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Abstract 

The extent of myocardial edema delineates the ischemic area-at-risk (AAR) after 

myocardial infarction (MI). Since AAR can be used to estimate the amount of 

salvageable myocardial post-MI, edema imaging has potential clinical utility in the 

management of acute MI patients. T2 weighted Cardiac Magnetic Resonance (CMR) 

imaging is widely used to investigate the extent of edema with recent acute MI 

patient. 

This thesis describes new approaches and methods of automatic edema segmentation 

and quantification with 3D visualization. An integrated approach has been 

developed, including the localization of Left Ventricle (LV) wall, segmentation of 

myocardial wall, segmentation and quantification of edema and 3D visualization and 

quantification.  

A novel   automatic segmentation of LV wall is proposed. First a new LV wall 

localization algorithm is used to locate the centre of the blood pool region of the LV 

wall. Then a novel LV wall segmentation algorithm is used to segment the LV wall 

from the rest of anatomical structure. The advantage of the proposed method is in its 

ability to automatically localize the blood pool region of LV wall and the additional 

shape constraint which is adaptive to the data. 

A novel, Automatic Edema Segmentation and Quantification algorithm is presented 

which is developed based on a statistical mixture model. The technique takes 

advantage of the characteristic of the MRI signal where the signal is governed by a 

Rician distribution and using this information regions of edema are segmented over 

the rest of LV wall. A post-processing step in used to include microvascular 

obstruction as part of the edema region. The computational simplicity and good 

edema discrimination are described. 

Finally, a novel integrated approach to 3D visualization and quantification algorithm 

is presented. It extracts the information of the LV wall boundary and edema 

boundary. Then the information is used to generate an interactive 3D image which 
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helps the clinician to visualize the extent of edema and its location. This edema 

quantification and 3D visualization method is evaluated by expert clinicians with 

favourable results. 
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CHAPTER 1  

1. INTRODUCTION 

1.1   Introduction 

Cardiovascular disease (CVD) is one of the major causes of death in modern society. 

In Scotland alone death rates from coronary heart disease (CHD) are among the 

highest in the world, and are the second highest in Western Europe. CHD is the 

second most common cause of death after cancer in Scotland; in 2008 16% of deaths 

were attributed to it (Macgregor, 2009, pp 230-266). 

With advancement in the treatment of heart attack more people can survive from 

heart attack, thus many people are living with injured hearts. Since MR imaging is a 

non-invasive diagnostic technology which can provide serial pathology and function 

after a heart attack, it is the modality of choice for clinicians. 

Myocardial infarction (MI) or heart attack is the result of the complete occlusion of 

one or more of the coronary arteries, which supply oxygen-rich blood to the heart 

muscle (myocardium). The timely quantification of area at risk (AAR) (Reimer et al., 

1977) after MI and the distinction between viable and non-viable myocardial tissue 

are essential for cardiac treatment decision making. Myocardial edema, characterized 

by fluid retention in myocardial tissue due to damaged tissue resulting swelling in the 

affected area, has been demonstrated to be a promising feature for characterizing 

AAR (Abdel-Aty et al., 2009). Moreover edema has a significant impact on left 

ventricle (LV) function (Miyamoto et al., 1998). Currently, myocardial edema can be 

accurately detected by using T2-weighted cardiovascular magnetic resonance (CMR) 

(Aletras et al., 2008, Giri et al., 2009, Payne et al., 2011), appearing as a relatively 

bright area compare to the non-infarcted myocardial tissue as shown in Figure 1.1  



Chapter 1 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Short Axis T2-Weighted Image    

1.2   Motivation of Our Research  

The current technique to quantify the size of edema is performed manually where an 

expert clinician will delineate the LV wall area first and then segment the edema area 

from the normal wall area of the LV on every short axis (SA) MR image from the 

basal to the apex of a CMR image stack. This process is both time consuming and 

suffers from inter- and intra- observable variations. Figure 1.2 shows a screen shot of 

segmentation by a clinician on a single slice. Thus this thesis looks into the problem 

of automatic edema quantification and 3D visualization.  
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Figure 1.2: Screen shot of Manual Segmentation (courtesy of Golden Jubilee 

National hospital, Glasgow) 

There is a need of developing automatic edema segmentation and quantification 

methods because to the best of our knowledge no known commercially available 

systems exist. 

3D visualization of anatomical object provides significant information about the 

objects and their properties from which the images are derived. However, the 

significant potential for 3-D visualization in medicine remains largely unexploited, 

and practical tools remain undeveloped. Thus this motivates the work in the 

development of 3D visualization of edema, which will provide significant 

improvement on how the clinicians view the pathological structure of edema within 

the LV wall. 

Endocardium wall 

Edema Region 

Epicardium wall 
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1.3  Summary of Original Contribution 

In this work, the main research contributions are described below: 

1)  A new LV wall localization based on fuzzy logic is implemented. The technique 

incorporates the knowledge of the LV position in a CMR image in a fuzzy way to 

classify a few candidate pixels points as guidance point to initialise the level set. 

The detection of the centre point is achieved using the knowledge from the 

observation of a typical SA CMR image  

 

2) A new segmentation method for LV wall is implemented using Level Set Method 

with Additional Shape Constraint (LSMwASC). The technique improves 

conventional Level set method (LSM) by creating new edge indicator function 

from typical LV wall thickness information. First conventional LSM is used to 

segment the endocardium. Then convex hull is applied to the result of the 

endocardium to remove the papillary muscle. Next a new constraint for the 

epicardium is introduced by estimating the thickness of the septum. Finally this 

information is used to create new edge map for the segmentation of the 

epicardium. 

 

3) A new Hybrid Thresholding Edema Quantification Algorithm (HTOSA) is 

implemented. The automatic technique used to segment and quantify edema by 

automatically set the threshold value from image intensity information and the 

used of feature analysis to eliminate spurious small positive bright object on the 

LV wall and to include the microvascular obstruction within the edema 

boundary. 

 

4) New Automatic Statistical Mixture Model (ASMM) is implemented. The 

technique used a Rayleigh distribution combined with Gaussian distribution to 

automatically set the threshold value for edema region. Then a post processing 

stage which consists of morphological filtering and Region Feature Analysis is 

applied to include microvascular obstruction into the final edema region. 
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5) New 3D edema visualization is implemented. The technique consists of 3D 

reconstruction from SA image stack information and 3D reconstruction with 

inclusion of the apex region. This is achieved by manually segmenting the apex 

region in a long axis view (LA). Then using the CMR scan information the 

location of each SA slice can be determined on the LA view. Rigid motion 

correction is performed to eliminate motion effect from the SA view onto the LA 

view.     

 

6) A database of T2 weighted CMR images have been established. Currently there is 

no publicly available database for T2 Weighted for the investigation of edema. 

The database is developed with collaboration from Golden Jubilee National 

Hospital Glasgow, from which an annotated database of over 30 patients was 

created.  

 

1.4 Organization of the Thesis 

The organization of the thesis is as follows: 

Chapter 1 describes the objective and motivation for the research, as well as original 

contribution that are presented in this work. 

Chapter 2 provides fundamental information about the anatomy, physiology, and 

common pathologic conditions of human heart. This is followed by background 

information on Magnetic Resonance Imaging such as the principle behind image 

reconstruction, MRI instrumentation, Cardiac MRI and lastly some MRI image 

artefact. 

Chapter 3 provides a review of image processing techniques in various stages of the 

automatic edema quantification and 3D visualization used in this research. A 

background review of LV wall segmentation methods is presented. This inspires our 

work on new Level Set Method with Additional Shape Constraint for the 

segmentation of the LV wall. The chapter also reviews current research on edema 

segmentation and quantification technique, which provides basic understanding on 
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our new Automatic Statistical Mixture Model for the segmentation and quantification 

of edema. Finally the chapter review current application of 3D visualization in CMR 

imaging that motivates our work on 3D visualization of edema. 

Chapter 4 introduced the CMR data collection such as the study protocol and the 

type of scanner been used. The chapter also discusses the assessment parameters 

used to test the proposed system for evaluating its performance. 

Chapter 5 presents the background of Level Set Method and from the conventional 

LSM we derive a new LSM to segment the LV wall from the T2 weighted images. 

The formulation takes into account the special characteristic of the T2 weighted 

images. The results obtained by the automatic method are then compared with 

manual segmentation to assess the performance of the proposed method. 

Chapter 6 presents two new methods for the segmentation and quantification of 

edema on T2 weighted image. A comparative study is then performed to assess the 

performance of both algorithm with conventional 2SD and Fuzzy C-mean algorithm 

to assess the performance of the new algorithms. 

Chapter 7 provides new 3D quantification and visualization of edema from a stack of 

SA images for 3D reconstruction. The chapter describes how the 3D image is 

reconstructed and how the proposed method has potential clinical application. The 

chapter also provides experimental results by comparing the proposed 3D method 

with 3D quantification and visualization from manual delineation for performance 

evaluation. 

Chapter 8 presents the summary of the research and with some suggestions for future 

work.
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CHAPTER 2 

2. HUMAN HEART ANATOMY AND 

CARDIAC MAGNETIC RESONANCE 

2.1   Introduction 

One of the main cardiac illnesses is heart attack which is due to complete occlusion 

of one or more of the coronary arteries, which supply oxygen-rich blood to the heart 

muscle (myocardium). After heart attack, blood is retained within the myocardial 

tissue due to damage tissue causing swelling in the affected area of heart attack. This 

phenomenon is known as edema. The importance of studying edema is to 

differentiate between viable myocardial tissue and dead myocardial tissue. 

Magnetic Resonance (MR) Imaging is a non-invasive imaging technique that creates 

detailed images of organ and tissues. Unlike other imaging modality such as CT-scan 

and X-ray, MR imaging uses a non-ionizing radiation and has no known risk of 

causing cancer. The earliest study on the use of MR imaging to produce images of 

body was conducted by Dr Paul Lauterbug (Lauterbur, 1973). This was followed up 

by the development of mathematical reconstruction algorithms by Peter Mansfield 

(Mansfield, 1977). Since then significant advancements in the field of magnetic 

imaging from existing 2D imaging up to 4D MR imaging are used to produce 

detailed images of internal organs of the human body.  

In the studies of cardiovascular disease, CMR imaging is widely used to diagnose 

physiological function of the heart and pathological insight into myocardial injury. 

Thus CMR imaging plays a significant role in clinical diagnosis and follows up 

treatment of CVD. 
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This chapter provides information on heart anatomy and MR imaging system. 

Section 2.2 and Section 2.3 describe fundamental of heart anatomy and its 

physiological function. Section 2.4 explains some common heart diseases. In Section 

2.5 the principle of MRI is discussed and includes MR imaging hardware, image 

acquisition. Section 2.6 introduces CMR imaging techniques and diagnostics. 

Section 2.7 discusses MR image artefact. The chapter is then concluded with   

Section 2.8. 

2.2   Anatomy of the Heart 

Figure 2.1 shows the detailed anatomy of the heart. The heart is located under the 

ribcage in the centre of the chest between the right and left lung. It is shaped like an 

upside-down pear. The beating action of its muscular walls beat, pumps blood 

continuously to all parts of the body. The size of a heart can vary depending on age, 

size, or heart condition. A normal, healthy, adult heart most often is the size of an 

average clenched adult fist 

The heart wall consists of the epicardium (outer layer), the myocardium (middle 

layer comprised of cardiac muscle tissue), and the endocardium (inner layer). The 

heart consists of four chambers: the left ventricle (LV), the right ventricle (RV), the 

left atrium and the right atrium. The wall that separates the epicardium and the 

endocardium is called septum. The papillary muscles attach to the lower portion of 

the interior wall of the ventricles. They connect to the chordae tendineae, which 

attached to tricuspid valve in the RV and the mitral (bicuspid) valve in the LV. The 

contraction of papillary muscles opens these valves. When the papillary muscle 

relaxes, the valve close (Martini and Nath, 2009). The two ventricles are clearly 

identified in Figure 2.1 by the thick layer of the myocardium that makes up their 

walls. The short axis (SA) slices used in CMR images have a similar appearance to 

the transverse view (below) where regular contours, consisting of two concentric 

circles, can be readily fitted to the LV endocardium and epicardium. This is very 

useful in cardiac image analysis. 
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Figure  2.1 Anatomy of Heart in Frontal and Transverse View (G. J. Tortora and 

Derrickson, 2005) 

2.3 Physiology of the Heart 

The periodic motion of the walls of the heart chambers during one heartbeat is 

referred to as one cardiac cycle. One heart beat consists of rhythmic contraction 

(systole) and relaxation (diastole) of both atria and ventricles. Figure 2.2 shows one 

cardiac cycle. The cycle begins with atrial systole where blood is actively pumped 

from the atria into the ventricles. The end of the atrial systole marks the end of the 

ventricular diastole. The volume of blood (end-diastolic volume or EDV) contained 

in each of the ventricles reaches their maximum at end-diastole (ED). Ventricular 

systole causes the pressure inside the ventricles to rise sharply and ejection of blood 

from the heart through the aortic or pulmonary valves begins. The end-systolic 
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volume (ESV) is computed at end-systole (ES) when the blood volume in the 

ventricles reaches a minimum. The volume changes during the entire cycle and the 

corresponding electrocardiogram (ECG) are presented in Figure 2.2. 

 

Figure  2.2: ECG, Volume change and phases in Cardiac cycle (G. J. Tortora and 

Derrickson, 2005) 

2.4 Cardiovascular Disease 

This section gives a brief introduction to some common causes of CVD, with special 

emphasis on the heart conditions diagnosed using the image processing techniques 

discussed in this thesis. 

2.4.1 Coronary artery disease (CAD) 

CAD refers to partial or complete blockage of coronary circulation by fatty deposits 

(plaque) (G. J. Tortora and Derrickson, 2005). The condition when the plaque builds 

in the inner wall of the arteries is known as atherosclerosis as shown in Figure 2.3 
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where the coronary artery narrows because of the deposit of plaque in its inner wall. 

As the size of the plaque increases, it reduces the blood flow to the heart muscles. 

Over time CAD can weaken the heart muscles and lead to heart failure. 

 

Figure  2.3: (A) Normal Artery with normal Blood Flow, and (B) Artery with plaque 

build-up (National Heart Lung and Blood Institute) 

2.4.2 Acute myocardial infarction 

Acute myocardial Infarction (AMI) or commonly known as heart attack as shown in 

Figure 2.4 is a condition when there is a sudden obstruction of the coronary artery by 

a blood clot. The blockage of the artery deprives the heart muscle of blood and 

oxygen, causing injury to the heart muscle(G. J. Tortora and Derrickson, 2005).  

 

 

Figure  2.4: Acute Myocardial Infarction  (Medicinenet) 

 

Myocardial infarction can be classified based on its Electrocardiogram (ECG) 

pattern. From the ECG pattern two MI can be classified: (i) ST elevation MI 
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(STEMI) due to total blockage of the artery Figure 2.5(a), and (ii) NST elevation MI 

(NSTEMI) due to partial blockage of the artery as shown in Figure 2.5(b).  

STEMI size depends heavily on duration of occlusion, collateral flow, and size of the 

initial myocardium at risk (Carlsson et al., 2009). After STEMI, myocardial water 

content is retained within the myocardial tissue due to damage tissue causing 

swelling in the affected area of myocardial and it is known as edema or area at risk.  

The STEMI is treated with reperfusion therapy as soon as possible. The area at risk is 

an important measure since a variable amount of this area will become infarcted 

(death heart tissues).  

Two methods are  used to assess the effectiveness of post STEMI therapy where   

can be salvaged. These are: (i) physiological study such wall motion analysis, or (ii) 

pathological study which is measuring the final edema area in relation to the initial 

edema area from the CMR image. 

 

 

 

Figure  2.5: (a) NST elevation of MI, (i) partial blockage of artery, (ii) corresponding 

ECG signal; (b) ST elevation of MI, (ii) total blockage of artery, (ii) corresponding 

ECG signal (courtesy of Golden Jubilee Hospital, Glasgow) 

(a) 

(i) (ii) 

(b) 

(i) (ii) 
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2.4.3 Congestive heart failure (CHF) 

Congestive heart failure (CHF) is a serious medical condition which occurs when the 

heart’s pump function is inadequate to supply oxygen rich blood to the body. As the 

pump become less effective, more blood remains in the ventricle at the end of each 

cycle. This ultimately results in heart failure (G. J. Tortora and Derrickson, 2005). 

Two types of  CHF (Bales and Sorrentino, 1997) are: 

• Systolic heart failure which is the most common type. It occurs when the 

heart muscle does not contract with enough force, so there is not enough 

oxygen-rich blood to be pumped throughout the body.  

• Diastolic heart failure which occurs when the heart contracts normally, but 

the ventricle does not relax properly. So, less blood can enter the heart.  

2.5  Magnetic Resonance (MR) Imaging  

Magnetic Resonance (MR) Imaging or Nuclear Magnetic Resonance Imaging 

(NMR) is a non invasive imaging technique used to visualize the internal organs, soft 

tissues, bone and all other internal body structures. The advantages of MR imaging 

compare to other modalities are: (i) high resolution for anatomic structure, (ii) high 

contrast between different soft tissues, and (iii) no exposure to radiation and hence 

safe. A typical MR scanner is shown in Figure 2.6. 

The basic idea of MR imaging is that it uses a powerful magnetic field to align 

magnetization of certain atoms in the human body and then uses radio frequency 

fields to systematically alter the alignment of this magnetization. This causes the 

nuclei to produce a rotating magnetic field detectable by the scanner and this 

information is recorded to construct an image of the scanned area of the body.  
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Figure  2.6: MR Imaging Machine (Mrc Cognition and Brain Sciences Unit, 2008)   

In this section we summarize how an MR image is generated and the physics behind. 

The basic cardiac MR scan used within this PhD is also discussed. For a detailed 

description of the methodology on MR, the reader is referred to (Dominik Weishaupt 

et al., 2006, Z P Liang and Lauterburgh, 2000), and (Jerry L. Prince and Links, 2006) 

2.5.1 Basic principle of MR imaging 

The basic principle of MR is based on the interaction of a magnetic field and a 

nucleus that possesses spin. Medical MR imaging uses the signal from the nuclei of 

hydrogen atoms (1H) for image generation. This is due to the abundance of hydrogen 

atoms (1H) in the human body which is composed of tissues that contain water and 

fat, both of which contain hydrogen atoms (1H). 

The characteristic of the hydrogen atom is that it has an angular momentum or spin 

due to the presence of only one proton. Any electrically charged particle which 

moves induces a magnetic field around it called a magnetic moment or net 

magnetization vector (NMV). Similar to the precession of a spinning top in the 

presence of a gravitational field, in the presence of a magnetic field, each 

magnetization moment vector precesses around the magnetic field with a frequency 

given by the Larmor equation (Hornak, 1996) : 

0ω β γ=  2-1 

where ω  is the resonance frequency, 0β  is the magnetic field strength in tesla (T), γ 

is gyromagnetic constant which is specific to a particular nucleus,  
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The gyromagnetic ratio of a hydrogen atom is 42.57Mhz (Jerry L. Prince and Links, 

2006). Figure 2.7 shows that in the absence of an external magnetic field, the spin 

orientations of the nuclei are random and cancel each other and the vector sum of all 

the microscopic magnetic moment in a given region, or the net macroscopic 

magnetization M, is zero.  Once exposed to a strong external magnetic field B0, the 

spins align parallel to the magnetic field B0 which is shown in Figure 2.8(a). 

However, MR imaging systems are unable to directly detect the magnetization along 

the z-axis: they can only detect magnetization changes in the x-y plane (also known 

as the transverse plane). The RF excitation field B1 is used to tip the spins into the x-

y plane so that they can be measured. This field is applied in a direction 

perpendicular to the main magnetic field (rotating in the x-y plane) as shown in 

Figure 2.8(b) and has a much smaller magnitude than B0. The application of this 

rotating magnetic field is often called excitation. The angle α (in radians) at which 

the spins are tipped away from the z-axis and into the x-y plane is often referred to as 

the “flip angle”. The M now has two components, the transverse magnetization 

component Mxy and the longitudinal magnetization component Mz.  

A receiver coil is situated in the transverse plane and as the rapidly rotating 

transverse magnetization Mxy creates a radio frequency excitation within the sample 

inducing a voltage in it according to Faraday’s law of induction. This signal is 

collected and processed with sensitive receivers and computers to generate the MR 

image. 

Once an RF pulse is removed, the energy starts to decrease because the NMV tries to 

realign with B0.  As a result the amplitude of the MR signal will gradually decrease 

and is termed  free induction decay (FID)  
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Figure  2.7: With no external Magnetic Field present, nuclei rotate about their axes in 

random direction, (D. Weishaupt et al., 2007) 

 

 

Figure 2.8:  (a) The Magnetization Vector M, (b) The Magnetization M precesses 

about the z-axis (Jerry L. Prince and Links, 2006) 

2.5.2 MR imaging parameters 

Many parameters are used in describing MR image generation. Some of the most 

common are the strength of the magnetic field and the Lamor frequency which are 

mentioned in section 2.5.1 previously. The other common parameters used are the 

relaxation time (T1, T2), the repetition time (TR), and the echo time (TE). 

