Special features and spectral analysis for
fusion plasmas

A THESIS SUBMITTED TO THE DEPARTMENT OF PHYSICS
OF THE UNIVERSITY OF STRATHCLYDE

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Christopher H Nicholas

February 2011

© Copyright 2011

This thesis is the result of the author’s original research. It has been composed by
the author and has not been previously submitted for examination which has led to
the award of a degree. The copyright of this thesis belongs to the author under the
terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde
Regulation 3.50. Due acknowledgement must always be made of the use of any
material contained in, or derived from, this thesis.

Abstract

In the magnetic confinement fusion domain, spectral analysis is a principal tool
for establishing behaviour and performance characteristics of devices. It can assist,
inter alia, in determining, with spatial and temporal resolution, key parameters such
as electron and ion temperatures and densities, radiated power, impurity transport,
impurity concentrations, internal magnetic and electric fields. The spectrometer
complement on devices such as JET, ASDEX-U and LHD is very large, spanning
wavelength ranges from x-ray to infra-red. Similar instrumentation will again
be present on the next step in the world fusion program, ITER, currently under
construction in France. Spectral analysis, at its most powerful, uses related spectral
lines and features for diagnostic inference. In this thesis, such groupings are called
special features. Their sensitivity is determined by the response of the emitting atoms
to their physical environment. In broad concept, this thesis is concerned with special
features and their diagnostic exploitation. To achieve this end, the thesis reviews
special features and focusses on a number of representative types. It explores and
expands the atomic physics link so that the special feature may be realised as a
mathematical/computational construct for use in spectral modelling and fitting. In
implementing this, it works closely with the Atomic Data and Analysis Structure
(ADAS) project and its databases. The thesis seeks to empower special feature
analysis by implementing generalised computational structures — AFG (ADAS
Feature Generator) and FFS (Framework for Feature Synthesis). These allow both
a pedagogical insight into the capabilities of each special feature as well as practical
execution of optimised spectral fitting and plasma parameter extraction. The methods,
based on object-oriented programming, are universal including aspects such as self-
generating graphical user interfaces and an algebra of parametric feature creation.
Demonstration of these methods is on selected JET spectra and ‘shot’ sequences.
It is hoped that the work of this thesis will provide an advanced tool to match the
spectral instrumentation capabilities from current fusion devices through to ITER. The
implementation will be made available to the fusion community in an ADAS release
in due course.

Contents

List of Figures

List of Tables

Acknowledgements

1 Introduction

3

1.1
1.2
1.3
1.4

Traditional Analysis Systems
Object-oriented Modelling for Numerical Fitting
Improving on Existing Software

Thesis Outline

Special Feature Modelling for Nuclear Fusion

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Introduction L
Issues of Orientation — Zeeman and Stark Spectra

Thermal Emission and Resolution

Stark Broadening and Series Limits: Balmer and Paschen Series

Diatomic Molecular Emission
Heavy Species Envelope Emission
Helium-like Soft X-ray Resonance and Satellite Lines
2.77.1 The Population Calculations
2.7.2 Electron-impact Rate Coefficients
2.7.3 Computational Details

ADAS Special Feature Application Programming Interface

3.1
32

ADAS Feature Generator (AFG)
ADAS605 — GUIto AFG

iv

viii

ix

10
11

13
13
15
23
27
29
30
32
35
39
41

4 Combinations of Functions for Spectral Fitting 59

4.1 Introduction 60
4.2 Functions Considered 60
4.2.1 Un-broadened Line 60

422 Gaussian e 61

423 Doppler e 63

424 Lorentzian 64

425 Voigt 65

42.6 Linear Background, 69

4277 Addition Operator 69

4.2.8 Scale Factor Operator 70

429 ShiftOperator. 71
4210 AFG e 71

4.3 Practical Examples 72
4.3.1 Convolution of two Normalized, Un-shifted Gaussian Functions 72

4.3.2 Convolution of N-Gaussian Profile with Gaussian 73

4.4 Framework for Feature Synthesis 75
4.5 Model Definition Language 78
4.6 Parameter Coupling L. 79
4.7 Optimisation of the Model 85
4.8 Non-linear Least Squares Fitting 91
49 ACustomFittingCode 94
4.10 Batch Fitting L 96
4.11 Validationof Results 97
4.12 Analytic / Numerical fitting Speed Comparison 102
S Experimental Analysis 105
5.1 Inmitial Validation L L 106
5.2 AnIllustration from SOHO-CDS 106
5.3 Divertor Detachment ExperimentatJET 114
54 Zeeman SplitFeatures 120
5.5 Diatomic Molecular Spectra in the JET Divertor 125
5.6 VUV Divertor Impurity Spectra 128
5.7 He-like Argon Spectra from TEXTOR 131

i

6 Conclusions and Future Work

A Mathematical Notes

A.1 Convolution — Definition and Basic Properties
A.2 Area of Convolved Functions
A.3 Raw Moments of Convolved Functions
A.3.1 First Raw Moment
A.3.2 Second Raw Moment
A4 GaussianLineWidths oo
AS DeltaFunction
A6 ErrorFunction.
A.6.1 Definition L
A.7 Complementary Error Function
A7.1 Definition Lo
A72 Derivative

A.8 Complex Error Function

A.8.1 Definition e
A.8.2 Derivative

B FFS MDL Listings
C FFS Simplification Rules
D FFS Core Routine Methods

E ADAS Glossary

E.1 Acronyms e
E.2 ADAS Main Program Series
E.3 ADAS DataFormats

il

134

149
149
149
150
150
151
151
153
153
153
153
153
155
157
157
157

160

173

177

List of Figures

1.1
1.2
1.3

2.1

22
2.3
24

2.5
2.6

3.1
3.2
33

34

3.5

3.6

3.7
3.8

39
3.10

Zeeman split carbon line emission, from JET pulse #75989.
Zeeman split carbon line emission, from JET pulse #70574.

Zeeman split carbon feature from JET pulse #75898, diagnostic KS8.

Simulation of the Zeeman multiplet feature for CI (2p3s *P — 2p3p °P)
with ADAS603.

The ADAS305 neutral beam simulation for a deuterium plasma.
A simulated spectrum showing the Balmer series in deuterium.

A simulated BeD molecular spectrum as produced using CALCAT (via
AFG). . . .

F — PEE for tungsten ions, ionisation stages W>* to W3+,

Fundamental dielectronic recombination (DR) data preparation and
special feature assembly. Lo Lo L

Accessing ADAS special features.
Class diagram for AFG.

Command line interaction with AFG, retrieving the description struc-
ture for the Zeeman feature.

Examination of an AFG description structure, for the Zeeman feature,
atthecommandline.

AFG feature parameter sub-structure for the magnetic field strength,
for the Zeeman feature. L.

Command line interaction with AFG, altering a parameter values
SLIUCLUIE. . . o o v o v e e e e e e e e e e e e e

Command line interaction with AFG, altering parameter values directly.

Examination of the AFG subordinate structure for the Stark feature
from the command line.,

AFG ‘subordinate’ structure for the Stark feature.

Examination of the AFG group structure for the Stark feature from the
commandline.. oL oL o

v

18
24
29

30
31

42

45
47

47

47

48

49
49

50
51

51

3.11
3.12

3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
43
4.4
45
4.6
47
4.8

4.9
4.10

4.11

4.12

4.13
4.14
4.15

4.16
4.17
4.18

ADASG60S input screen: feature selection. 52

Screenshots showing examples of the IDL widgets generated by

ADASG60S. 53
ADASG60S processing SCreen.« v v v v v v v 54
ADASG605 processing screen when the Stark feature is selected. 55
ADAS605 output screen. e 56
ADASG605 ‘graphical output’. L. 57
ADASG605 ‘X-Youtput’. 57
ADASG60S5 ‘code listing output’™. 58
Class diagram for FFS. 75
The model-element-par hierarchy for a simple model in FFS. 76
FFS element class and some example subclasses 77
MDL — element definition syntax. 78
MDL — model definition syntax. 79
MDL — main coupling syntax. 80
MDL — coupling expression syntax 80
Flowchart showing the algorithm for retrieving analytic partial deriva-

tives through coupled parameters. 82
Example of an MDL coupling statement. 83
The coupling statement shown in 4.9 after pre-parse for use by

couplingobject. L 83
Debug output from ffs_couple as it parses the inner expression of the

coupling statement displayed in Fig. 4.10. 83
Debug output from ffs_couple as it parses the outer expression of the

coupling statement displayed in Fig. 4.10. 84
The ‘simplification’ of a user specified model. 86
Rule list structure example. 87
Optimisation procedure. Note that the operation replace child follows

the algorithm defined by this flowchart i.e. this is a recursive method

call. . .. 88
Dealing with an addition element branch. 89
Dealing with a broadener element branch. 90
Basic line function and partial derivative calculation verification (nu-

meric versus analytic). 98

4.19

4.20
4.21

5.1

5.2

53

54

55

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15
5.16

Broadened Gaussian line function calculation verification (simplified

versus original representation). Lo 100
The ‘simplification’ of the Gaussian broadener acting on a Gaussian. . 100
Broadened Gaussian line function calculation verification (simplified
versus original representation) at theedge. 101
Initial validation of FFS — fitting two noisy Gaussians with a linear
background. L 107
OIV multiplet as recorded by NIS-2 before the loss of SOHO, with
fitted models from FFS and ADAS602 overlaid. 111
MDL statements to form the custom line shape for ‘post-loss” SOHO-
CDSdata. e 112
OIV multiplet as recorded by NIS-2 after the loss of SOHO, with fitted
models from FFS and ADAS602 overlaid. 113
Poloidal cross-section of JET showing magnetic flux surfaces and
Langmuir probe positions in the divertor. 115
Balmer series spectrum as recorded by instrument KT3A at JET, pulse

#70578 with FES fit. o o 116

A colour-shaded representation of the electron density, as a function
of position and time, as extracted from a set of KT3 measurements by
FFS and a related graph of ion fluxes as measured by a divertor probe. 118

Electron density measurements versus radial position from FFS fits to

spectroscopic data, compared with Langmuir probe measurements. . . 119
C I (2s*2p3s *P — 2s?2p3p *P) emission at ~ 909 nm as recorded by
KT3C at JET, pulse #78658. 121
Comparison of colour-shaded representation of the magnetic field, as
a function of position and time, resulting from FFS fits against results
from Flush. 122
(a)KS8 line of sight at JET, (b) magnetic field versus major radius
(comparison of FFS against Flush). 124
C III (1s°2s3s>S — 15%2s3p*P) multiplet at ~ 465 nm as recorded by
KS8 at JET, pulse #75898 with FFS fit. 124
Observed beryllium deuteride (BeD) spectrum from instrument KS3A
during JET pulse #35687, with FES fit. 126
Observed beryllium deuteride (BeD) spectrum from instrument KS3B

during JET pulse #35689, with FFS fit. 127
Surface plot (in temperature in density) of PEC for C IV (1s*2s — 15*3p).129

Spectrum recorded by JET diagnostic KT7/2, JET pulse #35421, with
FESfit. . . . o 130

vi

5.17 He-like Argon x-ray spectrum from TEXTOR shot #81156, with FFS fit. 133

vii

List of Tables

3.1

32

4.1

4.2

5.1
5.2
5.3

54

5.5

5.6

5.7
5.8

Summary of requirements and outputs of the various ADAS special
feature generation facilities. Lo

AFG ‘disptype’ options.

The ‘simplification’ of the various broadener elements acting upon an
un-broadened line element. 0oL L.

Partial derivative calculation performance test.

Correlation matrix resulting from the fit of FFS validation trial 1. . . .
Correlation matrix resulting from the fit of FFS validation trial 2. . . .

The fit parameters resulting from the fit to the (pre-loss) NIS-2 OIV
multiplet (2s?2p 2P —=22p”?P).

The fit parameters resulting from the fit to the (post-loss) NIS-2 OIV
multiplet (2s?2p 2P —=22p”?P).

Comparison of line intensities as determined by fitting the pre-loss
data with FFS and ADAS602 with the theoretically calculated photon
emissivity coefficients (PEC) values from ADAS208.

Comparison of line intensities as determined by fitting the post-loss
data with FFS and ADAS602 with the theoretically calculated photon
emissivity coefficients (PEC) values from ADAS208.

16+

Transitions in Ar'°* relevant for satellite line feature

15+

Transitions in Ar~* relevant for satellite line feature

viii

110

Acknowledgements
Firstly, I would like to thank EPSRC and UKAEA Culham for funding my research. I

am most grateful to my supervisors, Prof. Hugh Summers, Dr Allan Whiteford and
Dr Andrew Meigs for the time and effort that they committed to my project. All
of them showed a great deal of enthusiasm and support throughout. I would like to
particularly thank Allan and Andy for their invaluable advice on computational physics
and application to experiment. I thank Hugh for many enthusiastic discussions on
atomic physics and for providing additional support for my research from ADAS. I
would also like to thank Dr Martin O’Mullane for his support and suggestions while I
was at JET. Thanks also go to Allan, Andy, Hugh, Martin and Prof. Nigel Badnell for
taking the time to read through my thesis, whilst being so busy with their own work —

particularly Allan who did so, despite the fact that it was no longer his job.

