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Abstract

Abstract

The growth in the number of surveillance cameras deployed and the progress in

digital technologies in recent years have steered the video surveillance market

towards the usage of computer systems to automatically analyse video feeds in a

collaborative and distributive fashion. The semantic analysis and interpretation

of video surveillance data through signal and image processing techniques is called

Video Analytics (VA). In this thesis new video analytics methods are presented

that are shown to be effective and efficient when compared to existing methods.

A novel adaptive template matching algorithm for robust target tracking

based on a modified Sum of Absolute Differences (SAD) called Sum of Weighted

Absolute Differences (SWAD) is developed. A Gaussian weighting kernel is em-

ployed to reduce the effects of partial occlusion, while the target template is

updated using an Infinite Impulse Response (IIR) filter. Experimental results

demonstrate that the SWAD-based tracker outperforms conventional SAD in

terms of efficiency and accuracy, and its performance is comparable to more com-

plex trackers. Moreover, a novel technique for complete occlusion handling in

the context of such a SWAD-based tracker is presented that is shown to preserve

the template and recover the target after complete occlusion. A DSP embedded

implementation of the SWAD-based tracker is then described, showing that such

an algorithm is ideal for real-time implementations on devices with low compu-

tational capabilities, as in the case of fixed-point embedded DSP platforms.

When colour is selected as target feature to track, the mean shift (MS) tracker

can be used. Although it has been shown to be fast, effective and robust in many

scenarios, it fails in case of severe and complete occlusion or fast moving targets.

A new improved MS tracker is presented which incorporates a failure recovery

strategy. The improved MS is simple and fast, and experimental results show that

it can effectively recover a target after complete occlusion or loss, to successfully

track target in complex scenarios, such as crowd scenes.

Although many methods have been proposed in the literature to detect aban-

doned and removed objects, they are not really designed to be able to trigger
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alerts within a time interval defined by the user. It is actually the background

model updating procedure that dictates when the alerts are triggered. A novel

algorithm for abandoned and removed object detection in real-time is presented.

A detection time can be directly specified and the background is “healed” only

after a new event has been detected. Moreover the actual detection time and the

background model updating rate are computed in an adaptive way with respect

to the algorithm frame processing rate, so that even on different machines the

detection time is generally the same. This is in contrast with other algorithms,

where either the frame rate or the background updating rate is considered to be

fixed. The algorithm is employed in the context of a reactive smart surveillance

system, which notifies the occurrence of events of interest to registered users,

within seconds, through SMS alerts.

In the context of multi-camera systems, spatio-temporal information extracted

from a set of semantically clustered cameras can be fused together and exploited,

to achieve a better understanding of the environment surrounding the cameras

and monitor areas wider than a single camera FOV. A highly flexible decen-

tralised system software architecture is presented, for decentralised multi-view

target tracking, where synchronisation constraints among processes can be re-

laxed. The improved MS tracker is extended to a collaborative multi-camera en-

vironment, wherein algorithm parameters are set automatically in separate views,

upon colour characteristics of the target. Such a decentralised multi-camera track-

ing system does not rely on camera positional information to initialise the trackers

or handle camera hand-off events. Tracking in separate camera views is performed

solely on the visible characteristics of the target, reducing the system setup phase

to the minimum. Such a system can automatically select from a set of views, the

one that gives the best visualisation of the target. Moreover, camera overlapping

information can be exploited to overcome target occlusion.
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Ch.1 Introduction

Chapter 1

Introduction

Video surveillance refers to the monitoring through video cameras of an area of

interest. As this video data is usually streamed over small private video net-

works for local access, video surveillance systems are sometimes referred to as

Closed Circuit Television (CCTV). The semantic analysis of video surveillance

data through signal and image processing techniques on computer systems is

called Video Analytics (VA) [2–5]. In this thesis new video analytics methods are

presented that are shown to be effective and efficient when compared to existing

methods.

In recent years the number of CCTV cameras deployed has grown exponen-

tially and so the very large number of surveillance devices in place raises a serious

challenge on how to analyse quickly and effectively such an enormous amount of

raw video data. In traditional surveillance systems a human operator constantly

looks at the surveillance monitors to spot events of interest. The drawbacks of

this approach are obvious, as persons can get easily distracted and so important

events can go undetected [6]. Moreover employing more surveillance personnel

is expensive, when compared to the fixed costs of the system hardware and soft-

ware. For this reason the video surveillance market is moving towards the usage of

computer systems to automatically analyse video feeds in a collaborative and dis-

tributive fashion. Therefore video analytics is becoming more and more popular

in video surveillance, to help improve both efficiency and effectiveness.

1.1 Research motivation

Visual tracking is the process of inferring information between detections of a

selected target in consecutive frames, and it is an important task in many video

processing systems. Many algorithms with medium-high complexity have been
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proposed in the literature, as reported in [1]. The Sum of Absolute Differences

is a well-known metric and for its simplicity it is often used in video coding and

stereo imaging. However it is not very common in tracking applications, as its

performance can be compromised by partial occlusion and target changes. In

adaptive template tracking algorithms the risk is to include portions of back-

ground or occluding objects in the target model during the updating step. In

the long run, the target template becomes corrupt and the tracker may lose the

correct target in favour of an incorrect one, which has a higher match with the

corrupt template.

Colour is a strong cue in visual systems and it is invariant to scaling and

rotation. The mean shift (MS) tracker [7–11] is a very commonly used colour

tracking algorithm. However its weakness is in the assumption of overlapping

between tracking detections in consecutive frames. In case of fast moving targets

and complete occlusion, such a condition does not hold and, as the MS cannot

detect occlusion or fast target loss, the tracker may start following an incorrect

target and so it fails.

In video analytics event detection refers to the task of recognising when situ-

ations of interest take place. Abandoned and removed object event detection is

a typical example and generally it is performed by adopting a background sub-

traction approach [12, 13]. However the methods proposed in the literature are

not usually designed to be able to trigger alerts within a time interval defined by

the user, after new abandoned and removed object events have occurred. On the

contrary, alerts are indirectly triggered by background updates. Moreover such

algorithms require manual tuning of their parameters.

To monitor areas larger than a single camera field of view (FOV), a multi-

camera system can be deployed. The spatio-temporal information extracted from

multiple cameras can then be collated. However, it is not straightforward to ex-

tend single camera tracking algorithms to a multi-camera setup, due to issues,

for example, time synchronisation constraints among processes and accurate cal-

ibration of camera positions within a common 3D coordinate system.

1.2 Summary of original contributions

The main research contributions of this thesis are described below.

1. The first contribution is represented by a novel adaptive template match-

ing algorithm for robust target tracking, based on a novel Sum of Weighted

Absolute Differences (SWAD), which uses a Gaussian kernel to reduce the
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effects of partial occlusion. Furthermore a novel complete occlusion han-

dling technique for the SWAD-based tracker is presented. Such a technique

can detect when occlusion is taking place and it updates parts of the target

template at different rates, to preserve its overall structure (Chapter 4).

2. The second contribution is represented by a novel improved mean shift

tracker with failure detection and recovery strategy. This algorithm is able

to detect when the target is lost, possibly due to fast motion or complete

occlusion, and it can automatically recover it. The improved MS is fast and

can effectively track a target in complex scenarios. (Chapter 5).

3. The third contribution is represented by a novel adaptive algorithm for

abandoned and removed object detection in real-time, where the detection

time can be directly specified and the background updating rate is a function

of it. In this context also a novel technique is presented, to distinguish

between abandoned and removed objects solely on the gradient direction

on the object contour, without any user-defined threshold (Chapter 6).

4. The last contribution is represented by a highly flexible distributed system

architecture, for decentralised multi-view target tracking, with relaxed syn-

chronisation constraints among processes. Such a system exploits a novel

extension of the single camera improved MS tracker presented in Chapter

5, to a multi-camera setup (Chapter 7).

1.3 Organisation of the thesis

The reminder of this thesis is organised as follows.

In Chapter 2 modern video surveillance and video analytics are introduced.

Some image and video processing techniques commonly used in VA systems are

then described. After that examples of VA tasks are given, with particular em-

phasis on abandoned and removed object detection, to put in context the novel

algorithm described in Chapter 6.

In Chapter 3, the visual tracking problem is analysed and two approaches

for target tracking proposed in the literature are described in detail, namely

template matching and mean shift tracker. These two methods are the starting

points for the two novel tracking algorithms presented respectively in Chapter 4

and Chapter 5.

In Chapter 4 the novel adaptive template matching algorithm based on SWAD

is presented. A complete occlusion handling technique is also presented for the
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SWAD-based tracker. Moreover a real-time DSP embedded implementation of

this tracker is described in the context of a smart surveillance system.

In Chapter 5 the novel improved MS tracker with fast failure recovery strategy

is presented.

In Chapter 6 the novel adaptive algorithm for abandoned and removed object

detection is presented. This algorithm is employed in the context of a reactive

smart surveillance system, which notifies the occurrence of events of interests to

registered users through SMS.

In Chapter 7 the highly flexible distributed system for decentralised multi-

view target tracking is presented. In this system the improved MS from Chapter

5 is used to track the target in single FOVs, while the SWAD-based tracker from

Chapter 4 is used to stabilise tracking detections between consecutive frames.

Overall conclusions for this thesis are reported in Chapter 8, along with sug-

gestions for possible future work.
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Chapter 2

Video surveillance and video

analytics

2.1 Introduction

Video surveillance is the monitoring of a confined area of interest through video

cameras. The acquired video feeds are streamed out to a set of monitors, so that

human operators can watch and analyse them in real-time. The video feeds are

also stored on one or more video recorders. Video surveillance systems are usually

referred to as Closed Circuit Television (CCTV) and their basic functionalities

are real-time viewing, recording and reviewing of recorded videos.

In the last few years, the number of CCTV cameras employed for surveillance

purposes has grown exponentially and market trend research indicates that the

surveillance market is still expanding [14, 15], with the UK being one of the

leading countries [16, 17]. Nowadays CCTV cameras are employed in the most

diverse scenarios, such as airports, stations, banks, schools, offices, retailer shops

and private premises. Nonetheless, as most of these devices are still analogue,

four major issues can affect CCTV usage and reduce its effectiveness:

1. Video quality: high quality analogue cameras are expensive; therefore the

usage of multiple medium/low quality cameras is preferred, to achieve a

good trade-off among video quality, system flexibility and costs. However,

important details such as people faces and car plate numbers may be not

recognisable, due to poor image quality [18].

2. Storage space: the amount of space required to store a 24 hour continuous

video stream from an analogue camera is prohibitive, so that analogue video
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streams are usually recorded at low frame rates (4-5 fps), to save storage

space.

3. System installation: each analogue camera requires a point-to-point con-

nection to the nearest control centre. This solution is not always feasible,

as in the case of large areas to cover or rigid structural constraints.

4. Human supervision: the very large number of CCTV cameras in place raises

serious challenges on how to analyse and use the enormous amount of raw

video data acquired through them. Traditional surveillance systems rely

on human operators, constantly looking at the surveillance monitors, to

analyse the video feeds in real-time. The drawbacks of this approach are

obvious, as constant human attention cannot be guaranteed [6, 19].

Such issues are slowly leading the market of surveillance products towards the

usage of digital systems [20]:

• IP cameras are digital CCTV cameras that rely on the Internet infrastruc-

ture, hence the name, as their video output is streamed over the network

and it is viewable remotely via a browser. Such cameras usually have high

resolution and can use various compression formats, such as MPEG, H.264

and MJPEG.

• Video Servers can acquire analogue video signals and make them available

in digital format over the network, so that old analogue video cameras can

be accessed as IP cameras.

• Network Video Recorders (NVR) can be operated remotely and can record

real-time video streams from a large number of IP cameras simultaneously.

These digital surveillance devices can be interconnected to create a complete

network of sensors. They offer clear advantages over their analogue counterparts,

for example:

• High video quality: digital cameras have resolutions in the order of megapix-

els, i.e. millions of pixels.

• Reduced memory requirements: digital videos can be compressed with ra-

tios of 10:1 and higher. Moreover, the cost of digital memory decreases

constantly.
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• Easy installation and high flexibility: IP cameras can be directly plugged

into any Ethernet network, avoiding cumbersome point-to-point connec-

tions. Moreover, with Power-on-Ethernet (PoE) technology, also power

supply cables are eliminated. IP cameras can also be connected to the

Internet via wireless extensions, for complete system flexibility.

Nonetheless, the most important advantage of using digital devices is the pos-

sibility to perform video content analysis on the surveillance feeds automatically

via software. This technology is called video analytics and is becoming more and

more popular in video surveillance systems, as it can help improve efficiency and

effectiveness of the most expensive element and yet the one most likely to fail,

i.e. human personnel [21].

In the rest of this chapter, video content analysis for video surveillance, i.e.

video analytics, is introduced in Section 2.2. In Section 2.3 some image and video

processing techniques widely used in video analytics algorithms are described.

Section 2.4 introduces some common video analytics tasks, while Section 2.5 de-

scribes in more details the abandoned and removed object detection task. Finally

Section 2.6 concludes the chapter.

2.2 Video analytics

Video content analysis is the semantic analysis and interpretation of video data

through signal and image processing techniques. It can be successfully applied to

many different contexts, such as health care, social sciences, industrial production

and sport, where the common characteristic is the partial or total absence of hu-

man operators in the video analysis process. For example, video content analysis

can be used in health care treatments to assess physical conditions of patients,

such as walking and limb movement, facial paralysis gradation [22], or detection

of falling in the elderly [23]. In sport, it can be used to automatically track players

[24–26]. In transport, it can be used to detect, and avoid, surrounding obstacles

[27].

In video surveillance, video analytics (VA) is used to automatically analyse

the surveillance feeds and detect situations and events of interest, or to highlight

relevant data and bring it to the attention of the surveillance personnel [2–5].

This second approach can significantly increase the efficiency of human operators

in real-time monitoring operations, as they can focus their attention on a reduced

set of cases. Their effectiveness can also be improved, as the number of events left

undetected decreases [28]. A video surveillance system can be defined as “smart”,
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or “intelligent”, when it is enhanced with VA algorithms, as they add intelligence

capabilities to the underlying passive CCTV infrastructure.

Historically surveillance systems have been divided into three generations

[3, 29]. The first generation mainly consisted of passive analogue CCTV systems

constantly monitored by human operators. The second generation of surveil-

lance systems included digital devices, and algorithms for detection and tracking.

These were developed to help the real-time monitoring of the surveillance feeds.

The third generation refers to distributed systems for automated surveillance of

wide areas, with a high number of cameras and sensors of different kind. Here the

challenge is to effectively, and coherently, fuse together large amounts of informa-

tion. In this context such distributed systems rely on a network of heterogeneous

surveillance sensors, including fixed and moving cameras [30–32]. The latter are

referred to as active cameras or PTZ, as they can pan, tilt and zoom upon com-

mand of a remote operator.

Video analytics algorithms can run on general purpose computers or on spe-

cialised hardware, such as Digital Signal Processors (DSPs), Field-Programmable

Gate Arrays (FPGAs) or Graphics Processing Units (GPUs), to achieve faster

processing [33–35]. When CCTV cameras are equipped with embedded pro-

cessing units, it is possible to process the acquired data on-board and discard

unimportant information. Such an approach is useful, especially in the case of

surveillance systems with a large number of sensors, as it can significantly reduce

the amount of data to transmit or store, and therefore save valuable memory,

bandwidth and time. Surveillance sensors enhanced with “in-camera” processing

are referred to as “smart sensors”.

2.3 Image and video processing for video ana-

lytics

At the core of a smart surveillance system there are video analytics algorithms

which process the incoming video feeds and perform VA tasks, for example object

detection and tracking. Usually a digital video stream is broken up into separate

images, called “frames”, which represent discrete instants in time. The number of

frames per second (fps) is the frame rate of the video stream, while the number of

frames processed per second for a VA task is the frame rate of the VA algorithm. A

frame acquired at time instant i, with i ∈ [0,+∞], can be seen as a 2-dimensional

discrete function Fi(x, y) with x ∈ [0, Nx − 1] and y ∈ [0, Ny − 1], or as a 2D

Nx-by-Ny matrix Fi. The point with coordinates (x, y) in function Fi(x, y), or
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similarly the element (x, y) in matrix Fi, is called a “pixel” and the product

Nx×Ny defines the resolution, i.e. the number of pixels, of the frame and of the

video at the same time.

Pixel values in a frame are usually integers in the range [0, 255], and are

therefore represented with 8 bits (1 byte), or floating point numbers in the range

[0, 1] with 32 bits (4 bytes). In digital devices, colour is represented as the mix-

ture of multiple colour components, as for example in RGB, YCbCr, HSV and

other colour representations [36, 37]. Therefore a colour frame is actually a 3-

dimensional function, or matrix, where the third dimension identifies a particular

colour plane depending on the colour representation chosen, and pixel values are

triplets in the range [0, 255] × [0, 255] × [0, 255], or [0, 1] × [0, 1] × [0, 1]. When

a frame has a single colour plane, i.e. it is a 2D discrete function, it is a grey

scale image. In a binary image pixels can assume only two values, either 0 and

1. Binary images are used to indicate where within a frame a given predicate is

“true” (1) or “false” (0).

Image and video processing operations are then performed on video frames

to extract relevant information [36, 38, 39]. Typical operations in video analytics

are: segmentation, filtering, feature extraction and matching. Many techniques

have been proposed in the literature to perform such operations and some of them

are reported in the following subsections.

2.3.1 Segmentation

Segmentation is the process of dividing an image into two of more groups of pixels,

which are referred to as regions, blobs or patches. For example segmentation

can be used to separate within a frame foreground moving objects from a static

background; or it can be used to extract regions with a characteristic colour, as

for example skin colour.

Thresholding

Given a grey scale image I, thresholding refers to the process of creating a binary

image M of the same size as I, and with pixel values being either 0 or 1, depending

on whether their corresponding pixels in I are smaller or greater than a certain

threshold ϑ, as in (2.1):

M(x, y) =

{
1, if I(x, y) ≥ ϑ

0, otherwise
(2.1)
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Although methods are available to automatically determine a value for ϑ [40], in

general in VA such a value is application dependant and thresholding is used in

combination with other techniques. Thresholding can be generalised to colour

images by thresholding each colour plane in an image separately.

Colour segmentation

Colour segmentation is based on thresholding and it uses a lower threshold ϑL

and an upper one ϑU . Pixels are selected depending on whether their values fall

in the interval [ϑL, ϑU ]. If I is a grey scale frame, a binary mask can be obtained

according to (2.2):

M(x, y) =

{
1, if I(x, y) > ϑL ∧ I(x, y) < ϑU

0, otherwise
(2.2)

If I is a colour frame, a 1D interval is defined for each colour plane and then

pixels are segmented depending on whether their values fall within such a multi-

dimensional interval.

Background subtraction

In situations where the background in a video is static or changes slowly, back-

ground subtraction can be used to segment new and moving objects in the scene

[12, 13]. If B is the background image and Fi is the ith frame, a difference image

D is computed as D = |Fi −B|. Where pixel values have not changed signifi-

cantly between B and Fi, D has low values; while for significant changes, pixel

values in D are high. Usually the difference image D is thresholded, to obtain a

binary mask of new objects in the scene.

Other segmentation techniques

Other segmentation techniques commonly used in video analytics are:

• clustering: the whole image is divided into contiguous regions, where pix-

els share a chosen characteristic, for example spatial or colour proximity.

Clustering techniques include: mean shift [7, 10], k-means [41], graph cuts

[42].

• image differencing: two consecutive frames Fi−1 and Fi are subtracted from

each other, to obtain a difference image D = |Fi − Fi−1|. As for background
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subtraction, image differencing is used to segment moving objects in the

scene [43].

• active contours: large closed contours are superimposed to an image and

shrunk iteratively, to adapt them to the underlying image structure [44]. A

separate contour is needed for each object to segment in the scene.

• optical flow: the motion of real objects in space can be represented with a

3D vector. In a video sequence, such 3D motion is projected on the image

plane and therefore it is associated with a 2D vector. The estimation of

these projected 2D motion vectors in the image is called optical flow field.

Such a vector field should have a high density, i.e. motion vectors should be

computed with pixel accuracy, and many techniques have been presented

in the literature to estimate the optical flow in video frames, as reported

in [45–47]. Moving objects with high magnitude motion flow can be easily

segmented from the rest of a static scene.

2.3.2 Feature extraction

Feature extraction refers to the process of computing characteristic properties of

an image. Such features can apply to single points, to groups of pixels or to the

whole image, and they provide means of comparison within the same image or

with other ones [37, 39].

Colour histogram

Colour histogram is probably the easiest and most common feature to compute. It

can apply to the entire image or to parts of it. In simple terms, a colour histogram

is a function and it associates to each value in the image colour range the number

of pixels within that value. For a grey scale image the colour histogram is a 1D

function, while it is multi-dimensional in the case of colour images. As a histogram

is discrete, it can be represented as a vector or a matrix, and its elements are

called “bins”. Moreover, the colour range can be quantised, so that each bin itself

refers to a range of values, rather than a single value [36].