As explained in section 2.5.1 when RF pulses are applied it will result in nuclear 

magnetization (M) to split into two components, the transverse magnetization 

component (Mxy) and the longitudinal magnetization component (Mz). After the 

removal of RF pulse, the energy of NMZ decreases. The process is called relaxation. 

 

(a) (b) 
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Relaxation causes the loss of phase coherence in the transverse plane which is called 

transverse relaxation time T2 and the exponential recovery of longitudinal 

magnetization which is called longitudinal relaxation time T1. These two components 

are then used to construct the MRI images (Najarian and Splinter, 2006). 

Figure 2.9 shows a single pulse of MR imaging sequence. The repetition time (TR) is 

the time from the application of one RF pulse to the application of the next RF pulse, 

measured in milliseconds (ms). It determines the amount of   T1 recovery time that 

will occur. The echo time (TE) is the time from the application of the RF pulse to the 

peak of the signal induced in the coil and is measured in ms. TE controls the amount 

of T2 decay that will occur. 

 

 

Figure 2.9:  Single Pulse Sequence of MR Imaging 

In T1-weighted images tissues with short T1 recovery time such as fat are bright. This 

is because they recover most of their longitudinal magnetization during TR, more 

magnetization is available in order to allow them to flipped into the   transverse plane 

by the next RF pulse, by contrast in T2-weighted images tissues with long T2 decay 

time such as water appear bright. This is due to the ability to retain most of their 

transverse coherence during the TE period. Table 2-1 shows typical brightness of 

some tissues in different types of MR imaging. 

RF Signal 

TE 

TR 
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Table 2-1: Brightness of typical Tissues in different MR Images (Hesselink, 2003) 

Image types 

Tissue 

T1-weighted T2-weighted 

Fat Bright Dark 

Cyst Dark Bright 

White matter Bright Grey 

Gray matter Grey Bright 

CSF Dark Bright 

 

2.5.3 K-Space analysis of MR imaging  

In analyzing MRI data, the envelope of the normalized complex FID signal in the 

rotating frame can be written as: 

∫∫
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where  sk is the envelope in k space, ρ(x,y) is the spin density  and kx(t) and ky(t) are 

given by: 
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where G(x) and G(y) are spatially varying gradient fields. Thus the signal received is 

the two-dimensional Fourier Transform of the spin density with frequency variables 

kx(t) value corresponds to a different complex time point in the readout direction and 

ky(t) value corresponds to a different phase-encoding gradient amplitude. For 

example, if a constant gradient magnetic field G(x) is applied for τ1 second following 

the RF pulse and a constant gradient magnetic field G(y) is applied for τ2 second the 

corresponding  position in k-space would be ( 2,1 τγτγ yyxx GkGk == ). 

Figure 2.10 shows a k-space plane, the magnetic field gradient is applied such that 

the k-space is filled in a rectangular fashion, thus allowing the inverse Fourier 
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Transform to be directly applied on the collected k-space data for image 

reconstruction. 

 ky (phase) 

Kx ( frequency) 

 

Figure 2.10: K-space. kx is the frequency axis, ky the phase axis. The data from each 

measurement fills a different horizontal line 

 

2.5.4 Conventional MR sequence 

Spin echo pulse sequence which is shown in Figure 2.11 is one of the basic pulse 

sequences used in MR imaging. The pulse sequence begins with the simultaneous 

application of a slice selection gradient and a 90° RF excitation pulse, which flips the 

net magnetization in the selected slice onto the xy-plane. Next the phase encoding 

gradient are applied to give the net magnetization precession and a phase 

proportional to its x and y directions respectively. The incremental signal induced in 

the receiver coil at this point, however rapidly decays with an exponential envelope. 

This decay is called  (T2-star) and is caused by a destructive interference between 

the magnetic dipoles in the slice due to loss of phase coherence. This decay can be 

recovered somewhat by reversing the precession direction with a 180° RF pulse, 

called the echo pulse. The interval between the 90° and the 180° RF pulse is called 

the echo time. The echo signal is sampled and stored.  

Ky (phase) 

Kx (Frequency) 
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The raw data for an MR image is acquired by repeating the pulse sequence for 

several phase encoding levels. The time interval between consecutive 90° pulses is 

called the repetition time, TR. The arrangement of the sampled echo signals line by 

line per phase encoding can be expressed as the 2D discrete Fourier transform (DFT) 

matrix of the final MR image. Therefore by taking the inverse 2D DFT of the 

arranged samples of the echo signals, an MR image is generated. 

 

Figure 2.11: Spin Echo MR Pulse Sequence (Charncai Pluempitiwiriyawej, 2003) 

Thus the reconstruction of MR image for a flip angle α, the MR intensity I(x,y) is 

given by (Zhi-Pei Liang and Lauterbur, 2000): 

2 1( , ) ( , )

0
I(x,y)=M ( , )sin 1 (cos 1)
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x y e eα α
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+ − 
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where M0(x, y) is the spatial proton distribution in the sample, T1(x,y) and T2(x,y) are 

the relaxation parameters of the sample, and TE and TR is the imaging times, 

therefore by manipulating the pulse sequence parameters; TE and TR. The contrast of 

the image can be adjusted. 

2.5.5 Magnetic resonance imaging instrumentation 

The instrumentation involved in acquiring MR images is discussed in this section. 

Figure 2.12 shows a typical schematic diagram of a MR machine. The system 

consists of four major subsystems a magnet, gradient system, RF electronic system 

and a computer system.  

One MR pulse sequence Next MR pulse sequence 
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Figure 2.12: Block diagram of MR IMAGE Scanner  

2.5.5.1 MR imaging magnet 

The most important component of a MR system is the Magnet, which creates the 

main static magnetic field require for acquiring the image. The magnet is constructed 

in order to allow positioning of the patient inside the main static field. There are 

three types of magnet available. These are the permanent magnet, the resistive 

magnet and the superconductor magnet. The key requirements in selecting a magnet 

are field strength, field homogeneity, cost of maintenance and patient access.  

The permanent magnet design is suited for low field applications because the highest 

field that can be generated by a permanent magnet is less than 0.3T which make it 

less advantageous. Although the field from the permanent magnet is low the 

advantages of permanent magnets are it is economic to operate and they greatly 

reduce interaction with the environment. 

Resistive magnet design uses a current loop through a metal wire to create a static 

magnetic field. Due to the passing of current, the resistive magnet design tends to 

heat up and it needs a cooling scheme to cool the system. Because of the heat 

constraint the resistive magnet design can generate a field strength of up to 0.3T.  

 

Magnet Gradient coil RF coil 

Gradient 

Amplifier 

RF 

electronic 

Pulse sequence computer 

Image reconstruction computer 

Control electronic 

x y z 
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Superconducting magnet designs use the phenomenon of superconductivity where 

the resistance drops to approximately zero when it is cooled to a temperature close to 

absolute zero(-273°C). Currently the type of superconducting material used for MR 

imaging is niobium-titanium alloy because of its ability to support high magnetic 

field strength.  The principal advantages of superconducting magnets are high field 

strength, reliability and stability.  

2.5.5.2 Gradient coil system 

The key to MR imaging is the ability of a gradient coil system to provide temporary 

change in magnitude of the main magnetic field BO as a function of position. This 

temporary change of BO provides the means to choose image slices and also provides 

the means to spatially encode the pixels within a given image (Hornak, 1996). 

In a typical configuration three orthogonal gradient coils are used, one for each 

direction x-direction, y-direction and z-direction. In a process to acquire an image the 

three gradient coils are turned on and turned off. The purpose is to add or subtract a 

spatially dependent magnetic field to the BO for the creation of MR image. 

2.5.5.3 RF coils 

The function of RF coils is to create the B1 field which rotates the net magnetization 

in the pulse sequence during the transmission mode and then detects the transverse 

magnetization as it precesses in the xy-plane in the receive mode. There are two 

basic types of RF coils; volume coils and surface coils with typical operating 

frequency range from 1 to 170MHz for both. Volume coils are designed to surround 

the object being image and the surface coils are designed to be place near to the 

object being image. The volume coils are  preferred  to the surface coils because their 

field sensitivity patterns are very uniform which means that the transmitted energy is 

uniformly distributed throughout the object being image. 

2.5.5.4 Scanning console and computer 

The function of the console as shown in Figure 2.12 is to select imaging sequence 

and parameter such as scanning protocol, set the gating to the patient ECG or 

breathing in order to synchronous the MR acquisition to the appropriate periodic 
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physiology process. The console is also used to select orientation plane of the scan 

image, review image obtained and change the variable in the pulse sequence to 

modify the contrast between tissues. Present scanners can reconstruct 10 to 50 

images per second which is sufficient for real time scanning slice.  

2.6   Cardiac MR Imaging and Diagnostic 

Cardiac MR is an MR imaging technique used specifically for non-invasive 

assessment of the structure and the function of cardiovascular system. With the 

advantage of MR imaging in showing detailed images of heart muscles and how the 

blood moves through certain organs and blood vessels, allowing problems, such as 

blockages, to be identified. Thus allow physicians to better evaluate various cardiac 

ailments. 

This section describes various types of cardiac imaging methods and common 

diagnostic testing carried out using MR imaging. 

2.6.1 Cardiac MR imaging 

Figure 2.13 shows a typical CMR image. First a Long axis view is acquired for the 

planning to acquire the short axis view as shown in Figure 2.13(a). Typically nine to 

twelve slices of SA images from basal to apical are acquired depending on the types 

of assessment performed. Figure 2.13(b-d) shows three slices acquired from a single 

patient correspond to basal, middle and apical slice. 

 
 

Figure 2.13 : (a) Long Axis (LA) view and planning of Short Axis (SA) images,      

(b) Basal slice, (c) Middle slice, and (d) Apical slice (courtesy of Golden Jubilee 

National Hospital, Glasgow) 

(a) (b) (c) (d) 
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Three types of CMR images are commonly used Cine CMR, Late enhance CMR and 

T2-weighted CMR. A Cine CMR image shown in Figure 2.14(a) is used to study 

functionality of the heart, usually the CMR images are taken over a period of time 

from the end of the diastolic cycle to the end of the systolic cycle. These images are 

acquired to investigate the whole heart volume. Some of the assessments that can be 

performed using Cine CMR are ejection fraction, systolic wall thickening and wall 

motion analysis (Frangi et al., 2001). The Late enhance CMR and T2-weighted CMR 

shown in Figure 2.14(b) and Figure 2.14(c) are used to the study the LV wall 

structure. In both image sequences a single image is acquired for every slice from the 

basal slice to the apical slice. In Late enhance (LE) image a contrast agent normally 

gadolinium solution is administered to the patient and after a period of time the 

image is then acquired. Normal heart muscles appear dark, while the damage area 

will appear bright white as shown in Figure 2.14(b). In a T2-weighted image shown 

in Figure 2.14(c) the same image characteristic can be observed where normal wall 

area will appear dark compare to the damage area which is known as edema region. 

The advantage of T2-weighted method is that there is no contrast agent thus the 

image can be acquired much faster.  

 

 

Figure  2.14: SA view of (a) Cine Image, (b) Late Enhance Image, and (c) T2-

Weighted Image (courtesy of Golden Jubilee National Hospital, Glasgow) 

(a) (b) (c) 

Infarcted area Edema area 
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2.6.2 Cardiac diagnostic 

As mentioned in the previous section the main intention of MR imaging is to 

diagnose the condition of the heart. Depending on the nature of CMR image being 

acquired, two types of diagnosis can be performed by the clinician. The studies are i) 

the study of physiological functions of the heart and ii) the study of the pathological 

structure of the wall. 

2.6.2.1 Physiological function of LV wall 

Wall Motion analysis is one of the clinical techniques used by physicians to study the 

condition of the heart. As the heart is a moving organ, the condition of the heart can 

be investigated by looking into the motion of the heart over a complete cardiac cycle 

from the end of the diastole to the end of the systole. These wall motion changes may 

represent ischemia or infarction of myocardium. Quantifying the extent of regional 

wall motion abnormality may aid in determining the myocardial effects of coronary 

artery disease (Gelberg et al., 1979).  

Another form of study that can be performed to investigate functionality of the heart 

is the wall thickening analysis. Lieberman et al (Lieberman et al., 1981) 

demonstrated in a study using a dog model of acute infarction that there was 

evidence of an abrupt deterioration of systolic wall thickening in segments with more 

than 20% transmural extent of infarction. In another study, involving patients with 

perfused chronic infarcts, Mahrholdt et al (Mahrholdt et al., 2003) determined that 

systolic wall thickening was diminished in segments containing more than 50% 

nonviable myocardium. These studies proved that wall thickness analysis is a reliable 

indicator to analyzing abnormality of the heart. 

The above discussion is not exhaustive. There are many other types of study that can 

be done to analyze the functionality of the heart and details of these can be found in 

(Frangi et al., 2001). 
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2.6.2.2 Pathological study of LV wall 

In pathological studies of LV wall rather than looking into how the heart functions 

over a period of time, we are interested to look at the actual myocardial scar in 

patients with chronic ischemic heart disease. This can be achieved using either  LE 

images or T2-weighted images. 

LE is an imaging modality capable of high spatial resolution and able to assess the 

presence of viable myocardium in infarcted and poor contractile areas (Kim et al., 

1999). In another study Kim et al (Kim et al., 2000) shows, in the chronic phase of 

MI, LE image has been shown to correlate well with fibrosis and be a marker of 

irreversible injury. 

In T2-weighted images several studies have demonstrated that these images can be 

used to delineate the ischemic AAR and myocardial salvage in patients with recent 

acute MI (Kellman et al., 2007, Berry et al., 2010). The advantage of T2-weighted 

images when compared to LE images are that in T2-weighted images there is no 

contrast agent being used thus the acquisition can be done instantly, whereas in LE 

images some delay is expected due to the time taken for the contrast agent to flow 

through the heart wall. In T2-weighted images the hyperenhanced region is known as 

myocardial edema (Abdel-Aty et al., 2009). Myocardial edema is due to fluid 

accumulation following myocardial injury, such as ischaemia or inflammation, and 

the quantification of edema is an important step in distinguishing between viable and 

non viable myocardial tissue. This is an important consideration for risk assessment 

and treatment decisions making (Van De Werf et al., 2008) 

2.7 MR Image Artefacts 

MR image artefacts in MR images are produced by various complications of the 

imaging process, which results in an image that does not portray an accurate 

representation of a slice of tissue (Savoy and Jovicich, 2001) and can result in 

inaccurate diagnosis.  
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MR artefacts can be classified into two general categories. 1) Hardware related 

artefacts which are uncommon and difficult to diagnose that usually require service 

personnel to correct and 2) artefacts related to the patient or under operator control. 

This category is encountered much more commonly and may be easily prevented or 

corrected once they are recognized. Examples of sources of these artefacts are 

motion artefact, chemical shift artefact, aliasing, RF inhomogeneity, Gibbs or 

truncation artefact, and partial volume artefact (Hornak, 1996).  

2.7.1 Motion artefacts 

Motion is the most prevalent source of MR imaging artefacts (Smith and Nayak, 

2010). As the name implies, motion artefacts are caused by motion of the imaged 

object or a part of the imaged object during the imaging sequence. The motion 

artefacts are observed along the phase-encoding direction of the image result with 

blurring of the image with ghost images as shown in Figure 2.15(a). The voluntary 

motion of the patient can usually be prevented, but cardiac motion, respiratory 

motion, vascular pulsation, and etc cannot be eliminated. In the case of cardiac 

motion, it produces a series of ghost artefacts along the phase-encoding direction of 

the MR image. The solution for reducing cardiac motion artefacts is 

electrocardiographic triggering, in which data collection is synchronized with cardiac 

phase as shown in Figure 2.15(b). This synchronization enables cardiac tissue to be 

located in a consistent position as each successive phase-encoding step is acquired, 

resulting in increased tissue signal intensity and decreased phase errors. Other 

approaches include the use of fast imaging sequences that reduce the opportunity for 

motion during data acquisition. 
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Figure 2.15: (a) Image without Motion Compensation Technique, (b) Image with 

Cardiac Gating(Ruan, 2003). 

2.7.2 Chemical shift artefact 

The chemical shift artefact (Ballinger, 1996) is due to misregistration of relative 

positions of two tissues with different Larmor frequencies. Most common chemical 

shift is the misregistration of fat and water which is then transformed into spatial 

difference as shown in Figure 2.16 the arrow shows the location of the chemical shift 

artefact which shows an appearance of a dark rim at one edge of the object. 

 

 

Figure  2.16: Chemical Shift Artefact  (Richard Bitar, 2006) 

Chemical shift artefact can be reduced by performing imaging at low magnetic field 

strength, by increasing receiver bandwidth, or by decreasing voxel size. The artefacts 

tend to be more prominent on T2-weighted than on T1-weighted images. Fat 

(a) (b) 

Dark rim appearing 

on the edge 
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suppression methods often eliminate visible artefacts, and gradient reorientation can 

redirect chemical shift artefacts to another portion of the image. 

2.7.3 Aliasing artefact 

Aliasing artefact is a common artefact when the field of view (FOV) is smaller than 

the body part being imaged causing the region beyond to project on the other side of 

the image as shown in Figure 2.17, where the aliasing occurs at the back of the head 

and on the front of the head. The solution to a wrap around artefact is to choose a 

larger field of view, adjust the position of the image centre, or select an imaging coil 

which will not excite or detect spins from tissues outside of the desired field of view. 

 

Figure  2.17: Aliasing Artefact (Ballinger, 1996) 

2.7.4 RF inhomogeneity 

An RF inhomogeneity artefact is due to the presence of an undesired variation in 

signal intensity across an image and also due to non-uniform fat suppression.    

Figure 2.18 shows an image from a surface coil with its characteristic intensity 

decreasing as the relative distance of the patient increases away from the coil. In 

some RF coils such as surface coils have a natural variation in sensitivity and will 

always display this artefact. The presence of this artefact in other coils represents the 

failure of an element in the RF coil or the presence of metal in the imaged object.  

The RF inhomogeneity can be reduced by using superconducting magnet which 

produces homogenous magnetic field over time. 

Cranial Occlusion 

Wrap around image 
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Figure  2.18: RF Inhomogeneity (Hornak, 1996) 

2.7.5 Gibbs ringing artefact 

Gibbs ringing artefact (Ruan, 2003) is the result of under sampling of the data so that 

the interface of high and low signal is incorrectly represented on the image. The 

artefact results in parallel dark or bright lines appearing next to borders of abrupt 

intensity change. Ballinger (Ballinger, 1996) describes three methods  that can be 

used to reduce the artefacts namely: (i) increase the resolution of the imaging matrix,          

(ii)  lessen the intensity and (iii) narrow the artefact. Figure 2.19(a) shows fine lines 

appearing on the image as indicated by the arrows, which is due to undersampling of 

the high spatial frequency. The solution to this problem is to increase the number of 

samples of the image as shown in Figure 2.19(b) 

  

Figure  2.19: (a) Gibbs Ringing appearing as fine lines, (b) MR Image with 256 

phase encodes (Ruan, 2003)  

(a) (b) 
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2.7.6 Partial volume artefact 

Partial volume artefact (Hornak, 1996) is described as any artefact that occurs when 

the size of the image voxel is larger than the size of the feature to be imaged. For 

example, if a small voxel contains only fat or water signal, and a larger voxel might 

contain a combination of the two, the large voxel possesses signal intensity equal to 

the weighted average of the quantity of the two tissues in the voxel. This is 

manifested as a loss of resolution caused by multiple features present in the image 

voxel. Figure 2.20 shows a comparison of two axial slices through the same location 

of the head. One is taken with a 3 mm slice thickness and the other with a 10 mm 

thickness. In Figure 2.20(b) the loss or resolution is obvious and the details of some 

structure disappear  compared to Figure 2.20(a). 

 

Figure 2.20:  Resolution comparison (a) 3mm slice thickness, (b) 10mm slice 

thickness(Alanallur, 2009) 

2.8  Conclusion 

This chapter has reviewed cardiovascular disease which is a major cause of death in 

the modern world. To understand the disease the anatomy and physiology of the 

heart along with the common heart conditions were described. 

The chapter also discusses the MR imaging technology and types of CMR images 

being used by the clinician for non-invasive assessment of the structure and the 

function of the cardiovascular system, including the principles of magnetic 

resonance, the MR instrumentation, image acquisition and reconstruction, the views 

that that are widely used and some MR image artefacts. A T2 weighted CMR image 

(a) (b) 
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with short axis view is used in this research because of the advantage of using T2 

weighted CMR image to assess the structure of the heart wall. 

