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ABSTRACT

A novel method of flexible-rotor vibration control,

using an active contactless angular electromagnetic actuator is

presented.

A theoretical comparison of radial and angular damping is
performed. Three different performance indices are defined and
used to determine controller optimum damping/location data for
different shaft systems. The controller settings are determined
for two main cases:
i) such that only one damping value is allowed
throughout the entire shaft speed range (passive
or fixed-gain active control),
11) the damping value is controlled as a function
of rotor speed (adaptive control).
The parameter optimisation, made possible by the creation
of a simple but efficient numerical technique employed in conjunction
with the transfer matrix method, is restricted to considering a speed
range covering the first three rigid-bearing critical speeds for a
uniform shaft supported by a variety of bearings. However, the approach

is sufficiently general to allow the study of any required speed range.

It is shown that for both the radial and angular dampers when
mounted at the bearings, there is a definite support stiffness value
above which the angular damper is the more efficient, but below which
the opposite is true. When the conditions for 'fixed-points' are
satisfied, then a simple on-off control strategy can be used effectively
employing either type of controller. Angular damping is shown also to

be an effective means of suppressing 'oil-whirl' type instability.



The theoretical work is supported by experimental
investigations on a laboratory rig which is representative of a
general flexible rotor system. An electromagnetic controller is
mounted at one bearing and the reduction of shaft unbalance response

and bearing forces recorded for various conditions.

Significant reductions in system synchronous response are
observed at running speeds close to the first critical speed when
electromagnetic stiffness and/or damping is employed. When electro-—
magnetic damping is introduced, non-synchronous vibration components,

resulting from shaft asymmetries, are also eliminated.

The combined theoretical and experimental studies show angular

control to be a viable alternative means of reducing flexible rotor

vibrations.
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CHAPTER 1

INTRODUCTION

The continual demand on modern-day machinery to
transmit increasing power levels at higher rotational
speeds has resulted in the employment, in many practical
installations, of long slender shafts with running speeds
above their first and second, and in some instances even
higher order, critical speeds.

This has led to the development of more stringent
design criteria, but cases still arise where vibrations in

rotating machinery cause machine breakdown or a need to

operate away from the design speed. In other cases

problems have arisen due to a change in operational
requirements after a machine has been installed.

The impossibility of avoiding all vibration problems
by action taken at the design stage has encouraged the
study of methods for altering system parameters 'in-situ'
using passive or active control devices.

Investigations to date have mainly been restricted to
the study of rotor systems, in which vibration control is
achieved through incorporation of an external radial
damper mounted at some location along the shaft between

the bearings. Whilst this means of control may be

acceptable on a laboratory rig, in practice many

situations occur where access to this shaft portion may be

extremely limited or even impossible.

Consequently, in such circumstances an alternative

effective control strategy would be desirable. The work
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described within this thesis is of a combined theoretical
and experimental nature and demonstrates how the
introduction of external control forces in an angular, as

opposed to radial, sense can lead to an efficient means of

system vibration attenuation. Access problems are

eliminated since the angular control forces may be applied

effectively at the rotor supports. In addition, the

control function is implemented, without the need for

physical contact with the rotating shaft, by utilising

electromagnets as the control actuators.

1.1 Thesis Format

In Chapter 2 a literature review is presented
covering historical and recent works in the field of shaft

whirling. Current methods of vibration control are also

discussed with special emphasis on the application of

electromagnets. A summary of the limitations of previous

work leads to an outline of the main aims of this work.
Current rotordynamic methods of analysis are reviewed

in Chapter 3 where the transfer matrix method is proposed

as the most suitable for the application.
Chapter 4 gives a detailed description of the

transfer matrix method when employed for the free and

forced vibration analysis of rotor systems. The modified

method is employed in order to minimise the possibility of

numerical instability which normally occurs because of the

small difference of large numbers. The fundamental system

transfer matrices are developed and include effects such

as mass unbalance, shaft initial-bend, gyroscopic moments

and support sub-level characteristics. Application of
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the method, in the form of a computer program, to various
rotor models, confirms the accuracy and effectiveness in
employing this technique for vibration analysis.

In Chapter 5 the concept of angular control is
introduced and applied to the case of a simple Jeffcott-
rotor where comparison is made with conventional radial
control. The controller performance comparison is
subsequently extended to multi-mode systems where three
representative performance indices are investigated. A
new efficient control optimisation procedure is created
and employed to allow determination of optimum control
locations and control forces for both controller types.

Chapters 6 and 7 describe the experimental portion of
the work.

In Chapter 6 the laboratory rotor, designed and

constructed specifically for the experimental
investigations, is described fully along with all other
equipment employed throughout the project. Details of
all relevent component calibrations are included.
Chapter 7 gives details of all experimental tests
performed. The test results, consisting mainly of test
rotor response measurements for various levels and types

of angular electromagnetic control force, are presented

and analysed in detail. Predicted responses are provided

for comparison and give an indication of the degree of
accuracy of the numerical techniques employed.
In Chapter 8 the conclusions resulting from the

theoretical and experimental investigations are summarised

and suggestions for further work given.



CHAPTER 2

LITERATURE REVIEW

2,1 Introduction

Vibrating/rotating flexible-shaft systems have

received much attention by many researchers;

the amount of literature available today is vast.

attempt to compile a complete
topic would be a mammoth task

In the field of rotating
topics are inexorably coupled

isolation may not be possible

as a result
Any
literature survey on this
and its value questionable.
machinery, a variety of

and discussion of one in

or even prudent.

Consequently, the review is fairly extensive even though

the material chosen is limited to that thought to most

suitably represent the main links in the historical chain

of research in this field.

sections:

a) Whirling of Shafts

b) Vibration Control

2.2 Whirling of Shafts

2,2.1 Synchronous Whirl

The review is in two

It is a well known fact that if the speed of a

rotating shaft is gradually increased, a certain speed is

attained at which the shaft radial deflection increases

dramatically and the shaft is

said to whirl or whip. If

insufficient damping is present, shaft failure may finally

occur.

Although the problem of shaft whirling has been known
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to exist for some time, it is only just over one hundred

years since one of the first papers on the subject was

published by Rankine [1]. In 1869, in an article

published in The Engineer, Rankine attempted to explain
theoretically, the behaviour of an unloaded, frictionless,

uniform shaft. He wrongly concluded that the shaft

motion would be stable below and unstable above the first

critical speed.
Twenty-five years later, in 1894, Dunkerly ([2]

presented the results of experiments which he performed on

a number of shaft/pulley arrangements. His experimental

results were compared to theory developed by Professor
Osborne Reynolds and an empirical formula was derived for

calculating the critical speeds of a variety of shaft

arrangements, viz:
2 _ 2 2 2 2
l/wc = l/wl + l/w2 + l/mr S l/mn

is the natural frequency of the complete system

where wc
TH

and w . is the natural frequency of the beam with the r
mass alone on the beam.

The next major contribution to the subject was made
by Chree [3] in 1904 who completely re-assessed the
situation making use of Dunkerly's experimental results.
Chree initially did not fully understand the nature of
shaft whirl since he stated that it could not be
considered as a form of forced vibration.

Chree considered Dunkerly's methods to be analogous

to Lord Rayleigh's technique [4] for obtaining approximate

frequencies of beam vibrations. Rayleigh showed how, at
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least, an upper bound on the natural frequency could be

estimated by assuming a mode shape for the vibrating
system. Any discrepancy between assumed and actual mode
would effectively result in additional system constraints
leading to a raising of the predicted frequency.

Although this early work was very useful in helping
to establish guidelines for the prediction of critical
speeds for simple shaft systems, the fundamental theory of
shaft whirling was still not fully understood at this
stage.

It was not until 1919 that a full rational
explanation of shaft whirling appeared in a paper by H.H.
Jeffcott [5]. Jeffcott concluded that when a shaft was
rotated, its geometrical axis would rotate around its

original deflected form in a bent fashion, the amount of

bend depending mainly on the relationship between the

rotational speed and the critical speed. Thus, Jeffcott

explained for the first time the behaviour of a simple
rotating shaft/rotor system at any speed and showed that
the shaft whirling problem could be considered as that of
a system subjected to forced vibrations.

Six years later Kimball and Hull [6] performed
experiments on a loaded unbalanced shaft passing through
its critical speed, the results confirming Jeffcott's
theory.

Stodola [7) proved experimentally the now well known
fact, that as a shaft runs through its critical speed, the
centre of gravity of the rotor moves from outside the

shaft centre and geometric centre to between the two. He
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also performed an interesting experiment on an unloaded

shaft, first running the shaft in water, then in free air.

He found the critical speeds in both cases were almost

identical, but the amplitude substantially reduced in the

former case due to the much increased external damping.
The effect of shaft initial-bend can be shown to

cause a shaft whirling motion similar to that due to

unbalance. Bishop [8] demonstrated how Jeffcott's theory

could be modified to allow for this additional effect.
Parkinson et al [9] confirmed experimentally that the
exciting force resulting from shaft initial-bend cannot be
removed for all speeds through shaft balancing, but that

the balance correction mass could be chosen so that the

shaft does not whirl at its first critical speed. In

fact, the only way to ensure 'Perfect Balance' of such a

shaft is to somehow completely remove the initial shaft
bend [8]. Of course this is impossible to achieve in
practice.

Over the years, numerous researchers have contributed
to the field of rotor-dynamics, none more so than Stodola
[71. He showed that the inclusion of large diameter

discs on a uniform rotating shaft resulted in the

introduction of gyroscopic effects which tended to stiffen

the shaft and thus raise the critical speeds. Gyroscopic

couples tend to stiffen the shaft only when the shaft

precesses in a direction corresponding to that of shaft

rotation (see Section 7.5.8). If the shaft is vibrating

as opposed to rotating, the converse is true and the

natural frequencies are, in fact, decreased. In many



cases the effect of the above may be so small that it

could be neglected. However, in a number of modern-day

machines, for instance gas/steam turbine applications,
exlusion of gyroscopic effects may lead to serious
discrepancies between actual and predicted response.
Stodola (7] also presented an iterative procedure for
calculating higher order natural frequencies of multi-mass
systems. As with Rayleigh's method, it is first
necessary to guess the mode-shapes for the relevant

frequencies, However, Stodola's method is more accurate

since the initially guessed mode-shapes are refined
through subsequent iteration.

Myklestad [10] in 1944 and Prohl (11] in 1945,
developed a tabular method for predicting the natural

frequencies and normal modes of transversely vibrating

beams and shafts respectively. The techniques employed

were basically an extension of the procedures adopted by
Holzer [12]) in the analysis of torsional systems. The
methods allow for determination of the natural frequencies
when all system boundary conditions are satisfied.

In 1951, Linn and Prohl [13], analysing first a
Jeffcott-rotor model then a shaft with distributed mass,
demonstrated how the incorporation of support flexibility
could greatly alter (reduce) the shaft critical speeds, a
phenomenon first recognised by Stodola in 1927 [7].

At this point in time, most rotor analyses assumed
either rigid-supports or, at most, support resilience
independent of rotational frequency.

With the knowledge that the introduction of support-
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flexibility could significantly reduce the critical speeds
of a flexible~shaft system, early attempts were made to
incorporate this effect empirically. Initially, a simple
approach was adopted [14] where, from observations in the
field, a variety of bearing configurations could be
classified according to their static deflections. The
method was fairly successful for prediction of the first
critical speed, but as equipment rated-speeds increased
so also did the requirement for more refined procedures.
| Caruso [15] showed how a high-~speed rotor system
could be analysed, allowing for frequency-dependent
support characteristics, using the Dynamic Stiffness
Method. He described how the method, basically a
mechanical-impedance method, allowed for the calculation
of the shaft and bearing dynamic-stiffnesses as separate
units. The two components could then be combined to
provide details of the dynamic response of the complete
system., Although early vibration analyses of large rotor

systems consisted mainly of the calculation of undamped

critical-speeds and normal modes, it is now common to

incorporate prediction of the system dynamic response
resulting from external forcing due to, for example, shaft
mass unbalance.

The fundamental theory of whirling, established
earlier by Jeffcott for a simple single-degree—-of-freedom
system, was extended by a number of workers and applied to
complex multi-degree-of-freedom systems by utilising a
number of system sub-elements which, when combined in some

fashion, would allow assessment of the dynamic response of
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In the last few decades such

large real rotor systems.
advances were made possible due, mainly, to the advent of
the large electronic digital computer.

Such numerical methods normally necessitate the
modelling of the real shaft as a set of rigid masses
connected by massless, flexible beam elements. Modelling
error is thus unavoidable in the analysis. However, with

proper choice of the number of elements, this error may be

reduced to a minimum. Gladwell [16] showed that for

transversely vibrating beams modelled as described above,
the modelling error was proportional to 1/N for one or
two free-ends and l/N4 for other end conditions, where N
is the total number of discrete masses employed. Care
must be taken with some analysis methods [63], since the
use of too many elements may lead to inaccuracy due to
truncation errors.

Most present-day analysis programs make use of matrix
methods which are ideally suited for programming on a

digital computer. The Transfer-Matrix Method [17],

basically the Myklestad-Prohl Method in matrix form, and
Finite-Element Method [18], are excellent examples (see
Chapter 3 for a full explanation of these and other
methods) .

Koenig [19] developed a procedure which could be
employed for the analysis of a rotor system supported on a
maximum of 15 supports and included effects such as
bearing/foundation damping, stiffness and mass, rotor

unbalance and gyroscopic moments. System undamped

critical speeds and unbalance response data could be
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calculated, with the limitation that only axi-symmetric

bearing supports could be considered. Koenig's program

was applied to various rotor systems [20] with the
calculated critical speeds found to be in good agreement
with those estimated using other analysis methods.

Useful information regarding shaft/bearing displacements

and bearing forces was obtained.

It has been recognised for some time now [21] that
journal (oil-film) bearings of the type normally employed
on turbine installations, exhibit stiffness and damping

qualities. The introduction of bearing flexibility has

the effect of lowering the critical speeds, whilst the

rotor response is normally reduced when system damping is

present. Shaft internal damping in most cases is

extremely small and may be ignored, at least in the forced

response analysis. However, if external damping is

small, then the shaft internal damping can greatly affect

the system stability [21]. In fact, unless the shaft

supports exhibit anisotropic properties (e.g. oil-film

bearings) this form of damping will have no influence

whatsoever on the shaft synchronous response. As a

consequence, in most practical cases, the only
contribution to system damping will be from the bearing
oil-film. The position of the bearings on the shaft is

thus of critical importance if their energy-dissipating
function is to be fully utilised.

Kirk and Gunter [22] investigated the effect of
various values of support damping and stiffness on the

synchronous and transient response of a single-mass
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flexible (Jeffcott)-rotor. They found that in order to

reduce rotor amplitude, the support mass ratio (support-
mass/disc-mass) should be kept as small as possible. If
this can be achieved, then an optimum support damping
value may be chosen so that the rotor steady-state
response may be limited to the rotor unbalance
eccentricity.

Much effort has been expended in attempting to ensure
realistic modelling of the bearing-support dynamics. The
0il-film in plain journal bearings may be idealised as a
linearised combination of four damping and four stiffness
coefficients which vary according to the shaft rotational
speed [23]. In reality, oil-film bearings behave in a
non-linear fashion and the assumptions for linearisation
are reasonably accurate only when the movement of the
shaft journal is restricted to small perturbations about

the steady operating position. However, Lund [24]

indicates that even for amplitudes as large as 40% of the
bearing clearance, the linear coefficients still provide
sufficient accuracy in most cases.

Analytical expressions for the linearised oil-film
coefficients of a short journal bearing were obtained by
Holmes [23].

In 0il-film bearings the shaft journal not only moves

radially, but also in an angular sense. It is therefore

possible to introduce another eight coefficients to
account for angular damping and stiffness effects [25].
However, in most cases these angular coefficients, along
with 0il-film inertia effects, may be excluded from the

general analysis without any discernable loss of accuracy.
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Bannister [26] showed that cases may exist where
accurate modelling of the bearing 0il-film can only be
achieved when non-linear effects are considered. He
employed twenty-eight bearing coefficients and achieved
good agreement between predicted and measured journal
response for a range of operating conditions. It was
suggested that it may be possible to use even fewer
coefficients without incurring significant loss of
modelling accuracy.

Good agreement was also obtained by Lund and Orcutt
[27] when they employed the transfer-matrix technique to
predict the unbalance response of a rotor-bearing system
where each bearing o0il-film was represented by 4 stiffness
and 4 damping coefficients.

In recent years, an attempt has been made to include
the mass, stiffness and damping characteristics of the
support structure/foundation. This is of great
importance in the field of power generation where nowadays
large steam turbo-alternator sets are normally mounted on
a tall concrete or steel frame.

The Finite-Element method is well-suited to the
analysis of complex vibrating systems and has recently
been employed [28] to analyse the dynamic response of some
large turbo-rotor-foundation systems. It has been shown
[29] that considerable detail is normally required in the

idealisation of the system model before accurate results

may be obtained. Consequently, more accurate data

pertaining to the bearing-support/foundation dynamics is

required to ensure good agreement between theory and

practice.
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Alternatively, in many instances [30] a fully
comprehensive rotor-bearing-foundation model need not be
required to represent the practical situation, as long as
the designer has the capability to predict the alteration
in the dynamic response of the overall system when certain
system parameters are allowed to vary.

One way of achieving this is to adopt a method of the

type suggested by Wang and Lund [31]. Here the rotor and

foundation characteristics can be organised individually
and combined to provide the complete system dynamics.
The foundation parameters could thus be altered easily
without the need for complete rotor system analysis, or
vice-versa.

Although a number of efficient linear rotor-dynamic
analysis methods are available, many phenomena such as

sub-harmonic resonance and instability limit cycles cannot

be investigated using the linear approach. As a result,

more effort is being applied to the analysis of non-linear
rotor-dynamics. Adams [32] recently presented a

procedure for the non-linear analysis of the response of

flexible-rotors with many bearings. He studied steaay-

state and transient vibrations in a steam turbine,
including such effects as seal forces, gyroscopic moments
and hydraulic/aerodynamic forces and found sub-harmonic

resonance resulting from large mass unbalance.

2.2.2 Self-Excited Whirl

One of the major problems found to occur in various

high-speed shaft applications, particularly those
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employing oil-film bearings, is that of instability.
One of the earliest researchers to investigate shaft

instability was Newkirk [33]. In 1924 he showed

experimentally that a shaft running above its first

critical speed, may whirl at a frequency approximately

equal to its fundamental natural frequency. The whirling

amplitude was found to be increased by the fitting of hubs

or sleeves on the shaft. Additionally, he demonstrated

that the introduction of bearing pedestal flexibility

helped reduce the shaft instability.
Smith [21] confirmed the latter finding theoretically

with the proviso that stiffness asymmetry would have to be

present in the bearing housings.
Newkirk [33] and Kimball [34] made major
contributions to the understanding of this problem and

suggested that a predominant contributory factor was the
friction emanating from shaft shrink-fits.
In 1933, Smith [21] presented the results of a

comprehensive analytical and experimental study into self-

excited whirl due to shaft internal damping.
A number of significant findings resulted from this

investigation. For a simple Jeffcott-rotor, it was shown

how the inclusion of rotor (shaft internal) damping could

result in instability at a shaft speed‘ﬂi dependent upon

the amount of stationary (support or other external

source) damping present:

w, = w, « (1 +b'/b"")

where,

w, = Shaft speed at onset of instability
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Lowest critical speed

W
(o}

b' Stationary (support) damping coefficient

Rotary (shaft) damping coefficient.

bll

Investigation of this simple model shows that if the

external damping is small in comparisonwith the shaft
internal damping (b'/b'' = 0), then the shaft motion will
be unstable above the shaft first critical speed. If the
support damping is increased, then the onset of
instability may be shifted to a higher shaft speed.

The instability onset speed could also be increased
by accentuating the support asymmetric properties.

Although this latter phenomenon was observed by
Newkirk [33] earlier, he did not fully appreciate that the
factor influencing the shaft stability was that of support
asymmetry as opposed to increased support flexibility.

Many of these early investigations into the stability
problem have since been confirmed and further extended by
a number of researchers [35,36,37].

Another type of shaft whirl similar to that due to
shaft internal friction can be caused by bearing oil-film
forces. In fact, Newkirk [38] later decided that the
instability he had initially attributed to shaft internal
friction [33] actually resulted from ‘'oil-whirl’.

Oil-whirl is probably the most common cause of rotor
instability today, the concepts of which were established
by Hori [39]. A common feature of this phenomenon is the
occurrence of instability-onset at a shaft speed of

approximately twice the first critical, resulting in non-

synchronous shaft motion with a frequency equal to that of



17-

the system first natural frequency. A fatique situation

arises due to the cyclic stresses set up within the shaft.
Hori showed that after initiation, the oil-whirl
instability could be maintained even when the shaft speed
was reduced to a value less than that at the onset of
instability.

Other researchers investigated the effect of varying
certain bearing o0il-film parameters on the instability
onset speed. Hagg and Warner [40] and Newkirk and Lewis
[41] found that the introduction of low bearing clearances
and increased o0il supply pressures helped delay the onset
of instability. They also discovered that it was
possible for the instability to be maintained at shaft
speeds many times greater than the onset speed.

Tondl [37] presented the results of analytical and
experimental studies of the resistance to oil-whirl
instability of a variety of oil-film bearing types and
showed the cylindrical bearings to be inefficient in this
respect.

Nowadays a number of procedures are available [42]
for prediction of rotor instability speeds resulting from
various aestabilising effects.

For the analysis of real rotor systems, a numerical

approach is normally necessary. The system eigenvalues,

which in general are functions of rotor speed, are
predicted and the speed at which the real part of any of

the system eigenvalues becomes zero is termed the

instability onset speed. This condition is effectively

equivalent to the case of zero system damping, instability
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occurring when the real part of the eigenvalue becomes

positive. The imaginary component of the relevant

eigenvalue represents the rate of rotor precession at
instability.
On the whole, good agreement has been achieved using

these methods in a laboratory environment. Recently, a

number of researchers have utilised the transfer-matrix

method, in various manners, to allow determination of

system instability characteristics. Dostal [43] achieved

good agreement with experimental onset-speeds, making use

of a number of graphical techniques. In Ref. [44], use

was made of a graphical procedure suggested by Dostal and
a number of experimental rotor systems analysed.
Reasonable results were obtained in most cases. Murphy
and Vance [45]) presented a novel approach to the problem
by determining, explicitly, the system frequency

polynomial, thus eliminating the need for sophisticated

and problematic, root-searching routines, such as that

employed by Lund [46]. Under certain conditions, the

method showed reduced execution times when compared to
conventional methods.

Of course, the above linear methods are very useful
for estimating the threshold of instability, but can give
no indication of the rotor response at greater speeds
since shaft displacements may become excessive,
invalidating the inherent linearising assumptions. One
procedure is to determine the speed at which the shaft

becomes unstable using linear methods and then to employ

non-linear, transient analysis methods [47] to investigate
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the shaft orbit growth with time.

However, such approaches are normally prohibitively
time-consuming and therefore, normally only adopted where
absolutely necessary.

The foregoing covers only some of the types of shaft
whirling encountered in practice, from a mainly linear
point of view and is certainly not intended to be a

totally comprehensive survey encompassing all aspects of

this complex subject. Ref. [48] gives some insight into
the many different causes of shaft lateral vibration

encountered in many real present-day high-speed rotors.

2.3 Vibration Control

For the purpose of this review, the main methods of
vibration attenuation as applied to laterally vibrating
rotors, will be categorised as follows:

1) System Design,

2) Rotor Balancing.

3) Application of Control Devices,

2.3.1 System Design

Although this is not often thought of as a method of
control and may appear too obvious to mention, it is clear
that it is the first and most crucial part of the control

process. With proper choice of design parameters and

sufficient knowledge of the system dynamics, it should be

possible to produce a design which will, to a certain

extent, minimise and in some cases eliminate, potential

sources of vibration.
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2.3.2 Rotor Balancing

It is often not fully appreciated that by far the

largest proportion of rotor vibrations in the field may be

attributed to lack of balance.

Flexible-rotors generally require balancing in a
number of planes for a number of speeds since, for speeds
higher than about half of the first critical, the rotor
assumes deformations which can no longer be neglected, as
they set-up new centrifugal forces in addition to the ones
caused by the original unbalance.

The practice of flexible rotor balancing can be

ascribed to one of two chief methods (and in some cases a

combination of both) - the Influence Coefficient Method

and the Modal Method.
The influence coefficient method is based on the fact
that for a linear system, the rotor unbalance and

resulting vibration amplitudes are related as shown:

x=a.U

where a are the complex linear coefficients which
relate rotor lateral displacement at location j due to
unbalance at location p.

The displacement quantities x are also complex.

The rotor may be run at a number of speeds, trial

weights positioned on each balancing plane in turn and the

unbalance response measured. From this data the

influence coefficients, a, can be obtained and the
correction weights for a given rotor response estimated.
The method was first described by El Hadi [49] in

1962, then again in 1964 by Goodman [50] who expanded upon
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the correction procedure with the least-squares method

which accommodates additional balance data.

More recently, a number of refinements have been

proposed. Larson [51] and Dreschlen [52]) showed how the

utilisation of surplus information could lead to increased

efficiency over the normal method. The balancing problem

may also be cast in the form of an optimisation problem
[53], where constrained correction masses may be chosen

such that the resulting rotor response is minimised over a

speed range which could exceed that used for data

collection,
Modal methods are based on elimination of residual

unbalance effects mode by mode through the operating speed

range, in a manner which carefully avoids the re-

introduction of previously balanced modes when balancing a

given mode.
The basic theory of Modal Balancing and its

developments were given by Bishop, Parkinson and Gladwell
in a series of papers [54,55] around the early nineteen

sixties. Practical application of the method has been

described in a number of papers [56,57].

Suggestion that rotor balancing be performed in two
stages (58], where the rigid-body modes are balanced
first, then the flexible-rotor modes, does not appear
conclusive. In fact, in some cases [59] rigid-body mode
correction effects may result in an inferior balance state
at speeds where flexible-rotor effects are predominant.

The key to this method appears to be a good pre-hand

knowledge of the rotor modal response.
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Recent work in the field of flexible rotor balancing
has indicated that the best approach may be to combine the
advantages, while eliminating the disadvantages of both
conventional methods to give a so~called Unified Balancing
Aproach (UBA). In 1979, Parkinson et al [60]
investigated the theoretical basis of such an approach and
in a paper a year later with Darlow and Smalley [61],
outlined the procedure and presented experimental results
which verified the effectiveness of this method and

illustrated its advantages in a practical application.

2,3.3 Application of Control Devices

Most real vibrating systems and in particular
flexible-rotor systems, contain passive control devices
which help attenuate vibration amplitudes and transmitted
forces.

In the case of high-speed shafting subjected to
lateral vibrations, these passive controllers generally
appear in the form of fluid-film bearings. This type of
bearing may be successful in limiting the system response
under a variety of conditions, but its effectiveness may

well deteriorate if the operating conditions alter

slightly. In such circumstances, it may be advisable, if
possible, to employ active control techniques.

Active controllers require energy input, whereas
passive controllers do not and function purely according

to the response of the vibrating system.

2.3.3.1 Passive Controllers
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2.3.3.1.1 Hydrodynamic (0il-film) Bearings

In many cases, for all practical purposes, the only
system damping present, in many modern~day rotating shaft
applications, is that resulting from the bearing o0il-film.

The magnitude and orientation of the force exerted by
the oil-film on the shaft journal are dependent mainly on
the shaft eccentricity-ratio, with the result that the
force vector is a non-linear function of the shaft
displacement and velocity vectors.

However, a number of reseachers [23] have shown that
if the vibration amplitude is sufficiently small, then the
force-displacement/velocity relationship may be

linearised, the resulting bearing o0il-film force equations

being expressed in the form:

Fol = [®xx Fxyl[* . Cxx  Cxy X
Fyl = Bex Byy]lY Cyx Cyy|[¥
where
Fx’ FY are the x and y components of the bearing
oil-film force
X, Y are small journal displacements from the
steady running position
Klj' Cij are the linear displacements and velocity

coefficients respectively.

The stiffness and damping coefficients may be
estimated either by numerical solution of the Reynold's
equation [23], or experimentally by employing some of the
currently available identification techniques [62]. The

bearing coefficients are dependent upon a number of

factors including the shaft rotational speed, frequency, oil



24,

viscosity, magnitude and direction of the steady load and
the shape and size of the bearing and journal surfaces.
Angular stiffness/damping and oil inertial effects
may be included in the analysis [25], but are normally
neglected with no significant loss of accuracy.
Another device also employing a viscous fluid-film
and widely used in gas turbine applications, is the

squeeze-film bearing.

2,3.3.1.2 Squeeze-Film Dampers

The squeeze-film damper was first employed in a
practical installation at the end of the last century by
C.A., Parsons, on their turborotor systems and enjoys
extensive application in the gas turbine field.

The construction of the device is such that normally
a rolling element type bearing is mounted on the shaft
journal with its outer race held stationary, the cavity
between this outer race and the bearing housing containing
the oil. Because of the arrangement, the oil-film lacks
inherent stiffness and it is sometimes necessary to
simulate this effect [64].

Squeeze-film bearings have shown real benefits in
reducing rotor response, transmitted bearing force and
non-synchronous components [66], although their effect may
be localised [64] and in some instances problems of a non-
linear nature might be introduced [65].

It has been demonstrated [66] that for efficient
operation, the damper characteristics should be sized for

the particular application.

Even though the squeeze-film damper has enjoyed
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practical application for some time now, it is clear that
much more experimental work is required to enable a more

complete understanding of this complex device.

2.3.3.2 Active/Adaptive Controllers

Passive devices, such as tuned vibration absorbers

and Lanchester dampers, have been employed for vibration
control in mechanical systems for many years now [67], but
their benefits can only be realised in limited cases.

In many instances, it may be possible to improve on
passive control performance by manipulating certain system
parameters such that the system response is maintained at
low levels even when operating conditions vary. So-
called adaptive control may be employed under such
circumstances.

Sandler [68], analysing the vibrations of a uniform
shaft, demonstrated how the employment of a variable-
location flexible support could result in shifting the
system's critical speed. Although original, the
principle is certainly not a feasible proposition for most
real systems - access and rotor geometry being the major
limiting factors.

Burrows et al [69] have shown that a simple ‘'on-off'
control strategy may be efficient in controlling rotor
response when a squeeze-film damper is utilised as an
actuator with oil supply pressure as the control variable.

Switching of the damping constant between two values, at

the system's 'fixed-points', overcomes the need for

continuous active control.
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Employing a similar concept, Goodwin et al [70]
showed how alteration of the dynamic characteristics of a
hydrostatic bearing could result in shifting of the system
critical speeds leading to reduced steady-state response.

The use of active feedback in vibration control is
fairly old (71], the controllers taking various forms

including Electrodynamic [72], Electromagnetic [73],

[73], Pneumatic [74] and Eddy-current [75] type.

Hydraulic
Hydraulic and pneumatic actuators have been employed
mainly in the field of vibration isolation [74,76],

generally where fairly large control forces are required.

In the past, electrodynamic devices have been shown
to be effective in reducing resonant amplitudes in

vibrating components. In Refs. [72,77] the steady-state

responses of a flexibly-mounted beam and single degree of
freedom torsional system, respectively, were shown to be

attenuated substantially by the incorporation of

electrodynamic actuators within an active control loop.
Roorda [73] presented results for a number of

experiments on a variety of simple structures where

feedback control was employed, using different types of

actuators. One of the most interesting cases was that of

electromagnetic control of a vertically-mounted,

harmonically excited, cantilever beam. The control force

magnitude and phase were adjusted until the minimum

response was achieved. The optimum phase angle was found

to correspond to a control force of pure damping.

Seto and Yamanouch [75] studied the eddy-current

braking effect as a possible means of damping in a
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dynamic absorber fitted to a machine tool of ram-structure
form. Although the absolute magnitude of the damping was
found to be very small, a reduction by a factor of
approximately 10 of vibration amplitude at the system
fundamental frequency was observed.

The desirability of introducing control forces to a
vibrating system, particularly a system with rotating
components, without the need for physical contact, is

obvious. Of the controllers described above, only the

eddy-current and electromagnetic type satisfy the above

requirements. For efficient performance, the application
of eddy-current type dampers is really restricted to those
cases where the system inherent damping is negligible

[75]. In real flexible-rotor systems, some damping will

normally be present due to the oil-film bearings.

2.3.3.2.1 Electromagnetic Controllers

Electromagnets are inherently highly non-linear
devices and consequently require special consideration
when being employed as the actuator component in a control
system where linear characteristics are to be preferred.

For an electromagnet positioned close to an iron
surface, the force relationship may be given [78] by:

F=EK. (I/G)2
where K may be approximated as a constant, the value

of which is dependent upon the particular magnet

construction and geometry. I and G are the magnet

current and air-gap respectively. The non-linearity in

the force versus current-gap relationship is clearly

evident.

Klimek [79] suggested pre-magnetising the
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electromagnets using a constant current upon which is

superimposed the control current. This helps linearise

the force-current relationship as long as the control
current is a small proportion of the pre-magnetising
current. This set-up, however, leads to the introduction

of a static instability [80] and it is therefore necessary

to incorporate some counter measures. In addition, the

force production capacity of the electromagnet will
obviously be reduced somewhat due to the (pre-magnetising
+ control) current - sharing of the magnet windings.

It is possible to eliminate the gap-effect from the
above relationship. In their work on vehicle
electromagnetic levitation, Jayawant et al [81],
demonstrated how partial-linearisation of the
electromagnet characteristics could be performed by
feeding back a voltage, proportional to flux density at
the magnet face, resulting in a considerable improvement
in the system stability margin.

Although initially the choice of electromagnets as
bearing elements in rotating systems appeared to result
from a need for low-friction supports in high-speed shaft
applications, where the lack of lubricant was a major
advantage [82], it has recently become clear that the
potential of such a device may be more fully exploited
when employed as an actuator within an active feedback
control loop, thus enabling optimisation of the system
dynamics in some form [83].

Schweitzer has shown how the destabilising effect of

shaft internal damping could be offset by the introduction
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of low-level external electromagnetic damping. System

resonant amplitudes were also substantially reduced.
In Ref. [84], the electromagnet force-current-gap

relationships were developed for a radial controller and

comparisons made with experimental calibrations. It was

shown how current pre-magnetisation and the assumption of
constant air-gap provided a means of approximating the

controller as a linear device, thus enabling the

employment of linear control theory. Reasonable

agreement was achieved between predicted and measured

electromagnetic forces. Because of its design, the

radial electromagnet was found to introduce a counter-

productive moment. The authors stated that in most cases

its effect would be insignificant.
More recently Ellis and Mote [85] studied the role of

electromagnets in feedback control of circular saws. A

proportional-derivative algorithm was employed resulting

in an increase in the stiffness and damping of test-discs

of the order of 400 percent. Control circuits of an

analog nature were used. Linearisation and static

stability problems were minimised by the inclusion of pre-
magnetising current and position feedback respectively.
Magnetic hysteresis, only one of the complexities
exhibited by electromagnets, appears to have created

substantial problems [86].

Nikolajsen et al [87] showed how an electromagnetic
damper could be used to control the synchronous and
instability response of a flexible-rotor system. The

electromagnetic damper was positioned about one-third of
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the span from one end of the transmission shaft and was
designed to introduce radial damping forces. The control
force was made independent of the air-gap by the
incorporation of a flux-feedback technique similar to that
used in Ref. [81], thus leaving the force dependent upon
the square of the control current. Reduction in the
shaft synchronous response at the first critical speed
along with suppression of the system instability due to
the 0il-film bearings and second-order vibrations,
provided proof of the practical possibility of utilising
electromagnets as an aid in the vibration control of high-
speed flexible-rotors. Linearisation of the
electromagnetic damping forces used in the numerical
prediction of rotor response was shown to provide fairly
accurate agreement between calculated and measured rotor
response.

Habermann and Liard [88] presented details of the

design and operation of an active magnetic bearing system.

Practical magnetic bearing applications were cited.

In Ref. [89] the authors proposed the concept of
decentralised control, whereby the complexity of the
control system could be reduced by considering a number of

sub-systems, The approach was adopted with a view to

utilising digital control through the use of
microprocessors.

Recently, Salm and Schweitzer [90] outlined a design
procedure, based on modal analysis, for determining the
electromagnet feedback gain values which would ensure
The

stable modes, by using a reduced order system model.

analysis of simple examples confirmed the effectiveness of



31.

the approach, however, no guidance was given as regards
the choice of location of controller. Significant
reduction in resonance amplitudes was also claimed,
although no detailed information was presented.

More recently, Gondhalekar et al [111] presented
design details of a radial electromagnetic bearing used to
control the vibrations of a flexible transmission shaft.

A linear control force-current relationship was achieved
through software control using a microprocessor, thus
eliminating the need for pre-magnetisation of the magnets
[84]. The electromagnet was similar to that used earlier
by Nikolajsen [87], constructional improvements having
been incorporated. Because of the magnet geometry,
special techniques were utilised to eliminate flux-linking
problems. Results indicated the effectiveness of the

device in shifting system undamped critical speeds and

attenuating resonant response.

2,4 Selection of Magnitude and Location of Control Force

The choice of controller force magnitude (the optimum

control force) is considered fully in Chapter 5. Some

studies into the effect of controller location on the
response of flexible rotor systems have already been
performed although scope exists for more comprehensive
investigations.

Dostal et al [91], employed the theory of 'fixed-
points' to determine the optimum location for a radial
damper when applied to a flexible-rotor mounted on a

variety of supports. The optimum location for the case
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analysed, was found at one-eighth span from one of the

shaft supports. The optimum location depends greatly

upon the number and type of shaft modes encountered. One

of the many interesting findings was that the rotor
resonant amplitudes appeared to be much more sensitive to
the damping magnitude than to its location.

Schweitzer [83] found the optimum location, for
suppression of instability, for an external
electromagnetic damper when applied to a vertically
mounted flexible-rotor, by employing modal methods to
define a factor representative of the 'stabilisability' of
a number of unstable modes. The optimum damper location

thus corresponded to the location where the

stabilisability was largest. Theoretical investigation

of a rotor system showed, not surprisingly, that optimal
control could be achieved when the vibration could be
controlled at an anti-node.

Burrows and Sahinkaya [92], adopted a statistical

approach in finding the optimum control location for a

multi-mode rotor system. The optimisation consisted of a

weighted least-squares approach, whereby the residuals to
be minimised were a direct function of rotor response.
The technique was applied to the case of a 3-disc shaft
supported at its ends on hydrodynamic oil-film bearings.
The optimum controller location was found to be close to

the shaft centre, this consistent with the mode shapes

encountered within the chosen speed range. The method

employed provided useful additional information regarding

the sensitivity of the optimisation parameters.
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2,5 Limitation of Previous Work

The general approach so far in attempting to
introduce some means of external control, active or
passive, in flexible-rotor systems, has been to apply the
control force at some position along the shaft span in a
radial sense [43,87,91].

In addition, the most suitable location (optimum
location) for the controller may, because of the nature of
the equipment, e.g. turbomachinery, be inaccessible.

In certain cases, radial control may be achieved
through manipulation of the support characteristics [69,
70], although ineffective control of shaft flexural
introduction of relatively large

criticals and/or the

static displacements in such instances may rule out this

option.

The need for an efficient means of control, which may
assist in overcoming the above problems, is clear.