Gradient and edge detection

When images are seen as 2D functions, it would be obvious to identify edges

with the discontinuity points arising from the transition between two different

colour regions. It is then possible to apply gradient operators in the form of
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templates of various size and aspect, such as Sobel, Prewitt and others [36, 38],

to detect intensity changes in such an image. Usually these operators are applied

separately in the horizontal and vertical directions. The output consists of two

images representing, at each location, the values of the gradient components Ix

and Iy for the pixel in the original image. Such information can be used to

describe local characteristics of a region in an image.

However, as digital images are discrete functions, discontinuities are present

between any two pixels which do not have exactly the same intensity values. As

a consequence, edge detection in a digital image usually includes thresholding,

where only edges with strength, i.e. gradient magnitude, above a certain value

are considered to be “real edges”. The value of the threshold can be selected

manually or automatically. The Canny edge detector [48] uses a low threshold

and a high threshold on the gradient magnitude and orientation images, which

are computed with one of the aforementioned gradient operators.

Other feature extraction techniques

Other features commonly used in video analytics algorithms are:

• local binary patterns (LBPs) [49];

• corner detection [38, 50];

• histogram of oriented gradients (HOGs) [51];

• Haar features [52, 53];

• edgelets [54];

• optical flow [45–47].

2.3.3 Matching

Matching is the process of comparing two images or regions and assessing their

similarity. Usually one of them acts as a model or reference, while the other is a

candidate match for it. The most common techniques for matching are histogram

matching and template matching.

Histogram matching

In histogram matching, two histograms are compared and their degree of simi-

larity is evaluated. As suggested in literature, such comparison can be performed

using several different metrics:
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• histogram intersection [55]

• Bhattacharyya distance [9, 11]

• Euclidean distance [56]

• Manhattan distance [24]

The Manhattan distance is also referred to as Sum of Absolute Differences (SAD),

while the Euclidean distance is referred to as Sum of Squared Differences (SSD).

Both Manhattan and Euclidean distance are particular cases of the Minkowski

distance [57].

As it cannot be proved that a particular metric is better than all the others,

different researchers have experimentally shown in their work that each metric

gives better performance in the specific context where they have been used.

Template matching

In template matching the model is represented by a rectangular patch, which in-

cludes the actual appearance of the reference object. Matching is then performed

by convolving the template with an image and computing a chosen metric at

each step [36, 38]. Pixel values in the template are usually intensities and in gen-

eral template matching is used for motion estimation, target tracking and object

detection within an image.

2.3.4 Filtering and enhancement

As in the case of 1D signal filtering, in image filtering unwanted or unnecessary

characteristics of the input signal, i.e. the image, are removed. As the quality

of the output image after filtering is in some sense “better” than in the original

image, filtering is sometimes identified with image enhancement. Depending on

the noise being removed in the image, and on the information in it that one is

interested in, different image processing techniques for filtering and enhancement

can be applied [36, 38].

Convolution-based filtering

In general, image filtering is performed by convolving an image with a small

rectangular patch referred to as a “kernel”. Such operation is linear and the

shape of the kernel determines the type of filtering, i.e. low-pass, high-pass, and

so on [36, 38].
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For example, if the intensity values in the kernel are all the same, simple

averaging takes place. If the kernel has the shape of a 2D Gaussian function,

the filter smooths the original image, and the degree of smoothing is controlled

by the value of σ. Also template matching and edge detection are both based

on kernel convolution. Convolution-based filtering is also used to perform kernel

density estimation, as explained in [58].

Histogram equalisation

When pixel intensities in an image do not span over the whole available range,

but they are instead localised within a portion of it, it is possible to stretch the

colour histogram of the image, to make use of the entire range. Such a technique

is called histogram equalisation and it is used to enhance the contrast in images

that look “flat” [36, 38].

Morphology

In image processing, mathematical morphology refers to a set of non-linear ge-

ometrical transformations for image filtering [59]. Typical morphological opera-

tions are: erosion, dilation, opening (an erosion followed by a dilation) and closing

(a dilation followed by an erosion). Morphology is widely used in video analytics

to remove small noisy regions in an image and to fill gaps.

Gray World Assumption

The Gray World Assumption states that in natural images the pixel values in

each colour plane should average to a common grey value [60]. Therefore, by

rescaling the image intensities in each colour plane so that the three averages

are roughly the same, it is possible to eliminate possible colour distortion in the

image introduced by artificial light sources.

Median filter

A very common filtering technique is represented by the median filter, which is

non-linear but very useful in removing salt and pepper noise from images, while

preserving much of the original detail. For each point in the image, pixels from a

neighbourhood are selected and sorted based on their intensities; the value of the

reference pixel is then replaced in the output image with the value in the middle

of the sorted list of neighbouring intensities [36, 38].
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2.4 Video analytics tasks

In this section five video analytics tasks common to many VA systems are de-

scribed.

2.4.1 Object detection

Object detection is the process of locating a target object within an image and

isolating it from the rest of the scene. Such an operation is usually the first

processing step in a VA system [3]. Typical objects to detect are: people [51, 54,

61, 62]; faces [63–66]; abandoned objects [67–70]; cars [27, 71, 72]. A very large

variety of approaches have been proposed in the literature and two short surveys

about this topic can be found in [1, 3]. As a very coarse classification, object

detection methods can be divided into two categories:

• Segmentation-based: in these approaches segmentation is used to locate

and isolate the object from the rest of the image. No visual character-

istics of the object are taken into account, but regions within the frame

are selected depending on the structure and characteristics of the image

itself. Segmentation-based object detection methods include: background

subtraction [67–70], image differencing [43] and clustering [73].

• Feature-based: such methods assume that some visual characteristics of

the object to be detected are known. These features are then searched for

within the whole image and the object is deemed as detected if a set of

features in the image matches a known pattern to a certain agreed level

of confidence. In general these methods exhaustively search for features

within the whole frame and then machine learning techniques are used to

perform pattern recognition, if an exact match between object model and

features is not possible. Feature-based methods include: Haar-like features

[63], histogram of oriented gradients [51], local binary patterns [74], integral

histogram [75], template matching [76].

2.4.2 Tracking

Tracking is the detection and recognition of the same target object in consecutive

frames in a video feed [1, 37]. Such a task is central to any type of high level

analysis of videos, as for example action recognition and behaviour analysis. A

more detailed review of tracking methods in the literature is given in Chapter 3.
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2.4.3 Event detection

In event detection an alert is triggered when a particular event of interest takes

place [77]. Events to detect usually have known patterns, as for example aban-

doned and removed object detection [67–70], door access detection [78], falling

persons [23], and others [79]. In these cases it is possible to define a set of visual

and temporal rules, to describe the event. A brief review of methods described

in the literature for abandoned and removed object detection is given in Section

2.5.

Very different is the case when a situation not previously thought of arises,

so the event is unknown and rules are not available to identify it. The particular

characteristic of unknown events is that they present unusual patterns, compared

to the normal flow in the video feed. For example if in a motorway video feed cars

are static, as in the case of an accident or a long queue, such situation should

be considered unusual, and an event alert should be triggered. Unusual event

detection usually relies on machine learning and pattern recognition techniques,

to learn usual patterns in the video feeds and recognise unusual situations [80].

2.4.4 Behaviour analysis

Behaviour analysis tries to recognise a single action, or set of actions, of individ-

uals in a video feed to understand their behaviour [2]. Such a task implies a high

level of abstraction and it usually uses machine learning, as human actions are

difficult to describe and identify exactly. In this case patterns are identified and

learnt by example, and therefore pattern recognition is used rather than pattern

matching.

2.4.5 Crowd analysis

Crowd analysis refers to processing and interpretation of video feeds in which a

large number of individuals is present. In these scenarios it is not possible to

exactly, and entirely, segment each single person, therefore groups of people have

to be treated as an entity, i.e. a crowd [81]. In recent years much attention has

been given to this VA task as crowded places inherently have higher sensitivity

with respect to both safety and security [82]. Typical crowd analysis operations

are: crowd density estimation, flow estimation and counter flow detection within

a crowd, detection of crowd formation and dispersion.
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2.5 Abandoned and removed object detection

Being able to recognise when an object is left unattended, or abandoned, is an

important task in video surveillance since such an object may contain harmful

devices endangering nearby people. Similarly it is important to detect when an

object is taken away, or removed, from a scene, as for example in the case of

valuable pieces of art in a museum. Therefore it is not surprising that both tasks

always raise high interest in the video analytics community, as proved by the

abundant amount of research carried out on these topics [67–70, 83–85].

As the detection of abandoned and removed objects in a video sequence can be

seen as the problem of locating and identifying differences between pairs of images,

i.e. one with and one without the object of interest, it is easy to understand

why all the work in this field uses background subtraction as a general approach

[12, 13]. In fact, while image differencing can only highlight moving objects in

the scene, background subtraction can also highlight new static objects. Such an

approach can then be extended to the case of removed objects if the background

left uncovered is interpreted as a new object. This is why both abandoned object

and removed object detections are dealt with jointly.

2.5.1 Background subtraction

In the background subtraction approach for abandoned and removed object de-

tection, the difference image Dn between each new frame In and the background

image Bn updated for every n is computed as:

Dn = |In −Bn| (2.3)

High pixel values in Dn are due to significant differences between In and Bn, so

that high valued regions in Dn are likely to correspond to new objects in the

scene. To reinforce such an assumption, the difference image Dn is thresholded

as in (2.4):

Mn =

{
1, if Dn > Tn

0, otherwise
(2.4)

where Mn is a binary mask. Therefore unconnected regions in Mn refer to possible

new static objects in In, with a degree of confidence related to threshold Tn. In

Fig. 2.1, a visual example of such an approach is given for grey scale images.
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(a) (b)

(c) (d)

Fig. 2.1: A visual example of background subtraction to detect new static objects in
the scene: (a) background Bn; (b) new frame In; (c) difference image Dn; (d) binary
mask Mn obtained with Tn = 44.

2.5.2 Issues

Although the general formulation of background subtraction is simple and effec-

tive, there exist some practical issues that make its application to real, generic

video sequences challenging. These issues are: background modelling and updat-

ing; threshold value setting; and classification between abandoned and removed

objects.

Background modelling and updating

Background modelling refers to the way in which the background is represented

and how temporal changes are incorporated in it. From the background model it

is then possible at any time n to obtain the image Bn, which is the synthesised

view of the static background to be used in (2.3).

As reported in [12, 13], many background models have been proposed in the
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literature. The most commonly used ones include:

• Gaussian Mixture Model (GMM) [86]: the background model is represented

by a series of K Gaussian distributions for each pixel in the image. Every

new pixel value in the new frame In is sought to match one of the K

distributions. If it does, a weight for the matching distribution is increased.

If it does not, a new distribution is added to the set and the one with

the lowest weight is discarded. GMM performs well in scenarios where

background objects have recurrent motion, such as tree branches and leaves.

However the updating rate cannot be controlled directly and the number,

K, of distributions is set arbitrarily.

• Median filter: the authors in [87] adopt a separate median filter associated

with each pixel in the image, over a sampled set of the last n∆t images,

with typically ∆t = 10. The value of each pixel in Bn converges to its real

background value and outliers due to moving objects are discarded auto-

matically by the median filtering operation. A clear drawback is that the

algorithm has to store n images and performing median filtering on each

pixel is computationally expensive. To solve this problem, McFarlane and

Schofield [88] use an approximate median, where the background model is

represented by a single image: if a new pixel value is higher than in the

background image, the latter is incremented by one; instead it is decre-

mented by one if lower. Nonetheless, in both approaches the updating rate

strictly depends on the video data itself.

• Running average: the authors in [89] use a running average for each pixel

in the image, assuming that each background pixel value has a Gaussian

distribution. Instead Jung [90] proposes a metrically trimmed mean, to

save computation time. Once again, the updating rate cannot be controlled

directly and also the weights for the averaging operation are set arbitrarily.

Although these methods perform well in tracking applications and in the de-

tection of abandoned and removed objects, they are not really designed to be able

to trigger an alert within a specific time interval defined by the user, after new

abandoned or removed object events have occurred. On the contrary, it is the

background model updating procedure that implicitly dictates when the alerts

are triggered. In other words, it is the background update that causes the alert,

rather than the alert itself to cause the background update.
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Threshold setting

Good segmentation depends on both the background image Bn and the threshold

Tn. In fact, if the value chosen for Tn is too low, high values in Dn due to noise

introduced by the acquisition device may appear in Mn as false positives; while

if Tn is too high, portions of real new objects in the scene may be erroneously

detected as background. This can be seen for example in Fig. 2.1(d), where the

new object, i.e. the book, is segmented into two parts, since its middle section is

considered as background, due to a high threshold in this case.

Therefore it is clear that the selection of a value for the threshold Tn is also

an important factor in background subtraction. Unfortunately no general rule

exists and usually Tn is left to the user to set arbitrarily, as in [49, 86, 87, 89, 90],

to best suit the current application and video sequence under analysis.

Abandoned and removed object classification

Although abandoned and removed objects can be both detected using background

subtraction, it is important in some applications to be able to distinguish between

the two cases. While such a task is trivial for a human observer, it is more dif-

ficult for a computer application, since computer systems cannot easily extract

contextual information from an image and infer high level meaning from it. Even

though it would be possible to train a classifier, and apply object recognition to

distinguish between abandoned and removed objects, it is not a practical solu-

tion in a video surveillance system, mainly because such an approach requires

time consuming training and it is not generalisable to any object. Moreover the

decision process is normally required to be fast as well as effective.

Not many methods have been proposed in the literature to solve this issue

and generally the approach given by Connell et al. [91] is used, where the energy

in In on the contour of regions detected in Mn is computed. If this energy is

higher than a certain threshold, it means that a contour corresponds to real

edges, which in turn indicates the presence of a real new object in the scene.

Although being conceptually sound, the drawback of this approach is that a

threshold must still be defined. Instead, in [70], morphology and region growing

are used to detect texture discontinuities in In between the detected regions in

Mn and the surrounding background. This approach is more heuristic than [91]

and also slower, as the iterative region growing process is computationally more

expensive.
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2.6 Conclusion

In this chapter an overview has been given of modern video surveillance tech-

nologies and trends, and video analytics, which is the automatic video content

analysis of surveillance feeds, has been introduced. Some common techniques

for image and video processing usually implemented in VA algorithms have been

described. Finally a general description has been given of typical VA tasks and re-

lated techniques proposed in literature, with a particular emphasis on abandoned

and removed object detection.
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Chapter 3

Visual target tracking

3.1 Introduction

Central to many video surveillance systems is target tracking, which is the detec-

tion and identification of an object and computation of its motion in consecutive

frames. Such a video analytics task is the first step to any higher level analysis,

as for example action recognition and behaviour analysis. Due to the importance

of this topic, very many approaches have been proposed in the literature. As the

novel tracking algorithms described in this thesis are not tailored to any specific

type of objects, this chapter reviews general tracking algorithms, as opposed to

specific ones, for example for human body tracking [92–95] or crowd [81].

Short reviews on general target tracking can be found in [2–4], while an ex-

tensive survey is given in [1]. A more theoretical overview of the video tracking

problem is provided in [37].

In the rest of this chapter, Section 3.2 explains the main characteristics of a

video tracker. Section 3.3 reviews tracking algorithms based on template match-

ing, while Section 3.4 reviews methods based on the mean shift tracker. These

two sections are preliminary to put in context the two novel tracking algorithms

described in Chapter 4 and Chapter 5 respectively. Section 3.5 discusses some

metrics commonly used to assess the performance of tracking algorithms. Section

3.6 concludes the chapter.

3.2 Tracker characterisation

Although video trackers are usually application-specific, it is possible to identify

three main aspects to characterise a tracker in a general sense:

• visual features used;
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• target representation adopted;

• localisation method employed.

3.2.1 Visual features

As reported in Section 2.3.2, several different features can be selected in a track-

ing application, as for example colour, gradients, edges, texture and orientation.

Nonetheless, it should be noted that a selected feature, or set of features, must

be discriminative for the chosen target to track. In other words, such features

must be characteristic for the target, so that it can be distinguished from the rest

of the image with relatively high confidence. For example colour is a discrimina-

tive feature to track a white football on a green pitch, while it is certainly not

discriminative if one wants to track different football players from the same team

wearing the same jersey.

3.2.2 Target representation

The target representation, or model, encloses target information useful for the

tracking application. Maggio and Cavallaro [37] distinguish between shape rep-

resentation and appearance representation.

Shape representation

Such a representation simply defines the shape of the target in an image and it

can be divided into three main groups:

1. basic models: the target shape is approximated with simple geometric fig-

ures, such as single points, rectangles or ellipses, cuboids or ellipsoids.

2. articulated models: the target object is represented as a set of points form-

ing a skeleton, or as a set of primitive shapes linked together.

3. deformable models: in this case an object undergoes deformations which

cannot be modelled with joint-like approximations. Deformable models

include contours and object silhouettes, or point distribution models in the

form of 2D mesh grids [96].

Similar to [37], Yilmaz et al. [1] divide shape representations into:

• points;
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(a) (b) (c) (d) (e)

Fig. 3.1: Possible shape representations as suggested in [1]: (a) points; (b) primitive
shape; (c) contour; (d) articulated model; (e) skeleton.
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Fig. 3.2: Template representation: (a) target selected within frame; (b) close-up of
the target; (c) target template, seen as a 2D discrete function.

• primitive geometric shapes;

• silhouettes and contours;

• articulated shape models;

• skeletal models.

as illustrated in Fig. 3.1. These five different representations are selected de-

pending on the type of object to track: small objects are best represented with

single points; rigid objects can be enclosed in primitive shapes, while non rigid

objects are best represented with contours, articulated and skeletal models.

Appearance representation

As stated in [37], the appearance representation is the “model of the expected

projection of the object appearance onto the image plane”. So the appearance
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Fig. 3.3: Histogram representation: (a) target selected within frame; (b) close-up of
the target; (c) histogram of the target.

representation models how the target should look in terms of 2D characteristics

in a video frame.

Commonly used appearance representations are:

• template: the value of a chosen target feature in a pixel location is stored

along with its positional information. For example, if the selected feature is

colour, the template is simply an image of the target and it can be obtained

by manual or automatic selection in one of the video frames. As such, the

target template can be seen as a 2D discrete function or matrix (Fig. 3.2).

• histogram: the value of a target feature in a pixel is stored without its posi-

tional information, in the form of a statistical distribution, i.e. a histogram

(Fig. 3.3). Although some of the original target information is lost, his-

togram representations are more robust than a simple template with respect

to scaling, rotation and partial occlusion.

3.2.3 Localisation

Localisation, or object tracking, is strictly speaking, the process of finding the

position of the target in consecutive video frames in order to track the target

motion over time.

Maggio and Cavallaro [37] suggest a division of tracking methods into two

major classes, depending on whether they deal with only one track candidate

at any time (single-hypothesis localisation, SHL); or they manage multiple track

candidates simultaneously (multi-hypothesis localisation, MHL).

Differently from [37], Yilmaz et al. [1] classify object tracking methods from

another perspective, which depends on their shape representation, as they argue

that the chosen target representation, and in particular the shape, greatly affects
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the motion model assumed for the target, and its possible deformations in a

image. Therefore they divide object tracking into three categories:

• Point tracking: the current frame is processed first, regardless of the tar-

get object appearance, to extract feature points, and then correspondence

between such points and target feature points extracted from the previous

frame is performed. Such an operation can be deterministic, i.e. based on

some predefined motion constraints, or it can be probabilistic, i.e. based

on object state estimates, as for example using Kalman and particle fil-

ters. This extract-and-associate approach can generalise to entire blobs

and regions, which are initially extracted from a frame using segmentation

methods, as reported in Section 2.3.1.

• Kernel tracking: the target object is represented by primitive regions, whose

motion is expressed as a parametric transformation, such as translation, ro-

tation and affine, and it is sought between consecutive frames. The motion

computation method is strictly related to the appearance representation

used, while the computed motion actually depends on the object appear-

ance within the region. Yilmaz et al. further divide kernel tracking into

template-based and density-based, depending on the appearance represen-

tation. The most common template-based approach is template matching,

where the object model is represented by a template, which is then searched

within the current frame. In the density-based approach, the target model is

represented by some form of probability density function (PDF); usually its

colour histogram. A widely used density-based approach is the mean shift

tracker [11], where the model is encoded in a weighted colour histogram.

• Silhouette tracking: it refers to situations where the target object cannot be

well represented by a primitive shape, for example in people tracking and,

more generally, for non rigid objects. In this case the target is accurately

described by its silhouette or contour. Yilmaz et al. divide silhouette track-

ing into shape matching, where the object shape is searched for within the

next frame to find possible matches, and contour tracking, where the initial

target object contour evolves from frame to frame, usually by minimising

some form of energy constraint function.
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3.3 Template matching

In template matching the target model is a template, which stores feature value

and positional information for every pixel within the selected primitive shape.

