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Abstract

The focus of this thesis is the trapping, cooling and imaging of fermionic potassium

atoms in optical lattice potentials. Our experiment is capable of cooling 40K atoms to a

T/TF of 0.18, well into the degenerate Fermi-gas regime. We then load the atoms into

a 3D optical lattice and prepare ∼ 500 atoms in one anti-node of the vertical lattice.

This 2D ‘layer’ of atoms is imaged with single-site resolution, giving us access to the

behaviour of quantum many-body systems in periodic lattice potentials.

The first chapter motivates why this system is so keenly interesting. The experiment

aims to function as an analogue quantum simulator for one of the founding questions of

quantum theory: the classically inexplicable behaviour of correlated electrons in solid

state systems. The second chapter briefly explores the techniques of preparation and

control of dilute ultracold gases. The bulk of the thesis, chapters 3 and 4, deal with

the design and optimization of the imaging scheme for site-resolved imaging of 40K

atoms. In chapter 5, we describe our work with a rubidium quantum-gas experiment,

particularly on the laser cooling and state preparation of 85Rb atoms. Finally, we

conclude with a look back on what we were able to achieve and learn as well as a look

forward to the future of the 40K and 85Rb experiments.

Our results and contributions to the broader field are as follows: We have achieved

site-resolved imaging of 40K atoms with ∼ 5% losses via Raman sideband-cooling. Our

work characterizing the imaging scheme and the associated challenges adds to the un-

derstanding of the vital and broadly applicable technique of RSC. We also compare

these results against electromagnetically-induced transparency (EIT) cooling. As we

are possibly the only quantum-gas microscope experiment to use both Raman sideband
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Chapter 0. Abstract

and EIT cooling, we are uniquely positioned to benchmark both techniques. Addition-

ally, I numerically simulate light-assisted heating and tunneling rates of 40K atoms in

the optical lattice via the quantum trajectory technique. The simulations enhance our

understanding of our imaging technique as well as contributing to the more general

understanding of challenges associated with optically trapping 40K atoms. Finally, our

work on implementing grey-molasses cooling of 85Rb has not been demonstrated be-

fore. This marks a step forwards in the laser cooling of 85Rb both in quantum-gas

microscopes and other cold-atom experiments.
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Chapter 1

Introduction

Prior to the development of quantum mechanics, a striking new phenomenon was ob-

served that could not be explained classically. Low-temperature studies of mercury [1]

in 1911 demonstrated a sharp fall in resistivity on cooling below 4.2 K. Shortly there-

after, this change in phase was observed for tin and lead at 3.8 K and 6 K respectively.

In addition to being a fascinating piece of the puzzle that would become quantum

theory, the practical significance of the discovery was immediately apparent: perfectly

conducting wires of such materials can sustain currents indefinitely without any drop

in voltage, decay in current or heating across the wire. Perfect diamagnetism was also

observed to emerge simultaneously with the onset of perfect conductivity in 1933 [2].

When these metals were cooled in the presence of a weak magnet, the phase transition

is observed indirectly as an expulsion of the external magnetic flux from the material,

repelling the nearby magnet. Perfect conductance and perfect expulsion of magnetic

fields (known as the Meissner effect) occurring below a critical temperature Tc became

the hallmarks of a new phenomenon - superconductivity. Whether the Meissner ef-

fect is independent of perfect conductance [3] or if it is the energetically favourable

outcome when balancing the magnetic and kinetic energy in a perfect conductor [4],

any theory of superconductivity must simultaneously explain both. To this end, the

Bardeen-Cooper-Schrieffer (BCS) theory [5] proposes a phonon-mediated pairing be-

tween electrons of opposite spin and momentum to create zero-spin Bose particles.

The macroscopic occupation of these ‘Cooper-pairs’ into zero-momentum states is at

1
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the heart of superconductivity [6]. As such binding is only possible at energies smaller

than typical phonon energies, the theory predicts an upper limit Tc ≤ 30−40 K.

As early as 1935, superconductivity with differing magnetic characteristics was ob-

served [7]. These results were initially considered to arise from inhomogeneities in the

experiment sample. The evidence eventually mounted that this was a new class of

superconductors - Abrikosov or type-II superconductors [8]. Where the first metallic

superconductors (type-I ) show perfect diamagnetism up to a critical field Hc beyond

which the superconducting phase is broken, type-II superconductors have two critical

field values Hc1 and Hc2. At the first critical point Hc1, the material is no longer per-

fectly diamagnetic, however, the superconducting phase survives. Magnetic field lines

penetrate the material causing vortexes of normal material surrounded by supercon-

ducting current. At the much higher Hc2 where the density of vortexes through the

material is past a critical point, the superconducting phase is lost. Perhaps most strik-

ing of all, these materials at temperatures far above Tc show properties incompatible

with the conventional theory of metals [9]. At these temperatures, their conductivity

drops two orders of magnitude below than that of conventional metals, earning them

the title of ‘strange metals’.

1.1 High-temperature superconductivity

The early discovered type-II superconductors like the transition-metal alloys Nb3Sn and

NbN demonstrated critical temperatures at ∼ 18 K, i.e. required liquid Helium cooling

in application. However, the discovery of Ba-La-Cu-O compounds demonstrating su-

perconductivity at 30 K in 1986 [10] sparked renewed interest in these materials. The Tc

record was shattered the very next year with a Yb-Ba-Cu-O compound demonstrating

the superconducting phase transition at 93 K [11]. Crucially, the pairing state of these

high-temperature superconductors (Tc above the phonon-energy limit) show strong in-

dications of d-wave symmetry [12–14] as opposed to s-wave symmetry in conventional

superconductors [15,16].

With higher critical temperatures (above the boiling point of nitrogen at 77 K),
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higher resilience against external magnetic fields and the ability to carry bulk currents,

d-wave superconductors promised greater access to real-world applications. Power

transmission, magnetic levitation, nuclear fusion reactors and quantum computation

are among several fields with potential to be revolutionized by superconductivity [17].

It is then critical to better understand these systems. These discoveries have spurred

a phenomenal interest in the physics of solid-state systems with approximately 50,000

papers published on superconductivity and related problems in just the 10 years after

their discovery. Refer figure 50.2a,b of [3] for a more complete experimental history

of superconductivity. For a phenomenological treatment of the two types of super-

conductivity, refer [18]. For a review of the most current understanding of high-Tc

superconductors and their doping-dependent phase diagram, see [19].

Phenomenological approaches [20] have provided significant insight into phase tran-

sitions of condensed matter systems, including the type-I and type-II superconducting

phases. However, an ab initio microscopic description remains out of reach. In section

1.2, we introduce the simplest microscopic model of electron correlations in a crystal,

the Hubbard model [21]. Following this, in section 1.3 we discuss the challenge of

simulating this system and the role experiment can play. In doing so, we will justify

how quantum-gas microscopes (QGMs) can be a powerful investigative tool, wherein

the behaviour of electrons in a crystal can be recreated via neutral fermionic atoms

in an optical lattice. In section 2 we introduce the key elements of our experiment -

a quantum-gas microscope equipped to prepare 40K atoms in 2D sub-systems of a 3D

optical lattice [22].

1.2 Electron correlations and the Hubbard model

Superconductivity was far from the only phenomenon condensed-matter physicists

grappled with. Transition metals had been experimentally demonstrated to show a

mixture of properties that could not be fully explained solely via atomic descriptions

(electrons localized to atoms) or lattice-band theory descriptions (‘free’ electrons delo-

calized in real space while being localized in momentum space). As examples of these
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dual properties, we observe spin-wave phenomenon in ferromagnetic metals [23]. This

is well explained by the Heisenberg model which describes spins localized to lattice

sites. At the same time, the observed non-integral magnetic moments per atom of

ferromagnets cannot be explained by spin-localized models and require a band-theory

description [24, 25]. Furthermore, certain transition-metal oxides predicted to be con-

ductors by band-theory were instead insulators (see table 1 of [26]). These findings

suggested a need for a theory of electron correlations that does not disregard the atomic

and localized nature of atoms in a lattice [27,28].

We require of a microscopic model of solid-state systems to capture the qualitative

behaviour - the physics - of the system. A ‘good’ model, however, does so with the

fewest possible degrees of freedom [29]. I.e., by distilling the system down to the

elements essential to its qualitative behaviour, a good model reveals the ‘root cause’ of

a physical phenomenon. The approximations made in the process must also be relevant

to a broad set of systems such that we can extract physical intuitions that are widely

applicable. Under this rubric, among the simplest and most successful descriptions

of solid-state systems is the Hubbard model [21, 30, 31] developed independently in

England, Osaka and Zurich in 1963. The Hubbard model aims to bridge the gap

between the atomic and lattice band descriptions and better explain the characteristics

of transition metals including their magnetic properties. When the strongly correlated

many-body effect of type-II superconductivity was discovered in 1986, the Hubbard

model became a prime candidate to explain this phenomenon.

1.2.1 Hubbard Hamiltonian

The Hubbard model describes correlations between electrons in solid-state systems.

Atoms are considered to be fixed in place, forming a periodic crystal lattice. Valence

electrons are localized to these lattice sites but are able to tunnel to the nearest neigh-

bouring sites. Despite its simplicity it retains the characteristics of a many-body theory,

i.e. inter-particle correlations, with electrons repelling each other when they occupy

the same site.

Consider the non-relativistic Hamiltonian for particles (in this case, electrons) in a
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periodic 1D potential, [32]

Ĥ =
N∑
i=1

(
p̂2i
2m

+ VL(xi)

)
+

∑
1≤i≤j≤N

VI(xi − xj), (1.1)

where VL refers to the periodic potential of the lattice and VI describes the inter-particle

interactions (Coulomb interaction in case of electrons). N is the number of particles

on the lattice. This can be re-written as a periodic one-body potential Veff(xi) =

VL(xi) +VA(x) and an effective two-body term U(xi,xj) = VI(xi−xj)−VA(x), where

VA(x) is an auxiliary potential sharing the periodicity of the lattice. The Hamiltonian

is therefore:

Ĥ =
N∑
i=1

(
p̂2i
2m

+ Veff(xi)

)
+

∑
1≤i≤j≤N

U(xi,xj). (1.2)

This approach neglects edge-effects and makes the reasonable assumption that the N-

body wave function of the particles on the lattice shares the periodicity of the lattice

resulting in a mean-field potential, VA(x), felt by every particle in the system. The

interaction term, U , deals with on-site interactions (which cannot be approximated as

a mean field in first quantization). I.e. we associate an energy cost of two particles

occupying the same site. This effective inter-particle repulsion is significantly reduced

in magnitude and range as compared to the original interaction and can be treated

perturbatively.

The eigenstates of the non-interactive periodic Hamiltonian are the Bloch waves [33].

We represent these waves in the Wannier basis:

ψαk(x) =
1√
N

∑
j

eik.rwα(x−Rj). (1.3)

Here, wα(x −Rj) are Wannier functions centred at the sites Rj corresponding to the

N ions in the crystal. This ensures that they are plane wave solutions of momentum

k strongly localized at the lattice sites Rj , where α refers to the band index. This

fits well with the tight-binding approximation that particles are strongly localized at

lattice sites and can only tunnel to their nearest neighbours. Applying the single-band
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approximation α = 1, we arrive at the most familiar form of the Hubbard Hamiltonian

(represented concisely in second quantization):

ĤFH = −t
∑
⟨i,j⟩

(c†i,σcj,σ + h.c.) + U
∑
i

ni↑ni↓ = Ĥt + ĤU . (1.4)

The terms −t and U are the nearest-neighbour tunnelling strength and the on-site

interaction strength respectively. c†iσ, ciσ are the on-site creation and annihilation

operators where σ indicates spin (either ↑ or ↓). The occupation number of the site i

is given by ni,σ = c†i,σci,σ. The tunnelling/kinetic component of the Hamiltonian, Ht,

couples ordered pairs of nearest neighbour lattice sites ⟨i, j⟩. HU describes a potential

energy arising from on-site interaction when two electrons of opposite spin occupy a

single site. Finally, in the experimentally relevant context of an additional weakly

confining potential, we also include a per-site chemical potential term, Hc =
∑

i ϵini,

in the total Hamiltonian. A similar treatment can be carried out for bosons in periodic

potentials, referred to as the Bose-Hubbard model [34,35].

1.2.2 Characteristics of the Hubbard model

Without being exhaustive, we discuss the features of the Hubbard model. As a general

(and much simplified) intuition, when |U |/t≪ 1, tunnelling dominates the inter-particle

interaction and we expect metallic behaviour consistent with band theory. When in-

stead, |U |/t ≫ 1, the Hubbard model reduces to a strongly-localized Heizenberg-like

model. All properties of the undoped systems arise from a competition between in-

teraction strength U and the band width W = 4Dt, where D is the dimensionality of

the system. For different regimes of these parameters in relation to the free-gas Fermi

energy EF, we expect a metal (U ≪ EF ≪ W ), Mott insulator (EF ≪ W ≪ U) and

band insulator (EF ≫ U,W ).

We are interested in strongly-correlated systems (U ≫ t) and restrict our discussion

accordingly. In such systems at low temperatures, spin ordering occurs due to a ‘virtual

hopping’ interaction between opposite-spin particles on neighbouring sites. This does

not change the spin configuration at each site, however, the virtual hopping between
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sites allows particles to lower their energy (if the hopping is not Pauli-forbidden). The

resulting behaviour for half-filling (i.e. an average atom number per site of n = 1)

can be treated as a Heisenberg-spin Hamiltonian. The Hamiltonian takes the form

Ĥ = Jex
∑

⟨i,j⟩ Ŝi.Ŝj , where Ŝi is the spin-1/2 operator at site i and the strength

of this superexchange interaction is given by Jex = 4t2/U . The interaction favours

antiferromagnetic ordering for a repulsive (U > 0) on-site interaction [36]. Hence, for

a temperature kBT ≤ U , we expect to see a paramagnetic MI, and at the much lower

temperature kBT ≤ Jex, we expect the emergence of an antiferromanetic MI [37]. These

predictions match well with the behaviour of transition-metal oxides [38,39].

A parameter that greatly alters the behaviour of these compounds is doping, i.e.

changing the number of electrons/holes in the system. The presence of holes in the

Mott-Insulator makes particles effectively less correlated for fixed interaction strength

U [40]. A modification of the Hubbard model known as the t-J model explicitly includes

the most likely forms of tunneling for n ̸= 1, i.e., tunneling from a singly occupied to

an empty site and tunneling from singly occupied site to form a doubly occupied site.

In addition, this model perturbatively includes the more rare tunneling events such as

two electrons simultaneously tunneling to an empty site to form a doubly occupied site,

tunnelling between three sites with or without a spin flip at the central site, etc. These

additional tunnelling terms and the reduced effective correlation in doped crystals are

thought to be key factors in high-Tc superconductivity [41–44], so much so that the

undoped parent compounds of cuprate superconductors are typically insulators. Much

of current research focuses on better understanding these effects [45].

1.3 Simulating the Hubbard model

The Hubbard model though deceptively simple has withstood every attempt at an

exact solution in all but 1D [46, 47]. Numerically simulating such systems, however,

are beyond the reach of classical computers [48]. The Hilbert space for a quantum

system grows exponentially with the number of particles. Therefore, the necessary size

of a classical computer also grows exponentially with the size of the system it aims to

7



Chapter 1. Introduction

simulate. In describing the behaviour of electrons in solid-state systems, the Hilbert

space quickly becomes unwieldy.

Where exact diagonalization is challenging, computational methods typically ex-

ploit symmetries of this system or find approximations that reduce complexity while

preserving essential characteristics of the system. The commonly applied methods in-

clude Hartree-Fock approaches [49], quantum Monte-Carlo (QMC) techniques [50, 51],

density-matrix renormalization group (DMRG) algorithms [52, 53], density functional

theory (DFT) [54] and dynamical mean-field theory (DMFT) [55]. Each of these

techniques have relative advantages and applications to which they are well suited.

However, these techniques are typically challenged in higher dimensional systems [56]

where entanglement is spread more broadly (damping the advantages of DMRG), finite

temperature or high energy systems with a higher density of energy states, fermionic

systems (owing to the ‘sign problem’ emerging from anti-symmetry of exchange that

introduce negative probability terms in QMC calculations and make difficult DMFT

impurity models that rely on QMC), disordered systems that break symmetries, and

particularly - strongly-correlated systems (that makes DFT impractical). Hence, it is

uncertain the degree to which these techniques are applicable to the Hubbard model,

which is a fermionic, strongly-correlated and many-body model.

As of yet, it remains unknown whether the Hubbard model allows for superconduc-

tivity except in the small-U limit [57]. Here is where experimental quantum simula-

tors [58,59] can play an invaluable role in understanding exotic many-body phenomenon

and the limits of the Hubbard model. They can be used to verify the results from

theoretical and numerical techniques as well as access regimes not accessible to these

techniques. In section 1.3.1 we explore how atoms in optical lattices [60, 61] provide a

simulation platform uniquely suited to modelling Hubbard systems. Later, in section

2 we introduce our experiment, and delve into many of the techniques that have made

cold-atom experiments possible.
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1.3.1 Neutral atoms in optical lattices

Though the Hamiltonian we have discussed in section 1.2.1 deals with the behaviour

of electrons in solid-state systems, the universality of quantum mechanics [62] provides

an opportunity to study this Hamiltonian in a more controllable system. In place

of electrons, we can use fermionic atoms, and instead of the typical lattice separation

scales of angstroms, we trap these atoms in periodic optical potentials of sub-micrometer

separation. Internal magnetic states of the atoms serve as proxy for discrete spins spin

states of electrons and the on-site Coulomb interaction of electrons of opposing spins can

be simulated via s-wave scattering of neutral atoms. Atoms illuminated by an optical

field experience a potential Vdip(r) = −1/2⟨d.E(r)⟩ ∝ −I(r) [63]. The parameter d

is the light-induced atomic dipole moment, E(r) the laser’s oscillating electric-field

amplitude and I(r) the spatially-dependent intensity of the laser. Therefore, we can

generate spatially periodic potentials for periodic I(r). Most commonly, as is the

case in our experiment, these potentials are generated by retro-reflecting optical laser

beams to create standing-wave optical fields with a resulting potential of the form

Vx = V0 sin2(kLx) along each axis. See appendix A for a more detailed treatment of

the resulting potential.

