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Abstract 

This thesis describes new developments in nonlinear controllers for industrial applications. It 

first introduces the Nonlinear Generalised Minimum Variance (NGMV) control algorithm, for 

Linear Parameter Varying systems (LPV). This combines the benefits of the basic NGMV 

algorithm in dealing with nonlinearities, where a black box input model can be used, and adds 

an option to also approximate a nonlinear system with an LPV output subsystem. The models 

can therefore represent LPV systems and characteristics including saturation, discontinuities 

and time-varying dynamics. 

The next major contribution is in the nonlinear predictive control algorithms proposed that are 

also using the LPV model structure. The simplest is the Nonlinear Generalized Predictive 

Control (NGPC) algorithm that relates to the best known model predictive control law for linear 

systems. The final predictive control solution is one that may be specialized to either the 

NGMV or NGPC cases and is therefore the most general. This is referred to as a Nonlinear 

Predictive Generalized Minimum Variance Controller (NPGMV). When the algorithms use only 

the LPV structure to approximate the nonlinear system the solutions are particularly simple in 

unconstrained and constrained versions, and are relatively light computationally for 

implementation.  

Three representative industrial design examples have been chosen to validate the algorithms 

for different Bandwidth (BW) and nonlinear characteristics. All three examples were based on 

real application problems with company interest. In the first example (small BW) the basic 

state-space and LPV versions of the algorithm are used for the auto-manoeuvring and dynamic 

positioning of marine vessel. In this application the parameter variations were representative 

of wave disturbance changes with sea state, rather than due to approximating nonlinear 

behaviour. Actuator constraints were considered in the design.  

In the second industrial example (medium BW) the LPV-NPGMV was implemented for 

controlling the blade pitch and generator torque of a 5MW offshore wind turbine. The main 

objective here was to maintain the power produced at the rated value which requires 

compensation against wind disturbances, so that wind speed is the varying parameter. The 

LPV-NPGMV controller produced here used a parameterised system model involving the wind 

speed so that the controller performance changed with wind conditions. Actuator constraints 

were included and statistical performance assessed.  

The third example (fast BW) explores the stabilisation of a 2-axis gyroscopic electro-optical 

turret used in surveillance applications. This application was designed and employed on a real 

system. Because of the limitations imposed by BW requirements and the memory of the digital 

controller, only the basic state-space version of the algorithm was possible to implement. The 

main objective in this problem was to improve the tracking performance around the NADIR 

singularity point (a discontinuity) in the trajectory. In all three examples the NGMV controllers 

showed notable improvement in comparison to the baseline controllers without the need for 

scheduled gains or re-configuration when moving across different operating points. 



4 
 

Acknowledgements 

I would like to express my gratitude and appreciation to my supervisors at Strathclyde 

University, Prof. Michael Grimble, for his continuous guidance and patience during all the 

years of research, and Dr. Reza Katebi for his invaluable advice at the most critical part of 

the thesis progression. I would also like to thank Dr. David Anderson at Glasgow University 

for sharing his industrial experience and making real systems experimentation possible, Dr. 

Pawel Majecki for his invaluable assistance with the implementation of the algorithms, Dr. 

Andy Clegg and all of my colleagues at Industrial Systems & Control Ltd. for their support 

and understanding. Furthermore I would like to thank Dr. H. Yue and Prof. R. Patton for 

their comments and corrections which greatly contributed to the final improved version of 

the Thesis. 

A special thanks to my family, Xanthippi Savvidou and Panagiotis Spyridon for believing in 

me and supporting me all the way through thick and thin during all these years of hard 

work. 

  



5 
 

Contents 
Abstract………………………………………………………………………….…………..……….………………….3 

Nomenclature .......................................................................................................... 8 

Chapter 1 Introduction ............................................................................................ 9 

1.1 Direct Nonlinear Control – An NGMV Perspective .................................................. 11 

1.1.1 Methods – Generalised Minimum Variance Control ................................................ 12 

1.1.2 Methods – Nonlinear Generalised Predictive Control and LPV Models ................... 13 

1.1.3 Methods – Nonlinear Predictive Generalised Minimum Variance Control and LPV 

Models ...................................................................................................................... 14 

1.1.4 Nonlinear Industrial Applications ............................................................................. 15 

1.2 Research Goals & Objectives ................................................................................... 17 

1.3 Thesis Contributions ................................................................................................ 17 

1.4 Thesis Organisation ................................................................................................. 18 

1.5 List of Publications ................................................................................................... 20 

Chapter 2 NGMV Basic Structures ......................................................................... 21 

2.1 Minimum Variance Control ..................................................................................... 21 

2.1.1 Generalised Minimum Variance Control .................................................................. 22 

2.2 Nonlinear Generalised Minimum Variance Control ................................................ 24 

2.2.1 NGMV Optimal Control Law Derivation ................................................................... 29 

2.2.2 Control Design and Weighting Selection Guidelines ................................................ 32 

2.2.3 NGMV Applied to LPV Systems................................................................................. 33 

Chapter 3 LPV-NGPC Structure .............................................................................. 35 

3.1 An Introduction to Nonlinear Predictive Control .................................................... 35 

3.1.1 Overview of the MPC Concept ................................................................................. 35 

3.1.2 Motivation towards Nonlinear MPC (NMPC) ........................................................... 39 

3.1.3 NMPC Mathematical Formulation ............................................................................ 40 

3.2 An Introduction to Linear Parameter Varying Systems ........................................... 42 

3.2.1 LPV, qLPV and State-Dependent Systems Relationships .......................................... 44 

3.2.2 LPV System Derivation.............................................................................................. 44 

3.3 Generalised Predictive Control (GPC) for LPV Systems. .......................................... 46 

Chapter 4 LPV-NPGMV Control Derivation ............................................................. 49 



6 
 

4.1 Controller and Subsystems Architecture................................................................. 49 

4.2 Derivation of Predictions Model for Control ........................................................... 55 

4.2.1 Vector-Matrix Notation Derivation .......................................................................... 58 

4.3 LPV Estimation ......................................................................................................... 60 

4.4 Equivalent Cost-Function Optimisation Problem .................................................... 62 

4.4.1 Modified GMV Cost-Function ................................................................................... 63 

4.4.2 Nonlinear Predictive GMV Control Problem ............................................................ 66 

4.5 The LPV-NPGMV Optimal Control Solution ............................................................. 66 

4.6 LPV-NGMV Derivation ............................................................................................. 69 

Chapter 5 Dynamic Positioning and Manoeuvring of Marine Vessels ..................... 71 

5.1 Problem Description ................................................................................................ 72 

5.2 Generalised System Model Description .................................................................. 73 

5.3 Control System Description ..................................................................................... 78 

5.4 Simulation Results for the Basic NGMV .................................................................. 80 

5.4.1 Reference Tracking Performance ............................................................................. 80 

5.4.2 Reference Tracking and Disturbance Rejection Performance .................................. 85 

5.4.3 Dynamic Positioning – Disturbance Rejection Performance .................................... 87 

5.5 Dynamic Positioning Using LPV-NGMV Control ...................................................... 89 

5.5.1 Control Design Discussion ........................................................................................ 91 

5.6 Simulation Results for the LPV-NGMV .................................................................... 93 

5.6.1 Dynamic Positioning – Disturbance Rejection Performance for Varying Sea State . 93 

5.7 Final Remarks ........................................................................................................ 100 

Chapter 6 Wind Turbine Control .......................................................................... 101 

6.1 Problem Description .............................................................................................. 102 

6.1.1 Controller Structure................................................................................................ 103 

6.2 Wind Turbine Model Description .......................................................................... 106 

6.2.1 Wind Turbine LPV Model for Control ..................................................................... 113 

6.3 Control System Description ................................................................................... 120 

6.3.1 Kalman Filter Formulation and Validation .............................................................. 120 

6.3.2 Controller Formulation ........................................................................................... 121 

6.4 Simulation Results ................................................................................................. 122 

6.4.1 Disturbance Rejection ............................................................................................ 123 



7 
 

6.4.2 Reference Tracking ................................................................................................. 134 

6.4.1 Constraint Handling – Disturbance Rejection......................................................... 136 

6.4.1 Constraint Handling – Reference Tracking ............................................................. 140 

6.5 Final Remarks ........................................................................................................ 143 

Chapter 7 Sightline Stabilisation of Electro-Optical Devices.................................. 144 

7.1 Problem Description .............................................................................................. 145 

7.1.1 The Nadir Problem ................................................................................................. 145 

7.2 System Description ................................................................................................ 147 

7.2.1 Experimental Configuration ................................................................................... 147 

7.2.2 Simulation Model Definition .................................................................................. 149 

7.2.3 Model Identification ............................................................................................... 156 

7.3 Control System Description ................................................................................... 159 

7.4 Simulation Results ................................................................................................. 159 

7.5 Final Remarks ........................................................................................................ 161 

Chapter 8 Conclusions ......................................................................................... 162 

8.1 Discussion .............................................................................................................. 163 

8.2 Suggestions for Future Work ................................................................................. 164 

8.2.1 Novel NGMV Design Idea ....................................................................................... 164 

References ……………………………………………………………………………………………………………168 

Appendix A.1 Application Chapter 5 Simulations Code. ............................................................ 174 

Appendix A.2 Application Chapter 6 Simulations Code. .......................................................178 

Appendix A.3 Application Chapter 7 Simulations Code. .......................................................188 

 

  



8 
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IDCOM Identification and Command 
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KF Kalman Filter 

LMI Linear Matrix Inequalities 

LMPC Linear Model Predictive Control 

LoS Line of Sight 

LPV Linear Parameter Varying 

LQG Linear Quadratic Gaussian 

LTI Linear Time Invariant 

LV LabVIEW 

MIMO Multiple-Input-Multiple-Output 

MPC Model Predictive Control 

MV Minimum Variance 

NED North-East-Down 

NGMV Nonlinear Generalised Minimum Variance 

NGPC Nonlinear Generalised Predictive Control 

NMPC Nonlinear Model Predictive Control 

NREL National Renewable Energy Laboratory 

PXI PCI eXtensions for Instrumentation 

QDMC Quadratic Dynamic Matrix Control  

qLPV quasi-Linear Parameter Varying 

QP Quadratic Programming 

SCL Sightline Control Laboratory 

WECS Wind Energy Conversion Systems 
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Notation 

Subscripts  

r : Reference subsystem state-space matrix index 

d : Disturbance subsystem state-space matrix index 

0 : Linear or LPV subsystem state-space matrix index 

p : Error weighting Pc subsystem state-space matrix index 

m : Measurements signal (z) state-space matrix index 

t : Time-varying subsystem state-space matrix index 

φ : Index of combined matrices used within a cost function e.g. Eφ=- Ep E0 

Matrix Notation  

A, B, C (Section 2.1) : Used as CARMA polynomial terms 

A, B, C (Section 2.2) : State, input and output state-space matrix respectively 

D : State disturbance matrix 

E : Input-output state-space matrix (traditional notation is D) 

Φ (Kalman Filter) : Impulse response operator representing stochastic disturbance (not 

to be confused with Φ in the cost function i.e. � = ��������) 

ΛN : Control weighting matrix in GPC cost function 

d : Deterministic measurement noise signal used for generality 
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 Introduction Chapter 1

The most common approaches in classical control for dealing with nonlinearities in systems 

use linearization of the system around specific points of operation. Unfortunately, there are 

often limitations and possible unpredictable behaviour in attempting to control very difficult 

dynamics and nonlinearities in modern systems with classical methodologies. These might 

involve enhanced simple architectures built around the well-established PID controls, like a 

combination with nonlinear Feed-Forward (FF) compensation and the use of wind-up 

protection. 

Adaptive PID algorithms can also be used to re-define tuning parameters to try to ensure the 

closed-loop system is stable (Grimble, 2001). These have been shown to be reasonably robust 

in dealing with relatively smooth nonlinearities. These were developed to replace tuning 

methods that relied solely on a linear model of the process to calculate the PID gains (e.g. 

Ziegler-Nichols, IMC tuning etc.). This can be achieved by various methods like online 

parameter identification (performing linearization at every iteration), to base tuning upon, and 

optimisation algorithms to evaluate the best-suited gains with respect to the current operating 

point (Slotine and Li, 1991). 

A very popular technique, that also falls within this category and has been used extensively 

especially in the aerospace industry (where the dynamics of the aircraft vary dramatically with 

speed and altitude) is Gain Scheduling. This method can employ linear control techniques but 

requires effort to determine a sufficient set of control parameters to operate the system in a 

given range. Unfortunately, fast operating point variations can lead to severe nonlinear 

behaviour in which case guaranteeing stability becomes problematic (Shamma and Athans, 

1990). 

More advanced strategies that stem from the same approach (employing linearisation) can be 

seen in basic formulations of model-based control schemes like the Smith-Predictor and 

Internal Model Control (IMC), but also in optimal control strategies like the Linear Quadratic 

Regulator (LQR), Linear Quadratic Gaussian (LQG), the Linear Model Predictive Control (MPC) 

and of course the linear Kalman Filter (KF). The latter is required for estimating the system 

states in the LQG and MPC methods (Kouvaritakis et al., 1999). These can employ an estimated 

behaviour of the process for the next iteration, based on a linearised model at the operating 

point of interest, within the closed-loop solution (the solution of a cost-function in the case of 

optimal control schemes). Most MPC methodologies also rely on linear system models to 

generate the future predictions vector which are then needed in the optimal control problem 

solution. 

Explicit control of nonlinear systems however has been one of the major areas of both 

academic and industrial interest over the past two decades (Slotine and Li, 1991) and 

developments from this area form the building blocks that influenced work on this thesis. 

Versions of the linear control strategies mentioned above with ad hock changes often fail to 

guarantee stability. It is intuitive that nonlinear systems which have physically motivated 
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natural solutions using techniques like feedback linearization should have better performance, 

be less costly and complex than linear systems involving say scheduling. A general illustration 

of this type of a direct control approach can be seen in the following figure. 

 

 

Figure 1:1 Direct nonlinear control methodologies stages diagram 

 

Popular techniques within the direct nonlinear control framework include Local Feedback 

Linearisation, Variable Structure Control (VSS) and the Sliding Mode Control (SMC). The first is 

based on designing a local high gain feedback loop around the nonlinearity isolating it and 

effectively transforming it into linear for the outer overall control loop. Contrary to other 

direct nonlinear approaches the nonlinearity needs not be exactly known. Nevertheless, this 

method requires an additional measurement for the internal loop. A similar approach to this is 

Feedback Linearisation resembling in objective the indirect Jacobian linearization approach. 

Whereas the former considers transforming the system into localised linear approximations 

the latter aims the same but by exact state transformation and feedback. Both aim at 

transforming the system such that linear analysis methods can be employed. An immediate 

limitation springs; the requirement that these derivatives exist which will in turn allow for an 

input u to influence the states making control design possible. Moreover this method as well is 

susceptible to modelling errors, uncertainty and unmodelled dynamics all of which can greatly 

impact robustness (Slotine and Li, 1991). 

VSS resembles state-dependent or LPV models in definition it is more intended however, to 

describe a design that responds to structural inherent discontinuities of the system hence 

resulting into a discontinuous feedback control law which involves switching logic to transition 

between different modes. The key problem in VSS control is to determine the switching points 

(switching or discontinuity surface) in state space. The objective then becomes to bring and 

keep the system at the switching surface (Utkin et al., 2009). Once the system is on the surface 

there is no trajectory away from it. Small shifts of the state from the surface causes a motion 

that brings the state back to the surface, a behaviour known as sliding mode. As an extension 

to VSS, SMC aims to drive system trajectory to a desired switching state within finite time. This 

scheme is advantageous in that although individual structures within the discontinuous 

framework may be unstable, the VSS system in whole is asymptotically stable. Moreover, it 
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results into flexible control implementations (can be combined with PID controllers) easy to 

restrict to certain regions of operation and it is shown to be relatively robust to parameter 

uncertainty. The key problem with SMC is that due to delays there will be no ideal sliding on 

the sliding surface. This results into chattering (fast switching) around the switching surface 

due to the discontinuous behaviour (Utkin and Lee, 2006). 

The control strategy explored in this thesis provides a framework with very general system 

description but one that may employ a black box model of the plant. This can be practical for 

real life applications where access to system information is limited for various reasons. The 

idea here is to formulate a controller able to accommodate a wide class of nonlinear systems 

without having to undergo major modifications within its core architecture for different 

system characteristics. In order to be practical, this controller should be able to use a model of 

the process where this is available or consider the process using a “black-box” model when the 

physical structure is unknown. 

 

1.1 Direct Nonlinear Control – An NGMV Perspective 

The general nonlinear control techniques described in the previous section provide valuable 

analysis and design tools, however an area that is not well addressed is that of controller 

synthesis. Optimal control solutions provide a formal synthesis framework and this opens up a 

very wide range of different possible approaches. For the purposes of this work synthesis 

approaches which are reasonably easy to understand and implement in industrial applications 

are of most interest. One of the challenges was implementation of the algorithms, in a manner 

that allows a fixed range of control parameters to yield reasonable performance throughout a 

wide operating range without the need of re-tuning. 

The theory for the family of optimal nonlinear controllers known as Nonlinear Generalised 

Minimum Variance (NGMV) controllers was partly built on together with an extension of the 

well-known generalized predictive controllers. The LPV approach was chosen as the modelling 

approach to improve the predictive version of the NGMV and NPGMV controllers, due to its 

flexibility in approximating a wide range of nonlinear systems. 

Much of the previous work on the NGMV approach has focussed on state-dependent models 

but LPV models are subtly different, particularly, when trying to establish stability and 

robustness properties. The basic LPV model is of course representative of a linear system with 

major external parameter variations. However, it is often used to provide an approximation to 

a nonlinear system model and in this case the parameter variations may be due to states, 

inputs or outputs (providing a true nonlinear system description). 

This thesis concentrates on a simple LPV approach for enhancing NGMV and predictive control 

solutions (NGPC and NPGMV), to provide simple controllers for a range of industrial 

applications. As this research evolved, the LPV formulation was described for the basic NGMV 

as well as for the NPGMV. The NGMV solution is a necessary precursor to NPGMV designs, and 

is not the main theme of the thesis. The main contribution is the exploration of LPV methods 
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and their use in predictive control and in particular the NPGMV controller which can be 

specialized to both of the other designs.  

The predictive versions of the NGMV seem very suitable for industrial applications when used 

in conjunction with LPV modelling methods. This is mainly due to fact that the current NPGMV 

algorithm relies upon the linear part of the system to generate future error predictions. The 

latter imposes a restriction in performance when the overall plant cannot be decomposed into 

a nonlinear and a linear part. If however the plant can be modelled as an LPV system this 

approximation can be utilised to generate more accurate predictions and hence may yield 

better performance. Recent work on engine control, for example (Majecki et al, 2015) has 

demonstrated a value of LPV methods in torque and emissions control. The LPV methods have 

also been used successfully in aerospace and seem to have great potential in areas such as 

automotive and wind turbine controls (Do at al., 2013), (Biannic, 2013), (Balas, 2002), (Adegas 

and Stoustrup, 2012). 

Roadmap: In Chapter 2 an introduction to the basic concepts that constitute the NGMV is used 

to provide a preliminary understanding on the structure of the algorithms that follow in detail. 

In Chapter 3 attention shifts towards LPV nonlinear systems approximation and the Nonlinear 

Generalised Predictive Control (NGPC) strategy both important proponents for the formulation 

of the more advanced NPGMV. Chapter 4 describes the combination of the above in the 

derivation of the LPV-NPGMV control law. These theoretical concepts are then implemented 

and explored in different industrial application in Chapters 5, 6 and 7. These applications and 

the methods considered in this thesis are briefly described in the following sections. 

 

1.1.1 Methods – Generalised Minimum Variance Control 

The initial concept was to develop simple controllers using a combination of optimal control 

theory based on an extension of Minimum Variance (MV) control (i.e. the Generalised 

Minimum Variance (GMV)), combined with the well know technique of IMC [56], influenced by 

structures like that of a strategy well-employed in the industry known as the Smith Predictor. 

MV control is an optimal control strategy developed by (Aström, 2012) where the objective is 

to minimise the variance of the output of a stochastic system k-steps ahead (k being a 

measurable system delay) given the information available up to the present time instant. The 

optimal cost-function here consists of the conditional expectation of the squared output of the 

system to obtain its variance. It is a model-based optimal scheme which uses a Controlled 

Auto-Regressive Moving Average (CARMA) model to derive its control law. To calculate the 

optimal control the MV concept uses this model to generate k-steps ahead predictions of the 

process with the use of the Diophantine equation (Wellstead and Zarrop, 1991). 

The MV scheme naturally provides dead-time compensation and has been very successful in 

reducing variability of process output while considering measurable (or observable) 

disturbances within the optimal control solution, being applicable to MIMO systems and 

demonstrating small computational complexity. However, it is unsuitable for non-minimum 

phase systems, results in excessive control action and is shown to produce a sub-optimal 
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solution in presence of saturation constraints. The GMV design is an extension that includes 

the weighted control action into the original MV cost-function. This provides better results in 

terms of improving control action variability and can accommodate non-minimum phase 

systems. Although successfully used in the industry, it has been shown to exhibit poor stability 

characteristics on non-minimum phase systems (Grimble and Johnson, 1988). 

The NGMV controller aims to minimise a very similar cost function to the linear GMV, the main 

difference being the model of the process used to generate these signals within the cost 

function now contains a general nonlinear operator. This is described in detail in (Grimble, 

2004) where the assumption is made that the plant model can be decomposed into a set of 

delay terms, a very general nonlinear subsystem that has to be stable, and a linear subsystem 

that can be represented in linear polynomial matrix or state equation form and possibly 

include unstable modes. Moreover, the system output signal within the cost-function is here 

replaced by a penalty on the error (i.e. difference between the output and the reference). A 

set of weightings is then selected (error and control weightings) to obtain a stabilising control 

law. Unlike the error weighting the control weighting can be nonlinear adding to flexibility in 

nonlinear design. The LPV approach is explored here as well as in the NPGMV to allow 

applicability in a wider range of systems and to increase performance over the basic NGMV 

solution. 

For equivalent linear system designs, stability is ensured when the combination of a control 

weighting function and an error weighted plant model is strictly minimum phase (Grimble, 

2007). For nonlinear systems it is shown that a related operator equation is required to have a 

stable inverse.  That is, to ensure closed-loop stability an assumption must be made that a 

certain nonlinear operator has a stable inverse. The cost-function weightings must be chosen 

to satisfy both performance and stability/robustness requirements. 

The inherent optimal control aspect makes the NGMV framework a promising candidate for 

the purpose of this work. The reason for this is that optimal control approach provides a well-

proven, intuitive to implement design, yielding often predictable behaviour even in the case of 

complex systems. Unlike most classical methods, where strong engineering expertise is 

required to employ, there are several formalised approaches within optimal control design and 

that makes it attractive for industrial applications. There is rich literature around this family of 

algorithms with successful results in many realistic applications, ranging from simple 

architectures like Feedback-Feedforward (Grimble, 2007) to more advanced H∞ (Grimble, 

2006), in combination with the internal process nonlinearities considered unknown. 

 

1.1.2 Methods – Nonlinear Generalised Predictive Control and LPV Models 

The NGPC builds upon a control philosophy successfully applied in the process industries, the 

Model Predictive Control (MPC), with proven improvements in performance and profitability. A 

typical predictive controller benefits by utilising future reference signal or set-point 

information within the minimisation of a multi-step cost-function. This is very advantageous 

when dealing with processes that contain long dead times, time-varying parameters and 
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multivariable interactions. Predictive controllers initially became popular through their 

application in processes with relatively slow dynamics, representative of process industries like 

the petrochemical. The evolution of digital controllers along with the development of more 

practical and less complex algorithmic versions, with respect to computational burden, 

allowed the application of predictive controllers on faster servo and hydraulic systems as well. 

The basis for NGPC development is traced back in early work by (Clarke et al., 1987) on the 

linear GPC which was originally derived in a polynomial form but a state-space version, suitable 

for large linear systems, was obtained by (Ordys and Clarke, 1993) later on. As an extended 

formulation of the NMPC the NGPC utilises nonlinear models to generate predictions and also 

has the capability to solve its optimal cost-function considering nonlinear input, output and 

state constraints. The application of the NGPC typically requires a real-time open-loop optimal 

control problem solution and its predicted behaviour can be different than the closed-loop. 

The optimal cost-function used in this work is a modification of the basic GPC cost-function, to 

include a terminal state cost term and a terminal constraint set on the final state. The first can 

be selected as a positively invariant set of the system under feedback whereas the latter can 

be selected as a Lyapunov function related to the local controller. The advantage of this is that 

it guarantees closed-loop stability and asymptotic convergence under certain conditions. State 

estimates necessary for the generation of predictions are obtained via the use of the Extended 

Kalman Filter (EKF). The optimal quadratic cost-function, similar to the linear GPC, is solved 

within a specified prediction horizon and according to the Receding Horizon principle, where 

only the first control element from the optimal control moves vector is applied and the 

procedure repeats at the next iteration. 

Model fidelity is a crucial aspect here as well as with most nonlinear model-based strategies. In 

this regard the LPV approach can often improve system approximation and allow a wider 

range of systems to be accommodated by the algorithm as mentioned above. Another benefit 

of the use of LPV systems is the reduction of computational complexity using off-line 

optimisation approaches. The latter happens when a series of approximations are 

precomputed across the operating range and the appropriate controller is chosen based upon 

the current value of the system state for a system which has a very large operating range. 

 

1.1.3 Methods – Nonlinear Predictive Generalised Minimum Variance 

Control and LPV Models 

The NPGMV development was based on the NGPC structure and shares some of the 

advantages of the Generalised Predictive Control (GPC) algorithms. It shares similar stability 

assumptions and uses the same subsystems decomposition with the basic NGMV controller. 

Being a predictive control approach it differs in that it utilises a multi-step cost-function that 

includes future tracking error and control signal weightings in a GPC type of problem 

construction (Grimble, 2005). These weightings can be used with different error and control 

horizons. As mentioned the NGMV and NGPC controllers are both special cases of NPGMV (e.g. 
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when the system is linear and the control cost term tends to zero the controller reverts to 

those for a GPC controller). 

The adaptation of NPGMV to LPV systems has very similar plant description to the original 

NPGMV, however it aims to provide a model based fixed-structure controller for time-varying 

systems through the relevant representation of the nonlinear subsystem. The latter is here 

further decomposed into input and output nonlinear subsystems. The first black box term can 

contain hard nonlinearities (i.e. saturation constraints, discontinuities etc.) and the latter 

dynamic nonlinearities that can be modelled via the LPV approach. No structure needs to be 

assumed for the input nonlinear sub-system, this is however assumed to be open-loop stable. 

To provide further generality, the internal model of the process is augmented with an 

“integrator” state as a simple way to introduce integral action. The NPGMV is the most general 

solution but perhaps the NGPC is the best compromise between complexity and generality. 

 

1.1.4 Nonlinear Industrial Applications 

To implement and test the various algorithms developed in this thesis, three representative 

nonlinear industrial control applications were selected, imposing different challenges ranging 

from simple saturation constraints to discontinuities and varying model parameters and 

structures. An important aspect that was considered upon selecting these applications was the 

different dynamic responses they exhibit with respect to Bandwidth. A ship dynamic 

positioning problem was chosen, subject to slowly varying sea state, a power regulation 

problem for a large scale wind turbine, affected by wind speed variations and finally the 

stabilisation of an electro-optical device while tracking fast moving targets. 

Ship Positioning: The dynamic ship positioning and tracking problem is a well-researched 

subject with mature industrial applications. However, in the main the nonlinearities in ship 

positioning systems are not accounted for very directly in the designs. It is therefore likely that 

performance improvements could be obtained if a true nonlinear control law were applied. 

The LPV modelling and control approach enable a better approximation to nonlinear system 

behaviour to be made and hence the control laws to be applied should give performance 

improvements. One question is whether this adds complexity which makes such a control 

solution impractical. In the following chapter it will be shown that the NGMV control law can 

be applied to subsystems and a reasonably practical solution obtained. Ship simulation results 

are presented to demonstrate behaviour and it is shown that the implementation is not too 

much more complicated than that for existing commercial Kalman Filtering based ship 

positioning systems. The basic state-space NGMV was successfully employed here and 

demonstrated consistent performance improvement without the need for retuning across 

different operating ranges. In the second part the LPV-NGMV utilised a time-varying model 

parameterised by sea state and demonstrated improved disturbance rejection over a standard 

NGMV architecture. 

Wind Turbine Control:  Regulating wind turbine power production while compensating for 

wind disturbances is also a popular area of research and a problem that naturally falls within 
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the LPV philosophy. The latter is true as the behaviour of a wind turbine system can be suitably 

described and parameterised by wind speed through the aerodynamic conversion relations. 

Challenges imposed by this problem configuration are saturation constraint nonlinearities in 

pitch angle control and varying system dynamics dependent upon wind speed variations. The 

LPV-NPGMV controller was successfully implemented for various disturbance scenarios (i.e. 

wind gusts and turbulence effects) as well as for power reference tracking (de-rating) in two 

alternative configurations; a Single Input Single Output (SISO) where only the pitch angle is 

used to control power output and a Multiple Input Multiple Output (MIMO) where both pitch 

angle and generator torque are used to control power output and generator speed 

respectively. Different prediction horizons where found appropriate for different types of 

disturbances and improvement in regulation ranging from 60-90% was demonstrated in 

various cases. Regarding the de-rating scenarios, future reference information played a vital 

role, showing that increasing the prediction window provides anticipatory action and therefore 

improved tracking of the reference. A Quadratic Programing (QP) algorithm was used to 

address constraints adding further benefits in terms of restricting control action compromising 

slightly however disturbance rejection and tracking performance. 

Gyroscopic Turret: The final application was part of a side project considering simple and 

effective algorithms for the stabilisation of an Electro-Optical (EO) gyroscopic turret used in 

surveillance systems. This control problem is characterised by very fast dynamics, trajectory 

singularities and actuator constraints. Moreover, this was a representative case where access 

to internal system information was not available and therefore suitable for the “black-box” 

internal model structure of the NGMV. In this application the servo commands of the 2-axis 

gyro are used to control positioning of the sightline of the device upon the moving target (i.e. 

incoming threat to the host platform) in an incredibly agile manner, to ensure proper tracking, 

interrogation and neutralisation. The precision demanded in these types of applications is at a 

level that even, otherwise minor effects due to friction in the gears of the servomechanism, 

can humper tracking performance significantly ultimately missing the target. The main 

problem however arises when a certain part of the target trajectory gives rise to a singularity 

in the kinematics transformation known as “gimbal lock”. Experimental work was carried out 

at the Sightline Control Laboratory (SCL) of the University of Glasgow which is a bespoke 

research and teaching facility designed to assist applied research in the areas of pointing, 

stabilization, tracking and image processing of electro-optic systems, known collectively by the 

term Sightline Control. This provided the opportunity of Hardware-in-the-Loop (HIL) functional 

testing and although only the basic state-space NGMV algorithm was implemented due to 

hardware restrictions, it remained an invaluable part of this thesis for being able to tackle this 

very difficult nonlinearity (discontinuity) and demonstrate tracking improvement. The simple 

structure for implementation and the “black-box” configuration of the algorithm made it an 

excellent candidate for such a problem that requires minimal algorithmic complexity and a 

robust design that is able to cope with the entire range of operation without further 

scheduling. 
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1.2 Research Goals & Objectives 

The main objectives as they evolved throughout this work can be summarised as follows. 

� Develop the Nonlinear Generalised Minimum Variance (NGMV) algorithmic family, 

aiming to expand the class of nonlinear systems these algorithms can be applied to. 

The basic state space and predictive versions of the NGMV are explored from a Linear 

Parameter Varying (LPV) systems formulation standpoint. 

� Derive and describe the LPV versions for the above algorithms in a manner easy to 

implement for different system architectures. Program and test the applicability and 

performance of the algorithms in simulation. 

� Explore and implement the use of the Extended Kalman Filter (EKF) within the 

Nonlinear Predictive NGMV (NPGMV) to improve accuracy of state estimation within 

the controller. Enforce this by exploring the use of a modified Jacobian linearization 

implementation to improve fidelity of the LPV nonlinear system approximation. 

 

1.3 Thesis Contributions 

The contributions brought forth out of this work can be outlined as follows. 

• Important structural modifications were explored regarding the improvement of the 

implementation of the basic NGMV algorithm including a black-box + LPV structure 

successfully implemented in simulation. 

• A “black-box” LPV structure for the basic state space NGMV was introduced and 

successfully implemented in simulation. 

• The LPV adaptation for the NPGMV algorithm was derived mathematically and 

implemented in simulation. 

• The Modified Jacobian model derivation was explored and implemented within the 

LPV-NPGMV algorithm along with the integration and use of the Extended Kalman 

Filter (EKF) in the algorithm. 

• Three, novel NGMV and LPV-NGMV/NPGMV, application examples were introduced, 

one of which involved the first real-time NI-Labview based deployment of the 

algorithm on a real system (cooperation with Thales, Edinburgh). 

• Proposal to improve robustness and to add adaptive features with theory described in 

Future Work. 
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1.4 Thesis Organisation 

Chapter 1 – Provides an introduction survey on general nonlinear systems control 

methodologies and identifies the place for this work within this framework. 

Chapter 2 – Provides an introduction to the theoretical development of the basic NGMV 

formulation (within the state-space framework) and explores a few of the main design aspects 

of the algorithm. Moreover, provides discussions and ideas to enhance robustness and 

applicability of the basic algorithm version to systems with uncertainty. 

Chapter 3 – Provides an introduction to nonlinear MPC (specifically the NGPC algorithm) 

adapted for LPV systems. This sets the basis upon which the LPV-NPGMV algorithm is derived 

in the following chapter. 

Chapter 4 – Describes the derivation of the NPGMV algorithm and its adaptation to LPV 

systems. Moreover, it provides ideas to improve its implementation regarding computational 

aspects like algorithmic execution speed. At the end of the chapter and continuing from 

Chapter 2 the derivation of LPV-NGMV is described.  

Chapter 5 – Utilises a marine vessel auto-piloting and dynamic positioning application to 

explore performance of the basic state-space NGMV design against a baseline controller across 

various scenarios. In the second part of the chapter the same application is used in different 

scenarios to assess the performance of the LPV-NGMV controller. 

Chapter 6 – Implements and assesses quantitative performance of the modified LPV 

Predictive version of the algorithm on a large scale wind turbine control application example, 

against two baseline controllers for various scenarios. 

Chapter 7 – Utilises a real-time electro-optic gyroscopic device platform stabilisation 

application (benefiting from real experimental results) to explore performance of the basic 

state-space NGMV design against a baseline controller across various scenarios. 

Appendix A – Provides the Matlab & SIMULINK code which was developed for the application 

case studies in Chapter 5, 6 and 7. 

The diagram in Figure 1:2 explains the conceptual flow of the thesis. A core challenge, and at 

the same time benefit of this work, is that it is the result of multiple applications of different 

nature. That imposed the main difficulty when drawing a common thread to integrate 

theoretical and practical concepts together. What comprises of this common thread expands 

upon the NGMV method being a combination of the direct nonlinear control philosophy of 

internal model control and the MV optimal control framework. 

Developments in the thesis revolve around two core themes, that of nonlinear (predictive) 

control and of NGMV theory. The linking element between the two is the LPV nonlinear 

systems approximation methodology. After the basic foundation on general nonlinear control 

methods and the NGMV is laid in Chapters 1 and 2 respectively focus turns into setting the 

fundamental understanding for LPV systems and the Nonlinear Model Predictive Control 

paradigm (in this case the NGPC) for LPV systems in Chapter 3. 
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Figure 1:2 Thesis conceptual flow 

 

These two concepts constitute the basis of the main development and contribution of this 

work which is the LPV formulation of the Nonlinear Predictive Generalised Minimum Variance 

(LPV-NPGMV) controller which is described in Chapter 4. 
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A secondary development, which was added at a later stage, was that of the LPV algorithm 

implementation for the basic state-space NGMV (LPV-NGMV). The main motivation behind this 

addition was that derivation of the algorithm resulted naturally from the LPV-NPGMV 

formulation with very minimal changes to the core structure of the controller. This is the main 

reason behind the derivation of the algorithm located at the end of Chapter 4 whereas only a 

brief mention is found at the end of Chapter 2. In combination with one of the classic NGMV 

formulations, that of the “black-box” proved to add flexibility in nonlinear control design for 

systems subjected to varying factors like disturbances. This addition also improved conceptual 

uniformity of the thesis. 

The applications Chapters 5, 6 and 7 that follow reflect upon the NGMV/LPV-NGMV (Chapter 

5), NGMV/LPV-NPGMV (Chapter 6) and NGMV (Chapter 7). As mentioned previously the 

differentiating factor between these application case studies was the dynamic response speed 

of the process, starting from slow, medium and fast in Chapters 5, 6 and 7 respectively. The 

main reason for not implementing a more advanced scheme in application Chapter 7 was 

restrictions imposed by the experimentation equipment. However, a valuable contribution 

remains being the first implementation of the NGMV controller on a real dynamically 

demanding nonlinear system. 
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 Basic Structures Chapter 2

This Chapter briefly outlines the main principles and developments around Minimum Variance 

control which is the foundation upon which the class of NGMV controllers have being 

developed. Starting with the Minimum Variance (MV) paradigm the evolution via the GMV and 

finally its nonlinear derivative the NGMV is described in a fashion that naturally leads to the 

more advanced predictive methods described in the chapters that follow. A key point to 

observe is that the internal model architecture as shown in this chapter is preserved 

throughout the algorithms. The chapter consists of the following sections: 

Section 1 – An Introduction to MV and GMV control strategies; an overview of the main 

principles and aspects. 

Section 2 – An Introduction to NGMV; an overview of the main principles, stability 

assumptions, internal model structure and weighting selection criteria. 

Section 3 – An Introduction to Linear Parameter Varying Systems; an overview of the type of 

LPV systems that will be used within the LPV-NPGMV formulation. 

 

2.1 Minimum Variance Control 

MV control as introduced by (Aström, 2012) also falls within the greater category of optimal 

control and its main objective, as the name suggest, is to minimise the variance of the output 

of a stochastic system at 	 
 � given the information available up to time 	. In other words at 

each iteration an optimal control move is produced relative to the minimisation of the 

following cost function, 

� = ����	 
 ��� (2:1) 

where � is the system output and � is a known time delay. E is the conditional expectation on 

data up to the current instance and the expectation of the squared variable yields its variance. 

