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ABSTRACT

A novel method of flexible-rotor vibration control,

using an active contactless angular electromagnetic actuator is

presented.

A theoretical comparison of radial and angular damping is

performed. Three different performance indices are defined and

used to determine controller optimum damping/location data for

different shaft systems. The controller settings are determined

for two main cases:

i) such that only one damping value is allowed

throughout the entire shaft speed range (passive

or fixed-gain active control),

ii) the damping value is controlled as a function

of rotor speed (adaptive control).

The parameter optimisation, made possible by the creation

of a simple but efficient numerical technique employed in conjunction

with the transfer matrix method, is restricted to considering a speed

range covering the first three rigid-bearing critical speeds for a

uniform shaft supported by a variety of bearings. However, the approach

is sufficiently general to allow the study of any required speed range.

It is shown that for both the radial and angular dampers when

mounted at the bearings, there is a definite support stiffness value

above which the angular damper is the more efficient, but below which

the opposite is true. When the conditions for 'fixed-points' are

satisfied, then a simple on-off control strategy can be used effectively

employing either type of controller. Angular damping is shown also to

be an effective means of suppressing 'oil-whirl' type instability.



The theoretical work is supported by experimental

investigations on a laboratory rig which is representative of a

general flexible rotor system. An electromagnetic controller is

mounted at one bearing and the reduction of shaft unbalance response

and bearing forces recorded for various conditions.

Significant reductions in system synchronous response are

observed at running speeds close to the first critical speed when

electromagnetic stiffness and/or damping is employed. When electro-

magnetic damping is introduced, non-synchronous vibration components,

resulting from shaft asymmetries, are also eliminated.

The combined theoretical and experimental studies show angular

control to be a viable alternative means of reducing flexible rotor

vibrations.
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CHAPTER 1

INTRODUCTION

The continual demand on modern-day machinery to

transmit increasing power levels at higher rotational

speeds has resulted in the employment, in many practical

installations, of long slender shafts with running speeds

above their first and second, and in some instances even

higher order, critical speeds.

This has led to the development of more stringent

design criteria, but cases still arise where vibrations in

rotating machinery cause machine breakdown or a need to

operate away from the design speed.	 In other cases

problems have arisen due to a change in operational

requirements after a machine has been installed.

The impossibility of avoiding all vibration problems

by action taken at the design stage has encouraged the

study of methods for altering system parameters 'in-situ'

using passive or active control devices.

Investigations to date have mainly been restricted to

the study of rotor systems, in which vibration control is

achieved through incorporation of an external radial

damper mounted at some location along the shaft between

the bearings.	 Whilst this means of control may be

acceptable on a laboratory rig, in practice many

situations occur where access to this shaft portion may be

extremely limited or even impossible.

Consequently, in such circumstances an alternative

effective control strategy would be desirable.	 The work
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described within this thesis is of a combined theoretical

and experimental nature and demonstrates how the

introduction of external control forces in an angular, as

opposed to radial, sense can lead to an efficient means of

system vibration attenuation.	 Access problems are

eliminated since the angular control forces may be applied

effectively at the rotor supports.	 In addition, the

control function is implemented, without the need for

physical contact with the rotating shaft, by utilising

electromagnets as the control actuators.

1.1 Thesis Format

In Chapter 2 a literature review is presented

covering historical and recent works in the field of shaft

whirling.	 Current methods of vibration control are also

discussed with special emphasis on the application of

electromagnets.	 A summary of the limitations of previous

work leads to an outline of the main aims of this work.

Current rotordynamic methods of analysis are reviewed

in Chapter 3 where the transfer matrix method is proposed

as the most suitable for the application.

Chapter 4 gives a detailed description of the

transfer matrix method when employed for the free and

forced vibration analysis of rotor systems. 	 The modified

method is employed in order to minimise the possibility of

numerical instability which normally occurs because of the

small difference of large numbers. The fundamental system

transfer matrices are developed and include effects such

as mass unbalance, shaft initial-bend, gyroscopic moments

and support sub-level characteristics.	 Application of
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the method, in the form of a computer program, to various

rotor models, confirms the accuracy and effectiveness in

employing this technique for vibration analysis.

In Chapter 5 the concept of angular control is

introauced and applied to the case of a simple Jeffcott-

rotor where comparison is made with conventional radial

control.	 The controller performance comparison is

subsequently extended to multi-mode systems where three

representative performance indices are investigated. 	 A

new efficient control optimisation procedure is created

and employed to allow determination of optimum control

locations and control forces for both controller types.

Chapters 6 and 7 describe the experimental portion of

the work.

In Chapter 6 the laboratory rotor, designed and

constructed specifically for the experimental

investigations, is described fully along with all other

equipment employed throughout the project.	 Details of

all relevent component calibrations are included.

Chapter 7 gives details of all experimental tests

performed. The test results, consisting mainly of test

rotor response measurements for various levels and types

of angular electromagnetic control force, are presented

and analysed in detail. 	 Predicted responses are provided

for comparison and give an indication of the degree of

accuracy of the numerical techniques employed.

In Chapter 8 the conclusions resulting from the

theoretical and experimental investigations are summarised

and suggestions for further work given.



4.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Vibrating/rotating flexible-shaft systems have

received much attention by many researchers; as a result

the amount of literature available today is vast. 	 Any

attempt to compile a complete literature survey on this

topic would be a mammoth task and its value questionable.

In the field of rotating machinery, a variety of

topics are inexorably coupled and discussion of one in

isolation may not be possible or even prudent.

Consequently, the review is fairly extensive even though

the material chosen is limited to that thought to most

suitably represent the main links in the historical chain

of research in this field.	 The review is in two

sections:

a) Whirling of Shafts

b) Vibration Control

2.2 Whirling of Shafts

2.2.1	 Synchronous Whirl

It is a well known fact that if the speed of a

rotating shaft is gradually increased, a certain speed is

attained at which the shaft radial deflection increases

dramatically and the shaft is said to whirl or whip. 	 If

insufficient damping is present, shaft failure may finally

occur.

Although the problem of shaft whirling has been known
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to exist for some time, it is only just over one hundred

years since one of the first papers on the subject was

published by Rankine [1].	 In 1869, in an article

published in The Engineer, Rankine attempted to explain

theoretically, the behaviour of an unloaded, frictionless,

uniform shaft.	 He wrongly concluded that the shaft

motion would be stable below and unstable above the first

critical speed.

Twenty-five years later, in 1894, Dunkerly [2]

presented the results of experiments which he performed on

a number of shaft/pulley arrangements. 	 His experimental

results were compared to theory developed by Professor

Osborne Reynolds and an empirical formula was derived for

calculating the critical speeds of a variety of shaft

arrangements, viz:

l/w 2 = 1/w + l/w + 1/w + ... 1/w

where	 is the natural frequency of the complete system

and	 is the natural frequency of the beam with the rTH

mass alone on the beam.

The next major contribution to the subject was made

by Chree [3] in 1904 who completely re-assessed the

situation making use of Dunkerly's experimental results.

Chree initially did not fully understand the nature of

shaft whirl since he stated that it could not be

considered as a form of forced vibration.

Chree considered Dunkerly's methods to be analogous

to Lord Rayleigh's technique [4] for obtaining approximate

frequencies of beam vibrations.	 Rayleigh showed how, at
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least, an upper bound on the natural frequency could be

estimated by assuming a mode shape for the vibrating

system.	 Any discrepancy between assumed and actual mode

would effectively result in additional system constraints

leading to a raising of the predicted frequency.

Although this early work was very useful in helping

to establish guidelines for the prediction of critical

speeds for simple shaft systems, the fundamental theory of

shaft whirling was still not fully understood at this

stage.

It was not until 1919 that a full rational

explanation of shaft whirling appeared in a paper by H.H.

Jeffcott [5].	 Jeffcott concluded that when a shaft was

rotated, its geometrical axis would rotate around its

original deflected form in a bent fashion, the amount of

bend depending mainly on the relationship between the

rotational speed and the critical speed. 	 Thus, Jeffcott

explained for the first time the behaviour of a simple

rotating shaft/rotor system at any speed and showed that

the shaft whirling problem could be considered as that of

a system subjected to forced vibrations.

Six years later Kimball and hull [6] performed

experiments on a loaded unbalanced shaft passing through

its critical speed, the results confirming Jeffcott's

theory.

Stodola [7] proved experimentally the now well known

fact, that as a shaft runs through its critical speed, the

centre of gravity of the rotor moves from outside the

shaft centre and geometric centre to between the two. 	 He
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also performed an interesting experiment on an unloaded

shaft, first running the shaft in water, then in free air.

He found the critical speeds in both cases were almost

identical, but the amplitude substantially reduced in the

former case due to the much increased external damping.

The effect of shaft initial-bend can be shown to

cause a shaft whirling motion similar to that due to

unbalance.	 Bishop [8] demonstrated how Jeffcott's theory

could be modified to allow for this additional effect.

Parkinson et a]. [9] confirmed experimentally that the

exciting force resulting from shaft initial-bend cannot be

removed for all speeds through shaft balancing, but that

the balance correction mass could be chosen so that the

shaft does not whirl at its first critical speed. 	 In

fact, the only way to ensure 'Perfect Balance' of such a

shaft is to somehow completely remove the initial shaft

bend [8].	 Of course this is impossible to achieve in

practice.

Over the years, numerous researchers have contributed

to the field of rotor-dynamics, none more so than Stodola

[71.	 He showed that the inclusion of large diameter

discs on a uniform rotating shaft resulted in the

introduction of gyroscopic effects which tended to stiffen

the shaft and thus raise the critical speeds. 	 Gyroscopic

couples tend to stiffen the shaft only when the shaft

precesses in a direction corresponding to that of shaft

rotation (see Section 7.5.8).	 If the shaft is vibrating

as opposed to rotating, the converse is true and the

natural frequencies are, in fact, decreased.	 In many
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cases the effect of the above may be so small that it

could be neglected. 	 However, in a number of modern-day

machines, for instance gas/steam turbine applications,

exiusion of gyroscopic effects may lead to serious

discrepancies between actual and predicted response.

Stodola [7] also presented an iterative procedure for

calculating higher order natural frequencies of multi-mass

systems.	 As with Rayleigh's method, it is first

necessary to guess the mode-shapes for the relevant

frequencies.	 However, Stodola's method is more accurate

since the initially guessed mode-shapes are refined

through subsequent iteration.

Mykiestad [101 in 1944 and Prohi [11] in 1945,

developed a tabular method for predicting the natural

frequencies and normal modes of transversely vibrating

beams and shafts respectively.	 The techniques employed

were basically an extension of the procedures adopted by

Holzer [12) in the analysis of torsional systems. 	 The

methods allow for determination of the natural frequencies

when all system boundary conditions are satisfied.

In 1951, Linn and Prohl [13], analysing first a

Jeffcott-rotor model then a shaft with distributed mass,

demonstrated how the incorporation of support flexibility

could greatly alter (reduce) the shaft critical speeds, a

phenomenon first recognised by Stodola in 1927 [7].

At this point in time, most rotor analyses assumed

either rigid-supports or, at most, support resilience

independent of rotational frequency.

With the knowledge that the introduction of support-
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flexibility could significantly reduce the critical speeds

of a flexible-shaft system, early attempts were made to

incorporate this effect empirically.	 Initially, a simple

approach was adopted [14] where, from observations in the

field, a variety of bearing configurations could be

classified according to their static deflections. 	 The

method was fairly successful for prediction of the first

critical speed, but as equipment rated-speeds increased

so also did the requirement for more refined procedures.

Caruso [15] showed how a high-speed rotor system

could be analysed, allowing for frequency-dependent

support characteristics, using the Dynamic Stiffness

Method.	 He described how the method, basically a

mechanical-impedance method, allowed for the calculation

of the shaft and bearing dynamic-stiffnesses as separate

units.	 The two components could then be combined to

provide details of the dynamic response of the complete

system.	 Although early vibration analyses of large rotor

systems consisted mainly of the calculation of undamped

critical-speeds and normal modes, it is now common to

incorporate prediction of the system dynamic response

resulting from external forcing due to, for example, shaft

mass unbalance.

The fundamental theory of whirling, established

earlier by Jeffcott for a simple single-degree-of-freedom

system, was extended by a number of workers and applied to

complex multi-degree-of-freedom systems by utilising a

number of system sub-elements which, when combined in some

fashion, would allow assessment of the dynamic response of
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large real rotor systems.	 In the last few decades such

advances were made possible due, mainly, to the advent of

the large electronic digital computer.

Such numerical methods normally necessitate the

modelling of the real shaft as a set of rigid masses

connected by massless, flexible beam elements. 	 Modelling

error is thus unavoidable in the analysis. 	 However, with

proper choice of the number of elements, this error may be

reduced to a minimum. 	 Gladwell [161 showed that for

transversely vibrating beams modelled as described above,

the modelling error was proportional to 1/N 2 for one or

two free-ends and 1/N 4 for other end conditions, where N

is the total number of discrete masses employed. 	 Care

must be taken with some analysis methods [63], since the

use of too many elements may lead to inaccuracy due to

truncation errors.

Most present-day analysis programs make use of matrix

methods which are ideally suited for programming on a

digital computer.	 The Transfer-Matrix Method [17],

basically the Mykiestad-Prohi Method in matrix form, and

Finite-Element Method [18], are excellent examples (see

Chapter 3 for a full explanation of these and other

methods).

Koenig [19] developed a procedure which could be

employed for the analysis of a rotor system supported on a

maximum of 15 supports and included effects such as

bearing/foundation damping, stiffness and mass, rotor

unbalance and gyroscopic moments. 	 System undamped

critical speeds and unbalance response data could be
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calculated, with the limitation that only axi-symmetric

bearing supports could be considered.	 Koenig's program

was applied to various rotor systems [20] with the

calculated critical speeds found to be in good agreement

with those estimated using other analysis methods.

Useful information regarding shaft/bearing displacements

and bearing forces was obtained.

It has been recognised for some time now [21] that

journal (oil-film) bearings of the type normally employed

on turbine installations, exhibit stiffness and damping

qualities.	 The introduction of bearing flexibility has

the effect of lowering the critical speeds, whilst the

rotor response is normally reduced when system damping is

present.	 Shaft internal damping in most cases is

extremely small and may be ignored, at least in the forced

response analysis.	 However, if external damping is

small, then the shaft internal damping can greatly affect

the system stability [21]. In fact, unless the shaft

supports exhibit anisotropic properties (e.g. oil-film

bearings) this form of damping will have no influence

whatsoever on the shaft synchronous response.	 As a

consequence, in most practical cases, the only

contribution to system damping will be from the bearing

oil-film.	 The position of the bearings on the shaft is

thus of critical importance if their energy-dissipating

function is to be fully utilised.

Kirk and Gunter [22] investigated the effect of

various values of support damping and stiffness on the

synchronous and transient response of a single-mass
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flexible (Jeffcott)-rotor.	 They found that in order to

reduce rotor amplitude, the support mass ratio (support-

mass/disc-mass) should be kept as small as possible. 	 If

this can be achieved, then an optimum support damping

value may be chosen so that the rotor steady-state

response may be limited to the rotor unbalance

eccentricity.

Much effort has been expended in attempting to ensure

realistic modelling of the bearing-support dynamics.	 The

oil-film in plain journal bearings may be idealised as a

linearised combination of four damping and four stiffness

coefficients which vary according to the shaft rotational

speed [23].	 In reality, oil-film bearings behave in a

non-linear fashion and the assumptions for linearisation

are reasonably accurate only when the movement of the

shaft journal is restricted to small perturbations about

the steady operating position.	 However, Lund [24]

indicates that even for amplitudes as large as 40% of the

bearing clearance, the linear coefficients still provide

sufficient accuracy in most cases.

Analytical expressions for the linearised oil-film

coefficients of a short journal bearing were obtained by

Holmes [23].

In oil-film bearings the shaft journal not only moves

radially, but also in an angular sense. 	 It is therefore

possible to introduce another eight coefficients to

account for angular damping and stiffness effects [25].

However, in most cases these angular coefficients, along

with oil-film inertia effects, may be excluded from the

general analysis without any discernable loss of accuracy.
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Bannister [26] showed that cases may exist where

accurate modelling of the bearing oil-film can only be

achieved when non-linear effects are considered. 	 He

employed twenty-eight bearing coefficients and achieved

good agreement between predicted and measured journal

response for a range of operating conditions. 	 It was

suggested that it may be possible to use even fewer

coefficients without incurring significant loss of

modelling accuracy.

Good agreement was also obtained by Lund and Orcutt

[27J when they employed the transfer-matrix technique to

predict the unbalance response of a rotor-bearing system

where each bearing oil-film was represented by 4 stiffness

and 4 damping coefficients.

In recent years, an attempt has been made to include

the mass, stiffness and damping characteristics of the

support structure/foundation.	 This is of great

importance in the field of power generation where nowadays

large steam turbo-alternator sets are normally mounted on

a tall concrete or steel frame.

The Finite-Element method is well-suited to the

analysis of complex vibrating systems and has recently

been employed [28] to analyse the dynamic response of some

large turbo-rotor-foundation systems. 	 It has been shown

[29] that considerable detail is normally required in the

idealisation of the system model before accurate results

may be obtained.	 Consequently, more accurate data

pertaining to the bearing-support/foundation dynamics is

required to ensure good agreement between theory and

practice.
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Alternatively, in many instances [301 a fully

comprehensive rotor-bearing-foundation model need not be

required to represent the practical situation, as long as

the designer has the capability to predict the alteration

in the dynamic response of the overall system when certain

system parameters are allowed to vary.

One way of achieving this is to adopt a method of the

type suggested by Wang and Lund [31].	 Here the rotor and

foundation characteristics can be organised individually

and combined to provide the complete system dynamics.

The foundation parameters could thus be altered easily

without the need for complete rotor system analysis, or

vice-versa.

Although a number of efficient linear rotor-dynamic

analysis methods are available, many phenomena such as

sub-harmonic resonance and instability limit cycles cannot

be investigated using the linear approach. 	 As a result,

more effort is being applied to the analysis of non-linear

rotor-dynamics.	 Adams [32] recently presented a

procedure for the non-linear analysis of the response of

flexible-rotors with many bearings. 	 He studied steaóy-

state and transient vibrations in a steam turbine,

including such effects as seal forces, gyroscopic moments

and hydraulic/aerodynamic forces and found sub-harmonic

resonance resulting from large mass unbalance.

2.2.2	 Self-Excited Shirl

One of the major problems found to occur in various

high-speed shaft applications, particularly those
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employing oil-film bearings, is that of instability.

One of the earliest researchers to investigate shaft

instability was Newkirk [33].	 In 1924 he showed

experimentally that a shaft running above its first

critical speed, may whirl at a frequency approximately

equal to its fundamental natural frequency. 	 The whirling

amplitude was found to be increased by the fitting of hubs

or sleeves on the shaft. 	 Additionally, he demonstrated

that the introduction of bearing pedestal flexibility

helped reduce the shaft instability.

Smith [211 confirmed the latter finding theoretically

with the proviso that stiffness asymmetry would have to be

present in the bearing housings.

Newkirk [33] and Kimball [34] made major

contributions to the understanding of this problem and

suggested that a predominant contributory factor was the

friction emanating from shaft shrink-fits.

In 1933, Smith [21] presented the results of a

comprehensive analytical and experimental study into self-

excited whirl due to shaft internal damping.

A number of significant findings resulted from this

investigation.	 For a simple Jeffcott-rotor, it was shown

how the inclusion of rotor (shaft internal) damping could

result in instability at a shaft speed &) dependent upon

the amount of stationary (support or other external

source) damping present:

w. = w . (1 + b'/b'')1	 c

wh e r e,

= Shaft speed at onset of instability
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= Lowest critical speed

b' = Stationary (support) damping coefficient

b'' = Rotary (shaft) damping coefficient.

Investigation of this simple model shows that if the

external damping is small in comparison With the shaft

internal damping (b'/b'' 	 0), then the shaft motion will

be unstable above the shaft first critical speed. 	 If the

support damping is increased, then the onset of

instability may be shifted to a higher shaft speed.

The instability onset speed could also be increased

by accentuating the support asymmetric properties.

Although this latter phenomenon was observed by

Newkirk [33] earlier, he did not fully appreciate that the

factor influencing the shaft stability was that of support

asymmetry as opposed to increased support flexibility.

Many of these early investigations into the stability

problem have since been confirmed and further extended by

a number of researchers [35,36,37].

Another type of shaft whirl similar to that due to

shaft internal friction can be caused by bearing oil-film

forces.	 In fact, Newkirk [38] later decided that the

instability he had initially attributed to shaft internal

friction [33] actually resulted from 'oil-whirl'.

Oil-whirl is probably the most common cause of rotor

instability today, the concepts of which were established

by Hon [39].	 A common feature of this phenomenon is the

occurrence of instability-onset at a shaft speed of

approximately twice the first critical, resulting in non-

synchronous shaft motion with a frequency equal to that of
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the system first natural frequency. 	 A fatigue situation

arises due to the cyclic stresses set up within the shaft.

Hon showed that after initiation, the oil-whirl

instability could be maintained even when the shaft speed

was reduced to a value less than that at the onset of

instability.

Other researchers investigated the effect of varying

certain bearing oil-film parameters on the instability

onset speed.	 Hagg and Warner [40] and Newkirk and Lewis

[41] found that the introduction of low bearing clearances

and increased oil supply pressures helped delay the onset

of instability.	 They also discovered that it was

possible for the instability to be maintained at shaft

speeds many times greater than the onset speed.

Tondi [37] presented the results of analytical and

experimental studies of the resistance to oil-whirl

instability of a variety of oil-film bearing types and

showed the cylindrical bearings to be inefficient in this

respect.

Nowadays a number of procedures are available [421

for prediction of rotor instability speeds resulting from

various aestabilising effects.

For the analysis of real rotor systems, a numerical

approach is normally necessary. 	 The system eigenvalues,

which in general are functions of rotor speed, are

predicted and the speed at which the real part of any of

the system eigenvalues becomes zero is termed the

instability onset speed.	 This condition is effectively

equivalent to the case of zero system damping, instability
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occurring when the real part of the eigenvalue becomes

positive.	 The imaginary component of the relevant

eigenvalue represents the rate of rotor precession at

instability.

On the whole, good agreement has been achieved using

these methods in a laboratory environment.	 Recently, a

number of researchers have utilised the transfer-matrix

method, in various manners, to allow determination of

system instability characteristics.	 Dostal [43] achieved

good agreement with experimental onset-speeds, making use

of a number of graphical techniques. 	 In Ref. [44], use

was made of a graphical procedure suggested by Dostal and

a number of experimental rotor systems analysed.

Reasonable results were obtained in most cases. 	 Murphy

and Vance [451 presented a novel approach to the problem

by determining, explicitly, the system frequency

polynomial, thus eliminating the need for sophisticated

and problematic, root-searching routines, such as that

employed by Lund [46]. Under certain conditions, the

method showed reduced execution times when compared to

conventional methods.

Of course, the above linear methods are very useful

for estimating the threshold of instability, but can give

no indication of the rotor response at greater speeds

since shaft displacements may become excessive,

invalidating the inherent linearising assumptions. 	 One

procedure is to determine the speed at which the shaft

becomes unstable using linear methods and then to employ

non-linear, transient analysis methods [47] to investigate



19.

the shaft orbit growth with time.

However, such approaches are normally prohibitively

time-consuming and therefore, normally only adopted where

absolutely necessary.

The foregoing covers only some of the types of shaft

whirling encountered in practice, from a mainly linear

point of view and is certainly not intended to be a

totally comprehensive survey encompassing all aspects of

this complex subject. 	 Ref. [48] gives some insight into

the many different causes of shaft lateral vibration

encountered in many real present-day high-speed rotors.

2.3 Vibration Control

For the purpose of this review, the main methods of

vibration attenuation as applied to laterally vibrating

rotors, will be categorised as follows:

1) System Design.

2) Rotor Balancing.

3) Application of Control Devices.

2.3.1	 System Design

Although this is not often thought of as a method of

control and may appear too obvious to mention, it is clear

that it is the first and most crucial part of the control

process.	 With proper choice of design parameters and

sufficient knowledge of the system dynamics, it should be

possible to produce a design which will, to a certain

extent, minimise and in some cases eliminate, potential

sources of vibration.
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2.3.2	 Rotor Balancing

It is often not fully appreciated that by far the

largest proportion of rotor vibrations in the field may be

attributed to lack of balance.

Flexible-rotors generally require balancing in a

number of planes for a number of speeds since, for speeds

higher than about half of the first critical, the rotor

assumes deformations which can no longer be neglected, as

they set-up new centrifugal forces in addition to the ones

caused by the original unbalance.

The practice of flexible rotor balancing can be

ascribed to one of two chief methods (and in some cases a

combination of both) - the Influence Coefficient Method

and the Modal Method.

The influence coefficient method is based on the fact

that for a linear system, the rotor unbalance and

resulting vibration amplitudes are related as shown:

Xcz • U

where a are the complex linear coefficients which

relate rotor lateral displacement at location j due to

unbalance at location p.

The displacement quantities x are also complex.

The rotor may be run at a number of speeds, trial

weights positioned on each balancing plane in turn and the

unbalance response measured. 	 From this data the

influence coefficients, a, can be obtained and the

correction weights for a given rotor response estimated.

The method was first described by El Hadi [49] in

1962, then again in 1964 by Goodman [50] who expanded upon
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the correction procedure with the least-squares method

which accommodates additional balance data.

More recently, a number of refinements have been

proposed.	 Larson [51] and Dreschlen [52] showed how the

utilisation of surplus information could lead to increased

efficiency over the normal method.	 The balancing problem

may also be cast in the form of an optimisation problem

[53], where constrained correction masses may be chosen

such that the resulting rotor response is minimised over a

speed range which could exceed that used for data

collection.

Modal methods are based on elimination of residual

unbalance effects mode by mode through the operating speed

range, in a manner which carefully avoids the re-

introduction of previously b1anced modes when balancing a

given mode.

The basic theory of Modal Balancing and its

developments were given by Bishop, Parkinson and Gladwell

in a series of papers [54,55] around the early nineteen

sixties.	 Practical application of the method has been

described in a number of papers [56,57].

Suggestion that rotor balancing be performed in two

stages [58], where the rigid-body modes are balanced

first, then the flexible-rotor modes, does not appear

conclusive.	 In fact, in some cases [591 rigid-body mode

correction effects may result in an inferior balance state

at speeds where flexible-rotor effects are predominant.

The key to this method appears to be a good pre-harzd

knowledge of the rotor modal response.
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Recent work in the field of flexible rotor balancing

has indicated that the best approach may be to combine the

advantages, while eliminating the disadvantages of both

conventional methods to give a so-called Unified Balancing

Aproach (tIBA).	 In 1979, Parkinson et al [60]

investigated the theoretical basis of such an approach and

in a paper a year later with Darlow and Smalley [61],

outlined the procedure and presented experimental results

which verified the effectiveness of this method and

illustrated its advantages in a practical application.

2.3.3	 Application of Control Devices

Most real vibrating systems and in particular

flexible-rotor systems, contain passive control devices

which help attenuate vibration amplitudes and transmitted

forces.

In the case of high-speed shafting subjected to

lateral vibrations, these passive controllers generally

appear in the form of fluid-film bearings. 	 This type of

bearing may be successful in limiting the system response

under a variety of conditions, but its effectiveness may

well deteriorate if the operating conditions alter

slightly.	 In such circumstances, it may be advisable, if

possible, to employ active control techniques.

Active controllers require energy input, whereas

passive controllers do not and function purely according

to the response of the vibrating system.

2.3.3.1	 Passive Controllers
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2.3.3.1.1	 Hydrodynamic (Oil-film) Bearings

In many cases, for all practical purposes, the only

system damping present, in many modern-day rotating shaft

applications, is that resulting from the bearing oil-film.

The magnitude and orientation of the force exerted by

the oil-film on the shaft journal are dependent mainly on

the shaft eccentricity-ratio, with the result that the

force vector is a non-linear function of the shaft

displacement and velocity vectors.

However, a number of reseachers [23] have shown that

if the vibration amplitude is sufficiently small, then the

force-displacement/velocity relationship may be

linearised, the resulting bearing oil-film force equations

being expressed in the form:

rFX1 = [K
	 Kxy1[xl +

LFYJ =	 5JL'i
where

xx c,,j[c
ic	 C	 II'
LYX JL

are the x and y components of the bearing

oil-film force

are small journal displacements from the

steady running position

are the linear displacements and velocity

coefficients respectively.

The stiffness and damping coefficients may be

estimated either by numerical solution of the Reynold's

equation [23], or experimentally by employing some of the

currently available identification techniques [62].	 The

bearing coefficients are dependent upon a number of

factors including the shaft rotational speed,frequency)oil
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viscosity, magnitude and direction of the steady load and

the shape and size of the bearing and journal surfaces.

Angular stiffness/damping and oil inertial effects

may be included in the analysis [25], but are normally

neglected with no significant loss of accuracy.

Another device also employing a viscous fluid-film

and widely used in gas turbine applications, is the

squeeze-film bearing.

2.3.3.1.2	 Squeeze-Film Dampers

The squeeze-film damper was first employed in a

practical installation at the end of the last century by

C.A. Parsons, on their turborotor systems and enjoys

extensive application in the gas turbine field.

The construction of the device is such that normally

a rolling element type bearing is mounted on the shaft

journal with its outer race held stationary, the cavity

between this outer race and the bearing housing containing

the oil.	 Because of the arrangement, the oil-film lacks

inherent stiffness and it is sometimes necessary to

simulate this effect [64].

Squeeze-film bearings have shown real benefits in

reducing rotor response, transmitted bearing force and

non-synchronous components [661, although their effect may

be localised [64] and in some instances problems of a non-

linear nature might be introduced [65].

It has been demonstrated [66] that for efficient

operation, the damper characteristics should be sized for

the particular application.

Even though the squeeze-film damper has enjoyed
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practical application for some time now, it is clear that

much more experimental work is required to enable a more

complete understanding of this complex device.

2.3.3.2	 Active/Adaptive Controllers

Passive devices, such as tuned vibration absorbers

and Lanchester dampers, have been employed for vibration

control in mechanical systems for many years now [671, but

their benefits can only be realised in limited cases.

In many instances, it may be possible to improve on

passive control performance by manipulating certain system

parameters such that the system response is maintained at

low levels even when operating conditions vary. 	 So-

called adaptive control may be employed under such

circumstances.

Sandier [681, analysing the vibrations of a uniform

shaft, demonstrated how the employment of a variable-

location flexible support could result in shifting the

system's critical speed.	 Although original, the

principle is certainly not a feasible proposition for most

real systems - access and rotor geometry being the major

limiting factors.

Burrows et al [69] have shown that a simple 'on-off'

control strategy may be efficient in controlling rotor

response when a squeeze-film damper is utilised as an

actuator with oil supply pressure as the control variable.

Switching of the damping constant between two values, at

the system's 'fixed-points', overcomes the need for

continuous active control.
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Employing a similar concept, Goodwin et al [70]

showed how alteration of the dynamic characteristics of a

hydrostatic bearing could result in shifting of the system

critical speeds leading to reduced steady-state response.

The use of active feedback in vibration control is

fairly old [71], the controllers taking various forms

including Electrodynamic [72], Electromagnetic [73],

Hydraulic [73], Pneumatic [74] and Eddy-current [75] type.

Hydraulic and pneumatic actuators have been employed

mainly in the field of vibration isolation [74,76],

generally where fairly large control forces are required.

In the past, electrodynamic devices have been shown

to be effective in reducing resonant amplitudes in

vibrating components.	 In Refs. [72,77] the steady-state

responses of a flexibly-mounted beam and single degree of

freedom torsional system, respectively, were shown to be

attenuated substantially by the incorporation of

electrodynamic actuators within an active control loop.

Roorda [73] presented results for a number of

experiments on a variety of simple structures where

feedback control was employed, using different types of

actuators.	 One of the most interesting cases was that of

electromagnetic control of a vertically-mounted,

harmonically excited, cantilever beam. 	 The control force

magnitude and phase were adjusted until the minimum

response was achieved.	 The optimum phase angle was found

to correspond to a control force of pure damping.

Seto and Yamanouch [75] studied the eddy-current

braking effect as a possible means of damping in a
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dynamic absorber fitted to a machine tool of ram-structure

form.	 Although the absolute magnitude of the damping was

found to be very small, a reduction by a factor of

approximately 10 of vibration amplitude at the system

fundamental frequency was observed.

The desirability of introducing control forces to a

vibrating system, particularly a system with rotating

components, without the need for physical contact, is

obvious.	 Of the controllers described above, only the

eddy-current and electromagnetic type satisfy the above

requirements. For efficient performance, the application

of eddy-current type dampers is really restricted to those

cases where the system inherent damping is negligible

[75].	 In real flexible-rotor systems, some damping will

normally be present due to the oil-film bearings.

2.3.3.2.1	 Electromagnetic Controllers

Electromagnets are inherently highly non-linear

devices and consequently require special consideration

when being employed as the actuator component in a control

system where linear characteristics are to be preferred.

For an electromagnet positioned close to an iron

surface, the force relationship may be given [78] by:

F = K . (hG)2

where K may be approximated as a constant, the value

of which is dependent upon the particular magnet

construction and geometry.	 I and G are the magnet

current and air-gap respectively.	 The non-linearity in

the force versus current-gap relationship is clearly

evident.

Klimek [79] suggested pre-magnetising the
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electromagnets using a constant current upon which is

superimposed the control current. 	 This helps linearise

the force-current relationship as long as the control

current is a small proportion of the pre-magnetising

current.	 This set-up, however, leads to the introduction

of a static instability [80] and it is therefore necessary

to incorporate some counter measures.	 In addition, the

force production capacity of the electromagnet will

obviously be reduced somewhat due to the (pre-magnetising

+ control) current - sharing of the magnet windings.

It is possible to eliminate the gap-effect from the

above relationship.	 In their work on vehicle

electromagnetic levitation, Jayawant et al [81],

demonstrated how partial-linearisation of the

electromagnet characteristics could be performed by

feeding back a voltage, proportional to flux density at

the magnet face, resulting in a considerable improvement

in the system stability margin.

Although initially the choice of electromagnets as

bearing elements in rotating systems appeared to result

from a need for low-friction supports in high-speed shaft

applications, where the lack of lubricant was a major

advantage [82], it has recently become clear that the

potential of such a device may be more fully exploited

when employed as an actuator within an active feedback

control loop, thus enabling optimisation of the system

dynamics in some form [83].

Schweitzer has shown how the destabilising effect of

shaft internal damping could be offset by the introduction
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of low-level external electromagnetic damping. 	 System

resonant amplitudes were also substantially reduced.

In Ref. [84], the electromagnet force-current-gap

relationships were developed for a radial controller and

comparisons made with experimental calibrations. 	 It was

shown how current pre-magnetisation and the assumption of

constant air-gap provided a means of approximating the

controller as a linear device, thus enabling the

employment of linear control theory.	 Reasonable

agreement was achieved between predicted and measured

electromagnetic forces.	 Because of its design, the

radial electromagnet was found to introduce a counter-

productive moment. 	 The authors stated that in most cases

its effect would be insignificant.

More recently Ellis and Mote [85] studied the role of

electromagnets in feedback control of circular saws. A

proportional-derivative algorithm was employed resulting

in an increase in the stiffness and damping of test-discs

of the order of 400 percent. 	 Control circuits of an

analog nature were used.	 Linearisation and static

stability problems were minimised by the inclusion of pre-

magnetising current and position feedback respectively.

Magnetic hysteresis, only one of the complexities

exhibited by electromagnets, appears to have created

substantial problems [86].