For the rescaling above to faithfully represent the physical system, the atoms need

to be cooled to extremely low temperatures. The de-Broglie wavelength, an estimate

of the ‘quantum-ness’ of a system is defined as λdB = (2πℏ2/mT )1/2, where m is the

mass of the particle and T is its temperature in Kelvin. i.e. λT ∝ 1/
√
mT . Since atoms

have mass 106 times that of electrons, the atoms have to be cooled to the ultracold

regime (< 1 µK) such that their de-Broglie wavelength is comparable to their electron

counterparts, and cool even further (∼ nK) for λdB to be on the order of inter-atomic

separation. Sections 2.2 and 2.3 discuss how such low temperatures are achieved.

In section 1.2, we discussed what makes the Hubbard model a suitable microscopic

model for solid-state systems. Similarly, it is instructive to consider what makes atoms

in optical lattices a suitable simulation platform for the Hubbard model. First, this

platform provides the essential elements of the Hubbard model - a periodic potential,

nearest-neighbour tunnelling and on-site interaction - without introducing additional
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degrees of complexity. This is because optical lattice based crystals, in comparison to

real materials provide much better homogeneity and low-noise periodic potentials. The

second critical advantage of the platform is its low simulation time and high scalability

in comparison to classical computers. A Hubbard system can be prepared and mea-

sured with a cycle time in the order of a few 10s of seconds. Even accounting for the

number of repetitions necessary for reliable statistics this is several orders of magnitude

faster than the best supercomputers. In addition, quantum-gas microscopes are highly

scalable: capable of simulating quantum systems with hundreds of atoms [64] without

appreciable increase in simulation time. Finally, the neutral atom simulation platform

offers tunability over a wide range of parameter space. The parameters t, U , depend

on the depth of the lattice trapping potential V0. Deeper traps reduce the likelihood of

atoms being able to tunnel to neighbouring sites, reducing t, while also increasing the

confinement and strength of on-site interaction U . The interaction parameter U can be

tuned independently by tuning the scattering length of the inter-atom interaction via

magnetic Feshbach resonances [65], i.e., both Hubbard parameters are experimentally

accessible. This allows us to explore both regimes: |U |/t ≫ 1 (the interaction domi-

nated, strongly-correlated regime), and |U |/t≪ 1 (the hopping dominated regime).

1.3.2 Many-body physics with ultracold gases

Several important review articles track the development and successes of optical lattice

simulators (see [36,37,66–70] and most recently [45,71,72]). In this section we highlight

a few key experimental milestones for optical lattice experiments that illustrate the

features of the Hubbard model.

The early successes were achieved for the Bose-Hubbard model, i.e. bosonic neutral

atoms in optical lattices. They were aided by advances in the trapping and cooling

of bosonic atoms, particularly the demonstration of Bose-Einstein condensation (BEC)

[73] in 1995. A BEC is a macroscopic wavefunction formed when the bulk of microscopic

particles in the system occupy the ground state, only possible when atoms are cooled

to ∼ nK temperatures. In an optical lattice, a BEC has superfluid characteristics,

analogous to a conventional s-wave superconductor. In 2002, researchers reported the
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observation of the superfluid-MI phase transition of the bosonic Hubbard model [60,74],

observed as a sudden and reversible disappearance of the phase coherence across the

lattice. A molecular BEC of fermionic atoms was created by tuning the inter-atom

interaction strength via Feshbach resonance in 2003 [75]. In 2008, the transitions for

the fermionic Hubbard model were also demonstrated [76, 77]. Unlike the quantum

phase-transition of bosonic systems, the Mott-insulator phase emerges as a crossover-

transition from the degenerate fermi-gas, with the transition complete only for T = 0.

Quantum-gas microscopes for 2D Hubbard systems

Optical lattice experiments took a big step forward with the development of single-

atom resolved imaging of 2D Hubbard systems. Strong confinement (i.e. t ∼ 0) across

one axis of the 3D lattice creates independent 2D optical crystals at each anti-node

of the strongly confining lattice beam. Preparing and imaging a single 2D ‘layer’

(atoms in a single anti-node) of this system with high-resolution microscopes allows

for unprecedented insight into their microscopic behaviour [78]. Such devices are best

known as ‘quantum-gas microscopes’ (QGMs). The necessary experimental techniques

to achieve single-atom imaging were pioneered for bosons [79] and used to probe the

SF-MI transition with single-atom resolved imaging [80, 81]. Due to mixing of P state

mF levels in deep optical traps that make laser cooling inefficient for fermionic atoms

40K and 6Li, single-atom imaging of fermions was only achieved in 2015 [82,83], followed

by the observation of a Mott insulator [84,85].

Quantum-gas microscopes have proven to be powerful investigative tools into su-

perconductivity and related strongly-correlated phenomenon. The QGM-accessible 2D

Hubbard model [86] is particularly relevant to superconductivity. Cuprate superconduc-

tors are built of 2D copper-oxide planes sandwiched between rare-earth or alkaline-earth

oxide layers [87,88] leading to a pseudo-2D structure with planar sheets of charges. In

addition, single-atom resolved imaging allows us to measure local correlation functions

that are otherwise inaccessible [89, 90] including the emergence of anti-ferromagnetic

order [91, 92]. Lastly, it is an ideal tool to explore the all-important effects of dop-

ing [93–95] and microscopic effects such as spin-charge separation [96,97].
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Though precise critical temperatures are uncertain, optical-lattice experiments inch

ever closer to the temperature regimes where we expect to observe superconductivity

in doped systems (see figure 1 of [45]). The species chosen for our experiment, 40K

is well suited to the task of simulating the Hubbard model [98, 99]. Particularly, a

broad Feshbach resonance at 191 G would allow us to tune the interaction strengths

between the |9/2,−9/2⟩ and |9/2,−7/2⟩ states of the 40K hyperfine ground state. A

more thorough understanding of single-atom imaging techniques for neutral atoms and

specifically 40K (the subject of this thesis), the parameters that dictate its fidelity and

limitations is a key part of designing QGMs for many-body physics.

This work is structured as follows. The following chapter describes the building

blocks of a quantum-gas microscope and the necessary laser-cooling techniques. As

several years of literature on the specific tools and techniques involved exist, we fo-

cus on providing an overview and connecting the dots between different laser-cooling

schemes. Chapter 3 focuses on the implementation of the Raman sideband-cooling

scheme for single-atom imaging. We aim to thoroughly characterize the scheme and

compare it against a similar sideband cooling scheme - electromagnetically-induced

transparency (EIT) cooling. In chapter 4, we will discuss an approach to simulating

the imaging process known as the quantum-trajectory method. This simulation work

has been crucial in guiding the optimization of our experiment, and has provided valu-

able qualitative insights on the behaviour of 40K atoms in optical lattices. Lastly, in

chapter 5 we discuss the optical pumping and grey-molasses cooling of a different atom,

85Rb, implemented in a parallel bosonic experiment.
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Building a quantum simulator

Quantum-gas microscopes of today are the culmination of decades of progress in the

cooling, trapping and imaging of neutral atoms [66, 69, 100, 101]. The implementation

of these techniques in our experiment is well documented in the thesis of D. Cotta [22].

We summarize briefly the cooling and trapping of 40K and discuss our single-atom

imaging scheme in the following chapter.

To prevent the condensation of these cold gases, the inter-atomic separation, n−1/3

(where n ∼ 1012 m−3 is the particle density), should be greater than the length scales

of inter-atomic interaction. As discussed in section 1.3.1, the atoms need to be cooled

to extremely low temperatures (∼ nK) such that their de-Broglie wavelength exceeds

the inter-atomic interaction length scales. Such dilute and ultra-cold quantum gases

need to be prepared in ultra-high vacuum (∼ 10−11 mbar) environments such that

their coherence and lifetimes are not hindered by collisions with background gases. As

a general principle, quantum-gas microscopes aim to trap atoms at ever lower back-

ground pressures and atom temperatures. Here, the richest features of the Hubbard

model (such as superconductivity in the repulsive Fermi-Hubbard model) would not be

hindered by thermal fluctuations or background collisions [45]. Key to achieving these

low temperatures are magneto-optical traps (MOTs) (section 2.2) and optical-dipole

traps (section 2.3).
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2.1 Experimental procedure

Our experiment cools and traps atoms in three interconnected chambers, referred to as

the 2D-MOT chamber, 3D-MOT chamber and science chamber (See figure 2.1). A 5%

enriched 40K ampoule is heated to 105 °C in an oven that can be opened to the 2D-MOT

chamber. This provides a pressure of 6 × 107 mbar in the 2D-MOT chamber, where

we estimate ∼ 1011 atoms trapped in a cigar shaped cloud. A differential-pumping

tube (⊘1 mm × 55 mm) along the long-axis of the 2D-MOT opens to the 3D-MOT

chamber. Aligned with the 2D-MOT, differential-pumping tube and 3D-MOT is a

near-resonant “push” beam that transports atoms from the 2D to 3D MOT. The 3D-

MOT captures ∼ 108 atoms, bringing them to a minimum temperature of 29 µK via

grey-molasses cooling [102] (section 2.2.1). Atoms are transported 15 cm via an optical-

dimple trap from the 3D-MOT chamber to the science chamber (section 2.3) where they

are evaporatively cooled to the nanokelvin regime. The 3D-MOT and science chambers

are maintained at ultra-high vacuum (10−11 mbar).

Figure 2.1: Cross section of experiment chambers: From left to right, (a) 40K oven
valve, (b) 2D-MOT chamber, (c) 3D-MOT valve, (d) 3D-MOT chamber and (e) science
chamber. Below the science chamber (green) is the microscope objective to collect
fluorescence photons.
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2.2 Laser cooling

Atoms experience two kinds of forces on interacting with light. The first is photon

scattering [103]: atoms absorb light to undergo an atomic transition to the excited

state, and scatter the light in an arbitrary direction to return to the ground state.

Since the atom absorbs photons with momentum in one direction (the direction of laser

propagation) and emit photons in a random direction, the atoms gain a net momentum

along the field. A second force arises due to a dipole interaction. The light-field brings

the atom into a superposition of states, inducing a dipole moment which oscillates

with the driving frequency of the electromagnetic field. The former is the basis for the

2D and 3D MOTs, the latter results in a conservative force that allows for all-optical

trapping and evaporative cooling.

A magneto-optical trap [104] uses the scattering force from opposing beams of light

at frequencies near to the resonant transition to trap and cool atoms. The rate of

absorption from each of the opposing beams and thus the magnitude of scattering

force depends on the atoms position and velocity [105, 106]. The setup requires two

coaxial coils with opposite directional currents to set up a space varying magnetic field

(zero at trap center, but increasing magnetic fields on moving away from the center).

The counter propagating laser fields have a frequency below the electronic transition

frequency (ω < ω0 where ω0 is the resonance frequency) and opposite handedness.

Hence, they drive transitions from mF states of opposite sign. Thus, when an atom

moves away from the center, it preferentially absorbs photons from the laser moving

opposite its velocity.

More importantly, at these laser frequencies atoms absorb more photons from the

beam opposing its velocity as the light is Doppler-shifted closer to resonance. This

results in gaining more momentum from one light field than the other, slowing the

atoms down. The net force exerted on low-velocity atoms near the centre of the MOT

takes the form [106]

FMOT = −αβ
k
z − αv, (2.1)

i.e., a force dependent on the atom’s position z and velocity v. β = gµB/ℏδB/δz,
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where g, µB and ℏ are the Lande-g factor, Bohr magneton and planck’s constant while

B is the external magnetic field. i.e. βz describes the zeeman shift on moving from

the centre of the trap to z. The damping co-efficient α = 2kδF/δω, where k is the

wavevector and ω is the frequency of incident light.

These same principles can be extended to two (2D MOT) and three dimensions

(3D MOT) by using a quadrupole magnetic field and opposing lasers from two or three

directions (for 2D and 3D MOT respectively). The minimum temperature that can

be achieved by a MOT is known as the Doppler cooling limit, kBTD = ℏΓ/2. The

natural linewidth Γ of the cooling transition, typically of the order of ∼ MHz, allows

for final MOT temperatures TD ∼ 120 µK for 40K when the cooling beams are detuned

to δ ∼ Γ/2.

2.2.1 Sub-Doppler cooling

The Doppler limit (in the µK range) is an order of magnitude hotter than temperatures

typically required in optical lattice experiments (∼ nK. To bridge this gap, we look

closer at what limits the temperatures achieved in doppler cooling. Equation 2.1 shows

an anti-linear relationship between an atom’s velocity and the force it experiences. I.e.,

δFMOT/δv = −α. This is akin to the atoms experiencing a viscous force, earning this

cooling scheme the moniker of “molasses” cooling. The width of the cooling transition

sets the capture velocity - atoms moving faster than this velocity are Doppler-shifted

out of resonance of both beams and cannot be cooled. The gradient of the velocity-

dependent force, (−α), affects the minimum final temperature the scheme achieves.

Intuitively, the greater the magnitude of δF/δv the greater the force that can be applied

on atoms with low velocities leading to a slower equilibrium velocity. As α ∝ δF/δω,

broad transitions where the coupling strength changes more gradually with frequency

correspond to smaller magnitude of α.

The first stage of molasses cooling in most atomic physics experiments - the MOT -

features a broad cooling transition (of the order of Γ = 2π×6 MHz for 40K). Hence, it is

characterized by the highest capture velocities as well as the hottest final temperature of

the molasses schemes [105,107]. This serves as the pre-cooling stage for a grey-molasses
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cooling scheme in our experiment. Such enhanced molasses schemes typically feature

narrower effective transition widths that allow for lower final temperature with the

tradeoff of lower capture velocities. Table 2.1 summarizes the sub-Doppler laser cooling

schemes commonly used in atomic physics experiments. While the MOT relied entirely

Cooling Scheme δ polarizer/repumper T (40K)

Molasses cooling (MOT) -0.5 Γ / 0 200 µK

Red/Bright molasses −3 Γ / 0 48 µK

Grey-molasses cooling +3 Γ / 0 35 µK

Λ grey-molasses cooling +3 Γ / +3 Γ 29 µK

Table 2.1: Summary of molasses cooling schemes: δ = ω − ω0 where ω0 is the reso-
nance frequency for the cooling transition. Optimal detuning per technique depends
on multiple factors, values in table indicate an approximate value where the cooling
scheme becomes effective. The cooling/polarizer transitions for the standard molasses
and red-molasses schemes are the F = 9/2 → F ′ = 11/2. The grey-molasses and Λ
grey-molasses schemes drive the F = 9/2 → F ′ = 9/2 transition. The repumper is
tuned near-resonant to the F = 7/2 → F ′ = 9/2 transition. For the implementation of
these schemes in our experiment, see [22].

on the scattering of photons, red molasses or polarization gradient cooling utilizes a

combination of photon scattering and the atom-light dipole interaction. Retroreflecting

lasers in a lin⊥lin configuration causes a spatially varying polarization of the light

field experienced by the atoms. This leads to a spatially dependent dipole-interaction,

resulting in moving atoms experiencing a periodic lattice potential that depends on the

atoms internal state mJ . For example, since opposite mJ levels of the atom couple

more strongly to opposite polarizations the lattice potential experienced by atoms in

state −mJ is phase shifted by π as compared to that of atoms in state +mJ . The

laser detuning is chosen such that an atom climbing the top of the dipole potential

hill (losing kinetic energy in the process) is pumped to a different mJ state at a lower

dipole potential energy (see figure 8.5 of [108]). Hence, the moving atom converts

its kinetic energy to dipole potential energy and then is optically pumped to a lower

potential energy state, leading to a net cooling effect [109]. This effect dominates over

the Doppler cooling of the previous section when the lasers are detuned by ≥ 3 Γ.

Variations on this technique, the grey-molasses and Λ grey-molasses schemes achieve

a further reduction in temperatures by reducing the photons scattered by the slowest-
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moving atoms via coherent population trapping (CPT) of hyperfine-structure sublevels

into velocity-selective dark states. The heavier 85Rb atom can reach colder final tem-

peratures via the MOT and molasses cooling techniques and will be discussed in chapter

5.

The additional cooling step after the 3D-MOT is essential to loading atoms more

efficiently into optical traps. Typically, only atoms with temperatures kBT ≤ 1/10thV0

can be trapped in an optical trap of maximum depth V0. The optical trapping schemes

used in our experiment are discussed in section 2.3.

2.3 All-optical trapping, cooling and transport

The laser cooling techniques described in previous sections are limited by the recoil

limit (the kinetic energy of a resonant photon scattered by the atom) because they

involve scattering of photons. This corresponds to ∼ 0.8 µK and ∼ 0.3 µK for 85Rb

and 40K respectively. To reach still lower temperatures, we need to trap and cool in

ways that do not scatter photons. This is achieved in our experiment by the use of

far off-resonant 1064 nm lasers (red detuned to the D1 and D2 transitions) to create

optical-dipole traps and evaporatively cool the atoms.

The dipole potential experienced by atoms interacting with a light field takes the

form: Vdip(r) = −d.E(r) ∝ α(ωL)|E(r)|2 ∝ I/δ. By using far off-resonant lasers

(δ ≫ 0), the photon scattering rate (∝ 1/δ2) is almost entirely suppressed and the

diplole interaction (∝ 1/δ) becomes the dominant effect of the atom-light interaction.

The red-detuned Gaussian beams in our experiment generate a Gaussian potential

where atoms are attracted to regions of higher optical intensity. We will briefly describe

the experimental procedures that bring atoms from a MOT in the 3D-MOT chamber

to 3D lattices in the science chamber. For complete details, refer D. Cotta’s thesis [22].