Generally speaking, template matching has many applications in image and video

processing:

• registration and disparity computation in stereo images [97];

• motion estimation for video coding [98];

• object detection within an image [76];

• optical flow computation [46].

In tracking applications, template matching is used to find the best match for the

given template in consecutive frames, i.e. tracking a target in a video sequence

[99, 100].

Usually pixel intensities are used as the feature and therefore the template

T of MT × NT pixels reduces to an image of the target. A match for T is then

searched for within the frame, by minimising or maximising, a chosen metric. The

two main characteristics of a tracking algorithm based on template matching are

the search method used and the matching metric adopted.

3.3.1 Search methods

Concerning the search method, one can use a gradient descent method, as in

[101], to minimise the error between the target and its best estimate within the

image. As an alternative, one can use a direct search approach, i.e. template

T is compared with the given frame I at a series of locations within I, as done

in motion estimation for video coding [98]. The easiest approach is full search,

where template T is shifted horizontally and vertically in every position within I

and the chosen metric is computed, to evaluate how similar T is with the portion

of I located at each position. As searching within an entire image is computa-

tionally expensive, a smaller search area can be defined as a region of interest

(ROI) around the previous target position. Searching in every pixel location is

sometimes referred to as a “brute force” approach. Alternative search methods

can be found again in motion estimation techniques and the most common ones

are:

27



Ch.3 Visual target tracking

• hierarchical search: searching is performed on a downsampled version of

the image I. Once a best match has been found, the resolution of the

downsampled image is refined and the best match position is propagated

to it. Searching is then performed again, to find a “more accurate” best

match. Usually a 2–3 level hierarchy is used.

• N-step search: starting from the centre of the search area, 8 points are

taken at a given step size and the one with highest match is chosen as next

starting point. The step size is then halved and a second new best match

is found. This procedure is repeated N times.

3.3.2 Matching metrics

Concerning the matching metric, a key factor for its selection is computational

complexity. In fact, as video applications need to be able to process an entire

frame in a few tenths of a millisecond (more precisely ≤ 40 ms, giving ≥ 25 fps,

to be considered “real-time”), a matching metric needs to be computationally

fast to evaluate. For this reason only few metrics are commonly used in template

matching [76]. They include:

• Normalised Cross-Correlation (NCC) [102]: computed as in (3.1), it gener-

ally gives good matching performance, but it is computationally expensive,

due to the multiplications and square root operations involved in it.

NCC(x, y) =

MT−1∑
m=0

NT−1∑
n=0

(
I ′(m,n)− I(x, y)

) (
T (m,n)− T

)
√√√√MT−1∑

m=0

NT−1∑
n=0

(
I ′(m,n)− I(x, y)

)2 MT−1∑
m=0

NT−1∑
n=0

(
T (m,n)− T

)2
(3.1)

where I ′(m,n) = I(x+m, y + n) is the block within I located at (x, y). T

and I(x, y) are the mean values respectively of T and I ′(m,n), computed

as:

I(x, y) =

MT−1∑
m=0

NT−1∑
n=0

I(x+m, y + n)

MTNT

(3.2)

T =

MT−1∑
m=0

NT−1∑
n=0

T (m,n)

MTNT

(3.3)
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• Sum of Absolute Differences (SAD): computed as in (3.4), it has slightly

worse performance than NCC, since the sign of the error is not taken into

account; however it is easier to implement especially in hardware, as it uses

only integers.

SAD(x, y) =

MT−1∑
m=0

NT−1∑
n=0

|I(x+m, y + n)− T (m,n)| (3.4)

• Sum of Squared Differences (SSD): computed as in (3.5), it generally has

the same matching performance as SAD, but it is clearly more expensive

computationally.

SSD(x, y) =

MT−1∑
m=0

NT−1∑
n=0

(I(x+m, y + n)− T (m,n))2 (3.5)

3.3.3 Issues

Despite being very popular in disparity computation, optical flow and motion

estimation, template matching is not so common in tracking applications, due to

two well-known issues: visual changes and occlusion.

Visual changes

It is clear that a tracker using the same template for every frame would not

be robust, as normally in a video sequence a target experiences visual changes,

due to deformation, rotation, scaling and light changes. For this reason the

authors in [99] update the entire template using an infinite impulse response

(IIR) filter. However, in case of temporary partial occlusion or when portion of

the background are present in the updating patch, parts of the occluding object

or of the background are incorporated in the template, which may then become

corrupted and irrecoverable.

Partial and complete occlusion

As template matching simply minimises, or maximises, a matching metric, it

“always finds” a best match within a frame, even though the real target is com-

pletely occluded or not visible. In this case the best match refers to the wrong

object and therefore the tracker starts following an incorrect target. The authors

in [100] divide the target template into overlapping fragments to overcome par-

tial occlusion; NCC template matching is then replicated to all the fragments
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and these results are then averaged. Nonetheless, the tracker might still lose the

correct target in case the best match is selected in correspondence of another

object. A possible solution to this problem is to set an arbitrary threshold, above

which the match is considered to be incorrect. Although this approach is sound,

it is difficult to manually tune such a threshold. Moreover, not all the metrics

are “normalised” (SAD and SSD), and therefore the threshold value cannot be

expressed as a percentage. In these cases the threshold value strictly depends

on the visual characteristics of the chosen target, reducing the generality of this

approach.

3.4 Mean shift tracker

In visual systems, colour is a very strong cue, as it is invariant to scaling and ro-

tation. Therefore colour has been used as discriminative feature for tracking by

many researchers. For example, McKenna et al. [103] use an adaptive mixture of

Gaussian distributions in a hue-saturation space. Nummiaro et al. [104] integrate

colour distributions into a particle filtering framework. Porikli [75] introduces an

integral histogram, to compute the histograms of all possible sub-regions in a

Cartesian space. However, in more recent years, a very commonly used algo-

rithm for colour tracking has been the mean shift (MS) tracker, by Comaniciu

et al. [7–11]. The MS tracker adopts a weighted colour histogram distribution

as a representation of the target, and tracking is performed by maximising the

Bhattacharyya distance from this distribution.

3.4.1 Formulation

In the conventional MS tracker the target model has a rectangular shape and its

appearance is represented by the target colour histogram Q [11]. The selected

target is initially identified as a set of pixels xj ∈ Γ1 in a colour frame F0 of size

H ×W , as illustrated in Fig. 3.4. A rectangular target area of h0 × w0 = N0

pixels xn ∈ Γ2 with centroid y0 can be defined, to enclose the target pixels xj,

i.e. Γ1 ⊆ Γ2, where xj, xn and y0 are 2-dimensional indices such that xj,xn,y0 ∈
Γ2 ⊆ [1, H]× [1,W ] ⊆ <2.

For each pixel xn, a difference vector x0
n = y0−xn that goes from pixel xn to

the target area centroid y0 is computed. Moreover, the function g(h0, w0,x
0
n) is

defined as:

g(h0, w0,x
0
n) =

h0w0√
(h0 cos(∠x0

n))2 + (w0 sin(∠x0
n))2

(3.6)
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Fig. 3.4: Target area Γ2 enclosing target pixels xj ∈ Γ1, within the frame F0.

In (3.6), g(·) gives the length of a vector that goes from the target area centroid

y0, to the ellipse with axes h0 and w0, inscribed in the target area Γ2, as illustrated

in Fig. 3.4.

In an RGB representation, F0 has three colour planes and the target histogram

Q is 3-dimensional, with β bins for each dimension. The value of the histogram

bin qrgb in Q, with u = [r, g, b] and r, g, b ∈ [1, β], is computed as:

qrgb = C0

N0∑
n=1

k

(
‖x0

n‖
2

g2(h0, w0,x0
n)

)
δ[b(xn)− u] (3.7)

where b(·) is a function that retrieves the 3-dimensional bin index in the histogram

Q for the colour in xn, and δ[·] is a function defined as:

δ[v] =

{
1, v = 0

0, v 6= 0
(3.8)

In (3.7), k(·) is the Epanechnikov weighting kernel [58] defined as:

k(x) =

{
2
π
(1− x) if x ≤ 1

0 otherwise
(3.9)

and C0 is a normalising factor computed as in (3.10), so that the sum of all the

bins qrgb equals 1.

C0 =

[
N0∑
n=1

k

(
‖x0

n‖
2

g2(h0, w0,x0
n)

)]−1
(3.10)

The magnitude g(h0, w0,x
0
n) in (3.7) and (3.10) allows one to define an el-

lipsoidal smoothing kernel k(·), with an extension given by the ellipse inscribed

in the rectangular target area Γ2. Note that when h0 = w0, Γ2 is a square and
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g(h0, w0,x
0
n) describes a circle.

For every new frame Fi, the target position yi−1 in the previous frame Fi−1

is used as initial estimated target position in Fi. The histogram bin prgb(yi−1) of

the weighted colour distribution P(yi−1) in Fi is computed as:

prgb(yi−1) = C

Ni−1∑
n=1

k

(
‖xi−1n ‖

2

g2(hi−1, wi−1,xi−1n )

)
δ[b(xn)− u] (3.11)

where xi−1n = yi−1 − xn, C is a normalising factor defined as:

C =

[
Ni−1∑
n=1

k

(
‖xi−1n ‖

2

g2(hi−1, wi−1,xi−1n )

)]−1
(3.12)

and hi−1 and wi−1 are height and width of the target area of hi−1 × wi−1 = Ni−1

pixels. The target candidate distribution P(yi−1) is used to evaluate the weights

an:

an =

β∑
r=1

β∑
g=1

β∑
b=1

√
qrgb

prgb(yi−1)
δ[b(xn)− u] (3.13)

Such weights allow one to compute the mean shift vector [10, 11] and therefore

the new estimated target position yi:

yi =

Ni∑
n=1

xnan

Ni∑
n=1

an

(3.14)

This procedure iteratively maximises the Bhattacharyya coefficient ρ(yi):

ρ(yi) =

β∑
r=1

β∑
g=1

β∑
b=1

√
prgb(yi)qrgb (3.15)

and consequently it minimises the distance d(yi):

d(yi) =
√

1− ρ(yi) (3.16)

The final target position yi in Fi is then used as initial estimated target

position in the next frame Fi+1.
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3.4.2 Issues

The conventional MS tracker has been shown to be fast, effective and robust in

many scenarios, and many extensions have been proposed to further improve its

performance. Leichter et al. [105] propose the combination of multiple histograms

of the target, to capture its appearance from different views. Wang et al. [106]

propose a fragment-based representation of the target, with a separate tracker

associated with each fragment. In [107], SIFT features are used along with the

MS tracker, while in [108] the target histogram is fitted around a simple target

structure representation. In [109, 110], MS tracking is integrated into particle

filtering, while in [111] it is used to carry out the measurement in a Kalman filter

framework. In [112], the MS is integrated with edge information and is applied

to infrared images. Edge orientations are used also in [110]. In [113], the MS

is used in the context of a multi-target tracking system, where re-initialisation

is executed periodically, over foreground detections obtained with background

subtraction.

Nonetheless, the conventional MS tracker suffers from some well-known issues,

which are: asymmetrical kernel shape; scaling and rotation; occlusion; fast target

loss.

Asymmetrical kernel shape

Comaniciu et al. [7–11] use in their works a symmetrical Epanechnikov kernel,

as it is convex and monotonic and such characteristics ensures convergence of

the MS gradient descent iteration, as demonstrated in [8, 9]. Although it is

easy to generalise the formulation from circular to ellipsoidal, the shape of real

targets does not fit well such a precise geometrical representation. To obviate

this problem, Yilmaz [114] proposes the use of asymmetrical kernels based on a

level set function, so that the tracking accuracy for arbitrary-shaped objects can

be greatly improved. However, as Yilmaz states in his work, the constancy of

the kernel shape remains a problem. Also the authors in [115] propose the use of

asymmetrical kernels, but their mathematical formulation is not as rigorous as in

[114] and the results shown are not exhaustive.

Scaling and rotation

In the conventional MS tracker [7–11] the basic iteration is executed three times

for each frame, adopting three different kernel bandwidths, i.e. the previous

bandwidth hprev, a larger one h+ = 1.1hprev and a smaller one h− = 0.9hprev. Of
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the three bandwidths, the one that gives the highest match for the same target

model is chosen as new kernel bandwidth. For rotation, no suggestion is given

on how to deal with such scenario and target orientation is implicitly assumed

to be always the same. A very interesting method to deal with both scaling and

rotation is described by Bradski [116] in his Continuously Adaptive Mean Shift

(CAMShift). This algorithm is mainly focused on face tracking and it aims at

providing a perceptual user interface based on user head movements. Scale and

rotation of the target face are computed through colour moments in a probability

backprojected image, and they are continuously adapted, hence the name of the

algorithm. A similar approach is described in [117], where the authors use the

distributions of both target model and target candidate to estimate scale and

orientation. A very different approach is proposed by Collins [118] to deal with

target scaling. In this work a scale space is created by convolving the image with

a filter bank of Difference-of-Gaussian spatial kernels and then the correct scale

is sought within this space.

Occlusion

Although being robust to small partial occlusion, the MS tracker may fail when

the target undergoes severe or complete occlusion: in the former case the MS

gradient descent procedure might get trapped in a temporary local maximum;

in the latter, the estimated density function has no maximum associated with

the correct target and all the other local maxima are therefore incorrect by def-

inition. Nonetheless, if the temporal length of the occlusion is short and, most

importantly, the correct target reappears in a neighbourhood of its last tracked

position, the MS tracker might be able to recover and continue to track the cor-

rect target. In [7–11], Comaniciu et al. suggest employment of a motion filter,

for example a Kalman filter, when occlusion is present. In the context of MS

tracking, a few approaches have been proposed in literature to deal with severe

and complete (short) occlusion. In [119] the authors use SIFT features to find

the next target position first and then apply MS to increase the precision of the

detection. In this way, local maxima are avoided and the tracker can recover

after short occlusion. Particle filtering is integrated with MS in [110, 120], to

predict the next target position after occlusion. In [111], a Kalman filter is used

instead. In [121] Li et al. deal with a simple partial occlusion scenario, i.e. single

pedestrians occluding each other, by tracking both occluded and occluding ob-

jects. Similarly, the approach described in [122] is for a single target undergoing

short occlusion. In [123], the MS tracker is applied to football video sequences.
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In this case, occlusion is dealt with specifically, depending on whether it concerns

players from the same or different teams, and the next position is computed with

a simple prediction scheme.

Fast target loss

As pointed out in [124], a fast target can either be an object experiencing large

spatial displacement in a high frame rate video, or a slow moving object in a

low frame rate video. As the conventional MS tracker uses a support kernel, a

so-called “basin of attraction” results automatically defined for the MS gradient

descent procedure to converge, as explained in [11]. This means that, for the

MS tracker to work, detections of the target, i.e. the target areas around the

tracked target centroids, must overlap in consecutive frames. It is thus clear why

the conventional MS algorithm fails in the case of fast moving targets. In [11],

Comaniciu et al. suggest the use of a kernel bandwidth larger than the actual

target size, to have a wider basin of attraction. To compensate for background

colours now present in the larger kernel, the target histograms are normalised

with respect to the histogram of the background (as proposed in [125]) in a

region around the target. Although this approach is sound and is shown to be

effective, it is not always practical to apply. In fact, in the case of a small target

with fast motion, i.e. moving from one side of the image to the other over a

single frame, one would have to use a kernel bandwidth almost as large as the

entire frame. In [124], Porikli and Tuzel apply the basic MS procedure to multiple

candidate locations in the frame, to recover the target in low frame rate videos.

For this purpose a statistical background model is maintained and the candidate

locations are selected from a foreground mask. The drawback in this approach is

that a background model is required. Moreover, it is not always possible to have

a foreground mask where the intended target is the only moving object, or is, at

least, well separated from other moving objects. For example, in highly crowded

video sequences, it is difficult to construct a background model and foreground

masks present large unsegmented blobs. In [126], to predict the kernel position,

a backprojection image is created, from the target colour distribution, and then

it is divided into blocks. Of these blocks, the one that maximises the zero-th

moment (i.e. it maximises the sum of all the pixel values in the block) is chosen

as the new kernel position in the new frame. Although the authors in [126] claim

this approach to be effective, they do not analyse cases where a zero-th moment

maximum does not correspond to the correct target.
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3.5 Evaluation of tracking performance

In tracking applications it is important to be able to evaluate the performance of

a tracking algorithm. In general this is done by comparing, for a given reference

video sequence, the tracking results obtained with the algorithm under examina-

tion and the ground truth, which is a set of pre-computed reference results for

that particular video sequence.

There are different ways and metrics to assess tracking performance, depend-

ing on the particular characteristics of an algorithm one wants to evaluate. A

simple approach is to compute in each frame how close the target position com-

puted by the tracker is, with respect to the reference position available in the

ground truth. If pn and rn are respectively computed and reference target posi-

tions in the nth frame Fn, the absolute error is computed as Euclidean distance

en:

en = |pn − rn| (3.17)

The error can be computed for every frame with n ∈ [0, N − 1] in the video

sequence, and mean value and standard deviation are:

µe =
1

N

N−1∑
i=0

en (3.18)

σe =

√√√√ 1

N

N−1∑
i=0

(en − µe)2 (3.19)

In this case, the mean value µe represents the accuracy of the tracker, while the

standard deviation σe represents its precision.

Another approach is to determine if the position retrieved by the tracker in a

frame corresponds to the correct target (“true positive”, TP), or to an incorrect

object (“false positive”, FP). On the other hand a target can be correctly detected

as not present (or visible) in the frame (“true negative”, TN), or incorrectly

undetected (“false negative”, FN), i.e. the target is actually present and visible

in the frame, but the tracker has not been able to find it. With TP, TN, FP and

FN four metrics are defined [37]:

Precision =
TP

TP + FP
(3.20)

Recall =
TP

TP + FN
(3.21)
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Specificity =
TN

TN + FP
(3.22)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.23)

Such metrics are useful to evaluate the ability of a tracker to handle severe and

complete occlusion, as in some frames a target may be covered by other objects in

the scene and therefore be not visible. Similarly they can evaluate the ability of

a tracker to detect when a target has left the field of view (FOV) (and therefore

it is not present in the frame) and when it is back in the FOV.

3.6 Conclusion

This chapter has reviewed tracking techniques for video applications. The three

main aspects of a video tracker are: the features used to characterise the target;

the mathematical model adopted to describe the target appearance; the localisa-

tion method employed to compute the target motion between consecutive frames.

A detailed overview of template matching and mean shift tracking has been given,

as these techniques are the basis for the two novel tracking algorithms presented

respectively in Chapter 4 and Chapter 5. Some performance metrics have been

introduced to assess the tracking performance of such novel algorithms.
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Chapter 4

Adaptive tracker based on

SWAD minimisation

4.1 Introduction

The Sum of Absolute Differences is a well-known metric and it is often used in

video coding and disparity computation for stereo images, due to its simplicity.

However SAD is not very common in tracking applications, as issues such as

partial occlusion and target template changes can dramatically affect its perfor-

mance. In this chapter, a novel adaptive template matching algorithm for robust

target tracking based on a modified SAD called Sum of Weighted Absolute Dif-

ferences (SWAD) is presented, where a Gaussian weighting kernel is employed to

reduce the effects of partial occlusion [127]. Simulation results demonstrate that

the presented SWAD-based tracker outperforms conventional SAD in terms of

efficiency and accuracy.

When occlusion takes place, there exists the risk for adaptive template track-

ing algorithms to include portions of the occluding objects in the target detection.

In the next template the updating step would then incorporate visual character-

istics of such occluding objects. Eventually the target template would become

completely corrupt and irrecoverable as the tracker starts following an incorrect

target. To solve this issue in the SWAD-based tracker described in this chapter,

an occlusion handling technique is presented to update portions of the target

template at different rates and so preserve its overall structure [128]. Experimen-

tal results show that such an approach can further improve the robustness of the

SWAD-based adaptive template matching tracker, by allowing it to successfully

recover the correct target after severe and complete occlusion.

The rest of this chapter is organised as follows. Section 4.2 describes in detail
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(a) (b) (c) (d)

Fig. 4.1: Layout of the current frame Fi showing the best match T̂i, the region of
interest Ri and their positions within Fi.

the novel SWAD-based tracking algorithm, while the occlusion handling proce-

dure is described in Section 4.3. Section 4.4 reports on performance evaluation

of the tracker, including the description of a DSP embedded implementation of

it, to demonstrate that its simplicity and algorithmic structure make it suitable

for real-time implementation in embedded systems with fixed-point architecture.

Section 4.5 concludes the chapter.

