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Abstract

Past two decades have witnessed a steady growth in research related to Brain

Computer Interface (BCI), which offers a non-muscular communication pathway to

patients disabled due to neurological disorders. BCI works by recording brain sig-

nals (example; electroencephalography (EEG)) and translating them into machine-

understandable language. Most of the current BCI systems identify features of the

brain signals and classify them according to a predefined criterion set by the classify-

ing algorithm. The features of the brain signals can change over time and this could

adversely affect the feature extraction and classification algorithm. This restricts the

use of BCI in a laboratory oriented device.

Due to these impediments, this study aims at detecting events in EEG signals

rather than classifying them. As detection would not require classification of the fea-

tures, the process is less susceptible to changes in signal features. Thus, it could be

possible to bring BCIs into clinical use. The current study modelled the features of

rest EEG signal using a Gaussian distribution and a mixture of Gaussians. The fea-

tures of EEG were extracted using continuous wavelet transform and the parameters

of the models were estimated using an Expectation-Maximization (EM) algorithm.

Maximum-likelihood estimates of the parameters of the rest EEG and EEG during

motor actions were compared.

Statistical analysis of the results indicates that there are differences between

maximum-likelihood values of the wavelet coefficients of the rest EEG and EEG

undergoing motor activity. Two models of Gaussian mixture gave better results

than a simple Gaussian distribution. This shows that Gaussian mixture modelling

(GMM) of EEG is sensitive enough to depict changes during motor activity with

respect to rest EEG.
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1 Introduction

Human brain is more complex and sophisticated than the brain of any other

organism in the entire living kingdom. Our brain controls and coordinates all the

processes and functions in our body without any conscious effort. Brain communi-

cates through the spinal cord and other neural networks in our body. Disorders such

as multiple sclerosis, amyotrophic lateral sclerosis (ALS), cerebral palsy, brainstem

stroke, muscular dystrophies and brain and spinal cord injuries impair the natural

communication pathway between brain and other parts of the body[1]. Severe dis-

orders can cause complete impairment of the neuronal pathways to muscles, which

sometimes leads the person to a locked-in state[2, 3]. In a locked-in condition, the

patient cannot move or communicate with the external world. However, the patients

can survive with the help of life supporting equipments and other individuals.

Brain Computer Interfaces (BCIs) are devices which are capable of controlling

artificial devices using the signals taken from the brain. They provide a non-muscular

communication channel for patients who are in locked-in condition[4]. BCIs can be

employed for restoring sensory functions, for stimulating communication with the

external world, for controlling prosthetic devices like wheelchairs[5] and robotic arms

etc[6].However, BCIs are often used as interfaces for controlling artificial devices by

processing signals taken from the brain. BCIs works in real-time, i.e., signals from

the brain are processed on-line and converted into machine understandable language.

Hence the intention behind the concept of BCI is to translate the intention of a person

into machine language by using brain signals[7].

There are several techniques available to obtain information about the ongoing

processes in the human brain.Electroencephalography (EEG), Magnetoencephalog-

raphy (MEG), Positron Emission Tomography (PET), functional Magnetic Reso-

nance Imaging (fMRI) and Optical Imaging are the prominent techniques to monitor

the brain’s activity. However, MEG, fMRI and PET methods are not efficient for

rapid communication since they depend on blood flow and that makes them less

favourable for BCI related uses[4]. Presently, the most widely used method to mea-

sure brain activity for BCI is EEG signals. The reason for using EEG signals for

BCI are less expense, portability, less time consumption and adaptability to almost
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all environments[8]

1.1 Aim of the Study

BCIs work by identifying features of the EEG signal and translating them into

device commands. Most of the BCI systems work by classifying the extracted features

during the signal analysis. There are possibilities that as time passes the features of

the EEG signals from the user might change. These changes will adversely affect the

accuracy of the classification system in the BCI. Moreover, BCI systems are bound to

laboratory environment due to noise considerations and complexity of BCI system.

To make BCIs work in household conditions, simpler yet reliant signal processing

techniques are needed. Detection of brain events (eg: ERD/ERS, SSVEP) without

classification might serve to overcome the above stated problem. This would allow

simple one dimensional selection task and it would be more reliable than classification

in a domestic environment.

The aim of this study is to develop an event detection technique by modelling

the features of rest EEG data into Gaussian Mixture Model (GMM) and comparing

it with GMM of EEG during motor task. It is hypothesized that the parameters of

Gaussian model of EEG under rest and EEG under motor task might elicit some

difference. These differences in parameters of the model will help in identifying the

time and duration of the events in EEG.

1.2 Structure of the Thesis

This chapter will be followed by chapter two which presents an overview of

current BCI systems based on EEG signals. Chapter three and four will discuss the

event detection in EEG and different feature analysis techniques . Chapter five gives

the experiment design and methodology of the project. Chapter six will present the

results obtained in the study. Chapter seven will discuss the results. Final chapter

concludes the thesis and discusses the scope of the study.
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2 EEG and Brain Computer

Interface

EEG represents the electrical activity of neurons in the brain. In 1979, Hans

Berger presented the very first paper on EEG and from then on, EEG has been used

as a diagnostic tool to evaluate the functions of the brain. EEG reflects the ongoing

activities in the brain. Hence, theoretically, EEG could be used to decipher human

thoughts[4]. Thus, the information from the EEG waves could help to develop a

brain computer interface. However, predicting the exact intention of the person

from EEG is quite complex due to the huge number of neurons in the brain. Brain

is controlling all the organs, functions, processes and everything in the body and

so, EEG reflects every action that is happening inside the body. A BCI system

should extract features of physical events (eg: motor activity) from the EEG signal.

To isolate a single physical event from the analysis of EEG is not an easy task.

However, advancements in EEG signal processing and better electrode technologies

would help improve to extract accurate information about physical events from EEG

signal.

One important aspect of EEG is the knowledge about the rhythms in EEG

wave. With the advancement in technology, immense research has been done with

a view to finding the relationship between the brain waves and their origin and

mechanism. Various experimental studies have made clear the relationship between

EEG signals and mental tasks[9, 10]. There is a fair amount of information available

for researchers which would facilitate the use of EEG as a source to drive BCI. Also,

with better hardware resources and signal processing algorithms, now it is possible to

analyse and process multichannel EEG. Hence, it is possible to setup more complex

BCI systems like word speller[11] and prosthesis control[6]. The research on BCI will

help to improve the quality of lives of people suffering from neurological disorders

and spinal cord injuries.

Several methods are currently available to record EEG signals using electrodes,

which include epidural, subdural and scalp-recorded EEG activity. The first two

methods are invasive but give higher resolution and amplitude than scalp-recorded

3



EEG. Subdural electrodes or intracortical electrodes provide greater resolutions than

other methods and can even obtain single neuron potentials[12, 8]. However, these

invasive methods raise the risks of infection and also require more challenging clinical

interventions, and so they are less favourable options for BCI. Surface EEG has

less resolution and amplitude in comparison with the invasive methods. Despite

these shortcomings, it is comparatively safer and less expensive. Under application

of suitable signal processing techniques, it is possible to extract a fair amount of

information to drive a BCI system.

2.1 EEG Recording

Usually an EEG recording setup consists of electrodes, instrumentation ampli-

fiers, analog-to-digital converter and a recording device. The electrodes convert ionic

potential into electrical potential which is fed into the amplifier for amplification. The

amplified signal is converted into digital format by the analogue-to-digital converter.

Digital signals are understandable to the computers and can be manipulated with

the computer system.

The measurement of EEG signals requires an active electrode, a reference elec-

trode and a ground electrode. The potential difference between active electrode

and reference electrode is measured using a differential amplifier with respect to

the ground electrode. BCI requires an array of electrodes to extract information

required to record the intentions of the individual. Currently available EEG mea-

surement systems are configured to use up to 120 to 220 electrodes which are usually

made of silver chloride. Impedance level between electrode and the scalp should be

between 1 kΩ and 10 kΩ in order to make an accurate measurement. To make a

better contact and to reduce contact impedance, electrode gels are widely used[13].

The amplitude level of EEG signal is in the range of microvolts only and so,

it requires high amplification level for further processing. These low amplitude sig-

nals are prone to noises such as 50 Hz power-line interferences and other electronic

noises. Furthermore, during recording, EEG could be mixed with motion artifacts

and muscle activity. The design of the EEG system must consider these noises and

steps should be taken to avoid them.
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2.1.1 Electrode Placement and Referencing

The placement of electrodes over the scalp are according to the 10-20 interna-

tional lead system[14]. Two reference points are determined on the head in order

to place the electrodes. One of the reference points is the inion, which is at the

back of the skull and the other reference point is the nasion, which is just above

the nose. The skull is divided by the transverse and median planes with respect to

the reference points. The locations of electrodes are determined by dividing these

planes at intervals of 10% and 20%. Electrode locations are named according to

the specific brain regions in such a way that the letters C, F, O, P, Pg and Fp rep-

resent central, frontal, occipital, parietal, nasopharyngeal and frontal polar regions

respectively. Electrode placements are shown in figure 2.1.

The voltage of the active electrode is measured with respect to a reference elec-

trode. However, if there is any activity happening in the site of the reference elec-

trode, it will influence the measurement. Two methods of referencing are widely

used for EEG measurement i.e., common reference site and common average refer-

encing. Common reference site, which is the popular method, takes the electrode

placed on the nose or mastoid as the common reference. However, in high density

EEG measurements, this method is not recommended because it influences the actual

measurement. To circumvent the referencing problem in high density measurements,

common averaging technique is recommended.Average referencing system takes the

average of all the electrode measurements except that of the active electrode[15].
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Figure 2.1: Electrode Placement Over Scalp. The figure in the left and right shows
the side view and top view of the locations of electrode placement over the scalp
respectively. The electrode locations are marked according to 10-20 international
lead system. Reference points (Nasion and inion) are highlighted with a pointer.[13]

2.2 Control Signals in BCIs

Brain signals contain information about different tasks that are currently per-

formed by the brain. Albeit physiological significance and the origin of most of the

brain signals are still being studied, it is now possible to decode some of the brain

signals to understand the user intentions. These signals which are capable of con-

trolling BCI systems are called control signals. Most widely used control signals in

current BCI systems are P300 Evoked Potentials, Visual Evoked Potentials, Slow

Cortical Potentials and Sensorimotor Rhythms.

2.2.1 P300 Evoked Potentials

P300 evoked potentials are positive high peak wave forms which are produced

in the EEG during infrequent auditory, visual or somatosensory stimuli. These

peaks are elicited about 300ms after getting an oddball stimulus among frequent

stimuli[11]. It is mostly observed in the parietal and central regions of the brain.

The advantage of using P300 response as a control signal is that it does not require
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user training. However, the amplitude of the response gets eventually reduced due

to familiarization with the infrequent stimulus. To avoid this situation, rare stimuli

are presented randomly. BCI using P300 evoked potentials as control signals will be

explained in the next chapter.

2.2.2 Visual Evoked Potentials

Visual Evoked Potentials (VEPs) are generated at the visual cortex of the brain

after receiving a visual stimulus. The amplitude of the VEP increases when the

stimuli move closer to the central visual field. VEPs are classified into three different

classes according to three different criteria: (i)the morphology of visual stimulus,

(ii)the frequency of visual stimulation and (iii) field stimulation[16]. According to

the morphology of the visual stimulus, VEPs can be evoked by presenting the subject

with a flash stimuli or using specific graphic patterns such as checkerboard lattice,

gate and random-dot map. The second criterion is based upon the frequency of

visual stimulus and VEPs generated under this criterion are classified as transient

VEPs (TVEPs) and steady-state VEPs (SSVEPs). SSVEPs happen only in higher

frequencies of visual stimuli while TVEPs elicit only when the frequency of visual

stimuli is below 6 Hz [17]. The third criterion divides VEPs based on the area of on-

screen stimulus. Depending upon the area of on-screen stimulus, VEPs are divided

into whole field, half field and part field VEPs.

VEP response varies with the stimulus provided. For instance, flash TVEPs

produce a series of negative and positive peaks with prominent peaks at 90 ms and

120 ms respectively, while pattern onset/offset causes two positive and one negative

peaks[18].