2.3.1 Crossed optical-dipole trap (CODT) and evaporative cooling

On fully loading the 3D-MOT (1.2× 108 atoms of 40K 8 s), the cloud is compressed by

increasing the B-field gradient. We then turn off the magnetic-field and blue-detune
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the polarizer and repumper beams by ∼ 12Γ for 10 ms of grey-molasses cooling. The

additional compression and cooling enables us to load an optical dipole trap formed

by a pair of 100 W lasers of waist 300 µm crossed at 17° (referred to as the 17°CODT).

Where a single beam would trap atoms radially but allow them to move freely along

its axis, the crossed beam configuration traps atoms in all axes. The efficiency of

loading into the 17°CODT is directly dependent on how cold the atoms are after the Λ

grey-molasses stage.

What follows is a key element of ultracold atomic experiments - evaporative cooling.

The technique cools a thermal sample by targeting the removal of the hottest atoms

in the thermal distribution. The remaining atoms are allowed to thermalize and find a

new (lower) temperature. Evaporative cooling via optical traps is straightforward: we

lower the depths of the trap, allowing the hottest atoms to escape. Trap intensities are

lowered via slow (of the order of seconds) exponential ramps allowing the cooler atoms

time to thermalize.

2.3.2 Transporting atoms to the science chamber

We use this evaporation stage to both cool the atoms as well as load them into a tightly

focused optical trapping beam referred to as the transport trap. The transport trap

passes through both the 3D-MOT chamber and the science chamber and it is loaded

with the focus of the beam centred on the 17°CODT. Atoms are un-polarized (mixed

mF states) during evaporation to maximize the collision rate and hence the rate of

thermalization. Once they are loaded into the transport trap, we optically pump them

into the F = |9/2,−9/2⟩ state to minimize collisions in preparation for transport.

Using a focusing beam allows trapping in all 3-axes, including along the axis of

the beam. The atoms are attracted to regions of higher optical intensity and hence

follow the focus of the trapping beam. We are able to change the beam path with

a configurable translation stage and hence move the focus of the beam along its axis

from the 3D-MOT chamber to the science chamber, allowing us to move atoms from

one chamber to another without scattering photons.
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2.3.3 Optical lattice potentials

In the science chamber, atoms are trapped by a crossed optical trap with 14 W beams of

waist ∼69 µm crossed at 90° in the horizontal plane. An RF pulse prepares atoms in a

mixture of states F = |9/2,−9/2⟩ and F = |9/2,−7/2⟩ in preparation for two additional

evaporative cooling stages where inter-state collisions are essential for thermalization.

We achieve our coldest temperatures (∼ 5 nK) via evaporation, reaching as low as

T = 0.18TF where TF is the Fermi temperature. Atoms are then loaded into a vertical

lattice created by retroreflecting a laser from the bottom window of the chamber. Such

a retro-reflection creates a standing wave pattern with a node fixed on the reflecting

surface. The potential the atoms experience is of the form V = V0 sin2(kLx) where

kL = 2π/λ is the wavenumber of the light. Finally, once the 90°CODT beams are off,

we turn flip-mirrors to retro-reflect the horizontal dipole beams and ramp them back

up to load a full 3D optical lattice.

2.3.4 Selective preparation in a lattice anti-node

The final preparatory step involves a position dependent microwave transition to empty

all but one anti-node of the vertical lattice, resulting in a 2D ‘layer’ of atoms in the

horizontal plane [81, 110]. A vertical magnetic field gradient of δzB = 7.27 mG µm−1

is generated by a pair of coils with counter-propagating currents, with a field strength

of B0 = 11.6 G at the position of the atoms. Additional shim coils allow us to shift

the position of the field minimum in the horizontal plane. As described in the previous

section, atoms at this stage are prepared in a mixture of states |F,mF ⟩ = |9/2,−9/2⟩
and |9/2,−7/2⟩. We aim to transfer atoms in a selected layer from the F = 9/2 to the

7/2 manifold via microwave transitions from |9/2,−9/2⟩ (|9/2,−7/2⟩) to |7/2,−7/2⟩
(|7/2,−5/2⟩). B0 causes a Zeeman-shift between the two transitions of 2π × 7 MHz

while δzB causes a spatially-dependent frequency shift ∆1 = 2π×9.68 kHz (∆2 = 2π×
7.37 kHz) between adjacent lattice layers. A large fraction (∼ 98%) of the selected layer

of atoms can be transferred to the F = 7/2 hyperfine state via adiabatic passage, with

two 10 ms microwave pulses sweeping linearly in frequency across the central frequency

of the selected layer (with a sweep width < ∆i) and peaking in intensity at the centre
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frequency. Following this, a D2-resonant removal pulse on the F = 9/2 → F ′ = 11/2

cycling transition heats out all atoms in the lattice outside of the selected layer prepared

in the F = 7/2 manifold. The same microwave pulses are then applied to return the

remaining layer of atoms into the F = 9/2 state prior to Hubbard evolution and

imaging.

We have shown in chapter 1 why we want to study Hubbard physics and how cold

atoms in an optical lattice are well suited for this purpose. In chapter 2, we discussed

briefly the experimental procedures necessary to implement such a quantum simula-

tor. In the remainder of this thesis, we will discuss our experimental and theoretical

approaches to improve the imaging of 40K atoms.
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Sideband Cooling

Once the 40K atoms are prepared in an anti-node of the 3D optical lattice, what follows

is their coherent evolution according to the Hubbard Hamiltonian. In this coherent

evolution period, the combination of optical and magnetic potentials and the filling

fraction of atoms in the lattice determine the dynamics of the system. The final step

is to image the resulting atom distribution. The intensity of lattice beams are quickly

ramped up, preventing further evolution of the system. We aim to image atoms in

these deep lattice potentials with high fidelities. This chapter describes the imaging

scheme to generate the necessary fluorescence from individual atoms such that we can

re-construct the atom distribution in the lattice.

Fluorescence imaging of single atoms requires the scattering of a large number of

photons (∼ 1×104) per atom. It is essential that the atoms are simultaneously cooled to

prevent inter-site tunneling or atom losses in the process. The cooling scheme common

for bosonic alkali atoms is the red-detuned optical molasses [79, 81]. However, for

fermionic 40K closely spaced excited hyperfine levels make molasses cooling inefficient.

Furthermore, mF levels of the excited state begin to mix in deep optical traps owing

to tensor light shifts, making it a poor choice for cooling in the deep optical traps used

for imaging. We rely instead on sideband cooling techniques [111], i.e. driving atomic

transitions tuned to simultaneously couple lower energy motional states (as shown in

figure 3.1). This can be seen as analogous to optically pumping to the n = 0 motional

state in a harmonic potential [112].
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Sideband cooling was historically feasible only for heavier ions such as Hg+ [113]

and Ba+ [114]. For a trapping frequency of ωT , we require atoms with accessible

narrow-linewidth (Γ ≪ ωT ) optical transitions between states such that sidebands can

be resolved from the carrier. Raman sideband cooling (RSC) [115] and more recently

electromagnetically induced transparency (EIT) cooling [116] extend these principles to

lighter ions [117,118] and neutral atoms [119,120]. Raman cooling uses narrow optical

transitions between metastable states whereas EIT cooling leverages an asymmetric

(Fano-like) resonance to preferentially drive sideband transitions between ground and

excited state.

The focus of this chapter is the RSC technique applied to neutral atoms in a 3D

optical lattice. We will explore in detail the cooling scheme, implementation and op-

timisation of RSC for fluorescence imaging of single atoms. In the final section, we

will compare RSC results against the EIT technique which was previously employed in

this experiment and the motivation behind shifting to RSC-based imaging. The im-

plementation of EIT cooling is described in detail in sections 3.3 and 3.4 of D. Cotta’s

thesis [22].

3.1 Raman cooling scheme

The RSC scheme relies on a two-photon dipole forbidden transition between hyperfine

levels of the ground state mediated by the presence of an excited state (figure 3.1).

As the transition has a narrow linewidth, the relative detuning between the Raman

beams can be tuned to access different motional sidebands without driving the carrier

transition. The technique has been used in several quantum gas microscope experi-

ments [121–124], for deterministic preparation of single atoms in microscopic dipole

traps (optical tweezers) in their motional ground state [125,126], achieving 87Rb Bose-

Einstein condensation without direct evaporation [127] among others.

We have implemented the cooling scheme as follows (see figure 3.1): a far off-

resonant (∼ 30 GHz detuned from the D2 transition) laser drives two-photon transitions

from |F,mF ⟩ = |9/2,−9/2⟩ to |7/2,−7/2⟩ of the 4S1/2 ground state (henceforth referred
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Figure 3.1: Three-step Raman cooling cycle: 1. two-photon sideband transition |n⟩ →
|n− 1⟩ (red line), 2. transition to excited state (blue line) and 3. decay to ground state
preserving motional level n− 1 (black line). See figure 3.5 to see the internal levels and
laser transitions used in our experiment to implement this scheme.

to as |1⟩ and |2⟩ respectively). For a lattice trapping frequency of ωT , the two-photon

transition is red-detuned from resonance frequency by ωT to couple |1, n⟩ → |2, n− 1⟩,
where n is the atom’s motional energy state in the lattice (see Appendix A). This is

referred to as the red-sideband transition. A repumping laser near resonant to the D1

line depopulates the F = 7/2 manifold allowing the atoms to spontaneously decay back

into |1⟩ driving |2, n− 1⟩ → |1, n− 1⟩ via the 4P1/2 excited state. When trap depths

are sufficient to preserve the atom’s n state after a photon scattering event, the system

is said to be in the Lamb-Dicke regime [128].

This process repeats, with each cycle lowering the n level and reducing the atom’s

vibrational energy by ℏωT per cycle. The first step of the cycle (red-sideband transition)

drives transitions at rates of ∼ 2π × 50 kHz, and is typically the slowest part of the

cycle.
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3.1.1 Transition strengths

The effective Hamiltonian for the RSC scheme describes a λ system in the rotating

frame (following chapter 6 of [129]) after adiabatic elimination of the fast oscillating

excited state:

HR =
p2

2m
+ ℏ(∆1 + ωAC1) |g1⟩ ⟨g1| + ℏ(∆2 + ωAC2) |g2⟩ ⟨g2|

+
ℏΩR

2

(
σRe

i(k⃗2−k⃗1).r⃗ + c.c
)

(3.1)

The second and third terms describe the energy separation of the ground states |g1⟩, |g2⟩
from the excited state energy. ∆1, ∆2 correspond to the single-photon detuning from

|gi⟩ → |e⟩, ωACi = Ω2
i /4∆i are the AC stark shifts of the ground states. The last term

is the two-photon coupling between ground states, i.e. σR = |g2⟩ ⟨g1|. Importantly,

ΩR =
Ω1Ω2

2∆
, (3.2)

where Ωi are the single photon coupling strengths between |gi⟩ → |e⟩ and ∆ = (∆1 +

∆2)/2. The transition results in a momentum kick operator of the form eik⃗.r⃗. This

provides the necessary change in momentum to couple motional levels in harmonic

traps, which we will address more closely in this section.

A single site of a 3D lattice potential can to first order be treated as a 3D harmonic

trap (see appendix A). In such a case the atom has equally spaced motional energy

levels in each axis - n⃗ = [nx, ny, nz], where the total motional energy of the system is

Ep =
∑x,y,z

µ (nµ+1/2)ℏωTµ. The matrix element for the resulting two-photon transition

including motional degrees of freedom is:

⟨g2, n⃗2|HR |g1, n⃗1⟩ = ⟨g2, n⃗2|
ℏΩR

2
σRe

i∆k⃗.r⃗ |g1, n⃗1⟩ + c.c

=
ℏΩR

2
⟨g2|σR |g1⟩ ⟨n⃗2| ei∆k⃗.r⃗ |n⃗1⟩ + c.c, (3.3)

where ∆k⃗ = k⃗2 − k⃗1 = [kx, ky, kz], and kµ are the components of ∆k⃗ along the axis

µ. After Taylor-expanding the exponential in equation 3.3, the motional component of
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the inner product is:

⟨n⃗2| ei∆k⃗.r⃗ |n⃗1⟩ = ⟨n⃗2|
(

1 + i∆k⃗.r⃗ − (∆k⃗.r⃗)2

2!
+ ...

)
|n⃗1⟩ . (3.4)

We can substitute ∆k⃗.r⃗ = kxx̄+ kyȳ+ kz z̄ where µ̄ are unit vectors in the µ axis. In a

harmonic trap, this takes the operator form, µ̄ = µ0(âµ+â†µ) where âµ, â†µ are harmonic

oscillator creation and annihilation operators and µ0 =
√

ℏ/2mωTµ, the characteristic

length scale of the trap. Of interest to us are the first and second terms of the Taylor

expansion which act independently in each axis. To better understand these two terms,

we apply them in 1D, i.e. r⃗ = x̄ and n⃗i = ni(x) = ni, . We then have:

⟨n2| eikxx̄ |n1⟩ ≃ ⟨n2| 1 + ikxx0(a+ a†) |n1⟩ (3.5)

This shows we observe three possible transitions: the carrier (n2 = n1), red sideband

(n2 = n1 − 1) and the blue sideband (n2 = n1 + 1) with relative strenghts 1, kxx0
√
n1

and kxx0
√
n1 + 1 respectively. The third term in equation 3.4, (∆k⃗.r⃗)2/2, is typically

an order of magnitude weaker, allowing for second-order sideband transitions (of the

form n2 = n1±2) in each axis as well as coupling motional levels between the three axes.

The Rabi frequency for red-sideband (cooling) transitions in the x axis is therefore

ΩRSB = ηx
√
n1ΩR, (3.6)

where the quantity ηx = kxx0 is the Lamb-Dicke parameter [128] in the x axis for

the two-photon transition. A similar treatment can be applied to find the red-sideband

Rabi frequency in the y and z axes. In appendix B, we detail the Lamb-Dicke parameter

in each lattice axis and the Rabi frequency for the blue-sideband transition, ΩBSB.

The implementation of this scheme and associated limitations are discussed in the

following sections.

26



Chapter 3. Sideband Cooling
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Figure 3.2: MSquared laser optics setup: ∼ 1.5 W light at 766.7 nm is generated by a
Ti-sapphire laser. This is coupled through a 10 m high power fibre to the Raman laser
optics board. A wavemeter is used to fine-tune the laser frequency and monitor its
stability.
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Figure 3.3: Raman laser optics setup: 766.7 nm Raman light is split into two paths
(horizontal and vertical axis beams) with double pass AOMs of opposite order so as
to achieve a frequency separation of 4∆AOM, where ∆AOM = ∆HFS/4 + δ2photon/4. D1
resonant polariser (770 nm) is overlapped with the horizontal axis Raman beam.
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3.2 Implementation and characterization

To simplify the nomenclature of these beams, we utilize our abbreviations for the

4S1/2 hyperfine states; |F,mF ⟩ = |9/2,−9/2⟩ = |1⟩ and |F,mF ⟩ = |7/2,−7/2⟩ = |2⟩.
The excited states 4P3/2 and 4P1/2 are referred to as |3⟩ and |4⟩ respectively. Under

this scheme, the Raman beams are denoted as Ri referring to the beam targeting the

|i⟩ → 4P3/2 transition (D2 line). Similarly, the optical pumping lasers are referred to as

Pi near resonant to the |i⟩ → 4P1/2 transition (D1 line). We couple 8 W of 532 nm light

from an MSquared Equinox pump laser to an MSquared SolsTiS [130] (< 2π × 50 kHz

linewidth Ti:Sapphire laser) to generate 1.5 W of 766.7 nm light (see figure 3.2) 40 GHz

detuned from the D2 resonance of 40K. This is fibre coupled to the Raman laser optics

setup (see figure 3.3) where a polarizing beam splitter cube splits the beam into the

R1 and R2 beam paths. Double-pass acousto-optic-modulators (AOMs) in each path

are driven by a tunable frequency generator. For a driving frequency ∆AOM, the net

frequency separation between the Raman beams is 4∆AOM = δ2photon + ∆HFS where

∆HFS = 1.286 GHz, the hyperfine splitting of the 4S1/2 state. Furthermore, we use a

PID controller to regulate the intensities of the Raman beams for reproduciblity and

stability.

The frequency reference for both 770 nm beams is a moglabs tunable cat-eye laser

(CEL) [131] fitted with an Eagleyard EYP-RWE-0790 diode [132]. A pickoff from this

laser is used to generate a saturated absorption spectroscopy signal to lock the laser

80 MHz blue to the 39K D1 line. The remainder of the setup is described in section

2.2.2 of D. Cotta’s thesis [22]. Two secondary MOGLabs extended cavity diode lasers

(ECDL) are offset locked to the frequency reference via beat signals on fast photodiodes.

These beat signals are amplified and input to a frequency-to-voltage (F-V) converter

that generates a slope of 50 MHz V−1 for the polarizing laser (P1) and 100 MHz V−1

for the repumping laser (P2). An external voltage from the control computer shifts the

zero-crossing of the input error signal to the PID regulators. This is used to tune the

secondary laser frequency offsets from the primary laser in a range (100,900) MHz and

(100, 1700) MHz respectively for the beams P1 and P2.
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(a) (b)

Figure 3.4: Beam orientations: Alignment of the lattice and Raman cooling beams to
atoms in the science chamber: (a) Top view. (b) Side cross-section.

3.2.1 Beam orientations

To ensure that the net k-vector of the Raman beams have a component in each of

the lattice axes, the vertical Raman beam R1 is aligned parallel to the vertical lattice

axis and the horizontal Raman beam R2 bisects both the horizontal axes while being

perpendicular to the vertical axis (see figure 3.4). The horizontal Raman beam is

circularly polarised via a λ/4 waveplate while the vertical Raman beam is linearly

polarised. Therefore in sufficiently strong guiding field we couple the |9/2,−9/2⟩ →
|7/2,−7/2⟩ states via the Raman process. Implementation of the Raman cooling scheme

requires additional lasers on the D1 line (4S1/2 → 4P1/2), referred to as the polariser

beam P1 (F = 9/2 → F ′ = 9/2) and the repumping beam P2 (F = 7/2 → F ′ =

9/2). The relevant level diagrams are shown in figure 3.5b. The polarizing beam

P1 is overlapped with the horizontal R2 on the laser table itself (see figure 3.3) and

serves to maintain the polarisation of the sample during imaging. The more critical

re-pumping beam P2 that generates fluorescence necessary for imaging is aligned at a

small angle to the horizontal axis on the experiment table such that an independent

power regulation can be set up for the R2 and P2 beams respectively. Figure 3.4 shows

the beam alignments.

