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ABSTRACT 

This study was undertaken to investigate the effects of 

imperfections in the initial geometry of bracing members on the 

stability of the structural frameworks. The general non-linear 

behaviour of frameworks, consisting of single columns, or multistorey 

frames stiffened by curved bracings, were studied under the effects 

of combined vertical and horizontal load systems. The study was 

divided into two main parts. 

In part one, the study examined the structural frameworks in 

the following situations: 

i) Influence of initial bowing on the behaviour of individual 

members subjected to axial or eccentric forces. 

ii) General static behaviour of a single column restrained by 

curved member or members. 

iii) General static behaviour and instability of multistorey 

frameworks with non-linear cross bracings. 

It has been the goal of the thesis to reinforce the theory put 

forward to explain the particular type of instability encountered, 

therefore a critical state, or transient instability region, has been 

investigated. 

The characteristics of individual curved members were determined 

using the theory of large deformations. The general behaviour and 

the stability of frameworks restrained by imperfect bracing systems 

were studied using tangent slope and influence coefficient techniques. 
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The results of this study have shown that the initial imperfections 

of bracings are very important and have major effects on the overall 

behaviour of the braced frame structures. The particular type of 

instability encountered, i. e. the critical state or the transient 

instability region, may be considerably influenced by the initial 

geometric imperfections of bracings and the relative magnitude of the 

ratio between vertical and horizontal applied loads on the frameworks. 

The critical loads have been presented in a series of curves and 

tables. 

In part two of the study, the dynamic behaviour at the critical 

state, i. e. in the region of transient instability, has been 

investigated. Numerical methods for the dynamic analysis of structural 

frameworks have been discussed. A new procedure of numerical 

differentiation has been presented and its advantage over existing 

procedures has been shown. The method is convenient for use with 

a digital computer and can also be used for solving simple problems 

with a calculator. 

In general the results of parameters studied were presented in a 

series of curves and tables to enable the stability and dynamic 

actions to be readily determined for a wide range of structural 

configurations. 

Finally, a test programme was carried out to investigate 

experimentally the non-linear behaviour of frameworks restrained by 

these imperfect bracings. Three separate models were used in the 

experimental programme. The experimental results were used 

to verify the general accuracy of the theoretical methods of analyses. 

In general the theoretical results and the experimental ones were in 

very close agreement. 
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NOTATIONS 

The principal symbols used in various chapters are listed 

below. Other subsidiary symbols are defined where they appear locally 

in the text. 

A0 : Initial rise at mis-dpan of curved member 

Ac : Cross sectional area of bracing member 

bs : Breadth of the bracing member 

c: Length of the end connection of the bracing member 

Cd : Damping coefficient 

Cc : Critical damping coefficient 

C1, C2, C3, C4: Constants of integrations 

C11 : Constant 

Dp : Delay parameter 

e: Eccentric length 

E: Young's modulus 

E(p) : Complete elliptic integral of the second kind 

E(p, *) : Incomplete elliptic integral of the second kind 

f(a) : Mathematical function 

F: Force in the bracing system 

Fý : Function of the restoring moment in the bracing system 

F2 : Function of the overturning action due to external loads 

FD : Damping force 

FI : Inertia force 

FcFt : Restoring force in compression and tension bracing 
respectively 

F(p, 4) : Incomplete elliptic integrals of the first kind 

h: Height of a storey in a multistorey framework 

H: Total height of the framework before deformation 
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H" : Vertical height of the framework after deformation 

I: Second moment of inertia of bracing member 

KcKt : Axial stiffness of curved bracing in compression and in 
tension respectively 

K: Axial stiffness of combined curved bracing system 

K0: Axial stiffness of initially straight member 

K(p) : Complete elliptic integral of the first kind 

L: Chord length of loaded member 

L0: Chord length of unloaded curved member 

Ls : Total curved length of the member 

m: Mass 

M, M0 : Bending moments 

MA : Net restoring moment about the base of the equivalent 
column 

n: Degree of the polynomial 

N: Number of storeys of Multistorey framework 

p: Modulus of elliptic integral 

P: Vertical applied load 

PE : Euler buckling load 

PQ : Vertical load applied at the top of equivalent single 
column 

P 
cr : Elastic critical load defined at a=m 

Pcr1 : Elastic critical load defined at the onset of transient 
instability region 

Po. 
w : Self weight of the column model 

r: Radius of gyration. 

R: Radius of curvature of initially curved member 

R. : Ratio between the applied vertical and horizontal 
loads 
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Rs : Elastic force in the combined bracing system 

s: Slope of a straight line 

t- : Time 

6t : Small time interval 

u: Complementary solution for second order differential 
equation 

v: Particular solution for second order differential 
equation 

W: Hotizontal applied load 

Wy : Applied load at the onset of plasticity 

WQ : Horizontal load applied at the top of equivalent single 
column 

Wp : Applied load at fully plastic section 

Wcr : Critical value of the horizontal load at the onset 
of transient instability region 

Xd(t) : Dynamic displacement at instant of time "t" 

Xd(t) : Velocity at instant of time "t" 

X: d(t) Acceleration at instant of time "t" 

dx : Small. displacement interval 

yc : Central deflection of the curved member 

Z: Span of the framework 

ZP : Plastic modulus of the bracing member 

ZY : Elastic modulus of the bracing member 

a: Angle at the end of loaded curved member 

a0 : Angle at the end of unloaded curved member 

aoc&. aot : Angles between the. chord line of the compression and 
tension bracing and the vertical position of the 
framework 

a1 : Rotation angle of the equivalent column 
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acc ' atc Angles between the chord line of the deformed 
compression, tension bracing and the column 
respectively 

e, y, c, 4i, p, n : Real angles 

d: Small displacement interval 

dý, & dt : Axial deformations in the compression & tenstion 
bracing in a framework respectively 

A: Lateral displacement 

A1 

A 2 

Critical displacement at the onset of transient 
instability 

Lateral displacement at the end of the transient 
instability region 

A: Axial displacement at the onset of plasticity of 
bracing member 

A: Axial displacement at fully plastic section for 

: e; 

Q 

v y 
(*3 

w D 

Cd 

bracing member 

Strain 

Stress 

Yield stress 

Natural frequency 

Damping frequency 

Damping ratio 
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PART ONE 

STATIC INVESTIGATION 
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CHAPTER ONE 

INTRODUCTION 

1.1 Preamble 

. Problems of instability have engaged the attention of 

mathematicians and engineers for many years. Among the most 

important of these problems is that of the stanchion. Euler was the 

first to define a crippling load for a strut, and the Euler load is 

still a fundamental quantity in stanchion analysis. The classical 

analyses of the stability of structures are mostly based on the 

Euler concepts, which consist of the consideration that the structures 

have ideal geometrical and material properties, and that the buckling 

behaviour may be described by linear equations. Although the 

linearized theories have been proved to agree with the experimental 

results for structures having nearly idealized conditions, the 

actual behaviour appeared to be more involved than postulated by the 

theories. In fact, actual systems are always more or less imperfect 

in both geometry and material. In some cases, the effects of 

imperfections may not be pronounced, but in general they have 

substantial effects on the buckling behaviour. 

1.2 Previous Work 

Much of the literature on the subject of frame stability has 

emphasized the need to evaluate the effect of horizontal joint 

displacements, commonly called the P-delta effect, and the influence 

of axial force on stability. Undue emphasis on either one or both 

of these factors could result in a restricted approach to the frame 

stability problem. Actually, there are other factors that also 
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influence the stability limit of structural frameworks. Johnston(42) 

has listed many of these influences but Charles and Jorame 
(19) 

classified all these into three groups, i. e. geometry, material and 

loading. 

Geometrical Effects : These consist. of: 

1. The influence of axial force on member bending stiffness. 

2. The effect of horizontal joint displacements, commonly 

called the P-delta effect. 

3. Changes in member chord length resulting from axial 

strain and bowing. 

4. Accidental initial geometric imperfections of member 

(e. g. camber, twist, etc. ) 

5. Dimensional variations in the framework due to erection 

tolerances. 

6. Shearing deformations. 

7. Local buckling or other local distortions. 

B. Out of plane movement of frames. 

Material Effects : These consist of: 

1. Non-linear stress-strain relationship. 

2. Residual stresses present in members prior to loading 

as a result of manufacturing and fabricating 

processes. 

3. Spread of inelastic zone in members as member forces 

increase. 
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Loading Effects : These consist of: 

1. Non-proportional loading. 

2. Variable repeated loading. 

All the above listed factors influence the stiffness of the 

frame and the first two are the most important. There are 

situations where one or several of the others could significantly 

reduce the frame stiffness and thereby reduce the factor of safety 

with respect to stability. 

General instability of multistorey building frames have been 

discussed from various standpoints by many authors. Bleich 
(6) 

shows the analysis for an approximate critical load for buckling in a 

sway mode for unbraced, uniform multistorey, frames under constant 

load. The elastic critical loads of multistorey rigidly-jointed 

sway frame and the frame design were studied by Horne (35), 
Merchant 

(59) 

and Salem 
(80) 

Also an experimental study was carried out by 

(51) Low 

Buckling of braced frames was considered by Goldberg 
(29) 

who 

presented simple formulas for upper and lower bounds on the 

stiffness of the bracing required to prevent buckling in the sway 

mode. 

However, a problem of increasing concern in the field of 

elastic stability is the buckling behaviour of structural systems that 

have small imperfections in the initial geometry of the structure. 

Such imperfection may have a drastic effect on the critical load. 

For instance, the critical load of an axially loaded column may be 
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reduced to one third of the classical buckling load due to the 

presence of small imperfections in the column. It has been found 

by Roorda 
(73) 

that the critical load of certain types of frame 

structures as well as arches may be affected by the presence of 

imperfections. 

Many authors have examined particular structures to find out 

the effect of imperfections on the buckling behaviour, for instance 

Cox 
(20) 

who treated a model structure of a simple supported strut 

with a. non-linear support in the middle, and Swannell 
(77) 

who 

studied the elastic buckling of columns constrained by an initially 

curved side rail at the middle. The latter considered the axial 

stiffness of elastic, curved, side rails, using small deflection 

theory, in which the side rail effect is simulated by an elastic 

spring. He described the use of this equivalent spring stiffness 

in an attempt to provide a unified description on the constraint 

given to a main column member by the provision of side rails at mid- 

height. The classical analysis of the problem is available in 

(35,55,66,85) 
texts 55,66,85) 

A type of buckling which sometimes occurs is when curved 

elastic elements are so loaded that the loads tend to reduce the 

curvature. In this case, the buckling consists of a sudden change 

of curvature or the structure snaps through to a new equilibrium 

position. This type of buckling has been discussed by a number of 

authors. The significance of the problem, in so far as it illustrates 

certain important features in more complicated buckling problems 

of structures, was pointed out by Fung (22), 
Fraser (23), Timoshenko(840 

85) 
and Hoff 

(109) 
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In this research the problem is studied not only from the usual 

static treatment but also from the dynamic point of view. A 

familiar example, which illustrates the essential feature of the 

phenomenon of snap through, or transient instability, is the 

framework restrained by an initially curved bracing system. It is 

this example that will be treated here. 

The general procedures for the solution of problems in 

structural dynamics are available in standard dynamic texts 
(959 104, 

111,112,121) 

Probably the most powerful technique for dynamic non-linear 

analysis is the step by step integration procedure using a constant 

time interval. 

In this thesis the numerical methods for the dynamic analysis 

of structural frameworks have been discussed. A new procedure of 

numerical differentiation has been presented and its advantage 

over existing procedures has been shown. The method is convenient 

for use with a digital computer and can also be used for solving 

simple problems with a calculator. Consideration is given to 

various types of damping. The method, is capable of application to 

structures of any degree of complication, with any relationship 

between force and displacement. Any type of dynamic loading, such 

as that due to shock or impact, vibration, etc., can be 

considered. 

The method has been used for the computation of the dynamic 

response of the non-linear behaviour of frameworks restrained by 

curved bracing systems. The basic technique of analysis is a general 
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step-by-step method of differentiation of the equations of motion, 

using a constant displacement interval. 

1.3 Scope of Work 

The work described in this thesis is concerned with the general 

investigation of buckling and vibration problems, and to show how 

initial geometric imperfections affect the buckling behaviour of 

structural systems. Simple models are included to illustrate the 

theory of buckling stability for such systems. 

The behaviour of braced frames, when the bracing system has an 

initial bow are studied. This type of imperfection commonly exists 

in buckling frames and once the bracing members are not perfectly 

straight, then their behaviour is no longer linear. Analysis shows 

that the behaviour of frame instability is very much dependent on the 

initial bowing of the non-linear restraints. 

In this thesis three simple models have been set up to study 

the behaviour of such structures. The first consists of a single 

column and a bracing member or members. The second consists of a 

two storey framework with curved diagonal bracing system. The third 

consists of two frameworks, each frame of which is identifical to 

the second model which is restrained by curved diagonal bracings. 

It is intended to represent the initial condition of the framework 

restrained by initially curved bracings, and then cause failure under 

controlled conditions observing the phenomenon of "snap through" or 

"transient instability" between the points when the compression 

bracing buckles and the tension bracing re-establishes stability. 
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The work described in this research consists of two main parts, 

the first deals with the static investigations of the problem, 

while the second part deals with the dynamic investigation in the 

region of transient instability. The static investigations are 

described in Chapters 2,3,4 and 5. The dynamic investigations 

are presented in Chapters 6,7 and B. 

In Chapter two, the theoretical behaviour and the axial 

stiffnesses of bent bracing members subjected to compressive or 

tensile forces are investigated. The general procedure of the large 

deformation theory is described by using the Bernoulli-Euler equation. 

The influence of two imperfect parameters on the individual 

members, i. e. initial bowing and eccentric loading, are investigated. 

Axially and eccentrically loaded curved members are considered. 

In Chapter three, the elastic stability and the theoretical 

behaviour of frameworks with non-linear restraints are investigated. 

The elastic critical load for a column restrained by an 

equivalent non-linear spring, for curved member or members, is 

determined. The fundamentals in the theory for simple structures 

restrained by non-linear restraints are derived. The general 

procedures of determining the elastic critical loads for multistorey 

frameworks, restrained by curved bracing systems, are described. The 

general behaviour of this type of structure can be summarized 

in three regions such that: 

i) The structure is stable and represented by the first stable 

equilibrium region. 

ii) The equilibrium of the structure is unstable and represented 

by the transient instability region. 

iii) The structure is stable again, and represented by the second 

stable equilibrium region. 
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The conditions of each region are adopted. 

Two numerical methods are developed to determine the limits of 

the transient instability region and the corresponding applied 

critical loads. Influence coefficient method and tangent slope 

technique are employed in the investigation. 

Experimental investigations, under static loading carried out 

to support the theoretical investigations, are described in Chapter 

four. . Three separate groups of tests have been performed on a 

small scale for: a single column with non-linear restraint or 

restraints, and also for a two-storey framework model with non- 

linear cross bracings. 

In Chapter five, the theoretical techniques are applied to the 

analyses of initially curved members, column model, and two storey 

framework model restrained by non-linear restraints. The 

convergence characteristics, accuracy, and computing efficiency of the 

techniques are evaluated by comparing the results obtained by 

experiment with the theoretical results available by others and 

those obtained by the methods described. Curves are presented to 

explain the general behaviour of these types of structures. 

In part two of this research, the problem of frame structures 

restrained by non-linear bracing systems is approached from the 

dynamic point of view, in contrast to the usual static treatment. 

The buckling of this type of frame structure occurs when the curved 

bracing elements are so loaded that the loads tend to reduce the 

curvatures of the tension bracings while increasing the curvatures of 
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the compression bracings. In this case the structure snaps through 

to a new equilibrium position, and a dynamic effect is very 

important on the overall behaviour of the structure. The dynamic 

behaviour allows the structure to sway freely through the region 

of transient instability. The structure may or may not, return to 

its original configuration. 

The dynamic behaviour of this type of structure, in the 

transient instability region, is investigated in Chapter six. Two 

methods are employed to evaluate the dynamic response. Constant 

time interval and constant displacement interval techniques are 

employed in the investigation. 

In Chapter seven, the results of an experimental dynamic 

investigation carried out to support the theoretical investigations 

of frame structures restrained by curved diagonal bracing system 

havebeen presented. Accelerations and displacements at the top of 

the framework are obtained in the tests using a small scale two 

storey frame model. The dynamic response has been recorded onto 

4 channel tape recorder. An Apple IIe micro computer has been used 

to digitise the records. 

In Chapter eight, the influence of various combinations of 

bracing sets on the dynamic behaviour of a framework, is 

investigated by applying the theoretical techniques to the two storey 

framework model. The convergence of dynamic characteristics, 

accuracy, and computing efficiency of the technique are evaluated 

by comparing the results obtained from the theoretical analysis with 

those from experimental results. Curves and tables are presented 
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to explain the general dynamic behaviour of such types of 

structures. 

The closing chapter summarizes the main conclusions reached 

in this thesis and indicates possible areas for future 

investigations. 
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CHAPTER TWO 

THEORETICAL STATIC BEHAVIOUR OF BENT MEMBERS 

2.1 Introduction 

This chzpter is divided into two parts, the first deals with 

methods for the calculation of displacements and axial stiffnesses 

of elastic curved struts, subjected to axial forces, using a theory 

for large deformations. The second part explains how the large 

deformation theory can be applied to ties loaded by axial tensile 

forces. Methods are described also for the calculation of the axial 

stiffnesses and the displacements of these ties. 

The basic equations are derived in both parts by using Bernoulli- 

Eller equation, which states that the change of curvature of a rod 

is proportional to the bending moment producing it. 

2.1.1 Fundamental Assumptions 

The fundamental assumptions made in the development of the theory 

of the initially curved members are as follows: 

1. The material of the member is linearly elastic. 

2. The member is of uniform cross-section. 

3. The initial curvature is circular. 

4. The member is unstressed when it is not loaded. 

5. Each end of the member is connected to a frictionless 

pin which ensures that the bending moment at each end is zero. 

6. The member is assumed to be inextensible, hence its length 

is the same before and after loading. 
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2.2 Theoretical Analysis of Initially Curved Axially Loaded 

Strut 

Compression members are key elements of almost all structures. 

The study of their behaviour is essential for the understanding of the 

behaviour of structures, such as columns, beams or components of 

frames. Compressed members may be defined as members carrying a 

compressive load, and whose length is considerably greater than the 

cross-sectional dimensions. Sich a member may carry other loading, and 

may have end conditions and moments of any type. This section is 

concerned only with members carrying a compressive load. 

Generally in practice a strut will not be exactly straight, 

and the line of thrust will not pass exactly through the centroids 

of its terminal cross-sections. On both accounts it will be subjected 
to bending action, and lateral deflection will occur from the first 

application of load. 

To study the behaviour of an initially curved strut under axial loads 

at both ends, consider an initially curved (circular) strut shown 

in Figure (2.1). The strut is hinged at one end (a) and supported 

on a frictionless roller at the other end (b). The strut is initially 

curved to form an arc of a circle of radius (R), and rise (A at 

the mid-span. Also the strut is subjected to end loading with the line 

of action along the line of the supports. 

Before starting the basic equations of large deformation 

theory it is important to define the axial stiffness which is denoted 

by K. This is defined as the load, applied along the chord-line of 

the member, which will produce a total shortening of the chord line 

equal to unity. 
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i. e. 

where, 

HJ = K. t (2.1) 

W is the axial load applied along the chord line of the member, 

K is the axial stiffness of the member 

A is the shortening of the chord-line of the member. 

2.2.1 Basic Equations of Large Deformation Theory of Axially 

Loaded Strut 

The co-ordinate axes are shown in the Figure (2.1a). The distance 

s is measured along the curved length of the strut from the origin a. 

Curvature can be expressed in terms of the slope of the member at any 

point as do/ds. Since the bending moment in the strut is equal to the 

flexural rigidity times the curvature, the differential equation 

expressing the bending moment is: 

-EI ýdde - s 

do 
0 

d. s =M (2.2) 

where, 

EI is the flexural rigidity, s denotes the distance of the section 

considered from the origin (a) measured along the central-line 

of the loaded strut, 0 is the inclination of the centre-line of 

the deflected form to the line of thrust, at the section 

considered, 9o is the inclination of the centre-line of the 

initially curved strut to the line of thrust at the section 

considered, and M is the bending moment at this section. 

From Fig. (2.1a), the bending moment M at section s1-s1 is: 

M=+ wy 

Thus, ecpation (2.2) becomes: 

(2.3) 
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do 
-EI (ds - ds) - W. y 

Differentiating equation (2.4) with respect to s and using the 

relation; d= sin(e), as shown in Fig. (2.1b), the following 

equation is obtained: 

d2e 
_ 

d2eo 
-W 

ds2 d--s2 
) 

EI' sin(e) 

a circle and substituting u2 = 
EI to give: 

2 d2= 
-11 

2sin(e) 

ds 

Multiplying both sides of equation (2.6) by 2de = 2(de/ds) dsand 

integrating, yields 

(2.6) 

2 j. 
d 

2s2 

' ds " ds = -2u2 f sin(e). de (2.7) 

Which can then be expressed in the form: 

21ý ds= 
(ds )]' (dS). ds = -2u2 j sin(e) . de 

or 

J [ds (ds)2] 
. ds = -212 1 sin(e). de 

Evaluation of the integrals, gives 

(ds)2 - 2u2cos(e) + ýý 

(2.4) 

(2.5) 

d2e 
Equation (2.5) can be rearranged by noting that °=0 for 

d. s` 

(2.8) 

(2.9) 
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where, 

C1 is a constant of integration which is determined from the 

boundary condition, which states that; 

At : x=0 (i. e. at the hinged end 'a') 

de 1 
ds - _R and a (2.10) 

where, 

R is the radius of curvature of the initially curved member and 

a is the angle at the ends of the loaded form. 

Since the bending moment at 'a' is zero, hence the curvature 

remains the original curvature R of the unloaded form. Therefore 

substituting of Eq. (2.10) in Eq. (2.9) gives: 

Cý - 
12 

- 2p 2cos(a) 

R 

Therefore equation (2.9) becomes: 

(ds")2 = 2112 [cos(e) 
ý. 

(cos(a) -212)J 
2u R 

using the substitution; 

0%/%1 

cos(y) = cos(a) - 
211 2R2 

where, y is a real angle, transforms the equation (2.12) into: 

(ds)2 =2 u2 [cos(e)- cos(7)] 

(2.11) 

(2.12) 

(2.13) 

Taking the square root on both sides, yields: 
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de 
ds - PVT cos(y) - cos(y) (2.14) 

The sign of the right-hand side of this equation depends on the 

sign of 
dS 

. Assuming that the strut buckles as shown in Fig. (2.1a), 

so that a decreases while S increases according to the axes shown in 

the figure, then the curvature 
do is always negative and the positive 

sign will be dropped from the right hand side of Eq. (2.14). The 

equation can be rearranged to give: 

ds - 
de (2.15) 

uF Jcos(e)-cos(y) 

The total length of the strut (Ls), which equals two times the 

length of the arc in the first half, can be written as a function of 

the angle a by integrating Eq. (2.15). This length is given by 

the following: 
Ls /2 

Ls =2j ds =-ý Jý d6 

e 11 cos(e)-cos(Y) 

OT 

-2 °` de 
suo vcos(e)-cos(y) 

(2.16) 

The integral on the right-hand side of Eq. (2.16) cannot be 

evaluated in closed form in terms of an elementary function. However 

this integral represents a new non-elementary function of a and y, 

called an elliptic integral 
(7,81) 

of the first kind, which can be 

written in a standard form. This form may be obtained by means of 

suitable changes in the variables of integration. 
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cos(o) =1-2 sing (2) , 

cos(y) 1-2 sing (2) 

and substitute 

cose - cosy = 
4(sin 22- 

sing 
2) 

2e 
sin 2 

-... ý.. 2'' 
sing 2 

Jý ý; nY 1_ (2.17) 

Since, in Eq. (2.16) the limit of integration is from 0 to a therefore 

the variable e will satisfy the condition 0<e<a and, by assumption 

according to Eq. (2.13), 0<a<y 

i. e. 

For this purpose, use the identities 

sin 
2< 

sin 2 or 0< sin 
2/ 

sin 2 <1 

The ratio sin 
2/ 

sin 2 being a positive number not greater than 

unity, may be considered the sine of an angle p. 

where, p 

e8 sin 2 sin 2 
siný (2.18) 

sin 2p 

_ sin 2 (2.19) 

Substituting Eqs. (2.18) and (2.19) in Eq. (2.17 ), hence Eq. (2.17) 

becomes in terms of cp , such as: 

sing 
2 

ý- 2 coso -cosy = sin 22y= 
ýp 1-sing 

sin 2 

_ %f2-p coscp (2.20) 
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To obtain the differential of o in terms of the new variable of 

integration p, multiply Eq. (2.18) by p and differentiate both 

sides: 

21 cos 
2. do p. cosgp do 

from which, 

de - (2.21) coscpd(p 2p cos d 

cos 2 1-p2 sin2p 

Noting finally that, according to Eq. (2.18): 

i. e. 

or 

a sin 
=0 at e=0, p= sin-' (2)_ ate =a (2.22) 

sin 2 

sin* = 

a sin 2 

sin 2 

sin2ý 
1-cosa 

2 sin2 2 

By substituting Eqs. (2.13) and (2.19) into Eq. (2.23), the 

angle * can be written as follows: 

21 
22 

sin2ýV = 
2u R=1- 

212 2 2p 2 4p uR 

and therefore cos2ý+ 
1 )2 

2p Ii R 

or 

ii) cos-1 (1 
2puR 

(2.23) 

(2.24) 
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By substituting Eqs. (2.20), (2.21) and (2.22) into Eq. (2.16), 

the curved length Ls can be expressed as: 

?jý dro 
s 11 0 Vl-p2-sinz(p 

(2.25) 

The integral on the right-hand side of Eq. (2.25) is a function 

of the upper limit of integration * and the parameter p, and is 

called the incomplete elliptic integral of the first kind 
(81) 

which 

it can be written in the form, F(p, ý). 

The length Ls of the strut (2.25) is thus written'as: 

LsF(PgýV)=ü 1d 
0 1-psi nqcp 

(p < 1) (2.26) 

The upper limit '"of this integral is called the amplitude of"F" 

and p is called its modulus. 

As the variable 0 of the integral of Eq. (2.16) varies between 

zero and its maximum value a, the variable p of the integrals of 

Eqs. (2.25) and (2.26) varies between zero and *, where q depends on 

the value of u (i. e. the applied load W) and the radius of 

curvature"R; ' as seen from Eq. (2.24). 

When the initial rise"Aö'of the strut is very small and approaches 

zero, the radius of curvature"R"will approach infinity and therefore 

the angle 4 in Eq. (2.24) will tend to n/2, hence Eq. (2.26) will 

change to the following: 

2 -m/2 d ýs f 
// (2.27) 

0 V1-p sin T 
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The integral appearing in this equation is known as a complete 

elliptic integral of the first kind, this integral is a function of 

the parameter p only and it is usually symbolized by K(p) 
(7,81) 

The solution of the flat strut problem may now be written in terms 

of the elliptic integrals as, 

it/2 

Ls 
d-----ý-- 

=üK (p (2.28) 
0 

v1-psinp 

Now, when the deflection of the strut is very small, the angle a 

and the modulus p will also be small and the term p2sin2cp in Eq. (2.28) 

can be neglected in comparison with unity, then the following is obtained, 

Ls Jm/2 dy _ -7C _ it 
fEI 

(since u2 =ý) (2.29) 
11 0u 

fl- 

and W= PE _ il EI 

L2 
(2.30) 

The value of the applied load"PE in Eq. (2.30) is called the Euler 

buckling load 
(2,85), 

and represents the value of W at which the flat 

strut starts buckling. 

