ̂g + J ˙̂ωr + L(ω̂r). (2.6)

The losses function L accounts for drivetrain torque losses; J is rotor inertia, Qaer

and Qg aerodynamic and generator torques respectively, ωr is generator speed and N

the gearbox ratio (the caret symbol is being used to indicate measured values, e.g. ω̂r

denotes measured rotor speed). We can also express aerodynamic torque in terms of

the wind turbine’s CQ values and its operating point;

Qaer = Qaer(β, ωr, v) =
1

2
ρARv2CQ(λ, β), (2.7)

as shown in Equation 2.3. The nacelle mounted anemometer measurement of wind

speed, V̂ , can be thought of as the true effective wind speed corrupted by some form

of noise, ζv;

V̂ = v + ζv. (2.8)

Given measurements, β̂ and ω̂r of β and ωr respectively, we can effectively assume these

measurements to be non-noisy since any small noise quantities due to measurement

errors can be readily filtered out. Applying separability of turbine dynamics it is then

possible to re-express Equation 2.7 as follows;

Qaer = Qaer(β̂, ω̂r, v)

= h(β̂, ω̂r)− g(v)

= h(β̂, ω̂r)− g(V̂ ) + [g(V̂ )− g(v)]

= Qaer(β̂, ω̂r, V̂ ) + [g(V̂ )− g(v)]

=
1

2
ρARV̂ 2CQ(λ̂, β̂) + [g(V̂ )− g(v)] (2.9)
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where λ̂ = (ω̂rR)/V̂ is the measured value of tip-speed ratio. The above formulation

shows that we can express the aerodynamic torque at operating point (β̂, ω̂r, v) as

the aerodynamic torque at operating point (β̂, ω̂r, V̂ ) corrupted by noise of the form

[g(V̂ )− g(v)] = [g(V̂ )− g(V̂ + ζv)]. Notice that since the separability function g is only

weakly nonlinear it follows, from ζv being a noise term, that the above term is scaled

noise of the same form.

Rearranging Equation 2.6 and dividing through by 1
2ρAR

3ω̂2
r we obtain;

Ĥ :=
NQ̂g + J ˙̂ωr

1
2ρAR

3ω̂2
r

(2.10)

= λ̂−2CQ(λ̂, β̂) + L∗(ω̂g) +
[g(V̂ )− g(v)]

1
2ρAR

3ω̂2
r

(2.11)

where L∗(ω̂r) = −L(ω̂r)/(
1
2ρAR

3ω̂2
r ). We thus have a quantity Ĥ which can be mea-

sured using data available to the turbine control system (Equation 2.10) and which

can also be expressed as the sum of two functions plus some form of noise5, denoted

η below, scaled by ω̂−2
r (Equation 2.11); So letting Θ1 = λ̂−2CQ(λ̂, β̂), our measured

data is of the form,

Ĥ = Θ1(λ̂, β̂) + L∗(ω̂r) + η(ω̂−1
r )2. (2.12)

Importantly, if we can identify the functions Θ1 and L∗, then from these we can directly

determine CQ and L.

2.6.2 Dynamics for Maximum Efficiency Tracking Region

In below rated operation, and when away from the constant speed operating states, the

wind turbine control system is attempting to track the maximum power curve of the

wind turbine. This corresponds to keeping the tip-speed ratio at λmax, the tip-speed

ratio which corresponds to CPmax, as discussed previously. No matter how sophisticated

the control system, there will always be some error when attempting to track CPmax,

5This noise being the wind speed noise scaled by the gradient of the (near) linear function g and
the constant denominator terms of Equation 2.11.
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with the true value of λ varying about λmax. Thus,

λ = λmax + ζλ, (2.13)

where ζλ is the error term. As in the previous section, Qaer is given by equation 2.6.

We also have that,

Qaer =
1

2
ρARv2CQ(λ)

=
1

2
ρARv2CP (λ)

λ
, (2.14)

allowing us to obtain;

Ĝ :=
NQ̂g + J ˙̂ωr

1
2ρAR

3ω̂2
r

(2.15)

= λ−3CP (λ) + L∗(ω̂r) (2.16)

≈ λ−3
maxCPmax + L∗(ω̂r) + δ. (2.17)

Where we have assumed ζλ is small enough to allow us to approximate the aerodynamic

term λ−3CP (λ) (via a first order Taylor expansion about λ = λmax) as being the

constant λ−3
maxCPmax plus an error term δ = mζλ with m = d

dλ

(
λ−3CP (λ)

) ∣∣∣∣
λ=λmax

. It

is further assumed that ζλ, and hence δ, is a noise term. In this case we let Θ2 =

λ−3
maxCPmax (the constant term from the Taylor expansion), and our measured data is

then of the form,

Ĝ = Θ2 + L∗(ω̂r) + δ. (2.18)

Identification of Θ2 and L∗ in this case allows for the losses, L, and the value of CPmax

to be estimated. We use the word estimated here since the below rated formulation

contains an explicit approximation in the form of a truncated Taylor expansion.

Drivetrain Losses

The torque losses, L(ωr), present in a wind turbine drivetrain are principally caused

by viscous and churning losses, gear friction and bearing friction [22]. These mecha-

26



Chapter 2. Background, Motivation and Problem Statement

nisms result in both a constant loss component and a component which increases with

rotational speed. It has been shown in the literature than these losses increase with

what is essentially linear behaviour with respect to rotational speed [23]. The driv-

etrain losses L(ωr) are therefore assumed to be a linear function of rotational speed.

Note that with a linear losses assumption, the BR regression equation (Equation 2.18)

becomes a quadratic polynomial regression equation in ω−1
r . This is fortuitous since

it will allow for possible regression approaches to first be understood in the simpler

context of polynomial regression before moving to the general case.

During the constant speed operation of the first regression case, while there will

still be some small fluctuations in rotor speed, there will generally not be enough

variation for the losses values L(ω̂r) to be determined. Instead the loss function will

effectively result in the subtraction of a constant from the aerodynamic term. This

leaves two possibilities. The first is for the losses function to be determined in the

maximum efficiency operating region, where the rotor speed is moving through its

entire range of values. The losses determined here could then be used to adjust results

in the constant speed case. The second possibility is that the loss function cannot be

accurately determined, resulting in vertically shifted torque predictions. This second

possibility, while suboptimal, is by no means intractable. This is due to the fact that

we are principally concerned with extracting derivative information, as discussed in the

formulation of the key thesis question in Section 2.5, for this application a constant

offset does not pose a problem since the derivatives will remain the same.

2.6.3 Data Characteristics and Learning Requirements

The application of regression techniques to the equations derived in the previous sec-

tions requires careful consideration of the characteristics of both the required data and

the noise present. First, it is important to note the stochastic nature of the wind;

wind speeds and turbulence intensities are hugely variable and, therefore, regression

data measured at different times will potentially come from operation in very different

atmospheric conditions and wind field structures. For the above rated (AR) regression

case this will, in the long term, require consideration of the noise term (which is depen-

27



Chapter 2. Background, Motivation and Problem Statement

dent on the difference between anemometer measurements and the true effective wind

speed) and whether it should be treated as stationary or not. Thus far a stationary

and Gaussian assumption has been applied to the noise for AR regression in order to

allow for the developments of the regression algorithm. The stationary part of this as-

sumption is not unreasonable given that wind fields have been shown to be effectively

stationary for periods of around 10 minutes [24, 25]. This does however necessitate

a batched regression approach to this problem (this being one which can perform re-

gression sequentially, updating predictions as new batches of data become available),

allowing for each 10 minutes of collected data to be processed as it becomes available

and without having to mix it with other batches that may have different statistical

properties. Batching will also be necessary in order to be able to keep updating the

predictions for turbine aerodynamics since new data will continue to be generated as

the turbine operates over its ≈25 year lifetime.
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Figure 2.14: Residuals which form the noise term in the BR regression equation. A
Gaussian pdf has been fitted to the data.

The measured data generated as above will also require a statistically robust method

in order to allow for accurate regression results. This is due to the presence of both out-

liers and noise distributions which are not strictly Gaussian in nature. As an example
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of this, Figure 2.14 shows residual values from simulations of the Supergen Exemplar

5MW turbine model during BR CPmax tracking. A Gaussian pdf has also been fitted.

It is clear in this figure that outliers are present and that while the Gaussian approxi-

mation seems reasonable, it is by no means perfect. This is demonstrated by the fact

that a Kolmogorov-Smirnov test carried out on this data returns a p value of around

0.005, thus rejecting the hypothesis that this data is Gaussian if a standard 5% cutoff

probability is applied.

The final requirement being placed on any developed regression technique is that

it must be fast and efficient enough to run within existing controllers, generally Pro-

grammable Logic Controllers (PLCs), for wind turbines. This is to allow for the tech-

nique to be applied without the need for additional processing power or data storage

requirements. This final restriction on possible methods is to ensure maximum eco-

nomic viability for such a technique; since its uptake would require implementation in

each wind turbine across a wind farm, the cost of such a method must be kept to a

bare minimum.

2.7 Prior Information

There is much existing information concerning wind turbine aerodynamics which could

potentially prove useful in this work. For example, a set of 6 CP tables for real wind

turbines has been made available to this project. Wind turbine manufacturers and wind

farm operators will likewise have access to further information. Given that this is all

prior information about wind turbine dynamics, ideally we would like to harness it in

order to inform or improve developed approaches to dynamics learning from measured

data. However, it is not initially clear exactly how this can or should be done. This

idea of the correct use of prior information will be returned to later in the thesis.

2.8 Wind Turbine Simulation Model

The Supergen Exemplar 5MW wind turbine model is used throughout this work to

produce measured data on which the proposed methods can be tested. The Exemplar
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Rated power 5 MW
Rotor diameter 126m
Blade number 3

Hub height 90m
Aerodynamic control Pitch
Fixed/Variable speed Variable

Generator type Fully rated conv.
Gain scheduled Yes

Controller PI with low pass filter

Table 2.1: Summary data for Supergen Exemplar 5MW wind turbine model.

turbine was developed as a demonstration model by the Supergen Wind Hub [26]

to give a benchmark model on which advanced control concepts can be tested. Full

specifications are given in [15]. Table 2.1 provides summary information for this turbine.

2.9 Real Turbine Data

Approximately 150 hours of 20Hz data, collected from an operational wind turbine,

has been made available to this project. The turbine is a 3 bladed VSPR wind turbine

with a rated power between 1.8 and 2.8MW.

30



Chapter 3

Gaussian Process Machine

Learning

The method selected for use in the wind turbine dynamics identification problem is

Gaussian Process machine learning. The reasons for choosing this method are discussed

in Section 3.10, after the relevant theory has been presented.

This chapter will provide a general overview of Gaussian process machine learning.

Sections 3.1-3.4 introduce Gaussian processes in the most general sense, before showing

how they can be used to model a prior over function classes. Regression is shown to

follow by conditioning this prior on measured data to generate a posterior GP model.

Sections 3.5-3.6 deal with practical aspects of implementing GP regression, including

the selection of a prior model via maximum likelihood. This is followed by a regres-

sion example. The reasons for choosing this learning method are then discussed, as

previously mentioned, in Section 3.10.

3.1 Gaussian Processes

Gaussian processes have been studied in the area of machine learning since the early

1990s, when they were found to be the limit of some infinite neural networks [27]. Their

attractiveness comes from the fact that Gaussian processes, although they can be seen

as a limiting case of neural networks, do not require the same type of ad hoc decisions
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to be made when implementing them. They have since been applied to numerous

problems with a lot of success, save the ever present issue of their O(n3) complexity

which tends to limit the number of measurements used to a few thousand [28].

We start by introducing Gaussian processes in the general sense.

Definition 1. A Gaussian process {ft}t∈T indexed by a set T is a family of real-

valued random variables, ft, all defined on the same probability space, with the property

that for any finite subset Z ⊂ T every finite linear combination
∑
z∈Z

czfz, with each

cz ∈ R, is either identically zero or has a univariate Gaussian distribution on R.

The above definition was chosen to be entirely unambiguous and generalises some

definitions of Gaussian processes since it includes the two possibilities that for any finite

subset Z ⊂ T, the vector FZ = [fz]z∈Z either has a multivariate Gaussian distribution

or the covariance matrix is singular. This more general definition becomes necessary

when considering GPs for polynomial regression, as will be discussed later.

A Gaussian process has a mean function,

µ : T→ R

µ(t) = E[ft],

and covariance function,

k : T×T→ R

k(t, t′) = E[(ft − µ(t))(ft′ − µ(t′))].

The mean and covariance function completely define all of the distributions of finite

subsets of the ft. Hence, the mean and covariance function together provide a complete

description of the GP.

3.2 Gaussian Process Priors over Function Classes

A Gaussian process can be used to model a prior distribution over a class of functions,

this follows by letting the indexing set T be the functional domain and, for all t ∈
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T, interpreting the random variables ft as representing possible function values for a

function evaluated at t. Thus the GP in this context defines a prior over a subset of the

functions {f | f : T → R}. Note that T may have any finite dimension, meaning the

modelled functions may be multivariate. The class of functions over which the prior

is defined is completely determined by the mean and covariance functions of the GP

in the following sense. For any finite subset Z ⊂ T, samples can be drawn from the

distribution over the function values at these points (determined by the GP prior) as

follows. Let Z = {z1, z2, . . . , zn}, then the random vector FZ = [fz1 , fz2 , . . . , fzn ]T has

mean,

µZ = [µ(z1), µ(z2), . . . , µ(zn)]T ,

and covariance matrix ΛZZ where,

[ΛXY ]ij := k(Xi, Yj).

Letting fi be a realisation of the random variable fzi the following expression gives a

sample drawn from the distribution of FZ as determined by the GP prior,

[f1, f2, . . . , fn]T = µZ + Λ
1/2
ZZ [ν1, ν2, . . . , νn]T ,

where the νi are realisations of independent Gaussian white noise random variables. In

fact, for every function in the class the values taken at given input points are of this

form for some vector of Gaussian white noise values. The above expression shows ex-

plicitly that the class of functions is completely determined by the mean and covariance

functions of the GP.

To be clear, there is an important distinction here between a GP and GP prior.

A GP is a stochastic process which may or may not be used to model functions or

relationships between inputs and outputs. A GP prior on the other hand is a GP

which has been specifically chosen or constructed such that it represents our prior

beliefs about the object under consideration.
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3.3 From Prior to Posterior

Assume we have a prior Gaussian process
(
{ft}t∈T, µ, k

)
with which we are modelling

our prior beliefs about some function. Further, assume that some new information,

D, becomes available. This new information can be used to define the posterior

Gaussian process
(
{ft}t∈T, µ∗, k∗

)
where,

µ∗ : T→ R

µ∗(t) = E[ft | D ],

and,

k∗ : T×T→ R

k∗(t, t′) = E[(ft − µ∗(t))(ft′ − µ∗(t′)) | D ].

Hence, the posterior GP is simply the prior GP conditioned on the new information

D; it can be thought of as a refined model for the function of interest in light of new

information.

3.4 Gaussian Process Regression

This section discusses the application of Gaussian Process models to function regression.

Assume we have a zero mean Gaussian process prior {ft}t∈T over a class of functions

from which a sample function, f̃ , has been drawn and at a finite number of points takes

values F = [f̃1, f̃2, . . . , f̃n]T corresponding to the members of Z = {z1, z2, . . . , zn}. We

also assume that the measurements of F have been corrupted by zero mean noise, thus,

our measured data is F̂ = F+ω. Where ω is drawn from N(0,B) where B is the noise

covariance matrix.

Consider the random vectors FZ = [fz1 , fz2 , . . . , fzn ]T (for which F is a realisation)

and F̂Z := FZ + Ω, with Ω ∼ N(0,B), (for which F̂ is a realisation) and FZ∗ cor-

responding to the finite subset Z∗ ⊂ T, the points at which we want to predict the
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value taken by f̃ . The mean and covariance functions in the GP prior determine the

following multivariate Gaussian for the combined random vector,

FZ∗

FZ

 ∼ N
0

0

 ,
ΛZ∗Z∗ ΛZ∗Z

ΛZZ∗ ΛZZ

 .

Now consider F̂Z. This random vector has zero mean and covariance matrix,

E
[
F̂ZF̂T

Z

]
= E[(FZ + Ω)(FZ

T + ΩT )] = ΛZZ + B.

Since FZ∗ and Ω are independent it then follows that,

FZ∗

F̂Z

 ∼ N
0

0

 ,
ΛZ∗Z∗ ΛZ∗Z

ΛZZ∗ ΛZZ + B

 .

The Gaussian conditional distribution (see Appendix A) can therefore be applied to

determine the distribution of the random vector FZ∗ conditioned on the noisy mea-

surements; (
FZ∗ | F̂Z = F̂

)
∼ N(µZ∗ ,ΣZ∗)

where,

µZ∗ = ΛZ∗Z (ΛZZ + B)−1 F̂ (3.1)

ΣZ∗ = ΛZ∗Z∗ − ΛZ∗Z (ΛZZ + B)−1 ΛZZ∗ . (3.2)

Importantly, the distribution of the FZ∗ conditioned on measurements is either Gaus-

sian or has a singular covariance matrix for any choice of Z∗ ⊂ T. We can therefore

define the posterior Gaussian process
(
{ft}t∈T, µ∗, k∗

)
by specifying that the mean

function µ∗ and covariance function k∗ are those defined by Equations 3.1 and 3.2

respectively. This posterior GP is a distribution over functions which describes the

probability of each function having been the one from which the noisy measurements,

F̂, were observed.

Now suppose we want to be able to predict the values taken by the function f̃ for
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arbitrary choices of z ∈ T , given the measurements F̂. The mean function defined by

µ∗ at each point is interpreted to be the best fit to the measured data. Two standard

deviations, as determined by k∗, are then interpreted to be confidence intervals for the

fit (which corresponds to 95% confidence intervals). It is this combination of fitted

function and confidence intervals which is referred to as Gaussian process regression.

3.5 Determining a GP Prior

For a practical regression problem the underlying function has in fact not been drawn

from a GP prior and so there is a priori no prior GP to work with. Nevertheless, in

order to apply the formulations of the previous section we assume that the function

did in fact arise from a GP prior and a suitable prior is determined using the measured

data (as explained below); regression then follows as outlined previously.

When no information is initially known about the function the prior is assumed to

have zero mean and a class of covariance functions (consisting of a covariance function

model containing hyperparameters) is specified. The covariance between functional

outputs is modelled as a function of the input values and the most suitable covariance

function is chosen from the class by estimating the correct hyperparameter values from

measured data. A common choice for this function class which puts a prior over smooth

functions is the squared exponential covariance function [29];

k(z, z′) = a exp

(
−1

2
(z − z′)TΨ(z − z′)

)
, (3.3)

where Ψ is a diagonal matrix whose values, along with a, are hyperparameters which

need to be determined (as will be discussed). The parameter a determines the ampli-

tude of the covariance structure and the diagonal values of Ψ give inverse-lengthscale

values for each input dimension. This function implies a high covariance for function

outputs corresponding to close inputs vectors, the covariance then decays exponentially

as the inputs move further away from each other in each dimension of the input space.

In this case the hyperparameters specify both the amplitude of the functional outputs

as well as the length-scales over which functional outputs will remain correlated with
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respect to each input dimension. Other types of covariance function models can be

found in both [30] and [28]. In this thesis we will focus solely on the squared expo-

nential (SE) covariance function, shown above, when considering non-linear regression,

this is due to the fact that the SE is one of the most general covariance structures

since it places a prior over all smooth functions [28]. Other covariance functions tend

to have more specific structure present, for example the rational-quadratic covariance

function corresponds to a sum over many squared exponential covariances with vary-

ing lengthscales [28] and the periodic covariance function corresponds to a prior over

periodic functions [30]. The cases which we will considering here have not been found

to require such additional structure and so other covariance functions have not been

required. The noise covariance matrix, B, is also defined by its own set of hyperpa-

rameters whose values must be determined. If the noise is assumed to be iid Gaussian

then B = ξI and the noise variance ξ is the only hyperparameter required to describe

the noise covariance matrix.

3.6 Hyperparameter Determination

One of the advantages of working with Gaussian distributions is that the marginal

distributions can be calculated easily and analytically. One such marginal is the so

called log-likelihood function, this is essentially the probability of observing the mea-

sured data given a certain set of hyperparameter values. Assume that K̂ := ΛZZ + B

is determined by some set of hyperparameter values a = {ai}. The log-likelihood value

for some set of hyperparameters, a, given the observed (noisy) data is then;

log(p(F̂|a)) = −1

2
F̂T K̂−1F̂− 1

2
log |K̂| − n

2
log 2π

Treating the above expression as a function of the hyperparameters a, the correct (or

most likely) hyperparameter values are assumed to be those which maximise the above

expression, or equivalently those which minimise the negative of the above expression.

Therefore, for a given set of measurements we can perform the above optimisation

and determine the most likely hyperparameter values, this completely determines the
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covariance matrix K̂ and the prior covariance function k (hence also the GP prior). The

hyperparameters for the covariance functions considered here are always non-negative

and so rather than performing constrained optimisation over the ai, we instead define

ai = eφi and perform unconstrained optimisation over the φi instead. The φi will be

referred to as log-hyperparameters. During the optimisation procedure we need to be

wary of possible convergence to an inappropriate minimum, this and other possible

issues are discussed fully in the work of [29].

Accurate and fast gradient based optimisation requires the derivatives and the Hes-

sian matrix for the log-likelihood function with respect to log-hyperparameter values.

Let {φi}i=1...k be our set of log-hyperparameter values. If L is the log-likelihood func-

tion defined previously, we have the following first and second derivatives with respect

to log-hyperparameters [29];

∂L

∂φi
= −1

2
trace

[
K̂−1∂K̂

∂φi

]
+

1

2
F̂T K̂−1∂K̂

∂φi
K̂−1F̂ (3.4)

∂2L

∂φi∂φj
= −1

2
trace

[
K̂−1 ∂2K̂

∂φi∂φj
− K̂−1∂K̂

∂φi
K̂−1 ∂K̂

∂φj

]

+
1

2
F̂T K̂−1

[
∂2K̂

∂φi∂φj
− 2

∂K̂

∂φi
K̂−1 ∂K̂

∂φj

]
K̂−1F̂.

The quality of the hyperparameter determination optimisation is important when it

comes to making accurate GP predictions; this is illustrated by the following analysis.

Assume that we are performing Gaussian process regression on noisy measurements

of a function,f̃ , drawn from a GP prior which is determined by hyperparameter values

a. As discussed above, GP regression requires these hyperparameter values to be esti-

mated from the measured data. The prediction is then formed using these determined

hyperparameter values, a†, which may differ from the true values, a, for this class of

functions. Let † denote terms whose hyperparameters have been determined from data;

then the posterior mean function will be Λ†zZ(K̂†)−1F̂ (note that over the ensemble of
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functions this is still an unbiased prediction) rather than ΛzZK̂
−1F̂ with covariance

function,

E[(Λ†zZ(K̂†)−1(FZ + Ω)− fz)(Λ†z′Z(K̂†)−1(FZ + Ω)− fz′)]

= Λ†zZ(K̂†)−1K̂(K̂†)−1Λ†Zz′ − Λ†zZ(K̂†)−1ΛZz′ − ΛzZ(K̂†)−1Λ†Zz′ + Λzz′

= Λzz′ − ΛzZK̂
−1ΛZz′ + [Λ†zZ(K̂†)−1 − ΛzZK̂

−1]K̂[Λ†z′Z(K̂†)−1 − Λz′ZK̂
−1]T

≥ Λzz′ − ΛzZK̂
−1ΛZz′ when z = z′.

Thus the error variance has increased in the case where the hyperparameters differ from

their true values. Note that these statistics are still over the ensemble of functions. This

analysis implies that when implementing GP a careful optimisation procedure should

be used in order to minimise the differences between a and a†.

3.7 Gaussian Process Regression Example

The GP regression process, outlined in the previous section, was applied to noisy mea-

surements of the nonlinear function f(z) = sin(z)+ z
2 . A squared exponential covariance

function was used for this regression example and the results can be seen in Figure 3.1

along with the noisy measured data.

1 2 3 4 5 6 7 8 9

z

0

1

2

3

4

5

6
 Noisy measurements

 True function

 GP prediction

 GP 95% confidence intervals

Figure 3.1: GP regression example.
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3.8 Efficiency of General Gaussian Process Algorithms

GP machine learning algorithms are generally considered unsuitable for applications

where the number of measured data points, n, is over a few thousand. This is due to

the need to invert and find the determinant of the n × n covariance matrix (multiple

times during hyperparameter determination), both of which are operations which scale

as O(n3), as well as the need to multiply large matrices together which can be almost

as costly [28].

3.9 Transformations Applied During GP Modelling

Applying a GP model implicitly assumes that the function of interest has been drawn

from the specified prior distribution. In practice, a given function might not adhere

to the idealised properties of the prior, stationarity being one example, and this can

degrade the performance of GP regression. Various techniques have therefore been

developed which allow for a transformation of either the input values or measured

data such that in the transformed coordinates the underlying assumptions are better

realised. These ideas were initially explored in the context of geostatistics, for exam-

ple in [31] the input space is transformed via a nonlinear function within a Bayesian

framework. A Gaussian process prior is placed on the transform itself, and inference

follows via a Markov chain Monte Carlo (MCMC) algorithm. Thus, a parametric form

for the transform is not given, instead its posterior distribution is sampled as part of

the wider learning procedure. In [32] a class of covariance functions is developed which

contain in-built transformations of the input variables. These are obtained by defining

mappings which are integrals over sets of positive basis functions (thus ensuring the

transforms are one-to-one). The form of these basis functions is chosen by the user and

contain additional hyperparameters to be learned as part of the maximum likelihood

optimisation procedure. Figure 3.2 shows the application of this approach to a func-

tion which is non-stationary since it has a lengthscale which varies across the input

domain, the plot is taken [32]. In [33] similar transformations are applied, but this

time to the measurements themselves, in order to allow for GPs to be applied where
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noise characteristics are prohibitively non-Gaussian. In this case monotonic ‘warping’

functions are chosen and their hyperparameters determined via optimisation as before.

Because transforms are applied to the output space, in order to obtain predictions it is

necessary to invert the warping functions for both mean values and any relevant per-

centiles (e.g. the 95% confidence intervals). This requires a numerical solutions such

as Gauss-Hermite quadrature [33].

Figure 3.2: GP regression example with non-stationarity handled via an input trans-
formation. The diamonds are measured data, the solid line is the GP mean and the
dashed lines are the standard deviations about the predictions.

3.10 Why Gaussian Processes?

Other regression techniques exist which might be applied to the same problem consid-

ered in this thesis. It is therefore worth discussing why GPs have been selected over

possible alternatives. The reason essentially comes down to the flexibility and robust-

ness of the Gaussian process regression technique. In Section 2.6.3 we discussed the

need to be able to handle outliers, develop a fast and generally applicable regression

technique and it has also been seen that we also want to extract derivative informa-

tion from our predictions. Gaussian processes have in the past been applied to wind
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turbine data in order to investigate the separability functions h and g [29]. This has

shown that they can handle the relevant types of data well, without the noise structure

or outliers degrading their predictive abilities. Furthermore, in terms of developing a

method which can be applied across a wind farm easily and simply we want to avoid

as much as possible ad hoc decision making forming a part of implementation.

Of the other possible techniques, some of the most attractive alternative candidates

would be Neural Networks (NNs) [34] and Random Forest (RF) [35]. NNs require the

selection of numbers of so called ‘hidden layers’, a process which adds to the complexity

of decision making when building the learning algorithms, and increases the computa-

tional burden of the procedure. Considering RF, whereas GP predictions are smooth

(allowing for derivatives to be directly calculated) RF predictions are non-differentiable,

and hence a smoothing function would need to be applied before derivatives are taken.

This again adds complexity to the models in the form of needing to set appropriate pa-

rameters for such smoothing functions, a task which is not necessarily straightforward

or easy to automate. Taking this all together, along with the fact that GPs have previ-

ously been shown to perform well for this type of problem [29], it was decided that GPs

were the best candidate learning procedure on which to build these algorithms, with

the results of this work forming a performance baseline against which other techniques

can be compared in the future.

3.11 Other Gaussian Process Applications in Wind En-

ergy

Although the problem under consideration in this thesis has not been studied previ-

ously, GPs have been used fairly extensively in wind energy for other applications. For

example, in [36] a combination of numerical weather predictions and GP models are

used for wind power forecasting, in [37] GPs are used to monitor the structural health

of wind turbine assets; and, in [38] GPs are used to estimate extreme gusts. This wide

range of applications again highlights the flexibility and general usefulness of GPs as a

machine learning technique.
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Batched Approaches to Gaussian

Processes

The wind turbine dynamics identification problem considered in this work requires a

regression method which can be applied to batched data, as discussed in Section 2.6.3.

To clarify, the term ‘batched regression’ is used here to mean a regression procedure

which allows for the updating of predictions when new data becomes available, and

hence, one which processes data in batches1. This chapter will therefore begin by

reviewing the work done to date on Gaussian process regression formulations which

can be applied to batched data. The existing techniques all falling under the general

category of sparse GP approximations.

These various approaches are then discussed, in Section 4.5, where gaps in the cur-

rent knowledge base for these techniques are identified, motivated by the requirements

of the turbine dynamics identification problems. These gaps are shown to motivate the

exploration of new possible techniques for batched data GP regression, based on the

GP regression models themselves, rather than on purely probabilistic techniques. Two

such approaches are presented in Section 4.6 to be explored in greater detail.

1In the current work the processing of data in batches is necessary due to the fact that more data
becomes available as a wind turbine operates. Furthermore, as discussed in Section 2.6.3, turbine data
can only reasonably be assumed to be stationary for roughly ten minutes.
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4.1 Sparse GP Approximations

The problem of being able to apply GP regression to batched data has been previously

explored in the literature, with existing methods all falling under the general category

of sparse GP approximations. These various methods are presented in this current

section. This is a class of methods whereby the GP posterior is approximated using

the function values predicted at a set of points, often referred to as pseudo or inducing

points, with order much less than the number of measurements being processed [39].

Hence, whereas standard GP regression has the predictive distribution,

p(fz|YD) =

∫
p(fz|FD)p(FD|YD)dFD, (4.1)

obtained by marginalising over the posterior of FD, a sparse GP model will seek to

approximate the above integral by way of a small set of m function values, denoted

here by Fm. Writing the predictive distribution as,

p(fz|YD) =

∫
p(fz|Fm,FD)p(FD|Fm,YD)p(Fm|YD)dFDdFm, (4.2)

and assuming the conditional independence of fz and FD given Fm, approximating

p(fz|YD) then comes down to determining a model for χ(Fm) := p(Fm|YD) [40]. In

the existing techniques χ is chosen to be Gaussian and hence will be of the form,

χ(Fm) = N (µχ, Aχ). (4.3)

Once χ is known, the mean and covariance functions in the posterior for arbitrary z

and z′ are given by,

m(z) = ΛzmΛ−1
mmµχ (4.4)

k(z, z′) = Λzz′ − ΛzmΛ−1
mmΛmz′ + ΛzmΛ−1

mmAχΛ−1
mmΛmz′ (4.5)

These techniques have been applied both ‘online’, in a batched data context, and ‘offline’

where all the data is available a priori. A good overview of the offline case is given
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in [39]. In the case of batched data χ(Fm) must be updated at each batching stage

and in current methods this can involve changing both the number of inducing points

and their locations, as well as the model’s parameters.

Having chosen a model for χ, its parameters are trained in order to optimise some

objective function which attempts to ensure a close fit between the approximate and

true predictive distributions. Below we outline the two most popular approaches by

which a model χ and its associated objective function can be developed.

4.2 Fully Independent Training Conditional (FITC)

This approach has seen several different formulations, here we follow that of [41]. Given

a GP model over Fm, it is assumed that the single point likelihood for noisy measure-

ments is [41],

p(yz|m,Fm) = N (ΛzmΛ−1
mmFm,Λzz − ΛzmΛ−1

mmΛmz + ξ), (4.6)

with noise variance ξ. Measured data is then assumed to be generated IID, giving the

complete data likelihood for measured dataset D,

p(YD|m,Fm) = N (ΛDmΛ−1
mmFm,K + ξI), (4.7)

where K is diagonal with [K]ii = ΛDiDi − ΛDimΛ−1
mmΛmDi . Placing a Gaussian prior,

p(Fm) = N (0,Λmm), (4.8)

over the function values at the inducing points then allows for the model, χ, to be

determined via Baye’s rule as,

χ(Fm) = N (ΛmmR
−1
m ΛmD(K + ξI)−1YD,ΛmmR

−1
m Λmm), (4.9)
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with Rm = Λmm + ΛmD(K + ξI)−1ΛDm. The parameters of the terms in χ are

determined by maximising the marginal likelihood,

p(YD|m) =

∫
p(YD|m,Fm)p(Fm)dFm, (4.10)

which is the objective function in this case. Note that inversion of K + ξI scales

linearly by construction, since it is diagonal, and it is for this reason that the FITC

was constructed as above.