The MV concept is a model-based optimal scheme and uses a CARMA (Controlled Auto-

Regressive Moving Average) model to derive its control law. 

���	� = ������	� 
 ���	� (2:2) 

Integrating the delay term in the equation yields, 

��	 
 �� = �� ��	� 
 �� ��	 
 �� (2:3) 

A, B and C express polynomials as a function of the inverse z operator. The stochastic element 

appears at the output of the system through ξ which represents a random disturbance signal 

with ����	�� = 0 and ����	�� = �. To calculate the optimal control the MV concept uses 

this model to generate k-steps ahead predictions of the process. This is possible by further 

expanding the C polynomial with � = �� 
 ����, where F and G are also polynomial terms, 
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and using the Diophantine equation to put generate the k-steps ahead prediction relation with 

respect to future and present output, control and error (through ξ) terms as detailed in 

(Wellstead and Zarrop, 1991). The optimal prediction is then derived by setting the future 

error term that cannot be regulated through control to zero as follows. 

���	 
 �� = ��� ��	� 
 �� ��	� (2:4) 

Substituting Equation 2:4 into 2:1 and solving for ��	� that minimises the output variance k-

steps ahead yields the following MV control law, 

��	� = − ��� ��	� (2:5) 

The MV owes its effectiveness in industrial application to a set of useful properties. It is easily 

seen that the MV scheme naturally provides dead-time compensation. Interestingly, in the 

absence of process noise MV turns into a dead-beat controller. It has been proved very 

successful in reducing variability of process output by also considering measurable (or 

observable) disturbances within the optimal control solution. Moreover, it is computationally 

efficient as it does not require a-priori information. It can be extended to MIMO systems and 

accommodate unknown system parameters. There are known limitations however that acted 

as precursors for the evolution of the algorithm. 

The inherent zero-pole cancellation within the control derivation makes the MV concept 

unsuitable for non-minimum phase systems. The optimal solution often results into excessive 

control action as penalty on control is not included within the MV cost function. Moreover the 

algorithm produces a sub-optimal solution in presence of saturation constraints. It is not 

suitable for nonlinear systems in general without significant extensions. The next milestone in 

this family of controllers with the intent to tackle these problems was the Generalised 

Minimum Variance (GMV). 

 

2.1.1 Generalised Minimum Variance Control 

The GMV is a simple extension to the MV controller that aims to minimise the following 

generalised output ���	�, 

���	� = � !�	� 
 � ��	� 

� = ����� 

(2:6) 

The GMV cost function includes weighting factors on both the error (Pc) and the control action 

(Fc). Generation of this signal is illustrated in the following diagram. 
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Figure 2:1 GMV cost-function signals. 

 

These weighting factors can be defined as dynamic state-space or polynomial transfers e.g. 

� = � "� # , � = ��� � "� # 

where the subscripts cn and cd denote numerator and denominator respectively. The state-

space form of the weightings and the GMV derivation in general will become more 

comprehensible through the NGMV description in the following section. Note that the control 

output only affects the plant k-steps ahead. The GMV problem can be recast as an MV 

problem for the generalised plant, 

���	� = � %−���&���	� 
 '(��	�) 
 � ��	� 

     = ����� � − � &����	� 
 � '(��	� 

(2:7) 

 

where &� is the linear plance, '( is a spectral factor used within the Diophantine solution and ��	� a stochastic disturbance signal as used in the MV formulation. Therefore the MV control 

of the generalised plant will be, 

���	� = �� &� − � ���	� 
 � '(��	� 

                                                          = ���	� 
 �� &� − � ���	 − �� 
 +��	 − �� 

(2:8) 

 

 

where R and F are polynomial terms in the Diophantine equation � '( = � 
 ���+. The 

optimal GMV control then becomes, 

Statistically independent terms 
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��	� = − +�� &� − � �� ���	� (2:9) 

The GMV algorithm has been successfully employed in industrial applications and especially 

within self-tuning schemes. It has been shown however to exhibit poor stability characteristics 

on non-minimum phase systems (Grimble, 1988). The equivalence with its nonlinear 

formulation will immediately become apparent in the following section. 

 

2.2 Nonlinear Generalised Minimum Variance Control 

The adaptation of GMV algorithm to nonlinear state-space systems, introduced in (Grimble, 

1981 and 2005), is used as a basis for all development across this thesis. In this section the 

main concept and structure of the NGMV is explored but from an LPV systems point of view, 

which will set the foundation for understanding the subsequent LPV-NPGMV controller 

derivation. For this formulation the GMV basic structure is retained. The main difference 

resides on the formulation of the model. In the traditional NGMV algorithm the oftentimes 

nonlinear plant is divided in a Wiener Voltera approach (Schetzen, 1980) into a linear and a 

nonlinear subsystem.  

The plant model may encapsulate a more general black-box type system with unknown 

nonlinearities but more conveniently input nonlinearities like actuator constraints. Hard 

nonlinearities like discontinuities however are much more difficult to be dealt with. The latter 

can be expressed into state-space formulation as seen in the following equations, 

,�	 
 1� = ��,�	� 
 ����,, ���	� 
(2:10) ��	� = ��,�	� 

 

x denotes the state of the system, u the input (or control loop in the closed loop case) and y 

the output of the system. A0, B0 and C0 are the state-space state, input and output matrices 

respectively. F is a nonlinear function with respect to the system states and inputs. Similar to 

the advantages state-space formulation holds for other model based schemes, here as well the 

original plant model can be augmented to include reference and disturbance subsystems but 

also static or dynamic weightings used for control as described in the following sections. The 

nature of these subsystems can vary from linear to nonlinear with small loss of generality as 

explained in (Grimble and Majecki, 2005). For the aims of this work F will be used to 

encapsulate LPV systems in Chapter 4. 

The basic NGMV structure in its most generic form is captured in Figure 2:1. To increase 

generality disturbance terms can be further divided into deterministic and stochastic 

components. The latter can be realised with a linear filter driven by white noise (ξd). 
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Figure 2:2 NGMV controller subsystems layout. 

 

The subsystems that appear in Figure 2:2 contain their equivalent mathematical 

representations which can vary depending on the problem i.e. can be transfer functions, state-

space models etc. For the purpose of this work state-space models are used. Apart from the NL 

Plant subsystem they are assumed to be linear. The former can be a very general nonlinear 

operator representing anything from input actuator nonlinearities, to black-box or as seen in 

the next chapter LPV systems. The full list of options this feature allows is best discussed later 

in the thesis when all the algorithms and various formulations have been described (Section 

4.6). The mathematical representations of these subsystems are described in the following 

sections. 

 

Control Signals: 

u(t) : Vector of control signals applied to the nonlinear subsystem. 

u0(t) : Vector of control inputs to the LPV subsystem. 

Output Signals: 

y(t) : Vector of plant output signals. 

z(t) : Vector of output measurement signals. 

 

The measurements or observations signal results by adding measurement noise v(t) to the 

measured outputs of the plant; z(t) =  y(t) + v(t). 
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Error Signal: 

e(t) : Vector of tracking error signals. 

This is the signal also used within the NPGMV controller cost-function and is the difference 

between the reference input and the measurements of the plant outputs to be controlled; 

e(t)= r(t) – z(t). 

The subsystems in Figure 2:2 are explained in the section below. 

Nonlinear Input Sub-System: 

This sub-system is described by the following notation, 

�&.���	� = ����&.����	� (2:11) 

 

where ��� is a diagonal matrix that contains all common delay elements in signal paths, 

assuming these can be extracted out of the system, u is the control signal driving the system 

and W1k is the nonlinear input subsystem. Note that whereas in systems where these delay 

elements are significantly larger than the time constant of the plant dynamics (e.g. in the 

process industry) and can be easily allow the separation suggested in Equation 2:11.  In more 

complex processes with strong internal couplings between various channels and with delay 

terms comparable to fast dynamics (e.g. in the automotive industry) this may not be possible. 

The output of &.� is denoted as, 

���	� = �&.����	� (2:12) 

 

where &.� is assumed to be finite gain stable. Note that k signifies the explicit delay elements 

that have been extracted from the full nonlinear plant system. 

Nonlinear Output Sub-System: 

This sub-system is also nonlinear and is denoted as, 

�&�����	� = /&�������0�	� (2:13) 

 

where &�� is its delay-free notation (Grimble, 2005). 

The state-space representations for all subsystems shown in Figure 2:2 are shown in the 

following sections as described in (Grimble, 2007). In the following equations the r, d and 0 

indexes denote state-space matrices of the reference, disturbance and linear subsystems 

respectively. 

 

 



28 
 

Reference 

,1�	 
 1� = �1,1�	� 
 �1�1�	� 
(2:14) 2�	� = �1�	� = �1,1�	� 

Disturbance 

,#�	 
 1� = �#,#�	� 
 �#�#�	� 
(2:15) 3�	� = �#�	� = �#,#�	� 

Linear Plant Subsystem 

,��	 
 1� = ��,��	� 
 ��������	� 
 4����	� 
(2:16) ���	� = ��,��	� 
 ��������	� 

Cost-Function Error Weighting 

,5�	 
 1� = �5,5�	� 
 �5!�	� 

(2:17) �5�	� = �5,5�	� 
 �5!�	� !�	� = 2�	� − 3�	� − ���	� 

 

The index p denotes these signals are weighted by the Error Weighting term Pc. Substituting r, 

d and y0 from Equations 2:14 - 2:16 and expanding yields the following equations showing how 

all subsystems propagate to the overall system weighted output. 

,5�	 
 1� = �5,5�	� 
 �5 %�1,1�	� − �#,#�	� − ��,��	� − ��������	�) 

(2:18) �5�	� = �5,5�	� 
 �5 %�1,1�	� − �#,#�	� − ��,��	� − ��������	�) 

 

The above can be integrated in a unified augmented state-space system as shown below. This 

approach is always effective especially when programming model-based control algorithms in 

code. The augmented system matrices structure can be seen in detail in Chapter 4 in their LPV 

form. 

Augmented State-Space System Model 

,�	 
 1� = �,�	� 
 ����	 − �� 
 4��	� 
(2:19) ��	� = �,�	� 
 ����	 − �� 

 

where ��	� = ��	� 
 6�	� are the measurements and �5�	� = �7,�	� 
 �7���	 − ��  the 

output signal used within the cost function, with �7 and �7 being the combined � and � terms 

as described in (Grimble, 2007) (�7 = −�5��  and  �7 = −�5��). 
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As with most model-based control schemes formulated in state-space, states that cannot be 

measured are obtained via state estimators. For the NGMV formulation the Kalman Filter and 

Extended Kalman Filter (for the LPV formulation) is used for this purpose. The former is put 

into Predictor-Corrector form as introduced in (Grimble and Johnson, 1988) as shown below. 

Kalman Filter in Predictor-Corrector Form 

,��	 
 1|	� = �,��	|	� 
 �������	� (Predictor) 

(2:20) ,��	 
 1|	 
 1� = ,��	 
 1|	� 
 9(�!��	 
 1� − !̂��	 
 1|	�� (Corrector) 

where,  !̂��	 
 1|	� = �;,��	 
 1|	� − ��������	 
 1� 

 

Here A, B, and C matrices refer to the combined total linear state-space subsystem. x and e hat 

denote the state and error estimates respectively and the e index denotes the error 

subsystems expressed as a linear state-space model as well. Kf is the Kalman filter correction 

gain. Substituting from Equation 2:17 and expanding the Kalman Filter prediction equation is 

formulated as follows, 

,��	 
 1|	 
 1� = �,��	|	� 
 �������	� 
 9(�!��	 
 1� − ��;,��	 
 1|	�− ��������	 
 1��� 

(2:21) 
/�< − � 
 9(�;�0,��	|	�= �������	� 
 9(�!��	 
 1� − ��;�������	� − ��������	 
 1��� 

,��	|	� = %< − ��./� − 9(�;�0)�. =9( %!��	� 
 �����	 − ��
− �;�������	 − � − 1�) 
 ����	 − � − 1�> 

Using the Kalman Filter gain equations (Mayne et al., 2000) the estimated states of the 

augmented system can be formulated as follows, 

 ,��	|	� = ?(.���.�!��	� 
 ?(���.����	� 

(2:22) where the transfer-operators: ?(.���.� = %< − ��./� − 9(�;�0)�. 9( 

and  ?(���.� = %< − ��./� − 9(�;�0)�. ���/9(�� 
 ��./< − 9(�;0�0 

 

This formulation allows for the separation of the state estimates due to the stochastic input 

signals from the contribution of the control input as follows, 
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,��	 
 �|	� = ��,�#@AB�	|	� 
 ����.�����	�= ��/,��	|	� − ����.�����	 − ��0 
 ����.�����	�= ��,��	|	� 
 /< − ����.0����.�����	� 

(2:23) 

 

Φ here denotes an impulse response operator representing the stochastic disturbance 

component. The estimates for k-steps ahead can then be obtained as follows, 

,��	 
 �|	� = ��,��	|	� 
 ���.����	 − �� 
 �������	 − � 
 1�
. . . 
�����	 − 2�
 ����	 − 1� = ��,��	|	� 
 ?���, ��.�����	� 
(2:24) 

 

where  ?���, ��.�  is a transfer operator with the following impulse response, 

?���, ��.� = /< − �����0����.� = ��./< 
 ��.� 
 ���
. . . 
���E.���.0 

 

2.2.1 NGMV Optimal Control Law Derivation 

Revisiting the GMV cost-function, its nonlinear version can be defined as follows, 

� = �����	�� = �F��G�	��� �	�H = � I	2JK!F�� �	���G�	�HL (2:25) 

where, 

�� �	� = � !�	� 
 �� ���	� (2:26) 

 

In the NGMV case the control weighting can be, but not restricted to, a nonlinear dynamic 

control operator. It is important to remind here that system Equations 2:14 and 2:18 come into 

the cost function through the estimated error signal !�	�, and are only used in the derivation 

of the controller. 

Figure 2:3 provides a layout of the actual controller location in the control loop relative to the 

total plant and various subsystems. &1, &#, &��, and &.�  represent the reference, 

disturbance, linear plant and nonlinear plant subsystems respectively. The dotted lines signify 

that these signals are not real but only used in the theoretical derivation of the control law. As 

this depicts a general overview of the real implementation it also includes the total rather than 

the decomposed plant operators (Grimble 2005). 
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Figure 2:3 State-space NGMV controller and cost-function high-level structure. 

 

The starting point for the derivation of the NGMV optimal control is the calculation of the  ��   

signal. The first term  � !�	�  can be substituted with the relation for  �5  (recall: � !�	� =�7,�	� 
 �7�&.����	 − ��) derived in Equation 2:18. This yields the following relation 

recalling that  �7 = −�5��  and  ���	� = �&.����	�, 

�� �	� = �7,�	� 
 �7�&.����	 − �� 
 �� ���	� (2:27) 

 

Assuming that a common delay factor can be extracted out of the system then  �� ���	�  can 

be re-written, to reflect the delayed effect of an input to the output of the system by k-steps, 

as  ����� ����	�. The signal final form and k-steps ahead prediction take then the following 

forms respectively, 

�� �	� = �7,�	� 
 %/�7&.� 
 � �0�) �	 − �� (2:28) 

 �M��	 
 �|	� = �7,��	 
 �|	� 
 %/�7&.� 
 � �0) ��	� (2:29) 

 

The objective of the cost function is to minimise the variance of  �� �	 
 ��  or analytically �F�� �	 
 ��G�� �	 
 ��H. If ��   is put in terms of the prediction and prediction error then 

the NGMV cost-function can be written as follows, 
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� = �F�M� �	 
 �|	�G�M� �	 
 �|	�H 
 �F�N� �	 
 �|	�G�N� �	 
 �|	�H (2:30) 

 

Given that the term  �N� �	 
 �|	�  cannot be influenced by control, Equation 2:30  can be 

minimised by setting  �M�  terms to zero as shown below. 

�M��	 
 �|	� = �7,��	 
 �|	� 
 /�7&.� 
 � �0��	� 
(2:31) = �7,��	 
 �|	� 
 �7�&.����	� 
 � ���	� = 0 

 

Solving Equation 2:31 with respect to  �(	)  yields the following NGMV optimal control signal. 

�(	) = (−� �)�. %�7,�(	 + �|	) + �7(&.��)(	)) (2:32) 

 

Equation 2:32 provides an easy to implement form of the algorithm as the only guarantee 

required here is for the  � �  term to be invertible. This is reflected in the following diagram. 

 
Figure 2:4 NGMV controller implementation structure. 

 

The optimal control law can be alternatively written in terms of the current state estimate as 

shown below, in an alternative form more convenient for implementation. 

�(	) = −� ��. %�7��,�(	|	) + /�7?�(�, ��.)� + �70(&.��)(	)) (2:33) 

 

This can be implemented as shown in the following diagram. 
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Figure 2:5 NGMV controller and KF term implementation structure. 

 

2.2.2 NGMV Optimal Control Law Derivation 

Control design specifications and required performance, in the case of the NGMV strategy, are 

addressed via the appropriate definition of two weightings, Pc (error weighting) and Fck (control 

weighting). These weightings can be selected to be either dynamic or scalar. In the simplest 

case, the algorithm scales down to the Minimum Variance controller if the following 

weightings are specified. 

� = <  and  � � = 0 (2:34)  

 

However, the downside with this option is that it results into aggressive control action and 

poor robustness properties. Most importantly, as the Minimum Variance controller attempts 

to cancel the plant, the plant model must be stable and invertible. It is useful to mention here 

that the definition of weightings applies to both SISO and MIMO systems. The latter is 

achieved if a diagonal matrix is used for the related weighting. In this case each diagonal 

element reflects upon a corresponding input-output path in the system. As with classical 

control the control weightings for the NGMV can be selected relative to their impact upon 

different frequency ranges of the error and control signals. 

Although not present in the standard formulation, integral action can be added to the 

controller by defining the error weighting accordingly. As with classical control the concept 

here is the presence of high control gain in low frequencies both for providing steady state 

offset elimination and also good disturbance rejection. Integral action via the error weighting 

is achieved as follows. 

� = � "1 − ��. (2:35)  

 � "  can be defined as a scalar or of the form  � " = (1 − O��.)  where α can be selected to 

provide a faster roll-off for the integral action (this option however is not further explored in 
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this work). The error weighting can be dynamically tailored to provide high gain within a 

specific region or frequency. An example of this is seen in Chapter 5 where the error weighting 

is defined as a 2nd order system to provide accuracy within the band specified by the wave 

disturbance frequency. 

� �  is the control weighting, for a baseline design can be defined as a scalar or linear dynamic 

component that aims (as a lead term) at sufficient roll-off of the controller in high frequencies 

to avoid measurement noise amplification. In many cases, the selection of weightings relies 

upon a good understanding of the system properties and frequency response. A subsequent 

process of trial and error is usually in order, to achieve the specified performance. A method 

that can provide (in most cases) reasonable initial results, which relies less heavily on intuition, 

is suggested in (Grimble and Majecki, 2005) and described in the following section. 

 

2.2.2.1 PID Controller Structure Weighting Selection 

If a controller K0 exists that can stabilise the delay-free plant Wk, then the NGMV weightings 

that result into a stabilising controller can be defined as follows. 

 � = 9�  and  � � = −< (2:36)  

 

This is apparent in the nonlinear operator  (� &� − � �)  which determines the stability of the 

closed-loop system. For a linear and negative  � �  this operator can be written as follows. 

(� &� + � �) = � �(� ��.� &� + <) (2:37) 

 

The right-hand side term can be considered a return difference operator for the delay-free 

system with 9� = � ��.�   being the feedback controller. This way the stability of the inverse 

operator is directly related to the stability of the closed-loop. This provides the option to select 

the NGMV weightings according to the stabilising PID. The way this is achieved is by setting the 

NGMV weightings similar to the transfer (or state-space model) of the PID controller. 

This approach yields a good starting point in design, usually requiring final adjustments to 

achieve the specified performance. An advantage with this method is that stability is easier to 

achieve in initial design. To enhance the resulting controller a lead term can be added to 

provide the high-frequency controller roll-off that was discussed previously. 

 

STATE-SPACE NGMV FORMULATION TUTORIAL EXAMPLE 

In this basic state-space NGMV tutorial example the required steps to formulate the controller 

are described in more detail. Here a general SISO nonlinear plant is considered under the 

assumption that it can be effectively broken down into a linear and nonlinear subsystem. 

Firstly the dynamical equations of the nonlinear subsystem are shown below. 
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Nonlinear Plant Subsystem PQR: 

,S. = ,.,1 
 ,. 
 � 

,S = !��TUTV�V 
 � 

� = ,. 

 

This subsystem consists of smooth differentiable nonlinearities and the trajectories of the two 

states driven by the common input u over a period of time can be seen in the following graph. 

The left axis is scaled with respect to input variation whereas the right axis is scaled with 

respect to the variation of the states. 

 

Figure 2:6 System state trajectories for a step sequence input. 

 

Next the linear subsystem is defined. All of the following subsystems are discretised as 

necessary using the NGMV controller sample time mentioned above. 

 

Linear Plant Subsystem PW: 

,�XYU0.6,�X + ��  

��X = 0.6,�X + �� 

The continuous time step response of &� is seen in the following graph. 
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Figure 2:7 Linear plant sub-system step response. 

 

The linear state-space matrices are, 

�� = 0.6, �� = 1, �� = 0.6, �� = 1 

 

Next the linear disturbance and reference subsystems need to be defined similar to the GMV 

theory i.e. as the output of linear filters driven by white noise. 

 

Reference Subsystem P[: 

,1XYU = 0.9999,1X + 0.25�� 

�1X = 0.2,1X  

The linear state-space matrices are, 

�1 = 0.9999, �1 = 0.25, �1 = 0.2 

 

Disturbance Subsystem P^: 

,#XYU = 0.8,#X + 0.25�� 

�#X = 0.2,#X 

The linear state-space matrices are, 

�# = 0.8, �# = 0.25, �# = 0.2 
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The next step, important for the NGMV weightings selection, is to define an existing stabilising 

PID controller for that system. 

Existing PID Controller: 

The PID Proportional gain, Integral and Derivative time constants are defined as follows. 

95 = 0.1, ?@ = 4a, ?# = 0a 

 

Discretising with a sampling time of ?A = 1a results into the following discrete PID transfer 

function. 

�<4Gb = 0.125 − 0.1��.1 − ��.  

 

NGMV Error Weighting cd Definition: 

When using this transfer function as the error weighting �  it is recommended to slightly 

modify by adding a near-integrator term which results into a stable weighting. This is shown in 

the modified transfer function below. 

� efgh_jek = 0.125 − 0.09999��.1 − ��.  

 

This transfer function can easily be translated into state-space formulation as seen below. 

,5XYU = −0.0001,5X + 0.125�� 

�5X = 0.2,5X + 0.125�� 

 

The linear state-space matrices are, 

�5 = 0.9999, �5 = 0.125, �5 = 0.2, �5 = 0.125 

 

NGMV Control Loop Gains Calculation: 

The next step in the controller formulation is the derivation of the components of the optimal 

NGMV control law (see reminder below). 

�(	) = −� ��. %�7��,�(	|	) + /�7?�(�, ��.)� + �70(&.��)(	)) 
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These components as seen in Figure 2:4 are the following. 

• �7��, the linear term multiplied by the output of the Kalman Filter. 

• �7?���, ��.�� 
 �7, the linear loop gain. 

 

lmnR  Definition: 

Recall, 

�7 = o−�5�� −�5�# �5�1 �5p 
and  �7 = −�5�� 

 

Substituting the equivalent matrices results into, 

�7 = o−0.075 −0.025 −0.025 0.2p 

and  �7 = −0.125 

 

� is the state matrix of the augmented system state equation shown as follows. 

r,�,#,1,5
s

�E.
= r �� 0 0 00 �# 0 00 0 �1 0−�5�� −�5�# �5�1 �5

s r,�,#,1,5
s

�
+ r ��00−�5��

s 

 

Substituting the equivalent matrices results into, 

r,�,#,1,5
s

�E.
= r 0.6 0 0 00 0.8 0 00 0 0.9999 0−0.075 −0.025 0.025 0.9999s r,�,#,1,5

s
�

+ r 100−0.125s 

 

and for an arbitrary time-delay of k = 10 steps, 

�� = r 0.006 0 0 00 0.1074 0 00 0 0.999 0−0.1862 −0.1115 0.2498 0.999s 
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and 

�7�� = o−0.0377 −0.025 0.0749 0.1998p 
 

lmuW/R, v�Q0w + xm Definition: 

Recall the equation for the linear operator ?�(�, ��.), 

?�(�, ��.) = ��./< + ��.� + ���+. . . +���E.���.0 

 

This results into the following discrete polynomial4x4 transfer function matrix (dimensions of 

the augmented system A matrix). 

 

TF: In 1-> Out 1 

��. + 0.6�� + 0.36��y + 0.216��z + 0.129��{ + 0.0776��| + 0.0466��} + 0.0279��~+ 0.0168��� + 0.01��.� 

TF: In 1-> Out 2, 3 = 0 

TF: In 1-> Out 4 

−0.075�� − 0.12��y − 0.147��z − 0.1632��{ − 0.1729��| − 0.1787��} − 0.1822��~− 0.1842��� − 0.1855��.� 

 

TF: In 2-> Out 1 = 0 

TF: In 2-> Out 2 

��. + 0.8�� + 0.64��y + 0.512��z + 0.4096��{ + 0.3277��| + 0.2621��} + 0.2097��~+ 0.1678��� + 0.1342��.� 

TF: In 2-> Out 3 = 0 

TF: In 2-> Out 4 

−0.025�� − 0.045��y − 0.06099��z − 0.07379��{ − 0.08402��| − 0.0922��}− 0.09875��~ − 0.104��� − 0.1082��.� 

 

TF: In 3-> Out 1, 2 = 0 

TF: In 3-> Out 3 
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��. + �� + ��y + ��z + ��{ + ��| + 0.9994��} + 0.9993��~ + 0.9992��� + 0.9991��.� 

TF: In 3-> Out 4 

0.025 �� + 0.05��y + 0.07499��z + 0.09997��{ + 0.125 ��| + 0.1499 ��} + 0.1749 ��~+ 0.1999 ��� + 0.2248��.� 

 

TF: In 4-> Out 1, 2, 3 = 0 

TF: In 4-> Out 4 

��. + �� + ��y + ��z + ��{ + ��| + 0.9994��} + 0.9993��~ + 0.9992��� + 0.9991��.� 

 

Substituting into the loop gain equation results in the following gain. 

�7?�(�, ��.)� + �7= −0.125 − 0.1��. − 0.08499�� − 0.07599��y − 0.07058��z− 0.06734��{ − 0.06539��| − 0.06421��} − 0.06351��~ − 0.06308���− 0.06282��.� 

 

A standard Kalman Filter is utilised to obtain the state estimates within which the augmented 

plant model is used as described above. Optionally the weighted error state can also be used 

within the KF model. The combined NGMV terms can be seen in the following internal 

controller diagram. The Smith Predictor time-delay compensation similarity becomes clearer in 

this diagram with the use of a delay-free model of the plant. 

 

 

Figure 2:8 NGMV internal loop formulation. 

Kalman 

Filter 

NL Plant 

�� �7?�(�, ��.)� + �7 

��� 

�7�� �(	) 

�K�−1 

!�	� ,��	� � �	� 

− 

− 



41 
 

 

A simulation comparison between a baseline PID controller and the equivalent state-space 

NGMV using the same gains was formulated. An arbitrary setpoint trajectory was utilised to 

demonstrate the benefits of the NGMV as illustrated in the following graph. 

 

Figure 2:9 NGMV internal loop formulation. 

 

In this graph the NGMV is seen to maintain its tracking performance as the trajectory is moving 

across different operating regions whereas the PID deteriorates significantly in performance 

especially around 0. This is achieved thanks to the information available to the controller by 

the internal nonlinear model. 

 

2.3 An Introduction to Linear Parameter Varying Systems 

LPV systems could fall into the wider range of gain-scheduling methods however they differ, in 

that they represent dynamical systems and not static approximations around some operating 

points. The general formulation of an LPV system is shown below. 

 

,S�	� = �/��	�0,�	� 
 �/��	�0��	� 
(2:38) ��	� = �/��	�0,�	� 
 �/��	�0��	� 
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Where x, u, y are the state, input and output system vectors respectively and A, B, C and E 

state-space matrices now depend upon a time-varying parameter ρ. These systems are linear 

regarding their structure being that of an LTI system, but nonlinear in nature as the system 

matrices vary with time and depend on the realisation. Inter-state dependencies may also 

come through using the varying parameter to represent states. 

In literature these parameters are generally considered as bounded within a set of values �� 

(��: ℝ ≥ 0 → �5}) and have been used to represent the following. 

• An exogenous time-varying quantity. The assumption that this quantity can be 

measured in real-time is typically made here. 

• A system state. This usually reference to the case where the parameter is a function of 

a system state and hence endogenous. This category is more fit to gain-scheduled 

systems. 

 

The class of LPV systems as well as their stability properties depend upon the type of variation 

of the parameters such as, 

• Arbitrarily fast varying parameters. 

• Slowly varying parameters (in this case the rate of � is bounded within the derivative 

of the parameter set,  �S ∈ �S�). 

• Piecewise constant parameters, where the parameter is a piecewise constant �@, � = 1,2,3 …  . 

• Switched systems with N modes where the parameter represents discrete modes in 

which the system transitions and can be represented as  F�: ℝ ≥ 0 → {0,1}�: ∑ �@ = 1�@�. H. 

• Periodic systems in which the parameter, as the name suggests, varies in a period T 

(�(	) = �(	 + ?), 	 ≥ 0). 

 

LPV systems were initially conceived within the framework of gain-scheduling control design 

for nonlinear systems (Bruzelius, 2004) (an example in Balas, 2002). The LPV approach brought 

design a step closer to nonlinear systems representation and ahead of the gain-scheduling 

method of switching via interpolation, between a set of linear controllers produced based on 

linearization of the system at multiple points across the operating range. The exogenous vs. 

endogenous distinction becomes clear when classifying LPV systems formulations into general 

LPV or Quasi-LPV (qLPV). 
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Quasi-LPV Systems: 

This category refers to the approximation of nonlinear systems in which the varying parameter 

is representative of a system state (endogenous). A common example of this representation is 

illustrated in the following system. 

,S(	) = −,(	)y (2:39) 

 

with a possible qLPV shown below, 

,S(	) = −�(	),(	),   �(	) ≔ ,(	) ∈ ℝ (2:40) 

 

The representation in Equation 3:9 is asymptotically stable for every parameter � ≠ 0 

providing stability properties identical to the original nonlinear system. This however is not 

always the case with LPV approximation in general. It cannot be automatically assumed that 

they have equivalence with the original nonlinear system in terms of stability or any control 

related property. This class of LPV systems can also accommodate state-variables as being the 

varying parameters hence often providing a good approximation to the original nonlinear 

response. An important observation in the understanding of LPV systems is that their structure 

resembles that of Linear Time-Varying (LTV) systems. This is particularly useful in predictive 

control where this structure can be used to increase fidelity of future states and outputs 

generation. The latter is used within the wind turbine LPV-NPGMV example in Chapter 6.  

 

2.3.1 LPV, qLPV and State-Dependent Systems Relationships 

Depending upon the specific control group this theory is used, it can either be regarded and 

related to the state-dependent Riccati equation or the LPV design framework. Considering the 

process of deriving the control laws and design architecture, there is no obvious distinction 

between LPV, qLPV or state-dependent formulations. The main difference resides within the 

analysis of stability properties with LPV being a special form of time-varying linear system 

models, but qLPV and state-dependent formulations being true nonlinear system 

representations. 

There are indirect ways to approach the issue of stability avoiding in depth analysis of the 

system. An example of this can be found within the formulation of the model itself. Given a 

discrete-time state-space model approximation of a nonlinear system, if the A matrix can be 

derived as a function of the state x(t), then this matrix (denoted A(x(t))), can be approximated 

in a model for control design (referred to as the design model) as A(x(t-1)). The design model 

then becomes an LPV system. This simplifies some of the theoretical questions regarding the 

stability of an optimal control based on this design model.  It does not however avoid the 

problem of showing the system is stable on the true underlying nonlinear system.  This work 

focusses more on control design and this subtle difference in such models can be neglected. 

 



44 
 

2.3.2 LPV System Derivation 

This section describes two methods for obtain an LPV formulation from a nonlinear system. 

Emphasis is put on the second as it is the one used in application Chapter 6. 

 

Jacobian Linearisation: 

This method is making use of the Taylor-Series expansion, as it was described in Chapter 1 

(linearisation) to approximate the nonlinear system at specific operating points. This process 

can be carried out at multiple equilibrium points (assuming they exist) which then will define 

the operating region for the LPV model. As mentioned previously the transition between 

different equilibrium points can be achieved by interpolation. The equilibrium points can be 

determined by solving  ,S = 0. For the LPV case consider, as previously ρ, as the varying 

parameter. An equilibrium point  (��(,�5, ��5) � ,S�5 = 0) can be derived as follows, 

�/,�(	, �), ��(	, �)0 = 0 (2:41) 

 

The plant model can then be defined in the following small changes LPV form, 

�,S�(	)��(	)� = ��(�) �(�)�(�) 4(�)� �,���� (2:42) 

where, 

�(�) = ���, /,�(	, �), ��(	, �)0,        �(�) = ���� /,�(	, �), ��(	, �)0 

(2:43) �(�) = ���, /,�(	, �), ��(	, �)0,        4(�) = ���� /,�(	, �), ��(	, �)0 

 

The process then follows the steps mentioned above which is the determination of a set of 

equilibrium points across a continuous or discrete operating trajectory within which the 

corresponding LPV controllers will be designed and switched via interpolation. Note here the 

similarity of this approach to that of gain scheduling mentioned previously. This implies similar 

issues regarding stability properties and performance as well. 

 

Modified Jacobian Linearization: 

Unlike the previous approach, modified Jacobian linearization is not restricted to equilibrium 

points. In this approach linearization of the nonlinear system can be performed at any 

operating point  ��(,�5, ��5), in other words producing a linear approximation at any point 

across the operating trajectory. The difference becomes more apparent if put into context of 

the Taylor-Series expansion seen below. 
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�(,, �) = �(,�, ��) + ���, (,�, ��)(, − ,�) + ���� (,�, ��)(� − ��) (2:44) 

 

In this case the first term (free response component) on the right hand side can be non-zero 

when linearization is not performed at equilibrium. The LPV model can be then written as 

follows, 

,S(	) = �(,�, ��) + ���, (,�, ��)(, − ,�) + ���� (,�, ��)(� − ��) (2:45) 

 

The free response term can be expanded to provide more intuitive implementation as follows, 

,S(	) = =�(,�, ��) − ���, (,�, ��),� − ���� (,�, ��)��> + ���, (,�, ��), + ���� (,�, ��)� (2:46) 

 

The previous equation can be put in an LPV form as follows, 

,S(	) = 3�(�) + ��(�), + ��(�)� (2:47) 

 

where  3�(�) can be seen as a disturbance term. Improvement in accuracy with this method, 

lies in that  (,�, ��)  can be derived from the previous sample instant. The main advantage 

here is the utilisation of the original nonlinear system equations for the derivation of the linear 

approximation. 

 

2.3.3 NGMV Applied to LPV Systems 

The NGMV controller for LPV systems can be derived following the same type of analysis as 

will be followed in later sections. However, the solution and structure should be fairly obvious 

since the later NPGMV controller is derived using the LPV model and NGMV for such systems is 

just a special case. The formulation of the LPV-NGMV control problem follows directly from 

the LPV-NPGMV derivation. This will be discussed in more detail after the LPV-NPGMV has 

been described in Section 4.4.2. 



46 
 

 LPV-NGPC Structure Chapter 3

In the initial part of this chapter the Nonlinear Predictive Generalised Minimum Variance 

(NPGMV) algorithm is presented as a combination of the concepts described in Chapter 2 and 

the Nonlinear Generalised Predictive Control scheme. Based on the NPGMV derivation, the 

algorithm is then adapted, at the second part of the chapter, to a further evolution which is 

designed to work with Linear Parameter Varying (LPV) systems. A brief overview of this system 

formulation, which is used to approximate nonlinear systems, is also provided. The chapter 

consists of the following sections: 

Section 1 – An Introduction to Nonlinear Predictive Control; an overview of the main principles 

and aspects of the Nonlinear Generalised Predictive Control scheme. An overview of the linear 

Generalised Predictive Control scheme is also provided. 

Section 2 – Nonlinear Generalised Predictive Control Derivation as the basis for the LPV-

NPGMV algorithm formulation. 

 

3.1 An Introduction to Nonlinear Predictive Control 

This section provides a brief introduction the concept of Nonlinear Predictive Control (NMPC) 

and sets the basis on which the LPV-Predictive paradigm will be analysed in the last section of 

the chapter. For consistency with the algorithm structures described so far, only the state-

space formulation of the NL MPC is explored. 

 

3.1.1 Overview of the MPC Concept 

Early developments on the concept of predictive control are traced back to the revolutionary 

approach on optimal state-feedback control by Kalman and following methodologies of LQR 

and LQG controllers. In all these approaches a cost function was involved in which output 

errors and control actions were penalised and the optimal control inputs to the plant where 

computed with respect to the minimisation of that function. This framework allowed both 

tracking and regulating processes to be dealt with whilst control effort was maintained within 

a specified acceptable range at the same time. Various practical extensions to these schemes 

were addressed over the years, like the addition of integral action and direct control of plant 

outputs by modifying the cost-function. Practical limitations in real applications however 

motivated the work behind a predictive control methodology which should be able to address 

the following issues (Richalet et al., 1978). 

• Input, state and output constraints; in the vast majority process variables are only able 

to vary within certain limits. Apart from physical limitations this may be the result of 

design as it has been shown that many industrial processes yield greater economic 

benefits when operating near constraints. 
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• Process nonlinearities; the internal plant models that are required within these 

methodologies are linearised across a subset of the full range of operation which limits 

performance and stability conditions. 