SSVEPs are produced by the same stimulus as explained above. However, the

frequency of the stimulus provided should be above 6 Hz. The amplitude of the

main peak and its first and second harmonics of the SSVEPs increase when the user

gazes at the flickering target. The frequency of the peaks would be the same as

the frequency of the stimulus[19]. In contrast to TVEP, the phase and amplitude of

the frequency components of SSVEP remain constant over longer periods of time.

Furthermore, SSVEPs are less susceptible to the artifacts caused by the movements

of eye and electromyographic noises than TVEP. Hence, SSVEP based BCIs are
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more common than TVEP based BCIs[13].

2.2.3 Slow Cortical Potential

Slow Cortical Potentials (SCPs) are the slowest changing potentials among the

low frequency components (at around 1 Hz) of the scalp recorded EEG[20]. SCPs

occur due to the activity of the cortical region of the brain. Usually potential shift

happens in an interval of 0.5s to 10s, hence the name slow cortical potential[21].

The advantage of SCP is that it can be regulated by the user himself with proper

training and practice. Negative SCPs represent increased neuronal activity, while

positive SCPs show decreased activity of cortical neurons. User can be trained

to regulate the SCP voluntarily with the help of proper feedback. Self-regulation

of SCPs depends upon several factors such as subject’s psychological and physical

state, motivation, social context and subject-trainer relation, sleep, and pain[22].

2.2.4 Sensorimotor Rhythms (SMR)

These are rhythms measured over somatosensory cortices of the brain. Sensori-

motor rhythms include µ-rhythm with a frequency around 10 Hz (8-11 Hz), usually

combined with β-rhythm (around 20Hz) and γ- rhythm (around 40Hz). Some of

the β-rhythms are harmonics of the µ-rhythms and some components might appear

independent as well. Several studies show that SMR leaks to the parietal electrodes

and it is also visible in patients with amyotrophic lateral sclerosis[23]. The amplitude

of the SMRs varies with the motor tasks. One of the most interesting fact about

SMR is that, actual movement is not required to cause changes in the sensorimotor

rhythms. The subjects can imagine the motor task and with the imagination, mod-

ulation of SMR is possible. This advantage of SMR makes it a favourable option,

as a control signal, for patients who are in locked-in condition. Amplitude of sen-

sory motor rhythms tends to decrease or desynchronize during actual movement or

motor imagery and the amplitude will increase or synchronize after the movement

or during relaxation time[24]. Despite the degeneration in cortical and spinal motor

neurons, it is possible to modulate the SMR[23]. However, when compared with

healthy subjects, amplitude of SMR is low in patients with ALS.
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2.3 A Review of Current BCI systems

This section presents a literature review of current BCI systems.

2.3.1 Types Of BCIs

Based on control signals used, BCIs can be classified into exogenous and en-

dogenous systems[13]. In exogenous BCI, signal changes in the EEG require ex-

ternal stimuli such as visual or auditory stimulus. P300 and VEPs are examples

of exogenous response. Main advantage of exogenous BCI is that, it does not re-

quire extensive training. Moreover,it also features high data rate.In endogenous BCI

system, the user learns to self-regulate brain rhythms without any external stimu-

lus. This BCI system is based on endogenous signals like sensorimotor rhythms and

SCPs. The benefit of endogenous system is that, patients with visual impairment or

ALS could self regulate their brain rhythms and can be able to control BCI. In the

coming sections, a review of both exogenous and endogenous BCI systems will be

presented.

Based on input processing technology, BCIs are classified into synchronous and

asynchronous systems[13]. Synchronous BCI process input signals only during pre-

defined time windows i.e., any input will be ignored outside this time window. The

advantage of synchronous system is that the patient can make conscious efforts in

order to control the BCI system, thus avoiding processing of misleading events such

as eye blinks and motion artefacts. Asynchronous BCI continuously processes the

input data which offer a natural man machine interface. However, this kind of system

is very complex and demands more computational power.

Here, the BCI systems are explained on the basis of control signals and mentions

the input processing technology used, where ever appropriate.

2.3.2 P300 Based BCI

In 1988, a paper published by Farwell and Donchin[11] showed that P300 com-

ponent in the EEG signal can be used to select characters presented in a computer

screen. In their experiment, the user was presented with a 6×6 matrix of numbers

or symbols and in every 125ms a row or column would be highlighted with a flash
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of light. In a complete trial, each column and row would be flashed twice. The user

was asked to select a particular symbol from the matrix. The target would only flash

twice during a sequence of 12 flashes, hence producing two rare events out from the

12 flashes which elicit P300. EEG was picked from parietal cortex and was digitized

to take the average response to be compared between that of each row and column.

Amplitude of the P300 was compared in all possible combinations. Only the desired

selection of user’s symbol had shown the maximum amplitude P300. This was used

to detect the intention of the user. One of the advantages of P300 is that it does not

require any initial training of the subject.

Figure 2.2: A typical 6×6 matrix for P300 speller BCI. (left) Matrix highlighting a
column of characters. (right) Matrix highlighting a row of characters. During the
trial, rest of the characters are invisible[25].

Many researches have been done on P300 as a speller device. The intention of

the ongoing studies are to improve the classification rate and accuracy of the predic-

tion. A study report published by Thulasidas et al. shows that, online classification

of 3 characters per minute with 95% accuracy is possible with a vector machine

classifier[26]. ALS patients are also able to use P300 as input to the BCI, which was

first demonstrated by Sellers et al. They compared the efficiency of P300 as inputs

for BCI among healthy and paralyzed subjects and found that healthy subjects per-

formed better than paralyzed subjects[27], provided that both the groups underwent

the experiment without any initial training.
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2.3.3 SSVEP Based BCI

SSVEP based BCI system comes under the category of exogenous BCI. Like

P300, this type of BCI requires gaze to a visual stimulus. However, instead of the

requirement of rare stimulus to elicit P300, SSVEP requires flickering visual stimuli.

To present the user with different frequencies of flickering targets, an LCD/CRT

monitor[19] or a board with LED[28] is widely used. In 2002, Cheng et al., developed

an SSVEP based BCI to input telephone numbers[29]. This system consists of virtual

keypad with 13 characters displayed in a CRT monitor with a refresh rate of 70.14

Hz. Only two channels (O1 and O2) were taken for processing the EEG. FFT of the

EEG signal was performed for every 0.3 seconds. Amplitude of SSVEP response was

calculated by summing up the amplitude of fundamental frequency and its second

order harmonics. This amplitude was compared with a set threshold in order to

register the selection of user’s intended key. 8-13 subjects managed to dial the

intended phone number. The average transfer rate of this experiment was 27.15

bits/min. In 2006, the same group[19] tried to reduce inter-subject variability by

choosing channel locations and frequency of the stimulus and obtained an increased

transfer rate of 43 bits/min.

A recent study by Volosyak et al., developed an SSVEP based spelling device that

achieved a transfer rate of more than 100 bits/min[30]. They have introduced changes

in signal processing and graphical user interface which made them to achieve higher

information transfer rate. Frequency detection from spatially filtered signal had been

done by using the power of the stimulating frequency and its harmonics instead of

signal-to-noise ratio in other methods. In their study, the user was presented with a

virtual keyboard with 32 characters in an LCD screen with refresh rate of 120 Hz.

The screen consisted of five selection keys placed around the edges. Each selection key

was presented in a white box and all had different flickering frequency. The selection

keys included ‘select’ ( 6.67 Hz), ‘left’ (7.5 Hz), ‘right’ (8.57 Hz), ‘up’ (10Hz), and

‘down’ (12 Hz). The user could move the cursor by selecting the navigating keys and

the selection could be made by selecting the ‘select’ key. The system also provided

the user with an audio feedback when the user made a selection.

The primary requirement of SSVEP based BCI is intact gaze on the stimuli,

thus impeding the use of SSVEP in patients with less eye movement control. Kelly
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et al. compared the classification accuracies when subjects did not require to gaze at

the flickering stimulus. Instead, they had to concentrate on a fixation cross between

targets. The authors referred this condition as covert attention[31]. The results of

the classification rate shows a reduction in accuracy from 90% to 70%, of the covert

attention when compared with the fixed gaze. This shows that a simple two target

SSVEP could be used for people who are in locked-in condition despite low accuracy

in classification rate.

2.3.4 SCP Based BCI

Slow cortical potentials are low frequency oscillations in the EEG signal and they

require no external stimulus. Birbaumer et al.’s study on slow cortical potential

showed that it is possible to modulate the SCPs by user training and thereby to

enable the user to control objects on a computer screen[7]. ‘Thought Translation

Device ’ was the first BCI paradigm driven by SCP control. EEG was recorded

from the vertex which are referred as linked mastoids(behind the ear). Suitable

filtering method was applied to extract the SCP from the EEG signal and the user

was presented with a computer screen which gives a visual feedback.The feedback

was in such a way that the user would be able to move a cursor on the screen by

modulating the SCP signal. Selection process took 4 seconds. The system took the

first 2s as baseline and measured the initial voltage level. In the next 2s, user would

be able to move the cursor by self regulating the voltage level. Training sessions

of 1-2 hours/week were given and they were carried on up to several months until

the user achieved an accuracy of more than 75%. Once the user attained consistent

performance in TTD, he/she could be shifted into language support program (LSP).

LSP allowed the user to select letters or a combination of letters to form words.

Users were able to achieve a selection rate of 2-36 words/hour with an accuracy

of 65-90%[7]. This type of system is suitable for ALS patients when there is no

communication paradigm available.

2.3.5 SMR based BCI

Sensorimotor rhythms are the µ-rhythm and β-rhythm which are oscillations

occurring in the left and right sensory cortex of the brain. The attractive feature of
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SMR is that it is possible to elicit SMR with motor imagery[9], making it possible for

disabled subjects to use them. Hence actual movement is not needed to control the

BCI. Furthermore, with training and practice, the users can modulate their SMR.

Wadsworth BCI and Graz BCI are the two prominent groups concentrating on SMR

based BCI research.

2.3.5.1 Wadsworth BCI based on SMR

Wolpaw, McFarland and their colleagues developed BCI systems which enabled

subjects to control one dimensional or two dimensional cursor movement on a com-

puter screen by regulating their µ and β rhythms[32, 8, 33]. In the one dimensional

cursor control experiment, the user was asked to move the cursor to hit the target at

the top and bottom of the monitor by regulating his/her SMR. The user increased

the amplitude of 8-12 Hz µ-rhythm to move the cursor to the top of the screen and

decreased the amplitude to bring the cursor to the bottom target. Regression anal-

ysis approach was used to control the cursor movement because of its suitability in

multi-dimensional and continuous control. Wolpaw and McFarland demonstrated a

two dimensional cursor control, based on regression approach. In the experimental

trial, a target appeared among one of the eight pre-set locations on the screen. After

one second, a cursor would appear at the centre of the screen and it would be able

to move in two dimensions by the changes in user’s EEG activity. The user was

allowed to select the target location within 10s and if it happens, the target would

flash in response to a successful hit. If the user fails to select the target, the target

simply would disappear. This would bring the end of the trial and the screen would

become blank for one second and a new target would appear again. Usually users

would learn to control cursor movement in a 40 minute session over several weeks.

Most of the users achieved significant cursor control during the 2-3 week training ses-

sion. Initially the user performed motor actions by imagining motor activity. But by

gaining experience, user would be able to control the cursor as they perform normal

motor actions.
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Table 2.1: Summary of control signals in BCI[13]

Signal Physiological Phenomenon Training Information
Transfer Rate

VEP EEG variation in the visual cortex No 60-100 bits/min
SCP Slow voltage shift in the brain signals Yes 5-12 bits/min
P300 Positive peaks due to rare stimulus No 20-25 bits/min
SMR ERD/ERS Yes 3-35 bits/min

2.3.5.2 Graz BCI based on SMR

Graz BCI system also uses sensorimotor rhythms as control signal. This research

group focuses more on motor imagery of simple motor actions (eg: imaginary hand

movement) to modulate SMR and use it to control BCI systems[9]. More specifically,

event related synchronization/desynchronization (ERD/ERS) during motor imagery

are used as control signals. This system is a synchronous system i.e., feature extrac-

tion is performed during a predefined time window. The Graz BCI system consists

of a standard experimental protocol[34]. According to this protocol, the user attends

a training session to select a motor imagery paradigm. During a 5.2s window, user

imagines a motor movement(eg: left or right hand, tongue, foot etc) while the fea-

tures of the EEG signal is extracted using power spectral analysis. An n-dimensional

feature vector is generated for each motor imagination. These vectors can be classi-

fied by a linear or non linear classifier to identify the user’s motor imagination. The

classifier translates the ERD/ERS into continuous output (eg: cursor control) or

discrete output (eg: letter selection or word selection). Users achieved an accuracy

of 90% with two choice selection by attending 6-7 sessions of training.