The first formulation of a form of FITC [42] was in fact in the context of streaming

data and hence is relevant to the batched setting. The set of inducing points, Fm, is

chosen to be a subset of the measured data. Scores are assigned to each new datapoint

as it is processed and, once a chosen maximum subset size has been reached, whenever

a new datapoint is processed the inducing point with the lowest score is deleted.

4.3 Variational Free Energy Approach (VFE)

Variational learning has also been used to generate sparse GP approximations [40]. In

this case the true augmented posterior in Equation 4.2,

p(FD,Fm|YD) = p(FD|Fm,YD)p(Fm|YD), (4.11)

is approximated by the variational posterior,

q(FD,Fm) := p(FD|Fm)χ(Fm). (4.12)

A model χ and inducing points are then sought such that a measure of distance between

the above true and modelled posteriors is minimised. This measure of distance is

chosen to be the Kullback-Leibler divergence, DKL(q(FD,Fm)||p(FD,Fm|YD)), which

forms a premetric on the space of probability distributions and can be interpreted as a

measure of information gain between statistical models. Minimising the KL divergence

here has been shown to be equivalent to minimising an approximate lower bound for

the true negative log-marginal likelihood, the so called ‘variational free energy’ [40].
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Once hyperparameter values have been determined from minimisation of this objective

function, it follows that the optimal model for χ is,

χ(Fm) = N (ξ−1ΛmmS
−1
m ΛmDYD,ΛmmS

−1
m Λmm), (4.13)

with Sm =
[
Λmm + ξ−1ΛmDΛDm

]
.

In [43] the VFE framework is extended to handle batched data. In order to avoid

having to store old data, the following approach is taken to propagating information

between GP approximations: Given the current approximation to the GP based on old

data,

qold(f) ≈ p(f |YDold
) ∝ p(f |θold)p(YDold

|f), (4.14)

(where θ denotes hyperparameters) we wish to be able to form an updated approxima-

tion using new data,

qnew(f) ≈ p(f |YDold
,YDnew) ∝ p(f |θnew)p(YDold

|f)p(YDnew |f). (4.15)

Since old data is assumed to be unavailable, the p(YDold
|f) term above is approximated

by inverting the relationship in Equation 4.14. The VFE formulation then follows

similarly to in [40], resulting in a slightly augmented objective function over which the

new hyperparameters and inducing point locations can be optimised. From Equations

42 and 45 in [43] it follows that in this case the optimal model, χ, has mean,

µχ =

(
Λ−1
mm + Λ−1

mm[ΛmD Λmm0 ]Σ−1

[
ΛDm

Λm0m

]
Λ−1
mm

)−1

Λ−1
mm[ΛmD Λmm0 ]Σ−1

[
YDnew

(Ã−1
χ − Λ̃−1

m0m0
)−1Ã−1

χ µ̃χ

]
,

and covariance matrix,

Aχ =

Λ−1
mm + Λ−1

mm

[
ΛmD Λmm0

]
Σ−1

 ΛDm

Λm0m

Λ−1
mm

−1

.

With,

Σ =

ξI 0

0 (Ã−1
χ − Λ̃−1

m0m0
)−1

 ,
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and where Ãχ, µ̃χ and Λ̃−1
m0m0

are calculated using the old model and hyperparameters,

and m0 is the set of inducing points from the old model.

The VFE technique can then be further extended by replacing KL-divergence with

the more general α-divergence [44]. This results in the same predictive equations as for

VFE, except Σ becomes [43],

Σα = Σ +

αdiag(ΛDD − ΛDmΛ−1
mmΛmD) 0

0 α(Λm0m0 − Λm0mΛ−1
mmΛmm0)

 . (4.16)

This more general formulation encompasses both FITC [45] (When α = 1) and VFE

[40,42,43] (when α = 0), along with a family of other methods depending on the value

of α. The possibility of unifying these various techniques under a single framework was

first demonstrated in [46].

4.4 Recursive Gaussian Processes

Another approach to GP regression on batched data is Recursive GPs (RGP), developed

in [47] using Kalman Filtering. While the underlying approach is somewhat different

from those discussed above, fundamentally the same game is being played whereby a

model for χ(Fm) is developed. Prediction at other points then follows using the same

predictive formulas as before. For known hyperparameters the model χ in Recursive

GP (using the current notation) has mean,

µχ = µ̃χ+ÃχΛ−1
mmΛmD

(
ΛDD − ΛDmΛ−1

mmΛmD + ΛDmΛ−1
mmÃχΛ−1

mmΛmD + ξI
)−1 (

YD − ΛDmΛ−1
mmµ̃χ

)
,

and covariance matrix,

Aχ = Ãχ−ÃχΛ−1
mmΛmD

(
ΛDD − ΛDmΛ−1

mmΛmD + ΛDmΛ−1
mmÃχΛ−1

mmΛmD + ξI
)−1

ΛDmΛ−1
mmÃχ.

As before, the expressions µ̃χ and Ãχ denote the mean and covariance terms with

respect to the prior at each batching stage. Note that in the above expressions the

term,

ÃχΛ−1
mmΛmD

(
ΛDD − ΛDmΛ−1

mmΛmD + ΛDmΛ−1
mmÃχΛ−1

mmΛmD + ξI
)−1

,
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is the Kalman gain.

4.5 Discussion of Existing Approaches

Three general frameworks for using GPs on batched data have been presented, these

being FITC, VFE and RGP. While each of these techniques represents an important

contribution to GP theory, there are still some significant gaps worth exploring.

The first of these gaps comes from the observation that these existing techniques

have been developed through the manipulation of probability distributions, rather than

from the underlying GP framework. In each case, the prior GP is only used in so far as

to define a prior model for χ. From this point onwards these methods do not rely on

the underlying relationship coming from a GP. Furthermore, for the batched regression

cases the relationship between the existing methods and standard GPs has not been

shown, with all comparisons having come from numerical experiments. Therefore, a

pertinent question would seem to be,

Q1. Does the underlying structure of a GP model suggest any particular approach to

performing regression on batched data, and what relationship would such a method have

with standard GP regression on all of the data at once?

Secondly, there is currently no theoretical basis, or rules of thumb, for choosing the

number and positions of inducing points for a GP model. In FITC and VFE they

are determined either as being a subset of the measured data, or their number and

placement are optimised using their objective functions. In [48] comparisons are made

between FITC and VFE which do give some general results about the behavior of the

two methods with respect to numbers of inducing points and their locations, but these

results are focused on implementation rather than theory and all stem from numerical

experiments on specific examples. RGP [47] on the other hand does not discuss the

selection of these points at all, with both their number and location assumed fixed

throughout. While all three methods have been shown to be able to perform GP

regression with good results, there still seems to be something lacking in the underlying

theoretical development when inducing point selection relies on optimisation trial and
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error and random re-starts [48]. Computer implementations of these techniques will

almost certainly require such measures in practise, however, it seems that there should

also be some theoretical basis for choosing starting points for any optimisation. Such

theory should also link back to the fact that we are considering GP models; for example,

one would like to be able to answer questions such as,

Q2. Given a GP prior, but as yet no measured data, does the GP itself indicate any

information about the number and location of inducing points necessary to accurately

model this GP?

This point has general importance, but it is also directly relevant to the case of wind

turbine dynamics identification in terms of the optimal and correct use of prior informa-

tion. As discussed in Section 2.7, extensive prior information exists about wind turbine

aerodynamics and a principled probabilistic technique should take full advantage of

this by somehow incorporating it into the predictive models. A theory which provides

an answer to Q2 might well also indicate how this can be done.

Thirdly, all existing techniques for batched GPs explicitly assume that the inducing-

points’ covariance matrix, Λmm, is non-singular. Indeed, the above formulas for φ

would be ill-defined if this were not the case. However, adding additional points to

the inducing-point set is effectively adding more information into the sparse GP rep-

resentation; intuitively, this should never result in degrading the ability of the sparse

representation to approximate the underlying GP, and if anything should improve it.

Therefore, it would seem that singular Λmm matrices should be accounted for within

a sparse approach to batched GPs. In the current methods the case of singular Λmm

matrices is not considered and, if the number of inducing points causes Λmm to become

ill-conditioned, it is common practice to add a ‘jitter’ term along the diagonal to allow

inversion to still be carried out [48]. Again, this seems unsatisfactory from a theoretical

viewpoint.

Finally, the existing methods all require for computationally expensive optimisa-

tions to be carried out during the regression procedure in order to determine hyper-

parameter values and/or inducing point numbers and locations. This is done in VFE

and FITC using gradient based optimisation in large numbers of dimensions when both
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hyperparamaters and inducing-points are determined. RGP updates hyperparameter

values at each stage using a sigma point method. Given the processing power available

to a wind turbine controller, these optimisation procedures will not be feasible for ap-

plication in the problem considered in this thesis. This is another reason why a deeper

understanding of the theory underlying possible techniques appears to be required, to

determine,

Q3. Can such techniques be applied without the need for demanding optimisation and,

if so, when might this be possible?

A part of answering this last point almost certainly calls again for a principled approach

to incorporating prior information into the models.

4.6 Iterative Gaussian Processes

In order to explore the above ideas the specific problem we will be considering is now

formalised. The two most intuitive and natural approaches to Gaussian processes for

batched data, based on the GP models, are discussed. Investigations in the following

chapters then consider the viability of methods related to these two approaches.

We consider the simple case of two iterates, with larger numbers obtainable from

multiple applications of any given approach. The term ‘GP regression’ here is referring

to the process of determining a posterior GP model for the function under consideration.

We assume we are performing GP regression on a dataset, D, which is the disjoint union

of datasets D1 and D2, and contains noisy measurements of the function f . Further,

assume that we can perform GP regression on D1 and D2 individually, but not on

D itself; this could, for example, be due to the availability of the datasets in time,

differences in noise levels for measurements in the two subsets or considerations of

computational efficiency. In this context we are considering the question:

How can individual GP regression on each of D1 and D2 be used to determine a single

GP model for the function, f , which takes all of the data into account?

There appear to be two overarching models for how this might be done. The first of

these will be referred to as the combined-posteriors approach; as the name suggests,
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this involves performing GP regression on D1 and D2 individually in order to obtain

posteriors for both, and then somehow combining these posterior GP models. The

second will be referred to as the posterior-to-prior approach and involves performing

GP regression on one dataset, D1 say, in order to obtain a GP posterior model which is

then used as the prior for GP regression on D2; the posterior obtained from this second

regression will be our desired GP model which takes both D1 and D2 into account.

These two approaches will be formalised and investigated in the following sections.

In doing this we are looking to develop an approach to what will be referred to as

iterative Gaussian process regression, which we define as:

Definition 2. For a dataset D = tNi=1Di, iterative Gaussian process regression

on D refers to a method which sequentially generates N Gaussian Process models,

{GP i}Ni=1, where GPj takes into account the data {D1,D2, . . . ,Dj}.

4.6.1 Combined Posteriors

Let T be the domain of f and assume we have performed GP regression on datasets

D1 and D2 obtaining the posterior GPs:

GP1 := ({ft}t∈T, µ1, k1),

and,

GP2 := ({ft}t∈T, µ2, k2),

respectively. We seek to combine these two GP models into a single refined GP model,

GP+ := ({ft}t∈T, µ+, k+),

for the function f . We must therefore define µ+ and k+ for the combined GP model

or equivalently define the multivariate distribution over any finite subset of the ft. Let

Z∗ ⊂ T be such a finite subset. Ignoring singular cases for now and letting pi denote

the pdf for GP i corresponding to the distribution Pi, and p the pdf of the GP prior we
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have:

p1(FZ∗) = p(FZ∗ | D1) and P1(FZ∗) = N(µ1,Λ1)

p2(FZ∗) = p(FZ∗ | D2) and P2(FZ∗) = N(µ2,Λ2)

with µi and Λi determined by µi and ki respectively. Following the standard Bayesian

approach, and assuming the independence of D1 and D2 conditionally on f we have;

p+(FZ∗) := p(FZ∗ | D1,D2) ∝ p(FZ∗ | D1)p(FZ∗ | D2)

∝ p1(FZ∗)p2(FZ∗)

and so,

P+(FZ∗) = N(µ+,Λ+)

with,

µ+ := (Λ−1
1 + Λ−1

2 )−1(Λ−1
1 µ1 + Λ−1

2 µ2)

= Λ2(Λ1 + Λ2)−1µ1 + Λ1(Λ1 + Λ2)−1µ2 (4.17)

Λ+ := (Λ−1
1 + Λ−1

2 )−1

= Λ1(Λ1 + Λ2)−1Λ2. (4.18)

P+(FZ∗) can be seen to be a covariance weighted average of P1(FZ∗) and P2(FZ∗).

These formulations were first proposed in [49] under the title of ‘Bayesian Committee

Machines’, see also [28]. Since Z∗ was chosen arbitrarily the above formulations can

be used to define a multivariate Gaussian distribution for all finite subsets of the ft; it

is therefore logical to ask whether we can define the functions µ+ and k+ to be those

which arise from the P+ distributions. Unfortunately the answer is no, since, although

the above formulations do indeed define multivariate Gaussian distributions for any

finite subset in T, these distributions do not marginalise consistently. More explicitly

the means and covariances in the combined GP change depending on how many and

which points are in Z∗. Hence, attempting to define µ+ and k+ in this way would render

them ill-defined. Note the fact that this approach does not result in a well-defined GP
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is an important point which passes unobserved in [49].

Thus, this approach is unsuitable for generating a combined GP model for the

function f ; and while there may be other possible approaches to combined-posteriors

iterative GPs, the one presented here is certainly the most straightforward and natural

and it seems likely that any similar approach will suffer from the same issues of ill-

definedness.

4.6.2 A Pragmatic Approach - Combining Predictive Statistics

We have seen in the previous section that a straightforward Bayesian approach to

combined-posteriors iterative GPs does not work if we are looking to define our com-

bined GP. This will therefore not be a suitable method by which to develop iterative

Gaussian Processes.

However, from a practical viewpoint it is interesting to consider where such an

approach will lead. Also, one could argue that often when applying GP models we are

not really interested in the whole GP model; instead we tend to use the GP to make

predictions at specific input points and determine confidence intervals around these

predictions. For many cases of functional regression it would therefore be sufficient to

pre-determine a set of input points (distributed finely enough such that values taken at

interior points can be interpolated with negligible error) at which we would like to make

our predictions and determine confidence intervals. This being the case we can let Z∗ be

our now fixed set of chosen input points; then the distribution P+(FZ∗) can be used to

define predicted function values and confidence intervals at each of our chosen points.

Since we are now only dealing with finite Gaussian distributions for fixed function

output points there are no longer issues of ill-definedness. It is important to stress

that determining function predictions and confidence intervals this way means we are

combining the predictive statistics rather than the GP models themselves. However,

this theoretically results in an iterative method2 of updating the predicted function

values and confidence intervals while taking into account all available data. This method

of combining the predictive statistics may therefore be enough for many purposes and

2It should be clear that the formula for P+(FZ∗) can be used to keep updating iteratively the
combined distribution as new data becomes available.
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so this case will be investigated further. This technique will be henceforth referred to

as the Combined-Statistics approach.

4.6.3 Posterior-to-Prior Approach

This section considers the other most obvious approach to iterative GP regression. We

again consider our two datasets D1 and D2. Performing GP regression on D1 yields

the posterior GP, GP1 := ({ft}t∈T, µ1, k1). This current approach to iterative GPs will

combine the information from both datasets by using the posterior GP from D1 as a

prior for GP regression on D2.

Let D2 = {(zi, yi)}ni=1, where the zi are inputs and yi the corresponding measured

outputs (which are corrupted by noise). We denote by Z and Y the vectors of these

quantities respectively. The formulations of Section 3.4 assume a prior of zero every-

where, our current prior will generally be non-zero and so in order to avoid having to

re-write the GP regression process for a non-zero prior mean we simply observe that

the data D̃2 := {(zi, yi − µ1(zi))}ni=1 is now zero mean and with the same covariance

structure. We therefore work with this adjusted data, which will be denoted Ỹ, and

finally add the mean value at each predicted point back on in the posterior to recover

the GP predictions which include the non-zero prior. For a set of prediction points Z∗

we then have the following multivariate Gaussian and posterior equations for the mean

and covariance matrix:

FZ∗

Ỹ

 ∼ N
0

0

 ,
Λ1

Z∗Z∗ Λ1
Z∗Z

Λ1
ZZ∗ Λ1

ZZ + Ω

 , (4.19)

µ1&2
Z∗ = µ1

Z∗ + Λ1
Z∗Z

(
Λ1
ZZ + Ω

)−1
Ỹ (4.20)

Λ1&2
Z∗Z∗ = Λ1

Z∗Z∗ − Λ1
Z∗Z

(
Λ1
ZZ + Ω

)−1
Λ1
ZZ∗ , (4.21)

where the µ1
(·) and Λ1

(·)(·) terms are given by the functions µ1 and k1 of GP1 respec-

tively. In general, the covariance structure of the noise will not be the same for the

two datasets and so the noise term Ω will have to be determined via maximum like-
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lihood as before. However, this will require training of a much smaller number of

hyperparameters and so this process should be comparatively faster than training hy-

perparameters to determine both the noise and the covariance structure of the data.

In the common case that the noise is assumed to be iid zero mean and Gaussian, the

noise hyperparameter training will only require the training of a single parameter, the

noise variance ξ. Thus, we can use the above equations to define the combined GP

model GP1&2 := ({ft}t∈T, µ1&2, k1&2) which has been formed from both D1 and D2.

This process can then be continued as new datasets become available; for example if

we now obtain the dataset D3 then we can form the combined GP model GP1&2&3 via

GP regression on D3 with a prior determined by GP1&2 and so on.

For general Gaussian Process regression it can be shown that posterior-to-prior

iteration is in fact equivalent to GP regression on the entire dataset, more formally:

Theorem 1. Assume we have a data set D = D1 t D2 t . . . t Dn and a prior GP,

GPpr = ({ft}t∈T, µ0, k0). The GP obtained by performing standard GP regression

on the whole dataset D, with prior GPpr, is identical to that obtained by performing

posterior-to-prior iteration on each of the datasets Di sequentially, starting from an

initial prior of GPpr.

Proof. We prove this for the case n = 2. The general case follows from this inductively.

Terms relating to standard GP regression on the whole of D = D1 tD2 are denoted by

the superscript 1 + 2, whereas those relating to posterior-to-prior iterative regression

on D1 and then D2 are denoted by the superscript 1&2 as above. Terms relating to

regression on D1 only are denoted by the superscript 1. Let Ỹ denote measured data

adjusted by the relevant prior mean and Q denote covariance matrices with the noise

term added.

Following the standard GP regression formulas, the mean at given input points Z∗

from regression on D is,

µ1+2
Z∗ = µ0

Z∗ +
[
Λ0
Z∗Z1

Λ0
Z∗Z2

]QZ1Z1 Λ0
Z1Z2

Λ0
Z2Z1

QZ2Z2

−1 YZ1 − µ0
Z1

YZ2 − µ0
Z2

 .
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Applying the partitioned matrix inverse formula, and lettingX =
(
QZ2Z2 − Λ0

Z2Z1
Q−1

Z1Z1
Λ0
Z1Z2

)−1
,

this mean can be re-expressed as follows:

µ1+2
Z∗ = µ0

Z∗ +
[
Λ0
Z∗Z1

Λ0
Z∗Z2

]QZ1Z1 Λ0
Z1Z2

Λ0
Z2Z1

QZ2Z2

−1 ỸZ1

ỸZ2


= µ0

Z∗ +
[
Λ0

Z∗Z1
Λ0

Z∗Z2

]Q−1
Z1Z1

+ Q−1
Z1Z1

Λ0
Z1Z2

XΛ0
Z2Z1

Q−1
Z1Z1

−Q−1
Z1Z1

Λ0
Z1Z2

X

−XΛ0
Z2Z1

Q−1
Z1Z1

X

ỸZ1

ỸZ2


= µ1

Z∗ +
[
Λ0
Z∗Z2

− Λ0
Z∗Z1

Q−1
Z1Z1

Λ0
Z1Z2

]
X
[
ỸZ2 −

(
µ0
Z2

+ Λ0
Z2Z1

Q−1
Z1Z1

ỸZ1

)]
= µ1

Z∗ + Λ1
Z∗Z2

[
Λ1
Z2Z2

+
(
QZ2Z2 − Λ0

Z2Z2

)]−1 [
ỸZ2 − µ1

Z2

]
= µ1&2

Z∗ .

Similarly, for the covariance matrices in the posterior,

Λ1+2
Z∗Z∗ = Λ0

Z∗Z∗ −
[
Λ0
Z∗Z1

Λ0
Z∗Z2

]QZ1Z1 Λ0
Z1Z2

Λ0
Z2Z1

QZ2Z2

−1 Λ0
Z1Z∗

Λ0
Z2Z∗


= Λ0

Z∗Z∗ −
[

Λ0
Z∗Z1

Λ0
Z∗Z2

] [Q−1
Z1Z1

+ Q−1
Z1Z1

Λ0
Z1Z2

XΛ0
Z2Z1

Q−1
Z1Z1

−Q−1
Z1Z1

Λ0
Z1Z2

X

−XΛ0
Z2Z1

Q−1
Z1Z1

X

][
Λ0

Z1Z∗

Λ0
Z2Z∗

]
= Λ1

Z∗Z∗ −
[
Λ0
Z∗Z2

− Λ0
Z∗Z1

Q−1
Z1Z1

Λ0
Z1Z2

]
X
[
Λ0
Z2Z∗

− Λ0
Z2Z1

Q−1
Z1Z1

Λ0
Z1Z∗

]
= Λ1

Z∗Z∗ − Λ1
Z∗Z2

[
Λ1
Z2Z2

+
(
QZ2Z2 − Λ0

Z2Z2

)]−1
Λ1
Z2Z∗

= Λ1&2
Z∗Z∗ .

Since posterior GPs are entirely determined by their mean and covariance functions it

follows that the two GPs, GP1+2 and GP1&2, are equivalent.

This approach therefore seems very attractive since the above theorem shows that it

is an iterative way of processing batches of data into an overall GP model in a way

which is equivalent to performing GP regression on all of the data at once. This

demonstrates that the posterior-to-prior approach does consistently propagate a GP

model, and in such a way as to give meaningful predictive results which preserve the

underlying structure of the GP function model; in fact, giving the same resultant GP

model as a single GP regression on all of the data.
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However, in order to iterate, the covariances and mean values for input points

corresponding to new measurements must be calculated at each stage. Following the

procedure above this unfortunately requires the measured data, covariances and mean

values from every dataset to be saved for future use. Very quickly this iterative pro-

cedure, which was intended to be both fast and economical in terms of data storage,

will be neither of these things and with enough iterates will be just as burdensome as

applying a single GP to all of the data. This should not be surprising since Theorem 1

tells us that these techniques are equivalent and so, specifics of implementations aside,

we should expect them to be similarly computationally expensive. Therefore, in general

this approach will not be practical (even in the case where the data has to be batched,

e.g. if each dataset has different noise levels or for temporal considerations) since the

computational times and required data storage involved will increase rapidly as the

number of iterates increases.

However, given that the above iterative scheme is equivalent to a full GP regression

on all the data, it would seem to be a good candidate upon which to base any new

method. Furthermore, it is shown in the next chapter that for certain covariance

structures the posterior-to-prior approach can be reformulated very efficiently, and

without increasing memory requirements. This proves to be a useful insight when

moving to the general case.

4.7 Discussion

The current chapter has reviewed existing approaches to GP regression on batched

data. Gaps in the current knowledge base were identified which have motivated the

consideration of approaches to batched GPs which are based on the underlying GP

models, rather than solely on distributions over inducing point sets. It was also shown

that due to expensive optimisation procedures, the current methods are unsuitable for

the wind turbine dynamics problem, necessitating the development of new techniques

and a deeper theoretical understanding of batched data GPs. Some key questions

we hope to answer relate to updating methods based on GP regression equations,

the selection of inducing points based on the GP model alone and the theoretical
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implications of singular covariance matrices. Two general approaches to iterative GPs,

on which a new batched GP approach might be based, were also outlined.

In the following chapters we investigate the possibility for an iterative GP frame-

work with a performance which is in-line with current state of the art techniques, while

allowing for implementation in PLCs and also which addresses the posed theoretical

questions of Section 4.5. Chapter 5 considers this in the simplified case of GP poly-

nomial regression (after also developing efficient implementations of GP polynomial

regression). This is initially motivated by the fact that the maximum efficiency operat-

ing region regression problem (Section 2.6.2) is polynomial in form. However, in light

of the fact that existing techniques for batched GPs are all based on building a prob-

abilistic function model using a distribution over a compact subset of domain points,

it seems pertinent to initially consider these methods for a case where this assumption

is true. Polynomial regression is such a case, as demonstrated by the fact that polyno-

mial functions of degree d are completely determined by a subset of function values of

cardinality d+ 1. Chapter 6 then applies the lessons learned in the polynomial case to

develop a new approach to iterative GPs in the general case which addresses the gaps

in existing theory.
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Gaussian Process Polynomial

Regression

This chapter considers the application of Gaussian processes to polynomial regression.

The reasons for studying polynomial regression in this work are two-fold. Firstly,

it was shown in Section 2.6.2 that the below rated wind turbine regression equation

(Equation 2.18) is polynomial in form. Secondly, polynomial regression is a simplified

case of Gaussian Process regression for which the behaviour with respect to batched

regression approaches has proved useful in developing knowledge and intuition which is

then applied fruitfully in the general case. As discussed in Section 4.7, a key motivating

factor for studying polynomial regression in this context is the fact that polynomial

functions are entirely determined by their values taken on a small subset of input points,

a property which the sparse GP approaches of Chapter 4 are essentially approximating

with respect to the set of inducing points.

Section 5.1 introduces the relevant covariance structure for performing GP polyno-

mial regression. After a reformulation of this covariance structure, fast implementations

of GP polynomial regression are developed in Section 5.1.2 which are shown to scale

linearly in the number of measured datapoints. Examples of implementation and a

performance assessement are carried out in Section 5.1.3. Section 5.2 compares GP

polynomial regression performance with that of Least Squares (LS) regression both

theoretically and experimentally. The proposed approaches to Batched GP regression
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of Sections 4.6.2 and 4.6.3, combined statistics and posterior-to-prior iteration respec-

tively, are then investigated for the case of polynomial regression in Section 5.4.

While Gaussian process machine learning is a relatively recent technique, Least

Squares polynomial regression on the other hand has been studied for around two

hundred years and still tends to be the most common polynomial regression technique

due to it being well known, easy to understand and easy to implement. For example, it

is used in Microsoft Excel for trendline fitting. The method of least squares itself has

been described as “the most widely used nontrivial technique of modern statistics” [50].

Note that while the inversion formula (Lemma 1), which will form a part of the im-

plementations discussed here, has been documented previously, a full implementation

of polynomial GP regression requires more than just this; including determinant eval-

uations, Maximum-Likelihood gradient based optimisation (via derivative and Hessian

information) and evaluation of the conditional distribution. To the best of the author’s

knowledge a full implementation of GP polynomial regression which scales linearly in

the number of data points has never been documented before now.

LS regression has always had the upper hand for polynomial and, more generally

linear, regression due to its superior speed and scaling properties. Therefore, detailed

comparisons between GP and LS in these cases have not been performed to date. The

GP implementation presented here for polynomial regression is fast enough, and scales

well enough, that comparisons of the two methods on the basis of accuracy become

meaningful for any number of data points. Furthermore, regression is often performed

on data which may have non-ideal noise characteristics, either being non-Gaussian or

containing outliers. These cases are also investigated.

5.1 A Covariance Function for Polynomial GPs

Polynomial regression can be performed within a GP framework. In order to do this, it

is necessary to use a covariance function which restricts the class of predicted functions

to being polynomial in form. This polynomial covariance function is derived below.

Given a polynomial function P (x) =
∑d

k=0 αkx
k, of degree d and with unknown

constant coefficients αi, we can model P (x) probabilistically by letting its coefficients
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be independent Gaussian random variables, αk ∼ N(0, σk) for k = 0 . . . d (Note this ad-

heres to our usual prior assumption that the function is zero), the function’s covariance

for two given values of x is then;

Cov(P (xi), P (xj)) = E

[(
d∑

k=0

αkx
k
i

)(
d∑

k=0

αkx
k
j

)]

By linearity and independence =
d∑

k=0

E
[
α2
k

]
xki x

k
j

=
d∑

k=0

σ2
kx

k
i x

k
j .

Hence we define an independent coefficients polynomial covariance function

with hyperparameters {γk}dk=0 as,

kP (xi, xj) =
d∑

k=0

γkx
k
i x

k
j .

Performing Gaussian process regression with such a covariance function is equivalent

to polynomial regression in the sense that the predicted mean function will be a degree

d polynomial. Using such a covariance function is essentially restricting the function

space from which we are making predictions.

5.1.1 Reformulating the Polynomial Covariance Terms

Consider the covariance matrix generated by kP ,

[KP ]ij := kP (zi, zj),

which corresponds to a set of measurements, {zi, P (zi))}ni=1, of our polynomial function

P . This matrix has inbuilt structure introduced by the polynomial covariance function

which allows us to re-express KP as follows,

KP = VzΣV T
z ,

62



Chapter 5. Gaussian Process Polynomial Regression

where z := [z1, z2, . . . , zn]T contains the scalar input values, Σ is the diagonal matrix,

Σ =


γd 0 . . . 0

0 γd−1 . . . 0
...

...
. . .

...

0 0 . . . γ0

 (5.1)

and,

Vz =


zd1 zd−1

1 . . . z1 1

zd2 zd−1
2 . . . z2 1

...
...

. . .
...

...

zdn zd−1
n . . . zn 1

 (5.2)

Σ is a (d+ 1)× (d+ 1) matrix and Vz is n× (d+ 1) (recall that d is the degree of the

polynomial and n is the number of measured data points used for regression).

Remark 1. Note that removing the assumption that the coefficients are independent

results in a covariance matrix of the form K = Vz∆V T
z where ∆ is symmetric and

positive definite, but not necessarily diagonal. The independence assumption is applied

in the prior as there is no reason initially to believe the coefficients are dependent on

one another, this assumption also allows us to avoid having large numbers of hyperpa-

rameters whose values need to be estimated. The fact that K as defined here is in fact

the general form for a polynomial covariance matrix will be important when considering

the posterior GP, since after conditioning on data the polynomial coefficients will no

longer be independent and hence the resulting ∆ is not diagonal. This general form is

discussed further in Section 5.2.2.

Remark 2. The general polynomial covariance structure, K = Vz∆V T
z , necessarily

yields a singular covariance matrix whenever the number of measurements exceeds d+1,

where d is the degree of the polynomial (as should always be the case when performing

polynomial regression). The singularity can be seen by considering the dimensions of

the matrices from which K is composed. Thus, the more general definition of Gaussian

process, as presented in this paper, is required in this case.
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The full covariance matrix, K̂P , for the measurements also contains the noise term; the

noise is assumed to be iid Gaussian and so B = ξI and,

K̂P = KP + ξI = VzΣV T
z + ξI,

where ξ is the noise variance hyperparameter.

As discussed in Section 3.8, the main bottleneck in the efficiency of Gaussian process

algorithms lies in the need to invert and find the determinants of n×n matrices where

n is the number of data points being used. We now show that having formulated the

covariance matrices as above for polynomial regression, we can in fact avoid having to

invert large matrices when performing Gaussian process polynomial regression.

Lemma 1. The matrix K̂P = VzΣV T
z + ξI has inverse,

K̂−1
P =

1

ξ
[In − Vz[ξI(d+1) + ΣV T

z Vz]−1ΣV T
z ],

where the dimensions of the two identity matrices have been given in subscripts.

Proof.

(
VzΣV T

z + ξI
)−1

=
1

ξ

[
In −

1

ξ
Vz

[
Σ−1 +

1

ξ
V T
z Vz

]−1

V T
z

]
=

1

ξ

[
In − Vz

[
Σ−1

(
ξI(d+1) + ΣV T

z Vz
)]−1

V T
z

]
=

1

ξ

[
In − Vz

[
ξI(d+1) + ΣV T

z Vz
]−1

ΣV T
z

]
where the first equality uses the Sherman-Morrison-Woodbury formula [51].

Lemma 2. The matrix K̂P = VzΣV T
z + ξI has determinant,

det
(
VzΣV T

z + ξI
)

= ξn det

(
I(d+1) +

1

ξ
V T
z VzΣ

)
.

Proof. This follows directly from the generalised Matrix Determinant Lemma.