2.2.1.1 The Lateral Deflection of the Strut 

In order to calculate the lateral deflection of the strut, it 

can be seen from Fig. (2.1. b) that: 

dy = sine As 

By substituting Eq. (2.15) in Eq. (2.31), yields, 

(2.31) 

dy _- , ýýýo Uv (2.32) 

uý-2cose - cosy 
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The deflection at any point can be obtained by integration of 

this expression. Then the central deflection is given by: 

yc 
1 fa sine de 

Fug 0 cose - cosy 

From Eqs. (2.18) and (2.19) it is known that: 

e 
sin p sincp 

therefore cos 
2 11-p2sin2cp 

(2.33) 

(2.34) 

Using the relationship sine = 2sin 2 cos 
2, the value sine can be 

written as follows: 

sine = 2psincp 1-p 2sin2gp (2.35) 

Substituting Eqs. (2.20), (2.21), (2.22) and (2.35) into Eq. (2.33) 

and changing the limits of integration to cp ( p-ý when G=a), the 

central deflection"yC' is represented by the expression 

yc =1 2u 
f 4p siny. dy (1-cos*) 
0 

(2.36) 

Once the end angle"a"is known, Eqs. (2.13), (2.19), (2.24) and 

(2.36) can be used to determine the vertical deflection"y1, at the 

mid-span of the strut, measured from the chord line 'ab'. 

2.2.1.2 Limits of Application of General Case of Loading (p S 1) 

A close inspection of Eq. (2.13) reveals that: 

rncn - rnev ý 
1 

2u 2R2 
(2.37) 
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fails for small values of W (or u) since -1 < cosa <1 for real,, a. 

Therefore it becomes necessary to establish the range of application 

of the equations derived in sections (2.2.1) and (2.2.1.1) 

Explanation of the failure of Eq. (2.37) will more readily be 

understood if the analysis of the curved strut begins from the 

basic horizontal strut. Consider a straight horizontal strut 

subjected to a load W at its ends and moments Mo = RI acting at the 

same points, Fig. (2.2. a). The action of the moments Mo will bend 

the strut into a circular arc of radius R, while the load W is still 

acting on the ends, Fig. (2.2. b). This strut is, therefore, the 

circular strut of the original problem. Consider the left half 

of the strut, where the central point c is held in its position and 

the end"a"becomes free, Fig. (2.2. c). The moment Mo and the load W- 

will now be replaced by a force W acting on a rigid lever of length 
M 

e=°, Fig. (2.2. c), and so far as the shape"ca"is concerned, it 
W 

does not matter whether the load acts on the bar"cad"or through the 

lever e. It- is known that: 

EI 1 
e-R. W - 2R 

'sin (2) , and sin(! ) _p sin, 

(2.38) 

where, the expression sin(g) =p sin* is satisfied for all points 

along the strut 'cad' , Fig. (2.2. c). 

Also it is seen from Fig. (2.2. c) that: 

e=h cos* (2.39) 
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where, h represents the maximum vertical deflection of the strut, 

when 4' -2. This max deflection (h) can be determined from equation 

(2.36) when 4=2, and is equal to 

h= 20 
u 

(2.40) 

By substituting of Eqs. (2.38) and (2.40) into Eq. (2.39) the value 

of $ can be obtained: 

ý = cos-ý (ý üR ) 

which is identical with equation (2.24). 

Also, cosy 

and 

= 1-2 sin2(2) =1- 2p 2 

Cosa = 1-2 sin2(2) =1- 2p 2 
sin24i 

1-2 p2 +1= cosy +1 
2u 2R2 2u2R2 

4p2u2R 

This shows that the auxiliary angle Y in equation (2.13) is 

actually the end slope of the imaginary extension of the basic strut. 

And this angle should satisfy the following condition. 

y 7t , to give p41 (2.41) 

Now, as seen clearly from Fig. (2.2. c) and Eq. (2.38), decreasing 

W means increasing the rigid lever e, since the moment Mo depends on 

EI and R only, and these are given. On the other hand, e cannot grow 

indefinitely, as at some value of e the line of action of W will bypass 

ktnis equation is ootainea rrom sin v- -i 
,.. 

-ý-- - ..... 2. .1 
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the imaginary extension of the strut, Fig. (2.2. d). Also note that 

e will increase with y, but Y< it, hence Pmax = 1. With P=1 

equation (2.26) reduces to: 

u2s 
seccp dy = Ln tan(4 + 

2) 

0 

Since = cos-1 ( 
2UR) , equation (2.42) can be solved for 

uo and hence for W=W0W0 marks the lower limit of the 

applicability of the equations corresponding to the general case 

of loading and derived in the sections (2.2.1) and (2.2.1.1. ). 

To study the behaviour of the strut when W< Wo, i. e. when 

p>1, consider the following assumption: 

Po 
1 

=P ý< 1 

(2.42) 

(2.43) 

According to this assumption the end angle a can be written in terms 

of the new parameter p0 by replacing the expression cosy , (cosy =1-2p 
2) 

in equation (2.13) by (1- 2 
2). Then the end angle a is given by: 

Po 

sin(g) _ [(P )2 - (21 )2 
0 

(2.44) 

This equation will not fail for small values of W because p0 

decreases with W at such a rate the expression under the square root 

remains positive. No matter how small W is chosen, there is always a 

positive p0 for which 

2R/W/EI > P 0 
(2.45) 
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The curved length of the strut Ls can be written in terms of po 

by transforming the terms 4,. q and p relatively to p0, as follows: 

Eq. (2.18) can be written in the form: 

psincp = sincpl (2.46) 

or 

sin(p =p0 siny1 

Then,. the differential of p can be obtained in terms of the new 

(2.47) 

variable cp1 by differentiating both sides of equation (2.47), hence 

dcp - 
pocosvl dcpl 

J1-poýsinýq)1 

According to Eqs (2.43) and (2.47) noting that: 

1-p2sin2cp - cos'P1 

Also according to Eqs (2.34) and (2.47) noting finally that: 

CP 1-0 at (p -0 

If 1 =2 at ý_ý, ore ='a 

(2.48) 

(2.49) 

(2.50) 

Finally substution of Eqs. (2.48), (2.49) and (2.50) in Eq. (2.26) 

gives: 

a 
2pý d2p 

ýs =_ /-2 ý- =FF PC) , .2) (2.51) 
11 uv l-PO sin (p1 u 

where p0 <1 and F(p 
o, 

2) represent the elliptic integral of the first 

kind with modulus po and amplitude 2 
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2.2.1.3 Solution of Elliptic Integrals 

The value of F(p , *, ) or F(po, 2) stands for the elliptic 

integral of the first kind with modulus p or p0 and amplitude i or 

respectively. These integrals contain the unknown p or p0 only. 

It is seen clearly from Eqs. (2.13) and (2.19) or (2.43) that the 

modulus p or p0 depends only on the end angle a. Therefore the 

elliptic integral F(p , 4, ) or F(p0 ,2 for given values of the applied 

load W and rise A0 (i. e. p and R are given), may be obtained, step 

by step, by giving to a arbitrary values, deriving the corresponding 

values of p or p0 and 4' or 2 from equations (2.13), (2.19) or 

(2.43) and (2.24) respectively, and evaluating the corresponding value 

of F(p, 4, ) or F(po, 2) using tables of elliptic integrals 
(71 ). 

However, F(p , *) or F(po, 2) can be evaluated more accurately by 

using the computer library routine "S21BBF" 
(67). 

This routine returns 

a value of the symmetrisied elliptic integral of the first kind, via 

the routine name. The accurate value of a and, hence, the exact 

numerical evaluation of the first elliptic integral F(p , y, ) or F, a) (p 
o2 

can be determined from the equation (2.26) or (2.51), where the 

relations between these functions and a can be obtained explicitly 

for a given value of Ls. These explicit functions can be solved 

by using iterative methods 
(9). 

These methods are suitable for use in 

cases where the solution is to be carried out by a computer. Several 

methods; of successive approximation may be used to determine the 

value df the roots of an equation to a specified degree of accuracy, 

and one of these methods is used to solve this problem, namely linear 

interpolation. The method attempts to obtain an approximation to a 

simple continuous zero of the function f(a). In a given initial 
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interval (a 
min, amax ), such that f(a 

min 
)x f(a 

max 
), 0. Hence, 

an approximate value of the root "a" is estimated, called the 

first approximation, and then a more accurate result is determined 

by thec: repitition of the same procedure. The more accurately the 

first approximation is obtained, the less the number of repetitive 

cycles, called iterations, need be obtained for a given degree of 

accuracy. The first approximation can be estimated by a method 

involving functional notation as shown below. 

The approximate value of "a" at the point where the curve of 

f(a) =0 crosses the x-axis is used as the first approximation. This 

occurs when the value of F(a) changes from positive to negative or 

from negative to positive. 

Consider the equation f(a) = Ls -ü F(p, *) =0 (from Eq. (2.26)) 

and when a= a0 , f(a0) is positive value, 

when a=a, , f(a1) is positive value, 

when a= a2 9 f(a2) is negative value. 

Since the sign of f(a) changes from a positive value at f(a1) 

f(amin) to a negative value at f(a2) = f(amax), then the first 

approximation is between a1 = amin and a2 = amax* If a straight line 

is drawn between co-ordinates (a 
min, 

f(amin)) and (a 
max, 

f(a 
max)), 

it 

will cut the x-axis at a3 = aapp where 

f(amax x (a 
min - amax) 

(2.52) a app amax 
f(amin) - f(amax) 
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so, a first approximation of a is taken as a3. 

A more accurate value of the root (a) can be determined by 

estimating the value of f(a) when_a = a3 and the product of min x 

f(a3) and f(amax) x f(a3) can be calculated. Then assume one of these 

products is less than or equal to zero, such that 'min x f(a3) < 0, 

and the other product is greater than zero. In this case the value 

of max will be replaced by the value of f(a3), then the second 

approximation is between a1 = amin and a3 = amax. If again a 

straight line is drawn between the new minimum and maximum co-ordinates 

via 
min' 

f(amin) and (amax' f(amax)" it will cut the x-axis at a new 

approximate value, aapp = a4, where a4 can be determined from 

equation (2.52). Therefore a second approximation of a is taken as a4. 

A better approximation of the root (a) can be obtained by repeating 

the procedure for a= a5, a6, .... until the root does not change on two 

conseucutive iterations when expressed to the stipulated degree of 

accuracy. 

Finally a gradual increase of the applied load"WIwill be followed 

by a new value of the end angle"a", and hence, new values for the 

modulus p or p0 and amplitude 4' or 2. However these values can-be 

found readily for any value of"Wý. 

2.2.2 Load Displacement Relationship of Axially Loaded Strut 

A problem of more practical interest is to relate the applied 

load (W) with its corresponding relative displacement of the loaded 

ends. This displacement will be given by "p" (Fig. 2.1. b), which 

consists of two parts. The first part is the shortening due to 

bowing, "AB" and that can be represented by the following equation, 
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AB = Lo -L (2.53) 

where, L. is the chord length of the unloaded strut;, 

L is the chord length of the deflected shape. 

The second part is the axial shortening of the strut due to 
2 

direct stress and this is egial to EA 
x Ls or 

EI 
. Ls 

c 
where, c is the cross sectional area of the strut 

E is the Young's modulus 

and r= (Ä)2 is the radius of gyration. 

This component represents a very small value, if it is compared 

to the shortening due to bowing and therefore it can be neglected. 

This assumption is justified for large deflections of columns, by 

(14) 
Chen 

It is now only necessary to compute the shortening of the chord 

line a= AB and this can be calculated from Eq. (2.53). 

The chord length Lo is usually known, but the lengtt'L" (Fig. 2.1. a) 

measured along the line of thrust is given by the equation: 

L/2 
L=2j dx 

0 

And from Fig. (2.1. b) it is noted that: 

dx = ds . cose 

(2.54) 

(2.55) 

Substituting Eqs. (2.15) and (2.55) in Eq. (2.54), and changing 
L 

the limits of integration to a (o=a'at x=0 and 0 =0 at x= 2), then 

the chord length L can be written in the form: 
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u-" ---^ ---- 
L 

V2 Ju case . de (2.56) 
yL; u5v - L; uSY 

The integral on the right-hand side of this equation can be written in 

the standard elliptic integral forms. These forms may be obtained, 

by making use of Eqs. (2.20), (2.21), (2.22) and (2.24) and noting 

that 

cos(e) = 1-2 sin2 (2) =1-ý 
2sin2ý 

Then, 'the equation of the chord length of the loaded strut is 

given by 

or 

L=ý J* (1 2sin2 
cp )"dcp 

uo 1-p sin (cp) 

(2.57) 

L2 jý dcp 42 sin2( ) "dw (2.58) 
0 1-p sin (p) uo 1-p sin (p) 

The first integral in Eq. (2.58) can be written in the standard form 

of the first kind of elliptic integral "F(p, *) as mentioned before. 

The second integral in Eq. (2.58) is equal to: 

j* sin2((p)2 dcp 
2{j 

dcp 
_ !* 1-p2sin2(ýP). dý} 

oý sin (ý) p0 1-P sin (y) o 

...... (2.59) 

The first integral on the right-hand side of Eq. (2.59) is again 

F(p , ý), while the second is another non-elementary function of p and 

usually indicated by E(p, p) and called the incomplete elliptic 
(7 integral of the second kind , 8'1). The numerical value of E(p, $) can 
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be evaluated accurately by using the "NAG" library routine "S21BCF"(67) 

and following the procedure explained in the previous article (2.2.1.3). 

Therefore, the chord length. "L" of the loaded strut can be 

written in terms of the elliptic integrals, such as : 

L F(p, *)] (2.60) 

Also this length "L" can be written in terms of the arc length 

of the strut by using Eq. (2.26) such as: 

L= Up ýVº)-Ls 

where, the modulus p is restricted by the condition: 

o<ns1 

(2.61) 

To determine the chord length of the loaded strut "L" when p> 1, 

consider the assumptions mentioned in Eqs. (2.43) and (2.47) and note 

that F(p , p) in Eq. (2.26) is changed to p0F(p0a/2) in Eq. (2.51), 

according to these assumptions, (since 2= sin-1(psinW. - 

Similarly, for p>1, the elliptic form of the second kind 

E(p, 4) will change to a new form by using Eqs. (2.43), (2.47), (2.48), 

(2.49) and (2.50) as follows: 

Up , *) 
f V1-p2sin2rp d(p will change to 
0 

a2a 

f2 
p0cos(f1dcp1 2 dcp1 

o�1-p02sin y1 
0 0ýi1-p o siny 1 

a 
2 sin2rp,, d(p, 

pII Po J 
o 1-po sin c1 

...... (2.62) 



33 

The first integral in the right-hand side of this equation is equal 

to F(p 
o2 

2), while the second integral can be written in the form 

{F(po, 2)-E (p 
o9 

2)I. /p 
02 . 

Therefore , for p>1, E(p ,0 becomes: 

E(p, Vº) = 
Po E(po, 

2) - 
(Po - po) F(po, 2) (2.63) 

Now, the chord length of the loaded strut can be obtained in the 

case of p>11 by substituting Eq. (2.63) in Eq. (2.61), so that: 

L u{ P E(po, 2) 
- (ý - p0) F(po, 2) )- LS (2.64) 

002 

Finally, Eqs. (2.61) or (2.64) with Eq. (2.53) can be used to 

determine the shortening of the chord line11A , due to the applied force 

nwn. 

Also it is seen from expression (2.1) that, once the axial 

shortening "o" is known, the actual axial stiffness "Kg' may be 

easily determined using the expression: 

K 
c 

W (2.65) -e 

The behaviour of the strut may now be summarized by referring 

to Figs. (2.3) and (2.4 ). 

Fig. (2.3) shows the load-displacement relationship plotted in non- 

dimensional form. The horizontal axis represents the axial displacement 

"e" or the relative Epproach of the two ends of the strut, divided by 
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Lo (the chord length of the strut ). The vertical axis represents the 

axial load "W" divided by a constant PE (in which the quantity 7t2EI/Ls2 

has been denoted by PE , Eq. (2.30)). The limiting value of e/L0 

is reached when the strut has been pulled completely inside-out to 

form a straight tension member. It is seen clearly that the applied 

load "W" must increase as the axial displacement increases and the 

relationship between the applied load and the displacement will 

follow the curve (i). In this curve, at small loads a non-linear 

relationship between W and n is indicated, and the axial displacement "e" 

will occur from the first application of the load, but, as the load 

rises the displacement increases more and more rp idly. In the 

region of the load "W/PE 1" the displacement is very sensitive to small 

changes in "W". At higher loads, the curve approaches curve (iii), 

which is for a strut that is initially straight. The broken curve (ii) 

indicates the effect of smaller initial rise than it had taken in 

curve (i), evidently, as the rise "A0" approaches zero, the curve (ii) 

merges completely with the curve OAE. QWrves (i) and (ii) represent 

positions of stable equilibrium of an initially curved strut with 

different initial rise "A ". 
0 

All cif these remarks are valid only if the strut remains 

perfectly elastic. 

The axial stiffness "K" of the curved struts are illustrated 
c 

in Fig. (2.4), again in terms of the non-dimensional axial displacement 

ratio "o/Lo". The horizontal axis represents the axial displacement, 

"s" divided by Lo. The vertical axis represents the axial stiffness K. 

It is seen clearly that at the beginning, the stiffness decreases very 
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rapidly as the variation in the ratio "A/ ö" is very small, and this 

means that the stiffness "Ký' is very sensitive to small changes in A. 

As the displacement "A" increases more and more, the variation in 

the stiffness is very small until the strut starts to retake its 

stiffness and becomes much stiffer when the strut has been pulled 

.. completely inside-out to form a straight tensile member. 

Qjrve (ii) in this figure represents the variation in axial 

stiffness of initially curved strut with smaller rise"A0 than it had 

taken'in curve (i). Evidently, as the rise A0 approaches zero, the 

axial stiffness "K" at the beginning approaches to the value of the 

axial stiffness of the flat strut Ko = 
LA 

as given in Table 2.1. 
0 

In Table (2.1) values are given of the ratios a/Lo and K/Ko 
C 

and the angle a for various values of the ratio W/PE. All of 

these values are given for three different curved struts, having the same 

chord length "L0=520" and different initial rise"Aö" The initial 

rises 0.0,0.05,3 5 mm are chosen for comparison. 

Table (2.1) : Comparison Between Theoretical 'Behaviour of 
(L rved Struts 

W/PE Initial rise 
A0 (mm ) e/L 

o 
K IK 

co 
End angle 
a (degree) 

0.0 0.0000000 1.0000000 0.000 

0.001 0.05 0.0000000 0.9905596 0.022 
35 0.0000241 0.0001815 15.346 

0.0 0.0000011 1.0000000 0.000 

0.25 0.05 0.0000011 0.9831576 0.028 

35 0.0093569 0.0001170 19.589 
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Table (2.1) Cont'd 

W/PE Initial rise A /L K /K end angle 
A (mm ) 0 c 0 a (degree) 

0 

0.0 0.0000022 1.0000000 0.000 

0.5 0.05 0.0000023 0.9678166 0.044 

35 0.0350482 0.0000625 30.388 

0.0 0.0000033 1.0000000 0.000 

0.75 0.05 0.0000036 0.9258050 0.076 
35 0.1272003 0.0000312 46.215 

0.0 0.0000044 1.0000000 0.000 

1.00 0.05 0.0045987 0.0009524 7.775 

35 0.3556754 0., Q000123 75.187 

0.0 0.0946690 0.0000486 35.613 

1.05 0.05 0.0956002 0.0000481 35.796 

35 0.4072779 0.0000113 80.588 

0.0 0.6364183 0.0000103 98.671 

1.5 0.05 0.6366181 0.0000103 98.695 

35 0.7761843 0.0000085 114.950 

0.0 0.9291469 0.0000094 124.553 

2.0 0.05 0.9292476 0.0000094 124.567 

35 1.0106373 0.0000087 135.367 

0.0 1.2041366 0.0000109 148.433 

3.0 0.05 1.2041787 0.0000109 148.442 

35 1.2459588 0.0000105 155.717 
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Table(2.1) Cont'd 

W/PE Initial rise 
Ao (mm) o/L 

0 
K IK 

C0 
end angle 
a (degree) 

0.0 1.3373489 0.0000131 159.754 

4.0 0.05 1.3373715 0.0000131 159.761 

35 1.3652077 0.0000128 165.592 

0.0 1.4738235 0.0000178 170.160 

6.0 0.05 1.4738322 0.0000178 170.165 

35 1.4917701 0.0000176 174.598 

N. B. Ko EA (for flat member) 
0 

2.3 Theoretical Analysis of Initially Curved Eccentrically 

Loaded Strut 

In practice a bar may have imperfections of form such as initial 

crookedness, or imperfections of loading such as the fact that the 

loads may be applied at the ends with some eccentricity from the centre 

of the bar. All these imperfections have their effect on the 

behaviour of the bar. The effect of initial curvature has already 

been studied in article (2.2). The analysis of the combined effects 

of initial curvature and eccentric loading will now be undertaken. The 

question arises now as to how and to what extent a given eccentricity 

of the load will affect the previous results. 

Figure (2.5) shows a uniform elastic initially curved strut. 

The pins are offset from the centre-line of the strut in such a way 

that the end-load"W"is applied through a rigid level arm, of length c, 



38 

which is tangential to the ends of the curved strut, as shown in 

Fig. (2.5. a). This means that the load is applied with an 

eccentricity e=c sin(s), where a is the angle at the ends of the 

loaded strut. 

2.3.1 Basic Equations of Large Deformation Theory of Eccentrically 

Loaded Strut 

The solution of this strut depends upon the two equal and 

opposite loads, which are applied at the ends of the rigid lever arms, 

being replaced by two equal and opposite loads in addition to two equal 

and opposite couples, all applied at the ends of the curved strut, as shown 

in Fig. (2.5. b). The values of bending moments produced at the ends of the 

curved part of the strut under the action of the loads are, 

Mo +w. c sin (a) (2.66) 

If the transverse displacement y is measured from the chord length 

at the ends of the curved part of the strut, Fig. (2.5. b), then the 

bending moment at any section s1-s1 is: 

M- Mo + W. y (2.67) 

The relationship between the curvature and the bending moment 

at the considered section s1-s1 may be expressed by the following non- 

linear differential ecpation as: 

de 
-EI 

4 
ds ds'3) =M= (Mo + W. y) 

or 
do 

- 
do 

o-W (c sina +y) ds ds - EI 
(2.68) 



39 

Differentiating egiation (2.68) with respect to s, and substituting 

sine for dy/ds, leads to: 

2d2o d 

ds2 ds2 EI sin(o) (2.69) 

This is identical to Eq. (2.5). Following the same procedure as in 

Art. (2.2.1), the solution of Eq. (2.69) is: 

(ds)2 = 2u2cos(e) + C2 

where, C2 is a constant of integration. 

Thus, the problem is concerned only with a change in the 

boundary conditions. These new conditions are: 

(i) at the end of the loaded curved part of the strut, E', 

deM 
ds - EI 

or 
do 
ds ý 

or 

- 
EI (EI + Mo) 

ds =- R' u2 c sin(a) and 9=a 

substitute m for c sin(a) 

Therefore, the constant of integration C2 in Eq. (2.70) is: 

112m)2 - 2112 cos(a) 

(2.70) 

(2.71) 

(2.72) 

Substituting Eq. (2.72) in Eq. (2.70) thus: 
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i. e. 

de 221 2u2m 422 )= 2u cos(o) +(-2 + R+ u m)- 2u cos(a) (ds 
Ft 

(ds)2 = 2u2[cos(e) -{ cos(a) -- 
(1+u 2 Rm) 2 

(2.73) 
2u 2R2 

Ecpation (2.73) can be simplified after using the following 

expression: 

cos(h) = cos(a) - 
(1+u2Rm)2 

211 2R2 

then the form of eqiation (3.73) becomes: 

de 
ds - 

+ 
uý2-{ cos(e) -'cos(ts)} 

i. 

(2.74) 

(2.75) 

Equation (2.75) is identical to the previous equation (2.14), only 

the difference being that the auxiliary angle y is replaced by the 

angle n, where n is defined in equation (2.74). Therefore, a 

similar analysis to that explained in article (2.2.1) will be considered 

for solving Eq. (2.75), and the arc length of the curved part of 

eccentrically loaded strut "Ls" can be expressed in terms of the 

elliptic function as follows: 

L_2 jß'1 
dqe 

=2 F(p (2.76) 
s0 1-pesin (9pe) e1 

where, 

pe = sin (2) (2.77) 
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is the new modulus corresponding to the angle at the ends of the loaded 

strut "a". 

and 

Also, pe sin ( (p )= sin (2) = sin (2) . sin (e) (2.78) 

*1 = cos-1 ( 1+u 2 Fh ) (2.79) 
2peuR 

is the value of the new amplitude in the elliptic integral of the 

first kind F(pe''i1)' 

The application of egiations (2.76) to (2.79) is restricted by 

the following condition: 

0 <pe (2.80) 

In the case of pe > 1, as in section (2.2.1.2), consider the following 

assumption: 

D=ý <1 
- oe p e 

(2.81) 

and by replacing the expression cos(h) = 1-4) 
e2 

by 1-22, then the 

end angle a is given by: 
p oe 

sin (2) _[ (1 )2 - (ý2uRý )2 ]Y 
Poe 

(2.82) 

Therefore the arc length of the curved part of eccentrically loaded 

strut, according to this case, can be written as: 

a 

o ýs 
ue 

f2 
d(p 

e1. 
,: 

2P 
oe F(poe' 2) (2.83) 

I 

where pOe <10 

0 V-1 - poe sin 1cp e1 ) 

Poe sin ((p 
el 

)= sin (roe) (2.84) 
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and the upper limit of integration 2 is given in Eq. (2.82). Also, 

F(p 
oe 

2) represents the incomplete elliptic integral of the first 

kind with modulus p0e and amplitude a 

Finally, for given values of c, Ls, W and the initial rise"Aö, 

the values of the end angle a, the modulus po or p0e and the 

amplitude *1 or 2 can be obtained, by following the same procedure 

explained before in section ( 2.2.1.3) . 

2.3.2 Load Displacement Relationship of Eccentrically Loaded Strut 

The relationship between the applied load"W"with its 

corresponding displacement "A", for eccentrically loaded strut can be 

considered as in Eq. (2.65). The length Lo in this case is usually 

known, but the co-ordinate distance L, Fig. (2.5. a), measured along the 

line of thrust is given by the equation: 
L` 

L= 2c cos(a) + 212 dx 
0 

(2'. 85) 

where L' is the chord length of the curved part of the loaded strut 

(Fig. 2.5. b)). 

Thus, the co-ordinate distance, L , can be determined, by solving 

egiation (2.85) for ds (n. b. dx = ds cos (e) ). 