I would also like to mention Alessandra Giunta for her help in the acquisition and
analysis of SOHO-CDS data and for her friendship throughout my degree. Similarly,
I would like to thank Craig Hamilton and Lawrence Campbell for many lunch break

discussions that helped keep me sane at Strathclyde.

Outside of university, I am thankful to have had encouragement from my friends,
particularly Raymond Lutz, Gregg Newton, Andrew Stark and James Thomson —
even if it was often just to ask: “have you not finished yet?”’. My family have all
been very supportive of me throughout and spurred me on when I needed it. I would

particularly like to thank my parents Argyros and Elizabeth for their support.

Finally, and most importantly, I must thank my fiancée Pamela Jane. She has always
provided me with encouragement while completing my thesis and managed to keep
me motivated even at times when morale was low. I am certain that completion of my

thesis would have been far more difficult without her.

— Christopher Nicholas
February 2011

iX

Chapter 1
Introduction

The analysis of atomic spectra from both astrophysical and laboratory fusion plasmas
is essential in our effort to understand and interpret their characteristics. Spectroscopy
is particularly key since such plasmas often remain remote to analysis by other means.
Most astrophysical sources are simply physically too far away to probe in any other
fashion, but there are many scenarios, even in the laboratory, in which the plasma
remains out of reach. The passive, non-interactive nature of spectroscopy indeed
may make it useful in these scenarios. For instance, in the case of a magnetically
confined fusion device, insertion of diagnostic Langmuir probes is detrimental to
plasma stability due to high levels of erosion of the probe at plasma temperatures —

spectroscopy does not suffer in this way.

At a basic level, analysis of spectra can identify the species present within the plasma
— an immediate and valuable result. However, spectroscopic data can often reveal far
more than that. Atomic spectra may supply us with information about the local plasma
conditions at the location of the emitter. It should be noted that this requires that the
plasma is ‘optically thin’ i.e. that emitted photons are not readily absorbed in their path
from their source to detector. The absorption of photons within the plasma volume
will reduce the intensity of the spectra at the wavelength corresponding to that photon
energy. Conversely, the population of other energy levels will have been increased
by the absorption, which could in turn result in further photon emission at different
energies due to spontaneous or stimulated emission from this level. If the resulting
emission is to be modelled, these opacity effects must be taken into consideration,
but analysis of the spectra cannot directly yield localised measurements. The most
interesting spectra, from a diagnostic point of view, are those which are away from
‘thermodynamic equilibrium’ i.e. their radiation field does not exhibit a feature-less

Planckian (black-body) distribution. High temperature, optically thin plasmas have a

large radiation deficit and so, fall in to the category of non-thermal plasmas. They emit

a structured spectra, composed of lines.

It has been stated that physical parameters in plasmas can be inferred from the spectra,
to exemplify this, consider the centroids of spectral lines. They may, for example,
deviate from their expected position due to the doppler effect i.e. due to local plasma
flow. Again, associated with the doppler effect, the distribution of particle velocities
(due to thermal motion) means that spectral lines will not appear as single points of
intensity, but instead a shape defined by the thermal velocity distribution is observed.
This is referred to as a ‘broadening mechanism’ of which there are many e.g. magnetic
and electric fields experienced by emitting atoms can also cause broadening of lines
(through perturbation of the atomic structure of the emitter). Understanding, and
consequently modelling, these mechanisms allow us to infer local measurements of the
fields from the spectra. Of course, such line shapes are essentially the result of several
emission lines in a very short wavelength interval blending together. In some cases
however, instrumentation is of sufficient resolution to resolve individual components
of these shapes, whereas lower resolution apparatus will show an envelope of emission.
This means that models must be able to take into account such differences even when
the underlying spectra are the same. Examples of Zeeman-split Carbon line emission
are shown when recorded at sufficient resolution to see the individual components

(Fig. 1.1) and then the same feature when recorded at a lower resolution (Fig. 1.2).

As well as the various line splitting / broadening mechanisms, it is also possible to
characterise properties of the plasma by examination of the intensity of the spectral
lines. By modelling the atomic population driving the emission, it is possible to deduce
quantities, such as temperature, from the relative intensities of a set of lines from the

same ion.

It should also be noted that just as the emission from atoms and molecules (and
resultant spectra) are indicators of the local plasma conditions, the converse holds:
a range of different plasma conditions result in a range of spectral features. It is
possible (and likely) that along a given line of sight, several of these features may be
present in a single spectrum, in some cases these occupy the same wavelength interval
and are difficult to resolve. For example, with a horizontal, radial line of sight at a
tokamak such as the Joint European Torus (JET) [1], emission of impurity species will
be seen from the scrape-off layer (a region of particle flux in the outlying magnetic
surfaces) near the inner and outer walls. The toroidal magnetic field in a tokamak
decreases with major radius (B7 o< %). This means that the emitters are situated in quite

different magnetic fields and therefore experience differing Zeeman splitting patterns.

‘lg) 8><'|O” """"" LR T T T T T

6x10'"" - -
4x10'" - .

2x10" -

Intensity / photons cm™2sr™'pixel”

905 906 907 908 909 910
Wavelength / nm

Figure 1.1: Zeeman split carbon line emission, from JET pulse #75989 (R = 2.8 m,
t = 46.25 s, diagnostic KT3C using 1200 lines mm™! grating) recorded at sufficient
resolution to resolve several component lines of the feature.

‘o 4x10'2

3x10"
2x10"

1x10"2

O i e R EEEEER - = == e [S Los v av v aay I

905 906 907 908 909 910 911 912
Wavelength / nm

Intensity / photons cm™2sr™'pixel™"

Figure 1.2: Zeeman split carbon line emission, from JET pulse #70574, (R = 2.68 m,
t = 60.28 s, diagnostic KT3C using 300 lines mm~! grating) at lower resolution than in
the case of Fig. 1.1. Individual components are no longer resolved, instead they appear
blended together.

Figure 1.3 shows this effect for CIII.

— — N

(@) (o)} (@)

X X X

(@] (@] (@)
» » >
I I I

o

o

X

(@]
(1]
T

| B

464.6 464.8 465.0 465.2 4654
Wavelength / nm

Figure 1.3: Zeeman split carbon feature from JET pulse #75898, diagnostic KS8.
In this figure, the recorded spectral feature, is actually two overlapping Zeeman

signatures, from similar emitters, but each situated in differing magnetic fields (see
Section 5.4).

Spectroscopy is widely used in a vast number of plasma scenarios. This is exemplified
by the extensive use on magnetically confined fusion plasma experiments. The
plasma conditions vary significantly within the volume of such machines i.e. there
are gradients in temperature, density and magnetic field. Temperatures in the core
plasma are extremely high — in this environment, most elements are present as fully
stripped 1ons and so, there is very little line emission from this region. Normally,
spectra recorded from the core are mostly comprised of a Bremsstrahlung continuum.
However, one of the methods of heating fusion plasmas is via injection of high energy
neutral particles which impart their energy to the bulk hydrogen fuel by collision. The
beam of neutrals undergo charge-exchange processes with the plasma ions. This means
that a spectrometer with a line of sight passing through the neutral beam can measure
the consequential emission, enabling a way of measuring plasma conditions in the core

plasma.

There are cooler regions of the machine such as the plasma edge and the divertor.
Careful control of the confining magnetic field in a tokamak can allow for formation of
a special magnetic configuration in which two regimes exist — the inner being a set of

closed, nested magnetic surfaces which are suitable for confinement, but outside this,

4

the flux surfaces are open, with the field lines directing particles to material surfaces.
This system, whereby plasma flow along these outer surfaces (the scrape-off layer) is
channeled to a surface remote from the bulk plasma forms the divertor. The reason
for creating such a system is to remove impurities from the plasma and so, spectra
from this area will display the presence of these species. Since there is a flow of the
hot fusion plasma onto a collecting surface, there is the issue of heat load onto that
surface. In order to alleviate this heat load, one of the techniques employed is the
introduction of neutral gas which can provide radiative cooling and detachment of the
plasma from the divertor plates — this can lead to strong deuterium recombination
emission. Electron temperatures in the divertor are in fact low enough such that it is

even possible to observe molecular emission.

Advanced models, considering the underlying atomic processes that produce the
complex special features that are observed are of great diagnostic value. They
characterise the spectra in terms of physical plasma parameters rather than more
abstract parameters which define some mathematical line shape representation, which
then need to be re-interpreted in terms of the parameters of interest. Special features
are typically series of spectral emission lines which are interdependent on each other
(i.e. they come from the same source). Consideration of the signature of the entire
special feature, rather than the individual lines, has many benefits. One example,
would be when a component of a line shape, say line width, is dependent upon multiple
parameters, but the level of dependence on each differs between the individual spectral
lines. In this case, only modelling the entire special feature will reliably resolve the
parameter. Another example is when a feature is comprised of a large number of
spectral lines at similar wavelengths such that the line shapes merge together; much
of the detail of the feature is hidden as the various broadening mechanisms blend
the lines together — this is seen in emission from heavy species elements. It is not
practical in this case to decompose the feature into its individual line components
in this case and so, a special feature model is required to fit the observed spectra.
Such special features may also prove valuable in improving numerical stability of the
minimisation algorithms utilised by reducing the number of model parameters. Special
feature models may also offer more efficient computation of the function considered,

the partial derivatives of this function (with respect to its parameters), or both.

Although the advantages of using special feature models is clear, often it has been the
case that the development of computer programs to perform the analysis is focussed
on a specific feature. The codes are purpose built and offer little flexibility to include
additional simple lines or other special features in the same model. This can limit

analysis to small spectral regions with such codes or, worse still, that their use is

omitted completely. Despite the fact that each of the special feature models are highly
sophisticated and specialised, in reality they are essentially very similar; they are
mathematical functions that are controlled by a defining set of parameters. Of course,
this is also true for the simpler line representations too. In fact, it is best to consider
the spectra in this way — an entity comprised of several component functions. This
is the approach taken by this work — an effort has been made to abstract from the
task of fitting a particular experiment and consider the problem more generally, while
retaining the level of nuance required for the individual spectra at hand. Consideration
is given to how to formulate a modular representation of spectra built from a series of
basis functions and how to handle more complex combinations of them. Additional
flexibility is provided by a system to mathematically couple together parameters in the

system (across components) to constrain the model, define ad-hoc models, or both.

1.1 Traditional Analysis Systems

Many of the existing spectral fitting programs are focussed on a single aspect of
spectroscopy, rather than taking a more global view to fitting spectral data. For
example, the Package for Interactive Analysis of Line Emission (PINTofALE) [2]
was originally developed to analyse spectra from optically thin coronal plasmas.
PINTofALE aims to provide access to atomic databases — specifically CHIANTI [3],
the Astrophysical Plasma Emission Database (APED) [4] and also the SPECtral X-ray
and UV modeling, analysis and fitting package (SPEX) [5] — and allows interactive
comparison to observed data. The tools available for fitting spectra are, however,
limited in scope. The interactive module, fitlines, supplied with PINTofALE, is only
concerned with fitting line shapes with three parameters (e.g. Gaussian and Lorentzian
profiles). Variants of these basic line shapes (with more than three parameters) are

allowed, but only if the additional parameters remain fixed.

Although the theme of this work is generalised modelling and fitting of spectra,
retention of focus on individual fitting problems is, nonetheless, not without merit;
CXSFIT [6] strongly exemplifies this. CXSFIT is a spectral analysis tool that has been
carefully tailored to specifically fulfil the required level of intricacy involved in fitting
charge exchange spectra. Indeed, CXSFIT itself is based upon another code KS4FIT,
which had been the mainstay of charge-exchange spectroscopy at JET. The resultant
code is really the culmination of ~ 20 years of experience of von Hellerman and
associated JET researchers over this period. Charge exchange spectroscopy has proven

very successful in current fusion devices that utilise a neutral beam injection (NBI)

heating system, for resolution of local measures of quantities such as temperature and
impurity concentration and will remain so, looking towards ITER [7] such that there is

yet some mileage to be had from a proven, specialised code like CXSFIT.