A summary of BCI systems based on control signals is shown in Table 2.1.

This chapter discussed about the EEG recording and common control signals

employed in BCI systems. In the next chapter, different feature analysis techniques

used in BCI systems will be discussed.
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3 Event Detection in EEG signal

The previous chapter gave a brief introduction about various types of BCI sys-

tems and the control signals used in BCI systems. This chapter will discuss the event

detection in EEG and the need for it in BCI systems.

3.1 Introduction

Almost all the current BCI systems work by extracting features from brain

signals and classifying them to control external devices. Most of these features are

subject specific and require specific feature extraction technique for each user. This

makes the use of BCI system, laboratory oriented. Current systems are designed

to extract features(eg: frequency changes) from specific locations for specific control

signals. User learns to produce specific features according to the design of the BCI

system. For instance, a user learns to control a cursor by imagining leg movement.

When the complexity of BCI increases, the user might modulate their brain signals to

make different task selection. As time progresses, the user adapts to new signals and

this might cause changes in their features (eg:amplitude, frequency, location etc).

Under these circumstances, it is difficult to extract information using pre-defined

extraction criteria in the BCI system.

To overcome this difficulty, in 2008 Schalk et al. proposed a method that detects

some changes in a set of relevant features in brain rather than detecting particular

changes in specific features[35]. In their approach, they have modelled the features of

EEG under rest into Gaussian mixture models and compared this model with models

of EEG under other conditions. The measure of changes between two classes of

EEG was used to control the BCI system rather than classifying it. The parameters

of the Gaussian mixture model were estimated using EM algorithm. They have

implemented this method on a real-time in a software package called SIGFRIED. The

features were extracted using frequency domain approach. The number of Gaussian

models was chosen experimentally.
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3.2 Expectation-Maximization Algorithm

Expectation-Maximization (EM) algorithm is a method to estimate the param-

eters of a probability distribution. In the earlier days, parameters of complex prob-

ability distributions were estimated manually and this led to suboptimal estimation

of the parameters. EM algorithm overcomes this impediment with great accuracy.

This algorithm is well suited for a situation where the observed data is not com-

plete and the algorithm estimates the parameters of the probability distribution by

maximizing the likelihood function from the observed data. The concept of EM al-

gorithm was proposed by Dempster et al. in 1977[36]. The algorithm consists of two

steps: expectation and maximization. In the expectation step, the algorithm guesses

the parameters of the model and computes the probability using these parameters.

Maximization step utilizes the probability obtained during the expectation step and

computes new parameter values. This process will continue until it reaches a con-

vergence where no more improvisation in the probability function is possible. EM

algorithm has been used in many fields such as parameter estimation, image recon-

struction, finding missing data and hidden Markov model for speech recognition.

Tutorial and application of EM algorithm is available in [37, 38]

3.2.1 EM algorithm in EEG

Parameter estimation of probabilistic models using EM algorithm have appeared

in literatures related to brain signals. In a study by Khan et al., estimation of the

ERD from the EEG signal by using a time varying auto regressive model has been

described. The parameters of the model were estimated using EM algorithm. The

coefficients of the model were computed using a Kalman filter[39]. Time varying

spectrum of coefficients obtained from Kalman smoother was computed and its power

has been calculated.[40]. The ERD was computed by comparing the obtained power

with a reference value.

EM algorithm has also been used to classify single-trial ERPs elicited based

on different stimulus presentations. In a recent publication, Tzovara et al. used

EM algorithm to estimate the parameters of voltage topographies modelled using

GMM[41]. In their study, they were able to classify VEP datasets from voltage
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topographies under different stimulus presentations. The results from the single-trial

ERP based on EM algorithm were compared with averaging method, the results

which were found to be inferior to the former. This algorithm modelled voltage

topographies using GMM for two experimental stimuli during the training phase of

the algorithm.

Gaussian mixture modelling has been applied in Electrocorticogram (ECoG)

also to detect epileptic seizures in the waveform. In 2004, Meng et al. developed an

algorithm that modelled features of the ECoG into GMM using wavelet transform.

It was a hybrid algorithm that initially decomposed the raw ECoG into sub-bands

to separate seizure and no-seizure components using discrete wavelet transform. Fol-

lowing decomposition, a median filtering was applied to choose the envelope of the

waveform. This was made into a 24 dimensional feature matrix. These features were

modelled into mixture of Gaussians. Expectation-Maximization algorithm was im-

plemented to estimate the parameters of the model. The seizure detection algorithm

stored likelihood functions of both seizure and non-seizure features. A thresholding

criteria was made for the likelihood-ratio and that was used to detect the begin-

ning of the seizure events. This algorithm was able to detect seizures within 1.8s

on-line[42].

All the methods discussed above used EM algorithm or variance of EM algorithm

to estimate the parameters of GMM. These methods used sophisticated filtering

to extract useful features from brain signals. These kinds of complicated filtering

methods might cause usage of more resources and delay in processing brain signals.

BCI systems require higher information transfer rate in order to work on a real-

time basis. An efficient and reliable feature analysis is the key to real-time event

detection. Coming sections will discuss various feature analysis technique suitable

for the stated task.

3.3 Feature Analysis Techniques

A typical BCI system consists of

1. Data Acquisition: This is the first step of any BCI system. This stage

measures EEG signal from the brain using electrodes and amplifies the EEG

signals to a considerable level by a dedicated amplifier. This is followed by a
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digitization step which enables the signal to be fed into a computer system for

further processing. According to the control signals taken into consideration,

electrode positioning may vary because different signals originate from different

parts of the brain. For example, SSVEP is prominent in the visual cortex of

the brain.

2. Pre-Processing: EEG signal is contaminated by sources like power line inter-

ference, electronic noises and electromagnetic waves. In addition to the above

said noises, EEG might be disturbed by motion artefacts and other physiolog-

ical signals. The data processing stage uses specific filters to clean the EEG

data.

3. Feature Extraction: This stage of the BCI identifies the features of EEG

signal. Methods used by BCIs may vary according to the control signals used.

For instance, ERD/ERS requires time frequency distribution in order to see

the decrease followed by an increase in the amplitude of power spectrum.

4. Classification: Once the feature of the signal is identified, it can be classified

using appropriate algorithms. This stage actually translates the user’s intention

into device commands[13].

A general block diagram of BCI system is shown below. Since this study concen-

trates only on detecting events in the EEG data, this chapter emphasizes on different

feature extraction techniques suitable for BCI system.
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Figure 3.1: Block Diagram of BCI System. Signals from the brain are acquired using
scalp electrodes and the signal processing unit extract specific features and translates
them into device commands.[4]

3.4 EEG Analysis

To understand and study about different changes in the EEG signal, a good

analysis technique must be used. Raw EEG does not provide much information

about the ongoing activities. EEG data should be viewed in different domains to get

a clear idea about the brain’s activity.

3.4.1 Signal Averaging

In time domain,the traditional technique employed for detecting event related

potential is signal averaging . EEG data of several experimental trials conducted with

same stimulus are averaged together to get the perturbation in the signal caused by

the stimulus. The time-locked variations in the EEG can be revealed using averaging
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technique[43].

3.4.2 Event related spectral perturbation

In the time-frequency domain approach, the frequency power spectrum of time-

locked signals are averaged together to produce event related spectral perturbation.

Events can cause changes in the frequency power spectrum of the on-going EEG.

ERSP is used as a visualisation tool to see mean event spectral power over a range

of frequencies and time durations. ERSP of n trials is given by

ERSP (f, t) =
1

n

n∑
k=1

|Fk(f, t)|2 (3.1)

Where, n is the number of trials and Fk is the spectral estimate of the kth trial

at frequency f and time t[44]. The above mentioned method is best suited for

the visualisation of ERD/ERS. The output of ERSP is a 2D image that shows the

power(dB) at a particular frequency and latency.

Both ERP and ERSP cannot be able to fully represent the oscillatory changes

in the EEG signal. Only the time and phase locked signals would be seen in both

the methods.

3.4.3 Inter-Trial Coherence(ITC)

ITC is a frequency domain analysis technique to measure the variability between

time-locked single-trial EEG measurements at specific frequency and latency when

EEG is measured during similar experimental events. This is referred as ‘phase-

locking factor’ and was proposed by Tallon-Baudry et al[45]. ITC is interpreted as

inter-trial phase coherence and it is arrived at by the following equation:

ITPC(f, t) =
1

n

n∑
k=1

Fk(f, t)

|Fk(f, t)|
(3.2)

where |Fk(f, t)| represents complex norm of the spectral estimate Fk and rest of the

terms are same as in equation 3.1. ITC measures a value between 0 and 1 at a given

significance level. Value 0 represents a poor synchronization between successive trials
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and 1 represents good synchronization[44].

Study and a comparison between ERSP and ITC will give us a brief idea about

the consistency of event patterns at a particular time between recorded EEG trials.

3.5 Feature Extraction

Changes occur in the pattern of the EEG rhythm due to different brain activities.

These patterns have specific features which help to classify the intention of the brain.

So features of the signals help to discriminate between relevant and unimportant

signals. However, identifying relevant features of the brain signal is very complex.

Vital information about the underlying brain process could be overlapped by multiple

sources. For this reason, a simple band pass filter might not be able to extract the

desired features from the brain.

The EEG signals can be analysed in time domain, frequency domain and time-

frequency domain. Brain signals are transient in nature and this makes the extract-

ing task further complicated. Tools such as Time-Frequency Analysis and Wavelet

Transformation help to decompose the signal into time and frequency scale, thus

enabling to see the changes in time and frequency bands.

In the coming sections, different techniques for extracting features of the EEG

signals will be explained.

3.5.1 Principal Component Analysis

Most of the data recorded with high density electrodes could be redundant in

nature. This results in high dimensional data and will increase the usage of com-

putational resources. Principal component analysis is widely used to reduce the

dimensions of EEG data. PCA is a statistical tool to extract features by linear

transformation. PCA converts a set of correlated observations into uncorrelated

variables termed as principal components. The principal components produced are

sorted according to the variance in such a way that the first principal component

will have the highest possible variance[13].
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3.5.2 Independent Component Analysis (ICA)

ICA is a statistical technique that is used to separate mixed signals from its

sources without any prior information about nature of the signal. ICA assumes

that the unknown sources are mutually independent. In case of EEG signals, ICA

assumes that the observed EEG is a mixture of mutually independent sources or a

mixture with noises[13]. The relation between the EEG signal x(t) relative to the

sources s(t) can be written as

x(t) = f(s(t)) + n(t) (3.3)

where, f is any unknown mixture function and n(t) is any random noise associated

with the signal. The dimension of the vector s(t) depends on the number of sources

and the dimension of x(t) is related to the number of measuring channels. The

concept of ICA is to find the function f and to estimate the s(t) by mapping the

x(t) on the source space. Depending upon the mixing function f , ICA can be

modelled into a linear or non-linear function. However, for EEG signal, a non-linear

assumption would involve inter-dimensions and hence, linear assumption is more

suitable. By using the linear model equation 3.3 can be re-written as

x(t) = As(t) + n(t) (3.4)

where A is the mixing matrix. n(t) can be neglected by assuming the noise as zero

or considering it as a negligible factor. s(t) and mixing matrix A can be found by

using algorithms such as Infomax. ICA can be employed to remove artifacts in EEG

signals.