The research included in this thesis involves the segmentation, quantification and 3D 

visualization of edema from the LV CMR images. Thus in the following chapters, 

various image processing techniques applied to CMR images to solve this problem 

and to develop a semi or fully automatic algorithm for edema quantification with 3D 

Visualization is presented. 
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CHAPTER 3  

3. DIGITAL IMAGE PROCESSING IN 

CARDIAC MAGNETIC RESONANCE 

(CMR) IMAGING 

3.1   Introduction 

The previous chapter reviewed the fundamentals of the anatomy and physiological of 

a human heart. Then the technology behind MR imaging was discussed, including 

principle of MR imaging, MR instrumentation, Cardiac MR imaging and finally 

some MR imaging artefact.  

The purpose of this chapter is to give an overview of general technique for MR 

image processing system.  Figure 3.1 shows a general block of a typical MR image 

processing system. Generally MR data processing can be divided into two parts. Part 

one is the fundamental block in all automatic MR imaging systems which consist of 

i) Image pre-processing and LV localization and ii) LV wall segmentation, where the 

stack of CMR images is processed to delineate the LV wall region from the rest of 

the images. Part two is specific to the research problem of this thesis namely; i) 

Edema Segmentation and Quantification in which the result from the LV wall region 

is used for the segmentation and quantification of edema and ii) 3-D reconstruction 

and visualization, where the output of the previous two processes are used to 

reconstruct the SA axis images into 3-D which illustrates edema region and normal 

region.  

This chapter is structured as follows: Section 3.2 presents image pre-processing 

techniques and LV localization techniques. In 3.3, a discussion on the state of the art 

in LV wall segmentations is presented. In section 3.4, current methods in edema 
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segmentation and quantification techniques for CMR images are discussed. Section 

3.5 presents the 3-D reconstruction techniques from 2-D images to 3-D models. 

Finally section 3.6 concludes the chapter. 

 

MR Image Stack 

LV wall Segmentation 

Image Pre-processing 

LV Localization 

Edema Quantification 

3-D Visualization 

Part 1 

Part 2 

 

Figure 3.1: (a) General block diagram of MR Imaging Algorithm, (b) Edema 

segmentation and 3D Visualization Algorithm 

3.2  Overview of Image pre-processing and LV wall 

localization methods  

The segmentation of the LV wall requires several preliminary steps before any LV 

wall segmentation algorithm can be applied. In this section a review of image pre-

processing techniques and LV wall localization are presented. 

3.2.1 Image pre-processing methods 

Image pre-processing is an important step before any LV wall segmentation because 

of the challenges of automatically segmenting the LV wall. The segmentation of LV 

(a) 

(b) 
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wall consists in segmenting the endocardium and then segmenting the epicardium. 

Each process presents specific difficulties such as grey level inhomogeneities in the 

blood pool flow and the presence of papillary muscles and trabeculation               

(wall irregularity) inside the heart chamber for endocardium. In epicardium feature 

extraction the challenges are weak edges around the epicardium, and the fact that the 

presence of edema in the myocardial tissues for T2-weighted image which has higher 

signal intensity and variations compared to normal myocardial tissue further 

complicated the segmentation process. 

Due the challenges above in most LV wall segmentation algorithm a pre-processing 

is added into the process. The main image pre-processing methods applied to CMR 

data are based on non-linear filtering and morphological filtering as indicated in 

Table 3-1. 

Table 3-1: Common image pre-processing methods used to pre-process CMR data 

 

Technique Author Basic Principle 

non-linear filtering Santarelli et al., 1999 

Santarelli et al., 2003 

Lynch et al., 2006 

 

Ting et al., 2008 

 

(Yuwei et al., 2009) 

 

 

Anisotropic filtering 

 

 

multistage median filtering 

 

selective smoothing diffusion 

filtering  

Mathematical 

morphological filter 

El Berbari et al., 2007 

 

 

Cocosco et al., 2008 

Connected opening and 

closing 

 

Combined Otsu thresholding 

with binary morphological 

operation 

 

3.2.1.1 Anisotropic filtering 

Anisotropic filtering is a non-linear filtering which concentrates on the preservation 

of important surface features like sharp edges and corners by applying direction 

dependent smoothing. Smoothing is formulated as a diffusive process, which is 

suppressed or stopped at boundaries by selecting locally adaptive diffusion strengths 
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such as the statistic of noise degradation and the edge strength (Perona and Malik, 

1990, Gerig et al., 1992).  A direct implementation of anisotropic filtering has been 

presented in by (Santarelli et al., 2003, Lynch et al., 2006a, Santarelli et al., 1999). In 

Ting (Ting et al., 2008), a multistage median filtering is applied to suppress random 

noise with better edge preserving capability compared to median filtering. Yuwei 

(Yuwei et al., 2009) applied a selective smoothing diffusion as proposed by (F. Catté 

et al., 1992) to smooth the CMR image to improve the segmentation of the 

Directional Gradient Vector Field Snake (DGVF). 

3.2.1.2 Morphological based filtering 

Morphological based filtering is based on a form of set algebra known as 

mathematical morphology. Most morphological filters use extreme order statistics 

(minimum and maximum values) within a filter window (Maragos and Schafer, 

1990) for image filtering.  In El Berbari (El Berbari et al., 2007) a  connected 

opening and closing is applied to CMR image, the objective being to produce an 

image that consists mostly of a flat image and a large region. Cocosco (Cocosco et 

al., 2008) combined Otsu thresholding with a binary morphological operation using a                 

4-neighbour connectivity kernel. A dilation process is repeated for “A”
1
 times and 

largest connected component is identified and kept. 

3.2.2 LV wall localization methods 

LV wall localization is an important aspect in automatic LV wall segmentation. As 

indicated in Table 3-2 LV wall localization can generally be classified into two 

types: time based approaches which takes advantage of the fact that the heart is the 

only moving organ in the CMR image and object detection approaches, which uses 

spatial information from SA image to locate the location of the LV wall (Petitjean 

and Dacher, 2011).  

 

 

 

                                                 
1
 “ A “ is tunable parameter in the ROI computation method 



Chapter 3 

37 

 

Table 3-2: Common LV localization methods used to localize the LV 

Technique Author Basic Principle 

time based approach Gering, 2003 

Cocosco et al., 2004 

Colantonio et al., 2005 

 

Pednekar et al., 2006 

 

 

Junzhou et al., 2007 

 

 

Jia et al., 2008 

 

 

Constantinides et al., 

2010 

 

Hae-Yeoun et al., 2010 

 

Lin et al., 2006 

Jolly, 2008 

3D+t image variance combined 

with convex hull 

a cluster based analysis ( fuzzy 

c-means algorithm) 

Computation of motion analysis 

from two consecutive images 

combined with Hough transform 

Image difference combined with 

dynamic texture  analysis and k-

means clustering 

Intensity difference from two 

consecutive frames combined 

with Hough transform. 

Gray level variation over entire 

cardiac cycle combined with 3D 

labelling 

Image intensity difference 

combined with Hough transform 

 Fourier transform 

 

object detection 

approaches 

Jolly, 2006 

Pavani et al., 2010 

 

 

 

Lynch et al., 2006 

 

 

 

Kurkure et al., 2009 

Learning based method. 

Optimization of  Haar-like 

features by assigning optimal 

weights to its different Haar 

basis functions 

Un-supervise classification 

using K-means algorithm 

combine with shape descriptor 

Combination of processing LA 

and SA and application of Otsu 

thresholding to identify binary 

component of the CMR image. 

 

 

3.2.2.1 Timed based approaches 

In time based approaches the difference or variance in image characteristic over 

cardiac cycles can be used to locate the LV region. The work by (Gering, 2003, 

Cocosco et al., 2004)  uses variance computation where from a 3-D+t of the original 
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image, variability along time dimension is measured using standard deviation of each 

voxel. Then the maximum intensity of the resulting 3-D image is projected on a 2-D 

image. The resulting 2-D image is subsequently binarized using Otsu’s method and 

dilated several times. The convex hull of the obtained region is the final 2-D region-

of-interest (ROI). Colantonio (Colantonio et al., 2005) used a cluster based analysis 

where fuzzy c-means algorithm is applied to indentify and label homogeneous region 

in each slice. Once the homogeneous regions have been classified they are then 

analysed over an entire cardiac cycle to determine the LV. In Pednekar (Pednekar et 

al., 2006) the difference of two consecutive images on a basal slice near the end 

diastolic (ED) is computed to construct a motion resulting in a circular region around 

the LV, which can then be detected by applying the Hough transform. Image 

difference is also  used in (Junzhou et al., 2007) followed by dynamic texture  

analysis and k-means clustering to locate the heart region, Jiang (Jia et al., 2008) also 

used intensity difference from two consecutive frames and then by applying the 

Hough transform the LV is located, Constantinides (Constantinides et al., 2010) used 

the difference of every pixel  scanned over a cardiac cycle with the assumption that 

gray level variation is more significant with pixel belonging to the heart due to heart 

motion. This is then combined with 3-D labelling to ensure spatial continuity.  

In the work proposed by Hae-Yeoun (Hae-Yeoun et al., 2010) where a circular 

Hough transform is performed on the subtraction magnitude of images across the 

whole cardiac cycle on a mid ventricle slice. The seed is then propagated across the 

remaining slices and phases by examining 11x11 pixel windows whose centres are 

the centre of gravity of the segmented LV region of the previous image. Image based 

difference can suffer in noisy conditions. An alternative approach is to use a Fourier 

transform of the image sequence over time which can provide an image moving 

object (Lin et al., 2006, Jolly, 2008). The LV location is detected by computing the 

first harmonic of the Fourier transform on image sequence which allows for 

localizing of the heart (see Figure 3.2).  

The disadvantage of the above methods  is that they are only suitable for cine CMR 

images and not directly applicable to LE or T2-weighted image because in these 

types of images the images are not acquired over the whole cardiac cycle. 
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Furthermore by processing consecutive image or the whole cardiac cycle will create 

heavy demand on the processor. 

 

Figure 3.2: Automatic heart localization: first row: first harmonic of the Fourier 

transform with the region extracted after 3D line fitting and distant artefact removal; 

second row: white connected components were kept and gray ones were discarded; 

third row: region of interest localizing the heart (Jolly, 2008) 

3.2.2.2 Object recognition approaches  

Another approach in LV localization is based on object recognition utilising a 

learning based algorithm. The aims of learning based approaches are to extract 

rectangular sub-windows from the CMR image, and derive their features, to train the 

classifier to accept the LV and discard others anatomical structures. The global 

profile is based on maximum discrimination, where the system models feature 

vectors as Markov processes. Then the system is trained to minimize between 

positive and negative samples. In the detection each pixel is cluster into potential LV 

wall candidates and by using the Hough transform a voting based procedure on the 

individual profiles are created, which produce a circle representing the rough 

positioned of the LV (Jolly, 2006). Pavani (Pavani et al., 2010) proposed a method 

based on face detection approach (Viola and Jones, 2001), which uses  Haar-like  

features (Papageorgiou et al., 1998).  The aim is to optimise Haar-like features for a 

given object detection problem by assigning optimal weights to its rectangular 

windows. The optimal weight is determined by using a training dataset. As with any 
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training based algorithm the accuracy of the method depends on the number of 

training dataset and as the dataset getting bigger, this increases the computational 

cost. 

Unsupervised learning has also been used Lynch (Lynch et al., 2006a) where  the 

image is clustered using a k-means algorithm then a shape descriptor is used with the 

assumption that the LV is a circular shape. Approximation of the circle is calculated 

as the error between the shape and the least square approximation of the circle. In 

Kurkure (Kurkure et al., 2009), the LV is localized by computing the projection lines 

from the long axis (LA) view and four chamber view to obtained intersection 

crosshair onto end diastolic (ED) SA image. Then extract the ROI and compute an 

8-bit histogram of the ROI. An Otsu’s based threshold is then applied to the ROI and 

the LV is located by identifying the binary component that is closest to the cross-hair 

3.3   LV Wall Segmentation Methods 

The LV boundary segmentation is performed to remove the rest of the anatomical 

structures from the LV wall of the CMR image. Once the LV wall has been 

segmented further investigation can be performed either for pathological study or 

physiological study. Research on the segmentation of the LV wall is an important 

field as the manual identification of the LV wall has significant intra-observer and 

inter-observer variability. LV wall segmentation methods can generally be 

categorized into pixel classification methods, deformable model based methods, 

statistical models methods, and atlas based methods (Pham et al., 2000, Petitjean and 

Dacher, 2011). Although each technique is described separately, multiple techniques 

are often employed together to obtain better solutions. In the rest of this section, we 

will discuss recent techniques used to segment the LV wall boundary.  

3.3.1 Pixel classification based methods 

In pixel classification methods images are partitioned into regions or classes, 

composed of pixels that have close feature values, using either supervised techniques 

(with learning samples) or unsupervised techniques as indicated in Table 3-3. 
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Table 3-3: Pixel classification based segmentation methods 

  Author Basic Principle 

Pixel 

classification 

methods 

Supervise 

classification 

method 

 

 

unsupervised 

classification 

techniques 

(Stalidis et al., 2002) 

 

 

 

 

(Lynch et al., 2006a) 

 

 

 

 

 

 

 

 

 

 

(Van Assen et al., 

2006) 

 

 

 

 

(Gering, 2003) 

 

(Pednekar et al., 

2006) 

 

 

 

 (Lynch et al., 2007) 

Neural network 

combined with 

spatial-temporal 

technique 

 

k-means algorithm 

with edge 

information is used 

to segment the LV 

and final 

segmentation is 

achieved by cubic-

spline to close the 

LV wall contour 

 

 

Fuzzy c-means 

clustering. The 

CMR image is 

clustered into three 

clusters. 

 

EM + MRF 

 

EM embedded in 

cost matrix for 

dynamic 

programming 

 

Iterative EM 

algorithm to find 

optimal number of 

seed 

 

 

 

3.3.1.1 Supervised classification techniques 

Supervised classification approaches such as maximum-likelihood and Bayes 

classifier methods are often used when training data is available. The algorithms 

require a tedious learning phase, which consists of providing the algorithm with gray 

levels of labelled pixels. The learning phase is often performed by manually 
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segmenting sample data such as in Stalidis (Stalidis et al., 2002) where a few sample 

pixels belonging to myocardium, blood and lung are manually selected. Theses 

samples are provided to a generating-shrinking neural network, combined with a 

spatiotemporal parametric modelling. In this work, the LV wall boundary is found 

through a radial search, using the previously defined LV wall model. The weakness 

of the method is the training data which is often required to be manually segmented 

and the algorithm is not robust to intensity inhomogeneities (Xiang, 2008). 

3.3.1.2 Unsupervised classification techniques 

In unsupervised classification techniques images are clustered without the use of 

training data, which makes them easy to use in different image modalities. Three 

common algorithms are k-means, fuzzy c-means and expectation-maximisation 

(EM).  

Lynch (Lynch et al., 2006a) proposed the use of adapted k-means algorithm to 

segment the CMR image into separate clusters.  After separate cluster regions have 

been found, the LV cavity is recognized by computing the error between the shape 

and the approximation to the circle. Since the closest blood pool to the LV cavity is 

the right ventricle (RV), the wall between these two blood pools is measured, which 

guides the epicardium segmentation using edge information. Finally cubic-spline is 

used to close the epicardium contour. In the k-means algorithm hard thresholding is 

used to determine whether the pixel belongs to one cluster as compared to another 

cluster, but the problem with clustering human organs are the changes can sometime 

be more gradual. Thus to solve the problem of hard thresholding Van Assen (Van 

Assen et al., 2006), applied fuzzy c-means for clustering the CMR image into three 

clusters. Unlike k-means, fuzzy c-means allows partial class membership.  

The Expectation-maximization (EM) algorithm (Dempster et al., 1977) is a general 

method to estimate unknown parameters from given information, which uses 

histogram distribution estimation for image classification. Gering (Gering, 2003) 

proposed the use of EM as an initial step before using Markov Random Field (MRF) 

to incorporate spatial correlation into the segmentation process. Pednekar (Pednekar 

et al., 2006) proposed that the EM algorithm result can be embedded into a cost 
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matrix for dynamic programming. Lynch (Lynch et al., 2007) proposed the used of 

EM algorithm to segment the MR image. First the algorithm selects a large number 

of possible partitions, using peaks (local maxima) from the intensity histogram. Then 

using the EM algorithm iterative clustering is performed to these peaks, using their 

histogram heights and greyscale difference until the optimal number of seeds is 

reached. 

3.3.2 Deformable model based methods 

Deformable models are techniques for delineating region boundaries using 2-D 

closed parametric curves or 3D surfaces which deform under the influence of internal 

and external forces (Pham et al., 2000). External energy is constructed from a feature 

space or directly from the image to drive the curve or surface towards desired image 

features such as edges. Internal energy is the energy of the contour, such as motion 

curvature which maintains smoothness throughout the deformation.  

3.3.2.1 Active contour 

The active contour algorithm, also known as snakes was first introduced by Kass 

(Kass et al., 1988).  The contour can be described by ( ) [ ( ), ( )]v s x s y s=  that moves 

through the spatial domain of an image through energy minimize function of: 

1 1

*

int

0 0

( ( )) ( ( )) ( ( ))
Snake Snake image

E E V s ds E V s E V s ds= = +∫ ∫  
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where, Eint represents  the internal energy of the contour with respect to elastic 

deformations and bending of the active contour. The internal energy is defined as: 
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where α and β are the measure of the elasticity of the active contour and the stiffness 

of the active contour respectively. The image energy term Eimage  pulls the active 
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contour towards features in the image such as the image intensity gradient (Kass et 

al., 1988): 

image line line edge edge term term
E w E w E w E= + +  3-3 

where 

( , ), ( , ) ,
( sin , cos )

line edge term

d
E I x y E I x y E

d

θ

θ θ
= = − ∇ =

−
  

During the optimization process, the active contour is deformed with respect to the 

features to be localized. 

Santarelli (Santarelli et al., 2003)  applied a gradient vector flow (GVF) snake to 

segment the LV wall which improved the performance of the active contour because 

the traditional active contour suffers from two limitations;  sensitivity of the 

initialisation curve that needs to be near the boundary, and difficulties in progressing  

into boundary concavity. In Jinsoo (Jinsoo et al., 2003) a new image force is used 

called tensor-based orientation gradient force, using  three-directional velocity 

images from the phase contrast MR image. Hautvast (Hautvast et al., 2005) proposed 

the use of a contour propagation method based on an active contour. In this work an 

initial manual segmentation is performed by the user and then this contour is 

propagated over all phases exploiting information from adjacent images. As with the 

traditional snake the use of GVF snake still suffer, to some degree from the problem 

of concavities and weak edges which is significant in CMR image. 

The work of Berbari (El Berbari et al., 2007)( see Figure 3.3), uses a GVF snake to 

segment endocardium on a filtered image and for the epicardium image Berbari 

introduces a distance constraint by measuring the thickness of the myocardial around 

the septum area and then computes a new edge map keeping the information between 

the endocardium boundary to the dilation of myocardial thickness. This work solve 

the problem of weak edges of GVF by introduce distance constraint from the image 

information. 

Ciofolo (Ciofolo et al., 2008)  applied the active contour in segmenting a late 

enhance (LE) image. In this work 3-D shape terms are combined which is achieved 
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by applying active contour to cine image which best matches with the LE image and 

builds the 3-D mesh and region term to the active contour formulation for the final 

segmentation of the LE image. Han-Yeoun (Hae-Yeoun et al., 2010)  proposed the 

combination of region growing to segment the endocardium and active contour 

guided by the endocardium boundary and myocardial signal information estimated 

by iterative thresholding. 

 

Figure 3.3: GVF Snake with Shape Constraint (El Berbari et al., 2007) 

 

Due to their flexibility active contours have been widely used for medical image 

segmentation, with many of the authors have suggested method to adapt active 

contour specific for LV wall segmentation such as shape constraint, introducing 

region based term, pre-process the CMR image and introducing new edge map. The 

summary of methods fall under this category is shown in Table 3-4. 
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Table 3-4: Deformable based segmentation methods (active contour) 

  Author Basic Principle 

Deformable 

model based 

methods 

active contour 

algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Santarelli et al., 

2003) 

 

(Jinsoo et al., 2003) 

 

 

 

 

 

(Hautvast et al., 

2005) 

 

 

 

 

 

 

 

(El Berbari et al., 

2007) 

 

 

 

 

(Ciofolo et al., 2008) 

 

 

 

 

 

 

 

 

 

 

(Hae-Yeoun et al., 

2010) 

 

 

 

 

 

GVF snake 

 

tensor-based 

orientation gradient 

force is introduced 

as snake energy to 

segment the LV 

wall 

propagate the 

active contour over 

CMR image phase 

and exploiting  the 

information from 

adjacent frame to  

segment the LV 

wall 

 

GVF snake with 

distance constraint 

for the 

segmentation of 

epicardium 

 

Applying active 

contour on cine 

image and created 

3-D mesh region 

then using active 

contour for LE 

image and used 3-

D information for 

final LV wall  on 

LE image. 