The employment of electromagnets as active force-

generators in a feedback control circuit, for limiting

flexible-rotor dynamic response, has not yet been fully

exploited. Although much consideration has been given to

utilising these devices as damping elements within rotor
systems [83,87], their ability to exert a stiffness
influence has, by comparison, been neglected. In recent
years, fast, efficient and relatively inexpensive
microprocessors have become readily available, but their
application to electromagnetic control has been limited.
In the work to date, where electromagnets have been

used to control shaft vibrations, the control circuits
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appear to be unnecessarily complex as a result of the
electromagnet design. The electromagnets have been
mounted around the shaft [83,87,111], with arguably the
parameter with greatest influence on control system
performance, i.e. the gap geometry (size) fixed at the
design stage, thus making extremely difficult the
possibility of adjustment of control system

characteristics through alteration of this parameter.

2.6 Aim of This Work

The main aims of the work described herein are as

follows:

1. The creation of computer software to allow
dynamic analysis of flexible-rotor systems when
external control is employed.

2. To assess theoretically, the performance of a
novel Angular Controller, in comparison to the
conventional Radial Controller, when employed on
a variety of flexible-rotor systems.

3. Design and construction of a flexible-rotor test
rig incorporating an Angular Electromagnetic
Controller.

4, The experimental investigation of the
performance of an Angular Controller, when
utilised as an external damper/stiffener, on

various rotor arrangements and comparison with

predicted performance.
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CHAPTER 3

METHODS OF ANALYSIS IN ROTOR-DYNAMICS

Nowadays the need for accurate rotor system critical
speed,.stability and in some cases even transient reponse
data, has led to the requirement for efficient analysis
methods. Since real rotor-bearing systems are often very
complex structures, exact solutions are, in most cases,
not possible and it is necessary to make use of available
numerical techniques.

The real system will have distributed mass and
elasticity and is said to be continuous, whereas the
system to be analysed will be a modelled version of this
and will normally consist of a number of discrete rigid
masses connected by massless beam elements. It is clear
therefore, that the modelling process plays a most crucial
role in the overall analysis procedure. It is important
to realise that, irrespective of the level of
sophistication of the numerical method, the solution
obtained will at best, be an approximation to the exact
solution for the model.

The most commonly applied methods today are:

1) The Transfer Matrix Method.

2) The Influence Coefficient Method.

3) The Finite-Element Method.

4) The Modal Method.

3.1 The Transfer Matrix Method

The Transfer Matrix technique evolved from the work

of Myklestad [10] and Prohl [11] who presented a tabular
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procedure for the dynamic analysis of beams and shafts
respectively.
The general approach when employing this method is to

first set-up, in matrix form, the recurrence relationships

for each element type and then to combine these by

successive matrix multiplication. The resulting overall

transfer matrix will represent implicitly the system

frequency equation. The natural frequencies are

determined as those frequencies at which the system
boundary conditions are satisfied.

The similarity between this method and the Holzer
technique [12] is immediately evident where, in the latter
case, a torsional natural frequency is determined when the
residual torque becomes zero.

The mode shapes are easily obtained by making use of
the relationships between the non-zero parameters in the
initial state vector and appropriately normalising the
resultant relative shaft displacements at the calculated
frequencies., System forced-analysis requires little
additional effort and is achieved through inclusion 6f
forcing terms in the element recurrence equations leading
to the introduction of an additional row and column in the
basic transfer matrix.

The transfer matrix method is ideally suited to the
analysis of rotor systems because of its applicability to
chain~like structures and minimal demand on computer
memory. Although the method is susceptible to numerical

problems under certain conditions, various procedures may

be employed [17] to minimise and possibly even eliminate

these effects.



37.

3.2 The Influence Coefficient Method (ICM)

This method evolved from the early matrix methods
developed and employed mainly by Argyris [93] for the
structural analysis of aircraft frames.

Although influence coefficients in the strictest
sense refer to the system flexibility coefficients, it is

quite common also to make reference to the system

stiffness influence coefficients. The two approaches are

described here.
The method, in contrast to the Transfer Matrix

Method, when employed for dynamic analyses, necessitates

expressing the system equations of motion in an explicit

matrix form, i.e. for a linear system:

M E(t) + C x(t) + K x(t) = B(t) (3.1)
making use of the stiffness matrix K, or:
FMx(t) + FC x(t) +I x(t) =F P(t) (3.2)
The

if the flexibility coefficient matrix F is used.

vector x(t) contains the system generalised displacements

(linear and angular), all other parameters are as defined

in the nomenclature.

The stiffness matrix K contains the system stiffness

influence coefficients where the stiffness coefficient kiJ

is defined as the force required, at a point x = X0 to

=xj’

such that the displacements at all other points are zero.

produce a unit displacement, uj = 1, at a point x

By analogy, the flexibility influence coefficients, fij’

contained in matrix F, are defined as the displacement at
a point X = X; due to the application of a unit force, Q;

= 1, at a point x = xj.
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It is clear that if the flexibility matrix F can be

inverted, then_5_=_§;l and equations (3.1) and (3.2) are

identical. However, caution needs to be exercised when

adopting this approach, since under certain circumstances
[47], the flexibility matrix may become ill-conditioned
making an inversion unreliable or impossible.

Normally, the stiffness coefficient method is adopted

since the K matrix is inherently of a banded form leading
to possible savings in computer memory.

If we let y = X

X

then for free vibrations, P(t) = 0, from equation (3.1)

Ay+By=20

where A=|0M and B =|-MO0
MC oK
a7 B

Reducing still further, if H

then Y-Hy=20 (3.3)
Assuming the solution of equation (3.3) is of the form
y = Y_e}‘t then

(3.4)

and for a non-trivial solution of equation (3.4) we obtain

the well known characteristic equation:

A1-E|=0
which may be solved using a number of available

techniques. The eigenvalues, )\, are the system natural

frequencies and are, in general, complex functions which

vary with rotor speed [46]. For an n-degree-of-freedom

system, H will be a 2n x 2n matrix.

For the analysis of forced vibrations if external
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forcing is assumed to be of the form.2_=.§§lgg then the

system response may be described by_5_==}§§9t and from
equation (3.1) may be expressed %n the form:
[:5_-£92+m_c_lg_

R.P

X

where R is termed the system receptance matrix and must be
determined at each appropriate rotor speed.

The above method has been employed with success for
rotor-dynamic analysis in a number of cases, e.g. Ref.
[94]. Reference [95] describes the procedures for

setting-up the system stiffness or flexibility matrices.

3.3 The Finite-Element Method (FEM)

When using this technique, a complex structure is
considered as a finite assemblage of discrete elements,
where every such element is a continuous structural
member. The only significant difference between this
method and the Influence Coefficient Method is that in the
latter case, the shaft elements exhibit discrete dynamic
properties which, due to the approach, can only be
considered to appear at the shaft stations or nodes,
whilst the former method allows for the inclusion of
distributed effects.

Effectively, this means that the system stiffness and
mass matrices become densely populated when using the FEM,
whereas when the ICM is employed, these matrices are
sparsely populated and in the case of the mass matrix, of

diagonal form.

In order to incorporate this 'distributed parameter
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effect' into the analysis, it is necessary to define a
displacement function which will suitably describe the

displacement pattern of the elements used. The element

stiffness, mass and damping matrices can then be derived
and the assembled system matrices set-up.

Solution procedures identical to those shown earlier
for the Influence Coefficient Method may be employed.

The FEM has only recently [18] been applied to rotor-
bearing systems and although the demand fer computer
memory is generally much greater than that of the Transfer
Matrix Method, it has been shown [96] that fewer elements

can be used to model a system, a high level of accuracy

being maintained.

The FEM becomes a very powerful tool where systems of
great complexity are to be analysed, in fact, in such

circumstances, it may be the only accurate method

available.

3.4 The Modal Method

The Modal Method has been employed by a number of
workers in the field of rotor-dynamics [97] and in
particular has been applied to the problem of flexible
rotor balancing for a number of years now [55,60].

The method is based on the principle of orthogonality
of principle modes and consequently makes possible the
determination of the response of a multi-degree-of-freedom
system, to some general excitation, by means of the

superposition of the responses of a number of single-

degree-of-freedom systems.
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Considering again the response of a multi-mode
system, the equations of motion of which may be written:
M. x(t) +C . x(t) +K . x(t) = P(t)
x(t) being the system generalised co-ordinates. If a

free-vibration analysis, such as that described in Section

3.2, is performed, the system eigenvalues and

corresponding eigenvectors can be obtained. Remembering
that
y=|x
X (3.5)

The resulting eigenvectors may be placed in a matrix
u where each column in the matrix represents the system
mode shape at each of the corresponding system

eigenvalues. It is now possible to define a set of

principle co-ordinates v, where:
Yy =u.v(t) (3.6)
then
A.u.v(t) +B . u . v(t) = B(t)
Pre-multiplying the above by the transposed modal
matrix_g? and considering orthogonality, leads to the
diagonalised matrices A' and B' and thus renders the

solution of the above equation as the simple solution of

2n independent linear equations, in an n-degree-of-freedom

system. Thus:

A' . v(t) +B' . v(t) = u’ . P(t) (3.7)

The solution in the generalised co-ordinates x(t) is
obtained from the relationships shown in equations (3.5)

and (3.6).

Of considerable interest, particularly in the context
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of flexible rotor balancing, is the right-hand side of
equation (3.7) which determines the distribution of
forcing according to its effectiveness in exciting the

principle mode motions. In many cases therefore, by

suitable choice of P(t) vector, it may be possible to

improve the balance of particular vibration modes without

affecting the others.

The Modal Method was recently [98] applied in a
slightly modified fashion (termed quasi-modal analysis) to
a number of rotor systems including one employing sub-

levels. The technique is in principle identical to that

outlined above, but considers the system mode shapes to
consist of the combination of two vibration mode shapes:

1) that for an undamped system with the rotor considered

pinned at the supports and 2) a static deflection mode

shape. The approach adopted is certainly a novel one and
eliminates the need for repeated eigenvector analysis due
to the change in rotor speed, this being necessary in

general, when the conventional modal method is used.

3.5 Discussion of Numerical Methods

It is clear that each of the analysis techniques just

described may be effectively applied to the general

problem of shaft whirling. However, the suitability of

these methods is greatly dependent upon the particular

type of system under investigation.

In the case of the Finite~-Element and Influence

Coefficient Methods, rotor systems of considerable

complexity can be analysed, but if the number of elements
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required for system modelling is fairly large, then
excessive demands may be made on computer memory. This
results from the fact that the order of the system
matrices employed in the analysis is directly proportional
to the number of degrees-of-freedom of the system to be
analysed. Both methods are easily applied to systems

incorporating multiple sub-levels. In addition, the FEM

is ideally suited to shaft arrangements where complex
geometrical aspects have to be considered. In fact under
these circumstances it may be the only method to provide
sufficiently accurate results.

Modal methods appear to have their benefits in cases
where the total system response can be ascribed to that
resulting from a finite number of vibration modes and
where sufficient information regarding the system mode

shapes is available. When this is the case, a reduction

in the number of degrees-of-freedom of the model is

possible. If the mode shapes (eigenvectors) are to be
determined accurately using, for example, a method similar
to that described in Section 3.4, then a greater number of
degrees-of-freedom may be required resulting in the loss
of one of the method's main advantages. The method may
also easily be applied to systems with sub-levels as
described in [98)], although contrary to the authors'’
remarks such arrangements can be analysed using Transfer
Matrix Techniques [17].

The order of the matrices employed when using the

Transfer Matrix Method is dependent only on the number of

degrees-of-freedom at any single shaft node, the matrix
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size remaining fixed no matter how many elements are
chosen to model the system. This is a significant
advantage since effectively it results in little change in
computer memory requirements irrespective of the size
(number of degrees-of-freedom) and complexity of the
system to be analysed. The influence of rotor
support/foundation dynamics, of varying complexity,may be
easily included in the analysis [17].

Numerical problems, which may be encountered in
systems where high-order natural frequencies are required
or where intermediate supports exhibit very low
flexibility, may be minimised and possibly even eliminated
[{17,99] by applying a number of available corrective
procedures.

Since the numerical method adopted would be used
mainly to investigate the dynamic response of a laboratory
test~rotor described later, taking into account the above,
it was felt that the Transfer Matrix Method would be the
most suitable in this case. As a consequence the method

is used extensively in the work described herein.
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CHAPTER 4

MODELLING THE SYSTEM DYNAMICS -
THE TRANSFER MATRIX METHOD

4.1 General Approach

Any real structure subjected to dynamic loading may

be idealised as an assembly of sub-elements each in

general possessing mass, stiffness and damping properties.

When using the Transfer Matrix Method the structure is

normally idealised such that a number of similar elements

are joined end to end in chain fashion. Making use of

the laws of dynamics whilst ensuring inter-element
compatibility leads to a set of equations which provide
a means of relating the element end-conditions.
Transfer matrices are thus obtained for each element

type. The parameters required to define the candition

of an element at it's ends are expressed in the form of

a state vector. The order of the state vector is

dependent upon the system to be analysed. For a beam-

like structure, since at least two generalised forces

and displacements are required at each node, the minimum

order is four for planar motion and eight for the most

general case.

For the sake of illustrating the general approach

the case of an undamped, laterally-vibrating beam

(Fig. 4.1) will be considered frequently throughout this

chapter. The beam is simply-supported at both ends

and, as usual, may be idealised as a number of discrete
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rigid masses joined by elastic massless beam elements.
From elementary beam theory [Section 4.6] the deflection
and force parameters at the left of section i can be
related to those at the right of section i - 1 using the

transfer matrix Ei so that

Similarly, the parameters to the right and left of any

point i are related as shown,

The matices Ei and Ei are termed the system field and
point sub-element transfer matrices respectively.
Transfer matrices for other element types may be obtained
following an identical procedure [Section 4.6.3].

Once the basic transfer matrices for a particular
arrangement have been developed the system overall
transfer matrix U is easily obtained by appropriate
multiplication of the relevant element transfer matrices.

For instance, in the above case the relationship

Z, = U .2 (4.1)

exists where,

Z; = LE P FgPs B --en Py By 1 2
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Intermediate state vectors are obtained using a similar
procedure.

Having obtained the overall transfer matrix U
the system boundary conditions may then be employed to
enable determination of the system natural frequencies

and, with a little effort, forced response data.

4.2 Free Analysis

When the overall transfer matrix has been determined
and boundary conditions are applied an implicit
frequency polynomial of order 2n, where n is the system
number of degrees of freedom, is obtained. The roots
of this polynomial correspond to the system eigenvalues.
It is also possible to obtain an explicit expression for

the frequency polynomial [45] although this method is

not normally employed.

For a rotor-bearing system a critical speed analysis
and stability assessment may be performed by calculation
and investigation of the eigenvalues.

In general the transfer matrix coefficients will
be of a complex, frequency-dependent and speed-dependent

form. The components of all state vectors are assumed

to vary harmonically with time so that

7 - 7ot

where Z is an amplitude vector and A is in general a

complex variable (A = a + iw). The system complex
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eigenvalues A have great practical significance since
their imaginary parts represent the damped natural

frequencies whilst the real parts provide the level and

sense of system damping present. The critical speeds

are those speeds at which the shaft rotational frequency

coincides with a, generally damped, system natural

frequency.

It is well known that in certain damped vibrating
systems, for instance in rotor systems where 0il-film
bearings are employed, instability regions may occur
within the shaft operating speed range.

Instability onset speeds may be predicted from

linear theory by considering the sign of the real part
of the system eigenvalues.

Where the real part of a system eigenvalue is
positive (a > 0) unstable behaviour will be exhibited,
i.e. the system effective damping becomes negative,
leading to growth of vibration amplitude with time.

If the real part is negative (a < 0) stability will be

maintained, the degree of which will be dependent upon

the amount of residual damping present. The shaft

speed at which the eigenvalue has no real part (a = 0)
is termed the instability onset speed since the system
will then be on the threshold of instability, the
imaginary component representing the corresponding rate
of precession, w, of the shaft.

When the structure is undamped all complex

eigenvalues will be replaced by purelyiwmginatyones
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and the system response may be described as

where w now denotes the system undamped natural
frequencies. In any case the eigenvalues, whether real
or complex, may be obtained when the following conditions
are fulfilled. Considering once more the simple beam

in bending (Fig. 4.1) and equation (4.1), as a result of

the boundary conditions,

W7_

Therefore

n
Q

(4.2)

<l
n
o

34

Those, generally complex, frequencies A which result in

non-trivial zero values of the frequency determinant

12 14

32

are the system eigenvalues.

Since the coefficients Uij are, in general, speed-
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-dependent the eigenvalues A must be determined at each

speed. A number of efficient techniques are available

for the extraction of the system complex eigenvalues

[46, 108]. These methods basically entail incrementing

the value of the complex frequency A until a root is

encountered i.e. the frequency determinant changes sign.

Subsequent application of an iterative interpolation
procedure results in the reduction of the determinant
to a practically zero value - the corresponding frequency

is a system eigenvalue. In the simplest case this may

be achieved by performing a linear interpolation until

some pre-defined criterion is met.

A powerful root-finding technique, termed Muller's

Method, has been employed with success [108]. The

method is based on the approximation of the frequency

polynomial, over a specified range, as a quadratic.

The nearest root is taken as an estimate of the

actual root, convergence being achieved by successive

iteration. Alternatively if use is made of the

polynomial derivatives [46] then the rate of convergence
on a root may also be somewhat increased. However,
if system stability alone is to be assessed then a

graphical procedure may be employed [43, 44].
When the eigenvalues have been determined the mode

shapes may be found easily by back substitution. For

instance in the previous example, referring to equation

(4.2), one of the initial state variables (QU, VO) may

be expressed in terms of the other, given an arbitrary
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value and transfer matrix multiplication performed as

before. The system state vectors then provide details

of the relative shaft deformations.

4.2.1 Residual Method

Another approach, similar to that employed by
Holzer [12] in torsional systems, is to make use of the

system boundary conditions to create a residual term.

The residual is a function of certain system parameters

which are necessarily zero at all system natural

frequencies. As with the frequency determinant, the

residual is calculated for a range of vibration

frequencies and the points at which the residual becomes

zero are the natural frequencies.

The procedure will be shown for the vibrating beam

of Fig. 4.1. The overall transfer matrix is obtained

as explained earlier and from the first equation (4.2)

we can write,

b = -(U.Ia/U.IZ).V0

0

Substituting this into the second equation gives

)).v, =0

(Ugy -(Us3,.Uq47Uq, 0

or R.V, =0

where R is termed the residual. For other than the
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trivial case V, Z 0 and thus R = 0 if the assumed value
of A corresponds to a natural frequency. Again an
iterative procedure can be employed to find A when R = 0.
The same procedure is followed for any rotor
arrangement irrespective of the boundary conditions since
for different configurations only the number and
magnitude of the coefficients in the homogeneous

equations will change. The normal modes may be

determined using the methods described earlier.

4.2.2 Numerical Problems

When using transfer matrices, unless special

precautions are taken, numerical difficulties can be

experienced mainly under two circumstances: when
computing higher-order natural frequencies and when
intermediate elastic supports become very stiff.
Fortunately, in the majority of practical cases only the
first few natural frequencies are of any interest and
thus one potential source of error may be disregarded.

A number of procedures aimed at eliminating the

above problems have been proposed [17, 99]. An

effective correction method, created by Furke and
described in [17], makes use of so-called delta matrices
and is based on expressing the system frequency-
determinant in terms of a number of smaller determinants.
The system determinant is more accurately computed by
calculating and combining the individual sub-

determinants., However, one of the main disadvantages
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of this approach is the large number of sub-determinants,
required even for relatively low-order systems. It's
application to real rotor systems, where in general

non-planar motion can exist is not really feasible.

Additionally, the nature of the method is such that

normal modes cannot be obtained.

Another correction technique, more suitable for
rotordynamic analysis and lacking many of the severe
limitations of the delta matrix method, is the modified

transfer matrix method developed by Pestel and

Mahranholtz [17].

4.2.3 The Modified Transfer Matrix Method

The modified method of analysis eliminates the
problem of the small differences of large numbers, which

normally occurs as a result of the aforementioned

conditions, through a technique whereby the components

of the initial state vector are estimated close to their

actual values.

The initial estimation of this vector need not be
close to the actual vector since convergence is rapid
and in many instances after one iteration only the

estimated vector is very close to the actual one.
In order to allow for modification of the estimated

values correction terms, K, are added to a number of

the non-zero initial state vector parameters. For

an n'H order problem in which the initial state vector

ZO consists, in general, of n/2 components equal to
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zero, ZO would be written as followsS,

—_ -
r T 7] [ +....+K(n=1) |0
I; = 0 ¢K1FB +K, 0 5 .
0 0 0
. 3N
-\n . \n n 2
7 7 2 ,
0 0 0 0
0
60=1 0 0
0
61 1 0
0
62 0 1
1
_f(ﬂ-".j 0 | ° - =
2

Where Gi represent actual numbers which are the
estimated values for the corresponding parameters which
make up the state vector Zo’ whereas the correction
factors Ki are initially unknown and the vwaluaes 60 to
6(n-1) are normally initially arbitrarily set equal to
unity.

Once again this method is probably best illustrated
by analysing the simple beam sysfem investigated

earlier, (Fig. 4.1). Consider the initial state vector

parameter values at point 0. Since, for free vibration

analysis, the absolute values of these parameters is not

of any importance the slope QU may be given a value of



55.

unity. Now V0£0 and the shear force Vg will be

linearly related to @D therefore say;

Thus, in matrix notation, introducing the correction

factor for the shear force term we can write,

z, = [o] +k [a]
1 0
0 0
6 1
and when K is a small quantity V0 = d. Assuming

initially that § = 1 and multiplying through by the

overall transfer matrix U gives:

Z, = [w] = [b,] +K [e,]
¢ b2 c,

M b3 Cx

V7 [ by | | C4

and we obtain two equations
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(4.3)

1
o

b3 + Kc3
and b1 + Kc1 =0 (4.4)
and K in equation

Letting K in equation (4.3) be Ky

(4.4) be Ky s

FaS
|

and K -b1/c1

If both equations yield the same value for Ka and

Kb they would be interdependent, i.e. their determinant
would be zero so that the value of A used in the
numerical computation would correspond to a natural
frequency of the beam. Normally, however, the above
equations give djifferent values for Ka and Kb and in

this case the revised value of K is taken as the mean

of Ka and Kb. That is,

The residual R in this case is taken as the difference

of the K values,

R

K_-K
a

The revised K value is now added to the shear force term

in the intial state vector to give
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The revised value of § is thus

The foregoing calculation is repeated for the same

frequency and new values of Ka and Kb obtained. The

latest K value should now be found to be extremely small

but the value of R at this frequency will remain

unchanged. It should be noted that using this approach,

with reasonable estimates of initial state vector

parameters, the resulting residual will be determined
from the addition of two numbers of identical sign.
The above procedure is repeated, with increasing

values of frequency A, over the desired frequency range

until a change in the sign of the residual occurs,
indicating a natural frequency between the relevant A
values. By performing linear (or some other means of)
interpolation with a smaller frequency increment the
system natural frequencies may be determined with
sufficient accuracy.

The normal transfer-matrix method may be easily
extended to incorporate the above correction routine.
The increase in computer memory requirements for all
practical purposes may be neglected.

In reference [17] it is shown how the modified

method was employed to analyse the case of a turbine-
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-generator set mounted on a flexible foundation. The

first six system natural frequencies were easily
obtained using only eight digits whilst even when 18
digits were employed it was impossible to accurately
determine the first five eigenvalues using the normal
'uncorrected' transfer matrix technique.

It is important to note that application of
modified method will not necessarily ensure numerical
stability in all cases [99]. However, during the

numerous analyses performed throughout this

investigation no such problems were encountered.

4.2.4 Dynamic Stiffness

Instead of calculating a residual or frequency

determinant an alternative approach is to make use of

the concept of dynamic stiffness. In contrast to the

above two parameters dynamic stiffness has a distinct

physical meaning and provides a useful means of

estimating system response through utilisation of sub-

element dynamic stiffness data [100]. The dynamic

stiffness at a system location, depending on the

boundary conditions, is defined as either M/® or

V/w and is thus the inverse of receptance. It has a

zero value at a system natural frequency and tends to

infinity between any two natural frequencies. This

latter characteristic can lead to problems in determining

system natural frequencies where a number of such

frequencies are closely grouped, due to the substantial
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rate of change of dynamic stiffness in this area.

4.3 Forced Analysis

For the analysis of forced vibration all transfer
matrices can be expressed in an extended form, i.e. an
extra row and column are added to the standard transfer
matrix. With this modification the inclusion of
forcing terms independent of the state vector parameters
is accomplished very easily. The method of analysis
is best shown with reference to the uniform beam in
Fig. 4.1. Considering the introduction of an external
force F at, say, point 3 varying harmonically with time

so that,

and, in general, all state variables are complex and

considered to vary in the same manner such that,

W = Weiwt
o = 3elwt
M = ﬁelwt
V = Veiwt

Because of this a new (point) transfer matrix, relating

L and 3R, needs to be

state vectors at points 3
introduced. Neglecting moment discontinuities [see

section 4.6.3.2]
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_P_3 = r—‘l 0 0 0 | 0
|
0 1 0 0 l 0
I
0 0 1 0 I 0
|
—mw? 1] 0 1 | F
— e e e em e e —e ..I_ -—
| o 0 0 0 1 1|

Again we obtain the relationship

R _
zj=u.z

L
0

Where the system overall transfer matrix this time is
extended and the terms U15,U25,U35, and U45 are, in
general, non-zero. The coefficients U51’U52’U53 and

U54 are all zero. This time introduction of the beam

end conditions provided the non-homogeneous equations:

|
c
1}
c

The equations may be solved for @0 and V0 and all
other system parameters obtained by multiplication of
the initial state vector by the relevant transfer
matrices.

The complete procedure can be repeated for a range
of frequency values and the system frequency response

obtained.

Irrespective of the number, type and order of the
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system elements employed the above method may be applied
without modification.

With the response parameters at each shaft section
computed, a detailed description of the shaft motion,

in whirl orbit form, may be easily obtained (Appendix A).

4.4 Intermediate Rigid Supports and Pinned-Joints

The introduction of system intermediate flexible
supports is easily dealt eith simply by the inclusion

of the relevant stiffness values in the appropriate

transfer matrices. However, where the stiffness

becomes so large that the support must be considered

rigid or where other discontinuities, e.g. a hinge or
pinned-joint, occur it will be necessary to utilise the
resulting intermediate boundary conditions. This, of

course, means that the 'straight-through' matrix
multiplication approach described earlier cannot now

be maintained, although very little hardship will

result as shall be seen.

Consider now the introduction of a radially-rigid
support and pinned-joint to the vibrating beam of
Fig. 4.1. If the support is placed at point 4 and

the hinge at point 5 two additional boundary conditions

occur;
At point 4 Wy = 0

and let the force transmitted to the support be P.



and let the change in beam slope at this point be Q.

At point 5
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For forced vibrations the following relationships hold;

-

w

or

and

or
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Usq

Ujz Uiz Ugy
0 0 0
R VoL
4PN
[} Tt 11
Ujz Ugs Uy
0 0 0
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—
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' '
Where U and U are the system transfer matrices

relating conditions between points 0 and 4 (right) and

points 0 and 5 (right) respectively.

Making use of end and intermediate boundary

conditions two additional equations are obtained;

1] 1 !
0 = U12¢0 + U14V0 + U15

re | 2 ]
. + U, , V., + U35 + a3.P

0 = Us,%, 340

e
32
The two equations here, when combined with those

resulting from the boundary conditions at the beam

right hand end (point 7), allow for complete solution

of the four unknowns QD, VO, P and Q. As before, all

other relevant system parameters may be determined by

back substitution.

In general the total number of simultaneous

equations to be solved, Nt will be

Where Ni is the total number of equations

resulting from intermediate rigidities or releases.

Ne is the number of equations obtained from the system

end conditions. Ne = n/2 where n is the state vector

order.
A similar procedure may be employed when a free

analysis is to be performed. Each intermediate

rigidity or release introduces an additional equation
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which aliows for elimination of the resulting

unknown variable. When this is achieved transfer
matrix multiplication is continued as before until the
end of the system is reached where application of the
boundary conditions will enable estimation of the

frequency determinant (or residual).

4.5 Treatment of System Sub-Levels

In real rotating machinery applications many
instances occur where accurate modelling of the system
dynamics may be achieved only when the characteristics
of, for instance, the bearing oil-film, machine casing
and foundation are incorporated into the analysis. In
such cases these components may be considered as
possessing mass/inertia, stiffness and damping qualities.
Although, in such circumstances, the simple 'chain-like'
structural form is modified, with some

additional effort the transfer matrix method may still

be employed to analyse such complex systems.

4.5.1 Derivation of Transfer Matrices from Measurement

Before describing the general analysis technique
it is worth mentioning that in some cases, where for
example system modelling techniques may be limited,
incorporation of relevant experimental data may lead
to improved accuracy.

For instance, consider a rotor system with the

complex multi-level support arrangement as shown in
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Fig. 4.2. If the beam is assumed to vibrate in a

single plane only then ideally one would wish to

describe the support assembly in terms of a simple

(4x4) transfer matrix so that the conventional 'straight-
through' form of T.M. method is maintained. This

could be achieved by measuring the support system
receptances, r, and by further manipulation obtaining

the required transfer matrix such that:

- — 1Ir A
W R - 1 0 o offw |
) 0 1 0 O o
r r
21 11
M 1 0O M
(ry2F21 ~TqqT22) (TqqTap —TqpT5q)
T22 T12
v Z Z 1 (] v
REE! Lf”n”zz TyaTaq) (rqafpq —Tqqfyp) 0 1|V |,
Where r is in general complex and frequency-
dependant. Referring to the support shown in Fig. 4.3,
F = Harmonically varying force at point 2.
C = Harmonically varying couple at point 2.
d11 = Displacement at point 2 due to force F.
d12 = Displacement at point 2 due to couple C.
d21 = Slope at point 2 due to force F.
d22 = Slope at point 2 due to couple C.
Ppqo = dqq/F
Tig = dpp/C
Tp1 = dpg/F
r22 = dZZ/C
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4.5.2 General Case

The above approach is useful for a system having

supports such as those shown in Fig. 4.2 but where

inter-support coupling exists, an alternative procedure

must be developed. The general case of a rotor mounted

on bearings which are in turn located on a flexible

casing having mass, subsequently supported on a

massless flexible foundation is shown in Fig. 4.4.
Although this constitutes a system with only one sub-
level the following analysis method can easily be
The

extended to a system with multiple sub-levels.

possibility of damping at all levels necessitates the

use of complex transfer matrices. Normally it is

assumed that motions in a direction along the shaft
rotational axis x have no influence on the system
response in the other two planes resulting in the
employment of transfer-matrices of size (8x8) for free
vibration analysis and (9x9) for forced response
calculations.

The general approach will be described for the

free-vibration analysis of the system shown 1n Fig. 4.4

making use of the modified transfer matrix method to

aid numerical stability. Prediction of the system

response as a result of the application of periodic

excitation, e.g. mass unbalance, may be achieved by

adopting a similar procedure (Section 4.3).
Although not shown for sake of clarity, (Fig. 4.4)

radial and angular coupling between the x-z and x-y
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planes at the support points may be assumed to exist.
Each support is assumed to exhibit stiffness and damping
characteristics but in the extreme case may be considered
as a rigid link exerting a reaction force or moment P.
For this case the shaft (level I) and machine
frame (level II) end conditions will be considered
free-free (M = V = 0) but this is not a limitation since
any condition can be simulated simply by altering the
initial state vectors.
As before, the non-zero parameters in the ititial
state vector(s) are given initial estimates 81289 -

e 8 and corresponding correction factors K1, K2"‘

n-1
2
ne1? where n is the state vector order at the relevant
2

system level. Normally the state vector parameter
expected to have the greatest value is initially
guessed as unity, for numerical stability purposes, and

left uncorrected.

Consider initially the state vector for the shaft

at point 1.
T s 1w Fa Tl Taduw Tl
51 =] w = 61 +K1 1 +K2 0 +K3 0
] 62 0 1 0
M 0 0 0 0
y
Vz 0 0 0 0
v 63 0 0 1
] 1 0 0 0
MZ 0 0 0 0
v 0 0 0 0
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Following the usual procedure the intermediate
shaft state vectors are obtained by successive
multiplication of the appropriate transfer matrices.

The process is continued until a support is reached

where:

él' = ra 1 +K !—b ] +K rc ] +K rd ]

Z3 1 1| P4 2| €1 3 |94

3y by €2 dy

as b3 cs d3

3, by C4 d4

a5 bg Cs ds

g bg Cq dg

ay by cq dz
%] [  L°%] %]

Thus the complete state vector at the left of the

support becomes:-

I - - - - - —
z L :FZWL S w L:ra +K !—'b +K '-c +K r-dﬂi-l( r-0 Ll-...K FU
-3 = 1 1.1 21 71 31,1 4 7

] a, b2 c, d2 0 0

1T M a b c d 0 0

y 3 3 3 3
r4 VZ a4 b4 4 da 0 0
=== v a b c d 0 0
S S 5 5
. 0 ag b6 Cg d6 0 0
N1 M a b c d 0 0
z 7 7 7 7
£ 3 I..\./. - “a‘B' "l‘)'B‘ “9‘8' -QB. ._q_ -.0..
ol wY S, 0 0 0 i 0
¢ 65 0 0 0 0 0
M 0 1] 0 o 0 0
vz 0 0 0 0 0 0
v 66 0 0 0 0 0
o 67 0] 0 0 0 1
Mz 0 0 0 0 0 0
II|V 0 0 0 0 0 0
e T o =T P — T B
Nl- -J 3 —. - = J —-. —J _. -J I hee.  d
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Note the introduction of additional § and K

variables for the non-zero parameters in the lower
level state vector. Although the machine casing is
shown here as having no overhang in addition to being
located within the shaft length these aspects are in
no way limitations of the method.
When any form of support is encountered such as
that at point 3 the following steps must be taken,
1) Set-up the support point transfer matrix
relating all parameters, at all levels. ,
Where supports are such that rigidities, P,
are introduced the corresponding matrix damping
and stiffness coefficients should be set to
zero. The order of this matrix will be equal

to the sum of the order of matrices employed

for each level - in this case sixteen.

2) Make use of any relevant boundary conditions
at the support to set-up equations relating
the system unknowns. These additional

relationships result from two main sources:-

a) The Introduction of Support Rigidities.
The number of additional equations introduced
will be equal to the number of support
rigidities. If N1 is thenumber of system
levels then the maximum number of equations

which can be intraoduced at any point is 4, (N1)
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for a two-plane analysis, resulting in a

maximum of eight more equations in this case.

b) The Introduction of Discontinuities in the
Sub-levels.
In general the sub-level(s) (machine frame in
this case) may not be of a continuous nature and
additional intermediate boundary conditions
occur. Here the maximum possible number of
equations at any location, resulting from
such a situation is 4.(Nl—1). For example, in
the case considered if the beam representing
the machine casing was removed then the maximum

number of equations would result at each support

since MZA=MyA:VZszyAzMzB:MyB:sz:vyB:U'

Considering the ab;ve points and returning to the
system shown in Fig. 4.4 the state vector to the right
of point 3 in it's most general form may be written as
shown on the following page.

The P vectors can be eliminated if no rigidities

are present, or if the rigidities can be simulated using

high stiffness values. However, if care is not taken

this latter option may lead to numerical problems (4.2.2).
The subscript prefix m denotes a reaction moment.
Considering location A in Fig. 4.4 the follaowing

additional equations may result depending on specific

support conditions:-
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If WqsW, K4:A1—64+B1K1+C1K2+D1K}
If ViV, K6=A5-66+85K1+C5KZ+D5K3
If ¢1:¢2 K5=A2-65+BZK1+CZK2+DZK3
If 91=92 K7=Ao'67+B6K1+C6K2+D6K3
If w2=w3=0 64=0; K4=0
If v2=v3=0 66=0; K6=0
If ¢2=¢3=0 65=0; K5=U
If 62:63=0 67=0, K7=0

If the bending moments and shear forces to the
right of point A are zero as described in paragraph

2b earlier then the following additional relationships

result.

Ko-P P

My:U:A +B11K1+C11K2+D11K3+F11K5+H11 7 my1+
VZ:U:A12+B12K1+C12K2+D12K3+E12K4+G12K6-Pz1+PZZ
K P

my 2

P

M_=0=A,c+B, oK, +Co oKo+D, oKgsF Kot K =P L eP o

G16K6=Py1*Py2

Vy:U:A +B16K1+C16K2+D16K3+E16K4+
Thus consideration of the support details for a

particular case will result in the selection of certain

of the above relationships. The normal transfer

matrix procedure is continued as before until another
support is encountered and the same procedure adopted.
When the end of the system is reached another set of

relationships result from application of the boundary

conditions. In this case,
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At I, at point 11
M =V =M =V =0
y z z 'Yy
and similarly,
At II, point B
M =V_=M_=V =0
y z zY

In general the end conditions always provide

i(n

3 +eeens +an) homogeneous equations where n

1711
represents the matrix order for the respective system
level. The introduction of a number of intermediate

rigidities or releases Nr’ results in an additional

Nr homogeneous equations. Since the number of K
variables employed is (21 + Npp +eeoNyy - 1) it is
2 2 2

obvious that the number of equations available for
solution always exceeds the number of system unknowns
by one. Thus the procedures described in section
4.2.3 may be applied directly to enable modification
of the initial state vectors thereby allowing accurate

determination of the system natural frequencies.

4.6 Derivation of Transfer Matrices

4.6.1 Rotor System Modelling

The usual approach of idealising the shaft/rotor
system as a series of elastic massless beam elements
joined by rigid point masses is adopted here. The
lumped mass at each shaft section is determined by

summing half the mass of the section to the right of
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the station and half the mass of the section to the

left of the station.

The following assumptions are made in setting up

the system transfer matrices:

1) The rotor system exhibits linear characteristics.
2) The rotor is axi-symmetric.
3) Torsional and axial load effects have no

influence on the shaft lateral vibrations.
The analysis allows for the inclusion of the
following effects:

1) Shaft mass unbalance.

2) Shaft initial bend.

3) Asymmetric multi-level supports possessing
radial and angular mass/inertia, stiffness and
damping characteristics. For each support
any combination of rigid/flexible elements can
be selected.

4) Gyroscopic Couples.

5) Rotary Inertia.

6) Shear Deflection.

4.6.2 Sign Convention

The Cartesian right-handed co-ordinate system is
employed (Fig. 4.5), the x-axis coinciding with the mean
steady-state position of the shaft rotational axis at
each shaft station and the y and z axes coinciding with
the principal axes of inertia of shaft cross-sectional

area. The displacements in the horizontal (y) and
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vertical (z) direction are v and w respectively.

4.6.3 Transfer Matrices

In setting up the system matrices the shaft motion
is assumed harmonic such that system parameters can

be expressed in the following complex form:

w = wert
¢ = gekt
M =M eAt
y y
V. =V elt
z z
and
v = vert
o = gert
M =M e}‘t
z z
vV =V elt
y y
and only the real parts apply. A = a + iw where a is

the damping exponent and w the rate of free vibrations
of the system. The shaft angular speed of rotation
is represented by @ , so that in the special case of

forced vibration due to mass unbalance A = iQ.

From the above

and w = A" we
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and similarly for the other system parameters.

In the following the superscripts L and R represent

the conditions at the left and right hand sides of the

element respectively.