As in section (2.2.2) the solution is: 

L= 2ccos(a)+ü E(pe, ý, ý)- Ls 

where pe is restricted by the condition in Eq. (2.80). 

(2.86) 

In the case of pe>1 the length L can be written as : 
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L= 2c. cos(a) +ü[1 E(poe' 2) - (1 - poe)F(poe, 2 )] - Ls 
Poe Poe 

...... (2.87) 

Finally, Eqs. (2.86) or (2.87) with Eq. (2.53) can be used to 

determine the relative travel of the loaded ends of the strut "o" 

Also the stiffness of the eccentrically loaded strut can be obtained 

from Eq. (2.65). 

2.4 ' Theoretical Analysis of Initially Curved Axially Loaded Tie 

Similar analysis explained in Art. (2.2) will be considered for 

the case of axially loaded tie. 

2.4.1 Basic Equations of Large Deformation Theory of Axially Loaded Tie 

The tie geometry and loading are shown in Fig. (2.6) . The 

equilibrium equation for large deformations is based on the deformed 

configuration shown in Fig. (2.6), so that the Euller-Bernoulli 

equation for bending due to tensile loading is expressed as: 

de 
ds ds 

0ýý 
EI (W'y) (2.88) 

The solution of this equation can be obtained by"differentiating 

it with respect to s, and substituting sin(e) by dy/ds, such as: 

d2e 
_d 

eo W 

ds2 ds2 EI sin(e) 

As in sec. (2.2), the solution is 

( ds )2 ._ -2u2cos(0) + C3 

(2.89) 

(2.90) 
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where, the constant of integration, C3, may be determined from the 

boundary conditions which state that: 

At the hinged end 'a' (Fig. (2.6. a)) 

do 
as 

1 
R and Aa 

These conditions are satisfied to determine the constant of 

integration, C3, in Eq. (2.90), therefore: 

C3 =2+ 2u2 cos(a) 
R 

Substituting Eq. (2.92), in Eq. (2.90), hence: 

(2.91) 

(2.92) 

1 (ds)2 = 2u2 [{ cos(a) +22 cos(e) ] (2.93) 
2u R 

using the expression 

, _. ,. 1 
cos(B) - coska) + 

2u2R2 

then the form of Eq. (2.93) becomes: 

do =±u, ý . cos(ß) - cos(0) 

(2.94) 

(2.95) 

Since de is negative the positive sign will be dropped from this 

equation and it can be written in the form: 

ds =- 
do 

uf2 cos(h)-cos(o) 
(2.96) 
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The total curved length of the tie "Ls 
. can be determined by 

integrating Eq. (2.96) from zero to Ls/2 on the left hand and between the 

corresponding limits 0 =a and e=0 on the right hand, such as: 

L /2 

Ls =2fs ds =- 
yrj 0 de (2.97) 

11 r- o a cos(ß)-cos(e) 

The integral in Eq. (2.97) can be simplified to the standard elliptic 

forms by using the identities: 

cos(ß) = 2cos2(2) -1 

(2.98 

cos(e) = 2cos2(1) -1 

and following a procedure analogous to that for the case of compressive 

loading, and employing a new variable qt 9 such that: 

cos(t) = pt 

and 

cos(t) = sin(cpt) 

(n. b. the cosine forms of the half angles a and 9 are used in this 

case instead of the sine forms as in case of the strut (sec. 2.2), 

because the forms of cosine are suitable to change the integral in 

Eq. (2.97) to its standard elliptic form). 

After obtaining the differential of 0 in terms of the new 

variable 119t", the substitutions in Eq. (2.99) and (2.100) change 

Eq. (2.97) into: 

(2.98) 

(2.99) 

(2.100) 
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c 
L2j 

dcpt 

su 'PE Pt ý_ -2 sin (, pt) 
Pt 

Using the substitution pot - Pt 

the length Ls can be written as: 

L- 
S 

2Pot j 
uT 22E 1-pot sini(Pt) 

(PC 
dcpt 

(2.101) 

(2.102) 

The limits of integration 11 'PE and ýIin this equation have to be 

found before the unknown modulus"pot' can be evaluated. It is seen 

from Eq. (2.100) that: 

i) when 0=09 yt = yc 

where pc = sin-' Icos(0)I= sin-'(1) =2 (2.103) 

ii) when o=a, 'pt = 9E 

where 9E = sin-1 [cos() ] (2.104) 

the value cos(t) can be determined from Eqs. (2.94), (2.99) and (2.101) 

after using the identities in Eq. (2.98), such as: 

cos(t) _ ((P )2 -(_)2 ]i' 
2pR Pot 

Substituting Eqs. (2.103) and (2.104) into Eq. (2.102) then: 

L= 
S 

'Pot 
f 
-n/2 dyt 

11 TE f1'Pot2sin2Oft) 

(2.105) 

(2.106) 
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or, 

Ls = 
2P°t 

{ K(pot) - F(pot, 'PE) } (2.107) 

where, K(pot) and F(pot, PE) are respectively, the complete and incomplete 

elliptic integrals of the first kind, 
(7,81) 

A close inspection of Eq. (2.107) reveals at once, that 

i) ifu=0, then pot =0 

ii) if u=-, thenu Ls therefore the value of K(pot) -F(pot'9E) 

must equal infinity and this will occur at pot = 1. (from 

tables of elliptic functions 
(71) 

the value K(1) ). 

It follows that Eq. (2.107) covers the whole range of the tensile 

forces acting on the tie. 

The unknown modulus pot in Eq. (2.107) can be evaluated for given 

values of Ls and u, using the-procedure explained before in 

section (2.2.1.3). 

2.4.2 Load Displacement Relationship of Axially Loaded Tie 

The relative travel of the loaded ends of'the tie, or the 

extension in the chord length due to the tensile loading can be 

calculated as before as: 

°T '4-L o 
(2.108) 

where, eT is the extension in the chord length due to tensile loading. 

As before the original chord length, Lo, is known. 
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Again, to develop an expression for the projection of the 

deformed tie on the x axis, the following equation is used. 

0 
2j dx 

a 

and it is seen from Fig. (2.6. b) that: 

dx - ds. cos(e) 

(2.109) 

(2.110) 

Substituting Eq. (2.96), (2.98) and (2.110) into Eq. (2.109), then 

the resulting equation is: 

10 -2{cos2(2)-1}do 
L ja 

cos (2)-cos (2) 
(2.111) 

By using the substitutions of Eq. (2.99), (2.100), (2.101), (2.103) 

and (2.104) into Eq. (2.111), to determine the chord length, L , in 

terms of the variable cpt, changing the limits of integration 

accordingly, and noting that: 

do -2 dp (from the differentiation of Eq. (2.100) 

...... (2.112) 

then, 

L- 
2pot -n/2 sin2(yt)dyt JiT/2 dT t 

{2j 
ýE 1-pot sin ((Pt) ýE f1-pot in i9t) 

} 

...... (2.113) 

The first integral in this equation can be written in its general 

forms of elliptic integrals, such as: 
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it/2 2 it/2 22 
sin(Pt) dct 

-1! 
ot sin (pt)} dct 

TE 
"-pot 2 

sin (Cpt) Pot 
2 

'PE 1-Pot sin (ft) 

u/2 dtg71/2 12t 
_j. 1-Pot2sin2iýt) do } 

Pot 'PE 
rl 

-Pot sin (cpt) 9E 

12{ K(p 
ot 

)- F(P 
ot'9E 

)- E(p 
ot 

)+ E(P 
ot'9E 

)} (2.114) 
= Pot 

where, 

K(pot) and F(pot'9E) are, respectively, the complete and incomplete 

elliptic integrals of the first kind, 
(7'81) 

while E(pot) and E(pot'PE) 

are, respectively, the complete and incomplete elliptic integrals of 

the second kind, 
(7,81) 

The second integral in Eq. (2.113) can be written in the 

standard forms of the first kind of elliptic integrals K(pot) - F(pot'cE) 

as mentioned before. 

Now, the chord length "L" of the deformed tie can be written 

relative to the curved length "Ls" of the tie, by using Eq. (2.107) 

and Eq. (2.113) in its elliptic form, as follows: 

L= 
potu 

{K(pot) - E(pot) -F(pot'PE) + E(pot, f E) }- Ls 

...... (2.115) 

Finally the extension in the chord length "AT"can be determined by 

substituting Eq. (2.115) into Eq. (2.108) and consequently the axial 
nn 

stiffness Kt in tension, may be easily determined using the 

expression: 
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K-W 
t ýT 

2.5 Theoretical Analysis of Initially Curved Eccentrically 

Loaded Tie 

(2.116) 

In this article, the initially curved tie will be examined for 

the effect of eccentric tensile loading, as shown in Fig. (2.7). 

A similar analysis to that in Arts. (2.3) and (2.4) will be used. 

2.5.1 Basic Equations of large Deformation Theory of Eccentrically 

Loaded Tie 

The basic differential equation of an eccentrically loaded tie 

is similar to equation (2.68), in Art. (2.3.1) for a case of 

eccentrically loaded strut, but there is a difference in the sign of 

the external bending moment, M, so that the governing differential 

equation becomes: 

do d0o MW 
ds 

(c. sin(a) + y) ds -- EI - EI (2.117) 

Differentiating this equation with respect to s, and substituting 

u2 for EI 
and sin(e) for ds 0 therefore: 

d2e 2. 

ds2 
=u. sine 

As in section (2.2.1), the solution of this equation is: 

(2.118) 

(ds)2 - -2112 cos(e) + C4 (2.119) 



51 

The constant of integration C4, is determined from the boundary 

conditions at the end of the curved part of the loaded tie (E'), which 

state that: 

do 1 
ds --R+ u2. m and e-a 

where m=c. sin(a). 

From these conditions, the constant of integration C4 is: 

C4 =(1- u2m)2 + 2u2cos(a) 

Again, substituting Eq. (2.121) in Eq. (2.119), hence: 

(do)2 - 2u2 { [cos(a) + 
(1-u2Rm)2 ]- cos(e)} (2.122) ds 2u2R2 

By using the expression: 

cos(O - cos(a) + 
(1-4 2Rm)2 

2u2R2 

Eq. (2.122) can be simplified to the form: 

d0 
ds - 

± uC. cos(c) - cos(e) (2.124) 

(2.120) 

(2.121) 

(2.123) 

Since ds is negative, Eq. (2.124) can be written in the form: 

ds - - do (2.125) 
uýTcos(c )-cos(e) 

This equation is identical to the previous equation (2.96) the only 

difference being the angle 6 is changed to the angle ;, where ; is 

given in Eq. (2.123). Therefore , as in section (2.4.1) the following 

is obtained: 
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L 
2Pet 

f 
n/2 dcp 

et 
su 

'PEe 
1t 

sin ('Pet) 

= et { K(pet) - F(pet, 9Ee) } 

where, 

(ý )2 = cost (2) + (12uRRm )2 
Pet 

cos(t) = sin(cet) 

cpEe = sin-1 (cos(-) )9 

cos(t) {( 
P1 

)2 _ (ý-2MRm)2 }52 
Pet 

(2.126) 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

and Ls represents the length of the curved part of the tie. (n. b. 

when the length of the rigid lever arm, c, is equal to zero, then the 

value m will vanish, thus the term 42Rm in Eqs. (2.122) and (2.123) 

will be equal to zero, therefore, all of equations (2.125) to (2.129) 

will be exactly the same as in the case of the axially loaded tie. ) 

2.5.2 Load Displacement Relationship of Eccentrically Loaded Tie 

The same procedure for the case of axially loaded tie, Art. (2.4.2) 

is considered in this case. 
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Therefore the expression of the projection of the deformed tie 

on x-axis, is gives. by the equation: 

L 4et11 { K(pet) - E(p 
et) - F(pet, 9Ee) + E(pet, 'ýEe)} 

- Ls + 2c cos(a) (2.131) 

And, consequently, the value of the horizontal displacement", & T" 

and the axial stiffness"Kt"for the eccentrically loaded tie, can 

be easily determined by using Eqs. (2.108) and (2.116) respectively. 

The behaviour of the tie may now be summarised by referring to 

Figs. (2.8) and (2.9). 

In Fig. (2.8) the quantity (Ls-Lo) has been denoted by Amax 

and a non-dimensional parameter A/amax has been plotted against 

the applied horizontal load"W""It is seen that the axial displacement 

increases as the load increases until the ratio a/Amax reaches to its 

limiting value L 1, which occurs when the deformed tie has 
sto 

been pulled completely to form a straight tension member. 

In Fig. (2.9) the axial stiffness"Kt'of the curved tie is 

illustrated , again in terms of the non-dimensional axial displacement 

ratio A/Amax . The horizontal axis represents the ratio A/Amax 

The vertical axis represents the axial stiffness"Kt"of the curved tie. 

It is seen, from the figure, that the stiffness of the tie increases 

as the axial displacement increases until the ratio A/Amax reaches 

the limiting value A/(Ls-Lo) - 1.0, then the stiffness of the tie 

tends to the value of the axial stiffness of the flat tie K- LA 
o as 

0 
shown. 
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In Table (2.2) are given values of the ratio A/Amax' Kt/K0 and 

the angle a, for a loaded curved tie with an initial rise Ao =5 mm. 

All of these values are calculated for various values of the applied 

load W. It is seen from the table that, when the. applied load W is 

increased the ratios A/Amax and Kt/Ko are increased as the end angle a 

is decreased. When the end angle a approaches to zero, the ratio a/Amax 

and Kt/K0 approach the terminal values of unity. 

Table(2.2) : Summary of Behaviour of Curved Tie 

Applied N load (W) A/(L ) 
s- 

b KtK 
o 

end angle 
a (degree) 

0.846 0.0920282 0.0096552 2.117 

3.384 0.3020007 0.0117688 1.901 

5.921 0.4460567 0.0139441 1.731 

10.151 0.6024679 0.0176982 1.519 

15.227 0.7151148 0.0223655 1.336 

20.302 0.7851046 0.0271622 1.201 

25.378 0.8316026 0.0320543 1.097 

42.296 0.9104155 0.0487991 0.875 

84.592 0.9661408 0.0919689 0.627 

253.777 0.9935932 0.2682836 0.362 
422.961 0.9975113 0.4453830 0.280 

507.554 0.9978224 0.5293066 0.256 

676.738 0.9991290 0.7270311 0.222 

845.923 0.9991290 0.9087888 0.00 
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I 

(a) 

(b) 

Fig. (2-1) 
: Geometry of Axially Loaded Strut 
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I, c bý 

Initially curved strut under eccentric loading ca 

Curved part of strut after deformation 

Fig. (2-5): Geometry of Eccentrically Loaded Strut 
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(a) 

(b) 

Fig. (2-6) : Geometry of Axially Loaded Ties 
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Fig, (2--7) : Geometry of Eccentrically Loaded Tie 
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CHAPTER THREE 

ELASTIC STABILITY OF FRAMEWORKS 
WITH NONLINEAR RESTRAINTS 

3.1 Introduction 

The previous chapter was concerned with those members which 

were capable of being isolated from the adjacent structure, for the 

purposes of analysis. In this chapter the analysis will deal with 

bent members (struts or ties) which need to be regarded as components 

of frameworks. 

Generally most of the steel frame types of structures, especially 

tall building frames, need bracing to prevent them from excessive 

lateral deflection and also to brace the frame against instability. 

All structural frames can be classified into two basic types, the 

first is no-sway frames, where it is assumed that the ends of members 

are not free to move relative to each other e. g. triangulated frames 

or multi-storey portal frames with sway bracing. The second type is 

sway frames, where the resistance to lateral loads is provided by 

sway moments induced in the columns. Therefore the determination 

of elastic critical load depends on the type of frame. This elastic 

critical load is an important quantity in many framework calculations, 

and it is useful to have the means to evaluate it. 

In this chapter the elastic non-linear behaviour of frames, 

consisting of columns or columns and beams (portal frames), stiffened by 

curved bracing is examined. Methods are described also for the 

calculation of the elastic critical loads. 
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3.2 The Stability of a Column with Nonlinear Lateral Restraints 

To illustrate what happens when a column in a typical framework 

becomes unstable owing to sidesway, a simple model of a column 

together with a bracing member or members has been set up. The 

column is pinned at end "A" and loaded by horizontal and vertical 

loads "W and P; respectively, as shown in Fig. (3.1). Also the end 

of the column "B" is restrained against lateral movement in either 

direction by a pin ended curved bracing member or members, as shown 

in Fig. (3.1. a) or (3.1. b). 

Since the bracing is normally made from a very light member 

compared to the column, it can be assumed to be a spring of non-linear 

stiffness"K"in the analysis. It is important to investigate 

the stability of the equilibrium of this model. 

The behaviour of this system is used to illustrate the method 

of calculation the elastic critical load of a frame structure 
(3 

which has been discussed in great detail by Bolton 
(3) 

Further 

discussions in this section are mainly concerned with a particular 

type of instability encountered. 

3.2.1 The Stability of a Column Restrained by a Spring with Non- 

Linear Stiffness, K. 

Fig. (3.2) shows a column pinned at one end and restrained by a 

spring of stiffness K at the other end. The column is subjected to 

lateral and axial forces "W & P", respectively, as shown. For any 

combination of loads P and W the spring will be deflected by an 

amount A. This means that under the combined influence of the 



66 

vertical load "P" and the horizontal load "W" lateral motion of 

joint "B" will occur until equilibrium, if possible, is attained. 

It will be observed that two distinct actions are operating on 

the system, such as, 

i) The vertical load "P" acting at a sway eccentricity "A", 

causing an overturning action about the base of the column "A" (this 

is frequently referred to as the P-e effect). Also the horizontal 

load "W" will increase the overturning action about the base of the 

column. 

ii) The restoring force "F" due to the horizontal displacement "A" 

of the equivalent spring which results in a restoring moment; 

MR = F. H" about the base of the column. 

It is possible to take moments about "A" and observe that the 

net restoring moment "MA" is given by: 

where, 

MA = FH" - Pe - WH" =0 

H" = H. cos(a1) 

in which a1 is the rotation of the column about the base "A". 

(3.1) 

The spring force "F" is equal to the spring stiffness "K" multiplied 

by the horizontal deflection "A" , thus, the spring force "F" may be 

written as K. A, and equation (3.1) becomes: 

MA = KAI" - Po - WH" =0 

i. e. 

A= W. H" 
KH"-P 

(3.2) 

(3.3) 
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when KH" =P in Eq. (3.3) then the horizontal displacement "A" 

tends to infinity and this means that the structure is in unstable 

condition. This defines the elastic critical load to be Pcr = K. H". 

This is the usual result for elastic critical load when the spring 
(3) 

stiffness is constant The column will be in stable equilibrium 

up to a critical value of P equal to K. H" and then it becomes 

unstable once this load is reached. 

3.2.2 The Elastic Critical Loads of a Column With Non-Linear Spring 

It should be realized that the value of Pcr = KH", based on 

equation (3.2), is dependent on the assumptions that K is constant 

and also P remains constant with A. Essentially it is a mathematical 

device for calculating the critical value "Pcr" . If the fact that 

P may be a function of o is introduced in Eq. (3.2), because the 

stiffness of the spring is non-linear, then the relationship between the 

applied load "P" and its displacement "e" may be extremely complicated. 

The loads on the structure are likely to be a function not only of 

the distance through which it acts, but also of the rate of displacement. 

This rate is dependent on the non-linear stiffness of the equivalent 

spring and of the loads, because these affect the speed with which the 

loads can follow the movement of the column. Such dynamic effects 

are often very important in particular cases. 

Now, the behaviour of a column restrained by an equivalent 

spring (for curved bracing) with non-linear stiffness "K" is studied 

as loading are applied from zero, the load being applied in specified 

increments. In this system the displacement "a" occurs as soon as 

the load set "P & W" is given a value, and the general stiffness- 
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displacement response to be expected may be seen in Figs. (3.3. a) 

and (3.4. a). 

Fig. (3.3. a) shows the stiffness variation of an equivalent 

spring, for a curved compression bracing. It is seen that the 

stiffness "Ký is decreasing as the displacement "n" increases. 

Fig. (3.4. a) shows the stiffness variation of the equivalent 

spring for a curved tension bracing. As shown in the figure, the' 

stiffness "Kt is increasing as the displacement "A" increases. 

It is necessary, now, to represent the relationship between the 

load P and the value KH". The graphs of the values KH" and P against 

A are plotted in Figs. (3.3. b) and (3.4. b) in cases of the spring 

subjected to compressive and tensile forces respectively, where, 

the upper curve (i) in the figures, represents the variation of the 

value KH" and the lower curve (ii) represents the variation of the 

vertical applied load P. These plots show that the value of P= KH" 

will occur at 0 (the same limit as indicated in Eq. (3.3)). This 

means that the condition of P= KH" is not sufficient for the 

calculation of the elastic critical load P=. 

The response of the system to a'given set of applied loads "P & W" 

is investigated, in which, under the combined influence of P and W, 

the structure will deflect by an amount "o" until equilibrium is 

attained. 
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Equation (3.2) gives the static equilibrium of the system. 

This equation involves the considerations of overturning action 

due to the applied loads (WH" + P4) and the restoring moment in 

the equivalent spring (KnH"). 

Making use of the assumptions that: 

F1 -Ke H" 

and 

F2 = WH" + Po 

Then, Eq. (3.2) can be written in the form 

MA = F1 - F2 =0 

Now, it should be realized that the solution of Eq. (3.6) 

will be achieved when the net restoring moment, "MA" is equal to 

zero, i. e. when the function F1 is equal to the function F2. 

(3.4) 

(3.5) 

(3.6) 

The relationship between the function "F2" and the displacement 

"Q" is represented by a straight line, as shown in Figs. (3.5. a) 

and (3.6. a) , with slope "P" and an intercept WH" on the vertical 

axis at A=O. 

Also the relationship between the function "F1" and the displacement 

"p" is shown in Figs. (3.5. b) and (3.6. b) for a spring loaded by 

a compressive and a tensile force respectively. 
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3.2.2.1 The Elastic Critical Load of a Column With a Non-Linear 

Spring Loaded by a Compressive Force 

If the two figures (3.5. a) and (3.5. b) are superimposed the 

two lines, represent F1 and F2, intersect as shown in Fig. (3.5. c) 

and the column will be stable under the action of the given set of 

applied loads, and the corresponding configuration is represented 

by the points E'and E", Fig. (3.5. c) , where a is equal to aEi and AE 

respectively. Actually, as seen from Fig. (3.5. c), if the system is 

slightly displaced from E'(i. e. the equilibrium is altered from 

point 
0 by increasing the displacement "G", then the restoring 

moment "F, " in the equivalent spring will increase more slightly 

than the overturning action "F2" and the net restoring moment MA 

in Eq. (3.6) will be positive. Therefore, the system will tend to 

revert to its initial undistorted position E: This means that the 

stable equilibrium of the system will be at point E. Point E" represents 

another equilibrium configuration but can only be reached by applying 

additional loads and then removing these gradually. 

If the values of the applied loads are increased, the corresponding 

straight line in the diagram, Fig. (3.5. c) shifts upwards. Points E' 

and E", therefore, tend to draw nearer together and, at the limit, to 

coincide when the straight line is tangential to the curve "F1" 

of the restoring moment in the spring. The value of the vertical 

load "P" corresponding to this limit condition provides the first 

elastic instability critical load "Pcr1" for a column restrained by a 

compressive initially curved bracing. 
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3.2.2.2 The Elastic Critical Load of a Column with a Non-Linear 

Spring Loaded by a Tensile Force 

To determine the critical load for the system of a column restrained 

by a non-linear spring subjected to a tensile force, consider the 

two figures (3.6. a) and (3.6. b) which are superimposed in Fig. (3.6. c). 

The two lines, represent the functions F1 and F2, intersect as shown 

in Fig. (3.6. c) and the column will be stable under the action of 

the given set of the applied load. The corresponding configuration is 

expressed by point E'(Fig. (3.6. c)), where A= eý. If the values 

of the applied loads are increased, the value of F2 also will 

increase, then the corresponding straight line in the diagram shifts 

upwards and the structure will be stable at another point G, where 

AG is greater than AE!, and the spring at this point will be stiffer 

than at E'(as defined from the stiffness-displacement curve Fig. (3.4. a)). 

Hence the critical value of P provides the instability critical 

load Pcr, in this case, when P= KH" where K at this limit is equal to 
AE 

the stiffness when the curved tie becomes straight (i. e. K=c) L 
s 

Therefore, the value of the critical load "Pcr" according to this condition 

can be written as: 

A 
(cE). H" at Pcr -L 

s 

3.2.2.3 The Elastic Critical Loads for a Column Restrained By 

a Combined Bracing System 

(3.7) 

In this case consider the simple model shown in Fig. (3.1. b) which 

consists of a pin ended column "A-B" and restrained against lateral 

movement in the horizintal (X, Y) plane in either direction by pin 
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ended curved bracing members. 

The column is loaded by horiziotal and vertical loads W and P 

respectively at joint B, this means that, once the loads are applied, 

one of the curved bracing will be under a compressive force and the 

other under a tensile force. The bracing members are replaced by 

springs of non-linear stiffness, KC and Kt respectively, as shown 

in Fig. (3.7. a) where, Kc is the non-linear spring stiffness in 

compression and Kt is the non-linear spring stiffness in tension. 

For the purpose of this research assume initially, at A=0 

KC » Kt. 

Figure (3.7. b) shows the forces acting on the column in the 

displaced position, where n is the lateral displacement of joint B. 

The restoring force "Fe"in the equivalent spring for bracing 

in compression is equal to KcA. Also the restoring force. " Ft " in 

the equivalent spring for bracing in tension is equal to KtoA. 

Therefore the total restoring force "F" can be written in the form: 

F= Fc + Ft = K. A 

where' K= KC + Kt 

K is the global stiffness of the whole combined bracing system. 

(3.8) 

(3.9) 

Fig. (3.8. a) shows the variation in the global stiffness "K" of 

the system. The horizontal axis represents the lateral displacement A. 

The vertical axis represents the global stiffness K. It is seen that, 

at the beginning the stiffness decreases very rapidly as the 

variation in the lateral displacement A is small. As the displacement 

A, increases more, the variation in the stiffness is very small until 

the structure starts to retake its stiffness by the tensile spring 

stiffness, and becomes much stiffer. This means that, at the 
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beginning, the loading is mostly sustained by the spring in 

compression. If the loading is increased, and therefore the lateral 

deflection increases, then the stiffness of the spring in compression 

reduces and the stiffness of the spring in tension rises. Eventually 

the loading is sustained finally by the spring in tension. 

Now, the equation of static equilibrium of the structure can be 

obtained by taking moments about the pin end "A" of the column, such 

as: 

MA - F. H" - W. H" - P. n 

or 

MA 

or 

=o 

= Kn. H" - (W. H" + P. A) =0 

- A 
WH" 

K. H" -P 

(3.10) 

(3.11) 

Again, the structure becomes unstable as P= KH" at o=- . 

Fig. (3.8. b) shows the relationship between the variation in KH" 

and the applied load "P" against e, the upper curve (i) represents 

the variation in KH" and the lower curve (ii) represents the 

variation in P. It is seen that, the value of P= KH" at A, and 

this gives the higher value the elastic critical load applied to the 

system. 