 

Combination of 

region growing 

with active 

contour. 
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3.3.2.2 Level set method 

The level set method (LSM) was introduced by (Osher and Sethian, 1988, Malladi et 

al., 1995) and is a powerful technique which can easily integrate different 

information into one framework. The central idea of LSM is to track the motion of a 

curve C which separates one region from another in the whole space. Instead of 

representing the curve C explicitly, the curve C in LSM is represented implicitly by 

zero level set ( ) {( , ) | ( , , ) 0}C t x y t x yφ= =  of a level set function ( , , )t x yφ . The 

evolution equation of the level set function φ  can be written in the following general 

form: 

int ext

d
F F

dt

φ
= +  

3-4 

where Fint and Fext are the respective internal and external energy functions that drive 

the evolution of the level set function with various arguments, such as the curvature 

gradient and image intensity gradient.  

In the implementation of LSM for LV wall segmentation the regularization term does 

not change much and is often curvature based. The contribution comes from with the 

data driven term.  

A prior shape is introduced to the LSM evolution either by pixel-wise stochastic 

level-set representation of training data (Paragios, 2003), or incorporating probability 

density function from manually segmented boundaries (Lynch, 2006) (see Figure 

3.4).  
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Figure 3.4: Images show the probability density functions from a priori manually 

segmented images. (a) Shows the combined contours while (b) and (c) show the 

endo- and epicardium boundaries, respectively. Darker gray tone defines a higher 

probability of the boundaries (Lynch et al., 2006b) 

To further improve the LSM a region based term has also been introduced, which is 

based on the region homogeneity (C. Pluempitiwiriyawej et al., 2005, Ting et al., 

2008). Another level-set based method incorporating both gradient and region-based 

information was proposed in Fritscher (Fritscher et al., 2007). In incorporating both 

gradient terms and region terms the problem of noise can be reduced. Next the 

extension of  the LSM is in Lynch (Lynch et al., 2008), which proposed to 

incorporate prior knowledge about cardiac temporal evolution in LSM formulation 

and applied expectation and maximisation algorithms to tracks the LV wall 

deformation.  

Another extension of the LSM was proposed by Ben Ayed (Ben Ayed et al., 2009) 

that considered the intensity distribution overlap that exists between myocardium and 

cavity, and background and myocardium. From the information he proposed a new 

energy term which measures how close the overlaps are to a manually obtain 

boundary in the first frame. Punithakumar (Punithakumar et al., 2010) further 
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improved the work , by introducing recursive Bayesian filtering as the post 

processing step in LV wall segmentation. Table 3-5 summarize segmentation method 

based on level set. 

Table 3-5: Deformable based segmentation methods (level set) 

  Author Basic Principle 

Deformable 

model based 

methods 

level set method 

(LSM) 

(Paragios, 2003, 

Lynch et al., 2006b) 

 

 

 
(C. 

Pluempitiwiriyawej 

et al., 2005, Ting et 

al., 2008) 

 

 

(Fritscher et al., 

2007) 

 

 

(Lynch et al., 2008) 

 

 

 

 

 

 

 

(Ben Ayed et al., 

2009) 

 

 

 

 

 

(Punithakumar et al., 

2010) 

Prior information 

using PDF from 

hand segmented 

data 

 

Region based term 

based on region 

homogeneity to 

drive the level set. 

 

Combination of 

region based and 

gradient based 

 

In cooperating 

prior knowledge 

into LSM 

formulation and 

combined with EM 

to track the LV 

wall segmentation 

 

 New energy term 

which measure 

closeness from 

manually obtained 

boundary from first 

frame. 

 

(Ben Ayed et al., 

2009) 

+ introducing 

recursive Bayesian 

filtering fro post 

processing 

3.3.3 Statistical models methods 

Table 3-6 shows a summary of segmentation method based on statistical technique. 

Statistical model-based approaches are able to provide constraints derived from a 
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training set on the analysis for improved LV wall segmentation. Thus automatic LV 

wall segmentation can benefit from the use of a statistical model regarding shape 

and/or pixel intensity, to increase its robustness and accuracy. Two commonly used 

techniques are Active Shape Models (ASM) and Active Appearance Models (AAM) 

(Cootes et al., 2001).  

Table 3-6: Statistical model segmentation methods  

  Author Basic Principle 

Statistical models 

methods 

Active Shape 

Model (ASM) 

 

 

 

 

 

 

 

 

 

 

 

 

Active 

Appearance 

Model (AAM) 

 

 

(Van Assen et al., 

2006) 

 

 

 

 

 

 

(O'brien et al., 2011) 

 

 

 

 

 

 

(Mitchell et al., 

2000) 

 

(S. C. Mitchell et al., 

2001, Honghai et al., 

2010) 

 

(S. C. Mitchell et al., 

2001) 

 

(Honghai et al., 

2010) 

 

 

 

 

 

(S. C. Mitchell et al., 

2002) 

 

3-D atlas 

constructed using 

non-rigid 

registration and the 

use of fuzzy c-

means to detect the 

feature points. 

 

Using unified 

framework which 

consist of shape, 

spatial, and 

temporal variation 

of LV 

 

AAM for LV wall 

segmentation 

 

AAM+ASM 

 

 

 

Multistage AAM 

 

 

AAM follow with 

ASM. Then 

combination of the 

two is used to 

compute the new 

appearance model.  

 

 3-D AAM 
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3.3.3.1 Active shape models (ASM) 

ASM (Cootes et al., 1995) is a deformable technique which uses 2-D or 3-D shape 

variation from training dataset and iteratively deforms to fit the new image using the 

statistical information from the training dataset. The constraint is based on point 

distribution models (PDM) which is obtained by Principal Component Analysis 

(PCA) (Abdi and Williams, 2010) that provides number of constraint parameters, 

which control the variation found in the training dataset. Van Assen (Van Assen et 

al., 2006) proposed the use of a 3-D atlas which was constructed from non-rigid 

registration for the shape model. Then the feature point detection is performed by 

fuzzy inference system based on fuzzy C-means as illustrated in Figure 3.5. O’ Brien 

(O'brien et al., 2011) proposed a combination of shape, spatial, and temporal 

variation of LV wall into a unified framework that results in reduce of training time. 

 

Figure 3.5: Atlas construction, a set of final global (Tg) and local (Tl) 

transformations can take any sample shape of the training set, to the atlas coordinate 

system. On the left, there is landmark propagation. Once the final global and local 

transformations are obtained, they are inverted and used to propagate any number of 

arbitrarily sampled landmarks on the atlas, to the coordinate system of the original 

samples (Van Assen et al., 2006) 
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3.3.3.2 Active appearance models (AAM) 

In AAM instead of only shape modelling as in ASM, the image intensity values of 

the structures and surroundings are taken into account to build the complete models. 

AAM has better convergence than ASM but is much slower.  

Mitchell (Mitchell et al., 2000) proposed the use of AAM for LV wall segmentation 

and demonstrated the clinical potential of AAM. A Hybrid model which combine the 

strength of both ASM and AAM are proposed in (S. C. Mitchell et al., 2001, 

Honghai et al., 2010).  In Mitchell (S. C. Mitchell et al., 2001) a multistage AAM is 

proposed to combine an AAM which is optimised on global appearance but 

imprecise local structures, with an ASM which has better local structure. Honghai 

(Honghai et al., 2010) further improved the hybrid method by first calculating the 

shape information from AAM and the next stage using the result from ASM to 

calculate the shape information of the ASM. The two shapes are then combined to 

compute the new appearance model indices. This hybrid approach provides extra 

momentum to bring model matching out of local minima and thus increases the 

chance of finding a global minimum.   

The extension of 3-D AAM is proposed in Mitchell (S. C. Mitchell et al., 2002), the 

extension of 3-D AAM is achieved by extending the two-dimensional PDM to three 

dimensions. The great amount of data involve to model a 3-D surface leads to 

increased computational cost.  

3.3.4 Atlas based methods 

In Atlas-based segmentation methods, image segmentation is regarded as a 

registration problem. The methods rely on existence of a reference image (or the 

atlas) in which structure of interest is labelled by manually segmenting an actual 

image. It is then used to find the transformation that maps the pre-segmented atlas to 

the study image. Therefore the key to atlas based segmentation algorithm is to design 

a registration method capable of computing the transformation between the atlas and 

the image to be segmented. 

Lorenzo-Valdes (M. Lorenzo-Valdés et al., 2002) proposed a method based from the 

average of 14 healthy volunteers to reconstruct and non-rigid registration algorithm 



Chapter 3 

53 

 

based on cubic-spline to register the model in the form of a cardiac atlas to a cine 

sequence of 3D MR volumes. In Lorenzo (Maria Lorenzo-Valdés et al., 2004), 

combines expectation and maximization algorithm and a 4D probabilistic atlas of the 

heart for the automatic segmentation of 4D cardiac MR images. Zhuang (Zhuang et 

al., 2008) used similarity criterion based on region based registrations to introduce 

the heart anatomical constraints and fluid deformation model for the registration of 

the atlas to the image to be segmented. Xiahai (Xiahai et al., 2010) proposed new 

Locally Affine Registration Method based on mutual information (MI) or normalized 

mutual information (NMI) as the global cost function and optimize the affine 

transformations within a global scheme. The methods are summarized in Table 3-7. 

Table 3-7: Atlas based segmentation methods  

  Author Basic Principle 

Atlas based 

methods 

 (Lorenzo-Valdés et 

al., 2002 

 

 

 

 

 

(Maria Lorenzo-

Valdés et al., 2004) 

 

 (Zhuang et al., 

2008) 

 

(Xiahai et al., 2010) 

Cubic spline 

registration in the 

form of a cardiac 

atlas to a cine 

sequence of 3D 

MR volumes. 

 

EM+ 4D 

probabilistic atlas 

 

region based 

registrations + 

fluid deformation 

model for the 

registration of the 

atlas to the test 

image. 

3.4   Edema Segmentation and Quantification Methods 

Automatic edema region segmentation for T2-weighted images have received limited 

attention compared to segmentation of infarcted area from LE images. This section 

describes the development of pathological study of the LV wall from manual 

segmentation to automatic segmentation starting from the segmentation of LE image 

This is because of its similar characteristic the methods applied to LE can be 

transform to T2-weighted image with some modification. 
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 The importance of segmenting and quantifying the edema is because its ability to 

determine AAR. When the result of the edema is superimposed with the infarcted 

region a viability assessment can be performed and treatment can be personalised to 

each patient. 

3.4.1 Semi automatic methods 

Semi-automatic methods where the LV wall is outlined manually have been 

proposed by some researchers and by using different segmentation techniques the 

acute area from LE image or T2-weighted images are then quantified. To speed up 

the quantification of edema some semi-automatic methods used simple intensity 

thresholding based on the standard deviation (SD) method (Fieno et al., 2000, Setser 

et al., 2003, Green et al., 2009). (Amado et al., 2004) use multi-pass region-growing 

algorithm. Here the user needs to click at the hyperenhanced region to provide the 

seed point. The final infarct boundaries are then determined using the Full Width 

Half Maximum (FWHM) criterion. (Hsu et al., 2006) measured infarct size by a 

computer algorithm based on automated feature analysis and combined thresholding 

with delayed enhanced MR image. Fuzzy C-mean (Vincenzo Positano et al., 2005, 

Kachenoura et al., 2008) (see Figure 3.6). (Hennemuth et al., 2008) combined 

intensity histogram with constraint watershed to segment the hyperenhanced tissues. 

(Heiberg et al., 2008) applied k-means algorithm to adaptively set the k+SD 

threshold to automatically quantify the infarction area. 
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Figure 3.6: Application of the Fuzzy C-means clustering algorithm on a slice without 

infarcted area (upper row) and on a slice with inferior infarction (lower row). (a) 

Raw images,  (b) Membership maps for the CE class when applying the fuzzy c-

means on both myocardium and cavity  and (c) only on the myocardium 

3.4.2  Automatic methods 

Automatic methods have been proposed by Dikici (Dikici et al., 2004) where the LV 

wall is segmented by using region segmentation and active contour on cine images 

and then using non-rigid registration the segmentation result is superimposed on the 

LE images. Then a Support Vector Machine (SVM) is used to classify non viable 

tissues. Elagouni et al (Elagouni et al., 2010) proposed the use of active contour with 

geometrical template to segment the LV wall on the LE CMR image and then used a 

shape prior to the segmentation by building a 3-D mesh from the segmentation of 

Cine MRI. Then the LV wall is fitted with myocardial intensity histogram by using a 

mixed model consisting of a Rayleigh distribution for normal tissue and a Gaussian 

distribution for MI region (see Figure 3.7) . They demonstrated that their method 

could delineate the hyper-enhanced MI region well compared with a manual 

approach for LE images. The disadvantages of this method are that it is time 

consuming since it needs  segmentation of two CMR images for each slice, and the 

need to identify the phase which best matches the late-enhancement acquisition time 
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in the cardiac cycle.   Kadir et al (K Kadir et al., 2010b)  proposed  an automatic 

method, where the LV wall is segmented based on a radial search method according 

to signal intensity difference between myocardial tissue and blood pool. This was 

done by combining a fuzzy method for LV boundary segmentation and a hybrid 

thresholding edema sizing algorithm, which is based on a combination of  a 

histogram thresholding with an iterative dilation, to automatically quantify edema 

from T2-weighted MRI. The problem with using this technique is that the method 

could be unstable when the LV wall shows great heterogeneity in signal intensity and 

the characteristic of dark CMR signal is not Gaussian distributed but more of a 

Rician distribution which a is better representation of the dark CMR signal (Hákon 

Gudbjartsson and Patz, 1995b). 

 

Figure 3.7: Pathological Tissues Detection Scheme (Elagouni et al., 2010) 

3.5   Three-Dimensional Reconstruction of CMR Image 

Three-dimensional (3-D) imaging of the heart has become one of the fastest growing 

research areas in medical imaging and it is made possible with the advent of 

hardware and new methods in CMR imaging. The 3-D imaging methods have been 
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used for the study of physiological functions, 3-D reconstruction and visualization 

and for surgical planning (Frangi et al., 2001). Currently most of the research in 3-D 

imaging concentrates on the study to extract physiological characteristic of the heart 

such as shape and function. Thus research into pathological characteristic of the LV 

wall either from LE image or T2-weighted image is very much of interest. In this 

section a review of 3-D imaging techniques used for the investigation of LV wall are 

presented.  

3.5.1 3-D imaging for investigation of physiological function 

The majority of 3-D imaging works deal with the physiological study of the heart 

such as motion analysis, and wall thickening. This section describes the development 

in the investigation of physiological function of the LV heart. 

3.5.1.1 Wall motion analysis 

The study of wall motion analysis involves the detection of abnormal wall 

movement. To reconstruct the wall motion closed meshes have been proposed to 

represent the LV such as spheres, ellipsoids or cylinders. In Azhari (Azhari et al., 

1992) a hollow conical shell is used to characterize transmural motion. Huang 

(Huang and Goldgof, 1993) used bending and stretching model to represent the LV 

wall. The limitations of these traditional models are that they do not provide intuitive 

motion parameters to describe the motion of the LV. A popular approach in 3-D wall 

motion analysis is to use deformable techniques (Frangi et al., 2001). Stalidis  

(Stalidis et al., 2002) proposed a multiphase and multislice approach which uses 

generating-shrinking neural networks combined with spatiotemporal parametric 

modelling for 4-D cardiac MRI analysis. Li (Li et al., 2005) used harmonic phase 

called 3-D HARP which is time invariant to track the motion of the LV mesh model 

through cardiac cycle. Other alternative approaches are based on statistical shape 

model (Cootes et al., 1995). Frangi (Frangi et al., 2002) proposed using non-rigid 

registration to build 3-D ASM by finding corresponding landmarks between surfaces. 

(Remme et al., 2004) 
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3.5.1.2 Wall Thickening analysis 

3-D wall thickening analysis has been shown to be more accurate in detecting 

regional area of ischemic compared to wall motion analysis (Azhari et al., 1990). 

Thus many studies have been done to incorporate wall motion index to the analysis 

of the LV wall. Taratorin (Taratorin and Sideman, 1995) and Azhari et al (Azhari et 

al., 1996) used the technique of dividing the LV wall into small cuboids. Then the 

regional wall thickness analysis is performed by dividing the volume of a particular 

section by averaging the area of the LV wall surface. Buller and Bolson (Buller et al., 

1995, Bolson et al., 1995) used a centreline method where a three-dimensional 

surface was constructed at mid-myocardium through all the midpoints of the 

centerline chords. Ordas (Ordas and Frangi, 2005) used 3-D ASM to build a 3-D 

using non-rigid registration from a training data set of 90 hearts with common 

pathology. As with any statistical model the accuracy of the model is constrained by 

the quality of its data set. In Sun (Sun et al., 2008), they model the 3-D heart wall by 

explicitly defining its skeleton (medial model) and developing the boundary 

geometry according to medial geometry. Tobon (Tobon-Gomez et al., 2010) used a 

3-D statistical model from 100 patients to build the shape models of the 3-D LV 

wall. The practical limitation in building statistical shape models, and in particular 

point distribution models (PDM), is the manual delineation of the training set. 

3.5.2 3-D imaging for investigation of pathological characteristics 

The advantage of 3-D visualization on pathological characteristics of the LV wall is 

in its ability to better visualize the extent of injury to the LV wall compared to 2-D 

visualization. This section describes the development in the investigation of 

pathological characteristics of the LV heart. 

Positano (V. Positano et al., 2003) used a semi automatic LV boundary to segment 

the LV wall. Then the infracted area is classified using Fuzzy C-means algorithm. 

Finally a 3-D model is reconstructed by using a simple graphical tool. The 

disadvantage of the proposed 3-D visualization is that, it is very primitive with the 3-

D image appearing jagged and clearly stacking from one slice to the other.  Noble  

(Noble et al., 2004) proposed using a shape based method  to create prior information 
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for smooth 3-D contour followed by a marching cubes algorithm. Then rigid 

registration method is applied to align cine-MR contour to LE image. Next the scar 

area is manually delineated. The information can then be visualized into 3-D 

representation. The disadvantage of this 3-D visualization is that the system requires 

human intervention such as manual segmentation of the scar area. Termeer (Termeer 

et al., 2007) proposed a comprehensive visualization of artery diseases. Here the LV 

wall is manually segmented, and then the scars tissues are classified by the user 

specifying two regions which are used as density ranges for a healthy region and a 

scar region. The 3-D visualization is based on polygonal mesh for the whole heart 

data and direct volume rendering is used for the LE image. Then the two images are 

blended together. In  Hennemuth (Hennemuth et al., 2008) used semi automatic 

method based on live wire to segment LV wall on the  LE images. Then rigid 

registration method is used to align whole heart volume to the LE slices.  A 

combination of intensity histogram with constraint watershed is then used to segment 

the scars tissues. Lastly using surface rendering the 3-D model of the heart can then 

be constructed. Lehman (Lehmann et al., 2009) applied a 3-D model integrating 

viability information into a cardiac model for interventional guidance. The technique 

used 3-D model based segmentation applied to the cine image by adapting triangular 

surface mesh to an image and then the cardiac model of the whole heart 3-D MRI 

data set that matches to the 3-D LE MRI data set. Then to classify the LV wall into 

viable and non-viable tissues a simple thresholding is applied, where the thresholding 

value is manually set. The 3-D shape can then be reconstructed from the model 

incorporating the scar tissues. 

3.6   Conclusion 

This chapter discussed various image processing techniques for CMR imaging to 

solve the problem of segmentation, edema quantification and 3-D visualization and 

to develop a semi or fully automatic edema quantification with 3-D visualization 

system. 

Image pre-processing is an important aspect of any image processing algorithm. 

Since the original T2-weighted CMR image consists of characteristic that make the 
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automatic segmentation difficult, such as heterogeneity in the blood pool region, 

presence of papillary muscles, and weak edges for the epicardium segmentation. 

Thus this research proposed the use of non linear filtering based on anisotropic 

diffusion method to process the image for further processing. This is due the 

advantages of the filter in terms of edge preserving and its capability to reduce grey 

scale inhomogeneity. 

When considering the development of automatic quantification of edema it is 

important to consider automatic localization of the LV wall. Hence we proposed the 

use of object recognition methods based on fuzzy rules to localize the LV wall. 