Nikolajsen et al [87] showed how an electromagnetic

damper could be used to control the synchronous and

instability response of a flexible-rotor system. 	 The

electromagnetic damper was positioned about one-third of
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the span from one end of the transmission shaft and was

designed to introduce radial damping forces. 	 The control

force was made independent of the air-gap by the

incorporation of a flux-feedback technique similar to that

used in Ref. [81], thus leaving the force dependent upon

the square of the control current.	 Reduction in the

shaft synchronous response at the first critical speed

along with suppression of the system instability due to

the oil-film bearings and second-order vibrations,

provided proof of the practical possibility of utilising

electromagnets as an aid in the vibration control of high-

speed flexible-rotors. 	 Linearisation of the

electromagnetic damping forces used in the numerical

prediction of rotor response was shown to provide fairly

accurate agreement between calculated and measured rotor

response.

Habermann and Liard [88] presented details of the

design and operation of an active magnetic bearing system.

Practical magnetic bearing applications were cited.

In Ref. [89] the authors proposed the concept of

decentralised control, whereby the complexity of the

control system could be reduced by considering a number of

sub-systems.	 The approach was adopted with a view to

utilising digital control through the use of

microprocessors.

Recently, Saim and Schweitzer [90] outlined a design

procedure, based on modal analysis, for determining the

electromagnet feedback gain values which would ensure

stable modes, by using a reduced order system model.	 The

analysis of simple examples confirmed the effectiveness of
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the approach, however, no guidance was given as regards

the choice of location of controller. 	 Significant

reduction in resonance amplitudes was also claimed,

although no detailed information was presented.

More recently, Gondhalekar et al [1111 presented

design details of a radial electromagnetic bearing used to

control the vibrations of a flexible transmission shaft.

A linear control force-current relationship was achieved

through software control using a microprocessor, thus

eliminating the need for pre-magnetisation of the magnets

[84].	 The electromagnet was similar to that used earlier

by Nikolajsen [87], constructional improvements having

been incorporated.	 Because of the magnet geometry,

special techniques were utilised to eliminate flux-linking

problems. Results indicated the effectiveness of the

device in shifting system undamped critical speeds and

attenuating resonant response.

2.4 Selection of Magnitude and Location of Control Force

The choice of controller force magnitude (the optimum

control force) is considered fully in Chapter 5. 	 Some

studies into the effect of controller location on the

response of flexible rotor systems have already been

performed although scope exists for more comprehensive

investigations.

Dostal et al [91], employed the theory of 'fixed-

points' to determine the optimum location for a radial

damper when applied to a flexible-rotor mounted on a

variety of supports.	 The optimum location for the case
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analysed, was found at one-eighth span from one of the

shaft supports. 	 The optimum location depends greatly

upon the number and type of shaft modes encountered. 	 One

of the many interesting findings was that the rotor

resonant amplitudes appeared to be much more sensitive to

the damping magnitude than to its location.

Schweitzer [83] found the optimum location, for

suppression of instability, for an external

electromagnetic damper when applied to a vertically

mounted flexible-rotor, by employing modal methods to

define a factor representative of the 'stabilisability' of

a number of unstable modes. 	 The optimum damper location

thus corresponded to the location where the

stabilisability was largest. 	 Theoretical investigation

of a rotor system showed, not surprisingly, that optimal

control could be achieved when the vibration could be

controlled at an anti-node.

Burrows and Sahinkaya [92J, adopted a statistical

approach in finding the optimum control location for a

multi-mode rotor system. 	 The optimisation consisted of a

weighted least-squares approach, whereby the residuals to

be minimised were a direct function of rotor response.

The technique was applied to the case of a 3-disc shaft

supported at its ends on hydrodynamic oil-film bearings.

The optimum controller location was found to be close to

the shaft centre, this consistent with the mode shapes

encountered within the chosen speed range. 	 The method

employed provided useful additional information regarding

the sensitivity of the optimisation parameters.
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2.5 Limitation of Previous Work

The general approach so far in attempting to

introduce some means of external control, active or

passive, in flexible-rotor systems, has been to apply the

control force at some position along the shaft span in a

radial sense [43,87,91].

In addition, the most suitable location (optimum

location) for the controller may, because of the nature of

the equipment, e.g. turbomachinery, be inaccessible.

In certain cases, radial control may be achieved

through manipulation of the support characteristics [69,

70], although ineffective control of shaft flexural

criticals and/or the introduction of relatively large

static displacements in such instances may rule out this

option.

The need for an efficient means of control, which may

assist in overcoming the above problems, is clear.

The employment of electromagnets as active force-

generators in a feedback control circuit, for limiting

flexible-rotor dynamic response, has not yet been fully

exploited.	 Although much consideration has been given to

utilising these devices as damping elements within rotor

systems [83,871, their ability to exert a stiffness

influence has, by comparison, been neglected. 	 In recent

years, fast, efficient and relatively inexpensive

microprocessors have become readily available, but their

application to electromagnetic control has been limited.

In the work to date, where electromagnets have been

used to control shaft vibrations, the control circuits
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appear to be unnecessarily complex as a result of the

electromagnet design.	 The electromagnets have been

mounted around the shaft [83,87,111], with arguably the

parameter with greatest influence on control system

performance, i.e. the gap geometry (size) fixed at the

design stage, thus making extremely difficult the

possibility of adjustment of control system

characteristics through alteration of this parameter.

2.6 Aim of This Work

The main aims of the work described herein are as

follows:

1. The creation of computer software to allow

dynamic analysis of flexible-rotor systems when

external control is employed.

2. To assess theoretically, the performance of a

novel Angular Controller, in comparison to the

conventional Radial Controller, when employed on

a variety of flexible-rotor systems.

3. Design and construction of a flexible-rotor test

rig incorporating an Angular Electromagnetic

Controller.

4. The experimental investigation of the

performance of an Angular Controller, when

utilised as an external damper/stiffener, on

various rotor arrangements and comparison with

predicted performance.
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CHAPTER 3

METHODS OF ANALYSIS IN ROTOR-DYNAMICS

Nowadays the need for accurate rotor system critical

speed, stability and in some cases even transient reponse

data, has led to the requirement for efficient analysis

methods.	 Since real rotor-bearing systems are often very

complex structures, exact solutions are, in most cases,

not possible and it is necessary to make use of available

numerical techniques.

The real system will have distributed mass and

elasticity and is said to be continuous, whereas the

system to be analysed will be a modelled version of this

and will normally consist of a number of discrete rigid

masses connected by massless beam elements. 	 It is clear

therefore, that the modelling process plays a most crucial

role in the overall analysis procedure. 	 It is important

to realise that, irrespective of the level of

sophistication of the numerical method, the solution

obtained will at best, be an approximation to the exact

solution for the model.

The most commonly applied methods today are:

1) The Transfer Matrix Method.

2) The Influence Coefficient Method.

3) The Finite-Element Method.

4) The Modal Method.

3.1 The Transfer Matrix Method

The Transfer Matrix technique evolved from the work

of Mykiestad [101 and Prohi [111 who presented a tabular
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procedure for the dynamic analysis of beams and shafts

respectively.

The general approach when employing this method is to

first set-up, in matrix form, the recurrence relationships

for each element type and then to combine these by

successive matrix multiplication.	 The resulting overall

transfer matrix will represent implicitly the system

frequency equation.	 The natural frequencies are

determined as those frequencies at which the system

boundary conditions are satisfied.

The similarity between this method and the Hoizer

technique [121 is immediately evident where, in the latter

case, a torsional natural frequency is determined when the

residual torque becomes zero.

The mode shapes are easily obtained by making use of

the relationships between the non-zero parameters in the

initial state vector and appropriately nonnalising the

resultant relative shaft displacements at the calculated

frequencies.	 System forced-analysis requires little

additional effort and is achieved through inclusion of

forcing terms in the element recurrence equations leading

to the introduction of an additional row and column in the

basic transfer matrix.

The transfer matrix method is ideally suited to the

analysis of rotor systems because of its applicability to

chain-like structures and minimal demand on computer

memory.	 Although the method is susceptible to numerical

problems under certain conditions, various procedures may

be employed [17] to minimise and possibly even eliminate

these effects.
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3.2 The Influence Coefficient Method (1CM)

This method evolved from the early matrix methods

developed and employed mainly by Argyris [93) for the

structural analysis of aircraft frames.

Although influence coefficients in the strictest

sense refer to the system flexibility coefficients, it is

quite common also to make reference to the system

stiffness influence coefficients. 	 The two approaches are

described here.

The method, in contrast to the Transfer Matrix

Method, when employed for dynamic analyses, necessitates

expressing the system equations of motion in an explicit

matrix form, i.e. for a linear system:

M i(t) + C ic(t) + K x(t) = P(t)
	

(3.1)

making use of the stiffness matrix K, or:

FMx(t) +FCx(t) +Ix(t) =FP(t)
	

(3.2)

if the flexibility coefficient matrix F is used.	 The

vector x(t) contains the system generalised displacements

(linear and angular), all other parameters are as defined

in the nomenclature.

The stiffness matrix K contains the system stiffness

influence coefficients where the stiffness coefficient k.
:LJ

is defined as the force required, at a point x = x 1 , to

produce a unit displacement, u = 1, at a point x = x,

such that the displacements at all other points are zero.

By analogy, the flexibility influence coefficients, f,

contained in matrix F, are defined as the displacement at

a point x = X1 due to the application of a unit force,

= 1, at a point x	 x.
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It is clear that if the flexibility matrix F can be

inverted, then K = F 1 and equations (3.1) and (3.2) are
identical.	 However, caution needs to be exercised when

adopting this approach, since under certain circumstances

[47], the flexibility matrix may become ill-conditioned

making an inversion unreliable or impossible.

Normally, the stiffness coefficient method is adopted

since the K matrix is inherently of a banded form leading

to possible savings in computer memory.

If we let =

x

then for free vibrations, P(t) = 0, from equation (3.1)

+	 = _Q

where	 and	 B= M07LMC]	 LH
Reducing still further, if H = -
	 B

then	 £-H..=0	 (3.3)

Assuming the solution of equation (3.3) is of the form

then

(!J-JW:=Q
	

(3.4)

and for a non-trivial solution of equation (3.4) we obtain

the well known characteristic equation:

which may be solved using a number of available

techniques.	 The eigenvalues, A, are the system natural

frequencies and are, in general, complex functions which

vary with rotor speed [46].	 For an n-degree-of-freedom

system, Ef will be a 2n x 2n matrix.

For the analysis of forced vibrations if external
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forcing is assumed to be of the form P = 	 then the

system response may be described by x = Xe1 and from

equation (3.1) may be expressed in the form:

+ icJ

=.p.

where fl is termed the system receptance matrix and must be

determined at each appropriate rotor speed.

The above method has been employed with success for

rotor-dynamic analysis in a number of cases, e.g. Ref.

[941.	 Reference [95] describes the procedures for

setting-up the system stiffness or flexibility matrices.

3.3 The Finite-Element Method (FEM)

When using this technique, a complex structure is

considered as a finite assemblage of discrete elements,

where every such element is a continuous structural

member.	 The only significant difference between this

method and the Influence Coefficient Method is that in the

latter case, the shaft elements exhibit discrete dynamic

properties which, due to the approach, can only be

considered to appear at the shaft stations or nodes,

whilst the former method allows for the inclusion of

distributed effects.

Effectively, this means that the system stiffness and

mass matrices become densely populated when using the FEM,

whereas when the icti is employed, these matrices are

sparsely populated and in the case of the mass matrix, of

diagonal form.

In order to incorporate this 'distributed parameter
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effect' into the analysis, it is necessary to define a

displacement function which will suitably describe the

displacement pattern of the elements used. 	 The element

stiffness, mass and damping matrices can then be derived

and the assembled system matrices set-up.

Solution procedures identical to those shown earlier

for the Influence Coefficient Method may be employed.

The FEM has only recently [18] been applied to rotor-

bearing systems and although the demand for computer

memory is generally much greater than that of the Transfer

Matrix Method, it has been shown [96] that fewer elements

can be used to model a system, a high level of accuracy

being maintained.

The FEM becomes a very powerful tool where systems of

great complexity are to be analysed, in fact, in such

circumstances, it may be the only accurate method

available.

3.4 The Modal Method

The Modal Method has been employed by a number of

workers in the field of rotor-dynamics [97] and in

particular has been applied to the problem of flexible

rotor balancing for a number of years now [55,60].

The method is based on the principle of orthogonality

of principle modes and consequently makes possible the

determination of the response of a multi-degree-of-freedom

system, to some general excitation, by means of the

superposition of the responses of a number of single-

degree-of-freedom systems.
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Considering again the response of a multi-mode

system, the equations of motion of which may be written:

M . x(t) ^ C . x(t) + K . x(t) = P(t)

x(t) being the system generalised co-ordinates. 	 If a

free-vibration analysis, such as that described in Section

3.2, is performed, the system elgenvalues and

corresponding eigenvectors can be obtained. 	 Remembering

that

L]	 (35)

The resulting eigenvectors may be placed in a matrix

uwhere each column in the matrix represents the system

mode shape at each of the corresponding system

eigenvalues.	 It is now possible to define a set of

principle co-ordinates v, where:

=	 . v(t)
	

(3.6)

then

A • u • v(t) + B • u . v(t) = P(t)

Pre-multiplying the above by the transposed modal

matrix T and considering orthogonality, leads to the

diagonalised matrices A' and B' and thus renders the

solution of the above equation as the simple solution of

2n independent linear equations, in an n-degree-of-freedom

system.	 Thus:

A' . v(t) + B' • v(t) = T • P(t)	 (3.7)

The solution in the generalised co-ordinates x(t) is

obtained from the relationships shown in equations (3.5)

and (3.6).

Of considerable interest, particularly in the context
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of flexible rotor balancing, is the right-hand side of

equation (3.7) which determines the distribution of

forcing according to its effectiveness in exciting the

principle mode motions. 	 In many cases therefore, by

suitable choice of P(t) vector, it may be possible to

improve the balance of particular vibration modes without

affecting the others.

The Modal Method was recently [98] applied in a

slightly modified fashion (termed quasi-modal analysis) to

a number of rotor systems including one employing sub-

levels.	 The technique is in principle identical to that

outlined above, but considers the system mode shapes to

consist of the combination of two vibration mode shapes:

1) that for an undamped system with the rotor considered

pinned at the supports and 2) a static deflection mode

shape. The approach adopted is certainly a novel one and

eliminates the need for repeated eigenvector analysis due

to the change in rotor speed, this being necessary in

general, when the conventional modal method is used.

3.5 Discussion of Numerical Methods

It is clear that each of the analysis techniques just

described may be effectively applied to the general

problem of shaft whirling. 	 However, the suitability of

these methods is greatly dependent upon the particular

type of system under investigation.

In the case of the Finite-Element and Influence

Coefficient Methods, rotor systems of considerable

complexity can be analysed, but if the number of elements
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required for system modelling is fairly large, then

excessive demands may be made on computer memory. 	 This

results from the fact that the order of the system

matrices employed in the analysis is directly proportional

to the number of degrees-of-freedom of the system to be

analysed.	 Both methods are easily applied to systems

incorporating multiple sub-levels. 	 In addition, the FEM

is ideally suited to shaft arrangements where complex

geometrical aspects have to be considered. 	 In fact under

these circumstances it may be the only method to provide

sufficiently accurate results.

Modal methods appear to have their benefits in cases

where the total system response can be ascribed to that

resulting from a finite number of vibration modes and

where sufficient information regarding the system mode

shapes is available.	 When this is the case, a reduction

in the number of degrees-of-freedom of the model is

possible.	 If the mode shapes (eigenvectors) are to be

determined accurately using, for example, a method similar

to that described in Section 3.4, then a greater number of

degrees-of-freedom may be required resulting in the loss

of one of the method's main advantages. 	 The method may

also easily be applied to systems with sub-levels as

described in [98], although contrary to the authors'

remarks such arrangements can be analysed using Transfer

Matrix Techniques [17].

The order of the matrices employed when using the

Transfer Matrix Method is dependent only on the number of

degrees-of-freedom at any single shaft node, the matrix
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size remaining fixed no matter how many elements are

chosen to model the system.	 This is a significant

advantage since effectively it results in little change in

computer memory requirements irrespective of the size

(number of degrees-of-freedom) and complexity of the

system to be analysed.	 The influence of rotor

support/foundation dynamics, of varying complexity,may be

easily included in the analysis [17].

Numerical problems, which may be encountered in

systems where high-order natural frequencies are required

or where intermediate supports exhibit very low

flexibility, may be minimised and possibly even eliminated

[17,991 by applying a number of available corrective

procedures.

Since the numerical method adopted would be used

mainly to investigate the dynamic response of a laboratory

test-rotor described later, taking into account the above,

it was felt that the Transfer Matrix Method would be the

most suitable in this case. 	 As a consequence the method

is used extensively in the work described herein.
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CHAPTER 4

MODELLING THE SYSTEM DYNAMICS -

THE TRANSFER MATRIX METHOD

4.1	 General Approach

Any real structure subjected to dynamic loading may

be idealised as an assembly of sub-elements each in

general possessing mass, stiffness and damping properties.

When using the Transfer Matrix Method the structure is

normally idealised such that a number of similar elements

are joined end to end in chain fashion. 	 Making use of

the laws of dynamics whilst ensuring inter-element

compatibility leads to a set of equations which provide

a means of relating the element end-conditions.

Transfer matrices are thus obtained for each element

type.	 The parameters required to define the condition

of an element at it's ends are expressed in the form of

a state vector.	 The order of the state vector is

dependent upon the system to be analysed. 	 For a beam-

like structure, since at least two generalised forces

and displacements are required at each node, the minimum

order is four for planar motion and eight for the most

general case.

For the sake of illustrating the general approach

the case of' an undamped, laterally-vibrating beam

(Fig. 4.1) will be considered frequently throughout this

chapter.	 The beam is simply-supported at both ends

and, as usual, may be idealised as a number of discrete
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rigid masses joined by elastic massless beam elements.

From elementary beam theory [Section 4.6] the deflection

and force parameters at the left of section i can be

related to those at the right of section i - 1 using the

transfer matrix F. so that-1

F. . zR.-1	 -1 -i-i

Similarly, the parameters to the right and left of any

point i are related as shown,

=	 i. . zL-1	 -1 -1

The matices F. and P. are termed the system field and-1	 -1.

point sub-element transfer matrices respectively.

Transfer matrices for other element types may be obtained

following an identical procedure [Section 4.6.3].

Once the basic transfer matrices for a particular

arrangement have been developed the system overall

transfer matrix U is easily obtained by appropriate

multiplication of the relevant element transfer matrices.

For instance, in the above case the relationship

=
	

(4.1)

exists where,

L7	 6 6 . 5 .L5	 .! .L1 1
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Intermediate state vectors are obtained using a similar

procedure.

Having obtained the overall transfer matrix U

the system boundary conditions may then be employed to

enable determination of the system natural frequencies

and, with a little effort, forced response data.

4.2	 Free Analysis

When the overall transfer matrix has been determined

and boundary conditions are applied an implicit

frequency polynomial of order 2n, where n is the system

number of degrees of freedom, is obtained. 	 The roots

of this polynomial correspond to the system eigenvalues.

It is also possible to obtain an explicit expression for

the frequency polynomial [45] although this method is

not normally employed.

For a rotor-bearing system a critical speed analysis

and stability assessment may be performed by calculation

and investigation of the eigenvalues.

In general the transfer matrix coefficients will

be of a complex, frequency-dependent and speed-dependent

form.	 The components of all state vectors are assumed

to vary harmonically with time so that

- AtZ = Ze

where Z is an amplitude vector and A is in general a

complex variable (A	 a + iw).	 The system complex



1j8.

eigenvalues A have great practical significance since

their imaginary parts represent the damped natural

frequencies whilst the real parts provide the level and

sense of system damping present. 	 The critical speeds

are those speeds at which the shaft rotational frequency

coincides with a, generally damped, system natural

frequency.

It is well known that in certain damped vibrating

systems, for instance in rotor systems where oil-film

bearings are employed, instability regions may occur

within the shaft operating speed range.

Instability onset speeds may be predicted from

linear theory by considering the sign of the real part

of the system eigenvalues.

Where the real part of a system eigenvalue is

positive (a > 0) unstable behaviour will be exhibited,

i.e. the system effective damping becomes negative,

leading to growth of vibration amplitude with time.

If the real part is negative (a < 0) stability will be

maintained, the degree of which will be dependent upon

the amount of residual damping present.	 The shaft

speed at which the eigenvalue has no real part (a 	 0)

is termed the instability onset speed since the system

will then be on the threshold of instability, the

imaginary component representing the corresponding rate

of precession, w, of the shaft.

When the structure is undamped all complex

eigenvalues will be replaced by purely ima9inasy ones
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and the system response may be described as

Z	 7eWt

where w now denotes the system undamped natural

frequencies.	 In any case the eigenvalues, whether real

or complex, may be obtained when the following conditions

are fulfilled.	 Considering once more the simple beam

in bending (Fig. 4.1) and equation (4.1), as a result of

the boundary conditions,

w 7 O ; M7 O ; w0 =O ; M0=O

There fore

+ u 14 v 0 = 0

(4.2)

+	 = 0

Those, generally complex, frequencies A which result in

non-trivial zero values of the frequency determinant

U 12	 U14

U 32	 U34

are the system eigenvalues.

Since the coefficients	 are, in general, speed-
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-depend€nt the eigenvalues A must be determined at each

speed.	 A number of efficient techniques are available

for the extraction of the system complex eigenvalues

[46, 108].	 These methods basically entail incrementing

the value of the complex frequency A until a root is

encountered i.e. the frequency determinant changes sign.

Subsequent application of an iterative interpolation

procedure results in the reduction of the determinant

to a practically zero value - the corresponding frequency

is a system eigenvalue.	 In the simplest case this may

be achieved by performing a linear interpolation until

some pre-defined criterion is met.

A powerful root-finding technique, termed Muller's

Method, has been employed with success [1081. 	 The

method is based on the approximation of the frequency

polynomial, over a specified range, as a quadratic.

The nearest root is taken as an estimate of the

actual root, convergence being achieved by successive

iteration.	 Alternatively if use is made of the

polynomial derivatives [46] then the rate of convergence

on a root may also be somewhat increased. 	 However,

if system stability alone is to be assessed then a

graphical procedure may be employed [43, 441.

When the eigenvalues have been determined the mode

shapes may be found easily by back substitution. 	 For

instance in the previous example, referring to equation

(4.2), one of the initial state variables 	 V0) may

be expressed in terms of the other, given an arbitrary
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value and transfer matrix multiplication performed as

before.	 The system state vectors then provide details

of the relative shaft deformations.

4.2.1	 Residual Method

Another approach, similar to that employed by

I-lolzer [12] in torsional systems, is to make use of the

system boundary conditions to create a residual term.

The residual is a function of certain system parameters

which are necessarily zero at all system natural

frequencies.	 As with the frequency determinant, the

residual is calculated for a range of vibration

frequencies and the points at which the residual becomes

zero are the natural frequencies.

The procedure will be shown for the vibrating beam

of Fig. 4.1.	 The overall transfer matrix is obtained

as explained earlier and from the first equation (4.2)

we can write,

= -(U14/U12).v0

Substituting this into the second equation gives

(U 34 -(U 32 .U 14 /U 12 )).V 0 = 0

or	 R.V0	 0

where R is termed the residual. 	 For other than the
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trivial case V 0 A 0 and thus R = 0 if the assumed value

of A corresponds to a natural frequency. 	 Again an

iterative procedure can be employed to find A when R 	 0.

The same procedure is followed for any rotor

arrangement irrespective of the boundary conditions since

for different configurations only the number and

magnitude of the coefficients in the homogeneous

equations will change.	 The normal modes may be

determined using the methods described earlier.

4.2.2	 Numerical Problems

When using transfer matrices, unless special

precautions are taken, numerical difficulties can be

experienced mainly under two circumstances: when

computing higher-order natural frequencies and when

intermediate elastic supports become very stiff.

Fortunately, in the majority of practical cases only the

first few natural frequencies are of any interest and

thus one potential source of error may be disregarded.

A number of procedures aimed at eliminating the

above problems have been proposed [17, 99]. 	 An

effective correction method, created by Furke and

described in [17], makes use of so-called delta matrices

and is based on expressing the system frequency-

determinant in terms of a number of smaller determinants.

The system determinant is more accurately computed by

calculating and combining the individual sub-

determinants.	 However, one of the main disadvantages
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of this approach is the large number of sub-determinants,

required even for relatively low-order systems. 	 It's

application to real rotor systems, where in general

non-planar motion can exist is not really feasible.

Additionally, the nature of the method is such that

normal modes cannot be obtained.

Another correction technique, more suitable for

rotordynamic analysis and lacking many of the severe

limitations of the delta matrix method, is the modified

transfer matrix method developed by Pestel and

Mahranholtz [17].

4.2.3	 The Modified Transfer Matrix Method

The modified method of analysis eliminates the

problem of the small differences of large numbers, which

normally occurs as a result of the aforementioned

conditions, through a technique whereby the components

of the initial state vector are estimated close to their

actual values.

The initial estimation of this vector need not be

close to the actual vector since convergence is rapid

and in many instances after one iteration only the

estimated vector is very close to the actual one.

In order to allow for modification of the estimated

values correction terms, K, are added to a number of

the non-zero initial state vector parameters. 	 For

an nTH order problem in which the initial state vector

1 consists, in general, of n/2 components equal to
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zero, Z 0 would be written as follows,

(n1j

	

0
	

1

Where 5 represent actual numbers which are the

estimated values for the corresponding parameters which

make up the state vector 	 whereas the correction

factors K. are initially unknown and the alties 	 to

6(n-1) are normally initially arbitrarily set equal to

unity.

Once again this method is probably best illustrated

by analysing the simple beam system investigated

earlier, (Fig. 4.1).	 Consider the initial state vector

parameter values at point 0.	 Since, for free vibration

analysis, the absolute values of these parameters is not

of any importance the slope	 may be given a value of
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unity.	 Now V 0 0 and the shear force V 0 will be

linearly related to	 therefore say;

V0

Thus, in matrix notation, introducing the correction

factor for the shear force term we can write,

and when 1< is a small quantity V 0 = 6.	 Assuming

initially that 6	 1 and multiplying through by the

overall transfer matrix U gives:

^1< rci
b2

M
	

b3	 c3

V7	 b4	 C4

Now applying the boundary conditions at point 7,

= 0 and w 7 = 0

and we obtain two equations
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	b 3 + Kc 3 = 0
	

(4.3)

and b 1 + Kc 1	0
	

(4.4)

Letting 1< in equation (4.3) be J<a and K in equation

(4.4) be Kb,

	

K	 -b3/c3a

	

and Kb	 -b1/c1

If both equations yield the same value for Ka and

Kb they would be interdependent, i.e. their determinant

would be zero so that the value of A used in the

numerical computation would correspond to a natural

frequency of the beam.	 Normally, however, the above

equations give different values for Ka and Kb and in

this case the revised value of K is taken as the mean

of K and Kb.	 That is,a

K	 K +Ka b

2

The residual R in this case is taken as the difference

of the K values,

R = K -K
a b

The revised K value is now added to the shear force term

in the intial state vector to give
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V 0 = iS + K

The revised value of iS is thus

The foregoing calculation is repeated for the same

frequency and new values of Ka and Kb obtained.	 The

latest K value should now be found to be extremely small

but the value of R at this frequency will remain

unchanged.	 It should be noted that using this approach,

with reasonable estimates of initial state vector

parameters, the resulting residual will be determined

from the addition of two numbers of identical sign.

The above procedure is repeated, with increasing

values of frequency A, over the desired frequency range

until a change in the sign of the residual occurs,

indicating a natural frequency between the relevant A

values.	 By performing linear (or some other means of)

interpolation with a smaller frequency increment the

system natural frequencies may be determined with

sufficient accuracy.

The normal transfer-matrix method may be easily

extended to incorporate the above correction routine.

The increase in computer memory requirements for all

practical purposes may be neglected.

In reference [17] it is shown how the modified

method was employed to analyse the case of a turbine-
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-generator set mounted on a flexible foundation. 	 The

first six system natural frequencies were easily

obtained using only eight digits whilst even when 18

diigits were employed it was impossible to accurately

determine the first five eigenvalues using the normal

'uncorrected' transfer matrix technique.

It is important to note that application of

modified method will not necessarily ensure numerical

stability in all cases [99].	 However, during the

numerous analyses performed throughout this

investigation no such problems were encountered.

4.2.4 Dynamic Stiffness

Instead of calculating a residual or frequency

determinant an alternative approach is to make use of

the concept of dynamic stiffness. 	 In contrast to the

above two parameters dynamic stiffness has a distinct

physical meaning and provides a useful means of

estimating system response through utilisation of sub-

element dynamic stiffness data [100].	 The dynamic

stiffness at a system location, depending on the

boundary conditions, is defined as either M/'' or

V/w and is thus the inverse of receptance. 	 It has a

zero value at a system natural frequency and tends to

infinity between any two natural frequencies.	 This

latter characteristic can lead to problems in determining

system natural frequencies where a number of such

frequencies are closely grouped, due to the substantial
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rate of change of dynamic stiffness in this area.

4.3	 Forced Analysis

For the analysis of forced vibration all transfer

matrices can be expressed in an extended form, i.e. an

extra row and column are added to the standard transfer

matrix.	 With this modification the inclusion of

forcing terms independent of the state vector parameters

is accomplished very easily.	 The method of analysis

is best shown with reference to the uniform beam in

Fig. 4.1.	 Considering the introduction of an external

force F at, say, point 3 varying harmonically with time

so that,

F =

and, in general, all state variables are complex and

considered to vary in the same manner such that,

- iwtw = we

= 4eWt

M = Me)t

V = Ve'

Because of this a new (point) transfer matrix, relating

state vectors at points 3L and 3R, needs to be

introduced.	 Neglecting moment discontinuities [see

section 4.6.3.2J
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1	 0	 0	 0	 '0

o	 1	 0	 0

0	 0	 1	 0

-mw 2	0	 0	 1	 I r
0	 0	 0	 0	 gi

Again we obtain the relationship

=

Where the system overall transfer matrix this time is

extended and the terms U 15 ,U 25 ,U 35 , and U 45 are, in

general, non-zero.	 The coefficients U 1 ,U 52 ,U53 and

U 5.4 are all zero.	 This time introduction of the beam

end conditions provided the non-homogeneous equations:

-U 15 = U 12 cI 0 + U14V0

-U 35 = U 32 c1 0 + U34V0

The equations may be solved for 	 and V 0 and all

other system parameters obtained by multiplication of

the initial state vector by the relevant transfer

matrices.

The complete procedure can be repeated for a range

of frequency values and the system frequency response

obtained.

Irrespective of the number, type and order of the
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system elements employed the above method may be applied

without modification.

With the response parameters at each shaft section

computed, a detailed description of the shaft motion,

in whirl orbit form, may be easily obtained (Appendix A).

4.4	 Intermediate Rigid Supports and Pinned-Joints

The introduction of system intermediate flexible

supports is easily dealt eith simply by the inclusion

of the relevant stiffness values in the appropriate

transfer matrices.	 However, where the stiffness

becomes so large that the support must be considered

rigid or where other discontinuities, e.g. a hinge or

pinned-joint, occur it will be necessary to utilise the

resulting intermediate boundary conditions. 	 This, of

course, means that the 'straight-through' matrix

multiplication approach described earlier cannot now

be maintained, although very little hardship will

result as shall be seen.

Consider now the introduction of a radially-rigid

support and pinned-joint to the vibrating beam of

Fig. 4.1.	 If the support is placed at point 4 and

the hinge at point 5 two additional boundary conditions

occur;

At point 4	 w4 = 0

and let the force transmitted to the support be P.
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At point 5	 M5 = 0

and let the change in beam slope at this point be Q.

For forced vibrations the following relationships hold;

-	 R	 I	 L
U 11	 U 12 U13 U 14 U 15 w	 P	 0

1J 1	•	 •	 .	 U5	 +	 0

M	 U31	 .	 .	 .	 U35	 M	 0

u 11	 .	 .	
.	

U45	 V	 1

1 4	0	 0	 0	 0	 1	 10	 0

or

R	 '	 L	 R-	 + P

and

w

M

V

1

w JR	 -

M

V

15

U	 U	 U	 U	 Ui

U.	 .	 .	 U2

U31.	 .	 .	 U

U 4 1	•	 •	 U4

0	 0	 0	 0	 1

L

+

0

a1	 U
	

0

a2 +
	

1

a3	 0

a4	 0

0
	

0

or

	

R	 ''	 L	 R	 R

	

..5	 .--0
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Where U and U	 are the system transfer matrices

relating conditions between points 0 and 4 (right) and

points 0 and 5 (right) respectively.

Making use of end and intermediate boundary

conditions two additional equations are obtained;

0	 + 1Jv + tJ5

0 =	 + UV0 ^ U	 + a3.P

The two equations here, when combined with those

resulting from the boundary conditions at the beam

right hand end (point 7), allow for complete solution

of the four unknowns	
, V

0 , P and Q.	 As before, all

other relevant system parameters may be determined by

back substitution.

In general the total number of simultaneous

equations to be solved, Nt will be

N = N + N.
t	 e	 1

Where N. is the total number of equations

resulting from intermediate rigidities or releases.

Ne is the number of equations obtained from the system

end conditions.	 N = n/2 where n is the state vector

order.

A similar procedure may be employed when a free

analysis is to be performed. 	 Each intermediate

rigidity or release introduces an additional equation
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which allows for elimination of the resulting

unknown variable.	 When this is achieved transfer

matrix multiplication is continued as before until the

end of the system is reached where application of the

boundary conditions will enable estimation of the

frequency determinant (or residual).

4.5	 Treatment of System Sub-Levels

In real rotating machinery applications many

instances occur where accurate modelling of the system

dynamics may be achieved only when the characteristics

of, for instance, the bearing oil-film, machine casing

and foundation are incorporated into the analysis.	 In

such cases these components may be considered as

possessing mass/inertia, stiffness and damping qualities.

Although, in such circumstances, the simple 'chain-like'

structural form is modified, with some

additional effort the transfer matrix method may still

be employed to analyse such complex systems.

4.5.1	 Derivation of Transfer Matrices from Measurement

Before describing the general analysis technique

it is worth mentioning that in some cases, where for

example system modelling techniques may be limited,

incorporation of relevant experimental data may lead

to improved accuracy.

For instance, consider a rotor system with the

complex multi-level support arrangement as shown in
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Fig. 4.2.	 If the beam is assumed to vibrate in a

single plane only then ideally one would wish to

describe the support assembly in terms of a simple

(4x4) transfer matrix so that the conventional 'straight-

through' form of T.M. method is maintained. 	 This

could be achieved by measuring the support system

receptances, r, and by further manipulation obtaining

the required transfer matrix such that:

R

M

1
	

0

0
	

1

r 21	 r11

(r 12 r 21 -r 11 r 22 )	 (r 11 r 22 -r12r21)

_______________	 r12

(r 11 r 22 -r 12 r 21 )	 (r 12 r 21 -r11r22)

00	
L

00

10	 M

0 1	 2

Where r is in general complex and frequency-

dependant.	 Referring to the support shown in Fig. 4.3,

F	 Harmonically varying force at point 2.

C	 Harmonically varying couple at point 2.

d 11	 Displacement at point 2 due to force F.

d 12 = Displacement at point 2 due to couple C.

d21 = Slope at point 2 due to force F.

d 22	 Slope at point 2 due to couple C.

r 11	 =	 d11/F

r 12	 d12/C

r 21 = d21/F

r22 = d22/C
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4.5.2	 General Case

The above approach is useful for a system having

supports such as those shown in Fig. 4.2 but where

inter-support coupling exists, an alternative procedure

must be developed.	 The general case of a rotor mounted

on bearings which are in turn located on a flexible

casing having mass, subsequently supported on a

massless flexible foundation is shown in Fig. 4.4.