In order to produce accurate special feature models, they should be underpinned by
the highest quality atomic data available. The Atomic Data and Analysis Structure
(ADAS) [8] is the one of the most prominent atomic databases and consists of an
archive of both fundamental and derived atomic data, coupled with a suite of computer
programs (see Appendix E for a glossary of the ADAS program series numbers and
file formats). The project supports analysis of radiating atoms and ions for a range
of plasma conditions: laboratory fusion plasmas, the interstellar medium, the solar
atmosphere and technological plasmas. The software suite includes an interactive
system with an Interactive Data Language (IDL) [9] graphical front-end, which
facilitates the expeditious generation and/or visualisation of the derived quantities
or spectra. The nature of the interactive system means that it provides a learning
environment to explore the behaviour of these derived quantities as a function of the
plasma parameters. ADAS made some inroads into inclusion of spectral fitting and
analysis capability with series 6. The intent was to create a series of dedicated spectral
fitting codes, for a set of special features: ADAS602 would be a general purpose,
Gaussian line based fitting code (designed, in the first instance, to analyse SOHO-CDS
and SOHO-SUMER astrophysical data), ADAS603 would be concerned with fitting of
Zeeman/Paschen-Back multiplets using the xPaschen code [10, 11], ADAS604 would
deal with the Li-like satellite lines in the vicinity of He-like resonances and ADAS605
would tackle fitting diatomic molecular emission. ADAS602 and ADAS603 were
realised as interactive codes with graphical user interfaces and used extensively in data
analysis. Fitting and data analysis has been somewhat neglected since (ADAS604 and
ADASG605 were never seen through to completion as intended). The set of special
feature models themselves, however, are provided within ADAS. Historically the
computer programs were written on a case by case basis and there was very little
consistency between the way in which these programs are utilised. This meant that
access to these important tools was hindered by the fact that any prospective user
needed to understand the particular idiosyncrasies of the modelling code in question.
Establishing a standard interface to the available special features results in a range of
benefits — not least by providing ease of use for the operator. The unified approach
that has been taken to achieve this (see Section 3.1) exposes the current special feature
models for use by external analysis codes in a structured, consistent manner and,
importantly, allows for easy inclusion of future models. Provision of standard access

to the models is especially beneficial should multiple special features be required to

be added to a single model and is a necessary step towards creation of the extended-

ADAS, generalised modelling and fitting program, FFS (see Section 4.4).

1.2 Object-oriented Modelling for Numerical Fitting

The need to abstract the modelling problem from a specific subset of data has been
readily identified in other fields (e.g. modelling of diagenesis, in the geological domain
[12, 13]). When it comes to the issue at hand (fitting spectral data), those of a
computer science background quickly identify that the physics problem set before them
is best served by a modular computational framework. Jarvi [14], considered model
spectra to be composed of a set of component elements. In terms of computation,
an object-oriented approach [15] can parallel this structure, with a top level model
object, holding a list of model element objects, which in turn hold a collection of
objects representing the parameters of the model element underlying functions. This
structure is very sensible and the benefits of the object-orientation are easy to see,
e.g. the mathematical representation of each element is encapsulated within the object,
which means that a user can intuitively build a fairly complex model from a basis of
elementary modules, very quickly. The other advantage that this modular structure
brings, is flexibility — new models can re-use the same base elements, with little or,
in most cases, no ‘hard-coding’ of models. Other object-oriented concepts also prove
useful, e.g. inheritance; all of the common functionality that each element posseses can
be handled by an element superclass, from which all model components are derived
— this simplifies the code for the derived classes (i.e. the concrete classes used to
construct a model) greatly. There are some design decisions which have not been
transferred to the current work (FFS). Firstly, a distinction has been made between
‘composite’ and ‘elementary’ components of the model. This seems unnecessary and
is perhaps an over-abstraction of the problem. Additionally, the concept of ‘composite’
models, as discussed by Jarvi, are restrictive — they only serve as container objects,
with its evaluation function comprising of a summation of the results of the child model
element function evaluations. Consideration has not been given to the more complex
case of ‘operator elements’ (discussed in Section 4.2), i.e. container objects which are
further functions of their child elements and not simply a linear combination of them.
This is of particular importance for efficient calculation of partial derivatives for least-

squares fitting (see sec. 4.7).

The parameter class hierarchy of Jiarvi’s work will also not be adopted here, as it does

not easily handle the required complexity. In order to deal with the issue of coupled

parameters (i.e. parameters that are related and therefore interdependent) the parameter
hierarchy splits from a base parameter class to two main subclasses of ‘stored’ and
‘dependant’. The ‘stored’ parameters are the set of truly adjustable fitting parameters,
while the ‘dependant’ subclass represents those that are not — they are coupled to the
value of another parameter of the system. The dependant parameter class however,
only deals with one-to-one coupling. If the dependancy is more complex, then a
further subclass must extend the dependant parameter class, over-riding the methods
for retrieval of parameter value and derivative. While this solution works, it is not very
flexible and requires that a class file is written whenever a coupling function is used for
the first time. Consideration of arbitrary coupling between parameters is considered in
Section 4.6.

Perhaps the closest to achieving a fully flexible generic modelling and fitting system is
the X-Ray Spectral Fitting Package (XSPEC) [16]. This package has been developed
at Nasa’s Goddard Space Flight Center since 1983. The assertion made here (that
an object-oriented approach to this problem is required) is further vindicated by the
fact that this package underwent substantial re-design in 1998 to use this modern
computational technique [17]. The latest edition of this application (v. 12 at time of
writing) provides several features that are essential in achieving the goal. Firstly,
a selection of model element objects are available, from which a model can be
constructed. Secondly, Tool Command Language (Tcl) has been used to provide an
interactive (command-line) interpreter for the custom XSPEC command language —
this means that XSPEC has capability to define more complex relationships between
model elements, than just a linear sum (as in v. 11). Again through the Tcl scripting
language, there is support for coupling between model parameters, specified by
polynomial expression in terms of other parameters, using a subclass of the model
parser object. This is an evolution of the feature in v. 11, where coupling was limited
to linear relations between parameters and the use of a separate scripting language to
make the specifications eliminates the lack of flexibility in the extensible parameter
class solution discussed above. XSPEC commands are used to set parameter bounds,
fixed / free status etc. It must be noted that the XSPEC coupling syntax is somewhat
obscure — particularly in that model elements can be named, but parameters cannot.
This means that parameters are instead referenced by numerical index, in some
arbitrary order defined by that element. The situation is worse if the elements are not
named; the index is the position in the concatenated parameter list from all elements.
Further to this, the parser assumes that all numerical characters in the range [1, n],
where 7 is the number of parameters, are considered to be references to parameters. If

constants in this range are to be specified, they are indicated by the use of a decimal

point.

Routines for performing fitting are included with the package — currently Levenberg-
Marquardt [18] and Minuit/Migrad methods [19, 20] are implemented — although
annealing methods (see, for example, Kirkpatrick et al [21]) and genetic algorithms
(originally developed by Holland [22], but see Besset [23] for implementation in
Smalltalk and Java) existed in the older version of the code. XSPEC does not,
however, make an attempt to use analytical partial derivatives where possible — a
surprising omission given the associated performance increase (see Section 4.12 for the
performance increase experienced in use for FFS). Additionally, no attention is given to
optimisation of the user-defined model representation. Symbolic reduction of algebraic
formulae has been tackled by two of the prominent, commercial applications Maple
[24, 25] and Mathematica [26] and is examined, here, in Section 4.7. Similarly, no
attempt is made to find the partial derivatives of the coupling expressions symbolically

— this is discussed in Section 4.6.

1.3 Improving on Existing Software

The spectral analysis packages, mentioned here (which are just a small subset of those
available) are essentially performing similar tasks, each with their own nuance as they
have been tailored to successfully tackle a specific aspect of the modelling / fitting
problem. It is more sensible for the core, shared characteristics of these to be unified as
far as possible. It should be noted, however, that some of the tailored packages are very
good at performing their specified task and are often highly efficient too. Therefore,
in order to compete, performance may be compromised, but not to the extent that the
advantages that unification offers are overshadowed by a lack of performance. The
goal of the present work is to address this very issue and as such, it is the specialist

codes that will provide the performance benchmark.

Some systems provide rich, complex modelling routines (e.g. ADAS), but often such
models are not easily integrated into the packages that perform the analysis as they
have a rather rigid framework, relying on intrinsic functionality. It is often difficult to
incorporate external models into analysis packages without substantial re-development
of them.

In order to create a successful modelling, fitting and analysis system, it is important
to try to incorporate as many of the useful features of existing systems (like those
considered above) but also to attempt to avoid as many of their respective negatives

as possible. Clearly it is preferable to incorporate the best quality special features into

10

a model when possible, so the system must be capable of interfacing with external
feature generation. Secondly, on this same issue, it is inevitable that the sources of
such data (or generating algorithms) will be disparate — this means that an effective
scheme must cope with the varied ways in which each is accessed. Many of the issues
discussed can, at least partially, be solved by ensuring a high level of modularity.
Ensuring modularity brings different benefits in different areas. Firstly, it allows the
building and creation of a model to be separate from the fitting and analysis. Secondly
it brings versatility to the modelling system; components are no longer locked down to
those that are ‘built-in” — each of the model elements must simply adhere to a defined
interface. Tackling the problem in this manner has been considered by others (e.g.
[14]) but the manner in which this has been implemented does not take the concept far
enough and is again embroiled in the very same predicament that the modularisation
was meant to avoid — rigidity. Other solutions such as XSPEC have embraced the
object-oriented philosophy and identified the requirement of a separate engine to
handle model definition and parameter specification via a scripting language. However,
some aspects of the problem have been neglected, mainly regarding optimisation of
the model and efficiency of partial derivative calculation for numerical fitting. In this
respect, there is a danger that the performance advantage offered by dedicated codes

may outweigh the flexibility of a modular framework.

It is intended that the packages AFG (Section 3.1) and FFS (Section 4.4) developed
as part of this work embrace the philosophy of the object-oriented solutions, whilst

retaining attention on the benchmark set by the various dedicated approaches.

1.4 Thesis Outline

This work describes the development of a flexible modelling system for spectral
analysis, particularly in the fusion domain. Application of the package for fitting
analysis of a range of spectral signatures, resulting from a diverse range of plasma

scenarios, is explored.

Chapter 2 provides a survey of various special features commonly observed in spectra
from fusion labs. Consideration is given to the modelling of these features by
examination of the underlying atomic physics processes involved. Particular attention

is given to modelling of the state populations.

Chapter 3 describes a method of (programmatically) unifying access to codes that
produce the special features described in chapter 2 — the ADAS Feature Generator

(AFG). This is an important step towards building a useful, modular spectral modelling

11

system. This chapter also details the accompanying graphical user interface (GUI),

ADAS 605 which is comprised of self-generating graphical widget components.

Chapter 4 begins by considering (mathematically) the functions most commonly used
to represent spectral lines and their partial derivatives. Examples of combinations of
these functions are also inspected. This provides a basis from which the description
of a modelling system, the Framework for Feature Synthesis (FFS), can be built.
The computational development encompasses the specification of a Model Definition
Language (MDL), support for arbitrarily complex model parameter coupling and a
method by which poorly specified models can be reduced to optimal form. This chapter
also discusses non-linear least-squares fitting using FFS, including batch fitting (of
large numbers of similar spectra). Finally, there is a study as to the validity of the
results of the code and the performance advantages associated with the use of analytic

partial derivatives and the model optimisation system are investigated.

Chapter 5 follows the practical implementation of the FFS modelling system for fitting
experimental data. The capabilities of FFS are tested progressively, from simple fits
of manufactured test data through to exploitation of the coupling system in fusion
experimental scenarios where speed of execution is important. Other examples see
combined use of AFG and FFS — bringing the advanced special feature models into

the analysis.

The final chapter summarises the completed work and looks towards further exploita-
tion of the current capabilities of the system for spectral analysis as well as discussing

potential future enhancements.