• Model uncertainty; deviations between the actual process and its mathematical 

representation due to model mismatch or unmodelled noise and process disturbances 

can also add to the deterioration of the control solution. 

 

In early applications and especially in the process industry, MPC strategy started as the 

supervisory control module and was located in the higher level of a hierarchical structure. 

Within this framework the MPC controller functioned more like an optimiser (off-line in cases), 

that determined the optimal setpoints for the low level control loops (usually simple PID, Lead-

Lag controllers). This setpoint computation was often based on plant economics and other 

slow varying factors whereas control at the low level dealt with faster dynamic components 

(valves etc.). An example of this architecture can be seen in the following figure. 

 

 

Figure 3:1 MPC within a hierarchical process control structure. 
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Figure 3:2 MPC and classical control within a hierarchical process control structure. 

 

Initial practical developments on MPC methodology were done by groups led by Richalet 

(IDCOM), Cutler and Ramaker (DMC) (Cutler and Ramaker, 1980). The first involved impulse 

response models identified from open-loop tests to generate predictions, considered input 

and output constrains into the optimal solution which is calculated using an iterative algorithm 

and noted as the mathematical dual of identification. Richalet’s group emphasised the 

importance of using the MPC scheme within a control hierarchy, in this case though in a more 

dynamical sense between the optimiser and the low level controls (Richalet, 1993). The second 

approach involved linear step response models for the same purpose, and used a least-squares 

cost-function solved within a finite horizon. Both schemes could be employed for either SISO 

or MIMO systems and were able to provide both tracking of a future trajectory whilst 

regulating the aggressiveness of control by applying sufficient weighting on control moves. The 

second however in its initial development did not considered constraints in its least-squares 

solution. Further development by Shell led to the QDMC by reformulating the DMC as a 
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quadratic programing (QP) problem which dealt with constraints explicitly (Garcia and 

Morshedi, 1986). 

According to (Qin and Badgwell, 2003) more than 4500 applications are reported to use MPC 

based schemes by 2003 ranging from process to aerospace industries. Theoretical and 

implementation issues have been thoroughly investigated in (Qin and Badgwell, 2003). Very 

useful research that adequately covers the subject of linear MPC can be found in (Morari and 

Lee, 1999), (Bitmead et al., 1990), (Camacho and Bordons, 1998) and (Maciejowski, 2002). 

A break through the MPC approach offered was a good alternative to address the difficulty in 

solving a stabilising feedback control problem that minimises a cost-function subjected to 

constraints. This difficulty lies in that oftentimes an analytical closed solution is not possible. 

The MPC methodology, in conjunction with the receding horizon strategy, approaches this by 

solving an open-loop optimisation problem and implementing the first element of the 

computed controls sequence repeatedly at each iteration (Kouvaritakis et al., 2000). It is a 

natural consideration that such an approach will increase the computational burden of the 

algorithm and this can be especially a problem in the case of systems with fast dynamics and 

large number of states. 

To summarise the MPC philosophy involves solving on-line an open-loop finite horizon 

quadratic optimal control problem subject to input, state and/or output constraints. At each 

iteration k of the algorithm, current inputs sequence and measured variables are used within 

an internal discrete mathematical model of the process which is used to predict the response 

of the system at future times. This prediction is computed over a specified time window in 

discrete steps (Prediction Horizon Np) and used within the quadratic MPC cost-function 

(Findeisen and Allgöwer, 2002). The latter is then minimised with respect to the optimal 

controls vector that achieves this objective subject to constraints. The length of the optimal 

controls vector is defined as the Control Horizon Nu. The Receding Horizon principle is then 

employed according to which only the first element of the computed optimal sequence of 

controls is applied to the plant and this sequence of steps is repeated at the next iteration, for 

the updated state. The solution of this dynamic optimisation problem at each iteration, is an 

advantageous trait when it comes to compensating for uncertainties due to model mismatch, 

disturbances or noise that may be present in the process. It is actually by this principle that 

feedback is indirectly implemented in the MPC solution. A graphical illustration of this concept 

is shown in Figure 3:3. 

The linear class of MPC algorithms has been found to perform adequately mostly in relatively 

simple slow varying processes and being able to handle both soft and hard constraints where 

these apply. However, with the increasing complexity of processes and constraints set by more 

demanding designs and regulations, a control solution is required to be able to operate the 

system in a wide range of conditions. This, coupled with the inherent nonlinear characteristics 

of most real-life processes, motivates the development of more generic control schemes able 

to accommodate these requirements. 
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Figure 3:3 The MPC strategy in a nutshell. 

 

3.1.2 Motivation towards Nonlinear MPC (NMPC) 

The nonlinear class of MPC (NMPC) algorithms as the name suggests, unlike linear schemes 

that use linear models to generate predictions or considers linear constraints etc., uses 

nonlinear models or even nonlinear constraints in the optimal solution. The main motivation 

behind NMPC is the development of schemes that could deal with either linear systems with 

input, output and state constraints or systems that are inherently nonlinear. Systems that 

exhibit non-minimum phase behaviour (i.e. have unstable zeros), introduce another difficulty 

in control design in which case, regardless of a linear or nonlinear approach, oftentimes a 

separate closed-loop design to deal with that specific region where the unstable zero lies is 

inevitable (Cannon and Kouvaritakis, 2002). 

Given that the core strength of nonlinear approaches lies on the model fidelity a notable 

difficulty that immediately springs is that of developing an adequate nonlinear model for 

control design. These models can be obtained either via first principle modelling or other 

methods (where first principle equations are not available, high order or difficult to 

implement) like black-box identification (Murray-Smith and Shorten, 2005). Oftentimes a 

combination of both yields efficient models for this purpose and this is known as grey-box 

modelling. There are also approaches that use Neural Networks, Fuzzy Logic etc. (Qina and 

Badgwel, 2003). 
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NMPC approaches include off-line optimisation like neighbouring extremals in which a full 

solution of the optimal control problem is derived off-line and explicit schemes where a series 

of approximations are precomputed across the operating range and the appropriate controller 

is chosen based upon the current position of the system state. This approach poses obvious 

computational complexity when the system has a very large operating range and/or large 

number of states. 

 

3.1.3 NMPC Mathematical Formulation 

A brief overview of the mathematical basis that all MPC schemes derive is provided in this 

section. Since the development of the NPGMV is influenced greatly by the Nonlinear 

Generalised Predictive Control (GPC) scheme, this description is intentionally geared towards 

the latter. The main aspects and requirements behind an MPC scheme are as explained in 

(Findeisen and Allgower, 2002), 

• NMPC allows the direct use of nonlinear models for prediction. 

• NMPC allows the explicit consideration of state and input constraints. 

• In NMPC a specified time domain performance criterion is minimized on-line. 

• In NMPC the predicted behaviour is in general different from the closed-loop 

behaviour. 

• For the application of NMPC typically a real-time solution of an open-loop optimal 

control problem is necessary. 

• To perform the prediction, the system states must be measured or estimated. 

 

Some of the most important consideration behind design of an MPC strategy as mentioned in 

(Findeisen and Allgower, 2002) are summarised below. 

• Method by which the predictions are generated. 

• Type of cost-function which implements the optimisation problem. 

• Method or algorithm used for the optimisation problem solution. 

• Initial conditions selection as a starting point for the optimal solution. 

 

The last point is very important in nonlinear processes. The reason is that the cost-function 

being non-convex can have multiple minima in which case the selection or initial conditions 

guess is a crucial criterion for convergence of the algorithm. 
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The general formulation of an NL MPC scheme process can be described starting with the 

generic form of a nonlinear process captured by the following discrete time invariant state and 

output equations. 

,�	 
 1� = �/,�	�, ��	�0 
(3:1) ��	� = �/,�	�0 

 

where �, � ∈ � are functions that describe nonlinear dynamics under the assumption that ��0,0) = 0. The system described by Equations 3:1 is assumed to be causal (i.e. the feed-

through term is zero). If constraints are present these can be represented with the following 

vectors relative to control effort u, state x and output constraints respectively. 

� = o��@", ���Tp, � = o,�@", ,��Tp, ' = o��@", ���Tp 
(3:2) 

with ��@" ≤ �(	) ≤ ���T ,�@" ≤ ,(	) ≤ ,��T ��@" ≤ �(	) ≤ ���T 

 

If the constraints vector occupies the entire space (i.e. � = +�) then the system is considered 

unconstrained whereas if it is a subspace (i.e. � ⊆ +�) then the system is considered 

constrained. Similar to the linear MPC the objective here as well is to derive the optimal 

control moves vector �∗ that minimises the following cost function (in discrete time) subject 

to the above constraints within a finite horizon Np (	 ∈ o	�, 	�E�p). 
min¤ = ¥ �(,�BE@, �BE@)�¦�.

@��  (3:3) 

 

where ,�BE@ is the vector of future state predictions and �BE@ the vector of future control 

actions. At present time t the controller uses the available measurements to generate 

predictions of the system states and outputs within a specified prediction horizon Np. These 

can be described by the following relations, 

,�(	 + 1|	) = �/,�(	), �(	)0 
(3:4) ��(	|	) = �/,�(	)0 

 

In an ideal scenario without model mismatch and/or disturbances these predictions would 

match the output of the real process. In reality this is never the case, therefore the mismatch 
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manifests as the discrepancy between the model and real plant outputs  !B = �B − ��B|B. This 

error is mitigated via the resulting optimal controls vector  o�B , �BE., … , �BE�¦p. 
In Section 3.3 a form of Nonlinear GPC is discussed on which the later LPV-NPGMV formulation 

is based. Firstly, it would be useful to include an overview of LPV systems, to allow for a more 

intuitive progression into the derivation of the LPV-NPGMV control law. 

 

3.2 An Introduction to Generalised Predictive Control (GPC) 

A brief description of the state-space formulation of the linear GPC algorithm, as introduced in 

(Clarke et al., 1987), is provided in this section. The GPC algorithm is available both in 

polynomial and state-space formulations, only the latter is however considered here as this is 

also the framework used for the various NGMV versions. 

As an alternative representation to Transfer Functions a linear time-invariant system can be 

described by static matrices and a number of integrators depending upon the number of the 

internal system states. There are a few advantages in using this representation such as being 

able to seamlessly extend to MIMO systems and utilise simple matrix algebra within 

sophisticated control laws. Another advantage of the state-space formulation and specific to 

the GPC is that it can be conveniently used to generate future predictions of the response of 

the system and hence the future errors (difference between predicted trajectory and 

predicted response) which are required for the derivation of the predictive algorithm. 

Let us assume a linear state-space system described by the following equations: 

,(	 + 1) = �,(	) + ��(	) + �§(	) 

�(	) = �,(	) + §(	) 
(3:5) 

where §(	) is a general stochastic component which can be used to represent process 

uncertainties when multiplied by G and measurement noise when added to the output of the 

system. The one step ahead output prediction can be obtain using this equation as follows. 

One-step Ahead Prediction: 

��(	 + 1) = �,(	 + 1) + §(	 + 1) 

                                      = ��,(	) + ���(	) + ��§(	 + 1) 

 

Note it is y hat since it is an estimate of what we think y is going to be. Here we assume that 

we cannot measure or predict w terms into the future and therefore the best prediction is to 

simply set them zero (a disturbance model could be incorporated if available). This equation 

can now be used to obtain the two step ahead prediction and so on. 
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free response forced response 

�B,� ¨� 

Two-step Ahead Prediction: 

��(	 + 2) = �,(	 + 2) + §(	 + 2) 

                 = ��,(	 + 1) + ���(	 + 1) + ��§(	 + 1) + §(	 + 1) 

                 = ���,(	) + ����(	) + ���§(	) + ���(	 + 1) + ��§(	 + 1) + §(	 + 2) 

 

This procedure is summarised in the following generalised expression for the j-step ahead 

prediction. 

 

j-step Ahead Prediction: 

��(	 + ©|	) = ��ª,�(	|	) + ∑ ��ª�"��(	 + « − 1) + ��ª�.�/�(	) − �,�(	|	)0ª"�.  

 

 

This predictions equation has two parts: 

• Free response – the component that can’t do anything about (left-most and right most 

terms). 

• Forced response – the component that is determined by inputs to j-steps into the 

future (middle term). 

Note that it is x hat since states are often not measurable and estimated using a Kalman Filter. 

This places restrictions on systems to which it can be applied i.e. they must be controllable and 

observable. 

These predictions for steps j = 1 , … , N+1 in the future are stacked together to form a single 

matrix equation as shown below. 

 

'¬B,� = r ���⋮���s ∙ (� − ��),�(	|	) + r ���⋮���s ∙ ��(	) + r ����� 0⋮���� ����.� ⋯ ��s ∙ �B,� 
(3:6) 

 

 

'¬B,� = �B,� + ¨��B,� (3:7) 
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where 

'¬B,� = ° ��(	 + 1|	)⋮��(	 + ± + 1|	)² J«3 �B,� = ° �(	)⋮�(	 + ±)² 

 

An optimal controller can then be calculated by substituting this matrix equation into the cost 

function, and solving to minimise J(t) as given by the following expression. 

�B = ¥ �/�(« + 1) − 2(« + 1)0G³́;/�(« + 1) − 2(« + 1)0 + /�(«)0G³́¤/�(«)0�BE�
"�B  (3:8) 

 

and re-written using vector notation, 

�B = /'¬B,� − +B,�0G³;/'¬B,� − +B,�0 + �B,�G ³¤�B,� (3:9) 

 

where ³; is the matrix of error weights and ³¤ the matrix of control weights. By setting its 

derivative to zero the GPC optimal future control is obtained as given below. 

�B,� = (¨�G³;¨� + ³¤)�.¨�G³;/+B,� − �B,�0 (3:10) 

 

Observe that the first part of the expression (including the difficult inversion) up to /+B,� −�B,�0 is fixed i.e. ¨� is fixed and �B,� is simply a fixed matrix multiplications of states x and y 

hence a fixed gain controller. Also remember that a Kalman Filter for doing state estimates is 

simply a fixed gain filter as well. In the following section GPC is used as a basis for the 

nonlinear predictive control scheme proposed here which utilises LPV systems. 

 

3.3 Generalised Predictive Control (GPC) for LPV Systems 

This formulation for the NGPC is based upon previous work in (Sznaier et al., 1998). Here 

however the decomposition of the plant that was suggested in (Grimble, 2005) is used. The 

linear part of the plant is used for predictions generation whereas the nonlinear part is used as 

a nonlinear compensation term. The starting point here is the GPC basic quadratic cost-

function as shown below in discrete time. 

� = �{¥ !5(	 + � + ��)G!5
�¦
@�� (	 + � + ��) + µ@��(	 + �)G��(	 + �)¶	} (3:11) 

 



56 
 

E is the conditional expectation on measurements up to time t and  µ@   is a scalar control 

weighting. In this case the error signal !5 represents the weighted error signal. The 

optimisation problem is solved to yield the optimal controls vector within the prediction 

horizon Np as discussed in the previous sections. Similar to what was mentioned in Chapter 2 

basic state-space NGMV formulation the error weighting can be a dynamic weighting function 

instead (i.e. a transfer function or state-space model instead of a scalar weighting factor). 

Equation 3:11 can be now put into vector form as follows, including the k0-steps ahead delay 

between an input and its effect on the output and hence the error. 

� = �{�B} = �F�·BE�¸,�G �·BE�¸,� + �B,��G ³� �B,�� |	H (3:12) 

 

where �·BE�¸,� is the vector of future errors (i.e. within prediction horizon N) and �B,��  the 

vector of future control actions. The next step is to substitute �·BE�¸,� = �¬·BE�¸,� + �¹·BE�¸,� 

(as it will be shown later in Chapter 4) where �¬·BE�¸,� is the vector of predicted weighted error 

signals and �¹·BE�¸,� error estimates vector obtained by the Kalman filter (the detailed 

derivation for the estimates is found in Chapter 4). The Kalman filter is used as here it is 

assumed that the states are not available and hence need to be estimated. 

� = �F(�¬·BE�¸,��¹·BE�¸,�)G(�¬·BE�¸,��¹·BE�¸,�) + �B,��G ³� �B,�� |	H (3:13) 

 

The weighting factor Λ in the above equation is a diagonal matrix of the form, 

³� = 3�J�{µ�, µ., … , µ� } 

Noting that �¬  and �¹  are related by orthogonality then Equation 3:13 can be further simplified 

and written as follows, 

� = �¬·BE�¸,�G �¬·BE�¸,� + �B,��G ³� �B,�� + �� 
(3:14) 

where,  �� = �F�¹·BE�¸,�G �¹·BE�¸,�|	H (3:15) 

 

The estimated error �¬·BE�¸,�G  can now be expanded as follows. This along with the predictions 

generation procedure is analytically summarised in the following section. 

�¬5BE�¸,� = 45BE�¸,� + �5BE�¸,��BE�¸,�,�(	 + ��|	) + º5BE�¸,����B,��
= 4N5BE�¸,� + º5BE�¸,����B,��  

(3:16) 

where 

4N5BE�¸,� = 45BE�¸,� + �5BE�¸,��BE�¸,�,�(	 + ��|	) (3:17) 
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and  º5BE�¸,� = �5BE�¸,��5BE�¸,� + �·BE�¸,� 

 ��  is a control signal shifting term that depends upon the presence of a delay in the loop and 

will be explained further in Chapter 4. 

The cost-function can be now expanded as follows, 

� = /4N5BE�¸,� + º5BE�¸,����B,�� 0G/4N5BE�¸,� + º5BE�¸,����B,�� 0 + �B,��G ³� �B,�� +��
= 4N5BE�¸,�G 4N5BE�¸,��B,��G ��Gº5BE�¸,�G 4N5BE�¸,� + 4N5BE�¸,�G º5BE�¸,����B,��
+ �B,��G /��Gº5BE�¸,�G º5BE�¸,��� + ³� 0�B,�� + �� 

(3:18) 

 

and the final form will be, 

� = 4N5BE�¸,�G 4N5BE�¸,� + �B,��G ��Gº5BE�¸,�G 4N5BE�¸,� + 4N5BE�¸,�G º5BE�¸,����B,��
+ �B,��G �BE�¸,��B,�� + �� 

(3:19) 

where 

�BE�¸,� = ��Gº5BE�¸,�G º5BE�¸,��� + ³�  (3:20) 

 

Similar to the procedure followed previously the gradient of the cost-function is set to zero in 

order to solve with respect to the optimal control vector �B,�� . Note that  �� is independent of 

the control action. 

 

Optimal Control: The optimal solution is shown in the following equation. 

�B,�� = −�BE�¸,��. ��Gº5BE�¸,�G %45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�) (3:21) 

 

The receding horizon principle is then implemented as discussed previously and only the first 

element form the optimal vector �B,��  is applied to the plant. 

  



58 
 

 LPV-NPGMV Control Chapter 4

Derivation 

As with the NGMV controller being a model based control scheme, the structure of the plant 

plays a significant role in the formulation of the control algorithm and its performance. At this 

point the reader should be reminded that one of the main scopes of this work is the delivery of 

a practical and easily implementable control solution in the most generic form, which will be 

able to accommodate a large class of systems. In this chapter an extension to the Nonlinear 

Predictive Generalised Minimum Variance Controller is introduced, to make the algorithm 

compatible with Linear Varying Parameter systems (LPV). This approach is motivated by the 

intention to enhance the generality of the NGMV algorithm by making it applicable to a wider 

range of nonlinear systems that can be represented as LPV. 

 

4.1 Controller and Subsystems Architecture 

Following a similar sequence for the derivation, the structure of the overall controller and 

subsystems needs to be defined at an early stage. This will help understanding of its 

formulation and will reduce implementation time when adapting into different systems. At this 

point the reader should be reminded that one of the main scopes of this work is the delivery of 

a practical and easily implementable control solution, in the most generic form, which will be 

able to accommodate a large class of system structures. 

The basic NGMV control structure is used as a common ground for this work and reviewed in 

Figure 4:1. The structure elements in red are components related to the plant model. The 

latter, as seen here, is the decomposition of the full nonlinear plant into a general nonlinear 

operator W1k and an LPV approximation W0. The nonlinear operator can be considered to 

include unmodelled nonlinearities, represented as input nonlinearities, whereas the LPV sub-

system can be used to accommodate LPV approximations of parts of the plant that can be 

approximated and also disturbance and reference models, all put into an augmented LPV sub-

system structure as seen in Equation (4:1. In this equation A, B and C denote the state-space 

matrices for the LPV plant subsystem (subscript: 0), reference linear subsystem (subscript: r) 

and disturbance linear subsystem (subscript: d). An example of the later is seen in Chapter 6 

where the augmented wind turbine LPV system is formulated. 

 

33	 °,�,#,1 ² = °�� 0 00 �# 00 0 �1² °,�,#,1 ² 
 °�� 0 00 �# 00 0 �1² °���#�1 ² 

(4:1) � = o�� �# �1p °,�,#,1 ² 
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Figure 4:1 Feedback Control Structure the NPGMV formulation is based on. 

 

The signals and subsystems in Figure 4:1 are explained in the following sections. 

Input Signals: 

r(t) : Vector of known reference or setpoint values. 

d(t) : Vector of known output disturbance signal values. 

v(t) : Vector of measurement noise values. 

 

The reference, disturbance and noise signals can alternatively be implemented as the outputs 

of linear transfer functions driven by white noise. This is possible in the case the dynamical 

characteristics of the signals are known and it allows a more generic formulation which can 

accommodate both stochastic and deterministic components for these signals to improve the 

fidelity of the model. This is shown more clearly in the next section and in Figure 4:2. As in the 

previous chapter, here as well it is assumed that these signals will have zero mean and 

constant covariance matrices without loss of generality. 

Control Signals: 

u(t) : Vector of control signals applied to the nonlinear subsystem. 

u0(t) : Vector of control inputs to the LPV subsystem. 

 

Output Signals: 

y(t) : Vector of plant output signals. 

z(t) : Vector of output measurement signals. 
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The measurements or observations signal results by adding measurement noise v(t) to the 

measured outputs of the plant; z(t) =  y(t) +  v(t). 

Error Signal: 

e(t) : Vector of tracking error signals. 

 

This is the signal also used within the NPGMV controller cost-function and is the difference 

between the reference input and the measurements of the plant outputs to be controlled; 

e(t)= r(t) – z(t). 

The subsystems in Figure 4:1 are explained in the section below. 

Nonlinear Input Sub-System: 

This sub-system is described by the following notation, 

�&.���	� = ����&.����	� (4:2) 

 

and the output of &.� is denoted as, 

���	� = �&.����	� (4:3) 

 

as described in Chapter 2. 

Nonlinear Output Sub-System: 

This sub-system is also nonlinear of an LPV form and is denoted as, 

�&�����	� = /&�������0�	� (4:4) 

 

where &�� is its delay-free notation. Unlike the assumption made in the previous chapter 

regarding the stability of the nonlinear operator (being open-loop stable), here it is possible 

that an open-loop unstable system is represented within the LPV plant sub-system. The 

decomposition of the overall plant into its components, including the various signals in more 

detail, is illustrated in the following figure. Here the disturbance terms are shown to consist of 

a stochastic ξ(t) and a deterministic component ddet(t) influencing the state of the system 

(process disturbance) and a deterministic component dmeas(t) influencing the output of the 

system (load disturbance). The weighted system output yp(t) is also shown as it is used in the 

formulation of the weighted error to be penalised within the controller cost-function as shown 

in Figure 4:1. 
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Figure 4:2 Expansion of the plant model, internal to the LPV-NPGMV controller, into its 

nonlinear/LPV and disturbance components. 

 

Nonlinear Output Sub-System (LPV Expansion): 

The LPV output sub-system is assumed to have the general structure as shown below. 

,��	 
 1� = �����,��	� 
 ��������	 − �� 
 4������	� 
 3#�	� (4:5) ��	� = �����,��	� 
 ��������	 − �� 
 3�	� (4:6) ��	� = ������,��	� 
 ���������	 − �� 
 3�	� 
 6�	� (4:7) 

 

dd and d are used here to denote deterministic disturbance components added to the states 

and the output of the LPV subsystem respectively and z the output measurement (added noise 

component v). These both stochastic and deterministic disturbance components are used in 

this part of the formulation to demonstrate the flexibility in model structure used within the 

control algorithm. The parameter ρ can vary with time and the input of the system (i.e.  �/	, ���	 − ��0). We can slightly simplify notation by replacing the state matrices in the 

following manner. 

�B = �� %�/	, ���	 − ��0) (4:8) 
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Equations 4:5 and 4:7 then become, 

,��	 
 1� = �B,��	� 
 �B���	 − �� 
 4B��	� 
 3#�	� (4:9) ��	� = �B,��	� 
 �B���	 − �� 
 3�	� (4:10) ��	� = �B»,��	� 
 �B»���	 − �� 
 3�	� 
 6�	� (4:11) 

 

The various components in these equations can be clearly seen by expanding the systems in 

Figure 4:2 a step further as shown in Figure 4:3. The subscript t indicates that the matrices will 

now vary with time as the parameter they are dependent upon is changing. 
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Figure 4:3 Generalised LPV Subsystems expansion 

 

The weighted error ep equation is shown below. 

!5�	� = 35�	� 
 �5B,�	� 
 �5B���	 − �� (4:12) 

 

dp again here is a deterministic disturbance component added to the error weighting dynamic 

subsystem to enhance generality in the model. Note in Figure 4:3 that disturbances are broken 

down into their stochastic and deterministic components. Similar to the derivation that was 

explained in Chapter 2 each of the reference, disturbance and error weighting subsystems 

illustrated in the figure can be modelled individually in a state-space manner to compliment 

the LPV nonlinear dynamics. The only difference in this section is the plant linear subsystem 
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equivalent being replaced by an LPV formulation. The derivation in which importance is given 

here is the augmented model of the later sub-system. 

 

Augmented System Derivation: 

The overall sub-system in state-space form will be a multivariable  « × ½ system (i.e. n 

number of outputs and m number of inputs) that consists of the plant LPV dynamics, the 

disturbance and weighted error state-space models, integrated into a complete augmented 

representation. This model will be a function of control and the varying parameters 

(considered in the LPV formulation ����	 − ��, ��	��. The new state vector will be, 

, = °,�,#,5² (4:13) 

 

where x0, xd and xp are the state vectors for the LPV, disturbance and error weighting 

subsystems respectively. For simplicity from this point onwards the LPV sub-system matrices 

will be denoted as shown in Equations 2.15 - 2:17 (A0, B0, C0 etc.). The augmented system 

matrices are shown below. 

� = ¾ �� 0 00 �# 0−�5�� −�5�� �5¿ , � = ¾ ��0−�5��¿ , 4 = °4� 00 4#0 0 ² (4:14) 

+ = °< 00 00 �5² , � = o�� �# 0p, � = �� (4:15) 

�5 = o−�5�� −�5�# �5p, �5 = −�5�� (4:16) 

 

Note here that the reference r(t) and disturbance d(t) signals are deterministic signals and for 

the purpose of this formulation can be defined as follows, 

3# = � 3�#(2 − 3)� , 35 = �5(2 − 3) (4:17) 

 

Moreover the combined noise vector can be defined as follows, 

6 = � �À� (4:18) 

 

The augmented system state equations can be defined by using Equations 4:8 and 4:18 as 

follows, 
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¾,�(	 + 1),#(	 + 1),5(	 + 1)¿ = ¾ �� 0 00 �# 0−�5�� −�5�� �5¿ ¾,�(	),#(	),5(	)¿ + ¾ ��0−�5��¿ ��(	 − �) 

 

+ °4� 00 4#0 0 ² � �(	)À(	)� + °< 00 00 �5² � 3�#(	)(2(	) − 3(	))� 

(4:19) 

 

Similarly the error equation can be defined as follows, 

!5(	) = o−�5�� −�5�# �5p ¾,�(	),#(	),5(	)¿ − �5����(	 − �) + �5/2(	) − 3(	)0 

 

= 35(	) + o−�5�� −�5�# �5p ¾,�(	),#(	),5(	)¿ − �5����(	 − �) 

(4:20) 

 

Note here that the output equation is omitted as the system output is ustilised within the 

controller via the error weighting subsystem. 

 

4.2 Derivation of Predictions Model for Control 

An LPV model prediction equation is required. The future values of the states and outputs, at 

times t+1, t+2,... can be obtained by using the state-equation iteratively as follows: 

,(	 + 1) = �B,(	) + �B��(	 − �) + 4B�(	) + 3#(	) (4:21) 

,(	 + 2) = �BE./�B,(	) + �B��(	 − �) + 4B�(	) + 3#(	)0 + �BE.��(	 − � + 1)+ 4BE.�(	 + 1) + 3#(	 + 1)= �BE.�B,(	) + �BE.�B��(	 − �) + �BE.��(	 − � + 1)+ �BE.4B�(	) + 4BE.�(	 + 1) + �BE.3#(	) + 3#(	 + 1) 

(4:22) 
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,(	 + 3) = �BE�BE./�B,(	) + �B��(	 − �) + 4B�(	) + 3#(	)0+ �BE�BE.��(	 − � + 1) + �BE��(	 − � + 2)+ �BE4BE.�(	 + 1) + 4BE�(	 + 2) + �BE3#(	 + 1) + 3#(	 + 2)= �BE�BE.�B,(	) + �BE�BE.�B��(	 − �)+ �BE�BE.��(	 − � + 1) + �BE��(	 − � + 2) + �BE�BE.4B�(	)+ �BE4BE.�(	 + 1) + 4BE�(	 + 2) + �BE�BE.3#(	)+ �BE3#(	 + 1) + 3#(	 + 2) 

(4:23) 

 

Generalising this result for � ≥ 1, the state, at any future time 	 + �: ,(	 + �) = �BE@�.�BE@� … �B,(	) + �BE@�.�BE@� … �BE.�B��(	 − �)+ �BE@�.�BE@� … �BE�BE.��(	 − � + 1) + ⋯+ �BE@�.�BE@���(	 + � − � + 2) + �BE@�.��(	 + � − � + 1)+ �BE@�.�BE@� … �BE.4B�(	) + ⋯ + �BE@�.4BE@��(	 + � − 2)+ 4BE@�.�(	 + � − 1) + �BE@�.�BE@� … �BE.3#(	)+ �BE@�.�BE@� … �BE3#(	 + 1) + �BE@�.3#(	 + � − 2)+ 3#(	 + � − 1) 

(4:24) 

 

This future states equation may be written in more general form by introducing the notation: 

�BE�@�� = �BE@�.�BE@� … �BE� (4:25) 

where AÂEÃ� = I and 

�B@ = �BE@�.�BE@� … �B (4:26) 

where AÂ� = I. 
 

Thence, write: 

,(	 + �) = �BE@�.�BE@� … �B,(	)
+ ¥ �BE@�.�BE@� … �BEª

@
ª�. %�BEª�.��(	 + © − 1 − �)

+ 4BEª�.�(	 + © − 1) + 3#(	 + © − 1)) 

(4:27) 
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This may be written using the above notation as: 

,(	 + �) = �B@ (	)
+ ¥ �BEª@�ª@

ª�. %�BEª�.��(	 + © − 1 − �) + 4BEª�.�(	 + © − 1)
+ 3#(	 + © − 1)) 

(4:28) 

 

The weighted error or output signal !5(	) to be regulated at future times, for the augmented 

system, has the form (for � ≥ 1): 

!5(	 + �) = 3#(	 + �) + �5BE@,(	 + �) + �5BE@��(	 + � − �) (4:29) 

 

The i-steps prediction for the state and the output signals can be summarised in the following 

manner, 

,�(	 + �|	) = �B@ ,�(	|	) + ¥ �BEª@�ª %�BEª�.��(	 + © − 1 − �) + 3#(	 + © − 1))@
ª�.  (4:30) 

��(	 + �|	) = 3(	 + �) + �(	 + �),�(	 + �|	) + �(	 + �)��(	 + � − �) (4:31) 

 

Similarly the estimated weighted error equation is as follows. This is the signal to be regulated 

at future times (� ≥ 1), 

!̂5(	 + �|	) = 35(	 + �) + �5BE@(	 + �),�(	 + �|	) + �5BE@(	 + �)��(	 + � − �) (4:32) 

  

Transport Delay Integration: 

The E matrix denotes the feed-through (instantaneous transmission path) term (usually 

denoted by the D matrix). As it was shown in the previous chapter there are two cases for E. 

• �, �5B ≠ 0; E is non-zero under the assumption that the common delay terms are 

possible to extract from the plant and put into the explicit delays block ���< (normal 

case). In this case this should also hold for the error weighting block which in turn 

should have a non-zero feed-through term Ept. 

• � = �5B = 0; not possible to obtain a model with a non-zero E and a delay of at least 1 

step. In this case, to counterbalance the absence of delay in the model and obtain a 

more suitable cost-function, the k transport delay term in the controller is set to at 

least 1 step. 



67 
 

This leads to the following definitions for the k transport delay term when formulating the 

control problem if it also assumed that the plant has a transport delay of k0. 

• For �, �5B ≠ 0, then �� = �. 

• For � = �5B = 0, then �� = � + 1. 

Incorporating the above transport delay definitions into the predictions Equations 4:31 and 

4:32, yields the following expressions. 

 

State Predictions Equation (Considering Effective Time Delays): 

For � = ��, 

,�(	 + ��|	) = �B�¸,�(	|	) + ¥ �BEª�¸�ª %�BEª�.��(	 + © − 1 − �) + 3#(	 + © − 1))�¸
ª�.  (4:33) 

 

Using the finite pulse response operator that was introduced in the previous chapter (Equation 

2:22) the �� steps prediction can be reformulated as follows, 

,�(	 + ��|	) = �B�¸,�(	|	) + ?(��, ��.)��(	) + 3##(	 + �� − 1) (4:34) 

 

with the T operator defined as follows, 

?(��, ��.) = ¥ �BEª�¸�ª�BEª�.�ª���.�¸
ª�.  (4:35) 

and 

3##(	 + �� − 1) = ¥ �BEª�¸�ª3#(	 + © − 1)�¸
ª�.  (4:36) 

 

For � + �� and � > 1,  
,�(	 + � + ��|	) = �BE�¸@ ,�(	 + ��|	)

+ ¥ �BEª@�ª %�BE�¸Eª�.��(	 + © − 1 + �� − �) + 3#(	 + © + �� − 1))@
ª�.  

(4:37) 

 



68 
 

Error Predictions Equation (Considering Effective Time Delays): 

The error prediction equation can be similarly derived from Equation 4:32 as follows, 

!̂5(	 + � + ��|	)
= 35(	 + � + ��) + �5BE@E�¸��(	 + � + �� − �)
+ �5BE@E�¸,�(	 + � + ��|	) 

(4:38) 

Substituting Equation 4:34 (predicted state) into Equation 4:38 and also introducing Æ = �� − � yields the following, 

!̂5(	 + � + ��|	)
= 35(	 + � + ��) + �5BE@E�¸��(	 + � + Æ)
+ �5BE@E�¸�BE�¸@ ,�(	 + ��|	)
+ ¥ �5BE@E�¸�BE�¸Eª@�ª %�BE�¸Eª�.��(	 + © − 1 + Æ)@

ª�.
+ 3#(	 + © + �� − 1)) 

(4:39) 

To further simplify this equation the deterministic terms can be combined in the following 

definition, 

35#(	 + � + ��) = 35(	 + � + ��) + ¥ �5BE@E�¸�BE�¸Eª@�ª 3#(	 + © + �� − 1)@
ª�.  (4:40) 

 

The final error predictions equation will then have the following form, 

!̂5(	 + � + ��|	)
= 35#(	 + � + ��) + �5BE@E�¸��(	 + � + Æ)
+ �5BE@E�¸�BE�¸@ ,�(	 + ��|	)
+ ¥ �5BE@E�¸�BE�¸Eª@�ª �BE�¸Eª�.��(	 + © − 1 + Æ)@

ª�.  

(4:41) 
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4.2.1 Vector-Matrix Notation Derivation 

The error and output predictions derived in the previous section can be now put into vector 

form with respect to the control interval Ç ∈ o	, 	 
 ±p, ± > 0 as follows. 

 

ÈÉÉ
ÉÉÊ

!̂5(	 + ��)!̂5(	 + 1 + ��)!̂5(	 + 2 + ��)⋮!̂5(	 + ± + ��)ËÌÌ
ÌÌÍ

=
ÈÉÉ
ÉÉÊ

35#(	 + ��)35#(	 + �� + 1)35#(	 + �� + 2)⋮35#(	 + �� + ±)ËÌÌ
ÌÌÍ +

ÈÉÉ
ÉÉÊ

�5BE�¸<�5BE�¸E.�BE�¸.�5BE�¸E�BE�¸⋮�5BE�¸E��BE�¸� ËÌÌ
ÌÌÍ ,�(	 + ��|	) +

ÈÉÉ
ÉÉÊ

�5BE�¸��(	 + Æ)�5BE�¸E.��(	 + Æ + 1)�5BE�¸E��(	 + Æ + 2)⋮�5BE�¸E���(	 + Æ + ±)ËÌÌ
ÌÌÍ

+
ÈÉÉ
ÉÉÊ

0 0 ⋯ 0 0�5BE�¸E.�BE�¸ 0 ⋱ 0 0�5BE�¸E�BE�¸E.. �BE�¸ �5BE�¸E�BE�¸E. 0 ⋯ ⋮⋮ ⋮ ⋱ 0 0�5BE�¸E��BE�¸E.��. �BE�¸ �5BE�¸E��BE�¸E�� �BE�¸E. ⋯ �5BE�¸E��BE�¸E��. 0ËÌÌ
ÌÌÍ

∙
ÈÉÉ
ÉÊ ��(	 + Æ)��(	 + Æ + 1)��(	 + Æ + 2)⋮��(	 + Æ + ±)ËÌÌ

ÌÍ
 

(4:42) 

 

Like in the previous section if transport delays are considered in the system then two cases 

arise. The controls vector will then be re-formulated accordingly as follows using the delay 

shift vector �� . 