The preceding results are very significant for Gaussian process polynomial regression

64



Chapter 5. Gaussian Process Polynomial Regression

and have been previously noted by various authors such as in [28] and [52] in the

context of Bayesian linear regression; finding the inverse and determinant of the n× n

covariance matrix now only requires us to invert or find determinants of (d+1)×(d+1)

matrices (where d is the degree of the polynomial) irrespective of the number of

data points being used. This removes the usual barrier of having to invert large

matrices and find their determinants; however, these observations alone will not result

in a full Gaussian process regression implementation which scales linearly in the number

of measurements, to achieve this further work is necessary. In the literature to date this

further work has not been performed, with the above identities being a stopping point

for theoretical development. For example this is the case in both [28] and [52]. In the

following section the existing theory is therefore extended, resulting in a complete GP

polynomial regression implementation which scales linearly and includes both derivative

and Hessian information for fast hyperparameter optimisation.

5.1.2 Efficient Implementation of Gaussian Process Polynomial Re-

gression

The formulations of the previous section allow us to implement GP polynomial re-

gression with complexity O(n) (for a given degree of polynomial), but, this can only

be achieved with further work. Even with the inversion and determinant formulas of

Lemmas 1 and 2, an inefficient implementation could still see evaluations of the log-

likelihood function and its derivative vector and Hessian matrix as having complexities

of O(n2) or even O(n3), since matrix multiplication can (at its crudest) be an O(n3)

operation. We will derive the linear-scaling formulas for efficient evaluation of the log-

likelihood function and its derivative vector here; the Hessian equations are derived

similarly, however they are considerably more involved and so the final formulas only

are given in Appendix B.

Log-likelihood function

For the purposes of optimisation we maximise the log-likelihood function by minimising

the negative log-likelihood function. Constants and scaling factors are removed and
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hence we are minimising the following function;

L∗ = F̂T K̂−1
P F̂ + log |K̂P |, (5.3)

notice that if we simply applied our matrix inversion formula of Lemma 1 to evaluate

K̂(Z,Z)−1, we would then have to multiply an n × n matrix by a 1 × n on its left or

by a n × 1 on its right and either one of these multiplications has an O(n2) complex-

ity. Instead, if the formula for the inverse is unpacked and the measurement vectors

multiplied into it we obtain the following expression,

F̂T K̂−1
P F̂ =

1

ξ

(
F̂T F̂− (F̂TVz)(D−1Σ)(V T

z F̂)
)
, (5.4)

where,

D := ξI(d+1) + ΣV T
z Vz, (5.5)

and the parentheses show the order of multiplication. All the expressions on the right

hand side of Equation 5.4 have dimensions of size n appearing only as the central di-

mensions of matrix multiplications, thus each multiplication now has complexity O(n).

From Lemma 2 the log-determinant term in Equation 5.3 is;

log |K̂P | = log

(
ξn det

(
I(d+1) +

1

ξ
V T
z VzΣ

))
= n log(ξ) + log

(
det

(
I(d+1) +

1

ξ
V T
z VzΣ

))
,

the latter expression should be used for implementation since it is numerically more

stable. The right hand side of the above equation has complexity O(n).

Since its constituent parts have complexity O(n) it follows that evaluating L∗ for a

given degree of polynomial is also of complexity O(n).

Derivatives of log-likelihood function

Let φi be the log-hyperparameter corresponding to γi (for i = 0, ..., d) and let φξ be the

log-hyperparameter of the noise variance ξ. The derivative of L∗ with respect to a given

66



Chapter 5. Gaussian Process Polynomial Regression

log-hyperparameter is simply the negative of Equation 3.4 with the scaling removed;

∂L∗

∂φi
= trace

[
K̂−1
P

∂K̂P

∂φi

]
− F̂T K̂−1

P

∂K̂P

∂φi
K̂−1
P F̂. (5.6)

Re-expressing the noisy polynomial covariance matrix as;

K̂P =
d∑
i=0

γiViV
T
i + ξI,

with Vi := [zi1, z
i
2, . . . , z

i
n]T it follows that,

∂K̂P

∂φη
=


γiViV

T
i η = i

ξI η = ξ.

We then formulate the two terms in Equation 5.6 for the case η = i as shown below;

trace

[
K̂−1
P

∂K̂P

∂φi

]
= trace

[
1

ξ
[In − VzD−1ΣV T

z ]γiViV
T
i

]
=
γi
ξ

trace
[
ViV

T
i − VzD−1ΣV T

z ViV
T
i

]
=
γi
ξ

{
V T
i Vi − trace

[
(D−1Σ)(V T

z Vi)(V
T
i Vz)

] }
,

where we have used linearity of the trace function and invariance of trace under cyclic

permutations; V T
i Vi is equal to its trace since it is scalar. For the second term we

obtain,

F̂T K̂−1
P

∂K̂P

∂φi
K̂−1
P F̂ =

γi
ξ2

{
(F̂TVi)(V

T
i F̂)

−(F̂TVz)(D−1Σ)(V T
z Vi)(V

T
i F̂)

−(F̂TVi)(V
T
i Vz)(D−1Σ)(V T

z F̂)

+(F̂TVz)(D−1Σ)(V T
z Vi)(V

T
i Vz)(D−1Σ)(V T

z F̂)
}
.

Applying the same reasoning as in Section 5.1.2, the complexities for the above expres-

sions can be seen to have O(n) complexity. The derivative when η = ξ, along with
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the Hessian formulas, the derivations of which are rather more involved, are given in

Appendix B. As with evaluating L∗, the above formulations show that we can evaluate

the derivatives ∂L∗

∂φη
with algorithmic complexity O(n) and the same is true for the Hes-

sian terms. Hence, each evaluation of the log-likelihood function (or rather L∗ which

we use for determining hyperparameters) along with its first derivatives and Hessian,

if formulated as above, scales as O(n) for a given degree of polynomial.

From a coding perspective it should be noted that many of the terms in the above

equations are repeated, or are transposes of each other, thus there are relatively few

multiplications that need to be performed which have central dimensions of n. It is

also important to formulate the prediction equations (Equations 3.1 and 3.2) efficiently,

these reformulations are given in Appendix B in a form which explicitly shows that

the predictions are polynomial functions with covariance matrix of the general form

discussed in Remark 1. The reformulation can be done following the same approach

as above, first unpacking the various terms and multiplying through before gathering

adjacent terms so dimensions of size n only occur as central dimensions in matrix

multiplication. Various terms needed for hyperparameter determination also appear in

the prediction equations and so don’t need to be re-calculated.

In the current implementation the initial log-hyperparameter values for the opti-

misation process are chosen randomly from the standard normal distribution. Very

occasionally the D matrix of Equation 5.5 can become ill-conditioned, leading to nu-

merical instabilities in the optimisation; it has been found that this problem is related

to the initial values used for the optimisation procedure. This problem is solved by

simply monitoring the condition number of D during optimisation, if the condition

number becomes too large (for example > 1 × 109) then the optimisation is restarted

from a new randomly chosen initial set of log-hyperparameter values. This problem

occurs only rarely and while investigating it only single restarts were generally required

to remove the ill-conditioning problems. This last point highlights an important next

step in developing the GP polynomial regression algorithms. The Gaussian process

formulations have been optimised in terms of the number of operations required for

each part of the regression process; however, work is currently ongoing to understand
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Figure 5.1: GP polynomial regression for noisy measurements of the cubic polynomial
p(x) = x3 + 2x2 + 3x + 4; where the noise is iid Gaussian with standard deviation
250. The regression here was performed on 50 measurements. Note that the confidence
intervals are also cubic in form; they noticeably reduce around 0 since the only variance
here comes from noise and the single ’degree zero’ hyperparameter.

how best to implement these algorithms from a numerical point of view. Function

tolerances for optimisation, condition numbers and initial hyperparameter values have

all been seen to play a role in the stability of the optimisation procedure. In order

to properly optimise the implementation and thus the performance of GP polynomial

regression, all of these factors need to be considered.

5.1.3 Examples of Implementation

All computations were performed on a Dell Optiplex 7010 desktop computer with an

Intel Core i7-3770 processor and 8 GB of RAM.

Figure 5.1 shows the result of applying the above regression implementation to 50

noisy measurements of a cubic polynomial; the complete process of hyperparameter

determination and function prediction takes about 0.3 seconds for this example. In the

figure can also be seen the confidence intervals of the fit which are cubic in form.

The current algorithms are in fact able to handle substantially larger quantities of

data than in this example. Figure 5.2 shows computational times for evaluating L∗

and its derivative vector and Hessian matrix (for the same cubic polynomial as above)
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Figure 5.2: Computational times for evaluating the log-likelihood function along with
its derivative vector and Hessian matrix are plotted against the number of measured
data points used. Note that the numbers of data points are in millions and each quantity
of input data consists of noisy measurements of the same cubic function as in Figure 5.1.
The computational time for this optimised implementation can be seen to be increasing
as O(n), i.e. linearly in n, as demonstrated by the function f(x) = (1.61×10−7)x which
is plotted for comparison.

against the number of input data points and demonstrates the O(n) scaling of this

algorithm. Note that the numbers of input points are in millions and, as can be seen in

the figure, this implementation is very fast; for example we see that for 10 million input

data points these evaluations take roughly 1.6 seconds. Full GP polynomial regression

will take longer since in order to determine the hyperparameter values multiple evalu-

ations of L∗ and its derivatives will be required, however, the number of steps in the

optimisation is usually between about 5 and 15 and is independent of the number of

data points so there is not much increase from the numbers seen here. For example,

Figure 5.3 shows the result of performing GP polynomial regression with one million

noisy measurements of a linear polynomial; in this case the whole regression process,

including making the function prediction, takes between 1 and 5 seconds. This regres-

sion code is currently programmed in Matlab and so further improvements of the time

results here could certainly be achieved by implementing the code in C Mex or C.
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Figure 5.3: Gaussian process prediction example for polynomial regression using one
million noisy measurements of the function q(x) = 10x + 100; the noise standard
deviation on the measurements is 1000. The entire process, i.e. both hyperparameter
determination and function prediction, takes between 1 and 5 seconds depending on
how many steps are taken in the optimisation procedure. The prediction is lying right
on top of the true underlying function, the confidence intervals for the GP fit are not
shown as they have become too small to see owing to the sheer density of data being
used.

5.2 Comparing Gaussian Processes and Least Squares for

Polynomial Regression

Having shown that polynomial regression with GPs can be performed fast and effi-

ciently with linear scaling in the number of data points, we now investigate whether

the GP approach has any advantages over Least Squares. This present section com-

pares the Gaussian process and Least Squares methods of polynomial regression both

theoretically and experimentally. A proper analysis requires further discussion of the

underlying theory of both techniques.

5.2.1 Least Squares Polynomial Regression

As above we consider the polynomial function P (z) =
∑d

k=0 αkz
k, of degree d with

unknown constant coefficients αi. Noisy measurements, Y = [y1, y2, . . . , yn]T with
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yi = P (zi) + ωi, are taken for a number of input values giving the following system of

equations;

Y = VzA+ ω,

where Vz is defined as in Equation 5.2, A = [αd, αd−1, . . . , α0]T and ω = [ω1, ω2, . . . , ωn]T .

Estimates, Ã, for the coefficients are determined by minimising the following cost func-

tion,

J = [Y − VzÃ]T [Y − VzÃ],

which corresponds to solving,

1

2

∂J

∂Ã
= −[Y − VzÃ]TVz = 0 =⇒ Ã = (V T

z Vz)−1V T
z Y = (V T

z Vz)−1V T
z [VzA+ ω]

It follows that E[Ã] = A and E[(Ã − A)(Ã − A)T ] = ξ(V T
z Vz)−1, where ξ is the noise

variance. Then for any given value of z and with v := [zd, zd−1, ..., 1] we have,

E[v(Ã−A)] = 0, E[v(Ã−A)(Ã−A)T vT ] = ξv(V T
z Vz)−1vT .

Thus the least squares estimates of both A and the function values P (·) at any z are

unbiased with confidence intervals which are the same for any polynomial of the same

order.

5.2.2 Polynomial GP Theory

In the general polynomial regression case we have ΛZZ = Vz∆V T
z , where ∆ is symmet-

ric and positive definite (as discussed in Remark 1). It is now shown explicitly that

samples drawn from a zero mean GP with this covariance structure are polynomials,

furthermore, there is shown to be a 1-1 correspondence between polynomials of degree

d and the samples drawn from the GP.

Drawing a sample polynomial from the GP prior can be simplified using the follow-

ing square root formula for ΛZZ;

Λ
1/2
ZZ = (Vz∆V T

z )1/2 = Vz(V T
z Vz)−1/2

[
(V T

z Vz)1/2∆(V T
z Vz)1/2

]1/2
(V T

z Vz)−1/2V T
z ,
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this can easily be verified by squaring the above expression. Then for ν = [ν1, ν2, . . . , νn]T ,

a vector of independent Gaussian white noise values, observe that,

E[
(

(V T
z Vz)−1/2V T

z ν
)(

(V T
z Vz)−1/2V T

z ν
)T

] = (V T
z Vz)−1/2V T

z E[ννT ]Vz(V T
z Vz)−1/2

= (V T
z Vz)−1/2V T

z Vz(V T
z Vz)−1/2

= I.

Note the commutativity of the transpose operator with the inversion and square root

operators was used. Hence, (V T
z Vz)−1/2V T

z ν is also a Gaussian white noise vector with

d + 1 entries where d is the degree of the polynomials in the GP prior. Therefore,

samples drawn from the polynomial GP prior are all of the form,

p(z) = v(V T
z Vz)−1/2

[
(V T

z Vz)1/2∆(V T
z Vz)1/2

]1/2
[η1, η2, . . . , ηd+1]T ,

where,

v = [zd, zd−1, . . . , z, 1],

and the ηi are drawn from independent Gaussian white noise. This formulation of

drawing from the GP prior improves on computational speed and accuracy since square

rooting is only required for (d+1)×(d+1) matrices rather than the full n×n covariance

matrix. Letting,

q := (V T
z Vz)−1/2

[
(V T

z Vz)1/2∆(V T
z Vz)1/2

]1/2
[η1, η2, . . . , ηd+1]T (5.7)

then q is a vector with (d+1) entries, q = [qd, qd−1, . . . , q0]T ,

[η1, η2, . . . , ηd+1]T =
[
(V T

z Vz)1/2∆(V T
z Vz)1/2

]−1/2
(V T

z Vz)1/2q, (5.8)

and,

p(z) = vq =

d∑
i=0

qiz
i. (5.9)

Equations 5.7 and 5.8 give the 1-1 correspondence between polynomials of degree d and
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samples drawn from the GP; while Equation 5.9 demonstrates explicitly that functions

drawn from this GP prior are polynomials, with q containing the generated coefficients.

Furthermore, from Equation 5.7 it is clear that the qi are all linear combinations of

normally distributed random variables and hence are themselves normally distributed

and with means of zero. The result,

E[qqT ] = ∆,

follows easily. For the case ∆ = Σ this shows the qi to be independent with qi having

variance γi (where γi is the corresponding element of the diagonal matrix Σ). There-

fore, drawing polynomial coefficients from the independent coefficients GP prior using

Equation 5.7 is equivalent to drawing them from independent normal distributions with

relevant variances.

The error comparisons of the next section require the following reformulation of the

posterior GP covariance function as defined by Equation 3.2,

k∗(z, z′) = vΣv′T − vΣV T
z (VzΣV T

z + ξI)−1VzΣv′T

= vΣ
(
I − V T

z (VzΣV T
z + ξI)−1VzΣ

)
v′T

= vΣ
(
I − (V T

z VzΣ + ξI)−1V T
z VzΣ

)
v′T

= vΣ(V T
z VzΣ + ξI)−1

(
V T
z VzΣ + ξI − V T

z VzΣ
)
v′T

= vΣ(I +
1

ξ
V T
z VzΣ)−1v′T .

Where the third line uses the following identity.

Lemma 3. X(Y X + εI)−1 = (XY + εI)−1X for ε ∈ R.

Proof. Clearly (XY + εI)X = X(Y X + εI), the result follows by taking appropriate

inverses.

5.2.3 Comparing Expected Errors

Error covariances have been derived for both Least Squares and Gaussian process poly-

nomial regression techniques. These determine the error variance in the function pre-
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dictions at a given point (when z = z′). For LS and GP respectively the error variances

of the prediction at a given point, z, are,

ELS = ξv(V T
z Vz)−1vT , EGP = vΣ(I +

1

ξ
V T
z VzΣ)−1vT ,

where v = [zd, zd−1, . . . , z, 1]. These two error variances have very different behavior as

ξ increases,

lim
ξ→∞

ELS =∞

lim
ξ→∞

EGP = vΣvT ,

hence, while the Least squares error variance becomes infinite as noise variance in-

creases, the GP error variance can be seen to tend to the variance of the GP prior. The

following theorem shows that GP will in fact always have the lower expected error of

the two methods.

Theorem 2. Gaussian process predictions have smaller expected error than Least

Squares in the case of polynomial regression; i.e. EGP < ELS ∀z.

Proof. Let G = 1
ξ (V T

z Vz) and H = 1
ξ (V T

z Vz) + Σ−1, so H = G + Σ−1. Note that G is

positive definite by construction as Vz clearly has full column rank [53]; it follows that

H is also positive definite since Σ−1 is the inverse of a positive definite matrix. Then

for any nonzero column vector x,

xT (H −G)x = xT (G+ Σ−1 −G)x

= xTΣ−1x

> 0,

hence, H > G. Since both matrices are positive definite, their inverses are also positive

definite and satisfy G−1 > H−1 [53]. Observe that,

G−1 = ξ(V T
z Vz)−1,
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and,

H−1 =

(
1

ξ
(V T

z Vz) + Σ−1

)−1

=

((
1

ξ
(V T

z Vz)Σ + I

)
Σ−1

)−1

= Σ(I +
1

ξ
V T
z VzΣ)−1.

Therefore, for all nonzero x,

xT ξ(V T
z Vz)−1x > xTΣ(I +

1

ξ
V T
z VzΣ)−1x.

Setting xT = v completes the proof.

Remark 3. Note that the above proof still holds if Σ is replaced by ∆ (symmetric and

positive definite but not necessarily diagonal). Hence, this result is still valid in the

more general case where the polynomial coefficients are not independent of each other.

5.2.4 Numerical Experiments

In the previous section it is shown that GP will on average outperform LS for a cohort of

polynomials with coefficients drawn from normal distributions. The proof assumes that

the hyperparameters, i.e. the variances for the coefficients and the noise, are known.

In practice the hyperparameters will not be known and are inferred from the data in

each regression case. This results in an increase in the expected errors whenever the

inferred hyperparameter values differ from their true values as was shown explicitly in

Section 3.6. Thus, whether or not the assertion that GP will outperform LS stands up

in general will depend on the quality of the training process for the hyperparameters.

The performance of the current implementation of GP polynomial regression was

compared with the Matlab least squares fitting function polyfit. Two cohorts of 1000

quartic polynomial functions were generated from probabilistic coefficients with means

of 0 and variances of 1 using Equation 5.7. These will be referred to as Cohorts 1

and 2 and they each contain different randomly generated polynomial functions. For

each polynomial in the two cohorts, noise was added at 30 measured function points
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across the polynomial to form noisy measurements, Cohort 1 had added noise with

a standard deviation of 5 and Cohort 2 had added noise with a standard deviation

of 7. For the polynomials in each cohort both GP and LS polynomial regression is

performed (full GP hyperparameter training was used for each polynomial to determine

the most likely hyperparameter values based on the noisy data), the root-mean-square-

error (RMSE) and mean-absolute-error (MAE) between the predicted function values

and the true underlying polynomial values was calculated for both GP and LS. The

error statistics for GP and LS regression are given in Tables 5.1 and 5.2 for Cohorts 1

and 2 respectively. The Kolmogorov-Smirnov test was used in each case to determine

whether the differences between the error distributions for GP and LS were statistically

significant, in all cases the p-value was found to be of order less than 10−10 and so we

conclude that the differences are statistically significant.

Regression Method Error Type Mean Standard Deviation

GP RMSE 1.66 0.60
LS RMSE 1.94 0.65
GP MAE 1.28 0.49
LS MAE 1.57 0.54

Table 5.1: Error statistics for GP and LS regression across the 1000 quartic polynomials
in Cohort 1 with measurement noise standard deviation of 5.

Regression Method Error Type Mean Standard Deviation

GP RMSE 2.19 0.85
LS RMSE 2.71 0.89
GP MAE 1.66 0.67
LS MAE 2.19 0.76

Table 5.2: Error statistics for GP and LS regression across the 1000 quartic polynomials
in Cohort 2 with measurement noise standard deviation of 7.

These results reflect the theoretical findings of Section 5.2.3. Over both cohorts of

functions GP can be seen to have a lower mean error than LS in both RMSE and

MAE. In all cases GP also has a lower standard deviation of error. Furthermore, the

asymptotics of Section 5.2.3 suggest that as noise increases, the margin by which GP is

better than LS should also increase and again this behavior is seen in the experimental
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results; observe that for Cohort 1 (the lower noise case) the margins by which GP has

lower error are 0.28 and 0.29 for RMSE and MAE respectively, whereas for Cohort 2

(the higher noise case) the margins by which GP has lower error are respectively 0.52

and 0.53. Thus, an increase in noise level increased the margin by which GP has lower

mean error than LS in both RMSE and MAE.

The increase in error variance due to hyperparameter training, discussed in Section

3.6, was also analysed numerically during the above experiments. Figure 5.4 shows the

standard deviations of error at each point across the polynomials in Cohort 1 for both

GP and LS, the theoretical error standard deviations from Section 5.2.3 are also shown.
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Figure 5.4: Theoretical and experimental error standard deviations for GP and LS.
The predicted increase in standard deviation for GP, due to hyperparameter training,
is present. However, GP still has much lower experimental error standard deviations
than LS.

Note that the large increases in error standard deviations on either side of the figure are

due to there being less information at the edges of the interval in which measurements

were taken. The LS experimental errors in Figure 5.4 match their theoretical values

very closely. For GP the predicted increase in error standard deviations from the use

of estimated hyperparameters is present, however, even with this increase the GP can

78



Chapter 5. Gaussian Process Polynomial Regression

still be seen to have much lower experimental error standard deviations than LS across

most of the measurement space, with the errors for the two methods becoming similar

(with GP still slightly smaller) towards the edges.

The results of the experimental analyses in this section show GP to be the better

method for polynomial regression, even with the training of hyperparameter values.

Data with Outliers Present

In many applications of polynomial regression the measured data will contain outliers.

The presence of outliers is known to cause issues for LS polynomial regression [54] and

although many techniques exist to remove outliers from data, they often require manual

intervention and thus in automated systems some outliers may remain. It is therefore

desirable to be using techniques which are as robust as possible to the presence of

outliers. In this section the performance of GPs for polynomial regression is compared

to that of LS for data with outliers present. In order to model outliers in the data,

t-distributed noise with one degree of freedom is used. As in the previous analysis,

a cohort of 1000 polynomials was generated, noisy measurements were taken at 30

points (in this case corrupted by t-distributed noise) and both GP and LS polynomial

regression performed for each set of measurements. RMSE and MAE between the

predicted function values and the true polynomial values were again recorded for each

of the 1000 cases. Figure 5.5 shows an example case, and the error statistics across the

cohort are given in Table 5.3.

Regression Method Error Type Mean Standard Deviation

GP RMSE 3.8 10.3
LS RMSE 9.8 47.4
GP MAE 2.6 5.4
LS MAE 7.1 34.4

Table 5.3: Error statistics for GP and LS regression across 1000 quartic polynomials
with measurements corrupted by t-distributed noise. This noise distribution allows for
the modeling of outliers in the measured data.

The results in Table 5.3 show that in the case of t-distributed noise (i.e. when outliers

are present), the margin by which GP gives better results has increased considerably.
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Figure 5.5: An example case of GP and LS polynomial regression in the presence of
t-distributed noise. This noise distribution is being used to model data with outliers
present. Even with the very large outlier present in this example the GP prediction
can be seen to approximate the true function well; LS regression on the other hand has
resulted in a much poorer fit.

Observe that the LS mean errors over the cohort are over twice the size of the GP

errors in both RMSE and MAE; furthermore, the LS standard deviations of error are

over 5 and 6 times the values for GP respectively for RMSE and MAE. These results

imply that GP is far more robust to the presence of outliers in the data than LS in the

case of polynomial regression.

Non-Gaussian Noise

Regression techniques are often applied in cases where the noise on the data does not, or

at least cannot be known to, conform to the structure assumed by the theory underlying

the regression. It is therefore necessary to consider how a given technique performs for

different noise types. In the current case it is therefore necessary to consider non-

Gaussian noise types. It has generally been found that GP regression appears to be

robust and well-behaved in the presence of non-Gaussian noise. We have, in fact,

already seen an example of this in the previous section. While t-distributed noise was

used primarily to understand the comparative behaviours of GP and LS regression

in the presence of outliers, this was also a comparison of the two methods in the

presence of ‘heavy-tailed’ noise; and, as noted above, GP regression outperformed LS
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regression in numerical experiments for this case. We also present results of numerical

Regression Method Error Type Mean Standard Deviation

GP RMSE 1.69 0.60
LS RMSE 2.01 0.61
GP MAE 1.32 0.49
LS MAE 1.64 0.53

Table 5.4: Error statistics for GP and LS regression across 1000 quartic polynomials
with measurements corrupted by uniform noise of standard deviation 5.

Regression Method Error Type Mean Standard Deviation

GP RMSE 2.23 0.82
LS RMSE 2.75 0.83
GP MAE 1.70 0.67
LS MAE 2.24 0.73

Table 5.5: Error statistics for GP and LS regression across 1000 quartic polynomials
with measurements corrupted by uniform noise of standard deviation 7.

experiments comparing GP and LS regression in the presence of non-Gaussian noise

which, in contrast to t-distributed noise, has no weight in the tails. Tables 5.4 and 5.5

give the error statistics across cohorts of 1000 randomly generated polynomials with

measurement noise, Ux, distributed uniformly between −x and x; with x = 5
√

3 in

Table 5.4 and x = 7
√

3 in Table 5.5 corresponding to noise cases of standard deviations

5 and 7 respectively. In all cases GPs can be seen to outperform LS regression.

5.3 Generalizations

The current formulations apply to more than just polynomial regression. This work

extends in the obvious way to allow for fast and efficient GP regression for any function

which is expressible as a finite linear combination of basis functions;

F (Z) =

N∑
i=0

aifi(Z),
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where the ai are unknown coefficients and the fi are given basis functions (clearly this

corresponds to polynomial functions when fi(x) = xi). Thus, the outlined GP approach

can be applied in a range of possible scenarios including multiple linear regression,

multivariate polynomial regression and even fourier type analysis if the fi are chosen

to be sinusoids.

5.4 Batched Approaches to Polynomial Gaussian Processes

The proposed approaches to Batched GP regression of Sections 4.6.2 and 4.6.3 are now

applied in the polynomial GP regression case.

5.4.1 Combined-Statistics Iteration Using Polynomial GP Structure

The technique of Combined-Statistics for propagating GP information will be consid-

ered here for polynomial GPs. Initially, it might seem that this approach will not be

applicable in the polynomial case. This is due to the need to invert posterior poly-

nomial GP covariance matrices (Equations 4.17 and 4.18), which have been shown to

necessarily be singular, as discussed in Remark 2. However, it turns out that these

singularity issues can be avoided by taking advantage of the inbuilt structure present

in polynomial covariance matrices.

Let Λ1 and Λ2 be our covariance matrices from the posterior polynomial GP for a

vector of output values, FZ∗ . These are of the form (see for example the prediction

equations in Appendix B),

Λ1 = V AV T

Λ2 = V BV T .

A and B are both (d+1)× (d+1) matrices, for a polynomial of degree d, and generally

do not have any ill-conditioning issues. Hence, A and B are invertible. Now, (Λ1 + Λ2)

is non-invertible, therefore for all ε > 0 the term (Λ1 + Λ2 + εI) will be invertible.
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Observe that,

lim
ε→0

Λ1(Λ1 + Λ2 + εI)−1Λ2 = lim
ε→0

V AV T (V AV T + V BV T + εI)−1V BV T

(By Lemma 3 ) = lim
ε→0

V A(V TV A+ V TV B + εI)−1(V TV )BV T

= lim
ε→0

V A(V TV (A+B) + εI)−1(V TV )BV T

= V A(A+B)−1(V TV )−1(V TV )BV T

= V A(A+B)−1BV T .

Similarly,

lim
ε→0

Λ2(Λ1 + Λ2 + εI)−1 = V B(A+B)−1(V TV )−1V T

lim
ε→0

Λ1(Λ1 + Λ2 + εI)−1 = V A(A+B)−1(V TV )−1V T .

For an invertible matrix H, limε→0(H + εI)−1 = H−1. Therefore, we have managed

to derive expressions for Λ1(Λ1 + Λ2)−1Λ2 and related equations which circumvent

the singularity issues. It is not the case that we have managed to invert non-invertible

matrices, the above process should rather be thought of as solving for X in the equation

system:

Λ1 = X(Λ1 + Λ2),

with the expression Λ1(Λ1+Λ2)−1Λ2 then being equal to XΛ2. The combined predictive

distribution, N(µ+,Λ+), can therefore be determined, in the polynomial case, using

the above expressions to evaluate Equations 4.17 and 4.18.

This approach in the case of polynomial regression does at first appear to work, with

combined function predictions which look sensible. However, further testing reveals that

this approach suffers from prediction anomalies, namely, we can end up with combined

predictions which are nonsensical since their mean lies outside those of both the GPs

we are combining. Figure 5.6 shows an example of this.

Therefore, it appears that in the polynomial case combined-posteriors approach to

iterative GPs will not work, even in the simplified case where we are only interested
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Figure 5.6: An example of the issues which can occur when performing combined-
statistics iteration in the case of polynomial regression.

in the predictive statistics at a fixed set of points. For completeness, the combined-

posteriors approach was also tested on general non-linear GP regression examples. The

results in the more general case mirror those seen here for polynomials, more specifically,

in the general case anomalous predictions are also obtained for which predicted mean

values lie outside of the mean values for either of the GP models being combined. The

details of these experiments can be found in Appendix C.

5.4.2 Posterior-to-Prior Approach to Iterative Polynomial GPs

In the case of polynomial regression, assume we have a prior (potentially non-zero

mean) GP, GPpr = ({ft}t∈T, µpr, kpr). As discussed, our prior means are of the form

µpr
x = Vxqpr and covariance matrices are all of the form Λpr

xy = Vx∆prV
T
y where ∆pr is

symmetric and positive definite. It can be seen that this corresponds to a prior GP over

polynomial coefficients with mean vector1 qpr and covariance matrix ∆pr. Denoting

new measured data corresponding to the input vector Z by Y as before, and again

letting Ỹ be measurements adjusted by the prior mean; applying Lemma 3 to the

polynomial GP prediction equations gives us a posterior distribution over polynomial

coefficients, N(qpo,∆po), where:

1This prior mean is either zero if we started from a zero-mean prior, or it is the coefficients obtained
from previous polynomial GP regressions if a number of iterations have already been performed.
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qpo = qpr + ∆pr(V
T
z Vz∆pr + ξI)−1V T

z Ỹ

∆po = ∆pr + ∆pr(V
T
z Vz∆pr + ξI)−1V T

z Vz∆pr.

The above formulas show that in order to iterate from one probabilistic description of

the polynomial coefficients to the next, all that is required from previous iterates is

the most recent mean and covariance matrix for the coefficients. Furthermore, for any

vector of input points, Z∗, the distribution over these points in the GP posterior from

the above regression has the following mean vector and covariance matrix,

µpo
Z∗ = Vz∗qpo,

Λpo
Z∗Z∗ = Vz∗∆poV

T
z∗ ,

respectively. These expressions uniquely determine the mean and covariance functions

in the posterior and hence the posterior GP, GPpo, from regression on Y with prior

GPpr, is completely determined by qpo and ∆po. It follows that iteration of GPs in

this case is equivalent to the iteration of the multivariate Gaussian distributions over

the polynomial coefficients.

Thus we have shown that performing polynomial regression on batched data is

possible using a posterior-to-prior iterative approach which propagates coefficient dis-

tributions from one stage to the next. This will be prove to be a useful insight when we

move to the general case, although more work is required there to develop a practical

iterative scheme as compared to the polynomial case considered here.

5.5 Discussion

5.5.1 Gaussian processes vs Least Squares

Significant results have been obtained with respect to understanding the relationship

between GPs and LS for linear regression modelling (recall that, while polynomial

regression has been the focus of this chapter, the formulations and theoretical results
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apply equally to linear regression over arbitrary basis functions). First it was shown

that efficient formulations of GP polynomial regression allow for it to be applied to any

number of datapoints, and fast enough to make direct comparisons with LS meaningful.

It was further proved theoretically that GPs have lower expected errors compared to

LS, and improved asymptotic behaviour as the noise level increases. These theoretical

observations were verified experimentally in various numerical experiments comparing

the two methods. These findings are important since they indicate that GPs might in

fact be a better candidate for the ‘standard’ linear regression approach, a position held

by LS for around 200 years.