3.5.3 Power Spectrum

Complex signals can be decomposed into sum of sinusoidal signals with differ-

ent frequencies using spectral analysis. These sinusoids can be shown in plots as

magnitudes and phase between the signals. Power spectrum of the original signal

is obtained by taking the power of decomposed sinusoids. Fourier Transform is a

mathematical tool to decompose a waveform into sum of its sinusoidal signals. Al-
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beit the frequency resolution is high for FT, its time resolution is very poor. This is

due to the fact that the signal under analysis has infinite length and hence, the low

resolution in time domain.

3.5.4 Time Frequency Analysis

The pitfalls in the averaging technique and ERSP could be overcome by time

frequency analysis. The dynamic features of the event related potentials cannot be

detected by the conventional averaging and ERSP methods. The main reason behind

this is, EEG is recorded from a multiple array of electrodes and its frequency varies

over time. Furthermore, the events that might be of interest could be time localized,

certain information might be space localized, and sometimes restricted to specific

temporalities and specific frequencies[46]. Hence, averaging and ERSP methods are

not sufficient to capture the dynamic features of the event related potentials.

Short time Fourier transform (STFT) is a technique which takes Fourier Trans-

form of the signal using a sliding window function. Since its window function is of

finite duration, time and frequency information of the signal can be obtained simul-

taneously. However the size of the window function is fixed in STFT which limits the

flexibility of this technique to analyse minute transient changes in the EEG signal.

3.5.5 Wavelet Transform

Wavelet Transform is an effective time-frequency analysis tool that uses wavelets,

to manipulate non-stationary signals. Wavelets are simple oscillating amplitude func-

tions which are localized in both time and frequency. This property is totally different

from Fourier Transform, which is only localized in frequency domain and extended

infinitely in time. Accurate decomposition of EEG waveforms into their component

waveform is possible with Wavelet Transform. Thus isolation of functions that vary

in time and space, irrespective of scale, can be achieved in WT[46]. Literatures sug-

gest that WT offers great advantages in comparison to traditional time-frequencies

like STFT with regard to component separation, signal detection and computation

speed[47, 48].

Wavelets can stretch or shrink themselves and can slide through the analysed

signal to capture the time and frequency information of the signal. A stretched
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wavelet(large scale) is less localized in frequency and it is well suited for analysing

low frequency signals. Low scaled wavelets are localized in time and are capable of

extracting high frequency information from the signal. Thus, if a wavelet is localized

in time, the less is its localization in frequency and vice versa. Hence, wavelets obey

Heisenberg’s uncertainty principle which states that there is a trade-off between time

and frequency resolutions.

One of the major advantages of Wavelet Transform is that it can assume variety

of shapes for the wavelets. A wavelet which closely matches with the EEG wave-

form can closely model the spectral and temporal characteristics of the neuroelectric

signal; thereby it increases the chance of optimizing the resolution of certain events.

Wavelets such as Coifman 30 or the B-Spline[46] which resemble the natural bio-

logical waveforms are suitable for EEG analysis. Raz, Dickerson and Turetsky[49]

have demonstrated an improvised method for ERP decomposition from statistical

estimation model by using Wavelet-Packet. This method offers precise selection of

frequency and time components, even when they overlap with each other. Wavelet

Transform offers design of wavelet in various shapes so that it is possible to make the

wavelet template of desired shape. Hence, wavelets can precisely detect the desired

events from the background EEG.

3.5.5.1 Operation of Wavelet Transform

Wavelets can breakdown the EEG waveform(or any signal) into wavelet coeffi-

cients. During the analysis, wavelets compare themselves with the signal and pro-

duce correlations called wavelet coefficients. The coefficients represent the level of

the wavelet included in the analyzed signal at the given scale and time. Different

scales of wavelet functions translated through the whole EEG signal produce differ-

ent coefficients. Generally, whenever there is a good match in shape between the

signal and the wavelet, a positive amplitude coefficient is arrived at and if the match

is polarity inverted, a negative amplitude coefficient is arrived at. The original EEG

signal can be reconstructed using these coefficients in the correct sequence[46].

Theoretically, wavelet analysis of EEG signals would employ infinite number of

scales and time positions in order to break down the signal into small components

based on the signal’s time, frequency and amplitude. The result would be infinite

number of wavelet coefficients. However, in practical situations, there are several
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solutions available to compute the WT of the EEG signals without computing infinite

coefficients. Two important methods are Continuous Wavelet Transform (CWT) and

Discrete Wavelet Transform (DWT).

3.5.6 Continuous Wavelet Transform

Continuous Wavelet Transform computes coefficients of signal by scaling and

translating the wavelet in small steps until it covers the whole signal. Mathematically

it can be expressed as

ca,b =

∫ ∞
−∞

E(t)g ∗a,b (t) dt (3.5)

where

ga,b =
1√
a
g(
t− b
a

) (3.6)

and ∗ represents complex conjugate. Equation 3.5 shows that an infinite number

of wavelet coefficient, ca,b, is obtained by correlating any continuous signal E(t) with

a continuous wavelet ga,b at an infinite range of scales, a and infinite range of time

translations, a.

E(t) = k

∫ +∞

−∞

∫ +∞

0

ca,b
a2
ga,b(t)dadb (3.7)

Equation 3.7 tells that the wavelets coefficients obtained from the equation 3.5 can

be reconstructed to the original form.

3.5.7 Discrete Wavelet Transform

CWT produces unnecessarily high redundant coefficients due to closely spaced

scales and time points. Thus CWT uses more computing resources and consumes

more time to produce wavelet coefficients. Discrete Wavelet Transform is an efficient

tool to compute wavelet coefficient. Unlike the CWT, that produces thousands of

redundant coefficients, DWT only computes coefficient as many as there are samples

in the signal analysed without causing any loss of information[46]. However, CWT

is required to detect small latencies in the analysed signal.
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3.5.8 Application of Wavelet Transform in EEG Signal

Hsu et al.[50] applied continuous wavelet transform to extract features of ERD/ERS

to classify right and left hand motor imagery. This group constructed a 2D image

of time frequency features and compared it with 2- sample t-statistics to classify the

MI. The CWT allowed them to locate the event related ERD/ERS among the highly

redundant wavelet coefficients. In another study, Demiralp et al., extracted P300

waveform from EEG signal using B-spline discrete wavelet in single trial analysis.[51].

P300 was elicited during an oddball paradigm.

3.6 Information Transfer Rate

The performance of a BCI system can be evaluated by measuring the number of

bits (information) transferred per unit time. ITR depends on dimensionality of the

control signals extracted from the raw form and accuracy of the classification of input

data. ITR can be calculated depending upon the number of choices of selection per

trial and if the probability of selection of choices are the same[4], ITR is calculated

as follows:

ITR/trial = log2N + P log2 P + (1− P ) log2

[ (1− P )

(N − 1)

]
(3.8)

where N is the number of possible choices and P is the probability of correct selection

(accuracy).

Figure 3.2 shows ITR in bits per trial or bits per minute with respect to accuracy

under different values of N. From the figure it is clear that with greater accuracy in

selection the bit rate increases.

Better information transfer rate requires high accuracy in the classification of

the data. A good feature selection technique would help to increase the classification

rate and thereby to improve the ITR. This study is aimed to developing an event

detection technique which is expected to improve the flexibility of BCI system.

This chapter gave an introduction about event detection in EEG signals using

EM algorithm and discussed various feature analysis techniques used in EEG signals.

Next chapter will discuss the experimental setup methodology of the current study.
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Figure 3.2: ITR in bits/trial and bits/min with different possible number of choices
(N) plotted against accuracy in percentage. As the accuracy of selection increases,
bits/trial or trials/min also increases. [4]
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4 Methodology

Previous chapter discussed about the application of EM algorithm in EEG and

various feature analysis technique available for EEG signals. This chapter will explain

the experiment protocol and the process of EEG data acquisition.

This study aims at developing an algorithm to detect the intention of the user

before the onset of motor action and motor imagery. Right hand wrist movement

has been chosen for the analysis of motor action and motor imagery. EEG data were

obtained from the experiment conducted in the Neurophysiology Lab of Strathclyde

University’s Biomedical Engineering department. Four normal (all Male) subjects

aged between 23-26 participated in the experiment. All the subject had good vision

and had no disability during the trials. The experimental procedure is explained in

detail in the coming section.

4.1 Experimental Setup

Same experimental protocol was adopted for all the four subjects and the pro-

tocol adopted here closely matches the experiment conducted previously in the Neu-

rophysiology lab of the Biomedical Engineering department[52]. The experiment

required subjects to either move or imagine right hand wrist movement. Movement

consisted of flexion and extension of the wrist. During the trials, the subject was

asked to be seated in front of a computer screen, and was instructed to hold a manip-

ulandum (an instrument to measure the rotation of the wrist in X and Y direction)

with the right hand. The computer screen showed visual cue (boxes appeared on

the right and left side of the screen) for the experiment. Subject moved the manip-

ulandum according to the position of cue appeared on the screen. Manipulandum

consists of a potentiometer that measures the movement of the wrist and generates

an electrical signal. The obtained signal would move a cursor on the computer screen

on a real time. See appendix for photographs of the experimental setup. Flexion

causes the cursor to move left and extension moves the cursor to the right.

To begin with the trials, the subject was asked to place the cursor in a square

box, at the centre of the screen. During the trials, square boxes appeared on the
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left or right of the screen in a random manner. The subject was asked to move the

cursor towards the squares appearing on the screen. The time difference between the

cues was 5 seconds. In the mean time the subject would bring back the cursor to

the initial position. Each subject was given three tasks and each task had 200 trials.

The trials were performed in 2 sessions with 100 trials each. The three tasks were:

1. Target Acquisition:The subject captured the cue, when it appeared on the

screen using the manipulandum.

2. Ballistic Movement: Here the subject performed a rapid point-to-point

movement towards the cue. Unlike the target acquisition, the subject was

not required to capture the cue here.

3. Motor Imagery: During motor imagery, the subject was asked to imagine

the motor movements. The cursor remained in the initial position during the

trials. When the cue was presented on the screen, the subject imagined the

wrist movement to move the cursor to the target.

4.2 Data Recording

Recording setup consisted of EEG signal acquisition system and a control and

cue presentation system. The movement of the manipulandum was synchronized

with the cue presentation system.

4.2.1 Cue Presentation System

SPIKE2® software was used to present the cue in the computer screen. The

software was programmed to control the sequence and appearance of the target.

SPIKE2® also controls the data acquisition system for recording the wrist move-

ment data. The movement data from the potentiometer of the manipulandum were

recorded using the CED1401 data acquisition system. The module also generates

the timing of the wrist movement.

CED1401 module sampled the position signals at 100Hz and this signals were

used to control the cursor on the screen in real time. The SPIKE2® software

reads the timing information provided by the CED1401 module and time stamps
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(event marker) the onset of the movement in the EEG data via Neuroscan Synamps.

SPIKE2® was programmed to produce a unique digital marker for each position of

the visual cue. This information would be required to sort out the EEG trials based

on the direction of wrist movement.

4.2.2 Manipulandum

Manipulandum (see appendix) is an analog joystick type device that is used to

measure the movement direction of the wrist. The device consists of a grip placed

on a two axis gimbal that is capable of movement in X and Y plane. The device was

fitted with two highly precise servo potentiometer in order to measure the motion

of the gimbal. The potentiometer was supplied with a power source. Whenever the

movement occurred, resistance across the potentiometer varied and generated a sig-

nal with respect to the change in resistance. For offsetting the movement position,

the measurement system had already been provided with a second set of poten-

tiometer. To begin with the experiment, the subject held the manipulandum at the

neutral position and observed the cursor’s position. In case the cursor was not at the

centre of the screen, it would be brought back to the proper position by offsetting

the potentiometer.

4.2.3 EEG Recording

EEG recording system consisted of 64 channel electrodes, an amplifier(SynAmp2)

system and a controlling software(SCAN4.5). The electrodes were placed on the scalp

according to the 10-20 international lead system. All the electrodes were attached to

EasyCap before placing it on the scalp. The priority being given to the motor cortex

of the brain, electrodes were densely placed in the motor cortex area. Mastoid was

chosen as the reference for EEG recording. Four electrodes were used to pick up eye

blinks so that it could be used to identify the contaminated EEG.