3.2.2 Transition spectra

We measure the Raman spectra by preparing atoms in state |F,mF ⟩ = |9/2,−9/2⟩
followed by a 10 ms Raman probe pulse. This transfers a fraction of atoms into the
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Figure 3.5: Level diagrams: D2 (a) and D1 line (b) beams used during Raman imag-
ing. The pumping beams (b) maintain the polarization of the atom and generate the
necessary fluorescence for imaging.

|F,mF ⟩ = |7/2,−7/2⟩ state. We then heat out atoms in the F = 9/2 manifold with a

resonant D2 pulse before imaging the atoms transferred by the Raman pulse into the

|F,mF ⟩ = |7/2,−7/2⟩ state. The beam intensities for the Raman probe pulse are low

enough to maintain ΩR ≪ ωT . We observe three different transitions (see figure 3.6a):

• The carrier (|n⟩ → |n⟩), at δ = δhfs where δhfs is the separation between the

|9/2,−9/2⟩ → |7/2,−7/2⟩ states including Zeeman effects as well as tensor light

shifts in deep lattices (∼ 0 for B = 0).

• The red-sideband (|n⟩ → |n− 1⟩) situated ωT red detuned off the carrier (where

ωT is the trapping frequency in the lattice) which corresponds to a loss of one

motional quanta per RSC cycle.

• The blue sideband (|n⟩ → |n+ 1⟩), situated ωT blue detuned off the carrier

corresponding to an increase in the motional quanta of the system.

The sideband frequencies for each lattice are independent of one another. i.e. by

changing the trap depth in one of the three lattice axes, we can observe two additional
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Figure 3.6: (a) Raman spectra and (b) n-level distribution in a deep 3D lattice (ωT =
2π × 330 kHz): Measuring number of atoms transferred to the F = 7/2 manifold vs
the two-photon detuning δ of the Raman beams (blue circles in (a)) and corresponding
n distribution (blue bars in (b)). The measurement is repeated with pre-cooling the
atoms (orange triangles in (a)) with the corresponding n distribution in orange bars in
(b).

peaks corresponding to the trap frequencies of that lattice axis. Since the red-sideband

coupling strength Ωred ∝ √
n, the n = 0 motional state is dark to the red-sideband

transition. This can be observed as an imbalance in the red/blue spectra which is

enhanced after cooling the sample (i.e. preparing a larger fraction of atoms in the

n = 0 state). In figure 3.6a we show the Raman spectra both before cooling and after

reaching an equilibrium state at typical imaging parameters (table 3.2 on page 42). The

ideal imaging parameters are not equal to the best cooling parameters, as the latter

preserves all atoms in the n = 0 dark state.

The probability of atoms in the lowest nmotional state (n = 0) can be approximated

from the Raman spectra as

P (0)measured = 1 − NR

NB
. (3.7)

NR and NB are the number of atoms resonant to the red-sideband and blue-sideband

transitions respectively. The approximation is improved by detuning two lattices and

measuring red/blue atom number ratios independently in each axis. From figure 3.6a

we find P (0)measured = 0.4 before cooling and P (0)′measured = 0.76 after 2 s of Raman

cooling.

Equation 3.7 gives us information only regarding the population fraction in the
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Figure 3.7: Polarizer and repumper transitions ((a) and (b) respectively) in a deep
3D lattice (ωT = 2π × 280 kHz): Scanning the offset frequency of P1 and P2 from the
master laser provides a spectra with peaks separated by the hyperfine splitting of the
4P1/2 state.

n = 0 state, to recover the population distribution in all n levels, we consider the

Fermi-Dirac distribution: n̄i = 1/(e(ϵi−µ)/kBT + 1), where n̄i is the average distribution

in state i, ϵi is the energy of state n̄i and µ the total chemical potential. For deep

lattices we can neglect µ as ϵi ≫ µ. Therefore, we can calculate

P (0)fermi =
1/(βϵ0 + 1)∑
i 1/(βϵi + 1)

, (3.8)

where β = 1/kBT , ϵi is the energy of motional level ni. The steady state temperature

measured after 1 s of Raman cooling is measured to be 9.8 µK. Calculating P (0)fermi

at this temperature gives us a population fraction of 0.745 which agrees well against

P (0)measured. We can therefore estimate temperature and n level distribution for the

atoms corresponding to the red/blue sideband imbalance (figure 3.6b).

The lasers near-resonant to the D1 line show transitions separated by ∼ 150 MHz,

the hyperfine splitting of the 4P1/2 state (see figure 3.7). Similar to the Raman spectra,

the D1 polarizer spectrum is measured by imaging the atoms in the F = 7/2 state after

a short P1 pulse that transfers atoms from the F = 9/2 to F = 7/2 manifold. For the

repumper spectra, atoms are first shelved in the F = 7/2 manifold via an adiabatic

transfer MW pulse, followed by a short P2 pulse and imaging the atoms returned by

P2 to the F = 9/2 manifold.
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Figure 3.8: Width of 40K atom cloud as a function of Raman pulse duration in a deep
lattice (ωT = 2π × 300 kHz), optimal cooling parameters.

3.2.3 Raman cooling and imaging

The conditions that must be satisfied for efficient cooling are (appendix A of [115]):

1. η2D1 ≪ 1: The probability of raising n level via D1 photon absorption and spon-

taneous scattering is low. i.e. the system is in the Lamb-Dicke regime.

2. ∆i ≫ πΓ/2ηD2
√
n: Raman beams drive very few single-photon transitions com-

pared to two-photon transitions.

3. ΩR ≪ ωT : carrier transition width is less than sideband-carrier spacing.

Scanning the power and frequencies of the Raman beams and repumping beam allows

us to optimise the cooling rate (see figure 3.8) with atom lifetimes ∼ 30s. As maximally

efficient cooling would trap atoms in a dark state, we need to optimise simultaneously

to achieve long lifetime and to generate a high enough for the fluorescence signal to

reconstruct the atom distribution. We will find in later sections that condition 3 for

efficient cooling is relaxed to ΩR ≤ 2ωT when optimising for fluorescence (section 3.3.4)

at our trap frequencies, i.e., we do not image with sideband resolved (figure 3.6a)

parameters.
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(a) (b) (c)

Figure 3.9: Tunneling/Losses: (a) First image of sample taken via 1000 ms exposure
to Raman pulse in 2π × 300 kHz trap. (b) Second image on the same sample taken
after 500 ms hold time. (c) From the images we construct a 2D matrix of occupied and
unoccupied lattice sites. Comparing occupied sites in the first picture (red circles) and
second picture (blue diamonds) allows us to calculate atom loss and hopping rates.

The typical procedure for imaging is as follows: First, the lattices depths are raised

to have trap frequencies ωT ∼ 2π×300 kHz such that atoms cannot tunnel to neighbour-

ing lattice sites (i.e. J ∼ 0) and the atom distribution remains fixed during imaging.

Atoms are then exposed to the imaging pulse consisting of R2, P1, P2 along the horizon-

tal axis and R1 along the vertical axis for 1000 ms. A high numerical aperture camera

captures ∼ 12% of the resulting isotropic fluorescence. Narrow linewidth filters ensure

only D1 photons reach the camera such that it is not blinded by the vertical Raman

beam R1. This process is repeated once more without atoms to provide an image of the

background which is then subtracted from the original image. A full understanding of

inter-site hopping and atom losses during imaging requires that two successive images

are taken on the same sample (see figure 3.9) before the final background image. Oc-

cupation matrices (a binary map of occupied and unoccupied sites) are generated via

Lucy-Richardson deconvolution [133] for both images. Atoms that are imaged in the

first picture while not being present in the second picture are considered loss events. We

mark as tunnelling events those atoms that appear in the second image in previously

unoccupied sites.
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3.3 Raman imaging optimisation and constraints

We measure that fluorescence per atom as well as percentage of losses and hopping

events scale linearly with image exposure duration. i.e. for otherwise constant imaging

parameters, a fluorescence image with 1000 ms exposure-time will have twice the fluo-

rescence per atom as well as twice the loss and hopping events as a 500 ms exposure-time

image.

This gives us the opportunity to calculate a quantity independent of exposure du-

ration referred to as the fluorescence counts per loss percentage - CPL:

CPL =
NF

PL
. (3.9)

NF is the average number of fluorescence photons detected for each atom, PL is the

percentage of atoms lost during imaging. This parameter simplifies the optimising of

imaging for two reasons. First, it is a single figure of merit that comprises of multiple

aspects of Raman imaging. Secondly, it is a quantity independent of exposure duration,

hence allows us to temporarily use longer exposure duration to get higher contrast in

loss rates during optimisation. As an example, it is easier to differentiate 12% loss

against 18% loss at 1500 ms exposure as compared to differentiating 4% loss and 6%

loss at 500 ms exposure. We will compare the CPL values for Raman and EIT imaging

in the final section of this chapter.

The imaging efficiency depends on the frequency and intensity of four D2 and D1-

resonant beams and the trapping frequency of 1064 nm lattice beams. While optimizing

on these parameters there are two additional considerations we keep in mind. First,

when we reduce imaging duration to reduce loss rates in the image, the signal to noise

ratio must remain sufficient for single atom detection. Secondly, we need to ensure

that our final parameter configurations do not induce a non-linear loss mechanism. In

the remainder of this section we discuss the experimental constraints of our imaging

scheme and which of these limitations can be mitigated.
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3.3.1 Inverted excited state

As will be studied in chapter 4, the excited 4P states of 40K experience an anti-trapping

potential six times greater than the trapping of the 4S ground state in an optical

potential created by 1064 nm wavelength light. This presents as an additional heating

mechanism. As an extreme example, if near resonant light couples the 4S and 4P

states such that the lower dressed state is a 6:1 admixture of 4S and 4P character, this

dressed state would be un-trapped and insensitive to the lattice potential, leading to

atom loss. During imaging, the small fraction of time atoms spend in the anti-trapped

state leads to rapid heating and broadening of the atomic wavefunction. This heating

mechanism is discussed in more detail in chapter 4, and we will find that deeper traps

(ωT > 2π×300 kHz) increase the heating and tunneling rates owing to the anti-trapped

excited state.

3.3.2 Trap inhomogeneity

RSC involves a two-photon narrow-linewidth transition. Additionally, the carrier tran-

sition (ΩR) power broadens faster than the red-sideband transition (ηRΩR) when ηR ≪
1 and limits the effective width of the red-sideband transition to a few tens of kHz. This

makes the RSC scheme more sensitive to inhomogeneities on the order of kHz. Such

inhomogeneities could present as spatial fluorescence signal variations or spatial vari-

ation in atom losses leading to errors in reconstructing the atom distribution. Hence,

inhomogeneities that affect the |1⟩ → |2⟩ transition (section 3.3.2) are relevant to our

image quality. Moreover, since we aim to drive sideband transitions |1, n⟩ → |2, n− 1⟩
we are sensitive to variations of the spacing of harmonic oscillator levels in the trap

(section 3.3.2).

Inhomogeneities affecting the carrier transition

The energy difference between the |1⟩ and |2⟩ levels can vary due to light shifts or due

to magnetic field gradients parallel to the 2D sheet of atoms. Since the |1⟩ and |2⟩ are

light shifted slightly differently, the energy spacing between them varies from the centre
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of the trap to the edges owing to the Gaussian shape of the lattice beams. Over our

50 µm field of view, we estimate this to vary by at most 2π× 6.6 kHz for a deep lattice

of ωT = 2π × 330 kHz. The variation owing to differential Zeeman-shift between the

two levels is 2π× 4.6 kHz, corresponding to a 1.85 mG magnetic field variation over the

field of view due to an estimated 0.37 G cm−1 gradient at the trap centre. We can thus

expect carrier resonance inhomogeneities to be an order of magnitude smaller than the

RSC Rabi frequency.

Inhomogeneities affecting the sideband transition

The above shifts convolve to broaden both the carrier and sideband spectra. How-

ever, inhomogeneities in the harmonic oscillator frequency ωT affect only the sideband

spectrum. We find these inhomogeneities play a larger role in the efficiency of RSC.

The radial intensity profile of a Gaussian beam is of the form I(r) = I0e
−2r2/w2

,

where w is the 1/e2 width of the beam. Therefore our Gaussian lattice beams would

cause a radial trap frequency variation ωT (r) ∝
√
I = ω0e

−r2/w2
. Each lattice axis must

be considered separately as the trap frequency variation in one axis does not affect the

other. For the tightest lattice axis of beam waist 69 µm, we expect a 12% frequency

variation across the field of view. For the deepest imaging lattice of ωT = 2π×330 kHz,

this corresponds to 2π × 40.6 kHz variation from centre to edge. For red-sideband

transition width smaller than the variation in trap frequency, not all atoms across the

field of view are resonant to RSC at a particular two-photon detuning δ. Scanning δ,

this inhomogeneity results in concentric rings of fluorescing atoms with the radius from

centre depending on δ. To ensure that all atoms in the field of view are simultaneously

resonant to RSC, we must ensure that ΩRSB is greater than the radial trap frequency

variation.

Finally, we consider the variation in harmonic oscillator frequency resulting from

the anharmonicity of the individual potential wells, i.e. the non-uniform spacing of

motional energy levels at each lattice site. We can show (appendix A) that the energy
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Figure 3.10: Trap frequency measurement: Modulating the lattice amplitude to drive
transitions from n → n + 2 motional levels in a lattice of ωT = 2π × 200 kHz (blue
circles) and ωT = 2π × 240 kHz (orange triangles).

spacing between n→ n− 1 energy levels varies as

∆ϵ(n→n−1) = ℏωT − nEL
r . (3.10)

Here EL
r is the lattice recoil energy, i.e. the recoil energy corresponding to scattering a

1064 nm photon. Whereas previous sources of inhomogeneity could in part be mitigated

by lower lattice depths, the anharmonicity does not depend on the lattice depth. For our

system the energy spacing between successive levels and thus the spacing between the

carrier and sideband transition decreases by EL
r = 2πℏ× 4.4 kHz. This inhomogeneity

can be observed as an asymmetry in the sideband spectra which spread towards the

carrier as higher motional levels have lower spacing from the carrier. The anharmonicity

can also be observed as asymmetry in trap frequency measurements (figure 3.10). To

measure trap frequencies, we can excite atoms in the trap by modulating the intensity

of lattice beams as V (t) = V0 + Vs cos(ωst). When ωs = 2ωT atoms in the motional

level n are excited from n → n + 2 energy level in the trap, referred to as parametric

heating. This is observed as an increase in temperature (and thus the size of the

clouds) via absorption imaging. Due to the anharmonicity of the trap, the resonance
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Source Frequency broadening

Magnetic field gradient 4.6 kHz

Differential light shift 0.02ωT

Trap frequency spread (ωT ) 0.12ωT

Anharmonicity (n) 4.4 kHz×n

Table 3.1: Inhomogeneity sources and the resulting frequency variation: Variations in
the frequency of Raman red-sideband transitions from |9/2,−9/2⟩ → |7/2,−7/2⟩ across
a 50 µm diameter field of view.

frequency for the n→ n+ 2 transition for atoms in motional level n varies as ωs(n) =

2ωT − (2n + 3)EL
r /ℏ. i.e. the higher level motional states, corresponding to higher

energy are accessible at lower frequencies than those of the n = 0 → 2 transition.

The estimates of expected trap inhomogeneities are summarised in Table 3.1.

3.3.3 Beam inhomogeneity

As in the case of trap inhomogeneities, there is also a spatial variation of two-photon

resonance δ and Rabi frequencies ΩR across the atom cloud and along the different axes

caused by the D1 and D2 resonant beams. These arise out of constraints on access to

the atoms which restrict the beams to certain sizes and incident angles.

Carrier resonance inhomogeneity

Beam alignments with the atom cloud play a crucial role in imaging. For example,

P1 light-shifts the |1⟩ state, while P2 light-shifts the |2⟩ state. A slight misalignment

in either D1 resonant beam leads to a variation in the separation between the |1⟩ and

|2⟩ state across the sample due to their gaussian intensity variation. Critically, the

P2 beam is aligned at a small angle from the horizontal axis to allow for independent

power regulation (see figure 3.4). As a consequence, the beam is clipped by the vacuum

chamber and cannot be imaged on a camera. When the beam is not well aligned, the

resonant two-photon detuning δ for imaging varies across the field of view. Hence, for a

particular δ we only see a narrow band of fluorescing atoms while the rest of the atom

layer is dark. Scanning δ brings different parts of the layer in resonance to imaging.

This enables us to measure the exact inhomogeneity gradient (kHz/µm) across the field
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of view. We can then optimize the alignment to minimize this gradient such that the

entire field of view is simultaneously resonant to Raman imaging.

Carrier frequency variation

From equation 3.2 we see that ΩR ∝ √
I1I2, where I1, I2 are the intensities of the two

Raman beam. While the horizontal Raman beam width R2 is significantly larger than

the size of a 2D layer, the vertical Raman beam R1 is of the same order of magnitude

as our field of view (50 µm). The Gaussian shape of the vertical beam leads to ∼ 7%

variation of Raman coupling ΩR leading to a ∼ 7% variation in the red-sideband Rabi

frequency from centre to edge.

Sideband axial variation

Imperfect beam alignment lead to an additional variation of red-sideband coupling

strengths that does not impact the carrier coupling strength ΩR. This too is a constraint

of access which sets the beam angles we can achieve for the lasers involved in Raman

imaging. The horizontal Raman beam (R2) bisects the horizontal lattice axis directions

x and y, and is aligned to −(x + y)/
√

2. The Raman beam in the vertical axis (R1)

is aligned as −z, i.e. pointing towards the microscope objective (figure 3.4). This

alignment of beams determine the resultant kR wavevector for the two-photon process.