Although this constitutes a system with only one sub-

level the following analysis method can easily be

extended to a system with multiple sub-levels. 	 The

possibility of damping at all levels necessitates the

use of complex transfer matrices.	 Normally it is

assumed that motions in a direction along the shaft

rotational axis x have no influence on the system

response in the other two planes resulting in the

employment of transfer matrices of size (8x8) for free

vibration analysis and (9x9) for forced response

calculations.

The general approach will be described for the

free-vibration analysis of the system shown in Fig. 4.4

making use of the modified transfer matrix method to

aid numerical stability.	 Prediction of the system

response as a result of the application of periodic

excitation, e.g. mass unbalance, may be achieved by

adopting a similar procedure (Section 4.3).

Although not shown for sake of clarity, (Fig. 4.4)

radial and angular coupling between the x-z and x-y



67.

planes at the support points may be assumed to exist.

Each support is assumed to exhibit stiffness and damping

characteristics but in the extreme case may be considered

as a rigid link exerting a reaction force or moment P.

For this case the shaft (level I) and machine

frame (level II) end conditions will be considered

	

free-free CM	 V	 0) but this is not a limitation since

any condition can be simulated simply by altering the

initial state vectors.

As before, the non-zero parameters in the ititial

state vector(s) are given initial estimates

and corresponding correction factors K 1 , K2...
2

K 1 , where n is the state vector order at the relevant
2

	

system level.	 Normally the state vector parameter

expected to have the greatest value is initially

guessed as unity, for numerical stability purposes, and

left uncorrected.

Consider initially the state vector for the shaft

at point 1.

L1	 =r611 +K1r11+K2r01^K3r01
62
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Following the usual procedure the intermediate

shaft state vectors are obtained by successive

multiplication of the appropriate transfer matrices.

The process is continued until a support is reached

where:

= a1

a2

a3

a4

a5

a6

a7

a8

b1

b2

b3

b4

b5

b6

b7

b8

Cl

C2

C3

C4

C5

C6

C7

c8

d1

d2

d3

d4

d5

d6

d7

d8

Thus the complete state vector at the lef

support becomes:-

L
a1 +1<1 b 1 +K 2 c 1 ^K 3 d1
a2	

2	 2	
d2

b	
C4

I	
H	 6	 C6	 d

a3	
b3

a6	
C5

a7

-8-	 8-w

5	 0	 0	 0
	H 	 0	 0	 0	 0

0	 0	 0	 0z

	

v	 66	 0	 0	 0

	

e	 67	 0	 0	 0

	

M	 0	 0	 0	 0

	

II VZ	 0	 0	 0	 0

N1	 3

0
0
0
0
0
0
0
0
0
0
0
U
0
1
U
0
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Note the introduction of additional 	 and K

variables for the non-zero parameters in the lower

level state vector. 	 Although the machine casing is

shown here as having no overhang in addition to being

located within the shaft length these aspects are in

no way limitations of the method.

When any form of support is encountered such as

that at point 3 the following steps must be taken,

1)	 Set-up the support point transfer matrix

relating all parameters, at all levels.

Where supports are such that rigidities, P,

are introduced the corresponding matrix damping

and stiffness coefficients should be set to

zero.	 The order of this matrix will be equal

to the sum of the order of matrices employed

for each level - in this case sixteen.

2)	 Make use of any relevant boundary conditions

at the support to set-up equations relating

the system unknowns.	 These additional

relationships result from two main sources:-

a)	 The Introduction of Support Rigidities.

The number of' additional equations introduced

will be equal to the number of support

rigidities.	 If Nl is thenumber of system

levels then the maximum number of equations

which can be introduced at any point is 4.(Nl)
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for a two-plane analysis, resulting in a

maximum of eight more equations in this case.

b)	 The Introduction of Discontinuities in the

Sub-Levels.

In general the sub-level(s) (machine frame in

this case) may not be of a continuous nature and

additional intermediate boundary conditions

occur.	 Here the maximum possible number of

equations at any location, resulting from

such a situation is 4.(N 1 -1).	 For example, in

the case considered if the beam representing

the machine casing was removed then the maximum

number of equations would result at each support

since M =M =V =V =M =M =V =V =0.
zA yA zA yA zB yB zB yB

Considering the above points and returning to the

system shown in Fig. 4.4 the state vector to the right

of point 3 in it's most general form may be written as

shown on the following page.

The P vectors can be eliminated if no rigidities

are present, or if the rigidities can be simulated using

high stiffness values.	 However, if care is not taken

this latter option may lead to numerical problems (4.2.2).

The subscript prefix m denotes a reaction moment.

Considering location A in Fig. 4.4 the following

additional equations may result depending on specific

support conditions:-
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If	 K4A1-d4+B1K1+C1K2^D1K3

If vv 2 	K6A5-66+B5K1^C5K2^D5K3

If iz	 K5A2-65+B2K1^C2K2^D2K3

If o 1 =e 2	 K7A667+B6K1+C6K2+D6K3

If w2=w3=O
	

cS4-0;	 K4=O

If v2v30
	

660	 K60

If
	

s=0;	 K5=0

ic e2:e3=0
	

6 7 0 ; 	K70

If the bending moments and shear forces to the

right of point A are zero as described in paragraph

2b earlier then the following additional relationships

result.

At II

H 0A +B 1 K 1 +C 11 K 2 +D 11 K 3 +F 11 K 5+H 1 K -P	 +P1 7 myl my2y	 11	 1

V =0A ^B K ^C 2 K 2 +D 12 K 3+E 12 K 4+G 1 K -P +P
2 6 zi z2z	 12	 12 1	 1

M 0A ^B 5 K 1 ^C 15 K 2 ^D 15 K 3+F 15 K 5+H 1 K -P	 +P
5 7 mzl mz2z	 15	 1

V =0A +B 6 K 1 ^C 16 K 2 +D 16 K 3 +E 16 K 4 +G 1 K -P i-P
6 6 yl y2y	 16	 1

Thus consideration of the support details for a

particular case will result in the selection of certain

of the above relationships. 	 The normal transfer

matrix procedure is continued as before until another

support is encountered and the same procedure adopted.

When the end of the system is reached another set of

relationships result from application of the boundary

conditions.	 In this case,
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At I, at point 11

M =V =M =V =0
y z z y

and similarly,

At II, point B

M =V =M :V=0
y z z y

In general the end conditions always provide

+ n 11 + .....+flNl) homogeneous equations where n

represents the matrix order for the respective system

level.	 The introduction of a number of intermediate

rigidities or releases Nr results in an additional

Nr homogeneous equations.	 Since the number of K

variables employed is (n 1 + n11 +.. . n N l - 1) it is

2	 2	 2

obvious that the number of equations available for

solution always exceeds the number of system unknowns

by one.	 Thus the procedures described in section

4.2.3 may be applied directly to enable modification

of the initial state vectors thereby allowing accurate

determination of the system natural frequencies.

4.6	 Derivation of Transfer Matrices

4.6.1	 Rotor System Modelling

The usual approach of idealising the shaft/rotor

system as a series of elastic massless beam elements

joined by rigid point masses is adopted here. 	 The

lumped mass at each shaft section is determined by

summing half the mass of the section to the right of
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the station and half the mass of the section to the

left of the station.

The following assumptions are made in setting up

the system transfer matrices:

1) The rotor system exhibits linear characteristics.

2) The rotor is axi-symrnetric.

3) Torsional and axial load effects have no

influence on the shaft lateral vibrations.

The analysis allows for the inclusion of the

following effects:

1) Shaft mass unbalance.

2) Shaft initial bend.

3) Asymmetric multi-level supports possessing

radial and angular mass/inertia, stiffness and

damping characteristics.	 For each support

any combination of rigid/flexible elements can

be selected.

4) Gyroscopic Couples.

5) Rotary Inertia.

6) Shear Deflection.

4.6.2	 Sign Convention

The Cartesian right-handed co-ordinate system is

employed (Fig. 4.5), the x-axis coinciding with the mean

steady-state position of the shaft rotational axis at

each shaft station and the y and z axes coinciding with

the principal axes of inertia of shaft cross-sectional

area.	 The displacements in the horizontal (y) and
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verticaj. (z) direction are v and w respectively.

4.6.3	 Transfer Matrices

In setting up the system matrices the shaft motion

is assumed harmonic such that system parameters can

be expressed in the following complex form:

- Atw	 we

M = M eAt
y	y

V =Vez	 z

and

- Atv	 ye

e =eAt

M =iTeAt

V = Ve

and only the real parts apply. 	 A = a + iw where a is

the damping exponent and w the rate of free vibrations

of the system. The shaft angular speed of rotation

is represented by 2 , so that in the special case of

forced vibration due to mass unbalance A = i2.

From the above

•	 - At
w = Aw e

2— At
and w = A w e
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and similarly for the other system parameters.

In the following the superscripts L and R represent

the conditions at the left and right hand sides of the

element respectively.

4.6.3.1	 Elastic Massless Field

Referring to Figs. 4.6(a) and (b), and from

equilibrium and the theory of elasticity:

—R	 —L
w - L L -	 - VL rL 3 - Li

ZL

+	 + VLL2
rr	 ZT

—R	 —L	 —LM	 =M	 +VL
y	z

V	 VL

and

—R	 —L	 LL + L L 2 - VL 'T 3 - LV	 =V +
ZT	 Lri

L + L L _VLL2
Z

- VLL
z	 z	 y

VR VL
y	y

(4.5)

where E and C are the elasticity and shear modulii, for
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the shaft material, respectively.	 The shaft cross-

sectional area and second moment of area are represented

by A and I respectively.

The effect of shaft internal damping may be dealt

with [17] by the introduction of complex shaft modulii

E and 6 where,

E (1^ig)

and	 C (1^ig)

where g is described as the material loss factor

generally having values of the order of .005, depending

on the material employed and structure type. 	 This

effect will not be considered further in the analysis.

When equations (4.5) are expressed in matrix form

the flexible field matrix is obtained (section 4.7).

4.6.3.2	 Point Mass/Inertia

Fig. 4.7 shows the free body diagram for a

concentrated mass and thin disc at a shaft station.

The mass m is a combination of shaft lumped mass,

determined as described earlier, and disc mass.

and I.. are the disc polar and transverse moments

of inertia respectively.	 Employing D'Alembert's

principle to set up the system equations we obtian

	

—R	 —Lw

	

R	 L

	

MR	 +	 2-L +
	y	 y	 T

	

VR	VL + m2wL

	

z	 z
(4.6)



78.

and,

—R
V

z

VR

—L

=	 + IA 2	- IA2 L

—L	 2—L
= V + mA v

(4.6)(cont.)

If a circular whirl orbit results then e = -i

(Appendix A).	 Considering a thin circular disc where

2I.. and synchronous excitation (A = icz) then

from equations (4.6) we obtain,

=	 +

+

where the gyroscopic couples clearly introduce an

additional stiffening influence on the shaft.

With equations (4.6) expressed in matrix form the

point mass/inertia transfer matrix is obtained (section

4.7).

4.6.3.3	 Point Support

The case of a support with one sub-level is

considered here since such an arrangement may be

simulated on the test rotor used in the experimental

work.	 All possible dynamic support coefficients

are considered in the analysis, including stiffness!

damping at each level, although many of the coefficients
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will be eliminated depending on the particular system

to be investigated. 	 Referring to the shaft support

arrangement shown in Fig. 4.8 and making use of

D'Alembert's principle the following equations are

obtained.

In the x-z plane

At Level 1

—L

- —L
-

+ (K 1 	 +
yl	 yl

+(K 10 +AC10).(1_2)

V	 =V	 +(K	 ^C	 ).(w-w )zl	 zl	 lzz	 lzz	 1	 2

+(Kizy+ACizy)

At level 2

—R —Lw2

- —L
- c2

=	 - (K1+C1)1y2	 y2

+ C K 1 + A C 1 + K 2 + A C2 
+ 'F x 2) 2

I
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VR 	VL -(1<	 ^xC 1	)
z2	 z2	 lzz	 zz 1

	

+ (K 1 ^XC	 ^K	 +XC	 +M

	

zz	 1z 2zz	 2zz F

- (K 1	+XC	 )•	zy	 izy	 I

+ (K	 +AC	 ^1<	 ^XC	 )v

	

izy	 izy 2zy	 2zy 2
(4.7) (cont.)

In the x-y plane

At level 1

—R
v i	 = Vi

=

= L +(K100+xc100).(12)
zi

+(K18+XC1e). (1J2)

	

VR 	V

	

yl	 yl

+(K lyz

At level 2

—R
V 2 = V2

—R _—L
02 - 02

-	 1ee41ee1z2	 z2

(4.8)

^(K 1 0 +AC 1 0,^K20+AC20)c2
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vi
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W2

v2
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If we let

0

0
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V	 V	 - (K	 +XC	 )vy2	 y2	 lyy	 yy 1

	

^(K	 +XC	 ^K	 +XC	 +M A )vlyy	 lyy 2yy	 2yy F	 2

	

-(K	 +xc	 )lyz	 lyz	 1

+(K	 +AC	 +K	 +XC	 )ilyz	 lyz 2yz	 2yz 2

(4.8) (cont.)

Expression of the above equations in matrix form

results in a complex extended transfer matrix (section

4.7) of size (17x17).	 However, where individual

supports are uncoupled the following boundary conditions

may be utilised to enable reduction of this matrix to

it's 'normal' (9x9) form.

V2=V2MR zM'	 VR2VL2M2ML o
z2y2 y2 y

Then from equations (4.7) and (4.8)

L 
A
	

B

where,
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_( K i-s XC i ) -(K	 +XC	 )	 0	 0izy	 izy

0	 0	 -(K1+AC1) _(K1e+AC1e)

-(K 1 +xC 1	) -(K	 -i-AC	 )	 0	 0yz	 lyy	 lyy

0	 0	 _(Kie+xcie)

and,

( K i+Aci	 (K	 +A	 0	 0ZZ	 izy	 izy

i-K	 +AC	 )zz	 2zy	 2zy

+M1A2)
(K,+C1	 (Kie+xcie

0	 0	 ^K2-.-c2	 +K2eixc2e)

+IFyX)

(K	 -'-xc	 (K	 i-AClyz	 iyz	 lyy	 lyy
+K	 -'-xc	 ) i-K	 i-AC	 0	 02yz	 2YZ	 2yy	 2yy

i-HEX2)
I

( K ie+xc i e	 (Kiee*Aciee

0	 0	 +K2e+AC2e)	 +Kzeeixczee

+IizA2)

	therefore	 -2	
!_1. -

Let	
,]
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Since, in both planes at the shaft level, the

displacement and slope to the right and left of the

support are identical then by making use of coefficients

from the C matrix a 9x9 support transfer matrix is

obtained (section 4.7)

4.6.3.4	 Unbalance Mass

The effect of mass unbalance at a general shaft

station is considered in Fig. 4.9 where 0 is the mean steady state

position of the shaft centre, G is the shaft geometric

centre and H the centre of mass of the shaft. 	 Since

shaft motion is being considered at a point then

—R	 —L
w	 = w

—R	 —L
V	 V

and, ignoring angular inertia effects,

=

y	y

z	 z

Now considering forces in the z and y directions

respectively,

	

VR VL	 2—L-	 - m	 (w + r(sinct - icoscz))z	 z	 u
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VR VL	2 —L
- mç	 Cv + r(cosct + isina))

Expressing the above equations in matrix form

results in the unbalance mass matrix (section 4.7).

4.6.3.5	 Shaft Initial Bend

The inclusion of shaft bend in the analysis leads

to modification of the elastic massless field matrix.

The point mass matrix needs no alteration since the

usual displacements	 nd V this time are assumed to

include the bend effect.

Referring to Fig. 4.10 it is seen that the effect

of shaft initial bend is to modify the displacement

and slope relationships so that forcing terms are

introduced.

If the section initial bends and slopes are

denoted by c and	 respectively then,

—R	 —L	 CR(	 R	 R	 L	 L	 L -
w	 w +	 siny -icosy j - c (siny -icosy )

L 2 —L -3 - Ll^ eS L - TL- v

2E1 L	 ;J
R	 L ^	 ^tL+VL

El	 2E1

+ VLL
y	 y	 Z

VR VL
z	 z

and

—R	 —L	 cRC	 R .	 R	 L	 L .	 Lv	 v +	 cosy -i-isiny )-c (cosy ^isiny ,

(4.9)
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+	 -	 +	 - V EL 3 - L

2E1	 L6EI	 •GA]

+	 -	 +	 - v

El	 2E1 (4.9) (cant.)

- VL L
z	 z	 y

VR =VL
y	y

When equations (4.9) are expressed in matrix farm

the modified elastic massless field transfer matrix

is obtained (section 4,7).

If initial bend at any point 	 is written as

= - jC e11t
wn	 n

-	 iyn
e	 =cevn	 n

The resulting shaft slopes may be estimated from the

initial bends as follows:-

--
vn	 V

L	 L 

-1 (ni/en	 v(n+ir vn	
+ ( E -

n	 n

wn	 w(n-i-	 wn-i)	 wn
-	 + ( , - i /

L	 L	 2
n	 n-i

where n is the shaft station number, increasing from

left to right.
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4.7	 Catalogue of Transfer Matrices

Ela ;tic Massless Field Matrix (Straight Shaft)

	

- L 2 _ L 3	 L1 1_ I 	 r _Lr	 11 0 	 01 0	 0

	

2	 IL_____

	

___	 2E1	 0 0 0	 0	 '0

0	 0	 1	 L	 1 00 1 0	 0H
0 0 0	 1	 L ___
0	 0	 0	 I	 ü	 1	 L	 - 0

0	 0	 0	 I	 1	 L	 - L2	 J
	EH2E	

I
010	 0	 0

	

-I-	 _________________ _________________________________ ____ —L 0-t

0 0	 0	 0	 0 00	 1 - 0

0	 0	 0	 0	 0	 olo	 a

Point Mass/Inertia Matrix

0	 0	 0
	

0	 0	 0

0	 1	 0

0	 11A2	 1

mA 2	0	 0

0	 0	 0

0	 0	 0

0	 —Ixc	 0

0	 0	 0

0	 0	 0

0	 0	 0	 0

0	 0	 0

1	 0	 0	 0

0	 [1	 0	 0

0	 0	 1	 0

0	 0	 1

0	 mA 2	0	 0

0	 0	 0	 0
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Paint Support Matrix (Reduced)

U	 1	 0	 0	 0	 0	 0	 0	 0	 0
- 4

	

o	 1	 0	 0	 0	 0	 0	 0	 0

£21	
23i 

1	 0C22C

	

0	 1	 C12	 Ct4	 0	 0	 0

	

o	 0	 0	 0	 1	 0	 0	 0	 0

	

o	 0	 0	 0	 0	 1	 0	 0	 0

	

£41	
C43	 U	 - 0	 •42	 C 44	 1	 0	 0

£ 31	 £2	
0
	

0	 £32 £34	 0	 1	 0

0	 0	 0
	

0	 0	 0	 0	 0	 1

The Coefficients C are as defined in section 4.6.33

Unbalance Mass Matrix

=	 1	 0 0 0	 0	 0 0 0	 0

0	 100	 0000	 0

0	 010	 0	 000	 0

	

-mc2 2 0 0 1	 0	 0 0 0 -m2r(sina-icoscL)

0	 000	 1	 000	 0

0	 000	 0	 100	 0

0	 000	 0	 010	 0

0	 0	 0	 0	 -m 2	 0	 0	 1	 -m 2 r(cosct-,-isinci)
U	 U

0	 000	 0	 000	 1
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I	
iI 1

CJ U
0	 0	 0	 0	 \ -	 I	 0

0	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 0

II
=1
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4.8.1	 Analysis Programme

A computer programme, incorporating the procedures

described in this chapter, was created and employed

for the rotordynamic analyses performed and described

in this thesis.

The programme enables the prediction of system

undamped critical speeds, corresponding mode shapes

and damped unbalanced response taking into account the

effects described in section 4.6.1. 	 In addition, the

programme was used as part of an optimisation algorithm

later developed and described in Chapter 5.

Free-vibration analyses were performed utilising

the modified transfer matrix method, described in

section 4.5.2, to aid numerical stability.

When using this method simulation of intermediate

shaft-level rigid supports as high-stiffness flexible

supports was found necessary to ensure elimination of

possible ill-conditioning of the solution equations.

Although this approach posed no problems in any of the

analyses performed a more suitable procedure might be

to employ the normal transfer matrix method where only

rigid intermediate (shaft-level) supports are introduced

and to apply the modified method in all other cases.

The programme could be employed to analyse rotor

systems of significant complexity with minimal demand

on computer memory.

In addition to shaft displacement data other

output information included: Bearing/support forces,
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shaft deflected form, dynamic stiffness at any point

and system receptances.

A brief description of the programme structure

is presented in the form of a flow chart in Fig. 4.13.

4.8.2	 Validation of The Analysis Programme

Accuracy of the analysis programme was assessed

in a number of ways.	 First, the case of a uniform

beam mounted on simple supports (Fig. 4.11a) was

analysed and the first five undamped natural frequencies

(including rotary inertia effects) predicted using the

programme and compared to the exact values calculated

using the Timoshenko beam theory, viz:

where	 is the 
TH 

natural frequency (rad/sec)

and R is the term representing rotary inertia effects,

2 r- -T2R = D	 nir
16LL

Values of the other parameters used were as follows:-

E = Young's Modulus = 210x10 9 N/rn2

p	 Material Density = 7860 kg/rn3

D = Shaft Diameter = .0254 m

L	 Shaft Length = .956 m
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n	 Mode Number = 1,2,3.....

The beam frequencies are compared in table 4.1

where the influence of number of shaft elements on the

modelling accuracy is shown

Table 4.1

Natl.	 Beam	 Transfer	 N0.of

Freq.	 Theory	 Matrix	 Shaft	 Error

N°.	 (Equ.4.10)	 Programme	 Elements

	

rad/Sec	 rad/sec

	

354.17	 6	 .06
1	 354.37	 354.18	 8	 .05

	

354.19	 10	 .05

	354.19	 16	 .05

	

1411.91	 6	 .33

2	 1416.57	 1413.10	 8	 .25

	

1413.42	 10	 .22

	

1413.62	 16	 .21

	

3143.77	 6	 1.26

3	 3183.83	 3161.93	 8	 .69

	

3166.15	 10	 .56

	

3168.62	 16	 .48

	

5412.23	 6	 4.23

4	 5651.56	 5557.63	 8	 1.66

	

5586.92	 10	 1.14

	

5602.32	 16	 .87

	

7696.79	 6	 12.67

5	 8813.43	 8479.44	 8	 3.79

	

8622.42	 10	 2.17

	

8689.34	 16	 1.41

When a sufficient number of shaft elements are

employed in the model excellent agreement with predicted
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frequencies using equation 4.10 is observed. 	 A small

number of elements is seen to provide good accuracy at

the lower frequencies where, for instance, the use of

eight elements results in a maximum error of less than

one percent for the first three natural frequencies.

The analysis of higher-frequency necessitates the

employment of a greater number of elements if reasonable

accuracy is to be maintained.	 However, it is seen

that even when only eight elements are used the first

five natural frequencies can still be accurately

predicted to within four percent, the same beam was

then considered mounted on flexible supports (Fig.4.ilb)

and the calculated natural frequencies compared (Table

4.2) with those estimated using other numerical

techniques [91,101].

Table 4.2

(*)	 (A)	 (A)	 U)______________	 ci	 c2	 c3	 c4

Trans fer

Matrix	 339	 1190	 2129	 3007

Method

0.5.Turkay	 338	 1198	 1976	 2476

Ref [iou

Dostal et al	 350	 1200	 1950	 2500

Ref [91]

Agreement between the results obtained using the

various numerical method is found to be very good at
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the lower frequencies with some disparity at the higher

ones.

The effectiveness of the analysis programme in

predicting the damped response of a shaft system, due

to some pre-defined unbalance distribution, was assessed

by analysing the arrangements shown in Fig. 4.11.

These systems were earlier investigated by Dostal et al

[911 and relevant graphical results from their paper

are presented for comparison (Fig. 4.12). 	 As with

the free analyses, agreement is excellent for shaft

cases (a) and Cc) and for case (b) over the major part

of the shaft speed range.

In addition to the above, the case of a simple

.Jeffcott rotor mounted on flexible supports with central

unbalance and damping was analysed using the programme

since, for this arrangement, the exact shaft response,

bearing forces and influence coefficients are easily

computed for comparison.	 The agreement was excellent

with little discernable difference in the results.

Later comparisons with experimental measurement

taken from a test rotor also confirm the validity of

the programme.

Although, in all shaft cases analysed during these

investigations, the normal and modified transfer matrix

methods were found to agree almost exactly when

predicting the first six shaft critical speeds, it was

observed that at higher support stiffness values

employment of the normal method resulted in failure to
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accurately predict the higher frequency mode shapes.

4.8.3	 Residual 'Jumps'

When employing the modified transfer matrix method

for the free-vibration analysis of certain systems the

calculated residual has been observed to tend to

infinity then change sign, or 'jump', within specific

frequency ranges.

This effect has been shown, in the literature [17] ,

to occur in systems comprising a number of branches and

where a resonance exists in one of the sub-systems.

However, during the present investigations the

phenomenon has been encountered in rotordynamic systems

lacking sub-levels but incorporating flexible supports.

The 'jump' occurs because specific coefficients

in the system transfer matrix tend to zero resulting

in the decoupling of certain system boundary parameters.

The characteristic is directly related to system rigid-

body motions and thus does not appear in shaft

arrangements where such motions do not occur e.g. a

shaft mounted on rigid supports.

The frequencies at which these 'jumps' occur are

not necessarily natural frequencies (Fig. 4.14) and

consequently an effective means of discrimination

must be sought.	 One suggestion [17] is the use of a

different residual in the event of a 'jump', but from

the author's experience there is no guarantee that this

alternative residual will not also 'jump' and
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unfortunately this will not be known until an analysis

has been performed.

A more effective approach might be to monitor the

signs of the coefficients making up the frequency

determinant.	 If a 'jump' is encountered then at least

one coefficient has changed sign.	 To fulfill the

requirements for a natural frequency other coefficient(s)

would also have had to undergo a change in sign. 	 For

example, referring to the case considered in section

4.2 and assuming the coefficient U 12 to have changed

sign (resulting in a residual jump) then for a system

natural frequency to have been passed the polarity of

one or both of the coefficients U 14 and U 32 must have

similarly altered.
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CHAPTER 5

VIBRATION REDUCTION OF FLEXIBLE ROTORS

Because of the extent of the work presented here, a

brief summary of the principle findings is included at the

end of this Chapter.

5.1 Radial Versus Angular Control

In practice, the introduction of control forces to

rotor-dynamic systems should be accomplished with the

minimum of alteration to the machine structure. 	 This

could be best achieved by mounting the controller at the

shaft bearings/supports.	 Unfortunately, in many cases,

this location is very inefficient when employing

conventional control methods.

In an attempt to overcome some of the limitations

which exist when using current control methods, a

different approach to the vibration reduction of flexible

rotors is proposed.

The introduction of a control moment (Angular

Control), to a shaft system, is assessed and compared to

the conventional procedure whereby a Radial Control force

is employed.	 In this Chapter a theoretical investigation

of radial/angular controller performance is presented for

a number of test cases.

5.2 Simple Jeffcott Rotor

The effectiveness of angular control may be examined

first by considering the case of a Jeffcott rotor (Fig.

5.1) mounted on simple supports.	 Viscous damping C 2 is
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included in the model to represent system inherent damping

due to, for example, oil-film bearings.	 Allaire et al

[102] reported the effect of central radial feedback

control on such a system and reached the obvious

conclusion that derivative and proportional feedback could

be employed to attenuate the resonant response and alter

the system critical speed respectively.	 Here, a more

general approach is adopted whereby the effect of location

and type of control can be assessed.	 First, consider the

synchronous response of the shaft due to central

unbalance.

If a control couple M (or control force F) is

located at some position along the shaft as shown in Fig.

5.1, then making use of simple beam deflection formulae

[103], it is possible to define a central control force,

Fel to replace the radial and angular 'forces', F and

respectively.	 Thus, for the radial controller, the

effective force would be:

F	 =F .aer	 C

and for the angular controller:

Fea =

(5.1)

and a 2 are appropriate influence coefficients [103]:

a1 = (3L 2a - 4a3)/L3

48 L2	a2a2	
L3 16	 4

where a is the distance of the control element from

the left-hand bearing and L is the shaft length.

The radial and angular effective central feedback

control 'forces' may be expressed as:
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Fer	 [G3y + G4y] .	 (a)

2	 (5.2)
F	 = [G 1e + G 20J r	 2 (b)

where y and e are the radial and angular

displacements at the controller location and G represents

the relevant controller feedback gain.

For the analysis here, the effective radius of the

angular controller, r, is chosen as O.03L since this value

is approximately that used later, on the laboratory rig.

It is felt to be an acceptable minimum value for most

practical cases and could be increased substantially in

many other instances.

The equation of motion for the system incorporating

radial and angular control at any location is:

mx + C 2x + K2x = F - Fer	 ea	 (5.3)

where	 is the external force due to unbalance

(inec&i2 ), K2 (= 48E1/L 3 ) is the shaft stiffness and C 2 is

the system damping.

Substitution of equations (5.2) in equation (5.3) and

further manipulation (see Appendix B) leads to a

relationship between the non-dimensional unbalance

response (--) and other relevant system parameters, for the

angular and radial control cases.

Because, in general, the controller location does not

correspond to the shaft centre, the resulting equations

(Appendix B) are not as simple as those obtained in Ref.

[102].	 Figs. 5.2 show the influence of radial and

angular derivative control on the shaft non-dimensional

response (--) for various levels of inherent system damping

(C2).
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Figure 5.2a illustrates the effect of angular damping

control with the controller mounted at a support (b = f-)

= 0), whilst in Fig. 5.2b the case of radial control

damping, applied at the shaft centre (b = 0.5), is

considered.	 In both figures the uncontrolled response is

shown for comparison.	 As expected, greater control

damping is required for the angular damper in order to

obtain the same reduction in response as its radial

counterpart.	 For the cases shown, angular damping

requirements are seen to be approximately one hundred

times those of the radial controller.

At first sight these results appear to 'rule-out' the

employment of an angular controller.	 However,

comparisons made with the radial controller mounted at the

shaft mid-span are, in many cases, only of academic

interest since, in many real rotor systems, access to the

shaft at this point would be impossible. 	 In addition to

the question of accessability, consideration of the shaft

mode shapes encountered in real systems may necessitate

the placement of a radial controller at a shaft section

close to the supports.	 Further comparison of the two

damper requirements (again using equations (B.8) and

(B.9)), with the radial damper this time positioned more

realistically at locations b = 0.2 and b = 0.1, shows that

the required angular damping rate is now only

approximately twenty times and eleven times respectively,

that of the radial damper.	 It is important to note that

this requirement is also inversely proportional to the

square of the radius r, so that the angular damping
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requirements reduce substantially when this parameter is

increased.	 Similar conclusions may be drawn for the case

of stiffness control, where the system critical speed can

be shifted by employing proportional feedback control.

Equations (B.8) and (B.9), in Appendix B, were used

to predict the non-dimensional control damping forces

required to reduce the system peak response (i.e. at

U) = cR to a variety of pre-defined levels. 	 These

forces were computed for both control types and a range of

controller locations covering the shaft span and the

results presented in Fig. 5.3.	 Figs. 5.3a and Fig. 5.3b

represent two levels of inherent system damping, C 2 (p2 =

0.05 and 0.1 respectively). 	 The results are shown for a

range of 'controlled magnification factor' values.

Inspection of these figures highlights the increasing

efficiency of the angular controller as its point of

application approaches a shaft support. 	 The trend is

reversed for radial control - best performance being

achieved with control implemented at the shaft mid-span.

With each damper mounted at its respective optimum

location, the force requirement of the angular damper is

approximately eleven times greater than the radial

version, to give the same reduction in displacement at the

rotor centre.	 However, as would be expected, locating

the radial controller at a shaft support or the angular

controller at shaft centre results in the elimination of

effective control.

The system free-vibration response is not easily

assessed by examination of the equations developed in

Appendix B and so another approach is necessary. 	 If the
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shaft deflected form is not appreciably altered by the

introduction of control damping [91], then the following

simple relationships may be used.

Radial Control

For central unbalance the shaft deflected form is

defined [103] by the relationship:

y = (3b - 4b 3 ) x

Substituting for y and cx, in (5.2a) gives:

er = [G 3 + iwG 4 ] . (3b - 4b 3 ) 2 x	 (5.4)

Angular Control

Again from the shaft deflectd form:

= 3 ( 1 - 4b2
L	 ).x

Substituting for e and a2 in (5.2b) and setting R

Fea = [G1 + iG2 ] . R • 9 (1 - 4b2 ) 2 . x (5.5)

Inserting equations (5.4) and (5.5) in the system

equation and taking the Laplace transform, leads to the

system transfer function:

x -	 1

- m (s2 + 2w	 Sp + iii	 + cii	 hi

where

=	 + f2 (3b - 4b3)2 + fl (9R 2 (1 - 4b2)2)]

and h = [hf2 . (3b - 4b3 ) 2 + hf1 . (9R2 (1 - 4b2)2)]

The parameters are as defined in Appendix B. 	 The

damped eigenvalues are obtained by setting the denominator

equal to zero.

Therefore:	 S1,2 =	 Wcr ± IWcr	 + h) - ()2

The damped critical speed is:

	

= w	 /l + h) - (p)2
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and the exponential growth/decay factor is:

=	 cr

The logarithmic decrement is given by:

s

Therefore:	 tS =	 2rr (P)	 (5.6)

+ h) - (p)2

Thus, the relative effects of radial and angular control

can be assessed by substituting specific values for the

system parameters. 	 Equation (5.6) shows how the

inclusion of derivative feedback increases the system

stability, whilst the opposite is true for proportional

feedback.

Considering the case where only damping control is

utilised and the radial controller is mounted at a shaft

position corresponding to b = 0.1 with the angular

controller located at a support (b = 0), then assuming

R = 0.03:

p = p2 + 0.0876 f2 + 0.0081 fl

and if the radial and angular feedback gains are identical

then:

Effective Radial Control Damping = 0.0876 - 10 8
Effective Angular Control Damping	 0.0081

which agrees with the earlier findings.

The analysis presented for the simple Jeffcott rotor

is effective in providing some insight into the relative

merits of each type of control, but lacks many of the

characteristics found in a real flexible rotor system,

e.g. multiple critical speeds, support flexiblity and

damping, etc.
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5.3 Multi-Mode Systems

5.3.1	 Synchronous Response

In the case above, the choice of criterion for

controller performance was simple and obvious - namely to

reduce the central deflection of the rotor.	 However, in

real multi-mass systems, this choice is far more complex

because minimisation of the shaft response at a particular

location will not necessarily lead to minimised response

at other shaft locations. 	 If a comparison is to be made

of the efficiency of radial and angular controllers when

employed on such a system, it is necessary to choose a

suitable Performance Index (P1).	 Two main P1's have been

employed in the past by other workers - shaft maximum

displacement response [91] and sum of squares of shaft

response [92], although no indication has been given of

the relationship between these and other possible P1's.

In the present investigation, three performance

indices are examined:

1) Shaft Maximum Displacement esponse (i.e. the

largest displacement to occur on the shaft).