The review of the existing segmentation technique showed that LSM is a very 

popular segmentation method used in medical image segmentation with the 

advantages due to its ability to deal with changes in topology such as splitting and 

merging which makes it a great segmentation method for these applications. Hence a 

new Level set method with additional shape constrain is used in this research for 

solving specific challenges in the segmentation of LV wall on T2-weighted CMR 

image. 

The automatic quantification of edema on T2-weighted images will directly benefit 

the clinician in estimating viable myocardial tissues in a timely fashion. From the 

review the majority of works done are on LE CMR image and not many works have 

been done on T2-weighted CMR images. Popular methods such as thresholding and 

classification have been investigated. Since a CMR image is governed by Rician 

distribution Thus a modified two statistical mixture model is used with the capability 

to include microvascular obstruction (MVO) within the edema areas are applied in 

this research. 

Finally 3-D visualization methods were reviewed. In the literature it was found most 

of the work involved the investigation of physiological functions of the heart and few 

investigate the pathological characteristics of the heart. Thus the research into 3-D 

visualization of edema from T2-weighted image is an interesting topic to be 

developed. In our research we proposed a modified surface rendering technique to 
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reconstruct a 3-D image of the LV wall with the ability to visualize the edema areas 

within the 3-D wall volume. 
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CHAPTER 4 

4. IMAGE DATA SET AND EVALUATION 

PARAMETERS 

4.1 Introduction 

The previous chapter reviewed CMR imaging in general and specifically on edema 

quantification and 3-D visualization. The main objective of the research is to develop 

automatic edema quantification with 3-D visualization which will help the clinician 

to easily assess the extent of edema and visualize the location of edema within the 

LV wall volume. 

At present the only publicly available CMR imaging data set is based on Cine image. 

Therefore to the best of our knowledge there is no publicly available T2-weighted 

CMR image database that is suitable for the purpose of this research. The key factor 

contributing to the success of this research has been the collection of real                 

T2-weighted data from patients with of acute myocardial infarction.  

MRI data were collected at Golden Jubilee National Hospital as part of bi-weekly 

visits to the Department of Radiology. The MRI data in our database are taken from 

patients who recently experienced a heart attack. During the acquisition process the 

patient will lie on a motorized bed that can be moved inside the scanner. Then patient 

will enter the MRI scanner head first. A computer is used to operate the MRI 

scanner. A radiographer operates the computer in a separate room to the patient. 

However, the patient will be able to talk to the radiographer through an intercom and 

the radiographer will be able to monitor the patient at all times on a television 

monitor. 



Chapter 4 

63 

 

In the thesis the data is separated into two datasets. The first dataset consist of 15 

patients used for the development of the algorithm and the second dataset consists of 

another 15 patients used to test the ability of the algorithm with unseen data. The 

collection of the data is presented in the first section of this chapter.   

In any algorithm development it is important to assess the capability of the proposed 

algorithm with some standard evaluation testing. Section two presents evaluation 

assessments used to assess the performance of the proposed algorithm 

4.2 Image Data Set 

T2-weighted CMR image data was obtained from Golden Jubilee National Hospital, 

Glasgow. The image data used in this research is the standard short axis views (SA 

views) and long axis view (LA). The studies were performed on 30 patients (24 

male, 6 female) post primary percutaneous coronary intervention (pPCI). The Mean 

(SD) age was 54 (13) years with known artery disease and proven visible edema. 

Time from pPCI MRI imaging was mean (SD) 25 (9) hours. The study protocol was 

approved by the local ethics committee and all patients gave written informed 

consent. MRI was performed on a Siemens Magnetom Avanto (Erlangen, Germany) 

1.5-Tesla scanner with an 8-element phased array cardiac surface coil. A breath hold 

bright blood T2-weighted Acquisition for Cardiac Unified T2 Edema (ACUTE) pulse 

sequence with normalisation for coil sensitivity: acquisition time 7-12s, matrix 192 x 

192, flip angle 180°, echo time (TE) = 1.69 ms, bandwidth = 789 Hz/pixel,  echo 

spacing = 3.4ms, echo train length = 29 and trigger pulse = 2 i.e. alternate heartbeats. 

The voxel size was 1.9 x 1.9 x 6 mm
3
. Myocardial infarction was imaged using 

segmented phase-sensitive inversion recovery (PSIR) turbo fast low-angle shot 

starting around 7 minutes after intravenous injection of 0.10 mmol/kg of gadoterate 

meglumine (Gd
2+

-DOTA, Dotarem, Guebert S.A.). Typical imaging parameters 

were: matrix = 192 x 256, flip angle = 25°, TE = 3.36 ms, bandwidth = 130 Hz/pixel, 

echo spacing = 8.7ms and trigger pulse = 2. The voxel size was 1.8 x 1.3 x 8 mm
3
. 

All images were stored in the standard digital imaging and communications in 

medicine (DICOM) format. Figure 4.1 illustrate an example of image from one 

patient from the database. 
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Figure 4.1: T2 Weighted CMR Image of a single patient (a) Basal, (b) middle and   

(c) apical  

4.3 Objective Evaluation Indicators  

Validation of any algorithm for this work is difficult because there is no standard 

database to assess the performance of the proposed algorithm for comparative study. 

However several studies have shown that manual techniques can be used to assess 

the performance of any proposed algorithm (Thiele et al., 2006, Hsu et al., 2006). 

Thus in this thesis manual techniques such as segmentation of LV wall and 

quantification of edema from one experienced clinician is used as the gold standard 

for the performance evaluation of the proposed methods. 

 

(a) (b) 

(c) 

Edema 
Edema 

Edema 
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4.3.1 Correlation analysis 

 A correlation analysis is performed to measure the strength of the linear relationship 

between two sets of variables. The relationship of the correlation analysis can be 

easily visualized by using scatter plot. Figure 4.2 and Figure 4.3 illustrate the 

examples of positive correlation and negative correlation. 

   

Figure 4.2: Positive Linear correlation  

 

 

Figure 4.3: Negative Linear correlation 

Notice that in Figure 4.2 as the heights increases, the displacement of the data also 

increases.  If this is a perfect positive correlation, all of the points would fall on a 
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straight line.  The more linear the data points, the closer the relationship between the 

two variables. In Figure 4.3 a negative correlation is observed. In this example as x-

axis increases, the y-axis decreases.  If this is a perfect negative correlation all of the 

points would fall on a line with a negative slope.  The more linear the data points, the 

more negatively correlated are the two variables. Another parameter that can be 

observed from both figures is the r value, which is the correlation coefficient and is 

used to measure the strength of the linear relationship in the sample observation. A 

higher r value indicates a higher linear relationship between the two samples. A 

mean  1r =  indicates perfect linear relationship. 

4.3.2 Bland-Altman analysis 

The Bland-Altman analysis (Altman and Bland, 1983, Bland and Altman, 1999)  is a 

graphical tool to measure agreement between two methods. The need for the Bland-

Altman analysis is because correlation analysis can only measure linear correlation 

between two variables but does not explain the difference of the two methods.  

Figure 4.4 shows a Bland-Altman plot for two measures. 

 

Figure 4.4: Bland-Altman analysis 

 In Bland-Altman the data is plotted by the difference between the measurements of 

the two methods for each subject on the y-axis against their mean on the x-axis. 

Useful information that can be derived from the Bland-Altman analysis is the 95% 

confidence limit or 1.96 SD of the differences between the two methods. The 
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presentation of the 95% limits of agreement is for visual judgement of how well two 

methods of measurement agree. The smaller the range between these two limits the 

better is the agreement. Another important parameter that can be derived from the 

Bland-Altman plot is the mean bias. A negative bias tells that method A tends to 

overestimate against method B and for positive bias tells that method A tends to 

underestimate against method B.     

4.3.3 Dice similarity coefficient 

Dice similarity coefficient (DSC) is a measurement of spatial overlap used widely for 

comparing segmentation results (Dice, 1945). The DSC is defined as:  

2( )
( , )

A B
DSC A B

A B

∩
=

+     

4-1 

where ∩  represents the intersection of the two regions and A B+  represents the sum 

of the areas from the two methods. Dice similarity coefficient (A,B)=1 indicates a 

perfect overlap between A and B and DSC(A,B)=0 means no overlap between A and 

B. Zijdenbos et al. (Zijdenbos et al., 1994a)  suggest that a Dice similarity coefficient 

>0.7 indicates good agreement. 

4.3.4 Box plot 

Box Plot (Mcgill et al., 1978), a useful graphical method for summarizing and 

comparing data from 2 or more samples. Figure 4.5 shows an example of a Box plot 

on two classes of data.  
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Figure 4.5: Box Plot 

The box plot consists of: Vertical axis = response variable; Horizontal axis = classes’ 

identification. The bottom dash is the data minimum; the bottom of the box is the 

estimated 25% point; the middle x in the box is the data median; the top of the box is 

the estimated 75% point; the top dash is the data maximum; and the red crosses 

representing the outliers of the sample data. Another parameter that can be 

interpreted from the Box plot is in term of the way the data sway. This can be seen 

by looking at the position of the median in the box. If the median line within the box 

is not equidistant from the hinges then the data is skewed.  

4.4 Conclusion 

In this chapter the real T2-weighted CMR data collection was presented. The chapter 

describe the type of T2-weighted CMR images being acquired. The chapter also 

describe objective evaluation indicators used to test the performance of the proposed 

algorithm. 
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CHAPTER 5  

5. TWO DIMENSIONAL LEFT 

VENTRICLE SEGMENTATION FOR T2 

WEIGHTED CMR IMAGE 

5.1   Introduction 

In chapter 4 the collection of CMR data used in this thesis was described. The 

chapter also introduced quantitative index used to investigate the performance of the 

proposed method. In chapter 3 some popular techniques in image pre-processing, LV 

wall localization, edema segmentation and quantification and 3D visualization have 

been discussed. Since the majority of the work carried out deals with Cine type of 

CMR images. There is a need to develop automatic LV wall segmentation for edema 

quantification and 3D visualization on T2 weighted CMR images. 

Major challenges in automatic systems to segmenting LV are: the heterogeneities in 

the blood pool region, presence of papillary muscles in the LV wall cavity, weak 

edges around the epicardium of the LV, and the fact that the presences of edema in 

the myocardial tissues have higher signal intensity variation compared to normal 

myocardial tissue. Furthermore the precise location of the edema cannot be predicted 

which complicates the segmentation process. 

This chapter presents a novel automatic LV wall segmentation algorithm using 

variational LSM with additional shape constraint. 

This chapter is organized as follows. In Section 5.2 the overview of automatic LV 

wall segmentation algorithm is presented. Section 5.3 describes the image pre-

processing technique based on anisotropic diffusion (Perona and Malik, 1990) and its 

advantages when applied to CMR images. Next in section 5.4 we present a novel 
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fuzzy based technique for LV wall localization for the initial stage of LV wall 

segmentation. Section 5.5  describes the theory of LSM (Malladi et al., 1995) which 

is the basis of the proposed algorithm. Then a novel LV wall segmentation using 

LSM with additional shape constraint is proposed. In our work we used image 

information to provide additional shape constraint to solve the problem of weak 

edges on the epicardium of the LV wall.  Section 5.6 presents the results and 

discussion obtained by applying the technique to real data collected from the Golden 

Jubilee National Hospital. Finally section 5.7 concludes the chapter. 

5.2   Automatic LV Wall Segmentation Algorithm  

An overview of the proposed automatic LV wall segmentation method is shown in 

Figure 5.1. Image pre-processing is used to create homogenous region within the LV 

blood pool region. The second process is to locate the position of the LV in the SA 

image automatically. This is an essential step to provide an accurate initialization for 

LV segmentation.  However the problem in estimating the LV location is that the LV 

within the thoracic wall is highly variable, thus a simple assumption on LV location 

is unfeasible. In our implementation we propose the use of fuzzy based reasoning to 

locate the initial position for the segmentation of the LV wall. Subsequently  

endocardium segmentation is performed using the LSM proposed by Chunming 

(Chunming et al., 2005). The advantage of this LSM is that it eliminates the need to 

reinitialize the level set function to signed distance function as in traditional LSM. 

Once the endocardium has been segmented the averaged LV wall thickness in the 

septum region is assessed in order to constraint the epicardium boundary tracking. 

The constraint information is then used to create a new edge map for the LSM. 

Finally the new LSM with additional shape constraint is used to segment the 

epicardium. These process steps are described in detail in the next sections. 
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Figure 5.1: Automatic LV Wall Segmentation Algorithm Overview  

5.3   Image Pre-processing  

As mentioned in section 5.1 due to the presence of papillary muscle in the LV cavity, 

accurate segmentation may not result with segments stopping at the papillary 

muscles or weak boundaries rather than the desired LV wall boundary.  Therefore the 

anisotropic diffusion method (Perona and Malik, 1990) is applied to remove 

heterogeneity within the blood pool region and also to smooth the LV wall region 

while preserving the strong boundary. 

Perona and Malik proposed the concept of nonlinear diffusion with the selection of a 

variable diffusion parameter as a function of the gradient of the data: 

( ( , , ) ) ( , , )
I

div c x y t I c I c x y t I
t

∂
= ∇ = ∇ ⋅∇ + ∆

∂
    5-1 

where ∆ denotes the Laplacian, ∇ denotes the gradient, div is the divergence operator 

and c(x, y, t) is the diffusion coefficient. c(x, y, t) controls the rate of diffusion and is 

usually chosen as a function of the image gradient so as to preserve edges in the 

image, with the diffusion coefficient of:   



Chapter 5 

72 

 

2

1

1

c I
I

K

∇ =
 ∇

+  
 

      5-2 

where K controls the sensitivity to edges. Figure 5.2 shows a CMR image before and 

after the reconstruction, where the dark area in the blood pool cavity is seen to be 

converted to the same intensity level to the blood surrounding it. 

 

Figure 5.2: (a) Original Image, (b) Filtered Image 

5.4  Automatic LV Wall Localization 

In automatic LV segmentation it is important to initially localize the LV in order to 

provide an initialization point for the level set process. In this paper we use the fuzzy 

based method that we proposed in (Kushsairy Kadir et al., 2010a) for finding the LV 

centre point (LVCP) of a T2-weighted CMR image. The technique incorporates the 

knowledge of the LV position in a CMR image in a fuzzy way to classify a few 

candidate pixels points as guidance point to initialise the level set. The detection of 

the centre point is achieved using the knowledge from the observation of a typical 

SA CMR image. From the CMR image two typical characteristic of the LV are 

observed: (i) the LV is located a little to the right from the centre of the image plane, 

and (ii) the blood cavity of the LV appears as a bright area surrounded by a dark 

myocardial wall. This knowledge is then represented by fuzzy membership functions 

and the pixel candidates are acquired using a fuzzy logic operator. From the image 

information three corresponding fuzzy subsets can be represented: 

(a) (b) 

Blood pool 

cavity 
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1. Right sided fuzzy centre ( FCRS )  

2. Fuzzy vertical line ( VLF )  

3. Fuzzy horizontal line ( )HLF  

Figure 5.3(a) illustrates the degree of membership element of RSFC where there is no 

element to the left of the image plane and membership value decreases as the pixel 

moves away from the centre. Figure 5.3(b) illustrates intensity profile for vertical 

scanning (FVL) along x axis and horizontal scanning (FHL) along y axis.   

 

Figure 5.3:  (a) Centre proximity, (b) Intensity profile of the LV. 

5.4.1 Spatial information 

The process of locating the centre of the LV is performed on a reduced resolution  

image of (25 x 25) as shown  in Figure 5.4(a) which was  proposed by 

(S.K.Setarehdan and J.J.Soraghan, 1997). Figure 5.4(b) illustrates the fuzzy subset of 

FCRS  where the LV blood pool is a bright region which is slightly to the right of the 

image centre. Thus the potential region for LVCP is defined by a semi circular region 

(a) (b) 

( ( ))
VLF

U v y  

( ( ))
HLF

U v x  p(x, y)=location of pixel “x, y” 

FCRS
U  
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(radius = 11) in the image plane. The scale of closeness of the image pixels to the 

centre of the image place is then represented by: 

{ }( , ), ( , ) , , 1 25
FCFC RFRS i j i j i jµ= = …    5-3 

Highest membership value of unity is given to a region with (radius = 5) representing 

the region with higher potential and progressively decreasing membership values are 

used as the pixel distance increases from the right side of the semi circle. 

5 10 15 20 25

5

10

15

20

25

5 10 15 20 25

5

10

15

20

25

 

Figure 5.4: (a) Reduced resolution image (25x25) and (b) Right sided fuzzy centre 

(RSFC) 

5.4.2 Intensity information 

The operation to generate Fuzzy Vertical and Fuzzy Horizontal rules are performed 

on the image which is reduced to a resolution of (50 x 50). In order to reduce the 

computation time significantly and obtain a satisfactory result as suggested by 

(S.K.Setarehdan and J.J.Soraghan, 1997). Figure 5.5(a) shows the reduced resolution 

image. Then a vertical scanning is performed by summing up all row pixels, Figure 

5.5(b) shows the plot of the summation. Since from the spatial information we know 

that the LV is to the right of the image plane, thus only the intensity profile to the 

right is consider as seen in Figure 5.5(c). Then the maximum intensity value (
c

x ) is 

located as shown in Figure 5.5(d). Figure 5.5 (e) shows a FVL which is formed with 

7 pixels width for a decimated image of (25 x 25).  The membership function for 

FVL is given by (S.K.Setarehdan and J.J.Soraghan, 1997): 

(a) (b) 
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{ }( , ), ( , ) , 1 25

,

1 , 3
( , ) ( )

0 , 3

1 25,

VL

c

c

VL VL

c

FVL i j i j i j

where

i x
i x

i j f i n

i x

j

µ

µ

= =

 −
− − ≤

= = 
 < −

=

…

…

   5-4

 

The highest membership value of unity is given to the vertical centre point, 

progressively decreasing the membership values as distance increases from the 

centre. The lowest membership value of 0 is given to the pixels other than the 7 pixel 

width for the FVL.  
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Figure 5.5: (a) Reduced resolution image (50x50), (b) Vertical scanning, (c) Right 

sided vertical scanning, (d)vertical line at (25x25) and (e) Fuzzy Vertical Line (FVL) 

 

The horizontal centre line along (
c

y ) is determined by multiplying the FVL with 

(25x25) image as shown in Figure 5.6(a). Horizontal scanning is performed by 

summing up all column pixels as shown in Figure 5.6 (b). Then a threshold is set at 

0.95% of the maximum value, which is determined experimentally to reduce 

potential 
c

y  points as shown in Figure 5.6(c). Then the first non-zero value ( 1y ) and 

the last non-zero value ( 2y ) are located and finally the
c

y point is determined from 

(a) (b) (c) 

(d) (e) 

and  n = number of fuzzy membership 

7 pixels 
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2 1

2

y y−
 as shown in Figure 5.6 (d). Figure 5.6(e) shows a FHL which is formed with 

9 pixels width for a reduced image of (25 x 25). 
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Figure 5.6: (a) FVL*Reduced resolution image (25x25), (b) Vertical scanning, (c) 

Right sided vertical scanning, (d)vertical line at (25x25) and (e) Fuzzy Vertical Line 

(FVL) 

The membership function for FHL is given by [SET, 1998]: 

{ }( , ), ( , ) , 1 25

,

1 , 1

( , ) ( ) 1.25 , 1 4

0 , 4

1 25,

HL

c

c

HL HL c

c

FHL i j i j i j

where

j y

j y
i j f j j y

n

j y

i

µ

µ

= =

 − ≤


−
= = − < − ≤


≤ −



=

…

…   5-5
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The highest membership value of unity is given to the horizontal centre point and its 

immediate neighbours, progressively decreasing the membership values (for the 7 

pixel width) on either side as distance increases from the centre. The membership 

value of 0 is given to the other pixel locations.  
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Figure 5.7: (a) Fintersect (FI), (b) fα  and  (c) Final centre point 

Once the knowledge has been represented in a fuzzy way, the rules are then fed into 

the fuzzy inference engine by means of the fuzzy ‘min’ operator to select the 

minimum of the membership values for each element. It is given by: 

( )( , ) min ( , ), ( , ), ( , ) , , 1 25
FC

FC

FI RS FVL FHL

FI RS FVL FH

i j i j i j i j i jµ µ µ µ

= ∩ ∩

= = …
  5-6

 

 

Figure 5.7(a) illustrates the result of the min operator. Possible candidates for LVCP 

can be obtained by performing a fuzzy α -cut operation, which is a                      

soft–thresholding method to choose the elements with values greater than the 

threshold ‘α ’ (approximately). To preserve the relative importance of the pixels, the 

pixels corresponding to LVCP have membership values between 50% and 90% of 

the maximum value. The old membership values are translated into new membership 

values by using a continuous non-decreasing mapping function fα.  The membership 

values of the fuzzy α -cut of the fuzzy set FIα is given by (Ahanathapillai, 2010): 

251,)),,(( …== jijif FIFI µµ αα     5-7
 

 Figure 5.7(b) illustrates the result of the FIα operation. The final pixel point is 

determined by computing the geometric centre of the non-zero Fαcut. Finally Figure 

5.7(c) illustrates the final centre point on the original image. 
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5.5 LV Wall Segmentation using LSM with Additional 

Shape Constraint (LSMwASC)  

5.5.1 Level set methods (LSM) 

The level set method was first presented by Osher and Sethian (Osher and Sethian, 

1988)  for front propagation, being applied to models of ocean waves and burning 

flames. Malladi (Malladi et al., 1995) used it for medical imaging purposes.  