δ=0 (Feed–Through Term/ No Extra Delay): 

For �� = <, ���B,�� =
ÈÉÉ
ÉÊ ���	����	 
 1����	 
 2�⋮���	 
 ±�ËÌÌ

ÌÍ
 (4:43) 
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δ=1 (Zero Feed–Through Term/ Extra Delay): 

For, 

�� =
ÈÉÉ
ÉÊ0 1 0 ⋯ 00 0 1 0 00 ⋯ 0 ⋱ 00 ⋯ ⋯ 0 10 0 ⋯ ⋯ 0ËÌÌ

ÌÍ,  
 

  ���B,�� =
ÈÉÉ
ÉÊ0 1 0 ⋯ 00 0 1 0 00 ⋯ 0 ⋱ 00 ⋯ ⋯ 0 10 0 ⋯ ⋯ 0ËÌÌ

ÌÍ
ÈÉÉ
ÉÊ ��(	)��(	 + 1)��(	 + 2)⋮��(	 + ±)ËÌÌ

ÌÍ =
ÈÉÉ
ÉÊ��(	 + 1)��(	 + 2)⋮��(	 + ±)0 ËÌÌ

ÌÍ
                     

 

 

(4:44) 

 

Predicted Errors: 

Using the above vector notation predictions Equation 4:41 can be re-formulated as follows. 

�¬5BE�¸,� = 45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�

 /�5BE�¸,��BE�¸,� 
 �5BE�¸,�0���B,��  

(4:45) 

 

Further simplification can be achieved via introducing the following time-varying matrix. 

 º5BE�¸,� = �5BE�¸,��BE�¸,� 
 �5BE�¸,� 
(4:46) 

 

The predicted errors equation then takes the following form. 

�¬5BE�¸,� = 45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	� 
 º5BE�¸,����B,��  
(4:47) 

 

Errors to be minimised at Future Times: 

Adding the stochastic disturbance inputs ÏBE�,� that influence future weighted errors, 

�5BE�¸,� = 45BE�¸,� 
 �5BE�¸,��BE�¸,�,�	 
 ��|	� 
 º5BE�¸,����B,��

 �5BE�¸,�4BE�¸,�ÏBE�,� 

(4:48) 
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Estimation Error: 

The estimation error is now formulated as the difference between the future and estimated 

(predicted) errors derived previously. 

�¹5BE�¸,� = �5BE�¸,� − �¬5BE�¸,� (4:49) 

�¹5BE�¸,� = 45BE�¸,� 
 �5BE�¸,��BE�¸,�,�	 
 ��|	� 
 º5BE�¸,����B,��

 �5BE�¸,�4BE�¸,�ÏBE�,�
− /45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	� 
 º5BE�¸,����B,�� 0 

(4:50) 

�¹5BE�¸,� = �5BE�¸,��BE�¸,�,Ð�	 
 ��|	� 
 �5BE�¸,�4BE�¸,�ÏBE�,� 
(4:51) 

with ,Ð�	 
 ��|	� being the k0 steps ahead state estimation error. 

 

Predicted System Matrices: 

Similar to the previous sections, the future matrices that constitute Equations 4:43-4:51 are 

defined as follows, 

 

�BE�¸,� =
ÈÉÉ
ÉÉÊ

<�BE�¸Ñ�BE�¸⋮�BE�¸� ËÌÌ
ÌÌÍ, 

(4:52) 

�BE�¸,� =
ÈÉÉ
ÉÉÊ

0 0 ⋯ 0 0�BE�¸ 0 ⋯ ⋮ 0�BE�¸E.Ñ �BE�¸ �BE�¸E. ⋱ 0 ⋮⋮ ⋮ ⋱ 0 0�BE�¸E.��. �BE�¸ �BE�¸E�� �BE�¸E. ⋯ �BE�¸E��. 0ËÌÌ
ÌÌÍ, 

4BE�¸,� =
ÈÉÉ
ÉÉÊ

0 0 ⋯ 0 04BE�¸ 0 ⋯ ⋮ 0�BE�¸E.Ñ 4BE�¸ 4BE�¸E. ⋱ 0 ⋮⋮ ⋮ ⋱ 0 0�BE�¸E.��. 4BE�¸ �BE�¸E�� 4BE�¸E. ⋯ 4BE�¸E��. 0ËÌÌ
ÌÌÍ, 

ÏB,� = r �(	)�(	 + 1)⋮�(	 + ± − 1)s 
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4.3 LPV Estimation 

To obtain the k-steps ahead state estimate ,��	 
 �|	�, which is used as a starting point within 

the output and error predictions equations, the Time-Varying Kalman Filter (TVKF) is 

employed. For the purpose of this work, the latter suitably fits the LPV paradigm. This holds as 

by using the LPV time-varying matrices �B , �B , �B, �B, results into a time-varying error 

covariance matrix Pt and hence a TVKF gain factor Kft derivation. Similar to most KF derivations, 

the starting point here will be taking the state predictions equation  and complimenting with 

the weighted output prediction error to obtain a good state estimate. This is demonstrated in 

the following equations. 

,��	 
 1|	 
 1� = ,��	 
 1|	� 
 9(B/��	 
 1� − �̂�	 
 1|	�0 (4:52) 

 

where � are the output measurements and �̂ the output prediction and Kft is the Time-Varying 

Kalman Filter gain. Here it is worth noting that in the case where a good model is available for 

the full nonlinear plant, then this can be used to obtain �̂�	 
 1|	�  and ,��	 
 1|	� resulting 

into the Extended Kalman Filter (EKF). This formulation was actually possible to implement in 

application Chapter 6. However for the purpose of this formulation �̂ is derived by the 

following expression. 

�̂�	 
 1|	� = 3�	 
 1� 
 �BE.,��	 
 1|	� 
 �BE.���	 
 1 − �� (4:53) 

 

Here d denotes a deterministic disturbance component added to the output of the system 

(e.g. a step disturbance or bias). Notice that the above equation is also adjusted to include 

delay and through terms. Similar to the derivation in the previous chapter the k-steps filter 

equation can be put into predictor-estimator form as follows, 

,��	 
 ��|	� = �B�¸,��	|	� 
 ?���, ��.����	� 
 3#�	 
 �� − 1� (4:54) 

 

The optimal estimate can be then put in the following form, 

,��	 
 1|	� = �B,��	|	� 
 �B���	 − �� 
 3#�	� (4:55) 

,��	 
 1|	 
 1� = �B,��	|	� 
 �B���	 − �� 
 3#�	� 
 9(B/��	 
 1� − �̂�	 
 1|	�0 (4:56) 

��< − �B�,��	|	� = �B���	 − �� 
 3#�	�
 9(B/��	 
 1� − �3�	 
 1� 
 �BE.,��	 
 1|	� 
 �BE.���	 
 1 − ���0 
(4:57) 

 

Expanding further yields the following equation for the optimal estimate, 



73 
 

,��	|	� = /< − ��./< − 9(B�BE.0�B0�.��.Ò�B���	 − �� 
 3#�	�− 9(B��BE.�B���	 − �� 
 �BE.���	 
 1 − ���
 9(B/��	 
 1� − 3�	 
 1�0Ó 

(4:58) 

 

In the following section the adaptation of predictive control to LPV systems is discussed as a 

preliminary step towards the LPV-NPGMV derivation. 

 

4.4 Equivalent Cost-Function Optimisation Problem 

In this section another intermediate step is taken that will naturally lead into the NPGMV 

formulation later on. This time the equivalence between the LPV-GPC and the GMV modified 

cost-function that will be discussed in the subsequent section is explained. The starting point 

here will be the factorisation of the positive-definite, real symmetric matrix �BE�¸,� as follows, 

�BE�¸,� = 'BE�¸,�G 'BE�¸,� = ��Gº5BE�¸,�G º5BE�¸,��� 
 ³�  (4:59) 

 

By completing the squares in Equation 3:19, the cost-function is written as follows, 

� = /4N5BE�¸,� 
 º5BE�¸,����B,�� 0G/4N5BE�¸,� 
 º5BE�¸,����B,�� 0 
 �B,��G ³� ��G�B,�� 
 ��
= 4N5BE�¸,�G 4N5BE�¸,� 
 �B,��G ��Gº5BE�¸,�G 4N5BE�¸,�

 4N5BE�¸,�G º5BE�¸,����B,�� 
 �B,��G /��Gº5BE�¸,�G º5BE�¸,��� 
 ³� 0�B,��

 �� 

(4:60) 

The final form of the cost-function will be as follows, 

� = /4N5BE�¸,�G º5BE�¸,���'BE�¸,��. 
 �B,��G 'BE�¸,�G 0/'BE�¸,��G ��Gº5BE�¸,�G 4N5BE�¸,�

 'BE�¸,��B,�� 0

 4N5BE�¸,�G /< − º5BE�¸,���'BE�¸,��. 'BE�¸,��G ��Gº5BE�¸,�G 04N5BE�¸,� 
 �� 

(4:61) 

Comparing the two forms the cost-function can be put in the following equivalent form, 

� = ÔMBE�¸,��G ÔMBE�¸,�� 
 �.��	� (4:62) 

where 
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ÔMBE�¸,�� = 'BE�¸,��G ��Gº5BE�¸,�G %45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�) 
 'BE�¸,��B,��  

(4:63) 

and,    �.��	� = �� 
 �.�	� 

where 

�.�	� = 4N5BE�¸,�G /< − º5BE�¸,���'BE�¸,��. 'BE�¸,��G ��Gº5BE�¸,�G 04N5BE�¸,� (4:64) 

Given that the �.��	� term does not depend upon control action, it can be excluded when 

setting the gradient of the cost-function to zero to find the optimal solution. Considering this, 

the following optimal controls vector results out of the minimisation of Equation 4:64. 

�B,�� = −/��Gº5BE�¸,�G º5BE�¸,��� 
 ³� 0�.��Gº5BE�¸,�G %45BE�¸,�

 �5BE�¸,��BE�¸,�,��	 
 ��|	�) 

(4:65) 

4.4.1 Modified GMV Cost-Function 

Combining the definitions in Sections 4.2.1 and 2.1 (GMV definition), the GMV problem can be 

now modified to include future steps in the cost-function. Recall the GMV optimal problem 

defined as the weighted sum of error and input signals shown below. 

��	� = � !�	� 
 � ���	� (4:66) 

 

Employing a similar strategy as with the use of predictions time-varying vectors in the LPV-GPC 

cost-function, Equation 4:66 can be written as follows, 

�B,� = � �,B�5B,� 
 � �,B� �B,��  (4:67) 

 

where the cost-function weightings are constant matrices of the following form, 

� �,B = ��Gº5BE�¸,�G   and  � �,B� = ³�  (4:68) 

 

A multi-step cost-function can then be defined for the GMV problem as follows, 

� = ���B� = �F�BE�¸,�G �BE�¸,�|	H (4:69) 

 

Φ for k0-steps ahead is shown below. 

�BE�¸,� = � �,B�5BE�¸,� 
 � �,B� �B,��  (4:70) 
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Similar to the predicted errors expansion used previously, �5BE�¸,� = �¬5BE�¸,� 
 �¹5BE�¸,�. 

Substituting this to Equation 4:70 the following is obtained, 

�BE�¸,� = � �,B/�¬5BE�¸,� 
 �¹5BE�¸,�0 
 � �,B� �B,��
= /� �,B�¬5BE�¸,� 
 � �,B� �B,�� 0 
 � �,B�¹5BE�¸,� 

(4:71) 

 

This expression can be broken down in terms of the estimate and estimation error vectors as 

follows, 

�BE�¸,� = �MBE�¸,� 
 �NBE�¸,� (4:72) 

 

where �MBE�¸,� is the predicted signal and �NBE�¸,� the estimation error as shown below. 

�MBE�¸,� = /� �,B�¬5BE�¸,� 
 � �,B� �B,�� 0 (4:73) 

�NBE�¸,� = � �,B�¹5BE�¸,� (4:74) 

 

The multi-step GMV cost-function will then have the following form, 

� = ���B� = �F�BE�¸,�G �BE�¸,�|	H = � I/�MBE�¸,� 
 �NBE�¸,�0G/�MBE�¸,� 
 �NBE�¸,�0|	L (4:75) 

 

Recalling orthogonality between �¬5BE�¸,�  and �¹5BE�¸,� the cost-function can be written as 

follows, 

� = �F�MBE�¸,�G �MBE�¸,�|	H 
 �F�MBE�¸,�G �NBE�¸,�|	H 
 �F�NBE�¸,�G �MBE�¸,�|	H

 �F�NBE�¸,�G �NBE�¸,�|	H = �MBE�¸,�G �MBE�¸,� 
 �F�NBE�¸,�G �NBE�¸,�|	H 

(4:76) 

and therefore, 

� = �MBE�¸,�G �MBE�¸,� 
 �.�	� (4:77) 

 

As discussed previously the term �.  is independent of control action and is defined as follows, 

�. = �F�NBE�¸,�G �NBE�¸,�|	H = �F�¹5BE�¸,�G � �,BG � �,B�¹5BE�¸,�|	H (4:78) 

 

By substituting �¬5BE�¸,� from Equation 3:28 and further simplifying, �MBE�¸,� can be written as 

follows, 
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�MBE�¸,� = � �,B %45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�)   

 /��Gº5BE�¸,�G º5BE�¸,��� 
 ³� 0�B,��  

(4:71) 

�MBE�¸,� = � �,B %45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�) 
 �E�¸,��B,��  (4:72) 

 

The time-varying matrix �BE�¸,� should be non-singular by the appropriate selection of 

weightings. The optimal control can now be computed by setting the above equation to zero 

and solving with respect to �B,��  as shown below. 

�B,�� = −�BE�¸,��. � �,B %45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�)
= −�BE�¸,��. ��Gº5BE�¸,�G %45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�) 

(4:73) 

 

Note that the result in the above equation is identical to the optimal control vector in the GPC 

optimal control derivation (Section 3.3). This can be reinforced by the following theorem. 

 

Theorem 4:1 – Equivalent Minimum Variance Optimal Control Problem 

Consider a system as defined in Equations 4:2-4:20 and Figure 4:1-4:2 and assume that the 

nonlinear subsystem &.� = <. The optimal GPC solution is given by Equation 3:33. If the GPC 

cost-function is modified to have the equivalent GMV form then it can be written as follows, 

��	� = �F�BE�¸,�� �BE�¸,�|	H (4:74) 

where 

�BE�¸,� = � �,B�5BE�¸,� 
 � �,B� �B,��  (4:75) 

 

Now define the cost-function weightings according to the original GPC cost as shown below. 

� �,B = ��Gº5BE�¸,�G   and  � �,B� = ³�  (4:76) 

with 

º5BE�¸,� = /�5BE�¸,��BE�¸,� 
 �BE�¸,�0 (4:77) 

 

The resulting vector of optimal controls that minimises Equation 4:74 is then as follows and it 

is identical to the optimal vector resulting out of the GPC solution. 
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�B,�� = −�BE�¸,��. ��Gº5BE�¸,�G %45BE�¸,� 
 �5BE�¸,��BE�¸,�,��	 
 ��|	�) (4:78) 

 

4.4.2 Nonlinear Predictive GMV Control Problem 

In this section focus will shift more into the nonlinear aspect of the plant. A good starting point 

would be to enhance the GMV cost function explained in the previous section by an additional 

control costing term �  as shown below. Note that in this case as well, k0-steps ahead delays 

are considered for the output channels. 

�� ���	� = /� ����¸�0�	� (4:79) 

 

Selection for this weighting factor can vary from being a linear dynamic operator (transfer-

function etc.) to a nonlinear term to cancel the plant inherent nonlinearities if this is possible. 

Moreover it can be used to introduce anti-windup capability. The main assumption for the � �  

operator is that it has to be invertible. The extended cost-function will have the following 

form. 

�5 = �F�BE�¸,��� �BE�¸,�� |	H (4:80) 

 

where �BE�¸,��   is here defined to include control signal costing terms as shown below. 

�BE�¸,�� = � �,B�5BE�¸,� 
 � �,B� �B,�� 
 � �,��B,� (4:81) 

 

The nonlinear function � �,��B,� is normally defined to have a simple block-diagonal form as 

shown below. 

�� �,��B,�� = 3�J�F/� ��0�	�, /� ��0�	 
 1�, … , /� ��0�	 
 ±�H (4:82) 

and   �B,�� = /&.�,��B,�0 (4:83) 

 

with &.�,�  being a block diagonal matrix of the following form, 

/&.�,��B,�0 = 3�J��&.�, &.�, … , &.���B,� = o�&.����	�G , … , �&.����	 
 ±�GpG (4:84) 

  

4.5 The LPV-NPGMV Optimal Control Solution 

In a similar fashion to the previous section the NPGMV control solution is briefly described 

here using the LPV model formulation for the nonlinear subsystem as discussed earlier. Recall 

that the optimal state prediction ,��	 
 ��|	� and state estimation error ,Ð�	 
 ��|	� are 
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orthogonal and that the expectation of the product of the future values of the control action 

(assumed know in deriving the prediction equation), and the zero-mean white noise driving 

signals is null. Hence the predicted errors vector �¬5BE�¸,�  and the prediction errors vector �¹5BE�¸,� are also orthogonal. From Equation 4:75 Φ estimate and estimation error can be seen 

in Equations 4:85 and 4:86 respectively, 

�B,�� = �B,� 
 ���¸/� �,��B,�0 (4:85) 

�BE�,�� = �MBE�,�� 
 �NBE�,��  (4:86) 

 

From Equation 4:66 the estimation error can be written as follows, 

�NBE�,�� = �NBE�,� = � �,B�¹5BE�¸,� = ��Gº5BE�¸,�G �¹5BE�¸,� (4:87) 

 

The future predicted values of �MBE�,��   involve the estimated vector of weighted errors  �¬5BE�¸,�  which are orthogonal to �¹5BE�¸,�. Moreover, the estimation error is zero-mean and 

the expected value of the product with any known signal is null, therefore the cost-function 

can be written as follows, 

��	� = �MBE�,��G �MBE�,�� 
 �.�	� (4:88) 

 

The optimal control is the one that sets �MBE�,��  to zero or as shown in the following equation. 

� �,B�¬5BE�¸,� 
 /� �,� 
 � �,�� &.�,�0�B,� = 0 (4:89) 

 

The resulting optimal controls vector is shown below. 

�B,� = −/� �,� + ³� &.�,�0�.� ��¬5BE�¸,� (4:90) 

 

Looking at the above equation, it is seen that the resulting control law it involves the nonlinear 

control weighting  � �,�  and the nonlinear plant subsystem &.�,�. Further simplification can 

be achieved by substituting �¬5BE�¸,� from Equation 3:19 into the condition of optimality �MBE�,�� = 0. The motivation behind this is an easier implementable formulation of the 

controller. 



79 
 

�MBE�,�� = �MBE�,�� + /� �,��B,�0 = � �,B�¬5BE�¸,� + � �,B� �B,�� + /� �,��B,�0
= � �,B/4N5BE�¸,� + º5BE�¸,��� �B,�� 0 + � �,B� �B,�� + /� �,��B,�0 = 0 

(4:91) 

 

Further expansion leads to the following form for the optimality condition. 

� �,B/45BE�¸,� + �5BE�¸,��BE�¸,�,�(	 + ��|	)0 + /��Gº5BE�¸,�G º5BE�¸,��� + ³� 0�B,��
+ � �,��B,� = 0 

(4:92) 

 

The above equation can be summarised as follows, 

� �,B/45BE�¸,� + �5BE�¸,��BE�¸,�,�(	 + ��|	)0 + /� �,� + �BE�¸,�&.�,�0�B,� = 0 (4:93) 

 

An expression for the optimal controls vector more practical for implementation is shown 

below. 

�B,� = −� �,��. /� �,B/45BE�¸,� + �5BE�¸,��BE�¸,�,�(	 + ��|	)0 + �BE�¸,�&.�,��B,�0 

(4:94) = −� �,��. /� �,B45BE�¸,� + �7B,�(	 + ��|	) + �BE�¸,�&.�,��B,�0 

where 

� �,B = ��Gº5BE�¸,�G  

(4:95) 
and  �7B = � �,B�5BE�¸,��BE�¸,� = ��Gº5BE�¸,�G �5BE�¸,��BE�¸,� 

 

The inherent model-based nature of the NPGMV control law is evident here as it contains an 

internal model for the nonlinear process. Similar to standard GPC, the receding horizon 

strategy is applied here as well and only the first element of the optimal controls vector is 

used. When the control costing term tends to zero (� �,� → 0, &.�,� = <) this becomes 

identical to a GPC controller in the limiting linear case. Expanding ,�(	 + ��|	) from Equation 

4:54 and 4:94 becomes as follows, 

� �,B %45BE�¸,� + �5BE�¸,��BE�¸,�/�B�¸,�(	|	) + ?(��, ��.)��(	)0)
+ /� �,� + �BE�¸,�&.�,�0�B,� = 0 

(4:96) 



80 
 

 

Substituting ��(	) = &.��(	) and using definitions in Equation 4:95 yields the following form. 

/� �,B45BE�¸,� + �7B�B�¸,�(	|	) + �7B?(��, ��.)��(	)0  + /� �,� + �BE�¸,�&.�,�0�B,� = 0 
(4:97) 

 

A final useful step would be to separate the optimal controls vector into present (applied in 

time t) and future (derived for 	@,� > 	) elements. This can be done via multiplication of the 

controls vector with the following matrices. 

�Ñ� = o<, 0, … ,0p  and  ��Ñ = o0  <�p (4:98) 

 

The following definitions can then be obtained for the current and future controls. 

�(	) = �Ñ��B,�  and  �B,�( = ��Ñ�B,� (4:99) 

 

The vector of future optimal controls can then be reformulated as follows, 

�B,� = /−� �,�0�./� �,B45BE�¸,� + �7B�B�¸,�(	|	)                 + /�BE�¸,� + �7B?(��, ��.)�Ñ�0&.�,��B,�0 
(4:100) 

 

Implementation of this control structure is shown in the following diagram where W0_LPV 

denotes now the LPV nonlinear plant approximation. 
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 Figure 4:4 LPV-NPGMV implementation structure block diagram. 
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The flexibility in implementation this formulation allows regrading plant decomposition 

options is shown below and the suitability of each is dependent upon the specific nature of a 

control problem and the level of information available about the system. 

 

System fully linear and known: 

The nonlinear operator W1k can be set to unity and the system is modelled and fully absorbed 

by the W0 term. 

 

System unknown: 

The system is fully absorbed as a “black-box” by the nonlinear operator W1k and the W0 term is 

set to unity. 

 

System only contains known smooth differentiable nonlinearities – linear part extractable: 

Option 1: the nonlinear part is modelled and absorbed by the W1k operator and the linear part 

absorbed by W0. 

Option 2: if possible the nonlinear system is approximated as LPV and absorbed by the W0t part 

whereas W0 (used in cascade) absorbs the linear part or set to unity. The W1k operator is set to 

unity. 

If a linear part cannot be extracted from the overall plant then the W0 term is simply set to 

unity. 

 

System only contains known hard nonlinearities (e.g. saturation constraints): 

The nonlinear operator W1k is used to absorb the nonlinearity and W0 term is either set to 

unity if linear part unavailable or absorbs the full linear part if available. 

System only contains known hard and soft nonlinearities: 

Option 1: the nonlinear part is modelled and fully absorbed by the W1k operator and W0 is set 

to unity. 

Option 2: if possible the smooth nonlinear part is approximated as LPV and absorbed by the 

W0t part whereas W1k absorbs all hard nonlinearities. 

At this point is important to summarise how one controller results to another under certain 

conditions as follows. 
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LPV-NPGMV ���� NGMV: the LPV-NPGMV essentially shares the same cost function with the 

NGMV i.e. � = �FΦBE�,�G ΦBE�,�¶	H but in a multi-cost future formulation. Therefore if the 

prediction horizon is set to 1 and the LPV model is fixed it effectively reverts to an NGMV 

controller. 

LPV-NPGMV ���� NGPC: if the general nonlinear operator W1k is set to unity and the plant is 

absorbed in its entirety by the LPV approximation within the term W0t then according to the 

Equivalent Minimum Variance Theorem (Theorem 4:1) the former reverts to an NGPC 

controller. 

 

LPV-NPGMV FORMULATION TUTORIAL EXAMPLE & CONTROLLERS COMPARISON 

In this section a simple tutorial example is given to support understanding of how the LPV-

NPGMV controller is formulated. This includes definition of all sub-components, definition of 

weightings and most importantly of the various plant sub-systems into true nonlinear and LPV 

forms. As discussed previously, in this form of the controller the nonlinear operator can be 

used to contain hard nonlinearities such as saturation constraints in the same manner as in the 

basic NGMV, whereas the linear subsystem is now replaced by an LPV approximation that can 

be used to encapsulate the remaining soft dynamic nonlinearities inherent within the process. 

 

LPV Plant Subsystem PW: 

Here a simple SISO two state mass-spring-damper system is considered. The mass of the 

system is used as a varying parameter which varies subject to an external disturbance input 

signal. The original system equation is described as follows. 

½����Ö 
 K�S 
 �� = ��	� 

 

Where � is the external disturbance signal, K is the damping ratio, � is the spring stiffness 

coefficient and ��	� is the force input that drives the system. The output of the system is � 

which is the position of the mass at a given time t. It is important to observe that the system is 

linear for a fixed value of the disturbance signal but will structurally vary with time if � varies 

as well. The state-space equation of the system and related matrices are shown below. 

�×5Ø = Ù 0 1− ��(¤) −  �(¤)Ú, �×5Ø = Ù 0− .�(¤)Ú, �×5Ø = o1 0p, , = ���S � 

,S = �×5Ø, + �×5Ø� 

� = �×5Ø, 
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Suppose now that the mass varies according to the following equation with the disturbance 

input signal ranging within 1:10. ½(�) = 10� + 0.1� 

 

This results into variations of the state-space matrices as illustrated in the following graph. 

 

 

For simplicity in this example let &1  and &# be defined as unity gains. Recall the LPV-NPGMV 

control law (see below) and using the diagram in Figure 4:4 as a point of reference the control 

loop components are defined in the following sections. 

 

Weightings cd, ÛdR Definition: 

For this example the following discrete transfer function was used as the error weighting 

based on the PID weighting selection method. A sample time of Ts = 0.1 sec was chosen for the 

controller. 

� = 25 + 5��.1 − ��.  

 

The control weighting is defined as the following dynamic transfer. 

� � = 0.009571 − 0.009476��.1 − 0.9048��.  
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Control Loop Gains Calculation: 

Recall the LPV-NPGMV optimal control, 

�B,� = /−� �,�0�./� �,B45BE�¸,� 
 �7B�B�¸,��	|	� 
 /�BE�¸,� 
 �7B?���, ��.��Ñ�0&.�,��B,�0 

and also,                   � �,B = �5BE�¸,��BE�¸,� 
 �BE�¸,�  and  � �,B� = ³�  

where � �,B45BE�¸,� 
 �7B�B�¸,��	|	� is the vector form concatenation of the N future 

predictions of the augmented LPV system free response part. 

This term is equivalent to the free response term �B,� in GPC vector form predictions equation '¬B,� = �B,�+¨��B,�. Also recall that A B and C matrices (as explained in tutorial example in 

Section 2.2) refer to the combined (augmented) process model excluding hard constraints such 

as saturations which are included in the nonlinear plant operator &.�,�. Different to the 

NGMV tutorial example in this case these matrices contain the corresponding future terms. To 

demonstrate this numerical let us first define the augmented LPV process part as follows. 

r,�,#,1,5
s

�E.
= ÈÉÉ

Ê �×5Ø 0 0 00 �# 0 00 0 �1 0−�5�×5Ø −�5�# �5�1 �5ËÌÌ
Í r,�,#,1,5

s
�

+ r �×5Ø00−�5�×5Ø
s 

 

Substituting �×5Ø, �×5Ø  and �×5Ø from the previous section, neglecting &1  subsystem and 

substituting �# = 1, �5 = 1, �# = 1, �5 = 4 results in the following,  

r,�,#,1,5
s

�E.
=

ÈÉÉ
ÉÉÊ

0 1 0 0 0− 300½(�) − 5½(�) 0 0 00 0 1 0 00 0 0 1 0−4 0 −4 4 1ËÌÌ
ÌÌÍ r,�,#,1,5

s
�

+
ÈÉÉ
ÉÊ 0− 1½(�)00 ËÌÌ

ÌÍ
 

 

Setting � = 0 and using Equation 4:52 to calculate the composite future A, B and D results in 

the following matrices, for u = 1 and prediction horizon of  ±5 = 2 and control horizon ± = 1. 
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�BE�¸,� =
ÈÉÉ
ÉÉÉ
ÉÊ 0.8575 0.0928 0 0−2.7566 0.8115 0 00 0 1 0−4 0 −4 10.8575 0.0928 0 0−2.7566 0.8115 0 00 0 1 0−4 0 −4 1ËÌÌ

ÌÌÌ
ÌÍ
 

 

�BE�¸,� =
ÈÉÉ
ÉÉÉ
ÉÊ−0.0005−0.0092000000 ËÌÌ

ÌÌÌ
ÌÍ
 

 �5BE�¸,� = o−105 0 −105 2.5 −105 0 −105 2.5p and  � �,B = 0.0525 

 

Observe that the number of rows of the A matrix equals the number of states [,�, ,# , ,5] times 

the prediction horizon « = 8 and the number of columns the number of states times the 

control horizon ½ = 4. The D matrix relates to the stochastic disturbance component which 

for simplicity in this tutorial can be set to unity. 

The �BE�¸,� + �7B?(��, ��.) term is equivalent to the SN forced response term in the GPC 

control law however in the LPV-NPGMV this signal drives the nonlinear operator Wk. 

�7B = o−200.075 −19.488 −230 5p 

Recall, 

�BE�¸,� = 'BE�¸,�G 'BE�¸,� = ��Gº5BE�¸,�G º5BE�¸,��� + ³�  and º5BE�¸,� = /�5BE�¸,��BE�¸,� +�BE�¸,�0 hence, �BE�¸,� = 0.0028 and ³�  is set here as 1. 

 

Simulation and Controller Structure Comparison: 

In this section a simple simulation of the aforementioned system is provided, not only to 

demonstrate performance of the LPV-NPGMV but also to portray the equivalence to the NGPC, 

NPGMV and NGMV controllers showing that the three latter are but special cases of the first. 

In the first simulation artificial actuator constraints where introduced to allow differentiation 

between the NGPC and the two NGMV based controllers. Remember the NGPC is essentially 

using the linear GPC cost function and an LPV approximation of the nonlinear system whereas 

the LPV-NPGMV utilises the GMV cost function with a delay-free nonlinear operator (in this 
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case containing the actuator constraints) within the inner controller loop. The LPV system is 

fixed using a constant value for parameter u and different NGMV formulations are compared 

in tracking a varying sinusoidal position setpoint. Results are shown in the following graphs. 

 

 

Figure 4:5 Control performance comparison for a sinusoidal trajectory in the presence of 

constraints. 

 

All three controllers utilise identical definition of weighting factors. As mentioned previously 

according to Theorem 4.1 will yield similar performance if no constraints are present. In this 

case there is a small difference which is only observable in the control signals (Force CV) as 
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saturation effect clamps both controllers identically. Observe the benefit of a long prediction 

horizon comparing to the more sluggish one step NGMV controller. 

In the second simulation the Position setpoint is kept constant at 1 and saturation removed to 

examine the effect of variations in system parameter u in regulation performance of the NGPC, 

LPV-NPGMV and the NPGMV which essentially utilises a fixed non-updating model of the 

process. The results are shown below for a sinusoidal variation of u between 0-10. 

 

Figure 4:6 Control performance comparison in regulation during model parameter variation. 
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Since there are no constraints the NGPC and LPV-NPGMV yield very similar results as expected 

with the latter giving a small observable improvement. The NPGMV goes unstable in various 

parts of the u trajectory due to the mismatch between the actual model and the one included 

within controller calculations. It is interesting to mention that an artificial increase of the delay 

term above 1 was found to result in an unstable system for the NGPC whereas the LPV-NPGMV 

cost function, i.e. including a delay-free operator of the plant, had a stabilising effect. 

 

4.6 LPV-NGMV Derivation 

A simple and easy to implement control formulation is proposed in this section. The structure 

of the controller remains exactly the same as described by Equation 2:33 and Figure 2:5. The 

single difference will be that now the output subsystem. Recall Equation 2:13:  �&�����	� =/&�������0�	� , is no longer Time-Invariant but an LPV subsystem. The control law will 

remain the same except from the matrices contained in the prediction equations (,�  for k-

steps ahead, Equation 2:24. The LPV-NGMV control law is derived in a very similar way as 

described in (Grimble and Pang, 2007), Theorem 1 but adapted to LPV systems. This is shown 

in the following section. 

 

Theorem 4.2:  LPV-NGMV Controller 

Let the operator  ±�  represent the mapping from the signal  ��	�  (input to the nonlinear LPV 

subsystem) to the signal  ���	�  to be minimised: 

�±����	� = =%� &���	 
 ��� − Ü &N���	 
 ���) �> �	� (4:101) 

 

Assume that the weighting operators  � , Ü� and  � � are chosen so that the NL operator: �±�&.� − � ��  has a finite-gain  ½  stable causal inverse, to ensure the system is closed-loop 

stable. The NGMV optimal controller to minimize the variance of the weighted error, states 

and control signals may then be computed. The NGMV optimal control signal may be 

expressed in the form: 

��	� = −� ��. ��7�	 
 �����¸,��	|	�
 %�7�	 
 ���?���, ��.� 
 �7�	 
 ���) &.���	�� 
(4:102) 

 

where  �7  and  �7  as described in Section 2.2 (Augmented State-Space System Model). 
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Proof:  � = �����	 
 ���G���	 
 ����  is minimised when  �Ý0(	 + �0|	) = 0. This is satisfied 

by the expression for optimal control described by Equation 4:99. As mentioned previously, 

stability properties have not been further explored within the scope of this work.  However, 

the main assumptions for the stability of the closed-loop are similar to those included in the 

remarks section in (Grimble and Majecki, 2015). 
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 Dynamic Positioning and Chapter 5

Manoeuvring of Marine Vessels 

Following the theoretical derivation of the state-space NGMV law in Chapter 2 and LPV-NGMV 

in Chapters 2 and 4, an application on control of marine vessels is used in this chapter to 

explore control performance under various scenarios for both controllers. There are two 

important topics in which automatic control plays a major role in DP systems, as distinguished 

below. 

1. Manoeuvring 

2. Dynamic Positioning 

The first refers to the guidance of marine vessels along a certain route, for which either prior 

knowledge is available, or it is generated with respect to certain requirements like obstacle 

evasion etc. At large, ship manoeuvring is part of a greater family of systems characterised by 

the trajectory-tracking problem. Originally, it was treated under the assumption that the ship 

is moving in a controlled environment with insignificant external disturbances. This 

configuration effectively isolates the tracking problem from its disturbance rejection 

counterpart and makes control design somewhat easier. This study however, deals with both 

aspects in unison to fit the NGMV framework in a more appropriate way. For consistency, 

throughout this section manoeuvring describes the task where a vessel is controlled to follow a 

specific geometric path. 

Dynamic positioning, or station-keeping, on the other hand describes the task where the vessel 

is commanded to maintain a certain position while being subjected to environmental 

disturbances like current, wave and wind forces. It falls under the general category of setpoint 

regulation. This subject hosts many real life applications. One example that combines both the 

manoeuvring and Dynamic Positioning (DP) tasks is referenced in (Martin, 2004) and describes 

an open sea oil platform supply operation. In this case a small supply vessel is commissioned to 

temporarily attain certain points along a path around an oil extraction platform. After its 

function is over then it needs to navigate to the next point automatically. 

Nonlinearities potentially arise in many parts of these systems. The most evident are observed 

in the kinematics and hydrodynamics of the vessel but they should also be considered in the 

thrusters. They may appear as couplings between various degrees of freedom (DOF) or as 

range/rate limits in the vessel’s actuators. Nonlinearities may also appear on the control side 

of the problem. Wave disturbances, of a certain frequency range, need to be omitted from the 

total disturbance input as their variations results into aggressive controls, thus increasing 

thruster wear and tear. A simple technique to address this problem was to apply individual PID 

controllers, for the surge the sway and the yaw, each in cascade with a Low Pass or a Notch 

filter to remove these frequencies from the control loop (Katebi, Morardi, 2000). The 

disadvantage in this setup is the additional phase lag introduced in the loop by the filters, 
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which can severely reduce the bandwidth of the system. The main goal in this chapter is to 

explore control possibilities to tackle both tasks with a single solution. 

Two weaknesses previously addressed (Breivik and Fossen, 2004) are the transformation 

between two coordinate systems and the parameter adaptation on changing environmental 

conditions, both applied on the error minimization to ensure smoother and realistic 

convergence to the desired path. Previous approaches include PID with Filtering, which was 

common practice up until the 60s, LQG (Shneider et al., 1969) and H∞ MIMO designs (Katebi 

et al., 1997), (Balchen et al, 1980), which became popular after the Kalman Filter development, 

but also nonlinear techniques like Adaptive Backstepping (Fossen and Grovlen, 1998), sliding 

mode, Fuzzy Logic and nonlinear PID approaches (Yamamoto and Daigo, 1998). The PID 

nevertheless remained in applications for both tracking and dynamic positioning and it wasn’t 

but recently that the prospective of more advanced schemes was explored. 

The proposed NGMV controller in this chapter is designed to treat the system in full coupling 

for improved compensation. Furthermore, as discussed in Chapter 2, unlike previous 

approaches, it takes into account the full nonlinear system rather than a linear approximation. 

This work is divided into the following sections. 

Section 1 – Problem Description; overview of the control objectives and strategy employed in 

this work. 

Section 2 – System Model Description; derivation of a suitable state-space model used within 

the state-space NGMV design and in simulation. 

Section 3 – Control System Description; adaptation of the control algorithm as derived in 

Equation 2:32 and also of a basic PID control formulation used here for comparison. 

Section 4 – Simulation Results for the Basic NGMV; definition of the different scenarios and 

presentation of control performance results for the different schemes employed throughout 

the simulations. 

Section 5 – Simulation Results for the LPV-NGMV; definition of the main DP scenario and 

presentation of control performance results for the basic and LPV-NGMV controllers. 