This particular configuration is chosen such that there is a kR component along each of

the x̂, ŷ and ẑ axes, thereby driving Raman sideband transitions in each axis. However,

the kR components and therefore the ηR are not equal along each axis (see figure 3.4).

For a fixed trap frequency, we see a large Lamb-Dicke parameter ηR, and conse-

quently Raman sideband coupling strength ηRΩR along the vertical axis compared to

the horizontal axis. For typical imaging trap depths, the Lamb-Dicke parameters are

0.17 and 0.12 for the vertical and horizontal lattices respectively. We therefore observe

a higher frequency on sideband Rabi oscillations of the vertical ẑ lattice. Since we im-

age atoms in a single anti-node of the vertical lattice (a single “layer” of the 3D lattice),

and the coupling strengths along the horizontal lattices are symmetric, this does not

present as an inhomogeneity in the field of view. However, the dephasing caused by
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unequal coupling strengths could lead to inefficient cooling. The major heating sources

(near resonant beams) are aligned in the horizontal direction where the reduced Lamb-

Dicke parameter in the horizontal axis limits the cooling rate it is possible to achieve.

For further discussion on the single-photon and two-photon Lamb-Dicke parameters in

the experiment see appendix B.

3.3.4 Optimisation of imaging parameters

The above considerations provide guidelines within which we can fine-tune our imaging

parameters. A point to remember is that deep traps can negatively impact imaging

fidelity for two reasons: a) Increased heating from inverted excited state and b) Larger

variations of trap frequencies across field of view. These factors lead to an upper limit

on lattice depths suitable for imaging using RSC. The lower limit for trap depth is set

by requiring the Lamb-Dicke parameter of D1 transition photons ηD1 being sufficiently

small to mitigate heating via scattering. We find that 2π × 250 kHz to 2π × 300 kHz is

the range of trap frequencies for which we are best able to optimise imaging fidelity.

The primary sources of inhomogeneity are trap frequency variation and anharmonic-

ity of the lattice potential. While the former can be mitigated by reducing trap depths,

anharmonicity depends only on the wavelength of light used for trapping. This sets a

lower bound on the Rabi frequency of the red-sideband (ηRΩR) sufficient to be simul-

taneously resonant to multiple n levels in the lattice. The maximum Rabi frequency is

constrained by the carrier transition growing faster than the sideband transitions, and

for ΩR ≫ 2ωT overpowering the red-sideband transition. We find that ΩR ∼ 2ωT is

ideal for imaging rather than the sideband resolved case ΩR ≪ ωT . A slight overlap of

the carrier transition with the red-sideband (in addition to optical pumping beam P1)

prevents the atoms in the n = 0 state being entirely dark to imaging.

Lastly, the beams near resonant the D1 line are ∼ 30 Γ detuned to mitigate heating

from the inverted excited state. Operating the experiment in pulsed mode (such that

D1 and D2 transitions are independent of light shifts caused by the other) also demon-

strated that cooling is more effective when both D1 beams are red-detuned from both

4P1/2 hyperfine levels. However, when returning to continuous mode operation which
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Purpose Beam Detuning (Γ) Scattering time τ (ms)

Pumping P1 (σ−) 25 0.06/1.5

repumping P2 (σ−) 35 0.043

Vert. Raman R1 (π) - 81

Horz. Raman R2 (σ−) - 122

Table 3.2: Detuning and scattering timescales for beams used during fluorescence
imaging. Scattering rate of P2 reflects the repumping rate of atoms prepared in
|F,mF ⟩ = |7/2,−7/2⟩ manifold. All other beams scatter from a 60:40 mixture of
|9/2,−9/2⟩ and |9/2,−7/2⟩

has an improved signal, we find the two-photon detuning δ of the Raman transition is

more sensitive to fluctuations in P2 power as opposed to when P2 is blue detuned from

the F ′ = 9/2 and red-detuned from the F ′ = 7/2 hyperfine states. In this configuration,

both hyperfine states of the 4P1/2 state contribute to a red-shift of the F = 7/2 state

and hence red-shift the two-photon detuning. Hence, we implement an independent

laser power regulation for P2 instead of overlapping with R2 and P1 (see figure 3.4a).

3.3.5 Benchmarking imaging

Stable imaging with high signal-to-noise is a balance between cooling and heating pro-

cesses that lead to an equilibrium distribution of n levels (see figure 3.6b) that is cold

enough to prevent tunneling and loss events while not dark to imaging. We characterize

all beams used during fluorescence via their detuning and scattering rates such that

the characterization is independent of beam size or alignment to the atoms (see table

3.2). The single photon detuning for the Raman beams is set to ∆ = 2π × 40 GHz,

orders of magnitude greater than the linewidth Γ = 2π × 6 MHz. We observe two

timescales of scattering for P1 which quickly pumps |9/2,−7/2⟩ atoms but due to its

polarisation only weakly affects |9/2,−9/2⟩. The expected Raman Rabi frequencies for

n = 1 are 2π× 593 kHz (carrier), 2π× 100 kHz (red-sideband vertical) and 2π× 71 kHz

(red-sideband horizontal lattices).
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3.4 Comparing Raman and EIT imaging

In the EIT cooling scheme a coupling laser near resonant to the D1 line is tuned ∼ 10 Γ

blue of the 4S1/2, F = 9/2 to 4P1/2, F
′ = 7/2 transition, creating light-dressed states

which are admixtures of the ground and excited states. A probe laser from a metastable

state then presents a Fano-like excitation profile [116] due to interference between the

scattering amplitudes from the resulting dressed states. The detuning of the coupling

beam from the excited state sets the asymmetry of the excitation profile and the sharp-

ness of the transition. By calibrating the coupling beam intensity, we Stark shift the

dressed state energies in magnitude equal to the trapping frequency ωT . Thereby, we

preferentially drive the red sideband transition while suppressing the carrier and blue

sideband transitions via EIT. This cooling scheme has been used for single-atom imag-

ing in optical lattices [134, 135], for efficient cooling to motional ground states in long

ion-strings [136] and multimode EIT schemes [137, 138] are proposed for cooling more

difficult ion crystals and molecules. For complete details on the implementation of this

scheme for imaging in our experiment, refer to chapter 3 of D. Cotta’s thesis [22].

While the previously implemented EIT imaging scheme was successful in imaging

of sparse 2D layers of atoms, an unexpected issue arose when imaging dense layers with

filling fractions ⟨n⟩ ∼ 1. The fluorescence per atom detected in regions of high filling

was 3-4 times that of fluorescence in regions of low filling (figure 3.12b). While we

are yet to fully understand this density dependent enhanced fluorescence, it significant

impairs image reconstruction (see figure 3.11, 3.13). At dense filling we cannot reliably

determine when a site is empty. As can be seen in figure 3.13, in the case of sparse

filling we can distinguish filled and empty sites in the histogram (separated by the

green divider line). However, this fails in the case of dense images, with the separation

between full and empty sites entirely masked in areas of high local density. This

motivated our shift from EIT cooling to Raman cooling. Figure 3.14a demonstrates

that the fluorescence per atom increases as the local filling fraction increases for EIT

imaging. We expect that lattice sites with ∼ 1 normalized fluorescence in areas of high

local filling are likely empty sites or atoms lost partway through imaging. For Raman
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(a) (b)

Figure 3.11: EIT imaging: 500 ms exposure of EIT imaging light for (a) sparse and (b)
densely filled samples.

(a) (b)

Figure 3.12: Matrix of occupied and unoccupied lattice sites in the central region of
images 3.11a and 3.11b ((a) and (b) respectively). The fluorescence per site in locally
dense regions of figure (b) is 3-4 times that of the fluorescence of atoms at the edges of
the same image.
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(a) (b)

Figure 3.13: Failure of image recognition in distinguishing between filled and empty
sites in figure 3.11. The left histogram shows the expected two peaks in the per-site
fluorescence signal corresponding to empty (near zero) and filled (centred at one) sites.
In the right histogram corresponding to dense samples, we are no longer able to separate
these peaks.

imaging (figure 3.14b) the fluorescence per atom is independent of the filling fraction.

The local filling fraction ⟨ni⟩ about a site i in figure 3.14b is calculated by taking the

average number of particles in the 25 closest neighbouring sites of site i (hence the

minimum ⟨ni⟩ value possible for an occupied site is 1/25). In the case of EIT imaging,

we are unable to reliably reconstruct the occupation matrix of the sample and hence

estimate that the region of highest fluorescence corresponds to the region of highest

density ⟨ni⟩max. The filling fraction at all other sites is normalized against this value

(i.e. ⟨ni⟩max = 1). The fluorescence at each site in figure 3.14a was normalized against

the fluorescence for sparse atoms that do not have immediate neighbours.

Analysing the efficiency of EIT and Raman imaging we find comparable CPL (923

and 805) and loss rates (4.8(1.2)% and 5.3(1.7)% respectively) with both imaging tech-

niques.

Comparing figures 3.15 and 3.16 we see as expected that Raman imaging is more

sensitive to the two-photon detuning δR, with the effective cooling region with ≤ 10%

losses ∆δR being ∼ 2π × 20 kHz (figure 3.15a). The effective range of the EIT two-

photon detuning ∆δE is an order of magnitude wider. We also observe that the flu-
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Figure 3.14: Fluorescence per atom (normalized) against local atom density (measured
as filling fraction) for (a) EIT imaging and (b) Raman imaging. We see that fluorescence
per atom in Raman imaging is independent of filling fraction while for EIT there is a
strong correlation with density.
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Figure 3.15: Fluorescence imaging using RSC: (a) Atom loss fraction (blue circles),
tunneling fraction (orange triangles), and (b) fluorescence per atom vs Raman two-
photon detuning.
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Figure 3.16: Fluorescence imaging using EIT: (a) Atom loss fraction (blue circles),
tunneling fraction (orange triangles), and (b) fluorescence per atom vs EIT two-photon
detuning.
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Figure 3.17: CPL (equation 3.9) against two-photon detuning for Raman imaging (blue
circles) and EIT imaging (orange triangles).

orescence per atom in the case of the Raman imaging grows on increasing δR as we

reach closer to the carrier transition peak. The CPL values of typical Raman and EIT

two-photon detuning measurements (figure 3.17) show us that the two techniques are

comparable for single atom detection. It also demonstrates how narrow the effective

imaging regime is for Raman imaging as compared to EIT.

3.5 Conclusions

We have demonstrated that our implementation of Raman imaging is a viable tool for

single atom detection and extracting inter-site correlations. We are able to capture

4000 photons per atom with the microscope and record a loss of 5% of atoms over two

successive 1 s images. With the implementation of PI regulation of laser powers, we

also find that this performance is stable and reproducible. Applying an improved image

recognition algorithm (currently being developed by our group), we expect to be able

to reliably reconstruct the atom distribution with fewer photons captured per atom,

i.e., we aim to image with shorter exposure duration and hence lower loss of atoms

(< 4%) during imaging.

Most importantly, comparing the local density against fluorescence at each site for
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Raman and EIT imaging, we observe that the Raman scheme is not handicapped by

the same density dependent issue as EIT (figure 3.14). With a more reliable imaging

scheme, we are better positioned for future work exploring strongly correlated Hubbard

systems. In parallel, other members of the group have developed improved image

analysis algorithms, which will be the subject of future publications. In combination

with the experimental progress described in this chapter, we have demonstrated reliable

single-atom imaging with high fidelities.
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Simulating heating rates

In the previous chapter, we considered the constraints on effective cooling and imaging

in our experiment. A key source of the heating discussed was the strongly inverted

excited state of 40K in a 1064 nm optical potential. While the dipole-trapping lasers

are red detuned from the 4S to 4P transition, they are blue detuned from the 4P to

3D transition. This proximity of the 3D−4P transition to the 1064 nm laser frequency

(figure 4.1a) results in an additional light-shift of the 4P state. In comparison, the

4P states experience a light-shift six times greater and opposite to the light-shift of

the 4S state (figure 4.1b). When an atom is excited to the short-lived 4P states, it

experiences a strong repulsive potential which accelerates and heats the atoms. This

is in addition to heating from photon scattering. However, while a minimum amount

of photon-recoil heating is inherent to any imaging scheme as we require the atoms

to scatter a minimum number of photons to be detected, we can aim to minimize the

heating from the inverted excited state. To better understand the characteristics of

this effect we numerically study a two-level 40K atom in presence of near resonant light

in a 1D optical lattice trap. This simulation is carried out via the Quantum Toolbox in

Python (QuTiP) package [139] using the quantum-trajectory method [140]. In doing

so we aim to gain a better understanding of hopping and loss rates during fluorescence

imaging.

In following sections we discuss the implementation of the quantum-trajectory tech-

nique and investigate how experimentally controlled parameters of lattice trap depth
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(a) (b)

Figure 4.1: (a) 40K 4S, 4P and 3D levels relative to 1064 nm light. The lightshift of
the 4P states without the presence of the 3D state is shown in grey. An additional
lightshift (orange) is experienced by the 4P states owing to the 4P → 3D transition
at 1170 nm (b) Anti-trapped 4P states in a 1064 nm lattice. Note, light shifts are not
drawn to scale.

and laser detuning affect heating rates. Further, we will evaluate the probabilities of

light-assisted tunnelling to neighbouring lattice sites, i.e. whether atoms excited into

the 4P state by the near-resonant light can tunnel to neighbouring lattice sites faster

than predicted by the Hubbard model. Similarly, we explore light-assisted excitations

into weakly trapped energy-states of the lattice.

In this chapter we will often refer to evolution time as t and temperature as T .

Therefore, we will use the symbol J to refer to the tunnelling term of the Hubbard

model (introduced in chapter 1 as t). We did not make this substitution in previous

chapters so as to prevent any ambiguity with the spin-exchange interaction Jex of the

related Heisenberg model (as in section 1.2.2) or the t− J model of strongly correlated

electrons on a lattice [141]. In this chapter, we simulate an isolated spinless two-level

atom, hence can unambiguously refer to the Hubbard tunnelling parameter as J .

4.1 Quantum-trajectory method

During the imaging process in deep lattices, we expect no more than one atom per lattice

site with negligible inter-site tunnelling, i.e., a negligible possibility of interactions

between atoms. Hence, we simulate a single isolated atom and ignore the effects of
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interactions. Combining the electronic and motional degrees of freedom of the atom

leads to a large Hilbert space, which makes full density-matrix evolutions (which scale

as N2, where N is the size of the Hilbert space) computationally demanding.

4.1.1 Computational efficiency

A computationally efficient alternative is to take a stochastic average of pure states

evolving over time (N variables) in multiple parallel trajectories. For an observable

Â, state density operator ρ̂ =
∑

i pi |ψi⟩ ⟨ψi|, the two quantities at each time step are

related as

⟨Â⟩ = Tr{Â, ˆ̂ρ} =
∑
i

pi ⟨ψi| Â |ψi⟩ =
∑
i

piAi ≡ Āi. (4.1)

Āi is the stochastic average of the observable over individual trajectories. Instead of

propagating a density-matrix of N2 variables, we propagate multiple pure-states of

size N . When the number of such pure-state ‘trajectories’ averaged over is less than

N it is computationally less expensive than the traditional density matrix evolution.

The quantum-trajectory approach also lends itself naturally to parallelization as the

trajectory are independent of each other, significantly reducing computation time. The

tradeoff inherent in the method is that statistical error enters into the time-evolution

of the system. The magnitude of the error is inversely proportional to
√
M (where M

is the number of trajectories) and hence must be mitigated by averaging over several

trajectories.

4.1.2 Implementation

Under the Markov approximation [142], the Lindblad form of the master equation is:

˙̂ρ = − i

ℏ
[H, ρ̂] − 1

2

∑
m

Γm[ĉm
†ĉmρ̂+ ρ̂ĉm

†ĉm − 2ĉmρ̂ĉm
†]. (4.2)

The time evolution (equation 4.2) depends on two components, the first being the

reversible Schrödinger equation, the second term corresponding to the linear irreversible

51



Chapter 4. Simulating heating rates

interaction with the environment (referred to as the Linbdladian). The operators cm

are collapse operators for the m decay channels, and Γm is the decay linewidth. In the

case of a typical two-level atom, equation 4.2 can be rearranged as

˙̂ρ = − i

ℏ
[Ĥeff , ρ̂] +

∑
m

Γmĉmρ̂ĉm
†, (4.3)

where Ĥeff = Ĥ−iℏ/2∑m Γmĉm
†ĉm. Ĥeff is no longer hermitian, leading to a reduction

in the trace of ρ̂ over time. The second term from Eq 4.3 ”recycles” this lost atom

population back into the ground state via any of the m decay channels.

The effective Hamiltonian is applied on a pure state at time t which leads to a reduction

in the norm of the state. i.e. ⟨ψ(t+ dt)⟩ψ(t+ dt) = 1 − dp < 1. The reduction in

norm,

dp =
∑
m

⟨ψ(t)| ĉm†ĉm |ψ(t)⟩ =
∑
m

dpm, (4.4)

is the probability for the state to decay via the m channels.

Thus, with a probability of 1−dp, the state continues its coherent evolution, where

we renormalize the state ψ(t + dt) at each time step. With a probability of dpm it

collapses into the decay channel m as ψ′(t + dt) = ĉmψ(t)/dpm. This approach is

realized by the Monte-Carlo solver - qutip.mcsolve [139]. A trajectory begins by

choosing a random number r such that 0 < r < 1. We evolve the system coherently

under Ĥeff while dp < r. If dp ≥ r we then collapse it into one of the m decay channels

with probability proportional to dpm and generating a new random number r for the

subsequent collapse probability.