To ensure proper positioning of the electrodes, the middle line of the electrode

cap was aligned to the nasion and inion. Subject’s scalp was needed to be abraded in

order to make a proper contact with the electrodes. A medically approved abrasive

solution was applied through the openings of the electrode cap via a smooth needle

tip. Once the skin was prepared, conducting gels were applied between the electrode
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and the scalp to reduce the impedance level. The impedance level was monitored

using the impedance tool in the SCAN4.5 software. EEG recordings were started

once the impedance level reached below 5KΩ for all the electrodes.

The gain of the Synamp2 amplifier was set to 1000 and the obtained signals were

sampled at 2 KHz. These signals were passed through a bandpass filter between

0.05Hz and 500Hz in order to remove high frequency noises. The amplifier system

contains an inbuilt 50Hz bandstop filter to remove the noise caused by power-line

interference.

This chapter discussed the experiment protocol and EEG recording setup adopted

for the current study. The coming chapter will explain the data processing and event

detection algorithm.
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5 Data Processing and Event

Detection Algorithm

Previous chapter discussed the experiment protocol and EEG recording setup.

This chapter discusses the data analysis done on the recorded EEG data and the

development of event detection algorithm.

5.1 Data Processing

EEG data recorded during the experimental session was processed off-line in

order to extract the information about the movement occurred during the trials. To

achieve this objective, several signal processing techniques were applied. However,

before applying any signal processing technique, the raw EEG data from Neuroscan

had to be marked with onset time and movement direction. The sequence of op-

erations performed on the raw EEG data are shown in Figure 5.1. The movement

data were sampled by CED1401 and recorded by the SPIKE2 software. Beginning of

the movement was detected manually and the timing information was marked in the

movement data with the help of SPIKE2. For synchronizing the timing between raw

EEG data and raw movement data, offset correction was performed. These timing

details with direction data were marked in the raw EEG data. In case of motor

imagery, stimulus presentation time was marked in the EEG as movement initiation

time. These time stampings of motor events were used to epoch the EEG data.

5.1.1 Epoching

Time stamped EEG data were epoched using SCAN4.5. Before epoching was

done on the EEG, it was made to undergo baseline correction, linear de-trending

and artefact rejection. All the operations were performed in the SCAN4.5 software.

Since this study is intended to detect the time of event before the motor action,

the length of the epoch was limited to 2 seconds-one second before the movement

and one second after the movement. During epoching SCAN4.5 sorted the epochs

based on the direction of the movement. This cleaned epochs were used for further
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Figure 5.1: Flow chart of EEG data Processing. The process begins by marking the
movement onset time into the raw EEG signal and epoching the EEG and ends by
grouping the epoched data according to the direction of movement

processing.

This study, which is intended to detect motor events, takes into consideration

only the C3 electrode placed in the motor cortex. Once the epoched data was ready,

they were analysed in the EEGLAB[44] toolbox in Matlab for further processing.

By visually inspecting the epoched data, trials contaminated with eye blinking and

motion artefacts were removed. These data were re-referenced to common average

by the common average referencing tool available in the EEGLAB. The common

average referencing improved the signal to noise ratio.
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5.2 Feature Analysis

Not all data in the epoched EEG contain relevant information about the motor

activity. Moreover, it is not worth to spend computing time in analysing all the EEG

data. Hence it was very important to adopt a feature selection method to suit the

need of the study. This study was mainly concentrated on extracting motor events in

EEG for the single trial. The following methods were employed for the same during

the study.

5.2.1 Event Related Spectral Perturbation

An understanding about the changes in the power spectral distribution of EEG,

during the movement was essential to develop an algorithm to detect the events.

ERSP was used to study about the power spectrum in frequency domain. ERSP of

all the subjects was computed using the EEGLAB. The function in the EEGLAB

averages all the epochs present in the given channel. The output was a 2D image

which shows the time-locked events in the EEG data. This allowed to study about

the variations in the power spectrum between different subjects.

5.2.2 Inter-Trial Coherence

As mentioned in section 3.4.3, ITC was used to measure the similarity of features

between single trials at a given latency and frequency. ITC was computed at a

bootstrap significance level of 0.01 using EEGLAB toolbox in Matlab.

5.2.3 Wavelet Analysis

Wavelet Analysis provides the time frequency decomposition of a particular

channel of the EEG data. Continuous wavelet transform was applied to the chosen

channel C3 using morlet wavelet function. Morlet wavelet is a complex wavelet ob-

tained by multiplying a complex exponential with a Gaussian window[65]. Wavelet

transform was computed using the wavelet toolbox available in the Matlab. The

scales for analysing various frequency bands were found out experimentally. This

study was mainly interested in α-band(8-12Hz), β-band(18-24) and γ-band(28-37)
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of the EEG waveform. The scales used for computing the wavelet was of the range

40-200 which covered the frequency of 5-40 Hz. The coefficients of the wavelet trans-

form were plotted using scalogram. Scalogram computes the power of the coefficients

and plots it as an image, where the colours of the image represent the percentage of

power levels.

5.3 Modelling EEG Data

The study about the features in the EEG data showed that there was significant

changes in the pre-movement data and post-movement data. Thus modelling the

pre and post movement EEG data could serve as a standard pattern for comparison.

The epoched data contains a time period of 1 second before the movement and 1

second after the movement. The first 500ms of the pre-movement were regarded as

rest EEG due to the idle state of the subject. The assumption behind the algorithm

was that a comparison between the rest EEG pattern and the EEG under motor

task would bring some significant difference. It was expected that this difference

in patterns would help to detect the events happened during motor action. The

following sections will explain the modelling of the EEG data and comparison of the

model with EEG under different tasks.

5.4 Gaussian Mixture Modelling

For modelling the rest EEG, a Gaussian mixture model was used. The wavelet

coefficients of the EEG data were assumed to be drawn independently from a mixture

of Gaussians. Let us say that the observed coefficients were {x1, x2, x3....xN} and

they were represented as a matrix N of size N ×D in which the nth row was given

by xT
n . Similarly, the hidden coefficients were represented as a matrix Z with rows

zT
n of size N ×K. In the first stage, the coefficients of wavelet were modelled into k

Gaussian models and the log-likelihood function was given as

ln p(x|π, µ,Σ) =
N∑

n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(5.1)
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where πk, µk and Σk were mixing proportions, mean vector and covariance matrix of

the kth model respectively. The aim was to estimate the parameters of the model.

If it was a Gaussian distribution, setting the derivative of the maximum likelihood

function with respect to its parameter would give the estimate of its parameters.

However, here in the case of GMM, it was a challenging task owing to the fact that

putting the derivative of the MLE to zero with respect to the parameters does not

give a closed-form solution. Let’s come to the math part of the problem.

0 = −
N∑

n=1

πkN (Xn|µk,
∑

k)∑
j πjN (Xn|µj,Σj)

Σk(Xn − µk) (5.2)

For convenience, let’s say, responsibilities

γ(znk) =
πkN (Xn|µk,

∑
k)∑

j πjN (Xn|µj,Σj)
(5.3)

Equation 5.2 was obtained by setting the derivatives of lnp(X|π, µ,Σ) with respect

to µk. In this case, finding the µk was not straight forward because it requires

γ(znk) to be in hand. Unfortunately, finding the probability function was unknown

at this stage. Furthermore, the computation of the probability requires the param-

eters. Under these circumstances, the parameters could be estimated by using an

expectation-maximization algorithm.

5.5 Expectation-Maximization Algorithm

Before going into the event detection of brain signals, here is given a brief intro-

duction about the Expectation-Maximization algorithm. Following the explanation

of EM algorithm, the next section will describe the application of EM algorithm in

the current study of event detection.

EM algorithm is a tool to find the maximum-likelihood function of a probability

distribution. The algorithm works in an iterative manner with two steps viz. ex-

pectation and maximization. The EM algorithm for Gaussian mixture modelling[53]

works as follows :

1. Algorithm begins by initializing the parameters (means µk,covariances Σk and
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mixing coefficients πk) and evaluating the initial log-likelihood.

2. Expectation Step computes the responsibilities using the initialized param-

eters.

γ(znk) =
πkN (Xn|µk,

∑
k)∑

j πjN (Xn|µj,Σj)
(5.4)

3. Maximization Step finds the parameters of the model using the responsibil-

ities computed in the previous step.

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn (5.5)

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (5.6)

πnew
k =

Nk

N
(5.7)

where

Nk =
N∑

n=1

γ(znk). (5.8)

4. Finally, the new log-likelihood is evaluated and the fulfilment of the conver-

gence criterion is checked. Algorithm stops, if convergence is arrived at. Oth-

erwise the algorithm returns to step 2.

5.6 Event Detection using EM Algorithm

The event detection technique was based on modelling the continuous wavelet

coefficients of EEG into Gaussian mixture model and estimating its parameters by

using EM algorithm. The log-likelihood values of coefficients between rest EEG and

non-rest EEG were compared. Event would be detected, if there is any significant

difference between log-likelihood values under different conditions. The detection

method consisted of two phases, a training phase and a comparison phase. To detect

the events, the EEG epoch(2s) was split into four equal segments. This was done to

compare the log-likelihood values of each segment. The first 500ms of the epoch was

considered as rest EEG. Figure 5.2 shows the segmentation of the epoch into 500ms
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Figure 5.2: Segmentation of Epochs into 500ms windows. The onset of movement is
at ‘0’. The first 500ms segment represents the rest EEG and A,B and C are segments
of EEG with a duration 500ms each. Segment A denotes 500ms just before the
movement onset, B and C denotes segments after the commencement of movement

windows. For convenience, the segments are named as ‘rest’, ‘A’,‘B’ and ‘C’, where

rest is the first 500ms of the epoch before the commencement of the movement,

segment A denotes 500ms just before the movement onset, B is the 500ms after the

onset of movement and C is the last 500ms of the epoch. These names will be used

further in this thesis.

5.6.1 Training Session

This session modelled the first 500ms (rest) of the energy of the wavelet co-

efficients into a simple Gaussian distribution . EM algorithm estimated the log-

likelihood values and these values were stored as the model log-likelihood values.

Any change in the log-likelihood values of rest segments indicated the presence of

events. The same procedure was done with GMM also to find whether there was

any difference between simple Gaussian modelling and Gaussian mixture modelling.

5.6.2 Comparison Phase

This phase modelled the absolute power of CWT coefficient segments after the

rest segment using simple Gaussian and GMM and estimated their log-likelihood

values. Log-likelihood values of each segment(A,B,C) were compared with the log-

likelihood estimates of the rest segment. It is expected that log-likelihood values

of segments that contain features of event might be different from that of the rest

segment. Hence it is possible to detect events at a particular time window.

A number of Gaussian components were experimented in both the stages. Event

detection algorithm was programmed in the Matlab. As explained earlier, the core
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of the proposed event detection algorithm was using EM algorithm for finding the

maximum likelihood. The Matlab code for the EM algorithm was obtained from the

Matlab’s website[54]. The flow chart of the event detection algorithm is given in Fig

5.3.
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Figure 5.3: Flow chart of the proposed event detection algorithm. Algorithm begins
by modelling the absolute power of wavelet coefficients into GMM of rest EEG and
comparing it with the modelled EEG during motor activity. A threshold value of
LLH obtained during training of rest EEG is compared with LLH values of EEG
during motor action. If the threshold criteria satisfies, it would be marked as an
event and proceeds for task selection. Else, the algorithm goes back to beginning
step.

40



5.7 Statistical Analysis

The results obtained from the algorithm were statistically analysed to detect

the presence of events. The objective was to find whether there is any difference

existing between the mean likelihood values of two segments. Hence a A two tailed,

two sample students t-test were used. This test was performed in Microsoft Excel

2010. To perform the test, the variance of the samples were assumed to be equal

because the data were obtained using same procedure( EM algorithm). For samples

assumed of equal variances, a pooled standard deviation was calculated using the

following equation:

sp =

√∑n1
i=1(x1i − x̄1)2 +

∑n2

i=1(x2i − x̄2)2
n1 + n2 − 2

(5.9)

where n1 and n2 are the number of data in each sample, x1i and x2i are the corre-

sponding individual data in each sample and x̄1 and x̄2 are the means of the two

samples. The denominator of the equation represents the degrees of freedom associ-

ated with the pooled standard deviation[55].

