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Abstract

Active Brownian particles (ABPs) are Brownian particles (on the

scale of nano- to micro-metres) which are also subject to an addi-

tional active component of motion. This may be as a result of a

physical propulsion from the particle itself, or as the result of an

external force acting upon the particle.

One way of modelling these ABPs is through the energy depot

(ED) model. ED particles contain an internal depot capable of

storing and consuming energy in order to accelerate. We aim to

better understand particle behaviour when the depot energy and

velocity are independently calculated and improve the clarity in the

literature of when the commonly made adiabatic assumption holds.

We run agent based simulations of individual particles with en-

ergy depots in 1-D and capture the results. By varying the uptake of

energy from the surroundings and the rate of consumption, we ob-

serve different particle dynamics in the velocity-energy phase-space.

We find that when constrained to a single dimension, the depot

behaviour becomes more adiabatic as energy uptake and conversion

rates increase. We compare our results to the literature and add

resolution to behaviours in non-adiabatic parameter regimes where

the update rate of depot energy and particle velocity are on the



same timescale. Particles are categorised into 4 sub-types depen-

dent on the emergent behaviour from the given input parameters.

We note that for non-adiabatic particles there are two emergent

behaviours — one near to the stationary points in velocity-energy

phase-space where the particle approaches the adiabatic limit; and

one at low velocities, where particles exhibit behaviour more similar

to a simple Ornstein–Uhlenbeck (OU) particle, or a particle start-

ing from rest. We stochastically model particles switching between

these behaviours and model the time distributions as a power law.
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Glossary of Symbols

Table 1: Reference table for mathematical symbols used throughout the thesis presented with dimen-
sions L (length), τ (time), M (mass), T (temperature).

Symbol Description Dimensions or Units

β Bifurcation point (v20) L2τ−2

xi(t) Gaussian white noise -
χ2 Chi-squared statistic for least-squares fit -
∆t Simulation time step τ
Deff Effective diffusion constant L2τ−2

η Hydrodynamic viscosity Mτ−1L−1

η(t) Delta-correlated Gaussian white noise -
γ0 Static Friction τ−1

κ Discrete autocorrelation lag -
λ Power law fitted decay rate τ
I Identity matrix -
N Normalisation function -
µ Arithmetic mean value -
ρ Autocorrelation -
σ Standard deviation -
χ2
OU Fitting error -

τ Switching time τ
τ0 Power law fitted reference time τ
τs Switching time τ
c Energy depot dissipation rate τ−1

D Diffusion constant L2τ−2

d(v) Depot energy conversion function τ−1

d0 Depot conversion coefficient τL−2

e0(v) Adiabatic energy ML2τ−2

ep Pumping energy ML2τ−2

h(τs) First hitting time probability -
h0 Power law scaling factor -
kB Boltzmann constant ML2τ−2T −1

n Number of dimensions -
q(t) Depot energy uptake rate L2τ−3

q0 Depot constant Uptake Rate L2τ−3

RH Hydrodynamic radius L
T Temperature T
t Simulation time τ
U(r) Potential ML2τ−2

v0 Stationary velocity Lτ−1
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Glossary of Abbreviations

Table 2: Reference table for abbreviations used throughout the thesis.

Abbreviation Full Name

ABM Active Brownian motion
ABP Active Brownian particle
BC Boundary condition
BP Brownian particle
CKE Chapman-Kolmogorov equation
ED Energy depot
FPE Fokker-Planck equation
LE Langevin equation
MC Monte Carlo
MNM Micro/nanomotor
MSD Mean-squared displacement
OU Ornstein-Uhlenbeck
PDF Probability density function
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Chapter 1

Introduction

This thesis uses computational methods to study a model of active

Brownian particle (ABP) transport, inspired in part by previous

experimental results with driven nano particles [1]. In particular,

we focus on small (nano scale) particles where translational diffu-

sive effects are dominant and utilise the Energy Depot (ED) model

to simulate active components of particle motion in agent based

simulations.

Active Brownian Motion (ABM) has been the subject of increased

studies over the past two decades, as reviewed in detail in Chap-

ter 2, due at least partly to interest in how living examples such

as bacteria, viruses, and motor proteins achieve transport — and

how artificial engineered versions of these active particles might be

designed.

1.1 Thesis Overview

In Chapter 2 we present a comprehensive literature review of ABM

and ABPs. A review of historical and ongoing research across the

multiple areas of interest within this field — such as hydrodynamic

1



Introduction
Thesis Overview

approaches, purely statistical approaches, multi-particle approaches

— is presented. Empirical laboratory experiments which give the

field a real-world grounding are discussed, and the translation of

these results into computational models are presented.

Special attention is then given to the ED model on which much of

the work in this thesis is based. We present an overview of the work

carried out by the original authors of the model and the follow-on

research since this point. We highlight the adiabatic assumption

of energy relaxation and postulate on whether a more rigorous de-

scription of when this does and does not apply can be presented.

The results of multiple studies in both 1- and multiple- dimensions

are explored in order to provide context to the results which are

presented in chapters 4 and 5.

Chapter 3 will explore the theory discussed in the literature re-

view in more depth, explaining in detail the theoretical concepts

and equations used in the field of ABPs throughout this work. The

base equations of motion and their statistical roots are explained,

along with the partial differential (Fokker-Planck) equations which

govern the probability distributions for these systems. A detailed

explanation of the theory of the ED model along with the key fixed

points in the model, possible parameter regimes and time-scales

which may arise are explored.

The computational simulation methods used and the resulting

numerical implementation of the aforementioned equations are pre-

sented. A summary of the statistical and analytical methods used
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to process the results from these computational simulations are also

given.

In Chapter 4 non-adiabatic ABPs with EDs are simulated in 1-D.

The initial conditions of systems starting from rest, average velocity

distributions, and ensemble average behaviour in v − e phase-space

are simulated. We compare the results against the adiabatic model.

These numerical results are compared with the analytical solutions

at steady-state where applicable and conclusions are drawn as to the

different dynamics which occur in the adiabatic and non-adiabatic

regimes. The velocity distributions are used to gain an insight into

the canonical behaviour of the particles over long trajectories, whilst

the distribution of the energy against the velocity is used to show

the spread of the energy away from the value of e0(v) (the adiabatic

fixed point) as well as the regions of velocity space where this occurs

for different simulation parameters.

In Chapter 5 the transition of particles between their stationary

velocity limits in one-dimension is investigated. We highlight that

there are characteristic times for directional switching in the two

different regimes of motion — pumping at low v in the low-activity

phase-space, and depot depletion at higher v near to the stationary

velocity v0. We present this as an alternative way to quantify the

propensity of the particles to switch direction and suggest that this

methodology is applied to existing research in multiple dynamics

to describe behaviour in multiple dimensions. We look at the auto-

correlation for both velocity and depot energy and draw conclusions
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on how these analysis techniques can be used alongside the switch-

ing time distributions to understand the dynamics of particles in

different regimes of motion.

Chapter 6 concludes this thesis by summarising all of the above

results and comparing them in the context of the literature which we

have explored. The simulations we carried out are given comparison

with other systems seen elsewhere. We present further research

ideas to take our current results further, as well as finally exploring

ideas for using our framework and analysis techniques to enrich the

results of other ED studies in non-adiabatic regimes or to extend

our framework to alternative models of active motion.

4



Chapter 2

Literature review

2.1 Introduction

2.1.1 Brownian Motion

Particles immersed in fluids on very small length scales undergo

large numbers of highly chaotic collisions with the molecules in the

surrounding fluid causing for a random motion. Robert Brown, the

Scottish botanist and namesake of the motion, was one of the first

to publish detailed investigations of the phenomenon from his ex-

perimental observations through a microscope[2]. Small particles

of pollen in water were not at rest but were in fact moving in a

seemingly random fashion within the fluid — as if agitated by some

invisible force. Later, in one of the seminal papers from his An-

nus Mirabilis, Einstein laid out a statistical theory[3] that this mo-

tion occurred as the result of collisions with surrounding molecules

and offered a thermodynamic as well as mechanical explanation.

Soon thereafter, Langevin [4] presented a description of this motion

which confirmed Einstein’s work. Perrin then proved this theory

experimentally[5] by physically measuring Brownian particles and

confirming that their behaviour matched the predictions made by
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Einstein. Through this early work, the diffusivity of a Brownian

particle was well defined based on the fluid (viscosity, temperature)

and particle (hydrodynamic radius, mass) properties.

The movement of small particles through a fluid as a result of

Brownian motion is referred to as translational Brownian motion[6,

7]. The same forces from the surrounding fluid on a particle also

cause for a random rotational Brownian motion[6, 7].

Pure Brownian systems exist in a thermodynamic equilibrium —

fluctuations in the particle kinetic energy gained through collisions

are cancelled out by the dissipation of this energy back into the

surrounding fluid as heat (this is referred to as the Fluctuation-

Dissipation theorem[8]).

2.1.2 Active Brownian Motion

Active Brownian Particles (ABPs) refer to a subset of Brownian

particles which undergo additional motion as a result of internal

or external forces, this motion is called Active Brownian Motion

(ABM)[9].

Interest in the field of ABM was initially sparked by Feynman

and Smoluchowski’s thought experiment of the Brownian Ratchet

— an engine on a molecular scale which would perpetually harvest

energy by utilising the asymmetrical motion of individual Brownian

particles[8]. Whilst this conjecture was proven to be thermodynam-

ically impossible, it has inspired many functioning active Brownian

machines and particles with real world applications.
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2.1.2.1 Natural Active Brownian Particles

Micron-scale microbes such as e-coli swim through fluids by exerting

a force on the surroundings using their appendages[10]. They can

undergo periods of forward motion called runs where the physical

force exerted by the flagella on the fluid drives the particle as the

flagella work together (moving towards food-rich areas), when these

flagella begin to rotate in different directions the particle enters

the tumble phase — moving around the region of space (harvesting

food)[11, 12]. This type of active motion is thus often referred to

as run and tumble. These run and tumble dynamics occur on the

order of magnitude of the length scale of the microbes themselves.

The motion can be governed by a process called chemotaxis [10,

13], where the swimmers sense the areas of higher food concentration

by a chemical gradient and are attracted to that area. Living cells

may use this phenomenon to move towards or away from areas of

higher concentration — for example towards a food source or away

from toxins.

Protein molecules such as kinesins and dyneins exhibit an ac-

tive motion where hydrolisation of adenosine triphosphate (ATP)

moulecules causes them to walk along a protein track. The resul-

tant biased force in one direction manifests an active motion where

the stochastic Brownian force is overcome[14, 15, 16].

Other authors have focused on active motion through the pro-

cess of cells binding to external substratum[17], cell migration with

directional bias (taxis)[17, 18].
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Rotational forces can still be prevalent, and in the case of bacteria

such as e-coli asymmetric motion is seen as the microbe twists its tail

to move forward[19, 10], taking a random trajectory dictated by its

orientation. The asymmetry in this case is caused by the chirality of

the swimming tail. Other swimmers may use flagella on their surface

to paddle forward[20]. The back-stroke of these flagella is different

to the forward motion and thus the broken symmetry of this motion

allows for a net-displacement of the particle within a single cycle

of swimming. Symmetry breaking (and thus irreversibility) is a

key component in active motion such that the final net force on

a particle over a cycle of motion is non-zero. For these swimmers

the source of energy for this motion will normally be from chemical

energy stored within the cell which is metabolised as needed.

2.1.2.2 Micro/Nanomotors (MNMs)

In other cases, synthetic particles are manufactured to act as engines

or motors and drive motion as a result of their inherent properties.

The energy source can come from within the particle assembly itself,

or from the surrounding fluids. These particles are often called

micro/nanomotors (MNMs)[21].

Conical micro-rockets (or microtubes) on the micron-scale are

one such example[22, 21]. These were created by manufacturing

nano-scrolls of a platinum coated material and placing them into

different concentrations of hydrogen peroxide. The platinum surface

catalyses the decomposition of the H2O2 into water and oxygen. The

resultant oxygen bubbles inside the scrolls protruded from the end
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of the scroll when a critical volume is reached. The pressure of the

emergence of the bubble causes an acceleration of the scroll through

the liquid and a visible rocket trail. The rotational Brownian effects

on these scrolls alters the trajectory as the particles move through

the liquid. Tadpoles & boomerangs are another two examples of

manufactured ABP swimmers which have been studied (on the scale

of < 100nm)[23].

Another similar mechanism has been seen in microscopic Janus

particles[24, 25, 26, 21, 27]. So called because of their two diamet-

rically opposite faces, these particles are manufactured from micro-

beads of plastic or similar materials where one face of the particle

is coated with a catalytic material such as platinum. In the case

of bubble propulsion, this coating catalyses the decomposition of

hydrogen peroxide just as with the micro scrolls.

Other configurations of catalytic coating on spheres such as Sat-

urn swimmers and three-slice swimmers have also been investi-

gated [26], with different geometries of coatings as illustrated in

figure 2.1. Different configurations of the particles are shown with

the chemical activity α and resultant motility µ in each region as

a result of these designs also labelled. Design of different motil-

ity behaviours is possible by configuration of the particle surface

chemistry. The asymmetry of the coatings (e.g. Janus coatings on

opposite sides) is responsible for the active directed motion, as op-

posed to simply increasing the magnitude of the random force.

Ikezoe et al.[28] created micro-chemical motors in metal-organic
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Figure 2.1: Examples of different theoretical synthetic spherical active Brownian particles outlined
by Golestanian et al. [26] — (a) Janus swimmer (b) Saturn swimmer with an equatorial belt (c) Three-
Slice Design (as Saturn but with a wider equator). These three designs for different spherical swimmers
exhibit swimming behaviour. µ is the mobility of the swimmer; α is the chemical activity; θ is the
latitude angle (used with permission).

frameworks (MOFs) by utilising the self assembly of peptides. MOFs

are highly porous organised structures. The self-assembly of the

peptides at the surface interface between the MOF pores and the

surrounding liquid created a strong surface tension gradient as a re-

sult of the peptide’s hydrophobic properties, accelerating the MOF’s

transport through the fluid. The authors found that this motion

was reliant on the peptides’ ability to form a self-assembled struc-

ture at the pore interface and that when non-assembling molecules

were used the phenomenon did not occur. Addition of a soap-like

solvent which reverted the self-assembly behaviour (and thus neu-

tralised the surface-tension gradient) of the peptides was found to

freeze the motion of the molecules, confirming that the motion was

as a result of the surface tension gradient. Using this motor, the

authors constructed a boat, a structure with a small 1mm region

which could accommodate the motor. Using this construction they

were able to observe the boat swimming in a fluid under the active

force provided by the self-assembly.
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For chemical motors, there are a variety of mechanisms which

may drive the active force. The above examples show that chemical

gradient, hydrodynamic pressure, surface tension and mechanical

stress may all be factors in acceleration of chemically-driven ABPs

on multiple different length scales.

Another example of manufactured ABPs are Pt-Au nano-rods as

synthesised by Paxton et. al[29], micron-length cylinders 370 nm in

diameter, with one half of the cylinder coated in Pt and the other

in Au. The Pt end catalyses the formation of hydrogen from a

H2O2 solution, creating a concentration gradient of O2 in the solu-

tion which caused for acceleration. These swimmers along with the

other examples of Janus swimmers and micro-rockets have achieved

irreversible active motion through the decomposition of H2O2 into

water and oxygen[30].

Our group studied bio-catalytic self-assembly when amino-phosphatase

enzymes attached to quantum dot particles (QD-AP particles of

sizes from 2 nm–150 nm)[1, 31]. When placed in a micellular so-

lution of fuel molecules, the enzymes catalysed the reaction and

self-assembly of rod-like structures within the liquid causes an ac-

celeration of the particles away from the rods. A key environmental

factor which determined whether active motion was observed was

the concentration of fuel molecules — at concentrations where the

fuel formed micellular structures, active motion occured via the for-

mation of rod-like structures; whilst when the fuel was freely dissoci-

ated in solution there was no active motion. As shown in figure 2.2,
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Figure 2.2: (A) Illustration of QD (red sphere) and AP (green molecules) conjugate producing
self-assembled fibres (purple structures) from fuel micelles (black/yellow/purple) in the fluid. (B)
Dephosphorylation reaction resulting in formation of fibres and resultant accelerated motion. [1].

the physical formation of these rods drives acceleration, in contrast

to the chemical gradients formed in the other examples discussed

here.

All of these examples of MNMs carry out active motion by con-

suming a fuel from the surroundings.

2.1.2.3 External Potential Fields

Another source of energy for active motion can be an external field.

Additional energy in a targeted direction can be applied to particles

to influence their motion. Magnetic [32, 33] potentials have been

shown to exhibit control over the motion of BPs. Active motion can

also be achieved through an external light source providing energy,

known as phototaxis[34]. Research into these areas are motivated

by goals of self assembly for manufacturing or non-intrusive targeted

application of medicines.
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2.1.3 Conclusions

ABPs are of great interest for their potential medicinal and manu-

facturing applications. The possibility of control or influence over

the average behaviour of seemingly chaotic systems would be a

game-changing discovery in the fields of nanotechnology and man-

ufacturing. In non-physical systems, the mathematics describing

these particles have already been applied successfully to predict

canonical behaviour in unrelated fields such as the modelling of

financial systems[35] and in models of opinion formation amongst

human populations[36, 37, 38]; amongst others.
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2.2 Active Brownian Particle Simulations

2.2.1 Introduction

This thesis focuses on the results of agent-based numerical simula-

tions using a specific Energy Depot (ED) model developed for ABPs

by Werner, Ebeling and Tilch[39]. The literature around this par-

ticular model will be discussed in detail in Section 2.4, with the

theory covered in more depth in Chapter 3, however we will ini-

tially review a broad range of methodologies used throughout the

field for simulation of ABPs.

Agent based models consider individual particles which self-describe

their behaviour in the surrounding medium. Individual agents (i.e. par-

ticles) are simulated separately from each other and their effect on

the surrounding fluid is encapsulated by the dynamics describing the

particles themselves. Another method for simulating active parti-

cles is to consider the force balance on the particles from the sur-

rounding fluid or continuum. These models look at the behaviour

which particles exert on the fluid, and vice-versa. We consider agent

based modelling for nano-scale particles where the transient effects

of active motion on the surroundings will be negligible[40, 41].

2.3 Modelling Brownian Motion

Computational modelling and numerical simulation studies account

for a large quantity of the investigative literature in the field of

ABPs. The different mechanisms for the active motion discussed

above, along with the varying length scales on which motion is ob-
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served mean that many different approaches have been taken to

model these particles. In this section a summary of these method-

ologies along with some of the results which were observed are pre-

sented.

As will be discussed in detail in Chapter 3, the motion of an ABP

can be defined generally through the Langevin differential equation:

mv̇ = −Ffriction + Factive −∇U(v, r) + Fstoch (2.3.1)

The velocity and force components in this equation may be re-

lated to system conditions, neighbouring particles, hydrodynamic

stresses, particle direction or a variety of other factors. The active

force Factive is therefore implemented in many different ways, some

of which will be discussed in this section.

2.3.1 Agent Based Approaches

Active particles such as kinesin have also been modelled specifically

as molecular combustion engines [42] which convert energy from the

surroundings into motile energy. On these nano-scales, the viscous

effects of the particles in the fluid are negligible compared to the

Brownian force. This method predicts the motion of these particles

along skeletal structures by calculating the Gibbs free energy of the

reaction, however more phenomenological methods for modelling

active particles over multiple length scales have also been suggested.

Simple reaction-diffusion systems on lattice grids were modelled [43]

under which particles of component A could react to form a sec-

ondary component B at a point on the grid. The different diffusive
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behaviours of these two particles and their effect on each other re-

sulted in a concentration cluster on the lattice.

These numerical approaches do not tend to describe the behaviour

of the system which surrounds the particles. The energy lost to

friction is usually assumed to dissipate into the system and not to

affect the particle’s diffusion. This can make sense on smaller length

scales or in single-particle systems without interaction, however in

more clustered systems the model assumptions may fail.

Romanczuk et al [44] modelled the activity of a particle in 2-

D by introducing a stochastic force in the direction of the particle

orientation. Particles were simulated with three random forces - a

purely stochastic diffusion force, a rotational diffusive force, and a

force in the direction of particle orientation. Initially with a sim-

ple Gaussian approximation of noise, they saw the formation of

a donut-like probability distribution of velocities in (vx, vy) which

reverted to a classical Brownian-like Gaussian distribution with a

more pointed peak at the origin as the active noise was increased.

These donut-like distributions strongly resembled the stationary ve-

locity distributions developed earlier by the same group[45].

The Viscek model is one way of simulating systems of multi-

ple particles which involves a two-step motion[46, 47]. In the first

streaming step, particle velocities are updated. The next collision

step updates the orientations of the particles by taking a local

space average of the particle direction and then updating individ-

ual particle direction with a stochastic deviation from this clus-
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ter average. This method has been widely used for investigation

of polar active matter as well as swarms and clusters of active

particles[48, 49, 50, 51].

2.3.1.1 Continuum Models

At low Reynolds numbers, the activity of particles can be modelled

by effect which the particle motion has on the surrounding fluid

(the continuum)[52]. As particles move through the fluid they exert

a shear stress which causes for a motion which is well defined by

classical fluid dynamics. ABPs of such a nature may also be referred

to as micro-swimmers (or micro-motors in the case of manufactured

particles) and will operate on a length scale of around 100nm -

100µm.

Yan et al. consider the average motion of an ensemble of active

particles in a system contributing to an overall swim pressure[53].

They found that the overall pressure, in addition to the weight, on

a system of this ensemble is the sum of individual particle pres-

sures. For randomly oriented particles this results in a net-zero

additional force. Particle-particle interactions causes for accumu-

lation at boundaries of the system under additional external gra-

dients (such as gravity or a potential field), leading to non-zero

pressures[54]. In this viscous regime at low Reynolds numbers, the

dynamics of motion are governed by these hydrodynamic forces ex-

erted on the surrounding fluid from the particles and on each other.

Takatori modelled the shear stress exerted on fluids by active parti-

cles, observing resultant both thickening and shear thinning regimes
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as a result of the particle active force[55].

Alongside the stochastic motion exhibited by regular BPs, ABPs

exert an additional force as a result of a separate mechanism. This

additional force may be deterministic such as a uniform potential

gradient; it may be somehow intelligently controlled by an organ-

ism such as the movement of a flagella or tail; or it may be in itself

stochastic such as the force exerted by the spontaneous chemical

reaction on the particle surface. To achieve net motion, the mecha-

nism generating the active component must be irreversible[26, 56].

This means that moving backwards along the same trajectory leaves

the particle in a different state to the original starting point. Ex-

amples of this asymmetrical hydrodynamic motion are the paths of

flagella on microbial swimmers as discussed earlier — the drag for

swimming is lower during the backstroke which breaks the symme-

try of the motion; or the three-sphere Purcell swimmer where the

configurations of the spheres and rods are asymmetrical[57, 58].

Continuum modelling offers a mechanism for simulating systems

more efficiently by simplifying N particles into a single continuum

approximation[59].

2.3.2 Group Motion of Active Brownian Particles

One area of interest in the field of ABPs is collective active motion

— individual interacting particles show emergent characteristics in

larger groups as a result of the active component of motion[59]. The

hydrodynamic effects of motion on the surrounding fluids of some

of the earlier discussed particles may also affect nearby particles.
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There is thus much ongoing research into the movement of clus-

ters or groups of active particles, and the manifestation of swarm

behaviour which may be seen[60, 61, 62].

Active nematic particles are active particles which align in the

same direction under their active force[52]. The collective hydrody-

namic effect of individual particles moving cause for these particles

to swarm and move together as an individual body with a centre of

mass and its own flow field. Another type of group behaviour which

is observed with active particles is Motility-Induced Phase Separa-

tion (MIPS)[63, 64, 61]. This is a phenomenon where particles begin

to behave like multi-phase evaporating systems. Singular gaseous

ABPs move independent between larger liquid clusters which ex-

hibit cluster motion.

Research into the grouped motion of these swimmers focuses

mostly on complex matter such as cells at low Reynolds number.

Such conditions emulate crowded systems which may be found in

blood or inside living cells and so are useful in the understanding of

medical applications of ABPs. On a more macroscopic scale, these

clusters of active particles can be analogous to swarming mammals

such as fish or birds[65, 43]. The rotational-Brownian component of

the motion allows for a random reorientation of agents within these

swarms.

19



Literature review
Energy Depot Model

2.4 Energy Depot Model

A model of active motion suggested by Ebeling, Schweitzer and

Tilch [39] proposes that BPs contain an internal energy depot which

is capable of storing energy which is gained from the surroundings.

This energy can then be converted into useful work or dissipated to

the surroundings. This Energy Depot (ED) model is the focus of

much of the simulations and work carried out as part of this thesis.

The original work has been cited frequently since its original pub-

lication, with other works expanding or refining on the model. Its

relative simplicity makes it easy to implement whilst it provides a

strong analogue for systems of Brownian agents which can exhibit

active motion. Much of the work was carried out by the research

groups of the original authors, though some separate groups have

utilised the model and enriched the literature by providing their

own studies. In this section we review this existing research and

literature and present our motivations and work within the context

of this.

2.4.1 Parameters

Table 2.1 summarises the parameters used in the model, along with

their descriptions as described in the literature [39, 40]. This ta-

ble serves as a point of reference moving forward as the model is

explained in more detail.
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2.4.2 Theoretical Summary

This model at a basic level provides an elementary description of an

active system by which a general approximation of the conversion

of chemical energy into particle motion for both complex and less

complex matter may be made. In the case of a biological swimmer

this would be the metabolising of food.

Mathematically, the model introduces a balance on the depot

energy of the particle, e:

de(v, r, t)

dt
= q(r,v, t)− c e(v, t)− d(v, r, t) v2(t) e(v, t) (2.4.1)

The first term q signifies the rate of energy accumulation in the

depot which may depend on the particle position, velocity, or an

external control defined by the time. The depot dissipates energy

at a rate c proportional to the depot level. The final term signifies

the conversion of depot energy into particle kinetic energy. The

conversion of depot energy e into kinetic energy can be given by the

ansatz:

d(v) = d0v
2 (2.4.2)

In this generalised case d0 is a constant throughout v and r. Other

more complex variants of this conversion rate have been studied,

which will be discussed in the following paragraphs.

The total energy of the particle E(t) is given by the sum of the

particle mechanical energy E0(t) and depot energy e(t). Thus the
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mechanical energy of the particle as shown by Schweitzer[39] is:

E(t) = E0(t) + e(t)

E0(t) =
1

2
mv2(t) + U(r) (2.4.3)

Given that E0(t) is simply a balance between energy gained from

depot conversion and dissipated due to friction, over an infiniteci-

maly small timestep dt, the differential energy balance on E0(t) is

thus (implementing the ansatz eq. (2.4.2)):

d

dt
E0(t) = d0v

2e(t)− γ0v
2 (2.4.4)

Where the energy dissipates from friction proportional to v2. With

eq. (2.4.1) defined, solving the differential equation (2.4.4) using the

definition for E0(t) from eq. (2.4.3) the corresponding system of LEs

for particles with EDs is given[39]:

dr

dt
= v (2.4.5a)

dv

dt
= −γ0v −∇U(r) + e(v, t)d0v +

√
2Dξ(t) (2.4.5b)

de

dt
= q(r,v, t)− (c+ d0v

2)e(v, t) (2.4.5c)

Where ∇U(r) is the potential gradient, and ξ(t) the n-dimensional

delta-correlated white noise such that for the identity matrix I:

⟨ξ(t)⟩ = 0 ⟨ξ(t)ξ(t′)⟩ = Iδ(t− t′) (2.4.6)

The noise xi(t) originates from the thermal fluctuations in the fluid

— surrounding particles colliding with the active particle transfer

momentum to and from the particle in an uncorrelated manner. The

velocity of these particles is governed by their temperature — hotter

22



Literature review
Energy Depot Model

fluids exhibit more stochastic (noisy) behaviour, whilst cooler fluids

exhibit the opposite, as is discussed further in Chapter 3.

2.4.3 Adiabatic Assumption Of Motion

As has been mentioned previously, often the assumption is made

that particles with energy depots are adiabatic in energy. This

means that the rate at which the depot level updates is much faster

than that of the particle velocity, i.e. ė ≈ 0. This results in an

energy determined purely by the velocity of the particle:

e0 =
q0

c+ d0v2
(2.4.7)

The resultant LE for this approximation yields an active friction

γ(v):

γ(v) = γ0 −
d0q0

c+ d0v2
(2.4.8)

The friction is thus equivalent to the static friction γ0 in the high

velocity limit, and negative in the limit of low velocities. This neg-

ative friction allows for active motion or pumping of velocities as

discussed previously[45]. It can thus be seen that the adiabatic

approximation allows for a much simpler description of the differ-

ent pumping behaviours of the particles based purely upon velocity,

though as a result the model fails to describe possible fluctuations

in the energy depot level at lower velocities and the resulting system

dynamics.

In the initial work by Schweitzer, Ebeling and Tilch [39] the as-

sumption of a quasi-stationary energy e0 was presented as a gen-

eral model behaviour. In a separate work, Ebeling et al.[66] in-
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troduced an adiabatic parameter µ on the LHS of the ė equation

in the LE 2.4.5c, where a value of between 0 and 1 could tune how

adiabatic the particles were. They found that at limit cycles the en-

ergy within the depot did not change for deterministic particles at

the given parameter ranges and presented all other results assuming

µ = 0.