2) Sum of Squares of Shaft Response (SSSR).

3) Total Bearing Force (arithmetic sum of bearing

forces).

Three shaft systems, as previously investigated by

Dostal [91] and shown in Fig. 4.11, were used in the

analyses.	 These consisted of a uniform shaft of diameter

25.4 mm and length 956 mm, loaded parabolically to allow

excitation of all modes within the selected frequency

range and mounted on:
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a) Pinned Supports.

b) Flexible Supports.

c) Damped Flexible Supports.

The creation of a basis for performance comparison of

radial and angular type actuators requires careful

consideration due to the multivariable nature of the

problem.

The following procedure was adopted here and applied

to each of the three shaft configurations in turn.

1.	 In general for each type of control (radial/angular)

the performance indices are functions of the

controller location a, the damping value C and the

shaft speed £2.	 That is:

P1 = f (a, C, £2)

For both types of controller with C and a fixed, each

performance index was computed as a function of £2,

over a shaft speed range covering the first three

rigid-bearing critical speeds (0 - 3500 rad/sec) and

max computed.	 The objective was to minimise

this value.	 Thus a was held constant and the

minimum value of	 'max' denoted by	 maxmin' was

obtained by varying C.	 This procedure was repeated

for a range of values of a to obtain the lowest value

of	 maxmin' that is
	 'maxmin-min"

Thus, adopting this approach, the optimum controller

location and damping rate for a passive, or fixed-

gain active device can be determined.

2.	 The radial and angular dampers were considered at

their optimum locations and the damping controlled as
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a function of rotor speed such that the system

response was minimised continuously.	 In practice

this would require the use of an adaptive [681

controller.

3. The procedure described in (1) above was repeated

with each controller mounted at the left-hand support

- this representing an ideal practical location for a

controller.	 The effect of support stiffness on

controller performance was examined.

4. The effect of introducing radial/angular stiffness

control at the optimum control locations as

determined in (1) was assessed.

For the purpose of the numerical analysis, the shaft

was modelled as described in Section 4.6.1, nine elastic-

massless elements being employed to ensure the removal of

vibration nodes from the shaft stations within the

specified frequency range.

In the initial stages of the work, a procedure

described by Dostal et al [91] and making use of the

theory of 'fixed-points' [104], was used to determine the

system optimum passive damping value and corresponding

controller location.	 The method entailed:

1)	 Determining the system response at the highest fixed-

point within the operating speed range for each

damper location.

ii) Comparing the response values obtained in (i) for a

range of damper positions.	 The optimum damper

location corresponds to the minimum response value.

iii) Estimating the control damping required to give a
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zero-slope response at the highest fixed-point, with

the damper at its optimum location. 	 The resulting

control damping value is the system optimum damping

rate.

5.3.1.1	 A Note on 'Fixed-Points'

The fundamental theory of fixed-points is

sufficiently described elsewhere [91,104J, but a number of

observations, relevant to the investigations described

here, are felt to be worthy of mention.

In addition to the necessary restraints as described

by Dostal [91], exact fixed-points occur only when the

response at a single rotor section, or some direct

function of this, is considered.	 If any other response

function is chosen, then fixed-points will not occur in an

exact sense but the approach may still be used as an

approximate design tool in some cases.

That approximate 'fixed-points' should occur in the

case of shaft maximum displacement (all other fixed-point

conditions being satisfied) is fairly obvious if it is

assumed that the introduction of control damping does not

significantly alter the shaft deflected form. 	 This is

due to the fact that the receptance relating the shaft

displacement, at the point of maximum displacement, to the

control force, is the same in both the controlled and

uncontrolled shaft states. 	 Thus effectively, within

specific speed ranges, the response at one station only is

being considered.

The shaft sum of squares of response will be directly

related to shaft maximum displacement for relatively low
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damping [91] and hence approximate 'fixed-points' would be

expected to occur in both cases at the same shaft speeds.

It follows that both criteria would be expected to produce

identical optimum control damping values.

Continuing this line of thought, it seems reasonable

that, in an experimental environment, in many cases direct

measurement of shaft maximum response, necessitating

continual repositioning of response measuring probes (or

the employment of a greater number of probes), may be

eliminated through measurement of a reduced SSSR using a

smaller number of fixed-location probes. 	 Of course, care

would have to be taken to ensure that probe locations do

not coincide with shaft nodal points.

The relationship between total bearing force and the

above two performance indices is not so clear and it would

appear that, in general, the control damping required to

minimise the total bearing force may be different, its

magnitude dependent upon the shaft-support dynamic

relationship.	 For instance, consider the case of a

flexible shaft vibrating in one of its free-free modes.

If the bearings are inadvertently placed at, or close to,

shaft nodes, then it is clear that although a large shaft

response may occur, the bearing forces may be very small

or, in the extreme case, even non-existent. 	 Thus it does

appear possible that minimisation of the former two

performance indices will not necessarily lead to

minimisation of the total bearing force.

In shaft cases (Figs. 4.11a and 4.11b) where all

necessary fixed-point conditions are satisfied (except for



109.

the choice of response function), in general, extremely

good 'fixed-points' were found to occur for control

damping levels over a fairly large region ( 0.5C0t < C <

2C0t) in the vicinity of the optimum control damping

values, for all three performance indices. 	 Variations in

the extent of this damping range occur depending on the

exact location of the control damping - the above

representing a minimum range for the cases investigated.

For very low (C - 0) or very high (C - ) control

damping values, certain 'fixed-points' tend to degenerate,

their degree of deterioration being determined by the

location of the controller in relation to the anti-nodes

of the modes to be controlled. 	 Figs. 5.4a and 5.4b

illustrate the effect of control damping magnitude on the

existence of 'fixed-points', with the radial and angular

controllers at their respective optimum locations, for the

pinned-pinned shaft case (Fig. 4.11a).

It is interesting to note that irrespective of the

control damping level, the first 'fixed-point' is always

clearly defined in both control cases.	 The optimum

control damping values for the cases presented in Fig. 5.4

are 4500 Ns/m and 24 Nms for radial and angular control

respectively.	 The influence of control damping magnitude

on the maintenance of fixed_pointsR as displayed in Fig.

5.4 is typical of that observed in the other rotor systems

investigated for both control types and various controller

locations.

However, where the motion of shaft orthogonal planes

is coupled due to, for example, the introduction of oil-
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film bearings (Fig. 4.11c) additional violations of the

'fixed-point' theory [91,1041 lead to further

deterioration of the 'fixed-points', particularly at

higher shaft rotational frequencies.

Although effective, when studying a large number of

combinations of shaft configurations and controller

locations, the 'fixed-point' method was found excessively

time-consuming.	 Additionally, the unsuitability of this

method for determining local optimum (frequency-dependent)

control damping/stiffness values, along with the other

limitations resulting from violations of the 'fixed-

points' theory, necessitated the introduction of a more

suitable optimisation procedure.

5.3.1.2	 Optimisation of Control Parameters

A few optimisation procedures have been developed for

use with rotor-bearing systems [92,94,105]. 	 These

methods, however, make use of the system equations of

motion in explicit form, viz:

.+ç. iL . aQL
With U normally chosen such that g, or some related

function, may be minimised.	 Because the transfer matrix

method was initially used for the dynamic analysis of the

test rotor, the above approach was deemed unsuitable.

The following method, created specifically for this

investigation, is simple but effective. 	 In addition

demands on computer memory are minimal because of the

nature of the optimisation formulation.

In a linear system the response due to mass unbalance

may be assumed harmonic and thus can be expressed in the
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form of rotating vectors:

—i2ti.e.	 t) =Qe

where	 Q =	 +
- - —Tand	 Q[w,v]

where the shaft radial displacements are:

w(t) = Re {et}

(5.7)

= w cos 2t -	 sin 2t—c
- it	 (5.8)

and	 v(t) = Re {ve	 }

=	 cos 2t -	 sin 7t

The controlled response %(t) may be expressed in

terms of the uncontrolled response(t), control force

vector f(t) and system receptarices 	 as follows:

=	 t) - r • f (t)	 (5.9)—c

Radial	 Angular
where	 Control	 Control

1= fl ••	 rl(mx2)	 S S • S S 
rl(mx4)1

I r2l	 I

I .	 I

S	 I

Lmx2)l	 r(mx2)(mx2) S 5 • r(mx2)(mx4)

f (t) = F et	 (5.10)—c	 —c

an	 -	
'	 -C

where the control force vectors 	 and j	 may

be expressed in the same form as the shaft response

vectors (5.8).	 The vector	 will be of maximum order 2m

where m is the number of shaft stations.	 However, the

number of external control forces, n, will generally be

much less than this.	 The maximum size of the receptance

matrix r is (mx2). (mx4), assuming that only the shaft
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radial response will be required. The actual size of?

will be determined by the number of stations at which the

shaft response is to be computed, 1,and the actual number

of control forces n and is therefore (1 x n).	 Normally

either radial or angular control will be employed

resulting in elimination of one half of the system

receptance matrix r.

Substituting equations (5.7) and (5.10) in (5.9)

gives:

=Q -rF	 (5.11)

and IC = (
5.12)

where Z is the control dynamic stiffness matrix and 2ce is

the controlled response at the controller locations e.

Substituting (5.12) in (5.11) and considering the

response at controller locations,

-2ce = IL +	
-
1 -Que

is a unity matrix.	 Substituting this equation

back into (5.11) we obtain:

-	 LAQue	 (5.13)

where	 A	 Z . [I + r . ZJ	 (5.14)

The subscript e refers to conditions at the points of

location of the external control forces.

Therefore, with the system uncontrolled response and

relevant receptance known, Z may be chosen so that the

control response Qu, or some related parameter, is

minimised.	 The relevant data is obtained through a two-

stage transfer-matrix analysis.	 In the first stage the

shaft uncontrolled response, due to a pre-defined

unbalance distribution, is determined. 	 Next, the system
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response to a unit harmonic force of frequency equal to

shaft speed and located at the controller positions is

obtained, thus providing the shaft dynamic influence

coefficients, or receptances.	 A computer program was

created incorporating equations (5.13) and (5.14) in a

sub-routine called by Nag library routine EO4JAF which is

designed to perform a numerical multivariable optitnisation.

A flow chart illustrating the main structure of the

optimisation procedure is presented in Fig. 5.12.

Although not considered here, the method could just

as easily be employed to determine the necessary external

support-stiffness magnitudes required to ensure sufficient

removal of system undamped critical-speeds from shaft

operating speeds.	 This would be extremely useful in the

many practical cases where system damping is small.	 In

such circumstances, the difference between damped and

undamped critical speeds will be negligible.	 In fact,

even if significant system damping is present, the above

procedure may still be useful as the first stage of a more

comprehensive optimisation strategy.

The optimisation method described has the following

advantages:

1.	 Repetitive shaft analyses are avoided since the

system characteristics (receptances and uncontrolled

responses) are obtained initially using a two-stage

procedure.	 This effectively ensures that the

optimisation program run-time is independent of that

of the main analysis program.

2.	 High computational efficiency due to minimal computer

storage demands since:
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a) Initial rotor analysis is performed using the

well known transfer-matrix technique.

b) Only the relevant system receptances are

utilised, thus eliminating the need for storage

of redundant data. 	 In most cases, control

inputs are restricted to one or two shaft

locations.	 For a rotor system with coupling at

the supports employing a single controller, at

most 2 m components of receptance and

uncontrolled response are required (at each

shaft frequency).

3.	 As well as allowing for prediction of optimum control

parameters and minimised performance indices, the

technique enables the computation of system response

for any linearly defined control force arrangement.

Minimised shaft maximum response and sum of squares

of response were obtained using equation (5.13).

Although the minimised total bearing force could also be

obtained using this approach the method would fail when

rigid bearings were present. 	 A more suitable procedure

is to make use of equations (5.13) and (5.14), replacing

the shaft response terms with bearing forces keeping in

mind that the new 'receptances' have units of (N/N).	 The

analysis is then identical to that described earlier.

When employing the optimisation technique to

determine optimum adaptive control parameters, in certain

instances within particular frequency ranges (mainly

around the 'fixed-points'), the chosen performance index

was found to be insensitive to the magnitude of the
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selected control parameters.	 This phenomenon poses few

practical problems, however, since it merely indicates the

lack of benefit in applying control at that location under

such circumstances. 	 To enable assessment of the

reliability of the optimisation search routine, the

control parameters were given three separate starting

values, each within the specified operating range.

Continual convergence of the minimised P1 and optimum

control parameters to within a specified tolerance band

indicated a successful optimisation analysis.

The accuracy of the method was confirmed by

performing a number of analyses on the three shaft

arrangements (Fig. 4.11) and comparing the results to

those obtained using the 'fixed-point' approach.

Excellent agreement was achieved.

5.3.1.3	 Results of the Controller Comparison

The results of a number of computer runs using the

above approach are presented here.

The investigation highlighted the necessity for a

suitable choice of shaft speed increment in the computer

program, particularly in the region of those shaft

critical speeds insensitive to the controller influence.

Failure to take account of this could have led to gross

errors in the predicted optimised damping constant and

minimised performance index, although in some cases, where

only relative comparisons are required, the effect may be

less critical.

As a result of the relatively high support stiffness

and damping rates the shaft system described in Fig. 4.11c
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was found to behave in a very similar fashion to the

pinned-pinned shaft arrangement (Fig. 4.11a).

Consequently, in general, conclusions drawn for the latter

case are also applicable to the former. 	 Because of this,

the following discussions will be directed mainly at the

first two shaft systems (Figs. 4.11a and 4.11b) -

reference being made to the third system where

appropriate.

In all cases examined, performance indices 1 and 2

(shaft maximum displacement and sum of squares of

displacement) were found to produce the same optimum

damping values and optimum controller locations, whilst

this was generally not true when total bearing force was

considered.	 These findings confirm the views expressed

in Section 5.3.1.1.

5.3.1.3.1	 Optimum Control Location

Figures 5.5a and 5.5b show the effect of controller

location on the minimised performance indices for the

shaft systems with rigid and flexible-undamped supports

respectively and for both controller types.	 Because of

the nature of the shaft excitation, the magnitudes of the

minimised P1's are not symmetrical about the shaft centre,

but their relative positions are, thus allowing the

following general conclusions to be drawn:

1.	 For radial control and all rotor configurations, the

minimum value of each P1 is realised when the

controller is mounted at the stations adjacent to the

supports (stations 2 and 9). 	 However, it should be

noted that when support flexibility is present,

minimisation of the total bearing force could be
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achieved almost to the same extent, by mounting the

radial controller at one of the supports.

2. For angular control, the optimum controller location,

for minimisation of shaft maximum displacement and

sum of squares of response, is at the supports for

large support stiffness and moves inward when

flexible supports are introduced.

3. The optimum location for angular control when

minimising total bearing force is, in general,

different to that required to minimise the other

P1's, the ideal application occurring between the

supports and shaft centre.	 The optimum location for

angular control would appear to be more sensitive to

the value of shaft support stiffness than that

resulting from radial control.

5.3.1.3.2	 Optimum Control Damping and Corresponding

Minimised PIs

Figure 5.6 shows the variation of minimised

performance indices with control damping for the shaft

employing rigid supports.	 The radial and angular

controllers are considered mounted at their respective

optimum locations (i.e. for minimisation of maximum

deflection/sum of squares of shaft response).

Examination of this figure and similar data for the other

shaft cases leads to the following additional conclusions:

1. In general, values of the minimised P1's resulting

from radial control are found to be lower than those

achieved using angular control.

2. Minimisation of shaft maximum response and sum of

squares of shaft response could be simultaneously
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achieved using one optimum damping constant.

However, employment of this optimum damping rate will

not necessarily lead to minimisation of the total

bearing force.	 For instance, considering angular

damping control at station 1 for the shaft on pinned-

supports, Figs. 5.7 demonstrate the effect on the

shaft maximum displacement of minimising the bearing-

force and vice-versa.	 It is seen that by choosing

the control damping to minimise the bearing force,

the minimum possible value of shaft maximum

displacement would be increased by approximately 55%

- this increase occurring at the first critical.

However, if the shaft maximum displacement was

minimised, the optimum bearing force would be

inceased by only 25% at the top end of the frequency

range.	 Thus, it is seen that the selection of an

appropriate system performance index requires careful

consideration and in practice would depend, mainly,

upon the relative importance of a variety of system

response functions (e.g. shaft displacement, bearing

force etc.).

Table 5.1 provides a quantitative comparison of the

minimised responses	 maxmin-min which may be obtained

by utilising optimally designed, passive and

radial/angular dampers. 	 The corresponding optimum

damping rates are also shown. 	 The parameters are

presented more meaningfully when non-dimensionalised with

reference to radial controller performance. 	 To enable

direct comparison the effective radius r of the angular
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controller is set, as before, to 0.03L and the equivalent

linear damping coefficient calculated.

Table 5.].	 Radial/Angular Control Optimisation Comparison

Amplitude =	 maxmin-min - Angular Control

Ratio	 maxmin-min - Radial Control

Damping = Optimum Angular Damping Rate/r 2 •	
= 0 03Ratio	 Optimum Radial Damping Rate	 ' L

Shaft on Rigid	 Shaft on Flex
Supports (Fig. 4.11a)	 Supports (Fig. 4.11b)

Amp Damp	 Damp Loc	 Amp Damp	 Damp Loc
P1	 Ratio Ratio Rad Ang Ratio Ratio Rad Ang

Shaft
Max	 1.7	 6.5	 St.2 St.].	 2.5	 15.8	 St.2 St.2

De fn

Total
Brg	 3.5	 3.0	 St.2 St.l	 2.6	 15.8	 St.2 St.2

Force

The results shown in Table 5.1 indicate the possible

benefits of radial control, particularly when substantial

support flexibility is present. 	 However, before a

realistic comparison of both control methods (Radial!

Angular) can be made, a number of very important

considerations must be borne in mind:

1.	 The control capability of the angular device is

inversely proportional to the square of the radius r.

Thus, considering the pinned-pinned shaft, if the

controller radius r is doubled (and this would not be

excessive in a large number of cases) then radial and

angular optimum damping requirements would be of the

same order of magnitude. 	 Although the radially-

minimised performance indices would be smaller than
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those resulting from angular control, the angular

damper would still be capable of significantly

attenuating the rotor system response.

2.	 The above comparison is made with each controller

placed at its optimum location.	 Practical

considerations may preclude the siting of a radial

controller at its optimum location (on the shaft

span) and thus invalidate the results of the

simulation.	 The shaft supports present the ideal

location for controller mounting from both an access

and structural point of view.	 In fact, the

implementation of angular control at each support is

conceivable in many practical installations, whilst

the possibility of including an additional radial

controller on the shaft span would probably be remote

at best.

Because of this and in order to allow a more

realistic comparison, the performance of the radial

and angular controllers is later assessed with both

considered mounted at one of the shaft supports.

3.	 It has been assumed so far that:

a) No additional hardware advantages are obtained

by introducing control in an angular fashion.

b) That the choice of actuator type, e.g.

hydraulic, pneumatic, electromagnetic etc., will

not affect the relative performance of radial

and angular controllers.

Both of these points are of significance and are

discussed in greater detail in Chapter 6.
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5.3.1.3.3	 Controller Power

Proper assessment of controller performance demands

not only evalution of vibration attenuation

characteristics but, in addition, consideration of

resulting controller energy dissipation rates (power

levels)

In Fig. 5.8, radial and angular controller power

requirements are illustrated for two shaft support

stiffness values, with the controllers mounted at their

respective optimum locations (i.e. for minimisation of

shaft maximum deflection/sum of squares of response) and

optimum passive damping levels employed.

It is seen that, in general, because of the greater

shaft response both controllers dissipate higher energy

rates when flexible supports are introduced.	 Exceptions

occur in specific frequency ranges (angular control: 1200-

1800 rad/sec; radial control: 3100-3500 rad/sec), where

the controllers are in close proximity to shaft vibration

nodes.

Of particular interest is the fact that each

controller type has superiority over the other, in terms

of power consumption, within specific speed ranges.

Indeed instances occur (Figs. 5.4 and 5.8, 1800-2400

rad/sec) where even though radial control provides best

response attenuation, correspondingly greater controller

power levels are demanded.

5.3.1.3.4	 Controllers Mounted at LH Shaft Supports

With both types of controller mounted at the shaft

left-hand support, intuition suggests that at high
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support-stiffness values, the radial controller will

become ineffective whilst the angular controller may still

give some measure of control.	 At relatively low

stiffness values, this trend would be expected to reverse.

Consequently, at some intermediate support stiffness, the

two should perform equally well.	 Fig. 5.9 demonstrates

the influence of shaft support stiffness on the

performance of radial and angular passive dampers.

Results are presented for shaft speeds encompassing the

range 0-3500 rad/sec. 	 The minimised system response

maxmin-min and corresponding optimum damping rates

are shown for the three performance indices.

The stiffness ratio, defined as the ratio of support

stiffness to shaft stiffness, at which both controllers

give the same ininimised response will be termed the

'critical stiffness ratio' (CSR).

The CSR, as expected, is the same for maximum

deflection and sum of squares of displacements criteria,

but different in the case where total bearing force is

miniinised.	 In calculating the stiffness ratio, the

representative shaft stiffness	 is determined for the

case where the shaft is subjected to a central

concentrated force (K = 48E1/L 3 = 2.36 x 10 N/rn).

From Fig. 5.9a, the CSR is estimated as approximately

15 and 33 for maximum displacement and total bearing force

respectively.	 Thus, the choice of control damping type,

when employed at the supports in a passive sense, would

depend not only on the operating stiffness ratio, but also

on the performance index adopted.
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At a stiffness ratio of just less than 10, the

angular damper is seen to become relatively ineffective.

This is due to the introduction of a shaft mode where

practically zero-slope occurs at the shaft ends.

The optimum damping rate for angular control is seen

to be insensitive to the stiffness ratio (Fig. 5.9b),

whereas the radial damping rate decreases significantly at

low stiffness ratios.

According to Dostal et al [91] many present-day real

rotor systems employ bearings with a stiffness of the

order 21.6 x i.o 6 N/m.	 If this support stiffness was used

here, the resultant operative stiffness ratio would be

approximately 90, indicating the possible practical

advantages of angular control in such a system.

It is worth noting that reduction of the maximum

shaft speed, to a value enclosing the first two rigid-

bearing criticals, would result in an extension of the

stiffness ratio range over which the angular controller

would be superior. 	 This is because the radial controller

efficiency is mainly determined by the system reponse at

the first critical speed - a region where, by comparison,

the angular controller is extremely effective.

Consequently, under such circumstances the CSR would

be decreased significantly, thus validating the benefits

of angular control for a greater range of shaft-support

configurations.

5.3.1.3.5	 Adaptive Damping Control

The effect of introducing control damping as a

function of shaft speed (adaptive control), in order to
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minimise system response, is illustrated in Fig. 5.10,

where relevant shaft passively-controlled response is

presented for comparison.	 The response plots of Fig.

5.l0a demonstrate the effect of locating the controllers

at their respective optimum positions, whilst those of

Figs. 5.lOb-e are for the controllers mounted at the shaft

left-hand support.	 In the cases where control damping

was optimised continuously, the maximum and minimum

control damping values were chosen as the appropriate

optimum passive damping rate and zero respectively.

Some interesting conclusions may be drawn from these

investigations.

When the shaft supports exhibit high stiffness (shaft

configurations corresponding to Figs. 4.11a and 4.11c) and

dampers are located at their optimum positions (Fig.

5.lOa) although the radial damper is seen to be more

effective than its angular counterpart, especially at the

first critical speed, the difference in performance is not

excessive and, in fact, over a large proportion of the

speed range, both perform equally well. 	 Because these

two shaft systems were found to respond in the same

manner, with slight differences at high shaft speeds, only

the response of the 'pinned-pinned t shaft is shown.

When the supports contain substantial flexibility

(Fig. 5.lOa) angular control is observed to be much less

effective than radial control, over an extensive central

portion of the speed range. 	 As in the high support

stiffness case, speed zones exist where both means of

control result in the same response, although in this
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instance, the zones are more dispersed and represent a

smaller portion of the complete speed range.	 Response

attenuation at the first critical speed is almost

identical for both means of control.

For the shaft arrangements investigated here, it was

found that the employment of adaptive control resulted in

the required control damping essentially switching between

the pre-defined maximum and minimum values.	 Fig. 5.lOc

demonstrates this effect and is typical of the form of

control damping required for the systems analysed. 	 It is

clear that the system response may be continuously

minimised (Fig. 5.lOb) through the introduction of an 'on-

off' control strategy (Fig. 5.lOc), controller switching

occurring around the system 'fixed-points'. 	 These

results are in agreement with those of Burrows et al [69]

though different optimisation procedures were employed.

It is worth noting that in the cases shown and in general,

the 'angular fixed-points' do not occur at the same

frequencies as the 'radial fixed-points'.

The influence of radial and angular adaptive damping

control on the shaft response, with both controllers

incorporated at the shaft left-hand support, is shown in

Fig. 5.lOe.	 Two levels of shaft support stiffness ( Kb =

2.13 x io2 N/m and 5.0 x io 6 N/m, i.e. stiffness ratios of

approximately 9 and 21 respectively) are considered. At

the top half of the speed range, the superiority of radial

control is evident whilst at the lower speeds, this trend

is reversed with substantial benefits resulting from the

employment of angular damping.	 As the support stiffness
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is decreased, the effective range of the radial controller

is extended in direct contrast to that of the angular

controller.	 However, even with a relatively low support

stiffness, the angular approach is seen to offer a

distinct advantage over at least the lower 20% of the

shaft operating speed (i.e. the speed range covering the

shaft first bending critical speed).

For the support stiffness values considered, there

appears to be little advantage in employing the angular

controller as an adaptive device, since its passive

performance is almost as effective (Figs. 5.lod and

5.lOe).	 This is also true for the radial damper when a

large support stiffness is present. 	 Referring to Figs.

5.lOd and 5.lOe, it is clear that there exist definite

speed ranges where radial control provides best system

performance, whilst in other speed ranges angular control

is to be preferred.	 Consequently, under such

circumstances, some advantage may result from the

introduction of a unified control strategy whereby the

control mode (radial/angular) could be chosen according to

the shaft speed and implemented in either a passive or

adaptive form.

5.3.1.3.6	 Stiffness Control

The application of external spring-like elements to a

rotor-bearing arrangement leads to displacement of the

system critical speeds.	 The effect of introducing radial

and angular passive stiffness control to the pinned-pinned

shaft case of Fig. 4.11a, at the previously determined

optimum locations, is illustrated in Figs. 5.11a and
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5.11b.	 The shaft response for three control stiffness

magnitudes is shown.	 Due to the increase in shaft

effective stiffness, the critical speeds are augmented -

the extent of modification being dependent upon the level

of stiffness control employed and the effectiveness of

external control on the particular whirling mode under

consideration.

The introduction of a passive stiffness element may

lead to significant shaft response attenuation even in

cases where system damping is small. 	 For example, cases

occur in practice where a shaft operating speed

inadvertently coincides with, or occurs close to, a system

critical speed.	 Even a small displacement of the

critical speed in such a case may result in a large

reduction of the vibration response. 	 Of course it would

still be necessary to ensure safe passage of the shaft

through other critical speeds which might be encountered

during run-up to the design speed.

This latter problem may be minimised or even

satisfactorily removed by implementing an adaptive

stiffness control strategy.	 Referring to Fig. 5.11b, it

is observed that by suitable application of a simple 'on-

off' type control procedure, the shaft response may be

considerably reduced over the complete speed range. 	 This

may be achieved by employing maximum control stiffness at

low shaft speeds up to a speed just above the first

uncontrolled critical speed where the control is then

'switched-off'.	 At another point below the next

uncontrolled critical speed, maximum control is once more
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introduced and maintained until the unstiffened second

critical speed has been passed whereby control is again

eliminated.	 With this trend extended over the complete

speed range, the shaft critical speeds are effectively

avoided and a comparatively low response level achieved

even in the absence of system damping.	 However, at least

a small amount of damping is desirable if only to ensure

elimination of the possibility of rotor instability which

may occur in various forms [42,109].

5.3.1.3.7	 Damping-Stiffness Control

A natural extension to the control procedures

described earlier would be the introduction of a combined

damping/stiffness control approach.

Kaya et al [94] studied the effect of applying such a

technique, in a radial sense, to the shaft arrangement

shown in Fig. 4.11a.	 Optimum frequency-dependent control

damping and stiffness rates were determined and it was

found that for an inherently undamped system, the

resulting optimum control force tended to be predominantly

either in phase or 180° out of phase with the excitation

forces (i.e. stiffness control). 	 The introduction of

some system damping altered this situation and led to the

requirement of an optimum control force in the form of

combined stiffness and damping.	 It was observed that the

minimisation of system response may be best achieved, in

certain instances, when the control stiffness/damping

parameters are allowed to take on negative values. 	 In

such circumstances, the rotor-bearing minimised response

would approach the Limiting Performance Characteristic
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[105,110] for the arrangement.

Of course, practical realisation of such a concept

would necessitate the employment of an active control

strategy - a passive device being unable to supply the

required negative stiffness and damping coefficients.

However, application of the above procedure, in the form

of active feedback control, would require great care since

the presence of negative system coefficients may lead to

system destabilisation.	 This fact was recognised by

Burrows et al [92] who suggested the implementation of an

open-loop adaptive control strategy employing a radial

magnetic bearing as the force actuator. 	 Simultaneous

control and system parameter identification could be

realised by the injection of an additional multifrequency

test signal and application of frequency domain estimation

techniques [62].

The procedures described above, although not

considered further, may also be adopted where angular

control is employed and so the conclusions formed above

would be, in general, equally applicable.

5.3.2	 System Stability

A number of potential causes of rotor instability

exist in much of the high-speed machinery in operation

today.	 The presence of any of the following elements -

oil-film bearings, shaft internal friction, asymmetric

rotor support configurations or aerodynamic excitation

forces, may lead to destabilisation.

Of the above, probably the most common cause of rotor
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instability is that resulting from the employment of

journal bearings.	 When the shaft rotational frequency

reaches a particular value, determined by the bearing

parameters and other operating conditions, the system

damping becomes negative and the shaft whirls at a

frequency of around half the rotational frequency.

It has been shown [43,87] how the introduction of

even a small amount of external damping in such a system

can lead to a significant increase in the instability

onset speed.	 The effectiveness of employing angular

damping for system stabilisation will be assessed here by

considering its application to the rotor system analysed

by Burrows et al [92] and shown in Fig. 5.13.	 The shaft

arrangement consists of a symmetrical flexible rotor

carrying three rigid discs and supported on oil-film

bearings.

Journal bearing parameters are presented in Fig. 5.13

and the eight linearised bearing coefficients are

calculated from equations developed by Holmes [23].

System stability is assessed by examining the real part of

the speed-dependent eigenvalues which are calculated using

a numerical program based on the stiffness coefficient

method [101].

The imaginary parts of the eigenvalues plotted

against shaft speed, for the uncontrolled case, are shown

in Fig. 5.l4a. Those modes exhibiting relatively small

variation in frequency with shaft speed and shown dashed

in Figs. 5.14a, c and d, are predominantly shaft bending

modes, whilst the others are representative of shaft
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rigid-body motion. 	 The characteristic splitting of the

modes is due to the asymmetric nature of the bearing oil-

film.	 The degree of system stability is indicated by the

magnitude and sense of the logarithmic decrement which is

shown at selected points. 	 The appearance of a change in

sign of the logarithmic decrement for the first shaft

bending mode indicates the occurrence of instability at a

shaft speed of 361 rad/sec.	 The shaft precession rate,

137.5 rad/sec, at this speed, is less than half of the

rotational frequency in line with the observations of

other workers [46,108].

The application of external damping as a means of

suppressing the rotor instability is investigated by

considering first the incorporation of a radial damper,

then that of an angular damper at the left-hand bearing.

For the purpose of comparison, the radial and angular

damping levels, required to increase the instability onset

speed by more than a factor of two, to 800 rad/sec, are

computed and compared.	 Fig. 5.14b illustrates the

variation of the real part of the relevant eigenvalue with

radial and angular control damping levels for a shaft

speed of 800 rad/sec.	 The radial and angular control

damping rates required to stabilise the system are found

to be 5700 Ns/m and 10.5 Nms respectively.

Setting the angular damper radius to shaft length

ratio, (r/L), equal to 0.03, as before, allows direct

comparison of the required damping rates. 	 The equivalent

linear damping coefficient for the angular controller

(3700 Ns/m) is approximately 65% of that demanded from the
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radial device.	 Of course, as noted earlier, increasing

the (r/L) ratio would lead to a substantial decrease in

the required angular damping coefficient. For instance,

doubling this ratio leads to a radial damping requirement

of more than six times that for the angular controller.

Figs. 5.14c and 5.l4d show the effect, on the system

damped natural frequencies, of introducing radial and

angular damping values of 5700 Ns/m and 10.5 Nms

respectively.	 Stable operation of the shaft-bearing

arrangement, within the desired speed range, is indicated

by the complete removal of negative logarithmic

decrements.

It is interesting to note that in the case of radial

control (Fig. 5.14c), at almost all speeds and shaft

flexural modes illustrated, the effect of additional

damping, whilst leading to elimination of the oil-whirl

instability, leads to a substantial reduction in system

damping.	 This is in direct contrast to the angular

damping effect, where in general, a significant increase

in modal damping is observed (Fig. 5.14d). 	 For example,

referring to Figs. 5.l4c and 5.14d and considering the

shaft third flexural mode at a speed of 450 rad/sec, the

logarithmic decrements corresponding to radial and angular

control are approximately 0.065 and 0.236 respectively.

Synchronous excitation of these modes due to mass

unbalance would thus lead to greater attenuation of system

response in the case of angular control.	 Examination of

damping levels at other modes indicates even more

substantial benefits from angular control.
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The application of external damping (radial and

angular) is seen to greatly influence the two 'rigid-body'

modes, i.e. those modes running almost parallel with the

synchronous forcing line shown in Fig. 5.l4a. 	 Although

angular damping substantially increases the damped natural

frequencies corresponding to the above modes, the lower

mode is actually eliminated at a shaft speed equal to 275

rad/sec, when radial control is employed. 	 However, even

with the system in the uncontrolled state, these modes are

extremely well damped and therefore should pose no

problems regarding the presence of unbalance response

peaks (i.e. if they are excited - Figs. 5.14a and 5.14c).

The shaft flexural-modal frequencies are influenced

to a lesser extent by the implementation of external

control.	 Although external angular damping produces

substantial splitting of the modes, the critical speeds

resulting from synchronous excitations are barely altered.

This is not the case when radial damping is employed.

Reference to Figs. 5.14a and 5.14c shows an increase of

approximately 6% in the first three critical speeds when

radial control is introduced.

5.3.3	 Chapter Summary

From the results of the analyses performed in this

Chapter, the following main conclusions can be drawn:

1.	 An efficient optimisation procedure has been

developed and utilised to determine optimum control

locations and damping rates.

2a) Radial control is most effective when introduced at a
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location on the shaft span between the supports.

b) Angular control is highly efficient when introduced

at a shaft support when the support stiffness is

fairly high.	 If support stiffness is low, then

better performance can be achieved when the angular

controller is located on the shaft span between the

supports.

3.	 Angular control is a viable means of synchronous

vibration reduction and instability suppression in

flexible rotor systems. 	 Optimum passive radial and

angular damping rates are of the same order of

magnitude when a reasonable controller radius is

selected.

4. The choice of performance index can greatly influence

the optimum control force magnitude and location.

5. Effective control, angular or radial, may be

implemented at all shaft speeds by the incorporation

of an adaptive 'on-off' control approach.