12

Chapter 2

Special Feature Modelling for Nuclear

Fusion

2.1 Introduction

Whereas basic spectroscopy fits single lines, diagnostic spectroscopy establishes its
ability to obtain plasma parameters by fitting connected sets of spectral lines. Lines
are connected because of the excited population structure of the emitted atoms and
ions. In conventional atomic physics nomenclature, a single spectral line is called a
component and arises from a transition from one level of an atom to another. The
levels of an atom group, according to angular momentum rules, into terms and then,
into larger groups called configurations. The set of levels arising from a term is called
a multiplet and the set of multiplets arising from a configuration is called a transition
array. At issue, is the relative intensity of the components of a multiplet and of the
multiplets within a transition array. These proportions follow from the populations of
the levels of the terms and the terms of the configuration. It is these populations which
are reactive to the plasma environment, especially electron density and temperature,
through collisions. Here the population structure is used to describe the consequence
of the interaction of the various collisional and radiative processes. The associated
modelling is called collisional-radiative modelling. The objective of this thesis, which
is spectral fitting with combinations of complex special features, is intertwined with
the details of population modelling. This intertwining, can be illustrated by a simple
example. Consider the O IV spectrum and the multiplet 2s22p 2P — 2s2p? 2P at ~ 553 A.
One component is 2P, — 2Py, at 553.330 A. For O*3 in a tokamak plasma, the
populations of the levels of the upper term 2s2p? 2P are nearly in proportion to their

statistical weights. Thus, the relative intensities of the components of the multiplet

13

have little connection with the plasma parameters. From a collisional point of view,
this occurs because the energies of these levels are very close together and in a plasma,
ion collisions are extremely efficient in distributing the level populations amongst each
other. Plasma conditions are influential in establishing the situation, but the relative
intensities are not sensitive. From a collisional-radiative point of view, this is in the
so-called ‘high-density’ local thermodynamic equilibrium (LTE) regime. If the system
is followed iso-electronically up to an ion such as, Fe™?!, the efficiency of radiative
transitions increases and that of collisional transitions decreases and the balance shifts.
Additionally, the separation of the levels of the term increase. The relative intensities
move away from statistical, becoming sensitive to plasma conditions, and enter the
so-called ‘collisional-radiative’ regime. For the iso-electronic system W*% radiative
transitions completely dominate and we enter the so-called ‘low-density’ (coronal)
regime. Comprehensive spectral analysis is designed to be able to analyse in all
these regimes and therefore must have in its support structure detailed population
calculations. Here, ADAS [8] provides the background population modelling, but it is
necessary to understand the balance of processes underpinning the population models
to be able to best exploit the spectral analysis. In the following sections, the population
modelling is explored in more detail and we consider its completeness for use in all

practical scenarios.

It is intended that AFG (Section 3.1) and FFS (Section 4.4) deliver a diagnostic
capability for all spectral features in the magnetically confined fusion domain. To
structure these and connect them with the selection of features which follow in Section
5 we consider the plasma environments from the point of view of an emitting ion,
subject to the collisionality of the thermal plasma in which it lies and also subject to
external fields and driving mechanisms which influence it. External fields and directed
driving processes such as neutral beams create a direction in the plasma and, as such,

makes the orientation of the ion significant. We call this the orientation problem.

The bulk of population modelling applies to thermal plasma, without directional
effects. The fusion plasma spans a wide range of temperature and consequently,
ionisation stages of elements. The Hamiltonian of an ion of low charge state is
dominated by the Coulomb interaction, giving a term structure for its energy levels.
In high temperature zones of the fusion plasma, high ionisation states of heavier
species occur. For such ions, relativistic corrections to the Hamiltonian modify
the energy level structure, over the pure Coulomb case. The consequence is that
fine-structure energy level separations become significant and collisions with them
are differential. The population structure calculation must adjust to these different

regimes. This is called the resolution problem. The terminology in this context is

14

somewhat different from spectral resolution, yet connected to it. It is convenient to
deal with a number of resolutions called s (term resolution), ic (intermediate coupling
resolution), ca (configuration average resolution) and bn (bundle-n resolution). So, ls
resolution applies to light element ions, the populations of terms are calculated and
observations are of whole multiplets. In the ic case, the populations of levels are
calculated and observations are of the separate individual components of multiplets.
ca resolution deals with the sum of whole configurations and the observations are of
unresolved transition arrays in low resolution spectroscopy. A yet coarser resolution is
bn resolution where the populations of entire n-shells are treated as a whole. This latter
resolution is relevant to very highly excited states of atoms and ions, so-called Rydberg
states, which become increasingly H-like for all levels of the same n — effectively
degenerate. Whereas spectroscopy is normally done at ic or s resolution, precision
of the population models which underpin the spectral intensities, do require subsidiary

calculations at ca and bn resolution for completeness.

2.2 Issues of Orientation — Zeeman and Stark Spectra

At JET, in the coolest regions of the divertor, plasma electron temperatures, 7,, are
as low as 0.5 eV. Consider emitting ions in conditions where the temperature range
is ~ 0.5 — 10 eV and the electron density is ~ 10'* — 10" cm™. Such a temperature
range of thermal plasma implies ionisation stages of helium, beryllium, carbon and
oxygen from neutral to doubly-ionised. The ion temperature, 7}, is of the same order
as the electron temperature. Magnetic fields are ~ 3 T which implies a Zeeman
component separation of order ~ 2.1 cm™~'. The doppler half-width, say for CI at 1 eV
is ~ 12.7 cm™! and at 10 eV, ~ 40.1 cm™!. On the other hand, the term separations for
CI are of order ~ 11000 cm™, so the Zeeman perturbation is very small in comparison.
This is insufficient for deviations of the magnetic sub-level populations from statistical.
It is also noted that spectral analysis of the Zeeman split features normally focusses on
a single transition. Therefore, population modelling is not influencing this situation and
the requirements of the ADAS database are only the Zeeman / Paschen-Back splitting
of individual lines. The handling of this scenario, by FFS-AFG is detailed in Section
5.4. The key parameters for extraction are magnetic field magnitude, magnetic field
direction and doppler temperature. In the thermal central confined plasma, with highly
ionised ions, the magnetic field, although guiding the ions, has no consequences for the
electronic structure of the ions or the electron collisional processes populating them.

The Zeeman splitting occurs due to interaction of the magnetic moment of the emitter

15

with the confining field. The magnetic moment arises from the orbital motion of the
electron, as well as the fact that there is an intrinsic spin magnetic moment associated
with both the electron and the nucleus. This interaction alters the Hamiltonian of
the system, that is to say that it results in a new set of eigenfunctions and associated
eigenvalues and therefore, a new set of energy levels. The interaction energy E™* for

a magnetic moment g, in the presence of a magnetic field B is given by:

Emag:_”.B
:(I‘ll+l'l3)B

® (L+g.5) B
2m,

C J+(g.-1S) B 2.1)

2m

where py = —3-L and g, = -g.5.-S are the magnetic moments due to the
electron orbital angular momentum L and intrinsic electron spin angular momentum
S respectively. The quantity g, is the electronic g-factor: 2.0023193043622(15) [27].
Note that the interaction with the nuclear magnetic moment is small and so, neglected

here.

For the case of magnetic field interaction which is relatively weak (compared with that
of the spin-orbit interaction) states can be labelled as |S LJM) it is possible to express

the magnetic interaction energy in terms of quantum numbers as:
E;™ = upg MB, (2.2)

where ¢g;, the Landé g-factor:

JJ+D+SES +D=LIL+1)

gr=1+(g. -1 20U+ 1) (2.3)

and ug, the Bohr magneton:
eh

- 2m,

HB 2.4)

have been introduced. The Landé g-factor arises from taking the scalar product in
equation 2.1 as (when visualised as a vector model) the L and S precess around the

total angular momentum vector J.

Clearly, the interaction energy is directly related to the strength of the magnetic field,
this in turn means that the spacing between components of the resulting Zeeman
multiplet spectra is useful as a local diagnostic for magnetic field strength. The

Zeeman component lines are of linear, left and right circular polarisation depending

16

upon whether M = M, M = M’ + 1 and M = M’ — 1. The emissivities are then given
by:

1
_ 7. 2 +
M=M : E S1n HA'}’LSJM—"}’L,S,J,M’N)/ZS]M
M=M +1: 1 (1 + cos’>H)A sy NT?
. S YLSIM—yL'S' MtV 1S JM

, 1
M=M —-1: g(l + COS2 G)AyLSJMﬁyL’S’J’M’N;—ZSJM (2.5)

where 6 is the angle between the line of sight and the magnetic field direction, N;zs M
is the population of the upper state of the transition and A,;s, is the spontaneous
emission coeflicient from that state [8]. Assuming statistical proportion populations

for the magnetic sub-levels:

1
+ _ +

If the magnetic field strength is of a higher magnitude, we can no longer consider the
orbital angular momentum L and spin angular momentum S to be coupled as they
become more strongly coupled (independently) to the external magnetic field. In this
regime, the splitting differs from the weak magnetic field results and gives different
spectral patterns. The name given to the strong magnetic spectral line splitting is the
Paschen-Back effect. We can return to equation 2.1 for the interaction energy as before,
but now that the spin-orbit interaction is negligible compared with the interaction with
the external field i.e. no longer in an LS-coupling situation, the states may be labelled

as |S Mg LM) and the interaction energy in terms of quantum numbers represented as:
E;™ = ugB (M + g.Ms). (2.7)

Figure 2.1 shows results from a simulation code that performs calculation of the
Zeeman splitting i.e. calculates the locations of the wavelengths of the component
lines. Another program then takes the zero width lines and applies Doppler thermal

broadening effects to produce a more realistic spectra.

A markedly contrasting situation is the beam penetrated plasma and the neutral atoms
of the beam. Neutral beams are principally used for heating fusion plasmas, but
on occasion can be used in a diagnostic role. The beams are normally comprised
of hydrogen isotopes, although helium is sometimes present. At JET, deuterium is
typically the main neutral atom species, as it is the fuel. There are two types of

beam source, designed to accelerate either positive or negative ions up to the required

17

0.05

0.04

0.03

Intensity / arbitrary units

0.07

0.00

906 908 910 912
wavelength / nm

Figure 2.1: Simulation of the Zeeman multiplet feature for CI (2p3s *P —2p3p *P) with
ADASG603, for a magnetic field of 2.5 T with a viewing angle of 90 ° to the magnetic
field. The calculated line intensities are then Doppler broadened using ADAS utility
routine c5dplr. The width of the lines correspond to an electron temperature of 12 eV.
The un-broadened components coming from ADAS 603 are over-plotted in black —
note that this output has been scaled.

18

beam energy before neutralisation. The so-called ‘positive-ion’ sources have been used
historically in fusion and provide beam particle energies of 30 — 80 keV amu~'. The
neutral beams from such positive ions sources have half and third energy components
arising from molecular species present in the source discharge. Negative-ion sources,
which will be used for ITER [28] have a single energy component in the beam and
typically have particle energies > 100 keV amu~'. Neutral hydrogen beam atoms can
undergo a charge transfer reaction with the plasma ions and with impurity bare nuclei
in the central plasma, which leads to so-called ‘charge-exchange’ emission. That is
transitions between highly excited shells of the H-like impurity ions after the reaction,

which are in the visible spectrum. A beam atom at 30 keV amu~!

encountering a
plasma ion (deuteron) at an average thermal energy of ~ 10 keV has a significantly
different relative collision speed for co and counter collisions and so, different cross-
sections. Subsequently, the receiver ion directed velocity is reflected in the doppler
shift of its emission. These cross-section and Doppler effects lead to the necessity of
special spectral fitting and inferences for charge-exchange spectroscopy. Dedicated
fitting codes such as CXSFIT [6] handle charge-exchange spectroscopy, CXSFIT is

effective and widely used.

The beam atoms also emit. For neutral hydrogen beams, Balmer-alpha is the
principally observed feature, although Balmer-beta and Balmer-gamma are also
observed. As the beam atoms are traversing the magnetic field at high velocity, they
experience a Lorentz electric field & = v X B which is of order ~ 100 kV cm™'. For
a central plasma electron temperature > 5 keV electron collisions speeds are very fast
and are in the high energy Born regime. For beam ions colliding with a plasma ion,
the collision speed is close to the speed of the beam atom itself, which typically places
the cross-section close to its peak, or just entering the Born regime. The electron
collision cross-sections are of order 1/50 of the ion collision cross-sections (for JET
beam parameters). Whereas the electron collisions, because of their high speeds are
essentially isotropic from the point of the target ions, for the ion collisions this is
certainly not the case. From the point of view of the target, the ion colliders come
from a rather narrow cone of attack. This cone of attack is differential between different
masses of colliders. That is to say that there will be a wider cone for plasma protons and
a narrower cone for the heavier impurity ions, such as carbon. So, in this situation the
directional ion collisions dominate and the collisional rates are differential in collider
mass. The Lorentz electric field is highly perturbative (linear Stark effect) on the nearly
degenerate hydrogenic levels of each n-shell. The hydrogen eigenstates are distorted
in the direction of the electric field and the isolated atom l-quantum number is no

longer ‘good’. The Stark states are labelled by the nkm quantum numbers, where m

19

is the usual azimuthal quantum number and k is parabolic arising from the Runge-
Lenz constant of motion [29]. The electron cloud of negative k states are pulled in the
direction of the electric field and positive k-states in the opposite direction. So, the
degenerate isolated hydrogen atom states of a given n-shell are split into a number of
separate levels, with a basic separation of E° = %nké" [30], called a Stark manifold.
The set of transitions between the n = 2 and n = 3 Stark manifolds are shown in
Fig. 2.2. The collision limit for this system is n ~ 4, so a population model is required
for at least up to n = 4. The populations of the km sub-states are not in statistical
proportions in general, although full statistical mixing can be approached in the fusion
domain. The spectral emission from the hydrogen beam atom, because of its alignment
to the field, is polarised and directional. So, a collisional-radiative population model
must include calculation of the perturbed Stark states, transition probabilities between
them and directed ion collisions of various mass particles with them. The polarisation
and directional characteristics of the emission must be evaluated. This implies a large
number of parameters entering the analysis of the beam emission. These include:
magnetic field strength, direction, beam velocity, ion charge and temperature, ion mass,
spectrometer line of sight and any instrumental polarisation characteristics. ADAS has
such a collisional-radiative model — ADAS305, which is accessible through AFG (see
Section 3.1).