4.6.3.1

Elastic Massless Field

Referring to Figs. 4.6(a) and (b), and from

equilibrium and the theory of elasticity:

and

where E

Wb - F - W2 ovE [ -
Y2ET1 Z |IGEI GA
= $L + —LL__ + V;LZ
YET EL
= ﬁL + VLL
Z
- vt
r4

(4.5)

2E GEI  GA
R R
’F1 YZET
S
z y
- vt
y

and G are the elasticity and shear modulii, for
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the shaft material, respectively. The shaft cross-
sectional area and second moment of area are represented
by A and I respectively.

The effect of shaft internal damping may be dealt

with [17] by the introduction of complex shaft modulii

E and G where,

E E (1+iq)

and G = G (1+ig)

where g is described as the material loss factor

generally having values of the order of .005, depending

on the material employed and structure type. This

effect will not be considered further in the analysis.
When equations (4.5) are expressed in matrix form

the flexible field matrix is obtained (section 4.7).

4.6.3.2 Point Mass/Inertia

Fig. 4.7 shows the free body diagram for a
concentrated mass and thin disc at a shaft station.
The mass m is a combination of shaft lumped mass,
determined as described earlier, and disc mass.

IP and IT are the disc polar and transverse moments
of inertia respectively. Employing D'Alembert's

principle to set up the system equations we obtian

—R —L
= W

F AN <&

—R =L 2—L =L

M =

% My + 1A% + I,)Q.0

v _ vl 2—L (4.6)

VZ = VZ + mA“w
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and,

~R —L

v =

—R -

] - Bt (4.6)(cont.

L vi 2=L =L

, = Mz + ITA 0" - IPXQ ®

AN

If a circular whirl orbit results then © = -id
(Appendix A). Considering a thin circular disc where
I, = 2I; and synchronous excitation (A = iQ) then

from equations (4.6) we obtain,

R =L 2L
M = My + ITﬂ.¢

W wh . 1.o%et
z T

where the gyroscopic couples clearly introduce an
additional stiffening influence on the shaft.
With equations (4.6) expressed in matrix form the

point mass/inertia transfer matrix is obtained (section

4.7).

4.6.3.3 Point Support

The case of a support with one sub-level is
considered here since such an arrangement may be
simulated on the test rotor used in the experimental
work. All possible dynamic support coefficients
are considered in the analysis, including stiffness/

damping at each level, although many of the coefficients

)
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will be eliminated depending on the particular system
to be investigated. Referring to the shaft support
arrangement shown in Fig. 4.8 and making use of
D'Alembert's principle the following equations are
obtained.

In the x-z plane

At Level 1

R —L
1 =W
—R —L
o, =&y
R L _
MRy = Moy (Kppe + ACqp0)- (3-8,
+(Kq 00 +xc1¢e).(e -9,)

VR = VL + (K

1 21 ACy ) (wy-w )

1zz

+(K 1Zy) (v -v )

1zy

At level 2

R L
WZ = WZ
R L
R L
MR- M. - (K
y2 y2 = (KiggtACigq 2y
2 —
+(K160*2 0100200+ 2C200* IF A )2,
-(Kp9+AC1g0)0p
+(K190+2C1007K200*2C 20079 (4.7)
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R _ =L
sz - sz

+ (K1ZZ+XC

- (K ACq,, 0w,

1zz
z+7\C

1Zz+

2__.
122+%22 272t MFA W,

- (K,  +xC )71

lzy

+ (K1Zy+lc1zy+K22y

1zy

+AC (4.7) (cont.)

Zzy)VZ

In the x-y plane

At level 1
oot
1 = Vi
R _ =L
9, =8,
MR = WMo 4 (K, 9g+ACqgg) - (81-8,)
z1 =~ 21 100%¥**%100°* °1772
W= Ve ) (V=¥ )
y1 y1 1yy 1YY 2
At level 2
-V-R - VL
2 V2
R _ =L
5, =79,
—R —L -
M2 = M5 - (Kiga+ACige)®y
2.~ ,
+(K199+AC100*K 00+ A Co0p* IF 22 )8, {(4.8)
~(K199*2Cq00) %,
+(K1 002 C100%K,00%2C200) 9




v32 _)"/2 (K1yy+AC1yy)V1
+(K1yy+AC1yy+K2yy+AC2yy+MFA2)VZ
-(K1yz+AC1yz)W1
+(K1yz+xc1yz+K2yz+XCZyz)W2
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(4.8) (cont.)

Expression of the above equations in matrix form

results in a complex extended transfer matrix (section

4.7) of size (17x17). However, where individual

supports are uncoupled the following boundary conditions

may be utilised to enable reduction of this matrix to

it's 'normal' (9x9) form.

R oL _WR L R _,L _ R _,L _
sz'VZZ'MyZ'MyZ'VyZ'VyZ'MZZ'MZZ'O
~ —_ -
If we let w1 = 21
vy - —
2, =2
Rall
WZ
72
QZ
©,
Then from equations (4.7) and (4.8)
| - — =
[ | Z,]-T = 0
| £ L
A B sa B
! -
I Z )

where,
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'(K1ZZ*XC1ZZ) (K1z +Ac1zy) 0 0
Adl
_(K1yz+xc1yz) -(K1yy+xc1yy) 0 .
0
U -(K1eq>+lc1e°) -(K169+AC199)
and,
ey
(K1ZZ+)‘C1ZZ (K1ZY+Ac1zy 0 .
+K222*XCZZZ +Kzzy+xczzy)
+Mkl2)
(Kypo*aC100  (Kqog+ACq00
’ ’ +K2Q¢+XCZQ° +K2‘I’Q*X02¢e)
2
+I-.1%)
B= Fy
(K1YZ+AC1YZ) (Kiyy*AC1yy
+K2yz+X02yz +K2yy+AC2yy 0 .
+MF12)
(K1e¢*lc16° (K‘]ee*)\co]ee
0 ° +K200+2C200)  +K206+AC200
+IFz)‘z)
—_
_ g1 = 5
Therefore 2, = B . -A- Z,
Let §=E'EI'+E-1

,éj
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Since, in both planes at the shaft level, the
displacement and slope to the right and left of the
support are identical then by making use of coefficients
from the C matrix a 9x9 support transfer matrix is

obtained (section 4.7)

4.6.3.4 Unbalance Mass

The effect of mass unbalance at a general shaft
station is considered in Fig. 4.9 where 0 is the mean steady state
position of the shaft centre, G is the shaft geometric
centre and M the centre of mass of the shaft. Since

shaft motion is being considered at a point then

—R =L
= W
= 3t
—R —-L
\' =
§R - §L

and, ignoring angular inertia effects,

Moo= W
y y
W o= wt
z z

Now considering forces in the z and y directions

respectively,

vV
z

0 - muQZ(WL + r(sina - icosa))
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Ul y z (VL + r(cosa + isina))

Expressing the above equations in matrix form

results in the unbalance mass matrix (section 4.7).

4.6.3.5 Shaft Initial Bend

The inclusion of shaft bend in the analysis leads
to modification of the elastic massless field matrix.
The point mass matrix needs no alteration since the
usual displacements w and v this time are assumed to
include the bend effect.

Referring to Fig. 4.10 it is seen that the effect
of shaft initial bend is to modify the displacement
and slope relationships so that forcing terms are
introduced.

If the section initial bends and slopes are

denoted by € and €5 respectively then,

i eR(sinYR-icosYR) - EL(sinYL-icosYL) - T

+ES$L-ML-V - L
2E1 6EI GA
L

—_— — 2
IR - It . Sg - eSQ + My L+ VZ L
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—R —L
z = V2
and

+

oot eR(cosYR+isinYR)—SL(cosYL+iSinYL)
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When equations (4.9) are expressed in matrix form

L2 L3
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(4.9) (cont.)

the modified elastic massless field transfer matrix

is obtained (section 4,7).

If initial bend at any point p is written as

€ = - ie elYn
wn n

- iyn

The resulting shaft slopes may be estimated from the

initial bends as follows:-

- r— —
ESGn = (Ev(n+1)' evn)
L
| S n
es@n = (ewn- ew(n+1))
L. 'n

where n is the shaft station number,

left to right.

———

+ (Evn' Ev(n-1))

n-1 —

—_— —
+ (Ew(n-ﬂ- ewn)

Ln—1 ]

increasing from
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Catalogue of Transfer Matrices

Elastic Massless Field Matrix (Straight Shaft)
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Point Support Matrix (Reduced)

us=|1 0 0 0 0 0 0 o o
[ 1 . e
0 1 0 0 0 0 0 0 o
— — —— 4 ~— ——
€, L,y 1 0 L, Ly 00 | 0
PP PR
€, L O 1L, CE, 0 o | o
0 0 0 0 1 0 0 0 o
0 0 0 0 0 1 0 0 o
£y Lty O 0 L, Ly 7 0 0
€y Cop O 0 C, C, O 1 0
0 0 0 0 0 0 0 0 1

The Coefficients C are as defined in section 4.6.33

Unbalance Mass Matrix

u=f{1 o0 0 0 o0 o0 0 o 0
1] 1 g O 0] 0 0 0O g
0 0 1 0 0 0 0 O 0
2 2 . .
—muQ 0 0 1 0 0 0 O -muQ r(sina-icosa)
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0 0 0 O 0 0o 1 0 0
2 2 .
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1] 0 0 O 0 0 0 O 1
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4.8.1 Analysis Programme

A computer programme, incorporating the procedures
described in this chapter, was created and employed
for the rotordynamic analyses performed and described
in this thesis.

The prodramme enables the prediction of system
undamped critical speeds, corresponding mode shapes
and damped unbalanced response taking into account the
effects described in section 4.6.1. In addition, the
programme was used as part of an optimisation algorithm
later developed and described in Chapter 5.

Free-vibration analyses were performed utilising
the modified transfer matrix method, described in
section 4.5.2, to aid numerical stability.

When using this method simulation of intermediate
shaft-level rigid supports as high-stiffness flexible
supports was found necessary to ensure elimination of
possible ill-conditioning of the solution equations.
Although this approach posed no problems in any of the
analyses performed a more suitable procedure might be
to employ the normal transfer matrix method where only
rigid intermediate (shaft-level) supports are introduced
and to apply the modified method in all other cases.

The programme could be employed to analyse rotor
systems of significant complexity with minimal demand
on computer memory.

In addition to shaft displacement data other

output information included: Bearing/support forces,
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shaft deflected form, dynamic stiffness at any point

and system receptances.
A brief description of the programme structure

is presented in the form of a flow chart in Fig. 4.13.

4.8.2 Validation of The Analysis Programme

Accuracy of the analysis programme was assessed
in a number of ways. First, the case of a uniform
beam mounted on simple supports (Fig. 4.11a) was
analysed and the first five undamped natural frequencies
(including rotary inertia effects) predicted using the
programme and compared to the exact values calculated

using the Timoshenko beam theory, viz:

2

Lot P
E ]

(3 I
_ D
/T + /] (4.10)

where W is the n'f natural frequency (rad/sec)

and R is the term representing rotary inertia effects,

R = D2 nm 2

16 L.

Values of the other parameters used were as follows:-

E = Young's Modulus = 210x109 N/m2
o = Material Density = 7860 kg/m3
D = Shaft Diameter = .0254 m

L = Shaft Length = .956 m



n =

The beam frequencies are compared in table 4.1

Mode Number

1,2,3....,

92.

where the influence of number of shaft elements on the

modelling accuracy is shown

Table 4.1
Natl. Beam Transfer N®.of %
Freq. Theory Matrix Shaft Error
N°. (Equ.4.10) Programme Elements
rad/sec rad/sec
354.17 6 .06
1 354,37 354.18 8 .05
354.19 10 .05
354.19 16 .05
1411.91 6 .33
2 1416.57 1413.10 8 .25
1413.42 10 .22
1413.62 16 .21
3143.77 6 1.26
3 3183.83 3161.93 8 .69
3166.15 10 .56
3168.62 16 .48
5412.23 6 4.23
4 5651.56 5557.63 8 1.66
5586.92 10 1.14
5602.32 16 .87
7696.79 6 12.67
5 8813.43 8479.44 8 3.79
8622.42 10 2.17
8689.34 16 1.41

When a sufficient number of shaft elements are

employed 1n the model excellent agreement with predicted
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frequencies using equation 4.10 is observed. A small
number of elements is seen to provide good accuracy at
the lower frequencies where, for instance, the use of
eight elements results in a maximum error of less than
one percent for the first three natural frequencies.
The analysis of higher-frequency necessitates the
employment of a greater number of elements if reasonable
accuracy is to be maintained. However, it is seen
that even when only eight elements are used the first
five natural frequencies can still be accurately
predicted to within four percent, the same beam was
then considered mounted on flexible supports (Fig.4.11b)
and the calculated natural frequencies compared (Table
4.2) with those estimated using other numerical

techniques [91,101].

Table 4.2

Y1 We2 We3 “ey
Transfer
Matrix 339 1190 2129 3007
Method
0.S5S.Turkay 338 1198 1976 2476
Ref [101]
Dostal et al 350 1200 1950 2500
Ref [91]

Agreement between the results obtained using the

various numerical method is found to be very good at
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the lower frequencies with some disparity at the higher
ones.

The effectiveness of the analysis programme in
predicting the damped response of a shaft system, due
to some pre-defined unbalance distribution, was assessed
by analysing the arrangements shown in Fig. 4.11.

These systems were earlier investigated by Dostal et al
[91] and relevant graphical results from their paper
are presented for comparison (Fig. 4.12). As with

the free analyses, agreement is excellent for shaft
cases (a) and (c) and for case (b) over the major part
of the shaft speed range.

In addition to the above, the case of a simple
Jeffcott rotor mounted on flexible supports with central
unbalance and damping was analysed using the programme
since, for this arrangement, the exact shaft response,
bearing forces and influence coefficients are easily
computed for comparison. The agreement was excellent
with little discernable difference in the results.

Later comparisons with experimental measurement
taken from a test rotor also confirm the validity of
the programme.

Although, in all shaft cases analysed during these
investigations, the normal and modified transfer matrix
methods were found to agree almost exactly when
predicting the first six shaft critical speeds, it was
observed that at higher support stiffness values

employment of the normal method resulted in failure to
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accurately predict the higher frequency mode shapes.

4.8.3 Residual 'Jumps'

When employing the modified transfer matrix method
for the free-vibration analysis of certain systems the
calculated residual has been observed to tend to
infinity then change sign, or 'jump', within specific
frequency ranges.

This effect has been shown, in the literature [17] ,
to occur in systems comprising a number of branches and
where a resonance exists in one of the sub-systems.

However, during the present investigations the
phenomenon has been encountered in rotordynamic systems
lacking sub-levels but incorporating flexible supports.

The 'jump' occurs because specific coefficients
in the system transfer matrix tend to zero resulting
in the decoupling of certain system boundary parameters.
The characteristic is directly related to system rigid-
body motions and thus does not appear in shaft
arrangements where such motions do not occur e.g. a
shaft mounted on rigid supports.

The frequencies at which these 'jumps' occur are

not necessarily natural frequencies (Fig. 4.14) and

consequently an effective means of discrimination

must be sought. One suggestion [17] is the use of a
different residual in the event of a 'jump', but from
the author's experience there is no guarantee that this

alternative residual will not also 'jump' and
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unfortunately this will not be known until an analysis
has been performed.

A more effective approach might be to monitor the
signs of the coefficients making up the frequency
determinant. If a '"jump' is encountered then at least
one coefficient has changed sign. To fulfill the
requirements for a natural frequency other coefficient(s)
would also have had to undergo a change in sign. For
example, referring to the case considered in section
4.2 and assuming the coefficient U12 to have changed
sign (resulting in a residual jump) then for a system
natural frequency to have been passed the polarity of
one or both of the coefficients U14 and U32 must have

similarly altered.
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CHAPTER 5

VIBRATION REDUCTION OF FLEXIBLE ROTORS

Because of the extent of the work presented here, a
brief summary of the principle findings is included at the
end of this Chapter.

5.1 Radial Versus Angular Control

In practice, the introduction of control forces to
rotor-dynamic systems should be accomplished with the
minimum of alteration to the machine structure. This
could be best achieved by mounting the controller at the
shaft bearings/supports. Unfortunately, in many cases,
this location is very inefficient when employing
conventional control methods.

In an attempt to overcome some of the limitations
which exist when using current control methods, a
different approach to the vibration reduction of flexible
rotors is proposed.

The introduction of a control moment (Angular
Control), to a shaft system, is assessed and compared to

the conventional procedure whereby a Radial Control force

is employed. In this Chapter a theoretical investigation
of radial/angular controller performance is presented for

a number of test cases.

5.2 Simple Jeffcott Rotor

The effectiveness of angular control may be examined
first by considering the case of a Jeffcott rotor (Fig.

5.1) mounted on simple supports. Viscous damping C2 is
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included in the model to represent system inherent damping
due to, for example, o0il-film bearings. Allaire et al
[102] reported the effect of central radial feedback
control on such a system and reached the obvious
conclusion that derivative and proportional feedback could
be employed to attenuate the resonant response and alter
the system critical speed respectively. Here, a more
general approach is adopted whereby the effect of location
and type of control can be assessed. First, consider the
synchronous response of the shaft due to central
unbalance.

If a control couple Mc (or control force Fc) is
located at some position along the shaft as shown in Fig.
5.1, then making use of simple beam deflection formulae
[103], it is possible to define a central control force,
Fe, to replace the radial and angular 'forces’', Fc and Mc
respectively. Thus, for the radial controller, the

effective force would be:

Fer = Fc - %
and for the angular controller: (5.1)
Fea = Mc . O,
@, and a, are appropriate influence coefficients [103]:
a, = (3L2a - 4a3)/L3
. -48 1% a2
2 L3 ‘16 4’

where a is the distance of the control element from
the left-hand bearing and L is the shaft length.
The radial and angular effective central feedback

control 'forces' may be expressed as:
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Fer = [G3y + G4y] . 0y (a)
2

Fea [G10 + GZO] N (b)

where y and 6 are the radial and angular

(5.2)

displacements at the controller location and G represents
the relevant controller feedback gain.

For the analysis here, the effective radius of the
angular controller, r, is chosen as 0.03L since this value
is approximately that used later, on the laboratory rig.
It is felt to be an acceptable minimum value for most
practical cases and could be increased substantially in
many other instances.

The equation of motion for the system incorporating
radial and angular control at any location is:

mX + C,x + K,x = F ~ F,. ~ F_, (5.3)
where Fu is the external fqrce due to unbalance
(mew’), K, (= 48EI/L%) is the shaft stiffness and C, is
the system damping.

Substitution of equations (5.2) in equation (5.3) and
further manipulation (see Appendix B) leads to a
relationship between the non-dimensional unbalance
response 6%9 and other relevant system parameters, for the
angular and radial control cases.

Because, in general, the controller location does not
correspond to the shaft centre, the resulting equations
(Appendix B) are not as simple as those obtained in Ref.
[102]. Figs. 5.2 show the influence of radial and
angular derivative control on the shaft non-dimensional

response (%0 for various levels of inherent system damping

(C2) .
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Figure 5.2a illustrates the effect of angular damping
control with the controller mounted at a support (b = (%0
= 0), whilst in Fig. 5.2b the case of radial control
damping, applied at the shaft centre (b = 0.5), is
considered. In both figures the uncontrolled response is
shown for comparison. As expected, greater control
damping is required for the angular damper in order to
obtain the same reduction in response as its radial
counterpart. For the cases shown, angular damping
requirements are seen to be approximately one hundred
times those of the radial controller.

At first sight these results appear to ‘rule-out' the
employment of an angular controller. However,
comparisons made with the radial controller mounted at the
shaft mid-span are, in many cases, only of academic
interest since, in many real rotor systems, access to the
shaft at this point would be impossible. In addition to
the question of accessability, consideration of the shaft
mode shapes encountered in real systems may necessitate
the placement of a radial controller at a shaft section
close to the supports. Further comparison of the two
damper requirements (again using equations (B.8) and
(B.9)), with the radial damper this time positioned more
realistically at locations b = 0.2 and b = 0.1, shows that
the required angular damping rate is now only
approximately twenty times and eleven times respectively,
that of the radial damper. It is important to note that
this requirement is also inversely proportional to the

square of the radius r, so that the angular damping
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requirements reduce substantially when this parameter is
increased. Similar conclusions may be drawn for the case
of stiffness control, where the system critical speed can
be shifted by employing proportional feedback control.

Equations (B.8) and (B.9), in Appendix B, were used
to predict the non-dimensional control damping forces
required to reduce the system peak response (i.e. at
w = wCR) to a variety of pre-defined levels, These
forces were computed for both control types and a range of
controller locations covering the shaft span and the
results presented in Fig. 5.3. Figs. 5.3a and Fig. 5.3b
represent two levels of inherent system damping, C2 (p2 =
0.05 and 0.1 respectively). The results are shown for a
range of 'controlled magnification factor' values.
Inspection of these figures highlights the increasing
efficiency of the angular controller as its point of
application approaches a shaft support. The trend is
reversed for radial control - best performance being
achieved with control implemented at the shaft mid-span.
With each damper mounted at its respective optimum
location, the force requirement of the angular damper is
approximately eleven times greater than the radial
version, to give the same reduction in displacement at the
rotor centre. However, as would be expected, locating
the radial controller at a shaft support or the angular
controller at shaft centre results in the elimination of
effective control.

The system free-vibration response is not easily

assessed by examination of the equations developed in

Appendix B and so another approach is necessary. If the
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shaft deflected form is not appreciably altered by the

introduction of control damping [91], then the following
simple relationships may be used.

Radial Control

For central unbalance the shaft deflected form is

defined [103] by the relationship:
y = (3b - 4b°) x

Substituting for y and @y in (5.2a) gives:
2

= . _ 3
Fer = [G3 + 1wG4] « (3b 4b7)° x (5.4)

Angular Control

Again from the shaft deflectd form:

2
0 =3 el—ZiiﬁLo . x

Substituting for © and a, in (5.2b) and setting R ==%%

P, = [G; + iuwG,] . R . 9 (1 - 4652 . x (5.5)

Inserting equations (5.4) and (5.5) in the system
equation and taking the Laplace transform, leads to the

system transfer function:

X 1

Fu m [s2 + 2w Sp + w2 + wz h]
cr cr cr

where
o= loy + pgy 3b - 4%+ o0 (982 (1 - 43)?)]
- 3,2 2 _ 2,2
and h = [hfz « (3b - 4b7)" + hfl « (9R™ (1 4b°) )]
The parameters are as defined in Appendix B. The

damped eigenvalues are obtained by setting the denominator

equal to zero.
_ . _ 2
Therefore: 81'2 = =(p) wcr'i iw,, \/{1 + h) (p)
The damped critical speed is:

wg =0 V(1 +h) - (p)2
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and the exponential growth/decay factor is:

S

The logarithmic decrement is given by:

21p [AY
Yq

§ =

Therefore: § = 2m_(p) (5.6)

J@+h - (02

Thus, the relative effects of radial and angular control

can be assessed by substituting specific values for the
system parameters. Equation (5.6) shows how the
inclusion of derivative feedback increases the system
stability, whilst the opposite is true for proportional
feedback.

Considering the case where only damping control is
utilised and the radial controller is mounted at a shaft
position corresponding to b = 0.1 with the angular
controller located at a support (b = 0), then assuming
R =0.03:

p=p, + 0.0876 Pgg + 0.0081 Pe1
and if the radial and angular feedback gains are identical

then:

Effective Radial Control Damping _ 0.0876 _ 10.8
Effective Angular Control Damping 0.0081 °

which agrees with the earlier findings.

The analysis presented for the simple Jeffcott rotor
is effective in providing some insight into the relative
merits of each type of control, but lacks many of the
characteristics found in a real flexible rotor system,

e.g. multiple critical speeds, support flexiblity and

damping, etc.
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5.3 Multi-Mode Systems

5.3.1 Synchronous Response

In the case above, the choice of criterion for
controller performance was simple and obvious - namely to
reduce the central deflection of the rotor. However, in
real multi-mass systems, this choice is far more complex
because minimisation of the shaft response at a particular
location will not necessarily lead to minimised response
at other shaft locations. If a comparison is to be made
of the efficiency of radial and angular controllers when
employed on such a system, it is necessary to choose a
suitable Performance Index (PI). Two main PI's have been
employed in the past by other workers - shaft maximum
displacement response [91] and sum of squares of shaft
response [92], although no indication has been given of
the relationship between these and other possible PI's.

In the present investigation, three performance
indices are examined:

1) Shaft Maximum Displacement Response (i.e. the

largest displacement to occur on the shaft).

2) Sum of Squares of Shaft Response (SSSR). .

3) Total Bearing Force (arithmetic sum of bearing

forces).

Three shaft systems, as previously investigated by
Dostal ([91] and shown in Fig. 4.11, were used in the
analyses. These consisted of a uniform shaft of diameter
25.4 mm and length 956 mm, loaded parabolically to allow
excitation of all modes within the selected frequency

range and mounted on:
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a) Pinned Supports.
b) Flexible Supports.
c) Damped Flexible Supports.

The creation of a basis for performance comparison of

radial and angular type actuators requires careful

consideration due to the multivariable nature of the

problem.

The following procedure was adopted here and applied

to each of the three shaft configurations in turn.

1.

2.

In general for each type of control (radial/angular)
the performance indices are functions of the
controller location a, the damping value C and the
shaft speed Q. That is:

PI = £ (a, C, Q)
For both types of controller with C and a fixed, each
performance index was computed as a function of %,
over a shaft speed range covering the first three
rigid-bearing critical speeds (0 - 3500 rad/sec) and

(PI ax) computed. The objective was to minimise

m
this value. Thus a was held constant and the

)

minimum value of (PImax), denoted by (PImax min’ “as

obtained by varying C. This procedure was repeated
for a range of values of a to obtain the lowest value

that is (PI )

of (PI ) max’min-min®

max’'min’
Thus, adopting this approach, the optimum controller

location and damping rate for a passive, or fixed-
gain active device can be determined.
The radial and angular dampers were considered at

their optimum locations and the damping controlled as
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a function of rotor speed such that the system
response was minimised continuously. In practice
this would require the use of an adaptive [68]
controller.

3. The procedure described in (1) above was repeated
with each controller mounted at the left-hand support
- this representing an ideal practical location for a
controller. The effect of support stiffness on
controller performance was examined.

4, The effect of introducing radial/angular stiffness

control at the optimum control locations as

determined in (1) was assessed.

For the purpose of the numerical analysis, the shaft
was modelled as described in Section 4.6.1, nine elastic-
massless elements being employed to ensure the removal of
vibration nodes from the shaft stations within the
specified frequency range.

In the initial stages of the work, a procedure
described by Dostal et al [91] and making use of the
theory of 'fixed-points' [104], was used to determine the
system optimum passive damping value and corresponding
controller location. The method entailed:

i) Determining the system response at the highest fixed-
point within the operating speed range for each
damper location.

ii) Comparing the response values obtained in (i) for a
range of damper positions. The optimum damper
location corresponds to the minimum response value,

iii) Estimating the control damping required to give a
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zero-slope response at the highest fixed-point, with
the damper at its optimum location. The resulting
control damping value is the system optimum damping

rate.

5.3.1.1 A Note on 'Fixed-Points'

The fundamental theory of fixed-points is
sufficiently described elsewhere [91,104]), but a number of
observations, relevant to the investigations described
here, are felt to be worthy of mention.

In addition to the necessary restraints as described
by Dostal [91], exact fixed-points occur only when the
response at a single rotor section, or some direct
function of this, is considered. If any other response
function is chosen, then fixed-points will not occur in an
exact sense but the approach may still be used as an
approximate design tool in some cases.

That approximate ‘'fixed-points' should occur in the
case of shaft maximum displacement (all other fixed-point
conditions being satisfied) is fairly obvious if it is
assumed that the introduction of control damping does not
significantly alter the shaft deflected form. This is
due to the fact that the receptance relating the shaft
displacement, at the point of maximum displacement, to the
control force, is the same in both the controlled and

uncontrolled shaft states. Thus effectively, within

specific speed ranges, the response at one station only is

being considered.

The shaft sum of squares of response will be directly

related to shaft maximum displacement for relatively low
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damping [91] and hence approximate 'fixed-points' would be
expected to occur in both cases at the same shaft speeds.
It follows that both criteria would be expected to produce
identical optimum control damping values.

Continuing this line of thought, it seems reasonable
that, in an experimental environment, in many cases direct
measurement of shaft maximum response, necessitating
continual repositioning of response measuring probes (or
the employment of a greater number of probes), may be
eliminated through measurement of a reduced SSSR using a
smaller number of fixed-location probes. Of course, care
would have to be taken to ensure that probe locations do
not coincide with shaft nodal points.

The relationship between total bearing force and the
above two performance indices is not so clear and it would
appear that, in general, the control damping required to
minimise the total bearing force may be different, its
magnitude dependent upon the shaft-support dynamic
relationship. For instance, consider the case of a
flexible shaft vibrating in one of its free-free modes.

If the bearings are inadvertently placed at, or close to,
shaft nodes, then it is clear that although a large shaft
response may occur, the bearing forces may be very small
or, in the extreme case, even non-existent. Thus it does
appear possible that minimisation of the former two

performance indices will not necessarily lead to

minimisation of the total bearing force.

In shaft cases (Figs. 4.l1la and 4.11b) where all

necessary fixed-point conditions are satisfied (except for
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the choice of response function), in general, extremely

good 'fixed-points' were found to occur for control

damping levels over a fairly large region (0.SCopt < C K

2C°pt) in the vicinity of the optimum control damping

values, for all three performance indices. Variations in

the extent of this damping range occur depending on the
exact location of the control damping - the above
representing a minimum range for the cases investigated.

For very low (C +» 0) or very high (C »+ «) control

damping values, certain 'fixed-points' tend to degenerate,

their degree of deterioration being determined by the

location of the controller in relation to the anti-nodes

of the modes to be controlled. Figs. 5.4a and 5.4b

illustrate the effect of control damping magnitude on the
existence of 'fixed-points', with the radial and angular
controllers at their respective optimum locations, for the
pinned-pinned shaft case (Fig. 4.1la).

It is interesting to note that irrespective of the

control damping level, the first 'fixed-point' is always

clearly defined in both control cases. The optimum
control damping values for the cases presented in Fig. 5.4
are 4500 Ns/m and 24 Nms for radial and angular control

respectively. The influence of control damping magnitude
on the maintenance of 'fixed-points™ as displayed in Fig.
5.4 is typical of that observed in the other rotor systems

investigated for both control types and various controller

locations.
However, where the motion of shaft orthogonal planes

is coupled due to, for example, the introduction of oil-
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film bearings (Fig. 4.11lc) additional violations of the
'fixed-point' theory [91,104] lead to further
deterioration of the 'fixed-points', particularly at
higher shaft rotational frequencies.

Although effective, when studying a large number of
combinations of shaft configurations and controller

locations, the 'fixed-point' method was found excessively

time-consuming. Additionally, the unsuitability of this

method for determining local optimum (frequency-dependent)
control damping/stiffness values, along with the other
limitations resultiﬁg from violations of the 'fixed-
points' theory, necessitated the introduction of a more

suitable optimisation procedure.

5.3.1.2 Optimisation of Control Parameters

A few optimisation procedures have been developed for

use with rotor-bearing systems [92,94,105]. These

methods, however, make use of the system equations of

motion in explicit form, viz:
M.g+C.g+K.g+U=F
With U normally chosen such that g, or some related

function, may be minimised. Because the transfer matrix

method was initially used for the dynamic analysis of the
test rotor, the above approach was deemed unsuitable.

The following method, created specifically for this

investigation, is simple but effective. In addition

demands on computer memory are minimal because of the

nature of the optimisation formulation.

In a linear system the response due to mass unbalance

may be assumed harmonic and thus can be expressed in the
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form of rotating vectors:

i.e. a(t) =§e19t (5.7)
where §=g iy
and - 9”

where the shaft radial displacements are:

w(t) = Re (Egint}
= w_cos Qt - w_ sin Qt
—© - 10t —F (5.8)
and v(t) = Re {ve }

= Vv, cos t - v sin Qt
The controlled response_gc(t) may be expressed in
terms of the uncontrolled response.gu(t), control force

vector_gc(t) and system receptanceslzlas follows:

g.(t) =g (t) - . £ (t) (5.9)
Radial Angular
where Control Control
—— - ’-: -— p—— ]
L= [F11 o~ 1 (mx2) : * e 00t Tl (mx4)
f21 |
. |
. |
. |
T 3 ! T
[ (mx2)1 °° (mx2) (mx2); * ° ° (me)(mx4lJ
_ T oiqt
i £ (t) =F_e (5.10)
= - e . T
and F. = [E., —cy' ﬁcyr M 2]

where the control force vectors_gcz,._cy,.gcy and_b_llCz may
be expressed in the same form as the shaft response

vectors (5.8). The vectorif; will be of maximum order 2m
where m is the number of shaft stations. However, the
number of external control forces, n, will generally be
much less than this. The maximum size of the receptance

matrix ji is (mx2).(mx4), assuming that only the shaft
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radial response will be required. The actual size osz

will be determined by the number of stations at which the

shaft response is to be computed, 1l,and the actual number

of control forces n and is therefore (1 x n). Normally

either radial or angular control will be employed
resulting in elimination of one half of the system

receptance matrix r.

Substituting equations (5.7) and (5.10) in (5.9)

gives:
_.Q:c =__9-_u -z . -jc (5011)
and -Ec = z . -g-ce (5.12)

where 2 is the control dynamic stiffness matrix and Q ., 1S
the controlled response at the controller locations e.

Substituting (5.12) in (5.11) and considering the

response at controller locations,
- - -— —--1 —
Qe = L+, .2] * Qe

I is a unity matrix. Substituting this equation

back into (5.11) we obtain:

L. =9, - .2 .0, (5.13)
where A =12, [_+_I_-e . _z_]-1 (5.14)

The subscript e refers to conditions at the points of

location of the external control forces.

Therefore, with the system uncontrolled response and

relevant receptance known,‘Zlmay be chosen so that the

control response Q:, or some related parameter, is

minimised. The relevant data is obtained through a two-

stage transfer-matrix analysis. In the first stage the

shaft uncontrolled response, due to a pre-defined

unbalance distribution, is determined. Next, the system
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response to a unit harmonic force of frequency equal to
shaft speed and located at the controller positions is

obtained, thus providing the shaft dynamic influence

coefficients, or receptances. A computer program was

created incorporating equations (5.13) and (5.14) in a
sub-routine called by Nag library routine E04JAF which is
designed to perform a numerical multivariable optimisation.
A flow chart illustrating the main structure of the
optimisation procedure is presented in Fig. 5.12.

Although not considered here, the method could just
as easily be employed to determine the necessary external
support-stiffness magnitudes required to ensure sufficient

removal of system undamped critical-speeds from shaft

operating speeds. This would be extremely useful in the

many practical cases where system damping is small. In
such circumstances, the difference between damped and
In fact,

undamped critical speeds will be negligible.
even if significant system damping is present, the above
procedure may still be useful as the first stage of a more

comprehensive optimisation strategy.

The optimisation method described has the following

advantages:

1. Repetitive shaft analyses are avoided since the

system characteristics (receptances and uncontrolled
responses) are obtained initially using a two-stage
procedure., This effectively ensures that the

optimisation program run-time is independent of that

of the main analysis program.

2. High computational efficiency due to minimal computer

storage demands since:
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a) Initial rotor analysis is performed using the

well known transfer-matrix technique.

b) Only the relevant system receptances are

utilised, thus eliminating the need for storage
of redundant data. In most cases, control
inputs are restricted to one or two shaft
locations. For a rotor system with coupling at
the supports employing a single controller, at
most 2 m components of receptance and
uncontrolled response are required (at each
shaft frequency).

3. As well as allowing for prediction of optimum control

parameters and minimised performance indices, the

technique enables the computation of system response

for any linearly defined control force arrangement.

Minimised shaft maximum response and sum of squares
of response were obtained using equation (5.13).
Although the minimised total bearing force could also be

obtained using this approach the method would fail when

rigid bearings were present. A more suitable procedure

is to make use of equations (5.13) and (5.14), replacing
the shaft response terms with bearing forces keeping in
mind that the new 'receptances' have units of (N/N). The
analysis is then identical to that described earlier.

When employing the optimisation technique to
determine optimum adaptive control parameters, in certain
instances within particular frequency ranges (mainly
around the 'fixed-points'), the chosen performance index

was found to be insensitive to the magnitude of the
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selected control parameters. This phenomenon poses few

practical problems, however, since it merely indicates the
lack of benefit in applying control at that location under

such circumstances. To enable assessment of the

reliability of the optimisation search routine, the
control parameters were given three separate starting
values, each within the specified operating range.
Continual convergence of the minimised PI and optimum
control parameters to within a specified tolerance band
indicated a successful optimisation analysis.,

The accuracy of the method was confirmed by
performing a number of analyses on the three shaft
arrangements (Fig. 4.11) and comparing the results to
those obtained using the 'fixed-point' approach.

Excellent agreement was achieved.

5.3.1.3 Results of the Controller Comparison

The results of a number of computer runs using the
above approach are presented here.

The investigation highlighted the necessity for a
suitable choice of shaft speed increment in the computer
program, particularly in the region of those shaft
critical speeds insensitive to the controller influence.
Failure to take account of this could have led to gross
errors in the predicted optimised damping constant and
minimised performance index, although in some cases, where
only relative comparisons are required, the effect may be
less critical.

As a result of the relatively high support stiffness

and damping rates the shaft system described in Fig. 4.1lc
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was found to behave in a very similar fashion to the

pinned-pinned shaft arrangement (Fig. 4.1lla).

Consequently, in general, conclusions drawn for the latter

case are also applicable to the former. Because of this,
the following discussions will be directed mainly at the
first two shaft systems (Figs. 4.1la and 4.11b) -
reference being made to the third system where
appropriate.

In all cases examined, performance indices 1 and 2
(shaft maximum displacement and sum of squares of
displacement) were found to produce the same optimum
damping values and optimum controller locations, whilst
this was generally not true when total bearing force was

considered. These findings confirm the views expressed

in Section 5.3.1.1.

5.3.1.3.1 Optimum Control Location

Figures 5.5a and 5.5b show the effect of controller
location on the minimised performance indices for the
shaft systems with rigid and flexible-undamped supports
respectively and for both controller types. Because of
the nature of the shaft excitation, the magnitudes of the
minimised PI's are not symmetrical about the shaft centre,
but their relative positions are, thus allowing the
following general conclusions to be drawn:

1. For radial control and all rotor configurations, the
minimum value of each PI is realised when the

controller is mounted at the stations adjacent to the

supports (stations 2 and 9). However, it should be

noted that when support flexibility is present,

minimisation of the total bearing force could be
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achieved almost to the same extent, by mounting the
radial controller at one of the supports.

2, For angular control, the optimum controller location,
for minimisation of shaft maximum displacement and
sum of squares of response, is at the supports for
large support stiffness and moves inward when
flexible supports are introduced.

3. The optimum location for angular control when
minimising total bearing force is, in general,
different to that required to minimise the other

PI's, the ideal application occurring between the

supports and shaft centre. The optimum location for

angular control would appear to be more sensitive to
the value of shaft support stiffness than that

resulting from radial control.

5.3.1.3.2 Optimum Control Damping and Corresponding

Minimised PIs

Figure 5.6 shows the variation of minimised

performance indices with control damping for the shaft

employing rigid supports. The radial and angular
controllers are considered mounted at their respective

optimum locations (i.e. for minimisation of maximum

deflection/sum of squares of shaft response).

Examination of this figure and similar data for the other

shaft cases leads to the following additional conclusions:

1. In general, values of the minimised PI's resulting
from radial control are found to be lower than those
achieved using angular control.