Erdmann et al. [67] further modelled adiabatic particles with EDs

in parabolic potential gradients where they found that particles

formed left and right handed limit cycles, where the direction of

the particle was dependent on the initial conditions. The justifi-

cation given for using the energy depot in this case was that the

relaxation of e was fast such that the value could be assumed as

quasi-stationary - though no specific mention was made of the pa-

rameter regimes or timescales which would be responsible for this

behaviour.

Erdmann et al. again [68] modelled these particles explicitly in

the adiabatic regime. They assumed that the active friction was

analogous to a Rayleigh friction [9] close to the stationary velocity

v0 and modelled group motion of clusters of these particles in lin-

ear potentials. They noted that in the low translational noise limit

these particle swarms moved in clusters rotating around a centre.

The authors simply made the assumption that within the Rayleigh

parameter regime which they chose, these particles would be adia-

batic.

A description of the the thermodynamics of active systems has
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been described [69]. They presented a steady state probability dis-

tribution of the entropy of ED particles in the adiabatic regime,

where the distribution of entrees depends on the additional active

parameters.

The quantifiable region of values of q0, c and d0 where the adia-

batic assumption holds is not clear from our research in the litera-

ture — though it is valid when the energy updates much faster than

the velocity [39, 70] (exact parameter regimes which create these

timescale differences are not explained anywhere, to our knowledge).

These three parameter values are all of importance, as is the instan-

taneous value of the velocity v whose length and timescales are set

by the diffusion constant D[39, 70, 9, 68, 71].

Despite presenting the model for all ranges of v and not outlin-

ing any limitations on the constant values of q and c used, Zhang

et. al[70] presented their results in the adiabatic regime.

At lower velocities these adiabatic particles can be seen to follow

a Rayleigh-Helmholtz model [69]:

γ(v) = γ1 + γ2v
2 (2.4.9)

With parameters γ1 = d0q0
c and γ2 = d20q0

c2 . It can be seen that for

small c the numerator of the second friction term is much dimin-

ished.

The cases where energy conversion occurs adiabatically may be

commonplace in real systems, and so it is frequently seen through-

out the literature that the assumption is at once presented and

implemented. There is little attention given to the possible edge
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cases of when this assumption may not hold, or even in some cases

as to whether the differential equation for depot level was solved

independently of the velocity at all as a trial.

2.4.4 Other Models

Zhang et al. presented a fourth-order model for adiabatic energy

depots, where the adjusted energy uptake rate d(v) is a function of

v4:

d(v) = a0,2v
2 + a0,4v

4 (2.4.10)

Where a0,2 and a0,4 are the second- and fourth-order coefficients

for energy conversion. They introduce a breaking mechanism such

that the velocity tends to zero at a critical braking velocity vc =√
a0,2/|a0,4| as below[70]:

d(v) = a0,4v
2

(
1− v2

v2c

)
(2.4.11)

This introduces a third behaviour outside the existing pumping and

reduced-friction regimes, where for velocities v > vc the particle has

a friction γ(v) > γ0 and is dragged no-matter the value of e in the

depot. They found that for deterministic and adiabatic particles

in 1-D v − e phase-space, the particles would enter different limit

cycles dependant on the activity constant a0,4 which could cause a

constant forward momentum even in the absence of the potential

field ∇U .

Upon application of an external force-field particles were found

to be driven even under the influence of the strong friction above

the critical velocity and negative forces allowed for the particle to

26



Literature review
Energy Depot Model

switch directions. These particles underwent interesting trajecto-

ries around stationary fixed points and saddle points, even in the

absence of stochastic forces. We draw attention to the fact that an

external force was applied in order to switch the direction of these

particles, though due to the constant direction of this field there

was no presence of back-and-forth switching behaviour or mention

of the periodicity of the limit cycles.

An alternative second order conversion rate has also been stud-

ied [72, 73]:

d(v) = a1 |v|+a2v
2 (2.4.12)

In this case the polynomial function d(v) varies with both the linear

and quadratic degrees of v, representing an asymmetric conversion

rate. This goes beyond the original ansatz (eq.(2.4.2)) made by

Schweitzer [39] and allowed them to introduce a drift velocity term,

thus treating the particles as overdamped. They applied this to a

system of kinesin proteins consuming ATP, tweaking the external

gradient and observing the bias between forward and reverse motion

in weak Brownian regimes. These particles were non-adiabatic in

one-dimension with the fuel uptake q(t) modelled as a pulse to sim-

ulate ATP on-loading from the kinesin molecules. The distribution

of forward and backward discrete steps for the motors is presented

by the authors. The dwell time defined by the amount of time spent

at each discrete step before consumption of ATP causes for either

a forwards or backwards motion offers a different view due to the

time-dependent accumulation of ATP in the depot (q(t) varying as
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a step function).

Zabicki used energy depots to model kinesin molecules converting

ATP — performing a walk along a protein and exhibiting a forward-

biased motion [16]. Lee et al. [74] again simulated kinesin with

energy depots but used a time-dependent depot uptake rate q(t)

which was constant for periods with a tunable frequency. Both

groups were able to model the forward motion of the molecules, as

well as the backwards motion if the activity increased beyond the

stall force.

Other adaptations on the dynamics of depot energy uptake have

been suggested and studied[75]:

de

dt
= q

√
e− ce− dv2

√
e

The ED model is ideal for agent-based methodologies of simulation

as these different dynamics of energy uptake can be easily imple-

mented.

2.4.5 External Fields

Other works observe one dimensional deterministic ED particles

pushing against the gradient (an uphill motion)[76]. They varied

the energy conversion rate d0 only in the presence of a linear saw-

tooth like potential in r space. Two critical conversion rates d0 = dc,i

(0 < dc,1 < dc,2) were found. The first, dc,1, above which particles

moving backwards could overcome the shallower reverse-slope of the

tooth, and a second, dc,2, above which the particle could move in

the forward direction over the steep forward face of the tooth. For
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values d0 < dc,1 below these two values, the particles would oscillate

in v near to zero such that they would never escape from the re-

gion of space between the initial two teeth. The authors comment

that the stochastic forces have no great effect on the dynamics in

these 1-D systems with potential gradients, and so focused on vary-

ing the strength of d0. Particle direction was entirely dependent on

the initial conditions — deterministic motion of particles through

v, e phase-space is entirely dependent on the values of (v0, e0). The

active pumping force was confined to a single value at any v.

2.4.6 Multiple Particle Systems

Erdmann et al. studied multi-particle systems of particles with adi-

abatic EDs in 2-D[68]. They modelled single particles and again

found the donut-shaped limit cycles as in the previous studies. For

multiple particle systems, particle-particle interactions caused for

the emergence of rotational swarm behaviours, which would ran-

domly change rotational direction. Of interest in this study is the

author’s suggestion that the switching of direction is a chaotic pro-

cess — the clusters unpredictably change direction as result of the

collective random motion. Adiabatic ED particles were been used

to model opinion formation in social situations for multi-agent sys-

tems, where flocking and clustering of agents with the same opinion

was observed in certain system conditions, along with transitional

behaviours between these behavioural clusters[77]. Abstract appli-

cations such as this show how relatively simple systems can be used

as powerful analogues for real world physical, and in this case social,
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problems.

Miranda et al. recently modelled adiabatic ED particles in 2-D as

repulsive discs in a crowded environment[71]. They observed flock-

ing behaviours similar to those discussed earlier in Viscek’s original

work[46]. Whilst phenomena such as MIPS[61] were not observed,

the emergence of density bands was observed. The adiabatic as-

sumption was again made here, citing the rate of energy consump-

tion being faster than the rate of acceleration, though the authors

make no mention of the parameter regimes which are responsible

for such behaviour.

2.4.7 Conclusion

Particles with energy depots are well understood in both one and

multiple dimensional systems in the literature. Particles in potential

fields, multiple particle systems, and time and position dependence

for energy uptake have all been investigated. Additional models

for energy conversion d(v) have also been covered. These studies

frequently assume an adiabatic uptake of energy to the depot. It

is not clear from the literature under what scenarios this assump-

tion holds, or if there is a formalisation of this. As such, many

of these studies could potentially show additional interesting infor-

mation when the energy in the depot was non-deterministic with

v.

The adiabatic assumption reduces the computational cost of any

simulations of these particles by reducing the degrees of freedom of

the system greatly, and allows for the authors to investigate more
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complicated dynamics in potential gradient systems.

In many cases of low relative diffusivity (i.e. larger particles) the

Brownian velocity component is smaller and therefore a large en-

ergy uptake should indeed lead to adiabatic behaviour. For smaller

particles it can be observed from the equations that a fluctuating

velocity could have a larger effect on the value of e. In such a diffu-

sion dominated regime, the active component of the particle motion

will be heavily correlated to stochastic fluctuations in the particle

velocity and therefore any assumption of instantaneous correction

in the value of e may be less exact.

This offers an opportunity to explore the transitional behaviours

in the regions where this assumption is not valid. At lower particle

diameter (higher diffusion) and lower energy uptake and dissipa-

tion, it appears that there should be regions where e will be non-

adiabatic. Throughout this thesis the behaviour of these particles

in a non-explicitly-adiabatic regime is investigated.

In our work we look at 1-dimensional particles with energy de-

pots using the classic description of the depot energy equation[39],

though we rely on the random force and a system which is not

explicitly adiabatic in energy consumption to study the transition

between regions of the v− e space. We also aim to show how parti-

cles in non-adiabatic 1-D regimes switch direction due to the low-v

ED dynamics and study the emergence of non-adiabatic behaviours

in these low velocity regimes.

We have reviewed studies which observed oscillatory limit cycle
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behaviours in 2- and 3-dimensions for adiabatic particles. We will

look to further understanding of these cycles by providing constant

energy uptake throughout space in one-dimension for non-adiabatic

particles with higher stochastic forces. We aim to observe under

what regimes particles break out of 1-D cycles, and what the dy-

namics of the systems are in these transitional regions. It is of

interest to understand how the activity affects this behaviour in the

stochastic regime.
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Table 2.1: Summary table of parameters for ED model and corresponding simulations.

Parameter Name Description Units Dimensionless
Group

r Particle
position

Position of the
particle at any time t
in n dimensions.

[L] rγ
3/2
0

D1/2

v Particle velocity Velocity of the particle
at any time t in n
dimensions.

[L][τ ]−1 vγ
1/2
0

D1/2

e Particle depot
energy

Amount of energy
stored in the particle
depot at time t.

[L]2[τ ]−2 eγ0

D

D Particle
diffusion
constant

Strength of the
diffusive force ξ(t).

[L]2[τ ]−3
1

c Depot
dissipation rate

Rate of internal
dissipation of energy
from depot, could be
analogous to
metabolisation or
simply internal energy
losses.

[τ ]
−1 c

γ0

q0 Depot energy
uptake rate

Uptake of energy from
surroundings into the
depot. Can be
constant or a function
of v, r or t.

[L]2[τ ]−3 q0
D

d0 Depot energy
conversion rate

Constant controlling
the rate of conversion
of e into Ek of the
particle.

[τ ][L]−2 d0D
γ2
0

γ0 Static friction Drag on the particle
from energy losses to
surroundings through
friction.

[τ ]
−1

1

∆t Simulation time
step

Time step between
simulation steps

[τ ] ∆t · γ0
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2.5 Conclusion

The field of ABM and ABPs are widely researched to this day,

with many groups focusing on particles on the microscopic scale.

Research is often motivated by medical or manufacturing use cases.

Experimentalists study manufactured ABPs such as Janus par-

ticles, nano-rods, or scrolls which exhibit active motion either due

to chemical gradients in the solutions or other phoretic effects from

external fields (such as light). They also look into ABM in the nat-

ural world of microbial swimmers or active motion on the cellular

level.

Theoreticians model these real world phenomena using either

agent-based (modelling each particle as an individual agent within

the system) or continuum (modelling the effects of groups of indi-

vidual particles on the system as a whole) methodologies.

We specifically focus on the Energy Depot (ED) model introduced

by Schweitzer, Ebeling and Tilch[39]. In the 1-D case of this model,

depot energy is constrained to consumption from a single dimension

in v. When limit cycles were observed in higher dimensions in the

literature, acceleration in all directions would consume depot energy

e. In the special 1-D case (analogous to a higher dimensional case

with discrete depots for each direction), the velocity in each cardinal

direction is de-correlated from the others.

Given the preceding analysis of the existing literature, we thus

aim to address the below questions for particles with EDs within

this thesis:
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1. By varying the energy uptake q0 and rate of consumption d0 for

1-D systems with low depot dissipation, how do the dynamics

of the system in v − e space correspond with the adiabatic as-

sumption and is there a clear onset of adiabatic behaviour in

this parameter space?

2. How do the average behaviours of these 1-D particles vary through-

out these different parameter regimes?

3. For individual non-adiabatic particle trajectories in 1-D what

are the dynamics of the transitional behaviour between the lim-

its, and what is the effect of the stochastic force in switching

particles between these limits?

4. What are the characteristic timescale behaviours for particles

outside of these limits, and is there a clear emergence of any

patters which are only exposed in the 1-D regime or any way in

which to quantify the onset of these behaviours?

Our motivation is to add to the understanding of this particular as-

sumption within the literature by modelling individual ED particles

in 1-D using an agent-based approach. We also aim to apply addi-

tional methodologies of analysis of these particles within our com-

putational simulations which have thus-far been discussed within

the literature. This could help us also to understand the dynamics

of particles escaping fixed trajectories in the real world.
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Theory and Methodologies

This chapter aims to outline the theoretical background of Brownian

particles (BPs) and active Brownian particles (ABPs), as well as the

supporting theory for the which were used in the completion of this

thesis.

Brownian motion is introduced, explained and discussed before

a more detailed analysis of the mathematics behind BPs is carried

out. The mathematical concepts on which this theory is constructed

are introduced and explained. These equations and theories are

then put into the context of ABPs, followed by a more detailed

discussion of the relevant equations of motion and theories for the

Energy Depot model within the context of this thesis. Finally, we

explore the methodologies for simulation and analysis of these active

particles which were used in completion of this work.

3.1 Brownian Motion

Brownian motion refers to the random movement of particles on the

micro to nano scale caused by collisions with surrounding matter.

Particles within systems which exhibit this type of motion can be
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referred to as Brownian particles. The chaotic nature of the high

number of collisions over short timescales and the correlations be-

tween these events makes prediction of the ballistic motion of these

particles impossible. Thus the kinetics of BPs are modelled using

statistical mechanics which take into account average behaviours

across ensembles or the random expected behaviour of the system

on an individual particle.

This section introduces the theory for these particles and the

mathematical methods of calculating average behaviour. The gov-

erning equations of motion for these particles are then introduced

and discussed, followed by the background theory of the different

types of motion. Finally, equations governing probability distribu-

tions for Brownian particles are introduced.

3.1.1 Langevin Equations & the Ornstein-Uhlenbeck Process

Due to the additional stochastic forces exerted on particles at small

length scales, classical Newtonian dynamics do not give a feasible

representation of the motion of these particles. As such, an addi-

tional stochastic force element is required in order to model this

random element.

The equations of motion for particles with random forces, or

Langevin Equations (LEs), are used to represent these systems by

considering both the classical Newtonian ballistic forces alongside

the stochastic force. The ballistic forces are deterministic. As men-

tioned earlier, it is not possible to calculate the exact deterministic

values of the random force, and so instead these are represented by
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stochastic terms which represent the expected statistical behaviour

of the system.

In underdamped regimes (i.e. where the timescale of the velocity

relaxing and the timescale of the stochastic force are on similar

order of magnitudes), the Ornstein-Uhlenbeck (OU) process models

a Brownian particle with friction and is described by the LEs[78,

79, 40]:

dr

dt
= v (3.1.1a)

dv

dt
= −γ0v −∇U(r) +

√
2Dξ(t) (3.1.1b)

Where U(r) represents a potential gradient and D is the diffu-

sion constant, which is related to the temperature of the system

through[79, 40]:

D =
(kBT )

2

6πηRH
(3.1.2)

From Stokes’ law[80]:

γ0 = 6πηRH (3.1.3)

T is the system temperature and kB is the Boltzmann constant. η is

the dynamic viscosity of the fluid which governs the friction exerted

on the particle by the fluid[80].

Recalling the definition from eq. (2.4.6) that ξ(t) in eq. (3.1.1b) is

an n-dimensional delta-correlated Gaussian white noise such that:

⟨ξ(t)⟩ = 0 ⟨ξ(t)ξ(t′)⟩ = Iδ(t− t′) (3.1.4)

I is the identity matrix.

The first term on the RHS of eq. (3.1.1b) represents the frictional

drag forces experienced by a particle in a viscous fluid. The final
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term represents the stochastic Brownian force; which is the net effect

of all collisions of surrounding matter with the particle such that

across the entire system the net effect is zero, as per eq. (3.1.4).

This description is rigorous so long as the fluctuation dissipation

theorem holds — the overall system is at a thermodynamic equi-

librium as energy lost by the particle to the fluid is on average the

same as that absorbed from Brownian collisions[3, 78, 79, 80, 81].

3.1.2 Underdamped & Overdamped Motion

3.1.2.1 Overdamped Motion

When the timescale of particle motion τ is high compared with

the frictional forces, i.e. τ ≫ γ−1
0 , then the particle is said to

be in the overdamped limit. In this limit, the particle velocity is

adiabatic as v changes on a much shorter characteristic timescale

than r. Changes in particle velocity as a result of the Brownian

force are quickly corrected by the loss of energy to the fluid, and

the particle behaves in a purely Markovian manner[40, 80]. As such,

an overdamped Brownian particle is said to be memory-less. This

means that the velocity and position of the particle are independent

on its history, and are purely a result of the Brownian force[78, 40,

80]. Eqs. (3.1.1) become (in the absence of any potential gradient):

dr(t)

dt
= v(t) =

√
2Sξ(t) (3.1.5)

S is the positional diffusions constant which governs the strength of

the stochastic motion.

When a potential gradient ∇U(r) is considered, eqs. (3.1.1) sim-
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plify instead to:

dr

dt
=

−1

γ0
∇U(r) +

√
2Sξ(t) (3.1.6)

3.1.2.2 Underdamped Motion

The alternative case, where the value of γ0 is low such that particle

behaves in a non-Markovian manner is known as the underdamped

limit. In this case, the LEs (3.1.1) provide a description of the

system dynamics.

3.1.3 Fokker-Planck Equation

The solution to probability density function (PDF) for the LEs of a

random process is the Fokker-Planck Equation (FPE), which gives

a probability distribution in n-dimensional phase space[78].

3.1.3.1 Ornstein-Uhlenbeck Process

The FPE for the OU process described in eqs.(3.1.1) is[79]:

∂P (v, r, t)

∂t
=− ∂ (vP (v, r, t))

∂r
+

γ0
∂ (vP (v, r, t))

∂v
+D

∂2P (v, r, t)

∂v2
(3.1.7)

This describes the evolution of the PDF through time — P (t). The

first term on the RHS corresponds to the drift of the probability

through r-space, with the second term corresponding to the same

concept but in v. The final term on the RHS is the diffusion of

probability as a result of the stochastic force — with the diffusion

coefficient D corresponding to the strength of this diffusion.

This derivation of this equation is shown in Section 7.3.
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3.1.3.2 Overdamped Process

In the overdamped limit, a FPE in the phase space of r can also be

formed from eq. (3.1.5):

∂P (r, t)

∂t
= S

∂2P (r, t)

∂r2
(3.1.8)

This is the classic diffusion equation[80].

3.1.3.3 Time Dependent Solution

The position-independent solution P (v, t) to eq. (3.1.7) is an n-

dimensional Gaussian for the velocity distribution of a particle:

P (v, t) =

(
2π

σ2(t)

)1/2

exp

[
−(v + µ(v0, t))

2

2σ2(t)

]
(3.1.9)

With variance σ2(t) and mean µ(v0, t) defined as:

σ2(t) =
D

γ0

(
1− e−2γ0t

)
(3.1.10a)

µ(v0, t) = v0e
−γ0t (3.1.10b)

This is derived using a Fourier transform methodology in Appendix 7.4.

3.1.4 Deterministic Limits of Particles in 1D

3.1.4.1 Stationary Solution

The stationary velocity distribution of an OU particle in the absence

of any potential gradient is given by the solution to the FPE at

equilibrium i.e. ∂P (v,t)
∂t → 0:

PSS(v) = N exp
(
− γ0
2D

v2
)

(3.1.11)

Where N is the relevant normalisation function based upon the

boundary conditions of the system. The methodology for numer-

41



Theory and Methodologies
Brownian Motion

ically approximating this normalisation function is discussed for

other particles in Section 3.4.

In the time limit where t ≫ γ−1
0 , eqs. (3.1.9) and (3.1.11) are

equivalent.

3.1.5 Survival Probability and First Passage Time in 1-D

Given an OU particle with initial velocity v(t = 0) = vt0 in one

dimension, the direction of travel of the particle is d =
vt0
|v| and may

be either positive or negative.

eq. (3.1.9) represents the Green’s function for the particle based

upon the initial velocity vt0 at t0 = 0.

It is possible to calculate the probability that after some time τ

the particle is still travelling in the direction d by calculating the

survival time probability of the PDF of the particle with boundary

conditions at v = 0. The survival time probability may be defined as

the probability that a particle is still travelling in the same direction

at time τ = t−t0 as it was travelling at time t0, without ever having

changed direction up until that point. This can be represented

mathematically by an absorbing boundary conditions at v = 0 and

v = ∞. Applying this boundary condition to eq. (3.1.9), the Green’s

function thus becomes:

G(v, τ |vt0) = P (v, τ |vt0)− P (v, τ |−vt0) (3.1.12)

Thus the probability function for a particle being at velocity v in di-

rection d at time τ is the difference between the probability functions

for a particle moving in the same direction and the probability that
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the particle started in the other direction and has already switched

direction at time τ .

Taking the convention that d(t0) is positive (i.e. vt0 > 0), then

the survival probability S(τ) is found by integrating the Green’s

function over all positive velocities:

S(τ, vt0) =

∞∫
0

dv G(v, τ |vt0) (3.1.13)

The survival probability is the proportion of all particles which have

yet to change direction. The probability of a particle crossing the

boundary between some time τ and τ + dτ is given by the first

passage time probability h0(τ):

h0(τ, vt0) = −dS(τ)

dτ
= − d

dτ

 ∞∫
0

dv G(v, τ |vt0)

 (3.1.14)

In order to generalise the first passage time for all possible vt0 > 0

eq. (3.1.14) becomes:

h(τ) =

∞∫
0

dvt0 P (vt0, t0)h0(τ, vt0)

=− d

dτ

 ∞∫
0

dvt0 P (vt0, t0)

∞∫
0

dv G(v, τ |vt0)

 (3.1.15)

3.1.5.1 Survival Time Distribution for an OU Particle

Combining the generalised form of Green’s function eq. (3.1.12) with

an absorbing boundary at v = 0 for an OU particle using eq. (3.1.9);
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the survival time distribution S(τ) may be written as:

S(τ) =
1

2

(
erf

((
γ0

2D (1− e−2γ0τ)

)1/2

vt0e
−γ0τ

)

− erf

(
−
(

γ0
2D (1− e−2γ0τ)

)1/2

vt0e
−γ0τ

))
(3.1.16)

Some example solutions to eq. (3.1.16) are shown in fig. 3.1.
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Figure 3.1: Solution to particle survival distribution from eq. (3.1.16) for an absorbing boundary at
vc = 0 for different positive starting velocities vt0 . Particles starting at higher velocities are less likely
to reverse direction quickly than those starting slower. γ0 = 1.0, D = 0.1.

3.1.5.2 First Passage Time Probability for an OU Particle

The first passage time probability as a function of a single value of

vt0 for an OU particle in the underdamped regime is given by the
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solution to eq. (3.1.14) for eq. (3.1.16):

h0(τ |vt0) =
(
2v2t0γ

3
0

πD

)1/2
(

e−γ0τ

(1− e−2γ0τ)1/2
+

e−3γ0τ

(1− e−2γ0τ)3/2

)

exp

(
−
γ0v

2
t0

2D

e−2γ0τ

(1− e−2γ0τ)

)
(3.1.17)

Dependent on the form of the initial PDF P (vt0), this equation may

be integrated as per eq. (3.1.15) for an exact solution in terms of

τ only. Example solutions to eq. (3.1.17) for varying vt0 values are

shown in fig. 3.2. The full derivation is outlined in Appendix 7.6.
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Figure 3.2: Solution to particle survival distribution from eq. (3.1.17) for an absorbing boundary at
vc = 0 for different positive starting velocities vt0 . Slower initial velocities lead to a higher probability
of changing directions at lower values of survival time τ . γ0 = 1.0, D = 0.1.
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3.2 Statistical Theory of Random Motion

The previous section contained an introduction to Brownian parti-

cles and a discussion of the specific equations and models covering

the OU process.

In this section, some of the concepts which were previously touched

upon are explained in more detail.

3.2.1 Markov Processes

A Markov process is a random process which is memory-less on long

timescales, such that the state of the process is only dependent on

the most recent state of the system[80, 78] and is defined by the

Markov assumption:

P (xn, tn|xn−1, tn−1;xn−2, tn−2 · · ·x1, t1;x0, tn) =

P (xn, tn|xn−1, tn−1) (3.2.1)

Where tn > tn−1 > · · · > t0. This states that the state of a truly

random system is only dependent on its most recent state, and that

it has no “memory” of its further history

3.2.1.1 Chapman-Kolmogorov Equation

The Chapman-Kolmogorov equation (CKE) gives a rigorous math-

ematical definition linking the joint probability distribution of a

Markov system moving from one state to another:

P (z, t|y, t′) =
∫
Ω

dxP (z, t|x, τ)P (x, τ |y, t′) (3.2.2)

That is to say that the probability of the system existing at state

z at time t given that at some previous time t′ it existed at state
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y is the sum of the probability of arriving at this state through all

intermediate states x at intermediate times τ , and independent of

each state (t ≥ τ ≥ t′)[78]. This allows for the ensemble average

behaviours to be calculated without consideration of intermediate

states. The reader is directed towards Gardiner (1983)[78] for a

complete background on the theory of the CKE, the master equa-

tion, and the Fokker-Planck equations for stochastic systems.

3.2.2 Statistical Mean Values

Given a particle or a system of particles, it is often of interest to

measure the average or statistically expected behaviour.

For a Markov system, the statistical mean of a single particle’s

velocity across all times is equivalent to the mean of a population

of particles at a single time step.

We therefore define two different averages when working with

systems of particles.

3.2.2.1 Ensemble Average

The ensemble average is the mean value of a particle state x (ve-

locity, position, energy etc.) at a specific time t over n particle

trajectories in a population. For i, any individual particle trajec-

tory:

⟨x(t)⟩c =
n∑
i

xi(t)

n
(3.2.3)
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3.2.2.2 Trajectory Average

The trajectory average is defined as the mean value of velocity or

energy over a range of a single trajectory. For j ∈ (0, 1, . . . , N) for

tj = j∆t:

⟨xj⟩t =
N∑
j

x(tj)

n
(3.2.4)

3.2.2.3 Combined Ensemble & Trajectory Average

It is possible to take a complete system average across all particles

i at all time steps j:

⟨x⟩ =
n∑
i

N∑
j

xi(tj)

nN
(3.2.5)

This technique will describe well the mean system behaviour in the

case of a Brownian particle (Markovian), for example, where it is

known that all data points are uncorrelated.
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3.3 Active Brownian Motion

The main research presented in this thesis focuses on active Brow-

nian motion, which is a subset of Brownian motion where the par-

ticles themselves exhibit some activity outside of the random force.

This may be generalised as an additional force which may or may

not be correlated with the other states of the particles within the

system. This force may take different forms, some of which are

discussed here. A mathematical generalisation is introduced which

then serves as a basis for the continued development of different

active particle models.

3.3.1 The Active Force

For ABPs, we may split the contribution to the balance of forces

on the particle into active and inactive components. That is to say

that, in general, there will be some additional forces acting upon

the particle which cause for a deviation away from pure Brownian

motion and towards some increased motility or control.

A modification may be made to the LEs (3.1.1) for a single OU

particle, introducing a generalised active force:

dr

dt
= v (3.3.1)

dv

dt
= −γ0v −∇U(r) + Factive(v, r,κ, t) +

√
2Dξ(t) (3.3.2)

Where κ represents any set of parameters which may control the

dynamics of the active force.
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3.3.2 Multiple Particle Interactions

In systems with multiple particles, there may be a resultant force

due to the interactions between these particles. The Brownian force

itself is independent of these particle interactions, but any active

force may be caused or affected by the motion of a particle or par-

ticles in the surrounding vicinity. This additional force may be

derived and added to a unique set of LEs for each particle, with

some form of correlation between these equations depending on the

model used. In this study we will focus on the theory and devel-

opment of a single particle with activity in underdamped regimes.

The reader is directed towards[52] for a comprehensive review on

the theory of multi-particle systems of active Brownian particles.

3.3.3 The Energy Depot Model

Particles with internal energy depots which contribute to the ac-

tivity of the particle by converting this internal energy into kinetic

energy have been discussed[39, 40]. The active force Factive in this

case is a function of the model parameters and the quantity of en-

ergy stored within the depot.

The mathematical theory of this model is discussed in further

detail in the next Section 3.4.
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3.4 Energy Depot Model

The energy depot (ED) model developed by Schweitzer, Ebeling and

Tilch[39] is a model for an active particle where the activity derives

from an internal depot which stores and transfers energy into kinetic

energy for particle motion. The literature and introduction to the

theory was covered extensively in Section 2.4.

In this section the theory of the model itself is explained in more

detail, beginning with a description of the model parameters and

their meanings alongside the LEs for the system and the FPEs for

the probability distributions.

