STABILITY AND DYNAMIC BEHAVIOUR OF STEEL

STRUCTURES WITH NON-LINEAR RESTRAINTS

AHMED EL-SAID A. BADR

B.Sc., M.Sc., Civil Eng. (Egypt)

A THESIS PRESENTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

IN THE DEPARTMENT "OF

CIVIL ENGINEERING

UNIVERSITY OF STRATHLCYDE, GLASGOW

1986



Dedicated to My Family



ACKNOWLEDGEMENTS

The study described in this thesis was carried out at the

Department of Civil Engineering, University of Strathclyde, Glasgow.

The author is indebted to Dr. J. Marshall, B.Sc., Ph.D., A.R.C.S.T.,
C.tng., M.I.C.E., M.I.Struct.t., for his supervision, advice, valuable

guidance, numerous suggestions and stimulating discussions throughout

this work and during the preparation of this thesis.

I would like to thank Professor I. MacLeod, Professor of

Structural Engineering, University of Strathclyde, for his advice and

encouragement during the preparation of this thesis.

The co-operation of the technical staff of the heavy structures
laboratory is acknowledged. Special thanks are due to Messrs. J.
Morrin, J. Harper, T. Towers and J. Mclean, for their assistance

in the construction and testing of the experimental models.

I would also like to thank Mr D. Evans of the Advisory at the

University of Strathclyde's Computer Centre, and my colleagues of the

structural section group for their useful contribution.

The author 1s deeply indebted to his Government and the University

of tl-Mansoura, Eqypt, for providing the financial support to undertake

this study.

Finally, the author records with deep appreciation the patience,
understanding and endurance received from his direct and extended

family. The marvellous support received from his wife "Eman", daughter

"Lynda" and sons "Mohammad & Osama", during his stay in the U.K. is



ii

gratefully acknowledged.

Thanks are due to Mrs MacKinnon for her neat and diligent typing

of the thesis.



111

ABSTRACT

This study was undertaken to investigate the effects of
imperfections in the initial geometry of bracing members on the
stability of the structural frameworks. The general non-linear
behaviour of frameworks, consisting of single columns, or multistorey
frames stiffened by curved bracings, were studied under the effects
of combined vertical and horizontal load systems. The study was

divided into two main parts.

In part one, the study examined the structural frameworks in

the following situations:

i) Influence of initial bowing on the behaviour of individual

members subjected to axial or eccentric forces.

ii) General static behaviour of a single column restrained by

curved member or members.

iii) General static behaviour and instability of multistorey

frameworks with non-linear cross bracings.

It has been the goal of the thesis to reinforce the theory put
forward to explain the particular type of instability encountered,
therefore a critical state, or transient instability region, has been

investigated.

The characteristics of individual curved members were determined
using the theory of large deformations. The general behaviour and

the stability of frameworks restrained by imperfect bracing systems

were studied using tangent slope and influence coefficient technigues.
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The results of this study have shown that the initial imperfections
of bracings are very important and have major effects on the overall
behaviour of the braced frame structures. The particular type of
instability encountered, i.e. the critical state or the transient
instability region, may be considerably influenced by the initial

geometric imperfections of bracings and the relative magnitude of the

ratio between vertical and horizontal applied loads on the frameworks.

The critical loads have been presented in a series of curves and

tables.

In part two of the study, the dynamic behaviour at the critical

state, i.e. in the region of transient instability, has been
investigated. Numerical methods for the dynamic analysis of structural
frameworks have been discussed. A new procedure of numerical
differentiation has been presented and its advantage over existing
procedures has been shown. The method is convenient for use with

a digital computer and can also be used for solving simple problems

with a calculator.

In general the results of parameters studied were presented in a

serlies of curves and tables to enable the stability and dynamic
actions to be readily determined for a wide range of structural

confiqurations.

Finally, a test programme was carried out to investigate
experimentally the non-linear behaviour of frameworks restrained by
these imperfect bracings. Three separate models were used in the
experimental programme. The experimental results were used
to verify the general accuracy of the theoretical methods of analyses.
In general the theoretical results and the experimental ones were in

very close agreement.



NOTATIONS

The principal symbols used in various chapters are listed
below. Other subsidiary symbols are defined where they appear locally

in the text.

AO : Initial rise at mis-dpan of curved member

Ac : Cross sectional area of bracing member

bS : Breadth of the bracing member

c : Length of the end connection of the bracing member
Cd : Damping coefficient

Cc ¢ Critical damping coefficient

C1,CZ,C3,C4: Constants of integrations
C + Constant
D ¢ Delay parameter

e : Eccentric length

m
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Young's modulus
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Complete elliptic integral of the second kind
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Incomplete elliptic integral of the second kind
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Mathematical function

ﬂ

Force in the bracing system

Function of the restoring moment in the bracing system

ﬂ
L L

Function of the overturning action due to external loads

-

Damping force

Inertia force
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Restoring force in compression and tension bracing
respectively

ﬂ
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Incomplete elliptic integrals of the first kind

-

Height of a storey in a multistorey framework

1

Total height of the framework before deformation
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KC,K

crl

vi

Vertical height of the framework after deformation
Second moment of inertia of bracing member

Axial stiffness of curved bracing in compression and 1in
tension respectively

Axial stiffness of combined curved bracing system
Axial stiffness of initially straight member
Complete elliptic integral of the first kind

Chord length of loaded member

Chord length of unloaded curved member

Total curved length of the member
Mass
Bending moments

Net restoring moment about the base of the equivalent
column

Degree of the polynomial
Number of storeys of Multistorey framework
Modulus of elliptic integral

Vertical applied load

Euler buckling load

Vertical load applied at the top of equivalent single
column

Flastic critical load defined at Az

: Elastic critical load defined at the onset of transient

instability region
Self weight of the column model
Radius of gyration.

Radius of curvature of initially curved member

Ratio between the applied vertical and horizontal
loads



Vil

: Elastic force in the combined bracing system

: Slope of a straight line

: Time

Small time interval

: Complementary solution for second order differential
equation

¢+ Particular solution for second order differential

equation
Hotizontal applied load
Applied load at the onset of plasticity

Horizontal load applied at the top of equivalent single
column

: Applied load at fully plastic section

: Critical value of the horizontal load at the onset

of transient instability region
: Dynamic displacement at instant of time "t"

: Velocity at instant of time "t"

: Acceleration at instant of time "t"

: Small displacement interval
Central deflection of the curved member
: Span of the framework

Plastic modulus of the bracing member

: Elastic modulus of the Eracing member

: Angle at the end of loaded curved member

: Angle at the end of unloaded curved member

Angles between the chord line of the compression and

tension bracing and the vertical position of the
framework

: Rotation angle of the equivalent column
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Angles between the chord line of the deformed
compression, tension bracing and the column
respectively

Real angles

Small displacement interval

Axial deformations in the compression & tenstion
bracing in a framework respectively

Lateral displacement

Critical displacement at the onset of transient
instability

Lateral displacement at the end of the transient
instability region

Axial displacement at the onset of plasticity of
bracing member

: Axial displacement at fully plastic section for

bracing member

Strain

¢ Stress

Yield stress

: Natural frequency

Damping frequency

Damping ratio
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CHAPTER ONE
INTRODUCTION

1.1 Preamble

. Problems of instability have engaged the attention of
mathematicians and engineers for many years. Among the most
important of these problems is that of the stanchion. Euler was the
first to define a crippling load for a strut, and the Euler load 1is
still a fundamental quantity in stanchion analysis. The classical
analyses of the stability of structures are mostly based on the

Euler concepts, which consist of the consideration that the structures
have ideal geometrical and material properties, and that the buckling
behaviour may be described by linear equations. Although the
linearized theories have been proved to agree with the experimental
results for structures having nearly idealized conditions, the

actual behaviour appeared to be more involved than postulated by the
theoriés. In fact, actual systems are always more or less imperfect
in both geometry and material. In some cases, the effects of
imperfections may not be pronounced, but in general they have

substantial effects on the buckling behaviour.
1.2 Previous Work

Much of the literature on the subject of frame stability has

emphasized the need to evaluate the effect of horizontal joint

displacements, commonly called the P-delta effect, and the influence

of axial force on stability. Undue emphasis on either one or both
of these factors could result in a restricted approach to the frame

stability problem. Actually, there are other factors that also



(42)

influence the stability limit of structural frameworks. Johnston
9

has listed many of these influences but Charles and Jorame (19)

classified all these into three groups, i.e. geometry, material and

loading.

Geometrical Effects : These consist. of:

e gy ey

1. The influence of axial force on member bending stiffness.

2. The effect of horizontal joint displacements, commonly
called the P-delta effect.

3. Changes in member chord length resulting from axial

strain and bowing.

4. Accidental initial geometric imperfections of member
(e.g. camber, twist,etc.)

5. Dimensional variations in the framework due to erection

tolerances.
6. Shearing deformations.

7. Local buckling or other local distortions.

8. Out of plane movement of frames.
Material Effects : These consist of:

1. Non-linear stress-strain relationship.

2. Residual stresses present in members prior to loading
as a result of manufacturing and fabricating
processes.

3. Spread of inelastic zone in members as member forces

increase.



Loading Fffects : These consist of:

1. Non-proportional loading.

2. Variable repeated loading.

All the above listed factors influence the stiffness of the
frame and the first two are the most important. There are

situations where one or several of the others could significantly

reduce the frame stiffness and thereby reduce the factor of safety

with respect to stability.

Géneral instability of multistorey building frames have been
discussed from various standpoints by many authors. Bleich (6)
shows the analysis for an approximate critical load for buckling in a
sway mode for unbraced, uniform multistorey, frames under constant

load. The elastic critical loads of multistorey rigidly-jointed

sway frame and the frame design were studied by Horne (35), Merchant(sg)

and Salem (80). Also an experimental study was carried out by

Low (51).

(29) wh

Buckling of braced frames was considered by Goldberg 0

presented simple formulas for upper and lower bounds on the
stiffness of the bracing required to prevent buckling in the sway

mode.

However, a problem of increasing concern in the field of
elastic stability is the buckling behaviour of structural systems that
have small imperfections in the initial geometry of the structure.

Such imperfection may have a drastic effect on the critical load.

For instance, the critical load of an axially loaded column may be



reduced to one third of the classical buckling load due to the
presence of small imperfections in the column. It has been found

(73)

by Roorda that the critical load of certain types of frame

structures as well as arches may be affected by the presence of

imperfections.

Many authors have examined particular structures to find out

the effect of imperfections on the buckling behaviour, for instance

Cox (20) who treated a model structure of a simple supported strut

with a. non-linear support in the middle, and Swannell (77) who

studied the elastic buckling of columns constrained by an initially
curved side rail at the middle. The latter considered the axial
stiffness of elastic, curved, side rails, using small deflection
theory, in which the side rail effect is simulated by an elastic
spring. He described the use of this equivalent spring stiffness

in an attempt to provide a unified description on the constraint
given to a main column member by the provision of side rails at mid-
height. The classical analysis of the problem 1s available in

standard texts (35’55’66’85).