Although the theory of Stark splitting of atomic states is outlined in standard quantum

mechanics texts [30, 31], some expositional material is included here for completeness.

The atoms in the neutral beam injected into tokamak devices cross the confining
magnetic field. When passing through this field, a Lorentz electric field & = v X B
exists in the reference frame of the atom. The electric field perturbs the Hamiltonian

of the system, resulting in an alteration of the previously degenerate energy levels.

If we consider a hydrogen atom within an electric field & acting in the negative z-

direction, the potential energy of the electron is given by:

U=- - eé’z. (2.8)

The time independant Schrodinger equation for the perturbed atom is:

Ey = Hy (2.9)
2

:(LR U)ap. (2.10)
2m,

We now consider this problem in parabolic co-ordinates, such that the conventional

20

Cartesian axis values are given by:
1
x = yéncosg, y= éncosd, z= 5(& —1). (2.11)

Note that r = /x> + y> + 22 = 3(£ +).

The Laplacian operator (acting on a function ¥) is defined as:

vy ! (i(h2h3i)+ 0 (%i)+ 9 (@i))w, 2.12)

]’l]hzh3 (9”1 h] 6u1 a_l/lg hz 6u2 6_m h3 6u3
T2
where hy, h,, h; are the scale factors given by h; = Z’}zl (37’) for a set of

parameterised functions, x; (i.e. x; = fi(p1, p2, - .- P3))-

In this case, the scale factors are:

1 1 /
he =5 T4, Iy =3 §+1 hy = \én. (2.13)

and by substitution into equation 2.12, the Laplacian becomes:

™IS

w4 (O (:0), 2, 0), L, 1)
RAdTEYS (06 (faf) " an ("an) T3 (g ¥ ,7) 3¢2)‘/" (2.14)

In this co-ordinate system, the potential energy is described by:

62

1
U= —m - 565@: - T]) (215)

Re-arranging 2.10 to get (Vz + %(E - U))lﬁ = 0 and using 2.14 and 2.15, we can

write the (time independant) Schrédinger equation as:

0 b5 0 0 1(1 1)\ 6*
(a—g(‘fa—f)w—n(”a—n)w(éw)a?z)"’

62

(E(g +1) + — le@@(gz - 772)) Y =0. (2.16)

me
—_— + —_
2ney 2

"o

If the wavefunction is considered separable in & and 7, i.e. that § = f(&)g(n)e™?, then

21

by substitution the following is obtained:

d (,0f(&) d (g\ m*(1 1
g(n)6_§ (f—&f) + f(f)a—n (Ua—n) vy (E + E)f(f)g(n) (2.17)
ne e2 1 >) B
e (E(f +1) + et Fe6E -)) f&g(m) = 0. (2.18)

Dividing through by f(£)g(n) and separating terms of & from those of 7:

ﬁ (é:_é’f(f)) L — m_2 + Me (Ef + e_2 + le(gdfz)

o¢ o¢) f(&) 4¢& 2n? 2rey 2
0 [dgp) 1 m> m, 1,
G PR R R 1

To satisfy this equation, both sides must equal a constant, such that we obtain (after

re-arrangement) a pair of ordinary differential equations:

d%(g%f)) + ;’;; (Eg +26%8) — ’;Zh; + %eé”.fz) @) =0 (2.20)
nd d (g\ . m, . w1

i (nd—n) + (En #26y = 5k e)g(n) =0, 2.21)
where B, = - — Z€ and B, = 1€

4rey eZm, e2m, "
The solution of these 1D-Schrodinger equations results in the eigenvalues, which are
the set of parabolic quantum numbers n;, n,, m. Often the definition of parabolic

quantum number k = n; — n, is made such that the basic energy separation is given by:

Eclec = %nké" (2.22)

wheren =n; +n, +|m| + 1.

With the degeneracy removed, there are now more states between which transitions
can be made, which give rise to more spectral lines. This is described as the original
spectral line being split into Stark components and the group of lines are collectively

identified as a Stark multiplet.

In the fusion neutral beam case, densities are such that the collision limit, from the
point of view of the beam atoms, is n ~ 4. Field ionisation starts to become significant
around n ~ 10, therefore it is ion-impact that is the dominant mechanism in this case.
Thus a universal treatment of both magnetic and electric field effects can be handled

by a perturbative treatment in the usual spherical nlm;m; representation. This is the

22

method exploited by the ADAS code, ADAS305. However, extended development
is underway due to anxieties over asymmetries of the polarised components of the
Stark feature in observed spectra. Field ionisation could be responsible for such
asymmetries. The extensions to ADAS305 will mean that the full parabolic treatment,
detailed above, will be used. These modifications will allow ADAS to tackle lower
collisionality regimes such as beam—gas target collisions. Development is still at an

early test phase and new JET spectra to probe the effects are not yet available.

In this work, it is the older, established version of ADAS305 that will be used to
produce the theoretical spectra representing Stark multiplets. The ADAS program also
takes into consideration experimental line of sight and Doppler shifts the multiplet
accordingly. Figure 2.2 shows an example of such a synthetic spectrum modelling
the Stark effect. The observed spectra are further complicated by the fact that the ion
production process for the injectors actually results in three deuterium components,
that is to say, D", D7 & Dj. The difference in mass means that they are entering the
device with different velocities and so, are Doppler shifted by different amounts. This
means that the spectra will comprise of three overlapping Stark multiplets. It should
be noted that there may be further experimental complications to account for in the
simulation. It is quite possible that a fusion device may have multiple injectors, with
different pathways. The angle at which these paths traverse the line of sight may differ
and so to will the observed Doppler shifts of the resulting multiplets. This means
that the observed spectra could show further overlap with the spectroscopic signal of

another beam.

2.3 Thermal Emission and Resolution

Most spectroscopy is of thermal plasma, that is plasma for which a local Maxwellian
electron temperature can be specified. It is these thermal electrons which drive the
excitation of the impurity ions in the plasma. The population of the excited states of an
ion are therefore calculated by including all the collisional rate coefficients and their
inverse at the the local temperature and the radiative transitions, between a manifold
of states. It is useful at this point to introduce the basic mathematical representations

involved, such that notation and nomenclature is clear.

Consider the populations of ionisation stage z, separated into the metastable popula-
tions N;*, indexed by the Greek letter p, and ordinary excited populations N, indexed
by the Roman letter i. The stage z has adjacent stages z — 1 and z + 1, its child and

parent, with metastable populations labelled as N ; “!and NJ**! respectively. The time-

23

1.2x10 ARRARRRRE ARRARRREN T]

1.0x10"?

8.0x10" |

6.0x10"

emissivity

4.0x10"}

2.0x10"F

ol o

6351 652 633 654 655
wavelength / nm

Figure 2.2: The ADAS305 simulation for a deuterium plasma (7, = 4.44 keV, N, =
2.49%10" m~?) with a deuteron beam of energy 40 keV amu™!, density 4.27x10"> m=3.
The magnetic field B = 3.39 T, with direction defined by a normalised vector (0.788,
0.005, 0.615). Similarly, the observational line of sight is described by (0.870, -0.047,
0.491). Scale factors of 0.51 and 1.0 have been applied to the o and m components
respectively.

24

dependent equations 2.23 of the populations are written in matrix/suffix form', where

we have omitted coupling to more distant ionisation stages.

N Cow NRyw 0 0 [N
d | N? N,S C C,i N, N
_ P — e~ pus pT PJ et pv/ o (223)
dt N;Z 0 CiO' Cij Ne Viy, N;Z

N+ 0 NS, N.S,;j C,, N

This means that these equations are actually complete only for the stage z. Note that
we have not shown explicitly the ordinary populations of stages z— 1 and z+ 1 and that
some of the sub-matrices are shown as script letters (eg. C,,, and R,,) whereas others
are shown as standard letters (eg. C,» and §,;). Technically, this is because a ‘quasi-
static’ assumption has been made about the ordinary populations of the stages z — 1
and z + 1 and the influence of their ordinary populations has been condensed onto their
metastable populations. Note that the on-diagonal elements of C and € are negative
quantities. C and C are linear in the electron density ~,. We wish to demonstrate this

procedure for the ordinary populations of the stage z.

The quasi-static assumption is that dN;*/dt = 0 which means that these ordinary
populations are assumed in instantaneous statistical equilibrium with the various

metastable populations?. This implies that

N 10 0 1
Ni+
A) Ny (2.24)
N | |0 -Ci'C, -N.Cilry || ° '
J Jt Jt N+z+l
N:-,z+1 0 0 1 v
and then
N Cpwr NRuw 0O N
N;Z = NL’SP/U ep(r Negzpw N;-Z (225)
Ny 0 NSw Cn |[NG

where we have the definitions of the effective metastable cross-coupling coeflicient,

effective recombination coefficient and effective ionisation coefficients between the

'In the following equations Einstein summation convention over repeated indices is adopted.
2We assume no direct populating mechanism from stage z — 1 to ordinary excited state of stage z.

25

various metastables of stages z, z— 1 and z + 1:

0¥, = Cu/N. = (Cor—CyiCj'Ci) /N,
chf.il—m = Rpw Voyr — ijC;il Viy,
s = 8, = Sy —8,;Cj Cis. (2.26)

Also there is formally an addition to the C,,, term called the parent metastable cross-
coupling coefficient
X, = = (84,C5'rin) INe (2.27)

vI—=v

which we assume had already been incorporated. The superscript ‘CD’ denotes
‘collisional-dielectronic’ — a historic synonym for ‘collisional-radiative’ and parallels

the naming conventions in the ADAS data format adfI] used for such data.

The emission per unit volume per unit time in an observed spectrum line j — k with

upper ordinary excited level population N;TZ may be written as

o, j—k v,j—k

AjaN7e = Y T PECLEY NN + > PECYS) NN (2.28)

identifying PEC™ | the usual excitation photon emissivity coefficient, driven by

o,j—ok’

the metastable o of the stage z, and PpeEre

v, j—k’

coefficient, driven by the metastable v of the stage z + 1.

the recombination photon emissivity

A set of PECs for an ion, in a spectral interval, from above is the key input for spectral
fitting. In general, the spectral interval will include spectral lines from more than
one ionistation stage, so the relative intensities from different stages are part of the
predicted model. These relative intensities are obtained from the ionisation balance
of the ions of different stages of a given element and it is the SCR data which allows
that balance to be calculated. That is to say that AFG models, discussed in Section
3.1, will draw PEC and GCR ionisation state data (A°“ and S°¢). In equilibrium
ionisation balance, the fractional abundances of the various ionisation stages are a
function of local electron temperature and density, as are the PEC. In practice, in
a fusion plasma, transport disturbs this simple ionisation balance. A parameter for
the spectral fitting will be the degree of ‘dis-equilibrium’. It is necessary to discuss
in more detail the various states (i, p etc.) in the above equations. In ic resolution
i = (y,S,L,) nlSLJ where vy, is the configuration of the parent (core) state; in /s
resolution i = (y,S ,L,) nlS L; in ca resolution i = (y,nl); in bn resolution i = (y,S ,L,)

nori = (y,S,L,J,)n for light elements and heavy elements respectively. ADAS

26

emissivity coefficients of format adf15 occur in data sets of the various resolutions and
include transitions between states of these various forms. The present work requires
access to these datasets for the construction of an AFG model. It is appropriate to
discuss briefly the completeness of various ADAS data with a view to spectral fitting.
This is because a high resolution spectrometer operating at longer wavelengths will
resolve components of a multiplet, that is to say transitions between J levels. However,
from a population structure point of view, the separations from the term centres are
very small and have negligible influence on the collisional cross-section problem. The
component cross-sections are in simple algebraic proportions to the multiplet cross-
sections, obtained from combinations of Wigner coeflicients. It is appropriate then to
carry out the population calculation in /s resolution. This may be ‘unhelpful’ from
the spectral fitting perspective as the available dataset within ADAS may not supply
the observed individual components of a given multiplet. The database must make a
trade-off between including fully resolved data (which is not useful for the modelling
of populations) and the issues associated with storing an even larger database than
at present. The question arises whether to archive these data or perform on-the-fly

calculation of the fine structure components from the coarser set.

2.4 Stark Broadening and Series Limits: Balmer and

Paschen Series

The Balmer series is the group of spectral lines which are a result of principal quantum
number transitions to n = 2, in hydrogen. The divertor region of (Joint European
Torus) JET is able to exhibit an intense Balmer spectrum due to the lower temperature
found here — allowing electrons to remain bound to their respective nuclei. The
feature is even more prominent when neutral gas is introduced into the divertor, under
detached operation (see Section 5.3), as recombination reactions take place. The
feature is sensitive to both temperature and density and can be a useful diagnostic
for these quantities in the divertor where direct measurement is difficult, or impossible
by other means. Analysis of Balmer emission has been successfully carried out on

spectroscopic data recorded from the JET divertor [32, 33].