4.2 Adaptive template matching target tracking

The novel tracking algorithm presented in this chapter is based on template

matching, and in particular on the minimisation of a Sum of Weighted Absolute

Differences (SWAD) in a region of interest (ROI) Ri within the current frame

Fi, as shown in Fig. 4.1(b). The target model is represented by a template Ti of

NT ×NT pixels, computed as:

Ti = (1− α)Ti−1 + αT̂i−1 (4.1)

where α ∈ [0, 1] is a blending factor, and Ti−1 and T̂i−1 are respectively target

template and best match in the previous frame Fi−1 (Fig. 4.1(a)). In the first

frame F0 the target template T0 is initialised as the portion of F0 containing

the selected target. The ROI Ri in position qi is selected as the neighbouring

area around T̂i−1 in the previous frame Fi−1, with size of NR×NR pixels, where

NR = NT + 2NS and NS is a spatial offset around T̂i−1. The proposed algorithm

requires single colour plane images. It can therefore be applied to both grey scale

and colour video sequences. In the case of colour images, Fi can be the luminance

component. The absolute differences in the SWAD metric are weighted by a kernel

K of NT ×NT pixels. In the current implementation a Gaussian weighting kernel
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Fig. 4.2: Weighting kernel K of NT ×NT pixels as in (4.2), with NT = 32.

has been employed, to assign high weights to central pixels and low weights to

peripheral ones, as these pixels might belong to background or even occluding

objects. Assuming integer pixel values in the range [0, 255], the kernel K is:

K(x, y) =

⌊
255× g(x, y)

g(bµc , bµc)

⌋
(4.2)

where x, y ∈ [0, NT − 1] and g(x, y) is 2-dimensional Gaussian function with

mean µ = (NT − 1)/2 and experimentally selected standard deviation σ = NT/5,

defined as:

g(x, y) = exp

(
−(x− µ)2

2σ2
− (y − µ)2

2σ2

)
(4.3)

The kernel K with NT = 32 is illustrated in Fig. 4.2.

Given the current template Ti, its best match T̂i in Fi is searched within Ri

(Fig. 4.1(c)). For this purpose the SWAD coefficient ψ(x, y) at location (x, y)

within Ri is computed as:

ψ(x, y) =

NT−1∑
m=0

NT−1∑
n=0

K(m,n)∆(x, y,m, n) (4.4)

where K is the Gaussian weighting kernel and ∆(x, y,m, n) is the pixel difference:

∆(x, y,m, n) = |Ri(x+m, y + n)− Ti(m,n)| (4.5)

The position of the best match T̂i within Ri for the given template Ti is repre-
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sented by bi, which is obtained by minimising the SWAD coefficient as in (4.6):

bi = arg max
x,y∈[0,NR−NT ]

ψ(x, y) (4.6)

The index bi refers to the top-left pixel of the best matching block T̂i. The

position of T̂i within Fi is computed as in (4.7):

pi = qi + bi (4.7)

as illustrated in Fig. 4.1(c). Once the best match T̂i in the current frame has

been found, the new target model Ti+1 for the next frame Fi+1 is computed as

in (4.1), which describes an IIR filter and it ensures that the target template is

updated and adapts to changes, while guaranteeing tracker stability by reducing

the effects of partial occlusion. Moreover, updating the template as in (4.1)

implicitly deals with possible rescaling and rotation of the target. The value of

the blending factor α mainly depends on the approach one wants to follow to

update the target template. In a high frame rate implementation, α can be set

to 0.5, giving equal weight to current and past templates, so that Ti can adapt

to changes fairly quickly. For a more conservative approach, i.e. to preserve

the template and let it adapt slowly, the blending factor can be α < 0.5. The

optimal selection of α is application dependant. However, α can be set adaptively

as explained in Section 4.3 to deal with complete occlusion. Finally a new region

of interest Ri+1 for the next frame Fi+1 is defined around the position pi of

T̂i, within Fi (Fig. 4.1(d)). In particular the position qi+1 of Ri+1 in Fi+1 is

computed as:

qi+1(0) = min (max (pi(0)−NS, 0) ,W −NR)

qi+1(1) = min (max (pi(1)−NS, 0) , H −NR) (4.8)

where W and H are respectively width and height of the frame. This ensures

that Ri+1 is entirely within the frame Fi+1.

A block diagram of the proposed algorithm is shown in Fig. 4.3, while its

steps for each frame Fi are summarised as follows:

1. Given Fi, qi and Ti, select Ri from Fi and minimise the SWAD coefficient

ψ(x, y) as in (4.4)–(4.6), to obtain the position bi of the best match T̂i in

Ri.

2. Given bi and the position qi of Ri within Fi, compute the target position
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Fig. 4.3: Block diagram of the tracking algorithm described in Section 4.2.

pi as in (4.7).

3. Given Fi, pi and Ti, select the best match T̂i from Fi and update the

target model using (4.1).

4. Compute the position qi+1 of the ROI Ri+1 in the next frame Fi+1 from

(4.8).

In Fig. 4.3, ∆−1 represents a delay of one frame.

4.3 Complete occlusion handling

In the adaptive template matching target tracking algorithm described in the

previous section, the target template Ti of NT × NT pixels at the ith iteration

is computed as a weighted sum of the previous target template Ti−1 and its

best match T̂i−1 in the current frame Fi as in (4.1), where the blending factor

α ∈ [0, 1] is set empirically and is the same for every pixel in Ti. In order to deal

with severe and complete occlusion, this section describes the use of a matrix Ai

of blending factors αni , with Ai having the same size of Ti and its nth element αni

referring to the nth pixel xni ∈ [0, NT−1]×[0, NT−1] in Ti, where n ∈ [0, NT
2−1].

By taking a conservative approach, one can assume that in a good match

the difference dni−1 between pairs of pixels in previous template Ti−1 and its best

match T̂i−1 obtained as:

dni−1 =
∣∣∣Ti−1(xni−1)− T̂i−1(xni−1)∣∣∣ (4.9)

should be less than a given maximum value εmax. The main idea behind the

occlusion handling technique described here is that for a given pixel xni−1, a low
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value of dni−1 (dni−1 < εmax) indicates a good match, while a large dni−1 (dni−1 ≥
εmax) indicates a poor match. As a consequence, for poor matching pixels the

corresponding blending factors in Ai−1 should be set to less than 0.5, while a

perfect matching pixel (dni−1 = 0) should have αni−1 = 0.5.

The chosen intensity difference range [0, εmax) is divided into L levels of width

∆ε = εmax/L. Similarly the blending range [0, 0.5] is divided into L levels of width

∆α = 0.5/L. For pixel xni−1 with difference dni−1, the corresponding blending

factor αni−1 in matrix Ai−1 is computed as:

αni−1 =

{ (
L−

⌊
dni−1/∆ε

⌋)
∆α, dni−1 < εmax

0, dni−1 ≥ εmax
(4.10)

and so the value of the new template Ti in position xni−1 is:

Ti(x
n
i−1) = (1− ani−1)Ti−1(xni−1) + ani−1T̂i−1(x

n
i−1) (4.11)

In other words, if the best match T̂i−1 obtained by minimising the SWAD coeffi-

cient has a small difference from Ti−1, the pixel intensity T̂i−1(x
n
i−1) is likely to be

due to the correct target. When the difference is (very) high, this pixel intensity

is likely to be due to an occluding object. In the case αni−1 = 0, the template

pixel intensity Ti−1(x
n
i−1) is retained in the updating formula in (4.11).

It is clear how extending this approach to every pixel in Ti−1 allows one to

preserve the correct template in case of severe and complete occlusion, as occluded

pixels in Ti−1 are not influenced by the occluding pixels that might be present in

in T̂i−1.

Ultimately, a threshold ϑ = ∆αNT
2 can be defined, so that when the majority

of the pixels in T̂i are poor matches and pixels in Ti are not being updated, the

target can be deemed to be completely occluded and therefore not visible. For

example: 
if

NT
2−1∑

n=0

ani−1 < ϑ ⇒ T̂i−1 is not the correct target

otherwise ⇒ T̂i−1 is the correct target

(4.12)

It should be noted that, in case of misdetection, i.e. the target is occluded but

T̂i−1 is still considered as the correct target, the values in Ai are usually much

less than 0.5, so the majority of the pixels in Ti are not updated and the overall

structure of the template is preserved. In this way, the tracker can successfully

recover the correct target after complete occlusion.
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4.4 Performance evaluation

4.4.1 Tracking performance

Bearing in mind the evaluation criteria for trackers reported in Section 3.5, the

performance evaluation of the tracker presented in this chapter comprises two

parts: in the first one, the intra-frame tracking capability of the SWAD-based

algorithm is assessed, in terms of absolute error; in the second part, the occlusion

handling procedure of the tracker is evaluated.

Absolute error distance

For this experiment, Matlab implementations of SAD-based, NCC-based, conven-

tional MS [11] and SWAD-based trackers have been tested. For the SWAD-based

tracker, both versions of the algorithm with occlusion handling (referred to as

“SWADOCC”) and without (referred to as “SWAD”) have been tested. For this

purpose three publicly available test sequences have been used: S1-T1-C/3 from

PETS2006 dataset [83], S06 2/1 from PETS2007 dataset [84], and Dudek face

sequence [129]. As the Dudek sequence is in grey scale, the MS has not been

applied to it. The ground truth for the Dudek sequence is already available,

while the two PETS sequences have been manually labelled. For each frame Fi,

an error ei is computed in terms of Euclidean distance between the ground truth

and the target position returned by the trackers. Visual results are illustrated

in Fig. 4.4–4.8 for the PETS2006 sequence, while results for PETS2007 and

Dudek sequences are illustrated in Fig. A.1–A.5 and in A.6–A.9 respectively, in

Appendix A. In all the figures, boxes highlight the target, while lines represent

target tracks. With respect to this, the manually labelled ground truth is shown

in green, while the tracker result is shown in red.

It can be seen that both SAD and NCC lose the target in the two PETS

sequences (Fig. 4.5(f), 4.6(f), A.2(f) and A.3(f)), while the MS can track the

target correctly (Fig. 4.4 and A.1). On the contrary, in the Dudek sequence,

SAD and NCC can correctly track the selected target (Fig. A.6 and A.7), while

the MS tracker cannot be used in this case.

Instead it can be seen that SWAD and SWADOCC can successfully track the

selected targets in all three sequences (Fig. 4.7, 4.8, A.4, A.5, A.8 and A.9) and

their results are very close to the ground truth in all cases.

From the three graphs of the absolute error ei illustrated in Fig. 4.9, 4.10

and 4.11 for the three test sequences, it can be seen that in general the error

for SWAD and SWADOCC is significantly lower with respect to the other three

44



Ch.4 Adaptive tracker based on SWAD minimisation

(a) frame #968 (b) frame #996

(c) frame #1026 (d) frame #1056

(e) frame #1086 (f) frame #1116

Fig. 4.4: MS results for the S1-T1-C/3 sequence from PETS2006 dataset. In each
image, the green track is the ground truth, while the red one is the tracker result.

trackers. In particular, it can be seen that the error for SAD and NCC diverges

in Fig. 4.9 and 4.10, as in both cases SAD and NCC lose the target. In Fig. 4.11

it can be noticed that SWADOCC has a spike around frame #130; this single

45



Ch.4 Adaptive tracker based on SWAD minimisation

(a) frame #968 (b) frame #996

(c) frame #1026 (d) frame #1056

(e) frame #1086 (f) frame #1116

Fig. 4.5: SAD results for the S1-T1-C/3 sequence from PETS2006 dataset. In each
image, the green track is the ground truth, while the red one is the tracker result.

misdetection corresponds to the frame in the Dudek sequence in which the target

moves his hand close to his face. Nonetheless, the tracking results for SWADOCC

in this particular sequence are the best ones, among the four trackers.
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(a) frame #968 (b) frame #996

(c) frame #1026 (d) frame #1056

(e) frame #1086 (f) frame #1116

Fig. 4.6: NCC results for the S1-T1-C/3 sequence from PETS2006 dataset. In each
image, the green track is the ground truth, while the red one is the tracker result.

Numerical results reported in Tab. 4.1, in terms of mean error µe and standard

deviation σe, show once more the better performance of SWAD and SWADOCC,

compared to the other trackers. In the PETS2006 sequence, SWADOCC and
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(a) frame #968 (b) frame #996

(c) frame #1026 (d) frame #1056

(e) frame #1086 (f) frame #1116

Fig. 4.7: SWAD results for the S1-T1-C/3 sequence from PETS2006 dataset. In each
image, the green track is the ground truth, while the red one is the tracker result.

SWAD show similar performance. For the PETS2007 sequence, SWADOCC

performs worse than SWAD; this is due to a very small vertical drift in the

SWADOCC tracker, as it can be appreciated in Fig. A.5(d)–(f), where the red and
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(a) frame #968 (b) frame #996

(c) frame #1026 (d) frame #1056

(e) frame #1086 (f) frame #1116

Fig. 4.8: SWADOCC results for the S1-T1-C/3 sequence from PETS2006 dataset. In
each image, the green track is the ground truth, while the red one is the tracker result.

green tracks are further part compared to the SWAD case (Fig. A.4). Nonethe-

less, SWADOCC can correctly track the target throughout the sequence, unlike

SAD and NCC which lose the target (Fig. A.2 and A.3).
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Fig. 4.9: Absolute error ei for the S1-T1-C/3 sequence from PETS2006 dataset.
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Fig. 4.10: Absolute error ei for the S06 2/1 sequence from PETS2007 dataset.

Tab. 4.1: Mean value µe and standard deviation σe of absolute error ei in pixels.

SWAD SWADOCC SAD NCC MS

µe σe µe σe µe σe µe σe µe σe

PETS2006 10.91 4.14 10.38 2.89 31.00 22.56 34.13 24.20 14.19 4.44
PETS2007 3.89 1.50 5.13 1.43 6.67 6.22 9.93 9.24 7.34 1.35
Dudek 3.67 2.13 0.98 1.83 4.25 2.54 4.29 2.36 – –

Occlusion handling performance

To demonstrate the ability of the occlusion handling technique described in Sec-

tion 4.3 to overcome complete occlusion and successfully recover the correct tar-

get, comparisons between SWAD and SWADOCC are carried out on three pub-

licly available sequences. For the first experiment, the Laboratory sequence from
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Fig. 4.11: Absolute error ei for the Dudek face sequence.

the ATON dataset is used [130]. Fig. 4.12 and 4.13 illustrate six frames from

this sequence respectively for SWAD and SWADOCC. The trackers are initialised

on the person entering the scene from the left (Fig. 4.12(a) and 4.13(a)). When

the second person entering from the right occludes the target in the frame cen-

tre, SWADOCC correctly detects the target as occluded, i.e. not visible, in Fig.

4.13(c) and 4.13(d), while SWAD selects the occluding person as the correct tar-

get in Fig. 4.12(e). In Fig. 4.13(f), SWADOCC still follows the correct target,

while SWAD gets distracted by the occlusion event and starts following the second

person in Fig. 4.12(f).

In the second experiment, the video sequence S2-L1-12.34-007 from the PETS-

2009 dataset is used [131]. Both trackers are initialised on the person in the centre

as illustrated in Fig. A.10(a) and A.11(a) in Appendix A. When occlusion takes

place (Fig. A.10(c) and A.11(c)), the correct target is not visible, but both SWAD

and SWADOCC erroneously select the occluding object, i.e. person with the red

jacket, as the target. However, after occlusion, SWADOCC successfully recovers

the correct target (Fig. A.11(d)), while SWAD keeps following the wrong target

(Fig. A.10(d)). This is due to the fact that, even though SWADOCC selects an

incorrect target as in Fig. A.11(c), the blending factors are small (≤ 0.1), so the

overall template structure is preserved. Instead, SWAD includes the incorrect

target in the template, so after occlusion the best match for the template is

actually the person with the red jacket. To prevent misdetections in SWADOCC,

the threshold in (4.12) can be increased, as ϑ = λ∆αNT
2, with 1 < λ < L.

In the third experiment, a synthetic sequence is generated using the Dudek

face sequence [129]. In this synthetic video, a square block of random values
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(a) frame #466 (b) frame #470

(c) frame #472 (d) frame #473

(e) frame #474 (f) frame #477

Fig. 4.12: SWAD results for Laboratory sequence from ATON dataset.

in the range [0, 255] moves horizontally, also occluding the person’s face, which

is the selected target, as illustrated in Fig. A.12(a) and A.13(a) in Appendix

A. Moreover, salt and pepper noise is added to each frame. It can be seen

in Fig. A.12(d) and A.12(e) that the target detected by SWAD moves along

with the occluding block and, in Fig. A.12(f), SWAD definitely loses the target.
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(a) frame #466 (b) frame #470

(c) frame #472 (d) frame #473

(e) frame #474 (f) frame #477

Fig. 4.13: SWADOCC results for Laboratory sequence from ATON dataset.

Instead SWADOCC deems the target as occluded in Fig. A.13(c) and A.13(d)

and successfully recovers the correct target in Fig. A.13(e) after occlusion.

In the three experiments, a value of εmax = 26 was used, which is roughly

10% of the pixel intensity range [0, 255]. This means that pixel intensities in

the template Ti can have a variation of ±26 levels, before being deemed as poor
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matches. Also, the number of levels used was L = 5.

As a final remark, it can be said that both SWAD and SWADOCC trackers are

not very sensitive to initialisation, provided that the visible portion of the target

selected as template contains texture or visual structure which are characteristic

enough of the target.

4.4.2 DSP embedded implementation

The algorithm described in Section 4.2 has been implemented on a DSP, in the

context of an embedded smart surveillance sensor for target tracking with a PTZ

camera [132, 133]. The novel Sum of Weighted Absolute Differences is imple-

mented in real-time on the multimedia board DM6437 Evaluation Module from

Spectrum Digital [134], equipped with a single core TMS320DM6437 fixed-point

DSP from Texas Instruments [135]. Experimental results reported in [132, 133]

show that, when compared to other tracking methods, such as SAD and NCC, the

SWAD-based algorithm shows better performance in the context of an embedded

implementation, as it exploits the DM6437 fixed-point architecture.

System overview

The PTZ camera is an ACTi IP Speed Dome CAM-6510, with 360◦ panning,

180◦ tilting and a maximum angular speed of 400◦ per second. A composite

analogue video signal is also available as output from the PTZ and is fed into

the EVM’s video-in port. Both PTZ and EVM are connected to a local area

network (LAN) through their Ethernet interfaces, so that they can communicate

with each other via TCP/IP. The video analytics algorithm running on the EVM

automatically controls the PTZ camera, to follow the target and keep it central

to the FOV, when it moves towards the frame boundaries. Moreover the tracker

can be activated and deactivated remotely, through on/off TCP-based messages.

The PTZ enhanced with the DSP embedded video analytics becomes a smart

surveillance sensor. An illustration of such a system is shown in Fig. 4.14.

The system software is implemented in C and runs in real-time at more than

30 frames per second on the EVM. The PTZ camera hosts a proprietary web

server and hence no software has been developed for it. Commands for the PTZ

are encoded in HTTP requests to the camera web server. The video analytics

algorithm on the EVM controls the PTZ by issuing such HTTP-based commands

over the network. The EVM also runs a simple TCP server, so that remote on/off

signals can be sent to the EVM, to activate the tracking algorithm.
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Fig. 4.14: Overview of the DSP embedded system described in Section 4.4.2, with the
EVM and PTZ coupled together to form a smart surveillance sensor.

When in stand-by mode, the system does not track any target and the PTZ

can be moved freely. When the algorithm is activated, it starts tracking what is in

the middle of the FOV at that exact moment. It is straightforward to integrate

the proposed DSP embedded smart sensor with other event-based surveillance

systems: for example an external smart system [136] can detect an event, compute

the 3D position of the target, control the PTZ to point on the target, and then

activate the SWAD-based tracking algorithm on the EVM, to control the PTZ

and automatically follow the designated target.

Video processing implementation

The composite analogue video output from the PTZ is fed into the EVM’s video-

in port. This video stream is digitised into 8-bit interleaved YCbCr 4:2:2 frames

of 576× 1440 pixels, with CbYCrY packed format and video resolution of 576×
720 pixels, by the video decoder present on the EVM board. A deinterleaving

operation separates individual YCbCr 4:2:2 frames into luminance (Y), blue (Cb)

and red (Cr) chrominance components, of which the tracking algorithm requires

only Y to perform its task. The luminance component is then downsampled by

a factor of 2 both vertically and horizontally, achieving a frame size of 288× 360

pixels.

For speed optimisation on the EVM, deinterleaving and decimation are per-

formed at the same time, by simply extracting only the required samples from the

4:2:2 YCbCr frames. If Ji is the ith interleaved YCbCr 4:2:2 frame of 576× 1440

pixels, the corresponding decimated luminance component Fi of 288× 360 pixels
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is computed as:

Fi(x, y) = Ji(2x, 4y + 1) : x ∈ [0, H − 1], y ∈ [0,W − 1] (4.13)

where H = 288 and W = 360 are height and width of Fi.