5.5.2 Propagation: GP Models vs GP Predictive Statistics

The considered approaches to GP iteration illustrate two overarching philosophies for

propagating information using a GP. One via propagation of an underlying GP model;

the second via propagation of predictive statistics. The combined-posteriors approach

of the previous sections was initially seeking to be of the first type, propagating a GP

model, but on finding that the GP models could not be combined consistently using

this approach, we considered propagating the GP’s predictive statistics instead.

A GP is a probability distribution over a class of functions and contains information

about the values taken by functions in the given class at, and between, every point in

the domain through its mean function µ and covariance function k. It was hoped

that by propagating the GP’s predictive statistics, the essential parts of the GP model

would be preserved. However, by doing this we are actually abandoning our GP model

and simply combining two multivariate Gaussian distributions, distributions which do

not contain anywhere near the volume of information of the original GP model and

which also lack the fundamental structure which makes GPs such a powerful tool. It

seems to be because we have abandoned the underlying GP model that we see results

(as in Figure 5.6) which are not meaningful in terms of combining GP predictions for

our function. The resulting ‘non-meaningful’ predictions were foreshadowed by the

fact that we couldn’t use combined-posteriors to produce a refined full GP model due

to ill-definedness of the mean and covariance functions; implying that the result of
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which could not be meaningful in a functional sense. This was then borne out by the

experiments with combining predictive statistics for polynomial GPs.

All together this implies that while predictive statistics are often the goal of applying

a GP, any technique which allows for meaningful iterative GP regression will need to

be one which consistently propagates a full GP model. Furthermore, given that it has

now been shown that,

1. Posterior-to-prior GP iteration is equivalent to standard GP regression on all of

the data

2. In the case of polynomial GPs, posterior-to-prior iteration can be performed ef-

ficiently and without increasing memory requirements,

it seems that a principled approach to iterative GP methods should be posterior-to-

prior in form, while attempting to leverage experience of the polynomial case to avoid

increasing computational costs and memory requirements with each iteration.

We therefore abandon the combined-statistics approach to iterative GPs, which

has been shown to result in anomalous predictions, and concentrate on generalising

posterior-to-prior iteration.

5.5.3 Expected Behaviour and Relationship to Standard GPs

The analysis of Section 5.4 demonstrates another important consideration for when de-

veloping an iterative approach to GPs. That being the expected behaviour of a given

method and its relationship to standard GP regression. Combined-Posteriors iteration

has been shown to be prone to anomalous behaviour. This was picked up on during

testing, however, since a majority of results look sensible these issues conceivably could

have gone unnoticed. It would therefore be reasonable to ask whether the posterior-

to-prior approach might also display similar behaviour given enough test cases? This

question can be safely answered in the negative, however, thanks to Theorem 1 which

shows that the iterative scheme is in fact equivalent to standard GP polynomial re-

gression. The expected behaviour from this method is therefore identical to that of a
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standard GP model.

The knowledge of how a given method relates back to standard GP regression

therefore allows us to have confidence in its expected behaviour. In the general case

the relationship will not be an equality, as it is for polynomials, but one would hope that

an understanding as to the degree of similarity could still be established. This point

will be revisited in the following chapter. Thus, expected behaviour gives a further

reason for developing iterative GPs based on the posterior-to-prior approach, since the

relationship to standard GPs is known.
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Chapter 6

Sufficient-Subset Gaussian

Process Iteration

This chapter documents a new approach to iterative Gaussian processes (as per Def-

inition 2), the development of which is guided by the possibility for dimensionality

reduction seen previously for polynomial GPs. In order to learn from the polynomial

case, links must be established which relate GPs for polynomials to more general GP

function classes. As will be shown, the key to establishing such a link lies in the struc-

ture of GP covariance matrices. This link is established in Sections 6.1 and 6.2. Section

6.3 then considers how the lessons learned thus far in the context of polynomial GPs

can be extended to the general case in light of covariance matrix structural similari-

ties. Sufficient-Subset Gaussian process iteration is then developed from Section 6.4

onwards.

6.1 Degenerate Gaussian Distributions

In the definition of a Gaussian process (Definition 1) the case of a degenerate Gaussian,

i.e. one with a singular covariance matrix, is explicitly included. This is necessary

for two reasons, first because polynomial (and more generally, linear) regression with

GPs results in singular covariance matrices, and polynomial regression turns out to

be an important case in which to understand iterative GPs in order to inform in the
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general case; secondly because while in most general cases the covariance matrices

in the GP posteriors from functional regression are theoretically non-singular, finite

computational precision renders them effectively singular for practical purposes (this

will also be discussed further) and so a thorough understanding of iterative approaches

to GPs requires the singular case to be investigated.

We start by considering the multivariate Gaussian probability density function; if

Y ∼ N(µ,Λ), with Λ non-singular and Y having dimension n, then;

p(Y) =
1√

(2π)n|Λ|
exp

(
−1

2
(Y − µ)TΛ−1(Y − µ)

)
.

We now re-express this density function following the formulations of [55]. Since Λ is

real, symmetric and positive-definite, its inverse shares these properties, and so admits

the spectral expansion,

Λ−1 =

n∑
i=1

λ−1
i UiUi

T ,

where the λi are the eigenvalues of the matrix Λ and the Ui their corresponding or-

thonormal eigenvectors. Hence, we can re-write the density function as,

P (Y) =
n∏
i=1

(2πλi)
−1/2 exp

(
−
λ−1
i

2

(
(Y − µ)TUi

)2)
.

Let the first r eigenvalues be fixed and non-zero, while the others tend to zero in order

to transition to the degenerate case of rank r < n. These eigenvalues tending to zero

results in each multiplier with indices r+1, . . . , n to tend towards a Dirac delta function

as per its definition, obtaining;

P (Y) = 2π−r/2
r∏
i=1

(λi)
−1/2 exp

(
−
λ−1
i

2

(
(Y − µ)TUi

)2) n∏
i=r+1

δ
(
(Y − µ)TUi

)
= 2π−r/2

(
r∏
i=1

λi

)−1/2

exp

(
−1

2
(Y − µ)TΛ+(Y − µ)

) n∏
i=r+1

δ
(
(Y − µ)TUi

)
,

where Λ+ :=
∑r

i=1 λ
−1
i UiUi

T is the Moore-Penrose pseudoinverse of Λ. Care must be

taken when interpreting the above expression since the Dirac delta belongs to the class
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of generalised distributions and therefore is only properly defined under the integral

sign. However, this does not present a problem here since we can simply infer the

effect of these delta functions by considering their impact on the values of Y obtained

from the above density function. It is apparent that the delta functions indicate linear

dependences between the values in Y, specifically that (Y−µ)TUi = 0 for each i from

r + 1 to n.

6.2 Degeneracy in GP Posterior Covariance Matrices

GP posterior covariance matrices tend to be ill-conditioned and close to singular. In

the work of [29] it was shown that large eigenvalues of the GP covariance matrix and

their corresponding eigenvectors are associated with the large scale smooth structure of

the predicted function, whereas small eigenvalues/vectors are associated with the small

scale and more noise like variations along the function. Therefore, since predicted

functions from GP regression are smooth we should expect the smaller eigenvalues to

quickly tend towards zero, rendering the covariance matrix itself effectively singular in

terms of finite computational accuracy. Another way of interpreting the near singularity

of the covariance matrices in GP posteriors comes from the delta functions discussed

in the previous section. It was shown that delta functions in the pdf effectively set up

linear dependencies between the possible values taken by the function. This corresponds

to the idea that a singular covariance matrix occurs if knowing some of our function

values fixes the values taken by the function at other points; for a smooth function

prediction, if we pick a cluster of nearby points and assume we know the values taken

there, then the value taken at some other point internal to this cluster becomes very

heavily constrained. This indicates that there will be delta function like terms in the pdf

and so we would expect covariance matrices for smooth functions to be near singular.

The presence of near singular and singular covariance matrices further motivates the

study of the polynomial case of GP regression carried out in Chapter 5; this is because

polynomial covariance matrices are always singular, as discussed in Section 5.1.1.
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6.3 Learning from the Polynomial Case

Posterior-to-prior GP iteration is shown in Theorem 1 to offer a consistent way of

propagating a GP model while refining it through conditioning on new batches of data,

and was even shown to be equivalent to performing a single GP regression on the whole

set of data. In the general case this garnered no great advantage due to increasing

computational times and memory demands at each stage of iteration, but for polynomial

regression it was shown that these issues are not present. Polynomial regression proves

to be a special case due to the fact that a polynomial function is completely determined

by the values of its coefficients. This means that all of the information we have about

the values taken by a polynomial function across our domain can be condensed into

information about the polynomial coefficients, and condensing everything into this form

doesn’t result in any loss of information. Recalling the discussion of Section 5.1.1 we see

that this possibility for dimensionality reduction is indicated by the fact that polynomial

covariance matrices are singular whenever the number of datapoints increases above

d + 1, where d is the degree of the polynomial. This is in line with the fact that a

polynomial of degree d has d+ 1 coefficients and knowing the value of the function at

d+ 1 distinct points determines the whole polynomial function.

We now consider the case of GPs for general non-parametric functions. In Section

6.2 we discussed the fact that posterior covariance matrices tend to be ill-conditioned or

‘close to singular’ as the number of considered points increases, this suggests that it is

worth considering whether this near singularity is offering us any kind of dimensionality

reduction as was possible in the polynomial case. This question is explored in the

following analysis: consider a zero-mean GP model of a function, f , and let P be an

N dimensional subset of the functional domain such that the covariance matrix ΛPP

is non-singular, but the covariance matrix ΛP†P† is singular for all z where,

P† =
[

PT z
]T
.
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It follows that,

ΛP†P† = UDUT =

UP vz

wT
z uz

DP 0

0 0

UTP wz

vTz uz

 ,
where U is an orthogonal matrix and DP is diagonal and positive definite. The column

vectors of UP span Rm, where z ∈ Rm. Note that uz cannot be zero, since, if uz = 0

the orthogonality of U implies that vz is orthogonal to all the columns vectors of UP.

However, the column vectors of UP span RN and so this means vz itself must be zero,

contradicting the orthogonality of U .

Thus,
[

vTz uz
]T

is an eigenvector of ΛP†P† with eigenvalue 0. As seen in Section

6.1 this corresponds to the pdf of the joint distribution for f , at points in P ∪ {z},

including a delta function of the form,

δ(FT
Pvz + fzuz).

Hence, for any z,

fz = −
FT
Pvz
uz

= −vTz FP

uz
.

It immediately follows that for all z and z∗,

Λzz∗ =
(
vTz /uz

)
E(FPFT

P)
(
vTz∗/uz∗

)
=
(
vTz /uz

)
ΛPP

(
vTz∗/uz∗

)
,

and more generally, for vectors of points Z and Z∗, we have,

ΛZZ∗ = VZΛPPV
T
Z∗ ,

for some VZ and VZ∗ . We have therefore demonstrated that any covariance structure

for which the addition of new points eventually yields a singular covariance matrix

has the same underlying structure as the polynomial covariance matrices which have

been studied in the current work. Thus, in any case where this holds, knowing the

values taken by the function at the points in P is enough to determine its values

taken everywhere; and so, dimensionality reduction can theoretically be achieved if
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all information about the function could be re-expressed in terms of function values

at points in P. Furthermore, in cases where the addition of new points in P would

theoretically never result in a truly-singular covariance matrix, each addition of a new

point will cause the smallest eigenvalue to decrease in size; eventually this smallest

eigenvalues will become close enough to zero to approximate the above situation, and

so dimensionality reduction should be possible which allows for function values across

the domain to be determined from information re-expressed at points in P up to some

desired accuracy. The following section discusses how this may be done in such a way

as to yield a posterior-to-prior iterative method of GP regression via dimensionality

reduction of the type discussed here.

6.4 Sufficient-Subset Gaussian Process Regression

In Section 5.4.2 it was shown that iterative GP regression could be performed in the case

of polynomials without having to carry forward all of the previously measured data. In

fact, the amount of data which needs to be propagated is shown to be very modest. This

is due to the dimensionality reduction afforded by the fact that the only information

needed for the next iterate was that learned about the finite and small number (relative

to possible amounts of measured data) of coefficients. It was further discussed in Section

6.3 that the possibility for dimensionality reduction in this case is indicated by the fact

that polynomial covariance matrices are singular when the number of considered points

is larger than d+ 1 where d is the order of the polynomial. In Section 6.1 it was seen

that singularity results in delta functions appearing in the multivariate distributions for

the GP and these in turn indicate redundancies in the amount of information required

to know which values the function takes at given points; since linear dependencies

arise between the function values, knowing a certain number of them fixes the possible

function values elsewhere. Finally, at the end of the previous section it was shown

that, in principle, there is the potential for dimensionality reduction in GP regression

for general non-linear functions via the repackaging of information to reflect what is

happening only on some finite subset of points, chosen such that the values at other

input point are then either known exactly or can be determined up to some chosen
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level of accuracy.

Covariance matrices in GP models are notorious for being ill-conditioned and close

to singular, if it was not for the presence of noise in measurements then GP regres-

sion would not generally be viable and even when no noise is present it is common to

add a noise like term along the diagonal, called ‘jitter’ [56], in order to improve nu-

merical stability. With infinite precision the covariance matrices for general non-linear

functions would not actually be singular, however, with finite computational precision

they become effectively singular very quickly as new points are added. Until now this

has been seen as an inconvenience and an unfortunate obstacle. In other areas where

matrix numerics are employed this is indeed the case. However, since in the context

of GPs we are dealing with probability distributions, this ill-conditioning is in fact an

indication that there is redundancy of information.

SSGP iteration seeks to exploit the redundancy of information, indicated by ill-

conditioned covariance matrices, by re-packaging large amounts of measured data into

a small packet of pseudo-data which still contains all of the relevant information about

the underlying function, up to a precision we choose. We seek to propagate and update

this pseudo-data in an iterative scheme. This will allow both for GP updating when

new data becomes available, but also for large datasets to be partitioned and processed

in batches in order to overcome the usual cubic complexity of GP regression implemen-

tations. For the sake of clarity, the posterior-to-prior approach of Section 4.6.3 will be

referred to as ‘naive-Bayesian iteration’ throughout the following sections.

6.4.1 Developing the SSGP Theory

The various ideas which have been discussed so far are now used to develop an iterative

GP method. It has been shown that singularity in GP covariance matrices, for a given

set of points P, indicates that information at those points defines the function every-

where (either exactly or up to some level of precision). We therefore now consider how

information from across the domain might be re-expresssed as information at the points

in this chosen set, P. More formally: given a finite subset, P, of points in our functional

domain, a covariance function, k, and noisy measurements, YD, corresponding to the
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input points D, we ask the following question:

“Can a new dataset, YP, be generated consisting of one measurement at each point

in P and from which GP regression would result in the same predictions and covariance

structure across points in P as when using the original dataset D?”

Assuming the existence of such a set, observe that the mean predictions at P from

regression on these two datasets are;

from YD − ΛPD(ΛDD + ΩD)−1YD

from YP − ΛPP(ΛPP + ΩP)−1YP,

with covariances,

from YD − ΛPP − ΛPD(ΛDD + ΩD)−1ΛDP

from YP − ΛPP − ΛPP(ΛPP + ΩP)−1ΛPP.

The above terms equate pairwise if we let:

(ΛPP + ΩP)−1YP = M(ΛDD + ΩD)−1YD (6.1)

(ΛPP + ΩP)−1 = M(ΛDD + ΩD)−1MT , (6.2)

where M satisfies the equation,

ΛPD = ΛPPM. (6.3)

It therefore follows that rather than explicitly generating YP, which we will refer to as

the ‘pseudo-data at P’, we can instead deal with the ‘pseudo-terms’,

Γ := (ΛPP + ΩP)−1YP

Ψ := (ΛPP + ΩP)−1,

defined by Equations 6.1 and 6.2. The GP predictions at P therefore have mean and
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covariance matrix,

mean = ΛPPΓ

covariance matrix = ΛPP − ΛPPΨΛPP,

and by construction these terms agree with those obtained from the standard GP

formulas.

Assume that we have followed the above process for measured data at points D1,

giving us pseudo-terms Γ1 and Ψ1 which encode the predictive structure of the data

at D1. Further, assume that we have access to the individual terms Λ1
PP, Ω1

P and Y1
P

of Γ1 and Ψ1. If new measurements YD2 at points D2 become available, the above

formulations can be applied to the compounded data,

YD =

Y1
P

YD2

 with D =

 P

D2

 .
In order to form the pseudo-terms, which will be denoted Γ1&2 and Ψ1&2, for this YD

we must solve for M in,

ΛPD = ΛPPM.

With the current D, ΛPD = [ ΛPP ΛPD2 ] and so,

M = [ I M2 ],

where M2 satisfies,

ΛPD2 = ΛPPM2.

Forming Γ1&2 and Ψ1&2 also requires the inverse term (ΛDD + ΩD)−1, obtained using

block matrix inversion as follows:

ΛDD + ΩD =

Λ1
PP + Ω1

P ΛPD2

ΛD2P ΛD2D2 + ΩD2

 ,
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if,

ΛDD + ΩD =

 Q R

RT S

 ,
then,

(ΛDD + ΩD)−1 =

Q−1 +Q−1RXRTQ−1 −Q−1RX

−XRTQ−1 X

 , (6.4)

where X = (S −RTQ−1R)−1. Therefore,

Γ1&2 = M(ΛDD + ΩD)−1YD

=
[
I M2

]Q−1 +Q−1RXRTQ−1 −Q−1RX

−XRTQ−1 X

Y1
P

YD2

 (6.5)

= Q−1Y1
P +

[
Q−1R−M2

]
X
[
RTQ−1Y1

P −YD2

]
= Γ1 +

[
M2 − Ψ1ΛPD2

] [
ΛD2D2 − ΛD2PΨ1ΛPD2 + ΩD2

]−1 [
YD2 − ΛD2PΓ1

]
(6.6)

Ψ1&2 = M(ΛDD + ΩD)−1MT

=
[
I M2

]Q−1 +Q−1RXRTQ−1 −Q−1RX

−XRTQ−1 X

 I

MT
2


= Ψ1 +

[
M2 − Ψ1ΛPD2

] [
ΛD2D2 − ΛD2PΨ1ΛPD2 + ΩD2

]−1 [
M2 − Ψ1ΛPD2

]T
(6.7)

And as above, the mean and covariance matrix at points in P are correspondingly;

mean = ΛPPΓ1&2

covariance matrix = ΛPP − ΛPPΨ1&2ΛPP,

where this time, the equality between these terms and those obtained with standard

GP iteration is not a given, as will be discussed. The above theory suggests an iterative

scheme for performing GP regression and making predictions at any points in the do-

main, not just those in P. This iterative scheme will be referred to as Sufficient-Subset
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GP Iteration. We first formalise this iterative scheme before exploring its properties

in relation to standard GP and the posterior-to-prior GP iteration (naive-Bayesian

Iteration) discussed previously.

6.4.2 Sufficient-Subset GP (SSGP) Iteration

Definition 3. An SSGP tuple is a GP structure of the form GP = (k,P,Γ,Ψ) con-

sisting of a covariance function, k, a subset of domain points, P, the pseudo-precision

matrix Ψ; and Γ which corresponds to Ψ multiplied by pseudo-data YP. The mean at

point z for this GP is,

µz = ΛzPΓ,

and the covariance between points z1 and z2 is,

Φz1z2 = Λz1z2 − Λz1PΨΛPz2 .

Note that all Λ(·)(·) matrices are constructed using the covariance function k.

Assume that we have the prior GP tuple, GPpr = (k,P,Γpr,Ψpr), with mean µprZ and

covariance matrix Φpr
ZZ at the points in Z. Given new measured data YD, with input

points D, a refinement of the prior can be performed (by applying equations 6.6 and

6.7) which yields the posterior GP tuple defined as follows:

Definition 4. Let GPpr = (k,P,Γpr,Ψpr) be a prior GP tuple which describes our

beliefs about some function, f . Given new measured data YD, at input points D, we

define the refined posterior SSGP tuple to be GPpo = (k,P,Γpo,Ψpo), where;

Γpo = Γpr + [M −ΨprΛPD][ΛDD − ΛDPΨprΛPD + ΩD]−1[YD − ΛDPΓpr] (6.8)

Ψpo = Ψpr + [M −ΨprΛPD][ΛDD − ΛDPΨprΛPD + ΩD]−1[M −ΨprΛPD]T . (6.9)

M is determined by solving the equation system,

ΛPD = ΛPPM. (6.10)

99



Chapter 6. Sufficient-Subset Gaussian Process Iteration

This generation of a refined posterior GP tuple from new data can clearly be repeated

as new data becomes available, with the current tuple becoming the prior for the next

refinement step:

GP ipr = (k,P,Γipr,Ψ
i
pr)

regression−−−−−−→
on D

[GP ipo = (k,P,Γipo,Ψ
i
po)] ≡ [GP i+1

pr = (k,P,Γi+1
pr ,Ψ

i+1
pr )]

(6.11)

Hence, SSGP iteration is a posterior-to-prior iterative approach to GP regression. Fur-

thermore, the initial generation of the Γ and Ψ terms (Equations 6.1 and 6.2) is in fact

equivalent to an initial prior tuple of GPpr = (k,P,0,0). SSGP iteration avoids the

need to invoke the assumption that the new dataset, YP, and its associated covariance

matrix exist. Only the assumption, that M exists, remains. However, the relationship

to standard GP regression remains to be established.

The predicted mean and covariance matrix at some arbitrary points Z, are now

considered. Observe the following:

1. YD − ΛDPΓpr = ỸD, the new measurements adjusted by the prior mean

2. [ΛDD − ΛDPΨprΛPD + ΩD]−1 = [Φpr
DD + ΩD]−1

3. ΛZP[M −ΨprΛPD] = ΛZPM − ΛZPΨprΛPD = Φpr
ZD + (ΛZPM − ΛZD).

Hence, from the above identities we obtain,

µpoZ = ΛZPΓpo

= µprZ + (Φpr
ZD + (ΛZPM − ΛZD))(Φpr

DD + ΩD)−1ỸD

= µprZ + Φ̃pr
ZD(Φpr

DD + ΩD)−1ỸD (6.12)

Φpo
ZZ = ΛZZ − ΛZPΨpoΛPZ

= ΛZZ − ΛZPΨprΛPZ (6.13)

−(Φpr
ZD + (ΛZPM − ΛZD))(Φpr

DD + ΩD)−1(Φpr
DZ + (MTΛPZ − ΛDZ))

= Φpr
ZZ − Φ̃pr

ZD[Φpr
DD + ΩD]−1Φ̃pr

DZ, (6.14)

where Φ̃pr
ZD = Φpr

ZD +(ΛZPM −ΛZD). These formulas are of the same form as those we
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obtained when discussing iterative GP regression in Section 4.6.3 (Equations 4.19 and

4.20). In fact, under certain conditions these two approaches to iterative GP regression

can be show to be equivalent.

Theorem 3. Sufficient-Subset GP iteration and naive-Bayesian GP iteration (and

so by Theorem 1 also standard GP regression on all of the data simultaneously) are

equivalent if both are started from the same initial prior and if the prior covariance

function, k, results in covariance matrices such that for the matrices M defined by,

ΛPD = ΛPPM,

at each stage of iteration, we have ΛZPM = ΛZD for all Z.

Proof. We will prove this via induction. Since any GP with a non-zero prior mean can

be made into a zero prior mean GP by subtracting the mean from measured values;

without loss of generality, we assume to have a zero initial prior mean. Hence we have

the initial prior of mean zero and covariance function, k, for naive-Bayesian iteration

and an initial prior tuple, (k,P,0,0), for SSGP iteration. This forms our base case since

the mean and covariance matrix between any points can easily be seen to coincide for

these two types of GP. Now, assume that a number of iterations have been performed

on identical datasets for the two methods and that they still result in equivalent GPs

(same mean and covariance functions). The next SS iteration on a new dataset is as

shown in Equations 6.12 and 6.14; since for all Z we have ΛZPM = ΛZD it follows

that Φ̃pr = Φpr and having assumed that the two GP methods match in the prior,

Equations 6.12 and 6.14 for SS iteration are equivalent to those for naive-Bayesian

iteration, Equations 4.19 and 4.20, resulting in equivalent posterior GPs. It follows by

induction that this will be the case for any finite number of iterations.

Corollary 1. Naive-Bayesian Iteration and Sufficient Subset Iteration for GP regres-

sion are equivalent for the case of polynomial functions, and more generally for linear

regression.

Proof. As has been discussed in Section 5.1.1, polynomial functions lead to covariance
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matrices of the form Λxy = Vx∆V T
y . Hence, when solving for M in,

ΛPD = ΛPPM,

we have the solution M = VP(V T
P VP)−1V T

D (not necessarily a unique solution). For M

of this form it follows that for all Z, ΛZPM = ΛZD and so by the above theorem the

equivalence has been shown for polynomials. In the case of general linear regression the

covariance matrices have the same form, with the V matrices redefined for the correct

set of basis functions, hence, the result follows similarly.

Assuming ΛPP is invertible1 (for the sake of simplicity) the term ΛZPM , with M

defined as in Theorem 3, can be re-expressed as follows;

ΛZPM = ΛZP(Λ−1
PPΛPP)M

= ΛZPΛ−1
PP(ΛPPM)

= ΛZPΛ−1
PPΛPD.

Therefore, when investigating the degree to which the terms ΛZPM and ΛZD agree,

rather than solving explicitly for M we can instead use the the term ΛZPΛ−1
PPΛPD in

place of ΛZPM .

Lemma 4. If either Z ⊂ P or D ⊂ P (or both), then ΛZPΛ−1
PPΛPD = ΛZD.

Proof. We show the result in the case Z ⊂ P, the other case follows via a symmetrical

argument.

If Z ⊂ P then ΛZP = JΛPP, where J is the matrix containing 1’s and 0’s which

extracts the relevant rows in the correct order from ΛPP. Now,

ΛZPΛ−1
PPΛPD = JΛPPΛ−1

PPΛPD

= JΛPD

= ΛZD.

1This does not have to be the case, e.g. when considering a polynomial GP as in Corollary 1.
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Lemma 4 therefore tells us that at points in P the relation required for SSGP to be

equivalent to naive-Bayesian iterative GP regression (Theorem 3) holds. From this,

along with the implicit smoothness assumptions for function predictions with a GP,

we would also expect the approximations of ΛZD by ΛZPM to be good at points z

which are ‘close’ to points in P. All together, if points in P are equidistributed, this

implies that we should come closer to satisfying the requirements of Theorem 3 as #P

increases. These claims are further explored in the following sections.

6.4.3 Determining the ‘Sufficient-Subset’

The ‘Sufficient-Subset’ in SSGP is of course referring to our set of points P. The word

‘sufficient’ is used loosely to imply that P has been chosen to be sufficient for the task

at hand. The following discussion should help illuminate this choice of wording2.

Assume that we are performing GP regression on some function, f : W → R,

and are interested in its values taken on U ⊂ W . Given a covariance function, k, we

have already discussed the fact that for a set of points X ⊂ U the covariance matrix

generated by k, ΛXX, becomes close to singular as #X increases. Assuming infinite

precision we would ideally choose our sufficient subset, P, to be a set X† such that

ΛX†X† is non-singular but if A = [ (X†)T z ]T then ΛAA is singular for any z ∈ U . In

this case P is ‘sufficient’ in the sense that information and predictions at P determine

exactly what is happening at all other points in U ; as indicated by the fact that the

matrix becoming singular means delta function are appearing in the pdf, as discussed

in Sections 6.1 and 6.3.

When applying GPs, we have only finite computational precision, plus only in

certain cases will we reach a stage where the addition of any one new point renders

the covariance matrix singular. Therefore, rather than choosing P to be such that

adding any other point gives us a singular matrix, we instead choose it such that the

2In general cases of sparse approximations the set P is the set of ‘inducing points’ discussed in
Section 4.1. In the current work the name ‘Sufficient-Subset’ has been chosen in order to reflect the
fact that matrix conditions numbers have indicated dimensionality reduction as being possible and
appropriate, hence we wish this philosophy to be reflected in the nomenclature.
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condition number of the resulting covariance matrix, ΛPP, is above some specified limit.

We are thus choosing P to be sufficiently large that the covariance matrix is close to

singular and hence such that information at the points P very closely determines what

is happening at all other function values. Therefore, in this case the word ‘sufficient’ is

referring to the fact that our choice of P allows for the information across the function

to be determined from information at P, up to some accuracy determined by the limit

we choose for the condition number of ΛPP. For the sake of simplicity the points in

P are always chosen to be equidistant from each other across our domain of interest,

hence, it is only the number of points and not their location that we choose. This

especially makes sense in the case of covariance functions with a constant length-scale.

It transpires that this choosing of P based on matrix condition number corresponds

to how well the matrices ΛZPM(= ΛZPΛ−1
PPΛPD) and ΛZD (see Theorem 3) agree,

thus reconciling these two aspects of the SSGP theory. This is illustrated by way of

examples. We consider the most commonly used covariance function, the ‘squared

exponential’, for one dimensional inputs z,

k(z, z′) = a exp

(
−1

2

(z − z′)2

l

)
,

with lengthscale hyperparameter l (we use the lengthscale, l, here rather than the

inverse-lengthscale as presented in Section 3.5, this makes the following discussion more

intuitive). From the above formula it should be clear that a larger lengthscale results

in covariances between input points decaying more slowly as the distance between the

points increases. For a covariance function of this form with (a, l) = (6.7, 6.0), we

choose a domain of interest, z ∈ [2, 8], and for a given choice of #P the points in P

will be placed equidistantly throughout our domain. The similarities between the two

matrices ΛZPΛ−1
PPΛPD and ΛZD are considered by plotting contour maps of the ‘matrix

approximation error’,

E(Z,D) = ΛZPΛ−1
PPΛPD − ΛZD,

for the case that both Z and D contain 50 equidistributed points across the domain.

Figures 6.1-6.4 show contour plots of these error matrices for different #P.
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Figure 6.1: Error matrix contour plot with
#P = 1 for points in the domain [2, 8].
Points in P are indicated by blue crosses.

Figure 6.2: Error matrix contour plot with
#P = 4 for points in the domain [2, 8].
Points in P are indicated by blue crosses.

Figure 6.3: Error matrix contour plot with
#P = 5 for points in the domain [2, 8].
Points in P are indicated by blue crosses.
Note the scaling of 10−3.

Figure 6.4: Error matrix contour plot with
#P = 6 for points in the domain [2, 8].
Points in P are indicated by blue crosses.
Note the scaling of 10−4.

These error matrix plots demonstrate several key points. First, by noting the dramatic

changes in scaling for each plot we see that the addition of new points in P very quickly

reduces the magnitude of the deviations of between ΛZPM and ΛZD. Second, we see

that the error in our approximation goes to zero whenever considering covariances

involving at least one point in P, as was predicted by the analysis in Section 6.4.2.

Finally, these plots indicate a very specific structure to these deviations, in the form of

repeating patterns of over and under-estimated blocks. The presence of these patterns

can be seen to stem from the re-expression of information in terms of its relation

to points in P, and is a direct consequence of having chosen a squared-exponential

covariance function. We illustrate this with a one dimensional example: for Z = z,
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D = d and P = p, all scalars, then;

ΛzpΛ
−1
pp Λpd = k(z, p)k(p, p)−1k(p, d)

= a exp

(
−1

2

(z − p)2 + (p− d)2

l

)
,

and,

Λzd = k(z, d)

= a exp

(
−1

2

(z − d)2

l

)
= a exp

(
−1

2

((z − p) + (p− d))2

l

)
= a exp

(
−1

2

(z − p)2 + (p− d)2 + 2(z − p)(p− d)

l

)

therefore, in the current case we have;

ΛzpΛ
−1
pp Λpd = Λzd if either z = p, d = p or both

ΛzpΛ
−1
pp Λpd ≤ Λzd if z > p and d > p or if z < p and d < p

ΛzpΛ
−1
pp Λpd ≥ Λzd if z > p and d < p or if z < p and d > p,

and this is exactly what we see in Figure 6.1 with #P = 1. The other contour plots then

have this same pattern repeating about the points in P. It is also worth discussing the

role played here by the length-scale hyperparameter. Both intuitively and from looking

at the definition of the squared exponential covariance function, an increase in length-

scale should decrease the errors in our covariance approximation for a given #P; in

practice this is indeed seen to be the case as shown in Figure 6.5 which contains the

contour plot for #P = 1 after the length-scale has been increased by a factor of 4; in

contrast to Figure 6.1 the errors here can be seen to be significantly smaller.

We therefore draw the following two conclusions:
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Figure 6.5: A longer lengthscale example with #P = 1.

1. As the number of points in P increases, the ‘matrix approximation error’ decreases

2. The magnitude of the ‘matrix approximation error’ for a given #P is dependent

on the length-scale of the covariance function (for the squared-exponential case).

It will therefore not be possible to choose a single #P which is optimal for all cases.