3.4.1 Model Description

The ED model considers particles of size RH with an internal energy

storage depot. The quantity of energy within the depot at any time

t is denoted by e(t). The depot is capable of absorbing energy

from the surroundings at a rate q(r,v, t). This energy may then

be dissipated proportionally to the amount of energy within the

depot with rate −c e(t) or converted into kinetic energy with rate

d(v, t) e(t).

Though many other relationships for energy conversion have been

discussed in the literature (see Section 2.4.4), in this study we focus

on the below relationship for the depot energy conversion d(v, t):

d(v, t) = d0v
2 (3.4.1)

Where d0 is the energy conversion rate constant. i
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3.4.2 Langevin Equations

A set of coupled LEs exist for e, r and v[39]. Taking into account

the conversion relationship from eq. (3.4.1), the resulting LEs for

the ED model are thus:

dr

dt
= v (3.4.2a)

dv

dt
= −γ0v −∇U(r) + e(v, t)d0v +

√
2Dξ(t) (3.4.2b)

de

dt
= q(r,v, t)− (c+ d0v

2)e(v, t) (3.4.2c)

For e(v, t) = 0 — these equations correspond to that of an OU

particle.

As with the case of an OU particle, the Brownian motion is mod-

elled by the diffusion constant D, where ξ(t) is an n-dimensional

array of independent Gaussian random variables as per eq. (3.1.4).

The energy uptake q(r,v, t) may be a constant value q0. In this

case, eq. (3.4.2c) becomes:

de

dt
= q0 − (c+ d0v

2)e(v, t) (3.4.3)

3.4.3 Adiabatic Assumption

In some parameter spaces the characteristic timescale for the update

of e is much faster than that of v — in such cases the particles are

said to be adiabatic in e (the adiabatic assumption). Though this

does not directly rate to the classical thermodynamic definition of an

adiabatic process, where no heat is exchanged with the surrounding

system, it keeps with the more abstract definition where changes

in v are slow relative to the changes in e such that e does not
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deviate from its equilibrium value (e0(v)). As such, e resolves to a

deterministic value e0(v) as ė → 0. From eq. (3.4.3):

e0 =
q0

c+ d0v2
(3.4.4)

The LE (3.4.2b) becomes:

dv

dt
= −γ0v −∇U(r) +

q0
(c/d0) + v2

v +
√
2Dξ(t) (3.4.5)

3.4.4 Active Friction

The friction term in the LE (3.4.2b) may be combined with the

active coefficient to the velocity on the RHS in order to represent

an effective active friction γ(v):

γ(v) = γ0 − d0e(v, t) (3.4.6)

It may be seen from this equation that in the region where e(v) > γ0
d0
,

the active friction is negative and so the particle will accelerate due

to the active force. When e(v) < γ0
d0
; the particles loss of energy to

friction will be less as a result of the active force, but there will be

no active pumping of the particle[40].

If both γ0 and d0 are constant for a system, then we may define a

pumping energy ep which defines the stationary value of energy at

which the switch between positive and negative friction occurs:

ep =
γ0
d0

(3.4.7)

For adiabatic particles, the friction function from eq.(3.4.6) simpli-

fies to:

γ(v) = γ0 −
q0d0

c+ d0v2
(3.4.8)
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Figure 3.3: Graphical representation of the active friction eq.(3.4.8) for adiabatic particles. For values
of γ(v) < 0 (the pumping region) the particle is “pumped” and the velocity increases, depleting the
internal depot. For values of γ(v) > 0 (the reduced drag, or dissipation region) the particle is dragged
as with static friction, however the active motion reduces this drag force. At the stationary velocity
v0 (eq. (3.4.9)), the active and static friction components are balanced and the particle maintains a
steady velocity. Adapted from[67]. Sample values γ0 = 1.0, d0 = 0.7, q0 = 10.0, c = 1.0.

Equation (3.4.8) is plotted for a 1-D particle in fig.3.3 which has

been adapated from Erdmann [67]. It can be seen that there are two

distinctive regions of friction dependent on the model parameters

with a fixed point corresponding to the stationary velocity at v0.

At higher velocities the active friction asymptotically tends towards

the static friction γ0 as a result of the ever increasing v2 term on

the denominator of the equation.

In the more complex case of non-adiabatic particles there will

also be additional dynamics related to the relevant timescales set

by the model parameters (q0, d0, c and γ0), as will be investigated
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in Section 4.4. We present in fig. 3.4 the v − e phase space stream-

lines plot for a deterministic particle which we will present later in

Chapter 4, where these fixed points and the deterministic motion of

particles through the phase space is shown.

3 2 1 0 1 2 3
v

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

e

ep

e0(v)
Fixed Points

Figure 3.4: Velocity and energy streamlines for a deterministic particle with ED. The lines show
the particle motion in (v, e)-space always tending towards the stationary points at (v0, ep) — darker
red lines correspond to a higher gradient of motion through the phase space, with lighter orange
corresponding to a lesser gradient. Example values: q0 = 2.0, c = 0.001, d0 = 6.0, γ0 = 1.0.
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3.4.5 Stationary Velocity & Bifurcation Point

For deterministic particles (D = 0) in the absence of any gradient

U , the velocity and energy of the particles will tend towards their

stationary points e0 and v0. In the adiabatic limit, the solution to

eq.(3.4.5) is:

v0 = β1/2 =

(
q0
γ0

− c

d0

)1/2

(3.4.9)

The bifurcation parameter β = v2
0 signals whether there are any

roots to the stationary velocity of the particle. There are thus three

types of solution to eq. (3.4.9) depending on the system parameters

q0, d0, c and γ0:

1. q0
γ0

= c
d0
: β = 0 and v0 = 0.

2. q0
γ0

> c
d0
: β > 0, v0 has a positive and negative conjugated real

value.

3. q0
γ0

< c
d0
: β < 0 and no real roots exist.

In a deterministic system, if β ≥ 0 (i.e cases 1 and 2) the particle

will tend towards the steady state value of v2 = β. For case 2 it

will depend on the initial velocity v(t = 0) whether or not the par-

ticle will end up in the positive or negative direction. In parameter

regimes of type 3 the ED model does not represent real systems of

which we are interested in modelling.

For deterministic particles, the points (±v0, e0) correspond to the

intersection of the e0 curve (eq. (3.4.4)) with the pumping line ep

(eq. (3.4.7)) as shown in fig. 3.5.
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q0 = 0.1, = 0.10, v0 = 0.31
q0 = 1.0, = 1.00, v0 = 1.00
q0 = 2.0, = 2.00, v0 = 1.41
q0 = 6.0, = 6.00, v0 = 2.45
q0 = 10.0, = 10.00, v0 = 3.16

Figure 3.5: Plot showing e0 curves vs. v for varying values of constant energy uptake rate q0. The
black dashed line shows ep, the threshold for pumping behaviour defined in eq. (3.4.7). The points
where e0 = ep is the stationary velocity v0. For β < 0 the e0 line never meets ep. If β = 0 then the
lines intersect at v = 0 only. d0 = 4.0, c = 0.01, γ0 = 1.0.

3.4.6 Fokker-Planck Equation

As the system is modelled by a system of LEs, a FPE exists which

shows the solution to the probability distribution and its evolution

for this system.
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3.4.6.1 General Form of FPE

From the system of LEs eqs. (3.4.2), the complete FPE for the ED

model is thus[78]:

∂P (v, r, e, t)

∂t
=− ∂

∂r
[vP ]− ∂

∂v

[
(−γ0 + d0e)vP +D

∂P

∂v

]
− ∂

∂e

[(
q(r)− e ·

(
c+ d0v

2
))

P
]

(3.4.10)

This derivation can be found in Appendix 7.2.

3.4.6.2 Adiabatic Form of FPE

When the particle energy is adiabatic eq. (3.4.5) may be applied to

eq. (7.2.2). The resultant FPE is:

∂P (v, r, t)

∂t
=− ∂

∂r
[vP ]

− ∂

∂v

[(
−γ0 +

d0q(v, r, t)

c+ d0v2

)
vP +D

∂P

∂v

]
(3.4.11)

A stationary solution to this equation exists in v, giving the steady-

state probability distribution of velocity for an ED particle:

P
SS
= N

(
1 +

d0
c
v2

) q0
2D

exp
[
− γ0
2D

v2
]

(3.4.12)

Where N is a normalisation function dependent on the boundary

conditions and q0 is the constant energy uptake independent of r,

v and t (derived in Appendix 7.7).

A simple rearrangement of this equation prevents any issues due

to large exponent values of q0
2D causing memory overflow errors when

carrying out this calculation in simulations:

PSS(v) = N exp

(
1

2D

(
q0 ln

(
1 +

d0
c
v2
)
− γ0v

2

))
(3.4.13)
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The normalisation condition for a 1-D distribution over all v stip-

ulates that cumulative probability densities over all velocities is 1,

therefore N is a scaling function such that:

N =

 ∞∫
−∞

dv P (v)

−1

(3.4.14)

In discrete form:

N =

[
M∑
i=0

P (vi) · (vi − vi−1)

]−1

(3.4.15)

Fig. 3.6 shows this steady state distribution for underdamped Brow-

nian particles with EDs with varying values of q0.
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q0 = 0.1, = 0.10, v0 = 0.31
q0 = 1.0, = 1.00, v0 = 1.00
q0 = 2.0, = 2.00, v0 = 1.41

q0 = 6.0, = 6.00, v0 = 2.45
q0 = 10.0, = 10.00, v0 = 3.16

Figure 3.6: Normalised steady-state velocity distribution for particles with energy depots for different
values of q0. There is an emergence of bimodal distribution for particles with β > 0. As q0 is increasing,
the stationary velocity value also increases and the distributions move apart. There is no large effect
on the variance of the velocities. The bimodal distribution gives an interesting case where ⟨v⟩ = 0 but
⟨v2⟩ = β. D has no effect on the value of β. D = 0.1, d0 = 4.0, c = 0.01, γ0 = 1.0.
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We present here the solutions to the PDF for adiabatic particles,

trajectories for non-adiabatic particles which still contain a degree

of freedom for the parameter e(v) may be simulated in order to

observe the corresponding ensemble behaviours for the adiabatic

steady-state FPEs presented here.
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3.5 Stochastic Calculus

We provide here a summary of the numerical methods used to solve

the preceding LEs for particles with EDs, as well as the numerical

method for resolving inactive (OU) particles.

3.5.1 Heun Method

The Heun methodology provides a predictor-corrector numerical ap-

proximation to the solution of SDEs. This involves a forward time

step and a backwards correction[82]. For each time dependent vari-

able ϕi in a set of LEs:

ϕ̃i(t) =ϕi(t) + fi(ϕ(t))∆t+ gij (ϕ(t)) ξj(t) (3.5.1)

ϕi(t+∆t) =ϕi(t) +
1

2

(
fi(ϕ(t)) + fi

(
ϕ̃(t)

))
∆t

+
1

2

∑
j

(
gij(ϕ(t)) + gij

(
ϕ̃(t)

))
ξj(t) (3.5.2)

For ξj(t) as a delta-correlated white noise variable as defined in

eq. (3.1.4). fi is the non-stochastic component of the RHS of the

LE, and gi is the stochastic coefficient.

The algorithm approximates the solution to the differential equa-

tions by first calculating the candidate value of a variable ϕ̃i(t) from

the system state at time t, as per eq. (3.5.1). In eq. (3.5.2) the value

at the next time stamp ϕ̃i(t+∆t) is then calculated using the arith-

metic mean between the two calculated values of ϕi.

This predictor-corrector approach ensures that changes in the val-

ues of ϕi during extrapolation which would affect the next calculated

value are taken into account. Even over small time steps ∆t for
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stochastic equations, there can be sensitivities in the system which

this method helps to more accurately calculate.

In the case where the calculated value of a parameter ϕi(t+∆t)

crossed a limit during our simulations, for example when the energy

was calculated to be negative, the calculation was re-executed with

a smaller time-step. In these cases the most simple approach was

to divide the time-stamp into two pieces and then follow the path

of calculating ϕ(t + ∆t
2 ) and ϕ(t + ∆t) from this. By executing

this algorithm in a loop with the goal of a non-zero value of ϕi, it

was possible to handle these edge cases by continually halving the

time-step until it was small enough to capture dynamics that did

not generate negative numbers.

3.5.1.1 Numerical Solution to OU Process

Gillespie[79, 83] outlined a numerical solution to the OU LEs eqs. (3.1.1).

We use this to compare the inactive case (d0 = 0) for ED particles

and benchmark the implementation of our software. The time evo-

lution of an OU process with friction γ0 and diffusion constant D

is:

r(t+∆t) =µr(t) + σrξ1(t+∆t) (3.5.3a)

v(t+∆t) =v(t) +
r

γ0
(t)(1− µ) +

(
σ2
v −

κ2
rv

σr2

)1/2

ξ2(t+∆t)

+
κrv

σr
ξ1(t+∆t) (3.5.3b)
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Where:

µ = e−γ0∆t (3.5.4a)

σ2
r =

D

γ0

(
1− µ2

)
(3.5.4b)

σ2
v =

2D

γ3
0

(
γ0∆t− 2 (1− µ) +

(
1− µ2

)
2

)
(3.5.4c)

κrv =

(
D

γ2
0

)
(1− µ)2 (3.5.4d)

ξ1 and ξ2 are statistically independent unit normally distributed

random vectors as per eq. (3.1.4).

3.5.2 Autocorrelation

For a time-series of data, the autocorrelation function represents

how correlated a point of data is with itself after a certain number

of data points κ, referred to as a lag. For the example of the velocity

of a Brownian or OU particle, the velocity autocorrelation shows the

relationship between the velocity at time t (v(t)) and the velocity

at time t + τ (v(t + τ) — where τ = κ∆t). The autocorrelation

function for variable X at a lag of κ is denoted as ρX(κ). A value

of ρx(κ) = 1.0 means that the two values are completely correlated,

i.e. there is a fully deterministic relationship. A value of 0 represents

completely uncorrelated data. A negative auto-correlation value

shows an inverse relationship — where a value at one time signals

a tendency for a negative value at a later time, or vice-versa.

ρ(κ) is mathematically defined as the relationship between the auto-
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covariance of X and its variance σ2
X(t)[84]:

ρX(κ) =
Cov (Xt, Xt+κ)

σ2
X(t)σ

2
X(t+ κ)

(3.5.5)

The auto-covariance for a discrete set of events is given as[84]:

Cov (Xt, Xt+κ) =
1

N

N∑
t=0

[(Xt − µX)(Xt+κ − µX)] (3.5.6)

Where µX is the mean value of variableX and N is the total number

of data points.

The calculation of the autocorrelation for time-series data is done

using the statsmodels ([85]) python library which uses a Fast-Fourier-

Transform (FFT) implementation.

3.5.3 Switching Time Distribution

For an OU particle, the survival time distribution for a particle

with an absorbing boundary at v = 0 is described analytically in

eq. (3.1.16). In the case of a particle with an energy depot the

solution to the FPE (3.4.10) in time is not elementary. As such, the

switching times for particles were calculated using a monte-carlo

(MC) method.

3.5.3.1 Definition of a Switch

A switch is defined as the point at which a particle (in one dimen-

sion) changes velocity from positive/negative to negative/positive,

respectively.

3.5.3.2 Numerically Measuring the Switching Time

The switching time for particles was measured by initiating a trajec-

tory and continuing until the particle switched directions as defined
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above. At this point, the time taken τs is noted and is defined as

the switching time — the time a particle takes when travelling in

one direction to switch to the reverse.

These times were compiled using a normalised histogram in order

to show the overall probabilistic behaviour of the system switch-

ing time distribution. These numerically gathered results represent

analogous solution to eq. (3.1.13) for the Green’s function solution

to(3.4.10) for values of v and e at t = 0.

3.5.4 Power Law Fit For Switching Time

In the case of long time-scales for switching, a heavy-tailed distri-

bution is more sensible for fitting the switching-time distribution

due to the large span between possible events described by similar

behaviours[86]. A power law is thus presented in order to fit these

distributions at longer characteristic time-scales:

h(τs) = h0(1− h0)
τs−τ0

λ (3.5.7)

τ0 is the reference time. This parameter corresponding to the timescale

at which power law behaviour becomes prevalent. λ is the decay

time constant, in this context it describes the rate of decay of switch-

ing probability as taus increases. Smaller λ values will decay more

quickly, whilst higher values will decay at a slower rate. h0 is the

scaling factor which determines the magnitude of the value P (τs).

3.5.5 Chi-Squared Testing

The Chi-Squared test is used to signify the fit error for a data

sample[87]. Given a sample population of n independent data points
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Oi (the observed value) and the corresponding expected value for

each point given by a fit Ei, the value of χ2 is defined as:

χ2 =
n∑

i=0

(Oi − Ei)
2

Ei
(3.5.8)

A value of χ2 = 0 indicates a perfect fit between the data set and

the fitted model. Estimated values Ei which are further away from

the observed values are punished more severely due to the squaring

of the difference.
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Ensemble Average Behaviour of
Particles with Energy Depots in
1-D
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4.1 Introduction

In this chapter, we investigate the ensemble average behaviours of

simulated non-adiabatic particles with energy depots (EDs) in 1-

Dimension using an agent-based approach. The adiabatic assump-

tion of depot relaxation (Section 3.4.3) assumes that the relaxation

of the depot energy is much faster than the rate of acceleration of

the particles, such that the energy becomes a fixed function of ve-

locity e0(v). Here, the particle depot energy will be calculated at

each step irrespective of the velocity in order to understand regimes

where this assumption may not apply.

We begin by investigating particle behaviours when starting from

rest with empty depots, and observe the dynamics of arrival at

steady-state across different parameter regimes.

The velocity distributions across long trajectories are then ob-

served and compared with the expected analytical results.

In order to understand the deviation from these analytical adia-

batic results, we investigate the ensemble average energies at differ-

ent velocity values in order to give a picture of the particle behaviour

in v − e phase-space. We then compare these results to the litera-

ture and explain the dynamics of the particles as they move around

this phase-space in the presence of noise.

4.1.1 Simulation Motivation and Experimental Outline

Individual Ornstein-Uhlenbeck particles (the agents) with EDs (ED

particles) were simulated in 1-D. The aim of these simulations was
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to observe how changing the rate of energy conversion d0 and the

rate of uptake of energy q0 affected different observed particle be-

haviours. One main motivation was to determine the characteristics

and the region of parameter space under which these particles show

adiabatic behaviour in e.

We choose to investigate the one-dimensional case where energy

consumption from depots is isolated to motion in a single direc-

tion. Higher dimensional studies have been focused on particles in

adiabatic parameter regimes, though to our knowledge, there is no

consistent description in the literature of particles away from these

regimes. Though our work could expand to higher dimensions, we

choose to focus on the special emergent behaviour of particles driv-

ing in a single direction and the observed non-adiabatic behaviour

which differs to the cyclical motion of adiabatic particles which is

observed in higher dimensional studies[76].

In the field of ABPs, it is common to present the results of

simulations in the form of calculated mean-squared displacement

(MSD) values across different time steps from the simulation result

set which can be mapped back to an effective diffusion constant. We

chose not to pursue this analysis in this section as we were moti-

vated to make a direct observation of how the velocity distributions

compared to those expected from the analytical solutions to the

Langevin equations for adiabatic particles. Similarly, due to the

bimodal distribution of the velocity distributions expected in some

parameter regimes from the literature and observed in our results,
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the effective diffusion constant would not be a sensible parameter

to adjust the data to as it would limit the system to a Gaussian

distribution of velocities.

This chapter discusses the simulations which were carried out

along with an analysis of their results. At each stage of analysis,

observed behaviours are used as a motivation for the subsequent

analysis.

Initially, the unsteady state canonical time evolution of systems

starting from rest are discussed. These lead on to an analysis of the

overall steady-state velocity and energy distributions of the parti-

cles, with the aim of understanding how well stochastic modelled

particles in different parameter regimes adhere to any assumptions

made in the model. The emergence of distinct particle behaviours

is observed, ranging from almost Brownian behaviour to particles

which are completely adiabatic in e.

In between these two extremes, particles are observed which exist

adiabatically (with depot energies dictated by their velocity) for

long periods of time before undergoing directional switches in low

velocity regions, in the process deviating from adiabatic behaviour.

An analysis of the frequency of these switching events as well as their

relationship with the decorrelation times of the particle velocities

and energy and the timescales for particles to reach steady-state is

then presented.
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4.1.2 Model Parameters

The theoretical background of the model along with a more detailed

explanation of how each parameter effects the deterministic system

behaviour is outlined in Chapter 3. Table 4.1 presents a summary

of each parameter used in the model along with a description.

Table 4.1: Summary table of parameters for ED model

Parameter Name Description Units Dimensionless
Scaling Factor

r(t) Particle position Position of the particle
at any time t in n-
dimensions.

[L] D1/2γ0
−3/2

v(t) Particle velocity Velocity of the particle
at any time t in n-
dimensions.

[L][τ ]−1
D1/2γ0

−1/2

e(t) Particle depot en-
ergy

Amount of energy stored
in the particle depot at
time t.

[L]2[τ ]−2
Dγ−1

0

D Particle diffusion
constant

Strength of the stochas-
tic force.

[L]2[τ ]−3
D

c Depot dissipation
rate

Rate of internal dissipa-
tion of energy from de-
pot.

[τ ]
−1

γ0

q0 Depot energy up-
take rate

Uptake of energy from
surroundings into the de-
pot. Constant through-
out any single simula-
tion.

[L]2[τ ]−3
D

d0 Depot energy con-
version rate

Constant controlling the
rate of conversion of e
into particle kinetic en-
ergy Ek.

[τ ][L]−2
D−1γ2

0

γ0 Static friction Frictional drag coeffi-
cient for particle from
energy losses to sur-
roundings.

[τ ]
−1

γ0

∆t Simulation time
step

Time step between
points on simulation
output trajectory.

[τ ] γ−1
0
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4.1.3 Simulation Parameters and Assumptions

Stochastic simulations were carried out over a range of values of d0

and q0. The other simulation parameters were kept constant and are

summarised in table 4.2 alongside the relevant dimensionally scaled

values.

Table 4.2: Summary of simulation parameters kept constant throughout experiments.

Parameter Input Value Dimensionless Value

D 0.1 0.1ˆ1/2
γ0 1.0 1.0
c 0.01 0.01
∆t 0.01 0.01

4.1.3.1 Constant Parameter Selection

The ratio of the diffusion constant D and static friction γ0 was cho-

sen to represent overdamped non-active Brownian particles on the

15–20nm scale in water at 298K. This length scale was initially cho-

sen as it corresponds to the nano-scale active particles from which

the original work was based. At this length scale, the stochastic dy-

namics can be dominant which offered an opportunity to investigate

parameter configurations for the ED model in both noise and activ-

ity dominated regimes and to compare them and observe emergent

behaviour.

The ratio of D
γ0

as a function of hydrodynamic radius is found

by combining the Stokes-Einstein equation (3.1.2) with Stokes’ Law

eq. (3.1.3):

D

γ0
=

KBT

(6πηRH)
2 (4.1.1)
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Fig. 4.1 shows an example curve of this ratio against hydrodynamic

radius for real system of small particles in water. For particles

of a constant radius, increasing the ratio D/γ0 is analogous to an

increase in system temperature (as per (3.1.2)).
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Figure 4.1: Ratio of D/γ0 for spherical Brownian particles in water. The line shows the expected
value of this ratio for a constant temperature system of real particles over a range of possible radii.
T = 298.15 K, η = 0.001 Pa s.

4.1.3.2 Dimensionless Groups

The dimensions of the particles were simplified by setting the ref-

erence units to unity or to scale with simulation parameters. This

allows for simulation equations to be simplified by eliminating mass,

and for different parameter sets to be scaled against each other
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through these dimensionless groups, rather than relying on real-

world length/time scales which may become more difficult to con-

textualise when simulating. There are also computational advan-

tages to this methodology, as the numbers which are used can be

more managable in terms of data entry, result processing, and the

computational power required.

The unit of mass [M] was set to unity as the mass of a single

particle. The length-scale [L] and time-scale [τ ] were set based

upon the values of D and γ0 such that their dimensionless values

are unity as per tab. 4.1.

[τ ] = γ−1
0 (4.1.2)

[L] =
(
D

γ3
0

)1/2

(4.1.3)

The dimensional groups are presented below in table 4.3. Substitu-

Table 4.3: Dimensionless groups used without simulations and calculations.

Dimension Unit Dimensional Scaling

Length [L] (D × γ0
−3)

1/2

Time [τ ] γ−1
0

Mass [M] 1

tion of the relevant dimensions for the units in table 4.1 gives the

dimensional scaling for each parameter or value in the simulations.

These definitions are then substituted for the dimension units in

table 4.1 in order to give the corresponding dimensionless scaling

factor also presented in the table. A value is converted to its cor-

responding dimensionless number by dividing by the dimensionless

scaling factor.
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The graphs in this chapter are presented in dimensionless form,

meaning that values have been scaled by the appropriate factor for

the values being shown.

By setting the values of D and γ0 as in tab. 4.2 the effective di-

mensionless simulation temperature kBT = 0.1 was chosen as per

the Stokes-Einstein Equation (see eq. (3.1.2)). This physically rep-

resents the velocity of the particles in the simulated medium — a

higher kBT value corresponds to a higher temperature fluid where

surrounding particles are colliding with higher thermal energy and

thus momentum[78]. As we are simulating individual particles as

agents, the forces which these surrounding particles exert on the

ABPs are represented by the stochastic elements of the LEs through

the diffusion constant D.

D =
kB T

γ0
(4.1.4)

0.1 =
kB T

γ0
(4.1.5)

kBT = 0.1 (4.1.6)

Values of energy and velocity were dimensionally scaled throughout.

Other parameters are presented as entered into the simulations with

dimensions. Where appropriate to present these in dimensionless

form they are appended with a superscript D, e.g cD = c
γ0
. The

dimensions of each parameter are listed in table 4.1.

Rotational diffusion was ignored in the model. Acceleration from

the depot is applied in the current direction of motion. In order to

switch direction, a particle must pass through the v = 0 boundary.
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4.1.3.3 Variable Simulation Parameters

A total of 20 different combinations of q0 and d0 were simulated

comprising of 4 variations of q0 and 5 variations of d0. The nomen-

clature used herein for referencing each simulation parameter set is

summarised in table 4.4. The simulation with, for example, values

of 6.0 and 0.1 for d0 and q0, respectively, is referred to as simulation

or case D1.

Table 4.4: Reference table for dimensionless simulation parameter sets used.

dD0 ↓ qD0 → 0.1 1.0 2.0 10.0

0.1 A1 A2 A3 A4
1.0 B1 B2 B3 B4
2.0 C1 C2 C3 C4
6.0 D1 D2 D3 D4
10.0 E1 E2 E3 E4

The choice of these values was motivated by the previous inves-

tigations into existing results in the literature. The low value of c

chosen meant that the bifurcation point β and thus the stationary

velocities ±v0 (eq. (4.1.7)), were only weakly affected by changes

in d0. This value of c also ensures that the depletion of energy in

the depot is a stronger function of the velocity. Thus, increasing

the value of q0 would almost proportionally increase the value of β.

Similarly, the adiabatic energy value was not greatly affected by the

dissipation term c.

β = v20 =
q

γ0
− c

d0
(4.1.7)

Based upon existing comments in the literature, the most likely

particles to exhibit adiabatic behaviour would be in case E4, with

case A1 the least likely as being the least active.
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4.1.4 Simulation Methodology

A computational numerical integrator was constructed using the

Stochastic Heun method (Section 3.5.1) to solve the LEs for the ED

model in the absence of any potential gradient. Recalling the LEs

which have previously been declared in Section 3.4.2:

dr

dt
= v (4.1.8a)

dv

dt
= −γ0v + e(v, t)d0v +

√
2Dξ(t) (4.1.8b)

de

dt
= q0 − (c+ d0v

2)e(v, t) (4.1.8c)

This program was fed parameter input data along with information

for the required time-step ∆ t, end time tend, and initial conditions

for the simulation:

e(t = 0) = 0 (4.1.9)

v(t = 0) = 0 (4.1.10)

r(t = 0) = 0 (4.1.11)

At each time step, the particle ID, velocity v, position r, and energy

e of a single simulated particle were output to a data file.

In order to minimise the error over any measurement step in

the integration, a separate internal simulation time step was also

provided to the programme which was set to be at least an order

of magnitude lower than the smallest timescale in the system set

by the parameters. When q0, d0, γ0 or c are particularly high, the

simulation step must be made much smaller in order to ensure the

dynamics are captured.
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4.1.4.1 Simulation Bench-Marking

In order to show that the software was correctly configured, a single

particle benchmark test was carried out to compare the captured

value of the depot energy at a simulation step i (esim,i) against the

calculated value (e0(vi)) based off of the analytical solution to the

Langevin equations at the velocity captured at the same time step

(eq. (3.4.4)).

Fig. 4.2 graphically shows the energy trajectory of a particle in a

short simulation (2000 time steps) where the simulation parameters

were chosen for near-adiabatic relaxation of the depot energy (i.e.

esim,i ≈ e0(vi) (3.4.4)). The distribution of the ratio of the simulated

and calculated energies shows mean value of 1.0 (i.e. equivalence)

with a standard deviation of 2%. Later in the chapter (sec. 4.4),

we will analyse the differences between the simulated and adiabatic

energies, this simulation serves as a benchmark for that analysis.

Multiple simulations were completed for each parameter set, de-

pendent on the type of data required. Where a single long trajec-

tory was required, one particle would be simulated as necessary. For

canonical averages over large samples of particles at shorter time-

scales, a separate simulation was run with these conditions applied

across multiple particles.