Now, Eq. (3.10) can be simplified to the form: 

MA = F1 - F2 =0 

where, 

Fý - Ko. H" 

(3.12) 

(3.13) 
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which represents the restoring moment in the combined system of the 

springs about the pin end "A", 

and F 2 - WH" + P, e (3.14) 

which represents the overturning action due to the applied loads 

about the hinged base "A". 

The function F2 in Eq. (3.14) represents a straight line with 

slope P and intercept W. H" to the vertical axis at 0. This means 

that the function F2 depends on two terms. The first is WH", the 

effect of this term is shown in Fig. (3.9. a) where the lateral load 

"W"is increasing, while the applied vertical load "P"is constant. 

It is seen from this figure that the straight line, which represents 

F2 shifts upwards parrallel to its original position. 

The second term is P. e., the effect of this term on F2 is shown 

in Fig. (3.9. b) where the lateral load "W" is constant and the 

applied vertical load "P" is increased. It is seen from this figure 

that this is a straight line turning anticlockwise with a new slope 

equal to the new load "P". 

The function F1, Eq. (3.13), is'dependent essentially on the 

characteristics of the non-linear springs stiffnesses. Fig. (3.9. c) 

shows the relationship between the function F1 and the displacement "A" 

where, in this figure, F1 is dependent on A as K is also dependent 

on A. 

Now for any given load set "P & W" the equilibrium diagram is 

sketched in Fig. (3.10). This figure shows the relationship between 
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the functions F1 and F2 respectively against the lateral displacement 
U tt 

A. 

It is seen from the figure that the straight line (i), which 

represents F21 intersects the curve F, at point x1only. The column 

will be stable under the action of the given loads at this point 

x1, where A= Axl 

If the values of the applied loads "W & P" are increased, the 

corresponding straight line in the diagram shifts upwards and 

intersects the curve F1 at points x2, x3 and x4 respectively, as 

shown in Fig. (3.10), line (ii). These three points represent the 

static equilibrium of the structure, i. e. the net restoring moment 

' 1A" in Eq. (3.12) is equal to zero. The column will be stable under 

the action of the applied loads and the corresponding configuration 

is represented by the point x2, where o= Ax2. 

Points x3 and x4 represent other equilibrium configurations, 

where n= ox3and 6x4respectively. At point x3 the equilibrium is 

unstable. Also at x3 an increase in load leads to a reduction in 

deflection. Actually, as seen from the figure (3.10), if the system 

is slightly displaced laterally from. point x2, by increasing the 

displacement e, by a small amount u, in this case there are two 

possibilities: 

The first is, if Ax2+ u<A then the restoring moment "F1" 

increases more than the overturning action "F2", hence, the net 

restoring moment MA in Eq. (3.12) will be positive and the system will 

tend to revert to its initial undistorted position x2. 
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The second is, if Ax2 +U> ox3, then the overturning action "F2" 

increases more than the restoring moment "F, ", hence the net 

restoring moment "MA" will be negative and the structure will 

move forward until the new equilibrium position x4 is reached. This 

second case explains why the structure, at x3, is unstable and not 

at x4. 

If the system of the applied loads (P & W) are increased more, 

then the straight line will shift upwards more, therefore points x2 

and x3 tend to draw nearer together and at the limit, to coincide at 

point x, when the straight line is tangential to the curve of F1, as 

shown in Fig. (3.10) line (iii). The value of P corresponding to this 

limit condition provides the first instability critical load 11Pcr1of' 

A small increase in the load at this limit will lead to a 

sudden change in the deflection "o, "until the new equilibrium position 

at y is reached, and the dynamic effects are often very important in 

this case. Between x and y the stiffness "K" of the structure 

reaches its minimum value and, therefore, the value of function F, is 

lesser than the value of function F2, so that the static equilibrium 

cannot be achieved. This stage represents the region of unstable 

equilibrium. In this research this will be called the region of 

"transient instability". 

However, further increase in the set of the applied loads than 

the first elastic critical values (i. e. P> Pcr1) increases the lateral 

displacement"e" and the straight line represents F21 shifts upwards 

more and more, and the structure will move directly to the stable 

equilibrium x5, as shown in Fig. (3.10), line (iv). The structure at 
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this point is stable, where the equivalent spring stiffness "K" 

is increased. This means that there is a critical value of P which 

is defined as Pcr = KH" at A (as explained in the case of a 

tensile spring). 

From the above discussion it is seen that the critical load, 

for a column restrained by a combined curved bracing, depends 

essentially on the characteristics of the structure, hence on the 

relationship between functions "F1" and "F2". 

3.2.2.3.1 Influence of the Ratio Ri = P/W on the Phenomenon of 

Transient Instability 

For any given set of applied load "P & W" consider an arbitrary 

ratio "Ri" between P and W (i. e. Ri = P/W) which is relatively 

low. Once this system of the load is applied to the structure, then 

it will be displaced by an amount "o" until stable equilibrium 

is achieved. 

Fig. (3.11) shows the equilibrium position of the structure where, 

the corresponding configuration is represented by point x. Now if the 

ratio Ri between P and W is kept constant as the set of the applied 

load "P & W" is increased, then the structure will be stable at 

another equilibrium position. Points x1, x2 and x3 represent the 

positions of the stable equilibrium of the structure according to the 

successive increment in the applied loads P and W respectively. 

It is seen from Fig. (3.11) that the structure has only one 

position of equilibrium, this means that there is only one solution 

to the equilibrium equation (Eq. (3.12)). According to this case, 
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the phenomenon of transient instability does not appear and the overall 

behaviour of the structure is in stable equilibrium until the 

applied loads reach the critical values dependent on the limiting 

stiffness at n as explained in the previous article. 

3.2.2.3.2 The Relationship Between the Applied Loads and The 

Displacement "n" 

It is seen from the previous articles that the lateral displacement 

"e" is dependent on the applied loads "P & W" and also on the 

characteristics of the non-linear bracing s. 

The relationship between the verticalload "P" and the displacement, "All 

where Ri = P/W = constant, is illustrated graphically in Fig. (3.12. a). 

It is seen from this figure that the variation of the vertical load 

"P", where P=F(o) is dependent on the ratio "Ri 

In Fig. (3.12. a) curve (i) represents the non-linear relationship 

between P and o in case of no transient instability, where the ratio 

RI is relatively low. The elastic critical load, in this case, is 

equal to Pcr,. as explained previously. Curve (ii) represents the 

relationship between "P" and "A" where, in this case, the phenomenon 

of transient instability arises. It is seen from the curve (ii) 

that at point x (i. e. at the onset of the transient instability, see 

also Fig. (3.12. b)), the slope of the tangent to the load-displacement 

curve is equal to zero. 

Thus, at point x, 

dP 
=0 e= e1 and P= Pcr1 (3.16) 
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It is of interest to consider the solution for the load Po 

in Fig. (3.12. a). At point B" the slope of the load-displacement 

curve is equal to zero, i. e. 
dö 

-0, and the value of the 

vertical load is equal to Po. Also, in Fig. (3.12. b) the straight 

line representing the function "F2", at vertical load equal to Po, 

is tangential to the curve "F1" at point B". At this load "PO" 

the structure has two equilibrium positions i. e. at points B and B". 

Point B represents the stable equilibrium of the structure. There is 

no path to point B", where in the region B-B" the net restoring 

moment MA, Eq. (3.12), is positive, and the structure will be stable 

only at point B as explained before. Point B" can only be reached 

by applying additional loads and then removing these gradually. Thus 

at point B": 

dP 
dn - = A11 > Al and P= Po < Pcr1 (3.17) 

It is seen from Eq. (3.17) that the displacement "01" at the 

onset of transient instability can be defined as the lowest 

displacement at dP/do = 0. Also the elastic critical load Pcr1 

is the highest vertical load at dP/dn = 0. 

This analysis may be useful to the determination of the 

elastic critical load "Pcr1" at the onset of transient instability 

region, numerically. 

3.3 Numerical Solutions to Determine the Transient Instability 

Region and the Corresponding Critical Load Pcr1 

It is necessary to determine the value of the critical load "Pcr1" 
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at a specified ratio "Ri", where the onset of transient instability 

is encountered, by numerical methods rather than graphically. 

It is seen from the relationship between the functions F1 and F2 

and the lateral displacement "n", which is depicted graphically 

in Fig. (3.12. b) that, at point x, i. e. at the onset of transient 

instability region, the displacement "o" becomes close to the 

tangent point deflection "n1" and the vertical load "P" approaches 

the critical value "Pcr1". Once this point has been reached the 

critical value "Pcr1" will be obtained. 

It is obvious that the critical value "Pcrl"depends on the 

ratio "Ri" between the system of the applied loads "P & W" and also 

on the lateral displacement "o" . 

Two numerical methods for calculating the theoretical value 

of the critical load. "Pcr1" and also the relationship between the 

load "P" and the corresponding displacement"A" are adopted. The 

two methods are described in the next sections. 

3.3.1 Tangent Slope Method 

The critical value of the applied vertical load "Pcr1" 

and the corresponding lateral displacements, at the onset and the end 

of transient instability, may be obtained directly by calculating 

the slope of a line between two successive points on the load- 

displacement curve. The critical load "Pcr1" and the corresponding 

lateral displacement "&1" will be obtained when the slope of the 

line tends to zero and the increment in the displacement between the 

two successive points tends also to be very small. The steps of 
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the calculation may be summarized as follows: 

1. A small value of the lateral displacement "A" is chosen. 

2. The corresponding stiffness of each equivalent spring, 

(i. e. Kc and Kt) for this value of o, is calculated hence 

the global stiffness "K" is obtained (Eq. (3.9)). 

3. The value of the function "F1" is-calculated (Eq. (3.13)). 

4. The values of the applied loads "P & W" can be obtained from 

Eq. (3.12), which can be written in the following form: 

F1-(R . H"+P. A)-0 
1 

or 

PF1 (3.18) 
H"/Ri+o 

where, W= P/Ri. 

5. The steps 1 to 4 are repeated for higher values of n, without 

changing the chosen ratio "Ri". The increment in the 

displacement "d" between two successive points is chosen 

relatively small, where 6 =Ai -Ai-1 

6. The slope of the line "S" between two successive points, 

on the load-displacement relationship, can be calculated 

from the following equation: 

9 

The slope "S" is positive if the value of the assumed 

displacement is less than or equal to the displacement at the 

onset of transient instability region "e1" . 

P. - Pi 
-1 

6 
(3.19) 

7. If the slope "S" tends to be zero or negative, then the value 
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of the displacement will reduce to a= Ai-2d , where Di 

is illustrated in Fig. (3.13). At this stage the increment 

in the displacement is reduced to half of the previous 

increment, ' then the procedure is repeated again until the 

slope "S" tends to zero and also the increment "d" 

tends to be very small. Once this condition is reached, 

the lateral displacement o1, at the onset of transient 

instability, and the corresponding critical load Pcr1 are 

obtained. 

8. The processes of the calculation are repeated for a larger 

value of o than o1 with an increment in the displacement 

equal to the original increment "d". The corresponding 

values of the vertical load "P" and the slope "S" are 

obtained. The vertical load "P" in this case, will be 

smaller than the critical, load "Pcr1" and hence the slope 

"S" will be negative. If the displacement is increased more 

and more, then the results of the corresponding vertical 

loads and the slopes will start to increase also. The 

lateral displacement at the end of the transient instability, 

A2, will be obtained when the corresponding load P reaches 

Pcr1 again (as shown in Fig. (3.13)). 

Pý 

Pcr1 
+ve slope "S" 

2_j 

-ve slope "S" 

III! 
Ia ý'4-ý =! ý-a-ý' 
III; Ii 

0 ýi-2d ý ýi ý2 
lip, 

A 

Fig. (3.13): Illustration of Tangent Slope I1ethod 
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3.3.2 Influence Coefficient Method 

The values of the lateral displacement "A" and the corresponding 

values of the vertical load "P" can be represented by a mathematical 

equation using a numerical method of C"hebychev mathematical 

approximation for curve fitting 
(17,24,38., 39)0 In this research a 

NAG Computer library routine (E02ACF) (62) 
was used to calculate a 

polynominal to fit this set of data points. The aim of this 

routine is to approximate the set of data points as closely as 

possible with a specified function P= f(A) , this means that 

there is a dependent variable. "P"and independent variable. "A': 

Therefore the routine determines a polynomial of given degree which is 

a minimax fit to data points with equal weights. The data points 

have been presented by the values of P and'A . These values are 

calculated by repeating the steps 1 to 5 explained in the previous 

article (3.3.1), with equal increments in the displacement"A". The 

end of the calculation of A and P will be reached when the curved 

tensile bracing is straight i. e. when A= Ls-Lo for tensile bracing 

member. To arrive at a satisfactory degree of the polynomial it 

will be necessary to try several different degrees and examine the 

results graphically. Initial guidance can be obtained from the 

value of the maximum residual between the set of data points and the 

function f(A). This will vary with the degree of the polynomial. 

The residual of a single data point (A1, P1) to the function can simply 

be taken as C. i = Pi-f(Ai), this residual "c" was considered as a 

very small value (0.001°%P 
i). 

Now the value of the critical load ITcrl" and the values of the 
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displacement defining the region of the transient instability can 

be determined by following the next steps: 

1. The general form of the polynomial can be written such as: 

i=n 
P= f(o) =E alei 

i=0 

where, a0 and an are the coefficients of the polynomial, 

and n is the degree of the polynomial. 

(3.21) 

Z. The critical value Pcr1 and the value of the displacement Al 

at the onset of the transient instability region can be 

obtained when, P' = dP/do = f'(n) = zero. 

or 
i=n 

P' = f'(n) =E al ei-1 = zero 
i=1 

(3.22) 

The roots of equation (3.22) can be calculated using the NAG 

library routine E02AEF 
(67). 

This routine evaluates the roots of a 

polynomial in its C. hebychev -series form 
(24,38), 

which interpolates 

(passes exactly through) data at a special set of points. The 

solution of the formula P' = f'(e) =0 using E02AEF 
(67) 

will give 

the roots of this equation. Some of these- roots will be imaginary 

and the others are real. Some of the real roots will be negative 

and the others will be positive. The imaginary and the negative roots 

of the equation are neglected. The two positive roots which represent 

the solution of the true curve (i. e. within the range of data points) 

are selected. The lower positive root represents the value of the 

displacement "Al" at the onset of the transient instability region. 

The corresponding vertical load P= f(A1 ) represents the elastic 

critical load "Pcrl"* 



85 

3. The value of the lateral displacement "A2" at the end of 

the transient instability region can be obtained by computing the 

roots of the function P= f(A) = Pcr1' where the value Pcr1 is 

obtained from step 2. The NAG library routine E02AEF was used again 

to compute the roots of this function. The imaginary and the 

negative roots are neglected. The two positive roots which represent 

the solution of the true curve are selected. Thus the solution of 

the equation, P= f(A) = Pcr1' will give two values. The lower 

represents the lateral displacement A1, this value o1 can be checked 

with that obtained from step 2. The higher value represents the 

lateral displacement o2 at the end of the transient instability region. 

3.4 The Stability of Multistorey Framework Stiffened by Curved 

Diagonal Bracing 

Many types of bracing have been used in steel frames. These 

types normally take the form of inclined members, having small cross- 

sectional area in comparison with columns and beams of the frame. 

The most commonly used is diagonal bracing as shown in Fig. (3.14. a). 

Assuming all joints of the frame are pinned connections and the 

columns have the same cross-sectional area, then Fig. (3.14. a) 

can be transformed to Fig. (3.14. b) with cross bracing. If the 

loadings are only applied at the joints and the columns are sufficiently 

stiff, then it is reasonable to assume just a typical one storey 

of the frame with cross bracings as shown in Fig. (3.14. c). For 

further analysis it is seen from the above discussion that the 

sway deflection characteristics of a single story portal frame can 

be used to obtain the corresponding characteristics of a 
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particular family of multi-bay multi-storey portals 
(2,34), 

Thus for all these portals the equivalent single storey portal 

frame may be obtained by the application of the following 

rules: 

1. In the single storey frame the sum of column stiffnesses 

is equal to the sum of column stiffnesses of the 

original frame. 

2. In the single storey frame the sum of the columns loads 

is equal to the sum of the columns loads of the original 

frame multiplied by an equivalence factor. 

3. The stiffness of the cross bracing in the single storey 

'frame is the sum of the stiffnesses of the equivalent 

diagonal bracing in the original frame, as shown in Fig. 

(3.14). 

4. The beam stiffness in the single storey frame is equal to the 

sum of the beams stiffnesses of the original frame. 

An analysis of the frame shown in Fig. (3.14. c) shows that, the 

cross bracing is subjected to a compressive force and tensile force. 

Since all joints are pinned connections and the cross section of the 

columns and the beam are much stiffer than the bracing members, 

therefore a fairly close estimate of the critical load and the 

behaviour of the frame can be obtained if the equivalent single 

framework shown in Fig. (3.14. c) is simplified judiciously to a 

simple column with inclined equivalent non-linear springs as shown in 

Fig. (3.15). Consequently in calculating the critical load, attention 
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may be confined to the simpler problem in Fig. (3.15. c), in which 

there is no bending in the column even when loaded. 

This simpler column approach. (Fig. (3.15. c) is identical to the 

previous structure explained before in section 3.2.2.3. The only 

difference is the equivalent springs (for bracings in compression 

and in tension) take the inclined position instead of the horiziontal 

position. Therefore a similar analysis to that explained in 

section 3.2.2.3 will be considered here. 

Now, if the structure in Fig. (3.15. c) is disturbed from its 

vertical position under equivalent applied loads PQ and WQ then it 

will deflect by an amount A until equilibrium is attained, as shown 

in Fig. (3.15. d). In this figure the external loads PQ and WQ are 

the equivalent vertical and lateral loads applied at the column 

respectively. Also the forces Fc and Ft are the restoring forces in 

the equivalent springs for compression and tension bracing 

respectively, and these are dependent on the displacement A. 

The equation of static equilibrium for the structure can be 

obtained by taking moment about the pin ended "A", Fig. (3.15. d) such 

as: 

HA s Fc. H . sinacc + Ft ; H. sinatc - PQ. e - WQ. H-. cosa1 =0 

or 

MA = F, -F2=0 

where, F1 - Fc .H. sinacc + Ft. H. sinatc 

(3.20) 

(3.21) 
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F1 is the restoring moment in the equivalent springs, 

acc is the angle between the chord line of the compression 

bracing and the column after deformation, Fig. (3.15. d) 

and atc is the angle between the chord line of the tension 

bracing and the column after deformation, Fig. (3.15. d). 

Also, F2 PQ. A+ WQ. H. cosa1 (3.22) 

where, F2 is the overturning action, due to the equivalent system 

of the applied load, about the hinge "A", in which: 

aý - sin-ý (H) 

is the rotation angle of the column. 

Equation (3.20) is identical with Eq. (3.12), therefore the 

relationship between the functions F1 and F2 is identical to the 

relationship explained before in section 3.2.2.3 and Fig. (3.10). 

(3.23) 

The remainder of this section is devoted to methods of determining 

the critical values of the applied loads and also the steps in the 

calculation of the restoring moment F1 and the overturning action F2. 

One consequence of this simplification, described above , is 

that the axial deformation and the stiffnesses of the curved bracing 

members have to be estimated separately, before the calculation of 

the restoring moment in the springs "F1". Another consequence of the 

equivalent model, (Fig. 3.15. c) is that the applied loads PQ and WQ 

have to be calculated first, before the calculation of the overturning 

action F2. 
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To illustrate this, consider the pin jointed two storey portal 

framework with initially curved cross bracings, as-shown in 

Fig. (3.16. a). In any storey "i" the stiffnesses of the initially 

curved bracing (i. e. the bracing in compression and in tension) are 

Kci and Kti respectively. Also in the same storey the values of 

the axial deformation in the bracings in compression and in tension 

are 6ci and 6ti respectively. 

Suppose that the framework sways an amount A at the first storey 

level under a suitable loading. Now, the two storey framework can 

be replaced, first, by the equivalent single storey frame, Fig. (3.16. b) 

and then it may be replaced by an equivalent single column with 

inclined non-linear springs as shown in Fig. (3.16. c). (N. B. This 

simplification of the single storey frame can be made, only, in the 

case of constant height of the storeys of the original framework. 

If the height of the storeys of the original framework are not 

constant , then, the procedure for the general behaviour of the 

structure will be discussed in the next section). 

Now the methods described in section 3.2.2.3 may be used to check 

the stability of this equivalent structure, (Fig. 3.16. c) and to 

determine the critical values of the applied loads. 

It is instructive to review the steps of analysis in two 

stages: 

St_age=1 

i) The stiffnesses of the equivalent springs of bracings in 

compression and in tension can be calculated from the following 

formulas: 
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i=N 
E 

c i=1 
Kci 

Kt 

where, Kc is the stiffness of the equivalent spring of compression 

bracingT-, 

Kt is the stiffness of the equivalent spring of tension 

bracings, 

and N is the number of storeys of the original framework 

(N=2 in the example shown in Fig. (3.16. a) ). 

ii) The axial deformation of the equivalent springs for bracings 

i=N 

iý1 
Kti 

(3.24) 

(3.25) 

in compression and in tension can be written as: 

a c 
Z_ Z-n 

sin ao sin aC 
(3.26) 

and 

Z+o z 
at - sin a- sin(a) t0 (3.27) 

where, 

Z is the span of the framework. 

e is the horizontal displacement at the top of the equivalent 

single storey frame. 

ao = tan-' (h (3.28) 

is the angle between the chord line of the curved bracing 

and the vertical position in the undeformed shape (Fig. (3.16. a)), 

h is the height of each storey (assumed to be constant), 

ac = tan-1 ( 
hcosaZ-A 

) (3.29) 
1 
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is the angle between the chord line of the deformed bracing 

in compression and the vertical position, Fig. (3.16. b). 

a1 is defined before in Eq. (3.23). 

and at = tan-1 ( 
hcZ+A osa 

) (3.30) 
1 

is the angle between the chord line of the deformed tensile 

bracing and the vertical position. 

iii) The restoring forces in the equivalent springs Fc and Ft 

can be calculated as: 

Fc = Kc . ac 

Ft = Kt t 

(3.31) 

(3.32) 

iv) The value of the restoring moment (i. e. the function F1) 

can be easily obtained by taking the moments about the hinged base of 

the column "A" (the moment will be taken for the restoring forces 

Fc and Ft only, Fig. (3.16. c) and the resulting formula is obtained 

as follows: 

Fý - F6 F. R. sinacc + Ft "" H- sin"a tc" 

where, H=h is the height of the equivalent single column, 

acc = ac +a1 

is the angle between the chord line of the compression 

bracing and the column'after deformation, Fig. (3.16. c) 

and atc - at a1 

is the angle between the chord line of the deformed 

(3.33) 

(3.34) 

(3.35) 

tensile bracing and the column. 
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v) It is necessary to calculate the equivalent loads PQ and WQ 

needed to produce a convenient arbitrary sway displacement "o" at 

the top of the equivalent single column, Fig. (3.16. c). Suppose 

that the original framework sways an amount "A" at the top level of 

the first storey, so that the sway at the top of the frame is equal 

to N. o " Now the moment at the base of the original framework due to 

the external applied loads, -only, must be equal to the moments at 

the pin end of the equivalent single column due to the equivalent 

external applied loads PQ and WQ i. e. 

2PN. A + W. Nhcosa1 = WQ. hcosa1 + PQ. n 

therefore, 

and 

WQ = W. N 

PQ = 2P. N 

(3.36) 

(3.37) 

Equations (3.36) and (3.37) give the equivalent applied loads 

WQ and PQ applied at the top of the equivalent single column 

shown in Fig. (3.16. b) and (3.16. c). 

vi) The overturning action (i. e. the function F2) can be easily 

determined from Eq. (3.22). 

Staqe 2 

The elastic critical load '! Pcr1"' causing the transient instability 

can be estimated accurately, using one of the methods derived previously 

in articles (3.2.2.3) and (3.3), i. e. the graphical or numerical 

methods. The critical load Pcr1' i. e. the value of the vertical 
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applied load at the onset of the transient instability, can be 

defined when the straight line representing the function F2 becomes 

tangential to the curve "F1" as explained before in Fig. (3.12. b) 

or when dP/dn =0 at e=n1, Fig. (3.12. b). 

The elastic critical load"PcT is dependent on the limiting 

stiffness at n=m, where at this limit the structure is unstable. 

Therefore, there are four possibilities for the overall 

behaviour of the framework, and can be summarized as follows: 

1. At PQ < Pcr1 ' the structure is in stable equilibrium 

2. At PQ = Pcrl'the equilibrium of the structure is unstable and 

this is represented by the phenomenon of transient instability. 

3. At Pcr > PQ > Pcrl , the structure will be in stable 

equilibrium again. 

4. At PQ = Pcr'the equilibrium of the structure is unstable, 

where Pcr is dependent on the limiting stiffness at A 

3.4.1 The, General Behaviour of a Multi-Storey Framework 

With Different Storey Height 

The technique just described assumes the height "h" of each storey 

of the original multi-storey framework to be constant. If this 

height is not constant, then the equivalent single column with inclined 

springs will be as shown in Fig. (3.17) and the original framework 

cannot be simplified to a single storey frame. In Fig. (3.17. a), hi 

is the height of the ith storey, also aoi is the angle between the 

chord line of the curved bracing and the vertical position, in any 
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storey i, in the original framework before deformation. 

Suppose that the framework sways an amount "A" at the top of 

the first storey level, under a combined system of loading "P & W", 

Fig. (3.17. b). The deformation of any storey differs from any 

other, therefore, the characteristics of each storey are calculated 

separately. The lateral displacement at the top of any storey "i" 

can be represented as follows: 

j=i-1 
di 

iý1 
hi ý h1 j=ý 

(3.38) 

where a is the lateral displacements at the top of the first storey. 

and h1 is the height of the first storey. 

The sum of the storey displacement to the top of the framework 

is equal to: 

i=N 
n=En. T i=1 1 

where, 

N is the number of the storeys. 

The restoring forces in the equivalent springs, Fci and Fti' 

in any storey "i" can be written as: 

FK. d 
ci cl ci 

Fti Kti ' ti 

where Kci and Kti are the stiffnesses of the equivalent springs 

for compression and tension bracing respectively, in any 

storey "i". 

(3.39) 

(3.40) 

(3.41) 
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Also, aci and ati are the axial displacements in the equivalent 

springs for struts and ties, respectively, in any storey "i". 

The values of Kci' Kti' dci"and dti depend on the geometry of 

the storey "i" and also on the lateral displacement "oi" at the 

top level of this storey. 

The axial displacements 6ci and 6ti can be written according to 

the geometry of the storey "i" such as: 

Z Z-1i 
6ci - sin(a01) sin aci 

and 
Z+o. _ IL 

where, 

°ti sin ati sin aoiý 

(3.42) 

(3.43) 

aci and a ti are the angles between the chord line of the curved 

bracings and the vertical position, in the ith storey after 

deformation. Fig. (3.17. d). 

and Z is the span of the frame. 