4.2 Two-level atom in a 1D lattice

In this section we treat the system semi-classically [143], with the atom being a two-

level quantum-mechanical system while the light interaction is classical (i.e., we do not

include the energy of the photon field in the Hamiltonian). We then include spatial and

kinetic terms to create the total Hamiltonian. We introduce the appropriate collapse
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operators for atoms spontaneously decaying from the excited state to complete the

master equation. Finally, we implement the quantum-trajectory method with and

without an inverted excited state and compare results with our physical intuitions.

4.2.1 Semiclassical light-atom interaction

The two orthonormal states |1⟩ and |2⟩ have an energy spacing E. We consider their

interaction with a narrow-linewidth laser with modes centred at ωl. We denote the

detuning between the laser and atomic energy levels as ∆ = ωl − E/ℏ. We represent

the two states as

|1⟩ =

1

0

 , |2⟩ =

0

1

 . (4.5)

The Hamiltonian describing this system is ĤA = E
2 |2⟩ ⟨2|−E

2 |1⟩ ⟨1| (where the reference

energy is E0 = (E|1⟩ + E|2⟩)/2, i.e., the mean of the two atomic energy levels). The

total internal Hamiltonian for this system, ĤAL, considers only the bare atomic system

and the interaction energy with a classical light field. i.e. ĤAL = ĤA + ĤI .

The dipole interaction between light field and the atom arises due to the electric-field

amplitude E0 cos(ωlt) of the incident light. Under the rotating-wave approximation

[144] we find matrix elements of the interaction Hamiltonian ⟨1| ĤI |2⟩ = ⟨2| ĤI |1⟩∗ =

ℏgeiωlt, where

g = E0
e

2ℏ

∫ +∞

−∞
ψ∗
1DE0ψ2dr̄ (4.6)

characterizes the strength of the interaction [106], where DE0 is the induced dipole

moment of the atom. Since the dipole-interaction term has odd parity, the integral

vanishes unless ψ1 and ψ2 (the wavefunctions of states |1⟩ and |2⟩ respectively) have

opposite parity. Therefore, the diagonal terms of the interaction Hamiltonian vanish
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and we have

ĤI =

 0 ℏgeiωlt

ℏge−iωlt 0

 . (4.7)

Adding the above interaction Hamiltonian to the bare atomic Hamiltonian, ĤA, we

have an atom-light interaction Hamiltonian ĤAL:

ĤAL =

 −E
2 ℏgeiωlt

ℏge−iωlt E
2

 . (4.8)

It can be shown that −E
2 ℏgeiωlt

ℏge−iωlt E
2

 =

eiℏωlt/2 0

0 e−iℏωlt/2

−E
2 ℏg

ℏg E
2

e−iℏωlt/2 0

0 eiℏωlt/2

 .

(4.9)

This is of the form ĤAL = Û(t)ĤT Û
†(t), i.e., we can transfer the explicit time de-

pendence of the Hamiltonian into the state via a unitary transformation Û(t) into a

rotating frame such that

Û(t) =

eiℏωlt/2 0

0 e−iℏωlt/2,

 (4.10)

where ψ = Û(t)ϕ(t). The Schrödinger equation before this transformation is:

iℏ
∂

∂t
ψ = ĤALψ. (4.11)

Substituting ψ, we have

iℏ
∂

∂t
Û(t)ϕ = ĤALÛ(t)ϕ, (4.12)

iℏ
(
Û(t)

∂

∂t
ϕ+

∂

∂t
Û(t)ϕ

)
= ĤALÛ(t)ϕ. (4.13)
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We expand the Hamiltonian matrix, taking the partial differential of Û(t) and re-

arranging terms:

iℏÛ(t)
∂

∂t
ϕ =

 −E
2 ℏgeiωlt

ℏge−iωlt E
2

+

ℏωlt/2 0

0 −ℏωlt/2

 Û(t)ϕ (4.14)

iℏ
∂

∂t
ϕ = U−1(t)ℏ

 ∆/2 geiωlt

ge−iωlt ∆/2

 Û(t)ϕ. (4.15)

Thus, the Schrödiner equation in this rotating frame is

iℏ
∂

∂t
ϕ = ℏ

∆/2 g

g −∆/2

ϕ. (4.16)

Here, Ω0 = 2g, such that we get an effective Rabi-frequency [145] and energy separation

between dressed states on diagonalizing this matrix as Ωeff =
√

Ω2
0 + ∆2.

4.2.2 Including motional degrees of freedom

The motional component of the Schrödinger equation is of the form

(−ℏ2

2m

∂2

∂x2
+ V0 sin2(kLx)

)
ψ = EXψ. (4.17)

Here, m is the mass of the atom, V0 is the maximum potential depth of the lattice,

kL is the wavevector of lattice light and EX are the eigenenergies in position space.

For convenience, we rescale to dimensionless units. Replacing with x′ = xkL/
√

2 and

noting that ℏ2k2L/2m = Erec where Erec is the recoil energy of a lattice photon, Eq 4.17

evaluates to

(
−1

2

∂2

∂x′2
+

V0
Erec

sin2(x′/
√

2)

)
ψ =

EX

Erec
ψ. (4.18)

This naturally leads to an energy re-scaling in units of Erec, and further a frequency

scaling of ωrec = Erec/ℏ. To incorporate the inversion of the excited state, we create a
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complete Hamiltonian HT of the form

HT = ĤAL ⊗ ÎX +

1 0

0 Vratio

⊗ ĤX . (4.19)

IX is an identity matrix in position space and HX describes the lattice potential.

Vratio = −6 for an inverted excited state potential six times larger than the ground state

potential. In the current stage, we do not include the motional kick from absorption of

a photon. This would lead to a linear momentum gain with every absorption and thus

a quadratic gain in energy which becomes the dominant heating mechanism, masking

the heating effect of the inverted excited state. We can consider this as simulating the

heating in the z̄ axis while the near resonant polarizer and repumping beams are in the

x− y plane.

We include the recoil kick from scattering photons via the collapse operators

c(0,1) =

(
1

2

√
Γa⊗ e−ikRx,

1

2

√
Γa⊗ eikRx

)
, (4.20)

where kR is the wavevector of the scattered photon, a is the annihilation operator |0⟩ ⟨1|
and Γ is the scattering rate from the excited state. The two terms describe a recoil kick

in the −x direction and the +x direction, respectively, with 50% probability of each

collapse.

In the following sections, we utilize the quantum trajectory method to simulate

a 2-level atom within a position space of 1024 discrete points. The time-evolution

is averaged over a large number of trajectories (M) to reduce statistical errors. The

number of trajectories is chosen by simulating the system up to 10 scattering events

(see equation 4.21) with M = 100. This is repeated with higher M at each iteration

until the results do not depend on M and do not vary significantly between iterations.

In doing so, we find that M = 500 is sufficient for time-evolution up to 10 scattering

events and all simulations in this chapter average over M = 500 trajectories. However,

as the statistical errors grow with evolution time, higher M and more computational

resources would be required for time-evolution of up to 100 or more scattering events.
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Figure 4.2: Three-site 1D optical lattice: V = V0 sin2(kLx), x ∈ [−3λL/4, 3λL/4],
V0 = 1400EL

r used in the quantum-trajectory simulations.

We do not include error bars as we are interested in qualitative results at this stage,

however, see section III B of [140] for details on estimating errors from the quantum

trajectory technique. In section 4.2.3, we discuss the starting point of all simulations,

i.e., the method we use to initialize the system.

4.2.3 Constructing the initial state

During the imaging process we expect the atoms are well localized to individual lattice

sites. Therefore we need to initialize the simulation with an atom fully localized in a

single site. However, the eigenstates of a 1D lattice are typically de-localized across the

lattice, whereas atoms are localized in individual sites during imaging. For simplicity,

we aim to initially populate only in the central site of a three-site lattice. This is

equivalent to the atom’s state after it has scattered the very first fluorescence photon

and localized to a lattice site.

A straightforward approach to create localized eigenstates is by adding a small

Gaussian confining potential that lowers the energy of eigenstates localized in the cen-

tral site. This approach works well, breaking the degeneracy of eigenstates in each band

with one eigenstate being localized at the central site and of lower energy than the other

eigenstates of the lattice energy band (see Fig. 4.3). The number of eigenstates in a

band is equal to the number of sites. i.e. for a three-site 1D lattice (figure 4.2), there

are three eigenstates m = 0, m = 1 and m = 2 in the lowest vibrational level n = 0
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Figure 4.3: Atom wavefunctions in 3-site optical lattice with sites at x = −λ/2, 0 and
+λ/2. Eigenstates of n = 0 vibrational level ((a) m = 0, (b) m = 1 and (c) m = 2)
and n = 1 vibrational level ((d) m = 3, (e) m = 4 and (f) m = 5) for a three-site 1D
optical lattice with ωT = 2π × 300 kHz with an additional weak Gaussian confinement
(VG = 0.01x2).

(i.e. of energy ∼ 0.5ℏωT ). With the added Gaussian confinement, the m = 0 state is

localized to the central site (figure 4.3a). The eigenstates m = 1 and m = 2 fill the

non-central sites (figures 4.3b, 4.3c) and are degenerate. Similar behaviour is observed

for the states in the ∼ 1.5ℏωT vibrational level (figures 4.3d, 4.3e, 4.3f) and higher.

It would however be preferable not to require an additional confinement as it might

affect tunnelling rates. An alternative approach we have tested with success is to

initialize the system in the eigenstates of a harmonic oscillator potential which is aligned

with the central lattice site (see Fig. 4.4a). We compare the eigenstates of the harmonic

oscillator potential against a one-site lattice potential (Fig. 4.4c). We find that for

sufficiently deep traps, the harmonic oscillator eigenstates are very similar to lattice

eigenstates for a one-site lattice. Therefore we can initialize the atoms in the eigenstates

of a harmonic potential at the central site. This gives us a greater degree of flexibility

in where we initialize the atom by making initialization independent of the lattice

potential.
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Figure 4.4: Comparing harmonic oscillator eigenstates and eigenenergies with one-
site lattice: (a) Harmonic trap (orange) centred on a one-site 1D lattice (blue). (b)
Eigenenergies of harmonic oscillator potential (orange) and one-site 1D lattice (blue).
(c) Inner-product of harmonic oscillator and corresponding 1D lattice eigenstate for
ωT = 2π × 50 kHz (orange) and ωT = 2π × 300 kHz (blue). Figure (d) shows the
harmonic oscillator (orange) and lattice (blue) eigenstate wavefunctions corresponding
to n = 4.
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4.2.4 Benchmarking with non-inverted excited state

There are three key advantages to implementing the simulation via the QuTiP package.

First, the parallel computation of quantum trajectories is built-in and provides a dra-

matic speedup to calculations. Second, it implements efficient memory management,

saving only the expectation values of our chosen observables in memory rather than

the full wavefunction. Lastly, qutip.mcsolve calibrates the size of time steps dt such

that the change in the norm of the state ψ(t + dt) in each time step is small. In this

section we check that the results from the program match our physical intuitions.

While our objective is to simulate the behaviour of the atom at Vratio = −6, we

first simulate the behaviour of the atom for Vratio = 1. This beta simulation serves as

a sanity check for the developed code (refer figure 4.5). A convenient unit of time to

study the behaviour of the atom is t′ = Γefft. Γeff = PeΓ is the effective scattering rate

of the two-level system depending on the average population in the excited state:

Pe =
Ω2

2Ω2 + 4∆2 + Γ2
. (4.21)

Here, Ω is the coupling strength of incident light, ∆ is its detuning from resonance and Γ

is the natural linewidth of the excited state. Γefft is a dimensionless unit of time. Once

the atom has reached its steady-state distribution in the excited state (equation 4.21),

we expect on average one spontaneous decay event per Γefft. Note, the cooling provided

by the Raman sideband process opposes the heating from all sources. Hence, in the

physical experiment we expect the system to quickly reach an equilibrium temperature

and band-number distribution. Since we do not include a cooling mechanism in the

numerical calculations, we evolve the system up to 10 scattering events so as to get a

qualitative idea of the heating mechanism which would directly impact the equilibrium

distribution during imaging. For the parameters listed in the figure 4.5, we see the

physically expected behaviour which completes the sanity check. The internal states of

the atom undergo damped Rabi oscillations (figure 4.5a). To understand the evolution

of kinetic energy (figure 4.5d) and momentum (figure 4.5c) we recall that the scattering

events cause momentum transfers in opposite directions with a probability of 1/2 in
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Figure 4.5: Time evolution of key atomic observables up to 10 spontaneous scattering
events for a non-inverted excited state: single-site 1D lattice with Ω0 = 5/6Γ, ∆ =
−1/6Γ, ωT = 2π × 300 kHz. (a) Damped Rabi oscillations of population in excited
state. (b) Motional state distribution. (c) Momentum gain ⟨p̂⟩. (d) Kinetic energy
gain ⟨p̂2/2m⟩. (e) Potential energy gain ⟨V0 sin2(kLx̂)⟩. (f) Total energy gain ⟨ĤX⟩.
Momentum in ℏk units, Energies in ℏ2k2/2m units where k corresponds to a D1 photon
and m is the mass of a 40K atom.

each. The change in momentum ∆p at each time step i is equal to ±ℏk where ℏk is

the momentum of the emitted photon with the sign of ∆p corresponding to momentum

kicks in the positive and negative directions. Hence the average momentum after n

scattering events would be:

⟨p̂⟩ =

〈∑
i

(±ℏk)

〉
= 0. (4.22)

As on average half the momentum kicks are positive and half are negative, we do not

expect a net momentum gain over time. However, the kinetic energy gain after i time

steps scales as the momentum squared:

⟨p̂2⟩ =

〈∑
i

(±ℏk)2

〉
= n(ℏk)2. (4.23)

Thus, the kinetic energy initially increases linearly (Fig 4.5d) until the atom’s wave-

function spreads in the trap, leading to a damping of kinetic energy gain and a growth

in potential energy (Fig 4.5e). The total energy (figure 4.5f) gain is linear, growing at
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roughly one D1 photon recoil energy per scattering event. This behaviour is indepen-

dent of trap depth ωT which is what we expect in the case of a non-inverted potential,

i.e. the trap does not contribute to the heating of atoms. We do not include the effect

of photon recoil from absorption of photons from the light field as this is always in the

same direction and leads to a linear momentum gain and hence a quadratic gain in

kinetic energy over time, obscuring the heating caused by the inverted excited state.

4.3 Heating due to inverted excited state

Critically, we are interested in heating rates and its dependence on trap depth, laser

detuning and the motional state of the atoms. The microscope objective captures 12%

of the photons scattered by each atom and requires ∼ 1000 photons per atom for an

appropriate signal-to-noise ratios. Hence, we need to ensure the atoms scatter photons

at 10 kHz for a 1 s imaging duration, i.e., if we detune the incident light further, we

also increase its intensity such that the effective scattering rate is maintained (figure

4.7). This also matches well with the measured scattering rate (table 3.2) from the

re-pumping beam (P2) which is the source of fluorescence photons.

Trap depth

Once we have an inverted excited state, we see that atom heating is dependent on the

trap depth (see Fig. 4.6), where for a non-inverted potential there was no dependence

on trap depth (Fig. 4.6a). Furthermore, the heating rate from the inverted excited

state is an order of magnitude greater than the recoil heating caused by scattering

photons by spontaneous decay.

Detuning

The further we are detuned from resonance, the lower the heating from the inverted

excited state. The fraction of time spent by atoms in the excited state is inversely

dependent to the detuning from resonance. The closer to resonance the incident light

field, the more time atoms spend in the excited state for a given laser intensity. To be
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Figure 4.6: Heating rate dependence on trap depth ωT . Ω0 = 5/6Γ, ∆ = −1/6Γ,
ωT = 2π × 200 kHz (blue), 2π × 300 kHz (orange), 2π × 400 kHz (green). Figure (a)
Non-inverted excited state: Vratio = 1, (b) Strongly-inverted excited state: Vratio = −6.

more accurate, when we are closer to resonance the lower dressed state has a higher

percentage of 4P or anti-trapped character as described by equation 4.21.

However, even matching the coupling strength of incident light to ensure the same

percentage of the atoms in the excited state, (i.e. we fix scattering rate Γeff = PeΓ to

10 kHz), detuning plays a significant role in heating /energy gain in the system (see

Fig. 4.7). This matches what we have observed in experiment (see table 3.2 where we

find optimal imaging at detuning ≥ 25 Γ). This is another indication that the inverted

state heating is a more dominant effect than the photon-recoil of scattering fluorescence

photons as the number of scattered photons is kept constant while changing detuning.

Initial motional state

Unlike in the case of detuning or trap depth, we do not find a conclusive dependence of

heating rates on the motional state the atom is in prior to being illuminated with near-

resonant light (Fig. 4.8). While n = 4 appears to show the greatest heating rate, we

see that n = 5 appears to have the lowest heating rate. We expect this has arisen from

the uncertainty in the simulation technique. This is of importance to our experiment

as depending on the Raman cooling parameters, we believe we reach an equilibrium

distribution of motional states with n > 0 as the lowest lattice bands are dark to the

Raman transition. Furthermore, the upper limit for energy bands is roughly n ∼ 10 due
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Figure 4.7: Energy increase/heating vs laser detuning while maintaining 10 kHz scat-
tering rate.

to the effect of the anharmonicity of the lattice leading to about a 4.4 kHz separation

between Raman transitions for successive n levels.

4.3.1 Tunnelling probability over time

The tunnelling matrix element in the Hubbard model, referred to as J in this chapter,

decreases for deeper lattices, i.e., we expect lower tunnelling rates in deeper lattices.

The fluorescence imaging scheme requires ∼ 1 s of exposure. If a non-negligible fraction

of atoms hop to neighbouring sites within this time, we cannot reliably reconstruct

the atom distribution prior to imaging. The timescales for such tunnelling, τ , for

a Hubbard tunnelling parameter, J , is approximately τ(J) = ℏ/2J . The tunneling

matrix element for the lowest band in shallow lattices can be approximated via the

Mathieu equation [146] (Fig. 4.9a and 4.9b)

J =
4

π
Er(s)

3/4e−2
√
s

where s = V0/Er. We see that tunnelling timescales in the n = 0 band become

exceedingly larger than lattice lifetimes for traps ≥ 80Er), hence we expect this to be

negligible for deep traps (∼ 1000Er) used during imaging.
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Figure 4.8: Energy increase/heating vs effective time for initial motional states n = 0
to n = 5.
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Figure 4.9: Tunneling characteristics in the n = 0 vibrational level vs lattice trap depth:
(a) J parameter. (b) Tunneling timescale τ(J) = ℏ/2J .
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Figure 4.10: (a) Tunnelling parameter J and (b) tunnelling timescale τ = ℏ/2J for
atoms in energy band n in a lattice of ωT = 2π × 300 kHz.