However, the problem of choosing #P can be made very much simpler due to the fact

that the condition number of ΛPP can be used as a proxy for the matrix approximation

error. As previously discussed, and due to the probabilistic context in which we are

working, the ability of our SSGP to re-package information about the whole function

(into data only at points in P) while still allowing for accurate predictions across the

whole domain of interest is intrinsically linked to the condition number of ΛPP. In

any given case, as #P increases, so will the condition number of ΛPP. Each term

in the covariance matrix has the amplitude hyperparameter, a, multiplying it and

therefore a will not be a factor when considering the ‘matrix approximation error’

or condition numbers3. Thus, it will only be the length-scale hyperparameter which

must be considered here. It is shown above that for covariance functions with different

length-scales, the resulting matrix approximation errors are of similar size when for

each covariance function, #P is chosen such that both covariance matrices have the

same (or similar) condition numbers. This is illustrated in the following example: a

new covariance function is used with the same a value as for the above figures, but

the length-scale hyperparameter was changed to l = 3.2. We shall refer to the original

covariance function as k1 and the new one as k2. In Figure 6.3 (with k1) #P = 5 and the

3This was seen in our one dimensional example where two a terms cancel, leaving the third.
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covariance matrix in this case, Λ1
PP, has condition number cond(Λ1

PP) = 665; Figure

6.6 (with k2) shows the error contour plot with #P = 6 and the covariance matrix in

this case, Λ2
PP, has condition number cond(Λ2

PP) = 663. These two examples therefore

have different number of points in P, but the condition numbers are very close and it

can be seen that this results in very similar ‘matrix approximation errors’.

Figure 6.6: Error matrix contour plot with #P = 6 for points in the domain [2, 8]. The
altered covariance function k2 was used here. Note the scaling of 10−3 and the fact
that this contour plot is of the same magnitude as those in Figure 6.3, despite having
a different #P.

We will therefore choose #P in any given case by simply setting a magnitude of con-

dition number, and increasing the number of points in P until we find a number of

points which passes this limit. Currently, the condition number limits used are around

107 to 1010, depending on required accuracy. Limits in this range have been found

to produce high accuracy results while also being low enough so as to allow the M

matrices to be solved for without numerical accuracy complications. When a condition

number limit of 107 is applied with the covariance function k1, we end up with #P = 8

and cond(ΛPP ) = 1.1 × 107, the resulting matrix-approximation-errors are of order of

magnitude 10−6 or smaller.

Higher Dimensional Sufficient-Subsets

The results of the current section also hold when considering higher dimensional inputs,

the exception being that the points in P become a grid of points in 2-dimensions and

n-dimensional cubic lattices in n-dimensions. However, we must also account for the

possibility that each dimension has a different inverse-lengthscale. Consider the case
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of n-dimensions and assume we have our Sufficient-Subset lattice, P, and have chosen

some member of P which we denote P0. We then denote by P1, . . . ,Pn closest points

to P0 in P along each input dimension and let Li be the distance between P0 and Pi.

A 3-dimensional example is shown in Figure 6.7.

Figure 6.7: 3-dimensional Sufficient-Subset lattice example.

Letting k be a squared exponential covariance function in n-dimensions (see Equation

3.3) with inverse-lengthscales bi, for i = 1 . . . n, it should be clear that we wish to

choose the distances Li such that the covariance between adjacent members of P in

the lattice have the same covariance along each input dimension. This will be true if

we can satisfy:

k(P0,P1) = k(P0,Pj) for all j = 2 . . . n

⇔ eb1L
2
1 = ebjL

2
j for all j = 2 . . . n,

and hence,

Lj =

(√
b1
bj

)
L1 for all j = 2 . . . n.

Therefore, it is possible to express all lattice edge-lengths in terms of that along a single

input dimension. When determining P in multiple dimensions it follows that one need

only choose the spacing (or equivalently number of points) in P along one dimension,

with the others being determined by the above proportionality expression.
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6.4.4 Implementation and Speed of SSGP Iteration

Determining an Initial Prior

In the formulations for SSGP iteration of previous sections we have always assumed

that we know the prior covariance function, k, of the SSGP tuple. In practice, k, will

need to be determined and how this is done will depend on the specifics of the problem

at hand; in general GP regression will not be applied to a single data-set ‘blind’,

where by blind we mean without any access to existing data, similar cases or computer

models which can generate data which approximates what we expect to obtain from

measurements. This existing information should be utilised in order to determine k and

doing so properly takes advantage of this prior information. This will most commonly

come down to determining hyperparameters from existing data as happens in standard

GP regression. If only some of the data is available due to temporal constraints then

the currently available data can be used, or if a computational model is available then

the prior can be determined using data generated by this model. Similarly, if different

batches of data have different noise levels then a single batch can be used etc. In

the case of a true one-shot regression on blind data then either all, or a subset of the

data can be used to determine k; from which SSGP iteration allows for GP regression

which accounts for the whole data set and can be further updated if more data becomes

available.

In the context of the wind turbine dynamics identification problem, as discussed in

Section 2.7, there is a lot of prior information from which the covariance structure k

can be pre-determined and, as will be shown in the next chapter, it is in fact possible

to determine a generic covariance structure which is suitable for application on any

given wind turbine. This is especially important for this particular application since

expensive optimisation procedures must be avoided at all costs. One optimisation which

is unavoidable is that of the noise variance hyperparameter ξ for each batch, since noise

values are likely to change in time. Having pre-determined k however, determining ξ

via maximum likelihood can be done using a very simple root finding procedure as

shown in the following section.

Although not required for the application considered in this thesis, it is possible
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to formulate SSGP in such a way as to allow for on-line learning and updating of the

covariance function k. To avoid disrupting the overall narrative, the outline of this

more general procedure is deferred to Section 6.6.

Training for Noise Variance

In general the noise variance for each batch of data in SSGP iteration is not known,

or changes. In these cases, noise hyperparameter training can easily be accommodated

into the SSGP framework at each iterate. This is done via the standard maximum

likelihood approach to find the most likely noise variance for each batch of data before

it is processed through the SSGP algorithm, the other hyperparameters being those

defined for the covariance function k in the SSGP tuple. Importantly, this means that

SSGP iteration can perform regression on data which contains multiple or changing

noise variances, simply by splitting the data up into batches, each containing a given

noise level. This is of course assuming that it is possible to track when noise variance

is likely to change, but this will be possible in a large number of practical cases, e.g.

if measurement equipment noise depends on ambient temperature then temperature

records could be used to batch the data into similar noise groupings. In other cases

the noise might change across the domain of the input vector, in low dimensional cases

this allows us to identify regions of different noise variances with respect to the input

values and batch the data accordingly.

When noise training for each batch of data in SSGP regression, it is possible to

reduce the maximum likelihood optimisation to a simple root-finding problem, this can

be done as follows: Consider the covariance matrix for a batch of noisy data at input

points D,

ΛDD + ΩD.

We pull out both the amplitude and noise variance hyperparameters, a = eφa and

ξ = eφξ from ΛDD and ΩD giving,

ΛDD + ΩD = eφaΛ̄DD + eφξΩ̄D,
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where both Λ̄DD and Ω̄D are defined in the obvious way, note that Ω̄D will most

commonly be the identity matrix, however, this analysis is performed in this more

general setting which allows for more complicated, scaled noise structures. We now

define a new log-hyperparameter β such that,

eφξ+β = a, (6.15)

and so we can express our covariance matrix as,

ΛDD + ΩD = eφξ(eβΛ̄DD + Ω̄D).

For the above covariance matrix (we’ll call it Λ̂DD), and with the given log-hyperparameters,

the partial derivative of L∗ (Equation 5.3) with respect to φξ is,

∂L∗

∂φξ
= trace

[
Λ̂−1
DDΛ̂DD

]
−YT

DΛ̂−1
DDΛ̂DDΛ̂−1

DDYD

= d−YT
DΛ̂−1

DDYD,

where d = #D. In order to find a minima of L∗ we wish to solve ∂L∗

∂φξ
= 0, and since

we know the value of a from k in the prior SSGP tuple we also want Equation 6.15 to

hold; hence we have the following pair of simultaneous equations:

1. YT
De
−φξ(eβΛ̄DD + Ω̄D)−1YD − d = 0

2. eφξ+β = a,

combining these we obtain a single equation,

YT
D(ΛDD + eφξΩ̄D)−1YD − d = 0 (6.16)

in which φξ is the only unknown. This can then be solved via root-finding for the

function of φξ on the left hand side. While in the above equation the noise variance, ξ,

itself could be solved for; testing on various examples it has been found best to solve

for φξ, as above, since numerically this form behaves better in root finding algorithms.
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In general, the noise will be assumed to be independent and identically distributed,

giving Ω̄D = I. In this common case, further gains can be made in terms of computa-

tional speeds. Consider the function in Equation 6.16 for which we are root-finding, it

will be denoted by h(φξ), for the case Ω̄D = I,

h(φξ) = YT
D(ΛDD + eφξI)−1YD − d.

The need to invert the interior matrix during each iteration when root-finding can be

avoided as follows: Let USUT be the singular-value decomposition (SVD) of ΛDD then

the function h and its derivative dh
dφξ

can be re-expressed as,

h(φξ) = ŶT
D



1

s1+e
φξ

0 . . . 0

0 1

s2+e
φξ

. . . 0

...
...

. . .
...

0 0 . . . 1

sd+e
φξ


ŶD − d, (6.17)

dh(φξ)

dφξ
= −ŶT

D



e
φξ

(s1+e
φξ )2

0 . . . 0

0 e
φξ

(s2+e
φξ )2

. . . 0

...
...

. . .
...

0 0 . . . e
φξ

(sd+e
φξ )2


ŶD, (6.18)

where the si are the singular-values appearing along the diagonal of S and we define,

ŶD := UTYD.

The above formulations allow h and dh
dφξ

to be evaluated during each iteration (of

any given root-finding procedure) without the need for matrix inversion, instead only

requiring a single SVD to be performed prior to iteration.

Reformulating the maximum likelihood procedure into a root finding problem im-

proves algorithmic speed, but perhaps more importantly, it also massively reduces the

processing power and computational machinery required to perform regression. A full

optimisation procedure with derivative and Hessian information requires fairly com-
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plicated software and not inconsiderable processing power, however, the above root

finding problem can be solved using very lightweight approaches, such as Newton’s

method, which can be performed on much less powerful devices, such as PL controllers.

This opens up the possibility, for example, for SSGP regression to be embedded within

existing real-time systems without the need to introduce additional processing power.

0 0.5 1 1.5 2 2.5

No. of datapoints 10
4

0

0.05

0.1

0.15

Time (s)

Figure 6.8: Execution times for SSGP im-
plementation with no noise training for up
to 25,000 data points. Note the linear scal-
ing.
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Figure 6.9: Execution times for SSGP im-
plementation with noise training for up to
25,000 data points. Note the linear scaling.

Optimal Batch Sizes

Consider the case of SSGP regression for an underlying function, f . Given noisy mea-

surements of f , YD, at input points D we wish to determine how best to implement

the above formulations. Since SSGP regression can be implemented iteratively we must

decide how much of the data YD to process at each stage. Consider the numerical com-

plexity of SSGP updates: from Equations 6.8 and 6.9 it follows that the SSGP formulas

scale as O(m3) where m is the number of data points being used to update the current

SSGP iteration (we will refer to this as the batch number). For n = #D there will need

to be n
m iterations in order to have processed all of the data YD. Thus, the complexity

for SSGP iteration is O(nm2). Since m is a constant which will be chosen and then fixed

(this is discussed further below) it is in fact the case that the numerical complexity of

SSGP regression is O(n), i.e. it is linear in the total number of measured data points.
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Figures 6.8 and 6.9 show explicitly this linear scaling for SSGP regression in the case

where noise variance is known and when it is trained for during each iterate (via the

root finding implementation of maximum likelihood discussed previously) respectively;

these examples had batch sizes of m = 100. This linear scaling is in stark contrast to

the usual cubic scaling of GP algorithms.

Total no.     

     of datapoints 

Time (s)

Batch size

0

0.005

4000

0.01

0.015

0.02

0.025

2000
0

500 100

Figure 6.10: SSGP training times for different batch sizes and numbers of datapoints.
In this case the noise level is known a priori.

In order to determine the optimal value of m it is instructive to consider the O(nm2)

scaling present before we have fixed a value for m. This indicates that minimising

complexity equates to minimising the value of m, however, we must be wary of the

assumptions which were implicitly made when determining these complexities; one of

these assumptions being that m > #P. Therefore, we should minimise m but be

careful once it reaches smaller values. Numerical tests around small values of m easily

determine the point after which decreasing m further starts to increase computational

times again. The results of such tests for the current implementation of SSGP iteration

are shown in Figures 6.10 and 6.11 for #P = 10; these results indicate that batch sizes

of m = 35 (when noise variance is known) and m = 40 (when noise variance is trained

for at each iteration) are about optimal.

The optimal batch size, from the point of view of computational times, will change
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Time (s)

Batch size

Total no.    

of datapoints

0

0.05

4000

0.1

0.15

0.2

2000 0
500 100

Figure 6.11: SSGP training times for different batch sizes and numbers of datapoints.
In this case the noise level is trained for on each batch.

with #P. The following gives a useful rule of thumb for estimating optimal m: in

the SSGP formulae the complexity for each update is O(m3) assuming that m > p as

previosuly discussed, where p = #P. The next most costly operations in SSGP have a

complexity 4m2p and the assumptions used when determining complexity break down

when 4m2p = m3, i.e. when m = 4p. We then look to find an optimal batch size by

minimising m up until the point where our assumptions break down, and so the above

analysis suggests setting m = 4#P; in the previous example this suggests an optimal

value of m = 40, which from the results in Figures 6.10 and 6.11 can be seen be a good

estimate.

While the current section has focussed on computational speed, it is worth noting

that in the case of noise training one must also choose batch sizes which are large

enough so as to allow for effective determination of the noise variance. This will very

much depend on the specifics of each given regression problem but generally one would

have more points than is suggested by optimising for speed alone. The analysis of this

section does however give a useful lower limit in these cases.
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6.4.5 SSGP Regression Example

Examples of SSGP iterative regression will now be given for a sinusoidal function, again

using a squared exponential covariance function. #P = 10 and the points in P are

equidistributed across the domain. First, amplitude and lengthscale hyperparameters

are determined using 200 data points, this is simulating the determination of hyperpa-

rameters from currently available data. Next, SSGP iteration is performed 500 times

with 30 noisy datapoints generated at each iterate for a total of 15,000 datapoints; the

noise standard deviation for each 30 point dataset being drawn uniformly from between

0.2 and 0.8. Figure 6.12 shows the true function along with a batch of noisy data and

function predictions from the first SSGP iterate, as well as the function predictions

from the final SSGP iterate. Figure 6.13 shows the first SSGP function predictions

and confidence intervals as well as the final SSGP predictions and confidence intervals.

Figures 6.14 and 6.15 show the root-mean-squared-error (RMSE) across the function

at each iterate and a histogram of the error standard deviations from the 500 datasets.

The condition number of ΛPP with #P = 10 is around 7× 107. These results demon-

strate that SSGP iteration can refine GP predictions effectively when data is batched

and with varying noise levels. The SSGP implementation is also fast, in this example

the entire iterative process (after determining the initial prior) on 15,000 data points

(and including the time taken to generate all these datapoints) takes less than 1s on a

desktop computer.

6.4.6 Comparative Performance of SSGP and Standard GP regression

SSGPs were originally developed for iterative GP regression in cases where a standard

GP becomes impractical, such as when new data becomes available at given time inter-

vals or when different batches of data have different noise levels. However, as was seen

in the previous section SSGP iteration is also very fast; this opens up the possibility of

using SSGP iteration as a fast alternative to standard GP regression on large datasets

by splitting the data into batches and then performing SSGP iteration on the batched

data. Therefore, to validate SSGP regression as a method for iterative regression, both

in the case of genuinely batched data and as a fast alternative for large datasets, it is
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Figure 6.12: SSGP regression example
showing the true function, first iterate and
last iterate and the first batch of data.
Points in P are shown on the x-axis.
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Figure 6.13: First (black) and last (red)
SSGP regression predictions and confidence
intervals.

necessary to compare the performance of SSGP with standard GP regression in cases

where they can both be used.

SSGP regression has been shown to be able to handle much larger quantities of

data than the standard GP implementations, for these direct comparisons however we

shall restrict the quantities of data to that which both approaches can process. In

each case the covariance function is a squared exponential. The standard GP approach

used optimised code developed in [29] with hyperparameter optimisation which includes

derivative information.

There are two test cases, both using squared-exponential covariance functions. Case

1 will consider the function,

f(x) = sin(x) +
x

2
,

and Case 2 the two dimensional function,

g(x, y) = sin(x) +
x

2
+ sin(1.5y).

Figure 6.16 shows f and a sample of noisy data, #P = 11. Figure 6.17 show the same

for g along with the Sufficient-Subset; note that the density of points in P is different

in the x and y directions due to the different lengthscales, as discussed in Section 6.4.3,
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Figure 6.14: RMSE of SSGP regression at
each iterate.

Figure 6.15: Histogram of the noise stan-
dard deviations present across the 500
datasets used in SSGP example.

#P = 40. Gaussian noise of standard deviation 0.2 is used throughout. The two test

cases look to compare standard GP and SSGP in terms of both speed and accuracy

when they have the same covariance structure. Prior information in order to generate

a covariance structure k is simulated by optimisation on 500 noisy datapoints. k is

then used for both standard GP and SSGP regression, with the noise hyperparameter

being determined by root-finding in each case. RMSEs for both methods across the

functional domains, as well as execution times, were recorded for input data ranging

from 200 to 2000 datapoints. The results from this are shown in Figures 6.18-6.21 for

the two cases. In both cases there are no significant differences in terms of RMSE, but

SSGP can be seen to be much faster and with superior scaling.

6.5 Super Sufficient-Subsets

In the development of SSGPs so far it has generally been assumed that the Sufficient-

Subset P is chosen such that the covariance matrix ΛPP is invertible. This is also

assumed to be the case in the other existing methods for batched GPs discussed in

Chapter 4. When determining P it was shown, in Section 6.4.3, that one would ide-

ally choose P such that ΛPP is invertible, while the addition of any one extra points
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Figure 6.16: The function used in test Case
1 along with a sample of noisy data.
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Figure 6.17: The function used in test Case
2 along with a sample of noisy data (green)
and Sufficient-Subset (black).
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Figure 6.18: RMSEs for both SSGP and
standard GP regression across different
sizes of dataset in test Case 1.
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Figure 6.19: Execution times for both
SSGP and standard GP regression across
different sizes of dataset in test Case 1.

renders it singular. This being the point after which all of the information about the

underlying GP model can be recreated from information at points in P. Hence, the

GP covariance structure determines the number of points necessary to allow for an

accurate representation of the functions generated by this GP. When performing SSGP

iteration it is therefore implicitly assumed that the measured data has been generated

by the GP prior, with its given covariance structure. However, in practice when ap-

plying SSGPs to measured data this is no longer the case; a covariance structure is

determined which is hopefully appropriate for the underlying function, but locally the
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Figure 6.20: RMSEs for both SSGP and
standard GP regression across different
sizes of dataset in test Case 2.
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Figure 6.21: Execution times for both
SSGP and standard GP regression across
different sizes of dataset in test Case 2.

function may have features which vary faster than indicated by the global covariance

structure. There is therefore the possibility that a given set, P, results in a condition

number of the required magnitude, while still being too sparse on some regions of the

particular function4. Ideally one would therefore like to add more points to P whenever

this was the case, however, this will render the matrix ΛPP singular (either actually or

numerically) and hence the matrix M can no longer be determined by matrix inversion.

The following analysis tackles this problem, allowing additional points to be added to

P past the point where ΛPP becomes singular. We start with some definitions:

Definition 5. A Sufficient-Subset is minimal if its covariance matrix is non-singular

but the addition of any other point renders it singular. P0 will be used to denote a

minimal Sufficient-Subset.

Definition 6. A set of points P is a Super Sufficient-Subset if it strictly contains

a minimal Sufficient-Subset, i.e. if ∃P0 s.t. P0 ( P.

It was shown in Section 6.3 that for a minimal Sufficient-Subset, P0, and for sets of

points Z and Z∗, all covariance matrices are of the form,

ΛZZ∗ = VZΛP0P0V
T
Z∗ .

4This scenario is relevant to the current work since it has been found to occur in real data and, in
particular, for the wind turbine aerodynamic functions considered in this thesis
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This followed by showing that once P0 has been found, the function values at additional

points, z say, can be rewritten as,

fz = −vTz
uz

FP0 ,

for some vz and uz. Covariance matrix entries were then determined by taking the

expectation of products, E(fzfz∗) (technically the current formulae are for zero prior

mean cases, however, non-zero priors follow as above by subtracting the mean from

measured data.).

We now consider a Super Sufficient-Subset P (so P0 ( P).

Lemma 5. For any set of points Z∗,

ΛPZ∗ = ΛPPṼ
T
Z∗ ,

for some matrix ṼZ∗ .

Proof.

ΛPz∗ = E(FPfz∗)

= E(FP

(
FT
P0

vz
−uz

)
)

= ΛPP0

vz
−uz

= ΛPP

(
J

vz
−uz

)
,

where J is the matrix of 1’s and 0’s which extracts the relevant columns from ΛPP,

since P0 ⊂ P. Thus the result follows by applying the above to each element of Z∗.

This result will allow for the matrix M to be determined during each iterate. Recall

that for new data D, M is required such that;

ΛPPM = ΛPD.

Since P is Super Sufficient, ΛPP is singular and, being symmetric, therefore decomposes
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into [57],

ΛPP = UDUT

=

u11 u12

u21 u22

D1 0

0 0

uT11 uT21

uT12 uT22

 ,
with U orthogonal and D1 diagonal and positive definite. Partitioning ΛPD similarly,

ΛPD =

(ΛPD)1

(ΛPD)2

, it follows that;

ΛPPM = ΛPD

⇐⇒ UDUTM = ΛPD

⇐⇒ DUTM = UTΛPD

⇐⇒

D1 0

0 0

uT11 uT21

uT12 uT22

M1

M2

 =

uT11 uT21

uT12 uT22

(ΛPD)1

(ΛPD)2


⇐⇒

D1u
T
11M1 +D1u

T
21M2

0

 =

uT11(ΛPD)1 + uT21(ΛPD)2

uT12(ΛPD)1 + uT22(ΛPD)2

 .
Hence, for a solution to exist we require that uT12(ΛPD)1 + uT22(ΛPD)2 = 0. This is

indeed the case since,

uT12(ΛPD)1 + uT22(ΛPD)2 =

u12

u22

T ΛPD

(from Lemma 5) =

u12

u22

T ΛPPṼ
T
D

=

ΛPP

u12

u22

T

Ṽ T
D

= 0.

The final equality holds since the columns of

u12

u22

 constitute a basis for the null-space

of ΛPP. Having shown that the necessary condition of the above expression being zero
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Figure 6.22: The function sin(x1.6) along with a sample of noisy data and Sufficient-
Subsets.

is met, determining an appropriate matrix M now only requires a solution to;

D1u
T
11M1 +D1u

T
21M2 = uT11(ΛPD)1 + uT21(ΛPD)2

⇐⇒ D1

u11

u21

T M =

u11

u21

T ΛPD,

the most straightforward solution to which is,

M =

u11

u21

D−1
1

u11

u21

T ΛPD. (6.19)

Note, the only inversion required here is of D1 which will be chosen such that it is

invertible, hence this solution will always be well defined. Equation 6.19 therefore allows

us to use a Super Sufficient-Subset without singularity causing an issue. Furthermore,

in practise it is not necessary to exactly determine P0, instead when a need for more

points in P is observed one simply increases the number of points as required while

keeping the same limit on the condition number of D1 one would apply to ΛP0P0 .

The need for Super Sufficient-Subsets in the turbine aerodynamics case will be

discussed further in Chapter 7. For now, the error reduction potential of using a Super

Sufficient-Subset is demonstrated for the function sin(x1.6), shown in Figure 6.22. This

function was chosen since it would not be generated by a GP prior due to the lengthscale
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Figure 6.23: RMSE error from SSGP predictions using a minimal or Super Sufficient-
Subset.

being non-constant across the function, as can be seen in the figure. Since, even in this

case, applying a Sufficient-Subset with maximum condition number still results in good

predictions, we choose a lower limit in order to demonstrate on this toy example what

has been seen for real data. Our ‘minimal’ Sufficient-Subset, P0, for this example was

therefore chosen with condition number 1.8×103 and is shown in Figure 6.22. A Super

Sufficient-Subset, P, was also generated which contains 4.5 times the number of points

in P0, again shown in Figure 6.22. A condition number limit of 1.8× 103 is placed on

the D1 matrix of M in this case. Figure 6.23 shows the RMSE results from performing

SSGP iteration on batches of 100 noisy data points when using P0 and P respectively.

These results clearly show that, although the same limit is applied to the condition

number of the inverted term in M , the use of a Super Sufficient-Subset results in lower

prediction errors for this example.

6.6 Extension of SSGPs to Include Online Hyperparam-

eter Learning

While the application for which SSGPs have been developed requires that online op-

timisations of hyperparameter values is avoided, it is in fact still possible within the

SSGP framework. Since this is technically out of scope for this thesis, an outline only
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is given here as to how this may be done. In future work these more general SSGP

implementations will be investigated fully.

Consider an SSGP model (k,P,Γ,Ψ). Recall from Section 6.4.1 that Γ and Ψ

are the propagated forms of the ‘normalised’ pseudo-data and precision matrix on P,

(ΛPP+ΩP)−1YP and (ΛPP+ΩP)−1 respectively. We start by assuming we have direct

access to the covariance matrix, (ΛPP + ΩP), and pseudo data, YP. Given new data,

YD, we denote the combined input and measurement vectors by,

Z =

P

D

 ,
and,

YZ =

YP

YD

 ,
respectively. The covariance matrix for YZ is,

ΛZZ + ΩZ =

ΛPP + ΩP ΛPD

ΛDP ΛDD + ΩD

 ,
and so the negative log-likelihood function (with constants and scaling removed) for

YZ is;

nLL∗ = YZ
T (ΛZZ + ΩZ)−1YZ + log det(ΛZZ + ΩZ). (6.20)

From an application of the block matrix inversion identity (Equation 6.4) it follows

that evaluation nLL∗ only requires access to Γ and Ψ from the SSGP model (except

for a constant term which can be ignored for the purposes of minimisation), as shown

below for the relevant terms:

(ΛZZ + ΩZ)−1 =

Ψ−ΨΛPDηΛDPΨ −ΨΛPDη

−ηΛDPΨ η

 ,
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with η = (ΛDD − ΛDPΨΛPD + ΩD)−1. Hence,

YZ
T (ΛZZ + ΩZ)−1YZ = YP

TΓ− ΓTΛPDηΛDPΓ−YD
T ηΛDPΓ− ΓTΛPDηYD + YD

T ηYD

= YP
TΓ− (YD + ΛDPΓ)T ηΛDPΓ + (YD − ΛDPΓ)T ηYD.

Similarly for the determinant,

log det(ΛZZ + ΩZ) = log(det(ΛPP + ΩP) det(η−1))

= log

(
1

det Ψ
det(η−1)

)
= − log det(Ψ) + log det(ΛDD − ΛDPΨΛPD + ΩD).

Note that the terms YPΓ and − log det(Ψ) are fixed by the current SSGP model and

so are constants which can be dropped from any minimisation. It is therefore possible

to allow for the covariance functions which define the Λ(·,·) and ΩD matrices (these

being k and a noise term) to vary with respect to their set of hyperparameters, θ, and

then to perform likelihood maximisation in order to update these hyperparameters in

light of new data. These updated hyperparameters can then be used when refining

the SSGP model, essentially adjusting the SSGP covariance function, k. Since the

Sufficient-Subset, P, for an SSGP model is determined by matrix condition numbers,

which in turn are determined by hyperparameter values, we briefly discuss how this

aspect of SSGP iteration might be adjusted in order to accommodate the updating of

hyperparameters.

The simplest case to consider is if we are using a Super-Sufficient Subset. In this case

P has already been chosen to be a set of points which contains more input locations than

is necessary to render ΛPP singular, where here ΛPP is that determined by k, rather

than the SSGP model. While updating of hyperparameters will alter the covariance

structure, it seems unlikely that the initial estimate (from computer models or the first

batch of data) would be so different as to render ΛPP no longer singular. Assuming

then that ΛPP remains singular, the new hyperparameter values can be used without

altering P.

If, on the other hand, P is required to be minimal, then a change in hyperparameter

127



Chapter 6. Sufficient-Subset Gaussian Process Iteration

values might result in the condition number of ΛPP falling below its specified limit.

In this case a new Sufficient-Subset, Pnew, can be defined (following the standard

procedure) which regains this required limit for the new hyperparameter values. The

most recent data, along with the current SSGP model, can then be used to define a new

SSGP model on Pnew. This can be done by using the same procedure that generates the

initial SSGP model in Section 6.4.1. Note that the identities used here for evaluating

nLL∗ are also required in order to determine the new SSGP model on Pnew.

6.7 Relationship to Recursive Gaussian Processes

As was mentioned in Section 4.4, another iterative approach to GPs is given in [47]

under the title of Recursive Gaussian processes. In [47] two approaches to iterative

GPs are described. The first assuming that hyperparameters are known and the second

updating hyperparameters at each iterate via a sigma point method. Note that in [47]

it is always assumed that the set of inducing points, m in Section 4.4 or P in SSGP

notation, is known and remains fixed throughout for both methods, although there

is no discussion as to how or why any particular set should be chosen. As Huber

himself points out, the latter method requires additional assumptions and since we have

developed the current SSGP method from a standpoint of known (or well approximated)

hyperparameters, we will consider comparisons between SSGP and this first method of

Huber’s.

The following theorem shows that in terms of the final equation sets, Huber’s

method and SSGP iteration agree;

Theorem 4. In the case of known hyperparameters, Huber’s final Recursive GP up-

dating equation set agrees with those of SSGP iteration.

Proof. Note that between our matrix M and Huber’s Matrix J holds the relationship

MT = J . When we use the matrix M a subscript will be given here to indicate which

set of points are being used to define it. Without loss of generality, we assume an

initial prior mean of zero. For the sake of clarity means and covariance matrices will be

denoted by Sµ and SΦ for SSGP equations and Hµ and HΦ for Huber’s equations when
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converted into the current notation. As in general Λ will denote initial prior covariance

matrices in both cases.

We start by expressing the SSGP Equations in terms of priors and posteriors:

Sµpoz = ΛzPΓpo

= Sµprz + [ΛzPMD + ΛzPΨprΛPD][SΦprDD + ΩD]−1[YD − (SµprD )]

= Sµprz + [SΦprzD + (ΛzPMD − ΛzD)][SΦprDD + ΩD]−1[YD − (SµprD )] (6.21)

SΦpozz = Λzz − ΛzPΨpoΛPz

= SΦprzz − [ΛzPMD + ΛzPΨprΛPD][SΦprDD + ΩD]−1[MT
DΛPz + ΛDPΨprΛPz]

= SΦprzz − [SΦprzD + (ΛzPMD − ΛzD)][SΦprDD + ΩD]−1[SΦprzD + (ΛzPMD − ΛzD)]T(6.22)

We now consider the equations from [47]. Huber’s equations require for the posterior

equations at P to be determined first. In our SSGP notation this is:

HµpoP = HµprP + HΦpr
PPMD[ΛDD −MT

DΛPD +MT
D

HΦpr
PPMD + ΩD]−1[YD −MT

D(HµprP )]

HΦpo
PP = HΦpr

PP −
HΦpr

PPMD[ΛDD −MT
DΛPD +MT

D
HΦpr

PPMD + ΩD]−1MT
D

HΦpr
PP

Across the whole domain, at some point z say, predictions are then made as follows

(Equation 9 in [47], in his notation the expressions are those for µpt and Cpt ):

Hµpoz = MT
z

HµpoP

HΦpo
zz = Λzz −MT

z ΛPz +MT
z

HΦpo
PPMz

Substituting in for the posteriors at P, from the above it follows that:

Hµpoz = Hµprz +MT
z

HΦprPPMD[HΦprDD + ΩD]−1[YD − (HµprD )]

= Hµprz + [ HΦprzD + (MT
z ΛPD − ΛzD)][ HΦprDD + ΩD]−1[YD − (HµprD )] (6.23)
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HΦpozz = Λzz −MT
z ΛPz +MT

z
HΦprPPMz +MT

z
HΦprPPMD[ HΦprDD + ΩD]−1MT

D
HΦprPPMz

= HΦprzz + [ HΦprzD + (MT
z ΛPD − ΛzD)][ HΦprDD + ΩD]−1[HΦprzD + (MT

z ΛPD − ΛzD)]T(6.24)

These final expressions for both µpoz and Φpo
zz, in Equations 6.21-6.22 and 6.23-6.24

respectively, are then identical to each other given the same initial mean vector and

covariance matrix; this follows since it is clear from the definition of M that,

ΛzPMD = MT
z ΛPD,

in all cases.