The central idea is to apply a function ( , , )t x yφ  to the space the interface inhabits, 

where ( , )x y is a point in that space, t is the time. The function is initialized at t = 0, 

and then a scheme is used to approximate the value of ( , , )t x yφ over small time 

increments. 

 

Figure 5.8: Close curve representation of Levet set method 

In the implementation a close curve is first placed on an image plane as shown in 

Figure 5.8.  The next step is to initialize the value of ( , , )t x yφ at each point of the 

image plane. The function ( , , )t x yφ  is defined as follows. A point ( , )x y  in the 

image plane is given as:  

( , , )t x y dφ = ±
      5-8 

which describes the closeness of the point to the boundary (distance function), where 

( , )x y  is the position in the image plane, t is the time and d is the distance between 

Image I 

( , ) 0x y >  

( , ) 0x y <  
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the position ( , )x y and the zero level set. The positive sign is used if ( , )x y  is outside 

the closed curve; the negative sign is used if ( , )x y  is inside the closed curve as 

shown in Figure 5.8, which is also known as signed distance function.  Figure 5.9 

shows how a closed curve (in this case a circle) can be embedded in a surface. 

 

Figure 5.9: Sketch illustrating a circle embedded within a surface 

Imagine that this curve/surface moves in its normal direction with a known speed 

function F. The objective is to track the motion of this interface as it evolves on the 

interface in its normal direction. This speed function F can depend on a variety of 

factors, such as: 

( , )F F L G=
       5-9

 

where 

• L , Local Properties of the curve which are determined by local geometric 

information, such as curvature and normal direction. 

• G , Global Properties of the front, such as image intensity gradient. 

Closed curve 
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An issue with the traditional level set method is that the function ( , , )t x yφ needs to be 

periodically re-initialised to be a signed distance function to reduce numerical error 

due to sharpening or flattening effects during the evolution, which is computationally 

costly. In order to overcome this problem we followed the variational level set 

method work by Chunming (Chunming et al., 2005) as: 

int

[ ( ] ( ) ( )

ext
F F

d
div div g g

dt

φ φ φ
µ φ λδ φ ν δ φ

φ φ

 ∇ ∇
= − + +  ∇ ∇ 
�

������� �������������

  5-10

 

where [ ( ]div
φ

µ φ
φ

∇
−

∇
� is a penalizing term used to maintain the sign distance 

function of φ  , � is the Laplacian operator,  and 0µ > . The second term in the right 

hand side of (5.10) corresponds to the gradient flows of the energy functional of 

weighted length of the zero level curve where 0λ > and the third term corresponds to 

weighted area term where ν can be negative or positive depending on the relative 

position of the initial contour of the object of interest. Those terms are responsible of 

driving the zero level curve towards the object boundaries. g is the edge indicator 

function used to stop the evolution of the level set function at desired boundaries. 

The edge indicator function is given by: 

2

1

1 ( * )
g

G Iσ

=
+ ∇

      5-11

 

 

where I is the image data,  Gσ  is the Gaussian kernel with standard deviation  and * 

is the convolution operator. Equations 5.9 to 5.11 forms the basic system of the level 

set methods used in this work. 
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5.5.2 Endocardium segmentation procedure 

The process to segment the LV wall starts by segmenting the endocardium as 

illustrated in Figure 5.10.   

 

 

 
(a)                                    (b)                    (c) 

Figure  5.10:  (a) Level set initial contour by Fuzzy centre detection (b) detected 

Endocardium boundary (c) Endocardium boundary on original image 

The initial function 0φ is defined as: 

0 0

0

0

( , )

( , ) 0 ( , )

( , )

cons x y

x y x y

cons x y

φ

− ∈ Ω − ∂Ω


= ∈ ∂Ω


∈ Ω − ∂Ω     5-12

 

where 0Ω
 
is the sub-image in the image domain Ω , 0∂Ω

 
represents the boundary 

points and cons  is a positive constant. The initialization of 0φ can be implemented by 

creating a mask from the initialization point discussed in section 5.4.  The steps for 

endocardium segmentation include: 

i. As indicated in Figure 5.10(a) the initialization and segmentation of the 

endocardium is carried out on the pre-processed image. The initial LSM 0φ  

within the LV cavity uses the detected fuzzy centre point as shown in    

Figure 5.10(a).  

ii. The level set function φ  evolves on the pre-processed image according to 

equation 5.10, which drives 0∂Ω to the endocardium boundary
ENDO

∂Ω . The 

Pre-processed image Pre-processed image Original image 
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resulting contour is mapped onto the pre-processed image as shown in   

Figure 5.10(b).  

iii. Papillary muscles in the study should be excluded from the LV wall. The 

convex hull algorithm (Preparata and Hong, 1977) is applied to the final 

segmentation of the endocardium Endo∂Ω to remove the papillary muscles 

which are especially noticeable from mid ventricle to apical slices as shown 

in Figure 5.10(c) mapped onto the original image 

5.5.3 Epicardium segmentation procedure 

Segmentation of epicardium begins with the results of endocardium segmentation as 

in Figure 5.10(c). The boundary of the endocardium 
ENDO

∂Ω   is used as the initial 

contour for the level set function of epicardium segmentation. As shown in       

Figure 5.11(a), due to the poor contrast between epicardium and surrounding tissue, 

especially in the anterior region, the direct application of LSM evolves beyond the 

known real boundary. This is called the leaking problem. Furthermore, segmenting 

T2-weighted CMR images in the presence of edema tissue which characterised by a 

higher intensity than for normal myocardial tissue can result in the LSM trapped at 

the border of the edema instead of moving towards the epicardium boundary. To 

overcome these problems the intensity information from the image where the LV 

cavity and the RV have the highest intensity value compared to the normal LV wall 

is used. The average intensity value of the LV blood pool can be calculated which, in 

turn, corresponds to the highest intensity value of the image. Then any value below 

the value of the blood pool region can be converted into a normal wall region with a 

designated value. Although this process will help the level set function to ignore the 

edema, it will make the leaking problem worse. 

In order to reduce the overall leaking effects additional constraints are required to 

successfully delineate epicardium boundary from the presence of edema. Firstly, a 

new constraint for epicardium segmentation is introduced based on the typical 

thickness of the myocardial, 
ave

T  . 
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The steps for estimating 
ave

T are as follows: 

i. The centroid of the segmented endocardium,
ENDO

∂Ω , Figure 5.10(b) is used 

to form equally distributed radial lines from centre point of LV cavity shown 

by blue lines in Figure 5.11(b).  

ii. The intersection between the radial lines and 
ENDO

∂Ω are denoted as
endo

P .  By 

searching along these radial lines within a certain distance, a set of points are 

defined as 
search

P . The searching distance needs to be initialized large enough 

to cover the LV wall region.  

iii. The image intensity at lines between 
endo

P  and the maximum of 
search

P  are 

assembled into a two dimensional matrix  column by column as 

shown in Figure 5.11(c).  

iv. Because the signal intensity of the LV wall and surrounding tissue are lower, 

and the signal intensity of RV cavity is much higher than other regions, by 

applying thresholding to , the RV cavity can be detected as the largest 

and brightest region, as illustrated in Figure 5.11(c).  The region over RV 

cavity is considered to be Septum.  

v. The thickness for each radial line in septum region is calculated and 
ave

T  is 

calculated as the mean value for the whole Septum region. 
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Figure 5.11: (a) detected epicardium boundary without constraint, (b) radial line 

constructions from the endocardium boundary, (c) graphical illustration of radial
M ,(d) 

Measuring the significant pixels in g (e) Original edge map  (f) Constraint edge 

map  cmask
g  (g) the newly constructed edge map for epicardium segmentation new

g  ,(h) 

segmented endocardium and epicardium boundaries using the  LSMwASC.   
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Secondly a constraint map 
cmask

g  is created as follows. Dilating 
ENDO

∂Ω outward by 

ave
T , creates 

constrain
∂Ω .  The constraint map 

cmask
g is defined as: 

int

int

0 ( , )

1 ( , )

constra

cmask

constra

x y
g

x y

 ∈∂Ω
= 

∈Ω − ∂Ω    

5-13 

Thirdly a binary factor 
l

f  is derived that will be used to control the region to which 

the constraint map, should be applied.  Figure 5.11 (d) illustrates a constraint map, 

and a normal vector to this boundary at a particular point.   Integrating g given in 

equation 5.11, along with this normal over a searching distance l gives a measure of 

significant pixels that exists around a particular point 

2

2

( )
l

lb
I g r ndr

−
= ∗∫       5-14 

where cmaskn g= ∇
�

, l is the searching distance in pixel passing through the constraint 

boundary along the normal direction n
�

. The value of   l should be chosen so that the 

search distance contains the region of LV wall and surrounding tissues but excludes 

endocardium boundary. A binary function  ( )F tσ  is defined as: 

11
( )

11

if t
l

F t
if t

l

σ

 ≤
= 

>

    5-15 

The binary factor     is defined as:  

l indicator mask
f E E=       5-16 

where  

 (1 )b
indicator

I
E F

l
σ= − , 

mask cmask
E F gσ=     

and a modified mask 
c

g  can now be defined as:  

(1 )*
c l l cmask

g f k f g= − +     5-17 

where,  

k= binary mask of ones 
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If there is no significant edge information in g , then 
indicator

E will be 1, and 

c cmask
g g=  indicating the constraint will be applied to that region. If there is edge 

information in g , then 
indicator

E will be 0, therefore 1
c

g =  indicating no constraint 

will be needed for that region. Finally the new edge map is formed as: 

1
new c

g g g= + −       5-18 

new
g  in (5.18) will be in the range of [0 1], which is similar to equation 5.11. The 

epicardium border will be segmented again with constrained
new

g , rather than g . 

Figure 5.11(e) shows the original edge map g  used by the LSM to segment the 

endocardium border while Figure 5.11(f) shows the constraint edge map  and 

Figure 5.11(g) shows the final edge map
new

g . The procedure for epicardium 

segmentation is similar as in endocardium segmentation except for edge map 

construction. The final segmentation results are illustrated in Figure 5.11(h). It is 

noted that the overestimation of epicardium in the low contrast regions has been 

significantly reduced. 

5.6 Experimental Results 

This section presents the performance analysis of the automatic LV segmentation 

algorithm using LSMwASC by applying it to real CMR images.  In the experiment 

CMR images from thirty patients who recently experienced myocardial infarction are 

used. An experienced clinician (IV1) was invited for manual segmentation of LV 

wall in order to assess the performance of LV wall segmentation using the proposed 

LSMwASC approach. The manual segmentations from IV1 were used as gold 

standard for agreement measurement of LV wall boundaries.  

5.6.1 LV localization 

The success of the automatic system depends on whether the localization algorithm 

is able to point in the blood pool of the LV. All the tested data-sets have successful 

results, which mean the point is located within the blood pool region of the LV.  
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Figure 5.12 shows the result of LV localization of different patients for basal slice, 

middle slice and apical slice where the centre points are shown on the pre-processed 

images.  
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Figure 5.12: LV localization for three patients 

(a) Basal (b) Middle (c) Apical 
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The algorithm is not able to consistently locate the exact centre of the LV because of 

the variation of image intensity and the shape of the LV especially from the middle 

slice to apical slice. This is shown in the results on Figure 5.12(a), (b) and (c). 

Although the centre is not located successfully, the centre is good enough for 

initialization of the LSMwASC. 

5.6.2 LV wall segmentation 

5.6.2.1 Parameter selection 

When implementing the proposed LSM with additional shape constraint, the time 

step can be chosen significantly larger than with traditional methods, in order to 

maintain stable level set evolution. The time step dt and µ  from (5.10) should 

satisfy 
1

*
4

dt µ <  (Chunming et al., 2005).  In our system the following parameter 

settings were selected experimentally:-  time step 5dt = , µ = 0.2/ dt , λ = 5, and ν =-3 

for (5.10). In the initialization (5.12) of 0φ , the value of cons  in (5.12) is chosen to be 

4.  The iteration numbers are chosen based on the LV wall thickness 
ave

T  before level 

set evolution. The LV wall thickness only needs to be estimated once for one MRI 

slice of a patient as other MRI slices will use the same value. The iteration number 

for endocardium segmentation is 10*
ave

T , and 3*
ave

T for epicardium segmentation. 

When applying constraints in order to stop the level set evolution, a distance 

0.2*
ave

l T= is chosen for defining the searching region. All these figures were 

determined experimentally. 

5.6.2.2 Comparison of proposed method with Chunming et al 

The segmentation result on a basal slice from the CMR image is shown in         

Figure 5.13. Qualitatively LSMwASC performed much better when compare to Li et 

al. The segmentation in Li et al goes beyond the epicardium, which is due to weak 

edges around the epicardium. In LSMwASC the segmentation stop at epicardium 

boundary with the help of the additional constraint that prevents the level set to move 

beyond the thickness of the septum. 
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Figure 5.13: Segmentation result; (a) Li et al, and (b) LSMwASC 

5.6.2.3 Qualitative assessment of LV segmentation 

The automatic segmentation method is evaluated by comparison with manual 

segmentations by cardiologists. Figure 5.14 shows the LV boundary segmentation by 

LSMwASC from base to apex on 6 slices, superimposed with manual segmentation. 

Qualitatively, the detected LV wall by LSM appears very similar between manual 

and LSMwASC segmentation, though highly heterogeneous intensity profile can 

influence the accuracy of LSMwASC, which is due to the existence of edema region.  

Figure 5.14(c) plots the endocardium and epicardium boundaries from the automatic 

segmentation method (identified by “x”, “o”) against manual segmentation method 

(identified by “x”, “o”) in sample images from basal slice to apical slice respectively. 

The mean perpendicular distance (MPD) between two boundaries contours was 

calculated for paired LV boundaries (Petitjean and Dacher, 2011) is used to measure 

the accuracy of the automatic and manual methods. The average MPD for 

endocardium boundaries between the manual and automatic segmentations is 0.86 

mm and for the epicardium the MPD is 1.4mm. Larger over-estimation is expected 

for epicardium segmentation, which can be explained by the less contrast 

information between epicardium and surrounded tissues and the existence of edema 

on the LV wall. 

Further analysis showed that the mean perpendicular distance for 172 slices between 

the automatic approach and the manual segmented left ventricular boundaries was 

(a) Chungming et al (b) LSMwASC 
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1.05±0.4mm for the endocardial boundary and 1.56±0.68mm for the epicardial 

boundary. The distance was larger on the epicardial wall than on the endocardial wall 

due to the poorer contrast between epicardium and surrounding tissue. Thus overall 

the mean perpendicular distance from our approach was comparable to those from 

other studies on left ventricular wall segmentation accuracy, which is in the range 1-

2mm. The average Dice similarity coefficient of the left ventricular wall region was 

0.86±0.05 for the 172 slices, suggesting good accuracy for left ventricular wall 

segmentation with our approach. 
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Figure 5.14: Segmentation result from a single patient from basal, middle and apex (a) Manual Segmentation, (b) Automatic segmentation, 

and (c) Segmentation difference where ( o = endoManual, o = endoAuto, x epiManual, x = epiAuto) 

(a)  (b) (c) 
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5.6.2.4 Agreement analysis of LV wall area 

The correlation analysis between the automatic segmentation and manual 

segmentation shows they are highly correlated in terms of LV wall area, where          

r = 0.868 as in Figure 5.15 between the manual and automatic, Bland Altman analysis 

Figure 5.16 shows there is no consistent bias as a function of the LV wall area, with a 

mean bias of <-23mm
2
 between manual segmentation and automatic segmentation, 

suggesting the automatic segmentation method tends to overestimate LV wall area 

slightly. 

 

 

 

Figure 5.15:  Correlation Analysis for 172 slices from 30 patients 
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Figure 5.16:  Bland Altman Analysis for 172 slices from 30 patients 

 

5.6.2.5 Robust analysis of automatic segmentation method 

As the test data are divided into two dataset this provides the opportunity to test the 

robustness of the algorithm when a new data set is used. Figure 5.17 shows the 

correlation result of first dataset of CMR images being used. When the correlation 

result is compared to the correlation result of the second dataset as shown in Figure 

5.18 of the CMR images, we can see the reliability in the result where r = 0.895 for 

the result of the first dataset and r = 0.814 for the second dataset. Two Bland-Altman 

analyses are performed as shown in Figure 5.19 and Figure 5.20, where both results 

show no consistent bias as a function of LV wall area, with a mean bias of <-25mm
2
 

between manual segmentation and automatic segmentation for both datasets.  

The experiment shows that the potential adaptability of the proposed LSMwASC 

when a new dataset is used. This shows the possibility of the LSMwASC to be used 

in clinical environments. 
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Figure 5.17:  Correlation Analysis for First Dataset (90 slices from 15 patients) 

 

 

 

       
 

 

Figure 5.18:  Correlation Analysis for Second Dataset (82 slices from 15 patients) 
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Figure 5.19:  Bland Altman Analysis for First Dataset (90 slices from 15 patients) 
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Figure 5.20:  Bland Altman Analysis for Second Dataset (82 slices from 15 patients) 

5.7 Conclusion 

In this chapter, a novel automatic LV wall segmentation method has been presented 

to segment the LV wall on a T2-weighted CMR image. The method applied a new 
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LV localization technique to provide initialization seed for the segmentation of the 

LV wall. Then LSM has been efficiently implemented with an additional shape 

constraint to segment the LV endocardium and epicardium.  

Performance analysis of this algorithm has been tested on real CMR images.  The 

results are encouraging and suggest that this automatic LV wall segmentation method 

can be used to help the clinician in speeding up the LV wall segmentation for 

diagnosing purposes and also as a first stage for automatic edema quantification and 

3D visualization. 



Chapter 6 

98 

 

CHAPTER 6  

6. AUTOMATIC EDEMA 

SEGMENTATION AND 

QUANTIFICATION 

6.1   Introduction 

In the previous chapter we introduced the segmentation of the LV wall which is the 

first step to automatically quantify the edema within the LV wall region.  This 

chapter will present two new algorithms for the segmentation and quantification of 

edema from T2-weighted CMR images. 

Two Standard Deviation (2SD) methods (Fieno et al., 2000, Setser et al., 2003, 

Green et al., 2009, Berry et al., 2010, Payne et al., 2011) that are based on statistical 

criteria have been used widely for the quantification of edema. The disadvantages 

with conventional 2SD is that they require user interaction first to manually select the 

LV wall and then the user is also required to select the hyperenhanced region and the 

normal region for the algorithm to work. 

The Hybrid Thresholding Edema Sizing Algorithm (HTOSA) is a fully automatic 

edema quantification method where the threshold is automatically set based on image 

intensity histograms, thus removing the requirement for user interaction. It was found 

that the magnetic resonance image intensity can be modelled by a Rician distribution, 

which can be approximated by a Rayleigh distribution when intensity values are 

close to zero, and tends to a Gaussian distribution when values are high 

(Gudbjartsson and Patz, 1995a). Thus we propose an Automatic Statistical Mixture 

Model (ASMM) which combines the two distributions for edema segmentation and 

quantification. 
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The remainder of this chapter is organized as follows. Section 6.2   introduces the 

HTOSA algorithm in segmenting and quantifying the edema. In section 6.3 ASMM 

is presented and discuss of in detail. In Section 6.4 through statistical analysis, we 

compare the two methods with conventional 2SD and FCM (Baron et al., 2008) from 

the testing of real CMR images.  Section 6.5 concludes the chapter. 

6.2   Hybrid Thresholding Edema Sizing Algorithm 

(HTOSA)  

Figure 6.1 illustrates graphically how the Hybrid Thresholding Edema Sizing 

Algorithm (HTOSA) applied to a series of pre-determined processes to automatically 

calculate intensity thresholds, performs classification of normal and hyperenhanced 

region and excludes spurious small positive bright objects on the myocardial wall. 
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Figure 6.1:  Graphical illustration of HTOSA 
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6.2.1 Image morphological operation 

In Figure 6.1(a) the LV wall area is selected from the template of LV wall 

segmentation.  On the LV wall structure the presence of small bright areas in the LV 

wall increases the difficulty of accurately classifying edema tissue. To reduce the 

false positive level, morphological filtering is employed that uses an opening 

operation with a disk shape structuring element to remove small spurious bright 

regions as in Figure 6.1(b). All bright region having a radius of less than 5 pixels are 

removed from the myocardial wall. The myocardial wall is then left with bigger 

bright regions which are most probably edema areas. 