A type of buckling which sometimes occurs is when curved
elastic elements are so loaded that the loads tend to reduce the

curvature. In this case, the buckling consists of a sudden change
of curvature or the structure snaps through to a new equilibrium

position. This type of buckling has been discussed by a number of
authors. The significance of the problem, in so far as it illustrates

certain important features in more complicated buckling problems

(22) (23) (84,

of structures, was pointed out by Fung

85) (109)_

, fraser , Timoshenko

and Hoff



In this research the problem is studied not only from the usual
static treatment but also from the dynamic point of view. A
familiar example, which illustrates the essential feature of the
phenomenon of snap through, or transient instability, 1s the
framework restrained by an initially curved bracing system. It is

this example that will be treated here.

The general procedures for the solution of problems in

structural dynamics are available in standard dynamic texts (55, 104,

111,112,121)

Probably the most powerful technique for dynamic non-linear
analysis is the step by step integration procedure using a constant

time interval.

In this thesis the numerical methods for the dynamic analysis
of structural frameworks have been discussed. A new procedure of
numerical differentiation has been presented and its advantage
over existing procedures has been shown. The method is convenient
for use with a digital computer and can also be used for solving
simple problems with a calculator. Consideration is given to
various types of damping. The method 1s capable of application to

structures of any degree of complication, with any relationship
between force and displacement. Any type of dynamic loading, such
as that due to shock or impact, vibration, etc., can be

considered.

The method has been used for the computation of the dynamic
response of the non-linear behaviour of frameworks restrained by

curved bracing systems. The basic technique of analysis is a general



step-by-step method of differentiation of the equations of motion,

using a constant displacement interval.

1.3 Scope of Work

The work described in this thesis is concerned with the general
investigation of buckling and vibration problems, and to show how

initial geometric imperfections affect the buckling behaviour of

structural systems. Simple models are included to illustrate the

theory of buckling stability for such systems.

The behaviour of braced frames, when the bracing system has an

initial bow are studied. This type of imperfection commonly exists

in buckling frames and once the bracing members are not perfectly

straight, then their behaviour is no longer linear. Analysis shows
that the behaviour of frame instability is very much dependent on the

initial bowing of the non-linear restraints.

In this thesis three simple models have been set up to study
the behaviour of such structures. The first consists of a single
column and a bracing member or members. The second consists of a
two storey frameﬁork with curved diagonal bracing system. The third
consists of two framéworks, each frame of which is identifical to
the second model which is restrained by curved diagonal bracings.
It 1is intended to represent the initial condition of the framework
restrained by initially curved bracings, and then cause failure under
controlled conditions cobserving the phenomenon of "“snap through" or
"transient instability" between the points when the compression

bracing buckles and the tension bracing re-establishes stabilitf.



The work described in this research consists of two main parts,
the first deals with the static investigations of the problem,
while the second part deals with the dynamic investigation in the

region of transient instability. The static investigations are
described in Chapters 2,3,4 and 5. The dynamic investigations

are presented in Chapters 6,7 and 8.

In Chapter two, the theoretical behaviour and the axial
stiffnesses of bent bracing members subjected to compressive or
tensile forces are investigated. The general procedure of the large

deformation theory is described by using the Bernoulli-Euler equation.
The influence of two imperfect parameters on the individual
members, i.e. initial bowing and eccentric loading, are investigated.

Axially and eccentrically loaded curved members are considered.

In Chapter three, the elastic stability and the theoretical

behaviour of frameworks with non-linear restraints are investigated.

The elastic critical load for a column restrained by an
equivalent non-linear spring, for curved member or members, is
determined. The fundamentals in the theory for simple structures
restrained by non-linear restraints are derived. The general
procedures of determining the elastic critical loads for multistorey

frameworks, restrained by curved bracing sfstems, are described. The
general behaviour of this type of structure can be summarized

in three regions such that:

i) The structure is stable and represented by the first stable

equilibrium region.

ii) The equilibrium of the structure is unstable and represented
by the transient instability region.

iii) The structure is stable again, and represented by the second

stable equilibrium region.



The conditions of each region are adopted.

Two numerical methods are developed to determine the limits of
the transient instability region and the corresponding applied
critical loads. Influence coefficient method and tangent slope

technique are employed in the investigation.

Experimental investigations, under static loading carried out

to support the theoretical investigations, are described in Chapter

four. . Three separate groups of tests have been performed on a

small scale for: asingle column with non-linear restraint or

restraints, and also for a two-storey framework model with non-

linear cross bracings.

In Chapter five, the theoretical techniques are applied to the
analyses of initially curved members, column model, and two storey

framework model restrained by non-linear restraints. The

convergence characteristics, accuracy,and computing efficiency of the
techniques are evaluated by comparing the results obtained by
experiment with the theoretical results available by others and

those obtained by the methods described. Curves are presented to

explain the general behaviour of these types of structures.

In part two of this research, the problem of frame structures

restrained by non-linear bracing systems is approached from the
dynamic point of view, in contrast to the usual static treatment.
The buckling of this type of frame structure occurs when the.curved
bracing elements are so loaded that the loads tend to reduce the

curvatures of the tension bracings while increasing the curvatures of
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the compression bracings. In this case the structure snaps through

to a new equilibrium position, and a dynamic effect 1is very
important on the overall behaviour of the structure. The dynamic
behaviour allows the structure to sway freely through the region

of transient instability. The structure may or may not, return to

its original configuration.

The dynamic behaviour of this type of structure, in the
transient instability region,is investigated in Chapter six. [wo
methods are employed to evaluate the dynamic response. Constant

time interval and constant displacement interval techniques are

employed in the investigation.

In Chapter seven, the results of an experimental dynamic

investigation carried out to support the theoretical investigations

of frame structures restrained by curved diagonal bracing system
have been presented. Accelerations and displacements at the top of
the framework are obtained in the tests using a small scale two
storey frame model. The dynamic response has been recorded onto

4 channel tape recorder. An Apple IIe micro computer has been used

to digitise the records.

In Chapter eight, the influence of various combinations of
bracing sets on the dynamic behaviour of a framework,is
investigated by appl?ing the theoretical techniques to the two storey

framework model. The convergence of dynamic characteristics,

accuracy, and computing efficiency of the technique are evaluated
by comparing the results obtained from the theoretical analfsis with

those from experimental results. Curves and tables are presented
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to explain the general dynamic behaviour of such types of

structures.

The closing chapter summarizes the main conclusions reached
in this thesis and indicates possible areas for future

investigations.
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CHAPTER TWO

THEORETICAL STATIC BEHAVIOUR OF BENT MEMBERS

2. Introduction

This chapter is divided into two parts, the first deals with
methods for the calculation of displacements and axial stiffnesses
of elastic curved struts, subjected to axial forces, using a theory
for large deformations. The second part explains how the large
defbrmétion theory can be applied to ties loaded by axial tensile
forces. Methods are described also for the calculation of the axial

stiffnesses and the displacements of these ties.

The basic equations are derived in both parts by using Bernoulli-

tuler equation, which states that the change of curvature of a rod

1s proportional to the bending moment producing it.

2.71.1 Fundamental Assumptions

The fundamental assumptions made in the development of the theory

of the initially curved members are as follows:

1. The material of the member is linearly elastic.
2. The member is of uniform cross-section.
3. The initial curvature is circular.
4. The member is unstressed when it is not loaded.
2. Each end of the member is connected to a frictionless
pin which ensures that the bending moment at each end is zero.

6. The member is assumed to be inextensible, hence its length

is the same before and after loading.
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2.2 Theoretical Analysis of Initially Curved Axially Loaded
Strut

Compression members are key elements of almost all structures.
The study of their behaviour is eésential for the understanding of the
behaviour of structures, such as columns, beams or components of
frames. Compressed members may be defined as members carrying a
compressive load, and whose length is considerably greater than the

cross-sectional dimensions. Sich a member may carry other loading, and

may have end conditions and moments of any type. This section is

concerned only with members carrying a compressive load.

Generally in practice a strut will not be exactly straight,

and the line of thrust will not pass exactly through the centroids

of 1ts terminal cross-sections. On both accounts it will be subjected
to bending action, and lateral deflection will occur from the first

application of load.

To study the behaviour of an initially curved strut under axial loads

at both ends, consider an initially curved (circular) strut shown

in Figure (2.1). The strut is hinged at one end (a) and supported

on a frictionless roller at the other end (b). The strut is initially
curved to form an arc of a circle of radius (R), and rise (Ab) at

the mid-span. Also the strut is subjected to end loading with the line

of action along the line of the supports.

Before starting the basic equations of large deformation

theory it is important to define the axial stiffness which is denoted
by K. This is defined as the load, spplied along the chord-line of
the member, which will produce a total shortening of the chord line

equal to unity.
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K. A (2.1)

i.e. W

where,

W is the axial load applied along the chord line of the member,

K is the axial stiffness of the member

A is the shortening of the chord-line of the member.

2.2.1 Basic Equations of Large Deformation Theory of Axially
Loaded Strut

The co-ordinate axes are shown in the Figure (2.1a). The distance

s is measured along the curved length of the strut from the origin a.
Curvature can be expressed in terms of the slope of the member at any

point as de/ds. Since the bending moment in the strut is equal to the

flexural rigidity times the curvature, the differential equation

expressing the bending moment is:
de 0 ~
-EI (55 - —gg5 ) = M (2.2)

where,
EI is the flexural rigidity, s denotes the distance of the section

considered from the origin (a) measured along the central-line
of the loaded strut, o is the inclination of the centre-line of

the deflected form to the line of thrust, at the section

considered, 8, is the inclination of the centre-line of the

initially curved strut to the line of thrust at the section

considered, and M is the bending moment at this section.

From Fig. (2.1a), the bending moment M at section s,-s, is:
M = 4+ wy (2.3)

Thus, equation (2.2) becomes:
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do
do Oy _
-EI (5 - —g5) = My (2.4)
Di fferentiating equation (2.4) with respect to s and using the
relation; % = sin(®), as shown in Fig. (2.1b), the following

equation is obtained:

2 d-e
(2.2 = - L. sin(e) (2.5)
ds ds
d’e_
Equation (2.5) can be rearranged by noting that > =0 for
' " ds
a circle and substituting uz = 'EW'I to give:
2
g'_g' = "IJZSin(G) | | (2.6)
ds

Multiplying both sides of equation (2.6) by 2de = 2(de/ds) ds and

integrating, yields

2

2 J. == .=2..ds = -2u° [ sin(e). de (2.7)

Which can then be expressed in the form:

2 1195 @)1, 8.as = -22 [ sin(e) . do
Oor
J [%—S- (-g—%)z] . ds = -2u° [ sin(e). de (2.8)

Evaluation of the integrals, gives

('a-g)z = 2uzcos(9) + C1 (2.9)
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where,

Cﬁ is a constant of integration which is determined from the

boundary condition, which states that;
At : x=0 (i.e. at the hinged end 'a')

de

L
a-s- = - 'R' and © = a (2'10)

where,

R is the radius of curvature of the initially curved member and

a is the angle at the ends of the loaded form.