It is clear from the investigations performed and

discussed in this Chapter that both radial and angular

control have their merits in differing circumstances and

that the choice of control method would greatly depend

upon the particular system being considered. 	 In fact, it

may even be possible to combine both means of control to

create an efficient 'unified control strategy'.
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CHAPTER 6

EXPERIMENTAL EQUIPMENT

A brief summary of the main aspects of the work

covered here is presented at the end of this Chapter.

6.1 Test Rotor

6.2 Rig Requirements

When designing the test-rotor, taking into account

the type of investigations to be performed, the following

were considered as essential features:

1. Shaft maximum operating speed greater than the first

critical speed.

This is a fundamental requirement for the simulation

of a flexible rotor system.

2. The test arrangement should exhibit characteristics

which may exist in a full-scale, practical system.

In much modern-day high-speed machinery, the effect

of gyroscopic moments and support-flexibility, mass

and damping may play a major role in influencing the

system dynamic response.

3. Easily adjustable system characteristics.

System mass/stiffness/damping parameters should be

amenable to alteration to enable investigation of the

influence of these variables on the overall system

characteristics.

4. Provision for accurate system response measurement

and the introduction of external control forces.

Access to a number of shaft locations for the purpose
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of response measurement and control can be a major

difficulty where substantial alteration of the test

configuration must be allowed for. 	 In such

circumstances the acceptance of a compromise solution

is normally necessary.

To ensure fulfilment of the above requirements, the

test rotor was designed as follows.

6.3 Rig Design

The main test rig consisted of a 1290 nun long, 15 mm

diameter, uniform carbon-steel shaft mounted on double-

row, self-aligning ball-bearings with bearing centres of

1050 nun.	 A variety of shaft configurations, some

employing intermediate discs and different levels of

bearing-support stiffness, were investigated throughout

the test program. The rotor design was such that in the

majority of test cases, the shaft maximum operating speed

( 3000 rpm) was approximately two times the system first

critical speed.	 The general layout of the test rotor,

including the drive-system, is shown in Fig. 6.la.

In some instances, discs of varying mass/inertia were

rigidly mounted on the shaft between the bearings.	 The

purpose of the discs was generally two-fold:

a) to enable the application of unbalance masses, 	 and

b) to allow the introduction of gyroscopic/rotary

inertia effects.

Investigation of the influence of electromagnetic

control necessitated the employment of a special 100 nun

diameter, low-loss, silicon-steel disc mounted on the
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shaft adjacent to the drive-end bearing (Fig. 6.lb). 	 All

discs were such that they could easily be axially re-

positioned on the shaft if necessary.

A 0.75 kW, direct-current, variable-speed motor was

employed to drive the test-shaft. 	 Using a timing-belt,

pulley-drive arrangement, the test-shaft, driven through a

stub-shaft assembly, could be run at a speed approximately

3.5 times that of the drive-motor. 	 The introduction of a

flexible pin-cord type coupling, between the stub-shaft

and test-shaft, helped ensure the elimination of

vibrations transmitted from the drive.

The complete system was supported on cast-iron blocks

which were in turn rigidly attached to a large steel table

having substantial mass.

The test-shaft was located axially at the drive-end

bearing and allowed to move freely at the non-drive end to

avoid axial stressing of the shaft (Fig. 6.2).

The bearing support structure (Figs. 6.3 and 6.4) was

designed such that flexibility in the horizontal and

vertical planes could be easily altered by introducing a

range of thin steel-rings of fixed diameter and varying

thickness.	 The rings could be pre-loaded as required by

the adjustment of four screws within each pedestal. 	 In

addition, the rings were effectively utilised as proving-

rings, through the application of electrical resistance

strain-gauges, thus allowing measurement of the

transmitted bearing force.	 Because of the fairly

extensive use of strain-gauges in the construction of a

variety of force transducers employed during the test
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program, details of the construction of the components

utilised are provided in Appendix C. 	 Replacement of the

bearing rings with solid steel cylinders enabled the

simulation of rigid supports.

Simulation of support sub-level characteristics could

be accomplished by the introduction of flexible mountings

at the bearing pedestal.	 This was achieved using helical

springs mounted in parallel with two high-precision linear

ball-bearings (Fig. 6.3).

Non-contact eddy-current displacement probes were

employed to measure the shaft response at various

locations as specified in Chapter 7.

The test-shaft speed was monitored using a Sodenco

magnetic pick-up which produced an output in the form of a

series of pulses. 	 The occurrence of each pulse resulted

from the passing of a shaft protrusion. This signal was

relayed to a Racal universal counter timer which provided

a digital display of rotational frequency within the range

o - 1.2 Mc/s.	 The shaft speed signal was simultaneously

stored on an FM recorder.

During all rotating-shaft tests the shaft orbit, at

appropriate locations, was displayed on a dual-beam

monitor by suitably combining the displacement signals in

the shaft horizontal and vertical planes. 	 The orbit data

could be stored on a digital oscilloscope and passed to a

suitable x-y plotter to provide 'hard-copy' information.

As in other tests, the measured response data was

initially stored on magnetic tape using a 7-channel FM

recorder. The recorder incorporated low-frequency filters
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which could be employed to remove any DC bias present in

the response signals.

6.3.1	 Component Calibrations

A series of calibration tests ws performed to allow

determination of the dynamic characteristics of a number

of test rig components.	 This was thought necessary to

ensure accurate system modelling.

The stiffness characteristics of the bearing rings

(20 mm OD, 0.5 mm thick) and bearing pedestal springs were

determined from static deflection measurements using

linear regression analysis.	 Representative results are

presented in Fig. 6.5.	 Some variation in the stiffness

of similar components is observed. 	 When mounted on the

test-rig these spring elements were arranged so as to

minimise the difference in flexibility characteristics of

the two bearing-support structures. The measured ring and

spring mean stiffness values were 140 N/mm and 143 N/mm

respectively.	 The resulting effective support

stiffnesses, for each test configuration, are specified in

Chapter 7.	 One bearing ring in each plane, at each

support, was fitted with strain-gauges (Appendix C) and

calibrated in a similar manner. 	 The strain-gauge signals

were augmented using a high-quality DC amplifier, thus

ensuring a large signal to noise ratio. 	 With bridge

input volts set at 2.25 V and amplifier gain of 2 V/mV,

the resulting overall calibration factor was approximately

1 volt/Newton.

In order to assess the level of damping present and
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to determine the natural frequencies, the bearing housing

and bearing pedestal assemblies were each, in turn, tested

dynamically.	 This entailed the employment of an

electromagnetic vibrator (described in the next section)

which was used to excite the above systems sinusoidally

over a large frequency range.	 To ensure repeatability,

in both calibrations and test situations, the pedestal

springs and bearing rings were pre-loaded before each

test, to appropriate pre-defined levels. 	 The bearing-

pedestal (Fig. 6.3) measured natural frequency was found

to be approximately 2½% lower than the calculated value of

5660 cyc/min.	 The inherent damping was found to be

extremely small as observed from the transient reponse

shown in Fig. 6.6.	 Dynamic testing of the bearing-ring

assembly produced some unexpected results. 	 Figure 6.7

represents a system receptance plot and indicates the

presence of a number of closely-grouped resonances, the

major one occurring around 123 Hz.

Analysis and presentation of the test data in

receptarice form enables accurate determination of natural

frequencies and damping levels for vibration modes which

may be closely spaced [112], an advantage not realised

when using some other methods [112].	 Kennedy and Pancu

[113] showed how for a single-degree-of-freedom system

with hysteretic damping, the receptance versus frequency

plot on an Argand diagram is a circle.	 Structural or

material damping can be represented mathematically in a

variety of forms [114], most common of which is the

assumption of a restoring force 1800 out of phase with the
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velocity and with magnitude proportional to the system

stiffness.	 Thus, for a single-degree-of-freedom system

the combined stiffness-damping force is defined as a

complex stiffness K = K (1 + ig). 	 The term g is a

proportionality constant dependent upon the specific

material properties.	 Based on this approach for a

single-degree-of-freedom, the receptance can be

expressed as:

-	 i'a =

where

1	 CL)

11 = ___________ 8

K ,[N1 - 8 2 ) 2 + g2]	
=-c

and	 = tan	 [-g/(l - 82)1

At the natural frequency, w =
	

and 8	 1, so that

= 1/Kg

Thus, measurement of the relevant receptance circle

diameter [112] will provide details of the system

structural damping.	 Material damping is normally very

small and the assumption of viscous damping under such

circumstances leads to an almost circular receptance plot.

The equivalent (frequency dependent) viscous damping

coefficient is given by C = Kg/w.	 From the plot shown in

Fig. 6.7 g is estimated as 0.0076 and the equivalent

viscous damping rate at the natural frequency is

calculated as 3.4 Ns/m.	 These figures indicate the low

level of structural damping available.

The emergence of numerous resonance peaks is thought

to be mainly due to the inability of the shaker

arrangement to excite only the housing translational mode
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of vibration.	 The calculated system natural frequency of

110.7 Hz is substantially lower than the measured

predominant value since for estimation purposes, only the

rings in the direct line of motion of the housing were

considered.	 As a result, for modelling purposes, an

effective bearing-ring stiffness of 350 N/mm was computed

from the measured frequency. 	 A typical response plot

resulting from a transient test on an individual bearing-

ring is presented in Fig. 6.8 where again the lack of

internal damping is self-evident.

The above test results clearly show the bearing-

support structural damping to be extremely small so that

for modelling purposes these elements could be safely

considered as pure springs.

The eddy-current proximity probes were calibrated on

a sample section of the test shaft.	 The gap versus

output voltage data was recorded using a Vernier/clock

gauge arrangement and digital voltmeter. 	 Four of the

eight probes were calibrated and a nominal sensitivity of

266 mV/THOU obtained (Fig. 6.9). The probes had a linear

range of 1.5 mm (0.060 ins) and linearity of ± 1% over the

frequency range 0 - 20 kHz.

6.4 Vibrator Arrangement

Throughout the experimental work, a number of shaker-

tests were performed on a variety of rig components.

Figure 6.10 shows a schematic diagram of the equipment,

including instrumentation, used for such tests.

The force was produced by a Goodman's electromagnetic
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vibrator.	 A sinusoidal signal of variable frequency

supplied by a function generator was augmented, using a

power amplifier, before being fed to the electromagnetic

shaker.

System response was measured, in general, using non-

contact displacement probes.

The force, where possible, was measured using a

Piezo-electric force transducer with overall nominal

sensitivity of 10 mV/N.	 A charge amplifier, transforming

transducer electrostatic charges into proportional output

voltages, was required for use with the Piezo-electric

transducer.	 However, during the early stages of the

work, this type of device was not available and it was

necessary to construct an axial force transducer.	 The

conflicting requirements of high-rigidity and high

sensitivity led to the employment of semi-conductor strain

gauges having a gauge factor of approximately 140.	 Such

components are fairly sensitive to temperature effects.

However, this influence was minimised by proper

utilisation of a four-arm Wheatstone bridge arrangement

(Appendix C, Section C.l.2). 	 Signal (low-frequency)

drift was eliminated by introducing a high-pass filter

with lower cut-off frequency of approximately 5 Hz.

A DC strain gauge amplifier was employed to boost the

force signal.	 Calibration of the constructed transducer

was effected by physically connecting, in series, a Piezo-

electric transducer, introducing an axial dynamic force

and measuring the transfer function: strain gauge

transducer output voltage/Piezo-electric transducer output

voltage, using a real-time frequency analyser. 	 Knowing
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accurately the calibration factor for the Piezo-electric

device enabled that for the new transducer to be

determined (Fig. 6.11).	 Repeatability checks at normal

ambient air temperatures (200 ± 10°C) confirmed the

transducer's relative insensitivity to temperature effects

within this temperature range.	 Connection of the strain

gauges in a specific manner (Appendix C) ensured the

elimination of the influence of bending moments resulting

from inevitable small misalignments, an advantage not

available when using a Piezo-electric type transducer.

With an amplifier gain setting of 2.28 V/mV and bridge

input-volts set at 2.25 V1 the nominal overall calibration

factor was measured as 51 mV/Newton.

Throughout the tests a digital oscilloscope was used

to observe the system response and input force signals to

ensure the elimination of any unexpected peculiarities.

All relevant signals were recorded on a 7-channel FM

tape recorder for later analysis on a digital computer.

6.5 Mechanical Dampers

A number of commercially available 'Kinetrol' rotary

vane-type, viscous dashpots were employed to enable the

introduction of external radial damping at various shaft

locations.

Initially, adjustable PTFE pads were utilised to

provide the necessary low-friction contact between the

damper arms and shaft as suggested by other workers [91].

However, severe problems, including excessive pad wear and

the emergence of large vibration components having
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frequencies corresponding to integer multiples of shaft

running speed, resulted in the use of a modified damper

arrangement.

Fig. 6.12 shows the re-designed set-up where a shaft-

mounted, self-aligning ball-bearing is located within a

nylon housing which is free to slide, in one direction

only, within the damper-arm assembly. 	 With this

arrangement, shaft external frictional forces were

minimised and the need for decoupling of the control

damping in the two planes could be practically achieved.

The modified damper assembly performed very well as

long as certain setting-up procedures were adhered to

(Section 7.5.2).

An attempt to introduce damping to the rotor, in an

angular fashion, using the configuration shown in Fig.

6.13, was largely unsuccessful for much the same reasons

as for the original radial damper design. After a number

of attempts to overcome the problems, it was decided that

mechanical application of angular damping to the test-

rotor posed so many problems that extensive rig

alterations would be necessary if this approach were to be

followed through.	 Since a large portion of experimental

work would be concerned with the performance of a

contactiess angular electromagnetic controller, mechanical

angular damping was considered no further.

6.5.1	 Damper Calibrations

The radial mechanical dampers were calibrated '1fl

situ', i.e. mounted on the test-shaft, by exciting the
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shaft using an electromagnetic shaker arrangement as

described in Section 6.4 and by measuring the resulting

system response at a number of locations. 	 By determining

the undamped/damped test rotor characteristics, the

device's dynamic parameters could be estimated.

The calibration procedure adopted was based on the

utilisatlon of system dynamic influence coefficients and

is described in Appendix D.

Many unexpected problems were experienced during the

calibrations.	 For instance, in an effort to reproduce

test conditions, the dampers were set-up as described in

Section 7.5.2.	 However, this resulted in the (necessary)

presence of a small clearance in the damper slider

mechanism leading to some deterioration of the harmonic

response waveform.	 This was overcome, to some extent, by

locking the damper slider arrangement. 	 The results,

although probably not wholly representative of a rotating

shaft situation, were at least repeatable (for a fixed

input force level) and the waveform distortion had been

eliminated.	 The damper was found to be capable of

exerting a greater influence on the system response using

the latter approach, as would be expected.

Further investigations were performed to assess the

linearity of the Kinetrol dampers.	 Fig. 6.14 shows the

measured system receptances for three levels of input

force, with the damping rate set at maximum. 	 The extent

of the non-linearity is indicated by the degree of

disparity of the response plots.	 It is clear that the

choice of force level will have a marked effect on the
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calibration results.	 Consequently, in an effort to

obtain more meaningful data in all subsequent damper

calibration tests, the force level was chosen so as to

provide a system response of the same order as that

measured during the rotating shaft tests.

During calibrations the damper arm length was set at

110 nun, this corresponding to the setting used throughout

the rotational tests.

The measured damping rates (Fig. 6.15) are shown to

reduce drastically with increasing frequency, thus

rendering the dampers ineffective at the higher shaft

speeds.

6.6 Electromagnetic Actuator

6.6.1	 Design and Construction

The size of the magnets employed was determined

mainly by test-rig access limitations and the availability

of suitable laminations.	 The angular controller

consisted of a set of four small, 'u-shaped', silicon-

steel, laminated electromagnets rigidly mounted on a high-

reluctance Tufnol support stand (Fig. 6.16) to minimise

flux leakage effects.

The laminations used for the magnet cores were

obtained by modifying commercially available 'E-type'

laminations.	 With the lamination size fixed (Fig. 6.18),

the magnet coil, mounted on one limb, was designed to

allow for maximisation of the number of turns. 	 Effective

utilisatiori of the available space resulted in a

compromise between the number of coil turns and coil size
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(current-rating).	 The final coil design was based on 200

turns of 22 SWG enamelled copper wire giving a total

resistance of approximately 0.9g.

A number of parameters need to be considered in the

design of electromagents viz; force requirements, flux

density limitations and heat dissipation rate. 	 All of

these variables are of course greatly affected by the

choice of air-gap.

Based on a maximum coil-current of 2 amps, the

magnets were designed to produce corresponding

electromagnetic forces in the range 7.5 - 93 Newtons for

gap and flux density ranges of 0.035 - 0.010 ins (0.89 -

0.25 mm) and 0.28 - 0.98 TESLA respectively.	 This design

resulted in the attainment of reasonable magnet force

levels, whilst ensuring minimisation of magnetic

saturation (for silicon steels BSAT	 l.0 -1.2 TESLA).

For the above conditions, the computed coil maximum heat

2
dissipation rating is approximately 0.2 W/cm , which is

half the recommended maximum allowable value [106] for

intermittent but frequent use.	 The magnet cores were

placed equi-distant from the shaft centre-line and mounted

at 90 degrees to each other with their pole-faces extended

in a direction parallel to the shaft axis (Figs. 6.lb and

6.17).	 The magnetic circuit is completed when the flux

is linked axially from both limbs of each magnet to a

shaft-mounted disc.	 Thus, the introduction of an axial

magnetic force offset from the shaft axis produces a

control moment at the disc.

When an alternating magnetic flux field is set-up in
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an electrical conductor, eddy-currents are created

resulting in energy loss in the form of heat.	 The power

dissipated due to such losses is proportional to the

square of the frequency of the alternating field and thus

can be significant at high frequencies.	 The introduction

of laminated cores helps to minimise this effect. 	 In the

conventional arrangement [87] where the magnetic flux

follows a radial path, the rotor component of the magnetic

actuator may be constructed in a laminated form without

much trouble.	 HOwever, when the flux path is orientated

as in this case, lamination of the magnet rotor component

is much more difficult.	 To overcome this problem, it was

decided that a solid disc having special magnetic

properties, would be utilised for transmission of the

magnetic forces from the magnets to the shaft. A high-

resistivity, silicon steel, shaft mounted disc was thus

employed to minimise eddy-current and hysteresis effects.

This arrangement eliminated the need for costly and time-

consuming manufacturing processes and in fact, was later

found to function extremely well even at fairly high

frequencies (100 Hz).

Because electromagnets can pull but not push, the

magnets were controlled in diametrally-opposing pairs.

Each magnet-pair is controlled indi•vidually according to

the measured shaft-slope signal in that plane.

Arrangement of the control actuator in the form of two

sub-systems, one in each orthogonal plane, is in line with

the princples of decentralised control as described by

Schweitzer [89].	 Such an approach simplified the control
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strategy considerably. The control forces in the shaft

horizontal and vertical planes are practically uncoupled

and at any instant in time a maximum of one electromagnet

per plane is operational. In addition to the above, the

introduction of such a magnet configuration eliminates the

need for extra measures which would be required to remove

the inherent flux-leakage/linkage problems [87].

Levelling of the magnet pole-faces, a factor critical

to the operation of the actuator, was achieved through the

use of a surface-grinder.	 The magnets were rigidly fixed

to the support stand and then all machined to the same

height.

6.6.2	 Control Hardware

In formulating a suitable control procedure to allow

investigation of the influence of angular control, great

emphasis was placed on simplicity.

In this early stage of development of the angular

electromagnetic controller, no hardware linearisation

techniques were employed.	 The effectiveness of a pre-

magnetising current as a control-current linearising tool

has been described elsewhere [84].	 However, using this

approach, a static instability will be introduced (Section

6.6.3) unless counter measures are taken. 	 Additionally,

the force producing capacity of the electromagnet may be

reduced significantly due to the current-sharing of the

windings, thus confirming the desirability of some other

means of current linearisation.

The electromagnetic force is also a non-linear
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function of the air-gap which alters according to the

specific system response.

In radial systems this variation in gap may be

significant and may necessitate the introduction of some

counter-measures [87].	 When employing an angular

controller, however, the location of the device may be

chosen (see Section 6.6.4.1) so that during normal shaft

running the air-gap is sensibly constant.

Shaft-slope is sensed in each plane by suitably

summing two shaft displacement signals, obtained using

non-contact eddy-current type probes (Fig. 6.19a).

Each resulting slope signal was introduced to an

analogue circuit designed to create a signal phase lag in

the range 9Q0 - 180 0 , thus providing as output, a combined

proportional-derivative feedback signal.	 The magnitude

of the feedback signals could be altered by varying the

gains of the operational amplifiers.	 These gains were

controllable through utilisation of an outer digital

control loop employing a micro-computer (Fig. 6.l9a).

Controller damping and stiffness could thus be adjusted

manually by keyboard input or automatically through

software control. 	 The hardware employed is illustrated

in Fig. 6.19b.

Each magnet-coil was served by a 30 Watt DC power

amplifier, necessary for boosting the control current to

an acceptable level.

Considering any two electromagnets in the same plane

(Figs. 6.17 and 6.l9a) by appropriate signal

rectification, the positive part of the feedback signal
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may be used for one and the negative part for the other

magnet, this ensures that only one magnet per plane is

operational at any one time.

Current feedback was employed to minimise the effect

of variation of electromagnet impedance with frequency,

thus effectively ensuring a fixed coil-current for a given

shaft displacement amplitude irrespective of signal

frequency.

6.6.3	 System Control

For simplicity, consider the application of the above

angular control system to the single-degree-of-freedom

system represented in Fig. 6.20.	 0 is the centre of

rotation of the system. 	 The system may be represented,

in general, by the following differential equation:

19 + C58 +	 = Me - Mf	 (6.1)

where	 I, C and	 are the system inertial, damping

and stiffness properties

Me is an external excitation moment

Mf is the resultant feedback control moment

and	 Mf = CF9 + (5 - 5) 9
5 is the magnet 'negative-stiffness' due to the

presence of a DC pre-magnetising current

CF and KF are the effective feedback damping and

stiffness coefficients and for the sake of this analysis

are assumed constant.

Let:	 CF = CN ± CL

and	 5 =KN±KL
where CN and KN are the nominal damping and stiffness

feedback coefficients to be selected by appropriate choice
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of op-amp gains (Section 6.6.2).	 These would represent

the resultant system damping and stiffness coefficients if

the control circuit components did not introduce

undesirable phase lags to the feedback response.

In real systems this is not possible and response

lags occur.	 The coefficients CL and KL represent this

effect, their signs being determined by the degree of lag

rcLl
present.	 The phase lag 11 = ARCTAN I-i.L	 [ELi

Substituting the above in equation (6.1) and

considering the system to vibrate freely, Me = 0 and

+ (Cs + CN ± CL)8 + (Ks +	 ± KL - 5)0 = 0

or	 I8 +C8 +K80

where	 C=CS+CN±CL

and	 K = K + EN ± EL - 5	 (6.2)
The signs and relative magnitudes of the coefficients C

and K in equation (6.2) will clearly determine the system

stability state.

A number of interesting cases can be considered.

In the calibrations which follow (Section 6.6.63), in

all cases 0 < I LL < 900 and thus in the following cases,

where applicable, the signs of CL and KL will be set

accordingly.

1.	 Shaft with no internal damping (Cs = 0) subjected to

magnetic damping control (CN y 0)

Consider the magnet without pre-magnetisation:

(5 = 0)
KN	 0	 and CL is -yE ; KL is +VE

Therefore from equation (6.2):
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C CN - CL and K = K5 + KL

Thus no system instability will occur provided

CN>CL.

In addition, the introduction of magnetic damping is

seen to increase the system effective stiffness.

2.	 Shaft with no internal damping (Cs = 0) subjected to

magnetic stiffness control (KN	 0)

Consider the magnet without pre-magnetisation:

(5 = 0)
CN = 0	 and again CL is -yE ; KL is +VE

Prom equation (6.2):

C	 CL ; K = K5 + KN + KL

This time a dynamic instability is introduced due to

the negative damping term.	 Again the system

stiffness is increased.	 For such a system if CL is

small, then the introduction of a small amount of

magnetic damping would remove the above problem.

It is obvious that the effect of the component phase

lag 'L could be counteracted using some form of lead

compensation.	 In addition, it is clear that the use of a

pre-magnetising current, although useful in linearising

the force-current relationship, will always have a

destabilising influence and thus some of the proportional

feedback may have to be utilised just to eliminate this

effect.

The above two cases were considered because of their

relevance to the experimental work described in Chapter 7.

The special case of magnetic levitation may be

considered by setting C5 = K = 0 and considering lead
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compensation to be present, CL = KL = 0.

Therefore from equation (6.2):

CCN and K=KNKp

Thus, if KN < 5 the system is statically unstable -
a well known fact.

Although the above analysis is presented for a simple

single-degree-of-freedom system, the conclusions reached

are also applicable in principle to multi-degree-of-

freedom systems.

6.6.4	 Electromagnet Theory

Consider the flux field between an active

electromanget and the shaft disc with the disc in its mean

position (Fig. 6.21). 	 Ignoring flux fringing and

leakage, the flux path would be as shown.

For a magnetic circuit, the line integral of the

magnetic field strength H taken around any complete line

is equal to the current enclosed [107], thus:

f Hdl = i: I = N.j.	 (6.3)

where N is the number of coil turns and i is the coil

current.

Since the relative permeability, 1tr' of the magnet

lamination material is much greater than the permeability

of free space,	 it is safe to assume that the magnetic-

circuit reluctance can be approximated as that of the air-

gap.

The electromagnetic attraction force F may be

determined by considering a small change in the air-gap, G

and equating the work done in displacing the magnet to the
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change in air-gap magnetic energy [84].

Following this approach it can be shown that:

2 .2
j.i	 AN	 1

8G
(6.4)

where A is the magnet pole face area. 	 For the magnet

design employed here:

N = 200

A = 2 x 8 x 16 x io-6 2

so that	 F = 1.609 (j/G) 2	(6.5)

with the gap G in millimetres and current I in amps.

6.6.4.1	 Electromagnets in Angular Form

Because of the inherently simple physical arrangement

of the electromagnets in the case of angular control, the

possibility exists for simple adjustment of the air-gap to

improve, for instance, performance inadequacies created at

the design stage. In addition, the magnet air-gap could,

conceivably, be introduced as an additional variable

within an adaptive control strategy.	 Such a procedure

could not easily be employed for a radial controller due

to the intrinsic geometrical limitations. 	 Further, when

applying radial control to a flexible shaft system, the

trend has been to locate the device at a point on the

shaft span where a large uncontrolled response (i.e. an

anti-node) exists.	 This highlights an additional

advantage when using angular control.	 To illustrate the

point, consider again the Jeffcott-rotor considered in

Chapter 5 (Fig. 5.1).	 Consider the electromagnet air-gap

G, to be selected proportional (proportionality constant -

d) to the uncontrolled response 	 at that location.
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This seems reasonable since some clearance must be allowed

to exist in the event of controller failure.

Then G =

Referring to equation (6.4) the magnetic force F may

be estimated from:

.2
F = k. (i/G)2 =	

• ( i.

d	
2

where k is a constant dependent mainly on the magnet

geometry.

With the subscripts r and a referring to radial

control at the shaft centre and angular control at a

support respectively, then the ratio of force production

capacities for the controllers would be:

Fa	 (g)2-
F'	

()2	
(•)2

(qr) 2 -
and for a shaft central unbalance, 	 123.5.

(a) 2 -

Thus,

.2
F	 (i)a______

2
r	 (i r

Therefore, even though the system demands greater

control force levels from the angular device it is evident

that with equal control currents, in theory, greater

forces may be obtained from this controller because of the

smaller gap.	 However, an increased magnet core area

would be required to cope with the greater flux and thus a

better alternative would be to employ a larger gap with a

subsequent benefit in linearisation of the device.
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Alternatively, a smaller current may be applied with a

consequent reduction in control power consumption.

6.6.5	 Controller Modelling and Calculation of the

Effective Linear Electromagnetic Coefficients

Due to the nature of the techniques employed for

simulation of test rotor performance (Chapter 4) a linear

model of the electromagnetic controller is required.

Since the magnet pairs in orthogonal planes are

controlled individually according to their respective

slope feedback signals, a maximum of four control

coefficients are considered to be present at any instant

in time.	 The possibility of coupling between orthogonal

planes is minimised as a result of the size and location

of the individual magnets. 	 When the dynamic axial

displacement of the shaft-mounted silicon-steel disc is

very small in comparison to the air-gap (Chapter 7) the

assumption of constant gap is a reasonable one so that any

coupling effect should be negligible.	 If the control

current i is a linear function of the shaft-slope feedback

signals and 8 then the control moments M and M are, in

general:

My = K ()2 + C	 (c)2

and	 M = K8 (8)2 + C0 (8)2

The linearised damping and stiffness coefficients CL

and KL may be obtained by equating the terms:

f My . dt (fM . Odt) and I	 (fM . Odt)
respectively, for the linear and non-linear cases.

i.e. ElM . dt1	 = [fM . dt] nonijnear to obtainY	 linear



159.

CL	 and

[f M . dt]ii ear = [fM . dt] nOn_linear to obtain

KL	 and similarly for	 CLe and KLO.

In the following analysis, only the plane containing

slope	 is considered since the results may be applied

directly to the other plane.

If the integral terms are considered as positive

quantities, then the following convention may be used.
A

Let	 = c Sjfl (wt + P).
A

Therefore:	 = w4 cos (wt + P) = • cos (wt + P)

The phase angle P may be expressed as:

P=Pc+PL	 (6.6)

where I represents the phase angle of the control moment

relative to the shaft negative slope velocity signal (—cv)

and is selected according to the type of control employed,

i.e. stiffness = 90 0) or damping = 0). The phase

angle L represents the undesirable phase-lag component of

the magnet and control-circuit transfer function and is

measured experimentally using the calibration rig

described in Section 6.6.6.1.

The control moment M is assumed to be of the

following form:

for	 -- < wt <-i- ; M = M cos 2 wt
y

and for	 -— < wt	 M = -M cos 2 wt

When damping control is utilised, M = CNL •
A2Whilst for stiffness control, M = KNL .1

If the control hardware introduces negligible

unwanted time delay	 0), then:
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for damping control

fM.dt=0	 (i.e.KL=O)

and for stiffness control	 (6.7)

JM . dt = 0	 (i.e. CL = O)

In general,

w

2w	 • 'dt =	 M cos 2 Wt • ' cos (Wt + p) dwt
°

(6.8)
3ir

-	 M coS 2 wt • cos (wt + p) dwt-i 1w	 iT

and

iT

2
2w	 • 'dt	 - I	 M cos2 wt • '1 sin (wt + p) dwt
°

(6.9)
3w
2

-1	 2	 A
M cos wt •	 sin (ut + p) dwt

2

Upon integration, the above equations yield the

following:

2w	 . dt =	 cos p	 (6.10)

and	 2w	 . dt =	 sin p	 (6.11)

respectively.

Now, considering an equivalent linear system and

employing damping and stiffness control respectively.

Then:

2w	
. dt = L	 2w 2 cos 2 wt • dwt =
	

CL (6.12)

and
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2TTJM .dt=	
2A2	 2	 __

y	 u	 0	
sin wt . dwt =	 Krj (6.13)

Now equating (6.10) to (6.12) and (6.11) to (6.13)

gives:

CL	 —fcos p

and	 K	 ----- sin pL	 3ir$

(6.14)

(6.15)

Thus the effective linearised stiffness and damping

coefficients, KL and CL, to be used in the simulations may

be determined by utilising the magnet calibration data and

the experimentally measured shaft-slope response ( and )

at the controller, at each shaft speed.

6.6.6	 Electromagnetic Controller Calibration

6.6.6.1	 Calibration Rig

A specially designed and constructed calibration rig

was employed (Fig. 6.22) to obtain the dynamic

characteristics of the electromagnetic actuator.	 The rig

enabled the measurement of electromagnetic bending moment

by utilising semi-conductor strain-gauges in a 'four-arm'

bridge arrangement (Appendix C, Section C.1.3).	 An

output voltage proportional to bending moment was

obtained.	 The transducer was calibrated using the same

techniques as those discussed in Section 6.4, where

calibration of the axial force transducer is described.

Fig. 6.23 shows the frequency response of the device.

With the strain gauge amplifier gain set at 5 V/mV (bridge

input volts = 3 V), the overall transducer-amp sensitivity

was 7.24 V/Nm in the range of 10 - 40 Hz (magnet radius =

44.5 mm).	 The transducer sensitivity is seen to increase
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substantially above 40 Hz due to a system resonance around

167 Hz.	 This effect was taken into account in subsequent

magnet calibrations.

6.6.6.2	 Calibration Procedure

Throughout the electromagnet calibrations the

following parameters were varied in turn to allow

investigation of their influence on the controller

per formance.

1.	 Control feedback gain and control type (i.e. damping

and/or stiffness).

2. Magnet air-gap.

3. Control signal frequency.

4. Amplitude of simulated shaft-slope signal.

The calibrations entailed the use of a function

generator to provide a sinusoidal voltage (V) at input to

the control circuitry.	 This s,as used to simulate the

shaft-slope feedback signal.	 During each test the air-

gap was held constant.	 Measurement of the magnet control

current was made possible by monitoring the voltage drop

across a small (0.l2) resistance placed in series with the

coil.

A number of tests, covering the frequency range 0 to

100 Hz, were performed.	 Throughout these tests three

signals were recorded:

a) Electromagnet control moment

b) Magnet control current (i(t))

C)	 Simulated shaft-slope volts (V(t)) (input to control

circuits)

This data was recorded on magnetic tape and later
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processed on digital computer providing signal amplitude

and phase information for subsequent estimation of the

electromagnetic damping and stiffness parameters.

The input voltage V(t) is related to the simulated

shaft-slope (t) through the relationship:

V(t) = k .	 (t)
	

(6.16)

where k is the effective gain of the shaft displacement

transducer arrangement, relating shaft-slope at the

controller to voltage input to the control circuitry and

was found to be a real constant over the test frequency

range (0 to 100 Hz).	 Using equation (6.16) (t) could be

calculated from the measured V(t) values.

The electromagnet/control-circuit was considered as a

'black-box' and for pre-determined operational amplifier

gain and control-type (stiffness or damping) settings, its

characteristics were determined by measuring the overall

system transfer function. Having obtained the moment

amplitude M, phase 
m (relative to input volts V(t)) and

the slope signal V(t), application of equations (6.6),

(6.14), (6.15), (6.16) and (6.17) enabled computation of

the magnetic stiffness and damping coefficients.

During the calibrations, it was observed particularly

at the higher frequencies, that unwanted time delays were

introduced (Section 6.6.6.3) to the control moment signal

as a result of control-circuit/magnet component phase-lags

0).	 This had the effect of creating an additional

stiffening moment when damping control was employed and

vice-versa.

The phase angle 
L was calculated from the measured
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as follows:

for damping control	 = p - 90m	 (6.17)
for stiffness control	

= ImI - 180
Throughout the tests L' although fairly small, was

found to be in the first quadrant (Section 6.6.6.3) i.e.

0

Considering this effect in equations (6.14) and

(6.15) for damping and stiffness control in turn, we

obtain:

For damping control	 = 00)

0 < CL

8M
0 < Kj	 <---

For stiffness control 	 = 90°)

< C	 < 0

8M
0 < KL <-..1

Thus, positive control stiffness is always maintained

but negative damping may occur (Section 6.6.6.3).

Because of the nature of the procedures employed

during rotating shaft tests (Chapter 7), the linearised

control coefficients estimated using the methods described

here required further modification in accordance with the

techniques described in Appendix E.