2. Minimisation of shaft maximum response and sum of

squares of shaft response could be simultaneously
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achieved using one optimum damping constant.
However, employment of this optimum damping rate will
not necessarily lead to minimisation of the total

bearing force. For instance, considering angular

damping control at station 1 for the shaft on pinned-
supports, Figs. 5.7 demonstrate the effect on the

shaft maximum displacement of minimising the bearing-

force and vice-versa. It is seen that by choosing

the control damping to minimise the bearing force,
the minimum possible value of shaft maximum
displacement would be increased by approximately 55%
- this increase occurring at the first critical.

However, if the shaft maximum displacement was

minimised, the optimum bearing force would be
inceased by only 25% at the top end of the frequency

range. Thus, it is seen that the selection of an

appropriate system performance index requires careful
consideration and in practice would depend, mainly,
upon the relative importance of a variety of system

response functions (e.g. shaft displacement, bearing

force etc.).

Table 5.1 provides a quantitative comparison of the

minimised responses ((PImax)min—min) which may be obtained

by utilising optimally designed, passive and
radial/angular dampers. The corresponding optimum

damping rates are also shown. The parameters are

presented more meaningfully when non-dimensionalised with

reference to radial controller performance. To enable

direct comparison the effective radius r of the angular
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controller is set, as before, to 0.03L and the equivalent

linear damping coefficient calculated.
Table 5.1 Radial/Angular Control Optimisation Comparison

Amplitude _ (Pl ax)min-min — Angular Control
Ratio (PImax)min-min - Radial Control

Damping _ Optimum Angular DampingﬁRate/r2 . L - 0.03

Ratio =~  Optimum Radial Damping Rate 'L
Shaft on Rigid Shaft on Flex
Supports (Fig. 4.11la) Supports (Fig. 4.11Db)

Amp Damp Damp Loc Amp Damp Damp Loc

PI Ratio | Ratio Rad | Ang Ratio | Ratio Rad | Ang

Shaft
Max 1.7 6.5 St.2 | St.l 2.5 15.8 St.2 | St.2

Defn

Total
Brg 3.5 3.0 St.2 | St.l 2.6 15.8 St.2 | St.2

Force

The results shown in Table 5.1 indicate the possible
benefits of radial control, particularly when substantial
support flexibility is present. However, before a
realistic comparison of both control methods (Radial/
Angular) can be made, a number of very important
considerations must be borne in mind:

1. The control capability of the angular device is

inversely proportional to the square of the radius r.

Thus, considering the pinned-pinned shaft, if the

controller radius r is doubled (and this would not be

excessive in a large number of cases) then radial and

angular optimum damping requirements would be of the

same order of magnitude. Although the radially-

minimised performance indices would be smaller than
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those resulting from angular control, the angular
damper would still be capable of significantly
attenuating the rotor system response.
The above comparison is made with each controller
placed at its optimum location. Practical
considerations may preclude the siting of a radial
controller at its optimum location (on the shaft
span) and thus invalidate the results of the
simulation. The shaft supports present the ideal
location for controller mounting from both an access
and structural point of view. In fact, the
implementation of angular control at each support is
conceivable in many practical installations, whilst
the possibility of including an additional radial
controller on the shaft span would probably be remote
at best.
Because of this and in order to allow a more
realistic comparison, the performance of the radial
and angular controllers is later assessed with both
considered mounted at one of the shaft supports.
It has been assumed so far that:
a) No additional hardware advantages are obtained
by introducing control in an angular fashion.
b) That the choice of actuator type, e.g.
hydraulic, pneumatic, electromagnetic etc., will
not affect the relative performance of radial
and angular controllers.
Both of these points are of significance and are

discussed in greater detail in Chapter 6.
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5¢3.1.3.3 Controller Power

Proper assessment of controller performance demands

not only evalution of vibration attenuation

characteristics but, in addition, consideration of

resulting controller energy dissipation rates (power
levels).
In Fig. 5.8, radial and angular controller power

requirements are illustrated for two shaft support
stiffness values, with the controllers mounted at their
respective optimum locations (i.e. for minimisation of
shaft maximum deflection/sum of squares of response) and

optimum passive damping levels employed.

It is seen that, in general, because of the greater

shaft response both controllers dissipate higher energy

rates when flexible supports are introduced. Exceptions

occur in specific frequency ranges (angular control: 1200-

1800 rad/sec; radial control: 3100-3500 rad/sec), where

the controllers are in close proximity to shaft vibration
nodes.

Of particular interest is the fact that each
controller type has superiority over the other, in terms

of power consumption, within specific speed ranges.

Indeed instances occur (Figs. 5.4 and 5.8, 1800-2400

rad/sec) where even though radial control provides best

response attenuation, correspondingly greater controller

power levels are demanded.

5.3.1.3.4 Controllers Mounted at LH Shaft Supports

With both types of controller mounted at the shaft

left-hand support, intuition suggests that at high
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support-stiffness values, the radial controller will

become ineffective whilst the angular controller may still

give some measure of control. At relatively low

stiffness values, this trend would be expected to reverse.

Consequently, at some intermediate support stiffness, the

two should perform equally well. Fig. 5.9 demonstrates

the influence of shaft support stiffness on the
performance of radial and angular passive dampers.
Results are presented for shaft speeds encompassing the
range 0-3500 rad/sec. The minimised system response
((PImax)min-min) and corresponding optimum damping rates
are shown for the three performance indices.

The stiffness ratio, defined as the ratio of support
stiffness to shaft stiffness, at which both controllers
give the same minimised response will be termed the
‘critical stiffness ratio' (CSR).

The CSR, as expected, is the same for maximum
deflection and sum of squares of displacements criteria,
but different in the case where total bearing force is
minimised. In calculating the stiffness ratio, the
representative shaft stiffness KS is determined for the

case where the shaft is subjected to a central

concentrated force (Ks = 48EI/L3 = 2,36 x 105 N/m) .

From Fig. 5.9a, the CSR is estimated as approximately

15 and 33 for maximum displacement and total bearing force

respectively. Thus, the choice of control damping type,

when employed at the supports in a passive sense, would

depend not only on the operating stiffness ratio, but also

on the performance index adopted.
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At a stiffness ratio of just less than 10, the
angular damper is seen to become relatively ineffective.
This is due to the introduction of a shaft mode where
practically zero-slope occurs at the shaft ends.

The optimum damping rate for angular control is seen
to be insensitive to the stiffness ratio (Fig. 5.9b),
whereas the radial damping rate decreases significantly at
low stiffness ratios.

According to Dostal et al [91] many present-day real
rotor systems employ bearings with a stiffness of the
order 21.6 x 106 N/m. If this support stiffness was used
here, the resultant operative stiffness ratio would be
approximately 90, indicating the possible practical
advantages of angular control in such a system.

It is worth noting that reduction of the maximum
shaft speed, to a value enclosing the first two rigid-
bearing criticals, would result in an extension of the

stiffness ratio range over which the angular controller

would be superior. This is because the radial controller

efficiency is mainly determined by the system reponse at

the first critical speed - a region where, by comparison,

the angular controller is extremely effective.
Consequently, under such circumstances the CSR would

be decreased significantly, thus validating the benefits

of angular control for a greater range of shaft-support

configurations.

5.3.1.3.5 Adaptive Damping Control

The effect of introducing control damping as a

function of shaft speed (adaptive control), in order to
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minimise system response, is illustrated in Fig. 5.10,
where relevant shaft passively-controlled response is
presented for comparison., The response plots of Fig.
5.10a demonstrate the effect of locating the controllers
at their respective optimum positions, whilst those of
Figs. 5.10b-e are for the controllers mounted at the shaft
left-hand support. In the cases where control damping
was optimised continuously, the maximum and minimum
control damping values were chosen as the appropriate
optimum passive damping rate and zero respectively.

Some interesting conclusions may be drawn from these
investigations.

When the shaft supports exhibit high stiffness (shaft
configurations corresponding to Figs. 4.l1lla and 4.1lc) and
dampers are located at their optimum positions (Fig.
5.10a) although the radial damper is seen to be more
effective than its angular counterpart, especially at the
first critical speed, the difference in performance is not
excessive and, in fact, over a large proportion of the
speed range, both perform equally well. Because these
two shaft systems were found to respond in the same
manner, with slight differences at high shaft speeds, only
the response of the 'pinned-pinned' shaft is shown.

When the supports contain substantial flexibility
(Fig. 5.10a) angular control is observed to be much less
effective than radial control, over an extensive central
portion of the speed range. As in the high support
stiffness case, speed zones exist where both means of

control result in the same response, although in this
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instance, the zones are more dispersed and represent a
smaller portion of the complete speed range. Response
attenuation at the first critical speed is almost
identical for both means of control.

For the shaft arrangements investigated here, it was
found that the employment of adaptive control resulted in
the required control damping essentially switching between
the pre~defined maximum and minimum values. Fig. 5.10c
demonstrates this effect and is typical of the form of
control damping required for the systems analysed. It is
clear that the system response may be continuously
minimised (Fig. 5.10b) through the introduction of an 'on-
off' control strategy (Fig. 5.10c), controller switching
occurring around the system 'fixed-points'. These
results are in agreement with those of Burrows et al [69]
though different optimisation procedures were employed.

It is worth noting that in the cases shown and in general,
the 'angular fixed-points' do not occur at the same
frequencies as the 'radial fixed-points'.

The influence of radial and angular adaptive damping
control on the shaft response, with both controllers
incorporated at the shaft left-hand support, is shown in
Fig. 5.10e. Two levels of shaft support stiffness (I(b =
2,13 x 102 N/m and 5.0 x 106 N/m, i.e. stiffness ratios of
approximately 9 and 21 respectively) are considered. At
the top half of the speed range, the superiority of radial
control is evident whilst at the lower speeds, this trend

is reversed with substantial benefits resulting from the

employment of angular damping. As the support stiffness
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is decreased, the effective range of the radial controller
is extended in direct contrast to that of the angular
controller. However, even with a relatively low support
stiffness, the angular approach is seen to offer a
distinct advantage over at least the lower 20% of the
shaft operating speed (i.e. the speed range covering the
shaft first bending critical speed).

For the support stiffness values considered, there
appears to be little advantage in employing the angular
controller as an adaptive device, since its passive
performance is almost as effective (Figs. 5.10d4 and
5.10e). This is also true for the radial damper when a
large support stiffness is present. Referring to Figs.
5.10d and 5.10e, it is clear that there exist definite
speed ranges where radial control provides best system
performance, whilst in other speed ranges angular control
is to be preferred. Consequently, under such
circumstances, some advantage may result from the
introduction of a unified control strategy whereby the
control mode (radial/angular) could be chosen according to
the shaft speed and implemented in either a passive or
adaptive form.

5¢3.1.3.6 Stiffness Control

The application of external spring-like elements to a
rotor-bearing arrangement leads to displacement of the
system critical speeds. The effect of introducing radial
and angular passive stiffness control to the pinned-pinned
shaft case of Fig. 4.1la, at the previously determined

optimum locations, is illustrated in Figs. 5.1lla and
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5.11b. The shaft response for three control stiffness
magnitudes is shown. Due to the increase in shaft
effective stiffness, the critical speeds are augmented -
the extent of modification being dependent upon the level
of stiffness control employed and the effectiveness of
external control on the particular whirling mode under
consideration.

The introduction of a passive stiffness element may
lead to significant shaft response attenuation even in
cases where system damping is small. For example, cases
occur in practice where a shaft operating speed
inadvertently coincides with, or occurs close to, a system
critical speed. Even a small displacement of the
critical speed in such a case may result in a large
reduction of the vibration response. Of course it would
still be necessary to ensure safe passage of the shaft
through other critical speeds which might be encountered
during run-up to the design speed.

This latter problem may be minimised or even
satisfactorily removed by implementing an adaptive
stiffness control strategy. Referring to Fig. 5.11lb, it
is observed that by suitable application of a simple 'on-
off' type control procedure, the shaft response may be
considerably reduced over the complete speed range. This
may be achieved by employing maximum control stiffness at
low shaft speeds up to a speed just above the first
uncontrolled critical speed where the control is then
‘switched-off'. At another point below the next

uncontrolled critical speed, maximum control is once more
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introduced and maintained until the unstiffened second
critical speed has been passed whereby control is again
eliminated. With this trend extended over the complete
speed range, the shaft critical speeds are effectively
avoided and a comparatively low response level achieved
even in the absence of system damping. However, at least
a small amount of damping is desirable if only to ensure
elimination of the possibility of rotor instability which
may occur in various forms [42,109].

5.3.1.3.7 Damping-Stiffness Control

A natural extension to the control procedures
described earlier would be the introduction of a combined
damping/stiffness control approach.

Kaya et al [94] studied the effect of applying such a
technique, in a radial sense, to the shaft arrangement
shown in Fig. 4.1la. Optimum frequency-dependent control
damping and stiffness rates were determined and it was
found that for an inherently undamped system, the
resulting optimum control force tended to be predominantly
either in phase or 180° out of phase with the excitation
forces (i.e. stiffness control). The introduction of
some system damping altered this situation and led to the
requirement of an optimum control force in the form of
combined stiffness and damping. It was observed that the
minimisation of system response may be best achieved, in
certain instances, when the control stiffness/damping
parameters are allowed to take on negative values. In
such circumstances, the rotor-bearing minimised response

would approach the Limiting Performance Characteristic
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(105,110] for the arrangement.

Of course, practical realisation of such a concept
would necessitate the employment of an active control
strategy - a passive device being unable to supply the
required negative stiffness and damping coefficients.
However, application of the above procedure, in the form
of active feedback control, would require great care since
the presence of negative system coefficients may lead to
system destabilisation. This fact was recognised by
Burrows et al [92] who suggested the implementation of an
open-loop adaptive control strategy employing a radial
magnetic bearing as the force actuator. Simultaneous
control and system parameter identification could be
realised by the injection of an additional multifrequency
test signal and application of frequency domain estimation
Eechniques [62].

The procedures described above, although not
considered further, may also be adopted where angular
control is employed and so the conclusions formed above

would be, in general, equally applicable.

5.3.2 System Stability

A number of potential causes of rotor instability
exist in much of the high-speed machinery in operation
today. The presence of any of the following elements -
0il-film bearings, shaft internal friction, asymmetric
rotor support configurations or aerodynamic excitation
forces, may lead to destabilisation.

Of the above, probably the most common cause of rotor
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instability is that resulting from the employment of
journal bearings. When the shaft rotational frequency
reaches a particular value, determined by the bearing
parameters and other operating conditions, the system
damping becomes negative and the shaft whirls at a
frequency of around half the rotational frequency.

It has been shown [43,87] how the introduction of
even a small amount of external damping in such a system
can lead to a significant increase in the instability
onset speed. The effectiveness of employing angular
damping for system stabilisation will be assessed here by
considering its application to the rotor system analysed
by Burrows et al [92] and shown in Fig. 5.13. The shaft
arrangement consists of a symmetrical flexible rotor
carrying three rigid discs and supported on o0il-film
bearings.

Journal bearing parameters are presented in Fig. 5.13
and the eight linearised bearing coefficients are
calculated from equations developed by Holmes [23].

System stability is assessed by examining the real part of
the speed-dependent eigenvalues which are calculated using
a numerical program based on the stiffness coefficient
method (101].

The imaginary parts of the eigenvalues plotted
against shaft speed, for the uncontrolled case, are shown
in Fig. 5.1l4a. Those modes exhibiting relatively small
variation in frequency with shaft speed and shown dashed
in Figs. 5.14a, ¢ and d, are predominantly shaft bending

modes, whilst the others are representative of shaft
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rigid-body motion. The characteristic splitting of the
modes is due to the asymmetric nature of the bearing oil-
film. The degree of system stability is indicated by the
magnitude and sense of the logarithmic decrement which is
shown at selected points. The appearance of a change in
sign of the logarithmic decrement for the first shaft
bending mode indicates the occurrence of instability at a
shaft speed of 361 rad/sec. The shaft precession rate,
137.5 rad/sec, at this speed, is less than half of the
rotational frequency in line with the observations of
other workers [46,108].

The application of external damping as a means of
suppressing the rotor instability is investigated by
considering first the incorporation of a radial damper,
then that of an angular damper at the left-hand bearing.
For the purpose of comparison, the radial and angular
damping levels, required to increase the instability onset
speed by more than a factor of two, to 800 rad/sec, are
computed and compared. Fig. 5.14b illustrates the
variation of the real part of the relevant eigenvalue with
radial and angular control damping levels for a shaft
speed of 800 rad/sec. The radial and angular control
damping rates required to stabilise the system are found
to be 5700 Ns/m and 10.5 Nms respectively.

Setting the angular damper radius to shaft length
ratio, (r/L), equal to 0.03, as before, allows direct
comparison of the required damping rates. The equivalent
linear damping coefficient for the angular controller

(3700 Ns/m) is approximately 65% of that demanded from the
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radial device. Of course, as noted earlier, increasing
the (r/L) ratio would lead to a substantial decrease in
the required angular damping coefficient. For instance,

doubling this ratio leads to a radial damping requirement

of more than six times that for the angular controller.

Figs. 5.14c and 5.14d show the effect, on the system
damped natural frequencies, of introducing radial and
angular damping values of 5700 Ns/m and 10.5 Nms
respectively. Stable operation of the shaft-bearing
arrangement, within the desired speed range, is indicated
by the complete removal of negative logarithmic

decrements.,

It is interesting to note that in the case of radial
control (Fig. 5.14c), at almost all speeds and shaft
flexural modes illustrated, the effect of additional
damping, whilst leading to elimination of the oil-whirl
instability, leads to a substantial reduction in system
damping. This is in direct contrast to the angular
damping effect, where in general, a significant increase
in modal damping is observed (Fig. 5.144). For example,
referring to Figs. 5.14c and 5.14d and considering the
shaft third flexural mode at a speed of 450 rad/sec, the
logarithmic decrements corresponding to radial and angular
control are approximately 0.065 and 0.236 respectively.
Synchronous excitation of these modes due to mass
unbalance would thus lead to greater attenuation of system
response in the case of angular control. Examination of
damping levels at other modes indicates even more

substantial benefits from angular control.
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The application of external damping (radial and
angular) is seen to greatly influence the two ‘'rigid-body’
modes, i.e. those modes running almost parallel with the
synchronous forcing line shown in Fig. 5.1l4a. Although
angular damping substantially increases the damped natural
frequencies corresponding to the above modes, the lower
mode is actually eliminated at a shaft speed equal to 275
rad/sec, when radial control is employed. However, even
with the system in the uncontrolled state, these modes are
extremely well damped and therefore should pose no
problems regarding the presence of unbalance response
peaks (i.e. if they are excited - Figs. 5.14a and 5.1l4c).

The shaft flexural-modal frequencies are influenced
to a lesser extent by the implementation of external
control. Although external angular damping produces
substantial splitting of the modes, the critical speeds
resulting from synchronous excitations are barely altered.
This is not the case when radial damping is employed.
Reference to Figs. 5.14a and 5.14c shows an increase of
approximately 6% in the first three critical speeds when

radial control is introduced.

5.3.3 Chapter Summary

From the results of the analyses performed in this
Chapter, the following main conclusions can be drawn:
1, An efficient optimisation procedure has been
developed and utilised to determine optimum control

locations and damping rates.

2a) Radial control is most effective when introduced at a



b)

3.

4.

5.
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location on the shaft span between the supports.
Angular control is highly efficient when introduced
at a shaft support when the support stiffness is
fairly high. If support stiffness is low, then
better performance can be achieved when the angular
controller is located on the shaft span between the
supports.

Angular control is a viable means of synchronous
vibration reduction and instability suppression in
flexible rotor systems. Optimum passive radial and
angular damping rates are of the same order of
magnitude when a reasonable controller radius is
selected.

The choice of performance index can greatly influence
the optimum control force magnitude and 1location.
Effective control, angular or radial, may be
implemented at all shaft speeds by the incorporation
of an adaptive 'on-off' control approach.

It is clear from the investigations performed and

discussed in this Chapter that both radial and angular

control have their merits in differing circumstances and

that the choice of control method would greatly depend

upon the particular system being considered. In fact, it

may even be possible to combine both means of control to

create an efficient 'unified control strategy’'.
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CHAPTER 6

EXPERIMENTAL EQUIPMENT

A brief summary of the main aspects of the work

covered here is presented at the end of this Chapter.

6.1 Test Rotor

6.2 Rig Requirements

When designing the test-rotor, taking into account

the type of investigations to be performed, the following

were considered as essential features:

1.

2.

3.

Shaft maximum operating speed greater than the first

critical speed.

This is a fundamental requirement for the simulation

of a flexible rotor system.

The test arrangement should exhibit characteristics

which may exist in a full-scale, practical system.

In much modern-day high-speed machinery, the effect

of gyroscopic moments and support-flexibility, mass

and damping may play a major role in influencing the
system dynamic response.

Easily adjustable system characteristics.

System mass/stiffness/damping parameters should be
amenable to alteration to enable investigation of the
influence of these variables on the overall system

characteristics.

Provision for accurate system response measurement

and the introduction of external control forces.

Access to a number of shaft locations for the purpose
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of response measurement and control can be a major
difficulty where substantial alteration of the test
configuration must be allowed for. In such
circumstances the acceptance of a compromise solution

is normally necessary.

To ensure fulfilment of the above requirements, the

test rotor was designed as follows.

6.3 Rig Design

The main test rig consisted of a 1290 mm long, 15 mm
diameter, uniform carbon-steel shaft mounted on double-
row, self-aligning ball-bearings with bearing centres of
1050 mm. A variety of shaft configurations, some
employing intermediate discs and different levels of
bearing-support stiffness, were investigated throughout
the test program. The rotor design was such that in the
majority of test cases, the shaft maximum operating speed
(~ 3000 rpm) was approximately two times the system first
critical speed. The general layout of the test rotor,
including the drive-system, is shown in Fig. 6.la.

In some instances, discs of varying mass/inertia were
rigidly mounted on the shaft between the bearings. The
purpose of the discs was generally two-fold:

a) to enable the application of unbalance masses, and
b) to allow the introduction of gyroscopic/rotary
inertia effects.

Investigation of the influence of electromagnetic
control necessitated the employment of a special 100 mm

diameter, low-loss, silicon-steel disc mounted on the
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shaft adjacent to the drive-end bearing (Fig. 6.1b). All
discs were such that they could easily be axially re-
positioned on the shaft if necessary.

A 0.75 kW, direct-current, variable-speed motor was
employed to drive the test-shaft. Using a timing-belt,
pulley-drive arrangement, the test-shaft, driven through a
stub-shaft assembly, could be run at a speed approximately
3.5 times that of the drive-motor. The introduction of a
flexible pin-cord type coupling, between the stub-shaft
and test-shaft, helped ensure the elimination of
vibrations transmitted from the drive.

The complete system was supported on cast-iron blocks
which were in turn rigidly attached to a large steel table
having substantial mass.

The test-shaft was located axially at the drive-end
bearing and allowed to move freely at the non-drive end to
avoid axial stressing of the shaft (Fig. 6.2).

The bearing support structure (Figs. 6.3 and 6.4) was
designed such that flexibility in the horizontal and
vertical planes could be easily altered by introducing a
range of thin steel-rings of fixed diameter and varying
thickness. The rings could be pre-loaded as required by
the adjustment of four screws within each pedestal. In
addition, the rings were effectively utilised as proving-
rings, through the application of electrical resistance
strain-gauges, thus allowing measurement of the
transmitted bearing force. Because of the fairly
extensive use of strain-gauges in the construction of a

variety of force transducers employed during the test
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program, details of the construction of the components
utilised are provided in Appendix C. Replacement of the
bearing rings with solid steel cylinders enabled the
simulation of rigid supports.

Simulation of support sub-level characteristics could
be accomplished by the introduction of flexible mountings
at the bearing pedestal. This was achieved using helical
springs mounted in parallel with two high-precision linear
ball-bearings (Fig. 6.3).

Non-contact eddy-current displacement probes were
employed to measure the shaft response at various
locations as specified in Chapter 7.

The test-shaft speed was monitored using a Sodenco
magnetic pick-up which produced an output in the form of a
series of pulses. The occurrence of each pulse resulted
from the passing of a shaft protrusion. This signal was
relayed to a Racal universal counter timer which provided
a digital display of rotational frequency within the range
0 - 1.2 Mc/s. The shaft speed signal was simultaneously
stored on an FM recorder.

During all rotating-shaft tests the shaft orbit, at
appropriate locations, was displayed on a dual-beam
monitor by suitably combining the displacement signals in
the shaft horizontal and vertical planes. The orbit data
could be stored on a digital oscilloscope and passed to a
suitable x-y plotter to provide 'hard-copy' information.

As in other tests, the measured response data was
initially stored on magnetic tape using a 7-channel FM

recorder. The recorder incorporated low-frequency filters
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which could be employed to remove any DC bias present in

the response signals.

6.3.1 Component Calibrations

A series of calibration tests was performed to allow
determination of the dynamic characteristics of a number
of test rig components. This was thought necessary to
ensure accurate system modelling.

The stiffness characteristics of the bearing rings
(20 mm OD, 0.5 mm thick) and bearing pedestal springs were
determined from static deflection measurements using
linear regression analysis. Representative results are
presented in Fig. 6.5. Some variation in the stiffness
of similar components is observed. When mounted on the
test-rig these spring elements were arranged so as to
minimise the difference in flexibility characteristics of
the two bearing-support structures. The measured ring and
spring mean stiffness values were 140 N/mm and 143 N/mm
respectively. The resulting effective support
stiffnesses, for each test configuration, are specified in
Chapter 7. One bearing ring in each plane, at each
support, was fitted with strain-gauges (Appendix C) and
calibrated in a similar manner. The strain-gauge signals
were augmented using a high-quality DC amplifier, thus
ensuring a large signal to noise ratio. With bridge
input volts set at 2.25 V and amplifier gain of 2 V/mV,
the resulting overall calibration factor was approximately

1l volt/Newton.

In order to assess the level of damping present and
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to determine the natural frequencies, the bearing housing
and bearing pedestal assemblies were each, in turn, tested
dynamically. This entailed the employment of an
electromagnetic vibrator (described in the next section)
which was used to excite the above systems sinusoidally
over a large frequency range. To ensure repeatability,
in both calibrations and test situations, the pedestal
springs and bearing rings were pre-loaded before each
test, to appropriate pre-defined levels. The bearing-
pedestal (Fig. 6.3) measured natural frequency was found
to be approximately 2%% lower than the calculated value of
5660 cyc/min. The inherent damping was found to be
extremely small as observed from the transient reponse
shown in Fig. 6.6. Dynamic testing of the bearing-ring
assembly produced some unexpected results. Figure 6.7
represents a system receptance plot and indicates the
presence of a number of closely-grouped resonances, the
major one occurring around 123 Hz.

Analysis and presentation of the test data in
receptance form enables accurate determination of natural
frequencies and damping levels for vibration modes which
may be closely spaced [112], an advantage not realised
when using some other methods [112]. Kennedy and Pancu
[113] showed how for a single-degree-of-freedom system
with hysteretic damping, the receptance versus frequency
plot on an Argand diagram is a circle. Structural or
material damping can be represented mathematically in a
variety of forms [114], most common of which is the

assumption of a restoring force 180° out of phase with the
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velocity and with magnitude proportional to the system
stiffness., Thus, for a single-degree-of-freedom system
the combined stiffness-damping force is defined as a
complex stiffness K = K (1 + ig). The term g is a
proportionality constant dependent upon the specific
material properties. Based on this approach for a
single-degree-of-freedom, the receptance a can be

expressed as:

3 = uei¢
where
K \Via - 892 + ¢ c
and » = tan”! [-g/(1 - 8?)]

At the natural frequency, w = w, and B 1, so that

u = 1/Kg

Thus, measurement of the relevant receptance circle
diameter [112] will provide details of the system
structural damping. Material damping is normally very
small and the assumption of viscous damping under such
circumstances leads to an almost circular receptance plot.
The equivalent (frequency dependent) viscous damping
coefficient is given by C = Kg/w. From the plot shown in
Fig. 6.7 g is estimated as 0.0076 and the equivalent
viscous damping rate at the natural frequency is
calculated as 3.4 Ns/m. These figures indicate the low
level of structural damping available.

The emergence of numerous resonance peaks is thought
to be mainly due to the inability of the shaker

arrangement to excite only the housing translational mode
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of vibration. The calculated system natural frequency of
110.7 Hz is substantially lower than the measured
predominant value since for estimation purposes, only the
rings in the direct line of motion of the housing were
considered. As a result, for modelling purposes, an
effective bearing-ring stiffness of 350 N/mm was computed
from the measured frequency. A typical response plot
resulting from a transient test on an individual bearing-
ring is presented in Fig. 6.8 where again the lack of
internal damping is self-evident.

The above test results clearly show the bearing-
support structural damping to be extremely small so that
for modelling purposes these elements could be safely
considefed as pure springs.

The eddy-current proximity probes were calibrated on
a sample section of the test shaft. The gap versus
output voltage data was recorded using a Vernier/clock
gauge arrangement and digital voltmeter. Four of the
eight probes were calibrated and a nominal sensitivity of
266 mV/THOU obtained (Fig. 6.9). The probes had a linear
range of 1.5 mm (0.060 ins) and linearity of + 1% over the

frequency range 0 - 20 kHz.

6.4 Vibrator Arrangement

Throughout the experimental work, a number of shaker-
tests were performed on a variety of rig components.
Figure 6.10 shows a schematic diagram of the equipment,
including instrumentation, used for such tests.

The force was produced by a Goodman's electromagnetic
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vibrator. A sinusoidal signal of variable frequency
supplied by a function generator was augmented, using a
power amplifier, before being fed to the electromagnetic
shaker.

System response was measured, in general, using non-
contact displacement probes.

The force, where possible, was measured using a
Piezo-electric force transducer with overall nominal
sensitivity of 10 mV/N. A charge amplifier, transforming
transducer electrostatic charges into proportional output
voltages, was required for use with the Piezo-electric
transducer. However, during the early stages of the
work, this type of device was not available and it was
necessary to construct an axial force transducer. The
conflicting requirements of high-rigidity and high
sensitivity led to the employment of semi-conductor strain
gauges having a gauge factor of approximately 140. Such
components are fairly sensitive to temperature effects.
However, this influence was minimised by proper
utilisation of a four-arm Wheatstone bridge arrangement
(Appendix C, Section C.l1l.2). Signal (low-frequency)
drift was eliminated by introducing a high-pass filter
with lower cut-off frequency of approximately 5 Hz.

A DC strain gauge amplifier was employed to boost the
force signal. Calibration of the constructed transducer
was effected by physically connecting, in series, a Piezo-
electric transducer, introducing an axial dynamic force
and measuring the transfer function: strain gauge
transducer output voltage/Piezo-electric transducer output

voltage, using a real-time frequency analyser. Knowing
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accurately the calibration factor for the Piezo-electric
device enabled that for the new transducer to be
determined (Fig. 6.11). Repeatability checks at normal
ambient air temperatures (20° + 10°C) confirmed the
transducer's relative insensitivity to temperature effects
within this temperature range. Connection of the strain
gauges in a specific manner (Appendix C) ensured the
elimination of the influence of bending moments resulting
from inevitable small misalignments, an advantage not
available when using a Piezo-electric type transducer.
With an amplifier gain setting of 2.28 V/mV and bridge
input-volts set at 2.25 V, the nominal overall calibration
factor was measured as 51 mV/Newton.

Throughout the tests a digital oscilloscope was used
to observe the system response and input force signals to
ensure the elimination of any unexpected peculiarities.

All relevant signals were recorded on a 7-channel FM

tape recorder for later analysis on a digital computer.

6.5 Mechanical Dampers

A number of commercially available 'Kinetrol' rotary
vane-type, viscous dashpots were employed to enable the
introduction of external radial damping at various shaft
locations.,

Initially, adjustable PTFE pads were utilised to
provide the necessary low-friction contact between the
damper arms and shaft as suggested by other workers [91].
However, severe problems, including excessive pad wear and

the emergence of large vibration components having
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frequencies corresponding to integer multiples of shaft
running speed, resulted in the use of a modified damper
arrangement,

Fig. 6.12 shows the re-designed set-up where a shaft-
mounted, self-aligning ball-bearing is located within a
nylon housing which is free to slide, in one direction
only, within the damper-arm assembly. With this
arrangement, shaft external frictional forces were
minimised and the need for decoupling of the control
damping in the two planes could be practically achieved.

The modified damper assembly performed very well as
long as certain setting-up procedures were adhered to
(Section 7.5.2).

An attempt to introduce damping to the rotor, in an
angular fashion, using the configuration shown in Fig.
6.13, was largely unsuccessful for much the same reasons
as for the original radial damper design. After a number
of attempts to overcome the problems, it was decided that
mechanical application of angular damping to the test-
rotor posed so many problems that extensive rig
alterations would be necessary if this approach were to be
followed through. Since a large portion of experimental
work would be concerned with the performance of a
contactless angular electromagnetic controller, mechanical

angular damping was considered no further.

6.5.1 Damper Calibrations

The radial mechanical dampers were calibrated 'in-

situ', i.e. mounted on the test-shaft, by exciting the
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shaft using an electromagnetic shaker arrangement as
described in Section 6.4 and by measuring the resulting
system response at a number of locations. By determining
the undamped/damped test rotor characteristics, the
device's dynamic parameters could be estimated.

The calibration procedure adopted was based on the
utilisation of system dynamic influence coefficients and
is described in Appendix D.

Many unexpected problems were experienced during the
calibrations. For instance, in an effort to reproduce
test conditions, the dampers were set-up as described in
Section 7.5.2. However, this resulted in the (necessary)
presence of a small clearance in the damper slider
mechanism leading to some deterioration of the harmonic
response waveform. This was overcome, to some extent, by
locking the damper slider arrangement. The results,
although probably not wholly representative of a rotating
shaft situation, were at least repeatable (for a fixed
input force level) and the waveform distortion had been
eliminated. The damper was found to be capable of
exerting a greater influence on the system response using
the latter approach, as would be expected.

Further investigations were performed to assess the
linearity of the Kinetrol dampers. Fig. 6.14 shows the
measured system receptances for three levels of input
force, with the damping rate set at maximum. The extent
of the non-linearity is indicated by the degree of
disparity of the response plots. It is clear that the

choice of force level will have a marked effect on the
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calibration results. Consequently, in an effort to
obtain more meaningful data in all subsequent damper
calibration tests, the force level was chosen so as to
provide a system response of the same order as that
measured during the rotating shaft tests.

During calibrations the damper arm length was set at
110 mm, this corresponding to the setting used throughout
the rotational tests.

The measured damping rates (Fig. 6.15) are shown to
reduce drastically with increasing frequency, thus

rendering the dampers ineffective at the higher shaft

speeds.

6.6 Electromagnetic Actuator

6.6.1 Design and Construction

The size of the magnets employed was determined
mainly by test-rig access limitations and the availability
of suitable laminations. The angular controller
consisted of a set of four small, ‘'u-shaped', silicon-
steel, laminated electromagnets rigidly mounted on a high-
reluctance Tufnol support stand (Fig. 6.16) to minimise
flux leakage effects.

The laminations used for the magnet cores were
obtained by modifying commercially available 'E-type'
laminations. With the lamination size fixed (Fig. 6.18),
the magnet coil, mounted on one limb, was designed to
allow for maximisation of the number of turns. Effective
utilisation of the available space resulted in a

compromise between the number of coil turns and coil size
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(current-rating). The final coil design was based on 200
turns of 22 SWG enamelled copper wire giving a total
resistance of approximately 0.99.

A number of parameters need to be considered in the
design of electromagents viz; force requirements, flux
density limitations and heat dissipation rate. All of
these variables are of course greatly affected by the
choice of air-gap.

Based on a maximum coil-current of 2 amps, the
magnets were designed to produce corresponding
electromagnetic forces in the range 7.5 - 93 Newtons for
gap and flux density ranges of 0.035 - 0.010 ins (0.89 -
0.25 mm) and 0.28 - 0.98 TESLA respectively. This design
resulted in the attainment of reasonable magnet force
levels, whilst ensuring minimisation of magnetic
saturation (for silicon steels BSAT ~1,0 - 1.2 TESLA).
For the above conditions, the computed c¢oil maximum heat
dissipation rating is approximately 0.2 W/cmz, which is
half the recommended maximum allowable wvalue [106] for
intermittent but frequent use. The magnet cores were
placed equi-distant from the shaft centre-line and mounted
at 90 degrees to each other with their pole-faces extended
in a direction parallel to the shaft axis (Figs. 6.1lb and
6.17). The magnetic circuit is completed when the flux
is linked axially from both limbs of each magnet to a
shaft-mounted disc. Thus, the introduction of an axial
magnetic force offset from the shaft axis produces a

control moment at the disc.

When an alternating magnetic flux field is set-up in
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an electrical conductor, eddy-currents are created
resulting in energy loss in the form of heat. The power
dissipated due to such losses is proportional to the
square of the frequency of the alternating field and thus
can be significant at high frequencies. The introduction
of laminated cores helps to minimise this effect. In the
conventional arrangement [87] where the magnetic flux
follows a radial path, the rotor component of the magnetic
actuator may be constructed in a laminated form without
much trouble. However, when the flux path is orientated
as in this case, lamination of the magnet rotor component
is much more difficult. To overcome this problem, it was
decided that a solid disc having special magnetic
properties, would be utilised for transmission of the
magnetic forces from the magnets to the shaft. A high-
resistivity, silicon steel, shaft mounted disc was thus
employed to minimise eddy-current and hysteresis effects.
This arrangement eliminated the need for costly and time-
consuming manufacturing processes and in fact, was later
found to function extremely well even at fairly high
frequencies (100 Hz).

Because electromagnets can pull but not push, the
magnets were controlled in diametrally-opposing pairs.
Each magnet-pair is controlled individually according to
the measured shaft-slope signal in that plane.
Arrangement of the control actuator in the form of two
sub-systems, one in each orthogonal plane, is in line with
the princples of decentralised control as described by

Schweitzer [89]. Such an approach simplified the control
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strategy considerably. The control forces in the shaft
horizontal and vertical planes are practically uncoupled
and at any instant in time a maximum of one electromagnet
per plane is operational. In addition to the above, the
introduction of such a magnet configuration eliminates the
need for extra measures which would be required to remove
the inherent flux-leakage/linkage problems [87].

Levelling of the magnet pole-faces, a factor critical
to the operation of the actuator, was achieved through the
use of a surface-grinder. The magnets were rigidly fixed

to the support stand and then all machined to the same

height.

6.6.2 Control Hardware

In formulating a suitable control procedure to allow
investigation of the influence of angular control, great
emphasis was placed on simplicity.

In this early stage of development of the angular
electromagnetic controller, no hardware linearisation
techniques were employed. The effectiveness of a pre-
magnetising current as a control-current linearising tool
has been described elsewhere [84]. However, using this
approach, a static instability will be introduced (Section
6.6.3) unless counter measures are taken. Additionally,
the force producing capacity of the electromagnet may be
reduced significantly due to the current-sharing of the
windings, thus confirming the desirability of some other
means of current linearisation.,

The electromagnetic force is also a non-linear
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function of the air-gap which alters according to the
specific system response.

In radial systems this variation in gap may be
significant and may necessitate the introduction of some
counter-measures [87]. When employing an angular
controller, however, the location of the device may be
chosen (see Section 6.6.4.1) so that during normal shaft
running the air-gap is sensibly constant.

Shaft-slope is sensed in each plane by suitably
summing two shaft displacement signals, obtained using
non-contact eddy-current type probes (Fig. 6.19a).