Hence, in terms of the predictive equation set, SSGP regression agrees with RGP

regression. Note that while the final equations sets turn out to be equal, the theoretical

approaches by which these equations are derived are very different, with RGPs using

Kalman-filtering theory rather than GP regression theory. Furthermore, the theory

underpinning the SSGP approach has gone well beyond that considered for RGP. This

point will be made more generally in the following section, when SSGPs and the other

batched GP approaches are discussed, but briefly, RGP theory gives no mention of

how or why a given set of inducing points should be chosen, doesn’t consider the

possibility of singular covariance matrices and offers a technique for hyperparameter

learning which requires additional assumptions. SSGP theory on the other hand deals

with all of these points and, as has been shown in Section 6.6, also leads to a method

for hyperparameter updating that remains grounded in GP theory and requires no

additional assumptions. Furthermore, for SSGPs it has been explicitly shown how the

method relates back to standard GP regression, and also when SSGP iteration and

standard GPs are equivalent.

6.8 Relationship to Other Batched GP Approaches

The other existing approaches to batched GPs, these being FITC, VFE and the other

associated methods obtained by varying the α divergence parameter in Equation 4.16,

turn out not to be identical to SSGPs. In order to begin comparing these methods we

130



Chapter 6. Sufficient-Subset Gaussian Process Iteration

Figure 6.24: Example function and noisy data drawn from the GP prior.

first consider the accuracy of the predictive equations for the case of known hyperpa-

rameters and fixed induction points (i.e. m = P, all fixed).

Standard GP, SSGP, FITC and VFE predictive distributions on P, from condi-

tioning on noisy data, were compared for 1000 functions drawn from a GP prior with

zero mean and a squared exponential covariance function. The amplitude and inverse-

lengthscale hyperparameters for the covariance function were both set to 1. Noise was

added to measurements with a standard deviation of 0.1. An example function drawn

from the GP prior is shown in Figure 6.24 along with a sample of noisy data. The set

P is also shown in the figure. 500 noisy measurements are taken from each function

and used for regression with each method. Standard GP processed the entire dataset

at once, whereas the batched approaches received the data in a sequence of 50 point

subsets, a total of 20 batches. The predicted mean values and standard deviations

were then calculated across P for each method. Table 6.1 shows the differences be-

tween each of the batched GP methods and standard GP for the mean and standard

deviation values. These results clearly indicate that there are no significant differences

between the predictive performances of any of the methods with respect to standard

GP regression in this case. Similar results are obtained if the hyperparameters which

define the GP prior are adjusted. Hence, we have demonstrated that in terms of accu-

racy, the performance of the SSGP predictive equations is in-line with existing state of

the art methods.
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Regression Method Mean Err. on P Mean % Std. Err. on P

GP 8.63×10−3 -
SSGP 8.49×10−3 0.2783
FITC 8.53×10−3 0.2787
VFE 8.51×10−3 0.2779

Table 6.1: Error statistics for standard and batched GP methods for a cohort of 1000
functions drawn from a GP prior. The second column gives the mean error of func-
tion predictions on P and the third gives the mean percentage difference between the
standard deviations resulting from standard GP regression and each of the batched
approaches.

A comparison of SSGPs with other batched GP methods therefore comes down to

considerations of hyperparameter and inducing point selection and the completeness

of existing theoretical knowledge. With regards to this last point we now revisit the

questions posed in Section 4.5, for which existing theory did not provide an answer,

and discuss whether SSGP theory has provided insight.

Q1. Does the underlying structure of a GP model suggest any particular approach to

performing regression on batched data, and what relationship would such a method have

with standard GP regression on all of the data at once?

SSGP theory is effectively a direct answer to Q1 since it was explicitly constructed

(see Section 6.4.1) from GP regression equations in order to agree with standard GP

regression at points in P, with the choice of Sufficient-Subset (based on matrix condition

number) ensuring that from P the SSGP can extrapolate predictions with minimal

error. The relationship to standard GP regression was explicitly shown in Theorem

3 and, effectively, comes down to the extent to which covariance expressions can be

transformed through P by the M matrices defined by Equation 6.10.

Q2. Given a GP prior, but as yet no measured data, does the GP itself indicate any

information about the number and location of inducing points necessary to accurately

model this GP?

This question was addressed during the development of SSGP regression through a

study of singular covariance matrices and the subsequent extension to the general case

in Sections 6.1 and 6.3. Having shown that singularity in covariance matrices indicates
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linear dependencies between function values, the concept of a Sufficient-Subset was

developed in order to be the minimal set of points for which the GP is effectively

determined by information on P, hence the use of the word sufficient. Note that the

Sufficient-Subset is determined entirely from the GP prior, without requiring measured

data. In terms of the location of the inducing points, assuming only information about

the GP prior there is no reason to choose anything other than equal spacing and hence

it is the number, rather than the exact position which is determined. With respect to

functions not strictly drawn from a GP prior, it has been shown that it is possible to

use a Super Sufficient-Subset in order to avoid the need to determine the best location

for each inducing point, avoiding the requirement for optimisation procedures.

Super Sufficient-Subsets were found to be the natural result of investigating the limit

of SSGP behaviour as the covariance matrix becomes singular, as more points are added

to P. As discussed in Section 4.5, existing methods all assume the covariance matrix

ΛPP to be invertible, with equations which are ill-defined if this is not the case. Since

additional points in P are effectively adding information, it seems contradictory that

the regression equations should break down as more points are added. It transpired that

for SSGPs this is not the case, singular covariance matrices were shown to be entirely

valid, with the correct form in which they should be handled determined by the analysis

of Section 6.5. Furthermore, in the case where the covariance matrix is exactly singular

(rather than singular due to finite computational precision), it was shown that SSGP

iteration is exactly equal to standard GP regression. As with the rest of SSGP theory,

these results follow from a principled consideration of the underlying structure of GP

covariance matrices.

Q3. Can such techniques be applied without the need for demanding optimisation and,

if so, when might this be possible?

SSGP investigations have shown that the answer to this last question is that optimi-

sation procedures may be avoided whenever a good prior can be determined for the

problem on which regression is to be performed. Once this prior has been found, the

choice of inducing points follows from Sufficient-Subset theory and SSGP regression can

proceed without the need for updating of hyperparameters or the locations of points in
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P. In the following chapter the process by which a suitable prior may be determined

is demonstrated for the wind turbine dynamics identification problem. It will also be

shown that accuracy in the turbine dynamics case is improved through the application

of a Super Sufficient-Subset.

SSGP iteration theory therefore allows for GP regression on batched data while

thoroughly addressing existing gaps in the knowledge base of this area. It shows how

a GP model itself contains the relevant information for determining how it is best

approximated and its relationship to standard GP regression has been explicitly shown.

Furthermore, as will be outlined in the following chapter, none of the existing batched

GP techniques are suitable for application in the turbine dynamics problem. This is

not only due to the need to avoid expensive optimisation, but also because the theory

of Super Sufficient-Subsets will be shown to play a key role in the development of a

general GP prior, suitable for application in any wind turbine.

6.8.1 The Future Development of SSGPs with Respect to Existing

Methods

While the development of SSGPs, up to the point reached in this work, will be shown

to result in a viable method for the identification of wind turbine dynamics, there is

a lot of scope for the further development of SSGPs in order to make them applicable

in more general settings, for example in cases where large quantities of prior informa-

tion is not available. This was touched upon is Section 6.6, where it was shown that

hyperparameter learning can be accommodated within the SSGP framework, along

with the potential for reselecting the points in the Sufficient-Subset, or applying a Su-

per Sufficient-Subset. It is therefore possible to develop a more ‘black box’ version

of SSGPs which can be applied to data without pre-determining the prior. It is this

version of SSGPs which can then be compared thoroughly with existing methods, since

it is in this setting that they have been principally developed. Key questions to be

answered there will relate to the differences in inducing point location determined by

SSGP theory and the optimisation procedures of VFE, FITC etc, along with differ-

ences in accuracy and speed. A pertinent question will also be whether Sufficient and

134



Chapter 6. Sufficient-Subset Gaussian Process Iteration

Super-Sufficient Subset theories render the need to optimise inducing point locations

unnecessary. Finally, existing methods will need to be re-examined in the context of

the theoretical insights contributed by SSGP theory, some of which apply generally,

such as the GP covariance matrix structure discussion of Section 6.3.

With respect to the aims of this thesis, the further development of SSGPs to include

hyperparameter optimisation falls out of scope5, and hence the extension of SSGPs (and

the subsequent further comparisons with existing techniques) outlined here necessarily

falls to being future work.

6.9 Discussion

This chapter has documented the development of a new GP regression approach, SSGP

iteration, which can handle batched data and changing noise levels, while scaling lin-

early with respect to the number of measurements. The method itself, and its asso-

ciated theory has been shown to provide answers to some fundamental questions not

addressed by existing methods. SSGPs were developed by generalising results seen for

GP polynomial regression in Chapter 5. The key factor which provided a link between

the polynomial and general nonlinear case being similarities in covariance matrix struc-

ture. SSGP iteration was developed from these initial observations into a full, practical

regression technique. The relationship between SSGPs and standard GP regression was

explicitly shown and experiments verified that SSGPs can perform with the same level

of accuracy as a standard GP on all of the data at once.

The same covariance structure considerations which led to SSGP regression were

then shown to lead to the possibility of using a number of inducing points which renders

the covariance matrix singular, a Super Sufficient-Subset. It was demonstrated that

the application of a Super Sufficient-Subset can reduce regression errors when dealing

with functions not strictly drawn from a GP prior. In the following chapter this will

turn out to be a crucial development in terms of defining a suitable SSGP prior in the

wind turbine dynamics identification problem.

5Since in the wind turbine context such optimisation procedures must be avoided for reasons outlined
in Section 2.6.3.
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Finally, it was demonstrated that there is scope for the SSGP regression model

to be extended to include online learning of hyperparameters, and the updating of

inducing point locations (or the application of a Super Sufficient-Subset to render this

unnecessary). There is therefore a lot of potential for SSGP regression to play an

important role in the future development of GP regression techniques, both theoretically

and practically. Future work will look to fully realise this potential.

With respect to the aims of this thesis, we have now developed the necessary tools

with which to begin looking at the learning of turbine dynamics from measured data.

The following chapter therefore considers the practical application of the GP techniques

developed in Chapter 5 and 6 to the turbine dynamics identification problem.
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Wind Turbine Dynamics

Identification

In this chapter we consider the application of both polynomial and SSGP regression

to the identification of wind turbine dynamics in below and above rated conditions

respectively. Since the proposed approaches will be tested on real data, we start by

considering the processing and conditioning of this data in Section 7.1. Such pre-

processing is necessary to remove anomalous signals in the data which are unrelated

to the sought dynamics. Appropriate sampling times are discussed in Section 7.2. In

Section 7.3 the efficient polynomial regression approach developed in Chapter 5 is ap-

plied to the maximum efficiency tracking region regression problem for both simulated

and real turbine data. Sections 7.4-7.7 consider the application of SSGP theory in

the above rated regression case. This involves using prior information, in the form of

known aerodynamics tables, to develop a general SSGP prior and Sufficient-Subset for

aerodynamic tables. For practical reasons it is shown that the regression formulation

derived in Section 2.6.1 will in fact be unsuitable for dynamics learning given the nar-

row trajectory of an operating wind turbine. An alternative formulation is therefore

presented in Section 7.8, followed by the development of an appropriate SSGP prior

and Super Sufficient-Subset. This new approach is then tested on simulated and real

data in Section 7.10.
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7.1 Data Conditioning

When the regression approaches developed in this thesis are applied to real data it

is necessary to perform certain pre-processing tasks in order to ‘clean’ the data and

remove signal contributions which are unrelated to the sought dynamics. This section

documents these various procedures.

7.1.1 Measurement Equipment Faults and Non-Standard Operation

A simple but important task when using real data is that of removing measurements

which have resulted from equipment errors which are unrelated to simple measurement

noise. This might include one or more transducers having failed, and so not generating

data, as well as any measurements relating to a period of time where the turbine is not

being operated as normal (e.g. data from when the turbine is shut down for routine

maintenance, even though the wind speed might be high enough for power generation

under normal circumstances).

7.1.2 Filtering nP Peaks and Higher Frequency Harmonics

The rotation of the blades on a wind turbine rotor results in harmonics being propagated

through the system at frequencies which are multiples of the turbine’s rotational speed.

This is mainly due to deterministic and stochastic sampling of the wind field, as well

as imbalance in the rotor caused buy non-identical blade manufacturing [24]. For a

3 bladed turbine the most prominent harmonics appear at 1P (rotor imbalance), 3P

and 6P, where P is denoting rotational speed (we use this notation since it is the

most common when referring to these harmonics, this should not be mistaken for the

Sufficient-Subsets of the previous chapter). Other harmonics such as the tower mode

might also appear in the frequency spectrum. Since these harmonics are independent

of the aerodynamics of the wind turbine, we wish to filter them out of measured data

in order to avoid their interfering with the regression process. Figures 7.1 and 7.2 show

power spectral density (PSD) plots from real turbine data before and after filtering

generator torque and rotor speed respectively.

138



Chapter 7. Wind Turbine Dynamics Identification

10
-1

10
0

10
1

Frequency (rad/s)

10
-5

10
0

10
5

PSD

 Generator torque PSD

 1P

 3P

 6P

 Filtered PSD

Figure 7.1: Power spectral density plots for
generator torque measurements before and
after filtering.
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Figure 7.2: Power spectral density plots for
rotor speed measurements before and after
filtering.

In the unfiltered PSDs of both figures 1P, 3P and 6P can be seen clearly, along with

what is a probable tower mode at just over 2 rad/s. Since the dynamics important

to the regression problem are all at frequencies lower than these peaks, for all signals

except for rotor speed, they are processed using a fifth order Butterworth filter [58]

with cutoff frequency 1.2 rad/s. As can be seen for the generator torque measurements

in Figure 7.1 this low-pass filter preserves the low-frequency components of the signal,

while attenuating the high frequency contributions, and in particular the harmonic

peaks.

The rotor speed measurements require a slightly different filtering approach. This

is because changes in rotor speed over just a few seconds will be important for the

regression problem due to the inertial component of Equation 2.6, furthermore, obtain-

ing rotor acceleration measurements requires differentiating the rotor speed time signal

(by adding a derivative term to the filter) and this will exaggerate any peaks which

haven’t been heavily attenuated. It is therefore necessary use a Butterworth filter with

a higher cutoff frequency of 3 rad/s (to capture faster changes in signal values), and

to explicitly remove the first two harmonic peaks with notch filters. The PSD of the

resulting signal can be seen in Figure 7.2.

These various filtering techniques result in time-shifted output signals and so it is

necessary to correct for this using autocorrelation to determine the time-shift on each
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filtered signal and then correct the output times as appropriate.

7.1.3 Spatial Filtering of Wind Speed Measurements

The concept of rotor effective wind speed was discussed briefly in Section 2.3. We

now consider this concept again. With respect to frequency components of signals, the

effective wind speed can be defined as the wind speed averaged over the rotor area such

that the spectrum of aerodynamic torque remains unchanged [59]. In [60] a transfer

function between point and rotor-effective wind speed is derived and shown to be:

Ve =

1
σ

(
s+

√
2
σ

)
(
s+

√
2

σ
√
a′

)(
s+

√
a′

σ

)Vp,
with

σ =
γR

v̄
.

R is the rotor radius, v̄ is the point wind speed averaged by a first order filter of the

form;

V̄ =
k

s+ b
Vp,

a′ = 0.55 and the turbulent decay factor, γ, has a standard value of 1.3 [59,60].

The above transfer function for ve was derived for a constant value of σ. In the cur-

rent case σ will vary with time and so the following approach is required to implement

this spatial filter.

First note that the above expression for Ve can be re-expressed as,

Ve =
sσ +

√
2(

sσ
√
a′ +

√
2
)(

sσ√
a′

+ 1
)Vp

=
sσ +

√
2

σ2s2 +
(√

a′ +
√

2√
a′

)
σs+

√
2
Vp

=
sσ +

√
2

σ2s2 +
(
a′+
√

2√
a′

)
σs+

√
2
Vp.
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Reverting to the time domain, this transfer function corresponds to the differential

equation:

σ2v̈e − σv̇p = −

(
a′ +

√
2√

a′

)
σv̇e +

√
2vp −

√
2ve.

Defining the differential operator Dσ = σ d
dt this becomes,

Dσ (Dσve − vp) = −

(
a′ +

√
2√

a′

)
(Dσve − vp) +

(
√

2− a′ +
√

2√
a′

)
vp −

√
2ve.

The above second order equation can then be formed into a system of two first order

differential equations. Let y1 = ve and y2 = Dσve − vp, this gives rise to the system,

Dσy1 = y2 + vp

Dσy2 = −

(
a′ +

√
2√

a′

)
y2 +

(
√

2− a′ +
√

2√
a′

)
vp −

√
2y1,

dividing through by σ and integrating gives,

y1 =

∫
y2 + vp
σ

dt

y2 =

∫ −(a′+√2√
a′

)
y2 +

(√
2− a′+

√
2√

a′

)
vp −

√
2y1

σ
dt.

This system of integral equations can then be solved in Simulink software using the

block diagram shown in Figure 7.3, resulting in an effective wind speed time history.

Figure 7.4 shows example time histories of measured and effective wind speeds from an

anemometer, determined using this spatial filtering method.

7.2 Measurement Correlations and Sampling Times

The data available to a wind turbine controller is very high frequency, i.e. in the range

of 20-100Hz (20Hz being the frequency of real data available for this work). In terms of

extracting information on which to perform regression, we require that measurements

are approximately independent of each other, since otherwise we are effectively double

counting and this will impact the quality of predictions. For regression purposes the
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Figure 7.3: Effective wind-speed block diagram. µpt is the average point wind speed
across the whole time history. The thick black lines indicate crossing points.
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Figure 7.4: Measured and spatially filtered (i.e. effective) wind speed time histories.
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Figure 7.5: Autocorrelation plot for a wind turbine rotor speed time history.

frequency of available data is much higher than is required and, therefore, measure-

ments must be sampled with a time interval which avoids these data correlations. In

order to determine a suitable sampling interval, autocorrelation analysis was performed

for various wind turbine data time-series. An example of this is shown in Figure 7.5 for

rotor speed. The various results all show 20s to be a time lag for which the autocor-

relation values have made their initial crossing of the zero line. Hence, 20s was chosen

as the sampling interval for regression data.

7.3 Maximum Efficiency Region Dynamics Identification

As discussed in Section 2.6.2, a regression equation can be formed for during maximum

efficiency tracking of the wind turbine in below rated conditions which has the form,

Ĝ = Θ2 + L∗(ω̂−1
r ) + δ.

Where the measurements Ĝ are formed from data available to the turbine controller

and, assuming a linear torque loss function L, the above equation is a quadratic poly-

nomial in ω̂−1
r with additive noise.

In this section both GP and LS regression will be applied to this problem using

data both from simulations and from a real wind turbine. The fast polynomial GP
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implementations developed in Chapter 5 are used throughout.

7.3.1 Learning from Simulated Data

Simulated data for these investigations was generated using the Supergen Exemplar

5MW wind turbine model. As outlined in Section 2.8, this is a high quality Simulink

based turbine simulation model developed by the Supergen Wind Hub to allow for the

development of advanced control techniques [26]. Both the power curve and torque-

speed diagrams seen in early chapters, along with the sample trajectory, in Figures 2.3

and 2.7 were produced using this model. Simulations were run over a range of wind

conditions with mean wind speeds between 5 and 8 m/s and turbulence intensities of

between 5 and 20%. The relevant data, i.e. that required to determine Ĝ, was extracted

from the model.

Figures 7.6 and 7.8 show the values of CPmax and the drivetrain loss functions1

respectively predicted by both LS and GP regression techniques. Each prediction is

from a dataset containing 500 points, corresponding to roughly 3 hours of realtime

operation.

Figure 7.6: Cp,max estimates from both
GP and LS. The true value is given by
the black diamond.
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Figure 7.7: Cp,max estimates from
datasets with two different values of
maximum efficiency.

In Figure 7.6 it is clear that the GP approach is superior to using LS, since, while the

1Note that the loss contours are indicating the torque losses that would result in a power loss of the
given percentage at each rotational speed.
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GP predictions are clustered close to the true value of CPmax, with some amount of

positive bias (potential sources of which will be discussed), the LS results are spread

almost uniformly across the range of probable values. These results are typical of all

test runs carried out with the simulated data. Based on the GP clustering, one would

expect a shift in CPmax by some small amount to be detectable. In order to test

this hypothesis, regression was performed on a dataset generated with all CP values

reduced by 0.05 and compared to regression on the original data. CPmax estimates

from these two cases are shown in Figure 7.7 where the sets of prediction clusters are

clearly separate, and hence the GP predictions are indeed able to detect this shift in

aerodynamic efficiency.
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Figure 7.8: Drivetrain loss predictions
along with loss contours (percentages
in terms of design power values at each
rotational speed).
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Figure 7.9: Drivetrain loss predictions
along with loss contours for two differ-
ent loss function cases.

Similar results are then observed for the drivetrain loss predictions in Figure 7.8

where the true losses in the model are shown along with various GP and LS regression

predictions. Again, the GP predictions are much more tightly clustered and, while they

do show a bias, GP regression here can be seen to give both more accurate and more

consistent predictions of the losses in the drivetrain.

The GP method was then further tested with respect to sensitivity to drivetrain

losses by adjusting the losses function in the model. Figure 7.9 shows the GP predictions

from Figure 7.8, using the depicted true losses function. This set of predictions has

been labelled cluster A in Figure 7.8. Regression was then performed for data generated
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with an altered loss function obtained by shifting the left hand value of the original

loss function down by 2.5%. This second set of predictions is labelled cluster B. It

can be seen that these two clusters are clearly separate and so this shift in losses is

detectable when using the GP regression approach, indicating that the GP predictions

are accurate enough to detect small changes in loss values.

7.3.2 Possible Bias Correction

In the above results for both CPmax and drivetrain losses there is clearly the presence

of some bias in the predictions. We now considered the possible sources of this bias and

whether anything can be done to correct for it. Since the variation present which results

in ‘noise’ here is due to the control system attempting to track maximum efficiency, it is

quite possible that it is the underlying controller dynamics and turbine operation which

is to blame here. However, there is at least one source of bias which stems from the

assumptions used to develop the regression equation, this being the Taylor expansion

of the term λ−3Cp(λ). As can be seen in Figure 2.2 the Cp curve is very flat around

λ = λmax and hence a Taylor expansion should not results in any bias. However,

the term λ−3 is both steep and asymmetrical at this point. Even if the variation in

λ−1 = v
ωR is approximately Gaussian, the resulting variations about λ−3

max will certainly

not be. This issue is depicted in Figure 7.10. The following analysis attempts to define

a correction term for this source of bias.

Since the turbine is attempting to maintain a tip-speed ratio of λmax and wind

speed fluctuations are the main cause of disturbances in the system; for a given rotor

speed ω we define vmax such that,

λmax =
ωR

vmax
,

and then the measured λ’s are of the form,

λ =
ωR

vmax + ζ
,

for some ‘error‘ term ζ which represents the deviation of the true wind speed, v, from
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Figure 7.10: Asymmetric outputs example. Transforming the mean and standard de-
viation values of the input variable, λ, through the given function, it is clear that the
output values are not distributed symmetrically about the transformed mean.

vmax. Assuming ζ is Gaussian the expected value of λ−3 can then be expressed as,

E[λ−3] = E

[(
vmax + ζ

ωR

)3
]

=
1

(ωR)3
E[v3

max + 3v2
maxζ + 3ζ2vmax + ζ3]

=
1

(ωR)3
(v3
max + 3τvmax) where τ = E(ζ2)

= λ−3
max

(
1 +

3τλ2
max

(ωR)2

)
.

The above expression indicates that we should expect the predictions of the term

λ−3
maxCPmax, and hence CPmax itself, to be over-predicted by a factor of,

(
1 +

3τλ2
max

(ωR)2

)
.

It also follows that correcting this bias can be achieved by dividing the CPmax predic-

tions by this same term.

For simulated data the ζ values can be calculated explicitly as,

ζ = ωR(λ−1 − λ−1
max),
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and hence also τ = Var(ζ). Figure 7.11 shows the result of applying this bias correction

factor to polynomial GP predictions of CPmax using simulated data. While the bias

correction does slightly improve the predictions, moving them closer to the true value

of CPmax, it is only by a very small amount and in no way removes all of the positive

bias present.

Figure 7.11: CPmax predictions with and without bias correction.

It therefore seems that the bias present is due to some factor other than our formula-

tion of the regression equation, probably related to the specifics of the wind turbine’s

operation. This implies that it will not be possible to use this technique for accurate

predictions of a wind turbine’s CPmax value and drivetrain losses.

However, the approach developed here might still prove useful for wind turbine

health monitoring and operation and maintenance (O&M) applications as discussed in

Section 7.3.4.

Closed Loop System Identification

In control theory it is well documented that, in a closed loop setting, plant model

identification can suffer from biases resulting from the feedback loop being present

[61, 62]. In the current work we are not performing system identification in the same

sense, however, since the ‘noise’ present in our below rated regression formulation results

from operational deviations away from the design trajectory, the closed loop control

present while CPmax tracking could conceivably be biasing predictions in a similar way
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to that observed in control theoretic settings. It is therefore recommended that this

possible source of bias is investigated as part of future work in this area.

7.3.3 Learning Below Rated Dynamics with Real Data

GP polynomial regression was also applied to real data from an operating wind turbine.

Of the available data, roughly 27 hours (5000 datapoints when taken at 20s intervals)

lies in the maximum efficiency tracking region. This data is shown in Figure 7.12. Note

that the trajectory of operating points here is rather different from that seen in the

design operating strategy shown in Figure 2.5. In practice, operating curves will differ

from the ideal case due to practical considerations which are unique to each turbine, for

example each generator will have its own operational start-up requirements depending

on topology, technology type, grid connection and similar design considerations [6]. In

the current case it can be seen that CPmax tracking is only initiated about one third of

the way along the turbine’s range of rotational speeds. Furthermore, due to the higher

speed regions of CPmax tracking potentially including data from transitory or constant

speed operation (i.e. the transition between operating regions 3 and 4 in Figure 2.5),

it is necessary to apply a high speed cut-off to ensure we only consider data which is

definitely still within the maximum efficiency region.

Figure 7.12: Measured torque vs rotor speed for measured wind turbine data.
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It is from within these limits that data is used for the maximum efficiency dynamics

identification problem. Figure 7.12 shows this difference between the theoretical and

actual range of rotational speeds from which data can be used. Note that the actual

range of available rotor speeds is really quite restrictive. It is from this actual range of

data that the available 5000 datapoints are obtained.

Figure 7.13: GP CPmax predictions
for datasets containing 500 points each
from real wind turbine data. The true
value is given by the black diamond.

Figure 7.14: GP and LS CPmax predic-
tions from real data.

As in the simulated case, the available data is split into sets of 500 datapoints

and polynomial GP regression is applied to each set, resulting in 10 predictions for

the value of CPmax and the drivetrain loss function. Figure 7.13 shows the predicted

CPmax values, along with the real value for this turbine. These results mimic those

seen in the simulated data case of the previous section, with the predictions tightly

clustered and showing a small amount of positive bias. Furthermore, the results from

LS polynomial regression are scattered almost uniformly across a large range of values,

as shown in Figure 7.14. These results therefore validate the findings seen thus far for

CPmax predictions.

The losses prediction results, on the other hand, are less encouraging. For all 10 of

the real datasets, the GP predictions for losses have coefficients which are effectively

zero (to within machine precision). This indicates that the GP is unable to detect

any changes in the losses as rotor speed changes, and therefore sets the associated
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coefficients to zero. It seems likely that this is due to the restricted range of rotor

speeds from which data is available as part of the CPmax tracking region (as shown in

Figure 7.12). The loss values represent only a very small contribution to the overall

measured values (being only a few percent of measurements)2, one would therefore

expect the losses to be difficult to detect to begin with, it seems feasible that this

followed by a restriction of the rotational speeds for which losses are seen could lead to

them being undetectable. Figure 7.15 shows the regression data, Ĝ, with and without

losses present for the simulated data from the Supergen Exemplar turbine model. All

data in the figure has been centred about zero (by subtracting mean values) to allow

for easy comparisons of the impact of losses to the data (avoiding offsets between the

two datasets which would make this more difficult). Note the large signal-to-noise ratio

with respect to the loss function and measured data, indicating that we should expect

losses to be difficult to detect. This demonstrates why a restricted range of rotational

speeds might reasonably lead to the GP being unable to detect losses in the data. In

future work it will therefore be necessary to obtain data from a wind turbine with a

greater range of rotational speeds while CPmax tracking in order to test whether losses

can be detected for a larger speed range.

7.3.4 Applications in Wind Turbine Health Monitoring

The results of the previous sections show that there is the potential for wind turbine

CPmax values and drivetrain losses identification using polynomial GPs. Although,

in the case of drivetrain losses more work is required to verify whether they can be

detected in real, rather than just simulated, wind turbine data and future work will

look to obtain data from a wind turbine with a larger range of rotational speeds for

this purpose.

While promising results were obtained on simulated data (and for the maximum

efficiency coefficient also on real data), the predictions were seen to exhibit offsets from

their true values. This section considers the potential uses of such predictions which,

2Note that while the size of losses is very small, we would still ideally like to be able to identify
them in order to detect if they are changing; this is because changes in the losses could indicate that
a drivetrain fault is present and so contribute to the maintenance scheduling of the wind turbine.
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Figure 7.15: Below rated regression measurements, Ĝ, with and without losses. The
zero (no losses) line and loss function are also shown. Mean values have been subtracted
to centre each set of data about zero to allow for easy visual comparisons.

while they cannot be used to determine the exact values of the identified quantities,

might still be applied usefully for turbine monitoring.

As wind turbine assets grow in size and move further offshore, where access becomes

more problematic and expensive, the need for increased reliability becomes even more

pronounced. Therefore, there is a need for a diverse range of monitoring techniques

with which faults and behavioural changes in wind turbines can be quickly detected

and appropriate steps taken. Due to this, there have been a huge number of new

measurement techniques developed in recent years, all with their associated costs.

The ability to cheaply detect when aerodynamic efficiency or drivetrain losses have

changed could help indicate faults and the scheduling of turbine inspection and main-

tenance. Changes in aerodynamic efficiency can either happen rapidly, for example via

icing of the blades [63], or slowly, for example via blade degradation [64]. Changes

in the mechanical losses in the drivetrain can be indicative of damage or an imminent

failure. In all cases, prior warning of any changes, and the tracking of such changes over
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time, is desireable to inform the O&M of wind turbines. For these types of applications

it is the ability to detect changes in these values, rather than the exact values them-

selves, which is key to forewarning of potential issues. Hence, for turbine monitoring

applications these offsets do not necessarily pose a significant problem.

Automated detection of turbine faults using operational data has been previously

explored in the literature, for example, in [65] 10-minute SCADA data is used to detect

abnormal turbine behavior using neural network models. It is interesting to note that

in both this and related work techniques are generally based around 10 minute averaged

data. Since the GP formulations of the current section use high frequency data from

the controller, it seems relevant to consider whether a technique using higher frequency

data might see improved performance relative to those using 10 minute averages. Since

this PhD project is focussed on GP machine learning techniques and their applications

to control, the further development of an O&M technique, and comparisons with other

such techniques, is out of scope and so this particular direction will not be pursued

further in the current work.

7.4 SSGPs Applied to Wind Turbine Aerodynamic Tables

The above rated and second constant speed region regression problem is now considered.

Specifically, we look to apply SSGP theory for the identification of CQ(λ, β) tables, from

which the sensitivity function ∂Q
∂β can be determined. The development of a successful

approach turns out to require some further theoretical work which is documented in

the following sections. Having developed a workable method, its performance is then

tested on simulated and real turbine data.

7.4.1 The Proper Use of Prior Information

When machine learning techniques are developed, it is usually in as much generality as

possible. This is in order to maximise usefulness and applicability, while also reflecting

the usual gap between researchers and final end users, who are spread across a large

range of different fields. One aspect in which there is a lot of variance between different

applications is in the availability and form of prior information. In the previous chapter,
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the potential gains from leveraging prior information was shown to be the possibility for

the SSGP prior covariance function, k, and Sufficient-Subset, P, to be pre-determined

and then fixed, removing the need for computationally expensive updating of these pa-

rameters during batching. In order for our desired approach to wind turbine dynamics

identification to be successfully implemented within turbine controllers, removing the

need for optimisation based parameter updating is crucial.