Large samples and long trajectories were required to ensure that

the statistical data collected was representative of the expected be-

haviour of the system. Data was generated to output text files which

were post-processed by separate programs.
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Figure 4.2: Top: Distribution of ratio of simulated energy esim to calculated adiabatic energy e0(vi).
Bottom: ei for both simulated and calculated energies over a 20 time-unit trajectory. Parameters:
D = 0.1, γ0 = 1.0, c = 0.001, d0 = 10.0, q0 = 10.0, ∆t = 0.01.
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4.2 Time Evolution of 1-D ED Particles Starting From
Rest

4.2.1 Introduction

Multiple single particle simulations were carried out over short tra-

jectory lengths. The ensemble average behaviours in velocity and

energy at each simulation time t for these particles was observed.

The two motivations for this analysis were to determine the time-

frame with which particles starting from rest would come to a sta-

tionary state and to observe the average dynamics of particles start-

ing from rest and how they varied as the parameters d0 and q0 were

varied.

In Chapter 5 an analysis of stochastic particles switching between

their 1-D limits is carried out. This switching behaviour requires a

velocity transition through the origin (v = 0) and so understanding

these dynamics will also assist in future discussions.

The deterministic stationary limit of ED particles was previously

discussed in Section 3.1.4. In the absence of the stochastic force, a

particle in motion will not move from the stationary velocity (v = 0)

whilst e moves to e0(v = 0) = q0
c .

The addition of the stochastic force causes for particles to ran-

domly drift between these v− e streamlines dependent on the diffu-

sion constant D. When the particles move to the stationary points

(±v0, ep) (if these exist) they are unlikely to remain there. The drift

motion of the particles through the v − e plane is still governed by

the deterministic elements in the Langevin Equations (LEs), with
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the stochastic force adding a diffusive element to this behaviour.

As per eq. (3.4.9) and the mathematical behaviours outlined in

eqs. (3.4.5); the values of d0 and q0 were chosen for these simulations

in order to ensure that the stationary points always exist (i.e.the

bifurcation parameter β is always a positive real number, there is

no imaginary component of v0).

4.2.2 Methodology

4.2.2.1 Simulation Parameters

Brownian Particles starting from rest with empty energy depots

were simulated in 1-D with initial conditions:

v(t = 0) = 0

e(t = 0) = 0

The total number of particles simulated was n = 400, 000 per data

set. All parameters other than d0 and q0 were kept constant —

D = 0.1, γ0 = 1, c = 0.001.

The software program simulated these trajectories for each par-

ticle and captured the values of v and e at every time t. Time steps

were separated by ∆t = 0.001.

The ensemble average values ⟨|v(t)|⟩ and ⟨e(t)⟩ were calculated

after each time step in the simulation using eq. (3.2.3) as per the

methodology outlined in Section 3.2.2. This data was written to an

output file. The average value of the absolute velocity |v(t)| was

taken due to the symmetry in v causing for ⟨v(t)⟩ = 0.

Case A1 was simulated first to benchmark the maximum required
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time to reach steady-state. Once this result was available, the re-

maining simulations were run for the same amount of time. The

end time of simulation tend = 156 which corresponds to 1.56 × 105

data points per plotted line.

4.2.3 Results

The results are presented in graphical form grouped by values of q0

using the alpha-numerical index nomenclature (i.e. A1-E4) outlined

in table 4.4.

Each line on the graphs represents results for a different value of

d0 at constant q0. A1-E1 are presented in the top-left; A2-E2 are

presented in the top right; A3-E3 are presented in the bottom left;

and A4-E4 are presented in the bottom right hand sub-plots in each

grouping.

The values of β, and thus the steady-state velocity, are on the

same order of magnitude in each sub-plot (see table 4.5). As per

eq. (4.2.1) it is expected that particles with lower d0 values at con-

stant q0 will have higher values of ⟨e⟩SS due to a slower consumption

rate.

4.2.3.1 Particle Velocity

The output velocities v from the simulations were used to calculate

the ensemble average value of the absolute velocity ⟨|v|⟩SS , given

the particles started from rest with empty depots. Fig. 4.3 shows the

results of these simulations for the different cases listed in table 4.4.

Fig. 4.4 presents the same results with logarithmic axes for easier
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observation of low timescale behaviour. Subplots are grouped by

values of q0.
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Figure 4.3: Average values ⟨|v|⟩SS for particles starting from rest with empty energy depots (v(0) = 0,
e(0) = 0) for all cases A1-E4. Simulations of varying d0 values are grouped with the same q0 values in
each subplot. Other parameters γ0 = 1.0, D = 0.1, c = 0.001, ∆t = 0.001.

4.2.3.2 Particle Energy

In a similar manner as the velocity, the value of the dimensionless

ensemble average steady-state depot energy ⟨e⟩SS was calculated.

The graphical results are shown in fig. 4.5, and on logarithmic scales

in 4.6.
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Figure 4.4: Average values of |v(t)| for particles starting from rest with empty energy depots (v(0) = 0,
e(0) = 0) for all cases A1-E4 presented with log− log axes. Simulations of varying d0 values are grouped
with similar q0 values in each subplot. Other parameters γ0 = 1.0, D = 0.1, c = 0.001, ∆t = 0.001.

The adiabatic energy e0 for simulated ⟨|v|⟩SS was also calculated

using equation (4.2.1).

e0(⟨|v|⟩SS) =
q0

c+ d0⟨|v|⟩2SS
(4.2.1)

4.2.3.3 Ensemble Averages

The ensemble average energy and velocity at steady state were cal-

culated from the final data point in the time series from the simu-

84



Ensemble Average Behaviour of Particles with Energy Depots in 1-D
Time Evolution of 1-D ED Particles Starting From Rest

0 25 50 75 100 125 150
0 t

0

10

20

30

40

50

0 D
e

q0 = 0.10
Cases A1-E1

0 25 50 75 100 125 150
0 t

0

20

40

60

80

100

0 D
e

q0 = 1.00
Cases A2-E2

0 25 50 75 100 125 150
0 t

0

20

40

60

80

100

120

0 D
e

q0 = 2.00
Cases A3-E3

0 25 50 75 100 125 150
0 t

0

50

100

150

200

250

0 D
e

q0 = 10.00
Cases A4-E4

d0 = 0.10
d0 = 1.00

d0 = 2.00
d0 = 6.00

d0 = 10.00

Figure 4.5: Average value of e(t) for particles starting from rest with empty energy depots (v(0) = 0,
e(0) = 0) for all cases A1-E4. Other parameters γ0 = 1.0, D = 0.1, c = 0.001, ∆t = 0.001.

lations. The values are presented in table 4.5.

4.2.4 Discussion of Results

4.2.4.1 A1-E1 — Cases of Slowest Energy Uptake (q0 = 0.1)

The initial velocity is governed almost entirely by Brownian motion,

as seen by the fact that the different cases all behave similarly on

the short time scale. The logarithmic scaling in fig. 4.4 shows more

clearly that across all data sets the particles reach ⟨|v(t)|⟩= 0.1 at

approximately t = 0.07 before a dependence on d0 becomes ap-
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Figure 4.6: Average value of e(t) for particles starting from rest with empty energy depots (v(0) = 0,
e(0) = 0) for all cases A1-E4. Other parameters γ0 = 1.0, D = 0.1, c = 0.001, ∆t = 0.001.

parent. At low values of e the stochastic force contribution to the

velocity is dominant. As q0 is increased, the characteristic time at

which the active behaviour emerges reduces due to the depot filling

up quicker. Before this characteristic time particles are stochastic

rather than driven as they don’t yet have enough energy to be ac-

tive. This is apparent in cases A1-E1 (q0 = 0.1) where the d0 value

begins to affect behaviour at t ≈ 0.6. For A4-E4 (q0 = 10.0) this

occurs much sooner at t ≈ 0.07.

86



Ensemble Average Behaviour of Particles with Energy Depots in 1-D
Time Evolution of 1-D ED Particles Starting From Rest

Table 4.5: Summary of simulation results for ensemble average dimensionless energy and ensemble
average dimensionless velocity at steady-state (taken as t = 100.0 for all simulations). Deterministic
adiabatic energy fixed point e0(β) and velocity bifurcation point β =

(
v20
)

are also listed for reference.

Case ⟨|v|⟩SS β ⟨e⟩SS e0(⟨|v|⟩SS ) e0(β) = ep

B1 1.981 0.990 5.706 5.022 10.000
C1 1.985 0.995 3.105 2.513 5.000
D1 2.005 0.998 1.231 0.830 1.667
E1 1.969 0.999 0.819 0.508 1.000

A2 11.033 9.900 97.203 89.822 100.000
B2 11.028 9.990 11.126 9.060 10.000
C2 10.967 9.995 5.650 4.557 5.000
D2 10.922 9.998 1.893 1.526 1.667
E2 11.025 9.999 1.120 0.907 1.000

A3 20.913 19.900 104.098 95.177 100.000
B3 21.030 19.990 10.641 9.506 10.000
C3 20.916 19.995 5.311 4.780 5.000
D3 21.046 19.998 1.751 1.584 1.667
E3 20.970 19.999 1.054 0.954 1.000

A4 100.768 99.900 101.164 99.139 100.000
B4 100.850 99.990 10.117 9.915 10.000
C4 101.067 99.995 5.044 4.947 5.000
D4 100.924 99.998 1.685 1.651 1.667
E4 101.082 99.999 1.009 0.989 1.000

The cases A1-E1 show a different response in both the velocity

and energy from the other cases with higher q0 values. The ⟨|v(t)|⟩

value for A1 is seen to rise quickly to the approximate value of 1.0

before rising towards the final steady-state value; which it does not

reach within the timescale. Increasing d0 reduces the time taken to

reach the steady-state value of the velocity. The early behaviour

of the cases B1-E1 is similar to that of A1 as previously mentioned

— governed by the stochastic behaviour. The time taken to reach

the steady-state velocity decreases moving from B1 to E1 as d0 is

increased. The overshoot of the final value of ⟨|v|⟩SS is more pro-

nounced for higher values of d0 with E1 being the most pronounced.

The overshoot of the steady-state value in cases B1 and C1 is less

visible.
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For case-A1 and case-B1, the steady-state energy value is ap-

proached in an overdamped manner as evidenced by the lack of

overshoot when compared with the other cases at this value of q0,

which show a small overshoot and relaxation to the final steady-state

value (underdamped behaviour). The time taken for the energy to

reach steady-state is similar to that for the velocity. Due to the low

d0 value, case A1 takes the longest to reach its steady-state value.

4.2.4.2 A4-E4 — Cases of Highest Energy Uptake (q0 = 10.0)

For D4 and E4 (the most active cases) the ⟨|v(t)|⟩ value reaches a

steady-state quickly in an overdamped manner — not overshooting

the steady-state value. The other three cases with lower conversion

rates also quickly approach steady-state (in less than 10 time units),

though overshoot the value and oscillate back to the steady-state

value. The timescale to reach the steady-state was similar for both

e and v for these cases.

The least active case A4 shows two behaviours which are distinct

from the others in this batch. Initially there is a more delayed onset

of the acceleration from the depot seen clearly in fig. 4.4, where the

rate of acceleration increases at t ≈ 1. The particles then rapidly

accelerate and overshoot the final steady-state value by more than

40%. The velocity then enters a cycle of oscillatory decay in an

underdamped fashion around the expected steady-state value before

settling.

This oscillatory behaviour arises from the active component of

the force on the velocity. At lower velocities and fixed lower values
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of d0, the particles cannot convert the large quantities of depot

energy quickly into kinetic energy. As they eventually accelerate,

there is a surplus of energy in the depot (constant q0 has caused

for an accumulation) which is quickly converted and pushes the

value of v still higher such that it overshoots the steady-state value.

This overshoot in turn consumes any surplus energy in the depot,

reducing the value of e below the steady-state value. This deficit

combined with the static friction causes for the particles to slow

below ⟨|v|⟩SS . This behaviour repeats again with ever decreasing

amplitude, eventually arriving at a steady-state in both v and e.

The intermediate cases B4 & C4 overshoot in velocity, result-

ing in an over-consumption of energy away from the steady-state.

The magnitude of the overshoot decreases as d0 increases. Both of

these show an overdamped response after overshoot, returning to

the steady-state value without any oscillation. Though there is an

increase in the acceleration due to the early accumulation in the

depot whilst the particles were moving slowly, the rate of energy

conversion is such that the depot can be depleted before any accu-

mulation which would cause oscillation.

The values of ⟨|v|⟩SS for all of these cases closely matched the

calculated values of β, as shown in table 4.5, and correspond to the

stationary velocities discussed earlier in Section 3.1.4.

4.2.4.3 A2-E2, A3-E3 — Cases of Intermediate Energy Uptake (q0 = 1.0, q0 = 2.0)

In the intermediate sets of data A2-E2 and A3-E3 the initial velocity

response was the same as in the other cases — a short non-active ac-
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celeration where the dynamics are governed by the stochastic force.

Once the active component of the motion begins to dictate the dy-

namics, particles with a higher d0 accelerate faster in v and consume

their depot energies at a higher rate. Case E2 shows a slight over-

shoot of the steady state value, with an overly damped relaxation

to steady-state. This is less visible in case E3 — at this value of

q0 the particles are close to the threshold between changing from

the overshooting behaviour seen in E1/E2 to the behaviour of E4

(which behaves more like a classic critically damped response).

With a lower q0 value, there is less of an accumulation of energy

in the depots for cases A2 and A3 causing for a smaller overshoot

proportional to the ⟨|v|⟩SS value. An underdamped oscillatory

response is still seen in the relaxation phase.

Cases B2, B3 and C2 also exhibit this underdamped response

and oscillations around ⟨|v|⟩SS . C3 is seen to overshoot and relax

in an overdamped manner to the steady-state value.The energy in

all cases overshoots ⟨e⟩SS . The behaviour of ⟨e(t)⟩ is more similar

in these intermediate sets to the high-uptake set A4-E4 and high

conversion-low uptake case E1 in that it overshoots steady state

severely in the initial stochastic phase before relaxing to steady-

state in an underdamped fashion.

4.2.4.4 Overall Behaviour

The data shows that particles with higher d0 values reach steady

state quicker. This time is also reduced by increasing the uptake of

energy q0.
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Particles showing overdamped dynamics do not overshoot the

steady-state value. Underdamped particles, however, overshoot the

steady-state values and then relax to the final steady-state value by

oscillating around it.

In case A4 it was seen that even with a large amount of energy

available, there was still an underdamped oscillatory response in

both energy and velocity. The particles take longer to reach steady-

state as the consumption of energy is affected more by v than d0 as

per eq. (3.4.2c).

4.2.5 Conclusions

Active Brownian particles with empty energy depots were simulated

over short trajectories from rest. By looking at the ensemble aver-

ages of the velocity v and energy e the dynamics of these particles

in this scenario were observed.

One of the questions posed by this thesis is under what circum-

stances the adiabatic assumption that the timescale of depot energy

relaxation is much quicker than that of the acceleration holds true.

The cases may be classified as adiabatic or non-adiabatic based on

whether or not the above assumption on energy assimilation holds

true.

For cases A4-E4, the β value is higher ( 100), however it is seen

that within the low velocity regime there is no adiabatic relaxation

of the energy. The energy oscillates as a result of the velocity in-

creasing and decreases once the velocity reaches a high enough level

to consume energy faster than it is accumulated. Once this energy

91



Ensemble Average Behaviour of Particles with Energy Depots in 1-D
Time Evolution of 1-D ED Particles Starting From Rest

is consumed, the drag force is greater than the active acceleration

and the velocity tends back towards the stationary point. A lag

between the uptake of energy and the acceleration of the particles

was seen in the intermediate and non-adiabatic cases.

The energy conversion formula is:

ė = q0 − ce(t)− d0v(t)
2e(t) (4.2.2)

Across the data sets, comparing (referencing table 4.5) the resulting

values of ⟨|v|⟩SS and ⟨e⟩SS from the simulations with the analytical

values β and the corresponding calculated values of energy using β

it can be seen that the simulation average values are not equivalent

under the adiabatic assumption and that therefore the adiabatic

assumption does not apply in this parameter space. For low values of

q0, there is not enough energy in the depot at any time for the rate of

energy uptake to be independent of e. When q0 is high but d0 is low,

the effect of v on the energy in the depot is minor compared to the

decay from dissipation and the passive uptake. In the most active

case E4 it is seen that the particle behaves adiabatically because

the velocity will be high enough from the active component of the

force such that it quickly depletes any energy added to the depot.

Because cases A1-A4 have values of d0 which are so low, the

particles are frequently governed by the Brownian forces and moving

at low velocities around about 0. The depletion of the energy depot

in these cases is thus more governed by the quantity e than the value

of the velocity and the particles are less likely to enter the adiabatic

limit.
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As a reference, the value of dimensionless ⟨|v(t)|⟩ and ⟨e(t)⟩ were

taken at the end of these trajectories (γ0t = 100.0). These values

are close to the simulated steady-state values ⟨e⟩SS and ⟨|v|⟩SS

within a reasonable statistical variance as an artefact of simulating

a finite population.

Case A1 has been discounted from the summary of these values

in table 4.5 as this case did not reach the steady-state within the

time frame. The value of β was calculated for the particles in each

case along with the adiabatic energy found at both the calculated

mean ⟨|v|⟩SS value and also that of the pumping energy ep, which

is the adiabatic energy at the stationary point v0 = β1/2.

The energies listed in the table show that for the less active and

more fuel-starved cases there is no correlation between ⟨e⟩SS and

e0(⟨|v|⟩SS ) (calculated adiabatic energy from velocity stationary

point). As q0 is increased with d0 the differences between ⟨e⟩SS and

ep reduce. In cases E3 and B4-E4 these values are almost the same.

This indicates that these particles are behaving more adiabatically.

It was seen that with the exception of case A1, all simulations

arrived at steady-state by t = 100. It weas concluded that for t >

100 the system is no longer be influenced by the initial conditions

— this point will be used in the next section to analyse particles

after they have arrived in the steady-state region; and observe their

non-equilibrium dynamics near these fixed points.

Particles were driven towards their steady-state fixed points at

different rates and with different dynamics — either overdamped or
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underdamped. In Section 4.4 the dynamics of how particles move

towards these fixed points in v − e phase-space will be discussed.

The consumption and depletion of the energy within the depot

causes for the particles to accelerate towards the stationary point

in v − e space (v0, ep), above which point the static friction on the

particle is higher than the active component of the active friction

γ(v). From the data, it is not possible to determine which cases can

be classified as adiabatic as the systems were started from a fixed

point and allowed to transition to their stationary states within this

time. In the subsequent sections, analysis on steady-state particle

systems will be carried out in order to investigate this adiabatic

assumption more fully.

This behaviour may not be evident in parameter regimes with

high values of c where the rate of depot depletion at lower veloci-

ties (the −ce term in the update formula) is of a similar order of

magnitude to the velocity-dependent conversion term.

This analysis of initial behaviour has shown that the particle be-

haviours reach a stationary state and that there are different dy-

namics governing the arrival at that state depending on the varied

simulation parameters.
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4.3 Steady-State Particle Velocity Distributions

4.3.1 Introduction

In the previous section, it was seen that most of the particle ensem-

bles arrived at a steady-state by 100 time units. The dynamics of

this approach varied, but in the higher energy uptake (higher val-

ues of q0) cases and the more active (higher d0) cases it was seen

that there was a quicker response in the depot energy level and its

conversion into kinetic energy.

In this section, simulation results are presented in the form of 1-

D velocity distributions for all parameter sets. A discussion of the

behaviours observed in each case is then presented. The behaviours

are generalised into separate cases depending upon their shapes and

adherence with the adiabatic energy approximation.

4.3.2 Simulation Parameters

For each parameter set (table 4.4) a single particle trajectory was

simulated starting from rest with an empty depot (e(t = 0) = 0,

v(t = 0) = 0) for a total simulation time of tend = 5000 with a time

step of ∆ t = 0.01. Bias from the initial conditions were filtered from

the results by introducing a measurement start time of t = 200 —

chosen based off of the times to reach steady state from Section 4.2

— before which the data points were discarded. Each simulation

was repeated 5000 times with the same conditions. This resulted in

≈ 2.4× 109 unique data points for v(t) per simulation.

The mean value of the velocity µv, the standard deviation of the
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velocity σv, and the corresponding values for the absolute velocities

µ|v| and σ|v| were calculated from the results. ED particles form

bimodal distributions in velocity in 1-D, and due to their symmet-

rical behaviour (as discussed in Section 3.4) are expected to have a

mean value µv= 0. Taking the absolute value of v before averaging

gives more of an insight into the average behaviour of the particles

in motion.

The velocity distributions of the results are visualised in this sec-

tion using histograms which show the probabilistic behaviour of the

particle velocity for each case. Each histogram initially contains 200

bins of equal width between the origin and the maximum observed

value of |v|. The points plotted on the graphs represent the centre

of each bin. The number of values in each bin was normalised by

twice the total number of v values and reflected around the y-axis

(the factor of 2 is required due to the number of total points plotted

doubling to 400). This means that twice as much statistical data is

generated due to the symmetry of the velocity distributions.

Alongside the stochastic calculated distribution curves, the an-

alytical solution to the steady-state FPE for an adiabatic parti-

cle is also plotted (eq. (3.4.12)) for each case. The conformity of

the stochastic results with this analytical solution may be observed

graphically.
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4.3.3 Results

4.3.3.1 Inactive Velocity Distributions

The stochastic velocity distributions for an OU particle calculated

using the numerical method outlined by Gillespie[79] (Section 3.5.1.1)

as well as that of an inactive particle with an ED (d0 = 0) are pre-

sented alongside the analytical solution to the OU FPE (eq. (3.1.11))

in fig. 4.7. All curves are normalised for
∫∞
−∞ dv P (v) = 1.

4 3 2 1 0 1 2 3 4
v ( 0

D )1/2
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Figure 4.7: Velocity distributions of underdamped Brownian particles showing analytical solution to
OU FPE (green line), Gillespie methodology[79] for an exact numerical solution to the OU process
(blue circles) and normalised histogram of stochastic simulation for an inactive ED particle (orange
crosses).

All three of the results are consistent with each other. The normal
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(Gaussian) distributions are centred around v = 0 which is consis-

tent with the expected behaviour from the theory and also serves as

a benchmark for the simulation methodology and implementation.

The values of σv and µv were calculated from both sets of data as

1.0 and 0.0, respectively. From eqs. (3.1.10) these can be seen at

steady state to be consistent with the dimensionless expected values

for this distribution.

4.3.3.2 Active Velocity Distributions

Figures 4.8, 4.9, 4.10, 4.11 and 4.12 show the velocity distributions

for all 20 of the parameter cases A1-E4 plotted against the analyt-

ical solution to the FPE for an adiabatic particle for each set of

parameters.

The plots are presented in groups of constant d0 values with

the subplots showing the different q0 values. For each subplot,

the calculated value of the dimensionless stationary velocity vD0 =

±
√
β
(
γ0
D

)1/2
is labelled with a grid line on the v-axis for reference.

The calculated statistical data for the particles is summarised in

table 4.6.

Each result is discussed in detail in order to identify trends and

behaviours across the parameter range and to observe the relation-

ship which increasing d0 and q0 has on the behaviour of the particles.

As previously discussed, the analytical solution to the FPE makes

the assumption that the particle is adiabatic in e (ė = 0).

The degree of agreement with the adiabatic assumption can be

seen by comparing the expected value of P (v) on the plots. Further
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Table 4.6: Summary of statistical means and standard deviations for simulations over all 20 parameter
pairings. The mean and standard deviation of the absolute values of the velocity are also shown, as
they are more useful in analysing bimodal distributions.

Case βD |v0|D σv σ|v| µv µ|v|

A1 0.90 0.949 1.396 0.839 0.000 1.116
A2 9.90 3.15 3.302 1.809 -0.004 2.763
A3 19.90 4.46 4.571 2.169 -0.006 4.024
A4 99.90 10.0 10.045 1.255 0.120 9.967
B1 0.99 0.995 1.412 0.830 0.002 1.143
B2 9.99 3.16 3.315 1.308 0.006 3.046
B3 19.99 4.47 4.582 1.085 0.017 4.451
B4 99.99 10.0 10.054 0.777 0.101 10.025
C1 0.995 0.997 1.413 0.817 -0.000 1.153
C2 9.995 3.16 3.316 1.107 0.006 3.126
C3 19.995 4.47 4.581 0.906 0.143 4.493
C4 99.995 10.0 10.059 0.742 0.060 10.032
D1 0.998 0.999 1.413 0.789 -0.001 1.173
D2 9.998 3.16 3.318 0.871 -0.012 3.201
D3 19.998 4.47 4.584 0.773 0.089 4.519
D4 99.998 10.0 10.078 0.717 -0.141 10.053
E1 0.999 0.999 1.414 0.774 0.001 1.183
E2 9.999 3.16 3.318 0.806 -0.025 3.219
E3 19.999 4.47 4.569 0.745 -0.418 4.527
E4 99.999 10.0 10.083 0.703 0.020 10.058

information can be obtained from the energy distribution, which

will be examined in a later section.

It is initially of interest to observe the behaviours in the least-

active/least-fuelled case (A1) and most-active- most-fuelled case

(E4). The subsequent analysis of intermediate parameter values

may then be put into context by the results from these extremes.
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Figure 4.8: Stochastic and analytical dimensionless velocity distributions for d0 = 0.1 with varying q0
(top-left: A1, top-right: A2, bottom-left: A3, bottom-right: A4). Other parameters γ0 = 1.0, D = 0.1,
c = 0.001.

In case A1 (top-left fig. 4.8), it is clear that there is a stark dif-

ference between the stochastic behaviour and that of the analytical

adiabatic solution; and so it may be said that the particle is non-

adiabatic. The velocity distribution resembles that of the inactive

OU process and the mean µv= 0.0 as seen in table 4.6. The standard

deviation σv was measured as 1.396 which is greater than the value

for the inactive OU case, showing that the distribution of velocities
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itself is wider and that in the active case the particle is being accel-

erated. Even with such a low level of activity and access to fuel, a

marked increase in the expected velocity of the particle can be seen,

though the shape of the distribution appears to be the same.

There is no bifurcation of the velocity stationary points, instead

the distribution is that of a flattened Gaussian. Particles are driven

towards the stationary points by the active component of the force

(depot consumption), but this component is overwhelmed by the

stochastic force. The depot consumption thus simply accelerates

the particle forward with no clear dynamics of acceleration towards

a fixed point. The direction is dependent on whether the stochastic

force causes for a switch across the v = 0 boundary.

Case E4 (bottom-right fig. 4.12), appears completely adiabatic

— with the calculated velocity distribution perfectly matching the

analytical solution of the adiabatic FPE (3.4.12). The distribution

is bimodal and symmetrical around the y-axis. The calculated mean

is seen to be close to 0.0. The value of σv is 10.083. The value of

µ|v| is 10.058 — the particle on average is located at the fixed points

at ±v0. The σ|v| value of 0.703 is lower than the standard deviation

of the inactive OU case, indicating that the active particles are

being driven to a narrower band of velocities by the active force

(i.e.towards the fixed velocity v0). From the previously phase-space

diagram (fig 3.4) it can be seen that active particles are indeed

expected to be driven towards the fixed points in space at (v0, ep).

If the particles are behaving adiabatically as the matching of the
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velocity curves suggest, then the depot energy will be fixed along

the e0 line in v − e space. It is also seen that P (v = 0) ≈ 0, which

suggests that there is a barrier to particles moving at this lower

velocity and even switching directions. This is shown in the phase-

space diagram as well, with e being at a maximum at v = 0. This

behaviour will be discussed in more detail in the following section.

These observations of the least and most active cases have high-

lighted the emergence of two different behaviours. In case A1 there

appears to be an OU-like distribution of velocities with an increased

variance on account of the active contribution to the force, as if this

was added on to the existing stochastic force. In case E4 the par-

ticles behave adiabatically, and the well understood bifurcation of

the velocities around the two stationary points (±v0, ep) emerges;

with no probability of the particle existing at low velocities.

The remaining distributions will now be discussed in this context,

in order to try and understand the dynamics of these particles when

they are not adiabatic but exhibit more complex active behaviour

than case A1.

None of the cases A2− A4 (top-right, bottom-left, bottom-right

fig. 4.8, respectively) are behaving adiabatically as the stochastic

and analytical distributions differ. In cases A2 and A3 the peaks of

the emergent bimodal distributions are not located at the stationary

velocities ±v0 but are instead located at lower values of |v|.

Both of these cases also show a clearly non-zero value of P (v =

0), which is in contrast with case A4 where the high value of |v0|
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prevents the stochastic force and static friction from slowing the

particles down enough for them to transition through this region

and change directions.

In all three cases the value µ|v| is lower than the value |v|D0 , how-

ever the emergent distributions have a wider deviation which leads

to the possibility of particles accelerating to a higher maximum ve-

locity. This suggests that there must be excess energies in the depot

in some cases, allowing for additional acceleration.

In the adiabatic case, this would not be possible — as the depot

would relax to its expected value e0(v). This could be made possible

in this case by periods of time spent travelling at lower velocities.

As ė(v) is a function of v2, less energy from the depot would be used

immediately at these slow speeds. Once the particle enters a phase

of acceleration, it would be turbo-charged by a value of e > e0 and

accelerate over a longer period of time to a higher final velocity.

The particles are behaving in a similar manner as when starting

from rest with an empty depot, as outlined in figs. 4.5 and 4.5

For case A4 this is seen by a standard deviation for each of the

peaks on the distribution of σ|v|= 1.224, higher than that seen from

both a pure OU particle and the adiabatic case E4.