6.2.2 2 standard deviation (SD) thresholding 

Once the region of interest has been selected, the next step is to calculate the 

threshold value which determines edema or non-edema. Subsequently an intensity 

histogram is generated as shown in Figure 6.1(c).  

The mean and SD of the normal tissue are first estimated by using the lower part 

(>50%) of the intensity histogram (Hsu et al., 2006) as illustrated in Figure 6.2. The 

threshold value is then calculated as 2standard deviation (SD) above the mean. Pixels 

darker than the threshold are then excluded for further analysis as shown in Figure 

6.1(d). 

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

 
Figure 6.2:  Calculating 2SD threshold; histogram >50% of the LV 
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6.2.3 Microvascular obstruction (MVO) inclusion 

Once the threshold has been applied then the remaining region is labelled as shown 

in Figure 6.1(e) and areas below 50 pixels are removed from the next stage of 

processing. The remaining potential edema region will be left on the LV wall as in 

Figure 6.1(f). Then the LV wall is checked for micro-vascular obstruction (MVO). If 

MVO is present an iterative dilation is then performed to include micro-vascular 

obstruction (MVO) within the edema region. The steps for iterative dilation are: 

  

 if Edema area > 1 

      counter=1 

           for counter = 1:max iteration 

         Image dilate=dilate(Image initial) 

           end 

      Image final= image dilate< image myocardial wall 

else 

      do nothing 

end 

 

In Figure 6.1(f) initial edema contour where the algorithm failed to take into account 

the dark pixel region in between the two edema areas. The iterative dilation is 

performed as in Figure 6.1(g) to connect the two regions together and finally in 

Figure 6.1(h) the final edema contour is shown. 

6.3   Automatic Statistical Mixture Model (ASMM) for 

Edema Segmentation and Quantification 

A high level overview of the automated edema segmentation and quantification 

algorithm is shown in Figure 6.3. First CMR image stack is obtained. Then the LV 

wall region is segmented and the LV ROI mask is created. The automated 

segmentation and quantification can then be performed. The system consists of 

Statistical Mixture Model (SMM) thresholding and post-processing step which 

includes Morphological filtering and Region Feature Analysis for MVO inclusion. 

These stages in the algorithm are discussed in detail in the following sections.  
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Figure 6.3: Edema Segmentation and Quantification Algorithm 

 

6.3.1 Automatic LV wall segmentation 

The LV wall boundary is segmented by the Level Set Method as explained in 

Chapter 4. This technique comprises of: 

• An Automatic LV Wall localization (as describe in section 5.4) 

• A Level Set Method with Additional Shape Constraint (LSMwASC) to 

segment the endocardium and epicardium of the LV wall (as describe in 

section 5.5). 

Once the LV boundaries are segmented, the information can be used to create the LV 

region of interest (ROI) for the segmentation and quantification of the edema. 
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6.3.2 Statistical mixture model  

In an axial image obtained with T2-weighted MRI, as shown in Figure 6.4(a), the 

normal tissue appears dark while the edema tissue appears bright.  

 

Figure 6.4:  (a) Edema Imaging with LV Wall Boundary, (b) LV Wall Intensity 

Distribution, (c) The fitting of Rayleigh-Gaussian Mixture Model, (d) Thresholding 

process, (e) Morphological Filtering 

Figure 6.4(b) shows the corresponding histogram of the image. In the presence of 

noise, the magnetic resonance image intensity is governed by a Rician distribution, 

which can be approximated by a Rayleigh distribution when intensity values are 

close to zero, and tends to a Gaussian distribution when values are high 

(Gudbjartsson and Patz, 1995a). Therefore it is possible to represent the normal and 

pathological tissues by using Rayleigh and Gaussian distributions with a percentage 
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error of approximately 3.5% and 5% respectively (Aquaro, 2010, Chung, 1999). In 

order to fit a Rayleigh-Gaussian mixture to the image histogram for the hyperintense 

region of interest in the left ventricular wall, the intensity distribution function myoc
f  

for myocardium is defined as follows (Elagouni et al., 2010) : 

( ) ( , ) ( , , )
myoc n n shift n e e e e

f I a f I a f Iα σ µ σ= ⋅ + + ⋅
   6-1
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Equation (6.1) is the Rayleigh-Gaussian mixture model while equations (6.2) and 

(6.3) represent the Rayleigh and Gaussian distributions respectively. 
n

a  and 
e

a  are 

the weighting parameters for the two models; 
n

σ  is the Rayleigh distribution 

parameter; 
e

µ  and 
e

σ are the mean and standard deviation of the Gaussian 

distribution; I stands for myocardium intensity in left ventricular wall.  shiftα  

represents the intensity shift during the MRI acquisition and the intensity adjustments 

which resulted from the procedure to make the healthy myocardium as dark as 

possible for maximizing contrast and the identification of bright edematous 

myocardium during the MRI acquisition and image screening.  The estimation of the 

distribution parameters is achieved by maximizing the likelihood according to the  

myocardium intensity histogram with an Expectation Maximization algorithm (EM) 

(Dempster AP, 1977). In Figure 6.4(a), the left ventricular wall intensity distribution 

is seen to fit well with the Rayleigh-Gaussian mixture model. Once the fitting has 

been done, the distributions are then exploited to generate threshold value, which 

defines normal or edema tissues. The operation to generate the threshold values is: 
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1) Calculate the mean of the Rayleigh distribution is 

2
n n

u
π

σ=                                                                        6-4 

2)  A fuzzy membership map map
I  is then defined according to n

u  and e
µ as:  

0,                  
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n

n

map n e
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For each pixel, if intensity value I  is less than
n

u , then the pixel belongs to healthy 

myocardium, and 0
map

I = ; if I  is greater than 
e

u , then belonging to edema tissue, 

and 1
map

I = ; map
I varies linearly from 

n
u  to 

e
u .  

In this study, a membership value of 0.7
map

I ≥  was defined as the threshold value 

for the region with edema. The value of 0.7 was chosen by experimental validation 

which matched manual edema delineations as discuss in section 6.4.5. 

6.3.3 Post-processing  

6.3.3.1 Morphological operation  

After thresholding, segmented regions of myocardial edema were performed with an 

alternative sequential morphological filtering which is a robust approach to preserve 

topology (Couprie and Bertrand, 2004). Sequential morphological filtering includes 

the following three steps:  

i) a morphological closing operation with a small kernel (disk shape with size of 

2 pixels) for removing the noise and false positives;  

ii) an opening process with the same kernel as in the first step;   

iii) a closing process with a bigger kernel (disk shape with size of 5 pixels) was 

applied to connect isolated regions if close enough. 
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6.3.3.2 Region feature analysis  

Area based analysis: However due to imaging intensity variations, small bright 

regions may occur in a normal myocardium. Bright areas such as these or others are 

due to inaccurate left ventricular wall boundary segmentation, as shown in Figure 6.5 

(c). The segmented regions in Figure 6.5(c) were labelled using 8-neighbor 

connectivity analysis and the largest hyper-intense region was considered to be the 

main area of injury. As in Figure 6.5(c), except for the main edema region, three 

other regions in the side opposite to the main edema region are identified. Therefore 

additional analysis is required to check if these regions should be considered to be 

edema according to their relative size and the arc distance to the main edema region. 

The arc distance from one of these regions to the main edema region is defined in 

degrees according to the left ventricular cavity centre, as shown in Figure 6.5(c). In 

line with the approaches used for segmentation in previous studies (Hsu et al., 2006, 

Johnstone et al., 2011), our area based analysis procedure is: 

• The region is considered to be edema if the area of the region is 

greater than two fifths of the main edema region. 

• The region is considered to be edema if the area of the region is  one 

fifth to two fifths of the main edema region, and the arc distance from 

the region to the main edema region is less than 20°;  

• The region is taken to be healthy myocardium if the area of the region 

is less than one fifth of the main edema region, and the arc distance 

from the region to the main edema region is greater than 10 degrees.  

Figure 6.5(d) shows an example of the final result of the edema region (enclosed by 

the red line) after the area feature analysis based on the edema image in             

Figure 6.5(a), superimposed with manual segmentation (enclosed by the blue line). 
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Figure  6.5:  (a) The LV Wall segmentation; (b) Edema Delineation after 

Thresholding; (c) Edema Delineation after Morphological Filtering; (d) Final Edema 

Delineation after Edema Region Feature Analysis (enclosed by red line) 

Superimposed by the Manual Delineation (the blue line). 

 

 

Slice interconnectivity analysis: In manual segmentation of the edema, MVO is 

included into part of the edema region. If the clinician is in doubt about the MVO 

region, the clinician will refer to the previous slice to verify whether the MVO is 

present in the current slice. This motivates us to implement the technique 

automatically. We introduce a decision making process by checking on the slice 

(a) (b) 

(c) (d) 

Blue 

Red 



Chapter 6 

109 

 

before the current slice to check whether the area is a microvascular obstruction 

(MVO) or normal. The process is as follows: 

1. Convert the image into a polar image   

2. Calculate the distance between edema regions  

Figure 6.6(a) show a Cartesian image, the image is then transformed into polar 

images as shown in Figure 6.6(b) and Figure 6.6(c). From the test data two 

conditions are found when the image is converted into polar image: 

• Case 1: Where the start point (M1) and the end point (M4) of edema regions 

does not touched the start of the of the sampling point from Cartesian image 

to polar image the condition is shown in Figure 6.7  

• Case 2 where the body of edema regions touched the start point and end point 

of the sampling points from Cartesian image to polar image as shown in 

Figure 6.8 where MI to M2 touched the starting point. 
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Figure 6.6:  Conversion from a cartesian image to a polar image; (a) Binary image, 

(b) and (c) polar images 
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Figure 6.7:  Radial search rule for case 1 
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Figure 6.8:  Radial search rule for case 2 

 

 

Thus 

2 3 4min( , )
c

d d d=
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The main idea of this process is to determine the distance between the two edema 

bodies and use the information to adapt the structuring element for a morphological 

closing operation as shown in Figure 6.9. 

4 1 4d M M= −3 3 2d M M= −

1 3 2d M M= −
2 4 1(2 )d M Mπ= − +
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Figure 6.9:  pseudo code 

The process starts by checking the previous SA image slice. The start location (Ms) 

and the end of edema location (Me) are marked. Then the edema locations (M2) and 

(M3) for case 1 or (M4) and (M1) for case 2 on the current SA image slice are 

checked. Once the MVO has been determined a morphological closing is performed 

with an adaptive structuring element the size of dc1 or the size of dc2.  Figure 6.10(a) 

shows the automatic contouring with two edema regions whereas the clinician 

considers this as one big edema area. Figure 6.10(b) shows the result of slice 

connectivity algorithm. It can be seen from this figure that the two edema regions 

have been merged. 

       

Figure 6.10:  (a) Before slice connectivity analysis, (b) After slice connectivity 

analysis; (blue) manual contouring, (red) automatic contouring 

Case 1 

• Calculate Ms=start of edema 

from previous slice and 

Me=end of edema from 

previous slice 

• Loop 

• If M2>Ms&M3<Me 

• Merge the two region using 

morphological closing with 

strel dc1 

• else 

• end loop 

Case 2 

• Calculate Ms=start of edema 

from previous slice and 

Me=end of edema from 

previous slice 

• Loop 

• If M4>Ms&M1<Me 

• Merge the two region using 

morphological closing with 

strel dc2 

• else 

• end loop 
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6.4 Experimental Result  

In this section the experimental results for the algorithms are presented. The two 

algorithms HTOSA and ASMM are compared with conventional 2SD method and 

FCM method. Since there is no standard measurement to compare the performance 

of the algorithms, a clinician is invited to manually segment the edema region and 

this segmentation is used as the gold standard. 

6.4.1 Qualitative validation 

Figure 6.11(a, b, c) shows example results of the four methods on basal, mid 

ventricle and apical locations superimposed on the manual edema segmentation,  

respectively. Qualitatively the detected edema areas between the four methods 

appear very similar. 

Figure 6.11 a(v), b(v), and c(v) show the edema difference between the automatic 

methods and manual results.  From the results it can be seen that the performance of 

the ASMM is consistently better compared to the other methods with mean 

difference of 1.586± 0.37%, 2SD of 9.49± 2.13%, FCM of 5.2± 7.61% and HTOSA 

of 9.08± 2.60%. 
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a(i)  a(ii)               a(iii)                  a(iv)                    a(v) 

 

 

            
 
 

 

 

b(i)   b(ii)             b(iii)                    b(iv)                   b(v) 

 

 

                
 

 
 

 

          c(i)         c(ii)                      c(iii)             c(iv)        c(v) 

 

 

Figure 6.11:  Example Segmentation of Edema Area on Three Slices (a) Basal, (b) 

Mid-ventricle and (c) Apical by (i) 2SD, (ii) FCM, (iii) HTOSA and (iv) ASMM; (v) 

% Difference for the Four Methods; (blue) Manual and (red) Automatic 

 

%
 d

if
fe

re
n

ce
 o

f 
ed

em
a 

2
S

D
 

F
C

M
 

H
T

O
S

A
 

A
S

M
M

 

%
 d

if
fe

re
n

ce
 o

f 
ed

em
a 

%
 d

if
fe

re
n

ce
 o

f 
ed

em
a 

2
S

D
 

F
C

M
 

H
T

O
S

A
 

A
S

M
M

 

% 

% 

% 

2
S

D
 

F
C

M
 

H
T

O
S

A
 

A
S

M
M

 



Chapter 6 

114 

 

6.4.2 Agreement analysis  

This section presents quantitative experimental results and discussion on the 

performance of ASMM and HTOSA compared with the conventional 2SD and FCM 

methods. Manual segmentation by a clinician is used as gold standard to compare the 

performance of the four algorithms. Table 6-1 represents the linear correlation 

analysis among the four automatic methods and the manual result. ASMM has the 

highest linear relationship (r=0.75, p<0.05) among the four methods. The HTOSA 

has values (r=0.70, p<0.05) and the FCM has values (r=0.69, p<0.05). The 2SD is 

the poorest method with values (r=0.66, p<0.05). Bland-Altman analysis is 

performed to measures the mean bias and the agreement between two segmentation 

methods by using the average of two measures (A, manual method and B, automatic 

methods). Figure 6.12 which shows Bland-Altman analysis for Manual-ASMM with 

a negative bias of (-3%), Figure 6.13 shows Bland-Altman analysis for Manual-

HTOSA with a negative bias of (-8%), Figure 6.14 shows Bland-Altman analysis for 

Manual-2SD with a negative bias of (-8%) and Figure 6.15 shows Bland-Altman 

analysis for Manual-FCM with a negative bias of   (-5%). 

Another measure to determine the performance of the proposed method is DSC, 

which is used to measure the degree of overlapping between the manual 

segmentation and the four methods. The DSC is schematically summarized with a 

box plot as shown in  Figure 6.16, which shows that ASMM gave highest DSC value 

of  overlapping with an average value of 0.70± 0.11, DSC= 0.64±0.13 for HTOSA, 

DSC= 0.68± 0.12 for FCM, and DSC= 0.61±0.15 for 2SD. 

Table 6-1: Correlation Analysis for Edema Quantification 

 Manual 2SD FCM HTOSA ASMM 

Manual  r =0.66 r =0.69 r =0.70 r =0.75 

2SD r =0.66  r =0.91 r =0.86 r =0.62 

FCM r =0.69 r =0.91   r =0.82 r =0.77 

HTOSA r =0.70 r =0.86 r =0.82  r =0.66 

ASMM r =0.75 r =0.62 r =0.77 r =0.66  
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Figure 6.12:  Bland-Altman Analysis of Manual- ASMM 
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Figure 6.13:  Bland-Altman Analysis of Manual- HTOSA 
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Figure 6.14:  Bland-Altman Analysis of Manual-2SD 
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Figure 6.15:  Bland-Altman Analysis of Manual- FCM 
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Figure 6.16:  Box plot for DSC for, ASMM, HTOSA, 2SD, and FCM 

In general it was found that the four methods have demonstrated the ability to 

quantify the edema in the entire test images with varying degrees of accuracy when 

compared to the gold standard. From the experiments it can be seen that the ASMM 

has the best correlation (0.752) relative to the manual segmentation when compared 

to the other three methods. The results from HTOSA did not significantly differ 

when compare to ASMM (0.705). This results are due to the characteristic of dark 

CMR signal in T2-weighted image which is not Gaussian distributed (Gudbjartsson 

and Patz, 1995b) such as used in 2SD and HTOSA when compared to ASMM where 

Rician distribution is used and thus provides a better representation of the dark CMR 

signal. 

In term of DSC, according to Zijdenbos’s (Zijdenbos et al., 1994) , a DSC  greater 

than 0.7 indicates a good agreement between the two measurements. The Dice 

similarlity coefficient, derived from a reliablity measurement known as the kappa 

statistic, provides a value that can be used for similarity comparison, and reflects 

both size and localization agreement between the two different  measurements, such 

as pixel-by-pixel basis in this study. From the result it can be said that ASMM 
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(DSC= 0.73) and HTOSA method (HTOSA= 0.68) have good agreement with the 

manual segmentation. The results presented in Figure 6.16 where the DSC is plotted 

on a box plot for ASMM and since 50% of the data are within the box  and the value 

of the lower hinge of the box is 0.63 it can be said that nearly 50% of the edema 

segmentation using ASMM fall above the minimum accepted DSC value which is 

0.7. Bland-Altman analysis shows the four algorithms analysed in this experiment 

demonstrate low mean bias when compared with manual thresholding which mean 

the four algorithms tend to overestimate the percentage of edema within the LV wall. 

The experimental results indicate that ASMM, based on characteristic features of the 

histograms of LV myocardium from T2-weighted CMR images, has better accuracy 

for clinical edema quantification with highest linear correlation coefficient, least 

agreement limit, and greatest DSC among the 4 automatic approaches. Since ASMM 

is simple to use and generic it can be used with images obtained from scanners from 

different vendors. Therefore the method has potential to be used clinically in 

automatic area-at-risk assessment in acute MI patients. 

6.4.3 Reproducibility  

This section presents quantitative experimental results and discussion on the 

performance of ASMM using a first and a second datasets. The idea of this 

experiment is to look into the reproducibility of the algorithm when a new data set is 

used. The reproducibility of the algorithm is consistent for the two datasets which 

have only a small variation in-term of the correlation results. The correlation result 

from the first data set (r=0.77±0.03) is comparable to the correlation result of the 

second dataset (r=0.72± 0.03). Then a Dice similarity coefficient was performed on 

the two datasets and the result further suggest that the ASMM has potential to be 

adapted to new data set as illustrated in Table 6.2. 

Table 6-2: Comparison of dice similarity coefficient of two datasets 

 

 

  

Dice similarity 

 Dataset 1 Dataset 2 

mean 0.70±0.03 0.69±0.07 
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The experiment shows the consistency of the ASMM when presented with new 

dataset, which infers that ASMM can potentially be implemented to new datasets 

with no modification in term of its parameter. 

6.4.4 Speed 

The objective of developing the automatic system is to reduce the processing time of 

segmenting and quantifying the edema for each patient. We compare the time taken 

for the automatic method to process for one patient with the manual method 

performed by clinician. The average processing time for one patient was 40±6 

seconds on a DELL laptop (2.40GHz Inter Core i5 CPU, 4GB memory), which is 

much faster than manual edema delineation, (range from 360 to 420 seconds) for an 

experienced cardiologist.  

6.4.5 Threshold value for ASMM 

A parameter study of the thresholding operation for automatic edema delineation was 

performed by varying the threshold value for map
I  from 0.6 to 0.9 (equation 6.5), the 

results are summarized in Table 6-3. Generally the thresholding values of 0.7 and 0.8 

give better results than for 0.6 and 0.9. When the threshold value increases, the 

edema decreases and vice versa. 

Table 6-3:  Parameter study on the thresholding operation (15 patients) 

 

Thresholding 

value 

Edema 

extent 

Difference 

related to 

manual 

Dice 

similarity 

coefficient 

(manual) 

0.6 31±9% 6±5% 0.73±0.06 

0.7 28±8% 4±3% 0.74±0.06 

0.8 25±7% 4±4% 0.73±0.07 

0.9 21±6% 6±5% 0.7±0.08 
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6.5 Conclusion 

In this chapter two novel edema quantification algorithms have been presented. The 

first algorithm is the ASMM which used the Rician distribution which better 

represents a dark CMR signals. Second algorithm is the HTOSA which used 

Gaussian distribution to represent the CMR signal. 