We can also diagonalize the Hamiltonian and numerically calculate the tunneling

parameter J vs n for deep lattices. We consider a deep lattice (ωT = 2π × 300 kHz)

which is of the order used during fluorescence imaging. Treating the deep lattice in

accordance with the tight-binding model, we find the tunnelling parameter for a lattice

band as J(n) = W (n)/4, where W (n) is the width of the band n [147]. From figures

4.10a and 4.10b we see that tunnelling timescale in deep lattices approaches the imaging

duration for n ≥ 12. The takeaway from these calculations is that to reduce inter-site

hopping during imaging we should prevent atoms occupying motional states n ≥ 12.

Moreover, atoms in lattice bands n ≥ 15 would become off resonant to the Raman

cooling transition (table 3.1). This further underscores the need for efficient cooling

during imaging to prevent atoms reaching these high n states. From temperature

measurments in figure 3.6b we see that the atoms are cooled well enough that occupying

such high energy bands during Raman imaging is low. Using the quantum-trajectory

method, we simulate the probability of atoms remaining in the central site of a 3-site

1D lattice when being exposed to near resonant light. Counter-intuitively, we see that

the tunnelling probability - like the heating effect - is directly proportional to the trap

depth, i.e, deeper traps lead to faster tunnelling rates. To get a fuller picture we would

need to incorporate Raman cooling as well. However, initial indications via simulation

and experiment are that increasing trap depths would not improve loss and hopping

percentages during imaging. More strikingly, the motional band n occupied by the

atom is not the dominant factor determining the probability of the atom tunneling to
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Figure 4.11: Probability of atom staying in the central site of a 3-site lattice over
increasing effective time Γefft. Simulated for different initial motional state n for light-
field parameters Ω = 2.5Γ, ∆ = −10Γ, ωT = 2π × 300 kHz.

neighbouring sites. In figure 4.11 we notice that the tunneling rate does not conclusively

depend on motional state, with n = 3 appearing to have the lowest tunneling rate and

n = 5 the highest tunneling rate, with less than a percent of difference arising over 100

scattering events. We believe this variance is within the uncertainty of the quantum

trajectory method which grows over simulation time. This implies that the tunnelling

effect caused by heating from incident light dwarfs the probability of tunnelling via the

Hubbard parameter J .

4.4 New intuitions and future work

In conclusion, we find that the inverted excited state can play a critical role in life-

times and imaging fidelities. The numerical calculations of this chapter help us de-

velop a better understanding of the behaviour of atoms in the inverted excited state.

Tunneling/heating effects arising due to this phenomenon are counter-intuitive to our

expectations from the Hubbard model. Deeper traps lead to faster tunnelling, and also

the probability of this tunnelling doesn’t depend on the motional state occupied by

the atom, both results being opposite to what the Hubbard model would predict. We

also observe tunnelling timescales faster than that predicted by the Hubbard model at

the relevant trap depths. This further suggests that the primary tunnelling mechanism

is owing to the interaction with near-resonant light either due to the recoil energy of
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absorbing photons from the beam or due to heating associated with the inverted ex-

cited state. We do not observe any preferred direction of tunnelling during our imaging

scheme, which suggests that the highly directional absorption of momentum from near-

resonant beams may not be the primary cause of atoms tunnelling to neighbouring

sites. Additionally, we gain some understanding on the primary barriers to imaging

fidelity and the range of detuning and trap depths that could help to mitigate them.

The work to incorporate Raman cooling and to compare against simplified experimental

test cases is on-going.

This chapter also serves as a conclusion to my work involving the 40K quantum-gas

microscope. The following and final chapter is a result of work undertaken during the

final year of my PhD on a bosonic quantum-gas microscope.
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Towards a 85Rb quantum-gas

microscope

This chapter details our work implementing Λ grey-molasses cooling for 85Rb as part

of a Rubidium quantum-gas microscope setup. Similar to the 40K experiment, the Rb

experiment aims to trap neutral atoms in an optical lattice for site-resolved imaging.

In contrast, however, this experiment applies the principles discussed in chapter 1

to bosonic atoms - 87Rb and 85Rb. The two-species Rb microscope is the result of

the efforts of recent PhD graduates A. Ulibarrena [148] and I. Despard [149]. The

experiment implemented site-resolved imaging for 87Rb via red-molasses cooling and

achieved the observation of the superfluid to Mott-Insulator transition [146] in the

optical lattice. Our work detailed in this chapter builds towards incorporating the

second species of 85Rb for a more versatile bosonic quantum simulator.

The atomic species 85Rb comes with a key advantage - Feshbach resonances to tune

the 85Rb-85Rb [150] and 85Rb-87Rb [151] interaction strengths by tuning the magnetic

field experienced by the atoms. 85Rb atoms at zero external field experience an attrac-

tive interaction that leads to the formation of molecules at typical temperatures and

densities of cold-atom experiments. However, the |F,mF ⟩ = |2,−2⟩ state presents a

Feshbach resonance at 155 G. Moreover, the resonance is sufficiently wide (∼ 10.7 G),

which is orders of magnitude broader than the level of B-field precision and homogene-
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ity achievable with magnetic coils in our experiment. Utilizing magnetic fields greater

than 155 G [152, 153] allows for positive scattering lengths and repulsive inter-atomic

interactions - key to Bose-Einstein condensation [154–157] of 85Rb and the regime of

strongly-correlated many-body physics [158, 159]. Additionally, there exists an acces-

sible inter-species (between 85Rb and 87Rb atoms) resonance near 267 G, essential to

exploring the rich phase diagram for two-component Bose-Hubbard systems. Particu-

larly of interest are magnetic ordering effects such as the z-Neel phase deep in the Mott

regime and the impact of magnetic ordering on the MI-SF transition [160, 161]. Real-

ising the two-component Hubbard system with two isotopes of Rubidium rather than

two magnetic-states of the same isotope leads to several advantages. Most notably, as

the two isotopes have different optical coupling strengths for a given wavelength of inci-

dent light, we can configure optical lattices with different isotope-dependent hopping to

neighbouring sites. This corresponds to spin-dependent tunneling in the Bose-Hubbard

model, which is difficult to achieve with two magnetic states of the same isotope. Ad-

ditionally, we can readily control and fix the magnetization, i.e., the ratio of n↑ and n↓

states in the optical lattice by changing the ratio of 85Rb and 87Rb atoms loaded into

the lattice. Lastly, it is significantly easier to achieve spin-dependent detection when

utilizing different isotopes which have different resonant optical transition wavelengths

as opposed to magnetic states of the same isotope which would be indistinguishable to

imaging light.

5.1 Experimental setup

For complete details on the components and implementation of the bosonic QGM, we

refer the reader to A. Ulibarrena’s thesis [148] and the thesis of I. Despard [149]. We

summarize in brief the experimental setup which bears resemblances to section 1.4 of

chapter 1 of this thesis.
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Figure 5.1: 3D rendering of Rb experiment, reproduced from [149]

Rubidium atoms at their natural abundances (72% 85Rb, 28% 87Rb) diffuse from an

oven at 40 °C to a 2D-MOT chamber that is located directly above a 3D-MOT chamber.

While for the discussion in this chapter the MOTs are tuned for 85Rb, it is intended

in future that both species will be simultaneously trapped and cooled in the same

experimental setup. The long axis of the 2D-MOT is aligned with the vertical axis and

the 3D-MOT such that a near-resonant push beam loads 109 atoms from the 2D-MOT

to the 3D-MOT through a differential-pumping tube. Atoms reach a temperature of

200 µK in the MOT and are further cooled via 30 ms red-molasses cooling and 1.5 ms

Λ grey-molasses cooling to reach 3.5 µK. The implementation and characterization for

the final step of Λ grey-molasses makes section 5.2 of this chapter.

In the case of 87Rb atoms, the experimental procedure is very similar up to the

grey-molasses cooling stage. Beyond this stage, we can load 87Rb atoms in a crossed

optical-dipole trap (CODT) comprising two 200 W beams at an angle of 17°. This

CODT is evaporated to load a tightly-focused dimple beam to transport atoms to the

lattice chamber, where similar to the 40K experiment a 2D sample of atoms are trapped

and imaged in an optical lattice. In the case of 85Rb, before loading into the CODT,

we require to configure magnetic coils capable of providing ∼ 165 G fields (where 87Rb

atoms are non-interacting with each other) for several seconds. The necessary coil is in

the process of being installed and characterized [162]. A magnetic coil was also installed

71



Chapter 5. Towards a 85Rb quantum-gas microscope

between the 3D-MOT and lattice chambers during the building of the setup such that

165 G fields can be maintained during optical transport of the atoms between the two

chambers.

Where the 87Rb and 85Rb experiment differs from that of 40K is in its quick cycle

times. It aims to be five times faster than the 40K experiment for cooling to the degen-

erate quantum-gas regime. The experiment has achieved Bose-Einstein condensates of

87Rb in a cycle time of 10 s in the 17°CODT in the 3D-MOT chamber [149]. The final

step to BEC is performed all-optically, evaporating atoms in an optical trap composed

of the CODT and a tightly focused dimple trap aligned at the centre of the CODT. In

this configuration, we evaporate to BEC in a mere four seconds. The 2D-MOT chamber

being placed vertically above the 3D-axis allows for a more compact setup (see figures

2.1, 5.1). In addition, this enables easier optical and physical access to the chambers,

including for the magnetic coils necessary to generate near 165 G fields to manipulate

the interaction strength of 85Rb via Feshbach resonance.

At the time of writing this thesis, site-resolved imaging (via molasses cooling) of a

2D Mott-insulator of 87Rb has been accomplished (subject of I. Despard’s thesis [149]).

As part of building towards two-species capabilities, we implemented Λ grey-molasses

cooling of 85Rb, which has not previously been demonstrated. Figure 5.2 depicts the

level diagram for the D2 transitions and the targeted transitions for the MOT (figure

5.2a) and Λ grey-molasses cooling scheme (figure 5.2b). The separation of hyperfine

ground states 85Rb is 3 GHz as compared to 6.8 GHz for 87Rb. We are able to use the

same laser system as for 87Rb which is a primary reference laser locked via polariza-

tion spectroscopy to the D2 transitions of 85Rb in conjunction with a cooling and a

repumping laser offset locked from the primary laser (see section 3.4 of A. Ulibarrena’s

thesis [148] for a full description of the laser system setup for 87Rb). We require sep-

arate microwave antennae to drive transitions between the hyperfine ground states of

85Rb as the antennae for 87Rb are not efficient at driving frequencies near 3 GHz.
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Figure 5.2: D2 transition level diagram of 85Rb and cooling/repumping transitions for
(a) MOT lasers and (b) Λ grey-molasses lasers, adapted from [162].

5.2 Grey-molasses cooling

In the Λ grey-molasses cooling scheme, two phase-coherent lasers - the cooling and

repumping lasers - are blue detuned by ∆ from the same internal state (F ′ = 3) as

shown in figure 5.2b. The lasers are far enough detuned such that F ′ = 3 serves as

a virtual excited state in a Λ system involving the ground states F = 3 and F = 2.

In this configuration, coherent population trapping (CPT) [163] occurs that creates a

dark state composed of a mixture of the F = 3 and F = 2 states. Furthermore, this

dark state is velocity selective (similar to [164, 165]) i.e., atoms in this state near zero

velocity are dark to both beams whereas faster moving atoms oscillate into “bright”

states. The photon recoil from spontaneous decay allows for a random walk across

momentum space until the atoms find the zero momentum dark state. Hence, atoms

accumulate in the slow dark state over time [166,167], which can be understood as an

optical pumping effect in translation space [168]. This technique has previously been

studied for several atomic species, including 87Rb [169], 133Cs [170], 7Li [171], 39K [172]

and 40K [173]. In the following section we demonstrate the implementation and results
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of this cooling scheme for 85Rb .

5.2.1 Implementation

An extended-cavity diode laser (ECDL) is offset locked near the F = 3 → F ′ = 4

transition in case of MOT cooling and near the F = 3 → F ′ = 3 transition during Λ

grey molasses cooling. The light from the ECDL is passed through a fibre electro optical

modulator (EOM) to generate repumper light at the appropriate relative detuning

(∼ 3 GHz) and relative power (∼ 1/10th the cooling beam power) in the same beam

path. This power imbalance ensures the dark state has largely F = 2 character, making

it darker to cooling light. This beam is amplified via a tapered amplifier (TA) to achieve

the necessary power for the MOT (∼ 300 mW in the bimodal beam).

The microwave signal that drives the EOM is branched off from the same ampli-

fier circuit that powers the microwave antennae in the 3D-MOT chamber and lattice

chamber. The 85Rb and 87Rb sequences share the same signal generator (as shown in

figure 5.3). A high-pass filter (HPF) in the 85Rb path and a low-pass filter (LPF) in

the 87Rb path allow the signal generator to switch between the necessary frequencies

(3 GHz for 85Rb and 0.5 GHz for 87Rb path) without any change to the circuit. The

0.5 GHz signal in the 87Rb path is mixed with a 6.3 GHz signal to provide the necessary

frequency offset between the cooling and repumping beams. This step is not necessary

for the 85Rb path as the microwave signal generator is capable of frequencies up to

4 GHz. 50 Ω directional couplers protect the amplifiers from back reflections of the

signal. The 85Rb and 87Rb paths are combined again and the resultant signal serves

as the input to the EOM. Generating the repumper light through the EOM ensures

that the polarizer and repumper beams are phase coherent which is the most efficient

configuration for the Λ grey-molasses cooling scheme. The amplitude of the microwave

signal driving the EOM sets the fraction of repumper light in the modulated beam.
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Figure 5.3: Circuit diagram depicting microwave signal generation, amplification, and
input to microwave antennae/EOM for 87Rb and 85Rb, reproduced from [162].

Scanning the two-photon detuning (the detuning of the two-photon transition from

F = 3 to F = 2 ground states) against the width of the atom cloud (figure 5.4)

for Λ grey molasses cooling presents a characteristic profile shaped similar to a Fano

resonance [172]. Increasing the global detuning (the shared single-photon detunings

from F = 3, F = 2 to the F ′ = 3 excited state) leads to a smaller (i.e. colder) cloud by

reducing single-photon scattering events that can heat the atom out of the dark state.
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Figure 5.4: 85Rb atom cloud width as a function of two-photon detuning, plotted for
varying global detunings:1.64 Γ (blue circles), 2.47 Γ (orange triangles) and 4.94 Γ (cyan
squares) where Γ = 6.066 MHz.

Demonstration of cooling

While in figure 5.4 we used the width of the cloud after TOF expansion as a proxy

for temperature, we take a closer look at the behaviour of the cooling scheme in figure

5.5. The temperature measurements after 1 ms of the Λ grey-molasses pulse at the

single-photon detuning ∆ = 1.64 Γ demonstrate a Fano-like profile. The atoms are

initially cooled to 20 µK via standard red-molasses cooling. This is followed by the

grey-molasses pulse where we scan the two-photon detuning. We see that the scheme

begins to heat atoms for two-photon detuning δ > 0. The coldest temperatures are

achieved slightly below δ = 0, contrary to the expectation that this scheme is most

efficient on resonance. We expect this arises due to differential light shifts experienced

by the F = 3 and F = 2 hyperfine states arising from the power imbalance between

the cooling (F = 3 to F ′ = 3 transition) and repumping beams (F = 2 to F ′ = 3

transition) that shift the true resonance point by a few 10s of kHz.
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Figure 5.5: Temperature of 85Rb atoms after 1 µs of Λ grey molasses at varying two-
photon detuning (global detuning ∆ = 1.64 Γ).

The most efficient cooling was found at ∆ = 5 Γ with an intensity ratio of 10:1

between the cooling and repumping beams. With a 1.5 ms of the Λ grey molasses

pulse, the atoms are cooled from 20 µK to 3.5 µK (figure 5.6). This is similar to the

4 µK temperatures achieved for 87Rb with this technique [169].
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Figure 5.6: Temperature of 85Rb atoms at varying durations of Λ grey molasses pulse.
Two-photon detuning δ = 2π ×−50 kHz, global detuning ∆ = 5 Γ.
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Following Λ grey-molasses cooling, we could load the atoms into a crossed optical-

dipole trap using the same beams as for 87Rb. However, owing to the negative scattering

length between 85Rb atoms at zero field, the dense optical trap suffer from short life-

times (∼ 3 s), and condensates above a small critical number of atoms are unstable. To

overcome this challenge, it is required to generate a bias field of ∼ 165 G, near a zero

crossing of the scattering length owing to the Feshbach resonance at 155 G. Doing so

would increase the atom lifetimes in the trap by an order of magnitude, and allow the

creation of 85Rb BECs with tuneable interactions [157].

5.3 Optical pumping for 85Rb

Finally, an optical pumping scheme is implemented to prepare 85Rb in the |F,mF ⟩ =

|3,−3⟩ state. Immediately after grey-molasses cooling at zero field, the atoms populate

all mF levels in the F = 3 state. A magnetic field of 0.53 G is applied to Zeeman-shift

the ground state mF levels out of degeneracy. The resulting energy shift from the

hyperfine splitting of transitions between mF levels in the F = 3 and F ′ = 2 states are

∆E = (mF +mF ′) ∆0 (5.1)

where ∆0 = 2π × 250 kHz is the Zeeman-shift for the mF = 1 state at this applied

field and mF and mF ′ correspond to the sublevels of the F = 3 and F ′ = 2 states

respectively. As mF and mF ′ values range from [3, -3] and [2, -2], there exist ten

possible transition energies between mF levels from F = 3 to F ′ = 2, each separated

by ∆E0.
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Figure 5.7: 85Rb atom number transferred to F = 2 hyperfine level for applied mi-
crowave pulse detuning.