Finally the values of the functions F1 and F2 can be written as 

follows: 

where, 

i=N 
F1 =l1 E {[Fci: sirºxcci + Fti"siratci][hil} (3.44) 

acci and a 
tci are the angles between the chord line of the 

compressive, tensile bracing, and the column after deformation 

respectively, Fig. (3.17. d). 
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Also, 
i=N 

F2 = Wý .E hi , cosal + PQ : eT 
i=1 

(3.45) 

where a1 is the rotation of the column. 
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CHAPTER FOUR 
EXPERIMENTAL INVESTIGATION UNDER STATIC LOADING 

4.1 Introduction 

In order to verify the accuracy of the methods of the analyses 

which have been presented in Chapters 2 and 3, tests have been 

performed on a small scale for single column , with non-linear 

bracing member or members, and also for a two storey framework, with 

non-linear cross bracings. The experimental results obtained have 

been compared with the corresponding numerical results evaluated by 

the theoretical methods of analyses. Three separate groups of tests 

have been carried out. The first series have been conducted to 

substantiate the methods of analysis employed in Chapter Two, for 

calculating the axial stiffnesses of initially curved struts and ties. 

The second series of tests have been carried out to verify the methods 

of analyses which have been presented in Chapter 3 and consider the 

behaviour of single columns restrained by compressive and tensile 

bracings. 

The third series of tests have been carried out to verify the 

methods of analysis which represent the elastic behaviour of frame 

structures employed in Chapter 3, article (3.4). 

4.2 Choice of Materials and Setting Out of the Models 

Two types of models were used to carry out these experiments. 

The first consisted of a single column and bracing member or members, 

to determine the axial stiffnesses of initially curved bracings. 

The same model was used to carry out the stability tests on a single 
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column. The second model consisted of a two storey framework with 

cross, initially curved, bracing members. All joints of this 

framework were hinged joints and the bracings were perfectly pin 

connected to the main frame elements. Further the columns, as well 

as beams, were very stiff relative to the bracing to resist the 

applied loads acting on the framework. Therefore, the columns and 

the beams remained straight even when the frame was loaded, i. e. no 

significant bending deformation occurred in these main elements of the 

framework, and all deformation was attributable only to the cross 

bracings. 

The bracing members which were used in the first and second groups 

of tests were strips of curved annealed mild steel with various chord 

lengths and initial rises. While the bracing members which were used 

in the third group of tests, i. e. with the framework test, were 

curved steel strips with constant chord length and various initial- 

rises. The chord length of these bracings was constant to fit the 

dimension of the frame model. 

The thicknesses of the bracings were 1.22 and 1.2 mm and the 

breadths were 12.4 and 15.0 mm. These were cut into strips from 

steel plates. Table (4.1) shows the'chord lengths "Lo" and the 

initial rises "A0" as well as the breadths and the thicknesses of 

the bracings which have been used in the groups of tests. The 

initial rise "Ao", shown in Table (4.1) was the rise at the centre 

of the bracing member. The bracing members were bent into an 

are of a circle with radius "R". The radius of the circle depended 

on the value of the initial rise "A0" and the chord length "Lo" 

and can be written as follows: 
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R- 
8A 

0 

(4.1) 

The bracing members used with the framework model were from a 

different type of annealed steel. Therefore, these bracings had 

different Young's Modulus "E" to those bracings used in the first and 

second group of tests. 

Generally, all groups of tests were carried out by adopting 

a rigorous procedure of testing whereby all necessary precautions 

were taken to minimise the adverse effects. 

4.3 Determination of Modulus of Elasticity "E" for the Bracing 

Members 

The value of the elastic modulus 11E" for the bracing material was 

required for the theoretical analysis of the model. This was 

determined from tests made on specimens cut from the same steel 

sheets used to make the bracing members. There are at least two 

methods for determining this value. The first is a tensile test which 

has been adopted in this experiment. Three samples of steel strips 

were tested in this way. The tests were carried out on a tensile 

machine with an automatic recording.. The slope of the straight part 

of the stress-strain diagram was used to calculate the E value from 

the following equation; 

E- 

4A2+L2 
00 

a 
e 

nr .F- 
P 

.. _ ý- Ae 
c 

where, E is the Young's modulus 

a is the stress 

e is the strain 

(4.2) 



116 

P is the applied load 

Ac is the cross sectional area of the specimen. 

The value of the strain was obtained from an extensometer with 

a gauge length of 50 mm about the centre of the tested specimen. 

The thickness of each specimen was measured by a micrometer at 

different points along the specimen for calculating the cross 

sectional properties "Ac". Generally, the specimen properties and the 

values of Young's Moduli obtained from this test are shown in Table 

(4.2): The average value of this modulus is 186.32 kN/mm2. This 

value conforms well with that expected for thin steel sheet. The 

standard value of Young's modulus for a mild steel is 207 kN/mm2. 

Other tests were carried out especially for the specimens which 

were used with the framework behaviour, i. e. in the third series of 

tests. Again three samples of steel strips were tested. On these 

occasions the strain was measured using electrical resistance strain- 

gauges located at the centre of length of the specimens. 

The properties and the values of Young's moduli are shown in 

Table (4.2). The average value of elastic Young's modulus is 214.59 

2 kN/mm. This value conforms well with the standard value of mild 

steel. 

Typical load-strain curves for each type of steel are given in 

Fig. (4.3) 

4.4 First Series of Tests (Stiffness Tests) 

These types of tests were carried out especially to determine 

the axial stiffnesses of initially curved bracings in compression and 

in tension. 
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4.4.1 Design and Construction of Model 

The design of the model, and the test procedure was adopted 

to be suitable to evaluate directly the change in the chord length 

of the initially curved bracings, due to the axial applied load, and 

hence the axial stiffnesses. In these series of tests the bracings 

were tested singly in compression and in tension with various 

initial rises. 

The model used in these experiments consisted essentially 

of a single column, of height 915 mm, made up from, 25 mm square, 

mild steel hollow section, and a curved bracing member. The model 

was set up as shown in Fig. (4.1). The base of the column model was 

situated on a rail such that the solumn could be plumbed prior to 

each test, and then secured in position at the base. At the top 

of the column the pinned connection joining the bracing member to 

the column was made as frictionless as possible as were the connections 

of the bracing members to the I beam. All the connection details 

are shown in Fig. (4.2). A means of controlling deflection during 

the loading operations was made by the use of an adjustable screw. 

This screw was necessary to reduce the disturbances during applying 

the weights to the hanger. After each load increment the screw, which 

is positioned to the face of the column, was unwound slowly until 

the equilibrium point was reached and the bracing was able to support 

the loading. At this point the.. lateral deflection was recorded 

from a dial gauge positioned at the face of the column, at the same 

level as the column-bracing connection. 

Since the model was quite small with especially flexible 
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bracing, it was possible to use wieghts which were applied manually 

rather than using a hydraulic system of loading. The column was 

designed such that it would not buckle throughout the experiments. 

4.4.2 Test Programme for Bracing Properties 

All together, twenty specimens were tested - twelve of them to 

determine the axial stiffnesses of curved bracings in compression 

and the others to determine the axial stiffnesses of curved bracings 

in tension. The specimens were cut into three different lengths 

and bent into nine different initial curvatures as shown in 

Table (4.1). A. 3.5 mm diameter hole was drilled in each end of the 

specimen such that it could be positioned in the model. 

4.4.3 Test Procedure and Evaluation of Test Results 

4.4.3.1 Compressive Loading 

The column was set in a vertical position by adjusting the base 

plate as shown in Fig. (4.2. c). This was checked by making use of 

a plumb bob which hung from the centre of the steel rod at the top 

of the column. The initial curved bracing member was connected to 

the model where one end was fixed to. the pinned connection at the 

top of the column, i. e. at joint c, which could move laterally and 

the other end to the hinged bearing fixed to the I beam, i. e. at 

joint B, as shown in Fig. (4.1). 

The deflection gauge was positioned at the top of the column 

and zeroed. 
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In these tests, only a horizontal load "W" was applied. At 

each load increment the deflection screw at the top end of the 

column was unwound such that the load was transferred to the bracing 

member. Once satisfied that the model was in a stable condition, 

the horizontal deflection was recorded from the dial gauge. As the 

load was applied in increments, the procedure was continued 

until the bracing member failed by buckling. Throughout the 

procedure a record of horizontal load "W" and lateral displacement "s" 

was kept. Values of "W" and deflection "0" were recorded as 

accurately as possible when the bracing was approaching failure 

conditions. With the record of horizontal load "W" and displacement 

"n" the stiffness of the bracing member could be worked out from 

the equation, 

WH" + Po. 
w '2= KeH" 

OT 

K W PDOW 

-n+2. H" 
(4.3) 

where Po. 
w 

is the self weight of the column model. 

4.4.3.2 Tensile Loading 

The procedure here was exactly the same as for the previous 

section (4.4.3.1) except that the bracing member did not fail, the 

test being completed when the displacement "A" between consecutive 

movements of loading was becoming very small. The stiffness of 

the member was again worked out using the formula K=ö+2. O. W 
H 
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4.4.3.3 Interaction Diagrams for Final Results 

The results obtained from the experiments outlined above for, both 

the cases of bracing in compression and in tension can be conveniently 

incorporated into displacement-stiffness interaction diagrams 

(i. e. o-K diagrams). Also the load-displacement interaction diagram 

i. e. W. H" against o for each bracing member can be plotted, where H" 

is the height of the column after deformation. The diagrams are 

illustrated in Chapter Five. 

4.5 Second Series of Tests (Stability Tests) 

The graphs of KtH" viz A for all the bracing members were then 

scrutinized such that a pair of members, one compressive and one 

tensile, could be combined satisfactorily to give a good result in 

terms of transient instability for stability tests. 

The characteristics of the members chosen for the stability tests 

were then combined graphically to give a plot of F1 = KAH" vo. In 

order to assess a suitable combination of loading for these tests 

which involve horizontal and vertical loading "W" and "P" respectively 

at the top of column, a second graph was drawn on the F1 vA plot. 

This graph was in the form of a straight line described by the 

equation F2 = WH"+ PA . Its position in relation to the F1 vA 

plot was such that it lay tangential to this curve at a point 

somewhere in the region where the compression bracing member began 

to lose its strength. This tangential point represent, theoretically, 

the onset of the transient instability region. The straight line 

was then continued to intersect the F1 curve at another point where 

the tensile bracing member was providing stability. This point 
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represents the end of instability region. 

The critical value of the horizontal load "Wcr1" applied to the 

system as the column became unstable could be determined from 

the following equation, 

F 
Wcr1 at at o-0 

where, 

F2 = WH"+ Po 

(4.4) 

(4.5) 

Also the critical load Pcricould be obtained, according to 

this case, by calculating the slope of the straight line representing 

F2. The ratio between the vertical and horizontal loads was then, 

equal to Ri = Pcr1 Wcr? 

In order that these loads do not become too large, the straight 

line was drawn as flat as possible. The important criterion was 

that there must be as clear a value as possible of the tangent point 

so that in the experiment, well defined results were obtained. 

4.5.1 Test Programme for Column Stability 

Bracings with the same length "! L0" and different initial 

rise "Ao" as the stiffness tests were used again in these types of 

experiments. Two different combinations were considered for these 

series of tests. 

The best loading ratio "Ri" and the dimensions of the two 

combinations are illustrated in Table (4.3). 
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4.5.2, Test Procedure and Evaluation of Test Results 

In this type of test the model was set up as shown in Fig. (4.1). 

The experimental procedure was the same as for the stiffness test 

except that vertical load "P" was introduced such that the ratio "Ri" 

between P&W remained constant throughout the test. 

As the loads P&W approached the critical values "Pcr1 and 

"Wcri' i. e. as the displacement "A" became close to the tangent 

point displacement, the increments of loading were greatly 

reduced, such that an accurate value of deflection could be recorded 

at the onset of the transient instability. Once this point has been 

reached a careful record of vertical load "P" and horizontal load "W" 

are now available. With no more loadings added the deflection 

screw was unwound slowly and carefully to avoid disturbances until 

the bracing member in tension became sufficiently stiff to resist 

the loadings which initially caused instability. Again a reocrd was 

kept the value of displacement when stability was returned. Next, 

the applied loads"P" and "W" were increased until the displacement 

"A" between consecutive movements of loadings was becoming very 

small. 

From the results of these experiments a comparison can be 

made with the results obtained from the theoretical investigation 

presented in Chapter Three, article (3.3). 

4.6 Third Series of Tests (Framework Stability Tests) 

These types of tests were carried out to examine the 

stability, or lack of it, for framework structures with non-linear 

cross bracings, having initial curvatures. 
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4.6.1 Design and Construction of Model 

In the first and second series of tests described, the single 

column was assumed infinitely stiff in comparison with the bracing 

members, and it was possible to treat these bracings in the 

theoretical analysis as non-linear springs. Also in the third 

series of tests the columns and the beams of the framework were 

considered infinitely stiff in comparison with the bracing members 

for the purpose of verification of the method of the analysis. 

The model used in these types of tests consisted of a single 

bay two storey framework. The dimensions of this model are shown 

in Fig. (4.4). The ratio of span to storey-height was chosen as 

unity. The columns and the beams of the framework model were made 

from the same material and the same cross-sectional area as the 

column used in the first and the second series of tests. Double 

beams were used at each storey to ensure that the frame was 

symmetrical about the vertical plane. Each connection between the 

columns and the beams was designed as a hinged joint. Each joint 

comprised commercially manufactured needle bearings. The bearing 

shaft, of 6 mm diameter, was run through these needle bearings, as 

shown in Fig. (4.5. a). The needle bearings were used to reduce 

the possibility of friction between the beam-column joints to an 

acceptable level. It was considered necessary to avoid the 

possibility of other errors, such as manufacturing errors, 

confusing the net dimensions of the framework, therefore, a variable 

screwed joint with left and right hand thread was made at the 

middle of each beam and column of each storey to adjust the net 

dimensions of the framework, the details of these joints are shown 

in Fig. (4.5. b). 
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The only variable in this type of test was the initial rise 

of the bracing members, where different combinations were arranged 

between bracings in compression and in tension. The pinned connections 

joining the bracing members to the main frame elements were made 

as frictionless as possible. The connections were designed to allow 

the bracings to bend out of the plane of the framework, so that the 

bracings would not touch each other. The chord line of each bracing 

member passed through the beam-column joint connecting this member. 

The positions of the bracing members are shown in Fig. (4.4). 

The frame had two hinged bases which were situated on a flat plate 

fixed to an I beam rigid support. The hinged base comprised 

commercially manufactured needle bearings to reduce the possibility 

of friction. The hinged shaft of 12.7 mm diameter was run through 

these needle bearings. The need to restrict the movement of the 

frame out of its own plane was considered in the design of the 

bases. Therefore the hinged shaft at the bottom of the column was 

made sufficiently long so that, when inserted in the needle bearing 

assemblies, it was rigid enough to give support to the frame column, 

to minimise the movement of the frame out of its own plane. In this 

way the frame was rigidly held in its own plane while still being 

capable of free sidesway within its plane. The details of the 

hinged base are shown in Fig. (4.5. c). 

The horizontal load was applied through a system of pulleys 

and thin strong string. The latter being attached to the frame by 

hooks into the top joint of the frame. Horizontal load was applied 

to the top of the frame panel point. The system of pulleys were 

fixed into a stanchion welded to the rigid I beam support, as shown 
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in Fig. (4.4). The system of pulleys were designed to work with 

ball bearings to reduce the friction as far as possible. The 

vertical loads were applied at the top of the column, where the 

columns were extended with vertical load carriers. The length of 

each carrier was adjusted to be suitable for the maximum applied 

load. 

Ameans of controlling lateral displacement during the loading 

operations was made by the use of an adjustable screw. This 

screw was necessary to reduce the disturbances during placing the 

loads on the structure. 

The lateral deflection of the frame was measured by a dial 

gauge during the test procedure. Independent trials showed 

appreciable force applied by the gauge to the frame. Consequently 

the spring of the dial gauge was taken out. As the result of this 

no appreciable force remained. 

4.6.2 Test Programme for Frame Stability 

Owing to the many variables present in the behaviour of the 

multistorey framework with non-linear cross bracing members, 

different combinations of initially curved bracings were 

considered. Five tests were carried out for this framework, to 

provide sufficient variety in the parameters for the general 

verification of the accuracy of. the theoretical analysis mentioned 

in Chapter Three, Art. (3.4). Table (4.4) illustrates the 

different combinations considered in this type of test. 
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4.6.3 Experimental Procedure 

Details of the experimental techniques employed and actual test 

procedure will be discussed in this section. The complete frame 

was placed in the test position and the base flat plate clamped onto 

the fixed rigid I beam which had been adjusted to a horizontal level. 

The adjustable screw deflection rod was then attached and adjusted 

so that the frame was as near as possible to being in a true 

vertical plane. This was checked by using a plumb bob which hung 

from the centre of the top joint of the frame. Then the verticality 

of the columns within their own plane was checked by measuring the 

diagonals and pitches between joints of each storey, and adjusted 

to as close a figure as possible. Adjustment was made by using the 

pitch setting gauges. 

Next, the bent bracing members, horizontal weight hanger and 

dial gauge were attached. The dial gauge was zeroed and the initial 

rise "A0" for each bracing member was adjusted exactly. 

After adjusting the test proceeded in a regular manner, 

horizontal and vertical loads being applied to horizontal and 

vertical positions, such that the ratio of vertical to horizontal 

loads remained constant throughout, and deflection readings were taken 

for each increment. Load increments were decreased as the transient 

instability condition was approached such that accurate values of 

critical loads and deflection could be recorded. With no more 

loading added the deflection screw was unwound slowly and carefully 

to avoid disturbances until the bracing members in tension became 

sufficiently stiff to resist the loading which initially caused the 
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instability. Again a record was kept of the value of deflection when 

stability returned. Next, increments in the applied loads "P" and 

"W" were added until the deflection "0" between consecutive movements 

of loadings became very small. 

The test was repeated again with another combination of 

bracing members (as shown in Table (4.4)) using the procedure just 

described. 

Finally the results obtained from this type of experiment were 

conveniently incorporated into F2 against A interaction diagrams 

where F2 is equal to WH"+Pe. Discussions and illustrations of these 

diagrams are presented in Chapter Five. 
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Table (4.1) : Dimensions of Tested Bracing Members 

Length, L 310 450 520 
(mm) o 

Initial 
Rise, 10 30 50 65 10 30 50 65 20 30 50 65 75 85 95 105 

(mm) A 
0 

Breadth, 12.4 12.4 15 
b (mm) 

s 

Thickness, 1.22 1.22 1 2 (mm) t . 
s 

I 

Table (4.2) : Properties and Young's Moduli of Tested 
Specimens 

Specimen 
No. 

Thickness 
ts(mm) 

Breadth 
bs(mm) 

Young's Modulus 
E(kN/mm2) Notes 

1 1.22 12.4 188.03 specimens 
2 1.22 12.35 185.92 used in 

3 1.22 12.31 185.00 stability tests 

1 1.2 15.05 202.23 specimens 
2 1.2 14.85 207.92 used in 
3 1.2 14.92 233.63 frame tests 
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Table (4.3) : Combinations of Bracings in Stability 
Tests 

Test Initial Rise "Ao"(mm) Length 
R ti "R P W" No. Compression Tesnsion "L "(mm) 

o 
a o i . / 

1 10 65 310 72.0 

2 10 65 450 145.6 

Table (4.4) : Combinations of Bracings in Frame Test 

Initial Rise "A 
0 

11(mm) 

Test 1st Storey 2nd Storey Dimension of bracing 
N b o. mem er with end connection 

Comp. Tens. Comp. Tens. 

1 20 85 20 85 
Lo= 520 mm 

2 20 95 20 85 Ao 

3 20 95 20 95 

4 20 95 30 95 
n. b. The ratio "Ri" kept 

constant and 40. 

5 30 95 30 95 c=24mm 
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Key to Fig. (4.4) 

A- Frame beams 

B- Frame columns 

C- Curved bracings 

Variable screwed joints 

E- Frame base 

F- Vertical loads 

G- Dial gauge 

H Flat plate 

I- String 

3- Pulleys 

K- Adjustable screw 

L- Horizontal load 

M- Rigid vertical stantion 

N-I beam rigid support 

0- End connections for bracing 

P- Bolts 
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CHAPTER FIVE 

COMPARISON OF THEORETICAL AND EXPERIMENTAL 
STATIC RESULTS 

5.1 Introduction 

The results of the experimental work, in chapter four, are 

presented and will be discussed in this chapter. The behaviour 

observed during testing was noted and a discussion of experimental 

shortcomings is included. 

The theoretical analyses presented in chapters two and three 

have been applied to those structures investigated experimentally. 

Satisfactory comparisons between the theoretical results with those 

obtained experimentally have been achieved. The theoretical results, 

of struts and ties obtained from the analyses presented in chapter 

two (using the theory of large deformation), have been compared with 

those from Swannell 
(77) (using the theory of small deformation). 

It must be noted that all the loads and dimensions quoted here 

are in 'Newtons' and 'Millimeters' respectively. The loads used in 

the experiments were in kilograms and for the purpose of comparison 

in this chapter have been converted to Newtons by multiplying them by 

9.806. 

5.2 Comparison of Theoretical Results Obtained From the Theory 

of Large Deformation with Those From the Theorey of Small 

Deformation (Swannell formula) 

The theoretical results of struts obtained from the analysis 

presented in chapter two are compared with those obtained from the 
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formula which has been derived by Swannell 
(77) 

and later modified 

by Tsai 
(86) 

for a range of parameters. 

The relationships between the ratio of axial displacement a/Lo 

and the load ratio W/PE are shown graphically in Fig. (5.1), for 

several initial rises Ao/Lo, in which PE is the Euler buckling load 

and is equal to iuEI/Lo2. 
2 

The horizontal axis in this diagram represents the non-dimensional 

form a/Lo and the vertical axis represents the ratio W/PE. 

According to the Swannell formula (the small deformation theory), 

a load W greater than the Euler buckling load PE cannot be applied 

to the strut and the load displacement curves approach the horizontal 

line W=PE asymptotically as shown by the dotted curves in Fig. (5.1). 

It is also seen from this figure that part of the Swannell curves 

for struts with AO/L0 < 5% merge completely with the solid curves 

(obtained from the theory of large deformation) up to a load ratio 

0.75 W/PE, as shown by curves (i) and (ii). This means that the 

Swannell solution gives a good representation only for shallow struts 

up to this ratio of load. The discrepancy between the two theories 

increases when the ratio A0/L0 is greater than 5%. As shown by 

curves (iii) and (iv). 

Figure (5.2) shows the comparison between the theoretical 

stiffnesses of a strut with A0/Lo = 20%. In this figure the 

horizontal axis. represents the ratio A/Lo and the vertical axis 

represents the axial stiffness 
ýýK(N/mm). It is seen that the initial 

stiffness (i. e. K at W=O) calculated by the large deformation theory 

is much less than the stiffness calculated by Swannell formula, 
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this means that Swannell's solution is a very poor representation 

of K-A behaviour for struts with AO/Lo >, 5%. 

5.3 Stiffness-Displacement Interaction Diagrams 

The relationship between the experimental and theoretical axial 

stiffness "K" and the lateral displacement "o" is obtained for 

various curved struts and ties. These struts and ties have three 

different lengths "Lo" and various initial rises "A0" as shown in 

Table (4.1). 

The stiffness-displacement relationship can be incorporated into 

K-e interaction diagrams which are divided into two groups. The 

first group is concerned with the investigation of curved struts as 

shown in Figs. (5.4) to (5.15), while the other group is devoted 

to the investigation of curved ties as shown in Figs. (5.16) to (5.23). 

In both groups the theoretical, interaction curves due to axial- 

loading and eccentric-loading are denoted by curves "La" and "Le" 

respectively, in which-"Lä represents the theoretical curve in tho case 

of axial loading and "Le" represents the theoretical curve in the 

case of eccentric loading, with an eccentricity c=24.0 mm, the 

eccentric length "c" is equal to the length of the end connection 

used in the experimental model. 

The experimental results of the stiffness "K" and the displacement 

"s" of these struts and ties are plotted also on Figs. (5.4) to 

(5.23). 

The theoretical and the experimental results are compared with 

those obtained from Swannell formula. The Swannell curves have been 

plotted in Figs. (5.4) to (5.23) and are denoted by curves "S". In 
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Figs (5.4) to (5.23) the horizontal axes represent the axial 

displacements "o" and the vertical axes represent the axial stiffnesses 

5.3.1 Observations on Stiffness - Displacement Diagrams 

From the diagrams shown in Figs. (5.4) to (5.15), concerning 

the group of curved struts, various observations have been made. 

The stiffness of a curved strut decreases as the axial 

displacement increases, and this appears clearly from all curves 

shown in the figures. 

The experimental stiffness values of the investigated struts, 

generally agree very well with the theoretical results from the 

large deformation theory with discrepancies in the stiffnesses 

varying from 0.5% to 10%. The larger discrepancies are associated 

with test results at high deflections, for which the measured 

displacements are larger than the predicted values. These appear 

to reflect the influence of inelastic material, where once this 

case is reached, the strut is less stiff than it would have been had 

it remained fully elastic, consequently displacements are greater 

than would be expected from the theoretical curves. For this 

reason the theoretical horizontal applied loads and the corresponding 

displacements of the struts, at the beginning and at the end of the 

inelastic behaviour, were calculated from the following formulas: 

WWy 
a .Ä+ý=1 

(5.1) 
Ycyy 
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yw 
and Qý -+QP. 

Z=1 

ycyp 
(5.2) 

where Wy is the applied load on the strut at the onset of plasticity 

Wp is the applied load on the strut at the full plastic section 

is the yield stress of the strut material (this stress 

was determined, for struts used in stiffness and stability 

tests from Fig. (4.3. a) and is equal to 261.199N/mm2, 

while for struts used in the frame tests, the stress was 

determined from Fig. (4.3. b) and is equal to 107.095 N/mm2), 

Ac is the cross-sectional area of the strut, 

Yy is the lateral deflection at the centre line of the curved 

strut, at the onset of plasticity, where, the stress 

distribution on the cross-section of the strut at this 

stage is as shown in Fig. (5.3. b), 

yp is the lateral deflection of the curved strut at the full 

plasticity, where the stress distribution on the cross- 

section of the strut at this stage is as shown in Fig. (5.3. c). 

b .t2 
Z= 

Y 
SS 

6 

in which ZY is the elastic modulus of the strut 

b .t2 
Z- 

P 
SS 

4 

in which Zp is the plastic modulus of the strut. 

and bs is the breadth of the strut while is is the thickness of 

the strut. 
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Fig. (5.3) 

The axial displacements at the onset and at the end of plasticity 

are plotted on Figs. (5.4) to (5.15), these displacements are 

denoted by "Ay" and "op" respectively. The axial displacements less 

than Ay represent the displacements of the full elastic behaviour 

of the strut, while the displacements in the range Ay to np 

represent the axial displacements of the partial plastic behaviour 

of the strut. 

From Figs. (5.4) to (5.15), it is concluded that, the experimental 

stiffnesses in the region of full elasticity are very close to the 

theoretical results, while in the region of partial plasticity the 

experimental stiffnesses are generally lower than the theoretical 

results where the displacements in this region are larger than the 

theoretical values due to the inelastic material. Generally 

satisfactory results are obtained, despite the presence of some 

degree of plasticity. 

The important point to notice from these figures is that the 

inelastic behaviour begins particularly early when the strut is 

relatively short. Conversely the beginning of the inelastic 
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behaviour is delayed when the strut is relatively long. A 

comparison between the maximum experimental displacement and the 

theoretical displacement at full plastic limit for different struts 

is shown in Table (5.1). 