 

5.1 Problem Description 

The main objective is to control the axial thruster forces of a fully actuated vessel and to keep 

it stationary at a point or guide it along a specified 2-axis geometric trajectory. Environmental 

disturbances are considered throughout the process for performance evaluation and 

comparison against a classical PID design. Simulations are based on the CyberShip II model. It 

has been common for this problem to break into the two following tasks, 
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1. Geometric task 

2. Dynamic task 

 

The first ensures that the position vector of the ship y(t) converges to a desired trajectory  �#�	�  parameterised by a path variable θ, 

limB→ßÒ��	� − �#/à�	�0Ó = 0 (5:1) 

 

The second ensures that the ships velocity θ ̇ converges to a desired speed  á#, 

limB→ßÒàS (	) − á#/à(	)0Ó = 0 (5:2) 

 

The primary objective is to use the coordinate transformation used in (Breivik and Fossen, 

2004) along with the parameters of Cybership II, acquired via identification, and design the 

NGMV algorithm to fulfil both the geometric and the dynamic task with satisfactory 

performance. Actuator saturations, as part of the ship model nonlinearities, and wave 

disturbances affecting various parts of the system, have also been considered for realistic 

simulation results. 

 

5.2 Generalised System Model Description 

Unlike the model separation relevant to the application (Navigation or DP), that is found in 

traditional theory, a single vessel model is used to cover both cases. That model comprises of 

kinematics which describe the geometric aspects of motion with respect to the body 

coordinate frame, hydrodynamics which describe the forces exerted in the vessel and causing 

these motions and also propulsion and control dynamic characteristics and limitations. Wave 

disturbances are also modelled. Position commands are given with respect to the North-East-

Down (NED) coordinate frame therefore defining the necessary transformation matrices, from 

that to the Body-fixed frame, is an additional system component (Katebi, Morardi, 2000). 

 

Vessel Body Kinematics Definition: 

The geometric aspects of motion and forces in 6 DOF are illustrated in Figure 5:1 and a 

summary of them is shown in Table 5:1. The position and thrust forces vectors shown below 

are the principal vectors for our design. The DP control system acts upon the error between 

desired and actual position vector and produces an optimal vector of thrust forces to eliminate 

this error. 

â =  o,, �, ãpG ∈ +y, Ç =  oÇT , Çä, Ç�pG ∈ +y (5:3) 
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Table 5:1: General Notation of Marine Vessel Kinematics 

DOF Definition 
Force (1-3)/ 

Moment (4-6) 

Linear (1-3)/ 

Angular (4-6) Velocity 

Positions (1-3)/ 

Euler (4-6) Angles 

1 surge X u x 

2 sway Y υ y 

3 heave Z w z 

4 roll K p φ 

5 pitch M q θ 

6 yaw N r ψ 

 

In ship manoeuvring applications the dominant control modes are the surge, along the fore-aft 

axis, the sway, along the starboard axis and yaw, which is the rotation about the centre of the 

vessel. Yaw is the principal mode for navigation whereas roll, pitch and heave are responsible 

for the safety of the cargo/ comfort of the passengers hence target of stabilisation 

applications. Note that for this application we assume stability about the pitch and roll modes 

and we are only concerned on the guidance/DP problem hence the model can be reduced into 

3-DOF. 

 

 

Figure 5:1 Geometric representation of a 6 DOF vessel kinematics. 
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Vessel Body Dynamics Definition: 

The hydrodynamic equations that describe a fully actuated marine vessel can be summarised 

in Equations 5:4 and 5:5. These matrices contain parameters for the hydrodynamic, 

aerodynamic, wave and control forces in all three directions (Fossen and Grovlen, 1998), 

(Breivik and Fossen, 2004). A summary of parameter definition can be seen in the following 

table. 

âS  =  +�Ô�6 (5:4) å6S 
 ��6�6 
 4�6�6 =  Ç 
 +�Ô�æ (5:5) 

where 

+�Ô� =  °K�aã −a�«ã 0a�«ã K�aã 00 0 1² (5:6) 

 

is the rotation matrix from NED (v vector) to BODY (η vector) coordinate frame, 

å =  ¾½ − �¤S 0 00 ½ − 'çS ½,è − '1S0 ½,è − ±çS <é − ±1S ¿ (5:7) 

 

is the rigid body minus the added mass inertial matrix, xg is the centre of gravity along the body 

x-axis, m is the vessel mass, X¤S , 'çS , '1,S ±çS , ±1S  are the hydrodynamic derivatives that define 

forces due to accelerations in a certain direction and <é is the moment of inertia about the z-

axis (yaw rotation), 

�(6) =  ¾ 0 0 −(½ − 'çS )á − (½,è − '1S )20 0 (½ − �¤S )�(½ − 'çS )á + (½,è − '1S )2 (−½ + �¤S )� 0 ¿ (5:8) 

 

is the Coriolis/centrifugal skew-symmetric matrix, 

4(6)
=  ¾−�¤ − |�|�¤¤ − ��¤¤¤ 0 00 −'ç − |á|'çç − |2|'1ç −'1 − |á|'ç1 − |2|'110 −±ç − |á|±çç − |2|±1ç −±1 − |á|±ç1 − |2|±11¿ 

(5:9) 

 

is the hydrodynamic damping matrix. b is the n-frame bias due to currents. Xë, 'ç, '1, ±ç,±1  are 

the forces due to angular velocities similarly. The τ vector contains control thrust forces in the 

surge, sway and yaw directions, 
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Ç =  oÇì , Çí, Ç�pG ∈ +y (5:10) 

 

but it can also contain wave and other disturbances. 

�¤S ≜ ����S  (5:11) 

 

is the force in the x-direction caused by acceleration in the same direction. Note that these are 

simplified matrices derived by neglecting the pitch, roll and heave modes. The following table 

contains the values of the model parameters used in simulation. 

½ = 23.8  <é = 1.76  ,è = 0.046   �¤ = −0.7225  �¤¤ = −1.3274  �¤¤¤ = −5.8664  �¤S = −2  'ç = −0.8612  'çç = −36.2823  'çS = −10   '1 = 0.1079  '11 = −3.45  '1S = 0   '1ç = −0.805  'ç1 = −0.845    ±ç = 0.1052  ±çç = 5.0437  ±çS = 0   ±1 = −1.9  ±11 = −0.75  ±1S = −1   ±1ç = 0.13  ±ç1 = 0.08    

 

Different assumptions apply when dealing with a DP or a Manoeuvring application e.g. the 

Coriolis matrix can be neglected due to slow speed operation in DP, this work however is an 

attempt to include most of the nonlinearities for evaluation. A simple diagram which describes 

the vessel model used in simulation is shown in the following diagram. 

 

 Figure 5:2 Dynamic Marine Vessel system simulation diagram. 
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Trajectory Analysis: 

The position � ∈ + and velocity 6 ∈ + vectors of the vessel are defined in a 2-dimensional 

coordinate system; one vessel and one earth-fixed. The vessel itself is assumed to be an ideal 

point mass particle and our objective is to guide it along a geometrical path on the surface 

(Martin, 2004). 

The positioning error: 

ï =  � − �#(à∗) (5:12) 

 

where à∗is the angle by which the desired path is parameterised, is complimented by the 2-

dimensional rotational matrix as shown in the following equations, 

+5(,B) = �K�a,B −a�«,Ba�«,B K�a,B � (5:13) 

ï =  +5(,B)(� − �#(à∗)) (5:14) 

 

Disturbance Model: 

The wave disturbance is defined according to the Pierson-Moskowitz theory (Pierson and 

Moskowitz, 1964). This tells us that for “fully developed seas”, waves are settling into 

equilibrium given a steady wind that blows over some time period. We are mainly concerned 

on the 2nd order waves. They range between 0.5-1.08 rad/sec in frequency and their peak 

values are: 1600 T (μω≈±π/4), 10000 T (μω≈±π/2), 400000 Tm (μω≈±π/4) in the surge sway 

and yaw directions respectively and for “heavy seas”. 

This falls under the category of “rapidly varying wave exiting forces”, resulting into high and 

aggressive control signals, if transmitted within the loop, and can potentially saturate the 

thrusters. One of the critical design points would be to prevent these signals from feeding 

directly back to the controller. As mentioned before, in the PID control case this was achieved 

with the using filtering. In the NGMV case we will select the frequency range of the weightings 

such that the controller itself indirectly acts to filter out this component and obtain the same 

result. For simulation purposes a wider frequency range is considered to fully capture the 

effect of the wave drifting forces. The disturbance signal is defined as white nose driven into a 

2nd order transfer function shown in Equation (5:193). This holds an acceptable approximation 

for a deterministic signal of this nature. 

+ðj(s)  =  J@a + 2ò.jÀðja + Àðjæðj(a + 2òjÀðja + Àðj ) (5:15) 
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where i = 1, 2, 3 for the surge, sway and yaw respectively. The frequency response we are 

trying to simulate is shown in Figure 5:3 with the central frequency fixed at 0.5 rad/sec. In 

simulation À ∈ o0.1, 2p2J3/a and ò ∈ o0.1,1. 2p depending upon the roughness of the sea 

state. 

 

Figure 5:3 Wave disturbance frequency range centred at 0.5 rad/sec. 

 

5.3 Control System Description 

The control design is based on the configuration of a basic guidance system as depicted in 

Figure 5:4. The guidance system is responsible to generate the error between the 

measured/estimated ship position and the desired one, in relation to the NED frame. The error 

is then converted to body frame coordinates and fed into the controller. The control actions 

(i.e. thrust force commands) are then computed and drive the actuators (thrusters). Subjected 

to environmental disturbances the vessel will move towards a new set of coordinates. 

Velocities are then usually measured by a global navigation satellite system, in combination 

with motion sensors like accelerometers and gyros and finally out of these measurements the 

new set of coordinates is estimated relative to the NED frame. As the material in this thesis is 

more concerned about the control problem, we will assume that full measurements are 

available hence avoiding the estimation problem. 

The PID and the NGMV controllers use slightly different configurations i.e. the PID is set in 

combination with a filter to remove high order waves from the loop, whereas in the NGMV 

case the frequency response combination of the error and the control weightings achieves the 

same result. Moreover the NGMV controller, due to utilisation of an internal model of the 

process it requires the yaw measurement. 
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Figure 5:4 Manoeuvring system control loop configuration. 

 

5.3.1 NGMV Controller Design 

As a nonlinear control design scheme the NGMV uses the plant nonlinearities directly instead 

of applying linearization techniques as commonly used. Almost similar to the internal model 

control concept (Grimble, 2005), it uses a delay free exact model of the plant, inside the 

controller, and it penalises the error and the control signal, using weightings, to eliminate any 

mismatch with the actual plant and cancel it out. For this application in particular the state-

space algorithm formulation was used. Although on the NGMV theory the system breaks down 

into a linear and a nonlinear part, in this case the first was modelled as a scalar component to 

allow full integration of the second, which is regarded as a black box. 

The DP controller acts upon the position error vector (in meters) and outputs the optimal 

vector of thrust forces (in Newton) to the thrusters. The thrusters produce the equivalent 

velocities in surge, sway and heave to bring the ship back to the desired position. The 

disturbance model polynomial is formulated and embedded within the controller. For this 

experiment the black-box NGMV formulation is utilised i.e. the full nonlinear ship model 

including the thrusters saturation nonlinearities is placed within the general nonlinear 

operator W1k whereas an unity 3x3 matrix (size equal to the number of I/O channels) is used 

for the linear subsystem. This gives the flexibility to utilise the control in the case where very 

little is known about the system. Therefore the NGMV internal model consists of the following 

subsystems. 

 

 

 

 

 



99 
 

NONLINEAR SUBSYSTEMS 

Nonlinear Plant Subsystem (black-box operator): 

 &.� → å6S 
 ��6�6 
 4�6�6 =  Ç (5:16) 

 

For these experiments the above equation was simplified to include velocities dependency on 

only one matrix (i.e. the C centrifugal matrix). Although at this stage of the problem a varying 

controller gain formulation is not considered, the NGMV holds an advantage for including this 

nonlinear characteristic within its control law. Examples of the nature of these variations in 

terms of elements of the C matrix can be seen in the following figures. 

 

 

 

Figure 5:17 Linear variation with angular velocities of Coriolis matrix elements. 

 

The &.� nonlinear operator also includes nonlinear input-output characteristic of an open-

water thruster relating input to output thrust force as seen in the following figure and also 

saturation constraints as seen in the following relations. 

 

1 2 3 4 5 6 7 8 9
-36

-34

-32

-30

-28

-26

-24

Angular Velocity in Y axis (v)

C
rb

(1
,3

)

Centrifugal Coriolis Matrix Crb(1,3) Element Variation with v

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Angular Velocity in X axis (u)

C
rb

(2
,3

)

Centrifugal Coriolis Matrix Crb(2,3) Element Variation with u



100 
 

|Çì, Çí| ≤ 50± 

|Ç�| ≤ 37.5± 

(5:17) 

 

 

Figure 5:18 Nonlinear thruster input-output characteristic. 

 

LINEAR SUBSYSTEMS 

Linear Plant Subsystem: 

&� → °1 0 00 1 00 0 1² (5:18) 

 

Reference Subsystem: 

The reference subsystem was modelled as a 3x3 discrete integrator TF matrix, appropriate to 

approximate the nature of setpoint trajectories. 

&1 → 0.51 − 0.8��. × °1 0 00 1 00 0 1² (5:19) 

 

Disturbance Subsystem: 

The disturbance subsystem was modelled as a 3x3 discrete TF matrix according to the second 

order process described in the disturbance definition section. 

&# → 1.002 − 1.995��. + 0.9925��1 − 1.995��. + 0.995�� × °1 0 00 1 00 0 1² (5:20) 
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NGMV Weighting Definition: 

The error weighting Pc was selected with respect to the frequency characteristics of the 

disturbance and has the following discrete TF. 

� → 1.001 − 1.995��. + 0.9938��1 − 1.995��. + 0.995�� × °1 0 00 1 00 0 1² (5:21) 

 

The control weighting Fck is defined as the following discrete lead term. 

� � → 1.5 − 1.05��. × °1 0 00 1 00 0 1² (5:22) 

 

The frequency responses of both the error and control weighting TFs against the wave 

disturbance can be seen in the following figure. 

 

Figure 5:19 Manoeuvring system control loop configuration. 

 

Notch Filtering: 

In experiments presented in Figures 31-32 a Notch filter was included in the PID feedback 

measurement path in an attempt to omit higher frequencies than the ones the controller and 
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of the ship. The Notch filter simply has the reverse characteristics of the unwanted frequencies 

as shown in the following Bode plot. 

 

 
 

Figure 5:20 Notch filter and disturbance frequency response. 

 

5.4 Simulation Results for the Basic NGMV 

5.4.1 Reference Tracking Performance 

The reference trajectory consists of position coordinates x, y and r on the NED frame which are 

given in meters for the surge/ sway and degrees for the yaw mode. The thrusters force 

commands are given in [N]. For the 1st set of tests, commands were employed only to one of 

the three modes keeping the rest at zero to examine the equivalent responses in isolation. 

However there is a strong coupling between the sway/yaw modes and the rest, shown in 

Figure 5:23 and Figure 5:25 (i.e. varying the sway and/or the yaw effects variations in the other 

channels as well). In surge control there is no coupling with the other modes so they 

effectively remained close to zero. Their responses are omitted from the surge control trial. In 

all experiments importance was given in the trade-off between tracking performance and 

regulation of control signals. Tuning for both the NGMV and different PID configurations was 

carried out with respect to this trade-off. 
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It can be seen in all results that the NGMV explicitly considering the nonlinearities and MIMO 

interactions provide better tracking with more conservative control action. Moreover it can be 

seen in 5:13 that moving to a different operating point results into performance deterioration 

for the baseline controller (obviously needing re-tuning) whereas the NGMV maintains 

performance using the same tuning parameters. 

Scaling: It is important to note here that as the marine vessel model used in this application 

was that of a small experimental mock-up of an actual ship the magnitudes of disturbance 

signals were scaled down accordingly. Hence for example only less than a meter variations are 

observed in the dynamic positioning results in the presence of disturbances. 

 

Figure 5:21 Position reference tracking along the Surge axis (no effect on Sway and Yaw 

motions). Coordinate positions are given in [m] whereas thrust commands in [N]. 
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 Figure 5:22 Position reference tracking along the Sway axis (has effect on Surge and Yaw 

motions). Coordinate positions are given in [m] whereas thrust commands in [N]. 

 Figure 5:23 Effect of motion along the Sway axis onto Surge and Yaw thruster commands. 

Thrust commands are given in [N]. 

0

2

4

6

8

y
 c

o
o
rd

in
a
te

Sway Axis Position and Thuster Response

 

 

0 50 100 150 200 250 300
-40

-20

0

20

40

60

time (sec)

u
y
 v

e
lo

c
it
y
 c

o
m

m
a
n
d

y trajectory

NGMV

PID

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

u
x
 v

e
lo

c
it
y
 c

o
m

m
a
n
d

Surge/Yaw Axis Thuster Responses in Sway Control

 

 

0 50 100 150 200 250 300 350 400

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

time (sec)

u
r 

v
e
lo

c
it
y
 c

o
m

m
a
n
d

 

 

NGMV

PID

τ y
 c

o
m

m
a

n
d

 
τ N

 c
o

m
m

a
n

d
 

τ x
 c

o
m

m
a

n
d

 

Surge/Sway Axis Thruster Commands in Sway Control 

Surge Axis Position and Thruster Command 



105 
 

 Figure 5:24 Rotation reference tracking around the Yaw axis (has effect on Surge and Sway 

motions). Coordinate positions are given in [m] whereas thrust commands in [N]. 

 Figure 5:25 Effect of motion around the Yaw axis onto Surge and Sway thruster commands. 

Thrust commands are given in [N]. 
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 Figure 5:26 Position reference tracking along the Surge axis (2nd operating point). Coordinate 

positions are given in [m] whereas thrust commands in [N]. 

 

 Figure 5:27 Position reference tracking along the Sway axis (2nd operating point). Coordinate 

positions are given in [m] whereas thrust commands in [N]. 
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 Figure 5:28 Rotation reference tracking around the Yaw axis (2nd operating point). Coordinate 

positions are given in [m] whereas thrust commands in [N]. 

 

5.4.2 Reference Tracking and Disturbance Rejection Performance 

In this case, a wave disturbance was applied to the system (as defined in 5.2) along with a 

series of step setpoint changes to explore the effect upon tracking and disturbance rejection 

performance of the controllers simultaneously. In the first experiments shown in Figures 5:21-

5:30, the baseline PID and the NGMV were implemented without the application of a Notch 

filter to prevent the unwanted high frequency disturbance component form propagating 

through the loop. It is observed that the two controllers have similar performance. 

The NGMV indirectly employs filtering through the appropriate selection of weightings in the 

frequency domain and therefore yields a slightly smoother response than the baseline 

controller. In the case that follows, shown in Figures 5:31 and 5:32, Notch filtering has been 

applied to the PID loop. Although the unwanted disturbance component has been removed, 

there is significant lag introduced by the filter adding further complications to tuning and 

deteriorating tracking performance. The NGMV again maintains performance while retaining 

its initial tuning parameters in the expense however of not completely removing the high 

frequency component from the loop. 
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Figure 5:29 Simultaneous reference tracking in all Surge, Sway and Yaw axis under wave 

disturbance. Coordinate positions are given in [m]. 

 

 

Figure 5:30 Thruster commands in all Surge, Sway and Yaw axis under wave disturbance. 

Thrust commands are given in [N]. 
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Figure 5:31 Simultaneous reference tracking in all Surge, Sway and Yaw axis under wave 

disturbance (PID combined with Notch filtering). Coordinate positions are given in [m]. 

 

 

Figure 5:32 Thruster commands in all Surge, Sway and Yaw axis under wave disturbance (PID 

combined with Notch filtering). Thrust commands are given in [N]. 
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5.4.3 Dynamic Positioning – Disturbance Rejection Performance 

For this scenario control performance was tested at maintaining the position of the ship at a 

nominal point under the influence of wave disturbance. 

 

 

Figure 5:33 Surge position reference at p(0,0,ψ) and resulting thruster command under wave 

disturbance. Coordinate positions are given in [m] whereas thrust commands in [N]. 
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 Figure 5:34 Sway position reference at p(0,0,ψ) and resulting thruster command under wave 

disturbance. Coordinate positions are given in [m] whereas thrust y commands in [N].

 Figure 5:35 Yaw position reference at p(0,0,ψ) and resulting thruster command under wave 

disturbance. Coordinate positions are given in [m] whereas thrust commands in [N]. 
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 Figure 5:36 X,Y axis coordinate response for dynamic positioning of the vessel under wave 

disturbance for both the NGMV and PID controller. Coordinate positions are given in [m]. 
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Figure 5:37 shows the actual trajectory of the ship around the nominal point in the Earth 

coordinate system for both controllers. 

 

5.5 Dynamic Positioning Using LPV-NGMV Control 

In this application section the LPV-NGMV control approach is used for the dynamic positioning 

of the experimental marine vessel model (Cybership II) described in Section 5.2. The intention 

here is to use simulated scenarios to explore potential benefits the LPV formulation of the 

algorithm has over the nominal state-space version. The general problem description tested in 

simulation is summarised in the following diagram. 
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Figure 5:38 Control configuration of the LPV-NGMV controller for DP under varying wave disturbances. 

Varying elements within the controller structure are shown in red outline. 

 

The varying parameter ρ(t) in this case is the determining factor that affects change in sea 

state as captured by variations in the parameters of a 2nd order wave model such as the 

damping ratio, natural frequency, amplitude etc. Similar to previously the wave disturbance is 

captured by the wave model driven by white noise (ξ(t)). For the purpose of this simulation it is 

realistic to assume that transition between the different sea states happens at a much slower 

rate than the controller dynamics, therefore it is meaningful to examine and compare 

performance of the two controllers once the new sea-state has being reached. The main 

objective here, as with the previous DP simulation example, is to maintain the ship position at 

p(0,0,0) earth coordinates in the presence of (this time) varying wave disturbance. Five sea 

states are defined for this simulation as follows. 

+A;� AB�B; .�s�  =  0.04aa + 0.0004a + 0.04 (5:23) 

+A;� AB�B; (s)  =  0.16aa + 0.008a + 0.16 (5:24) 

+A;� AB�B; y(s)  =  0.64aa + 0.16a + 0.64 (5:25) 



115 
 

+A;� AB�B; z(s)  =  2.56aa + 1.6a + 2.56 (5:26) 

+A;� AB�B; {(s)  =  7.84aa + 6.72a + 7.84 (5:27) 

 

Figure 5:39 shows the frequency responses of all five sea states overlaid and parameterised 

with respect to natural wave frequency. 

 

Figure 5:39 Frequency response of the 5 different sea states parameterised by natural 

frequency ω0. 

 

5.5.1 Control Design Discussion 

The main component within the LPV-NGMV controller that varies parameterised by ρ(t) is the 

disturbance model definition Wd whereas the linear plant and reference models remain fixed. 

The “black box” formulation is used here as well where the full nonlinear state-dependent 

vessel model is contained within the controller and the linear plant subsystem is defined being 

unity. This is a very interesting formulation, combining nonlinear elements (thruster 

saturation), state-dependent (varying centrifugal matrix C) within the nonlinear part and at the 

same time a varying linear component (Wd) to improve knowledge of the changing state within 

the controller derivation. The following equation shows the continuous time varying state-

space structure of Wd which along with the time-invariant Wr linear reference subsystem 

constitute the augmented LPV subsystem of the plant. Figure 5:40 shows the variation range 

that was used in the following simulation experiments. 
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 �,S.,S� = � 0 1−À� −2µÀ�� �,.,� + � 0À�� �� 

(5:28) � = o0 1p �,.,� 

 

 

Figure 5:40 Wave natural frequency (ω0) and damping ratio (λ) variation with respect to sea-

state. 

 

The varying Wd(ρ) in turn results into varying controller internal loop gains and Kalman filter 

model as shown in Figure 5:38, where the updated components are signified by the red 

outline. 

The baseline state-space NGMV controller used in this example maintains all subsystems fixed 

throughout the sea states. Another difference between the controllers is that whereas the 

baseline NGMV and LPV-NGMV maintain the same Pc weighting based on the PID gains 

definition method, the latter incorporates in the Pc a model of the current wave disturbance to 

enhance penalty within that particular frequency range. Simulations have shown that by only 

varying the Wd within the controller formulation yielded a constant improvement in Mean 

Integrated Squared Error (MISE) between 1-2% over the baseline controller. However, 

scheduling the error weighting in frequency added more to the advantage over the baseline 

controller as it will be shown in the following results. An example of the Scheduling of Pc with 

respect to ρ(t) can be seen for sea states 3 and 4 in Figures  5:41 and 5:42 respectively. 

 

 

 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Sea-state variation

M
a

g
n

it
u

d
e

Disturbance Subsystem Parameter Variation

 

 

w0 [rad/s]

lambda [-]



117 
 

Sea State 3 & 4 Controller Weightings: 

 

Figure 5:41 Controller error weighting (Pc) against wave disturbance in frequency for Sea State 

3 (left) and controller weightings selection in frequency for Sea State 3 (right). 

 

 

Figure 5:42 Controller error weighting (Pc) against wave disturbance in frequency for Sea State 

4 (left) and controller weightings selection in frequency for Sea State 4 (right). 

 

5.6 Simulation Results for the LPV-NGMV 

5.6.1 Dynamic Positioning – Disturbance Rejection Performance for Varying 

Sea State 

The two metrics used here to quantify the comparison between the two controllers are the 

normalised Standard Deviation (STD), for the thruster commands, and the Mean Squared 

Integrated Error (MISE) for the three position coordinates. 
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å<¨� = 1± ¥��ô·@ − ��;�A@��
@��  (5:29) 

 

where y is the positions vector, 

¨?4 = õ1± ¥��@ − �ö��
@�� ÷./

 (5:30) 

 

where u is the thruster force vector. 

 

Ship Earth-frame Coordinates & Thruster Commands Comparison for Sea State 1: 

 

Figure 5:43 Vessel earth coordinate positions in [m] for Sea State 1. 
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Figure 5:44 Vessel thruster commands in [N] for Sea State 1. 

 

Ship Earth-frame Coordinates & Thruster Commands Comparison for Sea State 2: 

 

Figure 5:45 Vessel earth coordinate positions in [m] for Sea State 2. 
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Figure 5:46 Vessel thruster commands in [N] for Sea State 2. 

 

Table 5:2: Sea State 2, quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

 ux thrust uy thrust ur thrust x coord. y coord. ψ coord. 

NGMV 1 1 1 1 1 1 

LPV-NGMV  0.6890 0.6152 0.6307 0.9119 0.7533 0.7762 

 

The LPV-NGMV yields an improvement in regulation MISE of 8.81%, 24.6% and 22.3% for the x, 

y and ψ coordinates respectively relative to the baseline NGMV. Furthermore a reduction in 

control action is achieved, at 31.1%, 38.4% and 36.9% for x, y and r respectively. 
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Ship Earth-frame Coordinates & Thruster Commands Comparison for Sea State 3: 

 

Figure 5:47 Vessel earth coordinate positions in [m] for Sea State 3. 

 

 
Figure 5:48 Vessel thruster commands in [N] for Sea State 3. 
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Table 5:3: Sea State 3, quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

 ux thrust uy thrust ur thrust x coord. y coord. ψ coord. 

NGMV 1 1 1 1 1 1 

LPV-NGMV  0.6746 0.6976 0.7438 0.8849 0.9282 1.0259 

 

The LPV-NGMV yields an improvement in regulation MISE of 11.5%, 7.1% for the x and y 

coordinates respectively relative to the baseline NGMV whilst no improvement is observed for 

the ψ coordinate. Furthermore a reduction in control action is achieved, at 32.5%, 30.2% and 

25.6% for x, y and r respectively. 

 

Ship Earth-frame Coordinates & Thruster Commands Comparison for Sea State 4: 

 

Figure 5:49 Vessel earth coordinate positions in [m] for Sea State 4. 
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Figure 5:50 Vessel thruster commands in [N] for Sea State 4. 

 

Table 5:4: Sea State 4, quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

 ux thrust uy thrust ur thrust x coord. y coord. ψ coord. 

NGMV 1 1 1 1 1 1 

LPV-NGMV  0.6055 0.6206 0.5754 0.9733 0.9798 0.8947 

 

The LPV-NGMV yields an improvement in regulation MISE of 2.67%, 2% and 10.5% for the x, y 

and ψ coordinates respectively relative to the baseline NGMV. Furthermore a reduction in 

control action is achieved, at 39.4%, 37.9% and 42.4% for x, y and r respectively. 
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Ship Earth-frame Coordinates & Thruster Commands Comparison for Sea State 5: 

 

Figure 5:51 Vessel earth coordinate positions in [m] for Sea State 5. 

 

Figure 5:52 Vessel thruster commands in [N] for Sea State 5. 
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Table 5:5: Sea State 5, quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

 ux thrust uy thrust ur thrust x coord. y coord. ψ coord. 

NGMV 1 1 1 1 1 1 

LPV-NGMV  0.7715 0.7781 0.8358 0.9977 0.9987 0.9699 

 

The LPV-NGMV yields an improvement in regulation MISE of 0.23%, 0.13% and 3% for the x, y 

and ψ coordinates respectively relative to the baseline NGMV. Furthermore a reduction in 

control action is achieved, at 22.8%, 22.1% and 16.4% for the x, y and z axis respectively. 

 

5.7 Final Remarks 

In this section the NGMV nonlinear control design technique was employed to the navigation 

and dynamic positioning of an experimental marine vessel. Using an initial PID based tuning 

throughout a set of operating points, simulation showed that the NGMV maintains a 

reasonable tracking performance while the PID deteriorates. If not, retuning or gain scheduling 

may be used for the PID, though sometimes their realisation proves to be a very difficult task 

in nonlinear systems and it usually targets linear approximations of the model. In further 

simulations, not presented in this section, the NGMV seems to maintain performance for an 

even wider operating range after the PID goes unstable. Note that with a small tweaking it 

proves that it can perform even better in these operating points. 

For the disturbance rejection performance, it is shown that the PID configuration uses a Notch 

filter, the downside of which is that it reduces the phase margin of the system in critical levels. 

In simulations the filter was applied and the entire system was re-tuned to reduce the 

disturbance as much as possible without going unstable. This has set constrains on the 

specifications of the filter. In the NGMV case the high frequency wave components are filtered 

out by the same weightings to avoid the phase lag that accompanies the Notch filter (Martin, 

2004), maintaining marginal stability to reasonable levels. The controller without any excessive 

control signals can compensate the low frequency components such as wave and current 

induced motion. In further simulations, is shown that when increasing the parameters of the 

disturbance like power and range the PID performance leads to very large control outputs 

saturating the thrusters or leading to large tracking variations whereas the NGMV maintains 

control output within almost the same range in all cases and without retuning. 

Lastly, although not initially in the thesis, a final section was added to the chapter to explore 

the performance of the LPV-NGMV formulation suggested in Section 4.6 when employed for 

the dynamic positioning of the experimental vessel under varying sea state (wave disturbance). 

The LPV controller was compared against, updating its internal gain calculations parameterised 

by sea state variations, was compared against a fixed gains standard NGMV controller. This 

“black box” and varying disturbance model Wd formulation proved to yield small but yet 

substantial improvement especially for sea states 2 and 3. This may imply weakness of the 

algorithm in faster systems, however further research and simulations are suggested for a 

definitive conclusion. 
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 Wind Turbine Control Chapter 6

In this chapter the LPV-NPGMV algorithm that was derived in Chapter 4 is tested in a control 

application for a wind energy conversion system (WECS). There has been a lot of interest in the 

application of advanced controls to wind turbine systems due to increase in size and 

performance requirements. This applies to both individual wind turbine controls and for the 

coordinated controls for total wind farms. The most successful advanced control method used 

in other industries is predictive control which has the unique ability to handle hard constraints 

that limit system behaviour. However, wind turbine systems are particularly difficult in being 

very nonlinear and dependent upon the external parameter variations which determine 

behaviour. Many nonlinear approaches are probably too complicated to implement in most 

situations and the approach proposed here is to use one of the latest predictive control 

methods which can be used with linear parameter varying models. The use of linear parameter 

varying (LPV) models has also been discussed previously (Østergaard et al. 2009) and (Adegas, 

and Stoustrup, 2012). However, new controllers have been developed for industrial processes 

particularly aimed at generating relatively simple designs to understand and implement. The 

particular features of the design method proposed in this thesis which are valuable for the 

wind turbine control problem include the very flexible way to model the process and the very 

general criterion that may be optimised. This criterion can have nonlinear terms and if for 

example fatigue is being minimised in wind turbines this is an important feature. There are not 

many control techniques which enable a nonlinear cost function to be minimised using a 

theoretical solution and an algorithm which is relatively simple to understand and implement. 

The main feature of the following work is the demonstration of how the controller is used and 

the benefits that are available. This chapter is divided into four sections which are briefly 

explained below. 

 

Section 1 – Problem Description; overview of the wind turbine control objectives and strategy 

employed in this work. 

Section 2 – System Model Description; derivation of the LPV wind turbine model used within 

the NPGMV design. 

Section 3 – Control System Description; adaptation of the control algorithm as derived in 

Equation 4:100 and also of a basic NGMV and PID control formulations used here for 

comparison. 

Section 4 – Simulation Results & Conclusions; definition of the different scenarios and 

presentation of control performance results for the different schemes employed throughout 

the simulations. 
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6.1 Problem Description 

The main objective of the control solution proposed in this chapter is the regulation of 

produced electrical power in a large scale wind turbine. This is achieved at the turbine rated 

power while compensating for, 

• System nonlinearities arising, 

o in the mechanical parts of the turbine (e.g. actuator range limitations), 

o in the aerodynamic conversion between wind energy and electrical power, 

• Wind disturbances (e.g. sudden wind gusts and high frequency wind variations). 

Using the same control paradigm, a secondary scenario is explored, that of varying the power 

output demand of the turbine (derating). This is particularly useful in centralised wind farm 

power production control. In the latter, individual turbines are required to reduce their output 

so that an optimal global output is reached with respect to various criteria like the 

minimisation of mechanical loading in turbine tower and nacelle structures, the maximisation 

of grid power demand etc. (AEOLUS FP7). 

It is important to mention here that this was not a full-bore wind turbine control study 

(considering switching between regions of operation, optimal curve tracking below rated wind 

speed etc.) but rather one aspect of the system operation was selected to capture 

characteristics of interest to explore implementability of the introduced scheme such as: 

• Reference tracking 

• Disturbance rejection 

• Nonlinear effects compensation like pitch actuator constraints in that case 

• Varying system dynamics like the aerodynamic conversion variables subject to wind 

speed variations 

The wind turbine control strategy described in this section incorporate two separate 

configurations (a SISO and a MIMO control system) as explained below (Bianchi et al., 2006). 

1. Fixed-Torque/Variable-Pitch; the generator torque is kept at the rated value whilst 

the pitch is manipulated for power regulation at the rated value during wind speed 

variations. 

2. Variable-Torque/Variable-Pitch; both the generator torque and pitch are manipulated 

to regulate the generator speed and power respectively at the rated value, during 

wind speed variations. 
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Figure 6:1 MIMO System MV/CV variables (the SISO case is the subset Input 2/Output 2). 

 

When the wind turbine operates in the below rated wind speed region control strategies 

mostly aim at the maximisation of produced electrical power. Throughout this mode of 

operation the blade pitch is set to zero to allow full harvest of the energy available in the wind 

whilst the optimal torque reference to the generator is derived from optimal lookup tables 

implemented within the controller.  

For this application however the focus goes to the above rated operating region (see Mode 3 

below) where the main control objective becomes the regulation of the produced electrical 

power at its rated value, also limited by the generator speed rating. For completion and 

reference, the operating modes of a WECS system are summarised below and also seen in 

Figure 6:2, with respect to wind speed, for the particular wind turbine system used in this 

chapter. 

 

5MW NREL Wind Turbine Operating Modes & Control Objectives: 

1. Mode 1 (0-4m/s) – Start up/Low wind speed; objective: maximise power constrained 

by minimum rotor speed. 

2. Mode 2 (4-10.9m/s) – Below rated wind speed; objective: maximise power. 

3. Mode 21/2 (10.9-11.5m/s) – Below rated wind speed and rotor speed; objective: 

maximise power constrained by nominal/maximum rotor speed. 

4. Mode 3 (11.5-25m/s) – Above rated wind speed; objective: maintain rated power and 

nominal/maximum rotor speed. 
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Figure 6:2 Optimal Electric Power curve and modes of operation for the 5MW NREL wind 

turbine system with respect to wind speed. 

 

6.1.2 Controller Structure 

The architecture used for all controllers is composed of a feedback and a feedforward 

component, where feedforward action establishes the nominal operating point at every step 

and feedback action compensated for deviations around that operating point. This can be 

summarised in Figures 6:3 and 6:4 for the SISO and the MIMO case respectively. Note that the 

wind speed estimation aspect is not a part of this investigation, therefore the assumption of an 

accurate wind speed measurement is made throughout all simulations. 

 

 

Figure 6:3 SISO Control System FB+FF structure. 
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Figure 6:4 MIMO Control System FB+FF structure. 

 

Feedforward Action; this component is based on the optimal trajectories for the pitch angle, 

rotor/generator speed, power and generator torque. Its main purpose is to provide control 

action that will keep power production at the rated value above rated wind speed - in the 

steady-state sense and assuming no modelling errors. The optimal reference curves, provided 

by the lookup tables, are also used to generate power and speed reference signals for the 

feedback controller. Note that for the above rated operation that is examined here only the 

pitch angle optimal curve varies whereas the power, generator speed and torque curves 

remain fixed at the corresponding rated values. The optimal curves for this particular wind 

turbine can be seen in Figure 6:5. 
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Figure 6:5 Optimal Reference Curves for the 5MW NREL wind turbine. 

 

Feedback Action; this component is used to minimise power variations around the rated value 

and compensate for model uncertainties and nonlinearities. 

Here, the generic inputs and outputs of the system in standard control terminology are: 

Controlled variables (CV): 

• Produced (electrical) power reference 

• Generator speed reference (for the MIMO case only; for the SISO only FF is employed) 

Manipulated variables (MV): 

• Pitch angle reference 

• Generator torque reference (for the MIMO case only; for the SISO only FF is employed) 

Disturbance variables (DV): 
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• Effective wind speed (as experienced in the blades of the turbine; measured minus the 

tower bending velocity) 

The next section covers the derivation of an LPV model of the wind turbine system, suitable for 

the formulation of the LPV-NPGMV controller. 