Since the bending moment at 'a' is zero, hence the curvature

remains the original curvature %—of’ the unloaded form. Therefore

substituting of Eq. (2.10) in Eq. (2.9) gives:

C. = 1 - 21.12008(0:) (2.11)
1 R2

Therefore equation (2.9) becomes:

(gg-z = 2u2 [cos(6) ~ (cos(a) -~ zu;RZ ) ] (2.12)

using the substitution;

cos(y) = cos(a) - 12 > (2.13)

2u°R

where, vy is a real angle, transforms the equation (2.12) into:

— = 2u2 [cos(e)- cos(y)]

Taking the square root on both sides, yields:
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d9 - * WwZ . Vcos(e) - cos(y) (2.14)

ds

The sign of the right-hand side of this equation depends on the

sign of -aq-g- . Assuming that the strutbuckles as shown in Fig. (2.1a),

so that © decreases while S increases according to the axes shown 1in

the figure, then the curvature*gg- is always negative and the positive

sign will be dropped from the right hand side of Eq. (2.14). The

equation can be rearranged to give:

ds = - —— 98 (2.15)

w2 Veos(e)-cos ()

The total length of the strut (Ls)’ which equals two times the
lemgth of the arc in the first half, can be written as a function of
the angle a by integrating Eq. (2.15). This length is given by

the following:
'-3/2

0O
L = 2 dS:-—\/—z_-—
O

H X Vecos(e)-cos(vy)

or

L _\/Z—I“ de

o VYcos(e)-cos(y)

(2.16)

The integral on the right-hand side of Eq. (2.16) cannot be

evaluated in closed form in terms of an elementary function. However
this integral represents a new non-elementary function of o and Y,

called an elliptic integral /+8%)

of the first kind, which can be
written in a standard form. This form may be obtained by means of

suitable changes in the variables of integration.
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For this purpose, use the identities

cos(9©)

1 - 2 sin? (-g-) ,

cos(y) 1 = 2 éinz C%) ,

and substitute

\/Z(Sinz L. Sin2 S )

2 2

VC0SO - coSsy

. 2
_ sin

= Vz sin %'" 1 - (2'17)

sin2

N=< [N

Since,in Eq. (2.16) the limit of integration is from 0 to « therefore
the variable © will satisfy the condition 0 < 0 < a and, by assumption

according to Eq. (2.13), 0 < & < ¥

. . O N . 6 Y
i.e. sin 3 < sin > or 0 < sin 2/ sin & < 1
The ratio sin-%/ sin %-being a positive number not greater than

unity, may be considered the sine of an angle g.

sin S sin 2
sing = . - Z (2.18)
sin X P
2
where, p = sin —%— (2.19)

Substituting Egs. (2.18) and (2.19) in Eq. (2.17),hence Eq. (2.17)

becomes in terms of ¢ , such as:

/ . 2 ©
sin =
Vcos@ - cosy = V2 sin %— 1~ 5 3 - \/z_p\M-sinch
' sin =
2

= V2 p cosgp (2.20)
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To obtain the differential of @ in terms of the new variable of

integration ¢ , multiply Eq. (2.18) by p and differentiate both

sides:

1 0 -
% COS 7 & do =p.cosp do |,

from which,

do = M&gdz _ 2 cosgdg (2.21)

cos 3 /1_p2 sinch

Noting finally that, according to Eq. (2.18):

_1 sin%
9 =0at =0, ¢ =sin  ( )=y at e =a (2.22)
sin %
2
. Q
sin —
. : 2
l.€. siny =
sin %-
or
sinzw = -;LiE%?L—- (2.23)
2 sin® L
2
By substituting Eqs. (2.13) and (2.19) into Eq. (2.23), the
angle ¢ can be written as follows:
2 1
.
. 2 2uR _ 1
sin ¢y = — —— = 1 - ~—5 5 5
2p 4p u R
and therefore coszw = ( 1 )2
p uR
or
v = Cos"1 (-—41— ) (2.24)
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By substituting Egs. (2.20), (2.21) and (2.22) into Eq. (2.16),

the curved length LS can be expressed as:

Y
d

s (2.25)
o \/1-p sin” ¢

The integral on the right-hand side of Eq. (2.25) is a function
of the upper limit of integration ¢ and the parameter p, and is
called the incomplete elliptic integral of the first kind (81) which

it can be written in the form . F(p,v).

The length L_ of the strut (2.25) is thus written as:

¥
L -uF(py‘l’)-uI

- ;7==%%$==7== b < 1) (2.26)
o V1psin ¢
I n

The upper limit ¥ of this integral is called the amplitude of"F"

and p is called its modulus.

As the variable 6 of the integral of Eq. (2.16) varies between
zero and its maximum value a, the variable ¢ of the integrals of
Eqs. (2.25) and (2.26) varies between zero and ¢ , where ¥ depends on

the value of u (i.e. the applied load W) and the radius of

curvature"R, as seen from Eq. (2.24).

When the initial rise"AO'.'of' the strut is very small and spproaches

zero, the radius of curvature"R"will gpproach infinity and therefore
the angle ¢ in Eq. (2.24) will tend to n/2, hence Eq. (2.26) will

change to the following:

] /2 d
= =
a 0 Jq-p sing

- (2727)
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The integral appearing in this equation is known as a complete
elliptic integral of the first kind, this integral is a function of

the parameter p only and it is usually symbolized by K(p) (7’81).

The solution of the flat strut problem may now be written in terms

of the elliptic integrals as,

/2 .
LS.:-E- f LI =-ﬁ- K () (2.28)
0 JH-p sin ¢

Now, when the deflection of the strut is very small, the angle a

2

and the modulus p will also be small and the term p sin2¢ in Eq. (2.28)

can be neglected in comparison with unity, then the following is obtained,

/2 -
_2 _ T _ EI .. 2 _ N
Ls = IO do = = = T \/w (since u° = EI) (2.29)
2
and Wzp = I E?IZ (2.30)
L
S

The value of the gpplied 11::uad"PE in Eq. (2.30) is called the Hiler

(2,85)

buckling load , and represents the value of Wat which the flat

strut starts buckling.
2.2.1.1 The Lateral Deflection of the Strut

In order to calculate the lateral deflection of the strut, it

can be seen from Fig. (2.1.b) that:
dy = sine .ds | (2.31)
By substituting Eq. (2.15) in Eq. (2.31), yields,

dy = - ___M (2.32)

w2 Vcose - cosy
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The deflection at any point can be obtained by integration of

this expression. Then the central deflection is given by:

Qa .
yc - ...1_ I .__.._?.E]_Q_g_?__ (2.33)
V2u+ o Vcose - cosy
From Eqs. (2.18) and (2.19) it is known that:
.  © :
sin 5 = p sing (2.34)
therefore cos -—g- = \/1-pzsin2cp

Using the relationship sin® = Zsin -g- COS -g- , the value sin6 can be

written as follows:

sin® = Zpsing \/1-p28in2cp (2.35)

substituting Eqs. (2.20), (2.21), (2.22) and (2.35) into Eq. (2.33)
and changing the limits of integration to ¢ ( g=¢ when 6za), the

central deflectﬁan"yé'is represented by the expression :

P
— _1 3 - Q -
Yo = 7 i 4p sing. d¢ = ¥ (1-cosy) (2.36)

Once the end angle"&"is known, Egs. (2.13), (2.19), (2.24) and
(2.36) can be used to determine the vertical deflection"y!, at the

mid-span of the strut, measured from the chord line 'ab'.

2.2.1.2 Limits of Application of General Case of Loading (p < 1) |

A close inspection of Eq. (2.13) reveals that:

cosa (2.37)

cosy +
2u R
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fails for small values of W (or w) since -1 € cosa & 1 for real a .
Therefore it becomes necessary to establish the range of application

of the equations derived in sections (2.2.1) and (2.2.1.1)

Explanation of the failure of Eq. (2.37) will more readily be
understood if the analysis of the curved strut begins from the
basic horizontal strut. Consider a straight horizontal strut

subjected to a load W at its ends and moments M0 = '%%- acting at the

same points, Fig. (2.2.a). The action of the moments Mo will bend
the strut into a circular arc of radius R, while the load W is still
acting on the ends, Fig. (2.2.b). This strut is, therefcre, the
circular strut of the original problem. Consider the left half

of the strut, where the central point ¢ is held in its position and
the end''a becomes free, Fig. (2.2.c). The moment M, and the loadW

will now be replaced by a force W acting on a rigid lever of length

M
0

e = — , Fig. (2.2.c), and so far as the shq:)e"ca"is concerned, 1t

does not matter whether the load acts on the bar'cad"or through the

lever e. It 1is known that:

N S
e = Fa— = 7 ,.. (2.38)
p = sin (-%-) , and sin(%) = p siny

where, the expression sin(%J = p siny 1is satisfied for all -points

along the strut 'cad' , Fig. (2.2.c).

Also it is seen from Fig. (2.2.c) that:
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where, h represents the maximum vertical deflection of the strut,

when +:g-. This max deflection (h) can be determined from equation

(2.36) when ¥ = 12"- , and is equal to :
h = % (2.40)

By substituting of Eqs. (2.38) and (2.40) into Eq. (2.39) the value

of ¢ can be obtained:

which is identical with equation (2.24).

Also, cosy = 1=2 sinz(-'-zr-) = 1 - 2."p2
and
cosa = 1=-2 sinz(%J = 1 - 232 sinzw
=1—2p2+ 55 = Cosy + ;2
2u R 2u"R
(this equation is obtained from sinzw = 1 S )
4p2u2R2

This shows that the auxiliary angle v in equation (2.13) is

actually the end slope of the imaginary extension of the basic strut.

And this angle should satisfy the ‘following condition.

y<® , to give p < 1 (2.41)

Now, as seen clearly from ?ig. (2.2.c) and Eq. (2.38), decreasing

W means increasing the rigid lever e, since the moment M0 depends on

EI and R only, and these are given. On the other hand, e cannot grow

indefinitely, as at some value of e the line of action of W will bypass



the imaginary extension of the strut, fFig. (2.2.d). Also note that

e will increase with v , but v €=, hence p__ = 1. HWith p=1
equation (2.26) reduces to:
ul ¥
""2‘2 - f seceg d¢ = Ln tan(%:‘ + %) (2.42)
0

Since ¢ = 003_1 ( -2_11-1_ﬁ) , equation (2.42) can be solved for

TR and hence for W = W.O. WO marks the lower limit of the

applicability of the equations corresponding to the general case

of loading and derived in the sections (2.2.1) and (2.2.1.1.).