As was mentioned in Section 2.7, prior information for this particular wind turbine

application comes in the form of existing wind turbine design CP /CQ tables. Impor-

tantly, these tables are non-dimensional. As can be seen in Equation 2.7 the CQ values

give the proportion of total possible torque through the rotor which the turbine ex-

tracts, rather than an absolute value. As such, CQ (or equivalently CP ) tables are

similar across wind turbines of various sizes. Since tip-speed ratio values also remain

approximately the same, even as turbines grow in size3 [66], the regression equation

terms λ−2CQ(λ, β) will also be similar for different turbines. Therefore, the follow-

ing sections looks to harness this prior information in order to generate a prior SSGP

covariance function and Sufficient-Subset which is applicable to general wind turbine

aerodynamic tables.

7.4.2 Initial Attempts at Developing an SSGP Prior and Sufficient-

Subset

This section is concerned with the construction of a Sufficient-Subset for application in

the above rated and second constant speed region regression problem derived in Section

2.6.1.

Recall that in the formulation of the above rated regression problem, the term which

related to the wind turbine aerodynamics was CP (λ, β)/λ3, which we shall denote Cs

(the s denoting ‘scaled’) for the sake of brevity. With λ denoting tip speed ratio and

β the blade pitch angle. Figure 7.16 shows a typical Cs table for a wind turbine,

along with its standard operating points. Below rated operation corresponds to β = 0,

and above rated is when β 6= 0. While the wind turbine control system will keep the

3This is due to the fact that larger turbines will generally rotate more slowly in order to maintain
an optimal tip-speed ratio.
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turbine operating close to the points shown in this figure, turbulence in the wind field

will cause the operational trajectory to deviate about that seen here. We must also

consider the fact that in order to apply this method to a wind turbine whose Cs tables

and operating trajectory we do not know, generous allowances must be made for the

operating trajectory to lie above or below the one seen here. Having said that, there are

certainly areas of the Cs tables which for all wind turbines can be safely ignored, such

as regions which correspond to negative power coefficients. Taking this all together,

we shall concentrate on SSGP regression for a generous neighbourhood around the

operating points, assuming that points which lie outside this neighbourhood are not

going to be visited by the operating wind turbine. This neighbourhood is shown in

Figure 7.16.

Cs

Figure 7.16: Wind turbine Cs table with
standard operating points (black dashed
line), the operating point corresponding to
CPmax (black x) and the chosen neighbour-
hood of the operating points on which re-
gression will be focused (red dashed line).

Figure 7.17: SSGP percentage prediction
errors across the Cs table. The chosen suf-
ficient subset, P, is shown as black dots.

SSGP regression requires for us to determine the prior covariance function, k, and

then choose our Sufficient-Subset of points, P, so as to have a covariance matrix ΛPP

which is invertible, while still having a sufficiently high condition number (we are

currently not using a Super Sufficient-Subset to see how far we can get without one).

The ability of the SSGP to determine function values solely from information at points

in P can then be tested by conditioning on the true values taken by the Cs table at
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points in P, without any noise (this amounts to using the standard SSGP formulae

with the noise variance set to zero in order to interpolate between points). This gives

the SSGP exact information about the function values on P, and so its predicted values

at other points tells us how effectively it can reconstruct the rest of the function. Since

no noise is present, a good choice of Sufficient-Subset should be able to reconstruct the

function values between points in P with very high accuracy.

Figure 7.17 shows the absolute percentage errors (as a percentage of the Cs value at

CPmax) after having determined a prior, k, (via maximum likelihood) across the whole

of the chosen neighbourhood. With the lengthscales determined by log-likelihood max-

imisation, a sufficient subset P was chosen which is distributed uniformly throughout

the neighbourhood and resulted in a ΛPP condition number of 6× 108. In this figure it

can be seen that the SSGP suffers from very large errors throughout most of the above

rated operating region. This turns out to be due to a rapidly changing lengthscale as

we move through the neighbourhood. This changing lengthscale is evident if one looks

again at the Cs table in Figure 7.16, where we move from a relatively flat and slowly

changing plateau in the higher λ regions, along to much steeper and rapidly changing

areas towards the far end of the neighbourhood.

Figure 7.18: Absolute difference between
the SSGP expected percentage errors, as
given by confidence intervals, and the true
SSGP prediction errors. The sufficient sub-
set, P, is shown as black dots.

Figure 7.19: Absolute difference between
the SSGP expected errors, as given by con-
fidence intervals, and the true SSGP predic-
tion errors. The scale has been increased by
a factor of 10 relative to Figure 7.18. The
sufficient subset, P, is shown as black dots.
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While the function value predictions themselves are important, one of the attractions

of GPs is that they can also provide confidence intervals, i.e. a measure of uncertainty,

about their predictions. It turns out that this changing lengthscale, while causing

large errors in SSGP function predictions, has an even more catastrophic effect on

the GPs ability to give error estimates. Treating one standard deviation of the GPs

confidence intervals as the GPs ‘expected error’ at each point, Figure 7.18 plots the

absolute difference between the GPs expected errors and the actual errors for the SSGP

predictions (again expressed as a percentage of the Cs value at CPmax). Figure 7.19

shows the same plot but with the scale increased by a factor of 10.

These figures all clearly show that the ability of the SSGP to make accurate pre-

dictions and uncertainty estimates has been completely undermined by the changing

lengthscale and that in its current form SSGP (or indeed standard GP regression) is

useless for making predictions on the Cs table. This is not very surprising when one

considers the fitting of hyperparameters to a function which has a changing lengthscale.

Inevitably if one end requires a long lengthscale and the other a short lengthscale, then

one will end up with a lengthscale somewhere between the two. Thus at the long

lengthscale end information is not carried far enough, increasing uncertainty estimates

unnecessarily, whereas at the short lengthscale end information is carried too far, lead-

ing to prediction errors due to what essentially amounts to overly strong ‘smoothing’.

These are exactly the effects seen here. It is therefore necessary to digress briefly in

order to address this problem.

7.5 GP Regression on Functions with Varying Length-

scale

When considering GP theory for functional regression, it is always implicitly assumed

that the function one is attempting to identify is in fact drawn from the applied GP

prior, with its associated covariance structure given by the choice of covariance function.

Therefore, when GPs are applied to general functions, not drawn from a GP prior, we

are attempting to find a prior covariance function which best captures the structure of
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the function underlying the measured data. It is for this reason that a specific covariance

function is chosen and its hyperparameters determined via maximum likelihood.

In many practical cases, when a GP model is applied, the standard choices of

covariance function will fail to capture the full structure of the underlying function,

even when hyperparameters are determined via maximum likelihood. In these cases

additional work is required in order to produce good regression results. This section

considers a specific example of this: when the function has a changing lengthscale across

the functional domain. Various methods which deal with non-stationary lengthscales

were outlined in Section 3.9, however, these techniques have been developed to be as

general as possible and, as such, introduce large numbers of additional parameters and

computationally expensive implementations (MCMC for example). As discussed in Sec-

tion 2.6.3 the wind turbine dynamics regression task requires efficient implementation

and the avoidance of additional processing requirements. Therefore, a refinement of

one of the documented techniques, that of transforming the input variable values [32],

has been developed. This is an intuitive and computationally lightweight implementa-

tion of this idea, suitable for application in the wind turbine regression problem. This

simplified approach is documented below.

As in previous sections we focus here on the squared-exponential covariance func-

tion (Equation 3.3); the presented results can be applied to other covariance functions

with little alteration. A toy regression problem, constructed to exhibit the required

traits, is used in order to illustrate the new implementation of the input transforma-

tion technique.

Consider the function,

g(z) =
sin
(
z(1 + z2)

)
1 + z

. (7.1)

This function is shown in Figure 7.20 where it can be seen that the lengthscale changes

dramatically moving from left to right across the input domain. The function is slowly

varying on the left, with the lengthscale steadily decreasing as z increases.

Because of this, when performing GP regression on g there will not be a single

inverse-lengthscale d which is appropriate everywhere. When the ‘best’ value of d

is determined, via maximum likelihood, we would therefore expect the final value to
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Figure 7.20: An example of a function, g(z), with a lengthscale which changes across
its domain.

lie somewhere between the lengthscales which are appropriate for the two extremes.

Intuitively, one would expect this to result in overfitting to data in the slowly varying

left side of the domain and over-smoothing in the more quickly varying right hand side.

To test this hypothesis a standard GP, with squared exponential covariance function,

was fitted to noisy measurements of g(z) (shown in Figure 7.20). The resulting GP

predictions do in fact display the expected problematic behaviour at the two extremes,

as shown in Figures 7.21 and 7.22.
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Figure 7.21: Example of overfitting
from standard GP regression on part
of a function with varying lengthscale.
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Figure 7.22: Example of over-
smoothing from standard GP re-
gression on part of a function with
varying lengthscale.
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The following sections develop techniques for dealing with these issues when varying

lengthscales are present.

7.5.1 Local Covariance and Input Transformations

Assume we have a set of zero-mean random variables, {fz}, which are being used to

model the values taken by a function f over the domain of a one dimensional input,

z. Let k be a squared-exponential covariance function with an inverse-lengthscale, d,

which varies across the functional domain. Taking input point z and another point

local to z, z∗ = z(1 + ε) for some small value of ε, the inverse-lengthscale becomes a

function of z and the local-covariance at z can be defined as:

kloc(z) = k(z, z∗) = ae−
1
2
d(z)z2ε2 .

Letting h(z) = ε2d(z), the local covariance structure is then of the form,

kloc(z) = ae−
1
2
h(z)z2 .

We now construct the variable x = z
α(z) , by scaling z at each point by α(z)−1. Then

z = α(z)x and the the local-covariance function expression in terms of x is,

ae−
1
2
h(z)α(z)2x2 ,

with inverse-lengthscale function h(z)α(z)2. Choosing α(z) such that,

h(z)α(z)2 = b (constant) for all z, (7.2)

it follows that as a function of x, f has constant lengthscale across the domain.

Assuming we know h(z), Equation 7.2 is satisfied by setting;

α(z) =

√
b

h(z)
,
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and this in turn allows us to determine the variable x as,

x =
z

α(z)
=

(√
h(z)

b

)
z = c

(√
d(z)

)
z,

where c = ε/
√
b is an arbitrary constant (since b is arbitrary). In practise it has been

found that once the local inverse-lengthscale function, d(z), is known, the constant c

should then be chosen in order to give the transformed varaible;

x = c
(√

d(z)
)
z, (7.3)

a sensible order of magnitude (i.e around 1) across the domain of interest; this has

been found to stabilise numerics and improve the speed of GP optimisation for the

parametrisable case considered next.

7.5.2 Parameterisable Local Inverse-Lengthscale Functions

If the function d(z) has a parametric form, then it is possible to include a determina-

tion of a ‘best’ input transform into the log-likelihood procedure for GP regression by

treating the function’s parameters as additional hyperparameters.

We give an example of this for the case d(z) = azb. Applying Equation 7.3 results

in a transform of,

z → (c
√
a)z1+ b

2 . (7.4)

If the parameters a and b are known then the above equation gives the transform; if,

however, we wish to determine an optimal a and b then this transform can be expressed

in the same way as the original d(z) function,

z → ãzb̃,

with ã and b̃ the parameters to be determined. Note that this is the case due to the

specific functional form of d(z) here, the same would not be true if, for example, d(z)

is a polynomial with at least two non-zero terms.

The value for ã will simply scale the GPs inverse-lengthscale hyperparameter and
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so (as discussed for choosing c above) ã is chosen so as to keep the transformed variable

at a reasonable order of magnitude. Therefore, only b̃ needs to be determined during

the log-likelihood optimisation procedure and this requires the first and second order

partial derivatives of the covariance function with respect to b̃. Consider a squared

exponential covariance function for input vectors of length n, and with a transformed

first input dimension;

k([x1, z2, . . . , zn], [x′1, z
′
2, . . . , z

′
n]) = a exp

(
−1

2
d1(x1 − x′1)2 − 1

2

n∑
i=2

di(zi − z′i)2

)

= a exp

(
−1

2
d1

(
ã(z1)b̃ − ã(z′1)b̃

)2
− 1

2

n∑
i=2

di(zi − z′i)2

)
.

Recall that all the dj are determined by their log-hyperparameters φdj (since they

must be greater than or equal to zero). Since b̃ could be either positive or negative we

do not use a log-hyperparameter and unconditionally optimise b̃ itself. The required

partial derivatives for optimisation which are additional to those used in standard GP

regression are then:

∂k

∂b̃
= −d1

(
x1 − x′1

) (
ln(z1)x1 − ln(z′1)x′1

)
k

∂2k

∂φd1∂b̃
=

∂k

∂b̃
−
(

1

2
d1(x1 − x′1)2

)
∂k

∂b̃

∂2k

∂φdi∂b̃
= −

(
1

2
di(zi − z′i)2

)
∂k

∂b̃
for i > 1

∂2k

∂b̃
2 = −d1

(
ln(z1)x1 − ln(z′1)x′1

)2
k

−d1

(
x1 − x′1

) (
ln(z1)2x1 − ln(z′1)2x′1

)
k

−d1

(
x1 − x′1

) (
ln(z1)x1 − ln(z′1)x′1

) ∂k
∂b̃
.

More generally, if the required transform is of type,

z → x = t(z, {βj}),
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for some function t with parameters {βj}, the additional partial derivatives for maxi-

mum likelihood optimisation for each j are:

∂k

∂βj
= −d1

(
t(z1)− t(z′1)

)( ∂t

∂βj
(z1)− ∂t

∂βj
(z′1)

)
k (7.5)

∂2k

∂φd1∂βj
=

∂k

∂βj
−
(

1

2
d1

(
t(z1)− t(z′1)

)2) ∂k

∂βj
(7.6)

∂2k

∂φdi∂βj
= −

(
1

2
di
(
t(z1)− t(z′1)

)2) ∂k

∂βj
for i > 1 (7.7)

∂2k

∂βl∂βm
= −d1

(
∂t

∂βl
(z1)− ∂t

∂βl
(z′1)

)(
∂t

∂βm
(z1)− ∂t

∂βm
(z′1)

)
k (7.8)

−d1

(
t(z1)− t(z′1)

)( ∂2t

∂βl∂βm
(z1)− ∂2t

∂βl∂βm
(z′1)

)
k

−d1

(
t(z1)− t(z′1)

)( ∂t

∂βm
(z1)− ∂t

∂βm
(z′1)

)
∂k

∂βl

7.5.3 Input Transformation Example

We return to the function g(z) (Equation 7.1) shown in Figure 7.20. In order to deter-

mine the form of d(z), local lengthscales are found by partitioning the input domain

and performing maximum-likelihood optimisation for the inverse-lengthscale parameter

centered on each section. A partition into seven sections results in the local inverse-

lengthscales shown in Figure 7.23, which can be seen to increase roughly exponentially.

Therefore, if d(z) is of the form,

d(z) = aebz,

it follows that the required input transformation will be,

t(z) = ãeb̃zz,

with ã arbitrary and an optimal b̃ to be determined.

From the fit in Figure 7.23 it follows that an optimal b̃ will be around 2 and hence

there is no danger of extreme orders of magnitude for the transformed coordinates.

We therefore set ã = 1 for the sake of simplicity. Using the same data as for the GP

predictions in Figures 7.21 and 7.22; b̃ was determined, along with the other hyperpa-

rameters, as part of a maximum-likelihood optimisation using the theory of the previous
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Figure 7.23: Local inverse-lengthscale fitting

section, in particular the partial derivatives of Equations 7.5-7.8. This procedure gave

an optimal transformation parameter of b̃ = 0.5033 and the resulting GP predictions

are shown in Figures 7.24 and 7.25, along with the standard GP results seen previously.

The Input Transformation approach has clearly improved the GP predictions in both

the high and low variance regions of the test function, preventing over-fitting at one

end and excessive smoothing at the other, as was desired.
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Figure 7.24: Example of overfitting
from standard GP regression on part
of a function with varying lengthscale.
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Figure 7.25: Example of over-
smoothing from standard GP re-
gression on part of a function with
varying lengthscale.

It should be noted that while Input Transformations can be used to improve GP predic-

tions in the presence of varying lengthscales, as demonstrated here; there are restrictions
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on when this method can be applied. This is due to the fact that the transformation

t(z) must be monotonic in order for its application to be appropriate. This consid-

eration will render these transformations unsuitable for some applications, however,

the flexibility and ease of application offered by the above formulations makes this a

powerful tool in the many cases where it can be applied. One of these cases being the

identification of wind turbine dynamics.

7.6 Input Transformations for Wind Turbine Aerodynamic

Tables

Cs

Figure 7.26: Cs table along with 5 local regions in which local inverse-hyperparameter
values will be determined.

In order to avoid the issues presented by varying lengthscales, we apply the formulations

of the previous section to the wind turbine aerodynamic tables problem. The first task

being to look at determining a local inverse-lengthscale function.

We start by splitting the Cs neighbourhood into 5 local regions (chosen to be rep-

resentative of the various local lengthscale regions through which the design operating

curve passes) as shown in Figure 7.26. Log-likelihood optimisation is then performed

for the points within each local region in order to give local lengthscales for both λ

and β. This is done by choosing a random subset of points from throughout a given

region, adding a known and small amount of noise to the measurements (this allows

us to perform matrix inversion without singularity issues as we are dealing with a full
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data set here, rather than a small subset as in SSGP) and then performing maximum

likelihood optimisation with the noise variance fixed at its known value. Since the

addition of noise represents a stochastic element here, the hyperparameters for a given

region can vary slightly each time this process is run. We therefore ran the process 50

times in each region in order to determine means and standard deviations of the local

inverse-lengthscale hyperparameter values. These are shown in Figures 7.28 and 7.27

for λ and β respectively. The hyperparameter values are all plotted against the central

value of the relevant variable in each given region. Note that the x-axis for tip speed

ratio has been reversed since this makes the local inverse-hyperparameters changing

from left to right correspond to moving in the same direction through the local regions

of the Cs table.
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Figure 7.27: Means and standard devia-
tions (from 50 runs each) of local inverse-
lengthscale hyperparameters for β. Each
point is plotted against the central β value
in the given region.
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Figure 7.28: Means and standard devia-
tions (from 50 runs each) of local inverse-
lengthscale hyperparameters for λ. Each
point is plotted against the central λ value
in the given region.

In Figure 7.27 there is no clear functional form for the variations in lengthscale

across the domain, however, it is also evident that while the local inverse-lengthscales

for β are changing, they are not changing by a huge amount. This result is not surprising

if one looks again at the Cs table (Figure 7.16), where the variations in function values

are clearly much slower and more consistent in the β direction. It turns out that the

small variations in local inverse-lengthscales with respect to β are not the cause of the

issues found to effect SSGP regression for the wind turbine Cs table.

166



Chapter 7. Wind Turbine Dynamics Identification

In Figure 7.28 we see that, for λ, the local inverse-lengthscale hyperparameter values

vary a lot over the domain; with the largest mean values being as much as 26 times

the smallest. Therefore, a transformation of the λ variable is appropriate. The mean

values in Figure 7.28 can also be seen to be well fitted by the function f(x) = 17x−2.6.

From Equation 7.4, this suggest a transform of,

λ→ cλ1− 2.6
2 ≈ cλ−

1
3 .

Since the regions used to determine these local hyparameters were chosen arbitrarily and

also because there appears to be a parametric form to the inverse-lengthscale variations

here; rather than simply using the above transformation, the theory of Section 7.5 was

used to include a transform of λ, of the form:

λ→ cλb̃,

in the log-likelihood procedure for determining the prior, thus allowing an optimal

transform for λ to be determined. In order to choose a value for the constant, c, we

note that if the exponent from function fitting is −1
3 , then we would expect the final

value of b̃ to be fairly close to this. We therefore set c = 10 in order to have transformed

variables which lie somewhere between 0 and 10.

Running this optimisation procedure results in an exponent of b̃ = −0.665 . . . ≈ −2
3 .

Therefore, using the transform,

λ→ 10λ−
2
3 ,

and the inverse-lengthscale hyperparameters determined at the same time; a Sufficient

Subset, P, is determined and the SSGP conditioned on noiseless data as before. Figure

7.29 show the prediction errors of the new, transformed-input SSGP (tSSGP) and

Figure 7.30 shows the differences between its predicted errors and the true errors.

Figures 7.29 and 7.30 show a remarkable improvement compared to the same plots

for the untransformed SSGP. We see that, having transformed the λ variable, the tSSGP

is able to make very accurate predictions across almost the entire neighbourhood, while

also generating very accurate confidence intervals. Note that the Sufficient Subset was
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Figure 7.29: tSSGP percentage prediction
errors across the Cs table. The chosen suf-
ficient subset, P, is shown as black dots.

Figure 7.30: Absolute difference between
the tSSGP percentage expected errors, as
given by confidence intervals, and the true
transformed input SSGP prediction errors.
The sufficient subset, P, is shown as black
dots.

determined in the transformed coordinate system, since it is here where the lengthscales

are constant; the resulting condition number of ΛPP being 9×107. In the untransformed

coordinates this can be seen to result in increased densities of points in areas where

function values change more quickly. In Figure 7.29 the only significant predictive errors

occur in the higher λ regions of the neighbourhood, and at worst the size of these errors

is 2 or 3%. These errors could certainly be much reduced by the addition of a single

extra point in P at around (λ, β) = (14.5, 2.5). Figures 7.31 and 7.32 demonstrate how

the additions of extra points can greatly improve both the point predictions and error

predictions for the Cs tables.

7.6.1 Parameters for General Cs Tables

So far the current chapter has only considered the single Cs table example above.

However, in order to ensure that the hyperparameters, including the transformation

exponent, are suitable for as wide a range of wind turbines as possible the above

procedure was carried out on a set of 6 different Cp tables from commercially available

wind turbines. Full transformation optimisation was used in each case and the average

of each parameter taken across the six Cs tables. These averaged values are what will
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Figure 7.31: tSSGP percentage prediction
errors across the Cs table. The chosen suf-
ficient subset, P, is shown as black dots.

Figure 7.32: Absolute difference between
the tSSGP percentage expected errors, as
given by confidence intervals, and the true
transformed input SSGP prediction errors.
The sufficient subset, P, is shown as black
dots.

Hyperparameter Value

amplitude 12.2723
λ inverse-lengthscale 2.5448
β inverse-lengthscale 0.0212

transformation exponent -0.5092

Table 7.1: Average hyperparameter values across 6 tested Cp tables.

be used going forward, they are given in Table 7.1. The covariance structure resulting

from these parameters, along with the mean function (obtained by averaging the 6

available CP tables) therefore forms a general GP prior for wind turbine Cp tables.

7.6.2 The Need for a Super Sufficient-Subset

The presence of areas of increased percentage error, seen in Figure 7.29 even after

choosing a set P which results in a suitably high condition number, indicates that

while input transformations have greatly improved the GPs ability to recreate the

underlying Cs table, areas of varying lengthscale still remain. It was shown above that

this issue can be partially solved through the addition of some extra points in P where

the errors occur. However, this is not a practical solution in general since the different

Cs tables being used all require additional points in different places. This means that
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a Super Sufficient-Subset, as developed in Section 6.5, is necessary in order to have

a single Sufficient-Subset which can be used in the general case where the underlying

table is not known. Since we are moving to a Super Sufficient-Subset the invertibility

of ΛPP is no longer a requirement and hence we can also move away from focusing on

the boundary shown in the above figures. For the sake of simplicity it is now possible

to define a set P which covers the entire Cs table. Note that in order to determine D1

in the saturation formula, a condition number limit of 1×108 is used. Figures 7.33 and

7.34 show the chosen Super Sufficient-Subset in the transformed and untransformed

coordinates respectively. This set P consists of 726 points with spacings determined

by the lengthscale ratio formula of Section 6.4.3.
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Figure 7.33: Super Sufficient-Subset in
transformed coordinates for Cs table iden-
tification.
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Figure 7.34: Super Sufficient-Subset in un-
transformed coordinates for Cs table iden-
tification.

Figures 7.35-7.38 show the interpolation errors for the chosen Super Sufficient-

Subset P for 4 out of the 6 Cs tables. As can be seen in these figures, the SSGP

with this choice of P is able to recreate all of the Cs tables accurately with the same

Sufficient-Subset, hyperparameter values and input transformation. The errors can be

seen to be almost always below 3%, and are generally below 1%. Thus demonstrating

that the chosen Super Sufficient-Subset can accurately capture Cs table information,

especially within our operating region of interest, indicated in the figures.
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Figure 7.35: Absolute percentage errors of
Cs interpolation for Cs table 1 using a Super
Sufficient-Subset, shown by black dots.

Figure 7.36: Absolute percentage errors of
Cs interpolation for Cs table 2 using a Super
Sufficient-Subset, shown by black dots.

7.7 Implementation Issues

Having determined a suitable prior covariance function and Super Sufficient-Subset.

The ability of the SSGP to learn aerodynamic table information was tested using data

from the Supergen Exemplar wind turbine model. At this point it became apparent that

there was an issue with this particular approach which had not been foreseen. Recall

that in the derivation of the regression equation in operating regions 4 and 5 (Equation

2.11) the main source of noise is due to the noisy anemometer wind speed measurements

which, via separability theory, results in the measured data being interpreted as noisy

measurements corresponding to the estimated, rather than actual, input locations.

Figure 7.39 shows a one-dimensional example of this scenario on a toy problem. In this

example, measurements of the true function are correct, but Gaussian noise has been

added to the input values. As can be seen here, the measured data does indeed looking

like noisy measurements of the true function. In general, this resulting noise will not

necessarily be Gaussian, but in the wind turbine case, separability theory tells us that

it will be Gaussian or well approximated as such.

This should in theory allow for regression to go ahead with no issues, however, the

wind turbine is attempting to track a specific strategy in terms of pitch angle and tip

speed ratio, as shown in Figure 7.16 and therefore, if the controller is doing its job, the
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Figure 7.37: Absolute percentage errors of
Cs interpolation for Cs table 3 using a Super
Sufficient-Subset, shown by black dots.

Figure 7.38: Absolute percentage errors of
Cs interpolation for Cs table 4 using a Super
Sufficient-Subset, shown by black dots.
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Figure 7.39: A one dimensional example of input noise resulting in noisy measurements
of an underlying function.

range of input locations visited is ideally very narrow. In this more restrictive scenario

the result of input noise can be catastrophic for regression. Figure 7.40 illustrates this

second scenario using our one-dimensional example.

It is clear here that regression using the data in Figure 7.40 will never result in a

good approximation of the underlying function, indeed, one would expect the resulting

prediction to be approximately perpendicular to the true function. The problem here is

practical, rather than theoretical, and comes down to the magnitude of the input noise

in relation to the size of the interval over which measurements are taken. Unfortunately,
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Figure 7.40: Example of resulting data when input measurement noise is present and
true input values are restricted to within a narrow range. Here the true input locations
are all between 8.75 and 9.

for wind turbine Cs table identification, it turns out we fall foul of the above scenario.

Figures 7.41 and 7.42 show Cs tables (note that k denotes the scaling of the tables

to a sensible order of magnitude) along with measured data from simulation using the

Supergen wind turbine model. In Figure 7.41 there is no noise on measured wind speed

values, while in Figure 7.42 noise has been added with a standard deviation of 1 m/s.

Figure 7.41: Cs table with measured data
from simulation, note that the points vis-
ited constitute a narrow band across the ta-
ble.

Figure 7.42: Effect of input noise on mea-
sured data for the wind turbine Cs table.

The same effect as was seen in the above one-dimensional example is clearly also
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present in this wind turbine data. Measured values can be seen to splay out due to

the narrow range of points visited, resulting in a dataset which is clearly unsuitable for

regression. Figure 7.43 shows the result of attempting GP regression on such data; as

expected, the resulting surface is effectively perpendicular to the true surface within

the range of measured values.

Figure 7.43: SSGP fit to noisy data when band of true input values is too narrow with
respect to measurements noise.

7.8 Reformulation of the Regression Problem

As has been shown in the previous section, the restricted area of operation seen by a

wind turbine in above rated conditions means that even small values of noise on wind

speed measurements renders the above regression approach infeasible. Therefore, a new

approach is necessary.

Since it has been found to be the noisy wind speed measurements which are the main

source of noise, we now develop a formulation for which the wind speed is explicitly

considered (rather than tip-speed ratio), along with pitch angle. Recall that the formula

for aerodynamic torque is,

Qa(v, ω, β) =
1

2
ρARv2CQ(λ, β). (7.9)

From this equation, it follows that measurements taken at any given ω can be adjusted
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such that ω = ω0 (where ω0 is rated rotor speed) while keeping λ fixed. This is done

using the following transformations;

ω → ω0 (7.10)

v → ṽ =
(ω0

ω

)
v (7.11)

Qa → Q̃a =
(ω0

ω

)2
Qa. (7.12)

Since ω is now held constant at ω0, the transformed measurement set {(ṽ, β, Q̃a)}

contains data of the form,

Q̃a =
1

2
ρARṽ2CQ

(
ω0R

ṽ
, β

)
=

1

2
ρARṽ2CQ(ṽ, β),

and so now Q̃a is a function of ṽ and β.

Note that while operating in sections 4 and 5 of the operating strategy shown in

Figure 2.5, and away from the stall region, the relationship between λ and Qa (and so

also the relationship between ṽ and Q̃a) is invertible for each fixed value of β. More

formally we define,

fβ(ṽ) = Q̃a(ṽ, β), (7.13)

and then for each value of β, fβ(ṽ) is invertible when avoiding the stall region. Invert-

ibility is important here in terms of forming a solveable regression problem because it

now allows us to reinterpret the measurements {(ṽ, β, Q̃a)} as relating an output wind

speed (which contains the most significant source of noise) to input values of torque

and pitch angle. We are therefore considering regression for noisy measurements of the

function;

ṽ
(
β, Q̃a

)
= f−1

β (Q̃a). (7.14)

Regression in this form will be referred to as the wind speed formulation. This will

allow for the large noise terms which will be present in wind speed measurements to

be determined explicitly by the GP and also feature additively, rather than on the

denominator, as was the case for λ. The transformation of measured wind speeds given

by Equation 7.11 will also need to be accounted for in terms of the noise present,
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however, additive noise will simply be transformed in the same way and hence a scaling

of the noise covariance matrix is all that’s required and can be easily incorporated into

the SSGP procedure.

In order to develop a general prior and Sufficient-Subset which is suitable for any

wind turbine’s aerodynamic tables, it is necessary to work with a measure of aerody-

namic torque which is not dependent on turbine size. We therefore choose our torque

variable to be measurements of the scaled torque Q̃a/(
1
2ρAR) = ṽ2CQ. The follow-

ing section documents the development of a GP prior and Sufficient-Subset for this

regression framework.

7.9 Developing a New GP Prior and Sufficient-Subset

We now look to develop a GP prior and Sufficient-Subset for the wind speed formulation

of the wind turbine dynamics regression problem. Figure 7.44 shows an example contour

plot of the function v(β, v2CQ) for a commercially available wind turbine.

Figure 7.44: Contour plot of windspeed, v, interpreted as being a function of pitch
angle and non-dimensional torque, v2CQ. The design operating strategy is given by
the dashed line.

First, a non-zero mean for the function is determined by averaging values across the

six available sets of turbine dynamics. The process for determining hyperparameters is
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Hyperparameter Value

amplitude 0.4644
β inverse-lengthscale 0.0396

v2CQ inverse-lengthscale 0.0832

Table 7.2: Average hyperparameter values across 6 tested turbines for the wind speed
formulation of the regression problem.

then identical to that used for the original formulation, except in each case our non-zero

prior mean is first subtracted from the data before hyperparameters are learned. For

each available set of aerodynamic tables the hyperparameter values were determined

via maximum-likelihood. The mean of the results for each hyperparameter was then

taken to be its fixed value going forward. Table 7.2 shows these final values.

Figure 7.45: Contour plot of windspeed, v, interpreted as being a function of pitch
angle and non-dimensional torque, v2CQ. The chosen Super Sufficient-Subset is also
depicted by black circles.

A Super Sufficient-Subset was found to be necessary in order for the SSGP to be

able to accurately reproduce the underlying function and, in this case, without the need

for input transformations. The chosen Super Sufficient-Subset, P, contains 153 points

and is shown in Figure 7.45. The shape of P in the top left corner is to avoid stall, the

region where the monotonic assumption for fβ breaks down. The condition number

of the covariance matrix, ΛPP, for these points is around 1019 and so this choice of P
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would be impossible without the Super Sufficient-Subset theory developed in Section

6.5. With this choice of P the SSGP model can reproduce the function at intermediate

points with incredibly high accuracy, as shown in Figure 7.46. These same levels of

accuracy are seen across the available set of 6 aerodynamic tables.

Figure 7.46: Absolute percentage errors for SSGP reproduction of the function
v(β, v2CQ) using data on P only.