Each resulting slope signal was introduced to an
analogue circuit designed to create a signal phase lag in
the range 90° - 180°, thus providing as output, a combined
proportional-derivative feedback signal. The magnitude
of the feedback signals could be altered by varying the
gains of the operational amplifiers. These gains were
controllable through utilisation of an outer digital
control loop employing a micro-computer (Fig. 6.19a).
Controller damping and stiffness could thus be adjusted
manually by keyboard input or automatically through
software control. The hardware employed is illustrated
in Fig. 6.19b.

Each magnet-coil was served by a 30 Watt DC power
amplifier, necessary for boosting the control current to
an acceptable level.

Considering any two electromagnets in the same plane
(Figs. 6.17 and 6.19a) by appropriate signal

rectification, the positive part of the feedback signal
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may be used for one and the negative part for the other
magnet, this ensures that only one magnet per plane is
operational at any one time.

Current feedback was employed to minimise the effect
of variation of electromagnet impedance with frequency,
thus effectively ensuring a fixed coil-current for a given

shaft displacement amplitude irrespective of signal

frequency.

6.6.3 System Control

For simplicity, consider the application of the above
angular control system to the single-degree-of-freedom
system represented in Fig. 6.20. 0 is the centre of
rotation of the system. The system may be represented,
in general, by the following differential equation:

I6 +C0 + KO = Me - ME (6.1)
where Is' Cs and K are the system inertial, damping
and stiffness properties

Me is an external excitation moment
Mf is the resultant feedback control moment
and Mf = cFé + (R - K;) ©

K, is the magnet 'negative-stiffness' due to the

P
presence of a DC pre-magnetising current

Cp and KF are the effective feedback damping and

stiffness coefficients and for the sake of this analysis

are assumed constant.

Let: CF = CN + CL
and Kp = Ky * K.
where CN and KN are the nominal damping and stiffness

feedback coefficients to be selected by appropriate choice
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of op-amp gains (Section 6.6.2). These would represent
the resultant system damping and stiffness coefficients if
the control circuit components did not introduce
undesirable phase lags to the feedback response.

In real systems this is not possible and response
lags occur. The coefficients CL and KL represent this

effect, their signs being determined by the degree of lag
‘L

present. The phase lag ¢, = ARCTAN |—|.
L KL

Substituting the above in equation (6.1) and

considering the system to vibrate freely, Me = 0 and

Ise + (CS + CN + CL)e + (KS + KN irKL - Kp)e =0
or Ise +CO +Ko =0
where C=Cy +Cy+C,
and K = KS + KN i.KL - KP (6.2)

The signs and relative magnitudes of the coefficients C
and K in equation (6.2) will clearly determine the system
stability state.

A number of interesting cases can be considered.

In the calibrations which follow (Section 6.6.63), in
all cases 0 <| ¢L| < 90° and thus in the following cases,
where applicable, the signs of CL and KL will be set
accordingly.

1. Shaft with no internal damping (CS = 0) subjected to

magnetic damping control (CN # 0)

Consider the magnet without pre-magnetisation:

(Kp = 0)

KN =0 and CL is -VE ; KL is +VE

Therefore from equation (6.2):
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C=Cy-Cp and K = Kg + K|
Thus no system instability will occur provided
Cy > Cpe .
In addition, the introduction of magnetic damping is
seen to increase the system effective stiffness.

2, Shaft with no internal damping (CS = 0) subjected to

magnetic stiffness control (KN # 0)

Consider the magnet without pre-magnetisation:
(K, = 0)
Cy =0 and again C, is -VE ; K is +VE

From equation (6.2):

Cc = -CL : K= KS + KN + KL

This time a dynamic instability is introduced due to

the negative damping term. Again the system

stiffness is increased. For such a system if CL is
small, then the introduction of a small amoung of
magnetic damping would remove the above problem.

It is obvious that the effect of the component phase
lag ¢L could be counteracted using some form of lead
compensation. In addition, it is clear that the use of a
pre-magnetising current, although useful in linearising
the force-current relationship, will always have a
destabilising influence and thus some of the proportional
feedback may have to be utilised just to eliminate this
effect,

The above two cases were considered because of their
relevance to the experimental work described in Chapter 7.

The special case of magnetic levitation may be

considered by setting CS = Kg = 0 and considering lead
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compensation to be present, CL =K = 0.
Therefore from equation (6.2):

N and K = KN - KP

Thus, if Ky < Kp the system is statically unstable -

c=2¢C

a well known fact.

Although the above analysis is presented for a simple
single-degree-of-freedom system, the conclusions reached
are also applicable in principle to multi-degree-of-

freedom systems.

6.6.4 Electromagnet Theory

Consider the flux field between an active
electromanget and the shaft disc with the disc in its mean
position (Fig. 6.21). Ignoring flux fringing and
leakage, the flux path would be as shown.

For a magnetic circuit, the line integral of the
magnetic field strength H taken around any complete line
is equal to the current enclosed [107], thus:

J Hd1l = £ I = N.i. (6.3)
where N is the number of coil turns and i is the coil
current,

Since the relative permeability, u_ ., of the magnet
lamination material is much greater than the permeability
of free space, My it is safe to assume that the magnetic-
circuit reluctance can be approximated as that of the air-
gap.

The electromagnetic attraction force F may be
determined by considering a small change in the air-gap, G

and equating the work done in displacing the magnet to the
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change in air-gap magnetic energy [84].
Following this approach it can be shown that:

M, A N2 i2
F = (6.4)

8 2

where A is the magnet pole face area. For the magnet

design employed heres

N = 200

2 x 8 x 16 x 10°° n?

A

so that F =1.609 (i/G)?2 (6.5)
with the gap G in millimetres and current i in amps.

6.6.4.1 Electromagnets in Angular Form

Because of the inherently simple physical arrangement
of the electromagnets in the case of angular control, the
possibility exists for simple adjustment of the air-gap to
improve, for instance, performance inadequacies created at
the design stage. In addition, the magnet air-gap could,
conceivably, be introduced as an additional variable
within an adaptive control strategy. Such a procedure
could not easily be employed for a radial controller due
to the intrinsic geometrical limitations. Further, when
applying radial control to a flexible shaft system, the
trend has been to locate the device at a point on the
shaft span where a large uncontrolled response (i.e. an
anti-node) exists. This highlights an additional
advantage when using angular control. To illustrate the
point, consider again the Jeffcott-rotor considered in
Chapter 5 (Fig. 5.1). Consider the electromagnet air-gap
G, to be selected proportional (proportionality constant -

d) to the uncontrolled response q, at that location.
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This seems reasonable since some clearance must be allowed
to exist in the event of controller failure.

Then G = doquo

Referring to equation (6.4) the magnetic force F may

be estimated froms

F = k.(i/G)2 = :2 LA

where k is a constant dependent mainly on the magnet
geometry.

With the subscripts r and a referring to radial
control at the shaft centre and angular control at a
support respectively, then the ratio of force production

capacities for the controllers would be:

2 . 2
Fa _ (90" ()
F 2 ° ,. .2
o (g )¢ (i)
(qur)2
and for a shaft central unbalance,-—————§-= 123.5.
(qua)
F, (ia)2
F . 2
r (lr)

Therefore, even though the system demands greater
control force levels from the angular device it is evident
that with equal control currents, in theory, greater
forces may be obtained from this controller because of the
smaller gap. However, an increased magnet core area
would be required to cope with the greater flux and thus a
better alternative would be to employ a larger gap with a

subsequent benefit in linearisation of the device.
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Alternatively, a smaller current may be applied with a

consequent reduction in control power consumption.

6.6.5 Controller Modelling and Calculation of the

Effective Linear Electromagnetic Coefficients

Due to the nature of the techniques employed for
simulation of test rotor performance (Chapter 4) a linear
model of the electromagnetic controller is required.

Since the magnet pairs in orthogonal planes are
controlled individually according to their respective
slope feedback signals, a maximum of four control
coefficients are considered to be present at any instant
in time. The possibility of coupling between orthogonal
planes is minimised as a result of the size and location
of the individual magnets. When the dynamic axial
displacement of the shaft-mounted silicon-steel disc is
very small in comparison to the air-gap (Chapter 7) the
assumption of constant gap is a reasonable one so that any
coupling effect should be negligible. If the control
current i is a linear function of the shaft-slope feedback
signals ¢ and © then the control moments MY and Mz are, 1in

general:

2 112
K(p (¢)° + CQ (9)

M
Y
and M

2 Ay 2
z Kg (0)° + Ce (9)

The linearised damping and stiffness coefficients CL

and KL may be obtained by equating the terms:

Y
respectively, for the linear and non-linear cases.

I My . ®dt (J'Mz . 0dt) and f M d (sz . 0dt)

i.e. [IM 2 _ . ,
iee. I Yy ° th]linear = [[M, . odt] to obtain

Y non-linear
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CL<I> and
[J'My . ¥4t ;i car = [J’My o $dt] on-1inear tO obtain
K and similarly for CLe and KLe‘

Lo
In the following analysis, only the plane containing

slope ¢ is considered since the results may be applied
directly to the other plane.

If the integral terms are considered as positive
quantities, then the following convention may be used.,

Let ¢ = 3 sin (wt + P).

. A A

Therefore: $ = wd cos (wt + P) = & cos (wt + P)

The phase angle P may be expressed as:

P =P, + P (6.6)
where Pc represents the phase angle of the control moment
relative to the shaft negative slope velocity signal (—é)
and is selected according to the type of control employed,
i.e. stiffness (Pc = 90°) or damping (Pc =0). The phase

angle P, represents the undesirable phase-~lag component of

L
the magnet and control-circuit transfer function and is
measured experimentally using the calibration rig
described in Section 6.6.6.1.

The control moment My is assumed to be of the
following form:
2

~n r - =
for 7 <wt <5 ) My M cos™ wt
m 3 . - _ 2
and for 7<wt <2—) My— M cos” wt
42
When damping control is utilised, M = CNL<I> « &7 4

= 22

Whilst for stiffness control, M = KNL@ R

If the control hardware introduces negligible

unwanted time delay (PL = 0), then:
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for damping control

IMY . ddt = 0 (i.e. KLQ = 0)
and for stiffness control (6.7)
fMy . $dt = 0 (i.e. CLQ = 0)

In general,

(NE

2m M odt =1 M cos? wt g cos (Wt + p) duw
y [ m f -" L p t

o —2
(6.8)
3r
2
-1 2 A
B_-I T M cos wt . & cos (wt + p) dwt
2
and
L
2

A
2n IMY . ddt =-%-f -7 M cos2 wt . ¢ sin (Wt + p) dwt

° 3

(6.9)
3n
2
-1 2 A
ZT_I - M cos” wt . ¢ sin (wt + p) dwt
Upon integration, the above equations yield the
following:
2 8 M@
T . _ 8 M$
o J My . 0dt = 3% cos p (6.10)
2 8 M3
nw = O N9 N
and o S My . ¢dt = T o sin p (6.11)
respectively.

Now, considering an equivalent linear system and

employing damping and stiffness control respectively.

Then:
A
. C A 2
2m _ Lo 21 32 2 _7d
° / MY . ¢dt —Tf 0 $® cos™ wt . dwt -TCLQ (6.12)

and
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K A2
2 _ 'L® 2m A2 _. 2 - o
5 d My . 0dt =27 g7 9% sin® wt . dut =~ K, (6.13)

Now equating (6.10) to (6.12) and (6.11) to (6.13)

gives:
-8 M 4
CL¢ 3n 3G—cos P (6.14)
and Kpo '%%’ sin p (6.15)

Thus the effective linearised stiffness and damping
coefficients, KL and CL' to be used in the simulations may
be determined by utilising the magnet calibration data and
the experimentally measured shaft-slope response (¢ and 9)

at the controller, at each shaft speed.

6.6.6 Electromagnetic Controller Calibration

6.6.6.1 Calibration Rig

A specially designed and constructed calibration rig
was employed (Fig. 6.22) to obtain the dynamic
characteristics of the electromagnetic actuator. The rig
enabled the measurement of electromagnetic bending moment
by utilising semi-conductor strain-gauges in a ‘'four-arm'
bridge arrangement (Appendix C, Section C.1l.3). An
output voltage proportional to bending moment was
obtained. The transducer was calibrated using the same
techniques as those discussed in Section 6.4, where
calibration of the axial force transducer is described.
Fig. 6.23 shows the frequency response of the device.

With the strain gauge amplifier gain set at 5 V/mV (bridge
input volts = 3 V), the overall transducer-amp sensitivity
was 7,24 V/Nm- in the range of 10 - 40 Hz (magnet radius =

44,5 mm). The transducer sensitivity is seen to increase
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substantially above 40 Hz due to a system resonance around

167 Hz. This effect was taken into account in subsequent

magnet calibrations.

6.6.6.2 Calibration Procedure

Throughout the electromagnet calibrations the
following parameters were varied in turn to allow
investigation of their influence on the controller
performance.,

1. Control feedback gain and control type (i.e. damping
and/or stiffness).

2. Magnet air-gap.

3. Control signal frequenéy.

4. Amplitude of simulated shaft-slope signal.

The calibrations entailed the use of a function
generator to provide a sinusoidal voltage (V) at input to
the control circuitry. This was used to simulate the
shaft-slope feedback signal. During each test the air-
gap was held constant. Measurement of the magnet control
current was made possible by monitoring the voltage drop
across a small (0.12) resistance placed in series with the
coil.

A number of tests, covering the frequency range 0 to
100 Hz, were performed. Throughout these tests three
signals were recorded:

a) Electromagnet control moment.

b) Magnet control current (i(t)).

c) Simulated shaft-slope volts (V(t)) (input to control
circuits).

This data was recorded on magnetic tape and later
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processed on digital computer providing signal amplitude
and phase information for subsequent estimation of the
electromagnetic damping and stiffness parameters.

The input voltage V(t) is related to the simulated
shaft-slope ¢(t) through the relationship:

V(t) = k . o(t) (6.16)
where k is the effective gain of the shaft displacement
transducer arrangement, relating shaft-slope at the
controller to voltage input to the control circuitry and
was found to bé a real constant over the test frequency
range (0 to 100 Hz). Using equation (6.16) ®&(t) could be
calculated from the measured V(t) values.

The electromagnet/control-circuit was considered as a
'black-box' and for pre-determined operational amplifier
gain and control-type (stiffness or damping) settings, its
characteristics were determined by measuring the overall
system transfer function. Having obtained the moment
amplitude M, phase Py (relative to input volts V(t)) and
the slope signal V(t), application of equations (6.6),
(6.14), (6.15), (6.16) and (6.17) enabled computation of
the magnetic stiffness and damping coefficients.

During the calibrations, it was observed particularly
at the higher frequencies, that unwanted time delays were
introduced (Section 6.6.6.3) to the control moment signal
as a result of control-circuit/magnet component phase-lags
(pL #0)e. This had the effect of creating an additional
stiffening moment when damping control was employed and

vice-versa.

The phase angle p;, was calculated from the measured
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phase p, as follows:

for damping control pL lpml - 90

for stiffness control P = lpml - 180

(6.17)

Throughout the tests p;, although fairlf small, was
found to be in the first quadrant (Section 6.6.6.3) i.e.
0—-90°,

Considering this effect in equations (6.14) and

(6.15) for damping and stiffness control in turn, we

obtains
For damping control (pc = 0°)

8
0<CL0<31T_
8
n

Sz ed=

0 <KL¢> <T¢

For stiffness control (pc = 900)

-8 M
?§< CL@ <0

8 M
0 <K <37 %

Thus, positive control stiffness is always maintained
but negative damping may occur (Section 6.6.6.3).

Because of the nature of the procedures employed
during rotating shaft tests (Chapter 7), the linearised
control coefficients estimated using the methods described
here required further modification in accordance with the
techniques described in Appendix E.

6.6.6.3 Magnet/Control-Circuit Calibration Results

At various stages during the calibrations, a number
of the signals recorded were monitored using a real-time

frequency analyser. The signals were observed to be
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practically harmonic, as expected, except for the

electromagnet bending moment signal which although
periodic, displayed a number of harmonics illustrating the
non-linearity of the devices.

Following the procedures described in Sections 6.6.5
and 6.6.6.2, the linearised electromagnetic damping and
stiffness coefficients were determined for a range of
control signal amplitudes and frequencies. Some typical
results obtained from the calibration are presented in
Fig. 6.24. The graphs show the magnetic damping
coefficients to be a linear function of control signal
frequency and amplitude, whilst the stiffness coefficients
are dependent only on the latter parameter. The ‘
characteristics validate the magnet force-current square-
law relationship (equations (6.14) and (6.15)). Thus for
damping and stiffness control respectively, the

coefficients are expected to be of the form:

_.b A

CL¢ = b, wv
_ A

KL¢ = bK \)

A
where V is the shaft slope control signal amplitude and
bc’ bK are constants dependent upon the circuit gain

settings.

To aid in computation of the coefficients, for use in
later system simulation, linear regression analysis was
performed through utilisation of the least-squares method.
Examination of the calibration data presented in Fig. 6.14
shows that in general the straight-lines fitted to the
data, if projected, do not pass through the graph origin.

Thus, the magnet coefficients may be more accurately
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predicted using the following relationships:

A
C a, + bc wV Nms/rad

Lo

Kro = 3

where w is the signal frequency (Hz).

A (6.18)
+ bK v Nms/rad

The coefficients a and b in equations (6.18) were
computed using a least-squares approach and are shown in
Table 6.1 for a range of calibration settings. The
corresponding correlation coefficient R is also presented.
This parameter gives an indication of the reliability of
the above relationships in their representation of the
control hardware characteristics. A value of R in the
range 0.8 to 1.0 would provide confirmation of the
validity of these expressions [116]. Analysis of the
calibration results showed that the data could be best
represented by considering two separate frequency ranges
as shown.

The angular damping and stiffness coefficients which
may be predicted using equations (6.18) and the
information supplied in Table 6.1, are based on a.mean
electromagnet radius of 44.5 mm. This was also the
radius setting employed in the rotating/vibrating shaft

tests described later.
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Micro-
Computer | Magnet
Digital |[Air-Gap Freq
Control Gain mm Range Coeff Coeff
Type Setting (THOU) (Hz) a b R
Damping 70 0.9 (35)| O0<w<40| 0.3912 0.0415(0.986
. " . 40<w<80| 0.2623 0.03870.884
" 90 " 0<w<40| 0.8784 0.1067{0.987
" " " 40<w<80| 0.5937 0.1015{0.921
- 110 . 0<w<40| 1.0378 0.1739(0.99
. . . 40<w<80} 0.8186 0.1582(0.95
Stiffness 100 . 0<w<40]66.95 145.13 0.996
" " . 40<w<8037.68 166.93 0.874
. 110 . 0<w<40|71.3 159.0 0.995
" . . 40<w<80]21.2 211.0 0.876
Damping 70 1.1 (43)| 0<w<30| 0.2938 0.0285|0.986
" " " 30<w<50| 0.2213 0.0281)0.998
" 90 . 0<w<30| 0.5669 0.0777|0.997
. " " 30<w<50}| 0.4822 0.076 |[0.982
- 110 . 0<w<30| 0.7519 0.1245(0.997
" . . 30<w<50| 0.5613 0.1239 /0.981

The above information was stored on computer and used

in conjunction with data obtained from shaft controlled

response measurements to enable computer simulation of the

test conditions (Chapter 7).

As far as is known, the principle of angular control

has never been considered elsewhere.
researchers will have little

angular damping and stiffness.

'"feel!

As a

for the

Expression

coefficients in a more conventional form is

desirable.

result,

units of

of the angular

therefore

In the test and calibration environments,

bending moments are imposed upon the system by introducing
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forces parallel with, but offset from, the principle
bending axes of a shaft-mounted disc. Thus, the angular
coefficients CL¢ and KL¢ may be replaced by axial
coefficients CLA and KLA acting at a mean radius r. If
the shaft motion is small, then the axial and angular
coefficients are related as follows:

C

2
La = S/t

2
1a = Kpp/f
and in particular substituting the value of r used in

K

these investigations (r = 0.0445 m) we obtain:

Ns/m

C 505 CL

LA ¢

KLA = 505 KLQ

The maximum attainable electromagnetic stiffness and

N/m

damping coefficient values were determined by power
amplifier DC supply current limitations. The current
limit was set slightly above 2 amps. Under these
circumstances and for the cases considered, the maximum
attainable magnet coefficients in the 0 to 100 Bz
frequency range were found to be as follows:

CL¢ (max) ~ 12.6 Nms/rad (CLA (max) =~ 6360 Ns/m)

(Fig. 6.24c)

)
KL¢ (max) =~ 800 Nm/rad (KLA (max) ~ 4 x 10~ N/m)

(Fig. 6.24e)
It is seen that the electromagnets, though small in
overall size, are capable of introducing reasonable
magnitudes of control damping and stiffness, even in the

presence of a relatively large air-gap.
Typical plots of the control hardware frequency-

response are presented in Fig. 6.25, The measured
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bending moment phase angle, relative to the shaft-slope
signal, is denoted by P whilst that of the magnet current
is represented by Py Figs. 6.25a and 6.25b illustrate
the effect on these phase angles of utilising damping
control and stiffness control respectively.

For each control case at low signal frequencies,
undesirable component phase-lags are negligible and the
bending moment signal is of a pure damping and pure
stiffness form respectively. However, as the frequency
is increased, such unwanted phenomena are introduced.

For example, when damping control is employed, the system
phase-shift is approximately 108° and 124° (pL = 18° and
34°) at 50 Hz and 100 Hz respectively, thus effectively
leading to the presence of a stiffness control effect.

It is seen that approximately half of the overall unwanted
lag, Prs is due to the main control circuitry and the
other half due to the magnet coil arrangement. When
stiffness control is introduced, Py, is less than that
which results when damping control is employed.  This
improvement is observed to occur mainly in the analogue
control section of the hardware, i.e. phase P, has
decreased significantly. This indicates the presence of
an additional phase component in the circuitry used to
perform signal differentiation, i.e. when damping control
is utilised.

In the majority of test cases, described in Chapter
7, the operational range of the electromagnetic controller
was limited to 0 to 3000 rpm (0 to 50 Hz). In these

circumstances, the maximum undesirable control system
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phase-shifts, P, would be approximately 18° and 9° for
damping and stiffness control respectively. These values
are small but system performance could be improved if
necessary by introducing some form of lead compensation.

In Fig. 6.26 the measured and predicted electromagnet
bending moments are compared for a range of control
currents and three air-gap settings. The theoretical
curves were plotted using equation (6.5). Although some
discrepancy between theoretical and experimental results
is evident, examination of the experimental data confirms
the validity of the form of the magnet force-current-gap
relationships presented in Section 6.6.4. The maximum
bending moment which can be produced without current
overloading and with an air-gap setting of 0.9 mm (0.035
ins) is approximately 0.45 Nm. This corresponds to a
magnet force of 10.1 Newtons. The electromagnet measured
force capability is, surprisingly, greater than that
predicted from theory. This may be due, to some extent,
to fringing at the magnet pole-faces leading to an
increase in the effective pole-face area.

The calibration data obtained in this section is
sufficient to enable the creation of a suitable model for
the electromagnetic controller for use in later rotor

simulations as described in Chapter 7.

6.7 Instrumentation

Because of the wide variety of tests performed
throughout the experimental investigation, relevant

details of the instrumentation employed are provided in
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the appropriate sections throughout this chapter and
Chapter 7. In many of the tests conducted, the HP 3582A
Spectrum Analyser was found to be extremely useful in
providing instant information regarding the signal

frequency content.

6.8 Data Analysis Equipment

Analysis of the data stored on tape was performed
using an FFT algorithm available on the MINC 23 digital
computer. The analogue data was processed using the
computer's A/D converters which had an input voltage range
of -5 V to +5 V providing a resolution of 2.44 mv.

The software was designed such that the signal
employed for phase reference purposes (shaft speed signal
in rotating-shaft tests and excitation force signal in
vibrating-shaft tests) was used to trigger the A/D
conversion process. The shaft rotational (vibrational)
frequency was computed by averaging the measured period of
vibration over a suitable number of cycles (normally 10
cycles unless significant speed fluctuations were
suspected). Other shaft response data, e.g. shaft
displacement, bearing forces etc. was analysed, employing
time averaging techniques to enhance the signal-to-noise
ratio, using 128 samples per period where possible.
However, at frequencies greater than approximately 35 Hz,
sampling-rate limitations necessitated the use of 64
samples/period. These sampling rates were more than
adequate for accurate signal digitisation. Before
processing test data, proper functioning of the algorithm

was verified by analysing a sinusoidal waveform, of known



172.

amplitude and frequency, produced using a function

generator.

6.9 Chapter Summary

The work described in detail in this chapter may be

briefly summarised as follows:

1.

2,

3.

4.

5.

A laboratory rig comprising a high-speed shaft
mounted on rolling-element bearings was designed and
constructed. The rig was designed such that
investigation of system response, on a number of test
configurations, could be easily achieved.

A number of displacement/force transducers, employing
electrical resistance strain gauges, were constructed
and tested and found to perform satisfactorily.
Vibration testing of the bearing flexible-support
assembly showed the material inherent damping to be
negligible.

Calibration of the Kinetrol mechanical dashpots
presented many problems due to the device's inherent
non-linear characteristics. In addition, severe
deterioration in damper performance was observed as
the excitation frequency was increased.

A simple, small and robust angular electromagnetic
actuator was constructed and, along with the
associated control hardware, calibrated using a
specially constructed rig. Damping and stiffness
coefficients were obtained and the following

observations made:

a) Damping and stiffness forces were always



b)

c)
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evident, irrespective of the type of control

demanded, due to the introduction of undesirable
control signal time lags. Although in certain
circumstances this effect could result in system
instability problems, these could easily be
eliminated by slightly increasing the control
damping rate.

The measured damping and stiffness coefficients
were found to be in accordance with a magnet-
moment/current/gap relationship of the form

M = k. (i/G)2 as predicted by theory.

The measured electromagnet force capacity was
found to be in fair agreement with that

predicted from theory.
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CHAPTER 7

EXPERIMENTAL RESULTS AND THEORETICAL COMPARISON

7.1 General
In this chapter, results obtained from a number of

tests performed on a laboratory rig (Figs. 6.1) are

presented and a comparison made with theoretical data
produced using the transfer matrix program described in

Chapter 4. The test procedures employed are described in

detail along with the shaft arrangements investigated.

The main aims of the experimental portion of the work
were as follows:

1, To verify the accuracy of the analysis program
developed and described in Chapter 4.

2. To examine the effectiveness of the application of
external control forces (radial and angular) in
attenuating rotor system response.

3. To investigate, in particular, the performance of a
new type of contactless angular electromagnetic
actuator when employed to implement different control
strategies.,

In each test, eddy-current proximity displacement
probes were mounted at convenient locations along the
shaft ;n the horizontal and vertical planes. Results, in
the main, are presented for measurements made in the
horizontal direction, although where appropriate, details
of shaft response in the vertical plane are also shown.

The displacement probe locations were fixed for each

test case and chosen such that they were always displaced
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from any nodal points appearing within the specified
frequency range. In each plane the response measured at
each probe was combined with that of the other probes to
enable calculation of a root-mean-square (rms) value which
was chosen as the representative system response function.
This eliminated the need for measurement of the shaft
maximum response (Chapter 5) which would generally require
re-positioning of the displacement transducers during
test-runs [91]. A similar procedure was adopted when the
shaft system was subjected to external excitation using an
electromagnetic shaker. However, here a more meaningful
parameter, rms-receptance, was chosen as the system
response function.

Transmitted bearing forces and bearing pedestal
displacements were recorded in certain test cases by
making use of electrical resistance strain gauges and
eddy-current displacement probes respectively.

In addition to the above, when vibratory shaft tests
were performed (as opposed to rotating shaft tests), it
was necessary also to record the external excitation force
using an axial Piezo-electric force transducer. In
rotating shaft situations, non-contact measurement of
shaft rotational speed was performed using a Sodenco
magnetic pick-up as described in Chapter 6. These latter
two signals were each used for phase reference purposes in
their respective cases.

Since the test shaft was found to possess significant
initial-bend (0.164 mm maximum) in certain cases (e.g.

Test 3), a procedure was adopted to enable elimination of
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this effect. This was achieved, for each shaft

configuration, by recording shaft response data for two

test-runs, each run corresponding to a different pre-
defined unbalance distribution. Subsequent vectorial
subtraction of the measured data led to elimination of the
influence of shaft permanent bend.

In addition to the normal forced response tests, in a
number of cases transient 'hammer tests' were performed
and system response analysed with the aid of a real-time
frequency analyser. This allowed estimation of system
natural frequencies.

At intermediate stages throughout the seies of tests
described here, repeatability checks were implemented to
ensure meaningful results. The test data was recorded on
magnetic tape and later analysed using an FFT algorithm on
digital computer as described in Chapter 6.

Although the majority of the tests were performed
with the shaft rotating, in some cases additional
vibrating shaft tests were conducted. The latter
approach was included because of the resulting benefits,
vizs
i) Test results become totally independent of shaft-

bend/residual-unbalance effects.

ii) System response levels may be selected to suit
prevailing safety and other important considerations
by appropriate adjustment of the external excitaton
force.

iii) The test frequency range can be extended considerably

without the need for special safety measures (shaft
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maximum running speed = 3000 rpm).

iv) A number of extraneous effects may be eliminated,
e.dg. undesirable multi-frequency excitation from the
drive system and unwanted friction effects resulting
from physical contact with mechanical dampers.

v) The approach enables comparison of the relevant
system receptances for various positions of
excitation source, thus providing information
regarding the most suitable locations and types of
external control, irrespective of the form of
controller to be employed, e.g. mechanical;

electromagnetic etc.

Of course, when such test methods are employed, the
results must be considered with care and account taken of
any rotor-dynamic effects which have been eliminated as a
result of the test procedure, e.g. the gyroscopic
influence of shaft-mounted discs. In all instances where
such tests were performed, an attempt was made to maintain

the external excitation force level constant over the

frequency range.

7.2 Auxilliary Test Riqg - Rig A

An additional test rotor having the dimensions shown
in Fig. 7.1 was utilised at an early stage of the research
work, mainly for balancing studies, before the laboratory
rig described in Chapter 6 became available.

The test rig consisted of a uniform low-carbon steel
shaft supported on single deep-groove ball-bearings which

were mounted in steel bearing-housings. The nature of
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the construction of the bearing-housings resulted in
support anisotropy, the greater stiffness prevailing in
the horizontal plane. Three pulleys equally spaced were
clamped to the shaft by means of taper-lock bushes. Each
pulley had provision for the addition of balance weights
at eight equally-spaced axial drilled and tapped holes.
Rotor stiffness/inertia dissymmetries were present as a
result of geometric irregularities in the pulley bushes.
The complete rotor-bearing system was rigidly bolted to a
solid lathe-bed, which in turn was isolated by means of a
layer of compressed cork, from the supporting foundation.
Proximity probes were employed to measure the shaft
dynamic response.

The measured shaft first (synchronous) critical
speeds were 560 rpm and 580 rpm in the vertical and
horizontal planes respectively. Maximum shaft speed was
limited to 1800 rpm for safety reasons.

This test-rig displayed some interesting phenomena
which are discussed later in the relevant sections.

In the remainder of this chapter, all results pertain
to the test-rig arrangement as described in Chapter 6,
unless specific reference is made to Rig A,

Throughout the test program rotor-balancing was found
necessary in a number of instances, to minimise inherent
shaft/rotor mass unbalance. The procedures adopted were

as described in the following section.

7.3 Test Rotor Balancing

The relative merits of currently available flexible-



179.

rotor balancing methods are discussed in Chapter 2.
Because of its simplicity and suitability for programming
on digital computer, the Influence Coefficient Method was
selected for the purpose of balancing the laboratory rig.
A computer program based on the work presented by Goodman
[50], was created and tested by performing balance
measurements on a number of rotor arrangements.

The effectiveness of the balance program was
initially assessed by considering test-rig A, The
balance procedure allows for multi-plane, multi-speed
correction through a least-squares approach. The rotor
was balanced at three planes and two shaft speeds (545 rpm
and 750 épm), i.e. one above and one below the first
critical speeds. Before balancing, the lack of inherent
system damping meant that the critical speeds could only
be traversed by applying external damping, whilst
simultaneously ensuring rapid rotor acceleration.

The balancing procedure was as follows:

1. Measure displacement amplitude and phase at each
balance plane and speed. This is termed the zero-
rotor data.

2. Apply a trial-mass to each balance plane in turn and
at each balance speed measure displacement amplitude
and phase at the corresponding locations. This is
termed the trial-mass data.

3. The zero-rotor and trial mass information obtained
from Steps 1 and 2 is used as input data to the
balance program. The data provides details of the

system influence coefficients from which the program
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predicts the required magnitudes and locations of the

correction masses.

The correction masses are then applied to the rotor
and Steps 1 and 3 above repeated if necessary.

After one balance correction, it was found that the
test rotor could be run through its first critical(s)
fairly rapidly, without the need for external damping and
without excessive vibration. Following another balance
correction, the first critical(s) could be traversed
without external damping, even with small acceleration,
with a low level of shaft vibration. Fig. 7.2 shows the
measured shaft response at the central pulley in the
horizontal plane before and after balancing. The
characteristic peak at the first critical speed is clearly
observed, but the response has been attenuated
considerably as a result of balancing. Another large
response peak present at a speed approximately equal to
half of the first critical speed is shown to be
insensitive to balancing. The phenomenon is termed a
'secondary critical' and is discussed in greater detail
later.

An example of the measured shaft zero-rotor, trial-
mass and final balance data is presented in Fig. 7.3.
Reductions in unbalance response at the two balancing
speeds are seen to be generally of the order of 90% and in
one case as much as 95%. Output data from the balancing
program is displayed in Fig. 7.4. Correction mass
magnitude and location requirements are seen to be

different when the shaft is to be balanced only at the



181.

low speed. It is observed that after the second balance
correction, the calculated maximum residual vibration is
somewhat larger than the rms residual, even though the
overall residual vibration level is low. This indicates
the possibility of further reducing the maximum residual
vibration (Plane 1, 750 rpm) through employment of a
weighted least-squares procedure such as that described in
Ref., [50].

The above results, along with those obtained from the
main laboratory rig throughout the research work described
herein, confirm the effectiveness of the balancing method
adopted.

One criticism of the above procedure is that in some
instances, the magnitudes of the computed correction
masses were relatively large because of their angular
orientation. Thus, althwugh the nett correction effect
was acceptable, an optimum mass distribution was not
achieved. Although this posed no problems in a
laboratory environment,the possible disadvantages in a
practical situation are evident. However, if necessary,
this problem could be overcome to a certain extent by, for
example, employing linear programming techniques {117] so
that constraints on the correction mass size may be

introduced.

7.4 Asynchronous Vibrations and Secondary Criticals

Frequently throughout the experimental work when the
shaft was run without external control damping the
resulting response, although in the majority of cases of a

predominantly synchronous form, was found to consist of a
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number of non-synchronous harmonic components. This
characteristic was particularly evident when running close
to a shaft critical speed and in some cases even resulted
in the appearance of a low-frequency beat. Although from
a data analysis point of view its influence could be
sufficiently minimised, the problem was further
investigated.

The source of the problem became apparent when the
test-shaft was uncoupled, the motor/pulley-drive
arrangement run on its own and the response measured.

Even under the above circumstances, excitation of the test
shaft system resonances was found to occur at almost any
motor speed. Although the shaft response was initally
extremely small, if left for a sufficient period of time
the displacement amplitude was found to become quite
large.

Further investigation showed the cause could be
attributed to two main factors: i) emanation of a
broadband excitation from the drive system (Fig. 7.5) and
ii) lack of inherent test system damping.

The effect of the above undesirable features was
minimised by: a) supporting the drive motor on anti-
vibration mounts and b) suitable adjustment of the
drive-belt tension.

In addition to the above, secondary-criticals [67]
were frequently observed throughout the test program. A
secondary-critical occurs when an excitation component
with frequency equal to some multiple, or sub-multiple, of

the shaft rotational frequency coincides with a system
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natural frequency. The phenomenon has been found to
occur in practical rotor systems with horizontally mounted
shafts and low damping. The absence of the effect in
vertical shaft arrangements confirms the contributory role
of gravity.

The most common type of secondary-critical is that
where a shaft non-synchronous excitation occurs at a
frequency equal to two times the shaft rotational
frequency, thus leading to a 'critical-speed' at a shaft
speed of approximately half the first primary critical-
speed. The secondary-critical in this case is often
termed the 'half-critical' and was observed in this form
frequently in the test work described in this chapter.

It may be shown [118] that if a rotating horizontal
shaft has unsymmetrical elastic properties about the two
principle axes, then the gravitational force will induce a
secondary resonance at a shaft speed equal to the mean of
the primary critical speeds. Den Hartog [67] showed how
the same effect could result from the interaction of
unbalance and gravity forces, even in the absence of shaft
asymmetries.

Den Hartog suggested shaft balancing as a means of
differentiating between the above two possible causes.
The principle is that if after proper balancing at the
primary-critical speed, the secondary-critical remains
unaltered, then shaft asymmetry is the culprit. This
approach seems reasonable but certain limitations exist.
If system damping is effectively zero, then even a very

low level of shaft unbalance will be sufficient to produce
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a large resonant response at the 'half-critical'. In
addition, since secondary-criticals appear within a very
small shaft speed range, i.e. they are very sharp in form,
exceptional speed control may be required to ensure a
valid pre and post-balance response comparison.
Investigation of secondary-criticals found to occur
in éhe laboratory rigs examined indicated their cause, in
general, to be a combination of the above two factors.
Fig. 7.2 shows the effect of balancing the system shown in
Fig. 7.1. Although the response around the primary-
critical speed (= 580 rpm) is seen to be attenuated
considerably after balancing, that at the 'half-critical'’
(=~ 290 rpm) remained almost unchanged. It is evident from
this plot that, in certain circumstances, shaft response
at a secondary-critical may be more severe than that which
would result when running at a primary critical. In
other cases, the application of balance correction masses
was found to reduce to some extent the 'half-critical'
response. More detailed investigation showed the shaft
response at the 'half-critical' to be influenced by the
flexibility of the coupling. The couplings employed
throughout the experimental work were of the pin and chord
type (Fig.7.6), where an elastic-band was used as the
flexible torque-transmitting element. Close examination
of this set-up highlights the inherent asymmetric
stiffness properties. Altering the grade of elastic-band
employed confirmed this view, the most flexible
arrangement resulting in the best performance in terms of

secondary-critical response. However, a compromise was
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necessary, regarding the coupling stiffness, to ensure
good torque-transmission characteristics and so it was
never possible to eliminate secondary-criticals without

the use of external damping (see Test 3).

7.5 Tests

A range of tests were performed on the rig shown in
Fig. 6.1 and described in Chapter 6. The effect of
external radial and angular control, using mechanical
dashpots and an electromagnetic actuator respectively, was

investigated. The influence of shaft initial-bend was

considered first.

7.5.1 Test 1 - Shaft Response Due to Permanent Bend

The response of a uniform, initially-bent, rotating
shaft was investigated. Displacement probe positions are
shown in Fig. 7.7a, although for comparison purposes, only
probes 4, 5 and 6 were used to compute the measured rms
response.

The shaft support configuration employed was that

designed to simulate radially-rigid bearings (Section

6.3).

The magnitude and orientation of the shaft bend was
measured by recording the displacement at suitable
locations along the shaft length whilst slowly rotating
the shaft. The shaft bend data used in the analysis
program to enable prediction of shaft response was a
computed average of bend measurements taken before and
after each test run. This approach was found necessary

since variations in the magnitude of the shaft initial-
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bend were observed throughout the experimental work.
This phenomenon, also reported by other workers [91], was
of a transient nature since it was found that, after each
test run, if the shaft was left unrotated for a sufficient
length of time, e.g. 24 hours, then the initial-bend would
resort to its original form.