6.6.6.3	 Magnet/Control-Circuit Calibration Results

At various stages during the calibrations, a number

of the signals recorded were monitored using a real-time

frequency analyser. The signals were observed to be
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practically harmonic, as expected, except for the

electromagnet bending moment signal which although

periodic, displayed a number of harmonics illustrating the

non-linearity of the devices.

Following the procedures described in Sections 6.6.5

and 6.6.6.2, the linearised electromagnetic damping and

stiffness coefficients were determined for a range of

control signal amplitudes and frequencies. 	 Some	 typical

results obtained from the calibration are presented in

Fig. 6.24.	 The graphs show the magnetic damping

coefficients to be a linear function of control signal

frequency and amplitude, whilst the stiffness coefficients

are dependent only on the latter parameter.	 The

characteristics validate the magnet force-current square-

law relationship (equations (6.14) and (6.15)).	 Thus for

damping and stiffness control respectively, the

coefficients are expected to be of the form:

CL = bc

= bK V
A

where V is the shaft slope control signal amplitude and

b, bK are constants dependent upon the circuit gain

settings.

To aid in computation of the coefficients, for use in

later system simulation, linear regression analysis was

performed through utilisation of the least-squares method.

Examination of the calibration data presented in Fig. 6.14

shows that in general the straight-lines fitted to the

data, if projected, do not pass through the graph origin.

Thus, the magnet coefficients may be more accurately
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predicted using the following relationships:
A

CL = a + b wV Nms/rad
A	 (6.18)

KL = aK + bK V Nms/rad

where w is the signal frequency (Hz).

The coefficients a and b in equations (6.18) were

computed using a least-squares approach and are shown in

Table 6.1 for a range of calibration settings. 	 The

corresponding correlation coefficient R is also presented.

This parameter gives an indication of the reliability of

the above relationships in their representation of the

control hardware characteristics. 	 A value of R in the

range 0.8 to 1.0 would provide confirmation of the

validity of these expressions [116]. 	 Analysis of the

calibration results showed that the data could be best

represented by considering two separate frequency ranges

as shown.

The angular damping and stiffness coefficients which

may be predicted using equations (6.18) nd the

information supplied in Table 6.1, are based on a mean

electromagnet radius of 44.5 mm. 	 This was also the

radius setting employed in the rotating/vibrating shaft

tests described later.
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Table 6.1

Micro-
Computer Magnet
Digital Air-Gap Freq

	

Control	 Gain	 mm	 Range Coeff Coeff
Type	 Setting	 (THOU)	 (Hz)	 a	 b	 R

	

Damping	 70	 0.9 (35) 0<w<40 0.3912	 0.0415 0.986
U	 40<w<80 0.2623	 0.0387 0.884

•	 90	 0<w<40 0.8784	 0.1067 0.987
•	 N	 40<w<80 0.5937	 0.1015 0.921

110	 •	 0<w<40 1.0378	 0.1739 0.99
U	 U	 U	 40<w<80 0.8186	 0.1582 0.95

	Stiffness	 100	 U	 0<w<40 66.95	 145.13	 0.996
U	 u	 U	 40<w<80 37.68	 166.93	 0.874

U	 110	 •	 0<w<40 71.3	 159.0	 0.995
•	 U	 40<o<80 21.2	 211.0	 0.876

	Damping	 70	 1.1 (43) 0<u<30 0.2938	 0.0285 0.986
•	 U	 30<w<50 0.2213	 0.0281 0.998

U	 90	 •	 0<w<30 0.5669	 0.0777 0.997
U	 U	 N	 30<w<50 0.4822	 0.076 0.982

•	 110	 Q<w(30 0.7519	 0.1245 0.997
•	 U	

U	 30<w<50 0.5613	 0.1239 0.981

The above information was stored on computer and used

in conjunction with data obtained from shaft controlled

response measurements to enable computer simulation of the

test conditions (Chapter 7).

As far as is known, the principle of angular control

has never been considered elsewhere.	 As a result,

researchers will have little 'feel' for the units of

angular damping and stiffness.	 Expression of the angular

coefficients in a more conventional form is therefore

desirable.	 In the test and calibration environments,

bending moments are imposed upon the system by introducing
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forces parallel with, but offset from, the principle

bending axes of a shaft-mounted disc. 	 Thus, the angular

coefficients CL and KL may be replaced by axial

coefficients C	 and K	 acting at a mean radius r. 	 If

the shaft motion is small, then the axial and angular

coefficients are related as follows:

2
CLA = CL/E

2
K = KL/r

and in particular substituting the value of r used in

these investigations (r = 0.0445 in) we obtain:

C = 505 CL Ns/m

= 505	 N/rn

The maximum attainable electromagnetic stiffness and

damping coefficient values were determined by power

amplifier DC supply current limitations. 	 The current

limit was set slightly above 2 amps. 	 Under these

circumstances and for the cases considered, the maximum

attainable magnet coefficients in the 0 to 100 Hz

frequency range were found to be as follows:

CL (max)	 12.6 Nms/rad (C	 (max)	 6360 Ns/m)

(Fig. 6.24c)

(max)	 800 Nm/rad (K	 (max)	 4 x 10 N/rn)

(Fig. 6.24e)

It is seen that the electromagnets, though small in

overall size, are capable of introducing reasonable

magnitudes of control damping and stiffness, even in the

presence of a relatively large air-gap.

Typical plots of the control hardware frequency-

response are presented in Fig. 6.25.	 The measured
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bending moment phase angle, relative to the shaft-slope

signal, is denoted by p 1 whilst that of the magnet current

is represented by p 2 .	 Figs. 6.25a and 6.25b illustrate

the effect on these phase angles of utilising damping

control and stiffness control respectively.

For each control case at low signal frequencies,

undesirable component phase-lags are negligible and the

bending moment signal is of a pure damping and pure

stiffness form respectively. 	 However, as the frequency

is increased, such unwanted phenomena are introduced.

For example, when damping control is employed, the system

phase-shift is approximately 108° and 124° 	 = 18° and

34°) at 50 Hz and 100 Hz respectively, thus effectively

leading to the presence of a stiffness control effect.

It is seen that approximately half of the overall unwanted

lag, L' is due to the main control circuitry and the

other half due to the magnet coil arrangement. 	 When

stiffness control is introduced, 
L is less than that

which results when damping control is employed. 	 This

improvement is observed to occur mainly in the analogue

control section of the hardware, i.e. phase p2 has

decreased significantly. 	 This indicates the presence of

an additional phase component in the circuitry used to

perform signal differentiation, i.e. when damping control

is utilised.

In the majority of test cases, described in Chapter

7, the operational range of the electromagnetic controller

was limited to 0 to 3000 rpm (0 to 50 Hz). 	 In these

circumstances, the maximum undesirable control system
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phase-shifts, L' would be approximately 18° and 9° for

damping and stiffness control respectively.	 These values

are small but system performance could be improved if

necessary by introducing some form of lead compensation.

In Fig. 6.26 the measured and predicted electromagnet

bending moments are compared for a range of control

currents and three air-gap settings.	 The theoretical

curves were plotted using equation (6.5). 	 Although some

discrepancy between theoretical and experimental results

is evident, examination of the experimental data confirms

the validity of the form of the magnet force-current-gap

relationships presented in Section 6.6.4. 	 The maximum

bending moment which can be produced without current

overloading and with an air-gap setting of 0.9 mm (0.035

ins) is approximately 0.45 Nm. 	 This corresponds to a

magnet force of 10.1 Newtons. 	 The electromagnet measured

force capability is, surprisingly, greater than that

predicted from theory.	 This may be due, to some extent,

to fringing at the magnet pole-faces leading to an

increase in the effective pole-face area.

The calibration data obtained in this section is

sufficient to enable the creation of a suitable model for

the electromagnetic controller for use in later rotor

simulations as described in Chapter 7.

6.7 Instrumentation

Because of the wide variety of tests performed

throughout the experimental investigation, relevant

details of the instrumentation employed are provided in
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the appropriate sections throughout this chapter and

Chapter 7.	 In many of the tests conducted, the HP 3582A

Spectrum Analyser was found to be extremely useful in

providing instant information regarding the signal

frequency content.

6.8 Data Analysis Equipment

Analysis of the data stored on tape was performed

using an FFT algorithm available on the MINC 23 digital

computer.	 The analogue data was processed using the

computer's A/D converters which had an input voltage range

of -5 V to +5 V providing a resolution of 2.44 mV.

The software was designed such that the signal

employed for phase reference purposes (shaft speed signal

in rotating-shaft tests and excitation force signal in

vibrating-shaft tests) was used to trigger the A/D

conversion process.	 The shaft rotational (vibrational)

frequency was computed by averaging the measured period of

vibration over a suitable number of cycles (normally 10

cycles unless significant speed fluctuations were

suspected).	 Other shaft response data, e.g. shaft

displacement, bearing forces etc. was analysed, employing

time averaging techniques to enhance the signal-to-noise

ratio, using 128 samples per period where possible.

However, at frequencies greater than approximately 35 Hz,

sampling-rate limitations necessitated the use of 64

samples/period.	 These sampling rates were more than

adequate for accurate signal digitisation. 	 Before

processing test data, proper functioning of the algorithm

was verified by analysing a sinusoidal waveform, of known



172.

amplitude and frequency, produced using a function

generator.

6.9 Chapter Summary

The work described in detail in this chapter may be

briefly summarised as follows:

1. A laboratory rig comprising a high-speed shaft

mounted on rolling-element bearings was designed and

constructed.	 The rig was designed such that

investigation of system response, on a number of test

configurations, could be easily achieved.

2. A number of displacement/force transducers, employing

electrical resistance strain gauges, were constructed

and tested and found to perform satisfactorily.

3. Vibration testing of the bearing flexible-support

assembly showed the material inherent damping to be

negligible.

4. Calibration of the Kinetrol mechanical dashpots

presented many problems due to the device's inherent

non-linear characteristics. 	 In addition, severe

deterioration in damper performance was observed as

the excitation frequency was increased.

5. A simple, small and robust angular electromagnetic

actuator was constructed and, along with the

associated control hardware, calibrated using a

specially constructed rig.	 Damping and stiffness

coefficients were obtained and the following

observations made:

a)	 Damping and stiffness forces were always
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evident, irrespective of the type of control

demanded, due to the introduction of undesirable

control signal time lags. 	 Although in certain

circumstances this effect could result in system

instability problems, these could easily be

eliminated by slightly increasing the control

damping rate.

b) The measured damping and stiffness coefficients

were found to be in accordance with a magnet-

moment/current/gap relationship of the form

M = k. (i/G) 2 as predicted by theory.

c) The measured electromagnet force capacity was

found to be in fair agreement with that

predicted from theory.
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CHAPTER 7

EXPERIMENTAL RESULTS AND THEORETICAL COMPARISON

7.1 General

In this chapter, results obtained from a number of

tests performed on a laboratory rig (Figs. 6.1) are

presented and a comparison made with theoretical data

produced using the transfer matrix program described in

Chapter 4.	 The test procedures employed are described in

detail along with the shaft arrangements investigated.

The main aims of the experimental portion of the work

were as follows:

1. To verify the accuracy of the analysis program

developed and described in Chapter 4.

2. To examine the effectiveness of the application of

external control forces (radial and angular) in

attenuating rotor system response.

3. To investigate, in particular, the performance of a

new type of contactless angular electromagnetic

actuator when employed to implement different control

strategies.

In each test, eddy-current proximity displacement

probes were mounted at convenient locations along the

shaft in the horizontal and vertical planes. 	 Results, in

the main, are presented for measurements made in the

horizontal direction, although where appropriate, details

of shaft response in the vertical plane are also shown.

The displacement probe locations were fixed for each

test case and chosen such that they were always displaced
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from any nodal points appearing within the specified

frequency range.	 In each plane the response measured at

each probe was combined with that of the other probes to

enable calculation of a root-mean-square (rms) value which

was chosen as the representative system response function.

This eliminated the need for measurement of the shaft

maximum response (Chapter 5) which would generally require

re-positioning of the displacement transducers during

test-runs [91].	 A similar procedure was adopted when the

shaft system was subjected to external excitation using an

electromagnetic shaker.	 However, here a more meaningful

parameter, rms-receptance, was chosen as the system

response function.

Transmitted bearing forces and bearing pedestal

displacements were recorded in certain test cases by

making use of electrical resistance strain gauges and

eddy-current displacement probes respectively.

In addition to the above, when vibratory shaft tests

were performed (as opposed to rotating shaft tests), it

was necessary also to record the external excitation force

using an axial Piezo-electric force transducer. 	 In

rotating shaft situations, non-contact measurement of

shaft rotational speed was performed using a Sodenco

magnetic pick-up as described in Chapter 6. These latter

two signals were each used for phase reference purposes in

their respective cases.

Since the test shaft was found to possess significant

initial-bend (0.164 mm maximum) in certain cases (e.g.

Test 3), a procedure was adopted to enable elimination of
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this effect.	 This was achieved, for each shaft

configuration, by recording shaft response data for two

test-runs, each run corresponding to a different pre-

defined unbalance distribution.	 Subsequent vectorial

subtraction of the measured data led to elimination of the

influence of shaft permanent bend.

In addition to the normal forced response tests, in a

number of cases transient 'hammer tests' were performed

and system response analysed with the aid of a real-time

frequency analyser. 	 This allowed estimation of system

natural frequencies.

At intermediate stages throughout the seies of tests

described here, repeatability checks were implemented to

ensure meaningful results.	 The test data was recorded on

magnetic tape and later analysed using an FFT algorithm on

digital computer as described in Chapter 6.

Although the majority of the tests were performed

with the shaft rotating, in some cases additional

vibrating shaft tests were conducted. 	 The latter

approach was included because of the resulting benefits,

viz:

i) Test results become totally independent of shaft-

bend/residual-unbalance effects.

ii) System response levels may be selected to suit

prevailing safety and other important considerations

by appropriate adjustment of the external excitaton

force.

iii) The test frequency range can be extended considerably

without the need for special safety measures (shaft
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maximum running speed = 3000 rpm).

iv) A number of extraneous effects may be eliminated,

e.g. undesirable multi-frequency excitation from the

drive system and unwanted friction effects resulting

from physical contact with mechanical dampers.

v) The approach enables comparison of the relevant

system receptances for various positions of

excitation source, thus providing information

regarding the most suitable locations and types of

external control, irrespective of the form of

controller to be employed, e.g. mechanical,

electromagnetic etc.

Of course, when such test methods are employed, the

results must be considered with care and account taken of

any rotor-dynamic effects which have been eliminated as a

result of the test procedure, e.g. the gyroscopic

influence of shaft-mounted discs. 	 In all instances where

such tests were performed, an attempt was made to maintain

the external excitation force level constant over the

frequency range.

7.2 Auxilliary Test Rig - Rig A

An additional test rotor having the dimensions shown

in Fig. 7.1 was utilised at an early stage of the research

work, mainly for balancing studies, before the laboratory

rig described in Chapter 6 became available.

The test rig consisted of a uniform low-carbon steel

shaft supported on single deep-groove ball-bearings which

were mounted in steel bearing-housings. 	 The nature of
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the construction of the bearing-housings resulted in

support anisotropy, the greater stiffness prevailing in

the horizontal plane.	 Three pulleys equally spaced were

clamped to the shaft by means of taper-lock bushes.	 Each

pulley had provision for the addition of balance weights

at eight equally-spaced axial drilled and tapped holes.

Rotor stiffness/inertia dissymmetries were present as a

result of geometric irregularities in the pulley bushes.

The complete rotor-bearing system was rigidly bolted to a

solid lathe-bed, which in turn was isolated by means of a

layer of compressed cork, from the supporting foundation.

Proximity probes were employed to measure the shaft

dynamic response.

The measured shaft first (synchronous) critical

speeds were 560 rpm and 580 rpm in the vertical and

horizontal planes respectively. 	 Maximum shaft speed was

limited to 1800 rpm for safety reasons.

This test-rig displayed some interesting phenomena

which are discussed later in the relevant sections.

In the remainder of this chapter, all results pertain

to the test-rig arrangement as described in Chapter 6,

unless specific reference is made to Rig A.

Throughout the test program rotor-balancing was found

necessary in a number of instances, to minimise inherent

shaft/rotor mass unbalance.	 The procedures adopted were

as described in the following section.

7.3 Test Rotor Balancing

The relative merits of currently available flexible-
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rotor balancing methods are discussed in Chapter 2.

Because of its simplicity and suitability for programming

on digital computer, the Influence Coefficient Method was

selected for the purpose of balancing the laboratory rig.

A computer program based on the work presented by Goodman

[501, was created and tested by performing balance

measurements on a number of rotor arrangements.

The effectiveness of the balance program was

initially assessed by considering test-rig A.	 The

balance procedure allows for multi-plane, multi-speed

correction through a least-squares approach. 	 The rotor

was balanced at three planes and two shaft speeds (545 rpm

and 750 rpm), i.e. one above and one below the first

critical speeds.	 Before balancing, the lack of inherent

system damping meant that the critical speeds could only

be traversed by applying external damping, whilst

simultaneously ensuring rapid rotor acceleration.

The balancing procedure was as follows:

1. Measure displacement amplitude and phase at each

balance plane and speed. 	 This is termed the zero-

rotor data.

2. Apply a trial-mass to each balance plane in turn and

at each balance speed measure displacement amplitude

and phase at the corresponding locations. 	 This is

termed the trial-mass data.

3. The zero-rotor and trial mass information obtained

from Steps 1. and 2 is used as input data to the

balance program.	 The data provides details of the

system influence coefficients from which the program
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predicts the required magnitudes and locations of the

correction masses.

The correction masses are then applied to the rotor

and Steps 1 and 3 above repeated if necessary.

After one balance correction, it was found that the

test rotor could be run through its first critical(s)

fairly rapidly, without the need for external damping and

without excessive vibration.	 Following another balance

correction, the first critical(s) could be traversed

without external damping, even with small acceleration,

with a low level of shaft vibration.	 Fig. 7.2 shows the

measured shaft response at the central pulley in the

horizontal plane before and after balancing. 	 The

characteristic peak at the first critical speed is clearly

observed, but the response has been attenuated

considerably as a result of balancing.	 Another large

response peak present at a speed approximately equal to

half of the first critical speed is shown to be

insensitive to balancing. 	 The phenomenon is termed a

'secondary critical' and is discussed in greater detail

later.

An example of the measured shaft zero-rotor, trial-

mass and final balance data is presented in Fig. 7.3.

Reductions in unbalance response at the two balancing

speeds are seen to be generally of the order of 90% and in

one case as much as 95%.	 Output data from the balancing

program is displayed in Fig. 7.4.	 Correction mass

magnitude and location requirements are seen to be

different when the shaft is to be balanced only at the
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low speed.	 It is observed that after the second balance

correction, the calculated maximum residual vibration is

somewhat larger than the rms residual, even though the

overall residual vibration level is low.	 This indicates

the possibility of further reducing the maximum residual

vibration (Plane 1, 750 rpm) through employment of a

weighted least-squares procedure such as that described in

Ref. [50].

The above results, along with those obtained from the

main laboratory rig throughout the research work described

herein, confirm the effectiveness of the balancing method

adopted.

One criticism of the above procedure is that in some

instances, the magnitudes of the computed correction

masses were relatively large because of their angular

orientation.	 Thus, althi&gh the nett correction effect

was acceptable, an optimum mass distribution was not

achieved.	 Although this posed no problems in a

laboratory environment,the possible disadvantages in a

practical situation are evident.	 However, if necessary,

this problem could be overcome to a certain extent by, for

example, employing linear programming techniques [1171 so

that constraints on the correction mass size may be

introduced.

7.4 Asynchronous Vibrations and Secondary Criticals

Frequently throughout the experimental work when the

shaft was run without external control damping the

resulting response, although in the majority of cases of a

predominantly synchronous form, was found to consist of a
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number of non-synchronous harmonic components.	 This

characteristic was particularly evident when running close

to a shaft critical speed and in some cases even resulted

in the appearance of a low-frequency beat. 	 Although from

a data analysis point of view its influence could be

sufficiently minimised, the problem was further

investi9ated.

The source of the problem became apparent when the

test-shaft was uncoupled, the motor/pulley-drive

arrangement run on its own and the response measured.

Even under the above circumstances, excitation of the test

shaft system resonances was found to occur at almost any

motor speed.	 Although the shaft response was initally

extremely small, if left for a sufficient period of time

the displacement amplitude was found to become quite

large.

Further investigation showed the cause could be

attributed to two main factors: i) emanation of a

broadband excitation from the drive system (Fig. 7.5) and

ii) lack of inherent test system damping.

The effect of the above undesirable features was

minimised by: a) supporting the drive motor on anti-

vibration mounts and b) suitable adjustment of the

drive-belt tension.

In addition to the above, secondary-criticals [67]

were frequently observed throughout the test program. 	 A

secondary-critical occurs when an excitation component

with frequency equal to some multiple, or sub-multiple, of

the shaft rotational frequency coincides with a system
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natural frequency.	 The phenomenon has been found to

occur in practical rotor systems with horizontally mounted

shafts and low damping.	 The absence of the effect in

vertical shaft arrangements confirms the contributory role

of gravity.

The most common type of secondary-critical is that

where a shaft non-synchronous excitation occurs at a

frequency equal to two times the shaft rotational

frequency, thus leading to a 'critical-speed' at a shaft

speed of approximately half the first primary critical-

speed.	 The secondary-critical in this case is often

termed the 'half-critical' and was observed in this form

frequently in the test work described in this chapter.

It may be shown [118] that if a rotating horizontal

shaft has unsymmetrical elastic properties about the two

principle axes, then the gravitational force will induce a

secondary resonance at a shaft speed equal to the mean of

the primary critical speeds.	 Den Hartog [67] showed how

the same effect could result from the interaction of

unbalance and gravity forces, even in the absence of shaft

asymmetr ies.

Den Bartog suggested shaft balancing as a means of

differentiating between the above two possible causes.

The principle is that if after proper balancing at the

primary-critical speed, the secondary-critical remains

unaltered, then shaft asymmetry is the culprit. 	 This

approach seems reasonable but certain limitations exist.

If system damping is effectively zero, then even a very

low level of shaft unbalance will be sufficient to produce
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a large resonant response at the 'half-critical'.	 In

addition, since secondary-criticals appear within a very

small shaft speed range, i.e. they are very sharp in form,

exceptional speed control may be required to ensure a

valid pre and post-balance response comparison.

Investigation of secondary-criticals found to occur

in the laboratory rigs examined indicated their cause, in

general, to be a combination of the above two factors.

Fig. 7.2 shows the effect of balancing the system shown in

Fig. 7.1.	 Although the response around the primary-

critical speed ( 580 rpm) is seen to be attenuated

considerably after balancing, that at the 'half-critical'

( 290 rpm) remained almost unchanged. It is evident from

this plot that, in certain circumstances, shaft response

at a secondary-critical may be more severe than that which

would result when running at a primary critical. 	 In

other cases, the application of balance correction masses

was found to reduce to some extent the 'half-critical'

response.	 More detailed investigation showed the shaft

response at the 'half-critical' to be influenced by the

flexibility of the coupling. 	 The couplings employed

throughout the experimental work were of the pin and chord

type (Fig.7.6), where an elastic-band was used as the

flexible torque-transmitting element. 	 Close examination

of this set-up highlights the inherent asymmetric

stiffness properties.	 Altering the grade of elastic-band

employed confirmed this view, the most flexible

arrangement resulting in the best performance in terms of

secondary-critical response.	 However, a compromise was
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necessary, regarding the coupling stiffness, to ensure

good torque-transmission characteristics and so it was

never possible to eliminate secondary-criticals without

the use of external damping (see Test 3).

7.5 Tests

A range of tests were performed on the rig shown in

Fig. 6.1 and described in Chapter 6. 	 The effect of

external radial and angular control, using mechanical

dashpots and an electromagnetic actuator respectively, was

investigated.	 The influence of shaft initial-bend was

considered first.

7.5.1	 Test 1 - Shaft Response Due to Permanent Bend

The response of a uniform, initially-bent, rotating

shaft was investigated.	 Displacement probe positions are

shown in Fig. 7.7a, although for comparison purposes, only

probes 4, 5 and 6 were used to compute the measured rms

response.

The shaft support configuration employed was that

designed to simulate radially-rigid bearings (Section

6.3).

The magnitude and orientation of the shaft bend was

measured by recording the displacement at suitable

locations along the shaft length whilst slowly rotating

the shaft.	 The shaft bend data used in the analysis

program to enable prediction of shaft response was a

computed average of bend measurements taken before and

after each test run.	 This approach was found necessary

since variations in the magnitude of the shaft initial-
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bend were observed throughout the experimental work.

This phenomenon, also reported by other workers [91], was

of a transient nature since it was found that, after each

test run, if the shaft was left unrotated for a sufficient

length of time, e.g. 24 hours, then the initial-bend would

resort to its original form.

Details of the average shaft bend for this test are

given in Fig. 7.7b, where the bend is observed to be

almost planar.

The shaft maximum speed was restricted to 3000 rpm

for safety reasons.

During testing the lack of inherent system damping

was evident (Figs. 7.7c-e) since response measurements

above the first critical speed could only be obtained

after introducing external damping to allow safe passage

to the higher shaft speeds where the damping was

subsequently removed.

Fig. 7.7c is a plot of measured and predicted shaft

rms displacement response obtained from probes 4, 5 and 6

(Fig. 7.7a). The theoretical plot agrees very well with

the experimental data, thus confirming the validity of the

system mode].. 	 The measured first critical speed is

observed to be slightly greater than the predicted value

and is estimated from the response plot as 1630 rpm.

Similar plots are presented in Figs. 7.7d and 7.7e, where

the individual displacements at probes 4 and 5

respectively are illustrated for comparison. 	 As would be

expected, agreement between theory and experiment, on the

whole, is very good, particularly at probe 5.
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To assess the accuracy of the analysis program in

predicting the complete shaft response, the shaft

displacement was measured at various locations along its

length.	 At zero shaft speed the predicted shaft

deflected form should agree identically with the measured

shaft bend.	 This was indeed found to be the case and

provided confirmation of the ability of the transfer-

matrix program to take account of shaft lack of

straightness.	 The measured and predicted shaft deflected

forms, at three selected speeds (520, 1400 and 2000 rpm)

are shown in Fig. 7.7f.	 Experimental and theoretical

data are observed to correspond extremely well. 	 The

greatest disparity is seen to occur at a shaft location

corresponding to displacement probe number 4. 	 The cause

appears to be related to inaccuracy in the measurement of

shaft bend at this position, since at low and high shaft

speeds the magnitude of the error is almost constant.

In addition to the above, transient tests were

performed in order to:

1. Determine the system natural frequencies, 	 and

2. Assess the influence of the coupling arrangement on

the dynamic characteristics of the test shaft.

The natural frequencies in the vertical plane were

found to be consistently greater than those in the

horizontal plane, although only marginally. 	 With the

shaft rotating at 1200 rpm, the natural frequencies were

measured as 27.2 Hz (1632 cyc/min) and 27.4 Hz (1644

cyc/min) in the horizontal and vertical planes

respectively.	 Since in this case, gyroscopic effects
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could be safely ignored, the measured natural frequencies

would be expected to coincide with the shaft critical

speeds.	 This was indeed the case.	 The bearing-supports

appeared to exhibit greater flexibility in the horizontal

plane.	 Examination of the physical aspects of the support

arrangement justified this conclusion (Figs. 6.3 and 6.4).

The first four, static-shaft, natural frequencies in

the horizontal plane, with coupling removed, were measured

as 27.0, 98.0, 172.0 and 274.0 Hz (1620, 5880, 10320 and

16440 cyc/min).	 The corresponding theoretical values are

26.9, 96.7, 168 and 274.6 Hz respectively (i.e. 1614,

5801, 10078 and 16477 cyc/min).	 These figures

demonstrate the validity of the system model, all four

natural frequencies being estimated to within

approximately 2%.

The influence of the coupling on the shaft dynamics

was assessed by comparing measured natural frequencies for

the coupled and uncoupled shaft cases. With the coupling

removed, the shaft fundamental natural frequencies were

recorded as 27.0 Hz and 27.2 Hz in the horizontal and

vertical planes respectively. 	 Comparing these values

with those above, it is clear that the coupling did in

fact have a restraining effect on the test shaft, leading

to an increase in the system natural frequencies.

However, the effect was minimal and indeed resulted in, at

most, a fundamental frequency shift of less than 1%.

Consequently, in all subsequent computer analyses, this

effect was excluded.

In the tests just described, the absence of
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gyroscopic influences along with the employment of

rolling-element bearings resulted in de-coupling of the

shaft motion in orthogonal planes.

7.5.2 Test 2 - Effect of External Mechanical Damping

The shaft system employed in Test 1 was again

utilised to enable examination of the effect on system

synchronous response of applying external damping to the

shaft.

The influence of damper location was investigated by

introducing radial damping at three shaft positions in

turn using mechanical vane-type dashpots as described in

Section 6.5.

The three damper locations corresponding to Tests 2a,

2b and 2c are shown in Fig. 7.8a where the displacement

measuring positions are also indicated.

The measured shaft initial-bend, recorded with the

dampers 'in-situ' is presented in Fig. 7.8b.

Three levels of damping were selected during each

test-run and the shaft response recorded.	 The

incorporation of a rolling-element bearing between the

damper arms and shaft helped minimise rotary-friction

forces and for all practical purposes, ensured decoupling

of the rotor response in the horizontal and vertical

planes.

Adjustment of clearance within the damper sliding-

block assembly (Fig. 6.13) was found to critically affect

the shaft response.	 As a result, in an effort to ensure

consistency, an appropriate pre-test set-up procedure had
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to be devised.

Initially, the damper clearance in both planes was

adjusted such that no external damping was applied to the

shaft.	 Next, the shaft was run constantly at a speed

close to the first critical speed to provide a substantial

shaft response.	 The resulting response was monitored in

both planes and the corresponding damper clearances

adjusted until a point was reached where a small reduction

in response level was observed, thus indicating the

elimination of clearance within the relevant damper

assembly.

Shaft measured and predicted rms displacement

response, computed from the displacements at locations

corresponding to probe positions 4, 5 and 6, are presented

in Figs. 7.8c-e.

Although agreement between theory and experiment is,

on the whole, seen to be poor, at least the predicted and

measured response trends correspond.	 Similar problems

were experienced by Kaya [94] who also used Kinetrol

dampers in an experimental study.

The results obtained in Test 1 suggest the lack of

agreement observed here to be mainly due to inaccurate

modelling of the damper arrangement. The nature of the

problems experienced throughout the damper calibrations

(Chapter 6) strengthens this view.

The inability of the analysis program to accurately

predict the damped system response is felt to be mainly

due to the following contributory factors:

1.	 Inherent non-linearity of dashpots (Fig. 6.15).
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2. Presence of excessive clearance within the damper

sliding-block arrangement (Fig. 6.12).

3. Influence of undesirable friction effects emanating

from the damper sliding-block assembly.

The inherent complexities of the mechanical dampers

were further illustrated when an attempt was made to

predict the damper characteristics required to ensure

correspondence between the location of experimental and

theoretical 'fixed-points'. 	 This resulted in the

computation of an extremely large effective damper inertia

which could not be accounted for from assessment of the

device's physical dimensions.

As a result of time limitations, it was not possible

to investigate this problem further. 	 However, a number

of useful observations may still be made regarding the

application of external control measures, from the results

obtained.

Referring to Figs. 7.8c(i) to 7.8e(i), the

application of external damping can lead to significant

reductions in system response, the degree of attenuation

being greatly dependent upon the damper location. 	 As

expected, control of the shaft first mode of vibration is

best achieved with radial damping applied at the shaft

centre (Test Arrangement 2c).	 The ineffectiveness of the

radial damper when employed at a location close to a shaft

support is demonstrated in Fig. 7.8c(i). 	 In this case

the shaft first critical speed could not be traversed,

even with maximum damping employed.

The ability of the damper to substantially displace



192.

the shaft response peaks (Figs. 7.8d(i) and 7.8e(i))

suggests the presence of relatively large damping forces.

The appearance of clearly-defined 'fixed-points t in

the response plots, in these circumstances, provides

confirmation of the views expressed in Chapter 5.	 There

it was suggested that even though the choice of response

function (in this case a reduced shaft rms displacement)

could lead to invalidation of the fixed-point theory,

fairly accurate 'fixed-points' would result for a large

range of damping values.

In Chapter 5, it was discussed how an optimum control

damping rate could be chosen to minimise the system

maximum response over a specified shaft speed range. 	 In

order to ahieve this, the damping level would have to be

selected so that the response plot would pass, with zero

slope, through the highest system fixed-point.

Considering the response plots resulting from Test 2c

(Fig. 7.8e(i)), the optimum damping level is seen to

correspond approximately to a damper setting of 2.

Similar conclusions may be drawn for the case investigated

in Fig. 7.8d(i) where the optimum damper setting appears

to be somewhere between minimum and 2.

The relatively small variation in optimum damping

levels with respect to damper location over a central

section of the shaft is in agreement with the findings of

Dostal et al [91].	 One would expect the optimum damping

requirements to increase as the damper location approaches

the shaft supports and the disparity between the results

of Tests 2b and 2c in this regard, is probably due to the
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non-linear nature of the damper arrangement.

Looking at Figs. 7.8c(i) to 7.8e(i), it is clear that

the system response can be minimised at each shaft speed

by following a procedure whereby the damping is switched

between two levels, this switching occurring at the

'fixed-point(s)'.	 Considering the speed range 0 - 2750

rpm, best control is achieved if the largest damping rate

(setting 4) is selected at low shaft speeds and maintained

up to a shaft speed corresponding to the first 'fixed-

point' (i.e. approximately 1650 rpm for test case 2c).

At this speed the damping is removed (or reduced to a

minimum) resulting in minimum shaft response at all higher

speeds up to the next 'fixed-point'. 	 These findings are

in complete agreement with the results of a theoretical

investigation presented in Chapter 5 and indicate the

possible benefits of employing an adaptive 'on-off'

control strategy.	 In such circumstances, no advantage is

realised when a continuous form of control is employed.

Application of angular damping to the above test-

shaft arrangement was attempted using a modified damper

set-up (Section 6.5). 	 Considerable attenuation of the

rotor response was found possible but, although the damper

arms incorporated PTFE pads to reduce friction effects at

the shaft-disc, problems of excessive pad wear were

experienced, even at low shaft speeds. 	 Despite numerous

attempts to maintain a constant pad contact-pressure

during testing, repeatability of results could not be

achieved to an acceptable degree.
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The problems experienced here and during Test 2,

highlighted the major difficulties resulting from the

employment of a control device whose operation

necessitates physical contact with a rotating component.

In fact, in these latter tests, it was decided that due to

the inherent complexities of the damping assembly,

extensive modifications, which would be required in an

attempt to eliminate the above problems, could not be

justified and that angular control could be best achieved

by utilisation of a non-contact device.

7.5.3 A Note on the Electromagnetic Controller

The electromagnetic damping/stiffness coefficients

were adjusted by altering the control circuit gain

settings using a micro-computer.	 The level and type of

control required could be set in two ways: a) through

software implementation or b) by keyboard input. 	 The

required degree of control was varied by selecting a

digital value in the range 0 - 128, these representing the

minimum and maximum control settings respectively.	 The

relationship between the digital setting and the resulting

level of control is a non-linear one. 	 Controller

performance data, for the range of control parameters

employed in the following tests, is presented in Chapter

6.