To study the behaviour of the strut when W < wo, i.e. when

p > 1, consider the following assumption:

1

According to this assumption the end angle a can be written in terms

of the new parameter p_ by replacing the expression cosy , (cosy =1_2pZ)

in equation (2.13) by (1- _1_2__2)_ Then the end angle a is given by:

Pg
. ,Q 1 \2 1 \2 %
51n('2') = [(E:) - (m) '] (2.44)

This equation will not fail for small values of W because P

decreases with W at such a rate the expression under the square root

remains positive. No matter how small W is chosen, there is always a

positive Pq for which

RVWEL > p_ (2.45)
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The curved length of the strut L. can be written in terms of p

by transforming the terms ¢,.¢ and p relatively to P,» @S follows:

Eq. (2.18) can be written in the form:

psing = sing, (2.46)

OoT

sing

p sing, (2.47)

Then, the differential of ¢ can be obtained in terms of the new

variable ¢, by differentiating both sides of equation (2.47), hence

SPLEL d¢1

of (2.48)

\/'I-pcJ sin P

According to Eqs (2.43) and (2.47) noting that:

2 . 2
V1-p“sin“¢ = CoS9, (2.49)

ALSo according to Eqs (2.34) and (2.47) noting finally that :

0 at ¢

i
-

¥

(2.50)

Q
2 at o

CP1 Yy Or 0 ='a

Finally substution of Eqs. (2.48), (2.49) and (2.50) in Eq. (2.26)

glves:
a .
», 2 do s |
1
LS= I "J‘I 2 . 2 = = F6P0 ,'g") (2.51)
H 8 -po S1ln cp.' U

where P, <1 and FQJO, % ) represent the elliptic integral of the first

kind with modulus Pq and amplitude%-.
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2.2.1.5 Solution of Elliptic Integrals

The value of F{,¥) or F(po, -% ) stands for the elliptic

a

integral of the first kind with modulus p or Ps and amplitude ¢ or 5
respectively. These integrals contain the unknown p or Py only.

It is seen clearly from Eqs. (2.13) and (2.19) or’(2.43) that the
modulus p or Ps depends only on the end angle a. Therefore the
elliptic integral F(p,¥) or F(oo . -g— ), for given values of the gplied
load W and rise A_ (i.e. u and R are given), may be obtained, step

by stép, by giving to o arbitrary values, deriving the corresponding

values of p or P and ¢ or % from equations (2.13), (2.19) or °

(2.43) and (2.24) respectively, and evaluating the corresponding value

of F(p,¥) or F(po, % ) using tables of elliptic integrals 71 ).

a

2

using the computer library routine "S521BBF" (67 ). This routine returns

However, F(p ,¥) or F(po, ) can be evaluated more accurately by

a value of the symmetrisied elliptic integral of the first kind, via
the routine name. The accurate value of a and, hence, the exact
numerical evaluation of the first elliptic integral F{,¥) or F(po, -023 )
can be determined from the equation (2.26) or (2.51), where the
relations between these functions and a can be obtained explicitly

for a given value of LS. These explicit functions can be solved

(9)

by using iterative methods . lhese methods are suitable for use 1in
cases where the solution is to be carried out by a computer. Several

methods: of successive a@proximation may be used to determine the
value of the roots of an eq.Jatioin to a specified degree of accuracy,

and one of these methods is used to solve this problem, namely linear
interpolation. The method attempts to obtain an gpproximation to a

simple continuous zero of the function f(a). In a given initial
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interval (a . , &max), such that f(a . ) x f(a__ ) ¢ 0. Hence,
an approximate value of the root "a" is estimated, called the
first approximation, and then a more accurateiresult is determined
by thecrepitition of the same proéedure. The more accurately the
first approximation is obtained, the less the number of repetitive
cycles, called iterations, need be obtained for a given degree of

accuracy. The first approximation can be estimated by a method

involving functional notation as shown below.

»

The approximate value of "a" at the point where the curve of

f(a) = 0 crosses the x-axis is used as the first approximation. This
occurs when the value of F(a) changes from positive to negative or

from negative to positive.

Consider the equation f(a) = L - < F(p,y) = O (from Eq. (2.26))

S H
and when o = a_ , f(ao) is positive value,
when o = @4 f(&1) is positive value,
when o = a, , f(az) is negative value.

Since the sign of f(a) changes from a positive value at f(a1) =

f(a 'n) to a negative value at f(a

= f(a_ ), then the first
mi max

5)

approximation is between ag = @ s and Ay = @ If a straight line
is drawn between co-ordinates (amin’ f(amin)) and (amax’ f(amax)), it
will cut the x-axis at Qg = aapp where
o = o - M’M (2.52)
app  max | ’
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so,a first approximation of - a is taken as dgs

A more accurate value of the root (a) can be determined by
estimating the value of f(a) when a = 013 and the product of f(amin) X
f(a3) and f(amax) X f(a3) can be calculated. Then assume one of these
products is less than or equal to zero, such that f(amin) X f(a3) < 0,

and the other product is greater than zero. In this case the value

of f(amax) will be replaced by the value of f(a3), then the second

goproximation is between a a . and a, =a . If again a
1 min 3 max

straight line is drawn between the new minimum and maximum co-ordinates

lla

min’ lr(mmin) and (ama

? F(amax)" it will cut the x-axis at a new

approximate value, aepp = Ay where a, can be determined from

equation (2.52). Therefore a second gpproximation of a is taken as IR
A better spproximation of the root (a) can be obtained by repeating

the procedure for a = TYLYY .ses Until the root does not change on two
conseucutive iterations when expressed to the stipulated degree of

accuracy.

Finally a gradual increase of the spplied load W will be followed

by a new value of the end angle"c:", and hence, new values for the

modulus p or P, and amplitude ¢ or 52!- . However these values can_be
. n ’

found readily for any value of W.

2.2.2 Load Displacement Relationship of Axially Loaded Strut

A problem of more practical interest is to relate the spplied
load (W) with its corresponding relative displacement of the loaded

ends. This displacement will be given by "a" (Fig. 2.1.b), which
consists of two parts. The first part is the shortening due to

bowing, "aB" and that can be represented by the following equation,
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ﬁB — L - L (2-53)

where, LO is the chord length of the unloaded strut;,
L is the chord length of the deflected shae.

The second part is the axial shortening of the strut due to

2
: . W Wr
direct stress and this is equal to Eﬁc X LS or ¥7 - LS

where, Ab is the cross sectional area of the strut

E is the Young's modulus
1

and . T = (-ﬁ-)'i is the radius of gyration.
This component represents a very small value, 1f 1t 1s compared
to the shortening due to bowing and therefore it can be neglected.

This assumption is justified for large deflections of columns, by

Chen (M).

It is now only necessary to compute the shortening of the chord

line A = A, and this can be calculated from Eq. (2.53).

B

The chord length L _ is usually known, but the length'l (Fig. 2.1.a)

measured along the line of thrust is given by the equation:

L/2
L -~ 2 I dx . (2-54)
O

And from Fig. (2.1.b) it is noted that:
dx = ds . cos® ‘ (2.55)

Gibstituting Eqs. (2.15) and (2.55) in Eq. (2.54), and changing
' L
the limits of integration to o (@=a at x=0 and 6 =0 at x:-EJ, then

the chord length L can be written in the form:
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1 V2 Ia cos® . d6

| (2.56)
H o VYcosO - cosy

The integral on the right-hand side of this equation can be written in
the standard elliptic integral forms. These forms may be obtained,

by making use of Egs. (2.20), (2.21), (2.22) and (2.24) and noting
that

e) =1 - anzsin2¢ (2.57)

cos(0) = 1-2 sin2 (E-

Then, the equation of the chord length of the loaded strut is

given by

C .2 (1-p%sin’ ¢).dg
oo 1-p“sin“ (o)
or

| = .g. J’q, do - é&z. J'w Sinz( ) .dg (2.58)
Yo ;113281n?(¢) H o Q1ﬂjisin§(¢)

The first integral in Eq. (2.58) can be written in the standard form

of the first kind of elliptic integral "F(p,V) as mentioned before.

The second integral in Eq. (2.58) is equal to:

. 2 P ¥
e 2 de . L g 7t - | 1%’ (e).dv)
o V1-p“sin“(¢) P o V1-p “sin“ (o) 0

vesees(2.59)

The first integral on the right-hand side of Eq. (2.59) is again
Fp,yp), while the second is another non-elementary function of p and vy,

usually indicated by E(p,y) and called the incomplete elliptic

d (7,81)

integral of the second kin . The numerical value of E(p,y) can
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be evaluated accurately by using the "NAG" library routine "521BCF"(67)

and following the procedure explained in the previous article (2.2.1.3).

Therefore, the chord length "L" of the loaded strut can be

written in terms of the elliptic integrals, such as :

L - -E- [2E(,v) - Fip,v)] (2.60)

Also this length "L" can be written in terms of the arc length

of the strut by using Eq. (2.26) such as:

L - 4 i,
= - E@,v) L, (2.61)
where, the modulus p is restricted by the condition:
0<p €1

To determine the chord length of the loaded strut "L" whenp> 1,
consider the assumptions mentioned in Eqs. (2.43) and (2.47) and note

that Fp, ¥) in Eq. (2.26) is changed to;30F036q@) in Eq. (2.51),

according to these assumptions, (since %—: Sin_q(psinw)).“

Gimilarly, for p > 1, the elliptic form of the second kind

E(,¥) will change to a new form by using Eqs. (2.43), (2.47), (2.48),
(2.49) and (2.50) as follows:

Vo 2
E@,v) = [ J1-p sin ¢ d¢ will change to
0

a a

a
2 pcos’e.de, ? do, Z  sin’y, do.
v o sl R B seer sl 2 Sy sy o g
o \/1—p0 Sin ¢, . \/1-p0 sin P 0 1-p0 sin P
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The first integral in the right-hand side of this equation is equal

to Fp _, =), while the second integral can be written in the form
0’ 2

(Fo % ) - E % ) -}'/bo2 o

Thereforesfor p > 1 , E(p, V) becomes:

_ 1
E(p,v) = > EP

a 1 a
’ "'2") - ('p"o "'PD) F(po, "2") | (2.63)

Now, the chord length of the loaded strut can be obtained in the

case of p > 1 , by substituting Eq. (2.8 ) in Eq. (2.61), so that:

4

EQ ,%)—%1- -pO)F(DO,%)} - L

L 1
Po © o

{

4
m S (2.64)

Finally, Eqs. (2.61) or (2.64) with Eq. (2.53) can be used to

determine the shortening of the chord line A ", due to the applied force

"W".