The electron temperature can be inferred from the ratio of two lines in the series, or
the ratio of a well resolved line to the continuum emissivity. However, analysis is best
served by use of an accurate theoretical representation of the entire Balmer spectra fit
to the experimental data in order to determine the density and temperature. ADAS

(specifically ADAS311 in this case) provides the required capability to accurately

27

calculate the expected atomic level populations for a given input set of density and
temperature. The resulting output can be archived and then used as base set of data for
interpolation during rapid spectral fitting. Simultaneous fitting of several lines in the

series should give higher confidence in the estimate of temperature.

The electron density can in fact be estimated via the Inglis-Teller relation logn, =
23.06 — 7.5log na, [34] where n,,,, is the value of the principal quantum number of
the upper state in the transition that results in the last discernible Balmer line in the
series. The density can also be determined from the width of the high-n Balmer series
lines; their emission is subject to what is known as pressure broadening, which is due
to interaction with other particles in the vicinity of the emitter. Specifically, it is the
Coulomb interaction of ions and electrons with the emitting atoms leading to Stark
splitting (see Section 2.2) of the atomic states of emitter. There are two limiting cases
for this mechanism depending on whether the perturber is slow or fast moving. Fast
moving perturbers lead to broadening collisions that are on a short timescale and so,
are independent of each other and can be handled individually; the so called ‘impact
approximation’. Slow moving perturbers can be thought of as stationary from the
emitter’s point of view and so, the emitter can be considered to be located within
an electric field created by all of the the ‘stationary’ perturbers in its proximity —
the ‘quasi-static approximation’. Typically the electrons have a much higher thermal
velocity than the ions and so lend themselves to the dynamic impact approximation and
the slower moving ions to the quasi-static ion micro-field approximation. It is possible
to model the full Stark field as experienced by the emitter, considering the emitter
in a quasi-static field created by surrounding perturber ions, with a high frequency
fluctuation due to electron collisions. The Stark broadening of the Balmer lines results
in Lorentzian profiles, with a characteristic width, dependant upon the density of the
plasma. It is this property that makes the Balmer lines a useful density diagnostic. This
is discussed extensively by Griem [35, 36] and by Oks [37].

Under the quasi-static micro-field regime, Griem derives that this width is given by:

(n2 = n2) n (2.29)

In addition to this method of density inference, there also exist complex computer
codes that model the micro-field in the vicinity of the emitting atom, such as the
PPP Stark broadening code [38, 39]. A model spectrum, combining the use of ADAS

population calculation data with Stark broadening from PPP is shown in Fig. 2.3.

28

0.0030F T T

0.0025

0.0020

0.0015

0.0010

intensity / arbitrary units

0.0005

o.oooow\A. J
375 385

380 390
wavelength / nm

Figure 2.3: A simulated spectrum showing the Balmer series in deuterium (lines
n=8—2 through to n=15—2 are present) 7, = 2.15 eV and n, = 1.0 x 10'* cm™.
ADAS provides accurate population modelling to establish the line intensities, whilst
the PPP line broadening code has been used to generate the expected line shape. Note
that no background baseline is included here.

2.5 Diatomic Molecular Emission

The cooler divertor temperatures also allow for the existence of molecules —
molecular atoms will readily dissociate at higher temperature. The expected molecular
emission species are homonuclear diatomic molecules of fuel nuclei (i.e. deuterium
and trittum), impurity atoms (such as carbon and beryllium), or heteronuclear
combinations thereof. Spectral emission from such species have been observed at
JET, e.g., CD, C,, BeD [40, 41, 42]. Under normal circumstances, the origin of
such molecules is interaction with the material surfaces in the tokamak, via physical
or chemical sputtering processes. However, for experimental purposes, the presence
of these molecules may be deliberate; impurity gases (sometimes of more complex
molecules, e.g. hydrocarbons, such as deuterated methane, CD,4, which are quickly
catabolised into diatomics) are puffed into the plasma [43]. As the rotational and
vibrational energies of a molecular system are very much dependent upon the masses of
the constituent atoms, there is a marked difference in the ro-vibrational band structure
associated with the various isotopologues of a given diatomic. Therefore, it has been
suggested that examination of the observed superposition of BeD/BeT and CD/CT
molecular features may be used to infer the D/T ratio [44]. Due to the complex nature

29

of the molecular signature, this sort of analysis calls for a forward modelled special
feature. The specialised simulation code CALCAT [45], developed by H. Pickett at the
Jet Propulsion Laboratory (JPL), can be used to acquire energies and relative intensities
of transitions between the ro-vibronic states of the molecules under investigation. This
program takes input of a range of molecular constants and the fitting parameters are
the rotational and vibrational temperatures. The calculated vibrational band intensities
can be scaled in Boltzmann proportions (of the upper vibrational states, according to
the vibrational temperature), or scaled via a set of additional free parameters. The
complete set of intensities can then be convolved with an instrumental function to

produce a realistic synthetic spectra.

2.0

1.5

0.5

intensity / arbitrary units

0.0 Lol Jm:mh..Hlu.l“lll“m.IM A..mlli\lm“hmﬂhllhdm

485 490 495 500 505 510
wavelength / nm

Figure 2.4: A simulated BeD molecular spectrum (A’Il — X%) as produced using
CALCAT (via AFG). Rotational and vibrational temperatures are 0.3 eV. The result of
the CALCAT program has been convolved with a Gaussian function, with full-width
at half maximum of 3 A to emulate instrumental broadening.

2.6 Heavy Species Envelope Emission

In future fusion devices (e.g. ITER) heavy elements may be used as wall material
and tungsten will certainly be used as a divertor material due to its low sputtering
yield [46]. In preparation for future fusion devices, experiments are carried out
on materials such as tungsten on the current generation of machines. This is

particularly true of ASDEX-U where the machine has evolved such that all of the

30

Plasma Facing Components (PFCs) are now tungsten [47]. This means that a special
feature, modelling this type of emission, is highly relevant for application for current

experiments(e.g. [48]) and beyond.

The heavy element impurities differ from lighter elements in that they are not fully
ionised even at the high electron temperatures (7. ~ 10 keV) found at the core of
fusion devices. To further complicate matters, the elements often exist in ionisation
stages which are very complex, containing hundreds of contributing levels and several
thousand transitions in a fairly narrow wavelength range. The plethora of line
transitions taking place with similar wavelengths results in spectral features with a
great deal of line blending, making individual lines hard to distinguish; see, for

example, the simulated spectrum in Fig. 2.5.

2.5x10™ T T T T T
2.0x107""F]

1.5x107"" .

F—PEC

1.0x107"E

5.0x107"2|

OZI..l.. R IENSY

2 4 6 8 10
wavelength / nm

Figure 2.5: F — PEC for tungsten ions, ionisation stages W>** to W’3*. Equal
abundance of each ionisation stage has been assumed. The vertical axis shows the
value of the envelope feature photon emissivity coefficients (F — PEC). T, = 2 keV
and N, = 1 x 10" cm™3.

These theoretical spectra are the result of collisional calculations over every ionisation
stage of the element in question followed by collisional-radiative modelling to
determine the emission. Due to the large number of line transitions for the heavy
species, it becomes unsuitable to archive and utilise the usual photon emissivity
coefficients (PEC) data (archived in ADAS format adf15) for generation of the feature.
Instead, it is more efficient to use what ADAS refers to as feature photon emissivity
coefficients (F — PEC) which are archived in format adf40. To form these files, the

31

PEC are mapped on to a pixelated grid corresponding to a spectrometer pixel range
- with the line intensities convolved with a normalised emission profile. By default,
modest Doppler broadening, with a Maxwellian distribution for a set ion temperature,
T;, s applied. At each stage of the process, the data are archived, but the feature photon
emissivity coefficients (F — PEC) are the most directly applicable to experimental
analysis. Note that any further broadening effects (e.g. instrument function) can be
applied retrospectively to the archived feature via FFS (Section 4.4). The preparation
and assembly of the highest quality data that comprise the adf40 files is not considered
here — see [49, 50] for details.

2.7 Helium-like Soft X-ray Resonance and Satellite

Lines

One of main spectroscopically observed features in the soft x-ray region are the Li-lke
satellite lines associated with the He-like resonance lines. Due to a large region of
existence in temperature of the He-like ionisation stage, this feature is prominent in
observations from both astrophysical and laboratory fusion plasmas (see, for example,
[51] for studies on MAST). It also means that the He-like ions, within a fusion plasma,
will be present across a range of radial values as the spectrometer’s line of sight is
trained from edge to core. There will be marked differences in local plasma conditions
at different radii (e.g. electron temperature) therefore the lines do not provide a local
measurement of these quantities. ADAS does not have a population model and data
format for delivery of this type of feature. It is the object, here, to add this capability
to ADAS such that this class of feature is available for spectral analysis (see Section

5.7 for a test case using this feature).

Early work in the astrophysical domain established the main nomenclature and method
of analysis of low density plasmas [52]. Consider a He-like ion A**(1s* !S) of an
element A. There is a set of four spectral lines arising from the transition from the
n=2 shell of A**. Conventionally known as w, x, y and z. w is the main resonance
line 1s2p 'P; — 1s? 'Sy; x is the quadrupole line 1s2p *P, — 1s5% 'S¢; y is the
intercombination line 1s2p 3Py — 152 1S; y and lastly, z is the forbidden line
1525 38, — 1s5*> 'S,. The z line is a strong density indicator in appropriate density
regime for the charge state and the intensity of the x and y lines, relative to that of the

w line are an indicator of transient state because of recombination.

The satellite lines, which lie close to these He-like lines are from the Li-like system

32

with a spectator electron present. An example is the transition from 1s2p(' P)3d 2D —
15%('S)3d 2D, where the 3d electron is the spectator which lies close to the w line.
Such lines with the spectator in the n = 3 shell have the greatest excursion and those
with the spectator in the higher n shells accumulate close to the associated He-like
line. The mechanisms for the creation of the upper population of these lines are
the dielectronic process or the inner-shell collision excitation process. dielectronic
recombination is a two step process. Firstly, the process known as resonance capture

can take place (eq. 2.30):

A7 (157 1S9) + e = A (1s2p ' P,nl). (2.30)

From this state, the system can undergo the reverse process, Auger breakup, or a

radiative transition can take place in what is called radiative stabilisation.
A (1s2p 'Pynl) - AT (152 'S, nl) + hy. (2.31)

Note that the photon released in eq. 2.31 is of a similar wavelengh to the main
resonance line as the inner transition is similar, yet perturbed by the presence of the n/

electron, resulting in a displaced satellite line.

In this situation, using notation such that the indices p, u and v refer to ground or
metastable states in singly-excited systems (z, z— 1 and z + 1) and o represents excited
states in doubly excited systems. For a resolved level of a distinguishable parent A;Zn‘l},

the population is:

M1 M@

+z-1 _ (exc) +z-1 (rec) +z

NO',nlJ - Z 7:O'Jlll;/l‘]Ve]\'],u + Z?’o:nlj;pNeNp (2.32)
p=1 p=1
and that of the level A} may be written as

M®@ MEHD

NiT= D TN+) TN (233)
p=1 v=1

where the factors TG(E,ZCJ),#NeN; =1 and 7—‘:;8 ,N.N;* are the contributions from inner

shell excitation and dielectronic recombination for the z — 1 times ionised ion and
the factors fﬁfgc)NeN; ¢ and FUON, N are the contributions from excitation and
recombination for a z times ionised ion. The sums are over the dominant driver

populations (ground and metastables) of each ionisation state, i.e. up to M@ of stage

33

z. The emissivity function of a satellite line may be written as

+z (MG +2-1
Gcr,nlj—m’,nl]’ _ N (A ?-(exc))]VIJ
N.N©t NNt oI =p") ol) T N
e e
p=1 1
M +z
(rec)
+ 3 (Avstrpr s Feer) <5 NF (2.34)
p=1
47 MGD
_ Nl S(GXC) (Z D ﬂ(z 1,2)
- N, Ntot onlJ—p’ nll’ u
e =1
M®@
(rec) (2) 7(z.2)
+ Z 80'nlj—>p nlJ’;, Rl pﬂp 1 (235)
where 8:’;;}_}}0 wyr(TeNe) s the excitation emissivity coefficient, 83;‘1)]_)/3 wizrp(TeNe)

is the dielectronic recombination emissivity coefficient and N = % _, N;*. The

quantities R(fj;l) and R(szj measure the dis-equilibrium in the ionisation balance and

+zl

AL = leg and ALY = (2.36)

N+z N+z |eq

measure the metastable abundances in ionisation equilibrium relative to the z-times
ionised ion ground. In most fusion and astrophysical plasma conditions, metastable
populations of a given ionisation stage are close to quasi-static equilibrium with the
ground so that R(IZ;;]) = R(lz’_l) independent of u and R(f;)p = 1. Thus the emissivity
function depends upon three parameters R(IH), T, and N, principally, although there is

a weaker Z, s and T}, dependence at high density.