In the next four sections, the appropriate

electromagnet digital settings (Cref and Kref) are

displayed on the relevant response plots for reference

purposes only and should not be confused with the
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resulting control damping and stiffness rates. 	 Because

of magnet non-linear behaviour, the resulting

damping/stiffness rates are not constant, but vary with

response amplitude and/or frequency (shaft speed), even

when the control gain is fixed. 	 The coefficients have

been estimated from the magnet calibration data, measured

shaft response and the procedures described in Appendix E

(see Chapter 6).

Access limitations and the need to avoid stray

magnetic fields dictated the location of the displacement

probes employed to provide the feedback (shaft-slope)

signal for the control circuitry.	 Details regarding the

position and spacing of these probes are furnished in the

relevant figures.

Alignment of the electromagnetic controller with the

shaft-mounted, silicon-steel, low loss disc to achieve the

desired air-gap was found to be a critical and sometimes

time-consuming operation.	 The procedure employed

necessitated positioning the magnet pole-faces hard

against the disc, then after locking the magnets in

position on the support stand, slowly displacing the

magnet assembly axially by employing a jacking-screw

arrangement.	 The required gap was then set using feeler-

gauges and the magnet support stand finally locked in

position on the baseplate.

The importance of magnet support rigidity was

highlighted when some operational problems were

experienced.	 Subsequent modifications led to the

elimination of undesirable destabilising influences.
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7.5.4
	

Test 3 - Angular Electromagnetic Control of a

Rigidly-Supported Shaft

The purpose of these tests was to assess the ability

of a contactiess angular electromagnetic controller to

attenuate the synchronous unbalanced response of a

flexible rotor.	 Details of the magnet arrangement and

allied electronic control circuitry are presented in

Section 6.6.

The test-shaft, details of which are presented in

Fig. 7.9a, was located on radially-rigid supports as in

Tests 1 and 2.	 liowever, subsequent raising of the shaft

support-structure led to an increased flexibility in the

horizontal plane.	 The electromagnetic actuator was

located slightly inboard of the drive-end bearing.

A number of light, wooden discs designed to accept

small balance weights were sited at various positions on

the shaft.	 The disc material was chosen to minimise the

additional lumped-mass/inertia so that, dynamically, the

system would differ only slightly from that analysed in

Tests 1. and 2.	 This was intended to allow some measure

of comparison between the various test results.

The electromagnet air-gap was set at 0.89 mm (0.035

in).	 Test 3 consisted of two parts.	 The aim of the

first part (Test 3a), was to investigate the effect of the

application of electromagnetic damping. 	 The second

portion of the work (Tests 3b and 3c) was undertaken with

a view to studying the influence of electromagnetic

stiffness control.	 Without the application of external

control, it was found impossible to run the shaft within
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the speed range 1350 rev/mm to 1650 rev/mm, due to

excessive system response.

Results obtained from Test 3a are presented in Fig.

7.9b(i).	 Shaft rms displacement, computed from the

readings of probes 4, 5 and 6, is shown for four levels of

electromagnetic damping.	 The introduction of angular

damping is seen to result in considerable attenuation of

the system resonant response. The application of low-

level damping (Cref = 70) was found to be sufficient to

ensure safe passage of the shaft through its first

critical speed (1500 rev/mm).	 With maximum damping

employed (Cref = 110) the largest measured uncontrolled

shaft responses (at 1425 rpm and 1570 rpm) are seen to be

reduced by 71% and 63% respectively.

At shaft speeds close to the first critical speed,

the test shaft may be considered to act as a single-

degree-of-freedom system.	 If the characteristics of this

equivalent, single-mass system can be estimated, then a

more realistic assessment of the degree of control present

can be made.	 For a single-mass (Jeffcott) rotor with

disc mass M and mass unbalance force of mew2 and supported

on rigid bearings, the system displacement response may be

calculated [119] from:

me	 f2x -	 ___________________

(1 - f2) 2 + (2f) 2

where f = W/WNAT

X = displacement response of single-degree-of-

freedom system

= dimensionless damping factor
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For the test-shaft vibrating in its first mode, the

shaft stiffness k may be estimated using the formula for a

centrally-loaded uniform shaft (k = 48E1/L 3 ).	 Making use

of the measured first critical speed (1500 rev/mm), the

system effective mass M is computed as 0.877 kg.

rJtilising the above equation in conjunction with the

measured undamped test-shaft response, a least-squares

procedure was employed to determine the system me value

(4.6E - 5 kgm).

The same least-squares method was then used to

estimate the damping factor from the measured damped

response plots illustrated in Fig. 7.9b(i).

The resulting damping factors are 0.05, 0.1 and 0.13

corresponding to the reference settings (Cref) 70, 90 and

110 respectively.	 The control damping levels may be

considered to be relatively small, but would be effective,

in terms of system vibration attenuation, in any 'pinned-

pinned' shaft arrangement vibrating in its first mode.

Additionally, a relatively small increase in the magnet

effective radius would lead to substantially greater

system damping levels.

The above estimation technique could have been

performed more accurately by making use of modal methods

(Chapter 3).	 However, at the time of this work no such

procedures were available. 	 The approach adopted is an

approximation to the more conventional modal methods.

Referring to Fig. 7.9b(i), an interesting aspect is

the appearance of an approximate 'fixed-point' at a speed

of 1950 rpm.	 This 'point' does not coincide with the
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uncontrolled response due to an inherent electromagnetic

stiffening effect resulting mainly from control-circuit

component phase-lags (Section 6.6.3).	 The employment of

an 'on-off' adaptive damping control strategy, as

described in Chapter 5, in this case would clearly require

the electromagnet 'switching-speed' to be dependent upon

the initial damping setting.

The measured damped response at a single shaft

location corresponding to probe 4 (Fig. 7.9a) is shown in

Fig. 7.9c(i) for comparison. 	 The single-point response

plots are of identical form to the shaft rms plots but, in

general, of greater magnitude.	 An approximate 'fixed-

point' is also seen to occur, in this case at a speed of

1910 rpm.	 The predicted rms and single-point shaft

displacements are shown in Figs. 7.9b(ii) and 7.9c(ii)

respectively.	 In both cases the agreement between

measured and predicted uncontrolled response is excellent.

This close agreement is seen to deteriorate somewhat

when control damping is introduced.	 The theory predicts

the presence of approximate 'fixed-points', although these

are observed to occur at slightly lower shaft speeds than

the corresponding measured Ipointsu.

The lack of agreement between measured and predicted

shaft damped response is thought to result from a

combination of the following contributory factors:

1. Inherent magnet non-linearity (i.e. inability of the

predicted linearised magnet coefficients to reflect

the true (non-linear) magnet performance).

2. Variation of the shaft initial-bend with time. 	 This
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effect could introduce errors into the procedure for

computation of the equivalent linearised magnet

coefficients (Appendix E).

3. Variation of electromagnet air-gap.

4. Measurement error.

Where a linear analysis approach is adopted and the

test-shaft possesses significant permanent bend, as in

this case, then the effects described in paragraphs (1)

and (2) are, to a large extent, unavoidable.

The good agreement achieved between measured and

predicted shaft uncontrolled response appears to confirm

an acceptable level of measurement accuracy (paragraph

(4)).

The assumption of constant air-gap was further

assessed by examination of the shaft angular response at

the controller.	 Of all the tests performed with the

controller in operation, the measured maximum displacement

at the magnet air-gap was found to be approximately 0.05

mm (0.001 in), for an air-gap setting of 0.89 mm (0.035

in).	 This condition occurred with the shaft running at

its first critical speed and the reference damping level,

Cref set at 70 (Fig. 7.9b(i)).	 The largest peak

response value present at other damping settings was found

to be less than half of this figure. 	 Thus, although the

variation in air-gap was not significant, some improvement

in the theoretical results may be achieved if the

controller was calibrated dynamically.

The influence of magnetic coupling between the shaft

horizontal and vertical planes, was investigated during
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various tests.	 With the shaft running close to

resonance, maximum damping was introduced in one plane

only and any alteration of response in the orthogonal

plane noted.	 This procedure was performed in the shaft

horizontal and vertical planes in turn.	 Only minute

changes in response levels were observed, thus confirming

earlier assumptions.	 In fact, some coupling would be

expected anyway as a result of gyroscopic influences.

Details of the variation of angular damping with

shaft speed, for Test 3a, are presented in Fig. 7.9d.

The damping rates were computed from the magnet

calibration data presented in Chapter 6, in conjunction

with the measured shaft-slope and rotational speed.	 The

maximum damping rate (3.85 Nms/rad at 1600 rpm) shown in

the figure corresponds to the highest attainable system

damping for this case, since at slightly greater damping

( Cref) settings, power supply current-overloading occurs.

Magnet power dissipation curves for the above case are

shown in Fig. 7.9e.	 These were also computed using

calibration and test data.	 It is interesting to note

that the maximum power dissipated remains almost constant

( 4.8 watts) irrespective of the damping reference

setting.	 Reference to Figs. 7.9b(i) and 7.9e indicates

that at high shaft speeds (> 1950 rpm) with high damping

settings, both magnet power requirements and shaft

response are increased. 	 This is in line with the

theoretical findings of Chapter 5.	 At slightly lower

shaft speeds, although some system response attenuation

occurs, there is substantial increase in power
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consumption.

In Test 3b, a large value of electromagnetic

stiffness combined with low damping, sufficient to

maintain system stability (Section 6.6.3), was introduced

over the complete shaft speed range and the shaft response

measured.	 Shaft unbalance details are given in Fig.

7.9a.	 The effectiveness of stiffness control in

displacing the shaft first critical speed is clearly

demonstrated in Fig. 7.9f.	 A shift of approximately 200

rpm (13%) is observed.	 The shaft response at the 'new'

critical-speed is still large since system damping is

fairly low.	 The form of the controlled system response

plot is seen to bear some resemblance to the classical

'hardening-spring' characteristic, due to the inherent

magnet non-linearities.

Examination of Fig. 7.9f shows that some advantage

could result if an adaptive (or variable-gain) stiffness-

control strategy were employed. 	 This was the approach

adopted in Test 3c.	 the stiffness and damping reference

settings selected in Test 3b were again utilised, this

time only up to a shaft speed of approximately 1560 rpm.

Above this speed, the electromagnets were switched-off.

The magnet 'switching-speed' corresponded to that speed at

which the measured controlled and uncontrolled responses

were identical and was determined by making reference to

Test 3b results (Fig. 7.9f).

The results of Test 3c are presented in Fig. 7.9g(i)

where the advantages of adaptive stiffness control, even

when system damping is low, are evident. 	 By comparing
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Figs. 7.9f and 7.9g(i), the employment of adaptive control

is seen to result in a shaft response corresponding to the

locus of minimum response.	 Theoretical plots are

presented in Fig. 7.9g(ii) for comparison. 	 Agreement

between the measured and predicted response data is

reasonably good.	 The theoretically determined controller

'switching-speed' (1570 rpm) is very close to the measured

value (1560 rpm).	 Damping and stiffness rates for this

case are shown as a function of speed in Fig. 7.9h, where

the maximum attained values are seen to be 1.54 Nms/rad

and 318 Nm/rad respectively.

Even though the adoption of an adaptive stiffness-

control strategy alone would be sufficient to ensure

considerable attenuation of shaft steady-state synchronous

response, consideration must also be given to the system

transient-response at the controller 'switching-speed'.

Figs. 7.9i-1, show the resulting shaft transients during

Test 3c when stiffness control was switched on and off.

Two levels of angular damping were introduced in turn for

comparison.	 One major problem encountered during the

tests was the inability of the motor speed-control unit to

maintain a steady shaft speed. 	 This is evident from the

difference in magnitude of the controlled and uncontrolled

shaft responses, particularly at the lower damping

setting. With very low magnetic damping (C	 0.5 Nms/rad)

the shaft transient response, resulting from switching,

varied according to the exact shaft speed at switching,

but in general was characterised by large oscillatory

displacements taking, typically from 1.5 to 6 seconds to
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reach their steady-state values (Figs. 7.9i and 7.9j).

Increasing the damping to approximately 1.5 Nins/rad

improved the system transient performance considerably

(Figs. 7.9k and 7.91), leading to settling times of the

order 0.5 secs.	 It is clear that in practice, successful

implementation of an 'on-off' adaptive stiffness-control

procedure would require the presence of a reasonable level

of system damping.

A common feature in the lightly-damped rotating shaft

tests performed here, was the appearance of secondary

criticals [67] most certainly caused by interaction of

shaft-stiffness asymmetries and gravity loading. 	 The

shaft response at these additional criticals, in many

cases, was found to be greater than that at the primary

critical speeds.	 The measured secondary-criticals were

lar	 tatt response over an extremely

small speed range.	 The effectiveness of the angular

damper in eliminating this additionl form of vibration

was examined and relevant results are presented in Figs.

7.9m-p.	 Figs. 7.9m and 7.9n show the gradual elimination

of a non-synchronous 2 x rpm component in the time and

frequency domains respectively.	 In the example shown,

the shaft speed was approximately half the first critical

speed leading to the introduction of a 'half-critical'.

With sufficient magnetic damping, the non-synchronous

component is seen to almost vanish.

Throughout the experimental work, measurement of the

shaft whirl-orbit, at various shaft locations, was

performed by combining the signals obtained from
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displacement probes mounted in the horizontal and vertical

planes. A permanent record was acquired by first storing

the two ses of data on a digital oscilloscope, then

passing this information to an X-Y plotter.	 Fig. 7.9p is

typical of the shaft orbit characteristics exhibited

throughout the tests. 	 Non-synchronous response is

indicated by the introduction of additional loops in the

whirl-orbit (at 750 rpm and 2000 rpm - undamped). 	 The

results demonstrate the virtual elimination of shaft non-

synchronous vibrations, in addition to the considerable

reduction in synchronous response, when angular magnetic

damping is utilised.

7.5.5	 Test 4 - Angular Electromagnetic Control -

Extended Frequency Range

These tests were performed to demonstrate the

effectiveness of the angular electromagnetic controller

over a broad frequency range.	 Safety considerations

limited the shaft maximum speed to 3000 rpm so that

investigation of the controller performance over a larger

frequency range could only be achieved by adopting a

different approach.	 The test shaft was shaken, in the

horizontal plane, using an electromagnetic vibrator

(Section 6.4).

The test configuration used here was identical to

that employed in Test 3. 	 Details of the location of

displacement probes and electromagnetic shaker are

presented in Fig. 7.l0a. 	 The electromagnet air-gap was

set at 1 mm (0.040 ins) and a frequency range of 0 - 100

Hz covered.	 Except in the case where no external control
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was applied, the excitation force amplitude was maintained

with an average value of approximately 3 Newtons, over the

specified frequency range.

Two tests were conducted, one to assess the influence

of magnetic damping (Test 4a) and the other to study the

effect of introducing electromagnetic stiffness (Test 4b).

The results of Test 4a are shown in Fig. 7.l0b. 	 The

readings from probes 2, 5 and 6 were used in conjunction

with the measured excitation force to produce an rins

receptance versus shaft vibration frequency plot. 	 The

beneficial effect of electromagnetic damping is evident

and the angular controller is seen to operate well over

the complete frequency range, particularly at the higher

shaft frequencies around the second system natural

frequency.

If the system natural frequencies are not closely

spaced, then in the presence of a single harmonic

excitation component with frequency in the region of a

system resonance, the resulting response will corespond to

that of a single-degree-of-freedom system.	 For such an

arrangement the system receptance can be written [119] as:

1

= k	 (1 - f 2 ) 2 + (2f)2

where k is the system stiffness, N/rn

f is the frequency ratio (f = w,/WNAT)

t is the damping factor (r = C/(2 in

C is the system damping constant, Ns/m

m is the system mass, kg

Making use of the above and considering a system at
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its undamped natural frequency (f = 1):

or

r
N - 2k

= 2kr

where rN is the damped system receptance at f = 1.

Although this approach involves a number of

approximations at least it provides a simple means of

estimating the degree of damping control achieved.

Referring to Fig, 7.l0,- and considering the first system

natural frequency, the stiffness k may be estimated by

extrapolating the receptance plot at low frequencies.

Following the above procedure, the computed system damping

factors, corresponding to the digital damping settings

( Cref) of 70, 90 and 110, are 0.03, 0.14 and 0.26

respectively.	 The influence of external damping on the

system resonant response at the second natural frequency

is even more pronounced. 	 With maximum damping introduced

the characteristic response peak is eliminated completely.

The damping factors for this case may be approximated as

before.	 However, the equivalent single-degree-of-freedom

stiffness k is different to that employed for analysis of

the first natural frequency.	 A conservative approach is

to use the stiffness value corresponding to the minimum

occurring in the receptance plots at a frequency of

approximately 4200 cyc/min. 	 The resulting computed

damping factors are 0.16, 0.36 and 0.58 respectively.

Angular electromagnetic damping is thus seen to be an

effective means of attenuating shaft response over a

frequency range encompassing two natural frequencies.
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Another method capable of achieving significant

reductions in system response at, or close to, a natural

frquency is based on introducing additional stiffness to

the system to displace the resonances.	 This prinipcle

was demonstrated in Test 3 and is given further

consideration here.	 Fig. 7.lOc illustrates the effect of

angular electromagnetic stiffening on the system rms

receptance.	 Substantial increases in the two system

natural frequencies are observed. 	 With maximum stiffness

control employed, the fundamental frequency was shifted by

approximately 245 cyc/min, i.e. a 17% change.	 The second

shaft mode has its natural frequency altered by 175

cyc/min (3.4%) as a result of stiffness control.

Fig. 7.lOd demonstrates how the implementation of

stiffness control alone can lead to favourable system

performance.	 The minimum response locus is represented

by the dashed lines.	 Significant vibration attenuation

is achieved by utilising maximum stiffness control, over a

frequency range encompassing the uncontrolled fundamental

natural frequency, up to a frequency of 1600 cyc/min and

thereafter removing the control influence.

7.5.6	 Test 5 - Angular Electromagnetic Control -

Attenuation of Bearing Forces

These tests were undertaken in order to assess the

ability of angular electromagnetic control to reduce

transmitted bearing forces. 	 The test configuration used

was identical to that employed in Tests 3 and 4, but with

alterations to the shaft supports as shown in Fig. 7.11a.
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It was initially intended that the shaft be rotated

as was the case in Test 3. 	 However, after modification,

the bearing supports, in addition to introducing the

desired radial flexiblity, were found to exhibit axial

flexibility.	 This latter characteristic, not

surprisingly, resulted in system stability problems

(Section 6.6.3).	 Elimination of the effect without

significantly influencing the radial support stiffness was

found to be extremely difficult. 	 Since the problem was

directly related to the magnitude of shaft angular

t t e1ctto'magnets, it was decided that the

best approach would be to excite the shaft using an

electromagnetic shaker.	 In these circumstances, the

external excitation force could be easily adjusted to a

suitable level.

The location of displacement probes and magnetic

shaker are shown in Fig. 7.11a.

Two tests were performed, the first to examine the

effect of damping control and the second to investigate

the influence of stiffness control.

Following a procedure similar to that employed in

Test 4, the bearing transmitted forces are presented in

non-dimensional form by dividing through by the excitation

force.	 This is normally termed the transmissibility,

although in the strictest sense, it is the sum of the non-

dimensional bearing forces which constitutes the system

transmissibility.

Figs. 7.11b and 7.11d show the non-dimensional

bearing forces as a function of frequency, with different
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levels of control damping, for the drive-end (DE) and non-

drive-end (NDE) bearings respectively.	 Considerable

attenuation of the bearing forces is observed.	 The

largest uncontrolled response is seen to be reduced by 88%

and 85% at the DE and NDE bearings respectively.

For a single-degree-of-freedom system the degree of

damping present is best represented by the system damping

factor .	 Applying the assumptions made in Section 7.5.5

an estimate of the non-dimensional control damping, as a

proportion of system critical damping, can be made. 	 In a

single mass system the transmissibility TR can be

calculated [119] from:

Vi + (2U)2TR = _____________

1(1 - f 2 ) 2 + (2f)2

At the system undamped natural frequency f = 1 and we

can write:

1

2 .,/ [(TR) 2 - 1]

The measured transmissibility TR can be obtained from

the response plots of Figs. 7.ilb and 7.11d and the

damping factor	 computed using the above equation.

Following this procedure, the damping factors

corresponding to the reference settings (Cref) of 70 and

110 were estimated as 0.02 and 0.07 respectively. 	 Thus,

although substantial reductions in bearing transmitted

force are achieved, the control damping is seen to be

small.	 The low level of control damping is a result of

the small shaft response, necessary to ensure system

stability in this case.
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Comparing the measured bearing force magnification

factors at the system undamped natural frequency ( 1410

cyc/min), with the control damping set at maximum (Cref =

110), the DE bearing (magnification factor = 5.22) appears

to be influenced to a greater extent than the NDE bearing

(magnification factor = 5.85) by the application of

angular control.

Theoretical plots of the non-dimensional bearing

forces are presented in Figs. 7.11c and 7.11e. 	 The

agreement with measured response is very good.

The effect on the bearing transmitted force of

introducing angular stiffness control, is demonstrated in

Fig. 7.11f.	 The dimensionless drive-end bearing force 	 is

plotted as a function of frequency.	 Bearing forces at

the shaft non-drive-end exhibited similar trends. 	 The

system natural frequency is seen to be increased by

approximately 30 cyc/min, i.e. a change of 2.1%.	 Again

the control influence is small due to the low level of

system response.	 Fig. 7.11g shows the predicted

controlled and uncontrolled dimensionless bearing forces

and once more agreement with the measured response is very

good.

Whilst problems resulting from support inherent

axial-flexibility led to limitations on the level of

angular control which could be applied to the test system,

results from the above tests did illustrate the possible

benefits of such a control approach in terms of reduction

of transmitted foundation forces.

Because of the non-linear nature of the
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electromagnets/mechanical dashpots and due to the

introduction of a number of other complexities throughout

the experimental work, meaningful comparison of results

from different test configurations was limited.	 As a

result, experimental assessment of the relative

performances of radial and angular controllers, when

employed on a specific shaft system, could not be easily

achieved.	 Consequently, an alternative efficient and

rational approach, eliminating the need for experimental

investigation of specific controller types, was adopted as

follows.

7.5.7	 Test 6 - Comparison of Shaft Radial and Angular

Re c ep tan c e S

The suitability of various shaft locations for the

introduction of external control forces may be assessed by

measurement of the relevant system receptances.

Referring to the shaft system shown in Figs. 7.12a,b, a

number of locations were chosen for application of

external harmonic forcing using an electromagnetic shaker.

Direct comparison of the appropriate measured receptances

gives an indication of the most suitable control position,

i.e. the forcing location resulting in the largest

receptance value.

Of course, the choice of point of displacement

measurement is of critical importance and for the tests

conducted here, since the complete system response was of

interest, an approach similar to that employed in earlier

tests was adopted.	 The shaft displacement was monitored
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at a number of points and a computed rms receptance value

used as the system response function.

Steel discs were mounted just outside the bearing

assembly at each shaft end to allow the introduction of

'anglar excitation'.	 This was accomplished by aligning

the shaker axis parallel with the shaft rotational axis

and clamping the shaker linkage to the disc perimeter

through a universal-joint assembly. 	 This arrangement,

allowing a small degree of radial misalignment, was found

necessary to reduce unwanted bending influences at the

Piezo-electric transducer and to minimise the external

restraining effect.

Radial excitation of the shaft was achieved by

connecting the shaker assembly to a shaft-mounted sleeve.

Two tests were performed, the first (Test 6a) with

the shaft resting on 'rigid' supports. 	 Four shaker

locations were chosen for excitation of the rotor system

(Fig. 7.12a).

During the second test (Test 6b) only two of these

points were utilised (Fig. 7.12b) and the shaft was

mounted on flexible supports.

The test frequency range, 0 - 90 Hz, was selected to

include the first two rigid-bearing natural frequencies.

All shaft vibratory motion was restricted to the

horizontal plane.

Results from the first test are presented in Fig.

7.l2c.	 The rms receptance, computed using measurements

from probes 2, 3, 4 and 5, is plotted against frequency

for the four excitation locations (Fig. 7.12a).	 The
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small differences in system natural frequencies are a

result of the shaker assembly mass/stiffness effect,

To provide some idea of the relative magnitudes of

the control forces which would be required at each of the

excitation points, receptance ratios are provided at

selected shaft frequencies. 	 The term outside the

brackets is calculated from:

rms receptance with excitation at point 2
rms receptance with excitation at point 1

and that inside the brackets is determined from:

rms receptance with excitation at point 4
rms receptance with excitation at point 1

These two values indicate the relative force

requirements for angular and radial control at the shaft

locations as specified.

As expected the results showed that, at the first

natural frequency, best control could be achieved by

positioning the controller close to the shaft centre.

However, with such an arrangement, controller performance

is seen to deteriorate considerably at frequencies in the

region of the second natural frequency. 	 In agreement

with the findings of a theoretical investigation performed

in Chapter 5, radial control is seen to perform best (at

least up to the second natural frequency) when introduced

on the shaft span between the supports. 	 However, the

difference between radial and angular forces, required to

achieve the same degree of control, is not excessive and

in certain frequency bands is fairly small. 	 In addition,

the radius employed for angular excitation, 44.5 mm, is

not large and could easily be increased substantially.
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Theoretical receptance plots are presented in Fig. 7.12d

for comparison and excellent agreement with the measured

data is observed.

In some practical rotor-dynamic installations, the

response at particular shaft stations (e.g. turbine disc

locations) may be of greater importance than the overall

system response.	 In such circumstances the choice of

type and location of control could be critical. 	 This

point is illustrated in Fig. 7.12e where the receptance,

as measured at probe 2 only, is shown as a function of

frequency for radial and angular excitation.	 Although

the receptance resulting from radial excitation is

generally greater than that due to angular excitation,

there exists a substantial speed range (2250 - 3350

cyc/min) where application of radial control at the

specified location would have little influence on the

response at the shaft station corresponding to probe 2.

Once more the predicted response plots (Fig. 7.l2f) were

found to agree extremely well with the measured data.

With the shaft mounted on flexible supports ( KB =

0.309 x io6 N/rn), the shaft rms receptance plots for the

two points of excitation (Fig. 7.l2b) are shown in Fig.

7.12g.	 Receptance ratios, as defined in Test 6a, are

presented for comparison with earlier results at the same

shaft frequencies, the introduction of support flexibility

is seen to result in an increase in the receptance ratios,

thus indicating a relative deterioration in angular

control performance in such circumstances.	 The relative

increase in angular force requirements is seen to range
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from 24% at low frequency (1100 cyc/min) to 150% at the

higher frequencies (4700 cyc/min).

The appearance of a blunt peak in the response plots

at a frequency of approximately 2800 cyc/min is a result

of the introduction of rigid-body modes.	 The form of the

response plots at this frequency is thought to be due to

the small amount of damping present within the shaker

assembly, these modes being more sensitive to external

damping than the shaft flexural modes (Section 5.3.2).

7.5.8	 A Note on Shaft Reverse-Whirls

A number of researchers [46,67,118] have shown

theoretically that certain rotor systems may exhibit

reverse-whirl characteristics within specific speed

ranges.	 However, the phenomenon is rarely observed in

practice [67,120].

Throughout the test program described within this

chapter, in certain circumstances the test shaft was seen

to vibrate in a distinctly odd manner. The shaft motion

appeared to continually change from a 'bobbing' to a

whirling type motion.	 Close examination of the shaft

orbit showed that the shaft was whirling alternately in a

forward and reverse sense and that a transition point

occurred where pure translatory (straight-line) motion

ensued.

Pederson [120] showed theoretically how, for an

undamped uniform shaft mounted on isotropic supports, the

natural frequencies are grouped in pairs with the

numerically smallest natural frequency of a pair
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corresponding to backward precession and the higher

frequency corresponding to forward precession. 	 The

introduction of gyroscopic effects further separates the

natural frequencies in each pair and thus, given the above

conditions, would lead to an extension of the region of

reverse whirl.

With the above in mind, a test shaft employing steel,

shaft-mounted discs having substantial polar inertia and

mounted on anisotropic supports, was examined (Fig.

7.13a).

The shaft first critical speeds in the horizontal and

vertical planes were found to occur within the speed range

885 - 900 rpm, more accurate measurement being limited by

the degree of speed control available. 	 The measured

(using probes 4, 5 and 6) and predicted shaft rms

displacement responses are presented in Fig. 7.13b. 	 The

theoretical and experimental data agree very well, an

error of approximately 1.7% occurring in the predicted

peak response speed.

The first two system eigenvalues were predicted and

plotted as a function of shaft speed in Fig. 7.13c. 	 The

computed critical speeds in the vertical and horizontal

planes are 854 rev/mm and 864 rev/mm respectively.

Examination of the real and imaginary components of the

correponding eigenvectors, in accordance with the

procedures outlined in Appendix A, showed the lower

critical speed to be of a retrograde nature. 	 The higher

critical speed corresponded to a forward whirl motion.

It might be assumed that in the region between these two
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critical speeds the shaft would whirl in a reverse

direction.	 This would be the case only if no gyroscopic

influences were present since shaft straight-line motion

(the point of transition between forward/reverse whirl),

would ensue at each critical speed. 	 When gyroscopic

effects are included, the region of reverse whirl would be

shifted as shown in Fig. 7.13d which is a plot of the

orbit semi-axes against shaft speed.

For the above test arrangement (Fig. 7.13a), shaft-

orbits were recorded at speeds below, above and between

the two critical speeds.	 The results are presented in

Fig. 7.14a where reverse whirl is observed to occur at a

shaft speed of 890 rpm.

It was found during testing that the introduction of

a small amount (2.0 Nms/rad) of angular electromagnetic

damping led to the elimination of shaft reverse whirling

(Fig. 7.14b).	 The presence of significant damping in

many practical rotor arrangements probably accounts for

the absence of shaft retrograde precession in real

systems.	 In Appendix F the simple case of a damped

Jeffcott-rotor with anisotropic supports was considered

and the limits for elimination of reverse whirl

determined.	 The results are expressed in graphical form

and presented in Fig. F.l.	 It is shown that relatively

low damping levels are effective in eliminating reverse

whirl, even when significant support anisotropy is

present.

Results of a theoretical analysis of the test rotor



219.

for three different angular damping rates (0, 0.1, 2.0

Nms/rad) are presented in Figs. 7.13e and 7.15.	 With the

damping rate set at 2.0 Nms/rad, reverse whirl is

completely eliminated, in agreement with test

observations.	 The introduction of an intermediate

damping value (0.1 Nms/rad) is not sufficient to eliminate

backward precession but does limit the speed range over

which this occurs.

Finally, it is worth noting that although the

introduction of gyroscopic effects alone may result in the

creation of reverse whirl modes, these will not be excited

by synchronous unbalance forces unless some support

anisotropy exists [120].

7.5.9	 Summary

Dynamic response predictions, for a number of test

shaft arrangements, using a transfer-matrix program,

showed reasonable and in many cases excellent, agreement

with experimental data.

The application of external damping using mechanical

dashpots highlighted the inherent disadvantages of

employing a device whose construction necessitates

physical contact with a rotating element.

In direct contrast angular control of a high-speed

rotating shaft using an electromagnetic actuator has been

shown to be a feasible and worthwhile proposition. 	 The

device can be employed to implement a variety of control

strategies leading to significant system synchronous and

asynchronous response attenuation.
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Measurement of relevant test-shaft receptances has

shown that the forces required for implementation of

angular control are of the same order of magnitude as and

in some instances less than, those demanded using radial

control for the same degree of vibration attenuation.
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CHAPTER 8

CONCLUSIONS

A summary of the theoretical and experimental work

performed during this project, along with important

findings, is presented. 	 Suggestions for further research

are also provided.

8.1 Theoretical Work

a)	 A program based on the Transfer Matrix Technique was

created and extensively employed for the dynamic analysis

of a variety of rotor-bearing systems. 	 A general

procedure incorporating the modified TM method, to be used

for the free-vibration analysis of multi-level systems, is

presented.	 Using this approach the demands on computer

memory are minimal and the possibility of numerical

instability is substantially reduced.

The program allows for the investigation of 'real-

life' effects such as: 1) mass unbalance, ii) multiple

multi-level supports possessing radial and angular

stiffness, damping and mass/inertia characteristics, iii)

shaft initial-bend, iv) gyroscopic/rotary inertia couples

and shear deflection.

Using the program to predict critical speeds,

unbalanced response and influence coefficients for a

number of test-shaft cases, good agreement with the

results of other workers, and those from available closed-

form solutions, was achieved.

Whilst employment of the modified TM method was shown
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to be successful in all cases, in providing accurate high-

frequency shaft mode-shapes, in some instances this same

accuracy could not be achieved using the normal method.

b)	 A procedure enabling prediction of optimal control

parameters for any number of control devices located at

chosen points on the rotor-bearing system was developed.

The method entailed the employment of a two-stage transfer

matrix analysis in conjunction with a multi-variable

optimisation algorithm, allowing minimisation of any

chosen system response parameter. 	 Since the transfer

matrix technique was utilised, computer memory

requirements were reduced significantly in comparison to

those of other available methods.	 Additionally,

repetitive shaft-system analyses were avoided thus leading

to increased computational efficiency.

Accuracy of the technique was assessed and confirmed

through its application to a number of shaft cases

incorporating a variety of support configurations.

Comparison of results with those obtained using a 'fixed-

point' procedure showed excellent agreement.

c)	 A comprehensive study of the relative performance of

angular and radial controllers, when applied to various

shaft arrangements, was implemented employing the newly-

created optimisation technique.	 Attenuation of system

synchronous response was examined for both modes of

control.	 Three performance indices were considered for

comparison:

1. Shaft maximum displacement.

2. Shaft sum of squares of displacement.
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3.	 Total bearing force.

The main findings were as follows:

1.)	 Effect of Choice of Performance Index

Shaft maximum displacement and sum of squares of

displacement were found to be equivalent response

functions, minimisation of each leading to identical

control requirements.	 Miminisation of total bearing

force resulted in the employment of optimum control

parameters and controller locations, in general,

different from those predicted using either of the

above two performance indices.

ii) Optimum Control Locations and Control Coefficients

For a shaft speed range encompassing the first three

rigid-bearing critical speeds:

1) The optimum radial controller location is at a

point approximately 10% of the shaft span from

the supports and appears to be relatively

insensitive to the support stiffness magnitude.

2) The optimum location for angular control is seen

to depend on the choice of performance index and

occurs at the shaft supports and at a position

close to the shaft centre when employing the

shaft maximum displacement (or sum of squares of

displacement) and total bearing force criteria

respectively.

3) With the controllers employed at their optimum

locations, for a reasonable value of angular

controller equivalent radius the optimum angular

damping levels are of the same order as those of
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the radial controller. 	 Although in these

circumstances system response attenuation using

radial control was found to be greater than that

resulting from angular control, in many

circumstances the difference may not be

substantial.

iii) Control at Shaft Supports

From a practical point of view the control forces

should, ideally, be introduced at the shaft supports.

The results of such a study, therefore are of great

significance.

The investigation showed that for large support

stiffness values, angular control is far superior

(both in terms of minimised response and force

requirements) to radial control, this trend reversing

as the support stiffness is decreased.

However, even for fairly low support stiffnesses,

angular control may still be the more effective of

the two, particularly over the lower end of the shaft

speed range.

When support stiffness is low and angular control is

employed, there appears to be little advantage in

utilising an adaptive control procedure since passive

angular control is almost as effective. 	 Similarly,

passive control is to be preferred in the case of

radial control of a system with relatively stiff

supports.

iv) Adaptive Versus Passive Control

In a number of cases the introduction of an adaptive
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control strategy will lead to system response levels

significantly lower than those which could be

obtained by the employment of an equivalent passive

device.