Also it is seen from expression (2.1) that, once the axial
shortening "A" is known, the actual axial stiffness "Ké' may be

easily determined using the expression:

W
K - -ﬁ- | (2165)

The behaviour of the strut may now be summarized by referring

to Figs. (2.3) and (2.4).

Fig. (2.3) shows the load-displacement relationship plotted in non-

dimensional form. The horizontal axis represents the axial displacement

"A" or the relative approach of the two ends of the strut, divided by
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L, ( the chord length of the strut ). The vertical axis represents the
axial load "W" divided by a constant Pt(in which the quantity'anI/LS2
has been denoted by PE , Eq. (2.30)). The iimiting value of ﬁ/Lo

is reached when the strut has been pulled completely inside-out to

form a straight tension member. It is seen clearly that the applied

load "W" must increase as the axial displacement increases and the
relationship between the applied load and the displacement will

follow the curve (i1 ). In this curve, at small loads a non-linear
relationship between W and A is indicated, and the axial displacement "A"

will occur from the first spplication of the load, but, as the load
rises the displacement increases more and more rgpidly. In the

region of the load "W/PE = 1" the displacement is very sensitive to small

changes in "W". At higher loads, the curve gpproaches curve (iii),
which is for a strut that is initially straight. The broken curve (ii)
indicates the effect of smaller initial rise than it had taken in
curve (i), evidently, as the rise "AO" gpproaches zero, the curve (ii)
merges completely with the curve OAE. Qurves (i) and (ii) represent

positions of stable equilibrium of an initially curved strut with

different initial rise "AO".

All of these remarks are valid only if the strut remains

perfectly elastic.

The axial stiffness "ﬁ; of the curved struts are illustrated

in Fig. (2.4), again in terms of the non-dimensional axial displacement

ratio "A/J_O". The horizontal axis represents the axial displacement,
"A" divided by Lb. The vertical axis represents the axial stiffness ﬁf

It is seen clearly that at the beginning, the stiffness decreases very
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rapidly as the variation in the ratio "A/Lb":is very small, and this
means that the stiffness "ﬁ; is very sensitive to small changes in A.
As the displacement "A" increases more and more, the variation 1in
the stiffness is very small until the strut starts to retake its

stiffness and becomes much stiffer when the strut has been pulled

. .completely inside-out to form a straight tensile member.

Qurve (ii) in this figure represents the variation in axial

stiffness of initially curved strut with smaller rise"A; than it had

taken'in curve (i). Evidently, as the rise"A; gpproaches zero, the

axial stiffness 'K, at the beginning gpproaches to the value of the

EA

axial stiffness of the flat strut K0 =y as given in Table 2.1.
O

In Table (2.1) values are given of the ratios A/L0 and %{Ko

and the angle a for various values of the ratio W/P All of

EI
these values are given for three different curved struts, having the same

chord length "L =520" and different initial rise"A;- The initial

rises 0.0, 0.05, 55 mm are chosen for comparison.

Table (2.1) : Comparison Between Theoretical Behaviour of
(s rved Struts

Initial rise End angle
W/ PE a/L, a (degree)

Ab (mm )

0.0 0.0000000
0.001 0.05 0.0000000
35 0.0000241

1.0000000
0.9905596

0.0001815

0.0 0.0000011
0.25 0.05 0.0000011
35 0.0093569

1.0000000 0.000
0.9831576 0.028
0.0001170 19. 589




Table (2.1) Cont'd

1.00

1.05

1.5

l|H|H‘||||||
|‘%|%“|““l

Initial rise

AO (mm )

0.0
0.05
35

0.0
0.05
32

0.0

UI 05
35

0.0
0.05
35

0.0
0.05

33

0.0
0.05

35

0.0
0.05
b
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0.0000022
0.0000023
0.0350482

0.0000035

0.0000036
0.1272003

0.0000044
0.0045987
0.3556754

0.0946690
0.0956002
0.4072779

0.6364183
0.6366181

0.7761845

0.9291469
0.9292476

1.0106373

1.2041366
1.2041787
1.2459588

end angle
a (degree)

1.0000000

0.9678166
0.0000625

1.0000000

0.9258050
0.0000312

1.0000000
0.0009524
0.0000123

0.0000486
0.0000481
0.0000113

52.613
35.796
80. 588

0.0000103
0.0000103

0.0000085

98.671
98.695

114.950

0.0000094
0.0000024

0.0000087

124.555
124,567

135,367

0.0000109
0.0000109
0.0000105

148.435
148 .442

155.717
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Table(2.1) Cont'd

Initial rise end angle

W/PE A, (mm ) | Mg KC /Ko a (degree)
0.0 1.3373489 0.0000131 - 159.754

4.0 0.05 1.3373715 0.0000131 159.761
35 1.3652077 0.0000128 165,592
0.0 1.4738235 0.0000178 170.160
0.05 1.4738322 0.00001/8 170.165
35 1.4917701 0.0000176 174 . 598
EA

N.B. Ko = (for flat member)
0

2.3 Theoretical Analysis of Initially Curved Eccentricall

Loaded Strut

In practice a bar may have imperfections of form such as initial

crookedness, or imperfections of loading such as the fact that the
loads may be gplied at the ends with some eccentricity from the centre
of the bar. All these imperfections have their effect on the

behaviour of the bar. The effect of initial curvature has already

been studied in article (2.2). The gnalysis of the combined effects

of initial curvature and eccentric loading will now be undertaken. The
question arises now as to how and to what extent a given eccentricity

of the load will affect the previous results.

Figure (2.5) shows a uniform elastic initially curved strut.

The pins are offset from the centre-line of the strut in such a way

that the end-load W is gpplied through a rigid lever arm, of length c,
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which is tangential to the ends of the curved strut, as shown 1n
Fig. (2.5.a). This means that the load is gpplied with an

eccentricity e = c sin(a), where a is the angle at the ends of the

1 oaded strut.

2.3.1 Basic Eauations of Large Deformation Theory of Eccentricall
loaded Strut

The solution of this strut depends upon the two equal and

opposite loads, which are gpplied at the ends of the rigid lever arms,

being.replaced by two equal and opposite loads in addition to two equal
and opposite couples, all gpplied at the ends of the curved strut, as shown

in Fig. (2.5.b). The values of bending moments produced at the ends of the

curved part of the strut under the action of the loads are,

M':J = +W. Ccsin(a) (2.66)

If the transverse displacement y is measured from the chord length
at the ends of the curved part of the strut, Fig. (2.5.b), then the

bending moment at any section $4-8, is:

M = M(_J + W.y (2.67)

The relationship between the curvature and the bending moment
at the considered section 8478, may be expressed by the following non-

linear differential equation as:

do deo |
~-E1 ('a-s- - a-é—- =M = (MO -4 W-Y)
or
do
do . % _ W . _.
ds ds - = EI (C S1nNa + Y) (2-68)
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Di fferentiating equation (2.68) with respect to s, and substituting
sin® for dy/ds, leads to:

Z
ds o

; g - — sin (o) (2.69)
S

- X
" E]

This is identical to Eq. (2.5). Following the same procedure as in

Acrt. (2.2.1), the solution of Eq. (2.69) is:

do
(53'2 = 2uzcos(9) + C2 (2.70)

where, C2 1s a constant of integration.

Thus, the problem is concerned only with a change in the

boundary conditions. These new conditions are:

(i) at the end of the loaded curved part of the strut,E’,

do _ M
~ds - EI
or |
@ 1 EI
& - "E1 G W)
or
o 1 . - '
'3'5 = -5 - uz ¢ sin(a) and ©=a (2.71)

substitute m for c sin(a)

Therefore,the constant of integration C, in Eq. (2.70) is:

C2 = (—*%-- uzm)2 - 2u2 cos(a) (2.72)

Qubstituting Eq. (2.72) in Eq. (2.70) thus:
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2

(-3—9 2 = 2u2 cos(6) + (-1— + Zum + uamz) - 2u2 cos(a)

S F‘2 R
do.2 2 (1+u2Rm)2

i.e. (-a— = 2u"[cos(®) -{ cos(a) - —————>r=} ] (2.73)
S | 2u2R2

Equation (2.73) can be simplified after using the following

expression:
cos(Q) = cos(a) - -g-l-"-'-‘z'—?—g—"l-)-i (2.74)
2u"R
then the form of equation (3.73) becomes:
%g' = = w2 { cos(e) --cos(f)} 1. (2.75)

Equation (2.75) is identical to the previous equation (2.14), only
the difference being that the aisxiliary angle y is replaced by the
angle @ , where Q is defined in equation (2.74). Therefore,a
similar analysis to that explained in article (2.2.1) will be considered
for solving Eq. (2.75), and the arc length of the curved part of

eccentrically loaded strut "LS" can be expressed in terms of the

elliptic function as follows:

LS -~ -121- f /—-____e—r___= - —ﬁ' que, ll.’,l) (2-76)
0 1-pesin (cpe)

where,

. . 9 ;-
p, = sin (—2-) ' (2.77)



41

is the new modulus corresponding to the angle at the ends of the loaded

strut "§".

Also, p_ sin ( cpe) = sin (-g-) = sin (-g-) . sin(cpe) (2.78)
and
2
4’1 - COS-1 ( 1+u Rn ) (2-79)
2peuR

is the value of the new amplitude in the elliptic integral of the

first kind F(pe, 2 )

The spplication of eqations (2.76) to (2.79) is restricted by

the following condition:
0 <p_ <1 * (2.80)

In the case of p_ > 1, as in section (2.2.1.2), consider the following

assumption:

1
e
and by replacing the expression cos(R) = 1-3382 by 1 - 2z , then the
P
oe

end angle a 1s given by:

2

sin () = [ G - (L2 gF (2.82)
Oo€

Therefore the arc length of the curved part of eccentrically loaded

strut, according to this case, can be written as:

Q
3 2 do vs '
L = —98 e] - 28 rp , 2 (2.83)
S Ll J1 -p Fz-Sin ( ) H oe’ 2
. oe Ye1

Poe Sin(¢e1) = sin (¢e) | (2.84)
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and the upper limit of integration -g-is given in Eq. (2.82). Also,

F(poe’ -g-) represents the incomplete elliptic integral of the first

a

kind with modulus Poe and amplitude 5

Finally, for given values of c, L, W and the initial rise"A’,

the values of the end angle a , the modulus Po OT Py and the

amplitude v, Or -g-can be obtained, by following the same procedure

explained before in section { 2.2.1.3).