 

6.2 Wind Turbine Model Description 

The physical system that was selected for this experimentation is that of an offshore WECS. It 

is a theoretical system, representative of a utility-scale multi-megawatt wind turbine 

developed by the National Renewable Energy Laboratory (NREL) and thoroughly validated 

against real systems (Jonkman et al. 2009). More specifically, it is a three-bladed upwind, 5MW 

wind turbine with active pitch control and Doubly-Fed Induction Generator (DFIG) with 

controllable generator torque. 

The overall wind turbine from a systems standpoint is a combination of static and dynamic, 

linear and nonlinear components. Figure 6:6 illustrates the complete features of the NREL 

system used in this chapter. However the following list only contains those sub-systems that 

are vital for control design and the modelling process: 

1. Pitch Actuator; linear-dynamic. 

2. Rotor Aerodynamics; nonlinear-static. 

3. Transmission (low/high speed shafts); linear-dynamic. 

4. Generator & Converter; linear-dynamic. 

The principal objective of a WECS is to convert kinetic energy out of the wind into electrical 

power. The first conversion occurs in the rotor of the turbine where wind power is translated 

into mechanical power and subsequently translated into electrical through the transmission 

and generator components. The amount of power which could be extracted by the wind is 

determined by the area swept by the turbine rotor and is limited by a factor which varies with 

the tip speed ratio and the pitch angle of the blade. 

 



133 
 

 

Figure 6:6 Wind Turbine Subsystems. (http://www.alternative-energy-

news.info/technology/wind-power/wind-turbines/) 

 

These mathematical representations for each of these subsystems are derived in the following 

sections (Østergaard et al. 2007). 

 

Extractable Energy in Wind: 

The total available power (Ptotal) from the wind at the turbine rotor is given by the following 

relation. 

�B�B�× = 12 ��6y = 12 �ø+6y (6:1) 

where 

A area swept by the rotor [m
2
] 

v Wind speed [m/s] 

ρ Air density [kg/m
3
] 

R Rotor radius [m] 

 

The available power in the wind is related to efficiency and limited by a factor 16/27 known as 

the Betz limit or Betz efficiency. 
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Pitch Actuator: 

The pitch actuator is controlled to provide rotation of the blade around the pitch axis to 

change the angle of attack. In certain wind turbines the blades can be controlled individually 

here however a common actuator is used for all three blades. The pitch actuator angle can be 

represented by the following second order system. 

ù�a� = ù1;(�a� ∙ À"a 
 2�À"a 
 À" (6:2) 

where 

β Collective pitch angle [deg] 

βref Pitch angle reference 

ωn Natural frequency [rad/s] 

ξ Damping coefficient 

 

By using the inverse Laplace transform we can translate Equation 6:2 into the time domain. 

This intermediate step is useful for the conversion of the subsystems into state-space later in 

the chapter. ù�a�oa 
 2�À"a 
 À"p = ù1;(�a�À" 

 

(6:3) 

⇒ aù�a� 
 2�À"aù�a� 
 À"ù�a� = ù1;(�a�À" 

 FûüUHýþþ� ùÖ 
 2�À"ùS 
 À"ù = ù1;(À" 

 ⇒ ùÖ = ù1;(À" − 2�À"ùS − À"ù 

 ⇒ ùÖ = À" Ùù1;( − 2�ùSÀ" − ùÚ 

 

Rotor Aerodynamics: 

Rotor aerodynamics is the main nonlinear component of the wind turbine system and it 

describes the aerodynamic conversion from the wind energy captured by the rotor, to the 

resulting torque which drives the rotating parts. It can take the form of the mechanical power 

Pextractable produced as shown below. 

�;TB1� B��×; = �5 ∙ �B�B�× (6:4) 

 

Cp is the power coefficient and it varies with the blade pitch angle β tip speed ratio λ given by 

Equation 6:5. In practice Cp has a certain optimum which is approximately 0.4. 

µ = À1+6  (6:5) 
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Substituting and expanding Equations 6:1 and 6:4 results into the following relation for 

Pextractable. 

�;TB1� B��×; = �5�µ, ù� ∙ 12 �ø+6y (6:6) 

 

From the extractable power, the aerodynamic (or rotor) torque applied on the rotor shaft can 

be derived by the following relation. 

Ç1 = �;TBÀ1  (6:7) 

 

Substituting Equation 6:6 yields the following relation. 

Ç1 = ���µ, ù� ∙ 12 �ø+y6 (6:8) 

 

Cq is the torque coefficient and it has an equivalent relation to Cp as shown below. 

�� = �5µ  (6:9) 

 

Another variable involved in the aerodynamics of the wind turbine is the thrust force Ft. This is 

the force exerted by the wind on the rotor and produces motion of the turbine tower in the 

fore-aft direction. The thrust force is given by the following relation. 

�B = �B�µ, ù� ∙ 12 �ø+6 (6:10) 

 

where Ct is the thrust coefficient. 

Cp, Cq, Ct are given by lookup tables parameterised by the pitch angle and the tip speed ratio. A 

portion of the Cp with respect to either of the two parameters for the NREL wind turbine is 

presented in Figures 6:7 and 6:8. 
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Figure 6:7 5MW NREL Cp curve with respect different values of β. 

 

 

Figure 6:8 5MW NREL Cp curve with respect different values of λ. 

 

Transmission System (Drivetrain): 

The transmission system is responsible to transfer the mechanical power, generated at the 

turbine rotor, to the electrical components (generator). It consists of two shafts (low and high 
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speed) which are connected via a gearbox. The gearbox introduces an increase of speed from 

the rotor to the high speed shaft to values suitable to drive the generator which in turn 

converts the mechanical power to electrical. 

For simplicity, in our modelling approach a flexible shaft, two-mass third order system is used 

which is considered to be a sufficient approximation for control purposes. Figure 6:9 depicts 

the two-mass system equivalent structure and parameters. The drivetrain configuration shown 

starts with the aerodynamic torque (τr) generated at the rotor (hub and blades) which 

translates into torque on the generator side (τg) via an arrangement of two shafts and a 

gearbox which amplifies speed from the low speed to the high speed shaft. 

 

 

Figure 6:9 Two-Mass System equivalent of the Wind Turbine Drivetrain. 

 

where 

Dr, Dg Rotor and generator friction damping [Nms/rad] 

Jr, Jg Rotor and generator inertia [Nms
2
/rad] 

Kls, Khs Low and high speed shaft stiffness [Nm/rad] 

θr, θg Rotor and generator angular position [rad] 

 

The torque balance for the system described above is captured by the following equations. 

Note that the high speed shaft stiffness Khs can be expressed into the low shaft stiffness Kls via 

the gear ratio N. This similarly goes for the angular positions both expressed in terms of the 

low shaft torsion angle θr or just θ for simplicity. This can be taken further by expressing Dg in 

terms of the low shaft friction damping Dr (or Dls). The resulting transmission equations are as 

follows. 



138 
 

ÀS 1 = 1�1 �Ç1 − 9×Aà − 1± 4×AÀ1 − 4×AÀè� 

(6:11) ÀSè = 1�è �−Çè 
 1± 9×Aà − 1± 4×AÀ1 − 1± 4×AÀè� 

àS = À1 − 1± Àè 

 

Tower Bending Dynamics: 

Tower motion is only considered here with regards to the longitudinal displacement (fore-aft), 

as a result of the thrust force (Ft) exerted on the turbine structure when the wind passes 

through the rotor. The following second order state-space system is used to describe this. 

�6Sb�,Sb�� = °− 4b�½b� − 9b�½b�1 0 ² �6b�,b�� + �B  

(6:12) 6b� = o1 0p �6b�,b�� 

where 

vFA Tower fore-aft velocity [m/s] 

xFA Tower fore-aft displacement [m] 

KFA Tower fore-aft stiffness [N/m] 

DFA Tower fore-aft damping [N/(m/s)] 

mFA Tower fore-aft mass [kg] 

Ft Thrust force [N] 

 

Generator and Converter System: 

In this study only the active power control at turbine (mechanical) level is considered. For this 

reason, the power controller is not described in details. The NREL model contains a simpler 

description of the electrical generator. In this model it is assumed that the power controller 

provides the electrical generator with torque reference. The generator dynamics is modelled 

by the first order system. Equation 6:13 describes the generator torque whereas Equation 6:14 

the converter power. 

 

Generator Torque 

Çè(a) = Çè,1;(�a� ∙ Oè a 
 Oè  (6:13) 
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Convertor Power 

��	� = âèÀè�	�Çè�	� (6:14) 

 

where 

τg Generator torque 

τg,ref Generator torque reference 

αgc First order constant 

ηg Generator efficiency 

 

Wind Turbine Sub-Systems Integration: 

Figure 6:10 shows how all individual subsystems connect to formulate the total system of the 

wind turbine without the controller. 

Figure 6:10 Wind Turbine subsystem interconnections. 

 

6.2.1 Wind Turbine LPV Model for Control 

This section describes the analytical derivation and the discretisation of the linearised 

parameter varying (LPV) model used within the NPGMV controller. The model reflects small 

deviations along the optimal trajectory is consists of all the sub-systems that were described in 

the previous section and summarised below (Østergaard et al. 2007). 

1. Blade Pitch Actuator 

2. Rotor Aerodynamics 

3. Transmission System (Drivetrain) 
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4. Tower Bending Dynamics 

5. Generator and Converter System 

 

The wind turbine system structure can be conveniently put into LPV formulation as all of its 

states can be parameterised by wind speed. The LPV blade pitch actuator and tower bending 

models are identical to the ones described in the previous section, since they were already 

linear. The LPV drivetrain model is very similar to the previously described model and it is 

assumed there are no nonlinear mechanical losses. The LPV generator and converter model is 

also similar to the previous model also under the assumption that there are no electrical 

power losses. The main difference is that the original torque and thrust coefficient lookup 

tables of the previous model are replaced by linearised versions. 

 

Blade Pitch Actuator: 

State vector 

• Pitch angle rate, ùS  [deg/s] 

• Pitch angle, β [deg] 

, = �,.,� = �ùSù�  

Input vector 

• Pitch angle reference (βr=βref) [deg] 
� = o�.p = où1p  

Output vector 

• Measured pitch angle, β [deg] 
� = o�.p = oùp  

 

The state-space model for the pitch actuator can be derived by rearranging Equation 6:2 as 

follows, 

ùÖ = À" Ùù1 − 2�ùSÀ" − ùÚ ⇒ ,S = �, 
 ��  &  � = �, 
 4� (6:15) 

 

This yields the following state-space model, 

� = ù1  

(6:16) 

, = ù ,. = ,S = ùS  
,S. = ,Ö = ùÖ = À" �� − 2�,.À" − ,� 

�,S.,S� = �−2�À" −À"1 0 � �,.,� + �À"0 � � 

 � = , 

� = o0 1p �,.,� + o0p� 

 

A B 

C D 
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Rotor Aerodynamics: 

Input vector 

• Blade effective wind speed, 6;(( = 6� − 6b� 

(where vFA is the tower displacement speed), 

[m/s] 

• Rotor speed, ωr [rad/s] 

• Blade pitch angle, β [deg] 

� = ° �.��y ² = °6;((À1ù ²  

Output vector 

• Rotor torque, τr [Nm] 

• Thrust force, Ft [N] 

� = ��.�� = �Ç1�B�  

 

The linear deviations model around an operating point for the aerodynamic torque and force 

exerted on the turbine tower with respect to veff, ωr and β are shown below. 

µ�5 = +6;((_�5 À1_�5 (6:17) 

 

ÆÇ1 = ø2 �+y �−+À1_�5��_��je/µ�5, ù�50,   +6;((_�5��_��je/µ�5, ù�50,   6;((_�5 ��_	�je/µ�5, ù�50 � Æ °6;((À1ù ² (6:18) 

 

Æ�B = ø2 �+Ò−+À1_�5�B_
×@"/µ�5, ù�50,   +6;((_�5�B_
×@"/µ�5, ù�50,   6;((_�5 �B_�×@"/µ�5, ù�50 ÓÆ °6;((À1ù ² (6:19) 

 

Coefficients in the above deviations model correspond to the following partial derivatives for τr 

and Ft respectively as follows, 

��h_Øf = ��h�Øf� 6;((_�5,   ��h_�h = ��h��h�À1_�5,   ��h_� = ��h�� �ù�5 

�bk_Øf = �bk�Øf� 6;((_�5,   �bk_�h = �bk��h�À1_�5,   �bk_� = �bk�� �ù�5 

 

Transmission System (Drivetrain): 

State vector 

• Low speed shaft torsional angle, θ [rad] 

• Rotor speed, ωr [rad/s] 

• Generator speed, ωg [rad/s] 

, = °,.,,y² = ° àÀ1Àè²  

Input vector 

• Rotor torque, τr [Nm] 

• Generator torque, τg [Nm] 

� = ��.�� = �Ç1Çè�  

Output vector 

• Rotor speed, ωr [rad/s] 

• Generator speed, ωg [rad/s] 

� = ��.�� = �À1Àè�  
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The torque lossless transmission system state-space representation is shown below. 

¾ àSÀS 1ÀSè¿ =
ÈÉÉ
ÉÉÉ
Ê 0 1 − 1±− 9×A�1 − 4×A±�1 − 4×A�19×A±�è − 4×A±�è − 4×A±�èËÌÌ

ÌÌÌ
Í

° àÀ1Àè² 

ÈÉ
ÉÉ
Ê0 01�1 0

0 − 1�èËÌ
ÌÌ
Í �Ç1Çè� 

(6:20) 

��.�� = �0 1 00 0 1� ° àÀ1Àè² 

 

Tower Bending Dynamics: 

The longitudinal bending of the tower has been described earlier (Equation 6:12). The inputs, 

outputs and states of the model are defined as follows, 

State vector 

• Tower fore-aft velocity, vFA [m/s] 

• Tower fore-aft displacement, xFA [m] 

, = �,.,� = �6b�,b��  

Input vector 

• Thrust force, Ft [N] 
� = o�.p = o�Bp  

Output vector 

• Tower fore-aft velocity, vFA [m/s] 
� = o�.p = o6b�p  

 

Generator and Converter System: 

State vector 

• Generator load torque, τg [Nm] 
, = o,.p = oÇèp  

Input vector 

• Generator load torque reference, τg,ref  [Nm] 

• Generator speed, ωg [rad/s] 

� = ��.�� = �Çè_1;(Àè �  

Output vector 

• Generator load torque, τg [Nm] 

• Produced electrical power, Pel [W] 

� = ��.�� = � Çè�;×�  

 

The linear state-space model and components for the generator and converter subsystem are 

defined as follows, 

ÆÇSè = −Oè ÆÇè 
 oOè 0pÆ �ÇèhfÀè � 

(6:21) Æ� Çè�;×� = � 1Àè�¦ � ÆÇè 
 �0 00 Çè�¦� Æ �ÇèhfÀè � 

�;×_�5 = Çè_�5Àè_�5 
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where 

ωg_οp Generator speed at (nominal) operating point [rad/s] 

τg_op Generator torque at (nominal) operating point [Nm] 

Pel_op Generator power at (nominal) operating point [W] 

 

The following table contains the values of the parameters used in simulation. 

Aerodynamics Generator and Converter + = 63  Jè = 0.1  � = 1.225   

 Tower Fore-Aft-Dynamics 

Drive Train åB_"� = 350000  9×A = 8.6763 ∙ 10~  åB_B�� = 347460  4×A = 6.215 ∙ 10|  ÀB_b� = 0.321  ± = 97  òB_b� = 0.8  �è = 534.116   �1 = 35444.067   

 

Wind Turbine Subsystem Integration: 

Combining the individual subsystems into one integrated LPV model for the wind turbine yields 

the following structure. It is assumed that only three outputs are available for control and 

these are the generator speed, the pitch angle and the electric power out of the generator. 

 

State vector 

• Blade pitch angle, β [deg] 

• Blade pitch angle, ùS  [deg/s] 

• Low speed shaft torsional angle, θ [rad] 

• Generator speed, ωg [rad/s] 

• Rotor speed, ωr [rad/s] 

• Generator load torque, τg [Nm] 

• Tower fore-aft displacement, xFA [m] 

• Tower fore-aft velocity, vFA [m/s] 

, =
ÈÉÉ
ÉÉÉ
ÉÊ,.,,y,z,{,|,},~ËÌÌ

ÌÌÌ
ÌÍ =

ÈÉ
ÉÉ
ÉÉ
ÉÊ ùùSàÀèÀ1Çè,b�6b�ËÌ

ÌÌ
ÌÌ
ÌÍ
  

Input vector 

• Blade effective wind speed, veff [m/s] 

• Generator load torque reference, τg,ref  [Nm] 

• Pitch angle reference βr [deg] 

� = Ù�.��yÚ = ° 6;((Çè_1;(ù1;( ²  

Output vector 

• Generator speed, ωg [rad/s] 

• Blade pitch angle, β [deg] 

• Produced electrical power, Pel [W] 

� = °�.��y² = °Àèù�;×²  

 



144 
 

33	
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ÉÊ ùùSàÀèÀ1Çè,b�6b�ËÌ

ÌÌ
ÌÌ
ÌÍ

=

ÈÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
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��[��1 0 − 9×A�1 − 4×A�1 − �4×A 
 ��[�[�±�1 0 0 − ��[�����10 0 0 0 0 −Oè 0 00 0 0 0 0 0 0 1
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(6:22) 

+

ÈÉ
ÉÉÉ
ÉÉÉ
ÉÉ
Ê 0 0 00 0 À"0 0 00 0 0
��[_�����1 0 00 Oè 00 0 0
�Û�_����½b� 0 0 ËÌ

ÌÌÌ
ÌÌÌ
ÌÌ
Í

¾6;((Çèhfù1;( ¿ 

 

°Àèù�;×² = r 0 0 0 1 0 0 0 0ø180 0 0 0 0 0 0 00 0 0 Çè_�5 0 Àè_�5 0 0s
ÈÉ
ÉÉ
ÉÉ
ÉÊ ùùSàÀèÀ1Çè,b�6b�ËÌ

ÌÌ
ÌÌ
ÌÍ

+ °0 0 00 0 00 0 0² ¾6;((Çèhfù1;( ¿ (6:23) 

 

The terms in red denote the varying partial derivatives with respect to wind speed and these 

are the varying parameters for the LPV wind turbine model. 

 

LPV Model Discretisation: 

The combined model is discretised using the Euler method. The discrete state-space matrices 

are as follows, 

�#@A 1;B; = <"T 
 ?A� �"B@"¤�¤A 
(6:24) �#@A 1;B; = ?A� �"B@"¤�¤A 
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where A and B are the augmented LPV wind turbine state and input matrix respectively. 

 

Discrete LPV Model Validation: 

As mentioned in the previous section to derive the LPV model of the wind turbine, the 

nonlinear terms (Cq and Ct coefficients lookup tables in this case) are first linearised, then 

interpolated and parameterised by wind speed to yield the corresponding deviations model 

along these optimal curves (see following equation). 

 Æ,��E. = ,�� 
 ���/6;((0�,� − ,��� 
 ���/6;((0��� − ���� 
(6:25) Æ��� = ���/6;((0�,� − ,��� 

 

In the state of equilibrium these derivative terms will be zero, however this will not be the case 

in the occasion where there are small discrepancies between the actual system states and the 

ones derived from the linearised lookup tables. To increase accuracy the model is 

complimented by maintaining the derivative terms. Finally by adding the nominal (at the 

corresponding equilibrium point) vectors for the states, inputs and outputs the actual output 

of the model is obtained in the following equation (recall Modified-Jacobian linearization 

discussed in Section 3.2.2). 

 

Æ,��E. = /��,�, ��� − ���/6;((0,�� − ���/6;((0���0 
 ���/6;((0,�
 ���/6;((0�� (6:26) Æ��� = /��,�, ��� − ���/6;((0,��0 
 ���/6;((0,� 

 

The model was validated using a series of step changes in wind speed and the results are 

presented in the following two figures (1st figure: zooming in, 2nd figure: full scale) in the 

following figures. The blue trends represent responses for the original nonlinear model 

whereas the green trends represent responses for the LPV adaptation. 
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Figure 6:11 Discrete LPV model validation against nonlinear Wind Turbine model (zoom in). 
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Figure 6:12 Discrete LPV model validation against nonlinear Wind Turbine model (full scale). 

 

6.3 Control System Description 

6.3.1 Kalman Filter Formulation and Validation 

The first right-hand side term in Equation 6:25 (current operating point) is obtained using an 

EKF estimator. The wind turbine original nonlinear model equations are used to provide the 

current state and output vectors required for the state correction whereas the full LPV model 

is used to provide the state matrices required for the covariance matrix and state predictions. 

The EKF equations are summarised below. 

��E. = ���/6;((0������./6;((0 
 4��/6;((0��4���./6;((0 (6:27) 

9( = ������./6;((0/���/6;((0������./6;((0 
 +�0�.
 (6:28) �� = �� − 9(���/6;((0�� (6:29) ,�E. = ,� 
 9(��� − ���� 

(6:30) ��� = ��û�,�� 
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The EKF is validated using a series of steps and the results for selected channels are shown in 

the following graphs. The state estimation problem is not extensively treated here and the EKF is 

only used to validate its formulation within the LPV-NPGMV therefore practically the states are 

considered available. 

 

 

Figure 6:13 Discrete Extended Kalman Filter (EKF) estimates validation against nonlinear model 

states. 
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deviations model (δu) and therefore the nominal state and output values are internally added 

to the controller algorithm as biases to produce the actual absolute control signal  �B,�.  

The LPV model states are introduced to the controller via the estimated vector of weighted 

errors. The dynamic error weighting is also included within  �¬5BE�¸,�  and it was defined using 

the PID based approach described in Section 2.2.2. As with the previous applications, it has 

been noted that after a satisfactory tuning parameters configuration has been established the 

NPGMV controller performed adequately for most scenarios with minimal requirement for 

retuning. The only factor that was mostly used for experimentation in the following section 

was the prediction horizon.  

A classical PID and basic state-space NGMV were used as baseline controllers to assess 

performance of the LPV-NPGMV. For the constrained case the Hildreth Quadratic 

Programming algorithm was used (Wang, 2009) to provide an efficient solution of the 

predictive controller against absolute constraints on blade pitch angle β (SISO case only). Being 

a Feedback-Feedforward architecture as shown in Figure 6:3, made the application of rate 

constraints less meaningful as the action from the Feedforward term, added in the output of 

the LPV-NPGMV Feedback controller, will respond to disturbances much faster than the output 

of the latter. 

For this application a slightly different approach is used in the internal architecture of the 

NGMV controller and more specifically in how the overall plant subsystems are formulated. 

Unlike the Dynamic Positioning study, where the black-box operator encapsulated the total 

nonlinear plant dynamics and constraints whereas the linear subsystem was defined as a 

default unity operator, here the black-box operator only contains actuator constraints for the 

pitch (or pitch and generator torque for the MIMO formulation) whereas the linear subsystem 

is now an LPV formulation that includes the plant dynamics in their totality. This can be seen 

more clearly in the following figure. 

 

Figure 6:14 Nonlinear pant decomposition into hard nonlinear and LPV approximated 

components. 

&�_û·�  &.�  
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It is important to observe here that both subsystems are essentially nonlinear. Details of these 

subsystems are given in the following sections. 

Nonlinear Subsystem (black-box operator): 

&.� is simply defined as the pitch angle and generator torque absolute and rate limits as seen 

below. 

03!� ≤ ù ≤ 91.773!� 

−13!�/a ≤ ùS ≤ 13!�/a 

0±½ ≤ Çè ≤ 4.3094 ∙ 10z±½ 

−100±½/a ≤ ÇèS ≤ 100±½/a 

 

Note that limits are not implemented in all simulations presented in the following section for 

experimentation purposes. 

 

LPV Subsystem: 

The total LPV subsystem is described in Equation xx where terms in red denote the varying 

parameters which are the partial derivatives ��h	 , ��h�h , ��h�f , �bk	 , �bk�h , �bk�f , ��h_Øf  

and �bk_Øf  with respect to the varying efficiency coefficients derivatives which in turn are 

parameterised by the pitch angle and tip-speed ratio i.e. �� %3��(µ, ù)) and �bk/3�B(µ, ù)0. 

Variation in these derivatives with respect to the pitch angle and tip speed ratio is shown in 

the following figures. 
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Figure 6:15 Torque coefficient variation with respect to Tip-speed ratio. 

 

 

Figure 6:16 Torque coefficient variation with respect to Pitch angle. 
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Figure 6:17 Thrust coefficient variation with respect to Tip-speed ratio. 

 

 

Figure 6:18 Thrust coefficient variation with respect to Pitch angle. 

-10

0

10

20

30

40

0
5

10
15

20
25

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Pitch angle [deg]

Partial derivative of the Thrust Coefficient (dCt) with respect to Tip-speed ratio (lambda)

Tip-speed Ratio [-]

d
C

t-
la

m
b

d
a

-10
0

10
20

30
40

0

5

10

15

20

25

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Tip-speed Ratio [-]

Partial derivative of the Thrust Coefficient (dCt) with respect to Pitch Angle (beta)

Pitch angle [deg]

d
C

t-
b

e
ta



153 
 

The matrices of the LPV subsystem will be recalculated and updated at each iteration of the 

controller at an experimental sample time of Ts = 0.02sec. This is the model used within the 

NPGMV to generate future predictions. 

 

Linear Plant, Reference and Disturbance Subsystems: 

Within the LPV-NPGMV formulation, the definition of a linear subsystem is maintained for 

generality in case there are linear components we want to include, however for this 

experimentation it is defined as a unity operator by default which can either be a scalar or a 

2x2 matrix for the SISO and the MIMO cases respectively. The same applies for the reference 

and disturbance subsystems as here all dynamical characteristics are fully captured by the LPV 

subsystem. 

&�,1,# → ¨<¨�: 1, å<å�: �1 00 1� 

 

NPGMV Weighting Definition and Prediction Horizons: 

In this case the error weighting Pc was selected with respect to the stabilising PID tuning 

method as a starting point (as described in Section xx) has the following discrete TF for the 

SISO and MIMO case respectively. The baseline PID controllers share the same gains. 

¨<¨�: � _� → 6.05 ∙ 10�{ − 6 ∙ 10�{��.1 − ��.  

å<å� (��	Kℎ ��«	2�� �ℎJ««!��: � _� → 6 ∙ 10�| − 5 ∙ 10�|��.1 − ��.  

å<å� (�!«!2J	�2 ?�2 �! ��«	2�� �ℎJ««!��: � _�! → 0.061 − 0.06��.1 − ��.  

 

The general PID TF that was used for the Pc definition can be seen below. 

� _·Ñ" → 9· + 9Ñ��.1 − J��.  

 

where 9· and 9Ñ are the PID Proportional and Integral gains respectively and J is a near 

integrator multiplier to ensure stability. 

In this study the control weighting Fck was found to give a better performance when defined as 

a simple scalar gain. Different prediction horizons where found to yield better performance in 

different scenarios and these can be seen in the following sections were results are presented. 
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The following section presents the graphical simulation results, accompanied by the 

corresponding assessment metrics for various scenarios, each for both the SISO and MIMO 

cases described in Figures 6:3 and 6:4. 

 

6.4 Simulation Results 

Here the three controllers described in the previous section are tested in various scenarios 

within the above rated operating region. These include different types of wind speed 

variations (disturbance rejection) such as step changes, gusts and high frequency variations 

but also power reference variations (tracking). In the later the knowledge of future input 

signals option within the NPGMV controller is used. Two basic metrics are used to quantify 

these results and assist with assessing performance for each controller. These are the 

normalised STD of the MVs and the MISE for the CVs as shown below. 

å<¨� = 1± ¥��ô·@ − ��;�A@��
@��  (6:31) 

where y is either electric power P or generator speed ωg. 

¨?4 = õ1± ¥��@ − �ö��
@�� ÷./

 (6:32) 

where u is either blade pitch angle β or generator torque τg. 

 

In the following section only the set of most successful results is presented. Note here that 

when the best set of cost weightings has been established for the LPV-NPGMV only minor 

adjustments were required to achieve reasonable performance across all scenarios. It is safe to 

say that the latter practically remained unaltered whilst the internal system model within the 

controller varied with speed. 

 

6.4.1 Disturbance Rejection 

Scenario 1a: Step of +0.5m/s in wind speed (nominal wind speed at 15m/s): 

For this scenario the power reference to the turbine is kept constant at nominal value (5MW) 

whereas wind speed variation (around a nominal value of 15m/s) is used as a disturbance to 

examine control compensation by the three controllers. The graphs were focused at the point 

where the positive step change of 0.5m/s in wind speed occurs for a clearer examination of 

recovery provided by the three controllers, acting to keep the power output at nominal value. 

Figures 6:14 and 6:15 capture the results for the SISO and MIMO control structures 

respectively. 
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Figure 6:19 Scenario 1a results for the SISO control structure. 

 

Table 6:1: Scenario 1a, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 0.8921 1 

NGMV 0.8969 0.7950 

LPV-NPGMV [Np=40] 0.9896 0.2649 

LPV-NPGMV [Np=50] 1 0.2886 

 

The LPV-NPGMV [Np=40] provides the highest power regulation benefit with an improvement 

of 73.5% in MISE relative to the baseline PID and  66.6% relative to the baseline NGMV. 

However this is achieved at the expense of increase in control action. 
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Figure 6:20 Scenario 1a results for the MIMO control structure. 

 

Table 6:2: Scenario 1a, MIMO quantified controller comparison 

Controllers τgSTD (norm.) βSTD (norm.) ωgMISE (norm.) PelMISE (norm.) 

PID 0.8330 0.4028 1 1 

NGMV 1 0.4046 0.7750 0.8250 

LPV-NPGMV [Np=20] 0.0471 1 0.1475 0.1544 
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recovery provided by the three controllers, acting to keep the power output at nominal value. 

Figure 6:21 captures the results for the SISO control structure. The MIMO structure for the 

LPV-NPGV was found not to yield better performance and for this reason it was omitted. 

 

 

Figure 6:21 Scenario 1b results for the SISO control structure. 

 

Table 6:3: Scenario 1b, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 0.3885 1 

NGMV 0.3957 0.9423 

LPV-NPGMV [Np=20] 1 0.8894 

LPV-NPGMV [Np=40] 0.9897 0.8886 

 

The LPV-NPGMV [Np=40] provides the highest power regulation benefit with an improvement 

of 11.1% in MISE relative to the baseline PID and 5.6% relative to the baseline NGMV. However 

this is achieved at the expense of increase in control action. A decrease in performance is 

observed here for larger wind variations. 
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Scenario 2: Step of -0.5m/s in wind speed (nominal wind speed at 15m/s): 

For this scenario the power reference to the turbine is kept constant at nominal value (5MW) 

whereas wind speed variation (around a nominal value of 15m/s) is used as a disturbance to 

examine control compensation by the three controllers. The graphs were focused at the point 

where a negative step change of 0.5m/s in wind speed occurs for a clearer examination of 

recovery provided by the three controllers, acting to keep the power output at nominal value. 

Figure 6:22 captures the results for the SISO control structure. The MIMO structure for the 

LPV-NPGV was found not to yield better performance and for this reason it was omitted. 

 

Figure 6:22 Scenario 2 results for the SISO control structure. 

 

Table 6:4: Scenario 2, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 0.9444 1 

NGMV 0.9490 0.7613 

LPV-NPGMV [Np=10] 1 0.1891 

 

The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of  81% in MISE relative to the baseline PID and 75.1% relative to the baseline NGMV. This is 

achieved at the expense of increase in control action. 
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Scenario 3b: Large gust variation of 13-19m/s (nominal wind speed at 15m/s) 

For this scenario the power reference to the turbine is kept constant at nominal value (5MW) 

whereas wind speed variation (around a nominal value of 15m/s) in the form of a gust is used 

as a disturbance to examine control compensation by the three controllers. The graphs were 

focused at the window where a larger gust variation of 13-19m/s occurs for a clearer 

examination of recovery provided by the three controllers, acting to keep the power output at 

nominal value. Figure 6:23 captures the results for the SISO structure respectively. 

 

Figure 6:23 Scenario 3b results for the SISO control structure. 

 

Table 6:7: Scenario 3b, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 1 1 

NGMV 0.8908 0.3201 

LPV-NPGMV [Np=10] 0.9308 0.1984 

 

The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of 80% in MISE relative to the baseline PID and 12.17% relative to the baseline NGMV. Here a 

small improvement in control action variability reduction was observed (6% relative to the 

baseline PID). 
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Scenario 4: Stochastic wind variation between 12-21m/s: 

For this scenario the power reference to the turbine is kept constant at nominal value (5MW) 

whereas wind speed variation (around a nominal value of 15m/s) is disturbed by a stochastic 

high frequency component to examine control compensation by the three controllers. The 

graphs were focused at a long enough time window, to allow an overview of the recovery 

provided by the three controllers, acting to keep the power output at nominal value. Figures 

6:24 and 6:25 capture the results for the SISO and MIMO control structures respectively. 

 

Figure 6:24 Scenario 4 results for the SISO control structure. 

 

Table 6:9: Scenario 4, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 0.6005 1 

NGMV 0.7799 0.6642 

LPV-NPGMV [Np=10] 0.8170 0.6291 

LPV-NPGMV [Np=50] 1 0.3772 

 

The LPV-NPGMV [Np=50] provides the highest power regulation benefit with an improvement 

of 62.2% in MISE relative to the baseline PID and 43.2% relative to the baseline NGMV. Longer 

prediction horizons were found to be more advantageous in this type of disturbance. 
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Figure 6:25 Scenario 4 results for the MIMO control structure. 

 

Table 6:10: Scenario 4, MIMO quantified controller comparison 

Controllers τgSTD (norm.) βSTD (norm.) ωgMISE (norm.) PelMISE (norm.) 

PID 1 0.9320 1 1 

NGMV 0.9985 0.9414 0.7366 0.7418 

LPV-NPGMV [Np=10] 0.9913 1 0.6446 0.6511 

 

The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of 35.5% in generator speed and  34.8% in electric power MISE  relative to the baseline PID and   

12.4% and 12.2% respectively relative to the baseline NGMV. Reduction in control action has 

been observed at a 0.87% and 0.72% in generator torque relative to the PID and the NGMV 

respectively. 
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6.4.2 Reference Tracking 

Scenario 5: Step of -4% of the rated power: 

For this scenario wind speed is kept constant at above rated in order to provide rated power 

availability (5MW). A negative step change is then introduced to the power reference of the 

turbine (de-rating). The graphs were focused at the point where a negative step change of 4% 

of the rated power occurs for a clearer examination of tracking provided by the three 

controllers. Figure 6:26 captures the results for the SISO control structure. The MIMO structure 

for the LPV-NPGV was found not to yield better performance and for this reason it was 

omitted. 

 

Figure 6:26 Scenario 5 results for the SISO control structure. 

 

Table 6:11: Scenario 5, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 0.6800 1 

NGMV 0.8075 0.8427 

LPV-NPGMV [Np=10] 1 0.1885 

LPV-NPGMV [Np=20] 0.9376 0.0755 

 

Here a consistent correlation has been observed between increase in performance and 

increase of prediction horizon. This was expected as future setpoint information was assumed 
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available to fully explore the capabilities of the advanced predictive controller. The LPV-

NPGMV [Np=20] provides the highest power regulation benefit with an improvement of 92.4% 

in MISE relative to the baseline PID and 91% relative to the baseline NGMV. 

 

Scenario 6: Sequence of steps in power between 0-2MW and stochastic variation: 

For this scenario wind speed is kept constant at above rated in order to provide rated power 

availability (5MW). A series of steps in power reference (between 0-2MW) are then introduced 

in combination with high frequency stochastic wind variation for disturbance. Figure 6:27 

captures the results for the SISO control structure across all step changes whereas Figure 6:28 

focuses on a specific step change for clarity. This scenario combined both disturbance rejection 

and tracking experimentation. The MIMO structure for the LPV-NPGV was found not to yield 

better performance and for this reason it was omitted. 

 
Figure 6:27 Scenario 6 results for the SISO control structure. 

 

Table 6:12: Scenario 6, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 0.8865 1 

NGMV 0.9135 0.6397 

LPV-NPGMV [Np=20] 1 0.3085 
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The LPV-NPGMV [Np=20] provides the highest power regulation benefit with an improvement 

of 69.1% in MISE relative to the baseline PID and 51.7% relative to the baseline NGMV. 

 

 

Figure 6:28 Scenario 6 results for the SISO control structure (zoom in). 

 

6.4.3 Constraint Handling – Disturbance Rejection 

Scenario 7a: Step of +3m/s in wind speed (nominal wind speed at 15m/s): 

For this scenario the power reference to the turbine is kept constant at nominal value (5MW) 

whereas wind speed variation (around a nominal value of 15m/s) is used as a disturbance to 

examine control compensation by the three controllers only for the SISO control structure. The 

graph were focused at the point where a positive step change of 3m/s in wind speed occurs for 

a clearer examination of recovery provided by the three controllers, acting to keep the power 

output at nominal value. To explore performance of the LPV-NPGMV in the presence of 

constraints the pitch angle actuator range was limited between 0-20deg. 
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Figure 6:29 Scenario 7a results for the SISO control structure. 

 

Table 6:13: Scenario 7a, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 1 1 

NGMV 0.9646 0.9386 

LPV-NPGMV [Np=10] 0.9377 0.7587 

 

The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of 24.13% in MISE relative to the baseline PID and 17.9% relative to the baseline NGMV. The 

absolute constraint optimiser is enabled in this case (via quadratic programming) and 

therefore an improvement of 6.23% and 2.69% in control action is achieved relative to the PID 

and NGMV respectively. 

 

Scenario 7b: Step of -2m/s in wind speed (nominal wind speed at 15m/s): 

For this scenario the power reference to the turbine is kept constant at nominal value (5MW) 

whereas wind speed variation (around a nominal value of 15m/s) is used as a disturbance to 

examine control compensation by the three controllers only for the SISO control structure. The 

graph were focused at the point where a negative step change of 2m/s in wind speed occurs 
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for a clearer examination of recovery provided by the three controllers, acting to keep the 

power output at nominal value. To explore performance of the LPV-NPGMV in the presence of 

constraints the pitch angle actuator range was limited between 0-20deg. 

 

Figure 6:30 Scenario 7b results for the SISO control structure. 