In the template matching block, pixel values in Fi, kernel values in K and

absolute differences in the SWAD metric are all integers in the range [0,255], and

therefore represented with 8 bits (1 byte). The kernel values are computed offline

and stored in a look-up table for faster access, as they remain constant for each

iteration. Moreover, by setting the blending factor as α = 0.5 = 1/2, it is possible

to compute the template update in (4.1) as:

Ti =
[
Ti−1 + T̂i−1

]
� 1 (4.14)

where the division by 2 is performed by the bitwise right-shift operator�. Using

8-bit integers and bitwise shift operators allows one to optimally exploit the fixed-

point architecture of the DM6437 DSP.

The high resolution digital video output from the PTZ can be accessed over

the network. For display purposes only, an analogue video signal is available

from the EVM’s video-out port. This signal contains the interleaved 4:2:2 YCbCr

version Si of the frame Fi, with the values of the chrominance pixels set to 127.

The interleaved frame Si is therefore a single plane matrix, with size equal to

H × 2W = 288 × 720 pixels. The interleaving process is performed similarly to

the deinterleaving process described above. For every new incoming frame Fi,

only the pixels of Si corresponding to the luminance component are modified and

set equal to Fi, while all the other pixels remains set to 127, as:

Si(x, y) =

{
Fi(x,m), y = 2m+ 1

127, otherwise
(4.15)

where x ∈ [0, H − 1], y ∈ [0, 2W − 1] and m ∈ [0,W − 1]. Four frames from the

video analytics algorithm running on the EVM are shown in Fig. 4.15. Note that

the template Ti−1 is shown on the top-left corner of each video frame, while the

best match T̂i−1 is highlighted by the red box.

Execution time optimisation

After manual profiling and code optimisation, the total running time of the DSP

embedded SWAD-based adaptive template matching target tracking algorithm
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(a) (b)

(c) (d)

Fig. 4.15: Four images from the tracking algorithm running on the EVM.

is 15 ms per frame, giving a processing frame rate comfortably higher than the

real-time requirement of 25− 30 fps. The SWAD matching block with NT = 32

and NS = 50 takes 7 ms. Optimisation for the SWAD matching is achieved by

exploiting the C code “intrinsics”, which are specific functions for the C6000 ar-

chitecture of the DM6437 DSP [137]. Each C-level intrinsic function is mapped

to a single assembly instruction and it executes additions, multiplications and

absolute subtractions on groups of four 8-bit integers. For example, the intrinsic

function MEM4 reads 4 pixel values from memory; SUBABS4 computes the ab-

solute difference between two groups of 4 pixels; and DOTPU4 computes the dot

product between two vectors of 4 pixels. This approach reduces the number of

operations for each row of pixels in the template Ti by a factor of 4. A plain

implementation of the SWAD matching without intrinsics takes 63 ms, so be-

ing 9 times slower than optimised SWAD. This demonstrates that the presented

SWAD-based adaptive template matching algorithm exploits the fixed-point ar-
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chitecture of the DSP on the EVM.

An optimised version of the SAD matching using intrinsic functions takes

5 ms. Nonetheless, even though SWAD is slightly slower than SAD, its better

tracking performance reported in Section 4.4.1 entirely justifies its usage over

conventional SAD. Concerning an implementation of NCC on the DM6437, it

can be said that extra care must be taken to simulate floating point operations,

as for example square root, in integer arithmetic. It takes about 9 ms just to

compute the mean values of the template Ti and of each NT ×NT subregion in

the ROI Ri. Thus it is clear that the execution of a complete implementation of

NCC matching on the DM6437 DSP would definitely take longer than 7 ms, and

therefore NCC would be slower than SWAD.

4.5 Conclusion

This chapter has presented a novel adaptive template matching algorithm for

tracking, based on the minimisation of the Sum of Weighted Absolute Differences.

A Gaussian weighting kernel is used to assign different weights to pixels distant

from the target centroid, as these pixels may experience partial occlusion. The

target template is updated using an IIR filter to adapt to template changes, such

as rescaling and rotation.

To overcome severe and complete occlusion, a novel technique based on a ma-

trix of blending factors has been described, so that separate parts of the template

are updated at different rates and the overall structure of the target template is

significantly preserved.

Despite its simplicity, experimental results have shown the robustness of the

SWAD-based tracker and its higher accuracy with respect to SAD-based track-

ing. Moreover the presented technique for complete occlusion handling allows

the tracker to detect the target as occluded and recover it, after the complete

occlusion is over.

Finally a DSP embedded implementation of the SWAD-based tracker has been

described, in the context of a smart surveillance application. The SWAD-based

tracker is suitable for real-time implementations on devices with low computa-

tional capabilities, as in the case of fixed-point embedded DSP platforms.
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Chapter 5

Improved mean shift tracker

5.1 Introduction

As reported in Section 3.4, a basic assumption of the conventional MS tracker is

that there exists overlaps between detections of the target in consecutive frames.

This condition does not always hold, particularly in the case of fast moving tar-

gets, low frame rate sequences and in occurrence of complete occlusion, such as

crowd scenes, where a target may only be partially visible at random intervals

and in random positions. Many approaches have been proposed in the litera-

ture [105–115, 117–126], to improve the tracking performance of the conventional

MS tracker. However such approaches are not free from drawbacks and are not

generally applicable.

This chapter presents a novel improved MS tracker which incorporates a failure

recovery strategy. The improved MS tracker is simple and fast, and experimental

results show that it can effectively recover a target after complete occlusion or

loss, to successfully track targets in complex scenarios, such as crowd scenes [138].

The presented algorithm can be easily combined with the numerous extensions

for the conventional MS tracker proposed in literature.

The remainder of this chapter is organised as follows. In Section 5.2 an

overview of the novel improved MS tracker is given, while the failure detection

approach is introduced in Section 5.3. Section 5.4 describes the failure recovery

procedure. Details of the tracker initialisation are given in Section 5.5. Exper-

imental results reported in Section 5.6 demonstrate the superiority of the new

tracker, compared to the conventional MS algorithm. Section 5.7 concludes the

chapter.
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Fig. 5.1: Block diagram of the improved MS tracking algorithm.

5.2 Algorithm overview

A block diagram of the proposed tracking algorithm is shown in Fig. 5.1. The

target to track is directly selected in the initial frame F0, in position y0. Then

the initialisation step computes from F0 the target model, represented by the

target histogram Q, and an initial value for a threshold τ , which is the smallest

distance between the target histogram Q and any other object in the frame other

than the target itself.

After the acquisition of a new frame Fi, the algorithm checks if the position

yi−1 of the target in the previous frame Fi−1 is defined, i.e. the target has been

found in the previous frame. Although this check is trivial for i = 1, it is indeed
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necessary when i > 1. In fact, if the target has not been found in Fi−1, the

algorithm proceeds directly to the failure recovery block, to detect the presence

of the target in the current frame Fi. If the position in Fi−1 is defined, a single

step of the conventional MS tracker is executed, which computes the new possible

target position yi in the current frame and the measure of similarity ϕ = d(yi)

between the target model Q and the target candidate found in yi. The distance

ϕ is then compared with the threshold τ computed in the initialisation step.

If ϕ < τ , the correct target is found. Otherwise, if ϕ ≥ τ , one of the three

following cases may have occurred:

1. the target found by the conventional MS tracker is the correct one, but its

appearance has changed, possibly due to light changes or partial occlusion;

2. the correct target has moved substantially from the previous position, so

the conventional MS tracker has lost the target and the returned position

yi belongs to the background;

3. the correct target is completely occluded, i.e. not visible, and yi belongs to

the occluding object.

Therefore, when ϕ ≥ τ , the failure recovery step is executed and it searches

for the correct target in the whole frame Fi. If a candidate is available and it is

ϕ < τ , the target is found and the threshold τ is updated, before proceeding to

the next frame Fi+1. If a candidate is not available or ϕ ≥ τ , the target cannot

be found, possibly due to complete occlusion; therefore the target position for

the current frame remains undefined and the algorithm proceeds directly to the

next frame Fi+1.

From the implementation of the conventional MS tracker reported in Section

3.4, it is possible to isolate a set of operations into a self-contained procedure re-

ferred to as the “MS loop”, as shown in Tab. 5.1. Its inputs are the current frame

Fi, the position yi−1 of the target in the previous frame and the target model

distribution Q. The MS loop also has as input a maximum number of iterations

Mmax for the MS procedure to converge. The outputs of the algorithm are the

position of convergence yi in the current frame of the MS distance minimisation

procedure, and the actual distance d(yi). The MS loop is central to the initialisa-

tion, MS tracking and failure recovery blocks, and it computes the distance d(yi)

between the target model Q and a target candidate P(yi) in position yi, which

is found by following the mean shift vector from an input position yi−1.
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Tab. 5.1: MS loop.

Algorithm 1: MS loop

INPUTS: Fi,yi−1,Q,Mmax

OUTPUT: yi, d(yi)
BODY:

ε = 1,M = 0
yb = yi−1,ya = yb + ε
while (|ya − yb| ≥ ε) AND (M < Mmax) do

ya = yb,M = M + 1
compute distribution P(ya) as in (3.11)
compute weights an as in (3.13)
compute next position yi as in (3.14)
yb = yi

end
compute ρ(yi) as in (3.15)
compute d(yi) as in (3.16)

5.3 Failure detection

In the conventional MS tracker, the only indication of the actual tracking perfor-

mance in each frame Fi is given by the similarity measure ϕ = d(yi) between the

target model distribution Q and the target candidate distribution P(yi). When

Q and P(yi) are similar, the value of ϕ is low, while if Q and P(yi) are different,

ϕ is high. Therefore it is reasonable to consider that a very high value of ϕ occurs

due to occlusion or target loss. Both occlusion and target loss can be treated in

the same way at this stage, as in both cases P(yi) does not correspond to the

correct target and so it is different from Q. Failure in the MS tracker can be de-

tected by defining a threshold τ , so that the target is considered to be occluded

or lost when ϕ is greater than τ , as follows:{
ϕ ≥ τ ⇒ incorrect target

ϕ < τ ⇒ correct target
(5.1)

For every new frame Fi, starting from the target position yi−1 in the previous

frame and its kernel size si−1 = [hi−1, wi−1], the MS loop is run three times, with

three different values of kernel size s, namely (i) s = si−1, (ii) s = (1 +α)si−1 and

(iii) s = (1−α)si−1, as suggested in [11]. This is to deal with possible changes in

scale of the target, where α is a target rescaling percentage with typical value of

α = 0.1. Of these three executions, the one that returns the minimum distance

ϕ = d(yi) is chosen. Then ϕ is compared with the threshold τ , as in (5.1). If
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ϕ < τ , the position yi is retained and used as starting point in the next frame

Fi+1. If ϕ ≥ τ , the failure recovery procedure is run to detect whether the high

value of ϕ is due to either target loss or occlusion.

The initial value for τ is computed when the tracker is first initialised, as

described in Section 5.5, and is based on the characteristics of the whole image

with respect to the target colour distribution Q. Subsequently the threshold τ

is updated every time the failure recovery procedure is run, to take into account

possible new objects within the frame, with a colour distribution similar to the

target histogram, as explained in Section 5.4.

The failure recovery procedure returns the position om of the minimum dis-

tance ϕ = d(om) from Q within the whole frame Fi; it also returns a possible

update value τ ′ for the threshold τ . The distance ϕ is again compared to τ as

in (5.1). If ϕ ≥ τ , a good match for Q cannot be found and the target is con-

sidered to be occluded. In this case, no position is defined for the target in the

current frame and consequently the improved MS tracker will start directly from

the failure recovery procedure in the next frame Fi+1.

If ϕ < τ , om is considered to be the target position in the current frame and

it is used as starting point yi+1 = om for the improved MS in the next frame

Fi+1. Moreover, the threshold τ is updated as follows:

τ = min(τ, τ ′) (5.2)

5.4 Failure recovery

In the first step of the failure recovery procedure in the improved MS tracker, the

current frame Fi is segmented based on the colour range of the target. Since the

colour distribution Q of the target is available, it is possible to extract for each

colour plane an associated colour range. This procedure is explained in detail in

Section 5.5. Such colour ranges are computed only once when the target is first

selected. For an RGB representation, the colour ranges are [R1, R2], [G1, G2] and

[B1, B2]. The 3-dimensional values in each pixel xn in Fi are compared with the

aforementioned colour ranges, to produce a binary mask T defined as:

T(xn) =

{
1, Fi(xn) ∈ Ψ

0, otherwise
(5.3)

where Ψ = [R1, R2]× [G1, G2]× [B1, B2]. In T, regions with less than θ pixels are

discarded. This operation helps prevent noise elements in T from being considered
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as candidate restarting points for the tracker. Although the exact value for θ

is application-dependent, θ must not be too high, otherwise small targets might

never be found by the failure recovery procedure. As general guideline, 1 < θ < 10

has been found experimentally to provide acceptable results. For the L remaining

regions in T, their centroids cl with l ∈ [1, L] are computed. Then the MS loop

is executed for each of these centroids, yielding L output points (modes) ol, with

associated distances d(ol). The L points ol are the candidate restarting points for

the improved MS tracker. The point om ∈ {ol}l=1..L with the associated smallest

distance ϕ = d(om) is retained as the possible restarting point for the tracker.

From the L − 1 remaining points {ol}l=1..L − {om}, the smallest distance

d(os) is retained as the new possible threshold τ ′, i.e. τ ′ = d(os) with the point

os ∈ {ol}l=1..L − {om} satisfying the condition

|om − os| ≥ 2|s| (5.4)

and s is the size of the kernel used in the last correct detection. The condition in

(5.4) prevents the threshold from being updated with d(os), and os belonging to

the target. Updating the threshold as in (5.2) defines τ as the separation value

between the highest value of d(·) for the correct target, and the smallest value

of d(·) for the wrong target, i.e. for a generic background point yb. In this way

the conditions τ ≤ d(yb) is always satisfied for every point yb in the frame Fi

not belonging to the target, so that tracking failure can be reliably detected as

described in Section 5.3. If L = 0, ϕ and τ ′ are both set equal to 1.

The failure recovery procedure explained above allows the improved MS track-

er to find the target after complete occlusion or target loss. Since the MS loop

converges to the mode of the estimated density function of a given set of points,

the proposed failure recovery procedure converges, for a set of points in Fi around

the centroid cl, to the local mode ol of the estimated density function.

In Fig. 5.2, an example of failure recovery is illustrated, with both frames Fi

and binary masks T. The target is the blue ball selected in Fig. 5.2(a). The

ball moves towards the centre of the FOV and it experiences significant partial

occlusion in Fig. 5.2(c), while in Fig. 5.2(d) the ball is completely hidden behind

the jar in the centre of the frame and no target is detected. In Fig. 5.2(e), the ball

is visible again and correctly detected, so normal target tracking is carried out

in the next frame (Fig. 5.2(f)). In the binary mask of Fig. 5.2(e), the restarting

point for the tracker after occlusion is marked with a red X.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.2: Failure recovery: sequence frames with associated binary masks illustrated
underneath. (a) Selected target; (b) target tracking; (c)-(d) target experiencing occlu-
sion; (e) target recovery, with candidate restarting point selected in the corresponding
binary mask; (f) target tracking after complete occlusion.

5.5 Tracker initialisation

When the tracker is first initialised in frame Fi|i=0, the colour distribution Q

of the selected target with initial position y0 and size s0, as illustrated in Fig.

5.3(a), is computed from (3.7), along with an initial value for the threshold τ and

the target colour ranges [R1, R2], [G1, G2] and [B1, B2] introduced in Section 5.4.

Such colour ranges are computed as follows.

In an RGB representation, image F0 has three colour planes and the amplitude
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of a pixel in each plane is in the range [0, A−1]. If β is the number of bins for each

dimension in the colour histogram Q, the quantised version I of F0 is computed

as:

I =

⌊
F0

∆

⌋
(5.5)

with the bin amplitude ∆ defined as:

∆ =

⌊
A

β

⌋
(5.6)

From the quantised colour image I, the R, G and B planes are indicated with

Ir, Ig and Ib respectively. From Q, the 3-dimensional index corresponding to the

maximum qrgb is computed as:

[rm, gm, bm] = arg max
r,g,b∈[0,β−1]

(qrgb) (5.7)

The computation of the colour ranges [R1, R2], [G1, G2] and [B1, B2] is similar,

so for simplicity only the computation of [R1, R2] is described here. The N target

pixels xn are indicated with:

X = [x0, · · · ,xN−1] (5.8)

and Ir(X) represents the values of the N pixels xn in Ir. The standard deviation

σr of all the target pixels X in Ir is:

σr = stdev(Ir(X)) (5.9)

The value of σr is used as an indication for colour range [R1, R2] centred

around rm. From σr, the coefficient ωr computed as:

ωr = max

(⌊
σr − 1

2

⌋
, 1

)
(5.10)

is roughly half of the standard deviation σr and at least equal to 1. This coefficient

is used to compute R1 and R2 as follows:

R1 = max(0, (rm − ωr)∆)

R2 = min(A− 1, (rm + ωr + 1)∆− 1) (5.11)

The coefficient ωr defines the number of bins in the histogram Q, to the right and

to the left of rm, to compute the colour range [R1, R2]. The values G1, G2, B1

66



Ch.5 Improved mean shift tracker

F0

(a) (b)

B

G

B−G histogram

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(c)

B

R

B−R histogram

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(d)

G

R

G−R histogram

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

(e)

Fig. 5.3: Tracker initialisation: (a) initial target selection in F0; (b) selection of points
ol to compute the initial value of τ ; (c) B-G histogram of the selected target; (d) B-R
target histogram; (e) G-R target histogram.

and B2 are computed using Ig and Ib instead of Ir in (5.9). In Fig. 5.3(c), 5.3(d)

and 5.3(e) the colour ranges quantised with β = 16 for the target selected in Fig.
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5.3(a) are illustrated: the target model Q is represented as three 2D histograms,

while the set of three 2D colour ranges [B1, B2]× [G1, G2], [B1, B2]× [R1, R2] and

[G1, G2] × [R1, R2] are represented by the white boxes in Fig. 5.3(c), 5.3(d) and

5.3(e) respectively

The initial value of τ is obtained in a similar fashion to the process of obtaining

the smallest distance ϕ described in Section 5.4. With the target colour ranges

computed as described above, the image F0 may be segmented as in (5.3), wherein

L centroids cl of regions with at least θ pixels are obtained in the binary mask

T. The L candidate points ol are computed from cl using the MS loop and are

illustrated in Fig. 5.3(b). The smallest distance ϕ = d(om), for which:

|om − y0| ≥ 2|s0| (5.12)

is set as the initial value for τ , i.e. τ = ϕ. In (5.12), y0 and s0 are respectively

the initial centroid and size of the target.

5.6 Experimental results

To evaluate the performance of the improved MS tracker presented in this chapter,

representative tests have been carried out. The video data used for this include:

• a low frame rate sequence recorded in an office environment with an IP

camera;

• the Table Tennis test sequence [139];

• two sequences from the PETS2009 dataset for crowded environments [131].

The improved MS tracker is implemented in Maltab, with both RGB and YCbCr

colour representations. For RGB, it is β = 32, while for YCbCr only the chromi-

nance components are used, with β = 64. The computer used to run the experi-

ments is an Intel Core 2 Quad CPU at 3GHz, with 3.00GB of RAM.

First, both conventional MS and improved MS have been tested on a short

low frame rate sequence recorded in an office environment, illustrated in Fig. 5.4

and 5.5. The target in the sequence is the person in red highlighted in Fig. 5.4(a)

and 5.5(a). In this sequence, as in all the other ones illustrated in this section,

the ground truth is represented by the green track, while tracker result is shown

in red. As the frame rate is low, the target displacement in consecutive frames

is considerable, so consecutive target detections are outside of the MS basin of

attraction. As expected, the conventional MS loses the target (Fig. 5.4), while
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Fig. 5.4: Conventional MS results for low frame rate indoor video sequence. In each
image, the green track is the ground truth, while the red one is the tracker result.

the improved MS can correctly track the target in every frame (Fig. 5.5). The

absolute error for both trackers is illustrated in the graph in Fig. 5.6, where it

can be seen that the error in the conventional MS diverges, while it is low for the

improved MS.
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Fig. 5.5: Improved MS results for low frame rate indoor video sequence. In each
image, the green track is the ground truth, while the red one is the tracker result.

A similar behaviour for both trackers is obtained in the Table Tennis sequence

illustrated in Fig. 5.7 and 5.8, where the target – the white ball – has large

displacement from frame to frame. As it can be seen, the conventional MS soon

loses the target (Fig. 5.7(b)), while the improved MS correctly follows the target
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Fig. 5.6: Absolute error for low frame rate indoor video sequence.

throughout the whole sequence (Fig. 5.8). The absolute error for both trackers is

illustrated in Fig. 5.9, with the error for the conventional MS being significantly

higher than for the improved MS. In particular, the “periodic” behaviour of the

error for the conventional MS is due to the oscillating movement of the target in

the sequence: the target position returned by the conventional MS algorithm is

incorrect, as the target has been lost, and it does not move significantly from the

initial target position; the real target instead moves up and down and therefore

alternatively reducing and increasing its gap from the tracker incorrect position.