In a similar fashion, the emissivity of the main lines, between singly excited states, is
defined by:

+, M@ +
Gyoy NI N+

Ne Nitot = Nlot Z o—p’ 7:(3)“)) N+z

N+z+l
+ Z o Fle?) S N (2.37)
v=1
(2)
N+z M
_ (exc) (@) 7g(z:2)
- N, Niot Z 80—>p PRlpﬂ
e |
M(z+1)
+ Z 85;6_6)/)) VR(lzj/-l)ﬂ(Z+lZ) (238)

34

where 8, (T,N,) is the excitation emissivity coefficient, &, (T,N,) is the

o—p’ip o—p’v
radiative (+dielectronic) recombination emissivity coefficient. R(f,)p and R(f,:l) measure
the dis-equilibrium in the ionisation balance with a similar simplification to that above,

such that ngi) =l and R“" = R%" independent of v. The quantity:
N+z+1

AG) = =, (2.39)
1 N1+z q

measures the ionisation equilibrium relative metastable abundances for the z + 1-times
ionised ion. Again, the emissivity function principally depends upon three parameters
R(f”), T, and N,. Thus, the theoretical local emissivity of the combined satellite lines
and associated resonance line feature is functionally dependent on four parameters,

RZV,R™D T, and N,

2.7.1 The Population Calculations

Conventional population modelling in generalised collisional-radiative theory ad-
dresses ‘singly-excited’ states built on ground and metastable parents. Very large
efficiency of computation is achieved by handling the two-step dielectronic process
as a single effective process populating these singly excited states [53]. To model the
satellite line feature on the other hand, the dielectronic process must be separated out in
the population structure — at least for the resolved satellite lines with low-lying (n < 4)
spectator. Spectrally unresolved satellite lines with higher-lying spectators provide a
second order supplementation of the parent ion lines and also the associated upper
level populations of these satellite lines give a contribution to the observed satellite
line intensities via cascade of the spectator. It is valid to bundle over outer quantum
numbers for such populations and to adopt some of the techniques of [53] for their
evaluation in finite density plasma, although care is required to avoid double counting.
It should be noted that the deviation of these unresolved satellite lines is small — it
may be hard, or impossible, to resolve it from the central wavelength of the resonance
line. Use of a forward planned model of the system will avoid over-estimation of the

intensity and width of this line from spectral fitting analysis.

For the ion A™"!, introduce principal quantum numbers ny, n; and n,. ng is the
principal quantum shell of the ground state valence shell. The range np < n < n
spans the spectator shells for which the individual satellite lines are distinguished in
the calculations. The range n; < n < n, spans spectator shells for which the satellite
lines are individually unresolved, with n, an upper limit chosen sufficiently large for

convergence in the calculation. Typically, in our calculations, we take ny = 2, n; = 4

35

and n, ~ 15.

2.7.1.1 Doubly-excited State Populations — Unresolved Satellites Lines

In the range n; < n < n,, consider the bundled population (that is summed over
substates of an nl- or n-shell) designated by N,;,,; built on an excited parent o = (y,J,-)
such that

Now =)" Nowjs (2.40)
g

Then, following [53], the populations in finite density plasma are determined by the

equations

_ e Zeff ,Reff
(Neqnl—l—ml + N qn1_1_m1) Na',nl—l

o—-1 [+1
Zeff Zeﬂ'
E Neqnl—ml’ + 2 N nl—)nl/ + 2 z Aa‘nl—m’ KU + ; Acrnl—w' nl
=lx1 =lx1 o'=11l=
n—1 I+1 ny I+1
+ 2 2 A(r nl—o’” n'l' + z 2 AO‘ nl—o,n'l O'"l
n=n+110=I-1 n'=ng lI'=
_ € Zeft Zeff
(Ne(InHl—ml + N* qn1+1_>n1) N(r,nl+1
MO 1+1 P) I+1
— c
- Ne z i 2 qp,Kl’—m',nlNP + ; A} o’ nl—o,nl 0'" nl 2 2 Aa’n”l”—)(rnl on'l” .
p=1 I'=l-1 o’=0+1 n”=n+11"=I-1

(2.41)

Here, M@ denotes the dominant ground and metastable states of the recombining ion,
which are the targets for recombination, and P® denotes the complete set of active
parents so, M@ c P®. The various ¢¢ are electron-impact excitation rate coeflicients
between the states labelled by the the subscript. Similarly, the labels g*" represent
ion-impact excitation rates (of effective charge z) and ¢ is the capture rate. N*" is the
1on density (of effective charge 7). A and A" are the Auger and spontaneous emission

rate coeflicients respectively.

Both electron and ion dipole-allowed impact collisions are included, but only between
[-levels of the same n-shell. It is noted that these have very large cross-sections (since
the /-levels are nearly degenerate), that ion cross-sections are usually larger that those
for electrons and in general have a density dependence. This leads to a non-linear
(and therefore not simply scaleable) density behaviour of the population equations
and influences our method of calculation. Inner-shell excitation from the ground and

metastables of the recombined ion is ignored for this high n-part. These equations

36

may be solved recursively downwards through n-shells and parents. Note the double
radiative sum on the right hand side and the double radiative sums on the diagonal
give the outer electron radiative transition to and from the current nl-shell population.
These terms were ignored in the Burgess-Bethe General Program (BBGP) doubly-
excited state redistribution equations of [53] but compensated for by renormalisation
to exact totals. They are generated explicitly here. It is sufficient to use hydrogenic
transition probabilities between spectator n/-shells, but more precise (and resolved)
values are required to levels in the range ny < n < n;. The exact BBGP approach as
detailed in [53], with the extension above, is sufficient for the unresolved dielectronic

recombination contribution to the satellite line feature.

2.7.1.2 Doubly-excited State Populations — Resolved Satellite Lines

The range ny < n < n; provides the bulk of the dielectronic feature. It includes
dielectronic contributions paralleling those of Section 2.7.1.1, but also contributions
from inner shell excitation from the ground and metastables states of the A**~! ion. For
n = ny, with equivalent electrons in the shell, parentage is not in general well specified
and so it is convenient to divide the resolved level population equations into parent-
attributable (onlJ’) and parent-unattributable (ynJ) groups. This takes the form, for a

doubly-excited parent-attributable level, of

E e § e
- Neqy’n’]’%a/’nlJNY'a”'J’ - Neqa”n/l/J’—m'”nlJNO","/I/J'

,y/,n/’J/ D'/,ﬂ,,l,,j,
E'<E
o’-1 I+1 o’ -1
Zeff Zeff
z Neqnl—ml’ + : N nl%nl’ + : z l Ao"’ nl—o,kl’ + z Ao-” nl—o’ ,nl
=I+1 =l+1 o=1 I'=
n—1 I+1 ny I+1

+ Z Z AO’" nl—>0’” 'l + Z Z AO’” nl—>o‘” 44 N(T”,I’ll

n'=n+1I'=l-1 n'=ng I'=I-1

- E (Nqu- 'n'l') —o’ nlJ + AO’ alJ—o” nlJ) No"a"'l'J/

oy
E'>E

M@
- N Z § qO’ kl'J'—a”, nl]N + Z Z Ao‘ al—o”, nlJNO"Jll : (242)
o=110U,J’ n=n+1 I

with similar forms for parent-unattributable levels and single excited levels. There
are equivalent sets of equations to equations 2.41 and 2.42 for the ion A*:. Note
the spectator electron cascade contribution from unresolved levels — the last term
of equation 2.42. In this formulation, the helium-like lines are envelopes of the true

helium-like line and the satellite lines with spectator n > n;, so that the spectral

37

emissivity coefficient for a helium-like line 0 — o¢”,driven by metastable p, is given
by

eff _ §
Ea'—)o";p(v) - Eo'—w";p + ecrnl—m'/nl;p

n,lin>ny

= A(ry——>o—’¢(v)Na'+ Z Afrnl—>rr’nl¢(V_Avn[)N0'nl /NeNp (243)

n,l;n>ny

For the present helium-like system, we are only concerned with the case of 0 = p.

In spite of the apparent simplicity of the one-, two- and three-electron systems
considered here, the quality of excitation cross-sections, especially the excitations from
the ground states of the ions by promotion of a 1s electron, has been a limiting factor on
precision. In preparing the population models above we have substituted high precision
data for all transitions between all singly and doubly excited states of the helium-like

and lithium-like system of the form 157273, 15%'712127121'nl” with n < 4.

2.7.1.3 The Collisional-radiative Matrix

It is helpful to illustrate the above steps as the creation of portions of the complete
collisional-radiative matrix and then transformations and condensations of these
portions. Consider the set {P} of intermediate coupling fully resolved parent states,
that is states of the ion A**, comprising the ground and metastable set {P} and the
excited parent set {P*} so that {Py} N {P+} = 0 and {P} = {Py} U {P*}. For the ion A**~!,
distinguish the fully-resolved set of levels {S} comprising low levels of unattributable
parent {S,}, assigned metastable parent by {S,} and assigned excited parent by {S},
so that {S} = {S,} U {S,} U{S}}. Further sub-divide {S,} and {S} into the subsets
arising from the range no < n < n;, {S 50”} and {S 201]*} and the subsets from the range
n <n<n, {SL%) and {S'**}. Bundling applies only to the sets {S'*'} and {SL'*"}
giving condensed sets of levels {SL'*} and {S1'**}. The collisional-radiative matrix

equations then take the form

Cuu Cuion Cupizy Cujors Cutie || N | | 7
Cione Cronon Croion Cronons Croizr« Npon FES)H
Cuzu Chzpon Croypizg 0 Crizy 121+ Npy | = VH)Z] (2.44)
Ciotjea Crotjsjo1] 0 Cio11s,[017 0 Nion- "Egi]*
0 0 0 0 Choenizie | Nuoe || ’”ﬁl;]*]

38

Note that there is no dielectronic recombination to the {S“}, {S LO”} and {S 52]} sets.

Also, the ¥ coefficients are resonance capture coefficients and not final stabilised
dielectronic recombination coefficients. An essential simplification is that the {S 512]*}
set is uncoupled to the lower sets by collisional excitation. This matches the usual
picture of dielectronic recombination as a quasi-static composite process, so that the
stabilised rate coefficients to the singly excited levels are rE'g] = CrionoCrize iz 1210
o = Congian Citspeqizn (e 04 7 = Copio Cilby o i The (S5} set is
bundled in the present treatment, being replaced by the set {S.'*'}. With these

C—l I"(d)

replacements, the matrix equations condense to

(r (d)

Cuu Cu o1 Cuii2) Cujo1} N, ry”t+ry
_ (r) (d)
Cote Cronorr Cronizy Cronionys Nio1 _| fon * ”E%] (2.45)
_ _ o (r))
C[12],u C[12],[01] C[IZ],[IZ] 0 Niio ”[1—2] + r[fz]
d
Coteu Crotysjo1] 0 Cro11+[01]+ Nio1+ ”Eoi]*

2.7.2 Electron-impact Rate Coefficients

Both electron-impact excitation and ionisation rate coefficients are required for the
present work and there are some general issues concerning their calculation and use in
the present context of satellite lines and doubly-excited states. It should be noted that

the calculation of this data does not form part of this work.

The R-matrix method has been used for excitation, a method capable of high precision
because of its close-coupled character and efficient inclusion of resonances. These
resonances are a superset of the doubly-excited states of satellite line population struc-
ture. The R-matrix equations include whole resonance series and the interference with
direct excitation in which they can participate, but often omit radiative channels. On
the other hand, doubly-excited population modelling can easily include most reaction
channels, but in cruder approximation and it does omit interference. Radiation-damped
R-matrix theory has been used in the cross-section calculations utilised here. It is
essential to ensure proper matching of it with our population modelling and avoidance
of ‘double counting’. For satellites to the helium-like n = 1-2 lines, the situation
is straightforward. Doubly-excited states of the form 1s2in/” (except for ‘high-n’)
only are resonances in the elastic cross-section of the 1s*> 'S, state. The 1s3[nl’
resonances, which affect the inelastic excitation cross-sections are not included in
the population modelling. The R-matrix calculations and population modelling are
‘orthogonal’. For ionisation, the concern is the 1s°2s 2S,, ground state of the lithium-

like ion. Only direct ionisation of the 1s electron should be included in the ionisation

39

calculation, since the excitation/auto-ionisation is included fully in the population

structure modelling.