 

Table 6:14: Scenario 7b, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 1 1 

NGMV 0.8099 0.6454 

LPV-NPGMV [Np=10] 0.7217 0.2440 

 

The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of 75.6% in MISE relative to the baseline PID and 40% relative to the baseline NGMV. The 

absolute constraint optimiser is enabled in this case (via quadratic programming) and 

therefore an improvement of 27.83% and 8.82% in control action is achieved relative to the 

PID and NGMV respectively. 
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Scenario 7c: Large gust variation of 13-19m/s (nominal wind speed at 15m/s): 

For this scenario the power reference to the turbine is kept constant at nominal value (5MW) 

whereas wind speed variation (around a nominal value of 15m/s) in the form of a gust is used 

as a disturbance to examine control compensation by the three controllers only for the SISO 

control structure. The graphs were focused at the window where a gust variation of 13-19m/s 

occurs for a clearer examination of recovery provided by the three controllers, acting to keep 

the power output at nominal value. To explore performance of the LPV-NPGMV in the 

presence of constraints the pitch angle actuator range was limited between 0-20deg. 

 

Figure 6:31 Scenario 7c results for the SISO control structure. 

 

Table 6:15: Scenario 7c, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 1 1 

NGMV 0.7220 0.7470 

LPV-NPGMV [Np=10] 0.4714 0.6436 

 

The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of 35.64% in MISE relative to the baseline PID and 10.34% relative to the baseline NGMV. The 

absolute constraint optimiser is enabled in this case (via quadratic programming) and 

therefore an improvement of 52.86% and 25.06% in control action is achieved relative to the 

PID and NGMV respectively. 
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6.4.4 Constraint Handling – Reference Tracking 

Scenario 8a: Step of-20% of the rated power: 

For this scenario wind speed is kept constant at above rated in order to provide rated power 

availability (5MW). A negative step change is then introduced to the power reference of the 

turbine (derating). The graphs were focused at the point where a negative step change of 20% 

of the rated power occurs for a clearer examination of tracking provided by the three 

controllers. Here as well, only the SISO control structure is considered. To explore performance 

of the LPV-NPGMV in the presence of constraints the pitch angle actuator range was limited 

between 0-15deg. 

 

Figure 6:32 Scenario 8a results for the SISO control structure. 

 

Table 6:16: Scenario 8a, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 1 1 

NGMV 0.9780 0.9891 

LPV-NPGMV [Np=10] 0.8820 0.8751 

 

The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of 12.49% in MISE relative to the baseline PID and 11.4% relative to the baseline NGMV. The 
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absolute constraint optimiser is enabled in this case (via quadratic programming) and 

therefore an improvement of 11.8% and 9.6% in control action is achieved relative to the PID 

and NGMV respectively. 

 

Scenario 8b: Sequence of steps in power between 0-2MW: 

Absolute constraints on pitch at 12-17 deg 

For this scenario wind speed is kept constant at above rated in order to provide rated power 

availability (5MW). A series of steps in power reference (between 0-2MW) are then 

introduced. Figure 6:33 captures the results on reference tracking for the SISO control 

structure across a specific time window for clarity. To explore performance of the LPV-NPGMV 

in the presence of constraints the pitch angle actuator range was limited between 12-17deg. 

 

Figure 6:33 Scenario 8b results for the SISO control structure. 

 

Table 6:17: Scenario 8b, SISO quantified controller comparison 

Controllers βSTD (norm.) PelMISE (norm.) 

PID 1 1 

NGMV 0.9972 0.9113 

LPV-NPGMV [Np=10] 0.9662 0.5397 
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The LPV-NPGMV [Np=10] provides the highest power regulation benefit with an improvement 

of 46% in MISE relative to the baseline PID and 37.16% relative to the baseline NGMV. The 

absolute constraint optimiser is enabled in this case (via Quadratic Programming) and 

therefore an improvement of 3.38% and 3.1% in control action is achieved relative to the PID 

and NGMV respectively. 

 

6.5 Final Remarks 

In this section the LPV-NPGMV nonlinear control design technique was employed to the power 

regulation and tracking of an experimental (validated) large scale wind turbine system. The 

turbine model was reformulated in LPV form fully parameterised by wind speed through the 

aerodynamic conversion relationships. Four different types of wind disturbances were used in 

simulation (step, gust, stochastic variation) to explore performance of the controller in 

regulating power production at the rated value. Moreover a few scenarios where power 

tracking was explored (turbine de-rating) were included. A separate section was added to 

explore performance while using a Quadratic Programing constraint solver in absolute pitch 

angle limits. 

In all scenarios the LPV-NPGMV demonstrated substantial improvement in power regulation. 

In the step disturbance case best results were achieved at small steps peaking at 73.5% 

improvement over the baseline PID. It is worth mentioning here that, whenever it was 

successfully applied, the MIMO configuration provided significant reduction in generator 

torque variations (e.g. 84.4% for the small step disturbance case), in contrast to most of the 

SISO experiments being negligible. In the gust disturbance case best results were achieved by 

using smaller prediction horizons peaking at 80% improvement over the baseline PID and 

12.17% improvement in generator torque for the MIMO configuration. The stochastic varying 

wind case was the only exception where there was no reduction in generator torque for the 

MIMO configuration. Best results in this case were achieved for longer prediction horizons 

using the SISO setup with improvement peaking at 62.2% for power regulation. 

In the de-rating scenarios, access to future setpoint information was proven advantageous 

when using longer prediction horizons with improvement peaking at 92.4% over the baseline 

PID. The application of constraint handling in the controller provided significant restriction in 

control action (pitch angle) in the expense however of power regulation and tracking 

performance. Best results were achieved for large step disturbances with improvement 

peaking at 65% over the baseline PID with reduction in pitch angle variability at 40%. Similarly 

for tracking, performance peaked at 24% over the baseline PID with 72% reduction in pitch 

angle variability. The MIMO configuration yielded very similar results to the SISO in the 

constrained case. 

A counterintuitive effect is observed in most results and this was the relative improvement in 

control action while at the same time tighter tracking was achieved. This was the result of this 

particular Feedback-Feedforward configuration that results in an instant reaction on one 
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channel (SISO) or both channels (MIMO) during a speed variation driven by the equivalent 

pitch and/or generator torque lookup tables. This yielded a Feedforward term that had a 

greater impact on performance with the Feedback contribution being significantly smaller and 

only accountable for smaller variations around the operating point. This effect however needs 

to be further investigated in future work. 
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Chapter 7 Sightline Stabilisation of 

Electro-Optical Devices 

Based on the same structure as the application that was described in the previous application 

chapter, the state-space NGMV algorithm is now employed to provide stabilisation of an 

Electro-Optical (EO) gyroscopic turret used in surveillance applications. 

Asymmetric warfare, a large conventional army against much smaller terrorist or ‘insurgent’ 

groups has been the defining characteristic of recent military conflicts involving UK and US 

armed forces. Without clear battlefield lines the identification of and defence against hostile 

threats has seen a rapid increase in the demand for effective and reliable airborne electro-

optic (EO) systems. EO systems fall into two broad classes: 

• Intelligence Surveillance and Reconnaissance (ISR) systems. 

• Defensive Aid Suite (DAS) systems. 

Both use similar optical systems technology, but the very real operational differences demand 

substantially different solutions. For example, an ISR system must have long-range imaging 

capability, which in turn requires high-resolution imagers and extremely precise sightline 

stabilization systems to minimize jitter. A DAS system however needs an incredibly agile 

sightline to ensure that incoming threats to the host platform are properly tracked and 

interrogated/defeated. This is especially true for Directed Infra-Red Countermeasures (DIRCM) 

systems. This poses a challenging tracking control problem as a singularity arises when the 

target moves along a certain trajectory essentially resulting into a discontinuity nonlinearity 

known as “gimbal lock”. The NGMV “black-box” model internal model structure was used and 

shown significant improvement in maintaining engagement to the target along that part of the 

trajectory. This work is divided into the following sections. 

 

Section 1 – Problem Description; overview of the control objectives and strategy employed in 

this work. 

Section 2 – System Model Description; derivation of a suitable state-space model used within 

the state-space NGMV design and in simulation. 

Section 3 – Control System Description; adaptation of the control algorithm as derived in 

Equation 2:32 and also of a basic PID control formulation used here for comparison. 

Section 4 – Simulation Results & Conclusions; definition of the different scenarios and 

presentation of control performance results for the different schemes employed throughout 

the simulations. 
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7.1 Problem Description 

During engagement, when the host platform is attacked by a surface-to-air missile, a fast and 

precise sightline loop is essential to intercept the missile system via jamming of the missile 

seeker. Moreover, it is imperative for the tracking system to be able to operate over a full 

hyper-hemispherical field-of-regard (FoR) (as shown in Figure 7:1), as any tracking deficiencies 

are sure to be exploited by future missile guidance systems and tactics (Anderson et al., 2009). 

Sufficient FoR is ensured by a 2-axis gimbal device with one gimbal rotating over the azimuth 

axis and the other over the elevation. 

 

7.1.1 The Nadir Problem 

A significant problem exist with this configuration however, when the target moves such that 

the line-of-sight (LoS) vector approaches the azimuth axis, at around -90 degrees in elevation, 

the system loses one degree of freedom and is therefore unable to maintain accurate track. 

 

 

Figure 7:1 Hemispherical coverage of the EO tracking device mounted on a platform. 

 

Often this degree-of-freedom loss is known as one of the following interchangeable terms 

“gimbal lock”, “keyhole singularity” or “Nadir cone”, although we shall use the latter for the 

remainder of this chapter. Practically, the engagement kinematics driving tracking in the 
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neighbourhood of the nadir require significant agility from the outer, azimuth gimbal axis, to 

the limit that LoS vector tracking through the singularity when the LoS and azimuth axis are 

collinear results in infinite acceleration & rate demands to the OG axis. Obviously, the 

acceleration demands within this range are high enough to saturate the servos, leading to 

large tracking errors that heavily impair the precision of the system (Rue, 1969). 

Various techniques have been used in the past to overcome the Nadir problem. The simplest is 

the orientation of the axes of the turret such that the nadir singularity lies outside the 

operational region of the system. However, this approach is unsuitable for a DIRCM system 

due to the need for hyper-hemispherical coverage. The second method, also an opto-

mechanical solution, is to add additional axes to the pointing and stabilisation system. 

Unfortunately this approach increases the size, complexity and initial unit price in addition to 

comparatively reducing mean-time-between-failure and hence raising operational costs. 

Transition from military to civilian protection DIRCM systems using multi-axis technology is 

therefore not practical. The third approach is to reduce the size of the nadir cone by using a 

faster actuation mechanism, requiring high-performance motors/sensors etc. with the 

inevitable financial penalties. The fourth approach and the one investigated in this work is the 

use of non-conventional sightline controllers to mitigate the effect of nadir singularity on 

tracking error. 

Operation in the neighbourhood of the nadir presents at least two significant nonlinearities to 

the sightline control engineer. The first is the singularity introduced earlier. The second is a 

kinematic nonlinearity due to the difference between the cross-elevation axis (as measured in 

the imager frame) and the outer gimbal (azimuth) axis. Having two significant nonlinearities in 

the feedback loop would naturally suggest that a nonlinear control design technique should be 

applied to the problem. Luckily, a number of nonlinear control laws have been proposed in 

recent years, including Sliding-Mode control, Adaptive Backstepping, LMI optimization, 

nonlinear H-infinity control, feedback linearization and direct Lyapunov methods (Utkin et al, 

2009), (White et al., 2009), (Lechevin and Rabbath, 2007) and (Henrion et al., 2003). However, 

most of the nonlinear controller design techniques mentioned are difficult to use, steeped in 

complex mathematics and often counter-intuitive tuning. As shown in Chapter 2 the NGMV 

provides a framework that attempts to isolate the nonlinearities in the system from the 

sightline control designer. Once the nonlinearities in the system captured in the modelling 

process are included into the NGMV synthesis, controller tuning is achieved via simple weight 

selection. The NGMV was designed specifically to yield a nonlinear controller which can be 

easily designed and commissioned. Therefore, it is an ideal candidate technique for sightline 

control of a two-axis system. 

In the next section an overview of the Glasgow University sightline control laboratory is 

presented. The latter was the basis upon which the derivation and validation of the turret 

device and the external tracking loop was carried out. 
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7.2 System Description 

7.2.1 Experimental Configuration 

All experimental work carried out at the Sightline Control Laboratory (SCL) of the University of 

Glasgow which is a bespoke research and teaching facility designed to assist applied research 

in the areas of pointing, stabilization, tracking and image processing of electro-optic systems, 

known collectively by the term Sightline Control. The remit of the lab is to provide a Hardware-

in-the-Loop (HIL) functional testing and analysis facility for all aspects of sightline control, 

irrespective of the particular unit under test. 

In the configuration used for this research, an Aeromech Tiger Eye 2-axis visible band electro-

optic turret was used, (see Figure 7:2 below). The turret is mounted on a tripod about 1.50m 

height and 2.50m distance from the projector screen. In general, the High-Definition (HD) 

projector is used to display high-definition video of interesting operational vignettes designed 

to push the tracking loop to its performance limits, in both track creation/association and 

kinematic prediction. In this set of experiments only the track-loop dynamic response is of 

interest. Consequently, the projected target is a simple white ball against a blue background, 

programmed to move along either a circular or vertical trajectory. Each trajectory is specified 

in a world coordinate system which, for the circular trajectory consists of the y and z axis of the 

ball defined as sinusoidal functions, the parameters of which define the circle radius and 

revolution time. For the experiments that follow, the target motion frequency was set at 0.1Hz 

with a projected image sample rate of 100Hz. 

 

 

Figure 7:2 Schematic overview of the sightline control laboratory. 
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Figure 7:3 Experimentation equipment. 

 

Communication with the TigerEye is performed over a high-speed CAN bus and an RS232 video 

link. These are interfaced to the host PC using a National Instruments PXI chassis with video 

frame grabber and CAN bus interface cards. The TigerEye operates in a number of different 

command modes – position mode, rate mode, stabilized rate mode, body-referenced etc. To 

implement an external track loop, the TigerEye should be commanded to operate in rate 

mode, which means that commands sent to the turret over the CAN bus will be interpreted as 

rate loop demands for each axis. The following figure demonstrates a summarizing schematic 

of the system. 
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 Figure 7:4 Tracking system physical configuration. 
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The measurement for the elevation displacement is taken directly as the vertical pixel 

displacement, given the camera is fixed to inner gimbal. This measurement then passes 

through a scaling factor to convert from pixel error to angle error, inside the processing unit 

where the comparison is taking place, and converted into rate demand. Likewise, the 

measurement for the azimuth displacement is taken in terms of horizontal pixel displacement, 

which is a measurement also obtained from the camera fixed onto the inner gimbal. The 

second error measurement does not represent the actual azimuth error but the azimuth with 

respect to the inner gimbal defined as the ‘cross-elevation’ (Kennedy, 2003). Using the cross-

elevation to control the azimuth axis gimbal can cause problems, as follows. 

 

7.2.2 Simulation Model Definition 

A more insightful aspect on the overall tracking system and what was actually used in 

simulation is shown in Figure 7:5. The various transformations required to condition the target 

vector from world to azimuth/elevation coordinate frames becomes clearer in this 

representation. Rw/b, Rb/og and Rog/ig are the world to base, base to outer gimbal and outer 

gimbal to inner gimbal transformation matrices respectively. The CAN bus delays and 

individual rate loops transfer functions were derived via identification. As mentioned earlier 

each channel comprises of an external position and an internal rate loop. For the duration of 

the experiments the base declination angle remained constant and it would only be adjusted 

prior to experiment initialization. Although, in practice base motion will occur i.e. when 

mounted on an airborne host platform, in these particular experiments we keep the base static 

in order to isolate and investigate more efficiently the NADIR problem. 

 

 

Figure 7:5 Tracking system simulation configuration. 
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Turret Kinematics Definition: 

The following analysis explains how a change in target position relates to demanded gimbal 

angles for accurate tracking. Say that the line-of-sight rests on the waterline (zero azimuth and 

elevation angles) prior to tracking a displacement in the target axes. As shown in Figures 7:6 

and 7:7, there are three principle rotations to consider; base tilt θ, which transforms from 

world axes to base axes, azimuth (outer gimbal) rotation about the TigerEye z-axis (η) and then 

an elevation (inner gimbal) rotation about the y-axis, ε. 

As the camera is carried with the inner gimbal, the image and inner gimbal axes are assumed 

coincident (neglecting alignment tolerances). Therefore the target position in image axes is 

given by, 

,×�A_@� = �?#?$?%�,×�A!f�  (7:1) 

?#�ï� = °cos�ï� 0 −sin(ï)0 1 0sin(ï) 0 cos(ï) ² (7:2) 

?$(â) = ° cos�â� sin�â� 0−sin(â) cos(â) 00 0 1² (7:3) 

?#(à) = °cos�à� 0 −sin(à)0 1 0sin(à) 0 cos(à) ² (7:4) 

,×�A_@�
= ¾cos�ï�cos�â�cos�à� − sin�ï�sin�à� cos�ï�sin�â� −cos�à�sin�ï� − cos�ï�coscos�à�sin�â� cos�â� sin�â�a�«�à�cos�ï�sin�â� 
 cos�â�cos�à�sin�ï� sin�ï�a�«�â� cos�ï�cos�à� − cos�â�a�« (7:5) 

 

Where  ?# , ?$ , ?%  are the direction cosine transformation matrices for the elevation, azimuth 

and base tilt angles respectively. To recover the off-boresight angle errors needed to drive 

each track loop controller, the actual target position is projected onto the surface of a unit 

sphere centred at the image plane. A simple conversion from Cartesian to polar coordinates 

recovers the actual error angles as measured by the TigerEye imager. 

In a more analytic way the above can be summarised as the solution to the following problem; 

suppose we express the LoS in the geographical frame when aligned with the initial target 

position given in geometrical terms as follows, 



179 
 

,×�A!f��ï, â, à�� → ,B�1è;B�,, �, ��� (7:6) 

 

 

 

Figure 7:6 Target displacement from global to LoS frame graphical representation. 

 

If the target moves to a different position ,B�1è;B�,, �, ��. then given the angles x, y, z, θ 

compute the elevation ε and azimuth θ angles required by the gimbal to realign its LoS with 

the new position. The main problem this research deals with is an implication occurring in the 

kinematics, when the turret is tracking a target which moves near or past the -90 degrees 

elevation angle. Then the sightline axis becomes aligned with the outer gimbal rotation axis 

and the system loses one degree of freedom (Figure 7:7). 

 



180 
 

 

Figure 7:7 Tracking loss through the Nadir. 

 

Operation of the LoS near this condition, inside the nadir cone, introduces two significant 

problems. The first is the mechanical singularity arising from the loss of a degree of freedom at 

the nadir. Physically this manifests as the inability of the outer gimbal (azimuth) to perform the 

necessary instantaneous 180 deg. due to drive/motor saturation and tracking is lost. There is 

little can be done here without preview or predictive ‘shooting’ methods (Anderson and Loo, 

2009). A second Nadir nonlinearity arises from the use of cross-elevation error as the 

measurement driving the azimuth motor. In the transformation required to take the cross-

elevation back to actual azimuth angle, shown in Equation 7:7, the cross-elevation error δu is 

multiplied by the cosine of the elevation gimbal angle. 

Æâ;11 = �1�#/5@T ° cos�ï� 0 sin(ï)0 1 0−sin(ï) 0 cos(ï)² ° 00Æ�² = ° 00cos(ï)Æ�² (7:7) 

 

As the angle ε increases, there is effectively a reduction in the azimuth track loop gain 

equivalent to cos(ε). At the nadir, the cross-elevation and azimuth axes are orthogonal leading 

to no effective control in the azimuth track loop. This is the nadir problem this paper will use 

NGMV to mitigate. The following example is set according to the SCL configuration and 

illustrates the previous issue. 

 

Example: 

Assume that initially the target rests 2.5 m away from the gimbal in coordinates x_target 

(x,y,z)→(2.5,1,1) and that the base is res`ng at the waterline (0o base declination). Also 

assume that the target is moving along a circular trajectory on a 2-dimensional plane 

perpendicular to the LoS of the gimbal. If the target is moving at an angular velocity of 



181 
 

ω=2×π×0.1 then the individual y and z trajectories are given by the following equations of 

motion. 

�B�1è;B = sin�À	� , �B�1è;B = cos�À	� (7:8) 

 

The simplicity of this configuration allows us to proceed in the analytic way of computing the 

Inverse Kinematics (IK) problem and obtain the elevation and azimuth angle requirements to 

track the target. Since the two DOF are clearly decoupled we can conveniently inverse the 

forward kinematics and therefore calculate the angle demands out of the following relations. 

ï = tan�. *yÂ,-./ÂzÂ,-./Â1 (7:9) 

â = −tan�.
2
3 xÂ,-./Â
5yÂ,-./Â 
 zÂ,-./Â 6

7 (7:10) 

Figures 7:8-7:11 demonstrates the kinematic responses of the two axes given the previous 

parameters simulated in Simulink for different base declination angles. 

 

 

Figure 7:8 Kinematics analytical model validation for 0o base declination. 
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Figure 7:9 Kinematics analytical model validation for 60o base declination. 

 

 

 

Figure 7:10 Kinematics analytical model validation for 90o base declination. 
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Figure 7:11 Kinematics analytical model validation for 90o base declination and 10cm target 

plane distance from turret. 

 

Turret Dynamics Definition: 

By first principle modelling, the turret system simplicity consists of two servo-motors, one for 

each gimbal. These rate loops are considered decoupled in this particular application, having 

no interacting reaction torque effects from one to the other. Consequently the two paths are 

individually linear and can be easily described by Newton 2nd rotational law of motion as, 

�Ñ̅ÀSMÑ�	� 
 /ÀÝÑ�	� × �Ñ̅ÀÝÑ�	�0 = 9¬Ñ�	�, (7:11) 

9¬Ñ�	� = o?Ñ: , ?Ñ1�p − o?Ñ;p − o?Ñ(��B�p (7:12) 

and 

�<̅ÀSM<�	� 
 /ÀÝ<�	� × �<̅ÀÝ<�	�0 
 /9¬Ñ�	�0< = 9¬<�	�, (7:13) 

9¬<�	� = o?<: , ?<1�p − o?<;p − o?<(��B�p (7:14) 

 

where, J is the inertial matrix and L the sum of the kinematic torques around the equivalent 

gimbal which, apart from the control torque ?:, include friction and cable restrain torques ?(��B�, reaction torques ?1� acting on the outer gimbal by the inner, and mass imbalance 

torques ?; about each gimbal (Kennedy, 2003). The subscripts I and O refer to the inner and 

outer gimbal axis respectively. 
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The Cosecant Correction Definition: 

One of the methods used to encounter the Nadir tracking consists of directly adjusting the 

cross-elevation error signal with the use of a secant function to cancel out the cosine in the 

denominator, Figure 7:12. Moreover, alternative transformations, like the quaternion, cannot 

be employed as the problem itself is a result of the turret’s physical attributes rather than just 

an implication of the modelling kinematics. 

 

[ ,  ]t tx y ⇒

Figure 7:12 Signal flow for the cosecant correction controller. 

 

To implement the cosecant correction controller, the actual inner gimbal angle is obtained 

from the telemetry message the TigerEye periodically transmits over the CAN bus. In the 

results to follow there are some slight synchronization errors between CAN bus reporting and 

the imager frame rate, but not sufficient to disrupt the action of the controller. Finally, the 

cosecant correction controller should have a roll-off close to the actual Nadir, otherwise 

infinite gain would be injected into the azimuth axis track loop. 

 

7.2.3 Model Identification 

To test the performance of the NGMV controller, an accurate model of the TigerEye is required 

prior to creating and commissioning a LabVIEW version. A frequency domain identification 

strategy was used to extract the transfer functions of each axis. Each transfer function should 

relate the rate command to the actual gimbal axis rate, as reported by the stabilization loop 

gyros over the CAN bus. The nominal CAN bus trajectory reporting frequency is 10Hz and the 

imager frame rate is 30Hz. Logarithmically-spaced input sinusoids of frequencies from 0.05 to 

4 Hz excited each axis in turn and, using SCL LabVIEW code, the system frequency response 

function for each input frequency were computed. This data was converted into gain and 

phase plots in Matlab, from which accurate transfer functions were obtained. The spectral 

characteristics for the tilt and pan rate loops are compared against the identified ones in 

Figure 7:13 upper and lower plot respectively. 
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Figure 7:13 Turret elevation (upper plot) and azimuth (lower plot) axis frequency fit. 

 

Model Validation: 

To use a mathematical model for control design in the neighbourhood of the nadir, the 

accuracy of the model in this region has to be determined. The moving target and full gimbal 

kinematics of the problem were implemented along with the identified turret model in 

Matlab. The system was simulated for the case where the turret tracks a ball moving along a 

circular trajectory in 0.1 Hz and under various base tilt angles from 0 (waterline) to 90 deg. 

(Nadir). Given the same scenarios, the real turret was tested and the rate commands along 

with the spectral error compared to those of the simulation (Figures 7:14 and 7:15). On the 
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pan graph corresponding to -90 degrees base tilt angle the saturation in the azimuth gimbal 

motor can be seen after which the camera captures the target again but only in the case where 

the target moves relatively slowly. 

 

 

 

 

Figure 7:14 Turret identified model validation for 25o (upper plot) 45o (lower plot) base 

declination. 
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Figure 7:15 Turret identified model validation for 90o base declination. 

 

It is seen from the validation results that regardless of the mismatch occurring due to phase 

differences and potential jitter (varying sample rate) on the CAN bus, the identified data holds 

a model representation accurate enough to stand as the simulation basis. 

 

7.3 Control System Description 

Although the individual rate loops are not nonlinear, the total system demonstrates the 

inverse cosine nonlinearity which appears as a singularity on the reference signal. That makes 

the situation peculiarly difficult to be dealt with a conventional nonlinear control scheme. In 

this section the NGMV is formulation as described in Section 2.2.1 is used. This is a very fast 

control system and a sampling time of 0.0333s is used within the controller. 

 

Nonlinear Subsystem (black-box operator): 

Here the nonlinear term encapsulates all nonlinearities within the internal plant in a “black 

box” manner. These only comprise the inner and outer axis rate constraints as seen below for 

both. 

−403!�/a ≤ ÀS ≤ 403!�/a 

 

Linear Plant Subsystem: 

Here the linear subsystem was used to encapsulate the two gimbal axis pan and tilt linear 

dynamics as derived in the identification section and discretised as appropriate. 
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&�� → 0.02357 + 0.01995��.1 − 1.563��. − 0.6065�� × �1 00 1� 

 

Reference Subsystems: 

For this NGMV formulation the reference subsystem is defined as a 2x2 unity operator for the 

two gimbal axis respectively. 

&�,1 → �1 00 1� 

Disturbance Subsystem: 

The disturbance subsystem was modelled as a 2x2 discrete TF matrix. 

&# → −0.01 + 1.995��.0.7��. − 0.33�� × �1 00 1� 

 

NGMV Weighting Definition: 

The error weighting Pc was selected using the PID gains selection criteria for PI proportional 

and integral gains of Kp=1 and Ki=1 respectively. This yields the following error weighting 

equation for both control channels. 

� → 2 − ��.1 − ��. × �1 00 1� 

 

The control weighting Fck is defined as the following discrete lead term. 

� � → −11 − ��. × �1 00 1� 

 

7.4 Simulation Results 

To quantify the performance of the NGMV controller, the track error returned for scenario 2 – 

target motion in the z-axis only – was computed for a basic PI controller, PI+cosecant 

correction and NGMV. The tracking performance for a close nadir pass scenario (1cm screen 

coordinates corresponding to a nadir miss angle of 2.3deg), is shown below in Figure 7:16. This 

close to the nadir singularity the azimuth demand resulting from the kinematics changes 

rapidly with a large error forming immediately prior to the nadir due to the rate limit on the 

azimuth gimbal. In all three responses, the underlying PI controller is identical, differences in 

the responses due solely to the additional nonlinearities in the cosecant correction and NGMV 

controllers. 
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Figure 7:16 Kinematic and achieved azimuth angles for a 1cm Nadir pass scenario. 

 

All three controllers are very well damped with minimal overshoot and little or no ringing. The 

response of the PI controller is the slowest of the three, as expected due to the presence of 

the cos gain term in the measurement path (note: although the gain has reduced, the large 

error signal forces saturation of the rate loop). Relating this result to the key requirements of a 

DIRCM tracker (maximise energy on target), the NGMV controller settles down after the first 

nadir pass at 10seconds, the PI+Cosecant settles after 11sec and the PI 12sec. This suggests the 

NGMV controller would provide more time-on-target of the DIRCM defeat laser, increasing the 

probability of missile confusion. 
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Figure 7:17 Total LoS track error for nadir pass geometries of (a) 1cm, (b) 5cm, (c) 20cm and (d) 

40cm. 

 

While tracking performance close to the Nadir is important, controller performance should be 

maintained throughout the field-of-regard. Figure 7:17 shows the radial track error (angle 

between boresight and target vectors) for four nadir pass conditions: 1cm, 5cm, 20cm and 

40cm. In all cases the same trend is observed – cosecant correction outperforms the PI alone 

and the NGMV consistently provides better tracking performance. 

 

7.5 Final Remarks 

A number of contributions to the sightline control literature were presented and discussed in 

this section. First, the architecture, functionality and intended operation of the Sightline 

Control laboratory were presented. The suitability of the SCL hardware for investigation of 

track loop operation in the neighbourhood of the nadir was demonstrated and the process of 

system modelling, identification and validation discussed. The mathematical models of both 

gimbal axes and SCL kinematics were validated against experimental results. 

Through a detailed derivation and explanation of the key design parameters in NGMV 

controller design, the suitability of an NGMV track-loop controller in operation close to the 

nadir was shown. The primary benefit of this technique is the ability to include the system 

nonlinearities, the azimuth axis measurement singularity in this case, directly within the 

controller but shielded from the designer. The NGMV controller was consistently the best 

performing controller with minimal additional tuning. This suggests NGMV is a practical 

synthesis technique for sightline controllers. 
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Chapter 8 Conclusions 

The principal aim of this work was to explore the use of LPV models with various nonlinear and 

predictive control algorithms.  In particular the Nonlinear Predictive Generalised Minimum 

Variance (LPV-NPGMV) approach is explored and its value demonstrated in three nonlinear 

control applications. The overall work was based on the NGMV method established by Grimble 

for systems with output subsystems involving LTI blocks.  The main theme here was to exploit 

LPV system models with Model Predictive Control (MPC) algorithms. There was also a focus on 

the Nonlinear Generalised Predictive Control (NGPC) approach, which is midway in complexity 

between NGMV and NPGMV solutions. The work described focussed on design questions and 

was mainly concerned with the implementation and performance aspects of the various 

algorithmic formulations. 

The key characteristic that differentiates the NGMV controller from the traditional approaches 

mentioned in Chapter 1, is its flexibility in accommodating unknown (or unmodelled) system 

nonlinearities via its decomposition into a general nonlinear operator (considered as a “black-

box” in application Chapter 5, 6 and 7). It is proven and demonstrated in various examples in 

and outside this work that given a small set of assumptions on the stability properties of the 

open-loop system the controller can be implemented without the use of linearization to cover 

the entire operating range of a nonlinear system. 

The delay-free part of the model is contained in the internal controller loop. This attempts to 

cancel nonlinearities in the special limiting case of zero control costing. Deviations between 

the model and the real plant are handled with the appropriate definition of the linear dynamic 

error weighting term (Pc) and a linear or nonlinear dynamic control weighting (Fck).  In the basic 

controller formulation there are therefore only two major tuning terms. Two application 

examples were explored to reinforce the applicability and effectiveness of the basic state-

space formulation of the NGMV control, in both cases demonstrating improvement in 

performance without involving laborious tuning and reconfiguration. In both designs, the full 

nonlinear plant was included within the black box internal delay-free component whereas the 

linear part was defined as a unity matrix.  In the first example (Chapter 5) the wave 

disturbance was included in the disturbance model formulation within the algorithm 

calculation for improved disturbance rejection. 

In Chapter 3 the basis for the derivation of a new paradigm in the NGMV family of controllers 

was set, starting with an introduction to NMPC which led to the concept of an NGPC 

adaptation for LPV systems. This progression in the thesis was chosen as the cost function 

derivation for the NPGMV is shown as a combination of that of the GMV and NGPC algorithms. 

The development of the NPGMV for LPV systems is then straight forward. Furthermore, the 

LPV-NGMV has been produced and its value explored in the additional section of application 

Chapter 5. 

The part of this work which required the most significant amount of effort to complete was the 

wind turbine application described in Chapter 6. The main challenge was again the derivation 



192 
 

of an appropriate model for analysis and control and subsequently its adaptation to the LPV 

framework. Once the LPV model was validated against the full nonlinear system, its coding 

within the controller algorithm was relatively straightforward. The Extended Kalman Filter 

(EKF) was used to provide the initial estimates at each controller scan, based on which the full 

prediction errors was then produced. For this application minor retuning of the weightings 

proved to be necessary when the predictions horizon (Np) factor changed. Similar to the 

previous examples, however, a relatively limited range of weightings provided reasonable 

performance across different scenarios and operating points. Ideally, something that could 

also be within the scope for future improvement, scheduling of the weightings should be 

provided to tackle this problem more effectively. 

In the third example (Chapter 7) the Nadir singularity nonlinear characteristic was included in 

the control weighting (Fck) and that showed further improvement in performance when 

tracking across the Nadir. In both cases tuning of the NGMV was based on the PID initial 

baseline configuration and was shown to cope nicely at different operating points without 

further modifications. 

A major challenge with all examples was the adaptation of the control architecture to the 

specific application. Another challenge and especially in the NPGMV case was to find solutions 

that reduce computational burden of the algorithm. End weighting constraints and a control 

profile selection matrix have been provided to reduce the number of computed states within 

the algorithm, however other features have not been fully explored and that could be the 

scope for future work along with an extensive study on the robustness properties of the 

advanced versions of the NGMV range of controllers. That would potentially encourage the 

transition of these concepts to a realistic real-time easily implementable industrial controller. 

That being said, in the application described in Chapter 7 the basic algorithm has been 

implemented for the first time on a real-time National Instruments PXI FPGA controller to 

stabilise the physical Electro-Optic system which was a major step towards the latter.  

Overall the NGMV controllers and their predictive cousins proved to yield a promising solution 

for dealing with these particular classes of nonlinear systems with many opportunities for 

further improvement and real-time implementation. 

 

8.1 Discussion 

To be able to judge whether advanced controls provides an improvement some criteria should 

be established.  However, there are many requirements of good industrial controllers and to 

some extent the decision is subjective.  Nevertheless, the following advantages seem clear: 

1. Most industries are moving towards using physical models on which to base control 

designs since this enables more formalised design procedures to be used and the 

predictive control methods lend themselves to such an approach. 
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2. To be able to benchmark the performance of the system a cost function is often 

required and this is available naturally because of the problem of formulation.  This 

can enable performance to be quantified and good control to be judged.  

3. Classical controls can provide very adequate and good solutions but when systems are 

interacting and multivariable they are very much more difficult to control and again 

the predictive control methods lend themselves to this problem.   

4. Classical control methods also do not account for disturbances in a very formal or 

optimal manner but the predictive control solutions can use the statistical information 

on disturbances.  In the wind energy problem this is of course a central feature of 

designs.   

5. Most classical design methods do not take account of nonlinearities very formally and 

the same applies to parameter variations rising in systems, the type of solution 

presented also accounts naturally for these difficulties.   

There are of course obvious disadvantages of more advanced methods such as the additional 

complexity in both implementation and the levels of staff needed in the design office.  

However, with the increase in computing power over recent years and new formalised design 

procedures such problems are becoming less significant.  It is of course the case that advance 

controls will not be used if classical methods can be considered adequate, even if they provide 

some improvements.  Moreover, with the cost implications of faults and failures and with the 

loss in possible outputs that may arise there is real imperative to use more advanced methods 

in some applications.  It seems likely that in future years advanced controls will be considered 

a necessary evil and companies that do not adopt such philosophies may suffer the economic 

consequences. 

8.2 Suggestions for Future Work 

8.2.1 Robust Control NGMV Design 

The following idea was very recent and was not explored since the step to Robust Adaptive is 

significant and well beyond the aims of the thesis.  In the practical implementation 

architecture that was suggested for the NGMV algorithms throughout this thesis, the plant 

model was assumed to be obtainable in a relatively high degree. In this section an extension to 

the original design is suggested, which could potentially tackle issues that may arise out of the 

uncertainty most models exhibit in reality. Utilising tools found in robust control theory, this 

uncertainty or mismatch between the model and the actual process can be fused into our 

design via the following representation, commonly referred to as additive perturbation [54]. 

The term  &=   in this equation represent the plant operator  &  including the uncertainty as a  �&  perturbation. 

&= = & 
 �& (8:1) 

To put it into context with the previous NGMV derivation and more specifically with the 

division of the plant into linear and nonlinear terms, the latter accommodates the additive 

perturbation as shown in the following relation. 
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&=� → &� 
 �&� = &��&.� 
 &���&.� = &���&.� 
 �&.�� = /&�������0�	� 
(8:2) 

and including the common delays term,  = ���&���&.� 
 �&.�� 

 

The control structure shown in Figure 2:4 can be modified to encapsulate this as shown in 

Figure 8:1. It is useful to remind here, that in this NGMV structure as discussed previously, the 

nonlinear part of the model can accommodate possible unknown black box type sections of 

the real plant. It can therefore be a convenient structure in which a black box nonlinear part 

could accommodate the uncertainty term �&.�. This term can encapsulate components like 

varying parameters due to change of operating range, to un-modelled or varying transport 

delay terms. 

 

Figure 8:1 NGMV and model uncertainty structure. 

 

However, the assumption of a time invariant, possible to model uncertainly factor, is made in 

this structure. If the latter is holds, then a successful design could be produced which would 

include a more accurate model of the system. It is proposed here that in the case where the 

uncertainty cannot be modelled or is time-varying, identification can be employed off-line 

(thus improving design at an early stage) or online in an adaptive manner, to update the model 

and improve compensation. 

If an initial design is then made using the nominal plant model W, then the output of the 

parallel path will be the sum of the future disturbance estimate d (broken down to stochastic 

and deterministic terms) together with �&. The complete output of the plant, including 

uncertainty and disturbance terms is shown below. 