The theoretical curves of struts subjected to axial loading 

(curves La) are generally lower than the curves of struts subjected 

to eccentric loading (curves Le). However the curves La and Le 

are very close together as shown in the Figs (5.4) to (5.15) where 

the eccentricity c=24. Omm is small, if it is compared to the total 

length of the strut. 

Swannell stiffness curves agree very well with the theoretical 

stiffness curves "La" when the ratio "Ao/LO" is less than 5% 

as shown in the Figs. (5.4), (5.8) and (5.12), where the ratios 

"Ao/LO" are 3.226%, 2.222% and 3.846% respectively. The discrepancy 

increases as the ratio "Ao/LO" is greater than 5% as shown in the 

remaining figures. Generally the experimental and the theoretical 

stiffness curves are lower than the Swannell curves. 

The stiffness-displacement interaction diagrams concerning the 

group of curved ties are shown in the. Figs. (5.16) to (5.23). Various 

observations can be made. 

The stiffnesses of curved ties increase as the axial displace- 

ments increase. 

The experimental values of the stiffnesses of all investigated 

ties agree very well with the theoretical results. The experimental 

behaviour of the investigated ties was in fully elastic regions, 
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where the maximum applied loads were less than the yield loads of 

these ties. The yield load, for specimens used in stiffness and 

stability tests is shown in Fig. (4.3. a), while for specimens used 

in the frame tests is shown in Fig. (4.3. b). 

The stiffness curves of the axially loaded ties are very close 

to those representing the eccentrically loaded ties, because the 

length of the end connection "c" is very small if it is comprared to 

the total length of the strut. Generally the curves "La", which 

represent the behaviour of axially loaded ties are lower than 

the curves "Le"which represent the behaviour of the eccentrically 

loaded ties. 

The experimental and the theoretical stiffness curves for 

the investigated ties are lower than those derived by Swannell. The 

discrepancy increases as the ratio "Ao/Lo" increases. 

5.4 Load-Displacement Interaction Diagrams Concerning The 

Behaviour of Individual Bracings 

Two types of stiffness tests were carried out as described 

in chapter four, i. e. for struts and ties. 

The experimental and theoretical load-displacement relationship 

for both cases are shown graphically in the Figs. (5.24) to (5.43). 

The horizontal axes in all diagrams represent the axial displacement 

"s" while the vertical axes represent the moment about the base 

of the column model, due to the external applied loads on the struts 

or ties. The length "Lo" and the initial rise "AO" of the bracings 

are shown on each plot. The theoretical load-displacement 
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relationships for axially and eccentrically loaded struts are shown 

graphically in the Figs. (5.24) to (5.35), where, the curves "La" 

and "Le" represent the load-displacement diagrams, for axially 

and eccentrically loaded struts respectively. Also the load- 

displacement curves of Swannell, which are denoted by curves "S" 

have been plotted on the diagrams for the purpose of comparison. 

The experimental horizontal load "W" for shallow strut 

(A0/L 
0< 

5°0) rises quickly towards its maximum value levelling off 

at low displacement, as shown in the Figs. (5.24), (5.28) and (5.32). 

This means that the stiffness of the strut is at its greatest within 

this small region and then falls comparatively quickly as the loading 

and hence deflection is increased. In reality it is to be expected 

that a load will eventually be reached at which, somewhere in the 

strut, the material reaches its limit of proportionality. Further 

increase in the load leads to the development of a zone in which the 

material is partially plastic. The theoretical inelastic behaviour 

begins at a point on the curve which has a displacement "Ay", while 

the end of partial plastic behaviour is represented by a point which 

has a displacement "op", as shown in the figures. 

Comparison between the experimental and theoretical maximum 

applied loads on the struts at the end of the partially plastic 

behaviours are shown in Table (5.1). 

In Table (5.1) the important point to notice is that the 

maximum loads which the curved struts can carry, at the end of the 

partial plastic behaviours, are less than the Euler buckling loads 

nP n 
E' 
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The experimental loads and the corresponding axial 

displacements are in reasonable good agreement with the theoretical 

results obtained from the theory of large deformation. The 

experimental loads, at the beginning of each test, are very close 

to the theoretical loads in the fully elastic region (i. e. within 

a range of displacement lower than Ay). The experimental results 

for applied loads located in the partially plastic regions, in all 

the tests, showed discrepancies of less than 10% than the theoretical 

results. The struts are less stiff than they would have been had 

they remained fully elastic, consequently displacements are 

greater than would be-expected from the theoretical calculations. 

For struts with "A0/Lo" relatively large the Swannell load- 

displacement curves lie above the theoretical and the experimental 

curves, especially within the range of the experimental values. 

The load-displacement interaction diagrams for investigated 

ties are plotted in the Figs. (5.36) to (5.43). As can be seen the 

theoretical results agree very well with the experimental values. 

Also it is seen that the displacement increases at a slower rate than 

the load until the deformed tie form a straight tension member. 

Once this stage is reached the increment of the axial displacement 

will be proportional to the load increment. 

5.5 Interaction Diagrams Concerning the Stability of a Column 

Restrained by a Combined Curved Bracing System 

The results of the experimental work, concerning the stability 

tests (second series of tests article (4.5)), are presented and will 

be discussed in this section. 
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As numerical examples, the method of analysis explained in 

chapter three, articles (3.2.2.3) and (3.3) are applied to the 

combined bracing sets shown in Table (4.3). The eventual choice 

of the shallow rise (Ao = 10mm), for the compression bracing, and 

the deep rise (A0 = 65mm), for the tension bracing, was made after 

consideration of the form of K-n, interaction diagrams, where the 

stiffness of the compression bracing, at the beginning, is greater 

than the stiffness of the tension bracing (see. Figs. (5.4) and (5.17). 

This means that, at the beginning, if the applied load is increased 

gradually from zero, then the loading is mostly sustained by the 

compression bracing. If the load is increased more and more, then 

the lateral displacement "o" increases, the stiffness of the 

compression bracing reduces and the stiffness of the tension bracing 

rises. Eventually, the load is sustained mainly by the tensile 

bracing. Therefore the strut "Aa = 10mm", together with the tie 

"A0 = 65mm" formed a very good relationship when considered as a 

combined system. 

The theoretical relationship between the restoring moment 

(Fý = KAH") and the overturning action (F2 = WH"+ Pe) against the 

lateral displacement "o", for the sets of the bracings illustrated 

in Table (4.3), are shown graphically in the Figs. (5.44) and (5.46). 

The horizontal axis, in each figure, represents the lateral 

displacement "A" at the top of the column and the vertical axis 

represents the functions F1 and F2. 

The straight line, in these diagrams, shows the variation of the 

overturning action (F2 = WH"+ Pcr1'A). The slope of this line is 

equal to the vertical load Pcr1 and intercept WH"on the vertical 

axis, i. e. at O. The ratio between the applied vertical load "P" 
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and the horizontal load "W" (Ri = P/W) is shown on each plot. The 

solid curve, in these diagrams shows the variation in the restoring 

moment (F1 = KAH") which is dependent essentially on the 

characteristics of the non-linear stiffnesses of the combined bracing 

system, therefore, the function F, is dependent on A, as K is 

also dependent on A. 

The broken curve shows the variation in the restoring moment 

(F11 = KtoH") which is dependent on the characteristic of the non- 

linear stiffness of the tension bracing only. This curve is drawn 

in the region after the end of the theoretical transient instability 

region. This assumption is based on the fact that the compression 

bracing has failed by buckling after a plastic hinge has formed at 

the middle of the strut, hence at this condition the stiffness of the 

strut can be neglected. Therefore, in the region after the failure 

of the compression member, the column can be considered restrained 

by the tension bracing only. 

The experimental values which represent the overturning action 

about the base of the column (i. e WH" + Po) were plotted on the 

figures for the purpose of comparison with the theoretical results. 

With the ratio of loading shown on each plot, the transient 

instability is expected, theoretically, to begin at point B, where 

a-oi, and cease at point c, where o=A2. At point B, the straight 

line ABCD, which represents the overturning action "F2", is tangential 

to the curve OBECF, which represents the restoring moment "F, ", 

i. e. F1=F2 at point B and this represents the onset of the phenomenon 

of transient instability. Between points B and C, the values of 

functions "F2" are greater than the values of function "F, ", so that 
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static equilibrium cannot be achieved. This stage represents the 

expected region of transient instability. Point C represents the 

theoretical static equilibrium position of the column at the end 

of the instability region, where the function "F1" is again equal 

to the function "F2". 

In Fig. (5.44), the experimental results shown in the region 

before the onset of the transient instability are close to the 

theoretical results of the combined system. In the region after 

the end of transient instability region, the experimental results 

are very close to the theoretical curve for the column restrained 

by tensile bracing only. This means that there is no influence from 

the actual stiffness of the compression member in this region. The 

experimental behaviour of the individual compression member used 

in this combined system (Figs. (5.4) and (5.24)) indicates that the 

behaviour of the member is elastic up to a displacement equal 

to 7mm approximately, and after this limit the member starts to 

loose some of its stiffness and a full plastic hinge will form at 

displacements higher than 14mm approximately. Thus since the 

displacement at the end of the transient instability region, Fig. (5.44), 

is greater than the displacement at the end of the partial plastic 

region of the compression member, therefore the experimental results 

after the end of transient instability region should agree more 

closely with the theoretical curve for the column restrained by tension 

bracing only, as the compression bracing has failed by buckling 

before this region of stability. 
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The experimental results shown in Fig. (5.46), which represent 

the plot of WH" + Po from the stability test, agree very well with 

the theoretical calculation of the combined bracing system, with 

discrepancies varying from z°% to 9.75%. The larger discrepancies 

are associated, only, with the results related to the higher 

displacements, i. e. in a range after the end of transient instability 

region. This appears to reflect the influence of the actual 

stiffness of the compression member. The test on the individual 

compression bracing member, Figs. (5.8) and (5.28) showed that the 

actual compression behaviour of the member started to loose some 

of its stiffness in the defined partial plastic region (i. e. in the 

region defined by Ay and np), and then the member started to fail 

by buckling at a displacement higher than 30.0mm approximately. As 

the total experimental behaviour of this combined system lies within 

a range less than 30.0mm, therefore it is to be expected that the 

experimental points will tend to agree with the theoretical solution 

which includes the stiffness of compression bracing. The last 

three points of the experimental results agree less well with the 

theoretical results, where the corresponding displacements in the 

compression member, at these points lie within the partial plastic 

region of this member and this causes some reduction in the 

compression stiffness. Therefore the actual stiffness of the 

combined bracing system is lower than the calculated stiffness from 

the theoretical investigation. This could be the reason for 

discrepancies between the experimental and the theoretical results 

at these last three points. 
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The theoretical and the experimental relationships between the 

vertical-applied load "P" and the displacement "s", for the sets of 

bracing systems shown in Table (4.3), are shown graphically in the 

Figs. (5.45) and (5.47). The ratio "Ri P/W" is kept constant 

in all cases of loading. The horizontal axis, in each figure, 

represents the lateral displacement "A" while the vertical axis 

represents the applied vertical load "P". 

It is seen from the figures that, as the vertical load "P" 

increases the lateral displacement "A" increases up to point B, where 

A=A1 and P= Pcr1' At a slightly higher load than Pcr1' a sudden 

increase in the lateral displacement "A" occurs until the structure 

becomes stable again at point c, where A=A2. The region between 

the displacements Al and A2 is defined as the transient instability 

region, for the combined bracing system. 

The displacement "01" represents the lateral displacement, of the 

column, at the onset of the transient instability. The corresponding 

applied vertical load to this displacement represents the critical 

load "Pcr1" applied to the column. 

The displacement "02" represents the lateral displacement at the 

top of the column, where the transient instability ends. 

The slope of the tangent to the load-displacement curve at point 

B is equal to zero, i. e. 
dP 

=0 at the onset of the transient dA 

instability region. 

As the applied load "P" increases beyond Pcr1 the displacement "e" 

is greater than n2 and the structure is stable. 
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Generally, the experimental results agree reasonably well 

with those obtained theoretically for the column restrained laterally 

by the two sets of bracings as shown in Table (5.2). 

In Table (5.2) the values o1' A1e' A2' and'A22 and &2e 

can be defined as follows: 

o1 and Ale are the theoretical and the experimental lateral 

displacements at the onset of the transient 

instability region, respectively, 

02 is the theoretical displacement at the end of the 

instability region, where the solution includes the 

compression bracing, 

and and 42e are the theoretical and the experimental displacements 

at the end of the instability region respectively, 

where the theoretical solution includes the effect of 

plasticity in the compression member. 

5.4% Interaction Diagrams Concerning the Stability of the Multistorey 

Framework Stiffened by Curved Diagonal Bracings 

The techniques described previously in chapter three, article 

(3.4) were applied to study the behaviour of the two storey framework 

which was examined experimentally in chapter four, section (4.6). 

The dimensions of the frame are shown in Fig. (4.4). The ratio 

between the vertical and the horizontal applied loads "P & W" was 

kept constant in all cases of loading. The ratio Ri = P/W = 40.0 

was chosen because it allows the phenomenon of transient instability 

to occur for all combinations of the curved bracing sets. 
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The relationships between the restoring moment "F1" and the 

overturning action "F2" against the lateral displacement "o" 

at the top of the framework are shown graphically in the Figs. (5.48) 

to (5.52). The combinations of bracings are shown on the figures. 

The function "F2" is represented by the straight line ABCD, 

while the function "F1 ? ', i. e. the restoring moment in the combined 

bracings, is represented by the solid curve OBECF. The broken 

curve, in each diagram, shows the variation of the restoring moment 

"F11 " in the tension bracing sets only. This curve is drawn in 

the region after the end of the transient instability region, where 

it is assumed that the compression bracings of each combination are 

ineffective at a displacement higher than the limit defining the 

end of the transient instability region. 

5.9.1 Comparison Between Theoretical and Experimental Results 

The experimental results obtained, from the third series of 

tests presented in chapter four, are compared with those from 

the theoretical results as shown in the Figs. (5.48) to (5.57). 

It is seen from the figures that, with the ratio of loading 

shown in each plot, the onset of the transient instability region 

for the combined bracings is shown at point B where o-o1 while 

the end of this region is at point c, where a-e2 . In the 

transient instability region, the values of function "F2" are 

greater than the values of function "F, ", so that static equilibrium 

cannot be achieved. The ends of the transient instability region 

represents the theoretical static equilibrium position of the 

framework, where the function "F1" is equal to the function "F2". 
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The experimental results shown in all diagrams in the region 

before the onset of the transient instability are very close to 

the theoretical results, but in the region after the end of this 

transient instability the experimental results are closer to the 

theoretical results for frame restrained by the tensile bracing 

system only. This means that the influence of the stiffness of the 

compression bracing set has become negligible in this region. 

The behaviour of the individual compression members, used 

in this combined systems, indicated that the compression bracing 

with an initial rise- Ao-20mm , Fig. (5.12), failed at an axial 

displacement equal to 12mm approximately, while the compression 

member with an initial rise Ao-30mm, Fig. (5.13), failed at a 

displacement equal to 15mm approximately. Thus the corresponding 

displacements in the compression members at the. ends of the transient 

instability regions are beyond the failure deflections. 

It can be seen, also from the figures, that reasonable good 

agreement is obtained between'the theoretical and the experimental 

results. A summary of the theoretical and the experimental results 

is given in Table (5.3). 

5.6.1.1 Load-Displacement Interaction Diagrams Concerning the 

Stability of Frameworks 

Values of the vertical applied load "P" on the framework are 

plotted against the corresponding lateral displacement "All , at 

the top of the frame, for all combinations of the bracing sets, 

as shown in the Figs. (5.53) to (5.57). The horizontal axis, in 

each plot, represents the displacement "A". while the vertical 
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axis represents the vertical load "P". 

It is seen from the figures that the displacement "o" increases 

with load "P" up to point B where, at B, o=e1 and P=Pcr1' Thus at 

point B the frame becomes unstable and then snaps through to point 

c, where o=02. Further increase in the vertical load beyond Pcr1 

is associated with displacements greater than o2 and the structure 
ol 

becomes stable again.. 

It can be shown that point B (onset of the transient instability 

region) corresponds to dö = 0. 

In general the framework becomes unstable when the straight line, 

representing the function "F2" is tangential to the curve representing 

the function "F1" and this is associated with the zero slope of 

the load-displacement curve. 

The experimental applied vertical loads causing the transient 

instability agree fairly well with the theoretical results at the 

onset of this instability region as shown in Table (5.3). 

5.7 Effect of Initial Rise "AO" of the Combined Bracing System 

On the Behaviour of the Framework 

The numerical results presented in Table (5.3) indicate clearly 

that, with constant values of the initial rises of the tensile 

bracings, an increase in the initial rise of the compressive bracing 

has the effect of decreasing the critical load and, also, decreasing 

the range of the region of transient instability, (i. e. increasing 

the value of displacement at the onset of the instability region 

while decreasing the value of displacement at the end of this region). 

Also with constant values of the initial rises of the compressive 

bracings, an increase in the initial rise of the tensile bracing has 
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the effect of decreasing the values of the critical loads, and 

increasing the range of the transient instability region (i. e. 

decreasing the value of displacement at the onset of the instability 

region while increasing the value of displacement at the end of 

this region). This trend of results. is to be expected, since 

increasing the initial, rises of the combined bracing will reduce 

the resultant stiffness of these bracings and hence the value of 

function "F1" and the critical loads respectively. 

5.8 Comparison of Results Obtained by Tangent Slope and 

Influence Coefficient Methods 

The results of the vertical loads "P" and the lateral displacements 

"o", obtained by the tangent slope method are compared, graphically, 

with those from the influence coefficient method, as shown in 

Fig. (5.58). The combination of the bracing system used for the 

comparison is shown in the figure. 

Figure (5.58) shows, more convincingly, the remarkable accuracy 

of the influence coefficient method, by comparing the vertical 

loads "P" at different lateral displacements, calculated by the two 

different methods. The agreement between the two sets of results 

is so close that the small discrepancies are indiscernible on the 

curve plotted. 

The comparison of displacements at the onsets and the ends of 

the transient instability regions and, also, the values of the 

critical loads '"Pcr1" for different combinations of bracings, have 

shown equally good agreement between the two methods, as shown in 

Table (5.4). The influence coefficient results shown in the table 
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were obtained by using a degree of 20 for the polynomial representation. 

The results obtained by using a degree of 16 are slightly less than 

these results, in respect of the lateral displacements "a1" and "02" 

and have not been considered for comparison with the tangent slope 

method. The tangent slope results were obtained where the zero 

slope was taken as less than 1E-10 with an increment in the 

displacement equal to 1E-7mm. It is seen from the Table (5.4) that, 

very good agreement is, generally, obtained between the tangent 

slope and the influence coefficient results. The displacements 

at the onsets of the transient instability regions, obtained by 

the influence coefficient method, are slightly lower than those 

obtained by the tangent slope method, while the displacements at 

the ends of these regions, obtained by the influence coefficient 

method, are slightly higher than those obtained by the tangent 

slope method, for all combinations of the bracing systems. Although, 

the critical loads 11P'cr1" obtained by the influence coefficient method 

are lower than those obtained by the tangent slope method does not 

mean that the influence coefficient results are more accurate because 

it depends on the chosen degree of the polynomial. A second source 

of inaccuracy in the influence coefficient method is that the results 

of this method are dependent on the number of data points. Since 

the precise results need a large number of these data points this 

will affect the computational time effort for the method. However 

the computational time effort for the tangent slope method is 

smaller than that for the influence coefficient method. Therefore, 

for all of these reasons the tangent slope method is preferred to 

the influence coefficient method. 
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PART TWO 

DYNAMIC INVESTIGATION 
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CHAPTER SIX 

DYNAMIC BEHAVIOUR OF FRAME STRUCTURE RESTRAINED 
BY NON-LINEAR RESTRAINTS 

6.1 Introduction 

It is seen from the static investigation, explained in Chapters 

3 and 4, that the applied loads, on the structures restrained by 

curved bracing systems, are functions not only of the lateral 

displacement "A" but also of the non-linear stiffnesses of the side 

bracings. Also the stability of the equilibrium position depends on 

the relationship between the combined applied loads "P & W" and also 

on the lateral displacement "A" . 

If the structure is considered at any equilibrium state of the 

combined loads "P & W", where P is less than the critical load Pcr1 

(i. e. the vertical load at the onset of the transient instability 

region), and then a small disturbance is applied, such as deflecting 

the structure and then releasing it, the effect of this disturbance 

is to set up a very small oscillation about the equilibrium position. 

Alternatively if the vertical load "P" is very close to the critical 

load "Pcr1" then a small disturbance is sufficient to cause large 

deflections after the structure accelerates towards the end of the 

region of transient instability, which is the position of static 

stable equilibrium. The effect of this dynamic disturbance is 

investigated in this chapter. 

In this chapter two numerical dynamic analyses are adopted to 

study the general dynamic buckling behaviour of this type of 

structure. The technique of analysis is based on the solution of 

differential equations of vibration for an idealized structure in which 

the inertial properties (mass, rotatory inertia etc. ) of members are 
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assumed to be lumped at discrete points on the geometry of the 

structure. The lumped masses are assumed to be connected by massless 

members with the original elastic properties. The lumped-mass 

idealization is not a new concept. It has been widely used for 

the dynamic analysis of various structures 
(94,104,114). In the 

case of framed structures it is convenient to assume the inertial 

properties of the members to be located at the joints. 

The first method of numerical analysis consists of a step-by- 

step numerical integration of the equation of vibration. The method 

has been presented by Chaudhury 
(101) 

and the basic technique of 

this procedure is summarized in this chapter. 

The second is a new method of numerical analysis consisting of a 

step-by-step numerical differentiation of the solution of the equation 

of motion, using a constant displacement interval. 

6.2 Dynamic Equations for Idealized Frame Structures 

The number of displacement components which must be considered 

in order to represent the effect of all significant inertial forces 

of a structure may be termed the number of dynamic degrees of 

freedom of the structure. In this section the structures to be 

considered are single degree of freedom (SDOF) systems. 

6.2.1 Dynamic Equationsfori Single Column Restrained by Curved 

Bracing System 

The dynamic analysis of sway motion of the column shown in 

Fig. (6.1. a) can be simplified by considering the idealized structure 

of Fig. (6.1. b), in which half of the mass of the column is assumed 
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to be lumped at the top of the column. The forces acting at the top 

of the column are indicated in Fig. (6.1. c), and the general non- 

linear characteristic of the equivalent spring is shown in Fig. (6.4. a). 

The response of the structure, at any instant of time "t" to 

the dynamic excitation can be obtained by taking moments about the 

hinged base "A" of the column, and will be represented by the 

following free (damped) vibration equation, where the applied load is 

constant and independent of time. 

00 0 
m Xd. H" + Cd Xd . H" + (Kn. H" -Fs)-PXd -0 (6.1) 

Equation (6.1) can be written in the following form: 

F1. H"+FD . H"+RS-F2d= 0 

where, 
00 

FI =m Xd 

FI is the inertia force, 
.. 

FD _C dXd 

in which Cd is the damping coefficient. 

Xd is the velocity at the instant time. 

(6.2) 

(6.3) 

(6.4) 

The damping coefficient "Cd" can be written in the form such 

that: 

Cd =4d. Cý 

where, 

(6.5) 

Cd is the damping ratio 
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and CC =2 mw 

Cc is the critical damping coefficient 
(94,101) 

0 

and w is the natural frequency. 

FS 

(6.6) 

(6.7) 

Fs is the elastic force in the equivalent spring for the 

combined bracing system at the onset of the transient instability. 

The term K represents the non-linear stiffness properties corresponding 

to the lateral displacement "A" at the instant of time. 

Also, F2d = P. Xd (6.8) 

The term P. Xd is dependent on time, where Xd is varying with time. 

Equation (6.1) gives the relationships of the instantaneous 

values of acceleration, velocity, internal forces and external forces, 

at the top of the column. The internal forces are the elastic forces, 

in the elastic curved bracings. These forces can be calculated from 

the instantaneous values of the displacements by the static analysis 

explained in Chapters 2 and 3. 

Since equation (6.1) is a non-linear second order differential 

equation, the principle of superposition does not hold. Thus, 

for example, the displacement "A" cannot be divided into two parts, 

i. e. the static displacement and dynamic displacement. The 

important class of non-linearity related to the displacement "A" 

is the geometric non-linearity. This has been, already explained in 

the previous chapters. 
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6.2.2 Dynamic'Equationsfor a Multistorey Framework Restrained by 

Diagonal Curved Bracing System 3 

In section (6.2.1) Newton's second law of motion is employed 

in deriving the equations of motion of the SDOF system shown in 

Fig. (6.1). This procedure may be used as the basis for developing 

a formula for evaluating the equation of motion of the general 
ý 

non-linear SDOF system shown in Fig. (6.2). In this system the 

lumped mass "m" is assumed at the top beam level of the frame. The 

constant horizontal force "W" is, also, applied at the top level 

of the frame. 

The general non-linear characteristics of this system have been 

discussed in Chapters 3,4 and 5. 

Now the dynamic response of the idealized system shown in 

Fig. (6.2. b), at any instant of time "t", can be represented by 

the following non-linear differential equation. 

FI . H" + FO. H" + RS - F2d= 0. (6.9) 

where, 

=m Xd (6.10) 

in which m is the equivalent mass acting at the top of the equivalent 

idealized structure, Fig. (6.2. b). 

FD represents the damping force, 

and 

RS = Fý -F (6.11) 

The term Rs is a function of the characteristics of the bracing 

of each storey in the framework. The term F1 in Eq. (6.11) can be 
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determined from equation (3.44) derived previously in chapter three, 

T section (3.4.1). The term F1 is dependant on the' displacement "A'' 

at the top of the frame which consequently depends on the time "t". 

The term Fs represents the elastic force in the equivälent spring for 

the combined bracing system at the onset of transient instability. 

Also, 

F2d = P. Xd (6.12) 

in which the load P is the gravity force applied at the top of the 

structure. The displacement"Xd"is measured from the onset of 

transient instability (i. e Xd =T &1). 

6.3 Numerical Methods for Dynamic Analysis 

Two numerical procedures are employed to investigate the 

dynamic response of frameworks. The basic technique of analysis 

in the first procedure is a general step-by-step method of integration 

of the equation of motion, using a constant time interval. The basic 

technique of analysis in the second procedure is a general step-by- 

step method of differentiation of the equations of motion, using a 

constant displacement interval. 

6.3.1 Constant Time Interval Method 

Probably the most powerful technique for dynamic non-linear analysis 

is the step-by-step integration procedure 
(101,104,112,114,121), 

using 

a constant time interval. The technique consists of using the 

calculated values of acceleration, velocity and displacement at any 

instant of time "t" to calculate the magnitude of these variables 

at the instant t+öt after a small interval of time "St". This is 
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done in conjunction with the'equation of vibration of the system, 

starting with the known initial values of velocity and displacement. 

The non-linear nature of the system is accounted for by calculating 

new properties appropriate to the current deformed state at the 

beginning of each time increment. The complete response is obtained 

by using the velocity and displacement computed at the end of one 

computational interval as the initial conditions for the next 

interval, thus, the process may be continued step-by-step from the 

initiation of loading to any desired time, approximating the non- 

linear behaviour as a sequence of successively changing linear 

systems. 