A microwave antenna (figure 5.3) placed near the 3D-MOT chamber drives transi-

tions between the hyperfine ground states of 85Rb with a Rabi frequency of 2π×4.3 kHz.

As the microwave pulses are linearly polarized, the allowed transitions correspond to a

change in mF such that

∆mF = mF −mF ′ = 0,±1. (5.2)

The 10 possible transition frequencies are observed in figure 5.7 on scanning the centre

frequency of the microwave pulse (where zero detuning corresponds to the un-shifted

hyperfine splitting of 85 ground states of 3.035 GHz).

The atom cloud is then illuminated with σ− polarized light near-resonant to the

F = 3 to F ′ = 4 transition. This polarization favours transitions from mF → mF − 1,

leading to an accumulation of atoms in the |3,−3⟩ state (figure 5.8). A σ− polarized

repumper beam resonant to the F = 2 to F ′ = 3 transition preserves atoms in the

F = 3 manifold.
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Figure 5.8: 85Rb optical pumping: pulse duration and resulting atom population in
states |F,mF ⟩ = |3,−3⟩ (blue circles), |3,−2⟩ (orange triangles) and |3,−1⟩ (cyan
squares).

For the state-selective measurements of the atom population presented in figure, 5.8,

we utilize microwave transitions between the mF levels of the F = 3 and F = 2 hyper-

fine ground states similar to the microwave spectra of figure 5.7. At an applied magnetic

field of 0.53 G, the transition between |3,−3⟩ and |2,−2⟩ is red-shifted 1.25 MHz from

the hyperfine splitting at zero field. To measure atom number in the mF = −3 state,

we red-detune the microwave pulse by 1.25 MHz, allowing us to selectively excite this

transition. We can deterministically transfer nearly all atoms in the selected mF level

by using a 10 ms adiabatic microwave passage (ramping the frequency slowly across the

resonance). A resonant cooling pulse targeting the F = 3 to F ′ = 4 transition heats

away atoms still remaining in the F = 3 state. We can then apply the same microwave

pulse to restore atoms to the F = 3 manifold or use repumping light to image atoms

transferred to the F = 2 state. The same procedure with the microwave detuning at

1 MHz provides us with the |3,−2⟩ population. To measure the |3,−1⟩ population, we

cannot directly apply a microwave pulse resonant to the |3,−1⟩ to |2,−2⟩ transition as

this would also drive the |3,−2⟩ to |2,−1⟩ transition (according to equation 5.1 and

the microwave selection rules 5.2). Instead, we first apply an adiabatic transfer pulse

at 1 MHz to transfer atoms in the |3,−2⟩ state to the |2,−2⟩ state. We then apply
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a 750 kHz pulse to exchange the atom population in the |3,−1⟩ and |2,−2⟩ sublevels,

transferring the atoms in the |3,−1⟩ state to the F = 2 manifold (where they are pro-

tected from the subsequent heating pulse on the F = 3 to F ′ = 4 cycling transition)

while keeping atoms originally in the |3,−2⟩ state in the F = 3 manifold.

5.4 Future work

The next stage for the Rb experiment is to take advantage of the intra-species Fesh-

bach resonance of 85Rb at 155 G and the inter-species resonance between 85Rb and 87Rb

at 267 G. This calls for the implementation of various upgrades to the experiment’s

capabilities that have been in development for the past few months. First is the imple-

mentation of three magnetic coils that would be positioned at the 3D-MOT chamber,

science chamber and between the 3D-MOT and science chambers [162]. In conjunction,

this would maintain the necessary magnetic fields (near the Feshbach resonance) at the

atoms at every all-optical stage of the experiment. Second is the implementation of a

digital micro-mirror device (DMD) [174] aligned along the path of the high-resolution

microscope aimed at the science chamber. The DMD is an array of microscopic mirrors

that correspond to pixels in the image plane. Each mirror can be individually con-

trolled to project a ‘bright’ or ‘dark’ pixel, i.e., reflecting light along the imaging path

or deflecting to a beam dump [175]. In addition, the DMD can reduce the effective

intensity of light at each pixel by rapidly switching between bright/dark states. Hence,

this device enables us to generate arbitrary (time-averaged) optical potentials [176,177]

at the focus of the microscope in the optical lattice. This capability along with the tun-

ability offered by the inter-species Feshbach resonance will play a key role in exploring

the phase diagram of two-component Bose-Hubbard systems [160, 178, 179] and more

exotic many-body phenomenon [180,181].
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Conclusions and outlook

During my PhD, I had the opportunity to work on two different and equally complex

experiments spanning three species of atoms - primarily 40K, yet also 87Rb and 85Rb.

In both experiments we believe we have made progress in developing techniques for cold

atom experiments and enabling future research on quantum many-body dynamics.

In case of 40K, we implemented Raman sideband cooling and studied its advantages

and challenges, particularly as it compares to the EIT technique. With 1 s Raman

cooling pulses, we achieve ∼5% atom loss between successive images of the same atom

sample. I have also studied numerically the heating effect of the inverted excited state

of 40K. These techniques have been applied towards solving a narrow set of problems

(i.e. single-atom imaging of 40K atoms). However, the lessons we have learned in

the process aid in the development of the broadly applicable techniques of Raman

sideband cooling, EIT cooling and quantum Monte-Carlo simulations. Our character-

izations of single-atom imaging using Raman cooling and EIT cooling is valuable to

better understand these important techniques as well as in designing and optimizing

quantum-gas microscope experiments. Our work simulating the imaging scheme show-

cases the strengths of the quantum trajectory technique for time-evolution of quantum

systems with large Hilbert spaces. We have gained valuable insights into the limitations

of site-resolved imaging 40K. Moreover, we hope the approach we have used makes the

quantum trajectory technique more accessible to experiments interested in the dynam-

ics of atom-light systems. In the case of 85Rb, there is no published work (as of the
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writing of this thesis) on implementing the grey-molasses scheme, and this work fills

this gap in the literature and contributes to this vitally important sub-doppler cooling

scheme. We achieve atom temperatures of 3.5 µK with a 1.5 ms of Λ grey-molasses

cooling, a significant improvement over typical red-molasses temperatures of 20 µK.

Most important, both the fermionic and bosonic experiments are positioned for

novel research in quantum many-body physics. We have achieved sufficient imaging

fidelity of 40K to explore the Fermi-Hubbard model with single-site resolution and serve

as a valuable investigative tool into strongly-correlated systems. The Rb experiment

with the newly added capability of trapping and cooling 85Rb is in range of its final

aim as a dual species bosonic quantum-gas microscope with tunable interactions.
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Discussion of lattice potentials

The following is a semi-classical approach to energy levels of atoms in a lattice trap. In

particular, we discuss the structure of the target lattice potential in 1D is of the form

U = U0 sin2 (kLx) where kL is the lattice wave-vector kl = 2π/λL. We find the Taylor

expansion of this potential near x = 0 to be

U = U0

(
k2Lx

2 − 1

3
k4Lx

4 +
2

45
k6Lx

6...

)
. (A.1)

We restrict our discussion to the 1st and 2nd non-zero terms in the Taylor expansion.

The 1st term can be treated as a Harmonic potential (see figure A.1):

U0k
2
Lx

2 =
1

2
mω2

Tx
2, (A.2)

ωT =

√
2U0k2L
m

. (A.3)

Note that ωT is linked to the depth of the lattice potential, U0, also referred to as trap

depth. Since it is a physically measurable quantity, we will prefer to quantify the trap

depth in terms of the corresponding trap frequency ωT rather than in Lattice recoil

units (EL
r ). A lattice depth of 1400EL

r corresponds to a trap depth (or trap frequency)

of ωT = 2π × 330 kHz. Thus along with their electronic states, atoms also have a

motional state associated with the Harmonic oscillator potential they are trapped in,

84



Appendix A. Discussion of lattice potentials

−0.2 −0.1 0.0 0.1 0.2
x/λL

0

250

500

750

1000

1250

1500

U
L
/E

r

Figure A.1: Comparing lattice potential UL = U0 sin2(kLx) (blue), 1st term of UL

Taylor expansion - UHO = mω2/2 (orange) and sum of 1st and 2nd terms (green).

typically numbered from lower to higher energy |0⟩, |1⟩, |2⟩ and so on. The eigenenergy

of motional state |n⟩ is (n+1/2)ℏωT . The eigenstates of atoms in a harmonic potential

take the form of Hermite polynomials in position space. It can be shown that for atoms

in a state |ψ(t)⟩, the state evolves such that

ψ(nT ) = eiϕψ(0). (A.4)

Here, T = 2π/ωT , n is an integer and |ψ⟩ a phase factor between [0,2π]. i.e. the state

observables oscillate with a time period set by the trap frequency.

Ideally, the trap frequencies experienced by all atoms in our image would be identi-

cal, and the trap describing each well would be purely harmonic, ensuring equal spacing

between motional energy levels. However, due to experimental limitations, inhomo-

geneities arise across the trap. Such inhomogeneities could lead to spatial inhomogene-

ity in our images. Earlier estimates showed that the largest source of inhomogeneity of

frequencies (∼ 40 kHz) across the 150 × 150 µm image was the radial Gaussian profile

of the lattice beams (see Table 3.1).

Another key source of spectral aberrations is the anharmonicity of each individual

potential well of the lattice, which we will discuss in detail below. The motivation
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for these calculations were to answer two questions : 1. Would lowering the depth of

the lattice potential reduce anharmonicity, and hence spectral averrations at individual

lattice sites? 2. For our current parameters, having a transition width during imaging

of ∼ 50 kHz how many harmonic oscillator (motional) energy levels are resonant to

Raman sideband cooling?

Anharmonicity term

The second term of the potential U = U0(k
2
Lx

2 − 1/3k4Lx
4 + ...) is the anharmonicity,

i.e., a deviation in the Harmonic oscillator energy level spacing (see Figure A.1). For

∆U = −1/3U0k
4
Lx̂4, we take the expectation value to find the energy difference between

the expected Harmonic energy levels (treating it as a perturbative correction).

∆En = −1

3
U0k

4
L⟨x̂4⟩ (A.5)

For a harmonic oscillator, x̂ = x0(â + â†) where â and â† are the lowering and raising

operators respectively. Therefore:

x̂4/x40 = b+ âââ†â† + â†â†ââ+ â†ââ†â+ ââ†ââ† + â†âââ† + ââ†â†â (A.6)

Here, b includes all the terms with unequal powers of â and â† and thus have zero

expectation value. Equation A.6 can be term-wise evaluated to show that:

⟨x̂4⟩n = x40(6n
2 + 6n+ 3) (A.7)

Note, n is the motional state number of the Harmonic oscillator levels. The difference

in energy of a motional level |n⟩ from its expected harmonic energy of (n + 1/2)ℏω is

therefore:

∆En = −1

3
U0k

4
Lx

4
0(6n

2 + 6n+ 3) (A.8)
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The transition energies ϵn (i.e. the energy difference between successive levels n and

(n− 1) are:

ϵ(n→n−1) = ℏωT − U0k
4
Lx

4
0(2n

2 + 2n+ 1 − (2(n− 1)2 + 2(n− 1) + 1)) (A.9)

= ℏωT − U0k
4
Lx

4
0(4n) (A.10)

We make the required substitutions x0 =
√
ℏ/2mωT , U0k

2
L = mω2

T /2. We also note

that the first term in the expression of ϵn is the Harmonic oscillator energy independent

of n which we subtract to have ∆ϵn = ϵn − ℏω and find:

∆ϵ(n→n−1) =
(ℏkL)2

8m
(4n) (A.11)

Recognizing that (ℏkL)2/2m is the lattice recoil energy EL
r , we have:

∆ϵ(n→n−1) = nEL
r (A.12)

The calculation above suggests that the anharmonicity of the trap is independent of

the trap frequency ω to first order. More explicitly, the energy separation of motional

states |1⟩ → |0⟩ is (ℏω − 1EL
r ), the energy separation |2⟩ → |1⟩ is (ℏω − 2EL

r ), and so

on. Thus we have indications that lowering the lattice depth would not reduce spectral

aberrations in our system, and that for a Rabi frequency of ∼ 10 kHz we would be

resonant to two transitions, namely - |1⟩ → |0⟩ and |2⟩ → |1⟩. (The lattice recoil

energy EL
r for 1064 nm lattice beams and 40K atoms is calculated to be approximately

4.4 kHz).
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Sideband transitions and the

Lamb-Dicke parameter

Light-atom interactions typically cause transitions between electronic states. However,

when atoms are trapped in a harmonic trap, they can simultaneously cause transitions

between the harmonic oscillator levels. We refer to them as sideband transitions. In

the regime where the sidebands are well resolved (i.e., the trap frequency is greater

than the Rabi frequency corresponding to the strength of the electronic transition), the

motional and electronic degrees of freedom are separated. Thus we may write the state

of the system as |Ψi,n⟩ = |ψi, n⟩, where |ψi⟩ refer to the internal/electronic states and

|n⟩ the motional states. Thus the carrier transition would be from |ψ1, n⟩ → |ψ2, n⟩
and sideband transitions would be from |ψ1, n⟩ → |ψ2, n

′⟩ where n ̸= n. Since motional

energy states are separated by ∆E = ωT in harmonic traps, the frequency separation

between the peak of the carrier transition and the peak of the 1st sideband transitions

(n′ = n ± 1) is ωT . The strength for a dipole transition between electronic states is

given by:

ℏΩ0 = ⟨ψ2| d⃗.E⃗ |ψ1⟩ . (B.1)

d⃗ is the induced atomic dipole moment, E⃗ is the electric field vector of incident light.

E⃗ = E0e
i(k⃗.x⃗−ωLt). Ω0 is known as the Rabi frequency, and for a laser detuned from
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resonance by ∆, the generalized Rabi frequency ΩR =
√

Ω2
0 + ∆2. For purely electronic

transitions (i.e., carrier transitions) we consider that the size of the atom is much smaller

than the wavelength of optical light. Thus the atom effectively experiences an electric

field oscillating at frequency ωL and the spatial variation of the electric field can be

ignored. For sideband transitions, (the coupling between motional levels) the spatially

varying component of the electric field provides the necessary momentum transfer. As

demonstrated in section 3.1.1, the coupling strength of red-sideband transitions is of

the form:

ΩRSB = η
√
nΩR. (B.2)

Similarly, it can be shown that for blue-sideband transitions, the coupling strength is

ΩBSB = η
√
n+ 1ΩR. (B.3)

Here, the Lamb-Dicke parameter [182] is η = kx0 (in the x-axis), where k is the

wavelength of incident light and x0 is the characteristic length of the harmonic trap,

equal to
√
ℏ/2mωT . The Lamb-Dicke parameter can be re-written as

η =

√
(ℏk)2/2m

ℏωT
=

√
Er

ET
. (B.4)

I.e., the Lamb-Dicke parameter is the square root of the ratio between the recoil energy

Er = (ℏk)2/2m and the energy separation between harmonic oscillator levels ET = ℏωT .

When an atom in an excited state decays to the ground state while emitting a photon

(with linewidth Γ ≫ ℏωT ), the Lamb-Dicke parameter describes the probability of the

atom gaining or losing a motional quanta of energy due the recoil energy from scattering

a photon.

P (n→ n′) ∝ ∥⟨n′| eik⃗.x⃗ |n⟩∥2 (B.5)
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The transition is broad enough that it can drive simultaneously the carrier, blue-

sideband and red-sideband transitions. Thus for every decay transition, the probability

of gaining a motional quanta is η2(n+ 1) and the probability to lose a motional quanta

is η2n. This leads to a net probability of η2(n+ 1) − η2(n) = η2 of gaining a motional

quanta during spontaneous emission. If we are in the‘Lamb-Dicke regime’ (η ≪ 1),

i.e., when the recoil energy the atoms gain from emitting a photon is far less than the

energy spacing between motional states, photon emission/recoil has a low probability

of changing the motional state of the atom. The probability of gaining/losing two

motional energy quanta in this transition (n′ = n ± 2) is of the order η4 and is thus

strongly suppressed. For typical optical transitions, η = 0.1. Hence, we can usually

ignore higher order sideband transitions. The Lamb-Dicke parameter also describes

the coupling strength of the sideband transitions relative to the carrier transition ΩR

(equation B.2 and B.3). This is why in our experiment we require two-photon opti-

cal transitions to couple between ground states only 1.28 GHz apart. The recoil energy

from a microwave photons are an order of magnitude too small to drive any appreciable

cooling transitions, i.e., microwave photons would be deep in the Lamb-Dicke regime

for our imaging lattices and unable to change the motional level of the atom.

To find the Lamb-Dicke parameter associated with the two-photon Raman transi-

tions, ηR, we need to consider the net recoil energy. The momentum change from the

two-photon transition is described by ∆k⃗ = ±k⃗1 + k⃗2 where k⃗1 and k⃗2 are the wavevec-

tors associated with the individual Raman beams. In our experiment correspond this

corresponds to D2 photons. As the two Raman beams are orthogonal, however, the

total momentum kick is greater than the single D2 photon momentum by a factor
√

2.

Furthermore, as the beam is not equally aligned to every lattice axis, the projection of

the resultant vector on the vertical, east and west axes have relative magnitude 1/
√

2,

1/2 and 1/2 respectively. Accordingly, we find that ηR is different along the vertical

axis as compared to the horizontal axes. For typical imaging trapping frequencies of

2π×300 kHz that corresponds to ∼ 1000Er, we observe Lamb-Dicke parameters of 0.17

and 0.12 respectively for the vertical and horizontal axes B.1. Accordingly, the Raman

transition strength in the vertical axis is higher than along the horizontal axes.
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Figure B.1: Lamb-Dicke parameter in the vertical (blue) and horizontal axes (orange)
as a function of lattice depth.
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