� = 3> 
 3# 
 �&&= � (8:3) 
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The control formulation including the alternative parallel loop formulation idea can be seen in 

the following diagram. 

 

Figure 8:2 NGMV and model uncertainty structure expansion. 

 

If there are no changes to the plant W (or modelling mismatch) then the parallel loop will 

remain stable as long as the plant remains open-loop stable. Notice however that  &= �  is ��  

which actually represents the known nominal system. Updating the model with knowledge of 

disturbance can be easily formulated as a Least-Squares system identification problem using 

ARMAX models. The same idea could be used to the error introduced by the outer loop to 

identify uncertainty in the model as well. 

���� = �� �.��� �.� ����� 
 �� �.��� �.� !��� (8:4) 

 

The adaptation of this idea to the NGMV framework is shown in the following figure. 
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Figure 8:3 ARMAX model structure. 

 

Normally this would be impractical as it would imply online identification of the whole plant  
?� 

(problematic for a plant with large number of states). However, in this case this is not 

necessary as the signal for the model uncertainty is known as explained in the following 

relations. 

&N = �1 
 Æ&�&=  (8:5) ! = &= − &N = Æ&&=  (8:6) 

 

There is a bound for inaccuracies in the model and that is what is provided by this formulation; 

the term to be identified is a low order model (e.g. a 1st order model can be assumed to 

represent the uncertainty). After being identified, ΔW can then be used online to update the 

model (within the “black box” term). Another advantage with this is that the linear terms LT1 

and LT2 only depend upon the reference and disturbance signals but not on what is actually 

within the “black box” hence Wk can be updated without affecting the rest of the controller 

elements. This can naturally lead to an adaptive, self-tuning formulation for the controller. 

This approach provides a method of improving robustness when other techniques do not seem 

too successful. In a sense it uses system identification on a simple model to identify the 

uncertainty. The identification stage will just provide the best approximation to the 

uncertainty in whatever uncertainty description is chosen.   It seems either we have to go into 

a formal design method, which is very complicated, or we have to employ a number of simple 

approaches which require trial and error optimization, if the best robustness is to be 

obtained. One of the main reasons is that we have no real link between uncertainly and the 

controller design. With the adaptive/uncertainty estimation method the form of uncertainty 

will be defined by the designer but the parameters will be estimated.  We might even be able 

to restrict the variations of the estimated parameters so that unpredictable behaviour is not 

obtained. Using adaption in this manner was not considered in the original proposal since the 

focus was more on improving the robustness of the predictive controls.  However, the 

experience from the project suggests off-line, or on-line system identification, be used and 

could play a useful role. 
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Appendix A.1 Application Chapter 5 

Simulations Code. 

Main Simulation Master File Code (MATLAB): 

% THE NGMV SCHEME IN SHIP MANEUVERING AND DP (Dynamic Positioniong) 
  
% The Cybership II nonlinear fully actuated model is used in 
simulations. Linear models driven  
% by white noise are used in the reference and disturbance parts of 
the model. NGMV performance  
% is compared against a PID-Notch filter in simple step reference 
tracking, DP and Manoeuvring 
% examples. 
  
% note: thruster nonlinear models are included in the overall 
nonlinear model of the ship which 
%       is fully simulated in Simulink blocks. All components of the 
simulation are in discrete  
%       time. 
  
gensym z^-1 
clear; clc 
d2r=pi/180*eye(3,3); 
dw=1*eye(3,3); 
  
%% PLANT DEFINITION 
% Cybership II Model 
  
% identification parameters 
m=23.8000; Iz=1.7600; xg=0.0460;   
Xu=-0.7225; Xuu= -1.3274; Xuuu= -5.8664; Xud=- 2.0; 
Yvd=-10.0; Yv= -0.8612; Yvv= -36.2823; Yrd=0.0;   
Yr= 0.1079; Yrv=-0.805; Yvr=-0.8450; Yrr=-3.450; 
Nrv=0.130; Nr=-1.90; Nvr=.08;Nrr=-0.750; Nvd=0.0;   
Nv= 0.1052; Nrd= - 1.0; Nvv=5.0437; 
  
% disturbance vector 
b1=-1.5; b2=1.5; b3=0; 
  
% inertial vector 
M=[m-Xud 0 0; 0 m-Yvd m*xg-Yrd;0 m*xg-Nvd Iz-Nrd]; 
Minv=inv(M); 
  
% sampling time & plant delays 
Ts=0.01; 
Dk=z^-1*eye(3); 
stop_time=200; 
  
% ELLIPTIC REFERENCE TRAJECTORY 
x=0; y=0; fi=0; 
for theta=1:360 
    i=theta; 
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    [x(i),y(i),fi(i)]=ellip(theta); 
         
end 
     
%% CONTROLLER DESIGN 
% PID DESIGN 
Kp2=diag([50 100 100]); 
Ki2=diag([20 20 20]); 
Kd2=diag([50 50 50]); 
  
% PID tuning for Notch-filter configuration 
Kpn=1000*diag([1 1 1]); 
Kin=0*diag([0.01 10 8]); 
Kdn=1*diag([200 60 30]); 
  
% Notch filter design 
a=1; 
b=10; 
wnn=.5;  %natural frequency (rad/sec) 
z1=.1;  %damping factor 1 
z2=3;  %damping factor 2 
  
notch=1*(10/b)*tf([a 6*z1*wnn wnn^2],[1 1*z2*wnn wnn^2]); 
notched=c2d(notch,Ts,'tustin')*eye(3,3); 
  
% DEFINITION OF THE NGMV MODELS 
% LINEAR PLANT COMPONENT (W0)  
% as an integrator  
% (the integrator used to obtain the displacement from the velocities) 
sys=filt(1,[1 -0.9],Ts)*eye(3,3); 
W0=sys; 
[B0k,A0]=lti2lmf(W0); 
  
% REFERENCE LINEAR MODEL (Wr) 
Wr=filt(0.5,[1 -0.8],Ts)*eye(3,3); 
[Er0,Ar]=lti2lmf(Wr); 
  
% DISTURBANCE DEFINITION (Wd) 
% wave disturbance (according to Pierson-Moskowitz spectrum for rough 
seas) 
% a 2nd order transfer, inverse notch filter look-alike, with 
reasonable damping on the sides 
% fixed on 0.8 rad/sec. 
ad=a;     %denominator coefficient 
wnd=.5;   %natural frequency (rad/sec) 
 
dist=tf([1 2*wnd wnd^2],[a 1*wnd wnd^2]); 
distd=c2d(dist,Ts,'tustin')*eye(3,3); 
 Wd=filt([0.0003786 0.0007573 0.0003786],[1 -1.944 
0.9457],Ts)*eye(3,3); %alternative disturbance 
% Wd=0.001*distd; 
[Cd0,Ad]=lti2lmf(Wd); 
  
% NGMV DESIGN 
% PID-based design 
Kp=diag([38 12 25]); 
Ki=diag([0.02 0.01 0.01]); 
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Kd=diag([0.1 0.1 0.1]); 
  
% Kp=diag([80 70 70]); 
%  
% Ki=1*diag([0.02 0.01 0.01]); 
%  
% Kd=60*diag([0.1 0.1 0.1]); 
 
% Pc weighting definition 
C=dpid2tf(Kp,Ki,Kd,Ts);   
Pc=tf(C);  Pc=1*Pc;  Pc.var='z^-1'; 
[Pcn,Pcd]=lti2rmf(Pc); 
  
% Frequency-based design 
% Pc=distd; 
%  
% Pc=1*Pc;  Pc.var='z^-1'; 
dil=tf([1 1.5*wnn wnn^2],[1 1*wnn wnn^2]); 
% dil=tf([1 1.2*wnn wnn^2],[2 .8*wnn wnn^2]); 
dild=c2d(dil,Ts,'tustin')*eye(3,3); 
% dil=tf([1 2*wnn wnn^2],[7 1*wnn wnn^2]); 
% dild=c2d(dil,Ts,'tustin')*eye(3,3); 
Pc1=1*dild; 
Pc1=1*Pc1;  Pc1.var='z^-1'; 
[Pcn1,Pcd1]=lti2rmf(Pc1); 
  
% Fck weighting definition 
Fck=-0.08*(filt([1 -0.7],1,Ts))*eye(3,3); 
  
% Common Denominator 
 [A,Bk,Cd,Er]=lmf2lcd(B0k,A0,Cd0,Ad,Er0,Ar); 
 
% NGMVC law formulation 
[c_cascade,c_loop]=ngmvc(A,Dk,Bk,Cd,Er,Pcn,Pcd,Ts);        %for the  
PID-based design 
  
[c_cascade1,c_loop1]=ngmvc(A,Dk,Bk,Cd,Er,Pcn1,Pcd1,Ts);    %for the 
freq.-based design



 

 

Main Simulation Diagram (SIMULINK): 

 

 



 

 

Appendix A.2 Application Chapter 6 

Simulations Code. 

%% Wind Turbine Control Master File 
% The following are defined in this file: 
% 1. Parameters for a 5MW Wind Turbine model with tower dynamics. 
% 2. Parameters for PI, GPC, NGMVss and  lpv-NPGMV controllers. 
% 3. Initialisation parameters for different simulation scenarios. 
  
clear all; close all; clc 
run('C:\Users\...\Documents\MATLAB\ngmv_toolbox_march_2013\ngmvinit') 
addpath isclib 
  
%% Define wind turbine component parameters 
% Cut-in and cut-out speeds 
v_cutin = 3;                %[m/s] cut-in speed 
v_cutout = 25;              %[m/s] cut-out speed 
beta_br = 0.0;              %[deg] below-rated pitch angle 
  
% Turbine output at rated 
wg_nom = 1173.7*pi/30;      %[rad/s] rated generator speed  
taug_nom = 43093.55;        %[Nm] rated generator torque  
Pg_nom = 5e6;               %[W] rated power 
  
% Pitch servo (2nd order model) 
wn_pitch = 10;              %[rad/s] pitch angle servo natural 
frequency 
xi_pitch = 0.55;            %[-] pitch angle servo damping 
beta_max = 91.77;           %[deg] pitch magnitude constraints  
beta_min = 0; 
betadot_max = 8;            %[deg/s] pitch rate constraints  
betadot_min = -8; 
  
% Aerodynamics 
R = 63;                     %[m] rotor radius  
rho = 1.225;                %[kg/m3] air density  
c = 0.5*rho*pi*(R)^3; 
load wtpcoeffs              %load WT performance coefficients (Cq, Ct, 
Cp) 
  
% Drive Train (2DOF) 
K_LS = 8.67637e8;           %[Nm/rad] LSS stiffness  
D_LS = 6.215e6;             %[Nms/rad] LSS damping  
N = 97;                     %[-] gearbox ratio 
etam = 1;                   %[-] mechanical efficiency 
J_g = 534.116;              %[kg*m2] moment of inertia, generator  
J_r = 35444.067;            %[kg*m2] moment of inertia, rotor  
D_g = 0;                    %[Nms/rad] generator damping    - not used 
D_r = 0;                    %[Nms/rad] rotor damping        - not used 
  
% Generator and Converter 
tau_gc = 0.1;               %[s] generator torque time constant  
etagc = 1;                  %[-] electrical efficiency   
taug_max = 474029.1;        %[Nm] torque constraints  
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taug_min = 0.0; 
  
% Tower Fore-Aft Dynamics 
mt_nacrot = 350000;         %[kg] mass of nacelle and rotor 
mt_tow = 347460;            %[kg] mass of tower 
mt_FA = mt_nacrot + mt_tow; %[kg] effective moving mass for tower 
deflection in fore-aft direction 
wn1_t = 0.321;              %[rad/s] 1st tower fore-aft mode: natural 
frequency 
xi1_t = 0.8;                %[-] 1st tower fore-aft mode: damping 
factor 
Kt_FA = mt_FA*wn1_t^2;      %[N/m] computed stiffness 
Dt_FA = 2*mt_FA*xi1_t*wn1_t;%[N.s/m] computed damping# 
  
  
  
%% Optimal trajectories and LUT data generation 
% effective wind speed 
v = [2.5:0.5:8 8.1:0.2:11 11.5:0.5:15 16:39.5]'; 
wind_in = v; 
plot_style = 'b.-'; 
  
% WT structure 
par_wt = 
struct('v_cutin',v_cutin,'v_cutout',v_cutout,'wind_in',wind_in,... 
    'wg_nom',wg_nom,'taug_nom',taug_nom,'Pg_nom',Pg_nom,... 
    'wn_beta',wn_pitch,'xi_beta',xi_pitch,'R',R,'rho',rho,'c',c,... 
    
'K_LS',K_LS,'D_LS',D_LS,'N',N,'etam',etam,'J_g',J_g,'J_r',J_r,'D_g',D_
g,'D_r',D_r,... 
    
'tau_gc',tau_gc,'etagc',etagc,'m_FA',mt_FA,'K_FA',Kt_FA,'D_FA',Dt_FA,.
.. 
    'Lambda',Lambda,'Pitch',Pitch,'Cp',Cp,'Cq',Cq,'Ct',Ct); 
  
% Optimal reference trajectory as a function of wind speed 
[Pstar,betastar,wgstar,taugstar] = ORC(v,beta_br,par_wt); 
lambda = wgstar/N*R./v; 
Cpi = interp2(Pitch,Lambda,Cp,betastar,lambda); 
  
% LUTs 
pitch_out = betastar; 
torque_out = taugstar; 
power_out = Pstar; 
wg_out = wgstar; 
  
[dCq_lambda,dCq_beta] = lutder2d(Lambda,Pitch,Cq); % Cq partial 
derivatives 
[dCp_lambda,dCp_beta] = lutder2d(Lambda,Pitch,Cp); % Cp partial 
derivatives 
[dCt_lambda,dCt_beta] = lutder2d(Lambda,Pitch,Ct); % Ct partial 
derivatives 
  
par_LUT = 
struct('dCq_lambda',dCq_lambda,'dCq_beta',dCq_beta,'dCp_lambda',... 
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dCp_lambda,'dCp_beta',dCp_beta,'dCt_lambda',dCt_lambda,'dCt_beta',dCt_
beta); 
  
par_wt = catstruct(par_wt,par_LUT); 
  
%% Plot Optimal Trajectories 
hfig = figure; set(gcf,'Name','Optimal trajectories') 
subplot(331) 
plot(v,Pstar*1e-6,plot_style); grid on; box off; hold on 
title('Optimal power curve'); xlabel('v [m/s]'); ylabel('P^* [MW]') 
  
subplot(337) 
plot(v,wgstar,plot_style); grid on; box off; hold on 
title('Optimal generator speed'); xlabel('v [m/s]'); 
ylabel('\omega_g^* [rad/s]') 
  
subplot(338) 
plot(v,betastar,plot_style); grid on; box off; hold on 
title('Optimal pitch angle'); xlabel('v [m/s]'); ylabel('\beta^* 
[deg]') 
  
subplot(334) 
plot(v,taugstar*1e-3,plot_style); grid on; box off; hold on 
title('Optimal generator torque'); xlabel('v [m/s]'); ylabel('\tau_g^* 
[kNm]') 
  
subplot(336) 
plot(v,Cpi,plot_style); grid on; box off; hold on 
title('Cp'); xlabel('v [m/s]'); ylabel('Cp [-]') 
  
subplot(339) 
plot(v,lambda,plot_style); grid on; box off; hold on 
title('Tip speed ratio'); xlabel('v [m/s]'); ylabel('\lambda [-]') 
  
subplot(332) 
inds = find(wgstar~=0); 
plot(wgstar(inds),taugstar(inds)*1e-3,plot_style); grid on; box off; 
hold on 
title('Torque-speed curve'); xlabel('\omega_g [rad/s]'); 
ylabel('\tau_g [kNm]') 
  
subplot(335) 
inds = find(wgstar~=0); 
plot(wgstar(inds),Pstar(inds)*1e-6,plot_style); grid on; box off; hold 
on 
title('Power-speed curve'); xlabel('\omega_g [rad/s]'); ylabel('P_g 
[MW]') 
  
%% Simulation Parameters 
t_sim = 100;  %[s] simulation time 
Ts = 0.02;    %[s] controller sample time 
v_0 = 15;     %[m/s] wind speed 
  
load turbwind  
vmean = vmean15a*0.6+7; 
figure 
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subplot(211); plot(tx,vmean,'b'); title('Turbulent wind'); ylabel('v 
[m/s]') 
% Wind data for simulation 
avg_wind_speed2 = [tx' vmean']; t_sim = tx(end); 
  
Psteps = 1e6*[zeros(39,1); -0.2*ones(40,1); -0.6*ones(40,1); -
1.7*ones(40,1); -1*ones(40,1); ... 
    -0.5*ones(40,1); -0.1*ones(40,1); zeros(39,1);]; 
Psteps_str = [[1:length(Psteps)]' Psteps]; 
  
wg_steps = (1/5)*wg_nom*[zeros(39,1); -0.2*ones(40,1); -
0.6*ones(40,1); -1.7*ones(40,1); -1*ones(40,1); ... 
    -0.5*ones(40,1); -0.1*ones(40,1); zeros(39,1);]; 
wg_steps_str = [[1:length(wg_steps)]' wg_steps]; 
  
 
load gustwind 
gust = gust17; 
gust = gust(1)-2 + (gust-gust(1))*0.8;  % gust scaling 
gust_n = 
[gust(1:301),gust(1:301),gust(1:200),gust(302:500),gust(500:698)]; 
subplot(212); plot(tx,gust_n,'b'); title('Wind gust'); ylabel('v 
[m/s]') 
avg_wind_speed = [tx' gust_n']; t_sim = tx(end); 
  
% Initial Conditions 
[P_0,beta_0,wg_0,taug_0] = ORC(v_0,beta_br,par_wt); 
betadot_0 = 0; 
wr_0 = wg_0/N; 
lambda_0 = wr_0*R/v_0; 
Cq_0 = interp2(Lambda,Pitch,Cq',lambda_0,beta_0); 
tau_LSS_0 = c*Cq_0*v_0^2; 
theta_0 = tau_LSS_0/K_LS; 
Ct_0 = interp2(Lambda,Pitch,Ct',lambda_0,beta_0); 
Ft_0 = c/R*Ct_0*v_0^2; 
yt_0 = Ft_0/Kt_FA; 
ytdot_0 = 0; 
  
%% CONTROL DESIGN 
% Model Linearisation 
% States: [beta,beta_dot,theta_d,omega_g,omega_r,tau_g,xt,xt_dot] 
% Inputs: [v_wind,tau_g_ref,beta_ref] 
% Outputs: 
[omega_r,omega_g,beta_rad,tau_r,tau_g,P_g,v_hub,tau_LS,Ftx,xt_dot] 
[A,B,C,D,X0,U0,Y0,inputnames,outputnames,statenames] = 
wtlin_nrel(v_0,par_wt); 
wt_lin = ss(A,B,C,D); 
wt_lind = c2d(wt_lin, Ts); 
wt_lind.c(3,1)=1; 
  
% model dimensions - full range 
nx0 = 8;    % No of states 
nu = 2;     % No of control inputs 
nyc = 2;    % No of controlled signals 
nym = 3;    % No of measured outputs 
nd = 1;     % No of input disturbances (dummy) 
Yind = [2,3,6]; 
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Uind = [2,3]; 
  
% system constraints 
u_max = [taug_nom;beta_max]; 
u_min = [0;beta_min]; 
du_max = [100;betadot_max]; 
du_min = [-100;betadot_min]; 
  
% Scaling Factors 
Qe_wg = 1e-2; 
Qe_pg = 1e-7; 
  
par_dim = 
struct('Ts',Ts,'nx0',nx0,'nu',nu,'nyc',nyc,'nym',nym,'nd',nd,... 
    
'Yind',Yind,'Uind',Uind,'u_max',u_max,'u_min',u_min,'du_max',du_max,..
. 
    'du_min',du_min); 
par_wt = catstruct(par_wt,par_dim); 
  
s = tf('s'); 
nint = 0.99999;         % (near)-integrator pole for controller design 
zi = filt([0 1],1,Ts); 
  
%% PID 
Kp_wg = 30*Qe_wg; Ki_wg = 10*Qe_wg; Kd_wg = 0*Qe_wg; % wg control 
% Kp_pg = 40*Qe_pg; Ki_pg = 30*Qe_pg; Kd_pg = 0*Qe_pg; % Pg control 
Kp_pg = 100*Qe_pg; Ki_pg = 40*Qe_pg; Kd_pg = 0*Qe_pg; % Pg control 
  
%% NGMVss (state-space) 
Wr = eye(nyc)*filt([0 1],[1 -0.9999],Ts);               nxr = 
order(Wr); 
Wd = 1e0*1*eye(nyc)*filt([0 1],[1 -0.9999],Ts);         nxd = 
order(Wd); 
Wk = eye(nyc)*filt(1,1,Ts); 
% Wk = wt_lind(6,3); 
k = 1;              % common time delay in samples 
  
QN = 1*diag(ones(2*nyc,1)); 
RN = 1*diag([1,1]); 
  
% Define NGMV Dynamic weightings ---------------------------------- 
% PID-based 
% Kp_wg_ngmv = 1*Qe_wg; Ki_wg_ngmv = 0.5*Qe_wg; Kd_wg_ngmv = 0*Qe_wg; 
% wg control 
Kp_wg_ngmv = 100*Qe_wg; Ki_wg_ngmv = 0.5*Qe_wg; Kd_wg_ngmv = 0*Qe_wg; 
% wg control 
% Kp_wg_ngmv = 100*Qe_wg; Ki_wg_ngmv = 10*Qe_wg; Kd_wg_ngmv = 0*Qe_wg; 
% wg control 
Kp_pg_ngmv = 700*Qe_pg; Ki_pg_ngmv = 5*Qe_pg; Kd_pg_ngmv = 0*Qe_pg; % 
Pg control 
% Kp_pg_ngmv = 400*Qe_pg; Ki_pg_ngmv = 10*Qe_pg; Kd_pg_ngmv = 0*Qe_pg; 
% Pg control 
Pc = [(Kp_wg_ngmv+Ki_wg_ngmv/(1-nint*zi)), 0; 0, 
(Kp_pg_ngmv+Ki_pg_ngmv/(1-nint*zi))]; 
Fck_dyn = [5*ss(1), 0; 0, 6*ss(1)]; 
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nxp = order(Pc); 
nx = nxd + nxr + nxp; 
  
[Ap,Bp] = ssdata(Pc); 
Pcx = ss(Ap,Bp,eye(nxp),zeros(nxp,nyc),Ts); 
xp_0 = zeros(nxp,1); 
  
iFck_dyn = inv(Fck_dyn); 
[Af,Bf,Cf,Df] = ssdata(iFck_dyn); 
  
estXp = 'on'; 
[k_est,css_gain,css_loop] = ngmvss(Wk,k,Wd,Wr,Pc,QN,RN,estXp); 
k_est.ts = Ts; 
nxi = size(css_gain,2); 
  
% Store parameters in structure 
par_ngmv = struct('Ap',Ap,'Bp',Bp,'Pcx',Pcx,... 
    
'k',k,'QN',QN,'RN',RN,'k_est',k_est,'Fck',Fck_dyn,'css_gain',css_gain,
... 
    'css_loop',css_loop,'nxp',nxp,'nxi',nxi,'nxd',nxd,'nx',nx,... 
    'Af',Af,'Bf',Bf,'Cf',Cf,'Df',Df); 
par_ngmv = catstruct(par_ngmv,par_wt); 
  
  
%% NPGMV-lpv 
% Covariances for the Kalman Filter 
qn_beta = 0.1;   
qn_betadot = 0.01; 
qn_theta = 0.01^3; 
qn_wg = 0.01^-3; 
qn_wr = 0.01; 
qn_taug = 0.1^-4; 
qn_xt = 1; 
qn_xtdot = 0.1; 
  
qn_vw = 0.01; 
qn_tauref = 0.01^-4; 
qn_xi = 0.01; 
  
% rn_theta = 1;     % theta sensor variance [deg^2] 
% rn_wg = 1;        % theta sensor variance [deg^2] 
  
QN = 1*diag([qn_beta qn_betadot qn_theta qn_wg qn_wr qn_taug qn_xt 
qn_xtdot... 
    qn_vw qn_tauref qn_xi]); 
RN = 1*diag([1,1]); 
  
nbuffer = 100;      % state buffer for future reference generation 
(max pred. horizon) 
% 'u' formulation 
c2dflag = 0;         % c2d flag: 0=Euler, 1=direct 
constr_flag = 0;     % Constraint handling 
freeze_flag = 1;     % 0 = full LPV, 1 = frozen model 
futuresp_flag = 1;   % 1 = future reference knowledge ON 
futurectr_flag = 0;  % 0 = hold u(t-1), 1 = use U(t-1) 



214 
 

bta = 0;             % 0='u', 1='delta_u' 
Npr = 10;            % prediction horizon 
Pu = [1 5; 2 1; 3 1]; 
 [Tu,Nu] = mpcprof(Pu,Npr,bta); 
Kp_wg_npgmv = 50*Qe_wg; Ki_wg_npgmv = 2*Qe_wg; Kd_wg_npgmv = 0*Qe_wg;  
Kp_pg_npgmv = 2000*Qe_pg; Ki_pg_npgmv = 80*Qe_pg; Kd_pg_npgmv = 
0*Qe_pg; 
% Kp_pg_npgmv = 20000*Qe_pg; Ki_pg_npgmv = 1000*Qe_pg; Kd_pg_npgmv = 
0*Qe_pg; 
  
L_U = 1*diag([4,10])*diag([1, 1]); % [taug;beta] 
% L_U = 1*diag([0.01,1])*diag([1, 1]); % [taug;beta] 
  
% Block-diagonal static control weight 
LN_U = kron(eye(Nu),L_U); 
  
% Output disturbances incl. stochastic and "robustness" states 
nxd = nym; 
Ad = eye(nxd); Dd = eye(nxd); %Dd 
Cds = zeros(nxd,nxd);   % stochastic disturbances 
Cdm = 0*eye(nxd);       % mismatch on measurements 
Cdc = 0;                % mismatch on controlled variables 
Cd = 1*eye(nyc,nxd);    % mismatch on controlled variables 
  
% Integrator switch 
nxi = bta*nu; 
  
% Dynamic error weighting 
Pc = [(Kp_wg_npgmv+Ki_wg_npgmv/(1-nint*zi)), 0; 0, 
(Kp_pg_npgmv+Ki_pg_npgmv/(1-nint*zi))]; 
[Ae,Be,Ce,Ee] = ssdata(Pc); 
nxp = size(Ae,1); 
Pcx = ss(Ae,Be,eye(nxp),zeros(nxp,nyc),Ts); 
xp_0 = zeros(nxp,1); 
  
% Total number of states 
nx = nx0 + nxd + nxi + nxp; 
  
  
% Separate nonlinear control weighting in linear case into through and 
dynamic terms 
af = 0.0; 
% Fck = 1*filt(1-af,[1 -af],Ts); 
Fck = [1*ss(1), 0; 0, 1*ss(1)]; 
[Af,Bf,Cf,Ef] = ssdata(Fck); 
Fck0 = Ef; 
Fck1 = ss(Af,Bf,Cf,0,Ts); 
nxf = order(Fck1); 
Fck_N0 = Fck0; 
for i=2:Nu 
    Fck_N0 = blkdiag(Fck_N0,Fck0); 
end 
  
% Input weighting on u0(t) 
a1 = 0.93; b1 = 0.95; 
Wu = [(1-a1)/(1-b1)*filt([1 -b1],[1 -a1],Ts),0;0,(1-a1)/(1-b1)*filt([1 
-b1],[1 -a1],Ts)]; 
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[Au,Bu,Cu,Eu] = ssdata(Wu); 
nxu = size(Au,1); 
Wux = ss(Au,Bu,eye(nxu),zeros(nxu,nu),Ts); 
xu_0 = zeros(nxu,0); 
  
% Definition of Model and Control structures 
par_npgmv = struct('nxd',nxd,'nxp',nxp,'nx',nx,'nxi',nxi,... 
    
'freeze_flag',freeze_flag,'constr_flag',constr_flag,'c2dflag',c2dflag,
... 
    'futuresp_flag',futuresp_flag,'futurectr_flag',futurectr_flag,... 
    'Npred',Npr,'Nu',Nu,'Tu',Tu,'QN',QN,'RN',RN,'LN_U',LN_U,... 
    'Af',Af,'Bf',Bf,'Cf',Cf,'Ef',Ef,'nxf',nxf,'Fck_N0',Fck_N0,... 
    'Ae',Ae,'Be',Be,'Ce',Ce,'Ee',Ee,... 
    'Ad',Ad,'Dd',Dd,'Cd',Cd,'Cdm',Cdm,... 
    'Au',Au,'Bu',Bu,'Cu',Cu,'Eu',Eu,'nxu',nxu,... 
    'k',k,'bta',bta); 
  
par_npgmv = catstruct(par_npgmv,par_wt); 
 
  
  
  
%% Simulink model initialization 
open_system('simWT_fr') 
  
% Default simulation scenario 
default_scenario = 'Pulse'; 
tmp_button = ['button_' default_scenario]; 
hs = find_system('simWT_fr','Tag','button_scenario'); 
for i=1:length(hs),set_param(hs{i},'BackgroundColor','white'); end 
set_param(['simWT_fr/' tmp_button],'BackgroundColor','green') 
h = find_system('simWT_fr','Name',tmp_button); 
cb_button(h{1}) 
  
% Default controller 
default_controller = 'PID'; 
tmp_button = ['button_' default_controller]; 
hs = find_system('simWT_fr','Tag','button_controller'); 
for i=1:length(hs),set_param(hs{i},'BackgroundColor','white'); end 
set_param(['simWT_fr/' tmp_button],'BackgroundColor','green') 
h = find_system('simWT_fr','Name',tmp_button); 
cb_button(h{1}) 
  
% Default model 
default_model = 'WT'; 
tmp_button = ['button_' default_model]; 
hs = find_system('simWT_fr','Tag','button_model'); 
for i=1:length(hs),set_param(hs{i},'BackgroundColor','white'); end 
set_param(['simWT_fr/' tmp_button],'BackgroundColor','green') 
h = find_system('simWT_fr','Name',tmp_button); 
cb_button(h{1}) 
  
% Colors 
col1='k'; col2='b'; col3=rgb('Green'); col4=rgb('FireBrick'); 
col5=rgb(23); 
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col6 = rgb(109); col7 = 'm'; 
set_param('simWT_fr/button_C1','BackgroundColor','black') 
set_param('simWT_fr/button_C2','BackgroundColor','blue') 
set_param('simWT_fr/button_C3','BackgroundColor','green') 
set_param('simWT_fr/button_C4','BackgroundColor','red') 
set_param('simWT_fr/button_C5','BackgroundColor','gray') 
set_param('simWT_fr/button_C6','BackgroundColor','cyan') 
set_param('simWT_fr/button_C7','BackgroundColor','magenta') 
 
  



 

 

Main Wind Turbine Controllers Simulation Diagram (SIMULINK): 



 

 

Appendix A.3 Application Chapter 7 

Simulations Code. 

System Model Validation File Code (MATLAB): 

%% Tiger Eye electro-optical gyroscopic system validation 
% compares the radial error, the tilt & pan control actions of the 
gimbal mechanism, to the simulation 
% results in various base angles 
 
% identified rate loops 
Ts = 1/30;                                      % nominal sampling 
time [s] 
  
p1 = -10; p2 = -5; K = (p1*p2);                 %pan rate loop model 
from identification  
Pan_Rate = zpk([],[p1 p2],K);                   %& discretization 
PRd = c2d(Pan_Rate,1/30,'zoh'); 
  
p1 = -10; p2 = -5; K = (p1*p2);                 %tilt rate loop model 
from identification 
Tilt_Rate = zpk([],[p1 p2],K);                  %& discretization 
TRd = c2d(Tilt_Rate,1/30,'zoh'); 
  
bt=0;                                           %nominal base tilt 
r0=1.9;                                         %nominal distance from 
screen 
r1=.12;                                         %vertical distance 
from centre 
  
open_system('replica2.mdl'); 
sim('replica2.mdl') 
  
n=length(error.signals.values); 
  
e=zeros(n,7); t=zeros(n,7); p=zeros(n,7);  
etn=zeros(n,7); ttn=zeros(n,7); ptn=zeros(n,7); 
e(:,1)=error.signals.values; t(:,1)=tilt.signals.values; 
p(:,1)=pan.signals.values; 
  
bta=[0 25 45 60 70 80 90];                      %base tilt angles 
  
  
for i=1:length(bta) 
    bt=bta(i); 
     
    et=load (['C:\Users\...\Documents\MATLAB\Gimbal Control\Model 
Validation\measurements003\raderror' num2str(bt) '.dat']);  
    tt=load (['C:\Users\...\Documents\MATLAB\Gimbal Control\Model 
Validation\measurements003\tilt' num2str(bt) '.dat']);  
    pt=load (['C:\Users\...\Documents\MATLAB\Gimbal Control\Model 
Validation\measurements003\pan' num2str(bt) '.dat']); 
    etn(1:n,i)=et(1:n); ttn(1:n,i)=tt(1:n); ptn(1:n,i)=pt(1:n); 
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    sim('replica2.mdl') 
    e(:,i)=error.signals.values; t(:,i)=tilt.signals.values; 
p(:,i)=pan.signals.values;  
end  
 
a=4;  
  
hold on 
plot(e(:,a)) 
plot(etn(:,a),'g') 
title('radial error') 
grid  
  
figure 
hold on 
plot(t(:,a)) 
plot(ttn(:,a),'g') 
title('tilt') 
grid 
  
figure 
hold on 
plot(p(:,a)) 
plot(ptn(:,a),'g') 
title('pan') 
hold off 
grid 

  



 

 

Main Simulation Diagram (SIMULINK): 

 

 



 

 

 

NGMV Control Design Master File Code (MATLAB): 

%% tiger eye + NGMV 
% employs the Nonlinear Generalized Minimum Variance scheme 
  
pinit; gensym z^-1; 
clc 
  
%% plant definition 
% identified rate loops 
  
Ts = 1/30;                                      % nominal sampling 
time [s] 
Nu=2; Ny=2;                                     % 2x2 system 
k = 1;                                          % plant time-delay 
(for the later controller formulation) 
  
p1 = -10; p2 = -5; K = (p1*p2);                 %pan rate loop model 
from identification  
Pan_Rate = zpk([],[p1 p2],K);                   %& discretization 
PRd = c2d(Pan_Rate,1/30,'zoh'); 
  
p1 = -10; p2 = -5; K = (p1*p2);                 %tilt rate loop model 
from identification 
Tilt_Rate = zpk([],[p1 p2],K);                  %& discretization 
TRd = c2d(Tilt_Rate,1/30,'zoh'); 
  
%Linear part definition 
sys=PRd*eye(2); 
  
W0k = ss(sys); 
W0 = sys; set(W0,'OutputDelay',[k k]) 
  
%% disturbance definition 
Nn = 0.01*pol([2 1; 1 2]); 
Nd = [1-0.9*z^-1 1-0.3*z^-1; 1-0.4*z^-1 1-0.5*z^-1];         % Add one 
delay to the transfer function - doesn't change the disturbance 
Wd = rat2lti(z^-1*Nn,Nd);                                    % 
spectrum and makes the system strictly proper 
 
%% reference definition 
Rn = pol(zeros(2)); 
Rd = pol(ones(2)); 
Wr = rat2lti(z^-1*Rn,Rd); 
  
%% initial PID controller 
Kp=1; Ki=1; Kd=0; Tau=0.5; nint=0.9999; 
  
Co=dpid2tf(Kp,Ki,Kd,Ts,Tau,nint)*eye(2); 
  
%% NGMV weightings definition 
% PID-based design:     Pc = Ko1, Fc = -1 
Pc = 1*ss(Co); 
Fck = -1*filt(1,[1 -1],Ts)*eye(2); 
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%% NGMV controller design 
% k_est is the 'full' Kalman filter for x0, xd, xr and xp 
QN = eye(2*Ny);                      % model noise covariance for 
Kalman filter 
RN = diag([0.0 0.0]);                % measurement noise covariance 
[k_est,c_gain,c_loop2,Pcx] = ngmvss(W0k,k,Wd,Wr,Pc,QN,RN); 
  
  
%% simulation 
bt=0;                                           %nominal base tilt 
r0=1;                                         %nominal distance from 
screen 
r1=.12;                                         %vertical distance 
from centre 
  
open_system('replicaNGMV.mdl'); 
sim('replicaNGMV.mdl') 
  
n=length(error.signals.values); 
  
e=zeros(n,7); t=zeros(n,7); p=zeros(n,7);  
etn=zeros(n,7); ttn=zeros(n,7); ptn=zeros(n,7); 
e(:,1)=error.signals.values; t(:,1)=tilt.signals.values; 
p(:,1)=pan.signals.values; 
  
bta=[0 25 45 60 70 80 90];                      %base tilt angles 
  
  
for i=1:length(bta) 
  
    bt=bta(i); 
     
    et=load (['C:\Users\...\Documents\MATLAB\Gimbal Control\Model 
Validation\measurements003\raderror' num2str(bt) '.dat']);  
    tt=load (['C:\Users\...\Documents\MATLAB\Gimbal Control\Model 
Validation\measurements003\tilt' num2str(bt) '.dat']);  
    pt=load (['C:\Users\...\Documents\MATLAB\Gimbal Control\Model 
Validation\measurements003\pan' num2str(bt) '.dat']); 
    etn(1:n,i)=et(1:n); ttn(1:n,i)=tt(1:n); ptn(1:n,i)=pt(1:n); 
    
    sim('replicaNGMV.mdl') 
     
    e(:,i)=error.signals.values; t(:,i)=tilt.signals.values; 
p(:,i)=pan.signals.values; 
     
     
end 
  
a=7;  
  
hold on 
plot(300*e(:,a)+13) 
plot(etn(:,a),'g') 
title('radial error') 
grid  
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figure 
hold on 
plot(t(:,a)) 
plot(ttn(:,a),'g') 
title('tilt') 
grid 
  
figure 
hold on 
plot(p(:,a)) 
plot(ptn(:,a),'g') 
title('pan') 
hold off 
grid 
  



 

 

Main NGMV Control Simulation Diagram (SIMULINK): 
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