In order to test the differences in mean, two hypotheses were proposed: null and

alternate hypotheses. In all the tests null hypothesis was that there is no difference

between the mean values (H0 : µ1 = µ2) and the alternate hypothesis was that there

are differences in mean values of the log-likelihood values (Ha : µ1 6= µ2). The test

statistic to judge the mean difference was given by

t =
|x̄1 − x̄2|

sp
√

( 1
n1

+ 1
n2

)
(5.10)

The decision to accept the null hypothesis or to reject the alternative hypothe-

sis depends on the comparison between the calculated t-value and the standard

t-value(tcrit) taken from the standard Student’s t-distribution at a given significance

level(α). The decisions can be made upon the following conditions:

1. If |t| > tcrit, one can reject the null hypothesis and accept the alternate hy-

pothesis.
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2. If |t| < tcrit, then do not reject the null hypothesis.

It is also possible to arrive at a conclusion by looking at the P-value. Where P is ‘the

probability that a value of t greater than or equal to the calculated value could have

occurred by chance if there were no difference in the means’[55] The next chapter

will furnish the results of the current study.

42



6 Results

Previous chapter discussed the event data processing and event detection algo-

rithm. This chapter will explain about the results obtained during the study.

6.1 Raw EEG data

Raw EEG data obtained during the trail is shown in figure 6.1. The data contains

digital markers with the time and position information of the appearance of the

visual cue(subject moved wrist according to the position of the cue). Where the

markers 9 and 3 represent right and left wrist movement respectively. Disturbance

in the last three electrodes(EOG1, EOG2 and EOG3) indicated eye blinks and the

corresponding data were omitted from the study.

19
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Figure 6.1: Raw EEG data with event marker 3. Event marker three represents
movement towards right
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6.2 Results of ERSP and ITC

This section discusses the results obtained for different experimental sessions as

explained in section 4.1. Event related spectral perturbation was used to study about

the prominent changes occurred in the frequency bands of EEG during the trials.

ITC were computed to study about the phase-locked features of the single trial EEG

during same experiments at specific latency and frequency. All the results presented

here were obtained by taking the common average reference at C3 electrode. Both

the ERSP and ITC were computed at a bootstrap significance level of 0.01.

6.2.1 Ballistic wrist movement

The results presented here are obtained when subjects performed ballistic wrist

movement. EEG data of subject 2 comprised 66 epochs and that of subject 4 com-

prised 64. Upper sections of figure 6.2 and figure 6.3 show the ERSP of subject 2 and

subject 4 when they performed ballistic wrist movement, towards the right side. The

onset of the movement is at t=0. The color band in the figure shows the intensity of

ERSP in decibels. From the figures, it is clear that an event related desynchroniza-

tion happened in the α, β and γ bands, after the onset of the movement. There is

clear difference between ERSPs of subject 2 and subject 4 for the same experimental

task.

Images in the lower section of figure 6.2 and figure 6.3 show the inter-trial coher-

ence of subject 2 and 4 at all frequencies during ballistic movement of the wrist. In

both the figures, a significant ITC appears at the onset of the movement at briefly

around 10-13 Hz and it extends to the β- band of the subject 4. Significant ITC lev-

els indicate the phase-locked events in EEG activity between trials. In other words,

ITC shows the similarity in EEG activities between single trials.

Interestingly, there is less correlation between ERSP and ITC, indicating that

EEG activity between single trials are inconsistent.
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Figure 6.2: The figure shows ERSP and ITC of common average referenced EEG at
C3 electrode(subject 2) when the subject performed a ballistic movement towards
the right side. Image in the upper half shows the ERSP and bottom lower shows the
ITC. 0 on the time axis indicates the commencement of movement.

6.2.2 Target Acquisition

Figure 6.4 and Figure 6.5 show the ERSP and ITC of subject 2 and 3 computed

during the target acquisition experiment. Subject 2 consisted of 44 epochs and

subject 3 consisted of 31 epochs. ERSP of the both the figure show decrease in

power at the beginning of movement and it continues for 1 second post movement,

around the 10-40 Hz bands of the spectrum. ITC is almost insignificant and difficult

to interpret at 0.01 bootstrap significant levels. This suggests that there is high

variation in phase locking between successive trials.

6.2.3 Motor Imagery

Figures 6.6 and 6.7 show the result of motor imagery when the target appeared

on the left side of the screen.There were 17 epochs for subject 2 and 87 epochs

for subject 4. Unlike all the previous results, ERSP (upper section of Figure 6.6)

of subject 2 shows an increase in power after the presentation of the cue. This

was supposed to be desynchronization instead of a synchronization. ITC for the
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Figure 6.3: The figure shows ERSP and ITC of common average referenced EEG at
C3 electrode(subject 4) when the subject performed a ballistic movement towards
the right side. Image in the upper half shows the ERSP and lower half shows the
ITC. 0 on the time axis indicates the commencement of movement.

same subject reveals that there is less similarity between single trials for the given

experimental condition.

The upper panel of the Figure 6.7 shows the ERSP of subject 4. A slow desyn-

chronization can be seen in the figure after the appearance of the visual cue in the α

and β bands. Also some amount of increase in power can be seen around 35-45 Hz

bands. There is no significant ITC in any of the frequency bands. This shows that

motor imagery experiment trials were not conducted properly.

Almost all the C3 averaged ERSP for different subjects showed here, had an

event related desynchronization after the appearance of the cue. This can be seen

in different frequency bands viz. α, β and γ. However, ITC reveals that the events

were not phase locked between successive trials.
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Figure 6.4: The figure ERSP and ITC of common average referenced EEG at C3
electrode (subject 2) when the subject undergone target acquisition trial towards the
left side. Image in the upper half shows the ERSP and lower half shows the ITC. 0
on the time axis indicates the commencement of movement.
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Figure 6.5: The figure shows ERSP and ITC of common average referenced EEG at
C3 electrode (subject 3) when the subject undergone target acquisition trial towards
the left side. Image in the upper half shows the ERSP and lower half shows the ITC.
0 on the time axis indicates the commencement of movement.
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Figure 6.6: The figure shows ERSP and ITC of common average referenced EEG at
C3 electrode(subject 2) when the subject imagined a wrist movement towards the
right. Image in the upper half shows the ERSP and lower half shows the ITC. 0 on
the time axis indicates the commencement of movement.
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Figure 6.7: The figure shows ERSP and ITC of common average referenced EEG at
C3 electrode (subject 4) when the subject imagined a wrist movement towards the
right. Image in the upper half shows the ERSP and lower half shows the ITC. 0 on
the time axis indicates the commencement of movement.
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6.3 Continuous Wavelet Transform

Continuous wavelet transform of the common averaged C3 electrode was ob-

tained using the process explained in section 5.2.3. The results of the CWT is

presented here as scalograms. Scalogram provides information about the energy of

wavelet coefficients as color maps. The vertical axis of the scalogram is converted

from scale into frequency (in Hz) using the ‘time2freq’ function in the Matlab. The

horizontal axis stands for time in seconds. To study about the consistency of wavelet

coefficient patterns between trials, average of the coefficients were calculated and its

scalogram is presented here. Figure 6.8, Figure 6.9 and Figure 6.10 are the scalo-

gram of ballistic wrist movement, target acquisition and motor imagery respectively.

In all the scalograms, an event activity can be seen around the onset(t=0) of the

movement(at the time of appearance of the cue, in case of motor imagery), in the α

and β bands of the EEG.
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Figure 6.8: Scalogram of averaged wavelet
coefficients of CAR obtained at C3 elec-
trode across trials when subject 3 per-
formed ballistic wrist movement (right). 0
on the time axis indicates the commence-
ment of movement.
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Figure 6.9: Scalogram of averaged wavelet
coefficients of CAR obtained at C3 elec-
trode across trials when subject 2 per-
formed target acquisition (right). 0 on the
time axis indicates the commencement of
movement.

Event activities concentrated at the beginning of wrist movement are of interest.

The results of single trial scalogram for different subjects under different experimental

conditions are shown here. Figure 6.11 depicts the scalogram of ballistic movement
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Figure 6.10: Scalogram of averaged wavelet coefficients of CAR obtained at C3
electrode across trials when the subject imagined a wrist movement towards right.
0 on the time axis indicates the commencement of movement.

of the wrist towards the left side. An event activity can be seen after the onset of

the movement around the β band of the EEG data. The other two figures show

that (target acquisition and motor imagery), an increased activity begins just before

the movement onset in the α-band of the scalogram. To detect motor related events

before the actual motor action, these features are very important. Interestingly,

there is no consistency found between different trials.
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Figure 6.11: Scalogram of wavelet coeffi-
cients of CAR obtained at C3 when the
subject 2 performed ballistic movement to-
wards left side. 0 on the time axis indi-
cates the commencement of movement.
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Figure 6.12: Scalogram of wavelet coeffi-
cients of CAR obtained at C3 when the
subject 1 performed target acquisition to-
wards left side. 0 on the time axis indi-
cates the commencement of movement.
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Figure 6.13: Scalogram of wavelet coefficients of CAR obtained at C3 when the
subject 3 imagined a wrist movement towards right side. 0 on the time axis indicates
the commencement of movement.
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6.4 Results of EM Algorithm

EM Algorithm was used to model the power of wavelet coefficients into Gaussian

mixtures. The input to the EM algorithm consisted of the power of wavelet coeffi-

cients and the number of Gaussians. The energy of wavelet coefficients was computed

and given as an N ×D matrix to the input of EM algorithm. In the current study,

the number of Gaussian models has been chosen as one and two. The output of the

algorithm was the parameters of the Gaussian modelling, which include component

means, covariance matrix, mixing proportion and log-likelihood values. To detect the

motor events, the maximum log-likelihood function was computed for the rest EEG

and the EEG under motor activities. A two sided, two sample t-test was performed

to compare the differences in mean of the maximum likelihood values. The results

shown below are the comparisons of different subjects under different criteria.

Although this study had recorded four subjects’ EEG data, only two subjects

(subject-2 and 3) were chosen for the Gaussian modelling due to their better ERD

results from the ERSP and ITC (see Figure 6.2 and 6.5).

6.4.1 Gaussian Distribution

The results discussed here are log-likelihood values obtained by modelling the

power of continuous wavelet coefficients into a single Gaussian distribution. All

the results were compared statistically by using two sample student’s t-test. For

comparison purpose CWT coefficients were segmented as explained in section 5.6.

Log-likelihood values for the different segments of all the epochs were computed and

a two sample t-test was performed. The t-test compared the means of rest segment

with all other segments to see whether there is any significant difference in their

means. All the tests here were conducted at a significance level of 0.05. The null

hypothesis of all the test was that the mean of both the samples was zero.

Table 6.1 shows the result of t-test of subject-2 during the ballistic wrist move-

ment. The calculated t stat is less than the critical t value and the p-value of ‘rest

Vs A’ is greater than 0.05. Hence, there is no evidence to reject the null-hypothesis.

This means that there is no significant difference between the log-likelihood value of

coefficients of rest EEG and the coefficients just before the onset of the movement
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(‘A’). However, the next two segments (B and C) show a significant difference in

mean levels as the p-values are less than 0.05. This can be inferred as log-likelihood

values of rest segment and the segments after the movement have relevant difference.

The t-test result of subject-2 during the target acquisition target acquisition

experimental trial is shown in Table 6.2. The results show that there is a significant

difference in the log-likelihood values between the rest and the final segment of the

epoch ( rest Vs C). The other two segments did not show any significant difference

between mean values of rest. t-test result of subject-3 (Table 6.3) during target

acquisition, shows no significant mean differences at any segments of the epochs

when compared with the res EEG. The p-values of all the comparison is greater

than 0.05 hence, there is no significant evidence to reject the null hypothesis.

Table 6.1: Two sided two Sample t-Test for subject 2 (Ballistic Movement). This
table shows the result of statistical comparison mean LLH values (Gaussian distri-
bution) of rest segment with segments A,B and C.