2.3.2 Lload Displacement Relationship of Eccentrically lLoaded Strut

The relationship between the gplied load W with its

corresponding displacement "A", for eccentrically loaded strut can be
considered as in Eq. (2.65). The length L, in this case is usually

known, but the co-ordinate distance L, Fig. (2.5.a),measured along the

line of thrust is given by the equation:
L

L = 2c cos(a) + 2[2 dx (2.85)
0

where L' 1s the chord length of the curved part of the loaded strut
(Fig. 2.5.b)).

Thus, the co-ordinate distance,L , can be determined by solving

equation (2.85) for ds (n.b. dx = ds cos (8) ).

As in section (2.2.2) the solution is:

_. ey
L = 2c¢ cos(a) + ¥ E(pe, w,l) - L (2.86)

where p  is restricted by the condition in Eq. (2.80).

In the case of p_ > 1 the length L can be written as:
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L = 2c.cos(a) + 4 [

L a L a
" -F-’; E(p =) = (*B— - poe)F(poe’ 5 )] - L.

oe’ 2 e
111111(2-87)

Finally, Eqs. (2.86) or (2.87) with Eq. (2.53) can be used to
determine the relative travel of the loaded ends of the strut "a" .

Also the stiffness of the eccentrically loaded strut can be obtained

from Eq. (2.65).

2.4 ° Theoretical Analysis of Initially Curved Axially Loaded Tie

. Similar analysis explained in Art. (2.2) will be considered for

the case of axially loaded tie.

2.4.1 Basic Equations of Large Deformation Theory of Axially Loaded Tie

The tie geometry and loading are shown in Fig. (2.6) . The
equilibrium equation for large deformations is based on the deformed
configuration shown in Fig. (2.6), so that the Euller-Bernoulli

equation for bending due to tensile loading is expressed as:

de deo

1
( S " ds ' T ET (W.y) (2.88)

The solution of this equation can be obtained by:differentiating

it with respect to s, and substituting sin(e) by dy/ds, such as:

d2 ) d o

0 0 ;ﬂ_ '
ds2

£ sin(o) (2.89)

N
I

As in sec. (2.2), the solution is

2

cos(0) + C

de 2 -
('ag' = =2u (2.90)

>
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where, the constant of integration, C3, may be determined from the

boundary conditions which state that:

At the hinged end 'a' (Fig.(2.6.a))

do 1 )
-a.-é- = - 'ﬁ' and O = a (2'91)
These conditions are satisfied to determine the constant of
integration, C5, in Eq. (2.90), therefore:
1 2
C3 = =+ 2u” cos(a) (2.92)
R
Substituting Eq. (2.92), in Eq. (2.90), hence:
(-3-2- 2 . 2u2 [ { cos(a) + ; 5 } - cos(e) ] (2.93)
2u R
using the expression
cos(B) = cos(a) + ! (2.94)
2.2
2u R

then the form of Eq. (2.93) becomes:

L =T wZ . Veos(s) - cos(e) (2.95)

Since-gg-is negative the positive sign will be dropped from this

equation and it can be written in the form:

- doe

w2 Veos(g)-cos(e)

ds = (2.96)



45

The total curved length of the tie"LS?_can be determined by
integrating Eq. (2.96) from zero to LS/Z on the left hand and between the

corresponding limits 6 =a and © = 0 on the right hand, such as:

L_/2 P
L = 2 | ds:-%j‘ de

0 a Vcos(B)-cos(o)

(2.97)

The integral in Eq. (2.97) can be simplified to the standard elliptic

forms by using the identities:

cos(B) = 200320%) = 1

(2.98)

cos(©) 200320%) - 1

and following a procedure analogous to that for the case of compressive

loading, and employing a new variable Pp s such that:

cos(5) = py (2.99)

and

cos (-g-)

sin(¢t) (2.100)

(n.b. the cosine forms of the half angles 8 and © are used in this
case instead of the sine forms as in case of the strut (sec. 2.2),

because the forms of cosine are suitable to change the integral in

Eq. (2.97) to its standard elliptic form).

After obtaining the differential of © in terms of the new

variable "¢, ", the substitutions in Eq. (2.99) and (2.100) change
Eq. (2.97) into:
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Q
C
2 doy
I TR - ey
op  PyV1- = 5 8in"(o,)
Pt
Using the substitution p_, = - (2.101)
ot Py
the length LS can be written as:
¢
C
Lo ot g - (2.102)

S u P /__—_—
E 1-p0tzsin2(¢t)

- in this equation have to be

The limits of integration"cpE and ¢

found before the unknown modulus"pot'l can be evaluated. It is seen

from Eq. (2.100) that:

i) when e =0 , % = P,
where P = sin-1|:cos(0)]= sin (1) :-g- (2.103)

ii) when © = a , %y = 9
where o = sin”' [ cos(%) ] (2.104)

the value CDSC%J can be determined from Eqs. (2.94), (2.99) and (2.101)

after using the identities in Eq. (2.98), such as:

1,2 _

1
2

ay 1 2
COS('E) = [(""—p (_—ZuR )" ] (2.105)
ot
Substituting Eqs. (2.103) and (2.104) into Eq. (2.102) then:
2

20 n/ 3

t ¢
LS = o | L (2.106)
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or,
2pot
L, = { K(p_y) = F(p_i» 9g) 3 (2.107)

where,K(pot) and F(pot,mE) are respectively, the complete and incomplete

elliptic integrals of the first kind, (7’81).

A close inspection of Eq. (2.107) reveals at once, that

i) if qu 0

0 , then Pot

ii) if w = =, thenul_ = = , therefore the value of K(p_.) -F(p ., o¢)
must equal infinity and this will occur at Pot = 1. (from

tables of elliptic functions(71) the value K(1)== ).

It follows that Eq. (2.107) covers the whole range of the tensile

forces acting on the tie.

The unknown modulus p_, in Eq. (2.107) can be evaluated for given

values of LS and ¢ , using the procedure explained before in

section (2.2.1.3).

2.4.2 Load Displacement Relationship of Axially Loaded Tie

The relative travel of the loaded ends of the tie, or the
extension in the chord length due to the tensile loading can be

calculated as before as:

AT = L - LO , (2-108)
where, Ar 1s the extension in the chord length due to tensile loading.

As before the original chord length, Lo’ is known.
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Again, to develop an expression for the projection of the

deformed tie on the x axis, the following equation 1s used.

0
L = 2 [ dx ' (2.109)

a

and it is seen from Fig. (2.6.b) that:
dx = ds. cos(e) (2.110)

Substituting Eq. (2.96), (2.98) and (2.110) into Eq. (2.109), then

the resulting equation 1s:

D -=-2{ cosz(%)-1 }de

1
l. - I* (2-111)
L ;cosi(%) -cosi (%)

By using the substitutions of Eq. (2.99), (2.100), (2.101), (2.103)

and (2.104) into Eq. (2.111), to determine the chord length, L , in
terms of the variable Py changing the limits of integration

accordingly, and noting that:

do = -2 dg (from the differentiation of Eq. (2.100)

111111(2-112)
then
s By ST
! e 1-pOt sin (¢t) ¢E Jﬁ-pot sin (¢t)
Iliiii(2i113)

The first integral in this equation can be written in its general

forms of elliptic integrals, such as:



?1-(1—p0t28102(¢t)} d¢t

f Il
1-p0t sin (wt)

/2

= 2.‘[1 B eSS R » il ‘I' V1-P0t23in2(¢t) do }
p ¢ V1-p . “sin“(9,) o ¢
ot E ot t 3

1
.;__2 { K(pot) - F(pot,¢E) - E(pot) + E(pot,¢E) } (2.114)
ot

where,

K(pot) and F(pot,¢E) are, respectively, the complete and incomplete

(7,81)

elliptic integrals of the first kind, while E(pot) and E(pot,¢E)

are, respectively, the complete and incomplete elliptic integrals of

the second kind, (7’81).

The second integral in Eq. (2.113) can be written in the

standard forms of the first kind of elliptic integrals K(pot) ~ F(pot,¢E)

as mentioned before.

Now, the chord length "L" of the deformed tie can be written
relative to the curved length “LS“ of the tie, by using Eq. (2.107)

and Eq. (2.113) in its elliptic form, as follows:

4 ;
L = —— {K(pot) - E(pot) - F(pot,¢E) + E(pot,¢E)} - L

PotH S

ceeeeel(2.115)

Finally the extension in the chord length"AT"can be determined by

substituting Eq. (2.115) into Eq. (2.108) and consequently the axial

stiffness Kt in tension, may be easily determined using the

expression:
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K - S— (21116)

2.5 Theoretical Analysis of Initially Curved Eccentricallx
Loaded Tie |

In this article, the initially curved tie will be examined for
the effect of eccentric tensile loading, as shown in Fig. (2.7).

A similar analysis to that in Arts. (2.3) and (2.4) will be used.

2.5.1 | Basic Equations of large Deformation Theory of Eccentricall
L oaded Tie

The basic differential equation of an eccentrically loaded tie
is similar to equation (2.68), in Art. (2.3.1) for a case of
eccentrically loaded strut, but there is a difference in the sign of
the external bending moment, M, so that the governing differential
equation becomes:

de o _ M W
ds ds £ £l

(c.sin(a) + y) (2.117)

Differentiating this equation with respect to s, and substituting

2 for ¥ - dy :
u- for 3 and sin(6) for 95 therefore:
2
_g_@_ - uz. Sine (2.118)

As in section (2.2.1), the solution of this equation is:

doy2 2 f
GH§' = =2u" cos(®) + C, ) (2.119)
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The constant of integration CA’ is determined from the boundary
conditions at the end of the curved part of the loaded tie (E'), which
state that:

-g—g- = -JR- + uz.m and 0 = a (2.120)
where m = c.sin(a).
From these conditions, the constant of integration Ca is:
C4 = ('%-- uzm)2 + 2uzcos(&) (2.121)
Again, substituting Eq. (2.121) in Eq. (2.119), hence:
do 2 2 (1-u°Rm)?
(== = 2u° { [cos(a) + ~—————— ] - cos(0)} (2.122)
ds 2,2
2u R
By using the expression:
2. \2
cos(z) = cos(a) + -(-]—_-E—B-"-Q— (2.123)
2,2
2u"R

Eq. (2.122) can be simplified to the form:

Q.
@©
I+

= = w2 . Yeos(z) - cos(e) (2.124)

Since-gg- is negative, Eq. (2.124) can be written in the form:

ds = S| — (2.125)

w2 Veos(z)-cos(e)

This equation is identical to the previous equation (2.96) the only

difference being the angle 8 is changed to the angle z, where ¢ is

given in Eq. (2.123). Therefore , as in section (2.4.1) the following

is obtained:
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/2
2pet d¢et
Ls Y I / Z . 2
PEe 1-pet S1n (¢et)
2p
et
= " { K(pet) F(pet’¢Ee) }
where,
(132 L cos? (@) 4 ¢ 1zuZRm 12
- ’
ot 2 2uR
S, .
cos(i) = 31n(¢et) .
. = a
Pr, = sin (COSGE) )
cos(=) = { (—1—92 - (1-u2Rm)2 }%
2° Pot 2uR

and LS represents the length of the curved part of the tie.