Details of the average shaft bend for this test are
given in Fig. 7.7b, where the bend is observed to be

almost planar.

The shaft maximum speed was restricted to 3000 rpm
for safety reasons.

During testing the lack of inherent system damping
was evident (Figs. 7.7c~e) since response measurements
above the first critical speed could only be obtained
after introducing external damping to allow safe passage
to the higher shaft speeds where the damping was
subsequently removed.

Fig. 7.7c is a plot of measured and predicted shaft
rms displacement response obtained from probes 4, 5 and 6
(Fig. 7.7a). The theoretical plot agrees very well with
the experimental data, thus confirming the validity of the
system model. The measured first critical speed is
observed to be slightly greater than the predicted value
and is estimated from the response plot as 1630 rpm.
Similar plots are presented in Figs. 7.7d and 7.7e, where
the individual displacements at probes 4 and 5
respectively are illustrated for comparison. As would be
expected, agreement between theory and experiment, on the

whole, is very good, particularly at probe 5.
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To assess the accuracy of the analysis program in
predicting the complete shaft response, the shaft
displacement was measured at various locations along its
length. At zero shaft speed the predicted shaft
deflected form should agree identically with the measured
shaft bend. This was indeed found to be the case and
provided confirmation of the ability of the transfer-
matrix program to take account of shaft lack of
straightness. The measured and predicted shaft deflected
forms, at three selected speeds (520, 1400 and 2000 rpm)
are shown in Fig. 7.7f. Experimental and theoretical
data are observed to correspond extremely well. The
greatest disparity is seen to occur at a shaft location
corresponding to displacement probe number 4. The cause
appears to be related to inaccuracy in the measurement of
shaft bend at this position, since at low and high shaft
speeds the magnitude of the error is almost constant.

In addition to the above, transient tests were
performed in order to:

1. Determine the system natural frequencies, and
2. Assess the influence of the coupling arrangement on
the dynamic characteristics of the test shaft.

The natural frequencies in the vertical plane were
found to be consistently greater than those in the
horizontal plane, although only marginally. With the
shaft rotating at 1200 rpm, the natural frequencies were
measured as 27.2 Hz (1632 cyc/min) and 27.4 Hz (1644
cyc/min) in the horizontal and vertical planes

respectively. Since in this case, gyroscopic effects
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could be safely ignored, the measured natural frequencies
would be expected to coincide with the shaft critical
speeds. This was indeed the case. The bearing-supports
appeared to exhibit greater flexibility in the horizontal
plane. Examination of the physical aspects of the support
arrangement justified this conclusion (Figs. 6.3 and 6.4).

The first four, static-shaft, natural frequencies in
the horizontal plane, with coupling removed, were measured
as 27.0, 98.0, 172.0 and 274.0 Hz (1620, 5880, 10320 and
16440 cyc/min). The corresponding theoretical values are
26.9, 96.7, 168 and 274.6 Hz respectively (i.e. 1614,

5801, 10078 and 16477 cyc/min). These figures
demonstrate the validity of the system model, all four
natural frequencies being estimated to within
approximately 2%.

The influence of the coupling on the shaft dynamics
was assessed by comparing measured natural frequencies for
the coupled and uncoupled shaft cases. With the coupling
removed, the shaft fundamental natural frequencies were
recorded as 27.0 Hz and 27.2 Hz in the horizontal and
vertical planes respectively. Comparing these values
with those above, it is clear that the coupling did in
fact have a restraining effect on the test shaft, leading
to an increase in the system natural frequencies.

However, the effect was minimal and indeed resulted in, at
most, a fundamental frequency shift of less than 1%.
Consequently, in all subsequent computer analyses, this
effect was excluded.

In the tests just described, the absence of
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gyroscopic influences along with the employment of

rolling-element bearings resulted in de-coupling of the

shaft motion in orthogonal planes.

7.5.2 Test 2 - Effect of External Mechanical Damping

The shaft system employed in Test 1 was again
utilised to enable examination of the effect on system
synchronous response of applying external damping to the
shaft.

The influence of damper location was investigated by
introducing radial damping at three shaft positions in

turn using mechanical vane-type dashpots as described in

Section 6.5,

The three damper locations corresponding to Tests 2a,
2b and 2c are shown in Pig. 7.8a where the displacement
measuring positions are also indicated.

The measured shaft initial-bend, recorded with the
dampers 'in-situ' is presented in Fig. 7.8b.

Three levels of damping were selected during each
test-run and the shaft response recorded. The
incorporation of a rolling-element bearing between the
damper arms and shaft helped minimise rotary-friction
forces and for all practical purposes, ensured decoupling
of the rotor response in the horizontal and vertical
Planes.

Adjustment of clearance within the damper sliding-
block assembly (Fig. 6.13) was found to critically affect
the shaft response. As a result, in an effort to ensure

consistency, an appropriate pre-test set-up procedure had
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to be devised.

Initially, the damper clearance in both planes was
adjusted such that no external damping was applied to the
shaft. Next, the shaft was run constantly at a speed
close to the first critical speed to provide a substantial
shaft response. The resulting response was monitored in
both planes and the corresponding damper clearances
adjusted until a point was reached where a small reduction
in response level was observed, thus indicating the
elimination of clearance within the relevant damper
assembly.

Shaft measured and predicted rms displacement
response, computed from the displacements at locations
corresponding to probe positions 4, 5 and 6, are presented
in Figs. 7.8c-e.

Although agreement between theory and experiment is,
on the whole, seen to be poor, at least the predicted and
measured response trends correspond. Similar problems
were experienced by Kaya [94] who also used Kinetrol
dampers in an experimental study.

The results obtained in Test 1 suggest the lack of
agreement observed here to be mainly due to inaccurate
modelling of the damper arrangement. The nature of the
problems experienced throughout the damper calibrations
(Chapter 6) strengthens this view.

The inability of the analysis program to accurately
predict the damped system response is felt to be mainly
due to the following contributory factors:

1. Inherent non-linearity of dashpots (Fig. 6.15).
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2, Presence of excessive clearance within the damper

sliding-block arrangement (Fig. 6.12).

3. Influence of undesirable friction effects emanating
from the damper sliding-block assembly.

The inherent complexities of the mechanical dampers
were further illustraged wh?n an attempt was made to
predict the damper characteristics required to ensure
correspondence between the location of experimental and
theoretical 'fixed-points'. This resulted in the
computation of an extremely large effective damper inertia
which could not be accounted for from assessment of the
device's physical dimensions.

As a result of time limitationé, it was not possible
to investigate this problem further. However, a number
of useful observations may still be made regarding the
application of external control measures, from the results
obtained.

Referring to Figs. 7.8c(i) to 7.8e(i), the
application of external damping can lead to significant
reductions in system response, the degree of attenuation
being greatly dependent upon the damper location. As
expected, control of the shaft first mode of vibration is
best achieved with radial damping applied at the shaft
centre (Test Arrangement 2¢). The ineffectiveness of the

radial damper when employed at a location close to a shaft

support is demonstrated in Fig. 7.8c(i). In this case

the shaft first critical speed could not be traversed,

even with maximum damping employed.

The ability of the damper to substantially displace
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the shaft response peaks (Figs. 7.8d(i) and 7.8e(1i))
suggests the presence of relatively large damping forces.

The appearance of clearly-defined 'fixed-points' in
the response plots, in these circumstances, provides
confirmation of the views expressed in Chapter 5. There
it was suggested that even though the choice of response
function (in this case a reduced shaft rms displacement)
could lead to invalidation of the fixed-point theory,
fairly accurate 'fixed-points' would result for a large
range of damping values.

In Chapter 5, it was discussed how an optimum control
damping rate could be chosen to minimise the system
maximum response over a specified shaft speed range. In
order to ahieve this, the damping level would have to be
selected so that the response plot would pass, with zero
slope, through the highest system fixed-point.

Considering the response plots resulting from Test 2c
(Fig. 7.8e(i)), the optimum damping level is seen to
correspond approximately to a damper setting of 2.

Similar conclusions may be drawn for the case investigated
in Fig. 7.8d(i) where the optimum damper setting appears
to be somewhere between minimum and 2.

The relatively small variation in optimum damping
levels with respect to damper locatiop over a central
section of the shaft is in agreement with the findings of
Dostal et al [91]. One would expect the optimum damping
requirements to increase as the damper location approaches
the shaft supports and the disparity between the results

of Tests 2b and 2c in this regard, is probably due to the
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non-linear nature of the damper arrangement.

Looking at Figs. 7.8c(i) to 7.8e(i), it is clear that

the system response can be minimised at each shaft speed
by following a procedure whereby the damping is switched
between two levels, this switching occurring at the
'fixed-point(s)'. Considering the speed range 0 - 2750
rpm, best control is achieved if the largest damping rate
(setting 4) is selected at low shaft speeds and maintained
up to a shaft speed corresponding to the first 'fixed-
point' (i.e. approximately 1650 rpm for test case 2c¢).
At this speed the damping is removed (or reduced to a
minimum) resulting in minimum shaft response at all higher
speeds up to the next 'fixed-point’'. These findings are
in complete agreement with the results of a theoretical
investigation presented in Chapter 5 and indicate the
possible benefits of employing an adaptive 'on-off’
control strategy. In such circumstances, no advantage is
realised when a continuous form of control is employed.
Application of angular damping to the above test-
shaft arrangement was attempted using a modified damper
set-up (Section 6.5). Considerable attenuation of the
rotor response was found possible but, although the damper
arms incorporated PTFE pads to reduce friction effects at
the shaft-disc, problems of excessive pad wear were
experienced, even at low shaft speeds. Despite numerous
attempts to maintain a constant pad contact-pressure
during testing, repeatability of results could not be

achieved to an acceptable degree.
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The problems experienced here and during Test 2,
highlighted the major difficulties resulting from the
employment of a control device whose operation
necessitates physical contact with a rotating component.
In fact, in these latter tests, it was decided that due to
the inherent complexities of the damping assembly,
extensive modifications, which would be required in an
attempt to eliminate the above problems, could not be
justified and that angular control could be best achieved

by utilisation of a non-contact device.

7.5.3 A Note on the Electromagnetic Controller

The electromagnetic damping/stiffness coefficients
were adjusted by altering the control circuit gain
settings using a micro-computer. The level and type of
control required could be set in two ways: a) through
software implementation or b) by keyboard input. The
required degree of control was varied by selecting a
digital value in the range 0 - 128, these representing the
minimum and maximum control settings respectively. The
relationship between the digital setting and the resulting
level of control is a non-linear one. Controller
performance data, for the range of control parameters
employed in the following tests, is presented in Chapter
6.

In the next four sections, the appropriate

electromagnet digital settings (Creg and Kref) are

displayed on the relevant response plots for reference

purposes only and should not be confused with the
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resulting control damping and stiffness rates. Because
of magnet non-linear behaviour, the resulting
damping/stiffness rates are not constant, but vary with
response amplitude and/or frequency (shaft speed), even
when the control gain is fixed. The coefficients have
been estimated from the magnet calibration data, measured
shaft response and the procedures described in Appendix E
(see Chapter 6).

Access limitations and the need to avoid stray
magnetic fields dictated the location of the displacement
probes employed to provide the feedback (shéft-slope)
signal for the control circuitry. Details regarding the
position and spacing of these probes are furnished in the
relevant figures.

Alignment of the electromagnetic controller with the
shaft-mounted, silicon-steel, low loss disc to achieve the
desired air-gap was found to be a critical and sometimes
time-consuming operation. The procedure employed
necessitated positioning the magnet pole-faces hard
against the disc, then after locking the magnets in
position on the support stand, slowly displacing the
magnet assembly axially by employing a jacking-screw
arrangement. The required gap was then set using feeler-
gauges and the magnet support stand finally locked in
position on the baseplate.

The importance of magnet support rigidity was
highlighted when some operational problems were
experienced. Subsequent modifications led to the

elimination of undesirable destabilising influences.
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7.5.4 Test 3 - Anqular Electromagnetic Control of a

Rigidly-Supported Shaft

The purpose of these tests was to assess the ability
of a contactless angular electromagnetic controller to
attenuate the synchronous unbalanced response of a
flexible rotor. Details of the magnet arrangement and
allied electronic control circuitry are presented in
Section 6.6.

The test-shaft, details of which are presented in
Fig. 7.9a, was located on radially-rigid supports as in
Tests 1 and 2. However, subsequent raising of the shaft
support-structure led to an increased flexibility in the
horizontal plane. The electromagnetic actuator was
located slightly inboard of the drive-end bearing.

A number of light, wooden discs designed to accept
small balance weights were sited at various positions on
the shaft. The disc material was chosen to minimise the
additional lumped-mass/inertia so that, dynamically, the
system would differ only slightly from that analysed in
Tests 1 and 2. This was intended to allow some measure
of comparison between the various test results.

The electromagnet air-gap was set at 0.89 mm (0.035
in). Test 3 consisted of two parts. The aim of the
first part (Test 3a), was to investigate the effect of the
application of electromagnetic damping. The second
portion of the work (Tests 3b and 3c¢) was undertaken with
a view to studying the influence of electromagnetic
stiffness control. Without the application of external

control, it was found impossible to run the shaft within



197.

the speed range 1350 rev/min to 1650 rev/min, due to
excessive system response.

Results obtained from Test 3a are presented in Fig.
7.9b(i). Shaft rms displacement, computed from the
readings of probes 4, 5 and 6, is shown for four levels of
electromagnetic damping. The introduction of angular
damping is seen to result in considerable attenuation of
the system resonant response. The application of low-
level damping (Cref = 70) was found to be sufficient to
ensure safe passage of the shaft through its first
critical speed (1500 rev/min). With maximum damping
employed (Cref = 110) the largest measured uncontrolled
shaft responses (at 1425 rpm and 1570 rpm) are seen to be
reduced by 71% and 63% respectively.

At shaft speeds close to the first critical speed,

the test shaft may be considered to act as a single-

degree-of-freedom system. If the characteristics of this

equivalent, single-mass system can be estimated, then a
more realistic assessment of the degree of control present

can be made. For a single-mass (Jeffcott) rotor with

disc mass M and mass unbalance force of mem2 and supported
on rigid bearings, the system displacement response may be

calculated [119] from:

me f2

M
Ja - £92 4 (26)?

X =

where £ = w/mNAT

displacement response of single-degree-of-

X
freedom system

dimensionless damping factor
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For the test-shaft vibrating in its first mode, the
shaft stiffness k may be estimated using the formula for a
centrally-loaded uniform shaft (k = 48EI/L3). Making use
of the measured first critical speed (1500 rev/min), the
system effective mass M is computed as 0.877 kg.

Utilising the above equation in conjunction with the
measured undamped test-shaft response, a least-squares
procedure was employed to determine the system me value
(4.6E - 5 kgm).

The same least-squares method was then used to
estimate the damping factor g from the measured damped
response plots illustrated in Fig. 7.9b(i).

The resulting damping factors are 0.05, 0.1 and 0.13
corresponding to the reference settings (Cref) 70, 90 and
110 respectively. The control damping levels may be
considered to be relatively small, but would be effective,
in terms of system vibration attenuation, in any 'pinned-
pinned' shaft arrangement vibrating in its first mode.
Additionally, a relatively small increase in the magnet
effective radius would lead to substantially greater
system damping levels.

The above estimation technique could have been
performed more accurately by making use of modal methods
(Chapter 3). However, at the time of this work no such
procedures were available. The approach adopted is an
approximation to the more conventional modal methods.

Referring to Fig. 7.9b(i), an interesting aspect is
the appearance of an approximate 'fixed-point' at a speed

of 1950 rpm. This 'point' does not coincide with the
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uncontrolled response due to an inherent electromagnetic
stiffening effect resulting mainly from control-circuit
component phase-lags (Section 6.6.3). The employment of
an 'on-off' adaptive damping control strateqgy, as
described in Chapter 5, in this case would clearly require
the electromagnet 'switching-speed' to be dependent upon
the initial damping setting.

The measured damped response at a single shaft
location corresponding to probe 4 (Fig. 7.9a) is shown in
Fig. 7.9c(i) for comparison. The single-point response
plots are of identical form to the shaft rms plots but, in
general, of greater magnitude. An approximate 'fixed-
point' is also seen to occur, in this case at a speed of
1910 rpm. The predicted rms and single-point shaft
displacements are shown in Figs. 7.9b(ii) and 7.9c(ii)
respectively. In both cases the agreement between
measured and predicted uncontrolled response is excellent.

This close agreement is seen to deteriorate somewhat
when control damping is introduced. The theory predicts
the presence of approximate 'fixed-points', although these
are observed to occur at slightly lower shaft speeds than
the corresponding measured ‘'points”®.

The lack of agreement between measured and predicted
shaft damped response is thought to result from a
combination of the following contributory factors:

1. Inherent magnet non-linearity (i.e. inability of the
predicted linearised magnet coefficients to reflect
the true (non-linear) magnet performance).

2. Variation of the shaft initial-bend with time. This
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effect could introduce errors into the procedure for

computation of the equivalent linearised magnet

coefficients (Appendix E).

3. Variation of electromagnet air-gap.
4. Measurement error.

Where a linear analysis approach is adopted and the
test-shaft possesses significant permanent bend, as in
this case, then the effects described in paragraphs (1)
and (2) are, to a large extent, unavoidable.

The good agreement achieved between measured and
predicted shaft uncontrolled response appears to confirm
an acceptable level of measurement accuracy (paragraph
(4)) .

The assumption of constant air-gap was further
assessed by examination of the shaft angular response at
the controller. Of all the tests performed with the
controller in operation, the measured maximum displacement
at the magnet air-gap was found to be approximately 0.05
mm (0.001 in), for an air-gap setting of 0.89 mm (0.035
in). This condition occurred with the shaft running at
its first critical speed and the reference damping level,

c + set at 70 (Fig. 7.9b(i)). The largest peak

ref
response value present at other damping settings was found

to be less than half of this figure. Thus, although the
variation in air-gap was not significant, some improvement
in the theoretical results may be achieved if the

controller was calibrated dynamically.

The influence of magnetic coupling between the shaft

horizontal and vertical planes, was investigated during
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various tests. With the shaft running close to
resonance, maximum damping was introduced in one plane
only and any alteration of response in the orthogonal
plane noted. This procedure was performed in the shaft
horizontal and vertical planes in turn. Only minute
changes in response levels were observed, thus confirming
earlier assumptions. In fact, some coupling would be
expected anyway as a result of gyroscopic influences.
Details of the variation of angular damping with
shaft speed, for Test 3a, are presented in Fig. 7.9d.
The damping rates were computed from the magnet
calibration data presented in Chapter 6, in conjunction
with the measured shaft-slope and rotational speed. The
maximum damping rate (3.85 Nms/rad at 1600 rpm) shown in
the figure corresponds to the highest attainable system
damping for this case, since at slightly greater damping
(Cref) settings, power supply current-overloading occurs.
Magnet power dissipation curves for the above case are
shown in Fig. 7.9e. These were also computed using
calibration and test data. It is interesting to note
that the maximum power dissipated remains almost constant
(~ 4.8 watts) irrespective of the damping reference
setting. Reference to Figs. 7.9b(i) and 7.9e indicates
that at high shaft speeds (> 1950 rpm) with high damping
settings, both magnet power requirements and shaft
response are increased. This is in line with the
theoretical findings of Chapter 5. At slightly lower
shaft speeds, although some system response attenuation

occurs, there is substantial increase in power
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consumption.

In Test 3b, a large value of electromagnetic
stiffness combined with low damping, sufficient to
maintain system stability (Section 6.6.3), was introduced
over the complete shaft speed range and the shaft response
measured. Shaft unbalance details are given in Fig.
7.9a. The effectiveness of stiffness control in
displacing the shaft first critical speed is clearly
demonstrated in Fig. 7.9f. A shift of approximately 200
rpm (13%) is observed. The shaft response at the 'new'
critical-speed is still large since system damping is
fairly low. The form of the controlled system response
plot is seen to bear some resemblance to the classical
'‘hardening-spring' characteristic, due to the inherent
magnet non-linearities.

Examination of Fig. 7.9f shows that some advantage
could result if an adaptive (or variable-gain) stiffness-
control strategy were employed. This was the approach
adopted in Test 3c. the stiffness and damping reference
settings selected in Test 3b were again utilised, this
time only up to a shaft speed of approximately 1560 rpm.
Above this speed, the electromagnets were switched-off.
The magnet 'switching-speed' corresponded to that speed at
which the measured controlled and uncontrolled responses
were identical and was determined by making reference to
Test 3b results (Fig. 7.9f).

The results of Test 3c are presented in Fig. 7.9g(i)
where the advantages of adaptive stiffness control, even

when system damping is low, are evident. By comparing
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Figs. 7.9f and 7.9g(i), the employment of adaptive control
is seen to result in a shaft response corresponding to the
locus of minimum response. Theoretical plots are
presented in Fig. 7.9g9(ii) for comparison. Agreement
between the measured and predicted response data is
reasonably good. The theoretically determined controller
'switching-speed' (1570 rpm) is very close to the measured
value (1560 rpm). Damping and stiffness rates for this
case are shown as a function of speed in Fig. 7.9h, where
the maximum attained values are seen to be 1,54 Nms/rad
and 318 Nm/rad respectively.

Even though the adoption of an adaptive stiffness-
control strategy alone would be sufficient to ensure
considerable attenuation of shaft steady-state synchronous
response, consideration must also be given to the system
transient-response at the controller ‘'switching-speed’.
Figs. 7.9i-1, show the resulting shaft transients during
Test 3c when stiffness control was switched on and off.
Two levels of angular damping were introduced in turn for
comparison. One major problem encountered during the
tests was the inability of the motor speed-control unit to
maintain a steady shaft speed. This is evident from the
difference in magnitude of the controlled and uncontrolled
shaft responses, particularly at the lower damping
setting. With very low magnetic damping (C = 0.5 Nms/rad)
the shaft transient response, resulting from switching,
varied according to the exact shaft speed at switching,
but in general was characterised by large oscillatory

displacements taking, typically from 1.5 to 6 seconds to
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reach their steady-state values (Figs. 7.9i and 7.9j).
Increasing the damping to approximately 1.5 Nms/rad
improved the system transient performance considerably
(Figs. 7.9k and 7.91), leading to settling times of the
order 0.5 secs. It is clear that in practice, successful
implementation of an 'on-off' adaptive stiffness-control
procedure would require the presence of a reasonable level
of system damping.

A common feature in the lightly-damped rotating shaft
tests performed here, was the appearance of secondary
criticals [67] most certainly caused by interaction of
shaft-stiffness asymmetries and gravity loading. The
shaft response at these additional criticals, in many
cases, was found to be greater than that at the primary
critical speeds. The measured secondary-criticals were
characterised by a large shaft response over an extremely
small speed range. The effectiveness of the angular
damper in eliminating this additional form of vibration
was examined and relevant results are presented in Figs.
7.9m-p. Figs. 7.9m and 7.9n show the gradual elimination
of a non-synchronous 2 x rpm component in the time and
frequency domains respectively. In the example shown,
the shaft speed was approximately half the first critical
speed leading to the introduction of a ‘'half-critical’.
With sufficient magnetic damping, the non-synchronous
component is seen to almost vanish.

Throughout the experimental work, measurement of the
shaft whirl-orbit, at various shaft locations, was

performed by combining the signals obtained from
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displacement probes mounted in the horizontal and vertical
planes. A permanent record was acquired by first storing
the two ses of data on a digital oscilloscope, then
passing this information to an X-Y plotter. Fig. 7.9p is
typical of the shaft orbit characteristics exhibited
throughout the tests. Non-synchronous response is
indicated by the introduction of additional loops in the
whirl-orbit (at 750 rpm and 2000 rpm - undamped). The
results demonstrate the virtual elimination of shaft non-
synchronous vibrations, in addition to the considerable

reduction in synchronous response, when angular magnetic

damping is utilised.

7.5.5 Test 4 - Anqular Electromagnetic Control -

Extended Frequency Range

These tests were performed to demonstrate the
effectiveness of the angular electromagnetic controller
over a broad frequency range. Safety considerations
limited the shaft maximum speed to 3000 rpm so that
investigation of the controller performance over a larger
frequency range could only be achieved by adopting a
different approach. The test shaft was shaken, in the
horizontal plane, using an electromagnetic vibrator
(Section 6.4).

The test configuration used here was identical to
that employed in Test 3. Details of the location of
displacement probes and electromagnetic shaker are
presented in Fig. 7.10a. The electromagnet air-gap was
set at 1 mm (0.040 ins) and a frequency range of 0 - 100

Hz covered. Except in the case where no external control
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was applied, the excitation force amplitude was maintained
with an average value of approximately 3 Newtons, over the
specified frequency range.

Two tests were conducted, one to assess the influence
of magnetic damping (Test 4a) and the other to study the
effect of introducing electromagnetic stiffness (Test 4b).

The results of Test 4a are shown in Fig. 7.10b. The
readings from probes 2, 5 and 6 were used in conjunction
with the measured excitation force to produce an rms
receptance versus shaft vibration frequency plot. The
beneficial effect of electromagnetic damping is evident
and the angular controller is seen to operate well over
the complete frequency range, particularly at the higher
shaft frequencies around the second system natural
frequency.

If the system natural frequencies are not closely
spaced, then in the presence of a single harmonic
excitation component with frequency in the region of a
system resonance, the resulting response will corespond to
that of a single-degree-of-freedom system. For such an
arrangement the system receptance can be written [119] as:

1

ky @ - £92 + (2¢6)2

r

where k is the system stiffness, N/m
f is the frequency ratio (f = m/wNAT)
¢ is the damping factor (z = C/(2 m mNAT))
C is the system damping constant, Ns/m
m is the system mass, kg

Making use of the above and considering a system at
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its undamped natural frequency (f = 1):

1
n T 2ck
or r = 1
2krN

where Iy is the damped system receptance at £ = 1,
Although this approach involves a number of
approximations at least it provides a simple means of
estimating the degree of damping control achieved.
Referring to Fig, 7.10} and considering the first system
natural frequency, the stiffness k may be estimated by
extrapolating the receptance plot at low frequencies.
Following the above procedure, the computed system damping
factors, corresponding to the digital damping settings
(Cref) of 70, 90 and 110, are 0.03, 0.14 and 0.26
respectively. The influence of external damping on the
system resonant response at the second natural frequency
is even more pronounced. With maximum damping introduced
the characteristic response peak is eliminated completely.
The damping factors for this case may be approximated as
before. However, the equivalent single-degree-of-freedom
stiffness k is different to that employed for analysis of
the first natural frequency. A conservative approach is
to use the stiffness value corresponding to the minimum
occurring in the receptance plots at a frequency of
approximately 4200 cyc/min, The resulting computed
damping factors are 0.16, 0.36 and 0.58 respectively.
Angular electromagnetic damping is thus seen to be an
effective means of attenuating shaft response over a

frequency range encompassing two natural frequencies.
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Another method capable of achieving significant
reductions in system response at, or close to, a natural
frquency is based on introducing additional stiffness to
the system to displace the resonances., This prinipcle
was demonstrated in Test 3 and is given further
consideration here. Fig. 7.10c illustrates the effect of
angular electromagnetic stiffening on the system rms
receptance. Substantial increases in the two system
natural frequencies are observed. With maximum stiffness
control employed, the fundamental frequency was shifted by
approximately 245 cyc/min, i.e. a 17% change. The second
shaft mode has its natural frequency altered by 175
cyc/min (3.4%) as a result of stiffness control.

Fig. 7.10d demonstrates how the implementation of
stiffness control alone can lead to favourable system
performance. The minimum response locus is represented
by the dashed lines. Significant vibration attenuation
is achieved by utilising maximum stiffness control, over a
frequency range encompassing the uncontrolled fundamental
natural frequency, up to a frequency of 1600 cyc/min and

thereafter removing the control influence.

7.5.6 Test 5 - Anqular Electromagnetic Control -

Attenuation of Bearing Forces

These tests were undertaken in order to assess the
ability of angular electromagnetic control to reduce
transmitted bearing forces. The test configuration used
was identical to that employed in Tests 3 and 4, but with

alterations to the shaft supports as shown in Fig. 7.1lla.
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It was initially intended that the shaft be rotated
as was the case in Test 3. However, after modification,
the bearing supports, in addition to introducing the
desired radial flexiblity, were found to exhibit axial
flexibility. This latter characteristic, not
surprisingly, resulted in system stability problems
(Section 6.6.3). Elimination of the effect without
significantly influencing the radial support stiffness was
found to be extremely difficult. Since the problem was
directly related to the magnitude of shaft angular
response at the electromagnets, it was decided that the
best approach would be to excite the shaft using an
electromagnetic shaker. In these circumstances, the
external excitation force could be easily adjusted to a
suitable level.

The location of displacement probes and magnetic
shaker are shown in Fig. 7.lla.

Two tests were performed, the first to examine the
effect of damping control and the second to investigate
the influence of stiffness control.

Following a procedure similar to that employed in
Test 4, the bearing transmitted forces are presented in
non-dimensional form by dividing through by the excitation
force. This is normally termed the transmissibility,
although in the strictest sense, it is the sum of the non-
dimensional bearing forces which constitutes the system
transmissibility.

Figs. 7.11b and 7.11d show the non-dimensional

bearing forces as a function of frequency, with different



210.

levels of control damping, for the drive-end (DE) and non-
drive-end (NDE) bearings respectively. Considerable
attenuation of the bearing forces is observed. The
largest uncontrolled response is seen to be reduced by 88%
and 85% at the DE and NDE bearings respectively.

For a single-degree-of-freedom system the degree of
damping present is best represented by the system damping
factor ¢. Applying the assumptions made in Section 7.5.5
an estimate of the non-dimensional control damping, as a
proportion of system critical damping, can be made. In a
single mass system the transmissibility TR can be

calculated [119] from:

} Vi1 2c6)2
Ja-£5H)2 4+ @2n?

TR

At the system undamped natural frequency £ = 1 and we

can write:

1
2/ [(TR)? - 1]

The measured transmissibility TR can be obtained from

c:

the response plots of Figs. 7.11lb and 7.11d and the
damping factor 7 computed using the above equation.

Following this procedure, the damping factors
correspondind to the reference settings (Cref) of 70 and
110 were estimated as 0.02 and 0.07 respectively. Thus,
although substantial reductions in bearing transmitted
force are achieved, the control damping is seen to be
small. The low level of control damping is a result of
the small shaft response, necessary to ensure system

stability in this case.
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Comparing the measured bearing force magnification
factors at the system undamped natural frequency (= 1410
cyc/min), with the control damping set at maximum (Cref =
110), the DE bearing (magnification factor = 5.22) appears

to be influenced to a greater extent than the NDE bearing

(magnification factor = 5.85) by the application of
angular control.

Theoretical plots of the non-dimensional bearing
forces are presented in Figs. 7.llc and 7.1lle. The
agreement with measured response is very good.

The effect on the bearing transmitted force of
introducing angular stiffness control, is demonstrated in
Fig. 7.11f. The dimensionless drive-end bearing force is
plotted as a function of frequency. Bearing forces at
the shaft non-drive-end exhibited similar trends. The
system natural frequency is seen to be increased by
approximately 30 cyc/min, i.e. a change of 2.1l%. Again
the control influence is small due to the low level of
system response. Fig. 7.11g shows the predicted
controlled and uncontrolled dimensionless bearing forces
and once more agreement with the measured response is very
good.

Whilst problems resulting from support inherent
axial-flexibility led to limitations on the level of
angular control which could be applied to the test system,
results from the above tests did illustrate the possible
benefits of such a control approach in terms of reduction
of transmitted foundation forces.

Because of the non-linear nature of the
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electromagnets/mechanical dashpots and due to the
introduction of a number of other complexities throughout
the experimental work, meaningful comparison of results
from different test configurations was limited. As a
result, experimental assessment of the relative
performances of radial and angular controllers, when
employed on a specific shaft system, could not be easily
achieved. Consequently, an alternative efficient and
rational approach, eliminating the need for experimental

investigation of specific controller types, was adopted as

follows.

7.5.7 Test 6 - Comparison of Shaft Radial and Angular

Receptances

The suitability of various shaft locations for the
introduction of external control forces may be assessed by
measurement of the relevant system receptances.

Referring to the shaft system shown in Figs. 7.12a,b, a
number of locations were chosen for application of
external harmonic forcing using an electromagnetic shaker.
Direct comparison of the appropriate measured receptances
gives an indication of the most suitable control position,
i.e. the forcing location resulting in the largest
receptance value.

Of course, the choice of point of displacement
measurement is of critical importance and for the tests
conducted here, since the complete system response was of
interest, an approach similar to that employed in earlier

tests was adopted. The shaft displacement was monitored
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at a number of points and a computed rms receptance value
used as the system response function.

Steel discs were mounted just outside the bearing
assembly at each shaft end to allow the introduction of
'anglar excitation'. This was accomplished by aligning
the shaker axis parallel with the shaft rotational axis
and clamping the shaker linkage to the disc perimeter
through a universal-joint assembly. This arrangement,
allowing a small degree of radial misalignment, was found
necessary to reduce unwanted bending influences at the
Piezo-electric transducer and to minimise the external
restraining effect.

Radial excitation of the shaft was achieved by
connecting the shaker assembly to a shaft-mounted sleeve.

Two tests were performed, the first (Test 6a) with
the shaft resting on 'rigid' supports. Four shaker
locations were chosen for excitation of the rotor system
(Fig. 7.12a).

During the second test (Test 6b) only two of these
points were utilised (Fig. 7.12b) and the shaft was
mounted on flexible supports.

The test frequency range, 0 - 90 Hz, was selected to
include the first two rigid-bearing natural frequencies.
All shaft vibratory motion was restricted to the
horizontal plane.

Results from the first test are presented in Fig.
7.12c. The rms receptance, computed using measurements
from probes 2, 3, 4 and 5, is plotted against frequency

for the four excitation locations (Fig. 7.12a). The
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small differences in system natural frequencies are a
result of the shaker assembly mass/stiffness effect.

To provide some idea of the relative magnitudes of
the control forces which would be required at each of the
excitation points, receptance ratios are provided at
selected shaft frequencies. The term outside the
brackets is calculated from:

rms receptance with excitation at point
rms receptance with excitation at point

=N

and that inside the brackets is determined from:

rms receptance with excitation at point 4
rms receptance with excitation at point 1

These two values indicate the relative force
requirements for angular and radial control at the shaft
locations as specified.

As expected the results showed that, at the first
natural frequency, best control could be achieved by
positioning the controller close to the shaft centre.
However, with such an arrangement, controller performance
is seen to deteriorate considerably at frequencies in the
region of the second natural frequency. In agreement
with the findings of a theoretical investigation performed
in Chapter 5, radial control is seen to perform best (at
least up to the second natural frequency) when introduced
on the shaft span between the supports. However, the
difference between radial and angular forces, required to
achieve the same degree of control, is not excessive and
in certain frequency bands is fairly small. In addition,
the radius employed for angular excitation, 44.5 mm, is

not large and could easily be increased substantially.
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Theoretical receptance plots are presented in Fig. 7.124
for comparison and excellent agreement with the measured
data is observed.

In some practical rotor-dynamic installations, the
response at particular shaft stations (e.g. turbine disc
locations) may be of greater importance than the overall
system response. In such circumstances the choice of
type and location of control could be critical. This
point is illustrated in Fig. 7.12e where the receptance,
as measured at probe 2 only, is shown as a function of
frequency for radial and angular excitation. Although
the receptance resulting from radial excitation is
generally greater than that due to angular excitation,
there exists a substantial speed range (2250 - 3350
cyc/min) where application of radial control at the
specified location would have little influence on the
response at the shaft station corresponding to probe 2,
Once more the predicted response plots (Fig. 7.12f) were
found to agree extremely well with the measured data.

With the shaft mounted on flexible supports (KB =
0.309 x 106 N/m), the shaft rms receptance plots for the
two points of excitation (Fig. 7.12b) are shown in Fig.
7.12g. Receptance ratios, as defined in Test 6a, are
presented for comparison with earlier results at the same
shaft frequencies, the introduction of support flexibility
is seen to result in an increase in the receptance ratios,
thus indicating a relative deterioration in angular
control performance in such circumstances. The relative

increase in angular force requirements is seen to range
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from 24% at low frequency (1100 cyc/min) to 150% at the
higher frequencies (4700 cyc/min).

The appearance of a blunt peak in the response plots
at a frequency of approximately 2800 cyc/min is a result
of the introduction of rigid-body modes. The form of the
response plots at this frequency is thought to be due to
the small amount of damping present within the shaker
assembly, these modes being more sensitive to external

damping than the shaft flexural modes (Section 5.3.2).

7.5.8 A Note on Shaft Reverse-Whirls

A number of researchers [46,67,118]) have shown
theoretically that certain rotor systems may exhibit
reverse-whirl characteristics within specific speed
ranges. However, the phenomenon is rarely observed in
practice [67,120].

Throughout the test program described within this
chapter, in certain circumstances the test shaft was seen
to vibrate in a distinctly odd manner. The shaft motion
appeared to continually change from a 'bobbing' to a
whirling type motion. Close examination of the shaft
orbit showed that the shaft was whirling alternately in a
forward and reverse sense and that a transition point
occurred where pure translatory (straight-line) motion
ensued.

Pederson [120] showed theoretically how, for an
undamped uniform shaft mounted on isotropic supports, the
natural frequencies are grouped in pairs with the

numerically smallest natural frequency of a pair
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corresponding to backward precession and the higher
frequency corresponding to forward precession. The
introduction of gyroscopic effects further separates the
natural frequencies in each pair and thus, given the above
conditions, would lead to an extension of the region of
reverse whirl.

With the above in mind, a test shaft employing steel,
shaft-mounted discs having substantial polar inertia and

mounted on anisotropic supports, was examined (Fig.

7.13a).

The shaft first critical speeds in the horizontal and
vertical planes were found to occur within the speed range
885 - 900 rpm, more accurate measurement being limited by
the degree of speed control available, The measured
(using probes 4, 5 and 6) and predicted shaft rms
displacement responses are presented in Fig. 7.13b. The
theoretical and experimental data agree very well, an
error of approximately 1.7% occurring in the predicted
peak response speed.

The first two system eigenvalues were predicted and
plotted as a function of shaft speed in Fig. 7.13c. The
computed critical speeds in the vertical and horizontal
planes are 854 rev/min and 864 rev/min respectively.
Examination of the real and imaginary components of the
correponding eigenvectors, in accordance with the
procedures outlined in Appendix A, showed the lower
critical speed to be of a retrograde nature. The higher
critical speed corresponded to a forward whirl motion.

It might be assumed that in the region between these two
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critical speeds the shaft would whirl in a reverse
direction. This would be the case only if no gyroscopic
influences were present since shaft straight-line motion
(the point of transition between forward/reverse whirl),
would ensue at each critical speed. When gyroscopic
effects are included, the region of reverse whirl would be
shifted as shown in Fig. 7.13d which is a plot of the
orbit semi-axes against shaft speed.

For the above test arrangement (Fig. 7.13a), shaft-
orbits were recorded at speeds below, above and between
the two critic§1 speeds. The results are presented in
Fig. 7.14a where reverse whirl is observed to occur at a
shaft speed of 890 rpm.