7.10 Rated Power and Second Constant Speed Region

Dynamics Identification

7.10.1 Measured Data and Drivetrain Losses

When considering real turbine data, drivetrain losses will be present and hence the

measured torque values are of the form,

NQ̂g + J ˙̂ωr = Qaer − L(ω̂r),

where the terms on the left hand side are the measurements available from a wind

turbine. For above rated operation the controller is attempting to maintain the rotor

speed at ωr = ω0. There will still be some variation present in the rotor speed values,

making it necessary to apply the transformations of Section 7.8. In terms of the loss

function, these small variations in rotor speed will not result in significant changes in
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loss values and so the losses can be treated as a constant offset L on measured torques.

As already discussed, a constant term will not effect derivative calculations and so from

now on we shall ignore the loss offset in equations, simply noting that it is present in

the data.

Measurements of v2CQ are then formed (including the transform to ω0) as,

v2CQ =
(ω0

ω

)2
(
NQ̂g + J ˙̂ωr

1
2ρAR

)
,

which follows from Equations 2.7 and 7.12. Wind speeds measurements are transformed

according to Equation 7.11.

7.10.2 Estimating Wind Speed Measurement Noise

The effective wind speed of an operating wind turbine can be estimated if the CQ

tables are known. This involves reverse engineering the CQ tables to determine the

wind speed which would result in the measured torque value along with each measured

rotational speed and pitch angle. While this work is considering cases where the tables

are not known, this information is available for the turbine from which the real data

was collected. Since this approach also doesn’t account for losses, the resulting effective

wind speeds can only be considered an estimate, however, the proposed analysis should

at least indicate the levels of noise that can be expected between measured and effective

wind speeds.

This analysis was performed for the available real turbine data, resulting in an

estimated effective wind speed time history. The results of subtracting the effective

wind speed values from anemometer measurements is shown in Figure 7.47. An offset of

0.85m/s is present between the two, with a noise standard deviation about this offset of

0.89m/s. The offset here does not pose any real problem since this ‘adjusted’ wind speed

can simply become our measure of wind speed for this regression problem. In essence

we are simply defining a new frame of reference for wind speed measurements. The key

is to then ensure that this same reference frame is used consistently throughout the

regression process. This therefore requires that the trajectory along which derivatives
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Figure 7.47: The difference between measured wind speed and estimated values of
effective wind speed obtained via reverse engineering of known aerodynamic tables.
This data has a mean of 0.85 and standard deviation of 0.89.

are taken to determine the aerodynamic sensitivity functions is also given with respect

to this frame of reference. It turns out that this is not only possible, but also necessary,

as discussed in the following section.

With respect to measured wind speeds the reverse engineering analysis indicates

that noise levels on measurements should be expected to have standard deviations of

around 0.89m/s. The extent to which the residuals, after removing the offset, can be

considered Gaussian was also investigated. Figure 7.48 shows a histogram of these

residuals which looks promisingly Gaussian. A Kolomogorov-Smirnov test was per-

formed on the residuals which did not reject the null hypothesis that the data was

Gaussian, returning a p-value of roughly 30%.

Therefore, when adding noise to wind speed measurements taken from simulated

data we will consider Gaussian noise with standard deviations to 0.1, 0.5 and 1 m/s in

order to have a range which includes the level estimated from real data.

7.10.3 Identifying the Operating Strategy

In above rated wind conditions, when pitch regulation is active, the turbine is attempt-

ing to maintain rated power by setting the pitch angle to the value which corresponds
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Figure 7.48: Residuals about offset between measured wind speeds and estimated values
of effective wind speeds.

to rated power at each wind speed. An example curve for design values of pitch and

wind speed is shown in Figure 7.49, from [67].

Figure 7.49: Example design curve for pitch vs wind speed.

The need for gain-scheduling was discussed in Section 2.4.2 and this requirement is

clear when looking at this figure, since the slope of the curve is changing continuously.

This curve defines a trajectory over the CQ tables, and the aerodynamic sensitivity

function used for gain-scheduling (see Figure 2.13) is calculated by taking finite differ-

ences on the CQ table at points along this curve.
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An important implication of this for the learning of a wind turbine’s sensitivity

function from measured data is that the operating curve in pitch angle and wind speed

is also required. It is unlikely that a turbine manufacturer would disclose this infor-

mation. Furthermore, even if they did, the design wind speed values are effective wind

speeds, and hence are not consistent with the measured wind speed ‘reference frame’

as discussed in the previous section. It is therefore necessary to determine the oper-

ating curve from measured data. This will ensure consistency of wind speed values

and remove the reliance on obtaining information from manufacturers. Fortunately

this procedure can easily fit within the methodology developed so far for aerodynamic

identification.

It is proposed that a second SSGP iteration procedure should be run which models

the operating curve in pitch angle and wind speed. Since wind speed measurements

are where most of the variation lies, wind speed will be modeled as a noisy function of

pitch angle. Modelling this curve using an SSGP allows for it to be updated in batches

as new data becomes available. Figure 7.50 shows an example fit of an operating curve

to measurements of pitch angle and wind speed from the Supergen turbine model.

5 10 15 20 25

 (degrees)

15

20

25

v (m/s)

 data

 SSGP prediction

Figure 7.50: Determining the design operating curve in pitch angle and wind speed
using an SSGP regression model.

This regression should be performed on wind speed values which result from the SSGP

predictions of v(β, v2CQ), since these predicted wind speeds have had noise contribu-
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tions removed. The apparent ‘noise’ present on the data in Figure 7.50 is therefore

not from measurement noise, but rather is due to the fact that the turbine is deviating

from the design operating strategy during operation; this will always happen to some

extent, no matter how good the controller, due to the stochastic nature of the wind

field.

7.10.4 Learning from Simulated Data

Simulations were performed using the Supergen Exemplar 5MW wind turbine model

for wind speeds between 12 and 18 m/s and turbulence intensities of 10, 15 and 20%

in order to generate a dataset from the equivalent of roughly 90 hours of above rated

operation. As discussed in Section 7.2, this data was sampled at a frequency of 0.05Hz

in order to avoid measurement correlations. The resulting dataset contains roughly

16,000 points. To allow for the ability of SSGPs to learn aerodynamic tables to be

investigated, without having to account for vertical offsets, drivetrain losses were not

included in the generation of this data. Furthermore, since our goal is to learn aerody-

namic sensitivities, the offset caused by the losses will not factor when derivatives are

calculated.

Figure 7.51: Contour plot of absolute per-
centage errors between the prior model and
true values of v(β, v2CQ).

Figure 7.52: Contour plot of absolute per-
centage errors between the prior model and
final model of v(β, v2CQ) after regression on
90 hours of operational data.

The SSGP prior and Super Sufficient-Subset developed in Section 7.9 were applied.
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Data was processed in batches of 30 points, corresponding to 10 minutes of real time

operation4. The operating strategy in pitch angle and wind speed was also determined

using an SSGP model in order to allow for aerodynamic sensitivities to be calculated.

Figure 7.51 shows the absolute percentage errors of the prior model for v(β, v2CQ) with

respect to the true values. The ‘slice’ of low errors visible here is due to one surface

passing through the other and so although the values become close, the derivatives

are very different. Figure 7.52 then shows the same plot having performed SSGP

regression on the generated dataset. The difference between effective and measured

wind speed was modelled by adding Gaussian noise to the wind speed measurements

with a standard deviation of 0.5m/s. As can be seen from these plots, regression on

this dataset results in SSGP prediction errors which are almost entirely less than 1%.

Figure 7.53: Predictions for the aerodynamic sensitivity function, ∂Q
∂β , in the SSGP

prior and after regression on 90 hours of data. The true values are also shown.

The predicted aerodynamic sensitivity function is considered next. The monotonic

nature of the relationship between v and v2CQ, for each β, allows for the swapping of

input and output. Torque can then be predicted as a function of pitch angle and wind

speed since, Q = 1
2ρAR(v2CQ), where now the term v2CQ is a function of β and v.

4This being the amount of time the wind field can be reasonably assumed to remain statistically
stationary.
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The aerodynamic sensitivity function ∂Q
∂β is then calculated by taking finite differences

along the operating curve predicted alongside the dynamics. Figure 7.53 shows the

aerodynamic sensitivity functions from the prior and final SSGP models, along with

the true function. The line of best fit for the prediction is also shown, since it is this

which is used as an input to controllers. The mean absolute percentage error between

this line of best fit, and that obtained from the true sensitivity function is about 1.5%.

This is a very promising result since it is well within our target accuracy of 3%.

Learning Rates

The rate at which a regression model will learn an underlying function is dependent on

the noise present on measured data. Therefore, using the simulated data, learning rates

were investigated by varying the magnitude of noise on the wind speed measurements

and tracking the percentage error between the predicted sensitivity function and the

true one. The results of doing this for noise standard deviations of 0.1, 0.5 and 1m/s

are shown in Figures 7.54 - 7.56.
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Figure 7.54: Learning rates for aerody-
namic sensitivity identification with 0.1m/s
wind speed measurement noise standard de-
viation.
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Figure 7.55: Learning rates for aerody-
namic sensitivity identification with 0.5m/s
wind speed measurement noise standard de-
viation.

For the smallest noise level, of standard deviation 0.1m/s, the predictions appear

to converge after around 350 batches, with errors in the region of 1.5%. As expected,

increasing the noise levels slows down the rate of convergence, but for both 0.5 and 1m/s

noise standard deviations the errors can still be seen to reach the 3% level towards the
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Figure 7.56: Learning rates for aerodynamic sensitivity identification with 1m/s wind
speed measurement noise standard deviation.

end of processing the 90 hours of data, although neither has yet converged.

The above results give us our first answer to the key thesis question posed in Section

2.5. The aim of this work was to determine whether aerodynamic information could

be learned from measured data to within an accuracy which is useful for control ap-

plications. More specifically we set out to learn aerodynamic sensitivities to within an

accuracy of 3%. We therefore conclude that, using measured data from the Supergen

turbine, aerodynamic sensitivities can be learned to within the required accuracy. The

quantities of required data depend on the noise present, however, taking the above

results altogether it seems clear that after 90 hours of above rated operation good re-

sults are achieved and we would certainly have expected the higher noise cases to have

converged after another 90 hours of data, and probably quite a lot less.

7.10.5 Learning from Real Data

The learning of aerodynamic sensitivities was then tested on data from a real wind tur-

bine. The data was processed as outlined in Sections 7.1 and sampled at 0.05HZ. The

dataset contains 16,000 points roughly corresponding to 90 hours worth of operational

data, the same quantity which was generated using simulations. As for the simulated

data, when performing SSGP iteration on real data, batch sizes of 30 datapoints were

used. Given the offsets present in both torque and wind speed, between the design and

measured dynamics, direct comparisons of the predicted relationships are not mean-
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ingful. However, as has been discussed, while offsets exist between the two versions

of dynamic information, the derivatives should still agree if the learning procedure has

been successful since the predictions and true values should only differ by an additive

constant which disappears when derivatives are taken. It is therefore the design and

predicted aerodynamic sensitivity functions which will be compared.

Figure 7.57: Operating curve learned from real wind turbine data. The shape of this
curve indicates that a transform has been applied to the wind speed measurements.

Figure 7.57 shows the predicted operating curve in pitch angle and wind speed for

the measured turbine data. Comparing this curve with the one in Figure 7.50, it is

clear that a transformation has been applied to these wind speed measurements. This is

commonly done in order to try and correct differences between the turbine nacelle wind

speed and free-stream wind speed measured by the on-sight MET mast [2]. This ensures

that the two wind speed measurements are well correlated, a factor which is important

for energy yield warranty assessments of wind turbines. The difference between these

two wind speed measurements occurs due to the slowing effect the turbine has on the

flow field. This is caused by a region of high pressure in front of the turbine rotor which

is balanced (energy wise) by a reduction in the flow speed [68]. Figure 7.58 shows the

difference between anemometer and free stream wind speed determined in [2] by fitting

a 5th order polynomial to measured data. Although the transform present in our wind

speed measurements will not be identical to that of figure 7.58, it is clear that this type

of transformation could easily lead to the small ‘ripple’ which is visible in figure 7.57.
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Figure 7.58: Difference in nacelle and MET mast wind speed measurements from mea-
sured data [2].

No information is available concerning the transformation applied to our measured

data, and hence it cannot be removed from the currently available wind speed measure-

ments. In the present case the regression formulation uses wind speed as the dependent

variable and, therefore, the transformation will be introduced into the predicted aero-

dynamics. This in turn would be expected to impact the predicted derivatives, where

small changes to the surface curvature will be magnified.

This is seen to be the case in the predicted sensitivity function, shown in Figure

7.59. In these results a ripple is clearly present in the derivatives which we hypothesise

is caused the transformation which has been applied to the wind speed measurements.

Note that even with this transformation present, the line of best fit to the predicted

sensitivity function has an absolute percentage error of 2.7%, and hence still falls within

our required 3% threshold.

The effect of a wind speed transformation on the predicted sensitivity function was

tested using the simulated data from the Supergen model. In order to emulate the type

of transformation present in Figure 7.57, a multiplicative sinusoidal transformation of

the form,

v → (1 + 0.025 sin(kβ))v,

was applied to the noisy wind speed measurements. The above transform was designed
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Figure 7.59: Predictions for the aerodynamic sensitivity function, ∂Q∂β , in the SSGP prior
and after regression on 90 hours of real wind turbine data. Note that a transformation
present on wind speed measurements has caused a ripple in the predicted derivatives.

in order to emulate the shape seen in Figure 7.58, since the coefficients of the fitted

polynomial are not given in [2]. This results in the altered operating strategy are

shown in Figure 7.60. While changes to the operating strategy resulting from the

Figure 7.60: Learned operating strategy before and after the addition of a wind speed
transformation.

data transformation appear to be only slight, the effect of these changes in wind speed
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measurements on derivatives turns out to be significant, as shown in Figure 7.61. A

distinct ripple is now present in the derivative predictions which, as can be seen in

Figure 7.53, was not there before applying the transformation on wind speed. As in

the real data case, although the derivative prediction has been severely distorted, the

straight line best fit is still reasonable. However, one would not necessarily expect this

to be the case in general.

Figure 7.61: Predictions for the aerodynamic sensitivity function, ∂Q
∂β , on simulated

data with a transformation applied to wind speed measurements. The resultant ripple
in the derivative predictions is similar to that seen for the real turbine data in Figure
7.59.

These results imply that the future development and application of this approach to

dynamics identification will require a careful consideration of wind speed measurements

and the processing of this data. Definitive results which fully validate these methods

for real data will also require access to wind speed measurements which have not been

transformed. In practise, untransformed wind speed measurements would be available

to the SSGP regression procedure, this is because the wind speed transforms are applied

as part of the processing procedures in the turbine nacelle. It would therefore be feasible

to sequence the data processing so that a direct feed from the anemometer goes to the

SSGP iteration procedure before any transform is applied.
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Discussion

The results presented here demonstrate a strong similarity in the behaviour of the

SSGP method when applied to simulated and real data in the presence of a wind speed

transformation. There is therefore no reason, from the current results, to suspect

that they should deviate if applied to untransformed data. This, combined with the

exemplary results obtained when using simulated data lead us to conclude that the

SSGP regression approach developed here can identify wind turbine dynamics to within

the required accuracy of 3%, as long as untransformed wind speed measurements are

available. The results of the present section also indicate that the quantity of data

required to reach the specified error level is around 90 hours for above rated operation,

a fairly modest amount which should be obtained within a month of operation or less,

although for obvious reasons this will be weather dependent.

The most important implication of these results for above rated dynamics identifi-

cation is that proper consideration will have to be given to the means by which wind

speed is measured, and the processing of this data. As was already discussed, it should

be possible to obtain untransformed wind speed measurements by tapping into the raw

anemometer feed on the turbine nacelle. In the first instance of further developing

this technique such raw wind speed data, along with the other required measurements,

should be obtained in order to fully validate the results seen here for simulated data.

However, given the high level of sensitivity to wind speed values, demonstrated by the

results seen in Figures 7.59 and 7.61, the full range of available wind speed measurement

techniques should be taken into consideration. While we would ideally like to make

use of the nacelle cup-anemometer already present, a number of alternative devices

exist including: sonic anemometry mounted on the turbine nose cone [69] and nacelle

mounted LIDAR [70]. While the addition of such devices would have cost implications,

they can also generate more sophisticated wind field data which can be employed in

additional control tasks such as detecting turbine yaw misalignment [69,70] and warn-

ing of large gusts [71]. Therefore, the overall cost might be justified if a given technique

contributed to several processes simultaneously.

In Section 2.6.3 it was stated that wind speed noise would be assumed to be sta-
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tionary and Gaussian in the current work to allow for the development and testing of

the learning procedures. These assumptions were shown to be reasonable, since good

regression results are obtained, however, in future work the structure of the noise on

wind speed measurements should be further studied in order to determine whether a

better noise model can be found which might improve on the results seen here. For

example, there exist various so called ‘colored’ noise models which allow for short time

correlations in noise values to be captured [72]. The sampling interval of 20 seconds

was chosen to try and remove correlations from measured data, but, if some correlation

is still present then it should be accounted for in the models to avoid degrading the

performance of our learning procedure.
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Conclusions and Future Work

This thesis has developed techniques for the learning of wind turbine dynamic infor-

mation from data available to a wind turbine controller. In the process of developing

such techniques, fundamental contributions have been made in the area of sparse GP

approximation theory and polynomial GPs.

This chapter summarises the major contributions of this thesis, and the future work

arising in each case.

Polynomial Gaussian Processes Regression

Chapter 5 extensively studied the case of GP regression for polynomials. A polynomial

GP implementation was presented which is very efficient and scales linearly in the

number of measured datapoints. This included hyperparameter optimisation using

derivative and Hessian information. The technique was then compared with Least-

Squares regression both theoretically and experimentally and shown to be superior in

all considered cases. Polynomial regression was then used to investigate the suitability

of posterior-to-prior and combined posteriors approaches to GP iteration. The results

of this work indicated that combined posteriors was unsuitable for pursuing further.

However, for the polynomial case posterior-to-prior iteration was shown to be equivalent

to standard GP regression on all of the data at once, with linear scaling and fixed

memory requirements.

Sufficient-Subset Gaussian Process Iteration

An extension to the general case of the lessons learned from the iteration of polynomial
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GPs was shown in Chapter 6 to lead to a new Sparse GP approximation method,

SSGPs, which can handle batched data and changing noise levels. SSGP iteration was

derived directly from GP regression theory, rather than from more general probability

theories as is the case for the other batched GP approaches discussed in Chapter 4.

The relationship between SSGPs and standard GP regression was explicitly shown. The

concept of a Sufficient-Subset was developed which describes the minimal set of inducing

points which recreate an underlying GP model up to a given limit of matrix condition

number. This was extended to Super Sufficient-Subset theory, allowing for the minimal

set to be populated beyond the point where the matrix becomes singular. It was

shown that a Super Sufficient-Subset can reduce prediction errors when the underlying

function is not strictly drawn from a GP prior. Super Sufficient-Subset theory turned

out to be crucial to the turbine dynamics identification problem, allowing for a general

GP prior to be defined for all turbines, as shown in Section 7.9. The development of

SSGP theory was also shown to answer fundamental questions concerning sparse GP

models not addressed in existing methods.

With respect to future work: it was shown in Chapter 6 that there is much scope

for further development of SSGP iteration. For example, the relevant expressions were

derived to allow for online hyperparameter learning and updating within the SSGP iter-

ative scheme. Once this is possible it is then necessary to consider questions regarding

the location and number of inducing points. This will require either the updating of the

Sufficient-Subset, or a deliberate overpopulation to generate a Super Sufficient-Subset

which can then remain fixed, even as the covariance structure changes. This extended

SSGP should then be tested against existing methods which update hyperparemeter val-

ues and inducing point locations via optimisation of probabilistic ‘distance’ functions.

The selected input locations from SSGP theory and these other optimisation proce-

dures should be compared and the implications of SSGP theory for existing methods

considered.

Wind Turbine Dynamics Identification

In chapter 7 the polynomial and SSGP regression approaches developed in this thesis

were applied to simulated and real data. Polynomial GPs were applied to the ‘maximum
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efficiency’ region dynamics identification problem where the sought quantities are the

CPmax value and drivetrain losses. Results from simulated data showed that the GP

approach outperforms Least Squares for this task, with Least Squares prediction being

so scattered as to be effectively useless. Both approaches suffered from bias on the

predicted values. GP results for CPmax identification from real data were seen to

mirror those obtained for simulated data. However, the GP approach could not detect

any changes in losses in the real data and so set the loss function coefficients to zero. As

discussed, this could well be due to the restricted range of rotational speeds for which

the turbine which generated the available data tracks maximum efficiency. Finally,

while the presence of bias renders the approach unsuitable for learning the exact values

of the sought dynamics, it was outlined how the same techniques could be used in order

to monitor a wind turbine and warn of changes in behaviour which could indicate faults

or damage to the turbine. Since such methods are only required to detect changes in

the dynamics, the presence of bias on predictions would not necessarily be an issue in

this setting.

In terms of future work: data should be sought from a turbine which tracks CPmax

across a wider range of rotational speeds. This will allow for further testing to determine

whether this regression approach can detect drivetrain losses given enough variation

in rotational speed. There is also much potential work involved in developing these

regression predictions into a fault detection technique. For example, the development

of a process by which to track changes in predicted values and determine when the

predictions have changed enough to warrant triggering an alarm to warn the turbine

operator.

Next was considered the ‘above rated’ regression problem where the aerodynamic

sensitivity function is sought. In order to generate an SSGP prior for this regression

problem, as derived in Chapter 2, a theory of local covariance and a computationally

efficient version of existing input transformation formulations were shown to allow for

accurate GP regression on functions with a lengthscale which varies across the domain.

This combined with Super Sufficient-Subset theory was shown to allow for a GP prior to

be defined which is suitable for general turbine dynamics tables. It was then shown that
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although an appropriate prior can be constructed, the turbine’s trajectory through it’s

operating envelope renders this approach unfeasible for dynamics identification. The

regression problem was therefore reformulated into the so called wind speed formulation

and a new SSGP prior constructed. Tests were then performed using simulated and

real data. On simulated data the results were exemplary, showing that the predicted

sensitivity function came within the specified error threshold of 3% after roughly 90

hours of data. For real data it was apparent, due to an uncharacteristic ‘ripple’ being

present in the pitch versus wind speed operating curve, that a transform had been

applied to the wind speed measurements. The effect of this transform on predictions

was shown to be the addition of a similar ripple in the sensitivity function predictions.

In order to test the hypothesis that this had indeed been caused by a wind speed

transformation, a transform of the same suspected type was applied in the simulated

data case and regression repeated. Using the transformed data was shown to result in

the same type of distortion in sensitivity function predictions. Taken together these

results indicate that this regression approach is able to identify wind turbine sensitivity

functions from measured data up to the required accuracy, however, in practice will

require access to wind speed measurements before any transformation is applied.

In terms of future work: turbine data should be acquired for which the wind speed

measurements have not been transformed, this will allow for a complete validation of

the results presented here. Additionally, given the sensitivity of results to measurements

of wind speed, the full range of available wind measurement devices should be investi-

gated in terms of suitability for providing data to this regression problem. Finally, now

that appropriate methods have been developed and tested, the implementation of these

techniques in wind turbine controllers should be considered. This will involve a con-

siderable amount of software engineering work since it requires for the entire regression

formulation to be efficiently coded in C.

196



Appendix A

The Multivariate Gaussian

Conditional Distribution

If x and y are jointly Gaussian random vectors,

x

y

 ∼ N
µx

µy

 ,
 A C

CT B


then x ∼ N(µx, A) and, crucially for regression, we can write down the conditional

distribution of x given y [28];

x|y ∼ N(µx + CB−1(y − µy), A− CB−1CT ) (A.1)

Note that this conditional distribution is again Gaussian.
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Polynomial GPs - Efficient

Implementation Formulae

In this appendix we present the equations for the implementation of Gaussian process

polynomial regression which were not included in Section 5.1.2.

Derivative term for noise log-hyperparameter

∂L∗

∂φξ
= n− trace

[
(D−1Σ)(V T

z Vz)
]
− 1

ξ
[F̂T F̂− 2(F̂TVz)(D−1Σ)(V T

z F̂)

+(F̂TVz)(D−1Σ)(V T
z Vz)(D−1Σ)(V T

z F̂)]

Hessian terms
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Case 1 (i,j 6= ξ).

∂2L∗

∂φi∂φj
=

δijγi
ξ
{V Ti Vi − trace[(D−1Σ)(V Tz Vi)(V

T
i Vz)]}

−γiγj
ξ2
{(V Tj Vi)2 − trace[(D−1Σ)(V Tz Vi)(V

T
i Vj)(V

T
j Vz)]− trace[(V Ti Vz)(D−1Σ)(V Tz Vj)(V

T
j Vi)]

+trace[(D−1Σ)(V Tz Vi)(V
T
i Vz)(D−1Σ)(V Tz Vj)(V

T
j Vz)]}

−δijγi
ξ2
{(F̂TVi)2 − (F̂TVz)(D−1Σ)(V Tz Vi)(V

T
i F̂)− (F̂TVi)(V

T
i Vz)(D−1Σ)(V Tz F̂)

+(F̂TVz)(D−1Σ)(V Tz Vi)(V
T
i Vz)(D−1Σ)(V Tz F̂)}

+
2γiγj
ξ3
{(F̂TVi)(V Ti Vj)(V Tj F̂)− (F̂TVz)(D−1Σ)(V Tz Vi)(V

T
i Vj)(V

T
j F̂)

−(F̂TVi)(V
T
i Vz)(D−1Σ)(V Tz Vj)(V

T
j F̂)

+(F̂TVz)(D−1Σ)(V Tz Vi)(V
T
i Vz)(D−1Σ)(V Tz Vj)(V

T
j F̂)

−(F̂TVi)(V
T
i Vj)(V

T
j Vz)(D−1Σ)(V Tz F̂)

+(F̂TVz)(D−1Σ)(V Tz Vi)(V
T
i Vj)(V

T
j Vz)(D−1Σ)(V Tz F̂)

+(F̂TVi)(V
T
i Vz)(D−1Σ)(V Tz Vj)(V

T
j Vz)(D−1Σ)(V Tz F̂)

−(F̂TVz)(D−1Σ)(V Tz Vi)(V
T
i Vz)(D−1Σ)(V Tz Vj)(V

T
j Vz)(D−1Σ)(V Tz F̂)}

Case 2 (i 6= ξ, j = ξ).

∂2L∗

∂φi∂φξ
= −γi

ξ
{(V Ti Vi)− 2trace[(D−1Σ)(V Tz Vi)(V

T
i Vz)] + trace[(D−1Σ)(V Tz Vi)(V

T
i Vz)(D−1Σ)(V Tz Vz)]}

+
2γi
ξ2
{(F̂TVi)2 − (F̂TVz)(D−1Σ)(V Tz Vi)(V

T
i F̂)− 2(F̂TVi)(V

T
i Vz)(D−1Σ)(V Tz F̂)

+2(F̂TVz)(D−1Σ)(V Tz Vi)(V
T
i Vz)(D−1Σ)(V Tz F̂)

+(F̂TVi)(V
T
i Vz)(D−1Σ)(V Tz Vz)(D−1Σ)(V Tz F̂)

−(F̂TVz)(D−1Σ)(V Tz Vi)(V
T
i Vz)(D−1Σ)(V Tz Vz)(D−1Σ)(V Tz F̂)}

Case 3 (i = j = ξ).
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Appendix B. Polynomial GPs - Efficient Implementation Formulae

∂2L∗

∂φ2
ξ

= trace[(D−1Σ)(V T
z Vz)]− trace[(D−1Σ)(V T

z Vz)(D−1Σ)(V T
z Vz)]

+
1

ξ
(F̂T F̂)− 4

ξ
(F̂TVz)(D−1Σ)(V T

z F̂) +
5

ξ
(F̂TVz)(D−1Σ)(V T

z Vz)(D−1Σ)(V T
z F̂)

−2

ξ
(F̂TVz)(D−1Σ)(V T

z Vz)(D−1Σ)(V T
z Vz)(D−1Σ)(V T

z F̂)

Prediction equations

For z a vector of measurement points and z∗ a chosen vector of prediction points we can

re-express the GP prediction formulas as follows (for the case of polynomial regression).

These reformulations are required when using very large quantities of input data.

mean = Vz∗ q̃

where,

q̃ = (
1

ξ
Σ)[V T

z F̂− (V T
z Vz)(D−1Σ)(V T

z F̂)],

and contains the predicted coefficients.

covariance matrix = Vz∗Σ̃V
T
z∗

where,

Σ̃ = Σ− 1

ξ
Σ[V T

z Vz − (V T
z Vz)(D−1Σ)(V T

z Vz)]Σ,

is non-diagonal as discussed in Remark 1.
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Appendix C

Combined Posterior Experiments

in the General Case

In this section, Combined-Posteriors iteration for GP models is explored in the general

case. Note that the formulas for combined inverses (see below) necessarily requires

inversion of posterior GP matrix terms. As was discussed in Section 6.2, GP posterior

covariance matrices tend to be ill-conditioned. In the case of polynomial GPs an alge-

braic manipulation was found which allowed for this issue to be avoided. In the general

case no similar work around exists and hence we will use pseudo-inversion in order to

try and combine GP statistics.

Starting with two posterior GP multivariate distributions for our vector of function

points FZ∗ for a given function f ,

P1(FZ∗) = N(µ1,Λ1)

P2(FZ∗) = N(µ2,Λ2).
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Appendix C. Combined Posterior Experiments in the General Case

Recall we are looking to form the combined distribution P+(FZ∗) = N(µ+,Λ+) where,

µ+ = (Λ−1
1 + Λ−1

2 )−1(Λ−1
1 µ1 + Λ−1

2 µ2)

= Λ2(Λ1 + Λ2)−1µ1 + Λ1(Λ1 + Λ2)−1µ2, (C.1)

Λ+ = (Λ−1
1 + Λ−1

2 )−1

= Λ1(Λ1 + Λ2)−1Λ2. (C.2)

The equations reformulated as above now only require a single inversion operation to

be performed, that of (Λ1 + Λ2)−1. This term is still singular, or close enough to

being singular to render normal inversion useless, we instead form the Moore-Penrose

pseudo-inverse as follows: first a singular value decomposition (SVD) is performed,

(Λ1 + Λ2) = UEUT ,

with E diagonal and containing the singular values of (Λ1 + Λ2) in descending order,

E =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

 ,

with λ1 > λ2 > . . . > λn. A threshold value, τ , is then chosen below which to consider

singular values to be effectively 0, 1×10−6 was used initially but a range of values have

been tested. Having chosen this threshold value we define E+, a diagonal matrix with

entries:

[E+]ii :=


λ−1
i if λi > τ

0 otherwise.

The pseudo-inverse of (Λ1 + Λ2), denoted (Λ1 + Λ2)+, is then defined as;

(Λ1 + Λ2)+ := UE+UT .
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Appendix C. Combined Posterior Experiments in the General Case

Note that for a non-singular matrix A and with τ = 0, A+ = A−1. The pseudo-inverse

(Λ1 + Λ2)+ is then used in place of (Λ1 + Λ2)−1 for determining µ+ and Λ+.

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

-1

-0.5

0

0.5

1

GP1 Prediction

GP2 Prediction

Combined GP Prediction

Figure C.1: An example of the resulting predictions from combined-statistics iteration
using generalised inverses.

Figure C.1 shows an example of this method of combining the predictive statistics

being applied to two posterior GPs, a squared exponential covariance function was

used in both cases. The resultant combined prediction, obtained using generalised

inverses with τ = 10−6, appears sensible; as do the confidence intervals of the combined

prediction, shown in Figure C.2. However, in other cases anomalies have been found

such as that seen in Figure C.3 where the combined predicted mean lies outside of

both the GP means which are being combined. This type of anomaly has been found

to occur across different values of τ and different numbers of points being combined.

While the size of these anomalies is generally fairly small, with repeated iterations they

could grow and increase the predictive errors, severely undermining both the combined

predictions and the ability fo the confidence intervals to accurately reflect the true

size of these errors. It therefore seems that the issues presented by ill-conditioned

and singular covariance matrices cannot be avoided by the use of pseudo-inverses and

the pseudo-inverse approach turns out to be unsuitable for forming refined regression

estimates.
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Figure C.2: An example of the resulting confidence intervals at one standard deviation
from combined-statistics iteration using generalised inverses.
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Figure C.3: An example of the anomalies which can occur when performing combined-
statistics iteration using generalised inverses.
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[39] J. Quiñonero-Candela and C. E. Rasmussen, “A Unifying View of Sparse Approxi-

mate Gaussian Process Regression,” Journal of Machine Learning Research, vol. 6,

pp. 1939–1959, 2005.

[40] M. K. Titsias, “Variational Learning of Inducing Variables in Sparse Gaussian Pro-

cesses,” Proceedings of the 12th International Conference on Artificial Intelligence

and Statistics, JMLR Volume 5, 2009.

[41] E. Snelson and Z. Ghahramani, “Sparse Gaussian Processes Using Pseudo-inputs,”

Advances in Neural Information Processing Systems (NIPS), 2006.

208



Bibliography
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