(n.b.

(2.126)

(2.127)

(2.128)

(2.129)

(2.130)

when the length of the rigid lever arm, c, is equal tomzero, then the

value m will vanish, thus the term qum in Egs. (2.122) and (2.123)

will be equal to zero, therefore, all of equations (2.125) to (2.129)

will be exactly the same as in the case of the axially loaded tie.)

2.5.2 | oad Displacement RelationshiE of Eccentricallz Loaded Tie

The same procedure for the case of axially loaded tie, Art. (2.4.2)

is considered in this case.
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Therefore the expression of the projection of the deformed tie

on x-axis. is gives-by the equation:

4
L =‘E;;h { K(pet) " E(F'ca-t) B F(‘:’et’q:’Et=3) M E(pet’¢Ee)}

- LS + 2c cos(a) (2.131)

And, consequently, the value of the horizontal displacement”a.”

and the axial Stiffness"Kt"for the eccentrically loaded tie,can

be easily determined by using Eqs. (2.108) and (2.116) respectively.

The behaviour of the tie may now be summarised by referring to

Figs. (2.8) and (2.9).

In Fig. (2.8) the quantity (LS-LO) has been denoted by & _

and a non-dimensional parameter A/Amax has been plotted against
the applied horizontal load "W "+ It is seen that the axial displacement

increases as the load increases until the ratio A/Amax reaches to its

limiting value T f = 1, which occurs when the deformed tie has

L
s -0
been pulled completely to form a straight tension member.

In Fig. (2.9) the axial stiffness"Kg of the curved tie is

illustrated , again in terms of the non-dimensional axial displacement

ratio A/Amax . The horizontal axis represents the ratio A/Amax )

The vertical axis represents the axial stiff’ness"Kt"of' the curved tie.

It is seen, from the figure, that the stiffness of the tie increases

as the axial displacement increases until the ratio A/Amax reaches

the limiting value A/(LS-LO) = 1.0, then the stiffness of the tie

tends to the value of the axial stiffness of the flat tie K0 =-%&- as

O
shown.



In Table (2.2) are given values of the ratio A/Amax’ Kt/K0 and
the angle @« , for a loaded curved tie with an initial rise Ao = > mm.
All of these values are calculated for various values of the applied
load W. It is seen from the table that, when the applied load W is

. . A/
increased the ratios A/ nax

is decreased. When the end angle a approaches to zero, the ratio a/a

o4

andFﬁ/Ko approach the terminal values of unity.

Table(2.2) :

Applied \
load (W)

0.846

3.384
5.921

10.151
15.227
20.302
25.3178
42.296
84.592
253.771
422,961
507.554
676.738

845.925

/(L -L5)

0.0920282
0.3020007
0.4460567
0.6024679
0.7151148
0.7851046
0.8316026
0.9104155
0.9661408

0.9935932
0.9975115
0.9978224
0.9991290

0.9991290

Summary of Behaviour of Curved Tie

kKo

0.0096552
0.0117688
0.0159441
0.0176982
0.0223655

0.0271622
0.0320543

0.0487991
0.0919689
0.2682836
0.4453830
0.5293066
0.7270311
0.9087888

end angle

a (degree)

2.117
1.901
1.731
1.519
1.336
1.201
1.097
0.875
0.627
0.362
0.280
0.256
0.222

0.00

and Kt/Ko are increased as the end angle a

max
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loaded form

N\ 9-dg \,/8

(b)

Flg(Z "1) + GCeometry of Axially Loaded Strut
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(b) Curved part of strut after deformation

rigid leve
arm
./’\
S S, - unloaded form
Sl
- loaded form
|
| Y
|
(G) Initially curved strut under eccentric loading
|
|
|
|
¥
| — (
l
l
I -
W, E L _
\/
Y

e Yc' “— loaded form
\ e
l i C10V

ds

| Y
|

Flg(Z"'S) : Geometry of Eccentrically Loaded Strut



(b)

Flg (2""6) : Geometry of Axially Loaded Ties
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loaded form
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#,4e-———“——— unloaded form
Y
(Cl) Initially curved tie under eccentric loading
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X
S

y
r dx %
s,/ ogsldy 4 1

9 loaded form

Y

( b) Curved part of the tie after deformation

Flg(Z""?) Geometry of Eccentrically Loaded Tie
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CHAPTER THREE
ELASTIC STABILITY OF FRAMEWORKS
WITH NONLINEAR RESTRAINTS

3.1 Introduction

The previous chapter was concerned with those members which
were capable of being isolated from the adjacent structure, for the

purposes of analysis. In this chapter the analysis will deal with
bent members (struts or ties) which need to be regarded as components

of frameworks.

Generally most of the steel frame types of structures, especially
tall building frames, need bracing to prevent them from excessive
lateral deflection and also to brace the frame against instability.
All structural frames can be classified into two basic types, the
first 1is no-sway.frames, where it is assumed that the ends of members
are not free to move relative to each other e.g. triangulated frames
or multi-storey portal frames with sway bracing. The second type is
sway frames, where the resistance to lateral loads is provided by
sway moments induced in the columns. Therefore the determination
of elastic critical load depends on the type of frame. This elastic
critical load is an important quantity in many framework calculations,

and it is useful to have the means to evaluate it.

In this chapter the elastic non-linear behaviour of frames,
consisting of columns or columns and beams (portal frames), stiffened by
curved bracing 1s examined. Methods are described also for the

calculation of the elastic critical loads.
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3.2 The Stability of a Column with Nonlinear Lateral Restraints

To illustrate what happens when a column in a typical framework
becomes unstable owing to sidesway, a simple model of a column
together with a bracing member or members has been set up. The
column is pinned at end "A" and loaded by horizontal and vertical
loads "W and PY respectively, as shown in Fig. (3.1). Also the end

of the column "B" is restrained against lateral movement in either

direction by a pin ended curved bracing member or members, as shown

in Fig. (3.1.a) or (3.1.b).

Since the bracing is normally made from a very light member

compared to the column, it can be assumed to be a spring of non-linear

stiffness K in the analysis. It is important to investigate

the stability of the equilibrium of this model.

The behaviour of this system is used to illustrate the method
of calculation the elastic critical load of a frame structure
which has been discussed in great detail by Bolton (3). Further

discussions in this section are mainly concerned with a particular

type of instability encountered.

3.2.1 The Stability of a Column Restrained by a Spring with Non-

Linear Stiffness, K.

Fig. (3.2) shows a column pinned at one end and restrained by a
spring of stiffness K at the other end. The column is subjected to

lateral and axial forces "W & P",respectively, as shown. For any
combination of loads P and W the spring will be deflected by an

amount A. This means that under the combined influence of the
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vertical load "P" and the horizontal load "W" lateral motion of
joint "B" will occur until equilibrium, if possible, is attained.
It will be observed that two distinct actions are operating on

the system, such as,

i) The vertical load "P" acting at a sway eccentricity "a",
causing an overturning action about the base of the column "A" (this
is frequently referred to as the P-a effect). Also the horizontal

load "W" will increase the overturning action about the base of the

column.

ii) The restoring force "F" due to the horizontal displacement "a"
of the equivalent spring which results in a restoring moment:

MR = F.H" about the base of the column.

It 1s possible to take moments about "A" and observe that the

net restoring moment "M," 1s given by:

MA = FH" - PA - WH" = O (3.1)

where, H'" = H.Cos(a1)

in which A is the rotation of the column about the base "A",

The spring force "F" is equal to the spring stiffness "K" multiplied
by the horizontal deflection "A" , thus, the spring force "F" may be

written as K. 4, and equation (3.1) becomes:

KAH" -« PA - WH" = (O (3.2)

i.€.
W.H"
KH"-P

(-
I

(3.3)
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when KH" = P in Eq. (3.3) then the horizontal displacement "a"

tends to infinity and this means that the structure is in unstable
condition. This defines the elastic critical load to be Pop = KeH",
This is the usual result for elastic critical load when the spring
stiffness is constant (3). The column will be in stable equilibrium

up to a critical value of P equal to K.H" and then it becomes

unstable once this load is reached.

3.2.2 The Elastic Critical Loads of a Column With Non-Linear SEring

it should be fealized that the value of Pcr = KH", based on
equation (3.2),is dependent on the assumptions that K is constant
and also P remains constant with A. Essentially it is a mathematical
device for calculating the critical value "Pcr" . If the fact that
P may be a function of A is introduced in Eq. (3.2), because the
stiffness of the spring is non-linear, then the relationship between the
applied load "P" and its displacement "A"™ may be extremely complicated.
The loads on the structure are likely to be a function not only of
the distance through which it acts, but also of the rate of displacement.
This rate is dependent on the non-linear stiffness of the equivalent
spring and of the loads, because these affect the speed with which the
loads can follow the movement of the ‘column. Such dynamic effects

are often very important in particular cases.

Now, the behaviour of a column restrained by an equivalent

spring (for curved bracing) with non-linear stiffness "K" is studied
as loading are applied from zero, the load being applied in specified

increments. In this system the displacement "A" occurs as soon as

the load set "P & W" is given a value, and the general stiffness-
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displacement response to be expected may be seen in Figs. (3.3.a)

and (3.4.a).

Fig. (3.3.a) shows the stiffness variation of an equivalent
spring, for a curved compression bracing. It is seen that the

stiffness "Kg 1s decreasing as the displacement "A" increases.

Fig. (3.4.a) shows the stiffness variation of the equivalent
spring for a curved tension bracing. As shown in the figure, the

stiffness "K; is 1ncreasing as the displacement "A" increases.

It is necessary, now, to represent the relationshib between the
load P and the value KH". The graphs of the values KH" and P against
Ao are plotted in Figs. (3.3.b) and (3.4.b) in cases of the spring
subjected to compressive and tensile forces respectively, where,
the upper curve (i) in the figures, represents the variation of the
value KH" and the lower curve (ii) represents the variation of the
vertical applied load P. These plots show that the value of P = KH"
will occur at A== (the same limit as indicated in Eq. (3.3)). This

means that the condition of P = KH" is not sufficient for the

calculation of the elastic critical load Ppr'

The response of the system to a'given set of applied loads "P & W"

is investigated, in which, under the combined influence of P and W,
the structure will deflect by an amount "A" until equilibrium is

attained.
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Equation (3.2) gives the static equilibrium of the system.
This equation involves the considerations of overturning action
due to the applied loads (WH" + P4a) and the restoring moment in

the equivalent spring (KaH").