The basic assumption of the process is that described by 

Newmark 
(114) 

in which the acceleration varies linearly during 

each time increment, while the properties of the system remain 

constant during this interval. The motion of the mass during the 

time interval is indicated graphically in Fig. (6.3) together with 

the equations (6.13), (6.14) and (6.15) for the assumed linear 

variation of the acceleration and the corresponding quadratic and 

cubic variations of the velocity and displacement respectively. 

The velocity can be evaluated by integrating Eq. (6.13) with respect 

to the variable"T". Also, the displacement can be determined by 

integrating the resultant Eq. (6.14) with respect to the variable "T". 

It may be seen from Eq. (6.1) or (6.9) that in order to 
0. 

calculate the acceleration "Xd" at any instant of time "t" it is 
a 

necessary to know the velocity "Xd" and the displacement "Xd" at 



226 

AXri 
Xd(T) - xd(t) + &t "t 

Xd(t) I 
t! T ý'ý 

Xd(t) 

C1) Acceleration (linear) 

.. S. 

(6.13) 

0* 

6. 

4X d(t) 
jXd(t+6e 

I t+d t 

II 
i 

(6.14) T2 
eXrl 

Xd(T) - Xd(t) + Xd(t). i + St . -=-2 

I 

Xd(t) 

t'T 
ýý 

I 

xdýT) 

(b) Velocity (quadratic) 

" 

; d(t+6t) 

°xd(t) 
t+at 

. .. 

T2 
oXd 

T3 
ý 

Xd(T) = Xd(t) + Xd(t). T + Xd(t)' 2+ &t '6 (6.15 

Xd(t) I 
t 

ý C) Displacement (cubic) 

Xd(t+dt 

oXd(t) 

I t+at 

ý 

Fig. (6-3) : Assumption of Linear Acceleration 
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that instant. Newmark (114) 
suggested that the velocity and the 

displacement can be obtained from the assumption of linear variation 

of acceleration within the small time interval "at", i. e. at the 

end of the interval (T=dt) or at time "t+at" , the values of the 

velocity "Xd (t+at)" and the displacement "Xd (t+dt)" can be evaluated 

from Eq. (6.12) and (6.13) and this will lead to the following 

equations: 

. 

X 

or 

0 6. 

w 

oXe4 
d(t+at) Xd(t) + Xd(t) " at + 2" . at 

... 
Xd(t+at) = Xd(t) + 

a2 (2Xd(t) + oXd) 

Substituting the value Xd(t+6t) instead of Xd(t) + AXd (this 

can be seen from the linear variation of the acceleration in Fig. 

(6.3. a)) the following is obtained: 

dt Xd(t+dt) - Xd(t) +2 [Xd(t) + Xd(t+dt)ý 

and 

(6.16) 

'1212 
Xd(t+dt) = Xd(t) + dt. Xd(t) +5 dt Xd(t) +6 6t Xd(t+d t) 

.... (6.17) 

Newmark 
(114) 

presented the following general expression for 

displacement, 

Xd(t+at) = Xd(t) + at. Xd(t) +(2 -ß) at2 0 Xd(t) +ß 6t2. Xd(t+5t) 
00 2 .. 

.... (6.18) 
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where o is a parameter which takes into account the nature of 

variation of acceleration within the interval at. A value of B-1 6 

represents a linear variation in which case equation (6.18) becomes 

exactly the same as equation (6.17). 

Newmark 
(114) 

proposed an iterative procedure in which an initial 
so 0 

value for Xd(t+dt) has to be assumed in order to calculate Xd(t+dt) 
00 

and Xd(t+dt) which are then used to obtain Xd(t+dt) from the 

dynamic equilibrium equations (6.1) and (6.9). This cycle of 
0. 

calculation is repeated by using the value of Xd(t+dt) calculated 

in the previous cycle until the values in subsequent cycles agree 

within the desired degree of accuracy. It was also suggested that 

the value of 6t could be adjusted in order to make the calculation 

of linear variations converge within three cycles. 

Chaudhury 
(101) 

proposed another procedure in which a small time 

interval 
Z 

dt is considered in Eqs. (6.16) and (6.17) in order to 

0 0* 
calculate Xd(t+dt) and Xd(t+8t) which are then used to obtain Xd(t+dt) 

from the dynamic equilibrium equations (6.1) and (6.9). It is 

convenient to use this procedure as the basis of the analysis to solve 

the non-linear differential equation (6.9). According to this 

assumption the following relationships are obtained from Eqs. (6.17) 

and (6.16) 

ý .. 
Xd(t+at) Xd(t+zat) + 

a2 
' Xd(t+zat) + 

12 
at2' Xd(t+iat) 

1 dt2 X 24 d(t+dt) (6.19) 
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. .. 
Xd(tAöt) = Xd(t) + 

a2 
. Xd(t) + 12 at2 . Xd(t) 

+1 at2 .X 24 d(t+at/Z) 

00A 

(6.20) 

.. I. 

Xd(t+zat) - Xd(t) +4 at [Xd(t) + Xd(t+zat)] (6.21) 

00 I 4. #. 

(6.22) Xd(t) - Xd(t-; 
dt) +4 at LXd(t-; 

dt) + Xd(t)3 

Eliminating X d(t+zdt) and Xd(t) from Eqs (6.19), (6.20) and 

(6.21), the following is obtained, 

0 00 Xd(t+at) - Xd(t) + at ' Xd(t+; at) - 24 [Xd(t) - Xd(t+'_at)1 at2 

.... (6.23) 

Substituting Eq. (6.22)into Eq. (6.21), then, 

00 .... .. I 
Xd(t ? at) = Xd(t-zat) +4 at [Xd(t-zat) + 2Xd(t)+ Xd(t+zat)I 

.... (6.24) 

Assuming the acceleration to vary linearly from the instant 

(t -'Ist, ) to the. instant (t? 6t), Eq. (6.24) can be written as: 

.S 

Xd(t+zdt) ': Xd(t-kot) + at . Xd(t) (6.25) 

Chaudhury 
(101) 

pointed out that the expression in Eq. (6.25) 

has the same accuracy as that for a time interval kh, although it 
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actually uses the interval dt , and that expression (6.25) is as 

accurate as expression (6.16) for a linear variation of acceleration. 

He also pointed out that the pair of expressions (6.23) and (6.25) 

have a higher degree of accuracy than the pair (6.17) and (6.16). 

Finally according to the assumption of linear acceleration 

within a small time interval "6t" and the pair of expressions (6.23) 

and (6.25) the velocity, displacement and the acceleration at any 

instant of time can be calculated. 

0 
The velocity Xd(t+i6t) can be calculated by Eq. (6.23) from 

0 
*0 

the values of Xd(t-z6t) and Xd(t) calculated in the previous step of 

time interval. 

The restoring forces in each curved member can be calculated 

from the equations of static equilibrium mentioned in chapters 2 and 3, 

with the following approximations: 

Xd(t+at) - xd(t) + at . Xd(t+zat) (6.26) 

The acceleration Xd(t+6t) can be calculated by Eqs. (6.1) or (6.9), 

with the following approximation: 

00 
Xd(t+dt) - Xd(t+? dt) 

(6.27) 

The displacement Xd(t+dt) can be calculated from equation (6.23). 
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For the initial cycle (t-0) of calculation' equation (6.25) has 

to be slightly modified so that: 

"" 

at 
"" 

Xd(zdt) = Xd(O) +2" Xd(0) (6.28) 

where, X d(0) is the given initial value and X d(0) can be calculated 

from equations (6.1) or (6.9) with the given initial values of 

Xd(o). 

Chaudhury 
(101) 

pointed out that the error involved in the 

approximation (6.26) in conjunction with the original Eq. (6.23) is 

+1 st2 OR X] is expected to be of a very small order 24 d(t) d(t+st) 

in the dynamic analysis. This error is not cumulative, as Xd(t+st) 

is calculated by equation (6.23) after Xd(t+dt) has been obtained. 

However the approximation (6.27) affects the damping force 

which is, in any case, dependent on the accuracy of assessment of the 

coefficient of damping in an actual structure. 

6.3.2 Constant Displacement Interval Method 

The technique employed in this section is simple in concept 

but has been found to yield excellent results with relatively little 

computational effort. 

The procedure consists of using the calculated values of 

displacement, velocity and acceleration at any position Xd(i) to 

calculate the magnitude of these variables at the position Xd(i+1) 

Xd(i) + dXi , after the small interval of displacement "6Xi". The 

procedure starts with the known initial values of velocity "X " d(0) 
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and displacement "Xd(o)". The non-linear nature of the system is 

accounted for by calculating new properties appropriate to the 

current deformed state at the beginning of each displacement 

increment. The complete response is obtained using the velocity 

and acceleration computed at the end of one computational interval as 

the initial conditions for the next interval, thus the process may 

continue step-by-step to any desired time. 

The maximum displacement, can be defined as the limit where the 

velocity is zero. The procedure depends on approximating the non- 

linear behaviour of the structure as a sequence of successively 

changing linear systems as shown in Fig. (6.4. b). The basic 

assumption of the process is that the characteristics of the 

system remain constant during each displacement increment. The 

dynamic response of the system is evaluated for a series of small 

displacement increments "dX", generally taken of equal length for 

computational convenience. 

The condition of dynamic equilibrium is established at the 

beginning and the end of each interval, and the motion of the system 

during the displacement increment is evaluated approximately on the 

basis of an assumed response mechanism. 

6.3.2.1 Incremental Equation of Equilibrium 

Figure (6.4) illustrates a typical non-linear force-displacement 

curve for F, expressed as a function of displacement "A" . (The symbol 

F1 will be used when referring to a function of time or to function 

of displacement). The equation of motion of the system may be 
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written at displacements Xd(i) and Xd(i+1) Xd(, i) + SXi as follows: 

0.0 

and 

m Xd(i) . H" + Cd Xd(i) . H" + Rs(i) - P. Xd(i) =0 (6.29) 

... ia 
m Xd(i+1)'H" + Cd Xd(i+1)'H" + Rs(i) +K . dXi 

- PXd(i) - P. dXi =0 (6.30) 

Since Eq. (6.30) is satisfied at both Xd(i) and Xd(i+1) i. e. in 

the range of the small interval 6Xi only, therefore it can be 

considered that the value of Xd(i) is constant while 6Xi is the 
0. 

variable. According to this, the values Xd(i+1) and Xd(i+1) 

can be written in the following forms: 

d" Xd(i+1) = dt 
[Xd(i) + dXi] = dXd(i) 

and 
d2 Xd(i+1) 
dt2 

[Xd(i)+ dXi] = dXd(i) 

where Xd(i) is independent of the time "t" during the displacement 

interval SXi. Therefore Eq. (6.30) can be rearranged, such that: 

.. 

or 

m. aXd(i). H" + Cd. aXd(i). H" + (K*-P). aXi = P. Xd(i) - Rs(i) 

0n 
.. ý" K%P rý d 

".. . 
Pý 

n -r 

d(i) +m dXd(i) +( m. H") aXi = 
P. Xd(i)-RS(i) 

.... (6.31) 
m . H" 
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Cm 
w2 dX dXi " C11 (6.32) then aXd(i) + 

where, w2 = 
* K -P 

m. H" 

w is the circular frequency or the angular velocity of the 

motion during the small displacement interval 6Xi, measured in 

radians per unit of time 

F1(i+1)-F1(i) 
and K= 

ax. 1 

in which K is the secant slope indicated in Fig. (6.4. b) 

(6.33) 

(6.34) 

This slope can be determined after the evaluation of F1(i) and 

F1(, 
+1) 

at the beginning and the end of the small displacement interval 

sXi. The values F1(i) and F1(i+1) can be easily determined as 

explained in the static investigations, chapter 3, 

Also C11 
P. Xd(i) Rs(i) 

m. H" 
(6.35) 

in which the constant value "C11" is independent on the time during 

the small displacement interval. 

Equation (6.32) represents the incremental form of the equilibrium 

equation of the motion during the small displacement interval '5X'. 

6.3.2.2 Solution of the Incremental Equation of Motion 

The general solution of Eq. (6.32) (9) 
consists of two 

functions. The first is called the complementary function (u). The 

second is called the particular function (v). 



235 

The general solution 5Xi is given by the sum of the complementary 

function "u" and the particular integral "v", i. e. 

ax 
i= u+v (6.36) 

Let u+v be substituted for 6Xi in Eq. (6.32), then the equation 

becomes: 

2C dt2 (u+v) +m. 
dt (u+v') + W? (u+v )= C11 

i. e. 

i. e. 

d2u d2v Cd du Cd dv 22 
dt2 

+dt2 + m' dt+ m'dt+wu+wv=ý11 

d2u ýd du 2 d2v Cd dv 2 ( 
2+m. dt+wu)+( 2+ m'dt+wv) =C 11 dt dt 

Let v be any solution of the equation (6.32) such that: 

2C d v 
dt2 

+m 'dt + w2v C11 

This would mean that: 

2Cu d 

dt2 
+m . 

dt 
+ w2u 

(6.37) 

(6.38) 

The solution of Eq. (6.38) is dependent on the sign of the value 

w2, therefore there are two possibilities: 

The first : If w2 is positive, the solution of Eq. (6.38) (104) 

is in the following form: 

-ýdwt 
u-e (A1 sin(wpt) + B1 cos(wpt) ] (6.39) 
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or 

where, 

-ýdwt 
u-e. A. cos(wpt-e) 

Cd - 

Cd 

C 
c 

in which, Cd <1 

and ýD - 

wp is the damping vibration frequency. 

dt 

The second : if w2 is negative, then Eq. (6.38) will be in the 

following form: 

du2 Cd du 2 
1+ m' dt -w u- u 

The solution of Eq. (6.43) (104) 
can be written such that: 

where, 

in which, 

(6.40) 

(6.41) 

(6.42) 

(6.43) 

dwt 
u=e[D cosh(wDt) +G sinh(wDt)] (6.44) 

wp =w Cd -1 

4d >1 

(6.45) 

(6.46) 

The unknown constants A and e in Eq. (6.40) or D and G in 

Eq. (6.44) can be obtained from the given boundary conditions at the 

beginning of each interval. 

The particular integral "v" in the general solution of the 

differential equation of motion, depends usually on the type of the 
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function on the right side of the equation. The right side of Eq. 

(6.32) is a constant and therefore the solution can be obtained by 

trying v=v0 , where vo is a constant. Substitution of v=v0 in 

Eq. (6.37) gives: 

2c 
11 

7t2 (vo) +m 'dt (vo + w2 vo C11 

z 
since, d (v0) =d2 (v0) =0 dt 

Then, w2 v0 = C11 

1ý \/! V 

C11 
. L". " fý fO 2 

ý 

-C11 
or v=vo = 2 

w 

(w2 is positive) 

(w2 is negative) 

(6.47) 

(6.48) 

(6.49) 

Finally the general solution of the equation (6.32) is given by the 

sum of the equations (6.40) and (6.48) or equations (6.44) and (6.49). 

i. e. if w2 is positive, then: 

-ýdwt C11 
X. =e. A. cos(wpt -e )+2 

and if w2 is negative, then: 

1 v. u. 

-Cdwt C11 
dX: -e [D cosh(w, t) +G sinh(w, t) ]-n 

2 
ý 

(6.50) 

(6.51) 

Since Eq. (6.50) or (6.51) represents the displacement SXi 

therefore the velocity dX d(i) at any instant within the range of the 

displacement interval, can be determined by differentiating Eq. (6.50) 

or (6.51), as follows: 
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t 
dXd(i) _ -A. e 

-zdw [wpsin(wpt-e) + Cd wcos(wpt-0)] (6.52) 

in which w2 >0 

and 

6 Xd(i) = e-Gdwt[(DwD - CdwG) sinh(wDt) + (GwD - tdDw) cosh(wDt)] 

.... (6.53) 

in which w2 <0 

00 
Also the acceleration SXd(i) may be determined by differentiating 

Eq. (6.52) or (6.53), such that: 

If w2 > 0, then: 

d(i) =A ed [(Ld2w2-wp2) cos(wpt-e) + 2.; dwwpsin(wpt-e)] 

.... (6.54) 

and if w2 < 0, then: 

dXd(i) = e-Cdw{[DwD2-Cdwi,, D(D+G)+Ld2Dw2] cosh(wDt) 

+[GwD2-CdwwD(D+G) + ýd2w2G] sinh (att)} (6.55) 

The unknown constants A and e in the Eqs. (6.50), (6.52) and 

(6.54) or D and G in the Eqs. (6.51), (6.53) and (6.55) depend on the 

initial conditions of the system at the beginning of each increment of the 

displacement. 

The initial conditions at the onset-of -each increment are: 
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.. .".. 

t=0 , dX, 0, dXd(i) Xd(i) and dXd(i) - Xd(i) (6.56) 

0 
0* 

where Xd(i) and Xd(i) are the velocity and the acceleration at the 

onset of the interval 6Xi . The value "t" represents the 

variation of time during the displacement interval. This time varies 

between zero, at the onset of the interval, and t at the end of 

this interval. t will not be constant during each interval. 

The unknown constants A and a in Eqs. (6.50), (6.52) and (6.54) 

can be determined by substituting the conditions of Eq. (6.56) 

into Eqs. (6.50) and (6.52). 

i. e. at, t=0 

6Xi=0=Acos(e)+C12 (6.57) 

and öXd(i) - Xd(i) - A. iap. sin(e) - A. Cd. o. cos(e) (6.58) 

Xd(i). w2 
hence, c 11 

= wD tan(e) - Cd. w 

therefore, 0= tan-' 

'2 
- xd(i). w 

1>ý1 

C11. WD I `d " WD , 

Substituting this expression of 0 into Eq. (6.57) leads to the 

expression for the constant A. 

A= 
ý11 

w2cos(e) 

(6.59) 

(6.60) 

The increments of the time "t" at the end of the displacement 

interval can be determined by using the following equation: 
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f(t) =A e-ýdwt . cos(wpt-e) + 
C12 

- dXi =0 (6.61) 
w 

where 0 and A are defined in Eqs. (6.59) and (6.60) respectively. 

The value of t can be obtained from Eq. (6.61) by using iterative 

methods 
(9). One of these methods is explained in chapter 2, section 

(2.2.1.3). 

In the case of negative w2 , the unknown constants D and G in 

Eqs. (6.51), (6.53) and (6.55) can be determined as follows: 

At t=0 ;d Xi = 0= p_ 
C12 

then, D= 

Also, 

C1a 
2 

w 

.. 

dXd(i) = Xd(i) = G. wD - 4d. D. w 

then. G= 
Xd(i) + Cd. D. wi 

I 

D 

Substituting Eq. (6.6.2) into Eq. (6.63), therefore, 

6= 
Wxd(i) + CdC11 

wow 0 

The increment of the time "t" at the end of the displacement 

inverval, can be determined by using the following equation: 

(6.62) 

(6.63) 

(6.64) 

t 
f(t) =e 

ýdw 
[D. cosh(wD. t) + G. sinh(wD. t)] - 

C12 

- dXi 
w 

.... (6.65) 
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where D and G are defined in Eqs. (6.62) and (6.64) respectively. 

The value of t can be obtained from Eq. (6.65), again, by the 

iterative method explained in Chapter 2, section (2.2.1.3). 

Finally, in the case of w2 being positive, the velocity and the 

acceleration at the end of the interval "iXi" can be obtained by 

substituting Eqs. (6.59), (6.60) and the result from Eq. (6.61) into 

Eqs. (6.52) and (6.54) respectively. While, in the case of w2 

being negative, substitution of Eqs. (6.62), (6.64) and the result 

from Eq. (6.65) into Eqs. (6.53) and (6.55) give the velocity and the 

acceleration at the end of this interval. 

The values of the velocity and the acceleration at the end of 

any interval N Xi" are then used as initial conditions for the next 

interval. 

6.3.2.3 Summary of The Constant Displacement Interval Method 

For any given displacement increment "dXi" and the damping ratio 

11ýd" , the analysis procedure consists of the following operations: 

1) Initial velocity and displacement values "Xd(i) and Xd(i)" 

are known, either from values at the end of the preceding increment 

or as initial conditions of the problem. 

2) With these values and the specified non-linear properties 

of the structure, the stiffness K for the interval, as well as the 

elastic functionsFl(i) and F1(i+1) are found. 
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3) The circular frequency of the motion "w", and the constant C11 

are calculated from the Eqs. (6.33) and (6.35) respectively. Also 

the sign of the value w2 can be determined, therefore, the damped 

frequency "wp" can also be determined from Eq. (6.42) or (6.45). 

4) The unknown values of 0 and A or D and G are computed from 

the Eqs. (6.59) and (6.60) or (6.62) and (6.64) respectively. 

5) The initial acceleration can be obtained from Eq. (6.54) 

or (6.55) by substituting the value of t=0. 

6) The time increment "t" during the given displacement interval 

can be calculated from Eq. (6.61) in the case of w2 being positive 

or from Eq. (6.65) in the case of w2 being negative. 

7) Finally the velocity and the acceleration at the end of the 

increment are obtained from the Eqs. (6.52) and (6.54), if w2 is 

positive or the Eqs. (6.53) and (6.55) if w2 is negative, respectively. 

Also the displacement and the time at the end of the interval 

are given by Xd(i+1) - Xd(i) + SXi and ti+1 = ti +t 

When step (7) has been completed, the analysis for the displacement 

increment is finished and the entire processes can be carried on 

consecutively for any desired time and the complete response history 

of the structure can be evaluated. 

The accuracy of this step-by-step method will depend on the 

length of the displacement increment "SXi". 

The displacement increment must be short enough to permit a 

reliable representation of the behaviour of the sturcture. 
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CHAPTER SEVEN 
EXPERIMENTAL DYNAMIC BEHAVIOUR 

7.1 Introduction 

In this chapter the experimental dynamic behaviour of the frame 

structure considered in the static analysis is investigated. 

The dynamic excitation occurs at the onset of the transient 

instability region under a constant static applied load. This means 

that the model which has been used for dynamic investigation is an 

extension of the static frame model. Reference will be made, therefore, 

to the frame model used in the static tests. The model was used 

for determination of the various dynamic parameters, such as 

acceleration and displacement, involved in the dynamic motion of the 

frame structure. The ultimate objective of these forms of 

experiment is the development of a well validated calculation 

technique to describe the effects of instability of the structure in 

the transient instability region. 

7.2 Design and Construction of Model 

The experimental model consisted of two identical single bay, 

two storey steel frames. The description and the overall dimensions 

of each frame are illustrated in section 4. b*:, and Fig. (4.4). 

The distance between the two frames was taken as twice the span of 

a frame. To ensure lateral stability, cross bracing consisting of 

25x25x3 mm angle was installed between the two frames. Horizontal 

cross bracing of 12.5 x 6.25 mm bars, was used at the top of the 

frames to ensure. that both frames acted together. A wooden plate 

of 6 mm thickness was used at the top panel level of the frames to 

l 
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allow the application of the vertical loads. The general arrangement 

is shown in Plate (7.1). The wooden plate was marked to locate the 

applied vertical load positions. A symmetric application of the 

vertical load with respect to the centre line of the two frames was 

adopted. A number of dried. sand bags were prepared to be ready for 

applying as vertical loads during the test procedure. 

The sand bags were prepared with accurate different weights 

such as 0.8,0.6 and 0.4 kgs. 

Horizontal loading was applied through a system of pulleys and 

thin strong string, the latter being attached to a small piece of 

wood fixed at the edge of the wooden plate centred between the two 

frames. The string was hooked at the top. joint level of the frames. 

The system of pulleys was fixed to a rigid vertical stanchion as shown 

in Plates (7.1) and (7.2). 

Each frame had two hinged bases which were situated on a guide 

rail fixed to rigid I beam supports. The model was constructed 

placing each frame in the test position and then clamping the guide 

rail base to the I beam supports. The beam supports were levelled 

before the frame was fixed. Each frame was adjusted to a vertical 

position (i. e. in x-y plane and y-z plane) so that it was as near 

as possible to being in a true vertical planes, this was checked 

using a plumb bob which hung from the centre of the top joint of the 

frame. The dimensions of each storey'were adjusted to as closely 

as possible, adjustment being made by using the pitch setting gauges 

and the variable screwed joints. The side cross bracings were 

then welded to the columns of the frames. The horizontal cross 

bracing.. was also welded at the top beams level of the two frames, as 
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shown in Plate (7.2). The wooden plate was screwed over the top 

panel level of the frames. 

After construction, the verticality of the columns, of each 

frame, within their own plane was checked, again, by measuring the 

diagonals and pitches between joints of each storey, then the model 

was held in its vertical position to be ready for test. 

7.3 Test Programme 

Five tests were carried out. The only variable in this type 

of test was the initial rise of the bracing members. Different 

combinations were arranged between bracings in compression and in 

tension. for each test, as in the case of the static tests, Table 

(4.4). 

7.4 Instrumentation 

7.4.1 Systematic Development of Experimental Work 

The parameters of interest in this work are the displacement and 

the 'acceleration in the overall dynamic behaviour of the framework 

for various combinations of bracing system. The measurement of 

these parameters were required. This section describes the type 

of instrumentation used to record the quantities required and convert 

the signals to a convenient form for digital computer analysis. 

7.4.2 Measurement of the Dynamic Response of the Structure 

The response of the structure was measured at the top panel of 

the framework in the form of acceleration and lateral displacement. 

The instrumentation used is shown in block diagram form in Fig. 

(7.1). 
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The acceleration response of the structure was measured using 

an accelerometer and amplifier. The accelerometer was attached 

magnetically at the top panel level of the frame. The signals from 

the accelerometer were fed into the charge preamplifier and then into 

the recording instruments. 

The displacement response of the structure was measured by a 

rotary potentiometer which is an indirect method of measuring 

displacement. 

7.4.2.1 Measurement of the Displacement by the Use of Potentiometer 

To measure the lateral displacement at the top panel point 

of the framework a conductive plastic servo potentiometer 
(120) 

4 

was used. The potentiometer was screwed into the bearing shaft of 

the hinged base of the left column of the right framework as shown 

in Plate (7.3). The potentiometer is a device that measures the 

rotation of the frame column. The rotation'generates an electrical 

signal. The magnitude of the signal represents the degree of 

rotation. The wiper of the potentiometer is mechanically linked to 

the object whose rotation is being monitored. Generally if the 

object being monitored is rotated a fraction of a degree, the 

rotation will change the position of the wiper on the potentiometer. 

Changing the position of the wiper will, in turn, cause the circuit 

resistance of the potentiometer to be linearly altered. This will 

cause more or less current to flow through the milliammeter. If 

a milliammeter were calibrated relative to. rotation in degrees, then 

this very simple circuit of the potentiometer could be used to 

measure the rotation of the frame column from its vertical position. 



250 

Hence the lateral displacement at the top panel level of the 

framework can be determined from the following formula: 

A=H. sin(aa) (7.1) 

where as is the actual measured rotation of the frame column and 

H is the total height of the two storey framework. 

The potentiometer operates from a laboratory DC power supply. 

A laboratory DC power supply type 430 and a digital multimeter type 

7145 were used for the calibration of the potentiometer. The latter 

was connected to the multimeter to read off directly the output 

electrical signals. The calibration graphs are. shown in Fig. (7.2). 