From the experiments it was found that the ASMM performed better when compare 

to the HTOSA, thus the ASMM is the method of choice for edema quantification in 

this work and therefore it has potential to be used clinically in automatic area-at-risk 

assessment in acute MI patients. 
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CHAPTER 7  

7. GLASGOW HEART: AN INTEGRATED 

PLATFORM FOR CARDIAC 

RESEARCH 

7.1   Introduction 

Figure 7.1 shows an overview of the Glasgow Heart an integrative platform for LV 

research that contains the work presented in this thesis as a subset. The MRI facility 

and pathology provide the MRI machine and patients for the study. Next the signal 

processing unit provides automatic tools for the segmentation and quantification of 

the LV wall as presented in chapter 5, the segmentation and quantification of edema 

as presented in chapter 6 and 3D quantification and visualization of the edema on LV 

wall. The work of the mathematical group is to bring the imaging process to 

computational modelling such as biomechanical study, structural study and 

functional study.  

This chapter presents new 3D LV wall reconstruction that project edema region 

segmented on 2D onto a 3D surface, allowing for a much better  visualization of the 

shape and location of the edema. The remainder of the chapter is structured as 

follow. Section 7.2 shows system overview of the proposed algorithm. In section 7.3 

we present details of 3D visualization and quantification of edema without apex 

information. Section 7.4 3D visualization and quantification of edema with apex 

information is presented. Section 7.5 provides the result of the visualization and 

comparison with 3D result from manual segmentation. Finally, conclusions are 

presented in section 7.6. 
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Figure 7.1: Glasgow Heart Integrative Platform for LV Research  

7.2   System Overview   

Figure 7.2 shows an overview of the proposed 3D visualization and quantification 

algorithm. First when a stack of patient CMR image is obtained, the image pre-

processing is performed and the LV boundary is segmented. Then the boundary of 

the edema is segmented. The information of the two segments is then used as an 

input to visualize and to quantify by the algorithm. 

The segmentation of LV wall and edema boundary are done on JPEG image, 

therefore to get the information on the slice location and slice thickness the 

segmentation result is projected back onto the original DICOM T2-weighted CMR 

image. Once the information is projected to the DICOM image the location of the 

slice and thickness between slice is used to interpolate and to generate 3D image.  

Here we proposed two approaches in visualizing the 3D image. The first approach is 

to automatically generate 3D image after the interpolation. In the first approach the 

information on the most apical slice is not included, since it is very difficult to 
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automatically segment this slice. In the second approach we include the information 

on the most apical slice. This is done by manually segmenting the Long axis (LA) 

image. Then the information from the SA image is projected to the LA image and 

vice versa. These stages in the algorithm are discussed in detail in the following 

sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: 3D Visualization and Quantification Overview 
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7.2.1 LV wall segmentation 

The first step for 3D edema quantification and visualization is to separate the LV 

wall from the rest of the CMR image. The method takes multi-slice T2-weighted 

CMR images (an MRI data stack) from the basal to the apex of the heart. It 

comprises 3 main stages, firstly the image is pre-processed to remove heterogeneity 

within the blood pool region and also to smooth the LV wall region while preserving 

the strong boundary using anisotropic diffusion (Perona and Malik, 1990) .  Then a 

fuzzy method between inter-slice and intra-slice is used for guiding the centre point 

detection in each slice for automatic initialization (Kushsairy Kadir et al., 2010a). 

Finally the LV wall is segmented using the method presented in chapter 5 of the 

thesis. 

7.2.2 Edema segmentation 

Once the LV wall has been segmented, we used an automatic statistical mixture 

model (ASMM) to segment the edema region from the rest of the LV wall. In this 

technique we fit Rayleigh distribution and Gaussian distribution to the normal tissue 

signal intensity which tend to be low and edema signal intensity which tends to be 

high.  Then the mean of the two models can be obtained and the threshold value is 

determined using fuzzy based rules. Then we performed a post processing stage to 

remove any false edema region and also to include microvascular obstruction (MVO) 

as part of the edema region.  More details of this approach are presented in chapter 6 

of the thesis. 

7.2.3 LV geometry reconstruction 

Figure 7.3 shows the process of generating 3D model from 2D images. In         

Figure 7.3(a) the slice location and thickness between slice are determined from the 

DICOM image header. In our implementation the information between the slice is 

interpolated by using Trilinear interpolation (Farin, 1997). Trilinear interpolation is a 

process of linearly interpolating points within a 3-D box given values at the vertices 

of the box, and it is most commonly used for interpolation within cells of a 

volumetric dataset. Figure 7.3(b) shows a 3D image after the interpolation. In Figure 

7.3(c) shows that the 3D image is made of small cubic image. 
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Figure 7.3: 3D Visualization (a) slice position, (b) interpolated 3D image, (c) 

zooming of 3D image and (d) each small cubic cell 

 

 

                
 

 

Figure 7.4: (a) Eight corners point, (b) 3D Trilinear interpolation (Bourke, 1999) 

Trilinear interpolation process can be summarized as a process of performing three 

consecutive linear interpolations along three coordinate axes: x, y, and z, 

respectively. Figure 7.4(a) shows small cubic cell and with the lower left base vertex 

as the origin. The coordinate values at each vertex are denoted as C000, C100, C010, 
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. . .. . .. C111. Let xd, yd, and zd be the differences between the target of x, y, and z 

related to the cubic lattice [x], [y], and [z]. The actual error values at eight corners of 

the cubic lattice given by V000, V100, V010, . . ., V111, which are in three axes: 

   -  [ ]

   -  [ ]

   -  [ ]

xd x x

yd y y

zd z z

=

=

=

      7-1 

First we perform the linear-error interpolation along the z-axis (by pushing the front 

face of the cube to the back), which is 

00  000 (1 -  )  100 

10  010 (1 -  )  110 

01  001 (1 -  )  101 

11  011 (1 -  )  111  

V V zd V zd

V V zd V zd

V V zd V zd

V V zd V zd

= +

= +

= +

= +

    7-2 

Next, we interpolate these error values along the y-axis while pushing the top edge to 

the bottom giving:  

0  00 (1 -  )  10 

1  01 (1 -  )  11  

V V yd V yd

V V yd V yd

= +

= +
    7-3 

Finally, we interpolate these error values along the x-axis (walking through a line), 

which provides us with a predicted error value for the target point: 

  0 (1 -  )  1  tp V xd V xd= +      7-4 

Figure 7.4(b) illustrates the above operations. First, we perform linear interpolation 

between C000 and C100 to find V00, C001 and C101 to find V01, C011 and C111 to 

find V11, and C010 and C110 to find V10. Then, we perform interpolation between 

C00 and C10 to find V0, C01 and C11 to find V1. Finally, we calculate the error 

value C via linear interpolation of C0 and C1. In actual fact trilinear interpolation is a 

three successive linear interpolation or two bilinear interpolations combined with a 

linear interpolation.  
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7.3   3D Visualization of Edema without Apex Information  

The first approach of a 3D visualization proposed in the thesis is a fully automatic 

technique. Figure 7.5 illustrates the block diagram of the system. First the 

information on LV boundary and edema boundary is used as the input. Next the 

information from the JPEG is projected onto the DICOM image. Then the 

information on LV boundary and edema boundary is merged together. Finally a 3D 

model is reconstructed for visualization and quantification. 

 

 

 

 

Figure 7.5: Fully automatic 3D visualization system without apex information 

7.3.1 Edema segmentation projected back to original T2-weighted edema 

imaging 

Edema delineation is based on exported JPG images, therefore the segmented edema 

needs to be projected back to original T2-weighted MRI images. Figure 7.6(a, b) 

illustrates a DICOM image and corresponding JPG image exported from Siemens 

software after gray-scale intensity adjustment for edema showing. Due to the 

difference size of the JPEG image and the DICOM image, therefore a resize 

procedure is needed in order to project the segmentation result from JPEG images 

back to original DICOM images. 
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Figure 7.6: (a) A DICOM image of LV wall with T2 Weighted MRI, (b) the 

corresponding JPG image, (c) DICOM image with LV boundary and edema 

boundary 

7.3.2 3D combination of LV boundary and edema segmentation 

Figure 7.7(a) shows the LV short axis slices in 3D context with LV wall boundaries 

from Manual segmentation. Figure 7.7(b) shows the LV wall boundary with 

contoured edema region from basal location to Apex. 

 
 

Figure 7.7: (a) 3D display of MRI images, (b) segmentation results of LV wall and 

edema  

7.3.3 3D LV wall (without apex) reconstruction with edema (edema mass) 

Figure 7.8(a) shows the endocardial and epicardial boundaries with 3 more curves 

inserted between endocardial and epicardial boundaries, the red dots stand for the 

(a) (b) (c) 

(a) (b) 
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locations associated with edema presence. A location was considered to be 

associated with edema if a 3 by 3 region with the location in the centre totally lies in 

edema region. Figure 7.8(b) shows the reconstructed LV geometry only from short 

axis images, and there is no Apex.  In total there are four layers of mesh elements 

across LV wall from endocardium to epicardium. 
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Figure 7.8: (a) LV boundaries with inserted curves between endocardial and 

epicardial boundaries, (b) reconstructed LV geometry 

Figure 7.9(a, b) shows the edema distribution with 2 different views. The colour 

scheme stands for the ratio of edema at regions surrounding each node location 

(value 1 stands for 100% edema, 0 stands for healthy region). Figure 7.9(c) shows 

edema distribution on a slice section expanding from base to apex. From Figure 7.9, 

the transmural distribution of edema is also available for screening. In this case the 

myocardium density is 1.05g/mL, the total mass of the LV without apex is 110g and 

the edema mass is 28g which represents 25.5% of the total LV wall volume. 

 
 

Figure 7.9: (a) and (b) Edema Distribution in Reconstructed 3D LV Geometry with 

Different Views, (c) Cross-section View  
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7.4   3D Visualization of Edema with Apex Information  

The second approach in the proposed system is to include the information of the apex 

into the 3D image. The most apex slice is difficult to be segmented automatically. 

Hence to include the slice, we manually segment the LA view of the LV and the SA 

slice can then be projected to LA view. Figure 7.10 illustrates the block diagram of 

the proposed 3D visualization and quantification with apex information. 

 

 

 

 

 

 

Figure 7.10: 3D Visualization System with Apex Information 

7.4.1 Long Axis view image segmentation (1, 2 and 4 chamber views) 

In order to reconstruct the apex region, long axis images are needed. Here manual 

segmentation of the apex in the long axis slice of 4-chamber view was performed. 

Figure 7.11 shows 3 different views of the long axis images, since the LV wall 

boundary has been segmented in short axis slices, therefore each short axis slice 

location can be decided from the MRI scan parameters, and the boundaries in each 

short axis also can be projected in the long axis views as in Figure 7.11, in which the 

red and blue points are from boundaries in short axis slices. However due to the 

motion affects, the segmented boundaries in short axis slices do not always lie in the 

correct LV boundaries in the long axis views, especially in the 2-chamber view 

(Figure 7.11). Therefore a rigid motion correction was applied for short axis images 

as follows:  
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(a) manually adjust those boundary points in the long axis views to the right 

locations;  

(b) project the adjusted boundary points back to each short axis slices, there 

will be 6 points along endocardium and 6 points along epicardium decided 

from the long axis views for each axis slice;  

(c) a closed spline passing through all the 6 points on the endocardium was 

constructed, and the centre point of the constructed region bounded by the 

closed spline was calculated, CLAEndo;  

(d) move the LV boundary (BCSA) segmented based on the short axis slice by 

the equation: BCSA=BCSA+ (CSAEndo - CLAEndo), CSAEndo stands for the centre 

point of the region bounded by endocardial boundary segmented from short 

axis slices. 

             
        4 chamber view                      1 chamber view                     2 chamber view 

Figure 7.11: LA Views with Segmented Boundaries from SA Slices 

7.4.2 Registration LV boundaries from short axis view  

Figure 7.12 shows the alignment of LV boundaries (blue dash lines) from short axis 

views to the centre of the long axis view boundaries (yellow curves) for motion 

correction, the final aligned LV boundaries are presented with red colour. 

Red 

Blue 

Red 

Blue 

Blue 

Red 



Chapter 7 

132 

 

 

Figure 7.12: Alignment of SA Boundaries with LA Boundaries 

7.4.3 Apex segmentation with 4-chamber view   

Manual segmentation of Apex is shown in Figure 7.13(a) with existed boundary 

points from short axis slices. Figure 7.13(b) shows the reconstructed boundary curves 

with apex from the 4 chamber view. 
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Figure 7.13: (a) Apex segmentation, (b) Reconstructed Boundary Curves with Apex 

from the 4Chamber View 

7.4.4 3D LV wall (with apex) reconstruction with edema 

Currently the apex is only reconstructed from 4-chamber view long axis slices, while 

there are two different views from one chamber view and two chamber view, which 

need to be implemented in the future for integrating the 3 long axis views for apex 

reconstruction. The edema distribution in apex has not been reconstructed due to the 

limited data from long axis views. Figure 7.14 is the reconstruction result. The total 
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mass of LV wall is 127g, and total edema mass without apex is 28g, and the apex 

mass is 17g.  

 
 

Figure 7.14: (a) LV Geometry with Apex; (b) Edema Distribution in LV Wall except 

for Apex Region 

7.5   Experimental Results 

This section presents the experimental results of the 3D visualization and 

quantification system. The 3D results from the automatic segmentation method are 

compared with the 3D results from the manual segmentation method. Both 3D images 

with and without apex are shown for visual inspection. Quantitative results in term of 

edematous volume are presented here to show that the automatic method gave 

comparable outcome to the manual method in an improved time duration.  

7.5.1 Qualitative results of Automatic method versus Manual method 

Qualitative results are presented here. The 3D images from 3 patients are selected for 

comparison (patient1, patient2, patient3) with the manual method. Figure 7.15 to 

Figure 7.20 show the results from 3 patients. 
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Figure 7.15: Edema Distribution (patient 1) using Automatic Method; (a) side view 

(b) top view 

 

 

        
 

 

 

Figure 7.16: Edema Distribution (patient 1) using Manual Method; (a) side view (b) 

top view 
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Figure 7.17: Edema Distribution (patient 2) using Automatic Method; (a) side view 

(b) top view 
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Figure 7.18: Edema Distribution (patient 2) using Manual Method; (a) side view (b) 

top view 
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Figure 7.19: Edema Distribution (patient 3) using Automatic Method; (a) side view 

(b) top view 
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Figure 7.20: Edema Distribution (patient 3) using Manual Method; (a) side view (b) 

top view 

 

Qualitatively, the 3D images generated from the automatic scheme closely matched 

with the 3D images generated from the manual scheme with the volumetric extent of 

the edema from both methods highly correlated with dice similarity coefficients of 

0.72±0.06 for patient one, 0.76 ±0.05 for patient two and 0.74±0.06 for patient three, 

suggesting good accuracy between the two methods. 
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7.5.2 3D visualization with Apex 

The 3D views from two patients are shown in this section. The inclusion of apex 

provides a better representation of the LV which further enhances clinician 

understanding on the extension of edema within the LV wall. 
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Figure 7.21: Edema Distribution from 2 patients on 3D LV Wall  

 

In our method the inclusion of the apex is only for visual enhancement, since the 

apex is manually segmented from LA view of the CMR image.  
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7.5.3 Performance analysis of automatic segmentation method versus manual 

segmentation method  

Statistical analysis is presented in this section. The main objective of this experiment 

is to provide objective measure of significant advantage of the proposed method in 

helping the clinician investigate the edema volume from the patient. 
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Figure 7.22: Bland-Altman plot of Edema Mass Extent between Manual results and 

the Automatic approach  

 

Figure 7.22 illustrates the Bland-Altman analysis of the volumetric extent of edema 

(% of left ventricle) between the manual and our automatic results. The mean bias for 

edema extent related to the whole left ventricular mass is -1.9% suggesting the 

automatic method tends to overestimate the edema volume slightly. 

In Table 7-1 the comparison results of volumetric extent of edema for each patient 

among the automatic method and manual method are summarised. The table further 

suggest that the automatic method tends to overestimate the manual method; this is 

shown by the mean mass volume from the manual method which is 27±9% as 

compared to automatic method which is 29±8%.  The result of the dice similarity 

index between the two methods is 0.75±0.08, which suggest good overlap between 

the automatic method and the manual method. 
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Table 7-1: Edema Volume Comparison for 30 patients 

 Manual Automatic Dice similarity 

coefficient based on 

volume overlap 

(mean ± SD) 

% edema mass 

Volume (mean ± 

SD) 

27±9% 29±8% 0.75±0.08 

7.6 Conclusion 

This chapter presented an integrative approach for 3D visualization and 

quantification of edema. The key contributions are 1) automatically segment the LV 

wall and quantify the extent of edema within the LV wall, 2) generating 3D LV wall 

showing the extend and location of edema for enhancing clinician diagnosis. The 

present results are encouraging with good overlapping between automatic method 

and the manual methods. From the result it shows that the proposed 3D visualization 

has potential for clinical application. 
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CHAPTER 8  

8. CONCLUSION AND FUTURE WORK 

8.1   Conclusion  

This thesis investigated the various stages involved in the LV image analysis from  

T2-weighted images. The main focus of this research was to develop automatic 

edema segmentation and quantification with a 3D visualization system.  A new 

integrated approach for edema segmentation, quantification and visualization was 

developed, including the left ventricle boundary detection, edema segmentation and 

quantification and 3D visualization were presented in this thesis. 

Automatic segmentation of LV wall is a challenging problem but is an essential part 

in any analysis technique either for physiological study or pathological study. Our 

proposed method to solve this problem is by using LSM to segment the endocardium 

and epicardium of the LV. We approach the problem systematically by first using a 

fuzzy based decision technique to automatically locate the centre of the blood pool of 

the LV. This point is used to initialize LSM to segment the endocardium. To 

overcome the effect of the papillary muscle we applied a convex hull algorithm to 

remove concavity of the blood pool especially around the mid-ventricle slice.  Once 

the endocardium has been segmented, the epicardium needs to be segmented. The 

segmentation of epicardium presented a different set of problems such as weak edges 

and the presence of edema tissues which have high signal intensity compared to 

normal myocardial tissue, which might traps the LSM on the edge of the edema 

instead of the edge of the epicardium. To overcome the effect of edema we calculate 

average intensity value of the LV blood pool. Then any value below the value of the 

blood pool region can be converted into a normal wall region with a designated 

value. Although this helps to decrease the effect of the edema, it will magnify the 

effect of weak edges in the image. In our approach to segmentation of the 
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epicardium, we introduced an additional shape constrain to the LSM. This constrain 

is created by using the information around the septum region to estimate typical 

myocardial thickness. Then a new LSM method using the additional shape constrain 

called LSMwASC is used to segment the epicardium. 

Two novel edema segmentation algorithms, hybrid thresholding edema sizing 

algorithm (HTOSA) and automatic statistical mixture model (ASMM) have been 

developed to segment and quantify edema from the LV wall. In HTOSA we 

automatically set the threshold value based on the image intensity histogram. The 

advantages of this method is that it is totally automatic, thus we remove user input 

and in its capability to include microvascular obstruction as part of the edema. In 

ASMM we utilize the characteristic of the MRI signal that is modelled by Rician 

distribution. Then we use Rayleigh distribution to model the normal tissues and 

Gaussian distribution to model the edema tissues. Then the edema region is 

determined by merging the two distributions together. 

Finally, the work of this thesis represents part of Glasgow Heart (GH) which is an 

integrated platform for Cardiac Research.  The GHSPU (GH Signal Processing Unit) 

in the platform has incorporated the novel segmentation of edema from each slice 

and the consequent transformation into 3D images. The advantages of this platform 

lies in its ability to quantify edema in terms of volume edema mass compared to the 

total LV volume and also in  its ability to increase clinician capability to diagnose 

edema by looking not only on the quantitative value, but also the spatial position and 

extent of edema within the LV wall.  

8.2   Future Works 

Although the proposed automatic edema segmentation and quantification with 3D 

visualization system was shown to perform well several improvements that could 

enhance the system, which are now described:  The following areas are of interest for 

potential further investigation. 

1) Removing the post-processing stage of the endocardium segmentation: in the 

implementation in this thesis. We performed the post processing to remove 
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the effect of papillary muscles from the blood pool region. A constraint based 

on an elliptical model can be adapted to remove the papillary muscles since 

the shape of the blood pool is similar to an elliptical shape. 

2) Apply the algorithm to LE image for segmentation and quantification region 

of infarct: to get comprehensive study on viability of heart after MI, the 

infarct region which represents dead myocardial tissues need to be segmented 

and quantified. Once the edema region and infarcted region has been 

segmented and quantified we can develop a viability assessment model for a 

heart attack patient. 

3) Evaluation on larger data set: The proposed method was tested on a CMR 

data set with 30 subjects. In order to get a better evaluation it is desirable to 

test the proposed method with a larger data set. 
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