None of these parameter sets exhibit the behaviours seen in the

extreme cases A1 and E4. The slow conversion of energy from the

low d0 value suggests that the depot energy can fluctuate widely for

any given value of velocity, and this manifests in all three cases by

a non-adiabatic and less of a tendency to drive straight towards the
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stationary velocity.
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Figure 4.9: Stochastic and analytical dimensionless velocity distributions for d0 = 1.0 with varying q0
(top-left: B1, top-right: B2, bottom-left: B3, bottom-right: B4). Other parameters γ0 = 1.0, D = 0.1,
c = 0.001.

When d0 is slightly higher, as with cases B1-B4 (fig. 4.9), the rate

of depot energy conversion into kinetic energy is increased. The

results show that this increase from cases A1-A4 to B1-B4 is not

enough to cause the particles to behave adiabatically on its own.

The behaviour of case B4 close to adiabatic, but there are still dif-

ferences in the analytical and stochastic results. Particles velocities
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were recorded more frequently further away from the stationary ve-

locity than would be the case if the behaviour was adiabatic, which

corresponds to more time spent further away from the fixed points.

This is the same behaviour but less pronounced than that in case

A4 (fig. 4.8).

In case B1 (low energy uptake q0 = 0.1) the particle behaves

similarly to case A1 — with a wider deviation σv= 1.412 for B1

whereas for A1 σv= 1.396. The higher d0 value results in a higher

stationary velocity v0. This slightly conversion rate leads to higher

velocities which widens the distribution. For the absolute values

of velocity the deviation from µ|v| is marginally lower for B1 (σ|v|=

0.839) compared to A1 (σ|v|= 0.830). This shows that particles are

being more driven towards non-zero v (i.e. v0) and preludes the

emergence of the bimodal distributions seen in B2 and B3.

Particles moving at lower velocities are accelerated slightly to-

wards the stationary velocity v0. There is then a lower probabil-

ity of the particle being stationary than in a pure OU case, but no

emergence of the double-peaked bimodal behaviour of particles with

access to more energy.

Cases B2 and B3 are other examples of situations where the parti-

cles are transitioning between these stochastic and depot dominated

regimes. The value of P (0) for case B2 is clearly non-zero, whilst B3

has a finite but small probability of being stationary. The increase

in activity for cases B2-B4 shows a narrowing of the distribution as

σ|v| is smaller than for the first set of parameters A1–4. As activity
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is increasing, the particles propensity to return to the stationary

velocity v0 also increases due to the v2 relationship with e(v). As

the active force overtakes the stochastic force by orders of magni-

tude, deviations away from these fixed points become more limited

in magnitude as particles deplete energy quicker.

It can therefore be concluded that an the increased rate of con-

version reduces the likelihood of a buildup of energy in the depot.

The particles will be confined to narrower areas in v−e phase-space.

This increase in d0 compared with the first set of parameters has

shown that increasing d0 has more of an effect on limiting the dis-

tribution of the values of v, as compared with q0 which determined

the exact position of the stationary point.
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Figure 4.10: Stochastic and analytical dimensionless velocity distributions for d0 = 2.0 with varying
q0 (top-left: C1, top-right: C2, bottom-left: C3, bottom-right: C4). Other parameters γ0 = 1.0,
D = 0.1, c = 0.001.

In cases C1–4 (fig. 4.10) a similar pattern to the previous cases is

seen. Case C1 is much like A1 & B1, the value of σv= 1.413 is also

very close to the previously calculated values for this value of q0.

The distribution shape has changed with particles more likely to be

found at non-zero velocities than before, again suggesting driving

towards the stationary velocities but showing that the stochastic

force is still the main driver of motion. None of the cases fit well
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with the analytical adiabatic curve. As with case B4, case C4 is

a much closer fit than any previous case has been. The overall

trend is again that the increase in energy conversion is narrowing

the distribution of the velocities around about the stationary points

which are determined primarily by the uptake rate. As with before,

for the lower q0 cases of B2 and C2 the value of v0 is close enough to

the origin that the distributions on either side overlap and a non-

zero P (0) is seen. It may also be seen that in in case C4, much like

all of the high q0 cases, the v0 value is many orders of magnitude of D

away from the origin. This means that the active force will always

overcome the stochastic attempt to change the particle direction

and force the particle back to the stationary points.
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Figure 4.11: Stochastic and analytical dimensionless velocity distributions for d0 = 6.0 with varying
q0 (top-left: D1, top-right: D2, bottom-left: D3, bottom-right: D4). Other parameters γ0 = 1.0,
D = 0.1, c = 0.001.

Increasing the rate of depot consumption d0 further in cases D1–

4 (fig 4.11) shows the same trend again. Case D1 is once more

a “flattened” Gaussian, with a standard deviation of σv= 1.413.

Like in the previous q0 = 0.1 cases, the energy in the depot is too

small to completely change the dynamics of the motion, however the

particle is accelerated slightly away from the origin at low velocities.

It can again be noted that the stochastic force is the main driving
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force here and there is no development of a bifurcated distribution,

though the peak of the distribution is flattening.

In case D2 the width of the individual peaks of the bimodal distri-

butions are narrower than in case C2, with the standard deviation

of the absolute velocities reducing to σ|v|= 0.871 from σ|v|= 1.107.

There is still a non-zero value of P (0), so the particles are not con-

fined to motion in one direction.

D3 shows a behaviour very similar to the previous near-adiabatic

cases in that the stochastic and adiabatic-analytical curves almost

match. There is a very low probability of a switch in this case as

P (0) ≈ 0, though the distribution of velocities around about the

stationary point is wider than for an adiabatic particle. D3 and D4

thus show very similar behaviours, with particles driven towards the

stationary velocity. The large differences in the stationary velocity

however mean that whilst D3 may be able to switch sometimes, D4

never can. Though the D4 distribution is close to the adiabatic case,

there is a slight deviation. The higher activity and energy available

confines the energy to values closer to the theorised adiabatic energy

e0, but the differences in the distribution show slight deviations away

from this value.
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Figure 4.12: Stochastic and analytical dimensionless velocity distributions for d0 = 1.0 with varying
q0 (top-left: E1, top-right: E2, bottom-left: E3, bottom-right: E4). Other parameters γ0 = 1.0,
D = 0.1, c = 0.001.

Finally, the velocity distributions for the highest values of d0

(cases E1-E4) are shown in fig. 4.12. E1 is an interesting case as

the standard deviation of the points is very close to the values from

all of the other simulations for this value of q0 at σv= 1.414, yet

the twin peak of the bimodal distribution is emerging. Table 4.7

shows the ratio of the σv, σ|v| and µ|v| values to |v0|D for all cases.

It is seen that the low d0 cases all have a |v0|D on the same order of
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Table 4.7: Ratios of standard deviations and mean to the absolute stationary velocity |v0|D for all
cases.

Case σv / |v0|D σ|v| / |v0|D µ|v| / |v0|D

A1 1.471 0.884 1.176
A2 1.048 0.574 0.877
A3 1.025 0.486 0.902
A4 1.004 0.126 0.997
B1 1.419 0.834 1.149
B2 1.049 0.414 0.964
B3 1.025 0.243 0.996
B4 1.005 0.078 1.002
C1 1.417 0.819 1.156
C2 1.049 0.350 0.989
C3 1.025 0.203 1.005
C4 1.006 0.074 1.003
D1 1.414 0.790 1.174
D2 1.050 0.276 1.013
D3 1.026 0.173 1.011
D4 1.008 0.072 1.005
E1 1.415 0.775 1.184
E2 1.050 0.255 1.019
E3 1.022 0.167 1.013
E4 1.008 0.070 1.006

magnitude as σ|v| (i.e. the ratio is close to 1). In other words, the

particles are not driven to regions of v where the active force dwarfs

the stochastic force. The particles spend parts of their trajectory

at lower v where the active contributions — though present — are

very weak. Once d0 is suitably high (as in case E1) the particles

will accelerate and consume energy during times at higher v, but

behave similarly to the other cases A1-D1 at lower v. As with all

other cases A1-D1, the adiabatic assumption does not hold for these

parameters.

The intermediate cases E2 and E3 behave similarly to the prior

cases D2 and D3. The distribution of velocities around the station-

ary points is again narrowing. This is seen by the lower value of σ|v|

for these cases. It can be seen that with such a large increase in d0,
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the relative reduction in the width of the distribution is minor, as

the particles near complete adiabatic behaviour. Nevertheless, both

distributions fail to match the analytical solution for an adiabatic

particle. In case E2 the probability of the particle being stationary

P (v = 0) is still non-zero, though the value is very small.

Whether or not a particle can change direction (i.e. travel through

v = 0) is dependent on both q0 and d0. For the chosen parameters c

and γ0, the value of q0 has a much larger effect on the value of v0 than

d0 does. Because the value of D is kept the same in all cases, as the

q0 value is increased from case B2 to B3, the velocity of the particle

relative to the velocity of a purely OU particle and the probability of

a stochastic event slowing the particle down enough for a switch to

be made reduces. This is complimented by an increase in d0, which

forces for the particle to react quickly to any changes in its internal

depot and move faster towards its fixed points. The combined effect

of a higher d0 and q0 values is to push particles towards adiabatic

analytical behaviour. Large enough values of q0 and d0 (i.e. E4)

confine the depot energy to values on the e0(v) line at and around

the stationary velocity v0. In this case the active force will be orders

of magnitude greater than the stochastic force and so the particle

can never switch direction.

For particles at or around the stationary velocity v0 in all non-

adiabatic cases, the fact that the velocity does not react instantly

to fluctuations in the depot level means that stochastic events may

push the particle horizontally in v − e phase space. The velocity
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of the particle may increase as a result of such an event, leaving

the depot level above the e0 curve until the system has a chance to

correct itself. The earlier discussed phase-space diagram (fig. 3.4)

and streamline plot helps to show how the particle velocity will then

be driven from this higher value back towards the stationary point

via the e0 line. When both the d0 and q0 values are large enough, the

depot level can update quickly due to the v2 relationship (the value

of the stationary velocity is higher) and the larger d0 coefficient.

This will be investigated in more depth in Section 4.4.

This analysis of the particle velocity distributions in different pa-

rameter regimes has highlighted four different particle behaviours.

This lays the foundations for the subsequent analysis of these par-

ticles in non-adiabatic regimes with a view towards defining these

behaviours in 1-D. These four behaviours are:

1. OU-like behaviour with a wider distribution. Particle motion

is accelerated by consumption of energy in the depot. Lower

values of |v0|D (from lower q0) mean that particles are found

frequently in low v regions where the active force (even with

higher d0) is less dominant than the stochastic force. Particles

are likely to be changing direction with a peak probability at

P (v) = 0 in most cases. Seen in all cases with low q0 = 0.1

(A1-E1).

2. The distribution of velocities is bimodal, with two peaks near to

the stationary velocities ±v0. The magnitude of the stochastic

force is enough to have some influence over the particles’ direc-
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tion. Changes in the depot energy are not instantly converted

into changes in velocity so the particle may exist at low veloc-

ities and high depot energy without necessarily being driven

quickly back towards |v0|D. particles are thus able to switch di-

rection. The stationary velocity is low enough that the positive

and negative velocity distributions overlap.

3. A more defined bimodal distribution of the particles is seen with

larger v0 and close agreement to adiabatic behaviour. There

is still a delay between the energy depot gaining energy and

this being converted into kinetic energy, thus the particle can

move through regions of v − e phase space which are not on

the e0 line. Fluctuations in the velocity due to the stochastic

force are offset quickly by the more dominant active force which

drives the particles strongly back towards the stationary points.

It is unlikely for the particle to change directions due to its

preference to remain near the stationary points. As P (v = 0) ̸=

0, particles are able to change direction, however the frequency

of this is low.

4. The particle behaves completely adiabatically as expected from

the theory. The large uptake of energy (and thus higher value of

|v0|) coupled with a high conversion rate mean that the particle

quickly responds to any deviations in depot energy by updating

the velocity — moving through v− e phase space strictly along

the e0 line. There is no possibility of the particle changing

directions once it has begun moving in 1-D.
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Table 4.8: Summary of observed behaviour types based upon definitions for all parameter variation
cases.

Case Distribution Type Case Distribution Type

A1 1 C3 2
A2 2 C4 3
A3 2 D1 1
A4 3 D2 2
B1 1 D3 3
B2 2 D4 4
B3 2 E1 2
B4 3 E2 3
C1 1 E3 3
C2 2 E4 4

In table 4.8, the data sets are referenced against their observed

behaviours according to these defined types. Moving forward, this

serves as a reference point when describing and explaining other

observed behaviours.

4.3.4 Low Activity Particles

In the cases A1-E1 (Distribution Type-1 particles as per the clas-

sification) where q0 was set to its lowest value, a unique behaviour

was seen. The close values of σv show that the standard devia-

tion of the particle velocities were all very similar. It was also seen

that the distributions were centred around the origin. OU parti-

cles have Gaussian distributions in velocity with a σv related to

the diffusion constant and a mean µv= 0 (eq. (3.1.10)). In order

to see more clearly the differences between these curves, they are

plotted against each other in fig. 4.13. Alongside these curves, the

analytical solution for an OU particle with D = 0.1, γ0 = 1.0 is

shown. Similarly, a Gaussian distribution with a standard devia-

tion of σv= 1.41 is shown as a reference to a theoretical OU particle
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with a similar standard deviation to the active particles. Case A1
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Figure 4.13: Dimensionless velocity distributions for particles with q0 = 0.1 shown alongside an
inactive OU distribution and an inactive OU distribution with σv= 1.41.

is unique in that it is the only distribution that follows the Gaus-

sian curve. The other cases are stretched wider — the probability

of finding particles moving at intermediate velocities is higher but

there is a lower probability of the highest values of v and decreased

probability of P (v → 0). For this low value of q0 there is not much

energy available in the particle depots. The static friction is not

easily overcome by the active force (because of low e and d0) and

the motion is mostly dominated by the stochastic force. Figs. 4.4
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and 4.6 showed a mostly overdamped response to these particles

approaching equilibrium when starting from rest. Individual parti-

cles which have depleted their depots and slow down due to friction

will display a similar response as they spend time at lower velocities

and re-accumulate energy slowly in their depots. Thus the unimodal

distribution is seen with a maximum at P (v = 0), except for in case

E1 where a bimodal distribution is just beginning to appear.

4.3.5 Conclusions

Particle trajectories were simulated for a variety of d0 and q0 values.

It was seen that increasing the value of q0 increased the value of the

stationary velocity v0. Four behaviours emerged from the different

parameter sets. The first behaviour showed OU-like distribution

of velocity with a mean at v0 and no emergence of bifurcation of

velocities. This was seen in parameter regimes where the rate of

energy uptake q0 was at its lowest and the resultant bifurcation

parameter was β = v20 > D
γ0
. At low values of both d0 and q0 as in

case A1, this behaviour was Gaussian with an increased value of σv.

Increasing the energy conversion rate d0 saw the probability at

intermediate v increase with the reduction of P (v → 0) due to the

particles expending depot energy to accelerate more quickly. At

higher velocities, particles quickly deplete their depots, after which

point static friction drives them back towards the |v0|D.

Type-2 distributions exhibit a clear bimodal distribution with the

peaks near to the stationary velocity v0, but with a clearly non-zero

value at P (v → 0). Particles are able to move through this bound-
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ary and spend parts of their trajectories moving at low velocity.

These were observed when the particle had a higher uptake of en-

ergy q0, resulting in a higher level of energy in the depot. The |v0|D

value is far enough away from v = 0 that the active dynamics begin

to dominate the stochastic events, however particles still find them-

selves in the low-velocity region and are able to change direction.

Increasing d0 in these cases narrows the width of the distribution

near to the stationary velocities, as the correction in the depot en-

ergy to fluctuations in velocity becomes quicker the particles are

driven to the stationary points more.

Type-3 distributions were defined where P (v → 0) ≈ 0 such

that particles could not switch direction once in motion. Secondly,

the particles in this category did not show adiabatic behaviour in

terms of the velocity distributions around the stationary velocities.

They differ from type-2 particles in that they are unable to switch,

and from type-4 particles because they are non-adiabatic. The two

bimodal regions of velocity space was not possible but the particles

did not behave adiabatically in energy. These particles had high

enough values of β that the stochastic motion could not cause the

particle to switch direction or the energy conversion rate d0 was high

such that the particle responded quickly to stochastic decreases in

velocity and was forced back towards the stationary point. This was

seen by the value of P (0) = 0.

The type-4 particles exhibited adiabatic behaviour in e. It was

seen that these particles had no probability of changing direction or
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moving at low v.

By looking at a range of values of d0 and q0 for OU particles with

EDs in 1-D, the trends of how particle velocity distributions change

as these parameters change have been identified. It is apparent that

the value of β on its own does not define the adiabatic behaviour.

Similarly, the low value of c does not make adiabatic behaviour im-

possible. It was seen that increasing d0 narrowed the distribution

of velocities around the stationary velocities ±v0. Due to the val-

ues of γ0 and c which were chosen, the position of this stationary

point was almost entirely controlled by the value of q0. Stationary

velocities which were large relative to the stochastic forces on the

particle showed particles which had no probability of moving at low

velocities and thus no probability of changing direction.

It is of interest to understand how the energy behaves over the

range of velocities. For non-adiabatic particles a particle moving at

a given velocity may have a range of values of depot energy. An adia-

batic particles is defined to have an energy which responds instantly

to changes in the velocity. The following sections will investigate

further how the energy behaves in order to add more resolution

to the four classifications made here and the reasons behind these

behaviours.

The one-dimensional case is unique in that the pathways through

low-velocity spaces are reduced.in 2- and 3-dimensions, other di-

mensional velocity components can consume energy from the depot

and thus the different velocity components are correlated with each
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other. The simulations and results within this section help to un-

derstand this special case where energy in the depot can only be

consumed in a fixed dimension.
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4.4 Particle Motion in Velocity-Energy Phase-Space

4.4.1 Introduction

In the previous section, particles with energy depots were inves-

tigated arriving at steady-state in velocity and energy from rest.

The velocity distributions of the particles at steady-state were also

investigated.

It was seen that by varying the rate of energy uptake q0 and the

energy conversion rate d0 independently, the particle behaviour both

prior to and at steady-state was changed. Particles with a higher

q0 and higher conversion rate d0 arrived at their steady-state faster

and fluctuated less around the steady-state values.

In total, four different behavioural types were observed from the

velocity distributions.

In the adiabatic case (D4, E4) the stochastic velocity distribution

agreed completely with the theoretical prediction. In some of the

other cases, there was a strong similarity though minor differences

showed that the particles were not behaving adiabatically. The

classifications of all of these cases are summarised in table 4.8.

This section examines the behaviour of particle depot energy in

order to investigate further the relationship between the parame-

ters chosen in the model and the emergent adiabatic, OU-like or

transitional behaviours outlined in the previous section.

The adiabatic assumption defines the energy as fixed as a function

of v (eq. (3.4.4)) as outlined in Section 3.4.3. This is seen as a line

e0(v) within v − e phase-space. When the particles in intermediate
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parameter regimes are exhibiting non adiabatic behaviour, it is of

interest to know exactly where and by how much the energy is

deviating from this line and in what manner.

4.4.2 Simulation Parameters

OU particles with EDs were simulated in 1-dimension starting from

rest with empty depots (v(t = 0) = 0, e(t = 0) = 0) for the same

range of parameters which have been covered previously (tab. 4.4).

A single particle was simulated over a trajectory length of tend =

30000 with a time-step ∆t = 0.1. The first 200 units of time were

ignored for each simulation. In total each simulation therefore con-

tained 298, 000 data points. This allowed for the movement of the

particle through v − e phase-space over consecutive time steps to

be observed. All other simulation parameters were identical to the

previous simulations (as per table 4.2).

4.4.3 Methodology

The value of v and e at each point in a trajectory was recorded as

an output from the simulation. In order to see the regions of v − e

phase-space through which the particle travels when starting from

rest, these were then displayed as individual points on a scatter plot.

The mean behaviour over a trajectory at each velocity was found

by splitting the velocity range into 400 bins of equal width. The

value of the energy for each point in the velocity trajectory was

attributed to the corresponding velocity bin. The arithmetic mean

value of energy in each bin was then calculated based upon the
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number of data points in each bin.

The theoretical adiabatic energy e0(v) for the particles was also

calculated and plotted as a line on the graph using eq. (4.4.1). Adia-

batic particles have depot energy values fixed to this line for a given

velocity, as any fluctuations in e are assumed to instantly adjust the

velocity. For non-adiabatic particles it will be observed how close

to this line the mean value of energy lies and for what values of

velocity there is agreement.

e0(v) =
q0

c+ d0v2
(4.4.1)

Another important value within the context of these simulations is

the pumping energy ep (eq. (4.4.2)) which was previously discussed

in more detail in Section 3.4.3. This defines the transitional energy

value above which particles will undergo pumping — a negative

friction term causes a positive contribution to the velocity from the

depot. Below this value the particle will be slowed — the static

friction is reduced by the active component but the overall friction

is still positive.

ep =
γ0
d0

(4.4.2)

In sections 4.2 and 4.3 the absolute value of the velocity was anal-

ysed and distributions were mirrored around the axes. In the fol-

lowing section, the data was analysed in a raw directional format in

order to highlight any trajectories which switched direction during

the simulations.
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4.4.4 Particle Motion through v − e Phase-Space

The dynamics of the active friction γ(v) for an adiabatic particle

were discussed in 3.4.4. It was seen that the particles exhibited ei-

ther pumping or dissipative characteristics depending on the instan-

taneous velocity, and that the friction drove the particles towards

the stationary velocity v0.

For non-adiabatic particles, the active friction is dependent on

the dynamics of both the depot energy e and the velocity v. Again

using the concept of an active friction, the particles may now be

thought to be driven towards the stationary points within a two-

dimensional phase-space (v, e). The dynamics of this phase-space

are again governed by the set of LEs for the ED model (eqs. (4.1.8))

in the absence of any adiabatic assumptions, as is shown in fig. 4.14.

For deterministic particles, the direction and velocity of motion

through this space is exactly defined for a set of parameters by the

solution to the LEs (eqs. (4.1.8)) where ξ(t) = 0. For stochas-

tic particles, the deterministic (drift) particle motion through the

phase-space is the same — though there is now an additional diffu-

sive component of the motion away from the flow lines as a result of

the stochastic force. As a result, at the next discrete time-step the

drift motion of the particle through the space will then be dictated

by the streamline at the new value of (v, e) and the stochastic force

will continue to cause particle diffusion to other streamlines.

It was previously seen that all of these streamlines in phase-space

lead towards the stationary points at (±v0, ep). At these points

125



Ensemble Average Behaviour of Particles with Energy Depots in 1-D
Particle Motion in Velocity-Energy Phase-Space

3 2 1 0 1 2 3
v

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

e

ep

e0(v)
Fixed Points

Figure 4.14: Velocity and energy streamlines for a deterministic particle with ED. The lines show
the particle motion in (v, e)-space always tending towards the stationary points at (v0, ep). Example
values: q0 = 2.0, c = 0.001, d0 = 6.0, γ0 = 1.0.

ep = e0(v0), where ep is the pumping energy which separates the

behavioural regions of the phase-space. Values of e above ep have

an effective negative frictional coefficient, where values below have

an effectively reduced static friction value. The third stationary

point at (0,q0c ) will not be reached in stochastic systems, as any

non-zero particle velocity drives them towards the other stationary
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points and the probability of remaining stationary at v = 0 for long

enough to gather enough energy to reach this stationary point is

extremely small.

The way in which the system reacts to the stochastic force on the

particles for different values of d0 and q0 will be investigated. These

parameters were shown previously to control the position of the

stationary points and the distributions of velocities which particles

may take. The distribution of energy values and the mean energy

values are now investigated.

4.4.5 Scatter Plot of Trajectories (d0 = 0.1)

An initial investigation into the behaviour of the energy in v − e

phase-space for simulated particles was conducted.

A full scatter of the particle velocities and corresponding depot

energies across all points in a trajectory are shown in fig. 4.15 for all

cases A1-A4. These particular cases were chosen to show the vari-

ability in the depot energy which may occur for any given velocity

in very non-adiabatic regimes.
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Figure 4.15: Scatter plot of particle velocity and energy at intervals of ∆t = 0.1 (top-left: A1, top-
right: A2, bottom-left: A3, bottom-left: A4). Each green point shows the depot energy to an instance
where a particle was found at velocity v throughout the trajectory. The lines show the adiabatic energy
e0(v) (red) and the pumping energy ep (blue). The stationary points are found at the intersections
of these two lines. Trajectory length tend = 30000.0. Other parameters d0 = 0.1, γ0 = 1.0, D = 0.1,
c = 0.001

Every tenth data point in the trajectory was plotted (∆t = 0.1

between points). It can be seen that the energies are spread over a

large region and take multiple values for each velocity. Scatters for

all other cases may be found in Appendix 7.5.

The plot shows that for all four cases that the particles spread

around certain points of the v−e space, and thus confirms the non-

adiabatic nature of the particles discussed earlier. In the most active

case seen here, A4, this cloud of points is centred around the positive

stationary point. The lack of a cloud at the negative point shows
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that over this specific trajectory length the particle did not change

direction. The spread of e and v around this deterministic point

is the result of the stochastic force. As the particle drifts through

this phase-space along the streamlines from fig. 4.14 there is also a

diffusive motion. There is thus a probability that it may exist at

points nearby, as opposed to a definite value at each velocity. This

probability is set in part by the diffusion constant D, though the

energy-velocity correlation means that other simulation parameters

will also affect it. This was seen in the previous sections where

an increase in conversion rate d0 narrowed the distribution of the

velocity distributions at a constant value of D. In the lower activity

regimes, the spread is wider as the active force drives the particles

less towards the stationary point and the stationary point itself is

at lower v (there is a lower magnitude of the active force at this

point).

In the least active case A1, all points in the trajectory exist at

energies below the ep line. The depot energy never reaches ep and

so the pumping effect of negative friction is never present.

In cases A2 and A3, particle energies are on the order of ep. The

distribution of points resembles two clouds around the stationary

points which merge in the centre. It was seen earlier (fig. 4.8) that

two peaks began to form on the velocity distribution near to the

stationary velocity v0 for these cases. The overlap of the two clouds

of points forming near to the stationary points in cases A2 and

A3 show that when a particle exists within the region of phase-
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space where this overlap occurs, it is able to continue towards either

stationary point. These regimes allow for the particle to switch

direction.

In A4 only one cloud is seen, which is focused around the positive

stationary point. It can be seen that the particle is not adiabatic as

there is a spread of energy points about the e0 line. It can also be

seen that the particle has no route to switch directions as v is never

at a low enough value where the stochastic fluctuations could cause

direction change.

Each case was attributed to one of 4 types of behaviour in ta-

ble 4.8. These plots add further resolution to these definitions. The

scatters of v and e in v−e phase-space overlap almost completely in

type-1; in type-2 are centred around the stationary points though

overlap at v0 in some way; in type-3 are centred around the station-

ary points though for a single particle do not overlap. The value of e

for type-3 particles is not bound to e0(v) — with values seen above

and below this value. Though none of the cases A1-A4 exhibited

type-4, by definition the distribution of energies should be centred

around the stationary point with a value of e(v) = e0(v) (i.e. all

values are on the e0 line).

The cloud of points in all of A1-A4 show that none of these par-

ticles are behaving adiabatically, as the trajectories took multiple

values for any given v away from the e0 line.

The large quantity of data points presented in the plot for this

initial investigation makes the frequency of each value of depot en-
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ergy difficult to observe. This will be addressed in the full analysis

of the results.

4.4.6 Results

To show the expected behaviour of the particle energy with velocity

more clearly, the mean value of e within small bins of velocity space

vi, ⟨e(vi)⟩, was calculated for all cases A1-E4. The graphical results

are presented in figures 4.16, 4.17, 4.18, 4.19 and 4.20. The values

of both e and v were made dimensionless through the previously

defined length and timescales.
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4.4.6.1 Cases A1-A4 (d0 = 0.1)
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Figure 4.16: Energy-velocity scatter from trajectories of varying values of q0, d0 = 0.1 (top-left: A1,
top-right: A2, bottom-left: A3, bottom-left: A4). Other parameters tend = 30000.0, np = 1, γ0 = 1.0,
D = 0.1, c = 0.001.

The mean values of energy in case A1 all exist below the blue line,

indicating as expected that the energy depot does not pump the par-

ticle but instead reduces the effect of the static friction. The values

of energy show no relationship with the adiabatic e0 line and there

is little variation across the range of v. Earlier, a velocity distribu-

tion with a Gaussian like shape and an increased value of σv was

seen (table 4.6) for this case. This is explained by the near-constant
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mean energy, the depot level is more or less the same across the en-

tire velocity range meaning that the active friction term becomes

constant also with velocity (as with an OU particle):

⟨γ(v)⟩ = γ0 − d0⟨e(v)⟩ (4.4.3)

In case A2 all values of ⟨e(v)⟩ are within the region ep > e > e0 when

|v|> v0. The deterministic motion of the particles in this region of

v− e space is driven towards the stationary point along the e0 line,

however it seems that the low value of d0 means that the particles

cannot deplete the energy depot quick enough to ever reach this

line and so instead hover just below the ep line. At the stationary

velocities the mean energy lies close to the adiabatic value.Velocities

just below v0 show energies below the ep line, while particles at

lower velocities have energies greater than ep. This behaviour is

consistent with the earlier observation that particles moving around

at low velocities accumulate energy in their depots, so that when

a stochastic event moves them to a higher velocity they can stay

there for a longer time due to their sustained activity countering

the passive friction.