It is seen from these graphs that the output signals from the 

potentiometer have not been altered linearly in a range of rotations 

less than 35 degrees. For this reason the potentiometer was set 

up to read angles greater than 35 degrees, where the calibration 

graphs shows that the output signals have been altered linearly after 

this limit of degrees. According to this, the true rotation of the 

column of the frame was calculated by the following equation: 

a=a_a ao 

where 

as is the actual rotation of the column, 

ao is the initial reading angle by the potentiometer at the 

(7.2) 

vertical position of the frame, 

a is the measured angle by the potentiometer after deformation. 
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It is seen also from Fig. (7.2) that the sensitivity of the 

potentiometer, in the linear range, is equal to the slope of each 

straight line divided by the supply volts and is equal to 2.601 my/degree/ 

volt, approximately. 

7.4.3 Recording Instruments 

The signals from the instruments described in section 7.4.2 

were recorded using a tape recorder. After a test these were then 

transferred through a digitiser to an Apple IIe micro computer for 

further processing. 

7.4.3.1 Recording and Conversion of Data for Computer Analysis 

The instrumentation used is shown in block diagram form in 

Fig. (7.3). 

signal 
r-" 

tape 
recorder 

micro 
computer 

Fig. (7.3) : Instrumentation used to prepare data for 
digital computer analysis 

The tape recorder used was a "Store 4" manufactured by RACAL 

RECORDERS LTD. The basic tape recorder has four channels. Channel No 4 

may be used to record voice ammouncements using the attached 

microphone. The tape speeds can be varied from 15/16 to 60 inches/ 

second (2.38 to 152.4 cm/sec). The tape speed 7z inches per seconds 
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was used for recording and replaying during the tests. The 

instrument was set up according to the procedures recommended by the 

manufacturer. The purpose of the tape recorder was to record the 

analogue signals prior to digitisation. This was necessary because 

the experimental model and the digitising computer were situated 

in different locations. 

An Apple IIe micro-computer was used to digitise the records. 

The computer comprises a central core of 64K words, two disc drive 

units, and AI13 analogue input system. The AI13 analogue input 

system is a high performance 12-bit acquisition system for the 

Apple II micro-computer. 

7.5 Experimental Procedure 

Details of the experimental technique employed and the actual 

test procedure will be discussed in this section. 

The series of tests, which were classified in Table (4.4) were 

carried out. Before each test the model was adjusted to a vertical 

position and held in this position. The curvature and the initial 

rise for each bent bracing member was adjusted exactly and then the 

bracings were connected to the model as shown in Plate (7.1). The 

ends of each bracing member were checked for a tight fit at the 

hinged joints. The Accelerometers and potentiometer were attached 

to the model as shown in Plate (7.2). Next, the electrical circuits 

were connected. 

The first step in loading was to apply a horizontal load only 

which was proportional to the equivalent mass of the structure. This 



253 

means that at any step of loading the vertical load including the 

self weight of the structure was in the same ratio to the horizontal 

load. The structure was allowed to sway before applying the first 

increment of vertical load, i. e. under the self weight of the model 

and the corresponding horizontal load. Since the self weight of the 

structure is less than the critical load "Pcr1" (i. e the load at the 

onset of the transient instability region) and the structure was 

released from the rest in the state a=0 which of course is not a 

static equilibrium state of the loaded system, then the structure 

experienced a small vibration about its stable equilibrium position. 

However the structure did not "pass" into its unstable state. Now, 

for a specified value of ratio "R=40" a small increment of horizontal 

load "dW=0.04 kg" was applied and then the corresponding vertical 

load, pre-weighted sand bags (AP=1.6 kg) , were also applied carefully 

by hand to avoid any disturbances and. to minimise the adverse effects. 

The increments in vertical load were applied symmetrically with 

respect to the centre line of the two frame model. After each load 

increment the structure experienced a small vibration and took up 

a new static position. 

Depending on the degree of deflection the load increments were 

decreased as the transient instability condition was approached. 

The last load increment was when the structure was observed to 

sway dynamically. At this stage the applied vertical load was 

very close to the static buckling load "Pcr1" ' and the system 

moved "past" its unstable region and experienced very large 

vibrations. It could then be said that the system had buckled 

dynamically. 
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Finally, the series of tests were then repeated for all 

combinations of bracing systems shown in Table (4.4). 

7.6 Evaluation of Test Results 

The following procedure was developed for digitising the 

analogue records. 

A basic apple. programme was written for digitisation. This pro- 

gramme "interacts with the A. 113 analogue input system which necessitates 

the use of the machine language programme. 

The digitisation is carried out by the computer when a signal 

is received by the AI13 analogue system. Four input channels are 

sampled. This operation is repeated until the required amount of 

data has been recorded onto a disc for temporary storage. The data, 

thereafter, has to be retrieved from the temporary storage disc 

and converted to the correct values. 

The choice of sampling interval-at is important in any digital 

analysis. If the interval chosen is too small, the sampled data will 

be highly correlated and will cover only a small portion of the 

record. Alternatively if the sampling interval is too large, important 

events may be missed. The time increment at was chosen as 7.54 

milliseconds, 384 numbers were sampled from each channel record and 

were used as the data for time series. The time interval with 

which one set of reading was digitised. was calculated by the 

following formula : 

ot = 210.0 + 30.0 x DP clockcycle (7.2) 
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Where DP is the delay parameter, 

1 clockcycle = 0.9779 microseconds 
(123) 

0 

Use of 1 for the delay parameter was justified meaning that 

At = 0.235 milliseconds which was very short for one set of readings 

to be recorded. A delay parameter of 250 means a time increment 

of about 7.54 milliseconds would be needed to record one set of 

readings. This means thata time of about 1 second would be 

required to record simultaneously 132 digitised reading approximately, 

from the response of the four channels. Actually a total time of 

about 3 seconds was needed to represent the actual behaviour of the 

structure. 

The results obtained are shown in Figs. (7.4) - (7.13). It can 

be seen that the variation of displacement, at the beginning of each 

test, is small corresponding to the time variation. This means that, 

the structure was oscillating about its stable equilibrium position 

due to the increments in the loading system. The value of displacement 

in this range is less than the displacement at the onset of the 

transient instability region (i. e. the onset of the dynamic 

behaviour). 

Also, it can be seen that the peak of the acceleration occurs 

at a displacement greater than the end of the transient instability 

region. This means that the structure moved "past" its stable equilibrium 

at the ehd of the region of transient instability. 
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Plate (7.1) : Experimental Model for Dynamic 
Experiment 
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Plate (7.2) : Arrangement of Experiment 
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Key to Plate (7.3) 

A- potentiometer 

B- bearing shaft of the hinged base 

C- bearing plate 

D- frame column 
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Fig. ( 7 -1) : Schematic Diagram of Experiment 
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CHAPTER EIGHT 
COMPARISON OF THEORETICAL AND EXPERIMENTAL 

DYNAMIC RESULTS 

8.1 Introduction 

In order to provide a comparison between theoretical and 

experimental dynamic results, the single bay two storey frame model 

was analysed by t. he methods of theoretical dynamic analyses, 

previously described in Chpater six, section 6.3 . The theoretical 

dynamic responses of the frame structure were computed by assuming 

that the structure was initially at rest at the start of the instability 

and that dynamic behaviour was initiated by the application of a 

small constant horizontal force of 20 grams. 

8.2 Comparison of Theoretical Results Obtained by Constant 

Time Interval and Constant Displacement Interval Methods 

The free undamped dynamic response obtained by the constant 

displacement interval method is compared with that from the constant 

time interval method in the Figs. (8.1) and (8.2). The combinations 

of the bracing system used for the comparison are given in the figures. 

The characteristic of the compression bracing is assumed ineffective 

after the plastic limit of the member. 

Figures (8.1) and (8.2) show more convincingly the remarkable 

accuracy of the constant displacement interval method by comparing 

the acceleration and displacement computed at different times. 

The agreement between the two sets of results is so close that the 

minute discrepandies are indiscernible on the curves plotted. The 

results by the constant displacement interval are lower than the 
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results by the constant time interval as shown in Table (8.1). The 

discrepancies appear to reflect the effect of the value of the 

interval used in each method. The results of the constant time 

interval method were obtained with a constant time interval 

representation equal to 0.0025 second, while the results of the 

constant displacement interval method were obtained from a constant 

displacement interval representation of 0.25 mm. - 

If required, more and more accurate results may be obtained by 

using smaller intervals of refinement in the solutions,. at the 

expense of greater computational effort. However, the computational 

time effort of each method varies according to the value of the 

corresponding interval. 

Table (8.1) : Comparison between Constant Time Interval and 

Constant Displacement Interval Methods 

Comparison of: 
Constant time interval Constant displacement 

method interval method 

Time (sec) 1.81321 1.81260 

Peak value of disp. 132.13.382 132.1038 
(mm) 

Peak value of 2 -17743.74820 Acceleration (mm/sec ) -17500.3373 

8.3 Comparison of Experimental and Theoretical Results 

The dynamic tests were carried out with the five combinations of 

bracings shown in Table (4.4). 
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The free undamped theoretical resultsp for each combination of 

bracing, were calculated and compared with the corresponding 

experimental results. A. set of results are shown in the Figs. (8.3) 

and (8.4). The combination of the bracings used for the comparison 

is given in the figures. The theoretical results were calculated 

twice. In the first, the two storey framework was assumed to be 

restrained by fully elastic curved bracings (the response according 

to this case is represented by the blue curves)q while in the 

second the characteristics of compression bracings were assumed 

ineffective in the regions after the plastic limits of these 

bracings (the response according to this assumption is represented by 

the black curves). The experimental dynamic response, for the 

combination shown in the figures, is represented by the red curves. 

It is seen from Fig. (8-3) that the peak value of the theoretical 

acceleration of the framework restrained by fully elastic bracings 

(blue curves) is much lower than the corresponding experimental- 

accelerationg also the time base at the peak values is different. 

Wtji-je the theoretical resultataking account of'plasticity in the 

compression bracingslare in good agreement with the experimental results. 

In Fig. (8.4), the free undamped theoretical results show that 

the displacement of the structure returns to the initial position, 

i. e. to the onset of transient instability, while the experimental 

response shows that the structure is obviously oscillating about the 

static equilibrium point at the end of the transient instability. 

This discrepancy between the theoretical and experimental responses 

could be due to the effect of damping. Therefore the free damped 

vibration results were recalculated, to take account of damping. 
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The damping ratio "Cd" used in the calculation . was, calculated from 

the experimental dynamic results. The following approximation was 

used to calculate the damping ratio "Cd" 

Cd = Ln( 
QQl)/(2'n) 

2 

in which Q1 is the amplitude of motion at the beginning of a cycle, 

and Q2 is the amplitude at the end of the cycle. 

The damping ratio "Cd" varied from 8ö to 17% for the different 

combinations of bracings. A value of 10% was used for calculating 

the theoretical free damped vibration for all combinations of 

bracings. 

In the theoretical dynamic analysis, the characteristics of the 

compression bracings were assumed ineffective after the region of 

plastic limit of each member, where the compression bracings have 

already failed by buckling in the region of transient instability, as 

explained previously in Chapter five. 

The theoretical free damped vibration results were compared with 

the experimental dynamic results as shown in the Figs. (8.5) to (8.14).. 

It can be seen from the Figs. (8.5) - (8.14) that reasonable 

good agreement is generally obtained between the theoretical and 

experimental results for all combinations of bracings. It is seen also 

from the figures that the theoretical time response of the structure 

up to the first peak values, for acceleration and displacement, are 

generally in good agreement with the experimental time response. 
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The experimental dynamic response was assumed to start when the 

lateral displacement was equal to the experimental static displacement 

at the beginning of the transient instability region. 

8.3.1 Comparison of Dynamic Displacements 

The experimental displacement at the beginning of each test, 

i. e. at zero time, is lower than the theoretical displacement. This 

means that the actual stiffnesses of the bracing system are less 

than the theoretical stiffnesses, and this reflects, again, the 

effect of the partial plasticity of the compression members. 

The theoretical lateral displacement at the maximum peak, for 

all combinations of bracing setsp (i. e. when the frame starts to 

reverse the direction of the first travel) are in very good agreement 

with the corresponding experimental peaks, as shown in the displacement 

diagrams. 

The experimental displacements in the region between the beginning 

and the first peak of each combination Of bracing are slightly 

higher than the theoretical results. This indicates the possible 

stiffening effect of the compression bracing in the partially plastic 

region, which has been considered as fully elastic stiffening in the 

theoretical analysis. 

It is seen also, from the displacement of experimental and 

theoretical curves that, the structure is obviously oscillating about 

the static equilibrium point at the end of the transient instability 

region. Howeverp the experimental amplitude of displacement decays 

more rapidly than the theoretical result. The value of the damping 

factor " Cd" could be more significant in this case. 
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Generally the experimental displacement values agree reasonable 

well with the theoretical results. 

8.3.2 Comparison of Accelerations 

The experimental results for the absolute maximum values of 

acceleration, for all combinations of bracing setsp generally agree 

well with the theoretical results, with discrepancies, in the 

maximum accelerations varying from -1l, r'O to +11%. The positive 

discrepancies are associated with the results measured for the right 

frame in the model, for which, the experimental acceleration at the 

top of this frame is higher than the theoretical results as shown 

in the Figs. (8-7), (8.9) and (8.11). The experimental maximum 

peak of accelerationsp in tests 1 and 5, Figs. (8.5) and (8.13) are 

11% lower than the maximum theoretical peaks, and this discrepancy 

is associated with the accelerations measured at the top of the 

left frame in the model. 

In order to find an explanation for the apparent discrepancy, 

the accelerations, at the top of the left and right frames in the 

experimental model, were measured for the third combination of 

bracing sets. A comparison between the obtained results and the 

theoretical results is shown in Fig. (8.9). It is observed that 

the curve representing the measured acceleration at the top of the 

left frame (the green curve) is a constant shift up the curve 

representing the measured values at the top of the right frame (the 

red curve). It can also be observed, from the figure, that the 

maximum theoretical peak of acceleration is approximately 11, 'FO lower 

than the experimental peak for the right frame (the red curve) and 
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11, *Fo higher than the experimental peak of the acceleration at the 

top of the left frame (the green curve). To discuss the reason 

for this discrepancy in the results it is important to point out 

that it is not particularly easy to make a good estimation of 

a dead load of a model structure. This is because setting out -and 

construction are often not precise, and occupancy loads are 

uncertain. For this reason a small difference between the estimation 

of the actual masses of the two frames in the model is likely to be 

a source of error between the two measured accelerations of the 

model. Also the effects of various experimental errors may be a 

second source of discrepancy in the test results, as shown in the 

discussion of the results, section 8.5 . 

A summary of the theoretical and experimental results is given 

in Table (8.2). 

8.4 Effect of Initial Rise "Ao" of the Bracings on the Dynamic 

Behaviour of the Framework 

The numerical results presented in Table (8-2) indicate that, 

with constant values of the initial rises of the tension bracings, 

an increase in the initial rise of the compression bracing has the 

effect of decreasing the maximum lateral displacement and therefore 

decreasing the absolute maximum acceleration. Also, the results 

in the table indicate that, with constant values of the initial 

rises of compression bracings, an increase in the initial rise of the 

tension bracing has the effect of increasing the maximum displacement 

and hence increasing the absolute maximum acceleration. This trend 

of results is consistant with that obtained from the static results, 

chapter five, section 5.7, 
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8.5 . 
Discussion of The Results 

In comparing the results obtained by theoretical analysis and 

model tests it must be appreciated that the degree of correspondence 

obtained is influenced by errors which are present in both sets 

of results. Good correspondence between theoretical and 

experimental results does not necessarily mean that the theory 

is accurate and the experimental technique is soundp unless both 

sets of results are accurate, since good correspondence can also 

be obtained between two erroneous sets of results when errors are 

of similar sense and order. Poor correspondence an the other 

hand, may be due to deficiencies in the experiments and not due to 

any inaccuracy of the theory. It is important to be able to identify 

all possible sources of errors which may be present in both 

theoretical and experimental investigations and be able to assess 

their sense and relative importance if the results are to be 

correctly interpreted. 

8.5.1 Experimental Error Discussion 

Errors arise in any experimental investigation due to 

unavoidable deficiencies in the test equipment. Some of these 

errors may be minimised with a rigorous test procedure when their 

cause and effects are understood, but some others remain undetermined. 

The electrical instruments such as the accelerometer and 

potentiometer are precision scientific equipment, and provided they 

are in good working order, errors in acceleration and displacement 

will be very small. However through regular use and occasional 

manhandling, defects can develop in the potentiometer equipmentv which 



274 

may affect its precision. One possible defect which is seldom 

recognized is due to the mechanical link of the potentiometer wiper 

drifting out of correct adjustment for the calibration control. 

This defect which was detected in the potentiometer indicator in 

regular use resulted in errors in the displacement readings. But 

since the potentiometer indicator used in the tests had been 

specifically checked to ensure that the calibration control was 

correctly set, this source of error can be discounted. 

The model was of simple construction with very accurate parts 

and joints, and could be fabricated to a high standard of finish. 

Nevertheless, dimensional inaccuracy due to the inherent cross 

sectional variation of the main elements of the frame in addition 

to the manhandling variation of the circular shape of the curved 

bracing members and the inherent thickness variation of the 

bracing members could still be a source of error which could influence 

the degree of correspondence between theoretical and experimental 

results. 

Unsymmetric application of the load with respect to the centre 

line, of the two frame model, will affect the accuracy of the test 

results due to unsymmetrical bending. However, in all the tests, 

fairly symmetric horizontal loading and vertical load located over 

the top wooden plate were achieved, as indicated in Plates (7.1) 

and (7.2). The vertical load, due to the self weight of the two 

frame model, may be subjected to slight lack of symmetry in 

distribution. Therefore errors due to small unsymmetric loading may 

affect the accuracy of test results. Errors from this source should 

be small because all precautions were taken into account during the 

application of the vertical loads. 
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8.5.2 Theoretical Error Discussion 

Inaccuracies associated with the theoretical analysis arise in 

the modelling and discretisation processes. In idealising the frame 

model as restrained by non-linear restraints, the characteristic 

of the compression bracing in the partial plastic region is assumed 

to be as in a full elastic region. This would result in calculated 

frame deflections and accelerations being underestimated to a certain 

extentv but this would depend on the initial. rise of the compression 

bracingv therefore the theoretical dynamic response at points close 

to the onset of the transient instability region. will, to a certain 

extent, be underestimated. 

The discretisation of the continuum into a finite number of 

elements, in the theoretical analyses, introduces errors of convergence 

into the numerical results. The nature of these errors depends not 

only on the interval division but also on the type of problem being 

solved and on the element characteristics. These errors should be 

quite small at most points of the analyses except at points close 

to the end of the first travel, i. e. at the first peak valuesp where 

the characteristic curve of the system is very sensitive to a small 

change in the interval, and the errors in the theoretical 

accelerationsy at these points, are dependent on the difference between 

the true and the calculated characteristics of the system. 
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9.1 

CHAPTER NINE 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

Description of The Research 

The influence of imperfections in the initial geometry of 

bracing systems of frame structures in a variety of tall building 

systems is frequently disregarded, or at best approximated by rule 

of thumb methods, in the lateral load analysis due to lack of 

understanding of the behaviour of these types of structures. The 

work described in this thesis not only helps the designer achieve 

a better understanding of the behaviour of these types of frameworks, 

restrained by curved bracing systems, but also allows him to use 

the relatively simple existing techniques to analyse the complicated 

non-linear frame structural elements. 

The buckling and dynamic behaviour of structural systems that 

have imperfections in the initial geometry of bracing elementst under 

static loading have been studied., The characteristics of individual 

curved members have been determined using the theory of large 

deformations. The theory of elastic buckling stability, of frame 

system, has been illustrated using the tangent slope and influence 

coefficient techniques. Stable equilibrium, of this type of 

structural system, is possible for loads both above and below the 

critical load IT 
crl"I 

those above the critical load being stable 

after the structure "snaps through" to a new stable equilibrium. 

The dynamic behaviour of the structure in the "snap through" 

region or in the "transient instability" region has been investigated 

using constant time and constant displacement interval techniques. 
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The general accuracy of all these techniques has been substantiated 

by experimental tests on a small scale single columnq restrained by 

curved member or members, and two storey frame work modelsp and by 

comparison of the results of the individual curved members, with 

other investigations as described in Chapter five. 

9.2 Characteristics of Individual Curved Bracinqs 

The relationships between ý. members stiffnesses and axial 

deformations were established for axial or eccentric forces, various 

lengths, and initial bowing. From the obtained results, for the 

individual curved members, the following are concluded: 

1) The stiffness of the curved struts decreases as the axial 

displacement increases. 

2) The stiffness of the curved ties increases as the axial 

displacement increases. 

3) Swannell's solution is a very good representation of stiffness- 

displacement behaviour, when the ratio AA is less than 
00 

5.10, but at greater ratios the error increases rapidly. 

4) The'experimental behaviour of the individually curved 

struts indicates that the partially plastic behaviour is 

reached particularly early when the strut is relatively 

short. Conversely this behaviour is delayed when the strut 

is exceptionally long. Thereforev the actual behaviour 

of the strut, when the material reaches this condition, 

is less stiff than it would have been had it remained 

elasticp consequently displacements are greater than would 

be expected from the theoretical results. 
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9.3 

5) The experimental results concerning the characteristics of 

individual members agree very well with the theoretical 

results using the theory of large deformations. 

General Behaviour of Braced Framework Stiffened by Curved 

Bracing System 

The general behaviour of the structural framework restrained by a 

curved bracing system under a combined load system "P & W", has 

been discussed and can be summarized as follows: 

If the combined load 11P&W11 is applied to the structure gradually 

from zero, the structure will be stable under the action 

of the given loads at a point where the lateral displacement 

"All is less than the critical displacement "A 1 11, 

2) If the system of applied load 11P&W11 is then increased the 

displacement "a" will increase until a limit defined by 
JP 

=0 or 
A=0 

and A=& is reached. The value of the dA d, & 1 

vertical load corresponding to this limit condition provides 

the first instability critical load IT 
crl" , with corresponding 

critical displacement equal to A1* 

A small increase in the load system at this limit will lead 

to a sudden change in the deflection "All until a new 

equilibrium position is reached, at a point where A=A 2' 
The dynamic effects are very important in this case. The 

stage between a1 and A2 represents the region of unstable 

equilibrium or the "transient instability" region. 

4) Further increase in the applied load system "P&W" increases 

the lateral displacement "All and the structure will be 
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in stable equilibrium. 

5) Transient instability is particularly dependent on the 

ratio R= P/W. If this ratio is high then transient 

instability is more likely to occur. 

9.3.1 Estimating the Efficiency of the Tangent Slope Method 

The tangent slope and the influence coefficient techniques have 

been employed to define the limiting conditions of the transient 

instability regiono to calculate the critical load IIP 
cri 

11 and the 

corresponding critical displacement ", & 1 11 at the onset of this 

region , and also to determine the lateral displacement 11,01 corresponding 

to any applied load system IIPWI. 

The tangent slope technique yields results of comparable 

accuracy to those given by the influence coefficient techniquel and has 

distinct computational advantages. The influence coefficient 

technique, on the other hand, is extremely versatile. 

The experimental results concerning the general behaviour of this 

type of structures agree very well with the expected theoretical 

results calculated by the tangent slope technique. 

9.3.2 Influence of Initial Rise IIAO" of the Combined Bracing System 

It has been shown that some imperfections such as the initial 

curvature of bracing members and the Out-of-plumb erection of tall 

building frames stiffened by vertical trusses cannot be neglected. 

A critical state has been defined by considering the combination Of 
those imperfections. The critical load causing this critical state 
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has been determined. The effect of the initial rise of the tension 

bracings magnifies the range of the transient instability region 

which causes a reduction in the critical load. The effect of the 

initial rise of the compression bracings, also, magnifies the range 

of the transient instability region and reduces the value of the 

critical load. Experiments verified this transient instability 

region and the influence of the imperfections. The presence of 

major imperfections in the tension bracings and minor imperfections 

in the compression bracings of the system have an appreciable effect 

on the critical load. 

9.4 Dynamic Behaviour of Braced Framework Stiffened By Curved 

Bracing System 

The dynamic analysis of the structural framework stiffened by a 

curved bracing system has been discussed. The dynamic behaviour 

started where a critical state (transient instability region) had 

been defined by considering the combination of the initial imperfections. 

, The dynamic behaviour of this structural system has been illustrated 

using constant time interval and constant displacement interval 

techniques. 

The numerical constant displacement procedure is simpler than some 

existing procedures and is found to be more accurate. This numerical 

method of dynamic analysis is applicable to any undampedp damped, 

free and forced vibration of structural frameworks. The dynamic 

response of non-linear frameworks can also be obtained. The constant 

displacement interval technique has been shown to be an efficient 

method for evaluation of the dynamic response of a frame structure 

restrained by a non-linear bracing system-Sufficiently accurate results 
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can be obtained by the method using a small interval of displacement. 

The accuracy of the results have been confirmed by comparing them 

with accurate constant time interval results and with available 

experimental results. 

The effect of the inelastic material of the compression members 

on the dynamic behaviour magnifies the range of the transient 

instability region which causes a further magnification of the 

dynamic response. 

9.4.1 Influence of Initial Rise "A 11 of the Bracing on the Dynamic 

Response 

The dynamic behaviour of the framework restrained by curved 

bracing system allows the structure to sway freely through the 

transient instability region. The response of the structure started 

at the onset of this region and continued to pass the end of this 

instability region. The structure was obviously oscillating about 

the static equilibrium point at the end of instability region. The 
A 

dynamic response of the structure in this critical state has been 

determinedv for different combinations of bracing system. The. 

effect of decreasing the initial rise of the compression bracings 

magnifies the range of the dynamic response, as does an increase in 

the initial rise of the tension bracing. Accordingly the dynamic 

response, of minor imperfections in the compression bracings and 

major imperfections in the tension bracings, has a relatively 

important influence on the overall buckling behaviour of the system. 
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9.5 Suggestions for Future Work 

In connection with the problems examined, a number of 

related topics of practical interest deserve examination in future 

studies. 

In system construction of braced frame structures, the columns 

and the beams are usually connected by rigid joints which have to 

serve the primary function of transmitting shear forces between the 

components. The detailing of the joints is often such that the 

moment connection between the beams and the columns can be achieved. 

The effects of joints rigidity on the braced frame behaviour need 

to be examined. 

The study oný-the restrained frame structures by curved bracings 

has considered only the deformation in the curved bracings. 

Bending and tortional deformations of the structure due to non- 

uniform lateral loading or structural asymmetry produce deflection 

and warping in the columns and beams of the framework. Since the 

bending and the warping stiffnesses of the columns and the beams 

provide certain amounts of restraint against the bending and 

torsional deformations of the framework it is desirable to examine 

the bending and the warping action of the columns and the beams 

of the framework, and assess its contribution to the overall behaviour 

, of the structure. 

The present work has been concerned purly with non-linear 

elastic analysis for curved bracings for multistorey frameworks. 

Effects of plastic yielding of the main elements of the-framework 

and bracings are known to produce a non linear structural response 
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and redistribution of the action in the bracings. The need for 

extending the present study to the investigation of non-linear elasto- 

plastic behaviour, of steel structures with non-linear restraintst 

is apparent. 
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