Subject 2 Rest Vs A Rest Vs B Rest Vs C

Observations 67 67 67

t Stat 0.00432 3.611 2.99

t critical two tail 1.98 1.98 1.98

p-value 0.997 0.000433 0.00324

Table 6.2: Two sided two Sample t-Test for subject 2 (Target Acquisition). This table
shows the result of statistical comparison of mean LLH values (Gaussian distribution)
of rest segment with segments A,B and C.

Subject 2 Rest Vs A Rest Vs B Rest Vs C

Observations 41 41 41

t Stat 0.0092 0.81 2.467

t critical two tail 1.99 1.99 1.99

p-value 0.99 0.4214 0.016
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Table 6.3: Two sided two Sample t-Test for subject 3 (Target Acquisition). This table
shows the result of statistical comparison of mean LLH values (Gaussian distribution)
of rest segment with segments A,B and C.

Subject 3 Rest Vs A Rest Vs B Rest Vs C

Observations 31 31 31

t Stat 0.209 1.006 0.3165

t critical two tail 1.99 1.99 1.99

p-value 0.84 0.319 0.753

6.4.2 Two mixture Gaussian model

This section discusses the results of CWT modelled into two mixture of Gaussian

using EM algorithm. The same subjects and experimental conditions were chosen as

in the previous section, to compare any significant differences between the means of

rest and other segments of the epoch. The same trend of p-values of the Gaussian

distribution followed here also. Subject-2 during the ballistic movement trial shows

significant differences in mean values of the segments between rest segment as in the

single model Gaussian (see Table 6.4. In fact, the p-values are significantly reduced

from the Gaussian distribution. In case of target acquisition trial, only the ‘rest Vs

C’ shows significant differences in mean values (Table 6.5. This trend is same as the

single Gaussian model, however, the p-values has significantly reduced. This is also

same for the subject-3 during target acquisition as well (Table 6.6).

Gaussian mixture modelling with two Gaussians produced better statistical re-

sults than modelling the wavelet coefficients of EEG data with simple Gaussian

distribution.
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Table 6.4: Two sided two Sample t-Test when subject 2 performed ballistic wrist
movement. This table shows the result of statistical comparison of mean LLH values
(2 model GMM) of rest segment with segments A,B and C.

Subject 2 Rest Vs A Rest Vs B Rest Vs C

Observations 67 67 67

t Stat 0.077 4.073 3.140

t critical two tail 1.98 1.98 1.98

p-value 0.939 0.000 0.001

Table 6.5: Two sided two Sample t-Test when subject 2 performed target acquisition.
This table shows the result of statistical comparison of mean LLH values (2 model
GMM) of rest segment with segments A,B and C.

Subject 2 Rest Vs A Rest Vs B Rest Vs C

Observations 41 41 41

t Stat 0.015 0.997 2.997

t critical two tail 1.99 1.99 1.99

p-value 0.988 0.322 0.004

Table 6.6: Two sided two Sample t-Test when subject 3 performed target acquisition.
This table shows the result of statistical comparison of mean LLH values (2 model
GMM) of rest segment with segments A,B and C.

Subject 3 Rest Vs A Rest Vs B Rest Vs C

Observations 31 31 31

t Stat 0.671 1.55 0.46

t critical two tail 1.99 1.99 1.99

p-value 0.505 0.123 0.65
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6.5 Processing Time

The main aim of this study was to find out the practicality of the event detection

technique to be used in real-time scenarios. Processing time of the algorithm is a

very important factor for the on-line use. The processing time of the algorithm was

directly related to the number of scales in the wavelet coefficients and the number of

models in the GMM. From this study it was observed that the algorithm took more

iterations to converge in two model GMM than in the single Gaussian distribution.

To use this algorithm in real-time, the dimensionality of the data should be reduced

as much as possible, in order to attain a faster response to detect the events. The

EM-algorithm converged all the times within 500 iterations in two model GMM. In

the case of Gaussian distribution, the maximum number of iteration was two times.

This chapter discussed the results obtained during the study. The next chapter

will discuss the results obtained during this study and also concludes the findings of

this study.
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7 Discussion

There is not much research has been done on event detection in EEG signal for

BCI[56, 35]. Finding the exact time and location of an event in EEG is indeed a

challenging task. The present study has investigated the application of EM algorithm

in EEG signals to detect events during motor actions (ERD/ERS). Initial results

show that there is some statistical difference between the log-likelihood values of

rest EEG and EEG undergoing motor actions. However, more investigations and

experiments are needed to validate the claim. The aim of the project was to develop

an algorithm to detect events happening in the brain signals during motor actions,

by modelling the features of time-frequency domain of motor activities. Previous

study utilized frequency domain features to model the EEG[35]. The current study

used wavelet transform to extract the features from EEG.

Flexion and extension of the wrist were chosen as motor activities for the study.

Many literatures have reported that when the body prepares for a motor action

or during a motor activity, event related desynchronization occurs[57, 24, 58, 59].

ERD represents a decrease in power of the α, β and γ bands of the EEG signals.

Similarly, after the movement, event related synchronization occurs and this signifies

an increase in power of the particular frequency bands due to the synchronization

of the firing of cortical neurons. Experimental studies have shown that these events

will be present during the motor imagery also.

Current study used 64 channels to record the EEG data from the scalp. Com-

mon averaged C3 electrode was chosen for the event detection study. Common

average referencing was performed to reduce the influence of other electrode sources

surrounding the C3 electrode. This in fact helped to reduce the noise levels when

compared to the normal referencing.

7.1 Data Processing

The aim of the study, which has been mentioned above, has influenced the length

of the epoch. For motor experiments, the duration of the epoch was 2s-this included

1s pre-movement and 1s post-movement-and in case of motor imagery, 0.5s before
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the movement and 1.5s after the commencement of the movement. The objective

was to detect the intention of the user before the actual motor action. It has been

reported in literatures that whenever a person is about to perform a motor action, our

brain prepares for the movement by an increasing activity in the motor area. This

phenomenon has been termed as Bereitschaft potential or readiness potential[60].

For motor imagery, 1.5s window was allocated post movement because it is hard to

know when the subject actually imagine the movement.

7.2 ERSP

Event related spectral perturbation gave an insight about the changes occurring

in the frequency spectrum of the EEG during motor activity and motor imagery.

Event related desynchronization was visible in the α, β and γ bands of the EEG

signal, irrespective of the experimental conditions. It was evident that the decline of

power has started just before the onset of the movement and it continued till 800ms

post movement (see Fig 6.2). This phenomenon signifies the existence of Bereitschaft

potential. The ERD obtained using ERSP are consistent with the literatures related

to ERD/ERS[61, 62]. In this study ERS was not visible due to the inadequate

duration of post-stimulus EEG epoch.

In the current study, ERSP of motor imagery was not evenly seen among the

subjects. One reason might be the lack of training. Moreover, the motor imagery

trials were conducted as the last session of the experiments following by the target

acquisition and ballistic movement trials. And as a result of a long tiresome session

of experiments, concentration level of the subject might have gone down.

7.3 Inter-Trial Coherence

Inter-Trial Coherence was chosen for the study to learn about the consistency

of single trials in an experimental session. ITC shows the similarities in synchro-

nization of events in successive trials at a particular latency and frequency bands.

Unfortunately, this study could not find significant ITC in the subjects, especially

in case of motor imagery. This results indicate that the motor events in the epoched

EEG is not consistent among single trials.
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7.4 Continuous wavelet transform

Continuous wavelet transform was employed due to its high efficiency in extract-

ing transient activity in signals. Developing an algorithm which can be employed for

on-line event detection requires exact capture of event occurred at a particular time.

In this study, scalogram showed the percentage of energy of wavelet coefficients of

analysed signal in the range of 8-40 Hz. The average of the epoch was calculated

to see the prominent activities in the EEG during different experiment taken place

under different conditions. Scalogram of averaged epochs show that there are dif-

ferences between activities among different experimental conditions. Much of the

events are concentrated around the commencement of the movement around the α

and β bands. Scalogram computed the absolute power of the continuous wavelet

coefficients. Calculation of the power is by taking the absolute value and squaring

the coefficients, helped to increase the difference between low correlated wavelet co-

efficients to highly correlated wavelet coefficients. The wavelet transform used in the

current study is similar to the one used by Zygierewicz et al to extract ERD/ERS

using morlet wavelet[63]. In their study, they translated the obtained coefficients

into time-frequency scale and plotted the scalogram with the significant values re-

lating to ERD. In this study this was not necessary because this study modelled the

pattern of rest EEG template to detect events related to motor task.

The results of single trial EEG show that there is no similarity between trials.

This goes along with the results obtained from inter trial coherence.

7.5 Event Detection Algorithm

The core of the event detection algorithm was the probabilistic modelling (GMM)

of the wavelet coefficients of the EEG. EM algorithm was implemented to estimate

the parameters of the model and to maximize the log-likelihood values using the

estimated parameters. The algorithm works by comparing the parameters of the

rest EEG with EEG under motor task. Any difference between the models could

be called as an event. The proposed event detection algorithm initially creates

a database of the log-likelihood values of the features (using CWT) of rest EEG

and compares it with the log-likelihood values of EEG during motor activity. The
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template of rest EEG was obtained by taking the first 500ms of the epoched EEG

data. It was hypothesized that during the initial part of the EEG the subjects

were sitting idle and hence, the first 500ms of the EEG was selected as rest EEG.

Moreover, for comparison purposes wavelet transform of the single epoch EEG was

divided into 500ms windows.

Initially, the wavelet coefficients were modelled into a simple Gaussian distribu-

tion and the parameters for comparison purposes were estimated. Statistical analysis

of the log-likelihood values between rest EEG and EEG under motor action was ac-

complished by performing a two tailed, two sample student t-test. Primary results

show that there have been some differences in the mean of the log-likelihood values

between EEG under rest and EEG under under motor action. At a significance level

of 0.05, only one subject in this study showed significant differences between rest seg-

ment of the epoch and segments after the movement. Using the current algorithm

and given EEG dataset, it was unable to detect the motor event before commence-

ment of the movement. The Gaussian model was insensitive in the current study to

detect Bereitschaft potential. This might be due to inconsistency of the features of

the EEG dataset. Moreover, the number of subjects was not sufficient to conclude

the findings.

A Gaussian mixture modelling with two Gaussians were implemented to increase

the sensitivity of the simple Gaussian distribution. This was tried with the same

subjects and the results were the same. Interestingly, during the two sample t-test,

the p-value has decreased further than the p-value obtained when modelled with

normal Gaussian distribution. This indicates that Gaussian mixture models offer

more sensitivity than a simple Gaussian distribution to elicit differences between

two conditions. Albeit GMM offers more flexibility, it takes increased number of

iterations to converge than the simple Gaussian distribution. Hence, as the number

of Gaussians increases, the algorithm takes more time to converge at the maximum

log-likelihood value.

The current study is similar to the seizure detection from ECoG based on Gaus-

sian mixture modelling proposed by Meng et al[42]. They decomposed the ECoG

signal into sub-bands and modelled the GMM using EM algorithm. Although it was

an on-line detection, the algorithm took 1.8s to detect a seizure. This time delay is

not favourable for BCI systems. At this stage, it is not possible to comment on the
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speed of detection of the current algorithm.

7.6 EM-Algorithm

The algorithm was very robust and the integrity of the algorithm was tested

by modelling a randomly generated data from a bivariate Gaussian distribution.

The EM algorithm estimated the exact mean and covariance values of the generated

bivariate Gaussian distribution. In the current study, in all cases of simple Gaussian

distribution, the algorithm converged in two iterations. However, when the CWT

coefficients were modelled using Gaussian mixture model, the algorithm took more

than 2 iterations to converge. The convergence of EM algorithm depends on the

initial guess of the parameters (mean and covariance). The EM algorithm used

for the current study has initialized the parameters randomly. Sometimes random

initializations might trap the algorithm in local maxima before attaining the true

maximum log-likelihood values[64]. In the current algorithm, maximum number

of iteration was set to be 500. In some cases it reached 500 iterations and gave

the parameters of the 500th value as the final values of the parameters. This is

highly unacceptable for the EEG event detection. These kind of values mislead the

event detection algorithm and might end up with detection of false events. These

could be solved by multiple random initialization of the parameters and taking the

highest maximum likelihood value as the best one. However, on-line event detection

technique needs to be very responsive in order to achieve its objective. Further

studies should experiment the usage of other initialization techniques like k-means

clustering algorithms instead of random initialization.