Making use of the assumptions that:

F, = K aH" (3.4)

and

WH" + Pa (3.5)

Then, Eq. (3.2) can be written in the form :

M = F - F = 0 (3.6)

Now, it should be realized that the solution of Eq. (3.6)

will be achieved when the net restoring moment, "MA" is equal to
zero, i.e. when the function F1 is equal to the function F2'

The relationship between the function "Fz" and the displacement
"pA" is represented by a straight line, as shown in Figs. (3.5.a)
and (3.6.a) , with slope "P" and an intercept WH" on the vertical

aXiS at A:O .

Also the relationship between the function "F1" and the displacement
"pA" is shown in Figs. (3.5.b) and (3.6.b) for a spring loaded by

a compressive and a tensile force respectively.
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3.2.2.71 The Elastic Critical Load of a Column With a Non-Linear

Spring Loaded by a Compressive Force

If the two figures (3.5.a) and (3.5.b) are superimposed the
two lines, represent F1 and F2, intersect as shown in Fig. (3.5.c)
and the column will be stable under the action of the given set of
applied loads, and the corresponding configuration is represented

by the points E'and E"  Fig. (3.5.c) , where 4 is equal to B and AE"

respectively. Actually, as seen from Fig. (3.5.c), if the system is
slightly displaced from E (i.e. the equilibrium 1is altered from
point ES by increasing the displacement "aA", then the restoring
moment "F," 1n the equivalent spring will increase more slightly
than the overturning action "Fz" and the net restoring moment MA
in Eq. (3.6) will be positive. Therefore, the system will tend to
revert to its initial undistorted position E. This means that the

stable equilibrium of the system will be at point E. Point E" represents

another equilibrium configuration but can only be reached by applying

additional loads and then removing these gradually.

If the values of the applied loads are increased, the corresponding
straight line in the diagram, Fig. (3.5.c) shifts upwards. Points E'
and E", therefore, tend to draw nearer together and, at the limit, to

coincide when the straight line is tangential to the curve "F1"

of the restoring moment in the spring. The value of the vertical

load "P" corresponding to this limit condition provides the first
elastic instability critical load "Pcr1" for a column restrained by a

compressive initially curved bracing.
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3.2.2.2 The Elastic Critical Load of a Column with a Non-Linear

Spring Loaded by a Tensile Force

To determine the critical load for the system of a column restrained
by a non-linear spring subjected to a tensile force, consider the
two figures (3.6.a) and (3.6.b) which are superimposed in Fig. (3.6.c).
The two lines, represent the functions F1 and F2, intersect as shown
in Fig. (3.6.c) and the column will be stable under the action of

the given set of the applied load. The corresponding configuration is

expressed by point E'(Fig. (3.6.c)), where A = ag.  If the values
of the applied loads are increased, the value of F'2 also will
increase, then the corresponding straight line in the diagram shifts
upwards and the structure will be stable at another point G, where

A~ is greater than Aty and the spring at this point will be stiffer

G

than at E'(as defined from the stiffness-displacement curve Fig. (3.4.a)).
Hence the critical value of P provides the instability critical

load Pcr’ in this éase, when P = KH" where K at this limit is equal to
A E
the stiffness when the curved tie becomes straight (i.e. K :-—E—).

S

Therefore,the value of the critical load "PC " according to this condition

r

can be written as:

A E

PCI‘ = (—E—) . HY at. A = o (3.7)
S

3.2.2.3 The Elastic Critical Loads for a Column Restrained By
a Combined Bracing System

In this case consider the simple model shown in Fig. (3.1.b) which
consists of a pin ended column "A-B" and restrained against lateral

movement in the horizintal (X,Y) plane in either direction by pin
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ended curved bracing members.

The column is loaded by horiziotal and vertical loads W and P
respectively at joint B, this means that, once the loads are applied,
one of the curved bracing will be under a compressive force and the

other under a tensile force. The bracing members are replaced by
springs of non-linear stiffness, Kc and Kt respectively, as shown
in Fig. (3.7.a) where, Kc is the non-linear spring stiffness in

compression and Kt is the non-linear spring stiffness in tension.

For the purpose of this research assume initially, at A = O

Kc ?> Kt'

Figure (3.7.b) shows the forces acting on the column in the

displaced position, where A is the lateral displacement of joint B.
The restoring force “Fc"in the equivalent spring for bracing

in compression is equal to K_.a. Also the restoring force” Fp " in
the equivalent spring for bracing in tension 1is equal to Kt.A.

Therefore the total restoring force "F" can be written in the form:

F - FC <+ Ft - K-A (3-8)

where’ K KC + Kt (3.9)

K is the global stiffness of the whole combined bracing system.

Fig. (3.8.a) shows the variation in the global stiffness "K" of
the system. The horizontal axig represents the lateral displacement A.
The vertical axis represents the global stiffness K. It is seen that,
at the beginning the stiffness decreases very rapidly as the
variation in the lateral displacement A is small. As the displacement

A, increases more, the variation in the stiffness is very small until

the structure starts to retake its stiffness by the tensile spring

stiffness, and becomes much stiffer. This means that, at the
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beginning, the loading is mostly sustained by the spring in

compression. If the loading 1s increased, and therefore the lateral
deflection increases, then the stiffness of the spring in compression
reduces and the stiffness of the spring in tension rises. Eventually

the loading is sustained finally by the spring in tension.

Now, the equation of static equilibrium of the structure can be

obtained by taking moments about the pin end "A" of the column, such

dS s

My = F.H' - WH" = Poa = O
or

My = KaJH" - (WH" + P.a) = O (3.10)
or

_ E—Hl"-*if—l;- (3.11)

Again, the structure becomes unstable as P = KH" at Az~ .
Fig. (3.8.b) shows the relationship between the variation in KH"

and the applied load "P" against A, the upper curve (i) represents

the variation in KH" and the lower curve (ii) represents the
variation in P. It 1i1s seen that, the value of P = KH" at A=z~ , and

this gives the higher value the elastic critical load applied to the

system,

Now,Eq. (3.10) can be simplified to the form:

1
-

1 — Fz - 0 (3112)

where,

KA:H" (3'13)
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which represents the restoring moment in the combined system of the

springs about the pin end "A",

and F2 = WH" + P,A | (3.14)

which represents the overturning action due to the applied loads

about the hinged base "A".

The function F, in Eq. (3.14) represents a straight line with
slope P and intercept W.H" to the vertical axis at A = 0. This means

that £he function F, depends on two terms. The first is WH", the

2

effect of this term is shown in Fig. (3.9.a) where the lateral load
"W"is increasing, while the applied vertical load "P"is constant.
It is seen from this figure that the straight line, which represents

F, shifts upwards parrallel to its original position.

2

The second term is P.A,the effect of this term on F2 is shown
in Fig. (3.9.b) where the lateral load "W" is constant and the
applied vertical load "P" is increased. It is seen from this figure

that this is a straight line turning anticlockwise with a new slope

equal to the new load "P".

The function F1, Eq. (3.13), is'dependent essentially on the

characteristics of the non-linear springs stiffnesses. Fig. (3.9.c)
shows the relationship between the function F1 and the displacement "a"

where, in this figure, F1 is dependent on A as K is also dependent

on A.

Now for any given load set "P & W" the equilibrium diagram is

sketched in Fig. (3.10). This figure shows the relationship between



715

the functions F1 and F2 respectively against the lateral displacement

A

It is seen from the figure that the straight line (i), which
represents F,, intersects the curve F1 at point xonly. The column
will be stable under the action of the given loads at this point

where A = A .,
X1 x1"

If the values of the applied loads "W & P" are increased, the

corresponding straight line in the diagram shifts upwards and

intersects the curve F1 at points Xoy X3 and Xp respectively, as
shown in Fig. (3.10), line (ii). These three points represent the

static equilibrium of the structure, i.e. the net restoring moment

"MA" in Eq. (3.12) is equal to zero. The column will be stable under

the action of the applied loads and the corresponding configuration

is represented by the point Xo s where A = B oe

Points X4 and X4 represent other equilibrium configurations,

where A = AXBand Axayespectively. At point X the equilibrium is

unstable. Also at X3 an increase in load leads to a reduction in
deflection. Actually, as seen from the figure (3.10), if the system
is slightly displaced laterally from point Xg by increasing the

displacement 4, by a small amount u, in this case there are two

possibilities:

The first 1 1f A <
-__E___E_E_;__ 18, 1 x2+ u AXB ’

increases more than the overturning action "Fz", hence, the net

restoring moment M, in Eq. (3.12) will be positive and the system will

then the restoring moment "F1"

tend to revert to its initial undistorted position Xo e
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The second 1s, if‘Ax2+.u > 8 5 then the overturning action "F,"

increases more than the restoring moment " 1", hence the net
restoring moment "MA" will be negative and the structure will
move forward until the new equilibrium position X4 is reached. This

second case explains why the structure, at X3 is unstable and not

at XA'

If the system of the applied loads (P & W) are increased more,

then the straight line will shift upwards more, therefore points Xy

and x3 tend to draw nearer together and at the limit, to coincide at
point x, when the straight line is tangential to the curve of F1, as

shown in Fig. (3.10) line (iii). The value of P corresponding to this

limit condition provides the first instability critical load "Pcr1"'

A small increase in the load at this limit will lead to a
sudden change in the deflection "A "until the new equilibrium position
at y is reached, and the dynamic effects are often very important in
this case., Between x and y the stiffness "K" of the structure
reaches its minimum value and, therefore, the value of function F'1 is
lesser than thevalue of function F2, so that the static equilibrium
cannot be achieved. This stage represents the region of unstable
equilibrium. In this research this will be called the region of

"transient instabilitf“.

However, further increase in the set of the applied loads than

the first elastic critical values (i.e. P > Pcr1) increases the lateral
! "

displacement'a and the straight line represents FZ’ shifts upwards

more and more, and the structure will move directly to the stable

equilibrium Xgy s shown in Fig. (3.10), line (iv). The structure at
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this point is stable, where the equivalent spring stiffness "K"
is increased. This means that there is a critical value of P which
is defined as PCr = KH" at A=~ (as explained in the case of a

tensile spring).

From the above discussion it is seen that the critical load,
for a column restrained by a combined curved bracing, depends
essentially on the characteristics of the structure, hence on the

relationship between functions "F1“ and "Fz".

3.2.2.3.1 Influence of the Ratio Ri = P/W on the Phenomenon of

Transient Instabilitz

For any given set of applied load "P & W" consider an arbitrary
ratio "Ri" between P and W (i.e. R, = P/W) which is relatively

low. Once this system of the load is applied to the structure, then

it will be displaced by an amount "A" until stable equilibrium

is achieved.

Fig. (3.11) shows the equilibrium position of the structure where,
the corresponding configuration is represented by point x. Now if the
ratio Ri between <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>