It was found during testing that the introduction of
a small amount (2.0 Nms/rad) of angular electromagnetic
damping led to the elimination of shaft reverse whirling
(Fig. 7.14b). The presence of significant damping in
many practical rotor arrangements probably accounts for
the absence of shaft retrograde precession in real
systems., In Appendix F the simple case of a damped
Jeffcott-rotor with anisotropic supports was considered
and the limits for elimination of reverse whirl
determined. The results are expressed in graphical form
and presented in Fig. F.l. It is shown that relatively
low damping levels are effective in eliminating reverse
whirl, even when significant support anisotropy is

present.

Results of a theoretical analysis of the test rotor
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for three different angular damping rates (0, 0.1, 2.0
Nms/rad) are presented in Figs. 7.13¢ and 7.15. With the
damping rate set at 2.0 Nms/rad, reverse whirl is
completely eliminated, in agreement with test
observations. The introduction of an intermediate
damping value (0.1 Nms/rad) is not sufficient to eliminate
backward precession but does limit the speed range over
which this occurs.

Finally, it is worth noting that although the
introduction of gyroscopic effects alone may result in the
creation of reverse whirl modes, these will not be excited

by synchronous unbalance forces unless some support

anisotropy exists [120].

7.5.9 Summary

Dynamic response predictions, for a number of test
shaft arrangements, using a transfer-matrix program,
showed reasonable and in many cases excellent, agreement
with experimental data.

The application of external damping using mechanical
dashpots highlighted the inherent disadvantages of
employing a device whose construction necessitates
physical contact with a rotating element.

In direct contrast angular control of a high-speed
rotating shaft using an electromagnetic actuator has been
shown to be a feasible and worthwhile proposition. The
device can be employed to implement a variety of control
strategies leading to significant system synchronous and

asynchronous response attenuation.
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Measurement of relevant test-shaft receptances has
shown that the forces required for implementation of
angular control are of the same order of magnitude as and
in some instances less than, those demanded using radial

control for the same degree of vibration attenuation.
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CHAPTER 8

CONCLUSIONS

A summary of the theoretical and experimental work
performed during this project, along with important

findings, is presented. Suggestions for further research

are also provided.

8.1 Theoretical Work

a) A program based on the Transfer Matrix Technique was
created and extensively employed for the dynamic analysis
of a variety of rotor-bearing systems. A general
procedure incorporating the modified TM method, to be used
for the free-vibration analysis of multi-level systems, is
presented. Using this approach the demands on computer
memory are minimal and the possibility of numerical
instability is substantially reduced.

The program allows for the investigation of 'real-
life' effects such as: i) mass unbalance, ii) multiple
multi-level supports possessing radial and angular
stiffness, damping and mass/inertia characteristics, iii)
shaft initial-bend, iv) gyroscopic/rotary inertia couples
and shear deflection.

Using the program to predict critical speeds,
unbalanced response and influence coefficients for a
number of test-shaft cases, good agreement with the
results of other workers, and those from available closed-
form solutions, was achieved.

Whilst employment of the modified TM method was shown



222,

to be successful in all cases, in providing accurate high-
frequency shaft mode-shapes, in some instances this same
accuracy could not be achieved using the normal method.

b) A procedure enabling prediction of optimal control
parameters for any number of control devices located at
chosen points on the rotor-bearing system was developed.
The method entailed the employment of a two-stage transfer
matrix analysis in conjunction with a multi-variable
optimisation algorithm, allowing minimisation of any
chosen system response parameter. Since the transfer
matrix technique was utilised, computer memory
requirements were reduced significantly in comparison to
those of other available methods. Additionally,
repetitive shaft-system analyses were avoided thus leading
to increased computational efficiency.

Accuracy of the technique was assessed and confirmed
through its application to a number of shaft cases
incorporating a variety of support configurations.
Comparison of results with those obtained using a 'fixed-
point' procedure showed excellent agreement.

c) A comprehensive study of the relative performance of
angular and radial controllers, when applied to various
shaft arrangements, was implemented employing the newly-
created optimisation technique. Attenuation of system
synchronous response was examined for both modes of
control. Three performance indices were considered for
comparison:

1. Shaft maximum displacement.

2. Shaft sum of squares of displacement.
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i)

ii)
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Total bearing force.

The main findings were as follows:

Effect of Choice of Performance Index

Shaft maximum displacement and sum of squares of

displacement were found to be equivalent response

functions, minimisation of each leading to identical

control requirements. Miminisation of total bearing

force resulted in the employment of optimum control

parameters and controller locations, in general,

different from those predicted using either of the

above two performance indices.

Optimum Control Locations and Control Coefficients

For a shaft speed range encompassing the first three

rigid-bearing critical speeds:

1)

2)

3)

The optimum radial controller location is at a
point approximately 10% of the shaft span from
the supports and appears to be relatively
insensitive to the support stiffness magnitude.
The optimum location for angular control is seen
to depend on the choice of performance index and
occurs at the shaft supports and at a position
close to the shaft centre when employing the
shaft maximum displacement (or sum of squares of
displacement) and total bearing force criteria
respectively.

With the controllers employed at their optimum
locations, for a reasonable value of angular
controller equivalent radius the optimum angular

damping levels are of the same order as those of
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the radial controller. Although in these
circumstances system response attenuation using
radial control was found to be greater than that
resulting from angular control, in many
circumstances the difference may not be

substantial.

iii) Control at Shaft Supports

iv)

From a practical point of view the control forces
should, ideally, be introduced at the shaft supports.
The results of such a study, therefore are of great
significance.

The investigation showed that for large support
stiffness values, angular control is far superior
(both in terms of minimised response and force
requirements) to radial control, this trend reversing
as the support stiffness is decreased.

However, even for fairly low support stiffnesses,
angular control may still be the more effective of
the two, particularly over the lower end of the shaft
speed range.

When support stiffness is low and angular control is
employed, there appears to be little advantage in
utilising an adaptive control procedure since passive
angular control is almost as effective. Similarly,
passive control is to be preferred in the case of
radial control of a system with relatively stiff

supports.

Adaptive Versus Passive Control

In a number of cases the introduction of an adaptive
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control strategy will lead to system response levels

significantly lower than those which could be

obtained by the employment of an equivalent passive
device.

In many of these cases, however, continuous adaptive

control may not be necessary and may be replaced by

an equivalent simpler approach, whereby the control

effect is 'switched' on and off at rotor speeds

determined by the system dynamic characteristics.
d) Theoretical studies, performed and described within,
have shown that in rotor systems containing elements which
may exhibit destabilising characteristics (e.g. 0il-film
bearings), system stability may be considerably improved
by the application of external radial or angular control
forces.

Substantial increases in instability threshold speeds
can be realised even when low control-damping levels are
employed. The introduction of angular damping at an oil-
film bearing was found to be an efficient means of system
stability control. In contrast, whilst certain shaft
modes may be stabilised using radial control at the
bearings other modes may in fact have their stability
margin considerably reduced. In addition, radial damping

requirements were found to be greater than those for the

angular device.

A new means of attenuating rotor-system response has
been proposed and investigated theoretically. Situations

have been shown to exist where angular control would
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provide a viable alternative to the conventional radial
methods. Indeed, it should be borne in mind that the
theoretical analyses undertaken unavoidably provide the
radial control procedures with an unfair advantage since
access limitations in practice may invalidate many of the

desirable features of this approach.

8.2 Experimental Work

An extensive test program requiring the design,
construction and experimental analysis of a number of
test-shaft arrangements was undertaken to:

1. Enable assessment of the (transfer matrix) analysis
program in predicting rotor-system unbalance
response.,

2. Investigate the effectiveness of external control,
particularly angular electromagnetic control, in
attenuating system response.

The shaft arrangements investigated were such that,
in the operational speed range, a maximum of one critical
speed per plane was encountered. The main findings were
as follows.

a) The measured response of an initially-bent, uniform

shaft mounted on rigid supports was found to agree very

closely with the response predicted using a numerical
analysis program created specifically for the project.

System natural frequencies were predicted to within a
few percent of their measured values.

Shaft non-synchronous vibrations were evident

throughout the test work. Their presence was found to be



227.

mainly due to the combination of shaft/coupling stiffness
asymmetry and gravitational effect.

b) The effect of introducing radial viscous damping to
the bent-shaft system, using mechanical dashpots, was
assessed.

With the dampers placed close to the shaft mid-span,
a substantial reduction in system response could be
achieved. Gradual re-location of the dampers towards the
shaft supports resulted in a progressive deterioration of
the system response. When the mechanical dampers were
positioned at a shaft location corresponding to a distance
of one-eighth of the shaft span from a shaft support, the
first critical speed could not be traversed.

A representative system response function, computed
as the root-mean-square of a number of measured shaft
displacements, was plotted and displayed clearly-defined
'fixed-points'. The benefit of switching between
control-damping levels at the system 'fixed-points' was
evident from the experimental results, thus confirming the
validity of the earlier theoretical analyses concerning
the application of an adaptive "on-off"™ control strategy.

The mechanical dampers employed exhibited highly non-
linear characteristics making their modelling extremely
difficult. In addition, their damping rate was found to
decrease significantly with increasing excitation-
frequency at high shaft speeds, rendering them relatively
ineffective. Because of these effects and other related
problems, agreement between predicted and measured shaft

response was not as good as for the undamped case.
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A number of difficulties experienced with the
mechanical dampers highlighted the possible benefits of
utilising a non-contact control device.

c) The main portion of the experimental work involved
the design, construction and application of an angular
electromagnetic actuator on a variety of test-shaft
configurations.

The controller was mounted close to the test-rotor
drive-end bearing. Throughout the tests reasonably good
agreement between predicted and measured, controlled and
uncontrolled, system response was observed, even though
the inherent non-linear characteristics of this device
resulted in a fairly complex analysis procedure.

The controller was capable of simulating damping and
or stiffness control forces, the level of which could be
easily altered by keyboard input or software instruction
using a microprocessor.

When employed as a damper the device was found to be
effective in attenuating synchronous and non-synchronous
shaft response and transmitted bearing forces - control
damping factors of .26 and .58 being recorded for the
system first and second modes respectively.

Significant increases in the system natural
frequencies (17% in one case) were realised by utilising
the electromagnetic actuator as a stiffness element.

This led to a considerable reduction in response levels
within specific shaft speed/frequency ranges.

The benefits of this type of control were further

extended by implementing an adaptive stiffness control
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procedure whereby system control was applied up to a shaft
speed corresponding to the first 'fixed-point' and
thereafter removed. This approach resulted in a reduced

system response over the complete shaft-speed range, in

agreement with theoretical predictions.

Calibration of the electromagnetic controller, using
a specially designed and constructed force-transducer,
provided the relevant information regarding the dynamic
characteristics of the controller for use in the analysis
program. As expected, the linearised damping
coefficients were observed to be directly proportional to
the shaft-slope feedback signal and excitation frequency,
whilst the stiffness coefficients were found to be a
linear function only of the former parameter.

The measured force/current/gap relationships showed
relatively good agreement with those predicted using
simple magnetic-circuit theory.

The control hardware was found to function well over
a frequency range of 0 - 100 Hz, although at the higher
frequencies, the influence of control circuit component
phase-lags did produce some deterioration in performance.

In test-shaft arrangements having bearings possessing
anisotropic stiffness properties, shaft reverse-whirl
phenomena were observed. In these cases the introduction
of a small amount of angular electromagnetic damping
resulted in the elimination of this effect.

d) The relative merits of radial and angular control
were considered by comparing measured system receptances

over a frequency range encompassing two natural
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frequencies. Results were in excellent agreement with
theory and showed the increase in efficiency of the radial

approach when support flexibility was increased.

In summary, results from experimental work on a
laboratory rig have shown that angular control is a
feasible and practical means of vibration control. The
employment of an electromagnetic actuator to implement
this type of control results in a number of advantages
which may not be realised using other available devices.
The lack of physical contact between controller and shaft
system, along with the possibility of simple
implementation of a variety of control strategies, are
just two of the features which make the electromagnetic
actuator a most useful tool in the field of vibration
control,

8.3 Suggestions for Further Work

The work performed and described within this thesis
represents only a small step towards assessing the
capabilities of the various means of shaft vibration
control and in particular, those of angular control. The
following proposals are made with a view to extending the
knowledge in this field. Item 1 below is suggested with
the main aim of improving the operational aspects of the
particular controller utilised for the present studies,
items 2 and 3 being of a more general nature.

1, Steps should be taken to modify the electromagnet
control circuitry to achieve linear operation of the

control device. This would simplify considerably
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the analysis procedures, since a much less complex
controller model could be utilised. Some form of
circuit compensation is also required to eliminate
unwanted component phase-lags and to ensure stable
controller performance at all times.

Experimental investigations into the relative
performance of angular/radial electromagnetic
controllers need to be conducted on a more realistic
rotor system. The rig employed should incorporate
oil-film bearings and have a shaft speed range
covering at least two shaft critical-speeds.

A study should be conducted with the object of
rationalising controller performance data, taking
into account parameters such as controller size and
power (or energy dissipation rate for a passive
device) requirement necessary to ensure the
attainment of some pre-defined standard criteria.
This would allow proper evaluation and comparison of

a variety of available control devices.
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A1.

APPENDIX A

SHAFT ORBITAL MOTION

If a rotating shaft is subjected to synchronous
excitation due to, for example, mass unbalance then, in
general, the shaft journal locus will be an ellipse in
space, the centre of which will correspond to the
unperturbed steady state shaft position. In fluid-
film bearings this relative mean position will vary
depending mainly upon the shaft running speed.

Referring to Fig. A.1. we can determine the
characteristics of the elliptical orbit as follows.

The shaft motion may be expressed as shown,

Re [wellt)

x
"

) (A.1)
Re [Velkt]

<
n

where Re denotes the real part of the term in

brackets and,

\’7=Wc,+ iWs
and v = vc + 1vS
Since A = a + iw then equations (A.1) can be
rewritten as
w = (w coswt - w sinwt)eat
c s

and v = (vccoswt - vssinwt)eOlt



A2.

For forced synchronous motion a = 0 and w = Q so

that,

W = w coslt - wssinﬂt
¢ (A.2)
and v = v _cosQt - v_sinQt
c s
where Q is the shaft rotational frequency.
Equations (A.2) can also be written in the form
w = A sin(Qt + B_)
¥ ¥ (A.3)
VI Avcos(nt + Bv)
where,
2 2
A, = /wo o+ we 3 A, = Yvi + v
and

Bw = ARCTAN (wc/-ws) : Bv = ARCTAN (vS/vC)

Aw and Av are the amplitudes of the deflections
w and v respectively and Bw’ Bv are the corresponding
phase angles. The phase angles B represent the
relative time-lag between the occurence of maximum
deflection and the passing of a shaft reference point
in the relevant plane.

Equations (A.2) and (A.3) describe the elliptical
whirl orbit of the shaft.

Now, the instantaneous orbital radius r is given
by

r = /w2 + v2 (A.4)
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Substituting for w and v from equations (A.2)

in equation (A.4) gives,

2 2 2 2 2 2 2 2
[4 wc+w8+vc+vs+(wc+vc-ws—vs)cosZQt - (A.5)
. 3 :
-2(w8wc+vsvc)31n29€3]

and r reaches a maximum or minimum when

d 2 2 2 2 .
d(qt) [(wc+vc—ws-v8)cosZQt-Z(wac+stc)51"29t]

-2(wsw +V vV, )

c
thus tan2qQt = 72 2 3
s

(-w=vi+Ww_ +v
) c c

(A.6)

Using equation (A.6) in (A.5) gives

) 2 2 2 24p,.2 2 2.2.2
a,b = [i{ylc+ws+vc+vs-[(wc+vc—w3vS

+4(wswc+vsvc)2]%}]é

Where a and b are the major and minor semi-axes,
of the orbital ellipse, respectively.

The orbital radius r makes an angle ¢ with the y

axis where,
[w cosQt-w 31th]

¥ = ARCTAN [: ] [v cosQt-v 31th] (A.7)

The maximum displacement a occurs at

[2(vcwc+v W )]
2 2 2
[(vc+vS-wc—ws)]

$ARCTAN

The rotor precession rate y may be obtained in
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terms of w and v and their derivatives by
differentiating equation (A.7) with respect to time.

Subsequent use of equations (A.2) along with algebraic

manipulation leads to

: 2

Vv o= cog wﬂ[wcvs—vcws]
v

and since the term outside the square brackets is
always taken as positive then the direction of shaft

whirl may be determined by examination of the sign of

the term [w v _-v w_]. Thus,
c's '¢c's

For forward whirl (w v -v.w )> 0
c's c's

For reverse whirl (w v -v w )< O
cs c¢'s
and (wcvs-vcws) = 0 indicates shaft straight line

motion.
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APPENDIX B

GENERAL FEEDBACK CONTROL OF A JEFFCOTT ROTOR

Radial Control (Fea = 0)

From equation (5.3), letting F = Fu - Fer
F = mX + sz + k,yx (B.1)

The radial displacement y at any shaft location
may be expressed as:

y = a3[-mf -Czi + F] -aa[G3y+G49]

Therefore,

e . a .
F o= mX + Cox + y/as + Eﬂ [Gyy + G,¥] (B.2)
3

Where, from standard beam deflection formulae [103],
2 3

T 16 12
and a, =_1 (2a2L2 + 2a% - 4a’L)
gEIC

From equations (B.1) and (B.2) we get

a,G
3])/ + [ 4 4])" (B.3)

or x = Ay + By

taking the Laplace Transform

y = x/(A+BS) (8.4)

Substituting (B.3) in (B.1) and taking the Laplace

Transform gives

= [mBS>+(mA+C.B)S2+(C. A+k,B)S+k,A] (B.5)
2 2A+ky 2

F
y
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y = 1
F F+F ?7y+[G3+GaS] @,

Therefore,

= 1

F 3 2
u [mBS +(mA+CZB)S +(C2A+kZB)S+k2A+[G3+G45]a1]

(B.6)
letting, b = a/L; R = f; f = m/mCR;
hfi = El; Pey = GZ ; hfZ = Ez; (B.7)
ko Zmwep 2
Peg = Gy
meCR

Now for forced response Fu = mew2 and substituting
equations (B.4) in equation (B.6), replacing S with iw,
and making use of the relationships described in (B.7)

we obtain,

_ 2 . 3
= f [1+hf2E] + if[2f psz]

X
e 2 2 2
[Che EC1-F )-prE(apzf )+ (1-F +hH)] +
(B.8)

. 3

ilhe E(20,F)+p,E(2F-2F7)+(2p,f+2fp ,H) 1]
Where,
E = (7b2-32b°+40b%-16b%)

and H = (9b2-24b%+16b%)

As a check on the above consider the following

cases,

No Radial Control
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Therefore,

= fz

(1-F2+i2p,F)

X
e

which is correct.

Radial Control at Shaft Centre

b = 0.5 Therefore E = 0 and H = 1

Therefore,

] 2

[(1-F2sh,) + i2F(p,+pp,)]

X
e

Which is again correct (refer to equation (12)

in reference [102]).

Angular Control (Fer = 0)

Following a procedure similar to that employed for

radial control shown above, a similar relationship may

be obtained:

x = F2014R%n M1 + i[2FR%p . M]
© 2 Z Z 7 2
[[1-F"(1+4R"p 1 p,M)+R " M(1-F +% )1+
(B.9)
: 2 2 2 .3
ilf(2p,+2R%p, hc M)+R pf1M(2f+2f% -2f7)11
where,
_ 2 4
M = (7-48b+120b“-144b")
and N = 3(1-4b2)

It should be noted that equations (B.8) and (B.9)
do not hold for the limiting conditions where the radial
and angular controllers are mounted at a shaft support

and shaft centre respectively (refer to equation (B.4)).
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APPENDIX C

STRAIN GAUGE TRANSDUCERS

C.1 General
The Wheatstone Bridge is widely employed in strain
gauge applications because of it's suitability for the
measurement of small changes in electrical resistance.
A variety of strain-gauge transducers may be
constructed making use of the full bridge arrangement

where each arm of the bridge consists of a strain-gauge

as shown.

vil L

During the experimental work a Fylde D.C. strain-
gauge amplifier was used in conjunction with the
specially designed and constructed transducers described
here. In addition to amplifying the bridge output
signal considerably the amplifier also produced a
constant D.C. bridge input voltage and allowed for
bridge balancing through potentiometer adjustment.

Consider the above arrangement where the gauges
have been bonded to the surface of a component subjected,

in general, to bending and direct loading. The strain
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in any gauge n may be expressed as:-

= + +
€n €B8n €Dn €Tn

where,

€gn Strain due to bending.

€pn = Stain due to direct loading.

€1, = Strain due to temperature effects (apparent

strain).

For a four-arm bridge the bridge output-volts may

be expressed [115] as,

v
0

V;.GF [e1 - €, + €5 - ea]
4

Vi-GF [(egq-egyreps-egy)+lepi-epyreps-ep,)

4
+(€p =€+ er3-5p,) ]

Where GF is the gauge factor and Vi the bridge
input volts.

If the four gauges are mounted in close proximity
it may be assumed that they are subjected to the same
temperature field and generally the same environmental
conditions. In these circumstances €1 = 0; n=1, &4

and

Vo = V;-OF.[(egy-egyregz-eg,)+(epq-epy+eps-ep,)]

e (c.1)

The exact orientation of the gauges on the element
under stress will determine the magnitude and sign of
the direct and bending strains in equation (C.1). Thus
the four-arm Wheatstone Bridge may be used effectively

to construct a force transducer with the gauge positions
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selected to maximise the performance of the particular

device.

C.1.1 Bearing Ring Force Transducers

The strain-gauges were located as shown (i.e.
gauges 1 and 3 mounted on the ring outer surface) to

enable maximisation of the transducer sensitivity since

€Bn

For this case

€gy =-€gq 2and €g, =-€p3

|€B1| = |532| = |€B3| = |534| = Iegl

D1 T €p2 T €p3 T €p4
Therefore substituting the above in equation (C.1)

we obtain,

Vg = vi.GF.(aeB)

For this arrangement the gauge factor was

approximately 2.0. and gauge resistance 120Q.
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C.1.2 Axial Force Transducer

Since only the direct forces were of interest the
gauges were connected such that bending effects could

be eliminated.

For this case,

€gq = €g3 5 legql = [egs3l = leg]

€p1 = €p3 < €p
€g2 T €4 T ~HEg

€p2 * €pg T “HEp

where p is Poisson's Ratio (for steel p = 0.3)
Substituting these equations into equation (C.1)

Vo = Vi.GF.(=2.6€

0 D)
4

For this arrangement semi-conductor gauges were
employed with a gauge-factcr of approximately 140 and

gauge resistance of 350Q.

C.1.3 Electromagnet Force Transducer

Here, due to the nature of the magnet calibration

technique, only the bending effects were of interest.
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For this case,

€81 = g3 = ~fB2 = ~Fpy
= |€

Bl

&g, |
ED1 = 602 = 603 =

Therefore substituting these equations in equation

(c.1),
v

GF. (aeB)

0= Ui
4

Gauge details were as for case C.1.2.



APPENDIX D

CALIBRATION OF MECHANICAL (KINETROL) DAMPERS

Consider the following linear shaft system
subjected to an excitation force p(t) at point F,
initially uncontrolled (Fig. D.1a), then controlled

using some external device at point D, (Fig. D.1b).

" f
C . J a) UNCONTROLLED
[AY TR
p(t)
. b) CONTROLLED
L |
[
e &r
p(t)
FIG. D.1 Linear Shaft System W\

If the excitation force is assumed harmonic then,

p(t) = F.eimt

_ = iwt

and qm(t) = Q_.e

where qm(t) is the shaft displacment at any
location m.

Letting the subscripts u and c denote the

uncontrolled and controlled states of the shaft system

respectively we can write,
qmc(t) = qmu(t) - fc(t)'rmdu

Therefore (D.1)

ch = Qmu - Fc'rmdu

where

fc(t) = instantaneous control force at point d

D1.
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= F .elwt
c

?mdu = Receptance definea by the dynamic
displacement at point m due to a unit harmonic force
at point d (uncontrolled - i.e. no damper fitted).

Consider the motion at the controller location.

Assuming the controller (in this particular case

mechanical damper) may be modelled as a single degree

of freedom system then

Fc = Z'udc

where (D.2)
Z = (K - sz + iwC)
Substituting equations (D.2) into equation (D.1)

and setting m = d we obtain,

ﬁdc = adu (D.3)

(1 + Z.t

ddu)
Now substituting equations (D.3) and (D.2) into

equation (D.1) gives:

ch = amu -
(D.4s)

ddu

Since all shaft motions are a direct result of

the single external excitation force p(t) we can

write:
ch = P. TmFe
Qmu = P. T oFu (D.5)
Qdu = P. TdrFu

Upon substitution of equations (D.5) into (D.4) and

some further manipulation we can obtain an expression
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for the cantroller dynamic stiffness Z in terms of the
measured (controlled and uncontrolled) system

receptances:
7 = 1
[-? -F ]
[rch'rmFu]

and

FdFu = Receptance defined by the displacement at
point d due to a unit force at point F
(uncontrolled - i.e. no damper fitted).

?ch = Receptance defined by the displacement at
point m due to unit force at point F
(controlled - i.e. damper fitted).

;EFU = Receptance defined by the displacement at
point m due to a unit force at point F
(uncontrolled - i.e. no damper fitted.

Fddu = Receptance defined by the displacement at

point d due to a unit force at point d
(uncontrolled - i.e. no damper fitted).
Thus, measurement of the above system receptances

enables estimation of the damper characteristics.
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APPENDIX E

ESTIMATION OF EQUIVALENT LINEARISED

ELECTROMAGNETIC CONTROL PARAMETERS

For modelling purposes accurate prediction of the
magnet damping and stiffness coefficients is essential.
Because of the effect of shaft residual bend it was
found necessary to vectorially subtract the response
results of two test runs. In each test run, unbalance
masses of known magnitude and location were applied.
The situation is further complicated since, for non-
linear electromagnetic control, the control forces
during each of the two test runs are, in general,
different. If an accurate model of the sustem is to
be obtained then some means of computing an equivalent
or effective control force, and corresponding control
parameters, is required.

The following procedure is used.

Consider the initial test run (system A) where
the shaft is run without any applied unbalance. Then
the response of the system will be due to inherent
unbalance resulting mainly from the initial-bend.

In the second test run (system B) a known unbalance
is applied to the system and the shaft driven over the
same speed range,

Subtraction of response data from these two test

runs will result in a set of response data
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representative of a shaft arrangement (system C)
subjected to the known unbalance but having no other

inherent unbalance.
RESIDUAL A RESIDUAL

8 F(t) BEND BEND
D u e _
B \

L € F L L

SYSTEM B CEFF F (t) SYSTEM A

172177

;é\\\

SYSTEM C

C and K are the electromagnetic linearised damping
and stiffness coefficients respectively. fu(t) is the
force, at a shaft rotational speed w, due to the
externally applied unbalance.

Since shaft response due to unbalance is being
considered the motion is assumed harmonic, thus,

_ T iwt
fu(t)- F,-e

o(t) = §.etwt

and similarly for all other harmonically varying
parameters.

©(t) is the instantaneous shaft slope at the
controller (point C).

For System A

8, = 6, - M,.T (E.1)
where

A is the shaft slope at point C for system A.



§0 is the shaft slope at point C due to inherent

unbalance.

MA is the control moment at point C.

?cc is the angular point receptance at C.

and M, = 8, [Ky+iuC,] = 9,.7, (E.2)
Similarly,
For System B

B = 0y - Mg.T,, + Fy.T p (E.3)
where,

?cF is the receptance defining the slope at point
C due to a unit force at point F.

All other terms are defined analogously to those
used in system A.
In addition, M = eB[KB+imCB] = 6g-1g (E.4)

Now from (E.1) and (E.3)

Og - 64 = rcc[MA-MB] + Fu.rCF (E.S5)

Substituting equations (E.2) and (E.4) in (E.5)

gives,

GB - GA = rCC[OA.ZA—OB.ZB] + Fu' oF (E.6)
Considering System C now,

ec = —Mc.l‘cc + FU.I‘CF (Eo7)
and,

¢ = OclKgpprinCpppl = 0 - Zppgp (£.8)
Putting equation (E.8) in equation (E.7)

o, = rcc[_ec'ZEFF] + F ot (E.9)
and since 50 = 58 - ©, equation (E.9) can be rewritten
as

Og - 0y = r [(By-0p) Zpppd + F ot g (E.10)

E3.



and equating the right hand sides of equations (E.6)
and (E.10) we find,

Zepp = [84.7, - 85.75]

(E.11)
(5, - B]

Thus, in general, solution of equation (E.11)
will necessitate the measurement of EA and 68 during
test runs and the computation of TA and 7B from
calibration data, for each rotor frequency, using the
procedures described in sections 6.6.5 and 6.6.6.2.
Only then can the equivalent control impedance TEFF be
determined and employed in the numerical simulations.

It is seen that if the controller characteristics

are assumed linear then Z, = Zg = Z and from equation

(E.11) Z = Z and is independant of the system

EFF
responses thus simplifying the analysis considerably.

Alternatively, if the condition ﬁA = -55 is satisfied

then again 7EFF = Z.

E4.



APPENDIX F

THE INFLUENCE OF EXTERNAL DAMPING

AND SUPPORT ASYMMETRY ON REVERSE

WHIRLING OF A JEFFCOTT ROTOR

Consider an unbalanced Jeffcott rotor mounted on
anisotropic supports and subjected to external viscous
damping. Using the co-ordinate system as defined in

Chapter 4 we can write the equation of motion for each

plane as:-

Md? . (v+ecos@t) + Cdv + K v = O

2
dt dt (F.1)

and Md% (w+esinQt) + Cdw + K w = 0
dt? dt
Where M and e are the rotor mass and eccentricity
respectively, C the external damping and Kv’ Kw the
effective shaft/support stiffness in the respective

planes.

Equation (F.2) may be expressed as,

LX) LJ 2 - 2
v+ chnv Vo Vo= eQ " coswt
(F.2)
W+ 2Cw_ W +m2 W = eQZSinwt
nw nw

Where ¢ is the dimensionless damping factor and

Wy and w,, are the natural frequencies in orthogonal

planes defined by,

w :-/R—; w :/k—

nv -V nw -—W

M /M
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Assuming synchronous harmonic motion with shaft
precession rate equal to rotational speed (£ = w) the

steady-state solutions of equation (F.2) are

v = er cos t-tan-1(2§Fv)
2,2 2
/O -F2) 24 (2gF )7 (1-F2)
= Veth = [v_ + iv ]ei(‘ot
c s
2
W = eFv sin mt—tan'1(2cF )
2.2 22F 2] ;‘
v-FO % + (2zF (1-F2)
- welwt [w_ + iw ]eiwt
c s
where
Fv = w/mnv : Fw = m/wnw

Now the displacement cos and sine terms may be

written as,

2

v, F (1-F,)

v_ = 2¢F

S v (F.3)

w, = ZCFW

2

We = -(1-Fw)

The direction of rotor whirl is determined by the
sign of the term (vswc - vcws) as described in Appendix
A.

Thus, substituting from equation (F.3) in the above
leads to the conclusion that
. 2 2 2
For forward whirl [4g FVFw+(1—Fv)(1—Fw)] >0

. 2 2 2
For reverse whirl [4z Fvo+(1-Fv)(1-Fw)] <0
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Now, since Fv and Fw are always positive it is seen
that the introduction of external damping tends to
suppress reverse whirling.

Considering first the case of no external damping
(z = 0) then [(1-r3)(1-ri)] will be positive for
forward whirl and negative for reverse whirl. Thus,
for isotropic supports (szFw) the above term is always
positive, leading to progressive or forward whirl at

all speeds.

If, however, Fv;éFw then the following conditions

will result,

F <13 F < 1 + Forward Whirl

v ? w

F >1;3; F_ > 1 > Forward Whirl
v W

F <13 F_>10r F_ >1; F_ < 1 -+ Reverse Whirl
v v w

It is evident that, for the simple model
investigated if damping is not present then shaft
retrograde whirling may exist only if supports exhibiting
non-isotropic properties are employed. The region of
reverse whirl is confined to a speed range between the
shaft critical speeds in orthogonal planes.

If system damping is present then clearly the
speeds at which retrograde precession may occur will

be determined by the relative magnitudes of ¢, Fv and

F L
W

The influence of these parameters on the existence
of shaft reverse whirls is illustrated in Fig. F.1.
The horizontal axis represents the degree of support

anisotropy present whilst the vertical axis shows the
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shaft running speed as a proportion of the lower
critical speed, where only the speed range between the
two system critical speeds is examined. The curves
drawn show the amount of external damping just necessary
to eliminate reverse whirling for a corresponding range
of support asymmetry ratios. The region enclosed by
the curves and the vertical axis indicates shaft
retrograde motion. For example, referring to the case
where T = 0.3 it is seen that for a critical speed
ratio (wnw/wmv) greater than approximately .56 the
shaft will whirl in the same direction as rotation at
any speed between the two system critical speeds, i.e.
reverse whirl is completely eliminated. However, as
support asymmetry becomes more pronounced (Fv + 0)

Fu
reverse whirling will occur over a portion of the speed
range between the two criticals, until at (wnw/wnv):.S
the shaft will exhibit retrograde motion within a speed
range between ﬂ( ~ 1.175 and F = 1.7.

The diagram thus gives a good quick guide to the
amount of system damping required to ensure forward
whirling for a given degree of support asymmetry.

It is clear that the introduction of even a small
amount of external damping is effective in removing
reverse whirls. For instance, where the critical
speeds in the two planes differ by approximately 20%
it is observed that the application of damping of the

order of 10% of the system critical damping value will
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result in the elimination of shaft reverse whirl. This
probably explains why the phenomenon has rarely been

observed in practical rotor systems [67].
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FIG. 4.1 SIMPLE BEAM MODEL

FIG. 4.2 SUPPORT WITH SUB-LEVEL CHARACTERISTICS
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FIG. 4.4 SYSTEM WITH SUPPORT COUPLING
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FIG. 6.17 ANGULAR CONTROLLER SET-UP (ONE-PLANE SHOWN)

FIG. 6.18 MAGNET DETAILS (DIMENSIONS IN MILLIMETRES)
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(a) EQUIVALENT SYSTEM
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(b) BLOCK DIAGRAM OF CONTROL STRATEGY

FIG. 6.20 MAGNETIC ANGULAR FEEDBACK CONTROL OF A SIMPLE SYSTEM
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FIG. 6.21 MAGNET FLUX PATH
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FIG. 6.25 CONTROL CIRCUIT PHASE-FREQUENCY DETAILS

(a) DAMPING CONTROL

(b) STIFFNESS CONTROL
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SHAFT RUNOUT READINGS

(Shaft Speed = 170 rpm)

Measurement Probe 1 Probe 2 Probe 3
Displacement P-P 25 68 18
Phase 366 314 204
FIG. 7.3a
ZERO-CONDITION SHAFT READINGS
Shaft speed | Measurement Probe 1 Probe 2 Probe 3
545 rpam Displacement 680 1130 715
" » Phasge 293 298 284
750 rmm Displacement 198 210 245
" " Phase 100 110 113
FIG. 7.3b
TRIAL-MASS DATA
Trrial mass of 7.0 grams.at 38 mm radius in Plane 1.
Shaft speed Measurement Probe 1 Probe?2 Prodbe 3
545 rpm Displacement 560 930 620
" " Phasge 307 310 298
750 rpam Displacement 174 169 210
n = Phase 118 135 135
FIG. 7.3c
Trial mass of 7.0 grams at 38 mm radius in Plane 2,
Shaft speed Measurement Probe 1 Probe 2 Probe 3
545 rpm Displacement 720 1180 770
non Phase 275 281 269
750 rpm Displacement 200 215 200
" " Phage 87 87 93

FIG. 7.3d




Trial mass of 7.0 grams at 38 mm radius in Plane 3.

Shaft speed Measurement Probe 1 Probe 2 Probe 3
545 rpa | Displacement 535 910 550
L Phase 284 290 276
750 rpm Displacement 150 150 180
n = Phase 96 99 110

FIG. 7.3e
FINAL (BALANCED) SHAFT VIBRATION READINGS

Shaft speed Measurement Prode 1 Probe 2 Probe 3
545 rmm Displacement 80 57 €5
" n Phage 97 93 115
750 rpm Displacement 14.5 53 25
~no" Phase 37 335 273

FI1G. 7.3f

63.



+0LD EAL
#FRN

IF BALANCING AT ONE SPEED TYPE 1 IF NOT TYFE 2
=1

CORR MASS(GHS) PLANE ANGLE (DEG)
19.75 1. 49.4
21.71 2; 268.8
13.27 3. 128.6
*FRN .

IF BALANCING AT ONE SPEED TYPE 1 IF NOT TYFE 2
=2
CORR MASS(GMS) FLANE ANGLE(DEG)

17.190 1. 92.4

13.98 2. 224.9

3.64 3. 297.8
RES.VIB.AMF. RES.VIB.ANGLE FPLANE SFEED

48.69 155.9 1. 1.

235.94 296.7 2. 1.

18.4649 43.9 3. 1.

31.83 157.6 1. 2.

11.76 83.1 2. 2.

42.39 186.7 3. 2.

RMS RESIDUAL

32.48

FIG. 7.4a BALANCE PROGRAM - SAMPLE OUTPUT -
FIRST BALANCE (SINGLE SPEED AND TWO SPEEDS)
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#0LD BAL
+FRN

IF BALANCING AT ONE SFEED TYFE 1 IF NOT TYPE 2
=2

CORR MASS(GMS) FLANE ANGLE(DEG)

4.34 1. 238.5

7.72 2. 392.2

?.81 3. 137.3
RES.VIB.ANMF. RES.VIE.ANGLE FLANE SFEED

39.52 73.8 - 1. - 1.

26.29 265.8 2. 1.

11.29 121.8 3. 1.

32.94 197.98 1. 2.

?.99 275.8 2. 2.

12.64 216.9 3. 2.

RM¥S RESIDUAL

22.71

FIG. 7.4b SAMPLE OUTPUT CONTINUED - SECOND BALANCE (TWO SPEEDS)
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77127777+ COUPLING
DRIVE PINS /
FLEXTBLE 1] Kv EH ;7 RES
CORD \

NNN

¢ TEST SHAFT
COUPLING

e

__t...

SNSNSN AN

M
NN NS S HANNS NN

20077777

(b) VIEW ON A-A (c) MODEL SHOWING ROTATING
STIFFNESS ASYMMETRY

(Eg> 0.5 K)

FIG. 7.6 TEST SHAFT COUPLING ARRANGEMENT



68.

T ISIL ¥Y0d INIWHONVHYY LJIVHS L°L °*9Id
ns\mx 098, = d

as\z 6I0T1T = 1

_ _ STIVIAQ TVNOISNIWIA IAVHS (%)

_J 00T 1—1 0S0T
IT )

o |
T NOILVIO01

)

9 d34904d S gdoud % 340ud ¢ ddoud ¢ ddoud

Lo | L LS

|
== == : E F— = —1 = ] .VJM/VW ull
s /R 7 2 ¢

S1g A

N

w3
z b

0 (SUAINASNVYHL)
VILWANI Ixd

q1g

€IT°0 (34) SSVW Ixd

(93a) °Ja¥ FSVH

L 0 08T LT 29T 9T A 89T %9T 0 0 ANEE LIVHS

m#.ﬁoo O H . 0 . . . . . . AEEV WgEH..—hmE

S11°0 | %9t°0 | T%T°0 | SoT'0 920°0 | %S0°0| 9£0°0 0 660°0 QNAE LIVHS

1T (1] § 6 8 L 9 S L ¢ 4 T NOILVIO01 LJVHS
STIVIAd aNIg LIVHS (q)




69.