Case A3 shows similar behaviours to A2, though there is a clearly

higher energy at velocities close to 0. At high values of |v| the mean

energy is seen to spike above the ep line. Due to the fact that

P (v) → 0 at this velocity (bottom-left of fig. 4.8) the statistics at

these points are not likely to be fully accurate within this popula-

tion. It is nevertheless interesting to note that for both positive and

negative velocities this behaviour was observed. It is possible that
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because this is the upper limit of velocities reached, all data points

correspond to particles which have accelerated into this region of

the phase-space. There is no data for the particle slowing from a

higher v, which would be expected to approach with a reduced de-

pot energy (as per flow-lines in 4.14). These outliers in depot energy

at the upper limits of velocity merit further investigation.

Outliers are seen at high values of |v| which are likely due to the

unlikely stochastic events which move particles with large e values

quickly from low to high velocities. The similarities in the v − e

behaviour of cases A2 and A3 reinforce the similarities seen in the

velocity distributions previously, where particles can exist at low

velocities for periods of time collecting energy in their depots so that

when they accelerate to higher velocity regions where this energy is

expended, they can move in either direction. Hence particles can

switch direction.

In A4, a single straight line of points is seen around the positive

stationary point. This shows that the v− e behaviour here is much

more well defined than in the other cases. The high rate of uptake of

energy increases the depot level such that even for a low activity the

particle is actively driven towards the stationary points, and even

strong stochastic events are not enough to slow the particle down.

The particle is non-adiabatic as previously observed, but is most

likely to take the value of e0 at the stationary point. No particle

measurements were seen at low v, as seen by the lack of points in this

region. When fluctuations happen to reduce the particle velocity,
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the conversion rate of energy y is so low that the particle depot

energy increases rapidly (similar to as in figs. 4.5, 4.6) which forces

the particle to accelerate (in the current direction) before it has the

chance to slow down enough for fluctuations to change its direction.

4.4.6.2 Cases B1-B4 (d0 = 1.0)
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Figure 4.17: Energy-velocity scatter from trajectories of varying values of q0, d0 = 1.0 (top-left: B1,
top-right: B2, bottom-left: B3, bottom-left: B4). Other parameters tend = 30000.0, np = 1, γ0 = 1.0,
D = 0.1, c = 0.001.

Fig. 4.17 shows the energy-velocity graph for cases B1-B4. B1 shows

a similar trend to case A1, though the energy value is notably higher

at lower values of |v| than at higher values. While case A1 had an
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approximately constant active friction ⟨γ(v)⟩ (eq. (4.4.3)), in the

case of B1 ⟨γ(v)⟩ is in fact slightly lower at higher velocities. This

explains why the velocity distribution is not Gaussian as seen in

fig. 4.13.

Cases B2 and B3 show very similar behaviours to one another.

Particles at low velocities have a much higher value of ⟨e(v)⟩ than

those at higher velocities. The low activity ensures that at low

velocities particles do not consume their depot reserves. Increas-

ing the activity increases the value of this stationary energy ⟨e(0)⟩.

In both of these cases it can be seen at the stationary point that

⟨e(v0)⟩ ≈ e0(v0) ≈ ep — i.e. it is equal to the energy at the station-

ary point v0. For |v|> v0, it is seen that ep > e > e0 as in cases

A2-A4 (fig. 4.16). This again shows that particles are being driven

back towards the stationary points as seen in the streamline plots,

though the conversion rate d0 is not high enough to quickly convert

excess energies.

The highest energy case B4 again shows the particles being trapped

on one side of velocity space and fluctuating around the stationary

point. At the highest |v|, the mean energy lies very close to the e0(v)

line, while at lower |v|, the mean energy is below e0(v). Therefore,

this case shows a mixture of adiabatic behaviour (at higher |v|) and

non-adiabatic behaviour (at lower values of |v|). Due to the high

value of |v0|, the stochastic force is again not enough to overcome

the large active force component and change the particle direction.
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4.4.6.3 Cases C1-C4 (d0 = 2.0)
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Figure 4.18: Energy-velocity scatter from trajectories of varying values of q0, d0 = 2.0 (top-left: C1,
top-right: C2, bottom-left: C3, bottom-left: C4). Other parameters tend = 30000.0, np = 1, γ0 = 1.0,
D = 0.1, c = 0.001.

The trend seen in the previous cases is also seen in fig. 4.18 for

cases C1-C4. The distribution of energies for C1 is more arched

than in case B1, though still completely below the ep line. This

further enforces the idea that these particles are being accelerated

at higher velocities with the energy accumulated from low velocities.

For cases C2 and C3, both of which were previously defined as

type-2 distributions in table 4.8, we see similar behaviour. This is
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consistent with the other type-2 cases B2 and B3 (fig. 4.17). The

depot energy at low |v| and when the particle is nearly stationary is

higher as the particle gathers up energy in the depot but is unable

to convert it in to kinetic energy. At higher velocities the particle

is driven towards the stationary point. Case C3 shows values of

⟨e(v)⟩ much closer to e0(v) at higher velocities than in the previous

cases. Though the points do not all overlap, there is a clear trend

towards behaviour closer to adiabatic in this case. Case C4 again

shows near-adiabatic behaviour, though at velocities below the sta-

tionary point there is a deviation from adiabatic behaviour. As the

energy conversion rate has increased, the particle energies at higher

velocities have become more likely to reside closer to the e0 line.
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4.4.6.4 Cases D1-D4 (d0 = 6.0)
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Figure 4.19: Energy-velocity scatter from trajectories of varying values of q0, d0 = 6.0 (top-left: D1,
top-right: D2, bottom-left: D3, bottom-left: D4). Other parameters tend = 30000.0, np = 1, γ0 = 1.0,
D = 0.1, c = 0.001.

The plots for cases D1-D4 (fig. 4.19) continue to show the trends

which have been seen developing over the cases discussed so far for

smaller values of d0. As the d0 value is increased even further, the

difference between the energy at low velocities and at higher veloc-

ities in case D1 is far greater than was seen in the previous type-1

cases. The value of ⟨e(vi)⟩ in the centre of the plot is close to the ep

line. In the velocity distribution (figs. 4.11, 4.13) for this case the
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rounded peak which was previously seen had begun to flatten out

as the distribution widened and moved towards the double peaked

bimodal distribution seen in the more active cases. At higher veloc-

ities, the energy is much closer to the e0 line than in the previous

cases.

Case D2 shows a strong resemblance to the previous type-2 distri-

butions seen in earlier figures, with a large energy level for immobile

particles and particles moving faster than v0 on average behaving in

an adiabatic manner. Increasing d0 from case C3 to case D3 shows

the energies at high velocities adhering more to the adiabatic line,

while particles now appear never to reach the v → 0 area of the

phase-space — the particle does not change direction. It is not pos-

sible from this trajectory length to conclude that the particle would

never switch direction. A closer look at the probability of particles

switching directions will be seen in the following section.

The final case D4 shows the average value of energy lying along

the adiabatic line for all v — i.e. ⟨e(v)⟩ = e(v). The velocity

distribution for this curve (fig. 4.11) showed very minor differences

between the adiabatic distribution and the stochastic result, though

it is clear from both of these results that these particles are forced

towards the stationary points where the motion is completely con-

trolled by the active force.
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4.4.6.5 Cases E1-E4 (d0 = 10.0)
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Figure 4.20: Energy-velocity scatter from trajectories of varying values of q0, d0 = 10.0 (top-left: E1,
top-right: E2, bottom-left: E3, bottom-left: E4). Other parameters tend = 30000.0, np = 1, γ0 = 1.0,
D = 0.1, c = 0.001.

The final set of results in fig. 4.20 help to conclude the analysis of the

behaviours which have so far been seen to be emerging, particularly

in cases E1 and E3.

Case E1 is the first of the particles with this value of q0 to show

a value of ⟨e(vi) at any point in the distribution above the ep line.

It is also the only one of these five cases where the velocity distri-

bution contained two separate peaks (fig. 4.13). At much higher
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velocities the energy is almost adiabatic on average, inferring that

in this case the particle is non-adiabatic due to the low value of en-

ergy in the depot and resulting preference to remain in low-velocity

areas of phase-space. The particle builds up its energy at a low

velocity where it is then moved towards either stationary point by

the stochastic force. Due to the low level of energy available in the

depot, the particle depletes its depot quickly and so the particle can-

not accelerate to extreme velocities. As the depot energy conversion

rate is high, any stochastic event can move the particle quickly away

from low velocities. Low-v particles have values of e(v) > ep so they

are quickly accelerated to higher v where e(v) < ep. This quickly

depletes the depots and they slow down again as the net friction

is still a drag. The emergence of bimodal distribution in figs. 4.12

and 4.13 is caused by ⟨e(v = 0)⟩ > ep.

Case E2 behaves in a very similar manner to case D2, though the

values of the energy at higher velocities indicate a more adiabatic

behaviour in this part of phase-space· At lower velocities (|v|< |v0|),

the energies of the particles lie above the ep line but below the e0

line, the particle energy is driven upwards until it can move into

a region of velocity space where it can deplete its depot. This is a

good example of these type-2 particles which show a combination of

adiabatic-like (type-4) active motion at high velocities, and slightly

active OU (type-1) behaviour at low velocities.

Case E3 again shows the mean energy of these particles almost

perfectly agreeing with the adiabatic energy e0 though there are de-
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viations and outliers seen at lower velocities. The behaviour around

the stationary points is similar to that for other type-2 and type-3

particles, where particles above v0 deplete their depots before being

slowed along the e0 line towards the stationary point and particles

moving slower than v0 accrue energy in their depots which they then

use to accelerate towards this point.

It is also seen that there are some points with negative v through-

out this trajectory, the erratic distribution suggests that these are

outliers with poor statistics. This is confirmed by the scatter plot

shown in Appendix 7.5 in fig. 7.5. Though the particle did change

direction, it did not then transition towards the negative station-

ary point −v0. As the particle is memoryless, it is likely that a

stochastic event sent the particle back to positive v space from this

point. The trajectory length in negative v was therefore short com-

pared to that in positive v. It is not possible to see from the graph

whether this happened multiple times, though attention is drawn to

this event prior to the upcoming discussion of the particle switching

time distributions in the following sections. The presence of data in

the low-negative-v region of the phase-space without a correspond-

ing trajectory finishing at the negative fixed point shows that for

type-2 particles at low velocity particles do not automatically drive

towards the stationary point with the same sign (direction) as their

current velocity. Fluctuations can still make them change direction

again while v is low.

The adiabatic case E4 shows the mean energy lying along the
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e0 line at all v. Though there are some small deviations from this

value, this is most likely due to the resolution of the simulation

time step. The previous benchmark calculations carried out for

this case (fig. 4.2) showed a small error between e and e0 which

would account for these small fluctuations. In this case, the particle

fluctuates along the e0 line around the stationary velocity as a result

of the stochastic force, but is driven back towards this point from

either side due to the pumping of energy from the depot into the

particle (lower v — e > ep) or the increased static friction on the

particle (higher v — e < ep).

4.4.7 Conclusions

By looking at the mean value of energy across the range of velocities

a deeper understanding of the four previously described behaviours

was seen. The type-1 particles showed a single cloud of points, with

the mean values of the energy similar across the range. This meant

that in low energy cases the active friction was a constant positive

value less than the static friction as ⟨e⟩ was on average always below

the ep line. This gave the particles an “effective diffusion constant”

greater than D, which was seen previously. For more active cases,

these type-1 particles had lower mean energies at higher velocities

but were overall seen to not show any preference for bifurcation

towards the stationary points. This correlates with the velocity

distributions where more active particles deviate from a Gaussian

distribution of velocities and instead are more likely to exist at inter-

mediate velocities whilst still maintaining the same overall variance.
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The most active type-1 case E1 was the first case of this q0 value

where the mean velocity energy reached the pumping line at low

v. This was also the first type-1 case where the velocity distribu-

tion began transitioning to a double-peaked distribution. It was

seen that particles at lower velocities would readily store energy in

higher quantities which would then be used to accelerate the par-

ticles at the higher velocities, where the conversion rate was high

enough to maintain an active motion. This particle appeared on

the transition between the classified type-1 and type-2 behaviours.

For type-2 particles at low v, the mean energy was always above

the pumping line indicating a low rate of depot depletion at these

velocities. At velocities higher than the stationary velocity v0, the

mean particle energy depot level was higher than the adiabatic en-

ergy e0(v). The lower conversion rates and lower value of v relative

to adiabatic particles means that the timescale of energy conversion

in these cases is comparable with the timescale of the stochastic

force. The large amount of statistical data gathered at low veloci-

ties and the slow reaction of the energy depot confirms that particles

fixed in 1-dimension in these parameter regimes may switch readily

between the positive and negative directions.

Type-3 particles never existed at low velocities and were not

seen to change direction frequently within the trajectories. They

showed similar behaviour to type-2 particles at intermediate veloc-

ities, where e0 > ⟨e⟩ > ep. At the stationary velocity and values

above it these particles took energy values of ⟨e⟩ ≈ e0. This sug-
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gests that at lower velocities the particles are clearly non-adiabatic

but as the velocity of the particle increases the v2 term in the en-

ergy update formula becomes more powerful and drives the particle

energy more towards e0.

Case E4 showed all points lying within a narrow band of v on

the e0 line. This shows that for high stationary velocity v0 when

the depot-energy available is also large; if the conversion rate d0 is

suitably high the particles behave in an adiabatic manner.

This analysis has shown the emergence of the transition between

the adiabatic and non-adiabatic behaviour more clearly. The parti-

cle begins to drive itself towards the stationary points and overcome

the stochastic force when the velocity is high relative to the diffu-

sion constant and the conversion rate is also high. Simply increasing

the value of the parameters to increase β does not make the par-

ticle adiabatic, as the conversion rate must also be high enough to

convert the energy quickly. In non-adiabatic cases the energy is dis-

tributed more widely at lower velocities. In cases where the value

of d0 is very high, the particle still behaves non-adiabatically at low

velocities.

It was seen that particles which are adiabatic do not change

direction, moving in the same direction as the initial velocity for

the entire trajectory. Type-3 particles also maintained this direc-

tion, though they did not behave adiabatically. Type-2 particles

were seen to move around the stationary velocities frequently but

also were seen to exist at low velocities for times long enough that
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stochastic fluctuations could cause a change in direction.
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4.5 Chapter Conclusions

In this chapter we investigated ED particles in 1-D starting from

rest, and at steady-state. It was seen that in higher d0 and q0

regimes, particle behaviour was closer to that of an adiabatic par-

ticle. For lower activity systems — discrepancies were seen be-

tween the distributions of energy e(v) and the expected adiabatic

energy e0. Simulated velocity distributions found through a stochas-

tic methodology also differed from the analytical steady-state veloc-

ity distribution PSS(v), as expected due to the analytical solution

being calculated using the adiabatic assumption.

We have shown that particles exhibit non-adiabatic behaviour at

low velocities when the rate of consumption of the depot energy is

diminished. Thus we can say that this assumption only holds when

particles do not transition through low-velocity regions of space. In

1-D (or a potential special case of separate depots for each cardinal

direction of motion), this is simply the particle velocity. In higher

dimensions this means the magnitude of the velocity vector.

In the following Chapter 5, we will study the switching behaviour

between the two stationary regions of v in order to further under-

stand the directional switching behaviour of these particles in 1-D

which was observed in Section 4.4.
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5.1 Introduction

The behaviour of single trajectories of Ornstein-Uhlenbeck (OU)

particles with energy depots (EDs) is investigated. Particles in the

different parameter regimes introduced in Chapter 4 were simulated

in time until they switched direction. This process was repeated

to generate a population of switching events with which the over-

all characteristic time distributions for the survival time a particle

would move in the same direction was found. We present these

results as switching time distributions.

The v and e behaviours just before and just after these switches

were then observed to investigate relevant patterns and further cat-

egorise the parameter regimes.

The two characteristic timescales which emerge — correspond-

ing to the fast-switching of OU-like trajectories and the slower-

switching driven behaviour near to the stationary points — are fit-

ted to curves. In this way, we are able to quantify these timescales

and compare them with each other.

Finally, the auto-correlation of the velocity and depot energy in

these regimes is investigated and compared. We investigate the

result and tie the auto-correlation, switching time-scales and the

results from Chapter 4 together to better understand the transitions

that OU particles in 1-D with EDs make between the higher v and

lower v regions of velocity space.
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5.2 Particle Switching Time Distributions

5.2.1 Introduction

In Chapter 4 we carried out agent-based simulations of OU particles

with EDs (ED particles) in 1-D and saw that in certain parameter

regimes (lower d0 and q0) the particles were non-adiabatic — they

go through periods of motion close to that of an adiabatic particle

at high v, but also move at lower velocities where the particle may

behave in a more OU-like (inactive) manner. By varying the q0 and

d0 values, particles show varying levels of the mixture of these two

behaviours. In Section 4.4, the velocity and energy trajectory of a

single particle and the average depot energy over the entire range of

velocity were observed and it was seen that particles which are able

to reside at low velocities remain there for a time, building up a store

of energy before they return toward the stationary point regions of

v− e phase-space. This is also observed analytically by considering

the active friction γ(v) which was previously introduced:

γ(v) = γ0 − d0e(v) (5.2.1)

These mixed behaviour systems correspond to type-1 and type-2

classification outlined in Section 4.3.3.

At values of 0 < e < ep (below the pumping energy defined in

eq. (3.4.7)) the static friction on the particles is reduced, however the

positive friction value still results in a dragging force. The particles

behave like OU particles with reduced friction (i.e. γ0 > γ(v) > 0).

Particles are likely to remain at low velocities in this case as there
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is no pumping action from excess depot energy.

Therefore it may be said that at in the low velocity region, these

particles are behaving similarly to OU particles, whilst at higher ve-

locities their behaviour is closer to that of adiabatic particles, whilst

still not being in the adiabatic regime. Purely adiabatic particles

(type-4) will always remain on the e0 line and so never cross the

threshold of v = 0 (i.e. switch direction). This would require the

accumulation of e0(v = 0) energy in the depot which is very high

for any adiabatic conditions so will never be observed.

Conversely, OU-like active particles (type-1) are primarily gov-

erned by the stochastic force. In these cases the stationary velocity

is at a low enough value that the distribution of velocities around

these points overlap greatly, making the particle more likely to exist

in between the two values of ±v0.

In this section we measure the length of time a particle spent trav-

elling in the same direction. Upon switching direction, the timer was

reset and the length of the subsequent trajectory was then recorded.

Histograms of these results were generated in order to measure the

probability distribution of switching times over a single long trajec-

tory for each particle (i.e. parameter configuration).

5.2.2 Simulation Parameters

The same values of γ0,D, c and ∆t were used as outlined in table 4.2.

A single particle starting from rest with an empty depot (v(0) = 0,

e(0) = 0) over a trajectory of length tend = 2 × 107 was simulated.

This corresponded to 2× 109 data points with ∆t = 0.01.
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5.2.3 Methodology

The initial 200.0 units of time were discounted from each simulation

as before to ensure that the simulation started from steady-state.

The time that the particle had been travelling in the same di-

rection before switching was recorded from immediately after the

previous direction change, until the time step immediately after the

next direction change. For particles which never change direction

(the type-4 near-adiabatic case), no results were ever recorded. It is

also noted that for some type-3 particles, the time taken to switch

direction is so large for the corresponding time the simulations run,

that not enough switches were recorded in order to observe sta-

tistically meaningful results, even though type-3 particles are able

to switch. The duration of each switch trajectory was continually

recorded until the particle switched directions again.

Each switch was assigned to a bin in the histogram and the over-

all distribution of these times was plotted in a histogram. Due to

the large number of switches when particles exhibit OU behaviour

compared to those on a longer timescale, a logarithmic distribution

of bin widths was used. The bins were normalised for the relevant

width and the centre point of the bin was plotted against the prob-

ability of a particle trajectory length occurring within that period.

The bins were selected heuristically such that there were 100 bins

of width 0.01 in the range [0, 1]. For all values 10n above this the

bin width was adjusted to n− 1 for an exponentially increasing bin

width as tauS increased.
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The resultant normalised distributions represent the hitting time

distribution h(τS) as defined in eq. (3.5.7) — the probability dis-

tribution for how long it takes for a particle to hit the absorbing

boundary at v = 0 (i.e. to switch directions).

One artefact of this methodology is that the particle initial ve-

locity and energy were not constant. Due to the numerical methods

employed, the minimum resolution is set by the value of ∆t over

how close or far away from the true value of the beginning or end

time of the trajectory the recorded time is. It is also not possible to

separate the switches of particles which switch with low depot ener-

gies from those which switch with higher depot energies by looking

at the data in this way.

5.2.4 Results

As with previous sections, the results are presented in sets of con-

stant values of d0 with varying q0 corresponding to the parameter

configuration cases defined in tab. 4.4. These are shown in fig-

ures 5.1, 5.2, 5.3,

As switching only occurs for type-1 and type-2 particles, results

are only presented for the cases defined as these in tab. 4.8 in figs. 5.4

and 5.5.

5.2.4.1 Cases A1-A3 (d0 = 0.1)

In fig. 5.1 cases A1-A3 the number of switches over the entire trajec-

tory length for all cases is high enough to guarantee good statistics.

It is seen clearly that all three cases have an exponentially decaying
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Figure 5.1: Switching time distributions for particles with varying q0 at d0 = 0.1 (cases A1-A3).
Other parameters ∆t = 0.1, γ0 = 1.0, D = 0.1, c = 0.001

distribution of low values of τs which a characteristic time which

decreases slightly as the activity is increased. At around τs = 5.0,

an increase in the probability is seen for cases A2 and A3, where a

hump-like decay then forms. In case A1, the tail of the distribution

is much more similar to the pure OU case.

5.2.4.2 Cases B1-B3 (d0 = 1.0)

In fig. 5.2 for cases B1–3, the behaviour is much the same as in

the first set of graphs, though now there is a much clearer differ-

ence between the initial decay and the second emergent timescale
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Figure 5.2: Switching time distributions for particles with varying q0 at d0 = 1.0 (Cases B1-B3).
Other parameters ∆t = 0.1, γ0 = 1.0, D = 0.1, c = 0.001

for particle switching in cases B2 and B3. This is combined with a

steeper initial decay, where cases B2 and B3 deviate from the OU

like behaviour of case B1 much earlier. An emergence of two dif-

ferent timescales of switching is becoming apparent in the type-2

particles.

5.2.4.3 Cases C1-C3 (d0 = 2.0)

Cases C1-C3 (fig. 5.3) continue to show the trend of an increasing

rate of decay of the short timescale as particles become more ac-

tive. The type-2 particle cases C2 and C3 show once more the two
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Figure 5.3: Switching time distributions for particles with varying q0 at d0 = 2.0 (Cases C1-C3).
Other parameters ∆t = 0.1, γ0 = 1.0, D = 0.1, c = 0.001

different timescale behaviours, with an initial OU-like decay where

most particles are likely to switch, followed by a longer timescale

“hump”. The flat region shows there is a wide range of equally

likely timescales of trajectories between switches.

5.2.4.4 Cases D1-D3 (d0 = 6.0) & E1-E3 (d0 = 10.0)

Cases D1–3 and E1–3 behave much like the first three sets of pa-

rameters, though as D3 and E3 begin to transition from type-2 into

type-3 classifications of particles, the likelihood of switching direc-

tions decreases greatly and the statistical data available over these
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Figure 5.4: Switching time distributions for particles with varying q0 at d0 = 6.0 (Cases D1-D3).
Other parameters ∆t = 0.1, γ0 = 1.0, D = 0.1, c = 0.001

long trajectories diminishes. All cases, no matter the classification

of distribution or activity of the particle, have a very similar decay

at very low values of τs, with an increased likelihood of surviving

for longer times once breaking past this initial limit. Only type-2

particles show the second, longer timescale tail to the distribution

where particles continue in the same direction for a long time.

Case E1 shows the emergence of a transition into this type-2

behaviour as a slight bump in the distribution is seen at around

τs ≈ 1.0.
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Figure 5.5: Switching time distributions for particles with varying q0 at d0 = 10.0 (Cases E1-E3).
Other parameters ∆t = 0.1, γ0 = 1.0, D = 0.1, c = 0.001

For case E3 there are bins with no data for this case at intermedi-

ate τs, showing a clear separation of timescales for short-switching

trajectories (lower τs) and long-switching-trajectories (higher τs).

5.2.5 Conclusion

In the previous sections when the velocity and energy distributions

of particles were observed, it was seen that all of the cases which

exhibited switches could exist in some manner around the v = 0 re-

gion, though in more active (higher d0) cases they are driven towards

the stationary velocity ±v0. The energy scatter clouds showed an
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overlap of the two clouds of points around each stationary point in

v − e space in some cases at values of v = 0 as well, and so there

was a clear pathway through this phase-space for particles to switch

directions in v.

These figures reinforce this behaviour. The type-1 particles ex-

ist much like OU particles, though the active force may drive them

slightly in the direction of travel; which in the more active cases re-

sults in trajectories which take have a longer switching time τs.

The strength of the stochastic force relative to the active force

means that eventually one of the more powerful stochastic events

will change the particles’ direction. This is seen by the similar decay

rate with only a slightly delayed value of τs before all particles have

switched.

As the particles move towards bimodal behaviour this same phe-

nomenon is seen (at lower v); which is why the low τs regions of all

of the distributions are almost identical. At intermediate τs, once

the particle reaches the stationary velocity or higher regions of v-

space in these more active cases, it takes a much less likely chain

of stochastic events to overcome the active motion and move the

particle back to the low velocity region where it can switch direc-

tions again. The timescale on which these rare stochastic events

are most likely to occur is characterised by the second “hump” of

the distributions in these type-2 particle cases. It can be seen that

these events are less probable than the OU switching.

In summary, two timescales for switching were observed. The
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first occurs at low velocities where the stochastic force is dominant.

Particles are not driven far away from v ≈ 0 and so the stochastic

force can overpower any active force to change the direction in the

particles. The time between these switches is therefore low.

The second is the timescale of a particle to move away from the

steady-state region around the stationary points. Infrequent chains

of stochastic events combined with the correct conditions of depot-

energy must first slow the particles to a lower v where they are able

to switch direction

Both of these characteristic times for switching for the simulated

data will be fitted in the Section 5.4.
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5.3 Velocity and Energy Before and After Switches

5.3.1 Introduction

It was seen in Section 4.4 that for particles which switched direc-

tions, the energies around the origin v = 0 varied and were on aver-

age higher than those at other velocities in the system. In the previ-

ous section two emergent timescales for switching were observed —

very short, and long. As all particles must travel through the low v

space in order to change direction, it was concluded that long time-

scale switching was the result of particles reaching low v through a

chain of stochastic events where they would behave as if they were

on a short-time switching trajectory.

This section looks at the velocities and depot-energies of particles

in the times around switching, i.e immediately before and immedi-

ately after a switch occurs. The aim is to gain an understanding of

the dynamics which cause switches.

5.3.2 Methodology

The same simulation output data from the previous Section 4.3 was

used to measure the values of e and v immediately before and after

a switch occurred — i.e. the final point when a particle was moving

in positive v, and the first point when it switched to negative v (and

vice-versa).

These data are presented in histograms to show the distribution

of the values and show how they compare to the fixed points v = 0

for v, and ep for e.
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5.3.3 Results
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Figure 5.6: Distributions of v (upper plot) and e (lower plot) for particles immediately before & after
switching with varying values of q0 at d0 = 0.1 (Cases A1-A3). Other parameters ∆t = 0.1, γ0 = 1.0,
D = 0.1, c = 0.001
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Figure 5.7: Distributions of v (upper plot) and e (lower plot) for particles immediately before & after
switching with varying values of q0 at d0 = 1.0 (Cases B1-B3). Other parameters ∆t = 0.1, γ0 = 1.0,
D = 0.1, c = 0.001
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Figure 5.8: Distributions of v (upper plot) and e (lower plot) for particles immediately before & after
switching with varying values of q0 at d0 = 2.0 (Cases C1-C3). Other parameters ∆t = 0.1, γ0 = 1.0,
D = 0.1, c = 0.001
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Figure 5.9: Distributions of v (upper plot) and e (lower plot) for particles immediately before & after
switching with varying values of q0 at d0 = 6.0 (Cases D1-D3). Other parameters ∆t = 0.1, γ0 = 1.0,
D = 0.1, c = 0.001

The results are presented in figs. 5.6, 5.7, 5.8, 5.9 and 5.10.

For all of the velocity distributions a Gaussian-like distribution
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Figure 5.10: Distributions of v (upper plot) and e (lower plot) for particles immediately before &
after switching with varying values of q0 at d0 = 10.0 (Cases E1-E3). Other parameters ∆t = 0.1,
γ0 = 1.0, D = 0.1, c = 0.001

is seen centred at v = 0, the scale of this distribution is the same

no matter the value of q0 or d0. This conforms with the expectation

from the theory (eqs. (4.1.8b)) that motion at low v is completely

governed by stochastic dynamics. The statistics available for cases

C3, D3 and E3 (figs. 5.8, 5.9 and 5.10) are poor due to the low

number of switches recorded.

As d0 is increased and the value of ep reduces it can be seen that

larger portions of the distributions for e for cases A1-E1 sit on the

right-hand-side of the line. This signifies that once the particles

switch, they will have enough energy to undergo negative friction

and accelerate towards the stationary velocity v0. For case A1 in

fig. 5.6 the entirety of the energy distribution is at values e(v) < ep.

This corresponds with the wide-Gaussian velocity distribution be-
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haviour seen earlier (fig. 4.8) as well as with the lack of any high

τs switching times. Particles exist at lower v and are governed pri-

marily by stochastic forces.