To assess the performance of the improved MS in complete occlusion scenarios,

both conventional MS and improved MS have been tested on two sequences from

the PETS2009 dataset, namely (i) S3-Multiple flow-time 14.46-001 and (ii) S3-

Multiple flow-time 14.52-001. Both sequences show a crowd of people moving

from right to left in the camera FOV. In both sequences the target is the woman

with the pink backpack, as highlighted in Fig. A.14(a), A.15(a), A.16(a) and

A.17(a) in Appendix A. Throughout the sequences, the target undergoes severe

and complete occlusion, due to the other people in the crowd. It can be seen

that the conventional MS tracker soon loses the target in both sequences (Fig.

A.14(b) and A.16(b)), while the improved MS can correctly track the target in

both sequences, by successfully recovering the target after complete occlusion

(Fig. A.15(d) and A.17(d)). The absolute error graphs are reported in Fig. A.18

and A.19, in which the error for the conventional MS again diverges, while it is

significantly lower for the improved MS.

Tab. 5.2 reports the mean error µe and standard deviation σe for both conven-

tional MS and improved MS, with respect to the aforementioned four sequences.
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(a) frame #1 (b) frame #8

(c) frame #15 (d) frame #23

(e) frame #31 (f) frame #38

Fig. 5.7: Conventional MS results for Table Tennis sequence. In each image, the green
track is the ground truth, while the red one is the tracker result.

µe and σe are considerably lower for the improved MS in all four sequences,

demonstrating its better tracking performance in the case of occlusion and fast

moving targets.

In terms of computational workload, the average processing rates of the im-

proved MS tracker is approximately 14 fps for the two PETS2009 sequences, with

768×576 resolution, and 30 fps for the other sequences, with 352×240 resolution

for the Table Tennis sequence and 320×240 for the indoor sequence. This is to be
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(a) frame #1 (b) frame #8

(c) frame #15 (d) frame #23

(e) frame #31 (f) frame #38

Fig. 5.8: Improved MS results for Table Tennis sequence. In each image, the green
track is the ground truth, while the red one is the tracker result.

compared to an average processing rate of approximately 16 fps for the PETS2009

sequences and 32 fps for the other two, for the conventional MS tracker. It is

clear that, at the cost of a small increase in processing time, the improved MS

tracker is able to recover the target after complete occlusion and therefore it has

better tracking performance.

The processing time in the improved MS tracker depends on the number of

candidate points required to be evaluated in order to restart the algorithm, as
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Fig. 5.9: Absolute error for Table Tennis sequence.

Tab. 5.2: Mean value µe and standard deviation σe of absolute error ei in pixels, for
conventional MS and improved MS.

MS Improved MS

µe σe µe σe

Indoor sequence 143.30 101.19 12.70 17.67
Table Tennis sequence 243.24 138.80 6.23 5.80
PETS2009 S3-Multiple flow-time 14.46-001 28.18 28.62 2.09 0.88
PETS2009 S3-Multiple flow-time 14.52-001 150.89 95.13 8.08 7.21

explained in Section 5.4. The maximum number of iterations for a single execu-

tion of the MS loop can be controlled by setting the parameter Mmax. Therefore,

for a high number of candidate points, Mmax can be lowered, to achieve a prede-

fined processing frame rate. It must be noticed that the proposed algorithm is

currently implemented in Matlab, so a C implementation of the same algorithm

would give significantly higher processing rates. However a frame rate of 14 fps

is already acceptable for many video surveillance applications.

5.7 Conclusion

In this chapter an improved MS tracker with failure recovery strategy after com-

plete occlusion has been presented. Experimental results show that the proposed

algorithm can track targets in complex scenarios in a fast and effective fashion.

The improved MS tracker can successfully recover the target after complete oc-

clusion and target loss. The proposed algorithm can be easily integrated with
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the numerous extensions to the conventional MS tracker, to incorporate further

tracking features in the target model.
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Chapter 6

Adaptive algorithm for

abandoned/removed object

detection

6.1 Introduction

Although the methods proposed in the literature and reported in Section 2.5

perform quite well in detecting moving and static objects, they are not really

designed to be able to trigger alerts within a time interval defined by the user,

after new abandoned and removed object events have occurred. It is actually the

background model updating procedure that dictates when the alerts are triggered.

This chapter presents a novel algorithm for abandoned and removed object

detection in real-time, in the context of a reactive smart surveillance system,

which notifies the occurrence of such events of interest to registered users, within

seconds, through SMS alerts.

In the presented algorithm, a detection time can be directly specified and the

background is “healed” only after an abandoned or removed object event has

been detected. Moreover the actual detection time and the background model

updating rate are computed in an adaptive way with respect to the algorithm

frame processing rate, so that even on different machines the detection time is

generally the same, in contrast with other algorithms, where either the fps or the

background updating rate is considered to be fixed. The algorithm includes also

a novel technique to classify detected static regions into abandoned or removed

objects, based on the gradient projections in the object boundary pixels [140].

The remainder of this chapter is organised as follows. Section 6.2 describes

the novel algorithm for abandoned and removed object detection, while Section
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6.3 describes the reactive smart surveillance system, which includes the afore-

mentioned detection algorithm. Experimental results are reported in Section 6.4,

while Section 6.5 concludes the chapter.

6.2 Adaptive detection algorithm

6.2.1 Acquisition and object extraction

The images acquired by the proposed algorithm are initially rescaled to 320×240

pixels for faster processing and then converted to grey scale. The algorithm

maintains an adaptive model of the background Bn and, for each new frame

In, the absolute difference Dn = |In − Bn| is computed. For both In and Bn,

pixel values are integers in the range [0, 255]. If the noise for each pixel in the

acquired image is assumed to be Gaussian and Bn is computed as exponentially

weighted moving average, as explained in Section 6.2.4, the difference image Dn

is thresholded to compute a binary mask Mn expressed as:

Mn =

{
1, Dn > 4

√
Vn

0, otherwise
(6.1)

where Vn is a 320 × 240 matrix containing the exponentially weighted mov-

ing variance of the previous n difference images, as described in Section 6.2.4.

Starting from the “three-sigma” rule, which states that in a normal distribution

99.73% of the samples fall within three standard deviations, the value 4 is cho-

sen as coefficient for Vn in (6.1), since four standard deviations contain 99.994%

of the samples. Therefore, if the noise in the acquired image is supposed to be

Gaussian, all the pixels for which Mn is 1 are very likely to belong to new object

regions in the image. This approach allows to automatically compute an appro-

priate threshold value for each pixel in Dn, based on real statistics of the video

sequence.

Morphological opening and closing are applied to Mn respectively to reduce

noise and fill gaps. Regions with less than ϑ pixels are then removed and holes

are filled. The specific value of ϑ depends on the size in pixels of the smallest

object to detect. In the binary mask Mn, remaining blobs bi, with i ∈ [0, I − 1],

are groups of Ri connected pixels and they can result from:

1. new real objects in the scene;

2. portions of background left uncovered due to objects being removed;
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3. false positives (FP), such as light changes and unconnected cast shadows.

To distinguish between true positives (TP), i.e. new and removed objects, and

false ones, each blob region in In is compared with the corresponding region in

Bn. If pr is a 2D index representing the rth pixel in blob bi, with r ∈ [0, Ri − 1],

the similarity between all pixels in In and Bn belonging to blob bi is computed

as:

ρi =

Ri−1∑
r=0

In(pr)Bn(pr)√√√√Ri−1∑
r=0

I2n(pr)

Ri−1∑
r=0

B2
n(pr)

(6.2)

where ρi is the normalised cross-coefficient at lag 0. As suggested in [141], NCC

is invariant to linear and affine illumination changes, so that it can compare

the object texture for blob bi, in In(pr) and Bn(pr). Moreover, since only static

objects are to be detected, the comparison is computed only for lag 0, i.e. with no

horizontal or vertical NCC displacement. For true positives, In(pr) and Bn(pr)

are very dissimilar and ρi is low. For false positives, frame and background are

similar and ρi is high. Therefore ρi is compared to a threshold ϕ: if ρi < ϕ, bi is

a true positive; if ρi ≥ ϕ, bi is a false positive. At this stage, false positives are

discarded, while TP regions ok with k ∈ K ⊆ [0, I − 1] are further analysed. The

pixels pr of a discarded blob are removed from the binary mask Mn, i.e. they

are set to 0, as:

Mn(pr) =

{
Mn(pr), if ρi ≥ ϕ

0, otherwise
(6.3)

A visual example of the object extraction process is illustrated in Fig. 6.1,

where Fig. 6.1(a) shows the background Bn and Fig. 6.1(b) shows the acquired

frame In, with an abandoned object in it – a camera – and an object removed

– the black box – with respect to Bn. Fig. 6.1(c) shows the difference image

Dn. Fig. 6.1(d) shows the “threshold” image 4
√

Vn as in (6.1), while the binary

mask obtained by thresholding Dn with 4
√

Vn is illustrated in Fig. 6.1(e). The

detected abandoned and removed objects are correctly highlighted in Fig. 6.1(f).

6.2.2 Event detection

To verify whether the kth true positive ok detected in Section 6.2.1 is a static or

a moving object, a list of previously detected objects is maintained. Each list

entry ej refers to a detected object oj and it contains:
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(a) (b) (c)

(d) (e) (f)

Fig. 6.1: Object extraction process: (a) background Bn; (b) new frame In; (c) dif-
ference image Dn; (d) “threshold” image 4

√
Vn; (e) binary mask Mn; (f) abandoned

object (camera) and removed object (box) detected.

• a feature vector fj = [βj, ζj, µj, σj];

• the object centroid coordinates cj;

• a frame counter ψj;

• a time-to-live counter νj.

The elements in the feature vector fj are:

• βj – ratio between the number of pixels in oj and the total number of pixels

in the frame;

• ζj – ratio between the perimeter length λj and the blob area;

• µj – mean value normalised by its possible maximum number 255;

• σj – standard deviation normalised by 255.

The frame counter ψj indicates in how many frames object oj has been detected,

while the time-to-live counter νj records the number of frames for which oj should

be retained in the list.

Each detected object ok is compared to every entry ej in the object list. If ck

and fk are respectively the centroid coordinates and feature vector of object ok,
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a match for ok is found in the list if ck and cj are within a neighbourhood, and

if fk and fj are close enough in the feature space, as defined in (6.4):

|ck − cj| ≤ η AND |fk − fj| ≤ δ ⇒ match (6.4)

If a match is not found, a new entry ek in the object list is created for ok.

The initial value of the frame counter ψk for ek is set to zero. For the time-to-live

counter νk, if the user defines a minimum detection time of τd seconds, a detection

time limit of τlim = 2τd seconds is automatically identified and the time-to-live

counter νk is set to νk = τlim× fpsn−1, where fpsn−1 is the current frame rate. If

a match is found, then ok ≡ oj and the frame counter ψj associated with entry

ej is incremented by 1. This counter records the number of frames in which oj

has been found. The length of time for which oj has been detected as static is

computed as τs = ψj/fpsn−1. An event is triggered if τs ≥ τd. If bj is the pixel

blob in Mn corresponding to object oj, bj is removed from Mn and copied to

Mstatic, which is a binary mask containing blobs of static objects. Finally entry

ej is removed from the object list.

The time-to-live counter νj ensures that detected objects are not retained in

the object list for too long. This prevents moving objects from being considered

static after a long time. For example, if an object in the scene had a periodic

movement and at regular intervals it was in position p0, a blob associated with

this object would also be detected in position p0. After a sufficient number of

detections, even though the object is clearly moving, the frame counter ψ0 would

reach the detection condition ψ0/fps0 > τd, and the moving object would be

marked as static. This situation has to be avoided and therefore, when the time-

to-live counter νj reaches zero, the entry associated with the object is removed

from the object list.

6.2.3 Abandoned and removed object detection

To determine whether the object oj that triggered the event is actually a new

object in the scene or an object removed, the boundary of the object in In, Bn

and Mstatic is analysed. For this, the horizontal and vertical Sobel 3×3 operators

Sx and Sy [38] are applied to In, Bn and Mstatic as:

Ix = In ⊗ Sx, Iy = In ⊗ Sy

Bx = Bn ⊗ Sx, By = Bn ⊗ Sy

Mx = Mstatic ⊗ Sx, My = Mstatic ⊗ Sy

(6.5)
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where Ix and Iy are the horizontal and vertical gradient components for In; Bx

and By are the gradient components for Bn; and Mx and My are the gradient

components for the mask Mstatic. In (6.5), the symbol ⊗ represents the 2D

convolution operator. For each boundary pixel pb of object oj, with b ∈ [0, λj−1],

the similarity measures m1(pb) and m2(pb) are computed as:

m1(pb) =
∣∣∣[Ix(pb), Iy(pb)] [Mx(pb),My(pb)]

T
∣∣∣

m2(pb) =
∣∣∣[Bx(pb),By(pb)] [Mx(pb),My(pb)]

T
∣∣∣ (6.6)

In (6.6), m1(pb) and m2(pb) are the absolute values of the dot products be-

tween the gradients of In and Mstatic, and the gradients of Bn and Mstatic, com-

puted in pixel pb. Also, m1(pb) and m2(pb) are the projections of the gradients in

In and Bn over the gradient in Mstatic. Therefore, to decide if oj is an abandoned

or a removed object, two counters γ1 and γ2 are defined: for a given boundary

pixel pb, γ1 is incremented if m1(pb) > m2(pb), otherwise γ2 is incremented.

Having examined all the border pixels, oj is classified as an abandoned object if

γ1 > γ2, while if γ2 > γ1, oj is a removed object. It is easy to appreciate how, in

the proposed method, the classification between abandoned and removed objects

is based solely on the characteristics of the image, and no threshold needs to be

set arbitrarily as in other works [70, 91]. Moreover, a percentage of confidence ξj

for this classification can be computed as:

ξj =
max (γ1, γ2)

λj
(6.7)

A visual example for the proposed approach is illustrated in Fig. 6.2, where

the background Bn is a 13×13 matrix of random values in the range [0,255] (Fig.

6.2(a)). In the new frame In (Fig. 6.2(b)), the abandoned object is represented

by the white square in the middle. The border projections computed as in (6.5)

are illustrated in Fig. 6.2(d), while the values of m1 and m2 for each border pixel

are plotted in Fig. 6.2(e). It can be seen that it is m1 > m2 in 20 border pixels

out of 25; therefore the white blob in the binary mask Mstatic illustrated in Fig.

6.2(c) is correctly classified as an abandoned object, with ξj = 20/25 = 80%.

Similarly, an example of object removal is illustrated in Fig. 6.3. In this case

the background image Bn is again a matrix of random value, with the object

represented by the white square in the middle (Fig. 6.3(a)). In the new frame In

(Fig. 6.3(b)), the object has been removed. By computing the border projections

(Fig. 6.3(d)) and analysing the graph in Fig. 6.3(e), it can be seen that it is
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Fig. 6.2: Abandoned object detection case: (a) background image Bn; (b) frame In,
with the new object represented by the white square in the middle; (c) binary mask
Mstatic; (d) boundary pixel projections, with [Mx,My] illustrated in red, [Ix, Iy] in
green, and [Bx,By] in blue; (e) plot of m1 and m2 over the object border. In 20 border
pixels out of 25, it is m1 > m2; therefore the white blob in (c) is correctly classified as
an abandoned object.

m2 > m1 in 24 pixels out of 25; therefore the detected object is classified as

removed, with ξj = 24/25 = 96%.

6.2.4 Object list and background update

Once all the detected objects ok have been examined, the object list is updated:

for each entry ej in the list, the time-to-live counter νj is decreased by 1. If νj

reaches zero, the entry ej is discarded. The frame rate fpsn for the nth frame

is computed. For this purpose, the processing time τn for the nth frame is saved

as the first element in a queue containing the processing times τq of the last Q
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Fig. 6.3: Removed object detection case: (a) background image Bn with the object
represented by the white square in the middle; (b) frame In; (c) binary mask Mstatic;
(d) boundary pixel projections, with [Mx,My] illustrated in red, [Ix, Iy] in green, and
[Bx,By] in blue; (e) plot of m1 and m2 over the object border, with m2 > m1 in 20
border pixels out of 25. The detected object is correctly classified as removed.

frames, assuming a maximum achievable frame rate of Q fps. Frame rate fpsn is

computed as in (6.8).

fpsn = arg min
b∈[0,Q−1]

(
b−1∑
q=0

tq ≥ 1

)
(6.8)

The final step updates the background model Bn+1 and threshold matrix Vn+1
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as follows:

Bn+1 =


In, where Mstatic = 1

Bn, where Mn = 1

(1− αn)Bn + αnIn, otherwise

(6.9)

Vn+1 =


1, where Mstatic = 1

Vn, where Mn = 1

max(1,Z), otherwise

(6.10)

Z = (1− αn) Vn + αnD
2
n (6.11)

The equations (6.9)–(6.11) indicate how the background is updated depending

on whether a portion of the acquired image is a new static object (Mstatic = 1), a

new moving region in the scene (Mn = 1), or just background (otherwise). The

coefficient αn is an adaptive weighting factor empirically defined as:

αn =
1

fpsn + 1
(6.12)

The background Bn is updated using the weighting factor αn, which in turn

is updated as in (6.12) using the new frame processing rate of the algorithm from

(6.8). In this way the updating rate for the background is directly related to the

execution speed of the algorithm. For a fast execution, the acquisition frame rate

is high and so the background updating rate must be low. For a slow execution,

the acquisition frame rate is also slow, so the background needs to be updated

more quickly. In the proposed algorithm, both event detection and background

update adapt their “speed” accordingly to the current processing frame rate as

computed in (6.8). Therefore, the complete algorithm is essentially independent

of the computational capability of the machine on which it is running. Also,

multiple instances of the same algorithm can simultaneously run on the same

computer for different cameras.

6.3 Reactive smart surveillance system

A block diagram of the overall reactive smart surveillance system is depicted in

Fig. 6.4. With respect to this, the proposed detection algorithm described in

Section 6.2 is implemented in the camera processors, which can run on single or

multiple machines, at different frame rates. The proposed system is designed to

sit on top of any pre-existing video surveillance system, and enhance it with video
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Fig. 6.4: Overview of the reactive smart surveillance system described in Section
6.3. The detection algorithm presented in Section 6.2 is implemented in the camera
processors.

analytic functionalities, such as automatic detection of abandoned and removed

objects. The proposed system can also be used as a standalone system, since the

video feeds are acquired directly from the cameras and independently from the

video recorder. The main system components are: one or more camera processors,

which analyse the input video feeds; a web server with database, to store details

of the detected events; a helper application, which saves event data received from

the camera processors, into the database. The helper application also sends SMS

alerts to registered users.

The subdivision of the camera processors and helper application ensures de-

coupling between video analytics and data management. In a typical scenario, an

event is detected by the camera processors and the event data is sent to the helper

application, which saves it into the database and notifies the registered user. By

accessing the web-based user interface illustrated in Fig. 6.5, the user can review

the event details and its short video clip, to take immediate counteractions. The

system ensures modularity, since all the components are loosely coupled through

TCP/IP communication; scalability, as multiple instances of camera processors

and helper application can run simultaneously. It can also be extended since new

video analytics algorithms can be added to the systems as new camera processor

implementations. Finally it is a cost effective system, as all the system soft-

ware can run on single or multiple desktop computers with no special hardware

requirements.

85



Ch.6 Adaptive algorithm for abandoned/removed object detection

Fig. 6.5: Web-based user interface for the reactive system described in Section 6.3.

Fig. 6.6: Four frames from a removed object event video clip.

6.3.1 Event notification

Once all the event details are available, the camera processors create a low frame

rate (2 − 5 fps) video clip of the past τlim seconds and asynchronously send it

to the helper application described in Section 6.3, along with event details, such

as time, date, camera ID and event type. Four frames of the recorded video of

a removed object event are shown in Fig. 6.6. The helper application saves the

event data in the web server database and issues an SMS alert to a list of pre-

registered users, who can access the remote interface, to review event details and

short video clip in real-time.
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Fig. 6.7: Four frames from a door access event video clip.

6.3.2 System extension

In [142], the proposed reactive smart surveillance system is extended to incorpo-

rate door access event detection. Such a system can automatically detect whether

a person enters a room and it can control a high resolution PTZ camera to zoom

in on the person’s face. As in the case of the abandoned and removed object

detection algorithm in Section 6.2, also in the system described in [142] a low

frame rate video clip of the door access event is recorded and a notification is

issued to the user. More details about the door access event detection algorithm

and the overall system can be found in [136, 142]. Four frames of the recorded

video of a door access event are shown in Fig. 6.7.