NIE-TVILINI 0J 3Nd ISNOJSHY IJIVHS

°L*L °9Id

S|

(WdY)

Lt b

033dS 14VHS

0l

-1

T T Ty

°q
p-01X

(m) INIWHOVIISIA IIVHS SWY




70.

ONJE—~TVILINI OL "0d FSNOJISTY TIVHS PL°L *OH1d

(33Ss/avd)

Sl

C33dS 14VHS

01! S

0

ol
p-ULX

(vw) % 390Y¥d IV INGAWIOVIJSIA LIVHS




7.

aN3q TVILINI 0L n.B,n ISNOJSTY IAVHS ©ol°*L °DId

<03S/avd) 033d3 1dJYHI

L1X

sz oz St B1 P

1%}
+* &
}
+
Z
by
*
TVININI YA IXHT + €
XY0dH.L
/¥ $
3-B1X

(w) G F904d IV INARAOVIISIA LIVES




72.

aQNIE-TVILINI 0 ENd SWHOd (AIOFTIAC LAVHS FL°L "DId

_
Wd¥0°0002=033dS =

Wd40 - 00¥ 1=033dS |

WdY0 - 02S5=033dS |

R <---= HLI9N37 1dVHS oyd 9d e -
| ' TNl
.
| | ! | ! el

! _ ! ! 0

~ Ny = 1

//XII — - = IN

—— = IS

p-01X
— — Y =~ _ [9-
.
Nl

_ _ _ _ _ _ | _ [
_ _ _ _ _ | _ 0

K4

R4

-9

_ p-01X
—— — ~ _INI
[

_ _ | _ | _ _

_ _ _ _ _ _ _ 0

1

TVOILIU0dHL -2

TVINIWIYAIXE X

(W) dS1Q 14VHS

(W) dS10 14VHS

dS10d 13JVHS

(W)




73.

¢%/3% 098 = d
NE\z 64013 = 4

—.i

¢ ISdL HOd INIWIONVYMY IJIVHS 8°L °9Id

STIVIZA TVNOISNHWIA LIVHS (%)

r 00T 0507 T -4
I ot 6 8 9 g % ¢ 4 T NJ01
9 FAoud ¢ adoud % d4oud ¢ 3d0ud ¢ ddoud T d90ud
mu NN Mu m_ zlmm L_ _
%l W ? N N
1 1 i = — \.m |=.
Vi Al _n.n,_.. - e — (g 1)
AT A c1g L S < ST | (aswaaswvan)
9% ISIL q2 ISAL g ISAL 0 VIIMANI IXd
. (34)
L1170 covi 1xa
. (93a) *J9Y FASVHA
9 0 Glt 89T %91 A (1A s L9t 991 0 0 ANTE LIVHS
] [} [ ] [} L] L ] L[] . Y L] AEEV mgBHdE
G0T°0 0 LoT*0 | 8%T°0 | 6£1°0| 160°0 | SLo*0 | <Go'o 920°0 0 690°0 NTS LIVHS
I8 ¢ (1) § 6 8 L 9 G y ¢ 4 T NOILVI0T LJIVHS

STIVIIA aNdd IJdVHS (q)



74.

(¥ IS3I) TSNOASTY IJVHS QEUNSVAW (T)98°L *Did

01X (WdY¥) 033d$ L4VHS
2
Ge 0¢ m._ . .O._ o o . . 0
L a a1l " PR . . Wl
1l¢l
y & —X—
g —+—
ROKINIR —A—
DNILIZS WIINVA _ﬁum/.{w ﬂm\ AN A
o

01901

(@) INFWIOVIJSIA LIVHS SWH




75.

(e2 ISEL) @SNOSHY JAVHS AIIDICIYd (TT)o8°L *HId

201X . (Wd¥) Q33dS 14VHS

.. . ... . . S . . . ., e oo Sy o S 0
ml
-

Y
rd F
FOKINIK
ONILIAS WAJWVA / \

! TRt

— ¢-

01901

(w) INIWHOVIJSIA LIVHS SWA




76.

(42 Isd1) ASNOJSTH IIVHS qIUASYAN (T)pe’l °HId

o¢

(WdY) 033dS 14VHS

No—x
| E— i -m-N --------- OnN A d -m—— ' " PR S 1 Y A n -O-— --------- _m o
MI
.
Y —X—
g —+—
WOWININ —A—
ONILLIS WAdWVd :
=T |
N L\L\
' $ ¢~

(w) INTWHOVIASIQ IJVHS SWH




(42 ISII) ASNOASTY LIVHS @IIOIaTYd (TT)P8*l *HId

77.

201X (Wd¥) a33dS 14VHS
......... A 2. S N . 0
..... ¢
S
% ~—7
'
HININIH — — = — —
HNILIES MAIWVA

—— 01907

(m) INSWIOVIISIA IAVHS SWH




78.

(9% ISAL) FSNOJSHY IIVHS @TUNSVAW (T)e8*l °*OHId

(WdY¥) G33dS 14VHS

A

Al

"

.O—— n w

no—X—
g —+—
WOWININ #—A—

ONILLIS YAdWVd

T
<
!

c-
01907

(@) INTWIOVIISIQ IJAVHS SWH




79.

(o2 1S3l) ASNOISHY IIVHS QATIOIATEd (F11)e8*l *DHIA

. (Wd¥) 033dS LJVHS
201X
o i AR o¢ —_— S e . e
G-
lvl.
L
*N Rme——— O e——
N —————
HOWINIK = — — — ~
INILIAS YAJWVA I
—— ﬁnl

(@) INIWIOVIISIA LIVHS SWH




80.

¢ 1STL 404 INIWIONVHMY IJVHS e6°L °9HId

¢%/3%1 098L =0
ma\z 64012 = @

. -

00T 050T 4% _
2971 _ €9¢ wﬁ . 03¢ _ 1 29 | 6 _

o1 MHI ST ‘00Tg OSIQ TAAIS

S— | G @Hodd - WOIVNIOV OIIANOVWOUIOATH N\ ¢ mEOu

m_ ootd | 3\« _w SOSIQ NAA0OM L ~Hb T n__
 — ' \ : ,
b F 1 : TH]= F = = =
»” = (9¢ ® a€ sIsdl) —r— ~ r_=. X
wig 2l W BN R-FAGHE0 = m_ | nig
(®¢ Isdl) . (,m 3%)
w 3y %-§1G9°Q = &
_ (ISHAASNVYL)
C-ag ¥ G-269°% C-awhw  €-3G93°2 0 VIIWANI IXd
. (%)
3L0°0 6L0%0 120°0 26°0 £1V°0 sowvn 1xa

' 4

£

(ANVId *I¥3A) 2 aNV T STF0ud
(ANVTId *ZI¥OH) % uNV € MOVHQIAL

z

w/

ia
949°¢ = JMMM“ﬂ
/

mﬂhﬂw x

/



81.

(B¢ 1S31) 9HNIJWYQ JIIL3INIYWOYLIIT1I HLIM 3ISNOJS3IY L4VHS a3ynsvaWw  (T)dé6°L °9I4
201X (WdY¥) @33dS L4¥HS
o¢ .. ... .85 02 S| 01 g 0
A A T A A 1 A i ' i 4 mlu
I oo
<
- wn
5 [9))
I
L >
>
. —
[ o
S~
%)
2
( oLl = 3D ”
sburijes  gg = 3 x :
QQCNQOLQI A Oh - U + f
( 0 =23 a -

01901




82.

(B€ 1S31) OINIAWYQ JIL3INIVWOYL133T13 HLIM 3ISNOJS3IY LJ4VHS Q3LJIIQ3yd (T71)96°L °914

(Wd¥) Q33dS 14YHS

No_x

€ . ... .. . ‘s . . ., o oOoooost oot g 0
ml
- lvl

QN__.-=

oLl = 3 \& .

SONI113S 06 =3 \ |

JINIYIIIY .

0L = ) .

0 = 9 — !

A |

L
o

01901

dS10d 1d4VHS SKY

(W)




83.

(®¢ 1SEI) @ITAS SNSHAA

INTWIOVISIA LIVAS QEUASVEW (1)96°L *9Id

(WdY¥) (Q33dS 14VYHS
201X
og s? 0z St o 3 o
. N N N a a4 N . S-
[ -
SONIXLIAS
TJONTUIITT
Lo

01901

(@) % 3F0¥d IV INIWAOVIISIA LIVHS




(e¢ ISAL) QAEdS SNSYAA INIWHOVIISIA LAVHS QHIOIATYd (¥1)26°L *HIA

84.

201X . (Wd¥) G33dS L4VHS
0t S¢ . 0c . St ol

PO SPUT VS WU SUNY SUN ST S S N

T
<
|

SONILLAS 1
JONTHIITY !

b
01901

(w) % 3doud IV INIWHOVIJSIQ LJIVHS




85.

(8¢ 1SUL) QEAJS IJVHS HifM DNIWVA J0 NOTIVIHVA P6°L *HIA

(Wd¥) d33dS 14YHS

St | 0!

L A A A A A A Pt

o

SONILLIS
HONIHAITY

7 +
20 X

o

- O

- O\
nn

o

LANE BN SN BN SN G S S A 2 S Sum B Suw 4

L

T T

(pex/suN) ONIJWVE HVIIONY




86.

SONILIES ONIAWVA J0 HONVY V H0d WAMOd IANOVW @6°L °*9Id

(wdx) qIIIS IAVHS

o-m- PUNSY ST SR W S 1 PR Y m-N. | I 1 ANN m-.w O—.—”
< \/ »
.“
\.-
O )
. . o J
[
= O
N o '
a » -\
QO .-‘-.
;
ée _fe.
Y/
\7
OIT =0 a
SONILLIAS
FONTULITY 6=05 O
oL =09 \}

(s37em) ¥IMOd LANOVWOHIOATH




87.

(4¢€ 1S31) ONIJWYQ/SSINJAILS JTLINIVWOYLI3I13 HLIM 3SNOJS3IY LIVHS G3IHNSVIN

J6°L *914
201X (Wd¥) Q33dS 14VHS
€. ... . .. s ez &l 0! S 0
. . —
[ b= o}
<
- wn
5 wn
o o
L >
-n
I -
[ o
Iy- ﬂ
2
00L = X ‘09 = 24 SINILL13S ..n
0= ‘24 JIN3Y3I 3N 01901




88.

(9¢ 1S31) 70YINOJ SSINJAILS wi440-NOw HLIM 3ISNOJSIY LAVHS QIYNSYIW

(t)b6°L *914

201X (Wd¥) @33dS 14VHS
¢ . ... . .Sz 02 sl 0l S 0
0961 S-
440 10¥INDD| NO 10HLINOD
SSANJJILS |
-
L

01907

dS1d 1JVHS SKWy

(W)




(9¢€ 1S31) 0YLNOJ SSINJJTLS w4J0-NOw INIAOTdWI 3ISNOJS3I¥ G3LI10Q3NHd (r1)bg*L 914

89.

. ol . (Wd¥) Q33dS 14VHS
201X
LN SN 2. . — e D 0
0Lsl 5
o
| .
- 3
1013U03 s88U 4TS vl -
aatjdepy yjTm esuodsay ! _ [
_ i
esuodsay paTT0IjuUCIUf — — — £-

01907

dS1d 1JVHS SKWd

(W)




90.

(°€ ISUL) SSANAITIS ANV HNIJRVA DIIANOVW J0 JOTd U6*L *OHIA

(WdY) 033dS 14VYHS

201X
_ sc _oc st ..o s 0
L 0 0
m
-

nﬂm gl

&

-3
3 =4 .
A (oI §

e
81
LS|
[ 2 @ [2
L —
- F
L wn N
SN
X o |
ﬁu..\ X
[ [
[ ¢ [ €
. i
[ [
I ¥
DNIdWVD X ” ﬁ
L i
SSANIATIS A % ¥

201X

(®/N) SSANIIIIS JIIINIVH




[t g ppetd

p—=

"

e T = = gl

@ -l — Jones + o - X —
=5 == 1T = !
- =y T -~
=y N T o ~ =
:__-E s E — X
=d [=] ; == == oS
:m m jl = 1 < — =
= = E ==
5 —+ T O
=g 3 e ——
::El = = P —
=< < & ER ey ey
—— o

==

o=

—

o —e— - v =

e ro oo
==% e s ST SN
bos ¢ jomrnnairbes puin aumtp Sl -4t Png b et

T = =

P ] - SRLTTIIIS LI I

p =TT ‘......._.{2:_.____:1::.. =i

- == 2 .
e — —— f i Pt prysing SA oSNy it
P g die g pddrymymadnded SRNepShSuy JPpace) Muhedy e Puin SReQa-opeS SRS PRy =3t
= Serpuide < et TN T, S
Tty 290 RESSSA) ipedoiugs tupipngped bidy . L s.
e et

-1 | ey
Koo of Tel

[*PEps toywnppUnsbgnasgpy |
RIS Sy o

paape vogd
e

Y s ba




17940 34eyg uo Butdweg of3suBewol}oeT3 40 308443(d)6°L ‘314
Q34Wva

ATVYIILIANIVW
> c &

"W d Y oooc 174°17 oevl 0s¢

92.

g3usuodwo) snNOuoIYOUAS-uOoN

() 6°L *3714 40 uoTleuTwity (W)6°L *31d
(*W°d*2) Aousnbexy gevlL IIL
‘ >
l

Butdweg
9T38uUdey
Butsesaxour

|

wdIpy/ = QI34S ININNNY 1dVHS




93.

na\mx 098, =
ma\z 63012 =

% ISHL ¥W0d INIWIONVYUV LIVAS @©0T°. °OHId

— 001 ~

mJN .

G-gGy

elo°0

h pue ¢ 1SAGOUd WOVHATAI

|
0G0t GH1 J
— _ —g r— Puntal St ’—
, £9¢ —# €1 _ L*88T ﬁ Ch1 Z9 a|_
SNSRI NS
MHIST ‘001¢
G F90ud YoLvudI NG
z
% = 11! ——— | u.l—.JI S — --l; -
1 T I 1 T — -l¢ X
r
J.w _w l— Yig
g qH0ud -
_ % Foud - _ (5@ %)
¢-A™M°y  €-9G693°Z 0 (ISYIASNVHL)
C-369°% 0 VIIMINI IXd
. 0 - . : (™)
clo'o €0°0 1L0°0 L6°0 €110 SSVH IxT

Y /s
/N gag*g = Uy mp iy % _\
m x

_ .
+ XINO 3NVId TVINOZIHOH NI NOIIVHHIA



94.

TOYINOD ONIAWVA - (®% ISEI) XONANDAUA SNSHAA HONVIJAOTY IJIVHS 40 10Td .90T°L °HId

(NIR/0X0) XONFNDTUAL

---------

SONILLIS
HONTTALTY

.........

T T
wn
]

<
'

wnl
01907

(N/m) FONVIJHAOTY LJIVHS SWH




95.

TOUINOD SSENIALIS - (q% ISTL) XONANdAMA SOSHAA FONVIJAOTY IJIVHS J0 I0Td 20T°L *HIA

- WO

(NIN/0X0) XONHNdTUA

---------

OTF =3 X

SONILIAS
FONIUELTY 06=x +
0=X A

-------

i d PR VR W WY WY WY

T
[Tp]
]

T
<
'

..nl
01901

(N/m) FONVIJIOTT IIVAS SWH




96.

TOUINOD SSANIIIIS - (A% ISHI) XONANDTYA SNSHHA FONVIJAOTY IJAVHS J0 I0Td POT°L °*OHId

A A

Sl

(NIN/9X0) XONANdTHA

ol

1

SONILLIS otT

TONTYAITH 0

]
M M

> +

o
01901

(N/m) FONVIJAITH IIVHS SWH




97.

¢ ISAL ¥0d INIWIONVYUY LAVHS ®©T1°l °OHId

ma\wx 098, =0
Ng_\z 63013 = 4
.
e
00T 060t GHT 1_
_ L 1L
291 €9¢ [ 141 L*881 _ %1 29 66 _
LR LLLL L -
N oT MIL ST ‘o01g
9 Faoud ||__..I G 390ud oLvVyudIA NN ¢ AGONUd - .
) o T % | il | ; | N
E E —— T = £ 1t |= — = H=E ald -
Y — — <] I X
g ! . _w | b nig
_ ¢ adoud % FH0d _ _ . (gu %)
_ L, . . . . 0 (JSUIASNVYL)
0 G-q4G° % C-769°% 0 G-an%*%  €-4692°'C O VIIYANI IX3
[} L] L ] [ ] L ] L ] . L] Aw;v
LIS ) 2lo°0 6l0°0 G0°0 120°0 L6°0 %E%°0 €110 covi IxT
% NV € :SAdoud NOvaaddd w/N 9360£°0 = ¥ mmw N_ /
) : B w0 = K W £

XINO ANVId TVINOZTHOH NI NOILVHHIA

X



98.

TOUINOD ONIWVA - XONINDOTYA SNSWAA HOWOd J¥H AQ SSAINOISNAWIA CITUNSVAW J0 IOTd qIT°L °*9HId

(NIK/0X0) XONANDITUAL

SONILLES
JONTUIITY

ol

nn
o O

B> 4+ Xx

.........

C
01901

H040d O¥d Id TYNOISNIWIA-NON




99.

TOYINOD ONIAWVQ - XONINOTYI SASYAA TOUOI DUM T SSTINOISNIWIA AAIIIAHNd 40 I0Td °OTI°L °*OHId

(NIW/0X0) XONENdIYAL

No_x
og S2 02 Sl 0l S 0
--------- L4 2 2 Ad b 8 2 2 1 2 32 2 2 2. 32 2 2 2 T — 2 I Py PR NN SN WY WY S | s a2 2 ﬂ'

Fo
\
Ly

SONTLIAS

HONTUITTE 0L =9

0o=9 —

-2

01901

J0Yy0d 949 dA TVNOISNIWIG-NON




100.

TOYINOD DONIJWVA - XONINDTUL SASHAA TOUOI DY FAN SSAINOISNAWIQ qIUNSVAW 40 I0Td PIT°L *HIA

201X
o¢

| S S S ¥

(NIN/0X0) XONANDTUA

SIONILIFS
JONTHAITY

oL

(& ]

x
+
A

T T T T

-0

™

=TTy

4
01901

d0404 949 JAN TVNOISNIWIA-NON




101.

TOUINOD HNIWVA - XONENdFUI SNSHAA HOHOd H¥Y HAN SSTINOISNAWIQ qHIOIQTUd J0 I0Td °TT°L *OHid

(NIN/0X0) XONANdTEL

---------

--------

SONILIFS
JONTHALTY

.........

g

[
[
!

K4
01901

J340d4 O¥d JIAN TVNOISNAWIA-NON




TTOUINOD SSANAIIIS - XONANOTYI SNSHAA ﬂoccw @&ﬂ HA SSTINOISNAWIA HUNSYAW 40 JOTd JFIT°L °*91d

102.

(NIW/0X0) XONENbTHL

LINE S T

!
—

(0TT = ) T04INOD SSANAIIIS +
(0 = X) ASNOJSTY QITIOHINOONA A

01907

J0Y0od 9¥d dd TVNOISNAWIA-NON




103.

TOUINOD SSANAIIIS - XONINDTUL SNSUEA HOHOL DUL HA SSTINOISNAWIQ AAIOIATHL J0 I0Td JTIT°l *O1d

201X

Al

(NIN/0X0) XONHNdITUA
Sl

W U W W

g

(0TT = X) TOWINOD SSANAITIS
(0 = X) FSNodSTH aTTIONINOONN O

0

Tr T T

01901

J0H0d Odd Hd TVNOISNIWIA-NON




104.

9460£°0 ¢ NV T SINIOd|4aZT°l *9Id (9 1sF1) SISHIL FONVIJAOTY ¥0J INAWIONVUNY LIVHS 31°L *OHId
(SIM0ddNS AIDI¥) | % ANV € ‘Z ‘T SiNIOd|®31°L °*DId
(w/n) Oy gganaarzs| NOTIVOOT NOTIIVIIOXE
—1 - _ll 'r T
_ 00 _ 0507 ! ot
- Pt 'r—” \ o B S
o 603 03¢ 03¢ _ G023 Gl
YHI ST ‘ootd ‘
: MHI ST ‘00T
OSIQ T3AIS 0T % INIOd € INIOd 2 INTOd 9S1d ,_mmamn
/ . e SOSIQ \
z NIA0OM
1 T : L2
= HiE—F I H= —— =
RUENE (_. 0 _.. _..,U ..Ew Ju J___\ 4 _..|r=
lr
1 INIOd
S FHOud % BA0Ud € Fdoud g moud M 2 _ (zm )
| ) _ _ ﬂ,n 4692°2 0 (asuIASNVEL)
€-9692°'2 ¢ C-aG % C-369°% =AYy 0 VIIEENT 1X3
L6°0  wEw*o 220°0 600 120%0 w0 26°0 CIT'0 (24)
SSVH IXd

AINO ANVId TVINOZIHOH NI NOIIVHAIA



105.

XONENOTYA SOSWAA INIIOIAAA0D WONENTANI SWH CHUNSVAW LIVHS J0 L0

9%1°L 914

(NIW/0X0) XONENdTUL

no—x .
9 . 0
[ " e ' " w|
ﬁ
1“!—
(L°0) G°1T (6°7) L°2 Ly -
T
% NOIIVOOT IV ONIOHOd O
¢ NOIIVDOT IV ONIDWOd X !
2 NOILVDOT IV ONIDHOA + SOILIVH [
FONVIJAOT
T NOIIVOOT Iv ONIowod A (9°%) 7'z (0°8) 6°3 mn

. ~ 01901

(N/m) INITOTAIA0D FONHXENI SWI




106.

XONANdTYA SNSHAA INHIDILA0D AONANTAINI SWH AHIOIAHYd LIVHS J0

10Td PTT*L °*HI1d

(NIK/0X0) XONHNDTUA

---------

% NOILVOOT IV DNIOWOJ
€ NOIIVD0T IV HNIJHOA

¢ NOIIVDO0T IV HNIOJHOJ
T NOILVDOT IV ONIOWOA

> + x 0

---------

T Ty
wn
[}

T
-
)

01907

(N/m) INAIOIAIHOD FONANTAINI SWH




107.

XONANDTYA SNSYAA INATOTAIA0D HONINTANI INIOJ-TIONIS AFUNSYAW LIVHS J0 101d

3g1°L *H1d

(NIW/0X0) XONANdTUL

T NOILVOOT IV HNIO¥WOd -—-0O--
¢ NOIIVDO0T IV HNID¥0Od —A—

(N/m) g 390¥d IV QEEASVAW INATOTAIF0D TONANTANI




108.

XONANDTYI SNSYAA INFIOIJAHOD HONHNTANI INTIOJ-HIONIS qIIOICIYd LAVHS 40 JO1d JFST°*l °*HIA

(NIW/0X0) XONANdTUL

T NOIIVD0T IV ONIOJHOd
G NOIIVOOT IV ONIDHOJ

T T
D
!

A
-
’

rrr=
™M
!

01901

(N/m) g F40¥d IV QEINSVAR INIIJILIF0D FONANTINT




109.

SIM0ddNS TTEIXAIL - XONENOTUL SNSHAA INAIOILIH0D HONANTANI SWH CIUNSVAN IIVHS 331l °*9H1d

(NIW/0X0) XoNENdTUA

9

c01X

e e ’ R N 2N N 0
=

<+ ”
oo

[

L [
9L°¢ ole¢ b -

T NOIIVDOT IV ONIOWOd A 6a°¢ i

¢ NOIIVJO0T IV ONIOWOd + S0IIVY -

FONVIJTOTY

Lo°€ £~

01301

(N/m) INATOIJAHO0O HONANTINI SWA




110.

SL)AIAT ITd0ISOYAD ANV AJOUIOSINV LUOAdNS INVOITJINDIS HIIM WIISAS ISAL ®€1°/ °*OId

ma\mx 098, = d
ms\z 6d01C = 4
S . _
| oot 0601 ont 14
N ¢'398 ¢*393 " 003 .mA Ca1g T
RSGSGN udy %-gG8T°0 = X
9 AA0Yd G dd0ud
M_ £
| I |
- — Mﬁ”r J-_Il_.F_’ T = Ml l=-
X
SOSIQ TAFIS Ams %)
_ " 340ud _ _ (ASUIASNVUL)
0 C-333° T €-EC3° T C-A13°T 0 VIIHANI Ix3
wCH0 G¢g*o Go9g"* . . . . (¥4)
98°0 680 L6°0 mLw'o €110 SSVH IXH
u/N 9360 = X
81 LG9-1 = dy g, — z
- w/N 94CC°0 = N £
% NV € :SIG0Ud MOVHaIRd
.. _ ma, 2, X
m/N 9F60€°0 = ¥ BA wehto = TR A

NN



111.

ISNOJSTY SWH TAJRVAND JJVHS QLT°l *9HId

20T X (Wd¥) qaads IAVHS
14 0c GT (1) 5 G
1 A 'Y A A A A A A A [ P W A ' a A A 2 A 2 A A A 1 A A 2 A Y 2 ' P 2
@l
X
\\\\‘L‘}‘ X
x X x X
X
TV INIRIYIdIXH X
X4OHIH]L

0T 901

(w) INTWIOVIISIA LIVHS SWH




LO'Td HOTVANIOTE WIISXS

112.

0011 0007 006 008

(WJU) qIAdS LIVIS

°CT°L *9DId

ooh

009

TYTHM Qﬁgogz

/
TITHM QUVMY0d

/o ILVIIOXH

SNONOYIIINAS

009
00.
b
=~
&
008 3
=
S
wn
006
%)
g
o=
P
000T =

00TT



113.

LOG 10

-2 o
l
|
-3
E
% .
o 4
3
e FORWARD REVERSE FORWARD
&
o
_5 | | | L | L
845 850 855 860 865 870
SHAFT SPEED (REV/MIN)
(d) UNDAMPED
LOG 10
-2 -
E -3
/2]
6
B
2
-5 LJ L | bd L] L
845 850 | 855 860 | 865 870
SHAFT SPEED (REVS/MIN)
(e) DAMPED: -0 Cang = 01 Nms/rad; -x- Cang = 20 Nms/rad

F1G. 7.13 SHAFT ORBIT DETAILS



114.

QIJWVA XTIVOITANOVH (4) ‘qadWvann (e) :SII9¥0 IdVHS #HT°L °9Id

(a)

udx 006 wdx €68 udx 068 wdx Ggg uda g8

~—— i e ® S—— e G
(®)

wdx 006 udx 068 udx (g8

~— —




+ (o0



116.

STIVLIAA 11940 THINM IAVHS T°V °*9H1d




2.0 -
1.8

1.6 -
0.3

0.2

1.4 - \ [
1.2 - \ 0.05

1.0 | i DL T 1
0.5 0.6 0.7 0.8 0.9 1.0

R /8, =0,

FIG. F.1 EFFECT OF DAMPING ON SHAFT REVERSE WHIRL OF A
JEFFCOTT-ROTOR WITH SUPPORT ASYMMETRY

117.



	D082726_1_0001.tif
	D082726_1_0003.tif
	D082726_1_0005.tif
	D082726_1_0007.tif
	D082726_1_0009.tif
	D082726_1_0011.tif
	D082726_1_0013.tif
	D082726_1_0015.tif
	D082726_1_0017.tif
	D082726_1_0019.tif
	D082726_1_0021.tif
	D082726_1_0023.tif
	D082726_1_0025.tif
	D082726_1_0027.tif
	D082726_1_0029.tif
	D082726_1_0031.tif
	D082726_1_0033.tif
	D082726_1_0035.tif
	D082726_1_0037.tif
	D082726_1_0039.tif
	D082726_1_0041.tif
	D082726_1_0043.tif
	D082726_1_0045.tif
	D082726_1_0047.tif
	D082726_1_0049.tif
	D082726_1_0051.tif
	D082726_1_0053.tif
	D082726_1_0055.tif
	D082726_1_0057.tif
	D082726_1_0059.tif
	D082726_1_0061.tif
	D082726_1_0063.tif
	D082726_1_0065.tif
	D082726_1_0067.tif
	D082726_1_0069.tif
	D082726_1_0071.tif
	D082726_1_0073.tif
	D082726_1_0075.tif
	D082726_1_0077.tif
	D082726_1_0079.tif
	D082726_1_0081.tif
	D082726_1_0083.tif
	D082726_1_0085.tif
	D082726_1_0087.tif
	D082726_1_0089.tif
	D082726_1_0091.tif
	D082726_1_0093.tif
	D082726_1_0095.tif
	D082726_1_0097.tif
	D082726_1_0099.tif
	D082726_1_0101.tif
	D082726_1_0103.tif
	D082726_1_0105.tif
	D082726_1_0107.tif
	D082726_1_0109.tif
	D082726_1_0111.tif
	D082726_1_0113.tif
	D082726_1_0115.tif
	D082726_1_0117.tif
	D082726_1_0119.tif
	D082726_1_0121.tif
	D082726_1_0123.tif
	D082726_1_0125.tif
	D082726_1_0127.tif
	D082726_1_0129.tif
	D082726_1_0131.tif
	D082726_1_0133.tif
	D082726_1_0135.tif
	D082726_1_0137.tif
	D082726_1_0139.tif
	D082726_1_0141.tif
	D082726_1_0143.tif
	D082726_1_0145.tif
	D082726_1_0147.tif
	D082726_1_0149.tif
	D082726_1_0151.tif
	D082726_1_0153.tif
	D082726_1_0155.tif
	D082726_1_0157.tif
	D082726_1_0159.tif
	D082726_1_0161.tif
	D082726_1_0163.tif
	D082726_1_0165.tif
	D082726_1_0167.tif
	D082726_1_0169.tif
	D082726_1_0171.tif
	D082726_1_0173.tif
	D082726_1_0175.tif
	D082726_1_0177.tif
	D082726_1_0179.tif
	D082726_1_0181.tif
	D082726_1_0183.tif
	D082726_1_0185.tif
	D082726_1_0187.tif
	D082726_1_0189.tif
	D082726_1_0191.tif
	D082726_1_0193.tif
	D082726_1_0195.tif
	D082726_1_0197.tif
	D082726_1_0199.tif
	D082726_1_0201.tif
	D082726_1_0203.tif
	D082726_1_0205.tif
	D082726_1_0207.tif
	D082726_1_0209.tif
	D082726_1_0211.tif
	D082726_1_0213.tif
	D082726_1_0215.tif
	D082726_1_0217.tif
	D082726_1_0219.tif
	D082726_1_0221.tif
	D082726_1_0223.tif
	D082726_1_0225.tif
	D082726_1_0227.tif
	D082726_1_0229.tif
	D082726_1_0231.tif
	D082726_1_0233.tif
	D082726_1_0235.tif
	D082726_1_0237.tif
	D082726_1_0239.tif
	D082726_1_0241.tif
	D082726_1_0243.tif
	D082726_1_0245.tif
	D082726_1_0247.tif
	D082726_1_0249.tif
	D082726_1_0251.tif
	D082726_1_0253.tif
	D082726_1_0255.tif
	D082726_1_0257.tif
	D082726_1_0259.tif
	D082726_1_0261.tif
	D082726_1_0263.tif
	D082726_1_0265.tif
	D082726_1_0267.tif
	D082726_1_0269.tif
	D082726_1_0271.tif
	D082726_1_0273.tif
	D082726_1_0275.tif
	D082726_1_0277.tif
	D082726_1_0279.tif
	D082726_1_0281.tif
	D082726_1_0283.tif
	D082726_1_0285.tif
	D082726_1_0287.tif
	D082726_1_0289.tif
	D082726_1_0291.tif
	D082726_1_0293.tif
	D082726_1_0295.tif
	D082726_1_0297.tif
	D082726_1_0299.tif
	D082726_1_0301.tif
	D082726_1_0303.tif
	D082726_1_0305.tif
	D082726_1_0307.tif
	D082726_1_0309.tif
	D082726_1_0311.tif
	D082726_1_0313.tif
	D082726_1_0315.tif
	D082726_1_0317.tif
	D082726_1_0319.tif
	D082726_1_0321.tif
	D082726_1_0323.tif
	D082726_1_0325.tif
	D082726_1_0327.tif
	D082726_1_0329.tif
	D082726_1_0331.tif
	D082726_1_0333.tif
	D082726_1_0335.tif
	D082726_1_0337.tif
	D082726_1_0339.tif
	D082726_1_0341.tif
	D082726_1_0343.tif
	D082726_1_0345.tif
	D082726_1_0347.tif
	D082726_1_0349.tif
	D082726_1_0351.tif
	D082726_1_0353.tif
	D082726_1_0355.tif
	D082726_1_0357.tif
	D082726_1_0359.tif
	D082726_1_0361.tif
	D082726_1_0363.tif
	D082726_1_0365.tif
	D082726_1_0367.tif
	D082726_1_0369.tif
	D082726_1_0371.tif
	D082726_1_0373.tif
	D082726_1_0375.tif
	D082726_1_0377.tif
	D082726_1_0379.tif
	D082726_1_0381.tif
	D082726_1_0383.tif
	D082726_1_0385.tif
	D082726_1_0387.tif
	D082726_1_0389.tif
	D082726_1_0391.tif
	D082726_1_0393.tif
	D082726_1_0395.tif
	D082726_1_0397.tif
	D082726_1_0399.tif
	D082726_1_0401.tif
	D082726_1_0403.tif
	D082726_1_0405.tif
	D082726_1_0407.tif
	D082726_1_0409.tif
	D082726_1_0411.tif
	D082726_1_0413.tif
	D082726_1_0415.tif
	D082726_1_0417.tif
	D082726_1_0419.tif
	D082726_1_0421.tif
	D082726_1_0423.tif
	D082726_1_0425.tif
	D082726_1_0427.tif
	D082726_1_0429.tif
	D082726_1_0431.tif
	D082726_1_0433.tif
	D082726_1_0435.tif
	D082726_1_0437.tif
	D082726_1_0439.tif
	D082726_1_0441.tif
	D082726_1_0443.tif
	D082726_1_0445.tif
	D082726_1_0447.tif
	D082726_1_0449.tif
	D082726_1_0451.tif
	D082726_1_0453.tif
	D082726_1_0455.tif
	D082726_1_0457.tif
	D082726_1_0459.tif
	D082726_1_0461.tif
	D082726_1_0463.tif
	D082726_1_0465.tif
	D082726_1_0467.tif
	D082726_1_0469.tif
	D082726_1_0471.tif
	D082726_1_0473.tif
	D082726_1_0475.tif
	D082726_1_0477.tif
	D082726_1_0479.tif
	D082726_1_0481.tif
	D082726_1_0483.tif
	D082726_1_0485.tif
	D082726_1_0487.tif
	D082726_1_0489.tif
	D082726_1_0491.tif
	D082726_1_0493.tif
	D082726_1_0495.tif
	D082726_1_0497.tif
	D082726_1_0499.tif
	D082726_1_0501.tif
	D082726_1_0503.tif
	D082726_1_0505.tif
	D082726_1_0507.tif
	D082726_1_0509.tif
	D082726_1_0511.tif
	D082726_1_0513.tif
	D082726_1_0515.tif
	D082726_1_0517.tif
	D082726_1_0519.tif
	D082726_1_0521.tif
	D082726_1_0523.tif
	D082726_1_0525.tif
	D082726_1_0527.tif
	D082726_1_0529.tif
	D082726_1_0531.tif
	D082726_1_0533.tif
	D082726_1_0535.tif
	D082726_1_0537.tif
	D082726_1_0539.tif
	D082726_1_0541.tif
	D082726_1_0543.tif
	D082726_1_0545.tif
	D082726_1_0547.tif
	D082726_1_0549.tif
	D082726_1_0551.tif
	D082726_1_0553.tif
	D082726_1_0555.tif
	D082726_1_0557.tif
	D082726_1_0559.tif
	D082726_1_0561.tif
	D082726_1_0563.tif
	D082726_1_0565.tif
	D082726_1_0567.tif
	D082726_1_0569.tif
	D082726_1_0571.tif
	D082726_1_0573.tif
	D082726_1_0575.tif
	D082726_1_0577.tif
	D082726_1_0579.tif
	D082726_1_0581.tif
	D082726_1_0583.tif
	D082726_1_0585.tif
	D082726_1_0587.tif
	D082726_1_0589.tif
	D082726_1_0591.tif
	D082726_1_0593.tif
	D082726_1_0595.tif
	D082726_1_0597.tif
	D082726_1_0599.tif
	D082726_1_0601.tif
	D082726_1_0603.tif
	D082726_1_0605.tif
	D082726_1_0607.tif
	D082726_1_0609.tif
	D082726_1_0611.tif
	D082726_1_0613.tif
	D082726_1_0615.tif
	D082726_1_0617.tif
	D082726_1_0619.tif
	D082726_1_0621.tif
	D082726_1_0623.tif
	D082726_1_0625.tif
	D082726_1_0627.tif
	D082726_1_0629.tif
	D082726_1_0631.tif
	D082726_1_0633.tif
	D082726_1_0635.tif
	D082726_1_0637.tif
	D082726_1_0639.tif
	D082726_1_0641.tif
	D082726_1_0643.tif
	D082726_1_0645.tif
	D082726_1_0647.tif
	D082726_1_0649.tif
	D082726_1_0651.tif
	D082726_1_0653.tif
	D082726_1_0655.tif
	D082726_1_0657.tif
	D082726_1_0659.tif
	D082726_1_0661.tif
	D082726_1_0663.tif
	D082726_1_0665.tif
	D082726_1_0667.tif
	D082726_1_0669.tif
	D082726_1_0671.tif
	D082726_1_0673.tif
	D082726_1_0675.tif
	D082726_1_0677.tif
	D082726_1_0679.tif
	D082726_1_0681.tif
	D082726_1_0683.tif
	D082726_1_0685.tif
	D082726_1_0687.tif
	D082726_1_0689.tif
	D082726_1_0691.tif
	D082726_1_0693.tif
	D082726_1_0695.tif
	D082726_1_0697.tif
	D082726_1_0699.tif
	D082726_1_0701.tif
	D082726_1_0703.tif
	D082726_1_0705.tif
	D082726_1_0707.tif
	D082726_1_0709.tif
	D082726_1_0711.tif
	D082726_1_0713.tif
	D082726_1_0715.tif
	D082726_1_0717.tif
	D082726_1_0719.tif
	D082726_1_0721.tif
	D082726_1_0723.tif
	D082726_1_0725.tif
	D082726_1_0727.tif
	D082726_1_0729.tif
	D082726_1_0731.tif
	D082726_1_0733.tif
	D082726_1_0735.tif
	D082726_1_0737.tif
	D082726_1_0739.tif
	D082726_1_0741.tif
	D082726_1_0743.tif
	D082726_1_0745.tif
	D082726_1_0747.tif
	D082726_1_0749.tif
	D082726_1_0751.tif
	D082726_1_0753.tif
	D082726_1_0755.tif
	D082726_1_0757.tif
	D082726_1_0759.tif
	D082726_1_0761.tif
	D082726_1_0763.tif
	D082726_1_0765.tif
	D082726_1_0767.tif
	D082726_1_0769.tif
	D082726_1_0771.tif
	D082726_1_0773.tif
	D082726_1_0775.tif
	D082726_1_0777.tif
	D082726_1_0779.tif
	D082726_1_0781.tif
	D082726_1_0783.tif
	D082726_1_0785.tif
	D082726_1_0787.tif
	D082726_1_0789.tif
	D082726_1_0791.tif
	D082726_1_0793.tif
	D082726_1_0795.tif
	D082726_1_0797.tif
	D082726_1_0799.tif
	D082726_1_0801.tif
	D082726_1_0803.tif