For cases C3, D3 and E3 the energy distributions exist for all

values e(v) > ep. This signifies that as soon as a particle switches

direction it will begin to be pumped towards the opposite stationary

point. The velocity is still too low for this to occur immediately

(the depot has no effect on v at these low velocities) however once

the particle is accelerated enough by the stochastic force it will

drive towards the stationary velocity v0 as the active force takes

precedent.

5.3.3.1 Conclusions

The energy distributions show a similar trend across all values of

d0, with the magnitude of the energy set by the value of q0. Cases

A-E1 (q0 = 0.1) show the most focused concentration of energy at

lower values, with the distribution widening and as the value of q0

increases in the other cases. The values of µD
e , the mean energy

after switching (mean of the data from the plots), were calculated

and are listed in tab. 5.1.

The values of µD
e give an insight to the dynamics of these particles

at low velocities and the relationship to the earlier discussed initial

average ensemble behaviours (discussed in Section 4.2). Referencing

the ⟨eSS⟩c data in table 4.5 and also the visual data in figs. 4.5

and 4.6, comparisons can be made.

For all of cases A1-E1, it can be seen that the value of µD
e is
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Table 5.1: Dimensionless standard deviation of velocity (σvD ) and mean value of the dimensionless
absolute velocity (µvD (t)) and mean dimensionless energy (µeD ) measured immediately before and
after a directional switch for all parameter sets.

Case σvD µ|v|D µeD

A1 0.1211 0.1407 50.12
A2 0.1213 0.1407 106.0
A3 0.1214 0.1407 129.6
B1 0.1211 0.1407 6.187
B2 0.1217 0.1407 19.56
B3 0.1220 0.1407 28.69
C1 0.1212 0.1407 3.564
C2 0.1220 0.1407 12.86
C3 0.1230 0.1407 19.21
D1 0.1213 0.1407 1.638
D2 0.1227 0.1407 6.867
D3 0.1251 0.1407 10.28
E1 0.1214 0.1407 1.180
E2 0.1235 0.1407 5.185
E3 0.1226 0.1407 7.978

the same as the steady state energy ⟨eSS⟩c with the exception of E1

where the value is slightly higher. Case E1 was also the only case

for these low q0 values where the particle velocity distribution was

bimodal and where the behaviour was described as transitioning to

type-2.

In all other cases the average energy after switching is equiva-

lent to the value of energy of the first peak of the ⟨e(t)⟩c graphs

(figs. 4.8, 4.9, 4.10, 4.11 and 4.12).

This result goes further to show that the type-1 particles are

behaving in an OU-like manner, where their canonical average of

energy is the same at steady state as it is just before or after a switch.

As this is the region of space which they most frequently occupy this

distribution shows the mean behaviour of a large portion of their

behaviour at steady state. The type-2 particles exist between two

equilibria — near to the stationary velocity where their energies are
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lower and velocities are higher; or near to the origin where their

energy is higher and their velocity is the same as that for all other

less active particles. The earlier observed peaks in the ⟨e(t)⟩c line are

thus seen to be as a result of the large influx of energy into particles

on short timescales residing near to the origin at v = 0 before they

move into an area of velocity space where they accelerate towards

the stationary points and deplete their depots.

The timescale with which the particles climb to their first peak

of energy in these figures thus also shows the amount of time which

particles will remain close to the origin, gaining energy and behaving

like OU particles. After a particle changes direction it has been seen

to have this same behaviour, as evidenced by the mean energy in

v-e phase-space and also by the large proportion of switches which

occurred on short timescales. The short time-scale for switching

may also be thought of as a charging up time. Once the particle

energy reaches this peak value, the probability of moving to the

higher velocity limits increases. A proportion of particles do so,

which was seen earlier by the initial decay of the mean energy after

the first peak; which correlates with the observed increase in the

particle velocity. The final mean value calculated earlier will be a

weighted mean of the energy of the fraction of particles existing in

the low velocity region (µD
e calculated here) combined with that of

the particles existing at the mean energies around the stationary

point (mue(v0) ≈ eP ).

These results show in a more detailed manner the dynamics of the
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system when switches in velocity occur. Type-1 particles exist only

in the OU-like limit where the average behaviour before and after

switching is similar to the overall canonical behaviour. In the less

active type-2 cases the particles more frequently exhibit this OU-like

behaviour, though their overall average behaviour is also influenced

by the longer spells spent near to the stationary velocities in a single

region of v − e phase-space. The most active type-2 particles have

longer trajectories in these regions which is seen by their higher

period of switching as well as the wider velocity distributions seen

earlier.
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5.4 Fitting Parameters to Switching Time Distributions

5.4.1 Introduction

In Section 5.2 we saw that the distributions of switching times were

of similar shape for all cases at low values of τS, with the decay rate

decreasing for more active type-2 particles. Type-2 particles also

showed a second and longer characteristic timescale which showed

a power law-like decay of probability at high τs.

In this section, curve fitting techniques were used to attach a

numerical value to the decay rate of characteristic time of these

particles. The initial decay rate was seen to be similar to the an-

alytical OU solution for the survival probability distribution. The

distributions of velocities immediately after a switch (Section 5.3)

also showed that when the particles were at low velocities they be-

haved in an OU-like manner regardless of the level of energy in their

depots or their depot conversion rate d0.

5.4.2 Methodology

The distributions were separated into two sets of data based upon

the observed point at which the two time-scale behaviours separated

from each other. In some cases, an overlap in the behaviours was

seen which accounts for the increase in probability of switching at

longer times than at shorter times.

5.4.2.1 Shorter Timescale Fitting

In Section 3.1.5 the hitting time probability distribution was dis-

cussed (eq. (3.1.14)). This equation was used to fit the observed
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value of the effective diffusion constant Deff for the active particles.

Making the assumption that at low velocities particles behave in a

purely stochastic manner, the equation can be simplified with the

value γ(v) ≈ γ0 = 1:

h(τ |vt0) =
(

2v2t0
πDeff

)1/2
(

e−τ

(1− e−2τ)1/2
+

e−3τ

(1− e−2τ)3/2

)

exp

(
−

v2t0
2Deff

e−2τ

(1− e−2τ)

)
(5.4.1)

For the hitting time τ , with initial velocity vt0 = v(t = 0) (this is

not related to the stationary velocity v0). For the case of a particle

switching direction (i.e. hitting v = 0), we refer to the hitting time

as the switching time τs.

The value of Deff which fits the distribution to the curve was

calculated. This makes the assumption that at low velocities γ(v) ≈

γ0 and thus the activity simply results in an increase in the effective

diffusion constant, which is the perceived increase in the strength

of the stochastic force. This was seen to occur over all velocities for

case A1,

Due to the simulation time-step, the minimum measurable τs

value for a particle is τs = 2∆t, corresponding to a single measured

simulation step in one direction before a switch to the reverse. As

the likelihood of particles within the simulation ever actually being

at an exact zero-value, the simulation results showed a majority of

switching occurring at τs = ∆t. In order to correctly fit the data

and compensate for this simulation artefact, a non-zero value of vt0

was chosen. Because the velocity behaviour just before-and-after

171



Directional Switching of 1-D Active Brownian Particles With Energy Depots
Fitting Parameters to Switching Time Distributions

switching was the same of all cases in Section 5.3, it was assumed

that vt0 =µ|v|ˆD= 0.1407 for all cases. This is the value which was

calculated and presented in table 5.1 for the mean absolute velocity

after switching for all parameter sets.

Half of the probability of the particle surviving is lost when vt0 =

0. In the simulations this was not seen due to the minimum time

step ∆t = 0.01. In order to compensate for this simulation artefact;

the value of vt0 for each curve was set as the value of |v| from the

velocity before and after a switch data discussed in the previous

section.

5.4.2.2 Longer Timescale Fitting

The second, longer-timescale part of the results were fitted with

a non-linear power law decay function using eq. (3.5.7) which was

introduced in Section 3.5.4:

h(τs) = h0(1− h0)
τs−τ0

λ (5.4.2)

Where h0 is the probability of switching at the reference time τ0

and λ is the decay time constant for the system. Descriptions of the

fitting parameters τ0 and λ and their effects on the dynamics of the

function are provided in Section 3.5.4.

It is seen in some of the cases that the short timescale switching

behaviour overlaps with the emergent longer timescale behaviour, as

the probability of switching increases for longer times. If at these

points the value of h(τ) is some combination of the distribution

functions of both of these behaviours, it is not possible to separate
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this stochastic calculated value into its constituent parts.

The value τ0 used for each fit was chosen from the graphical results

in Section 5.2 as the point where there was a clear difference between

the initial and long timescale switching distributions. The statistics

of switches at long timescales for cases D3 and E3 were not sufficient

to fit these curves.

The value χ2
OU shows the accuracy of the fit and is calculated

using eq. (3.5.8) from Section 3.5.5.

5.4.3 Results

Figures 5.11, 5.12, 5.13, 5.14 and 5.15 show the calculated fits on

log-log scales for the switching distributions. The subplots show

the separate fits for the OU-like behaviour and the long time-scale

power-law fit, as well as both plotted on the same axes. The values

of Deff, h0, λ, τ0 and χ2
P (the chi-squared statistic for the power-law

fit) for both fits are summarised in tables 5.2 and 5.3.

The values of Deff measured for all cases were similar, with a very

large error value. Due to the large error associated with calculating

the proportion of particles which switch within the first time-step for

OU particles, the least-squares method of fitting these data points to

the h(τs) distribution is ineffective. The analytical solution defines

this exactly based upon the initial velocity vt0. The exact initial

velocity of particles has to be estimated based off of the diffusion

constant D. As seen in Section 5.3, particles behave in an OU

manner just before and after switches, regardless of the level of

activity or energy in their depots. Thus there is an equal chance
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Table 5.2: Summary of fitted effective diffusion Deff and fitting error χ2

OU for all cases for switching
time fits at short timescales (lower τs — where particles exhibit OU-like behaviour) calculated using
the OU first hitting time distribution model eq. (5.4.1).

Case Deff χ2
OU

A1 0.264± 0.075 187.7
A2 0.266± 0.089 184.7
A3 0.266± 0.089 183.3
B1 0.265± 0.075 187.2
B2 0.269± 0.090 181.8
B3 0.271± 0.090 178.8
C1 0.265± 0.075 186.6
C2 0.270± 0.090 178.4
C3 0.274± 0.091 176.1
D1 0.266± 0.075 185.3
D2 0.276± 0.091 173.5
D3 0.281± 0.099 197.9
E1 0.266± 0.091 184.3
E2 0.280± 0.092 171.6
E3 0.263± 0.140 455.8

Table 5.3: Summary of fitted reference time (τ0), decay rate (λ) and scaling factor (h0) along with
corresponding statistical errors for switching time fits at long-timescales using the power-law decay
model eq. (5.4.2).

Case τ0 h0 λ χ2
P

A2 8.5 6.37× 10−03 ± 5.31× 10−05 0.0474± 1.07× 10−03 1.55× 10−07

A3 15.0 2.67× 10−03 ± 4.17× 10−06 0.0494± 1.21× 10−04 6.49× 10−10

B2 4.5 8.95× 10−03 ± 2.23× 10−04 0.113± 7.07× 10−03 5.18× 10−06

B3 4.5 6.30× 10−04 ± 1.19× 10−05 0.187± 1.21× 10−02 5.52× 10−08

C2 3.5 6.27× 10−03 ± 8.32× 10−05 0.168± 5.70× 10−03 1.26× 10−06

C3 3.5 1.44× 10−04 ± 5.12× 10−06 0.231± 3.66× 10−02 1.70× 10−08

D2 3.5 2.41× 10−03 ± 9.62× 10−06 0.240± 2.75× 10−03 2.66× 10−08

E1 1.5 4.45× 10−02 ± 3.61× 10−04 0.0899± 1.12× 10−03 6.28× 10−06

E2 2.5 1.38× 10−03 ± 6.67× 10−06 0.270± 4.68× 10−03 1.79× 10−08
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Figure 5.11: Least-square line fits for short and long timescale data (Cases A1, A2, A3). d0 = 0.1,
c = 0.001, D = 0.1, γ0 = 1.0.

of being moved in either direction and an immediate switch occurs

approximately half of the time.

There is not much decay in the short-timescale section, and the

longer-timescale part overlaps at quite an early τs. This makes

fitting eq. (5.4.1) quite difficult as the two data sets cannot be sep-

arated from each other. As the value of h(τs) is so large at these

low values of τs compared with even slightly larger values, due to

the large rate of decay, the least-squares method of fitting with this

equation and the available data does not give an accurate fit.
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Figure 5.12: Least-square line fits for short and long timescale data (Cases B1, B2, B3). d0 = 1.0,
c = 0.001, D = 0.1, γ0 = 1.0.

The power law decay (eq. (5.4.2)) method of fitting the longer

timescale data is much more accurate. It can be seen graphically

that in all of the type-2 cases including the transitional case E1

the stochastic switching data fits very well with the calculated line

fit. The calculated χ2
P values and the relative errors confirm this

numerically.

It is seen that as the particles increase in activity d0, the initial

value of probability of switching h0 for this second behavioural re-

gion decreases. This is counterbalanced by an increase in the decay
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Figure 5.13: Least-square line fits for short and long timescale data (Cases C1, C2, C3). d0 = 2.0,
c = 0.001, D = 0.1, γ0 = 1.0.

time constant λ.

Case E1 is the only case for d0 = 0.1 which exhibited longer time-

scale switching and has a very low value of λ = 0.0899. The onset

time of this longer-timescale switching behaviour is seen to be on a

similar order of magnitude to the short-timescale OU-like behaviour.

This correlates with the earlier observation that the stochastic force

for this case is always a similar order of magnitude to the active

component (as discussed in Chapter 4).

This shows that even though these values are lower, the spread of
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Power Law

Power Law

Power Law

Figure 5.14: Least-square line fits for short and long timescale data (Cases D1, D2, D3). d0 = 6.0,
c = 0.001, D = 0.1, γ0 = 1.0.

switching times decays over a longer time period. The timescale of

the decay of these long-time switches is many orders of magnitude

larger than all of the other timescales in the system.

5.4.3.1 Conclusions

It was seen that at higher q0 values, the width of the tail of the

probability distribution for switching (i.e. the range of times over

which the low-frequency switches occurred) was much wider. Par-

ticles are much less likely to reduce their velocity as the energy in

the depot is much more quickly replenished when compared to the
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Figure 5.15: Least-square line fits for short and long timescale data (Cases E1, E2, E3). d0 = 10.0,
c = 0.001, D = 0.1, γ0 = 1.0.

lower q0 cases. This is also seen through the secondary effect of

larger q0 values correspond to larger values of v0 — thus large chain

of stochastic events is required to move from the typical stationary

velocity v0 to the origin v = 0.

Increasing d0 also decreased the rate of switching at higher timescales,

as the particle was more actively driven towards the stationary

points. The long timescale thus represents the characteristic timescale

of the “unlikely” chain of stochastic events required to force the par-

ticle from the stationary point back to v = 0.
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The short time-scale switches occur chiefly as a result of stochas-

tic forces at low velocities whilst the high τs events occur due to the

particle overcoming the active force. The scale of the active force is

governed by the parameters q0 and d0. When the stochastic force is

small relative to the active force, as is the case for type-3 and type-4

particles or in the case where D is made small, the probability of

a stochastic event which can overcome this force and switch dimin-

ishes until no switches are observed at all. This coincides with the

region of q0/d0/D parameter space where the probability distribu-

tion in v − e space would have a value of P (v = 0) = 0.

The fits at shorter characteristic timescales were not of a good

quality as shown by the high values of χ2
P. This was partially as

a result of the inability to model particles very close to the v = 0

boundary at timescales below ∆t — where a large quantity of the

population of switches were lost in the simulations. The simulations

could be adapted in order to use smaller timesteps at lower velocity

in order to capture this behaviour as part of any future analysis.

At longer τs a much better fit was found using the power-law

method which is reflected in the low values of χ2
P in Table 5.3. This

shows that the data presented here can be modelled by a power law

with the fitted parameters, however it may also be of interest to use

methodologies such as those outlined by Clauset et al.[86] in order

to confirm these findings.

These results could be improved with access to more computa-

tional resources. Simulations could be run which tracked only the
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switching time of particles and did not remember the trajectory.

The current simulations took days to run for each of the cases, so

running for these longer periods may not be worthwhile. However, if

left to run for long enough then more switches could be gathered for

all parameter cases which would result in more accurate statistics.

This would allow for more resolution over the behaviour at longer

time-scales as the bin width could be reduced.

It may also be possible to run simulations which differentiated

between switches in low velocity regions and the timescale of mov-

ing from the region near the stationary velocity to this low velocity

regime so this meta-data could be used to explicitly fit the two

behaviours separately. This would still require the additional com-

putational resources to obtain good statistics.
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5.5 Velocity & Energy Autocorrelation Functions

5.5.1 Introduction

In this section, the autocorrelation of the velocities and energies of

particles with EDs are investigated. The autocorrelation function

(described in Section 3.5.2) describes how related a value in a sys-

tem is with itself at a time of ∆τ later (known as a lag). This

function takes a value between 0 and 1. An autocorrelation of 1.0

means that the values at both times are perfectly correlated whilst

a value of 0 means that the values are completely uncorrelated. De-

terministic time evolution functions are perfectly auto-correlated as

the future behaviour is directly as a result of a position in the past.

OU particles and ED particles do not show this behaviour due to

the random influence of the stochastic force.

In the previous sections particles defined as type-2 were shown

to spend large periods of their trajectories travelling at velocities

close to the stationary velocity v0 before moving to low-v regions

of space where they were able to switch direction. At low-v these

particles were seen to behave like purely OU particles (inactive) or

particles with low activity. They spend time accumulating energy

in the depot before accelerating to a higher region of velocity space

by converting this energy into kinetic energy.

These particles therefore exist in two states, the first travelling at

v near v0, and the second moving slowly and undertaking switches.

It was seen in the previous section that there are two distinct time

scales over which the particles will exist in either state. By look-
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ing at the autocorrelation of a particle velocity over a trajectory,

it would be expected therefore that the particle would remain pos-

itively correlated whilst moving near to the stationary point, only

becoming decorrelated when it moved to the switching region of ve-

locity space or to the opposite stationary point. In other words, the

autocorrelation for particles which switch may be another way to

estimate the time scale over which they switch direction.

The second behaviour which may be seen by the autocorrelation

of a particle is the similarity or difference in the decorrelation rate

of the velocity and energy. In the adiabatic case, the velocity and

energy must always decorrelate at the same rate as any change in de-

pot energy is accompanied by a change in the v. For non-adiabatic

particles this is not true, and the decorrelation of the particle en-

ergy may be slower or faster than the decorrelation of the velocity.

It would be expected for the type-2 and type-3 particles that the

relationship would be more similar to that of the adiabatic case,

with differences accounted for by the non-adiabatic behaviours seen

at low velocities. For the type-1 active-OU particles, it remains

unclear to this stage whether the energy or the velocity would be

expected to decorrelate faster.

The time scale of this decorrelation is also of interest. In Sec-

tion 4.2 the time scale of particles moving from rest with empty

depots to a system steady-state was considered. In Section 5.2 two

distinctive time scales were observed, attributed to the switching

time for particles at low velocities and the time scale for particles
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moving at higher velocities to move into this low velocity region. It

was seen that the initial time scale corresponded to particles mov-

ing at low velocities reaching a steady state energy within their

depots before some of these particles moved towards the stationary

point regions of velocity space. The observed switching time scales

represented the fast velocity switching of particles at low veloci-

ties behaving like OU particles and the long time scale directional

switching of particles which required rare stochastic events to over-

come the active force and turn around.

In this section, the autocorrelation of both velocity and energy for

active particles with EDs were measured over stochastic simulated

trajectories.

5.5.2 Simulation Parameters

Data from the same single-particle trajectories used throughout this

chapter were analysed. Values for t < 200 were discarded as before,

to ensure that the initial conditions were not having an effect on

the results (as found in Section 4.2). The auto-correlation for the

particle energy and velocity with lags in the range [∆τ, 104 × ∆τ ]

were calculated from the remainder of the data set.

5.5.3 Methodology

The autocorrelation of the velocity and energy at each point within

the trajectory limits defined was found up to a maximum lag of

104×∆τ . For the simulation time-step ∆t = 0.01, this corresponds

to a maximum lag of τ = 100.0. Software was written to calculate
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these values using the methodology outlined in Section 3.5.2.

5.5.4 Results

The velocity autocorrelation curve for OU particle with D = 0.1,

γ0 = 1.0, ∆τ = 0.01 is presented in fig. 5.16.

From eq. (3.1.9) the velocity should de-correlate with its initial

value v0 on a time scale governed by γ−1
0 . For underdamped OU

particles, this time scale is finite and measurable relative to the

time scale of the diffusion; unlike in the case of purely Brownian

particles in the overdamped regime discussed earlier where the par-

ticle velocity would instantly decorrelate. This behaviour is seen in

the results, with a sharp drop in the velocity correlation followed

by a longer flat region. Fluctuations are present around v = 0 due

to statistical error, but it can be seen that the particle v becomes

uncorrelated at very short time scales.

The results of the autocorrelation calculations for all cases are

shown in figs. 5.17, 5.18, 5.19, 5.20 and 5.21.

It can be seen in case A1 (fig. 5.17) that the velocity quickly decor-

relates over the first 10 time units, but that there is a much slower

decay in the correlation of the energy. The velocity decorrelates

much like the OU particle shown in fig. 5.16, though on a slightly

longer time scale. As these particles exist at low velocities and have

a low energy conversion rate d0, the particle must find a way into

a higher velocity space in order to deplete its depot reserves. It

was seen earlier that the particles could exist at all velocity values

with similar values of energy, and the fact that these particles take
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Figure 5.16: Velocity autocorrelation plot for an OU particle over lag time range ∆τ [0, 100]. D = 0.1,
γ0 = 1.0.

a long time to use this energy up in general explains why the values

decorrelate over a much longer time scale than the velocity.

Cases A2 and A3 show similar behaviour to each other. Both of

these cases were classified as type-2 particles, where the particle may

easily switch between directions and travel through the low velocity

regions. These behaviours are seen again in the autocorrelation

data. The velocity quickly decorrelates within the first few units of

time, but then slows down and decays over a longer time scale. The

first decay originates from particles in the low v OU-like region of

space. These points quickly decorrelate due to the lack of memory

of low velocity OU-like particles, where the history of the particle

trajectory has little influence on its current position. The slower

lag-time decay originates from particles which exist around either
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Figure 5.17: Comparisons of v and e autocorrelation for varying q0 values over lag times ∆τ [0, 100]
(Cases A1-A4). Other parameters d0 = 0.1, c = 0.001, D = 0.1, γ0 = 1.0.

stationary point ±v0. As shown in the previous sections, they may

spend a longer time at these limits before switching, this is seen as

the velocity remaining correlated as it rests in a certain region of

velocity space. As a larger proportion of particles in case A3 take a

longer time to switch direction, the decorrelation of the velocity is

slower.

The autocorrelation of the energy also shows the existence of par-

ticles within the two velocity regions. The energy quickly decorre-

lates and then becomes negatively correlated. This can be explained

by the oscillatory behaviour of the depot in these non-adiabatic

regimes due to stochastic fluctuations deviating the particle from v0.

187



Directional Switching of 1-D Active Brownian Particles With Energy Depots
Velocity & Energy Autocorrelation Functions

0 20 40 60 80 100
0

0.0

0.2

0.4

0.6

0.8

1.0

(
)

q0 = 0.10

0 20 40 60 80 100
0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(
)

q0 = 1.00

0 20 40 60 80 100
0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(
)

q0 = 2.00

0 20 40 60 80 100
0

0.0

0.2

0.4

0.6

0.8

1.0

(
)

q0 = 10.00

v autocorrelation e autocorrelation

Figure 5.18: Comparisons of v and e Autocorrelation for varying q0 values over lag times ∆τ [0, 100]
(Cases B1-B4). Other parameters d0 = 1.0, c = 0.001, D = 0.1, γ0 = 1.0.

As with the v− e distributions in Section 4.4 (fig. 4.15), the depots

fill up at lower v and then use this depot energy up to accelerate.

Therefore on the time scale of a particle moving from the lower-v

energy accumulating mode in to the higher-v depot-draining mode

there is a negative correlation. It is seen that on a similar time scale

particles will move back from this high-v low-e region and into the

lower-v high-e region — so after this additional time the particles

will be at similar values of e again and the correlation again becomes

positive. There are “bumps” in the v correlation corresponding to

the oscillations in e.

Case A4 shows an extremely fast decorrelation of both the ve-
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Figure 5.19: Comparisons of v and e Autocorrelation for varying q0 values over lag times ∆τ [0, 100]
(Cases C1-C4). Other parameters d0 = 2.0, c = 0.001, D = 0.1, γ0 = 1.0.

locity and the energy where both become negatively correlated be-

fore oscillating between positive and negative correlation. This fast

decorrelation can be explained by the fact that the particle is al-

ways near to the stationary velocity v0 for these type-3 particles.

The stochastic force was seen earlier to move the particle through a

tightly constrained region of v−e phase space in this example. The

negative correlation shows the data for particles on the opposite side

of the distribution at the stationary velocity oscillating between the

two allowed limits of this system.

Because there is only data for particles in one direction, v decor-
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Figure 5.20: Comparisons of v and e Autocorrelation for varying q0 values over lag times ∆τ [0, 100]
(Cases D1-D4). Other parameters d0 = 6.0, c = 0.001, D = 0.1, γ0 = 1.0.

relates quickly over a shorter time scale. The longer time scale

decorrelation seen for type-2 particles is not present as there is no

concept of decorrelation through switching to the opposite region of

v space near to v0. The velocities therefore decorrelate as a result

of fluctuations around a stationary point ±v0 (recall fig. 4.8). The

decorrelation behaviour is similar to that of an OU particle in that

there is a fluctuation around a mean, showing that after a charac-

teristic time the particle velocities are decorrelated (fluctuations are

governed by the stochastic noise), however it is also reiterated that

the dynamics are different as the active component of the force is
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Figure 5.21: Comparisons of v and e Autocorrelation for varying q0 values over lag times ∆τ [0, 100]
(Cases E1-E4). Other parameters d0 = 10.0, c = 0.001, D = 0.1, γ0 = 1.0.

tightly coupled to v.

Increasing the value of d0 for type-1 particles greatly increases the

decorrelation rate in energy. This is seen in cases B1-E1 — for B1 v

decorrelates faster than e, by case C1 both e and v are decorrelated

on the same time scales, and by case D1 e is decorrelating faster

than v. It was previously noted that this increase of d0 also cor-

responded to how a change in the average energy depends velocity

for these particles (Section 4.4). As the particles can convert their

depot energy quicker and at lower velocities, the depot value is more

affected by the stochastic force and so the energy itself decorrelates
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quicker. This was seen by the average value of the energies at higher

velocities getting closer to the value of e0 as d0 was increased.

For the A1-E1 cases where the particles are OU-like the v au-

tocorrelation is similar. The velocity does not remain correlated

even in case E1 where the particles transition towards a type-2 be-

haviour. This shows that the particles are completely governed by

the stochastic force which decorrelates on the time scale set by the

diffusion constant D.

The type-2 cases B2-D2 showed similar behaviour in v to the type-

2 cases A2-A3 discussed above. There was a quick decorrelation on

a very short time scale, followed by a slower decorrelation occurring

within the 100 time units. This, again, indicates the two distinctive

behaviours type-2 particles exhibit. The initial decorrelation is a

result of the particles behaving like OU particles at low v. The

longer time scale correlation shows particles remaining near to one

of the stationary velocities ±v0 for a time before switching to the

other. When v is fluctuating around either the positive or negative

v0, the values are correlated in that region of v-space. Once a switch

occurs, this correlation is lost. Thus the time scale of de-correlation

and the time scale for switching (τs) for these particles are related.

This will be discussed in more detail later.

Cases B3, C3 and E2 again showed similar behaviour in v to

B2-D2. The reduced rate of switching manifested in the autocorre-

lation data as a very long time scale decorrelation after the initial

fast decorrelation. The value of the initial decorrelation was also
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much smaller, indicating that the total percentage of the particle

trajectory spent in the OU-like region was much less than in the

other cases. This again confirms what was seen in the previous

switching time distributions. These particles spend much longer

times moving at velocities near to the stationary points. The parti-

cle velocity therefore teds to remain correlated over longer periods

of time.

A negative autocorrelation value of e is also seen for these parti-

cles at small time scales. This signifies particles moving between the

limits in energy seen from the low, almost adiabatic values near to

v0 and the higher values above ep near to the origin in the OU-like

region of velocity-space.

The remaining type-3 and the type-4 cases all show a quick decor-

relation of both the velocity and the energy. This is expected as

these particles do not switch direction and therefore fluctuations in

e and v are purely from uncorrelated stochastic events. The non-

adiabatic type-3 cases show energy and velocity decorrelating on

similar time scales to each other.

5.5.5 Conclusions

Type-1 particles were seen to decorrelate in velocity over very short

time scales due to their OU-like behaviour. The energy in case

A1 decorrelated over a longer time scale as the rate of depot en-

ergy conversion d0 was low. As the conversion rate d0 increased in

these cases, the rate of decorrelation of energy increased, eventu-

ally overtaking the rate of the velocity. The time scale of complete
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decorrelation for the velocity was similar to the value of τs for these

particles where all of the particles had switched. The large initial

rate of decorrelation also corresponded to the large probability of a

switch at very low time scales.

Type-2 particles showed a quick decorrelation of energy which

led to a negative correlation on short time scales. This was due to

the particle energy being above the average when these particles are

moving at low velocities and below the average when the particles

are moving at higher velocities. These particles are defined by their

transitional behaviour between this OU-like behaviour and the more

adiabatic-like movement near to the stationary velocities ±v0. The

negative correlations and oscillatory behaviour is caused by particles

switching between these two regions over time. The velocity for all

of these particles quickly partially decorrelated initially due to short

time scale fluctuations, with a more gradual decorrelation over long

time scales.