6.4 Experimental results

In the current implementation, two Arecont Vision AV1300 IP cameras are used

as acquisition devices. The video analytics part of the camera processors is im-

plemented in Matlab.

6.4.1 Execution speed

The frame rate for the camera processor running on an Intel Core 2 Duo at 2.99

GHz is 11 fps, roughly giving a total processing time of τtotal = 91 ms for each

frame. After profiling the Matlab code, it was seen that the operation to read a

new frame from the IP camera over the Ethernet takes about τimread = 53 ms,

which is 58% of the total processing time for each frame. This means that the pure

processing time of the algorithm is τpure = τtotal− τimread = 38 ms. Therefore, the

algorithm is able to work in real-time and a C implementation can decrease τpure

dramatically. Moreover there are two methods to reduce τimread: (i) using different

acquisition devices, and (ii) directly connecting the IP cameras to the machine on

which the camera processors are running. These considerations suggest that τpure

and τimread could be simultaneously reduced by an implementation of the same
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(a) (b)

(c) (d)

Fig. 6.8: Frames from sequences from (a) CAVIAR, (b) PETS2006 and (c) AVSS2007
datasets. In (d), it is illustrated the binary mask used for AVSS2007 sequences to select
the platform has region of interest.

algorithm on a dedicated multimedia DSP, directly connected to the IP cameras.

6.4.2 Detection rate

For the detection capabilities of the system, in an office-like setup, true positive

rate is 95%, while the false positive rate is 10%. The proposed system has also

been tested on the CAVIAR dataset for left objects [143], on the subway sequences

in the AVSS2007 dataset [85], and on the PETS2006 dataset for left-luggage

scenarios [83]. Visual results are illustrated in Fig. 6.8.

In the CAVIAR sequences (Fig. 6.8(a)) “LeftBag”, “LeftBag PickedUp”, the

algorithm has correctly detected the object of interest, as “abandoned” first,

and then as “removed”. In “LeftBox”, the object has been correctly detected

as “abandoned”. In the “LeftBag AtChair” sequence, the object has mistak-
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enly been detected as “removed” in both cases. However, the confidence for the

incorrect case was only of 58%. No false positives have been detected.

For the PETS2006 dataset (Fig. 6.8(b)), camera 3 sequences for S1, S2, S5,

S6 and S7 have been used. For all the sequences, the left item has been detected

as “abandoned”. Moreover, in S2, removed object events are also triggered for

the purple bins initially included in the background, and then removed from the

scene.

In the AVSS2007 abandoned baggage scenario (Fig. 6.8(c)), the left item

has been correctly detected as “abandoned” in all the three sequences (“AVSS

AB Easy”, “AVSS AB Medium” and “AVSS AB Hard”). However, since no

person classifier is implemented at this stage in the proposed algorithm, some

false positives are detected for people standing or sitting motionlessly for a long

period of time. In these three sequences, a binary mask as illustrated in Fig.

6.8(d) has been used to select a region of interest, i.e. the platform, and avoid

false positives from the trains in the top left corner of the scene.

For PETS2006 and AVSS2007, the detection time has been set to 30 seconds,

while for CAVIAR it has been set to 5 seconds, which is also the default value

for the algorithm.

6.4.3 Abandoned and removed classification

For all the true positives, the rate of correct decision between an object be-

ing abandoned or removed is approximately 85%. To prove that the proposed

method for abandoned and removed object classification works also with textured

backgrounds, the images of a cup and of its non-homogeneous background are

analysed. Using the method described in Section 6.2.3, the cup in Fig. 6.9(a) is

classified as an abandoned object, with a confidence of ξj = 64% computed as in

(6.7). The output of the segmentation process is shown in Fig. 6.9(c). The syn-

thetic image shown in Fig. 6.9(d) is created by overlapping the detected object

from Fig. 6.9(c) on the highly textured background shown in Fig. 6.9(e). The

result of the segmentation process for the synthetic image is shown in Fig. 6.9(f).

In this case the proposed method has correctly classified the detected object as

abandoned, with a confidence of ξj = 57%.

6.4.4 Discussion

The proposed algorithm for real-time detection of abandoned and removed ob-

jects has been proven to work in real scenarios and on standard test sequences.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.9: Abandoned and removed object classification: (a) abandoned object image;
(b) background; (c) detected object; (d) synthetic image; (e) synthetic background; (f)
detected object in the synthetic image.

The novelty of the algorithm is not in the detection rate, as it is similar to other

algorithms in literature, but rather in its computational efficiency and adaptive

behaviour. The algorithm works on machines with different computational capa-

bilities, where the detection time and background update rate are independent

from the underlying architecture. This characteristic allows the integration of

the presented algorithm in a reactive real-time surveillance system, for quick de-

tection and immediate notification of events of interest to registered users, as

described in Section 6.3.

6.5 Conclusion

This chapter has presented a novel adaptive algorithm for automatic detection of

abandoned and removed objects, in the context of a reactive smart surveillance

system. A detection time can be directly specified by the user and the background

is “healed” only after an abandoned or removed object event has been detected.

The actual detection time and the background model updating rate are computed

adaptively with respect to the algorithm frame processing rate, so that even on

different machines the detection time is generally the same. A novel technique

based on the gradient projections in the object boundary pixels has also been
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described, to correctly classify detected static objects as either abandoned or

removed.

The overall system makes extensive use of IP technologies, to ensure com-

munication among components and remote availability of the system resources,

such as IP cameras, event database and user front-end. Despite its simplicity, the

proposed algorithm performs well and it is suitable for real-time detection.

91



Ch.7 Decentralised multi-camera tracking system

Chapter 7

Decentralised multi-camera

tracking system

7.1 Introduction

In the context of multi-camera systems, spatio-temporal information extracted

from a set of semantically clustered cameras can be fused together and exploited,

to achieve a better understanding of the surrounding environment and monitor

areas wider than a single camera FOV [3]. Each sensor can be associated with

one or more VA processing tasks [32, 144], to distribute the surveillance work-

load among cameras and decentralise it towards the edges of the network. This

approach produces a collaborative, or co-operative, network of smart surveillance

sensors [145–147]. To fully exploit the information gathered by a smart sensor

network, both topological and geographical layouts of the network are required.

While the former defines which cameras have overlapping FOVs, the latter spec-

ifies the position in space of each sensor, with respect to a common coordinate

frame.

From the network topology it is possible to know, at any time, which other

cameras should be “seeing” a specific target in the FOV of a given camera. If

overlapping cameras can simultaneously detect the same target, information from

multiple FOVs can be merged together to obtain a better representation of the

target. A smart surveillance system can also automatically select, from a set of

views, the one that gives the best visualisation of the target [148, 149]. Moreover

camera overlapping can be exploited to overcome target occlusion [62, 150, 151].

Many algorithms have been proposed in literature for multi-camera system cali-

bration [152–154].

When colour is assumed as a discriminative feature of the target, it is possible
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to use the MS tracker [11]. Although it has been shown to be fast, effective and

robust in many scenarios, it fails in case of occlusion or fast moving targets as

reported in Section 3.4. In the improved MS tracker introduced in Chapter 5,

tracking performance is evaluated with respect to a threshold computed empiri-

cally based on the characteristics of the image, when the target is first selected.

This threshold is automatically updated during tracking. The candidate points

to restart the tracker after complete occlusion or target loss are selected based on

colour similarity with the target. These are validated by the MS procedure itself.

Assuming that colour is the target detection feature, this chapter describes a

novel decentralised multi-camera system for collaborative tracking, exploiting the

improved MS algorithm described in Chapter 5. For this purpose, at the initial-

isation step only knowledge of the topological layout of the network is required,

simply in terms of occurrence or not of overlapping between FOVs, without the

actual degree of overlapping being important. The novel contribution of the work

presented in this chapter is twofold: first, a highly flexible decentralised system

software architecture is introduced, for decentralised multi-view target tracking,

where synchronisation constraints among processes can be relaxed. Secondly,

the improved MS tracker from Chapter 5 is extended to a collaborative multi-

camera environment, wherein algorithm parameters are set automatically in sep-

arate views, upon colour characteristics of the target. Unlike the approaches in

[155, 156], the decentralised multi-camera tracking system in this chapter does

not rely on camera positional information to initialise the trackers or handle

camera hand-off events. Tracking in separate camera views is performed solely

on the visible characteristics of the target, reducing the system setup phase to

the minimum.

The remainder of the chapter is organised as follows. Section 7.2 gives a de-

scription of the multi-camera system architecture, while Section 7.3 reports on

the target detection approach adopted in the system. Details about the target

information storage are given in Section 7.4, while Section 7.5 describes initialisa-

tion and operation of the tracking algorithm implemented for each camera view.

Details of the data collection and collation performed to achieve multi-camera

target tracking are provided in Section 7.6. Experimental results are reported in

Section 7.7, while Section 7.8 comments on the scalability aspects of the system.

Finally Section 7.9 concludes the chapter.
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7.2 Multi-camera system architecture

From a conceptual point of view, multi-camera target tracking can be divided

into four tasks:

1. initial target detection upon occurrence of an event of interest;

2. target status storage and broadcasting;

3. target tracking in each separate camera view;

4. data collection from all the trackers and collation.

Such tasks can be mapped into separate processes, which share information

with each other to achieve the higher level goal of the system, i.e. target tracking

across multiple views. Therefore four types of processing entities are defined:

• a detection agent (DA);

• a tracking agent (TA);

• a status server (SS);

• a data server (DS).

Fig. 7.1(a) shows the layout of a simple implementation of the system with two

cameras C1 and C2, two TAs T1 and T2, two DAs D1 and D2, a SS and a DS.

As the task of the TA is to track a target in a single camera view, a separate

TA must be associated with each camera in the system. Similarly, since it is

desirable to be able to detect events of interest in each view, a separate DA can

be associated with each camera. On the other hand, it is reasonable to have a

single SS acting as a central hub that receives detections from single DAs and

broadcasts these to all the TAs. Concerning data collection, a single DS can

act as a sink for the tracking information produced by all the TAs. Such a DS

has an overall view of the trackers and can merge all their data to compute a

multi-camera track of a given target.

In general, for a multi-camera tracking system with N cameras, there is an

equal number of TAs and DAs. Tracking agent Tn and detection agent Dn are

associated with the nth camera Cn, with n ∈ [1, N ], and Fn
i is the ith frame in

the nth camera view. For all the agents, a single SS and DS are available. As

illustrated in Fig. 7.1(b), target information is first sent by a DA – D1 in this

case – to the SS, upon occurrence of an event of interest. The SS broadcasts this

information to T1 and T2 (Fig. 7.1(c)). The TAs send their tracking results to
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(a) (b)

(c) (d)

Fig. 7.1: System implementation with two cameras C1 and C2 (a). The DA D1 detects
a target and sends data to the SS (b). The SS broadcasts target information to both
TAs T1 and T2 (c). The TAs track the target and send their results to the DS (d).

the DS (Fig. 7.1(d)), which merges them in an attempt to resolve possible incon-

sistencies and produce a unique multi-camera track of the target, as explained in

Section 7.6.

All agents and servers are loosely coupled, as they share their information

through simple messages over the network. The system architecture is therefore

highly flexible and multiple configurations are possible to deploy the processing

entities on physical processing units. For example:

• all entities can run on the same machine; or

• SS and DS can run on the same machine, while each set of TA and DA

associated with the same camera runs on a different machine; or

• each entity runs on a dedicated machine.

Without loss of generality, this chapter deals with a single target, as multi-

target tracking can be achieved by replicating the TA at each camera, for every

new target to track.
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(a) (b) (c)

Fig. 7.2: DA target detection: (a) background image; (b) new frame Fni with the
selected target in it; (c) close-up of the portion of Fni sent to the SS.

7.3 DA – Target detection

As explained in the previous section, any DA in the system can select a target

within its FOV, upon occurrence of a predefined event of interest. The actual

detection algorithm implemented in the DA is application-dependent, and one

could either manually select the target, or apply one of the many automatic

event detection algorithms proposed in the literature, as for example the ones

described in [13, 79, 157].

In the context of this thesis, the adaptive algorithm for the detection of aban-

doned and removed objects presented in Section 6.2 has been implemented in the

DAs. However, differently from the reactive system described in Section 6.3, the

detection algorithm in the DA Dn sends to the SS only the camera number n and

the portion of frame Fn
i corresponding to the selected target, as illustrated in Fig.

7.2. In particular, Fig. 7.2(a) shows the background image; Fig. 7.2(b) shows

the frame Fn
i with the selected target in it, while Fig. 7.2(c) shows a close-up of

the portion of Fn
i sent to the SS.

7.4 SS – Target information storage

The SS receives data from a DA, i.e. the portion of frame Fn
i representing the

detected object as illustrated in Fig. 7.2, and stores it along with a timestamp,

the camera number n and a unique identification number ξ for the target.

The SS acts as a sink for all the DA detections, while it follows a publisher-

subscriber pattern with respect to the TAs. More specifically, the SS is always

running and the TAs subscribe to it at setup time. When the SS receives target

data from a DA, it broadcasts such information to all its subscribers. The TAs can

then look for the new target in their FOVs, and track it if present, as described
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in Section 7.5. The SS is the point of connection between DAs and TAs and its

role is merely to store and forward target data.

7.5 TA – Single view target tracking

The tracking algorithm implemented in the TAs is based on the improved MS

tracker for single camera view described in Chapter 5, although the initialisation

step has been modified, to accommodate the multi-camera nature of the system.

7.5.1 Initialisation

For multi-view colour tracking, colour calibration among all the cameras is re-

quired. In the proposed multi-camera system, the Gray World Assumption [60]

is used to colour-normalise all camera views. More accurate techniques for multi-

camera colour calibration are described in [62, 158–160]. Also, to make the system

more resilient to different lighting conditions in separate views, the luminance

component Y is removed and only the red and blue chrominance Cb and Cr are

used from the YCbCr colour space, to compute the colour distributions Q and P.

The number of histogram bins is β = 64. A difference in the system in this chap-

ter with respect to the improved MS tracker initialisation described in Section

5.5 is in the coefficient ωr defining the colour range width, which is computed as:

ωr = bσrc − 1 (7.1)

This allows a wider colour range, i.e. ≈ 2σr, for both Cb and Cr colour planes,

with σr being the standard deviation of the quantised values of the selected target

pixels.

Knowledge of the camera topology is required for a correct setup of each TA.

For this purpose the system only needs to know which cameras have overlap-

ping FOVs, while the exact 3D position of the cameras and the degree of view

overlapping are not necessary. Therefore the required information can be easily

encoded with a look-up table stating whether two cameras overlap or not. Such

information can be manually provided to each TA at setup time.

For a target ξ selected by DA Dn in camera Cn, the initialisation of the TA

Tn is the same as the one described in Section 5.5. For the other N − 1 trackers

Tm with m 6= n, their initialisation varies depending on whether the FOVs of

cameras Cn and Cm overlap or not.
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Non-overlapping camera views

If cameras Cn and Cm do not overlap, target ξ selected at a given time instant in

Cn is certainly not present in Cm. Clearly the position in Cm of the best match for

the given target model Q refers to an object which is not the target. Therefore

the threshold τm for tracker Tm is computed as:

τm = arg min
om
l

[d(oml )] (7.2)

where oml are the candidate points selected as in the tracker initialisation step in

Section 5.5, but with no spatial constraints on their position in the initial frame

Fm
0 , i.e. Eq. (5.12) is not reinforced.

After initialisation, tracker Tm proceeds to the failure recovery step described

in Section 5.4, as by definition target ξ was not present in Fm
0 , so the initial target

position in Fm
1 is undefined. Here it is assumed that, when the target ξ enters

the FOV of camera Cm, its colour distribution will have a distance d(·) from the

target model Q smaller than any other object in the frame Fm
0 and therefore

smaller than τm. So the tracker Tm can successfully start to track the correct

target ξ in Cm.

Overlapping camera views

If cameras Cn and Cm have overlapping FOVs, it means that target ξ should be

present in both Fm
0 and Fn

0 . The failure recovery procedure applied to Fm
0 gives

the position of the best match for Q in the frame. This best match should be the

correct target ξ, assuming that its distribution minimises the distance d(·) from

Q. So tracker Tm finds the correct target ξ in Fm
0 and then proceeds to the next

frame Fm
1 .

If the target ξ is hidden or not visible in Fm
0 , the best match found in the

frame by the failure recovery procedure will refer to an incorrect target ξ′. This

misdetection is automatically corrected by the tracker as soon as target ξ is visible

again in camera Cm, as ξ gives a higher match than ξ′ and therefore ξ is selected

as target to track. However, an initial value for the threshold τm is computed

anyway and it is updated by the tracker Tm in the next frames of Cm.

This approach allows an initial value of the threshold for each camera view

to be defined. Such threshold values are soon tuned by the trackers, so potential

initial misdetections are confined to a small number of frames. Moreover possible

tracking inconsistencies across different views can be resolved by the DS at data

collation time as explained in Section 7.6.
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Fig. 7.3: Block diagram of the tracking algorithm implemented in the TAs.

7.5.2 Tracking

A block diagram of the tracking algorithm implemented in the TAs is illustrated

in Fig. 7.3. With respect to the one in Fig. 5.1, the block diagram in Fig. 7.3

has three additional blocks:

• “data from SS” which represents the message sent by the SS to the TAs

once an object has been detected;
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Fig. 7.4: A set of 9 consecutive frames. Frames F3–F4, F6 are U-frames, i.e. the
target is not found. Frames F0–F2, F5, F7–F8 are D-frames, i.e. the position yi of the
target is defined.

• “data to DS” which represents the message sent by a TA to the DS;

• “SWAD stabilisation” which uses the SWAD-based tracker described in

Section 4.2, to improve the precision of the single view tracker, over a set

of consecutive frames wherein the target has been found.

For this purpose, the algorithm keeps a target template Ti. However, as the

stabilisation step is performed only when the target has been found in the current

frame Fi and the target position yi is available, Ti is left undefined when yi is

not available.

For a set of consecutive frames in which yi is defined and therefore the target

is visible, the template Ti is re-initialised in the first frame of the set. For the

following frames in the set the SWAD matching is carried out and Ti is updated

using (4.1) from Chapter 4.

A visual representation of such an approach is given in Fig. 7.4, where a set

of 9 consecutive frames is depicted. Frames where the target is not found are

referred to as U-frames (F3–F4, F6), while frames where yi is defined are referred

to as D-frames (F0–F2, F5, F7–F8). As it can be seen, the target template Ti is:

• empty – in all the U-frames (F3–F4, F6);

• re-initialised – in the first D-frame after a U-frame (F0, F5, F7);

• updated – in the consecutive D-frames (F1–F2, F8).

When the template Ti is re-initialised, it is set equal to a portion of Fi around

yi. The dimensions hT × wT of Ti are equal to the current target size hi × wi.
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The template dimensions stay the same for all the following D-frames, wherein

the SWAD matching is performed, until Ti is re-initialised.

The position pi of the best match T̂i for Ti in Fi obtained by minimising the

SWAD coefficient ψ(x, y) becomes the final target position in the current frame

Fi, i.e. yi = pi. After this, the template is updated as mentioned above. As in

this case one is mainly interested in stabilising the position of the target across

single pairs of D-frames, the target template should adapt quickly and so a higher

weight in (4.1) should be given to the best match T̂i, rather than the previous

template Ti. Therefore the blending factor α is assigned a value higher than 0.5.

In the current implementation of the tracker, it is α = 0.8.

7.6 DS – Data collation and multi-view target

tracking

In the presented multi-camera system, the DS collects tracking results from all

the TAs and collates them, to remove inconsistencies and create a unique coherent

multi-view track of the selected target.

A multi-camera tracking system requires some form of synchronisation among

all the trackers, to be able to reliably collate target tracks from different views.

Although it is possible to synchronise multiple machines using the Network Time

Protocol (NTP), it is difficult to ensure temporal synchronisation at a frame

level among multiple trackers. Therefore the presented system adopts a notion

of temporal synchronisation in terms of tracker detections falling in the same

time interval defined by the DS. This means that the DS defines a time line of

consecutive time slots tDSs of given temporal length ∆tDS. The TAs run at their

own specific pace and regularly send their tracking results to the DS. Tracking

detections sent from different TAs and received by the DS within the same time

slot tDSs are considered to be synchronous.