In many of these cases, however, continuous adaptive

control may not be necessary and may be replaced by

an equivalent simpler approach, whereby the control

effect is 'switched' on and off at rotor speeds

determined by the system dynamic characteristics.

d)	 Theoretical studies, performed and described within,

have shown that in rotor systems containing elements which

may exhibit destabilising characteristics (e.g. oil-film

bearings), system stability may be considerably improved

by the application of external radial or angular control

forces.

Substantial increases in instability threshold speeds

can be realised even when low control-damping levels are

employed.	 The introduction of angular damping at an oil-

film bearing was found to be an efficient means of system

stability control.	 In contrast, whilst certain shaft

modes may be stabilised using radial control at the

bearings other modes may in fact have their stability

margin considerably reduced. 	 In addition, radial damping

requirements were found to be greater than those for the

angular device.

A new means of attenuating rotor-system response has

been proposed and investigated theoretically. 	 Situations

have been shown to exist where angular control would
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provide a viable alternative to the conventional radial

methods.	 Indeed, it should be borne in mind that the

theoretical analyses undertaken unavoidably provide the

radial control procedures with an unfair advantage since

access limitations in practice may invalidate many of the

desirable features of this approach.

8.2 Experimental Work

An extensive test program requiring the design,

construction and experimental analysis of a number of

test-shaft arrangements was undertaken to:

1. Enable assessment of the (transfer matrix) analysis

program in predicting rotor-system unbalance

response.

2. Investigate the effectiveness of external control,

particularly angular electromagnetic control, in

attenuating system response.

The shaft arrangements investigated were such that,

in the operational speed range, a maximum of one critical

speed per plane was encountered. The main findings were

as follows.

a)	 The measured response of an initially-bent, uniform

shaft mounted on rigid supports was found to agree very

closely with the response predicted using a numerical

analysis program created specifically for the project.

System natural frequencies were predicted to within a

few percent of their measured values.

Shaft non-synchronous vibrations were evident

throughout the test work. 	 Their presence was found to be
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mainly due to the combination of shaft/coupling stiffness

asymmetry and gravitational effect.

b)	 The effect of introducing radial viscous damping to

the bent-shaft system, using mechanical dashpots, was

assessed.

With the dampers placed close to the shaft mid-span,

a substantial reduction in system response could be

achieved.	 Gradual re-location of the dampers towards the

shaft supports resulted in a progressive deterioration of

the system response. 	 When the mechanical dampers were

positioned at a shaft location corresponding to a distance

of one-eighth of the shaft span from a shaft support, the

first critical speed could not be traversed.

A representative system response function, computed

as the root-mean-square of a number of measured shaft

displacements, was plotted and displayed clearly-defined

'fixed-points'.	 The benefit of switching between

control-damping levels at the system 'fixed-points' was

evident from the experimental results, thus confirming the

validity of the earlier theoretical analyses concerning

the application of an adaptive M on-off control strategy.

The mechanical dampers employed exhibited highly non-

linear characteristics making their modelling extremely

difficult.	 In addition, their damping rate was found to

decrease significantly with increasing excitation-

frequency at high shaft speeds, rendering them relatively

ineffective.	 Because of these effects and other related

problems, agreement between predicted and measured shaft

response was not as good as for the undamped case.
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A number of difficulties experienced with the

mechanical dampers highlighted the possible benefits of

utilising a non-contact control device.

C)	 The main portion of the experimental work involved

the design, construction and application of an angular

electromagnetic actuator on a variety of test-shaft

configurations.

The controller was mounted close to the test-rotor

drive-end bearing.	 Throughout the tests reasonably good

agreement between predicted and measured, controlled and

uncontrolled, system response was observed, even though

the inherent non-linear characteristics of this device

resulted in a fairly complex analysis procedure.

The controller was capable of simulating damping and

or stiffness control forces, the level of which could be

easily altered by keyboard input or software instruction

using a microprocessor.

When employed as a damper the device was found to be

effective in attenuating synchronous and non-synchronous

shaft response and transmitted bearing forces - control

damping factors of.26 and.58 being recorded for the

system first and second modes respectively.

Significant increases in the system natural

frequencies (17% in one case) were realised by utilising

the electromagnetic actuator as a stiffness element.

This led to a considerable reduction in response levels

within specific shaft speed/frequency ranges.

The benefits of this type of control were further

extended by implementing an adaptive stiffness control
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procedure whereby system control was applied up to a shaft

speed corresponding to the first 'fixed-point' and

thereafter removed.	 This approach resulted in a reduced

system response over the complete shaft-speed range, in

agreement with theoretical predictions.

Calibration of the electromagnetic controller, using

a specially designed and constructed force-transducer,

provided the relevant information regarding the dynamic

characteristics of the controller for use in the analysis

program.	 As expected, the linearised damping

coefficients were observed to be directly proportional to

the shaft-slope feedback signal and excitation frequency,

whilst the stiffness coefficients were found to be a

linear function only of the former parameter.

The measured force/current/gap relationships showed

relatively good agreement with those predicted using

simple magnetic-circuit theory.

The control hardware was found to function well over

a frequency range of 0 - 100 Hz, although at the higher

frequencies, the influence of control circuit component

phase-lags did produce some deterioration in performance.

In test-shaft arrangements having bearings possessing

anisotropic stiffness properties, shaft reverse-whirl

phenomena were observed.	 In these cases the introduction

of a small amount of angular electromagnetic damping

resulted in the elimination of this effect.

d)	 The relative merits of radial and angular control

were considered by comparing measured system receptances

over a frequency range encompassing two natural
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frequencies.	 Results were in excellent agreement with

theory and showed the increase in efficiency of the radial

approach when support flexibility was increased.

In summary, results from experimental work on a

laboratory rig have shown that angular control is a

feasible and practical means of vibration control. 	 The

employment of an electromagnetic actuator to implement

this type of control results in a number of advantages

which may not be realised using other available devices.

The lack of physical contact between controller and shaft

system, along with the possibility of simple

implementation of a variety of control strategies, are

just two of the features which make the electromagnetic

actuator a most useful tool in the field of vibration

control.

8.3 Suggestions for Further Work

The work performed and described within this thesis

represents only a small step towards assessing the

capabilities of the various means of shaft vibration

control and in particular, those of angular control. 	 The

following proposals are made with a view to extending the

knowledge in this field.	 Item 1 below is suggested with

the main aim of improving the operational aspects of the

particular controller utilised for the present studies,

items 2 and 3 being of a more general nature.

1.	 Steps should be taken to modify the electromagnet

control circuitry to achieve linear operation of the

control device.	 This would simplify considerably
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the analysis procedures, since a much less complex

controller model could be utilised. Some form of

circuit compensation is also required to eliminate

unwanted component phase-lags and to ensure stable

controller performance at all times.

2. Experimental investigations into the relative

performance of angular/radial electromagnetic

controllers need to be conducted on a more realistic

rotor system.	 The rig employed should incorporate

oil-film bearings and have a shaft speed range

covering at least two shaft critical-speeds.

3. A study should be conducted with the object of

rationalising controller performance data, taking

into account parameters such as controller size and

power (or energy dissipation rate for a passive

device) requirement necessary to ensure the

attainment of some pre-defined standard criteria.

This would allow proper evaluation and comparison of

a variety of available control devices.
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APPENDIX A

SHAFT ORBITAL MOTION

If a rotating shaft is subjected to synchronous

excitation due to, for example, mass unbalance then, in

general, the shaft journal locus will be an ellipse in

space, the centre of which will correspond to the

unperturbed steady state shaft position. 	 In fluid-

film bearings this relative mean position will vary

depending mainly upon the shaft running speed.

Referring to Fig. A.1. we can determine the

characteristics of the elliptical orbit as follows.

The shaft motion may be expressed as shown,

- iXt
w	 Re [we	 I

(A.1)
r iAtv	 Re L y e	 I

where Re denotes the real part of the term in

brackets and,

=	 + 1W5

andv	 v +iv
c	 s

Since A = a + iw then equations (A.1) can be

rewritten as

at
w = (w coswt - w sinwt)e

c	 S
at

and v = Cv coswt - v sinwt)e
c	 s
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For forced synchronous motion	 z U and w = 2 so

that,

	

W	 WCOS7t - wsint

	

and v	 vcos2t - v5sin7t

where	 is the shaft rotational frequency.

Equations (A.2) can also be written in the form

w = A sin(2t +	 )w	 w

v = Acos(c2t +

where,

2	 ,2	 2A = )'w +w	 ; A =jv +vw	 C	 S	 V	 C	 5

(A.2)

(A.3)

and

ARCTAN (w/-w)
	

= ARCTAN (v/v)

and A are the amplitudes of the deflections

w and v respectively and	
'	 , are the corresponding

phase angles.	 The phase angles	 represent the

relative time-lag between the occurence of maximum

deflection and the passing of a shaft reference point

in the relevant plane.

Equations (A.2) and (A.3) describe the elliptical

whirl orbit of' the shaft.

Now, the instantaneous orbital radius r is given

by

r	
2	 2

=	 w +v	 (A.4)



thus tan22t =

A3.

Substituting for w and v from equations (A.2)

in equation (A.4) gives,

C2 2 2 2	 2 2 2 2r	 [4w +w +v +v +(w +v -w -v )cos2t -IC S C S	 C C S S

-2(w w +v v )sin22t]4sc sc

(A.5)

and r reaches a maximum or minimum when

d	 [2222
d(t)	

(w +v -w -v )cos2c2t-2(w w +v v )sin2clt] = 0

	

c c s s	 sc sc

-2(w w +v v )sc Sc
2222(-w -v +w +v
S a c C

(A.6)

Using equation (A.6) in (A.5) gives

r2 2 2 2+, 2 2 222
a,b = [4w +w +v +v -[iw +v -w v )(c S C S	 c c ss

+4(w w +v v )2]41]
sc sc

Where a and b are the major and minor semi-axes,

of the orbital ellipse, respectively.

The orbital radius r makes an angle 	 with the y

axis where,	
[w cosc2t-w sinc2t]c	 sARCTAN [!f.]	 [v cosc2t-v sint]

C	 S

(A.7)

The maximum displacement a occurs at

= ARCTAN
[2(v w ^v w )]cc ss
2222L(V +v -w -w )]c s c s

The rotor precession rate i4 may be obtained in
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terms of w and v and their derivatives by

differentiating equation (A.7) with respect to time.

Subsequent use of equations (A.2) along with algebraic

manipulation leads to

4)	 cos 4)2[wv-vw]

and since the term outside the square brackets is

always taken as positive then the direction of shaft

whirl may be determined by examination of the sign of

the term [w v -v w ].	 Thus,CS CS
For forward whirl (w v -v w )> 0Cs Cs
For reverse whirl (w v -v w )< 0CS CS
and (w v -v w )	 0 indicates shaft straight lineCs Cs

motion.
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APPENDIX B

GENERAL FEEDBACK CONTROL OF A JEFFCOTT ROTOR

Radial Control (F	 0)ea

From equation (5.3), letting F = F - Fu	 er

F	 m + C 2 c + k 2 x (B.1)

The radial displacement y at any shaft location

may be expressed as:

y	 ct 3 [-m( -C 2 + F] -a4[G3y+G491

Therefore,

a	 r	 .1F	 mx + C 2 x + yia 3 + 4 iG 3 y + G 4 yj	 B.2
a3

Where, from standard beam deflection formulae [103],

a 3 	1	 (L a - a )
El	 16	 12

2 2	 4	 4a3L)anda 4 =1	 (2aL +2a -
6EIL

From equations (B.1) and (B.2) we get

ciG	 a1	 43	
4G4

x=[	 +
k 2a 3 	k2a3	 + k2ct31'	

(B.3)

or x = Ay + B'

taking the Laplace Transform

y = x/(A^BS)	 (8.4)

Substituting (B.3) in (8.1) and taking the Laplace

Transform gives

F = [mBS 3 +(mA+C 2 B)5 2 +(C 2 A^k 2 B)S+k 2 A]	 (B.5)
y
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Now,

____

F	 F^F	 F/y^[C3+G45]
u	 er

Therefore,

1

F	 [mBS+(mA+C2B)S2+(C2A+k2B)S+k2A^[G3^G4SIa1 I

(B.6)

letting, b = alL; R	 f	 wlwcR;

h f1 = C1;	 P fj = G 2 	;	 h f2 = C 3	(B.7)

k2	 2mWCR

P f2 = C4

2mWCR

Now for forced response F = mew 2 and substituting

equations (B.4) in equation (B.6), replacing S with iw,

and making use of the relationships described in (B.7)

we obtain,

x	 f2[1+hf2E] + i[2f3P2E]
e

[[hf2E(1-f2)-Pf2E(4	 f 2 )-I-(1_1 2 -I-h f2H)] +
p2

(B.8)

i[hf2E(2p2f)+pf2E(2f-2f3)+(2p2f+2fpf2H)]I

Where,

E = (7b2-32b3+40b4.-16b6)

and H = (9b2-24b4--16b6)

As a check on the above consider the following

cases,

No Radial Control

C 3	C4 = hf2 
= f2 =



83.

Therefore,

2

(1-f2+i2p2f)

which is correct.

Radial Control at Shaft Centre

b	 0.5 Therefore E = 0 and H = 1

Therefore,

2
x=	 f
e	

[(1_f2+hf2) + 12f(p2+pf2)]

Which is again correct (refer to equation (12)

in reference [102]).

Angular Control (F	 = 0)er

Following a procedure similar to that employed for

radial control shown above, a similar relationship may

be obtained:

x =	 f2[1+R2hf1M] + i[2fR2pf1M]
e

[[1-f2(1+4R2pf1p2M)+R2hf1M(1-f2+N2)] +

(B.9)

i[f(2p2+2R2p2hf1M)+R2pf1M(2f+2fN2-2f3)]]

where,

M = (7-48b^120b2--144b4)

and N = 3(1-4b2)

It should be noted that equations (B.8) and (B.9)

do not hold for the limiting conditions where the radial

and angular controllers are mounted at a shaft support

and shaft centre respectively (refer to equation (B.4)).
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APPENDIX C

STRAIN GAUGE TRANSDUCERS

C.1	 General

The Wheatstone Bridge is widely employed in strain

gauge applications because of it's suitability for the

measurement of small changes in electrical resistance.

A variety of strain-gauge transducers may be

constructed making use of the full bridge arrangement

where each arm of the bridge consists of a strain-gauge

as shown.

During the experimental work a Fylde D.C. strain-

gauge amplifier was used in conjunction with the

specially designed and constructed transducers described

here.	 In addition to amplifying the bridge output

signal considerably the amplifier also produced a

constant D.C. bridge input voltage and allowed for

bridge balancing through potentiometer adjustment.

Consider the above arrangement where the gauges

have been bonded to the surface of a component subjected,

in general, to bending and direct loading.	 The strain
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in any gauge n may be expressed as:-

CBn + EDn + C1

where,

£Bn	 Strain due to bending.

COn = Stain due to direct loading.

Cm = Strain due to temperature effects (apparent

strain).

For a four-arm bridge the bridge output-volts may

be expressed [115] as,

V	 V..GF[	 -c +c -c]a	 1	 1	 2	 3	 4
4

V. .CF
1.

4
+( c111213_ ca)]

Where CF is the gauge factor and V the bridge

input volts.

If the four gauges are mounted in close proximity

it may be assumed that they are subjected to the same

temperature field and generally the same environmental

conditions.	 in these circumstances e Tn = 0; n = 1, 4

and

V 0	Vj.GF.[(CB1_cB2+cB3_cB4)+(ED1_E02±cD3_cD4)]

(C.i)

The exact orientation of the gauges on the element

under stress will determine the magnitude and sign of

the direct and bending strains in equation (C.1). 	 Thus

the four-arm Wheatstone Bridge may be used effectively

to construct a force transducer with the gauge positions
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selected to maximise the performance of the particular

device.

C.1.1	 Bearing Ring Force Transducers

The strain-gauges were located as shown (i.e.

gauges 1 and 3 mounted on the ring outer surface) to

enable maximisation of the transducer sensitivity since

CBn > CD for n = 1,4

For this case

C B2 -_CB1 and CB4	 B3

k BlI	 kB2 l	 k B3 l	 kB4 I	 ICBI

= D2	 CD3 = CD4

Therefore substituting the above in equation (C.1)

we obtain,

V0 = Vj.GF.(4eB)

For this arrangement the gauge factor was

approximately 2.0. and gauge resistance 120c2.
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C.1.2	 Axial Force Transducer

Since only the direct forces were of interest the

gauges were connected such that bending effects could

be eliminated.

For this case,

£ 81	 C83	 kBlI	 ICBI

C D1	 CD3	 CD

C B4	 _PCB

CD2	 C04 =	 CD

where i is Poisson's Ratio (for steel i = 0.3)

Substituting these equations into equation (C.1)

V0	 Vj.GF.(2.6cD)

4

For this arrangement semi-conductor gauges were

employed with a gauge-faetcr of approximately 140 and

gauge resistance of 35O.

C.1.3	 Electromagnet Force Transducer

Here, due to the nature of the magnet calibration

technique, only the bending effects were of interest.
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For this case,

	

£81	 C83 =	 B2	 B4

	

1c 81 1	 kB3I = I c B4 l	 ICBI

CD2 = D3	 CD4

Therefore substituting these equations in equation

(C. 1),

V 0 = V.GF. (4CB)

4

Gauge details were as for case C.1.2.



Dl.

APPENDIX D

CALIBRATION OF MECHANICAL (KINETROL) DAMPERS

Consider the following linear shaft system

subjected to an excitation force p(t) at point F,

initially uncontrolled (Fig. D.la), then controlled

using some external device at point D, (Fig. D.lb).

m	 F

F	 I	 _ 1 a) UNCONTROLLED
A	 I	 £	 A

1p(t)
_______________________________	

d
b) CONTROLLED

p(t)

FIG. 0.1 Linear Shaft System 	 \'\'

If the excitation force is assumed harmonic then,

- iwt
p(t)	 P.e

and q(t) =

where q(t) is the shaft displacment at any

location m.

Letting the subscripts u and c denote the

uncontrolled and controlled states of the shaft system

respectively we can write,

= q(t) - fc(t)mdu

(D.l)Therefore

U	 =Q	 -F.rmc	 mu	 c mdu

where

f (t) = instantaneous control force at point d
c



mc	 mu - dumdu
1+-
- r
-	 ddu

(D.4)

02.

F
C

rmdu = Receptance defined by the dynamic

displacement at point m due to a unit harmonic force

at point d (uncontrolled - i.e. no damper fitted).

Consider the motion at the controller location.

Assuming the controller (in this particular case

mechanical damper) may be modelled as a single degree

of freedom system then

F = Z.0c	 dc

where
	

(0.2)

= (K - Mw 2 + iwC)

Substituting equations (D.2) into equation (D.1)

and setting m	 d we obtain,

dc	 du
	

(0.3)

(1 + Z•I1dd)

Now substituting equations (D.3) and (D.2) into

equation (D.1) gives:

Since all shaft motions are a direct result of

the single external excitation force p(t) we can

write:

Q	 =P.rmc	 mFc

mu	
P.	 mFu	 (D.5)

du	 rdFu

Upon substitution of equations (0.5) into (0.4) and

some further manipulation we can obtain an expression
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for the controller dynamic stiffness Z in terms of the

measured (controlled and uncontrolled) system

receptances:

'1

'dfumdu 3 - -
r

[•	 -F	 I	
ddu

mFc mFu

(D.6)

and

1'dFu	 Receptance defined by the displacement at

point d due to a unit force at point F

(uncontrolled - i.e. no damper fitted).

rmFc	 Receptance defined by the displacement at

point m due to unit force at point F

(controlled - i.e. damper fitted).

"mFu	
Receptance defined by the displacement at

point m due to a unit force at point F

(uncontrolled - i.e. no damper fitted.

r dd U	Receptance defined by the displacement at

point d due to a unit force at point d

(uncontrolled - i.e. no damper fitted).

Thus, measurement of the above system receptances

enables estimation of the damper characteristics.



El.

APPENDIX E

ESTIMATION OF EQUIVALENT LINEARISED

ELECTROMAGNETIC CONTROL PARAMETERS

For modelling purposes accurate prediction of the

magnet damping and stiffness coefficients is essential.

Because of the effect of shaft residual bend it was

found necessary to vectorially subtract the response

results of two test runs.	 In each test run, unbalance

masses of known magnitude and location were applied.

The situation is further complicated since, for non-

linear electromagnetic control, the control forces

during each of the two test runs are, in general,

different.	 If an accurate model of the sustem is to

be obtained then some means of computing an equivalent

or effective control force, and corresponding control

parameters, is required.

The following procedure is used.

Consider the initial test run (system A) where

the shaft is run without any applied unbalance.	 Then

the response of the system will be due to inherent

unbalance resulting mainly from the initial-bend.

In the second test run (system B) a known unbalance

is applied to the system and the shaft driven over the

same speed range.

Subtraction of response data from these two test

runs will result in a set of response data
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representative of a shaft arrangement (system C)

subjected to the known unbalance but having no other

inherent unbalance.

	

RESIDUAL	 CA	 RESIDUAL
BENDND

CF	 ____ ____	 ____

SYSTEM B	 CEFF	 f Ct)	 SYSTEM A
U

EF
A C	 F	 A

SYSTEM C

C and K are the electromagnetic linearised damping

and stiffness coefficients respectively.	 fu(t) is the

force, at a shaft rotational speed w, due to the

externally applied unbalance.

Since shaft response due to unbalance is being

considered the motion is assumed harmonic, thus,

f(t)	 Fe

e(t)	 e.e3t

and similarly for all other harmonically varying

parameters.

e(t) is the instantaneous shaft slope at the

controller (point C).

For System A

eA	 - MA.r cc

where

(E.1)

is the shaft slope at point C for system A.
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is the shaft slope at point C due to inherent

unbalance.

MA is the control moment at point C.

1'cc is the angular point receptance at C.

and M A	 eA [K A+iWC A ]	 eA.ZA	 (E.2)

Similarly,

For System B

eBeOM.r	 +r.i	 (E.3)
B cc	 u cF

where,

1'cF 
S the receptance defining the slope at point

C due to a unit force at point F.

All other terms are defined analogously to those

used in system A.

In addition, M B	 eB [K B+iWC B J	 OB.ZB	 ([.4)

Now from (E.i) and (E.3)

- eA =	 [MA...MBJ + V .i	 (E.5)
cc	 u cF

Substituting equations (E.2) and (E.4) in (E.5)

gives,

e B [I^ F.r 	([.6)
A A B B	 u cFA	 cc

Considering System C now,

= -T .F	 + V .	 (E.7)
c	 c cc	 u cF

and,

C[KEFF+iWCEFFI = 8cEFF	
(E.8)

Putting equation (E.8) in equation (E.7)

r cc [ c .Z EF F I + u'cF	
([.9)

and since	
=	 - 

0A equation ([.9) can be rewritten

as

eB - e A	 rCCNeAoB)EFF] + FucF	 (E.1O)
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and equating the right hand sides of equations (E.6)

and (E.1O) we find,

	

[OA .Z A -	 B.ZB]	

(E.11)

[	 -

Thus, in general, solution of equation (E.11)

will necessitate the measurement of 	 and	 during

test runs and the computation of ZA and Z 8 from

calibration data, for each rotor frequency, using the

procedures described in sections 6.6.5 and 6.6.6.2.

Only then can the equivalent control impedance !EFF be

determined and employed in the numerical simulations.

It is seen that if the controller characteristics

are assumed linear then 	
= Z B = 

Z and from equation

(E.11) jEFF z	 and is independant of the system

responses thus simplifying the analysis considerably.

Alternativel y , if the condition A = _eB is satisfied

then again EFF



Fl.

APPENDIX F

THE INFLUENCE OF EXTERNAL DAMPING

AND SUPPORT ASYMMETRY ON REVERSE

WHIRLING OF A JEFFCOIT ROTOR

Consider an unbalanced Jeffcott rotor mounted on

anisotropic supports and subjected to external viscous

damping.	 Using the co-ordinate system as defined in

Chapter 4 we can write the equation of motion for each

plane as:-

Md 2 . (v^ecosç2t) + Cdv + K v = 0
V

Ut.	 Ut.	
(F.l)

and Md 2 (w+esint) + Cdw ^ Kw	 0

dt 2	dt

Where M and e are the rotor mass and eccentricity

respectively, C the external damping and K , K the

effective shaft/support stiffness in the respective

planes.

Equation (F.2) may be expressed as,

' +	 '	 v = ec2coswt

(F.2)

2	
-	 2 2 sinwtw w^w w	 e*.+2nw	 nw	 -

Where	 is the dimensionless damping factor and

Wnv and	 are the natural frequencies in orthogonal

planes defined by,

(A) n v =	 w n w
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Assuming synchronous harmonic motion with shaft

precession rate equal to rotational speed (2 = w) the

steady-state solutions of equation (F.2) are

2	 1-1
v	 eF	 cosjujt-tan (2F)

L	 (1-F)

- ity e	 [v + iv Je)t
C	 S

eF2
w=	 V

4 221-F ) + (2F)2]w

sint_tan_1 (2cF)

L	 (1-F)

- iwt	 iwt
we	 = [w + iw Je

C	 S

where

F	 w/üi	 ; F =w/w
v	 fly	 w	 nw

Now the displacement cos and sine terms may be

written as,

v	 (1-F)

V = 2F
S	 V
	

(F.3)

w	 2F

w	 -(1-F)

The direction of rotor whirl is determined by the

sign of the term (v 5w - vw5) as described in Appendix

A.

Thus, substituting from equation (F.3) in the above

leads to the conclusion that

For forward whirl [42FF^(1_F2)(1_F)] > 0

For reverse whirl [42FF-,-(1-F2)(1-F2)] < 0



F3.

Now, since F and F are always positive it is seen

that the introduction of external damping tends to

suppress reverse whirling.

Considering first the case of no external damping

(	 0) then [(1-F2)(1-F2)J will be positive for

forward whirl and negative for reverse whirl. 	 Thus,

for isotropic supports (F=F) the above term is always

positive, leading to progressive or forward whirl at

all speeds.

If, however, FFw then the following conditions

will result,

F < 1; F < 1 -^ Forward Whirl
V	 W

F > 1; F > 1 -+ Forward Whirl
V	 W

F < 1; F > 1 or F > 1; F < 1 -^ Reverse Whirl
V	 W	 V	 W

It is evident that, for the simple model

investigated if damping is not present then shaft

retrograde whirling may exist only if supports exhibiting

non-isotropic properties are employed.	 The region of

reverse whirl is confined to a speed range between the

shaft critical speeds in orthogonal planes.

If system damping is present then clearly the

speeds at which retrograde precession may occur will

be determined by the relative magnitudes of , F and

F.
w

The influence of these parameters on the existence

of shaft reverse whirls is illustrated in Fig. F.1.

The horizontal axis represents the degree of support

anisotropy present whilst the vertical axis shows the
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shaft running speed as a proportion of the lower

critical speed, where only the speed range between the

two system critical speeds is examined. 	 The curves

drawn show the amount of external damping just necessary

to eliminate reverse whirling for a corresponding range

of support asymmetry ratios. 	 The region enclosed by

the curves and the vertical axis indicates shaft

retrograde motion.	 For example, referring to the case

where	 = 0.3 it is seen that for a critical speed

ratio (wnw/wmv) greater than approximately .56 the

shaft will whirl in the same direction as rotation at

any speed between the two system critical speeds, i.e.

reverse whirl is completely eliminated.	 However, as

support asymmetry becomes more pronounced (F -^ 0)

F
w

reverse whirling will occur over a portion of the speed

range between the two criticals, until at (w 1w )=.5nw nv

the shaft will exhibit retrograde motion within a speed

range between F	 1.175 and F..	 1.7.

The diagram thus gives a good quick guide to the

amount of system damping required to ensure forward

whirling for a given degree of support asymmetry.

It is clear that the introduction of even a small

amount of external damping is effective in removing

reverse whirls.	 For instance, where the critical

speeds in the two planes differ by approximately 20%

it is observed that the application of damping of the

order of 10% of the system critical damping value will
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result in the elimination of shaft reverse whirl. 	 This

probably explains why the phenomenon has rarely been

observed in practical rotor systems [67].
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- ADAPTIVE CONTROL
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READ INPUT
DATA

11=01

I + 1

NO	
1=1?

YES

PERFORM TM ANALYSIS
WITH UNIT EXCITATIO.
FORCE APPLIED AT
CONTROL LOCATION
STORE SHAFI'
DISPLACEMENTS
(REcEP'rANcEs)

PERFORM TM ANALYSIS
WITH SPECIFIED
UNBALANCE DISTN.
STORE SHAFI'
(uNcoNTRoLLED)
DISPLACEMENTS

_______
USING SYSTEM	 SUB-ROUTINE E tJAF VARY. I
BECEFFAN(S AND	 CONTROL C AND K VALUES TO

I UNCONTROtLED	 '	 FIND MINIMUM VALUE OF
I RESPON COMPUTE	 PERFORMANCE INDEX	 I

CONTROLLED RESPONSE	
I

FOR SPECIFIED C, K
I VALUESL__________ - -- - __J

IS P1
	

NO	 PRINT WARNING
MINIMI SED?
	

ALONG WITH DETAILS
OF FAILURE

PRINT OPTIMUM
C, K VALUES

PLOT MINIMISED
SYSTEM RESPONSE

STOP

FIG. 5.12 OPTIMISATION PROGRAM FLOW CHART

STOP
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RECEPTANCE PLOT (MM/N)

DRIVE END BRG RINGS	 DAMPING COF'6T. = g = .0076

TWO HORIZONTAL/TWO VERTICAL RINGS 	 NAT. FRE. = 123.7 Hz

xi O2

Fig. 6.7 Brg. Hsg. Receptance Details
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MAGNET CORE

t.
MAGNET MEAN	 4.

RADIUS r	
MAGNET COIL

EDDY-CURRENT

IJ7 PROBE

__ __I- ___
L1

BEARING	 MAGNET
SUPPORT-STAND

SILICON-
DISC

FIG. 6.17 ANGULAR CONTROLLER SET-UP (ONE-PLANE SHOWN)

FIG. 6.18 MAGNET DETAILS (DIMENsIONs IN MILLIMETRES)
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(a) EQUIVALENT SYSTEM

M 1_______	 ee..	
[[_i_2+K +iwC1	 IS	 Si

Mf

(ice - K) + iWCF

(b) BLOCK DIAGRAM OF CONTROL STRATEGY

FIG. 6.20 MAGNETIC ANGULAR FEEDBACK CONTROL OF A SIMPLE SYSTEM

FIG. 6.21 MAGNF1 FLUX PATH
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V	
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DIGITAL DAMPING GAIN SETTING = 70
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FIG. 6.25 CONTROL CIRCUIT PHASE-FREQUENCY DETAILS

(a)DAMPING CONTROL
(b) STIFFNESS CONTROL
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62.

SHAFT RtINOUT READINGS

(haft Speed = 170 rpm)

Measurement	 probe	 1	 Probe	 2	 Probe	 3

Displacement P-P	 25	 68	 18

Phase	 366	 314	 204

FIG. 7.3a

ZERO-CONDITION SHAFT READINGS

Shaft speed Measurement	 Probe 1	 Probe 2 Probe 3

	

545 r	 Displacement	 680	 1130	 715

	

II R	 phase	 293	 298	 284

	

750 r	 Displacement	 198	 210	 245

"	 "	 Phase	 100	 110	 113

FIG. 7.3b

TRIAL-MASS DATA

Trial mass of 7,0 grams at 38 mm radius in Plane 1.

Shaft speed	 Measurement	 Probe 1	 Probe2	 Probe 3

545 rpm	 Displacement	 560	 930	 620

" "	 Phase	 307	 310	 298

750 rpm	 Displacement	 174	 169	 210

"	 "	 Phase	 118	 135	 135

FIG. 7.3c

Trial mass of 7.0 grams at 38 mm radius in Plane 2.

Shaft speed	 Measurement	 Probe	 1	 Probe	 2	 Probe	 3

545 rpm	 Displacement	 720	 1180	 770

"	 Phase	 275	 281	 269

750 rpm	 Displacement	 200	 215	 200

" "	 Phase	 87	 87	 93

FIG. 7.3d



63.

Trial mass of 7.0 grams at 38 mm radius in Plane 3.

Shaft speed	 I'leaaurement	 Probe	 1	 Probe	 2	 Probe 3

Displacement	 535	 910	 550

"	 Phase	 284	 290	 276

750 rp	 Displacement	 150	 150	 180

" "	 Phase	 96	 99	 110

FIG. 7.3e

FINAL (BALMrcED) SHAFT VIBRATION READINGS

Shaft speed MeasureElent	 Probe	 1	 Probe	 2	 Probe	 3

	

545 r	 Displacement	 80	 57	 65

	

" "	 Phase	 97	 93	 115

750 rpm	 Displacemeit	 14.5	 53	 25

	

" "	 Phase	 37	 335	 273

FIG. 7.3f



64.

: OLtI BAL
*FRN
IF BALANCING AT ONE SPEED TYPE 1 IF NOT TYPE 2
=1
CORR NASS(GMS)	 PLANE	 ANGLE(DEG)

10.75	 1 •	 40.4

21.71	 2.	 268.8

13.27	 3.	 128.6

*FRN
IF BALANCING AT ONE SPEED TYPE 1 IF NOT TYPE 2
=2
CORR MASS(GPIS) FLANE ANGLE(DEG)

	

17.10	 1.	 92.4

	

13.08	 2.	 224.9

	

3.64	 3.	 297.8
RES.VIB.AMP.	 RES.VIB.ANGLE PLANE SPEED

	

48.69	 155.9	 1	 1.

	

25.04	 290.7	 2.	 1.

	

18.60	 40.9	 3.	 1.

	

31.85	 157.6	 1.	 2.

	

11.76	 83.1	 2.	 2.

	

42.80	 186.7	 3.	 2.

RMS RESIDUAL

32.48

FIG. 7.'ia BALANCE PROGRAM - SAMPLE OUTPUT -
FIRST BALANCE (sINGLE SPEED .ANI) TWO sPEEDs)
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*OLD BAL
*FRN
IF BALANCING AT ONE SPEED TYPE 1 IF NOT TYPE 2
=2
CORR MASS(GPIS) PLANE ANGLECEIEG)

	

4.34	 1.	 230.5

	

7.72	 2.	 302.2

	

9.81	 3.	 137.3
RES.VIB.AMP.	 RES.VIB.ANGLE PLANE SPEED

	

30.52	 75.8	 -	 1.	 1.

	

26.29	 265.8	 2.	 1.

	

11.29	 121.8	 3.	 1.

	

32.94	 107.0	 1.	 2.

	

9.99	 275.0	 2.	 2.

	

12.64	 216.9	 3.	 2.
RMS RESIDUAL

22.71

:lc

FIG. 7.'b SAMPLE OUTPUT CONTINUED - SECOND BALANCE (Two sPIDs)



epn;TIdwV

66.

D
U,

-p

0)
E
0)'—'
bUs

D
CUD-

D

>
r1U

QD
a)

q-a)
D	 00.
Cr)	 cfl

0)

N
OCIJ
0__c
cnrn

>	 a)

C)

0)
Q	 J	 Or-I
('J	 0	 r1(T3

0)	 4-3>
CUrl

LJ_

•HLJJ
>'—,

L(

D

U

b13
.1-I

I.L

D



(c) MODEL SHOWING ROTATING
STIFFNESS ASYMMETRY
(ic > 0.5 K)

(b) VIEW ON A-A

COUPLING
RESTRAINT

TEST SHAFT
COUPLING

DRIV

xi:
COR

67.

(a) SIDE VIEW

PIG. 7.6 TEST SHAFT COUPLING ARRANGEMENT
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