The number of Gaussians for the GMM was two. The result obtained shows

that GMM gave much more promising result than the simple Gaussian distribution.

At the present stage, it is impossible to say how many Gaussians will provide the

optimum output for the event detection in EEG signals. Further experimentation

with increased number of models are required to find the optimum results.
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7.7 Limitations of the current study

One of the limitations of the study was the low quality of the epoched data.

The results of the ITC show that there is less similarity in the patterns of events

between successive trials. It might be due to these shortcomings that the results of

the statistical analysis were not satisfactory. Another limitation was the less number

of subjects used in the current study. To generalize the properties of current event

detection algorithm, more number of subjects are needed to create a model for rest

EEG template.

Like any pattern recognition or supervised learning systems, dimensionality was

a problem for the current study. During the wavelet transform, the number of scales

used has influenced the dimension of input to the EM algorithm. As the num-

ber of scales increased, dimension of the wavelet coefficients matrix also increased.

Increased dimension of the input matrix slowed down the convergence of the EM

algorithm. Moreover, initialization of the parameters would be more easier with less

dimensional matrix. Due to the lack of quality in the obtained EEG epochs, this

study did not try to extract specific features in EEG. By experimenting with con-

sistent single trials, it is possible to find repeating patterns in any of the frequency

bands in the EEG signals. Thereby, the dimension of the input matrix can be greatly

reduced and ultimately, the speed of the convergence of the EM algorithm can be

increased.

Another difficulty occurred during the time of EEG recording. Most of the sub-

jects felt sleepy during the trials due to longer recording sessions. As said earlier in

the previous section, motor imagery was conducted as the last session of experimental

trials. This might have influenced the quality of motor imagery.

The following chapter concludes the thesis and discusses the future prospects of

the current study.
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8 Conclusion

The aim of the study was to develop an event detection algorithm for EEG signals

that could be used for BCIs. The current study developed a protocol for the event

detection algorithm by using a simple Gaussian distribution and a Gaussian mixture

modelling. The parameter estimation of the models was done using Expectation-

Maximisation algorithm. A Continuous Wavelet Transform was used to decompose

the signal in time-frequency domain and it was modelled into Gaussian models. The

log-likelihood values of the model of the rest EEG was compared with the models of

EEG during motor task. Simple Gaussian modelling showed significant differences

between log-likelihood values of rest EEG and EEG segments after the movement.

GMM with two Gaussians obtained more convincing results than those of simple

Gaussian distribution. More experimentations are required to find the optimum

number of Gaussian models that would give better speed and reliable event detection.

Even though there are limitation for the current study, the primary results look

promising.

8.1 Future Works

Future works should be extracting features from any of the three frequency

bands (α, β or γ) that is consistent with motor tasks thereby reducing the number of

dimensions in the data. In future, this study can be extended further for real-time

event detection in EEG signals. Since this study models rest EEG as a template

for event detection, it can be possible to use multiple controls signal for BCI system

rather than a single control signal. Moreover, there would be no need to know the

exact features of the events. This would improve the classification rate and flexibility

of the BCI systems.
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Appendices

Experimental Setup

Figure 8.1: This figure shows a subject holding manipulandum. Manipulandum
controls the cursor movement on the computer screen and it records the direction of
movement.
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Figure 8.2: Experimental setup. This figure shows the experimental setup of the
current study. In this figure, subject with electrodes placed in the scalp moving the
manipulandum according to the visual cue on the screen.
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Results

Statistical analysis

Table 8.1: Two sided two Sample t-Test when subject 1 performed ballistic wrist
movement towards right side. This table shows the result of statistical comparison
mean LLH values (Gaussian distribution) of rest segment with segments A,B and C.

Subject 1 Rest Vs A Rest Vs B Rest Vs C

Observations 4 4 4

t Stat 0.776 4.73 2.27

t critical two tail 2.45 2.45 2.45

p-value 0.47 0.003 0.064

Table 8.2: Two sided two Sample t-Test when subject 3 performed a ballistic wrist
movement towards right side. This table shows the result of statistical comparison
mean LLH values (Gaussian distribution) of rest segment with segments A,B and C.

Subject 3 Rest Vs A Rest Vs B Rest Vs C

Observations 62 62 62

t Stat 0.542 1.857 3.698

t critical two tail 1.980 1.980 1.980

p-value 0.589 0.066 0.000
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Table 8.3: Two sided two Sample t-Test when subject 1 performed ballistic wrist
movement towards right side. This table shows the result of statistical comparison
of mean LLH values (2 model GMM) of rest segment with segments A,B and C.

Subject 1 Rest Vs A Rest Vs B Rest Vs C

Observations 4 4 4

t Stat 1.561 4.128 3.549

t critical two tail 2.447 2.447 2.447

p-value 0.169 0.006 0.012

Table 8.4: Two sided two Sample t-Test when subject 3 performed ballistic wrist
movement towards right side. This table shows the result of statistical comparison
of mean LLH values (2 model GMM) of rest segment with segments A,B and C.

Subject 3 Rest Vs A Rest Vs B Rest Vs C

Observations 62 62 62

t Stat 0.494 1.891 3.990

t critical two tail 1.980 1.980 1.980

p-value 0.621 0.061 0.000

Matlab Scripts

Scalogram

1 t = linspace(−1,1,4001);
2 coefs=cwt(x,40:200,'morl'); %x is the input vector

3 sca=wscalogram('[]',coefs);

4 sclf=scal2frq(40:200,'morl',1/2000);

5 imagesc(t,linspace(40,8,length(sclf)),sca);

6 shading flat;

7 xlabel('Time (seconds)')
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8 ylabel('Frequency (Hz)')

9 title('Scalogram')

10 colorbar

11 grid

12 set(gca,'Ydir','normal')

Gaussian Modelling

1 % This script calculate the log−likelihood values of the EEG ...

epochs for different segments

2 % NB: This script require EEGLAB toolbox installed in the Matlab

3 [m1 n1 p1]=size(EEG.data);

4 eegdat=EEG.data(:,:);

5 [m n]=size(eegdat);

6 %M=cell(1,p1);

7 MLL=zeros(p1,2);

8 for i=1:p1

9 if i==1

10 %wavelet transform

11 wt=eegdat(:,1:1000);

12 coefs=cwt(wt,40:200,'morl');

13 sca=wscalogram('[]',coefs);

14 %Gaussian modelling using EM algorithm

15 [¬,¬,llh]=emgm(sca,2);
16 MLL=llh;

17 r=4000; % This value should be changed to select the segments

18 else

19 wt=eegdat(:,r:r+1000);

20 coefs=cwt(wt,40:200,'morl');

21 sca=wscalogram('[]',coefs);

22 [label,model,llh]=emgm(sca,2);

23 r=r+4000;

24 maxi=max(llh);

25 MLL(i,:)=maxi;

26 end

27 end

28 disp(' LLH ')
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29 disp(MLL(:,1))

EM Algorithm

1 function [label, model, llh] = emgm(X, init)

2 % Perform EM algorithm for fitting the Gaussian mixture model.

3 % X: d x n data matrix

4 % init: k (1 x 1) or label (1 x n, 1≤label(i)≤k) or center (d ...

x k)

5 % Written by Michael Chen (sth4nth@gmail.com).

6 %% initialization

7 fprintf('EM for Gaussian mixture: running ... \n');
8 R = initialization(X,init);

9 [¬,label(1,:)] = max(R,[],2);

10 R = R(:,unique(label));

11

12 tol = 1e−10;
13 maxiter = 500;

14 llh = −inf(1,maxiter);
15 converged = false;

16 t = 1;

17 while ¬converged && t < maxiter

18 t = t+1;

19 model = maximization(X,R);

20 [R, llh(t)] = expectation(X,model);

21

22 [¬,label(:)] = max(R,[],2);

23 u = unique(label); % non−empty components

24 if size(R,2) 6= size(u,2)

25 R = R(:,u); % remove empty components

26 else

27 converged = llh(t)−llh(t−1) < tol*abs(llh(t));

28 end

29

30 end

31 llh = llh(2:t);

32 if converged
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33 fprintf('Converged in %d steps.\n',t−1);
34 else

35 fprintf('Not converged in %d steps.\n',maxiter);
36 end

37

38 function R = initialization(X, init)

39 [d,n] = size(X);

40 if isstruct(init) % initialize with a model

41 R = expectation(X,init);

42 elseif length(init) == 1 % random initialization

43 k = init;

44 idx = randsample(n,k);

45 m = X(:,idx);

46 [¬,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/2),[],1);

47 [u,¬,label] = unique(label);

48 while k 6= length(u)

49 idx = randsample(n,k);

50 m = X(:,idx);

51 [¬,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/2),[],1);

52 [u,¬,label] = unique(label);

53 end

54 R = full(sparse(1:n,label,1,n,k,n));

55 elseif size(init,1) == 1 && size(init,2) == n % initialize with ...

labels

56 label = init;

57 k = max(label);

58 R = full(sparse(1:n,label,1,n,k,n));

59 elseif size(init,1) == d %initialize with only centers

60 k = size(init,2);

61 m = init;

62 [¬,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/2),[],1);

63 R = full(sparse(1:n,label,1,n,k,n));

64 else

65 error('ERROR: init is not valid.');

66 end

67

68 function [R, llh] = expectation(X, model)

69 mu = model.mu;

70 Sigma = model.Sigma;

71 w = model.weight;
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73 n = size(X,2);

74 k = size(mu,2);

75 logRho = zeros(n,k);

76

77 for i = 1:k

78 logRho(:,i) = loggausspdf(X,mu(:,i),Sigma(:,:,i));

79 end

80 logRho = bsxfun(@plus,logRho,log(w));

81 T = logsumexp(logRho,2);

82 llh = sum(T)/n; % loglikelihood

83 logR = bsxfun(@minus,logRho,T);

84 R = exp(logR);

85

86

87 function model = maximization(X, R)

88 [d,n] = size(X);

89 k = size(R,2);

90

91 nk = sum(R,1);

92 w = nk/n;

93 mu = bsxfun(@times, X*R, 1./nk);

94

95 Sigma = zeros(d,d,k);

96 sqrtR = sqrt(R);

97 for i = 1:k

98 Xo = bsxfun(@minus,X,mu(:,i));

99 Xo = bsxfun(@times,Xo,sqrtR(:,i)');

100 Sigma(:,:,i) = Xo*Xo'/nk(i);

101 Sigma(:,:,i) = Sigma(:,:,i)+eye(d)*(1e−6); % add a prior for ...

numerical stability

102 end

103

104 model.mu = mu;

105 model.Sigma = Sigma;

106 model.weight = w;

107

108 function y = loggausspdf(X, mu, Sigma)

109 d = size(X,1);

110 X = bsxfun(@minus,X,mu);
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111 [U,p]= chol(Sigma);

112 if p 6= 0

113 error('ERROR: Sigma is not PD.');

114 end

115 Q = U'\X;
116 q = dot(Q,Q,1); % quadratic term (M distance)

117 c = d*log(2*pi)+2*sum(log(diag(U))); % normalization constant

118 y = −(c+q)/2;
119

120 function s = logsumexp(x, dim)

121 % Compute log(sum(exp(x),dim)) while avoiding numerical underflow.

122 % By default dim = 1 (columns).

123 % Written by Michael Chen (sth4nth@gmail.com).

124 if nargin == 1,

125 % Determine which dimension sum will use

126 dim = find(size(x) 6=1,1);

127 if isempty(dim), dim = 1; end

128 end

129

130 % subtract the largest in each column

131 y = max(x,[],dim);

132 x = bsxfun(@minus,x,y);

133 s = y + log(sum(exp(x),dim));

134 i = find(¬isfinite(y));
135 if ¬isempty(i)
136 s(i) = y(i);

137 end
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