Similarly, each TA defines a time line of consecutive time slots tTAs of temporal

length ∆tTA, and tracking detections in separate frames falling within the same

time slot tTAs are accounted for as a unique tracking detection. At the end of

each time slot tTAs , the TA sends its tracking results to the DS if a target was

detected in such a time interval; otherwise no transmission takes place. The

information sent by the TA Tn includes the camera number, the target number ξ,

a timestamp and the value of the highest match, computed as λξn = 1− d(·), for

all the tracking detections in time slot tTAs . In this context, timing constraints for

the overall system are relaxed and ∆tDS and ∆tTA can be set to accommodate
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the application requirements. As a guideline, assuming that the DS processes the

TA notifications sequentially, the lengths of ∆tDS and ∆tTA can be set according

to:
∆tDS > N∆tTX + ∆tTA

∆tTA > ∆tTX

∆tTA > 1
fpsTA

(7.3)

where N is the number of TAs sending information to the DS, ∆tTX is the

transmission time from TA to DS and fpsTA is the TA processing rate. The

“frame rate” for the DS is 1/∆tDS. For example, assuming N = 10, ∆tTX = 2 ms

and fpsTA = 10, one can cautiously choose ∆tTA = 150 ms and ∆tDS = 200 ms;

in this case the DS frame rate is 5. It is clear however that a performance-driven

implementation of the system would allow a much higher frame rate for the DS.

At the end of each time slot tDSs , the DS knows which TAs have detected the

target ξ in their FOV and which have not. Moreover it can use the match value

of each detection as a level of confidence for it. When any two TAs, Tn and Tm,

send a tracking detection to the DS for the same target ξ, in the same time slot

tDSs , two cases are possible:

• the two TAs have overlapping FOVs and their tracking results are consis-

tent;

• the two FOVs do not overlap and therefore the results are inconsistent.

When inconsistencies are present, different application-dependent strategies can

be applied to solve them. One possible solution would be to select as “correct”

the tracking result with the highest match associated, between Tn and Tm. In this

approach, the DS selects as best view for the time slot ∆tDS the view associated

with the tracker that returned the highest match value; therefore the DS can

generate a single continuous video stream made up of the portions of video feeds

coming from the selected best views, at each ∆tDS. This approach is the one

currently implemented in the described multi-camera system. Such a simple

strategy is also useful in overlapping cameras, to be able to select the best view

of the target in case of occlusion, as shown by the example reported in Section

7.7.2.

A drawback of this approach is the possible rapid back-and-forth switching be-

tween FOVs. This might be the case of correct detections in overlapping cameras

or single misdetections in general. Again, various application-dependant strate-

gies are available. For example, in case of overlapping views, back-and-forth
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(a) (b)

Fig. 7.5: Camera topologies for first experiment: (a) no overlap; (b) overlap.

switching between two cameras can simply be skipped to preserve fluidity of the

generated multi-camera video stream. For non-overlapping cameras, time-spatial

constraints can be taken into account to eliminate inconsistencies, by checking

whether it is possible or not for a detected target to sequentially appear within

two FOVs which are physically far apart from each other.

Although in the presented system the actual tracking of the target takes place

in the TAs in a decentralised fashion using the improved MS described in Chapter

5, the DS then gathers all the tracking detections and collates them. Therefore

it can be argued that the DS indirectly performs target tracking across multiple

camera views.

7.7 Experimental results

To evaluate the multi-camera tracking system described in this chapter, its track-

ing performance are assessed numerically first, and then visual results of its best

view selection capability are given. The system software is implemented in Matlab

and Java. In particular, the tracking block of the TA components is implemented

in Matlab, while the communication blocks, the SS and the DS are implemented

in Java. The computer used to run the experiments is an Intel Core 2 Quad CPU

at 3 GHz, with 3.00 GB of RAM.

7.7.1 Tracking performance

The tracking performance of the system is numerically evaluated in terms of

precision, recall, specificity and accuracy as in (3.20)–(3.23) reported in Chapter

3.

As a first experiment, two indoor multi-camera video sequences, acquired

from three IP cameras, have been recorded, respectively one with three overlap-
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(a) no overlap, view 1 (b) no overlap, view 2 (c) no overlap, view 3

(d) overlap, view 1 (e) overlap, view 2 (f) overlap, view 3

Fig. 7.6: Indoor testing: non-overlapping views in top row; overlapping views in
bottom row.
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Fig. 7.7: Results for indoor testing with non-overlapping views.

ping views and one with three non-overlapping views as illustrated in Fig. 7.5,

to assess the initialisation step described in Section 7.5.1. In these sequences,

the target is a pink cap being carried from one camera view to the other and

experiencing complete occlusion. Three images of the detected target for the non-

overlapping and overlapping cases are shown in Fig. 7.6, in the top and bottom

row respectively. In this experiment, for both overlapping and non-overlapping

sequences, the target has been manually selected in one of the views and then
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Fig. 7.8: Results for indoor testing with overlapping views.

Fig. 7.9: Target selected in PETS2009 S3-Multiple-12.43-06 (sequence 2), frame #72.

tracked in the other two views. This is repeated for all views. Therefore, a total

of six tests (1-6) have been obtained for both overlapping and non-overlapping

cases. Numerical values of precision, recall, specificity and accuracy of such tests

compared with the manually labelled ground truth are illustrated in Fig. 7.7 for

the non-overlapping case, and in Fig. 7.8 for the overlapping case. It can be seen

that in general the system has high precision, recall, specificity and accuracy, i.e.

more than 85% in all 12 tests. In the overlapping case in particular, neither FP

nor FN have been detected (Fig. 7.8). These results indicate that the system has

very good tracking performance in an indoor environment.

As a second experiment, six entire video sequences from the PETS2009 dataset

have been used: (1) S3-Multiple-12.43-05, (2) S3-Multiple-12.43-06, (3) S3-Multi-

ple-12.43-07, (4) S2-L1-12.34-05, (5) S2-L1-12.34-06 and (6) S2-L1-12.34-07. The

camera topology for these videos is available at [131]. The target is the woman
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(a) seq. 1, frame #80 (b) seq. 2, frame #80 (c) seq. 3, frame #80

(d) seq. 1, frame #86 (e) seq. 2, frame #86 (f) seq. 3, frame #86

(g) seq. 1, frame #92 (h) seq. 2, frame #92 (i) seq. 3, frame #92

(j) seq. 1, frame #98 (k) seq. 2, frame #98 (l) seq. 3, frame #98

Fig. 7.10: Synchronised images from PETS2009 sequences 1, 2 and 3 with correct
target highlighted.

in red jacket manually selected in frame #72 of sequence 2, as illustrated in Fig.

7.9, and it is used to compute the target model Q. This model is then tracked

in all six mentioned sequences as it moves across camera views, going out of the

FOVs and experiencing complete occlusion by other pedestrians in the scene. Of

these six video sequences, the first three (1, 2 and 3) are synchronised with each
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(a) seq. 4, frame #479 (b) seq. 5, frame #479 (c) seq. 6, frame #479

(d) seq. 4, frame #507 (e) seq. 5, frame #507 (f) seq. 6, frame #507

(g) seq. 4, frame #685 (h) seq. 5, frame #685 (i) seq. 6, frame #685

(j) seq. 4, frame #716 (k) seq. 5, frame #716 (l) seq. 6, frame #716

Fig. 7.11: Synchronised images from PETS2009 sequences 4, 5 and 6 with correct
target highlighted.

other, which means that the nth frame in each sequence refers to the same instant

in time and it has a counterpart in the other two sequences. The same is true

for sequences 4, 5 and 6. This can be seen in Fig. 7.10 and 7.11, where four

synchronised frames from sequences 1, 2 and 3 are reported in Fig. 7.10, while

four synchronised frames from sequences 4, 5 and 6 are reported in Fig. 7.11. It
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Fig. 7.12: Precision, recall, specificity and accuracy for PETS2009 sequences.

can be appreciated from Fig. 7.11 how the target may be not visible at times in

some of the views (Fig. 7.11(e)), while it can still be tracked at the same time

instant in other views (Fig. 7.11(d) and 7.11(f)). This aspect is fundamental for

selecting at any time the best view of a target, as reported in Section 7.7.2. Values

of precision, recall, specificity and accuracy for the six sequences are illustrated in

Fig. 7.12. It can be seen that the system has very high precision and specificity

also in an outdoor setup, with only 4 FP erroneously detected in all six sequences.

In general also recall and accuracy are high (> 90%), apart from sequence 6, where

the lower value of recall (83%) is due to the fact that in this sequence the target

walks aways from the camera and its size decreases to less than half of its initial

one, as can be seen in the centre image in Fig. 7.13. In this case, the histogram

of the target changes significantly, resulting in a poor match and therefore a high

number of FN. Nonetheless, when the target moves back closer to the camera,

the tracker successfully locates the target. Regarding camera colour calibration,

from Fig. 7.9 it is noticed that view 6 (sequences 2 and 5) in PETS2009 dataset

is slightly blue-ish. Nonetheless, by applying the Gray World Assumption, one

is able to normalise all the sequences, as it can be seen in Fig. 7.10 and 7.11,

so that the colour model Q is valid for all the views, as demonstrated by this

experiment.

7.7.2 Best view selection and occlusion handling

In the proposed system, the DS receives target information, i.e. distance d(·)
and position within the frame, from each TA associated with a different camera
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(a) frame #481

target

(b) frame #599 (c) frame #624

Fig. 7.13: Target moving towards the far field, in PETS2009 S2-L1-12.34-07 (sequence
6).

and, from this data, it can select the best view of the target. Therefore, it can

produce a continuous video stream from multiple views, when the selected target

appears in the different FOVs of non-overlapping cameras, as illustrated in Fig.

7.14, where six snapshots of the DS video output are shown. The current system

implementation uses three IP cameras and, for testing purposes only, the DS

shows the best view of the target, at the top of its video output, and also the

current feeds from the three cameras, at the bottom. In this video the target

is the person in yellow moving from one side of an indoor environment to the

other, and back. In the six sets of camera feed subimages in Fig. 7.14, it can be

seen that the target is sequentially detected in camera 1 (Fig. 7.14(a)), camera

3 (Fig. 7.14(b)), camera 2 (Fig. 7.14(c) and 7.14(d)), and then again in camera

3 (Fig. 7.14(e)), and finally in camera 1 (Fig. 7.14(f)). The DS is able to switch

between camera FOVs to select always the best view of the target and produce a

continuous video of it. Such a video is represented by the top subimages in Fig.

7.14.

Moreover, the DS can use the tracking results from the TAs associated with

overlapping cameras, to select at any time the view with the highest TA match

λξn. Therefore the DS is able to easily solve the occlusion problem in overlapping

cameras, when the target is occluded in one of the views. As illustrated in Fig.

7.15, the target is occluded in view 3, partially occluded in view 2 and completely

visible in view 1. The target is correctly tracked in views 1 (λξ1 = 76.4%) and 2

(λξ2 = 44.5%). As view 1 gives a higher match between target histogram P and

target model Q, it is selected as best view among the three available ones, and

occlusion is implicitly solved.
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best view: 1

1 2 3

(a)

best view: 3

1 2 3

(b)

best view: 2

1 2 3

(c)

best view: 2

1 2 3

(d)

best view: 3

1 2 3

(e)

best view: 1

1 2 3

(f)

Fig. 7.14: Six images from the DS: the system is able to switch between camera views
wherein the target is detected, to create a continuous video stream of the tracked target.
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best view: 1

1 2 3

Fig. 7.15: DS with best view selection: the target is occluded in view 3; partially
occluded in view 2; completely visible in view 1.

7.8 System scalability

Although only three cameras have been used in the reported experiments, the

system allows scalability to a larger number of sensors. Concerning the DAs and

TAs, they run independently from each other, so they can be easily replicated,

to accommodate more cameras in the system. On the other hand, the SS and

DS would have to handle a higher number of connections. Nonetheless, the data

exchanged among DAs, SS and TAs is of few hundred bytes and with no strict

time constraint on it. Similarly, the tracking data transmitted from the TAs to

the DS is less than a hundred bytes, so a multi-threading implementation of the

DS would easily handle connections from a large number of TAs. In case of a

very large surveillance network, it is possible to organise the TAs in clusters, with

a DS and a SS associated to each. To ensure communication among clusters, a

two-tier hierarchy of DSs and SSs could be introduced.

7.9 Conclusion

In this chapter a decentralised multi-camera system for collaborative tracking has

been presented. The system architecture is highly flexible and synchronisation

constraints on software and hardware can be relaxed. The tracking algorithm
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adopted is based on the improved MS described in Chapter 5, where colour is

the only information used by the tracking agents to find the selected target.

Moreover, the SWAD-based tracker from Chapter 4 is used to stabilise tracking

detections from the improved MS, over consecutive frames. No positional infor-

mation is used to localise the target in multiple views, while only the knowledge

of occurrence of overlapping between views is required to initialise the trackers.

As a consequence, the system setup phase is simplified. Nonetheless, experimen-

tal results demonstrate the effectiveness of the presented system in both indoor

and outdoor environments, in tracking a colour target over multiple overlapping

and non-overlapping views. The system is ideal in situations where video syn-

chronisation and detailed knowledge of camera setup are neither required nor

available.

112



Ch.8 Conclusions and future work

Chapter 8

Conclusions and future work

8.1 Discussion

This thesis has presented novel video analytics algorithms for target tracking in

single and multi-camera setup, and for automatic detection of abandoned and

removed objects.

Starting from the well-known Sum of Absolute Differences (SAD), a novel

adaptive template matching algorithm for robust target tracking based on the

minimisation of a Sum of Weighted Absolute Differences (SWAD) has been pre-

sented. This algorithm uses a Gaussian weighting kernel to assign lower weights

to peripheral pixels in the target template, in order to reduce the effects of partial

occlusion. Moreover target changes are incorporated in the template using an IIR

filter. A novel technique to detect complete occlusion and recover from it has also

been presented in the context of the SWAD-based tracker. Experimental results

have shown the robustness of the proposed tracker and its higher accuracy with

respect to SAD-based tracking. A DSP embedded implementation of this algo-

rithm has been described, to demonstrate that it can successfully exploit devices

with low computational capabilities.

To overcome issues present in the conventional MS tracker, such as fast target

loss and failure due to complete occlusion, a novel improved MS tracker with

failure recovery strategy has been presented. Experimental results show that the

proposed algorithm can effectively recover the target after complete occlusion and

therefore track it also in complex scenarios, as for example crowd scenes.

As methods proposed in the literature are not designed to be able to trig-

ger alerts within a time interval defined by the user, after new abandoned and

removed object events have occurred, a novel algorithm for abandoned and re-

moved object detection in real-time has been presented. The user can specify a
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detection time interval, while the background is updated only after new events

are detected. Algorithm parameters are adaptive with respect to the frame pro-

cessing rate, so that even on different machines the detection time is generally

the same. Also a novel technique based on the gradient projections in the object

boundary pixels has been described, to correctly classify detected static objects

as either abandoned or removed. The overall novel algorithm is included in the

context of a reactive smart surveillance system, which notifies the occurrence of

such events of interest to registered users, within seconds, through SMS alerts.

Finally a decentralised multi-camera system for collaborative tracking has

been presented. The system architecture is highly flexible and synchronisation

constraints on software and hardware can be relaxed. The tracking algorithm

for single view is based on the novel improved MS, with colour being the only

information used to track the selected target. No positional information is used

for hand-off between cameras. Experimental results demonstrate the effectiveness

of the presented system in both indoor and outdoor environments, in tracking a

colour target over multiple overlapping and non-overlapping views. The system is

ideal in situations where video synchronisation and detailed knowledge of camera

setup are neither required nor available.

8.2 Future work

There are possible extensions arising from the work in this thesis:

• In the adaptive tracker based on SWAD minimisation presented in Chapter

4, a resizing mechanism for the target template could be added. Such a

feature would be beneficial in situations where the target moves very far

away or closely to the camera and, as a consequence, its size within the

FOV changes considerably.

• Concerning the improved mean shift tracker presented in Chapter 5, addi-

tional target features could be incorporated in the target model, to further

discriminate the correct target from other objects with similar colour within

the FOV. For example one could take into account the shape of the object

or the texture within it. Alternatively one could infer a relatively simple

structure to the target, for example a torso-legs partitioning in case of a

pedestrian, with the overall histogram being a weighted combination of the

histograms of each partition.

• A natural extension for the abandoned/removed object detection algorithm
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described in Chapter 6 would be to apply object analysis/recognition after

an abandoned object alert has been triggered. On the same line, a person

classifier could be incorporated, so that people being motionless in the FOV

for a relatively long period of time would not be considered as abandoned

objects.

• Further extensions for the multi-camera tracking system described in Chap-

ter 7 would be to incorporate additional target features, as in the case of

the improved MS of Chapter 5, and to develop new strategies for the DS to

collate the tracking detections from several TAs.
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Appendix A

Visual results

This appendix contains further visual results for the experiments reported in

Chapter 4 and 5.
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(a) frame #177 (b) frame #204

(c) frame #234 (d) frame #264

(e) frame #294 (f) frame #324

Fig. A.1: MS results for the S06 2/1 sequence from PETS2007 dataset. In each image,
the green track is the ground truth, while the red one is the tracker result.
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(a) frame #177 (b) frame #204

(c) frame #234 (d) frame #264

(e) frame #294 (f) frame #324

Fig. A.2: SAD results for the S06 2/1 sequence from PETS2007 dataset. In each
image, the green track is the ground truth, while the red one is the tracker result.
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(a) frame #177 (b) frame #204

(c) frame #234 (d) frame #264

(e) frame #294 (f) frame #324

Fig. A.3: NCC results for the S06 2/1 sequence from PETS2007 dataset. In each
image, the green track is the ground truth, while the red one is the tracker result.
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(a) frame #177 (b) frame #204

(c) frame #234 (d) frame #264

(e) frame #294 (f) frame #324

Fig. A.4: SWAD results for the S06 2/1 sequence from PETS2007 dataset. In each
image, the green track is the ground truth, while the red one is the tracker result.
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(a) frame #177 (b) frame #204

(c) frame #234 (d) frame #264

(e) frame #294 (f) frame #324

Fig. A.5: SWADOCC results for the S06 2/1 sequence from PETS2007 dataset. In
each image, the green track is the ground truth, while the red one is the tracker result.
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(a) frame #232 (b) frame #286

(c) frame #349 (d) frame #412

(e) frame #475 (f) frame #539

Fig. A.6: SAD results for the Dudek face sequence. In each image, the green track is
the ground truth, while the red one is the tracker result.
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(a) frame #232 (b) frame #286

(c) frame #349 (d) frame #412

(e) frame #475 (f) frame #539

Fig. A.7: NCC results for the Dudek face sequence. In each image, the green track is
the ground truth, while the red one is the tracker result.
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(a) frame #232 (b) frame #286

(c) frame #349 (d) frame #412

(e) frame #475 (f) frame #539

Fig. A.8: SWAD results for the Dudek face sequence. In each image, the green track
is the ground truth, while the red one is the tracker result.
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(a) frame #232 (b) frame #286

(c) frame #349 (d) frame #412

(e) frame #475 (f) frame #539

Fig. A.9: SWADOCC results for the Dudek face sequence. In each image, the green
track is the ground truth, while the red one is the tracker result.
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(a) frame #65 (b) frame #70

(c) frame #75 (d) frame #81

(e) frame #86 (f) frame #90

Fig. A.10: SWAD results for S2-L1-12.34-007 sequence from PETS2009 dataset.
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(a) frame #65 (b) frame #70

(c) frame #75 (d) frame #81

(e) frame #86 (f) frame #90

Fig. A.11: SWADOCC results for S2-L1-12.34-007 sequence from PETS2009 dataset.
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(a) (b)

(c) (d)

(e) (f)

Fig. A.12: SWAD results with synthetic sequence.
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(a) (b)

(c) (d)

(e) (f)

Fig. A.13: SWADOCC results with synthetic sequence.
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(a) frame #22 (b) frame #38

(c) frame #56 (d) frame #85

(e) frame #94 (f) frame #109

Fig. A.14: Conventional MS results for PETS2009 S3-Multiple flow-time 14.46-001
sequence. In each image, the green track is the ground truth, while the red one is the
tracker result.
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(a) frame #22 (b) frame #38

(c) frame #56 (d) frame #85

(e) frame #94 (f) frame #109

Fig. A.15: Improved MS results for PETS2009 S3-Multiple flow-time 14.46-001 se-
quence. In each image, the green track is the ground truth, while the red one is the
tracker result.
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(a) frame #14 (b) frame #22

(c) frame #33 (d) frame #44

(e) frame #55 (f) frame #67

Fig. A.16: Conventional MS results for PETS2009 S3-Multiple flow-time 14.52-001
sequence. In each image, the green track is the ground truth, while the red one is the
tracker result.
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(a) frame #14 (b) frame #22

(c) frame #33 (d) frame #44

(e) frame #55 (f) frame #67

Fig. A.17: Improved MS results for PETS2009 S3-Multiple flow-time 14.52-001 se-
quence. In each image, the green track is the ground truth, while the red one is the
tracker result.
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Fig. A.18: Absolute error for PETS2009 S3-Multiple flow-time 14.46-001 sequence.
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Fig. A.19: Absolute error for PETS2009 S3-Multiple flow-time 14.52-001 sequence.
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