In the less active type-2 cases the time scale of this second decor-

relation was shorter due to the larger probability of the particle

switching. For more active type-2 particles the same behaviour is

exhibited, though in these cases velocity decorrelates over a much

longer time scale due to the switching period being much longer.

Case D3 appeared as an outlier to the other type-2 distributions.

Across the simulation time-frame there were no switches seen for

D3 due to its longer time scale for switching.

In order to improve the statistical quality of the data set, the
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autocorrelation could be calculated over the entire trajectory with

additional computational power — the auto-correlation calculation

requires the full input data set (more data would introduce memory

limitations) and has an algorithmic complexity which scales with

n× log (n)[88] (for n the number of data points) for the number of

data points n.This would also help to improve some of the statistics

of the other plots and reduce the amount of statistical noise which

is present in the plotted lines.

Negative correlation in case B2 and C3 are due to directional

switching. The resultant v after a switch is on the other side of

v = 0, nearer to the opposite v0 value. This results in negative

value for autocorrelation in v.

The correlation of particles which exhibited switching could also

be calculated over longer time scales with higher lag values. This

would confirm that the long term velocity decorrelation time scale

would be on the order of magnitude of the long time scale switching

time.

The autocorrelation analysis of these particles has assisted in fur-

ther clarifying the emergence of the two different behaviours for

type-2 particles. The correlation between the velocities over long

time scales adds more resolution to the emergent picture of the

mixed behaviour. These particles show OU-like behaviour at lower

velocities, where their depots fill up due to the lower activity and

velocities reducing the rate of depot energy consumption. They

then transition to higher velocities by depleting these depots. Once
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at higher velocities, they are confined within a region of v− e space

until the stochastic force slows them down and they return to the

low velocity region.
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Chapter 6

Conclusions

6.1 Conclusions of This Work

6.1.1 This Work in Context

Since the initial studies of Schweitzer, Ebeling and Tilch[39] there

have been many investigations into these ED particles in 1-,2- and

3- dimensions. We noted that a majority of these were carried out in

regimes where the dynamics of the depot energy e0 were exactly cou-

pled to the velocity v (the adiabatic assumption). We investigated

particles in 1-D and found that by varying the model parameters q0

(fuel uptake) and d0 (conversion rate) at low v (depot dissipation)

it was possible to observe particles in clearly non-adiabatic regimes,

as evidenced by the decoupling of the e and v (especially at lower

velocities).

From this work we have seen that the onset of adiabatic behaviour

is not well defined in one parameter space, with only the highest d0

and q0 case E4 showing strong agreement with the assumption and

similar behaviour to that seen in the literature[89].

When particles are travelling at low velocities, they accumulate a

surplus of energy in their depots, which is rapidly consumed when
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the correct sequence of stochastic events transitions them into areas

of velocity space where they are able to consume the energy and

accelerate towards, and beyond, the stationary points ±v0. The

second behaviour was observed at the stationary points, where par-

ticles in our case travelled on trajectories through v − e phase-space

above and below the e0(v) line. In our simulations, stochastic events

were able to slow particles from this region and into the low-v region.

We quantified four separate behaviours in our system, three of

which were non-adiabatic in e:

• Particles which behaved as with regular stochastic motion —

an increased Deff and a normal distribution in v.

• The emergence of a bimodal distribution in v and with a sig-

nificant probability to exist at low v due to the stochastic force

working on a similar order of magnitude to the active force.

• Bimodal distributions with non-adiabatic depots where v0 is

a significantly non-zero value such that events which slow the

particles and allow directional switching are rare.

• Adiabatic behaviour and fluctuation around stationary point v0,

with energy e(v) = e0(v)

Thus we have seen that the switching between these two behaviours

is driven by the ability for the stochastic force to slow the particles

down into the low-v (the energy-accumulating region). At low-v we

saw in our simulations much larger deviations from e0(v) in e. The

low value of c = 0.001 chosen for our simulations contributed to a
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large difference between the stationary values e0(v0) and e0(v = 0).

Thus if depot energy is unable to relax quickly as a result of v

(i.e. consumption) and also c (i.e. dissipation), then particles cannot

behave adiabatically.

We have analysed the distribution of the characteristic times for

particles to exist at these regimes, and fit parameters to the two

different characteristic timescales through the existing survival time

distribution at low velocities, and a power law for particle survival

time distributions near to the stationary points.

To the best of our knowledge, this form of analysis of switching

times has not been used thus far in the literature for these particles.

It would be of interest to apply this as a methodology for observing

directional switching to limit cycles in 2-D.

6.1.2 1-D ED Particles in the Physical World

Though our simulations were abstracted away from real systems in

that they were purely numerical, it is important to consider how

the work we have completed could be mapped back to the actual

physical systems. Active motion of proteins such as Kinesin is a

good example of a 1-D use-case in nature as they walk along a fixed

path, we postulated that the catalysis of fuel by QD-AP conjugates

which we observed in the laboratory could be modelled by the energy

depot.

This use of the model may also be useful for multi-dimensional

systems where motion is fixed to one-dimension an external field or

gradient. In a system where a particle is confined to a single plane of
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motion our research may be useful in understanding the time scales

at which the particle could undergo directional switching behaviour.

Particles at an interface of two fluids or running along the edge of

a vessel may be found in similar states due to the effects of surface

tension.

One artifact of the model, which is key to the results we present,

is that the activity is low when the particle is near rest — the

conversion term has a proportional dependence on the velocity of

the particle. Though this may not be a common occurance in na-

ture, we could speculate that the model would fit well to systems

where active motion only occurs once the particles (or organisms)

are warmed up.

The parameters which we varied, q0 and d0, find good analogues

in the abundance of a fuel source and the rate of conversion of

the fuel source in natural systems, respectively. In more fuel rich

environments it is conceivable that there could be an increased rate

of absorption of that fuel into the depot — the driving force behind

such motion would on first assumption be a higher concentration

gradient. Similarly, the rate of consumption of the fuel d0 may be

an abstraction of a more complex process such as metabolisation

in cells or organisms — something which can vary depending on

the organism itself or even between different sized organisms of the

same type. For an inorganic object such as a Janus particle or

the QD-AP aggregate which we discussed in Section 2.1.2.2, a good

analogue could be the quantity of catalyst which bound with the
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particle or even the physical configuration of the surface and thus

the available rate of consumption of fuel.

The dissipation rate c was initially posited to be some form of in-

ternal metabolisation for, say, a cell[39]. Whilst it perhaps fulfils a

more important role in balancing the model equations to prevent an

infinite accumulation of energy, this term does allow for the mod-

elling of other losses of energy due to particle destruction or fuel

decomposition which does not result in acceleration.

The abstract nature of the model as well as the particular dy-

namics of the depot consumption mean that it is difficult to map

to exact real world scenarios, however we believe that it does of-

fer a good framework. By introducing more particular dynamics

relating to these physical (or even animal) systems into the key pa-

rameters it may be possible to adapt the model to more complex

dynamics. A different form of the d(v, r) ansatz could be utilised

which would take into account distinct properties of the physical

system — for example an animal’s rate of consumption of food; or

photo-sensitivity of a cell that only consumes energy when exposed

to light. More complex forms of the energy uptake q could also be

introduced as mentioned earlier.

6.2 Future work

6.2.1 Extension to Present Work

In Section 4.2 we simulated particles starting from rest and observed

ensemble average behaviour in v and e. We saw oscillatory responses
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with different levels of damping across the values of d0 and q0 which

we varied. We could go further by fitting these parameters of these

signal response curves in the noisy (D ̸= 0) regime and comparing

the damping factors against the theoretical values for non-noisy sys-

tems. It would be of interest to then compare these characteristic

timescales against those observed in Section 5.4, where we observed

the switching time distributions.

We have yet to numerically solve the first passage time distribu-

tion for ED particles, however it would be of interest to generate an

analogous Green’s function for eq. (3.1.12). Our results from Sec-

tion 5.4 could then be compared against simulated results and we

could better understand the two emergent switching characteristic

timescales.

We observed particles at low c, allowing for accumulation of en-

ergy within the depots regardless of v. We would expect, in agree-

ment with the literature, for the rate of depot relaxation to quicken

with higher c (regardless of v) which would bring particles more in

line with the adiabatic assumption. It would be of interest to study

where in the multi-parameter space of this model this onset would

occur.

The type-3 particles behaved non-adiabatically, where we saw

that e(v) ̸= e0 (Section 4.4). There have been many studies in the

literature for particles in 2-D where it would be of interest to com-

pare our results. In 2-D, the additional directional motion allows

for additional consumption of depot energy and could be the reason
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why adiabatic behaviour is studied more frequently. In this case —

it would also be of interest for us to compare the type-3 particles

which were not able to switch direction, yet were also not adiabatic,

and see whether these classifications would persist into 2-D and even

3-D velocity-space. The onset of adiabatic behaviour is a combina-

tion of the parameters which we varied, along with the dissipation

c and strength of the active force D. We would look to use our

extended 1-D study here to try and quantify this experimentally.

We have constructed a flexible simulation software which can be

easily adapted to not only additional adaptations of the energy de-

pot, but also to other models of particle activity.

It would be interesting to look further into the parameter fitting

of switching time distributions in Section 5.4. As a first followup

— additional analysis on the results of the fitting could be carried

out to confirm that the tails of these distributions follow the heavy-

tailed distribution pattern to which they were fitted. It was seen

that the χ2
P values for the power-law fit presented in table 5.3 were

low, indicating a good fit between the model and the raw data. Ad-

ditional analysis on the quality of the fits as well as the suitability of

the selected power law could be carried out using the methodologies

outlined by Clauset[86] in order to further confirm that this was the

correct model and that the fitted parameters could extrapolate to

other simulation data sets.

A further research goal could be to investigate any way in which

the parameters fitted in table 5.3 could be calculated from the sim-
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ulation parameters D, q0 and d0. Whilst this may not initially be

possible with a first principles approach, it would be of interest to

attempt to use the fitted parameters from the multiple different

cases to try and fit a relationship between the simulation param-

eters. This could then be tested by extrapolating to parameter

regimes outside of the fitting population and seeing how the switch-

ing time distribution for simulation results compared with that ex-

pected from the power law fitting parameters which were estimated

from the parameter values.

In real systems a particle confined to a single dimension may not

necessarily only accelerate due to an active force in the forward

direction. We could extend our model to take into account rota-

tional Brownian motion on the agent particle, which would allow

for switching of the direction-of-acceleration at non-zero values of

v. In such a model, the active force component would be applied

tangentially always in the same direction as the direction of motion.

The active force could then act to slow a particle by applying a force

against the present direction of motion.

6.2.2 Beyond the Present

The original authors of the ED model have looked in great depth at

the 2-D and 3-D case. In these multi-dimensional systems the depot

energy is consumed by the particle accelerating across all directional

components of its velocity vector which moves the component veloc-

ity vi into regions of vi − e phase-space where switching is possible.

It may be interesting to observe multi-dimensional particles with
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depots reserved for dimensional consumption. At first, one would

expect for vi..vj to become uncorrelated as the trajectories appear

as independent 1-D cases.

Limit cycles and effects of external fields on these ED particles

in 2-D and 3-D systems are broadly covered in the literature[70,

90, 91, 92, 91, 75], however there is still not a clear understanding

of the onset of adiabatic behaviours within these cases. This work

covered the dynamics of 1-D particles in depth where the dissipation

parameter c was especially low. We carried out these observations

in 1-D in the absence of external gradients in order to understand

the difference between low and high velocity behaviours.

We did not cover external fields in this work, instead focusing on

understanding the dynamics of non-adiabatic particles with random

forces, and the unique dynamics which emerge in v, e phase space.

Schweitzer’s work in piece-wise linear potentials[76] showed interest-

ing dynamics for particles where the conversion d0 was varied in the

presence of an asymmetric saw-tooth-like gradient, as discussed in

Section 2.4.5. Two critical conversion rates dc were observed which

governed a 1-D deterministic and adiabatic ED particle’s ability to

escape the potential well created by the gradient in v space. It

would be interesting to revisit this work and compare the param-

eter regimes which we investigated here in order to understand if

removing the two assumptions made in the original work (that the

particles are purely adiabatic, and that the stochastic force has lit-

tle effect on the system) could show more interesting dynamics. We
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observed in Section 4.3 the type-2 and type-3 particles accumulat-

ing depot energy over longer periods at low v, and then consuming

this to accelerate into higher v regions around the fixed points. It

would be of interest to observe how particles would behave if they

were confined to the minimum of the gradient (i.e. between two saw-

teeth), and whether escape from this region of v space was linked

to the characteristic switching time τ which we calculated. In order

to better contextualise these results within the literature, further

work could carry out additional simulations in the presence of the

different potential waves which have previously been studied (such

as saw-tooth[76], ratchet[45]), and to add further resolution through

application of the analytical techniques for how adiabatic the par-

ticles are (i.e. relationship between v and e in v − e phase-space)

alongside the observations of the switching distributions.

We would similarly like to understand whether these transitional

Brownian-like non-adiabatic behaviours observed in 1-D are present

in multiple particle systems in higher dimensions. Models such as

Vicsek’s[46, 47] could be adapted for particles with energy depots

in order to take account of particle direction and clustering due to

particle-particle interactions. Czirok, along with Vicsek, in fact in

the past studied self-propelled particles (SPP) in one-dimension and

observed their organisational behaviours[93]. We could go beyond

this work to observe how the transitional ED behaviour in non-

adiabatic regimes, and the dynamics of depot accumulation and

pumping would behave with studies such as this as a reference.
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To our knowledge there are no studies of 1-D particles with either

repulsive or attractive interactions — though one may conjecture

that in the repulsive case these would space out on a line and clus-

ter together in the attractive case for non-switching particles. In

the parameter regimes where we saw switching, it may be of inter-

est to observe the dynamics of particles and how these compare to

classical oscillators. We are able to introduce additional forces and

interactions to the software which we have created so these ideas

may merit investigation.

It would be of interest to follow up on examples from the literature

such as multi-particle systems in crowded environments[71].

Alternative ED models such as the fourth-order-conversion model

(as in eq. (2.4.11))[70] or the asymmetric velocity conversion model

(eq. (2.4.12)[72]); models where energy uptake q(r) or even conver-

sion rate d(r) vary throughout space, models with time dependence

on external fields∇U(t) or the depot uptake q(t) could be simulated

and analysed in a similar way to the base model which was observed

as part of this work.

6.3 Concluding Thoughts

Our analysis of 1-D Brownian particles with Energy Depots found

that in certain parameter regimes for a fixed diffusion constant D

particles tended closer to the adiabatic limit in depot energy e as the

activity d0 and fuel accumulation q0 parameters were increased. We

analysed the velocity distributions from numerical simulations to
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compare to analytical solutions of the steady-state Fokker-Planck

Equation (FPE) from which we identified 4 different behaviours

approaching and within the adiabatic limit. For the non-adiabatic

particles, running individual trajectories for longer times we were

able to observe the dynamics of these particles switching direction

and attempt to fit these using a power-law. Particles in low-velocity

regions exhibited a more chaotic switching behaviour which was

consistent with normal Brownian particles.

We utilised alternative methods to those commonly utilised within

the literature in order to do our analysis, such as the observation

of the switching time and also presented an auto-correlation anal-

ysis of both energy and velocity for particles. All of this analysis

helped to enrich the understanding of the two different emergent be-

haviours at lower and higher (closer to the fixed points) velocities,

and we have attempted to explain the dynamics of how particles

accumulate energy at low v before expending it accelerating to near

their fixed points where they are able to spend longer times before

stochastic events slow them back down again.

The energy depot model represents a simple way of modelling

ABPs which can offer rich dynamics and has the capacity to be

expanded to more complex systems (multi-particle, potential gradi-

ents, different energy conversion models) as needs arise. Our study

of this specific case of non-adiabatic particles offers more under-

standing of the specific parameter regimes we chose as well as the

dynamics in 1-D which are not widely covered in the literature for
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ABPs with EDs. This research could serve as a good foundation for

future work adapting the aforementioned more complex systems to

non-adiabatic systems and our methodologies for analysing charac-

teristic timescales for different paths through switching time distri-

butions could also find use elsewhere in the field.
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Chapter 7

Appendices

7.1 Differential Chapman-Kolmogorov Equation

A differential form of eq. (3.2.2) showing the time evolution of the

probability of a system exists under certain assumptions[78]. This

takes the form of a master equation for a Markovian stochastic

process and is given by:

∂P (z, t|y, t′)
∂t

=−
∑
i

∂

∂zi
[Ai(z, t)P (z, t|y, t′)]

+
1

2

∑
i,j

∂2

∂zi∂zj
[Bij(z, t)P (z, t|y, t′)]

+

∫
dx

[
W (z|x, t)P (x, t|y, t′)

−W (x|z, t)P (z, t|y, t′)
]

(7.1.1)

216



Appendices
Differential Chapman-Kolmogorov Equation

Where:

W (x|z, t) = lim
∆t→0

1

∆t
P (x, t+∆t|z, t) (7.1.2a)

Ai(z, t) = lim
∆t→0

1

∆t

∫
x−z<ε

dx(xi − zi)P (x, t+∆t|z, t) +O(ε)

(7.1.2b)

Bij(z, t) = lim
∆t→0

1

∆t∫
x−z<ε

dx(xi − zi)(xj − zj)P (x, t+∆t|z, t) +O(ε) (7.1.2c)

For all ε > 0 and in the case that for eq. (7.1.2a) |x− z|≥ ε.
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7.2 Fokker-Planck Equation

In the case where the final term of eq. (7.1.1) is zero (i.e. W (z|x, t) =

0 — there are no jump processes in the system), the CKE reduces

to the FPE for a stochastic system. The general form of the FPE

is thus[78]:

∂

∂t
P (z, t|y, t′) =−

∑
i

∂

∂zi
[Ai(z, t)P (z, t|y, t′)]

+
1

2

∑
i,j

∂2

∂zi∂zj
[Bij(z, t)P (z, t|y, t′)] (7.2.1)

A(z, t) is the drift vector and
˜
B(z, t) is the iffusion matrix. For

small values of ∆t, the derivatives of Ai(z, t) and Bij(z, t) are neg-

ligible compared to those for P and so eq. (7.2.1) becomes:

∂

∂t
P (z, t|y, t′) =−

∑
i

Afi(y, t)
∂P (z, t|y, t′)

∂zi

+
∑
i,j

1

2
Bij(y, t)

∂2P (z, t|y, t′)
∂zi∂zj

(7.2.2)

This represents the solution to a general set of LEs:

y(t+∆t) = y(t) +A(y(t), t)∆t+ ξ(t)∆t1/2 (7.2.3)

Where:

⟨ξ(t)⟩ = 0 ⟨ξ(t)ξ(t′)⟩ = 2Sδ(t− t′) (7.2.4)

Where S is an array of stochastic coefficients for the LEs.
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7.3 Derivation of Ornstein-Uhlenbeck Fokker-Planck Equa-
tion

Recall the set of LEs for an OU particle[78]:

dr

dt
= v (7.3.1a)

dv

dt
= −γ0v +

√
2Dξ(t) (7.3.1b)

The differential CKE for a system with drift and diffusion gives the

FPE:

∂

∂t
P (z, t|y, t′) =−

∑
i

∂

∂zi
[Ai(z, t)P (z, t|y, t′)]

+
1

2

∑
i,j

∂2

∂zi∂zj
[Bij(z, t)P (z, t|y, t′)] (7.3.2)

Applying the LEs (7.3.1) to eq. (7.3.2) yields the FPE for an un-

derdamped OU particle:

∂P (v, r, t)

∂t
=− ∂ (vP (v, r, t))

∂r
+ γ0

∂ (vP (v, r, t))

∂v

+D
∂2P (v, r, t)

∂v2
(7.3.3)
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7.4 Derivation of Solution to OU FPE

The Fokker-Planck equation for the OU Process is[83]:

∂P (v, t)

∂t
= γ0

∂(vP (v, t))

∂v
+D

∂2P (v, t)

∂v2
(7.4.1)

The Fourier transforms for the RHS terms in eq. (7.4.1) are (taking

positive Fourier transform):

F
[
γ0
∂(vP (v, t))

∂v

]
= γ0

∞∫
−∞

dv
∂vP (v, t)

∂v
eikv

= −γ0k
∂P̂ (k, t)

∂k
(7.4.2)

F
[
D
∂2P (v, t)

∂v2

]
=D

∞∫
−∞

dv
∂2P (v, t)

∂v2
eikv

=−Dk2P̂ (k, t) (7.4.3)

Therefore eq. (7.4.1) can be transformed to:

∂P̂ (k, t)

∂t
+ γ0k

∂P̂ (k, t)

∂k
= −Dk2P̂ (k, t) (7.4.4)

Using the method of characteristics, a system of ordinary differential

equations may be found from eq. (7.4.4):

dt =
dk

γ0k
= − dP̂ (k, t)

Dk2P̂ (k, t)
(7.4.5)

Resulting in two ODEs:

dk

dt
= γ0k (7.4.6a)

dP̂ (k, t)

dt
= −Dk2P̂ (k, t) (7.4.6b)

Solving eq. (7.4.6a):

k = k0e
γ0t (7.4.7)
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Substituting eq. (7.4.7) into eq. (7.4.6b):∫ P̂ (k,t)

P̂0

dP̂ ′(k, t)

P̂ ′(k, t)
= −Dk20

∫ t

0

dt exp

[
2
t

τ

]
(7.4.8)

The solution to this equation yields the solution to eq. (7.4.1) in

Fourier space for intial value P̂0:

P̂ (k, t) = P̂0 exp

(
−D

2γ0

(
k2 − k20

))
(7.4.9)

7.4.0.1 Case 1 — Initial Delta Function

Consider a particle starting at velocity v0:

P (v, t|v0, t0) = δ(v − v0) (7.4.10)

Transforming this into Fourier space:

F [P (v, t|v0, t0)] = P̂0 =

∞∫
−∞

dvδ (v − v0) e
ikv = eik0v0 (7.4.11)

Substituting eq. (7.4.11) into eq. (7.4.9), using eq. (7.4.7), yields:

P̂ (k, t) = exp

[
ikv0e

−γ0t − Dk2

2γ0

(
1− e−2γ0t

)]
(7.4.12)

Let:

σ2(t) =
D

γ0

(
1− e−2γ0t

)
(7.4.13a)

µ(v0, t) = v0e
−γ0t (7.4.13b)

Then:

P̂ (k, t) = exp

[
−ikµ(v0, t)−

k2

2
σ2(t)

]
(7.4.14)
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Taking the inverse Fourier transform of eq. (7.4.14):

P (v, t) =

∞∫
−∞

dk e−ikv exp

[
−ikµ(v0, t)−

k2

2
σ2(t)

]

=

∞∫
−∞

dk exp

[
−σ2(t)

2
k2 − ik(v + µ(v0, t))

]
(7.4.15)

Using the integral relationship:∫ ∞

−∞
dx exp

[
−ax2

2
+ bx

]
=

(
2π

a

)1/2

exp

[
b2

2a

]
(7.4.16)

Letting:

a = σ2(t) (7.4.17)

b = −i(v + µ(v0, t)) (7.4.18)

Then:

P (v, t) =

(
2π

σ2(t)

)1/2

exp

[
−(v + µ(v0, t))

2

2σ2(t)

]
(7.4.19)

Which is simply a Gaussian with mean µ(v0, t) and standard devi-

ation σ(t) as defined in eqs. (7.4.13).

7.4.0.2 Case 2 — Initial Uniform Distribution

For v0 ∈ (va,vb):

P0(v0, t0) =
1

va − vb
(7.4.20)

The Fourier transform is thus:

F [P (v0, t0)] = P̂0 =

vb∫
va

dv eikv
1

va − vb
=

eikvb − eikva

ik(va − vb)
(7.4.21)
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7.5 Velocity-Energy Scatter Plots
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Figure 7.1: Scatter plot of particle velocity and energy at intervals of ∆t = 0.1 for a single particle
trajectory of length tend = 30000.0. Other parameters d0 = 0.1, γ0 = 1.0, D = 0.1, c = 0.001.

223



Appendices
Velocity-Energy Scatter Plots

10 5 0 5 10
v ( 0

D )1/2

101

102

103

104

e
(0 D

)

q0 = 2.0

4 2 0 2 4
v ( 0

D )1/2

100

101

102

103

e
(0 D

)

q0 = 0.1

10 5 0 5 10
v ( 0

D )1/2

101

102

103

104

105

e
(0 D

)

q0 = 10.0

7.5 5.0 2.5 0.0 2.5 5.0 7.5
v ( 0

D )1/2

100

101

102

103

104

e
(0 D

)

q0 = 1.0

e(v) e0 ep

Figure 7.2: Scatter plot of particle velocity and energy at intervals of ∆t = 0.1 for a single particle
trajectory of length tend = 30000.0. Other parameters d0 = 1.0, γ0 = 1.0, D = 0.1, c = 0.001.
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Figure 7.3: Scatter plot of particle velocity and energy at intervals of ∆t = 0.1 for a single particle
trajectory of length tend = 30000.0. Other parameters d0 = 2.0, γ0 = 1.0, D = 0.1, c = 0.001.
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Figure 7.4: Scatter plot of particle velocity and energy at intervals of ∆t = 0.1 for a single particle
trajectory of length tend = 30000.0. Other parameters d0 = 6.0, γ0 = 1.0, D = 0.1, c = 0.001.
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Figure 7.5: Scatter plot of particle velocity and energy at intervals of ∆t = 0.1 for a single particle
trajectory of length tend = 30000.0. Other parameters d0 = 10.0, γ0 = 1.0, D = 0.1, c = 0.001.
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7.6 First Passage Time Probability

Beginning with the Green’s function eq. (7.4.19) for an OU particle

as previously derived rewritten for a 1-D system:

P (v, τ |v0) =
(

γ0
2πD (1− e−2γ0τ)

)1/2

exp

[
−γ0(v − v0e

−γ0τ)2

2D (1− e−2γ0τ)

]
(7.6.1)

The Green’s function G(v, τ |v0) when applying an absorbing bound-

ary condition P (v < 0) = 0 is:

G(v, τ |v0) = P (v, τ |v0)− P (v, τ |−v0) (7.6.2)

G(v, τ |v0) =
(

γ0
2πD (1− e−2γ0τ)

)1/2

(
exp

[
−γ0(v − v0e

−γ0τ)2

2D (1− e−2γ0τ)

]
− exp

[
−γ0(v + v0e

−γ0τ)2

2D (1− e−2γ0τ)

])
(7.6.3)
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The survival distribution S(τ) is then:

S(τ |v0) =
∞∫
0

dv G(v, τ |v0) (7.6.4)

S(τ |v0) =
(

γ0
2πD (1− e−2γ0τ)

)1/2

∞∫
0

dv

(
exp

[
−γ0(v − v0e

−γ0τ)2

2D (1− e−2γ0τ)

]
(7.6.5)

− exp

[
−γ0(v + v0e

−γ0τ)2

2D (1− e−2γ0τ)

])
(7.6.6)

S(τ |v0) =
1

2

(
erf

[(
γ0

2D (1− e−2γ0τ)

)1/2

v0e
−γ0τ

]

− erf

[
−
(

γ0
2D (1− e−2γ0τ)

)1/2

v0e
−γ0τ

])
(7.6.7)

The first passage time distribution can be given thus as:

h0(τ |v0) =− d

dτ
S(τ |v0) (7.6.8)

h0(τ |v0) =− 1

2

d

dτ

(
erf

[(
γ0

2D (1− e−2γ0τ)

)1/2

v0e
−γ0τ

]

− erf

[
−
(

γ0
2D (1− e−2γ0τ)

)1/2

v0e
−γ0τ

])
(7.6.9)

h0(τ |v0) =
(
2v20γ

3
0

πD

)1/2
(

e−γ0τ

(1− e−2γ0τ)1/2
+

e−3γ0τ

(1− e−2γ0τ)3/2

)

exp

(
−γ0v

2
0

2D

e−2γ0τ

(1− e−2γ0τ)

)
(7.6.10)
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7.7 Stationary Solution of Adiabatic Energy Depot FPE

Recall the LEs for the ED model:

dr

dt
= v (7.7.1a)

dv

dt
= −γ0v + e(v, t)d0v +

√
2Dξ(t) (7.7.1b)

de

dt
= q(r,v, t)− (c+ d0v

2)e(v, t) (7.7.1c)

When particle energy is adiabatic, ė ≈ 0. Thus eq. (7.7.1c) has the

solution:

e0 =
q0

c+ d0v2
(7.7.2)

The FPE for the LEs (7.7.1) given e0 from eq. (7.7.2) is therefore:

∂P

∂t
= − ∂

∂v

[(
−γ0v +

q0v
c
d0
+ v2

)
P +D

∂P

∂v

]
(7.7.3)

At steady state (SS), ∂P
∂t = 0 and thus:∫

P

dP ′

P ′ =

∫
v

dv′

−γ0v
′

D
+

q0v
′

D
(

c
d0
+ v′2

)
 (7.7.4)

Integrating this yields:

ln

[
P

N

]
=

−γ0v
2

2D
+

q0
2D

ln

[
1 +

d0v
2

c

]
(7.7.5)

Which can be rearranged to give the SS PDF for the velocity of an

adiabatic particle, given that the approximation eq. (7.7.2) holds

for the system parameters.

PSS(v) = N
(
1 +

d0
c
v2

) q0
2D

exp
[
− γ0
2D

v2
]

(7.7.6)
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