2.7.2.1 Helium-like Excitation

The methods used here for electron impact excitation of the helium-like system have
been piloted in the initial study on argon and iron [54]. The radiation-damped
collision strengths are sought here and use is made of data that has been calculated
using R-matrix method [55] in conjunction with the intermediate coupling frame
transformation (ICFT) method [56] and the optical potential approach to damping
[57, 58]. A complete solution, in terms of reactance or scattering (collision) matrices
is obtained firstly in LS -coupling. In particular, use is made of multi-channel quantum
defect theory (MQDT) to obtain ‘unphysical’ collision matrices [59]. These are then
transformed, first, algebraically to jK-coupling and then, via the use of the term-
coupling coefficients, to intermediate coupling. The ICFT method is computationally
less demanding than the full Breit—Pauli approach but does not suffer the inaccuracies
associated with the term-coupling of physical collision matrices. Finally, it should be
noted that the use of the optical potential modifies the usual (undamped) expressions
for the R-matrix, unphysical collision matrices and MQDT closure relations by making

them complex, in general (see [57] for details and [60] for computational aspects).

AUTOSTRUCTURE [61] is used to calculate the atomic structure and, hence, to generate
radial wavefunctions for the collision calculation. Details of the computations follow
[54] but with energy ranges etc. adjusted for consistency along the iso-electronic

sequence.

2.7.2.2 Lithium-like Excitation

The data used here results from the piloting study on Ar'>* and Fe*** [62] . As with
the He-like collision calculations, use is made of multi-channel quantum defect theory
(MQDT) to obtain ‘unphysical’ collision matrices [59]. The outer region solutions
include the long-range coupling potentials as a perturbation, still within the MQDT
framework [58, 63]. The approach to the inner- and outer-shell data is to perform
the calculations independently and later merge the effective collision strengths back
together into a single dataset. The damping of resonances due to Auger breakup is dealt
with in two distinct cases, namely, Auger breakup to states included explicitly in the
calculation and Auger breakup to states not included in the close-coupling expansion.

The former is dealt with within the R-matrix approach intrinsically and the latter uses

40

AUTOSTRUCTURE to calculate Auger widths for the core re-arrangement of each target

level and includes them in the optical potential in the outer-region calculation.

2.7.3 Computational Details

Within ADAS, data from collisional excitation cross-section calculations are assem-
bled into ‘specific ion files’ of format adf04 for each ion. The R-matrix calculations,
used here, produce a type I adf04 file in which the interval-averaged collision strengths
for all transitions between level pairs are tabulated as a function of threshold parameter
together with the A-value. The ADAS code ADAS809 allows conversion of such a
file to rype 3 file of Maxwell averaged collision strengths as a function of electron
temperature. Both these adf04 file types are prepared automatically following the
collision calculations of Section 2.7.2 and are supplemented with equivalent electron
impact ionisation data before archiving as general self-contained data resources

according to standard ADAS practice.

Prior to the population modelling stage, attention must be given to the production of
dielectronic data and their special assembly into Auger and recombination enhanced
adf04 files for doubly-excited population and satellite line studies. This is an
alternative post-processing route for dielectronic data — to be contrasted with the
adf09 production of [53] and other prior papers of the DR Project series. The enhanced
adfo4 files are merged with the high grade, but restricted, adf04 files produced
from the R-matrix collision calculations detailed in Section 2.7.2 to provide the final
comprehensive adf04 files which are the objective of the fundamental calculations.
These steps are shown schematically by Fig. 2.6. The complete adf04 files are the input
to the derived population calculations which deliver the satellite line special feature,

accessed via AFG (Section 3.1), for diagnostic application using FFS (Section 4.4).

The driver data sets for the fundamental ADAS701 (AuToSTRUCTURE) calculations are
archived in ADAS format adf28 according to recombining ion iso-electronic sequence
and are of two types — those required to produce the energy level, Auger rate and
radiative rates for J-resolved satellites in intermediate coupling and those required to
generate the data for the BBGP nl-bundled calculations of higher unresolved satellites.
For both drivers, the output from ADAS701 is a set of temporary files (including the
oic and olg files which comprise Auger & radiative rates and atomic structure data
respectively). These data are collected and reorganised by a dedicated post-processor
code, ADAS703, for the satellite line task. The output files from ADAS703 comprise
an enhanced adf04 file (containing the doubly-excited states) and a driver for the BBGP

41

~
J

—_ ADAS 701
ui28 AUTOSTRUCTURE

) (
(&

< adf28
Ig, oi ADAS 703 / \
o&g o.lc E— post-processor: produce Auger and
o resonance capture enhanced adf04
y _ BBGP
/ Lline) | nkbundied
data unresolved
a h satellite lines
adf04 —_ ADAS 705
(base) merge adf04 data

‘adf04' R-matrix
i i) calculations

) (
J (&

adf04 ADAS 706
(augmented) population processing, ionisation
balance and feature assembly
(. J

adf3 |

(satellite line
feature)

Figure 2.6: Fundamental dielectronic recombination (DR) data preparation and special
feature assembly. Main program units are shown as rectangles, whilst archived data
files are represented by circles.

calculation. The latter has been described in [53] and that which is produced here
remains similar — except that it is augmented by A-values for outer electron radiative
transition to levels of the resolved doubly-excited shells i.e. the aforementioned subset
of levels, {S"} (Section 2.7.1.3). This driver is archived also in adf28 as above,
but with postfix bbgp. The enhanced adf04 file from ADAS703 must be merged
with the restricted high grade collisional adf04 file resulting from the R-matrix work.
The merging task is handled by ADAS705. There are two further steps. Radiative
recombination to singly-excited levels from an initial ground or metastable parent must
be added. In the ADAS Project, the code ADAS211 calculates such rate coefficients
in an effective potential distorted wave approximation creating an archive of format
adf08 analogous to the adf09 of dielectronic recombination. It proved convenient to
develop ADAS705 to merge adf08 data into an accumulating adf04 file also. The adf04
file is completed by the addition of so-called L-lines. An L-line contains stabilised
dielectronic recombination coefficients (to an unresolved singly-excited nl-bundle), as
a function of temperature. The L-/ine also contains an associated wavelength, which is
the mean wavelength for the stabilisation photons. Such data lines therefore give the
position and magnitude of unresolved satellite contributions to the emissivity of the
resonance line (and associated lines) of the parent ion. The L-line is evaluated at zero

density, including only inner electron stabilisation, and so represents a simplification of

42

full redistributive modelling. The addition of the L-/ines means that the final adf04 file
is self-contained and complete, albeit at slightly reduced precision. It can therefore be
used easily in simple population modelling and associated line ratio studies, especially

in an astrophysical context.

This very comprehensive development is beyond the usual satellite line studies
and is general in that it would be applicable to Be-like/Li-like and Na-like/Li-like
systems. These developments are recently completed in ADAS, but full exploitation,
using JET spectra, are not yet possible. JET is currently undergoing a substantial
upgrade program (EP2) which includes enhancement of the X-ray crystal spectrometer,
diagnostic KX1. Operations resume in April 2011. In Section 5.7, analysis is restricted
to non-JET data and only partial implementation of the modelling described above was

used.

43

Chapter 3

ADAS Special Feature Application

Programming Interface

This chapter unifies access to the special features described in chapter 2. It describes
the development of the ADAS Feature Generator (AFG). Technically, this is known
as an application programming interface (API) whose purpose is to implement a
standardised interface to the disparate underlying codes. The language chosen for
implementation of this API was IDL [9], but the descriptions here are general and

language independent.

3.1 ADAS Feature Generator (AFG)

In order to utilise the ADAS special feature codes as a set of basis functions for the
construction of complex spectral models, it was recognised that programmatically, the
best way to proceed was to construct an application programming interface (API) to
the underlying codes. The API provides a common access point to the ADAS special
features (see Fig. 3.1). Taking such an approach means that all external programs can
access ADAS special features in a structured, consistent manner for each of the special
features, rather than each and every external program requiring to accommodate the

idiosyncratic nature of each of the special feature codes that they need to interact with.

Exploration of the available feature modelling within ADAS indicated the key
similarities and differences in attempting to produce a synthetic spectra. Table 3.1
highlights the requirements (in terms of input/format of input) for the programs central

to feature generation. The table also summarises the way in which output is provided.

44

afg_gui
(ADAS 605)

Framework for
Feature Synthesis

(FFS)

external codes

!

!

afg_zeeman
(ADAS 603)

afg_hdlike

afg_stark

(ADAS 603)] [(ADAS 305)]

AFG features

Figure 3.1: Accessing ADAS special features.

Stark Zeeman Heavy Species | Balmer/Paschen Molecule He-like

(ADAS305) | (ADAS603) (ADAS810) (ADAS311) (CALCAT) | (ADAS706)
formatted input file n n n n
pre-processing n n
observation geometry] []
beam parameters n *
magnetic field details n]
electric field details]
Arange & no. of pixels O []
polarisation filter details n
formatted output file n n n
line-resolved output O [] n n O
A-resolved output O n O

m required by this program

O optional for this program

* Beam information is not explicitly required for generation of the Balmer series feature. ADAS311

was originally developed as a beam emission code and so, for analysis of Balmer series emission from

the divertor, the effects of the beam must be disabled (i.e. beam energy = 0.0).

Table 3.1: Summary of requirements and outputs of the various ADAS special feature
generation facilities.

45

Table 3.1 demonstrates the fact that each of the codes is quite different and the design
of AFG had to be mindful of such differences in input and output between the feature
codes that it seeks to unify access to. However, the table also shows that there are a
great number of similarities between the codes too. Each of the feature generation
routines are also similar in that they are essentially mathematical functions which
depend upon a set of input parameters. In order to be useful, each special feature
code requires to have methods to set and retrieve current parameter values, provide
additional information about the parameters such as operational bounds, units, data
type etc. and be able to evaluate the feature given the input parameter set. In fact,
computationally, the problem at hand is well served by the object-oriented concept
of inheritance (first introduced in SIMULA-67 [64]). Inheritance is an abstraction in
which a set of programming modules, known as ‘subclasses’ inherit from a common
‘superclass’ which defines a set of methods that are applicable to all sub-classes.
The individual subclasses are, however, free to include additional methods unique
to that class on top of the inherited superclass methods. Inheritance is a very useful
concept as it reduces the need for code repetition, which simultaneously decreases code
maintenance effort and the scope for error. Another important aspect of inheritance is
what is referred to as subtype polymorphism, that is to say that all of the subclasses
can be treated programmatically as being the same class of object. In reality however,
the subclasses will often over-ride some of the superclass method implementations to
suit their own needs, but this does not change how external programs interact with
the object. In this particular scenario, the ‘afg_api’ superclass, from which all special
feature classes (e.g. ‘afg_zeeman’, ‘afg stark’, ‘afg_hdlike’, etc.) are derived, is an
abstract class. An abstract class is one which is not intended to be instantiated i.e.
not used alone in practice. Each of the special feature classes provide a concrete
implementation of the abstract superclass method ‘docalc’, which is the method that
performs function evaluation, ‘setdesc’, which sets the structure giving a description
of the feature and its parameters and ‘initpars’ which sets default values for each of the

feature parameters. The inheritance hierarchy for AFG is shown in Fig. 3.2.

The AFG description structures, accessed through the ‘getdesc’ method (see Fig. 3.3),
have three fields, ‘name’, ‘text’ and ‘parameters’. The first, ‘name’, is self-explanatory,
‘text’ contains a short textual description of what the feature is, and what underlying

ADAS codes are used to generate the feature.

The last field in the description structure, ‘parameters’, is the most detailed as it is itself
a structure, with each field comprising a further sub-structure, for each parameter, that

provides information about those parameters (Fig. 3.4).

46

afg_hdlike afg_api
pars
desc
'd(')calc wv
initpars intensity
setdesc wvResolved
delayHandler
begnwa afg_primitive
calc debu:
afg_stark docalc errmsgg
endwait
getcalc ———— | getdebug
docalc getdesc geterrmsg
initpars getintensity setdebug
setdesc getpars setterrmsg
getres
getwv
getwvresolved
setdelayhandler
afg_zeeman setdesc
setpars
setwvresolved
docalc writecode
initpars
setdesc

Figure 3.2: Class diagram for AFG. Each class is represented by a rectangular box,
split into three compartments. The upper division is the name of the class, the middle
section contains the class attributes (data members) and the lower segment holds the
names of the available class methods (operations). The arrows, pointing from one class
to another, indicate the inheritance hierarchy.

IDL> zeeman = obj_new (’ afg_zeeman ’)

IDL> desc = zeeman—>getdesc ()

IDL> help, desc, /str

*%x Structure <95adba4 >, 3 tags, length=1060, data
length=1060, refs=2:

NAME STRING ’Zeeman Feature’

TEXT STRING ADAS implementaion of Zeeman
features base’

PARAMETERS STRUCT —> <Anonymous> Array[1]

Figure 3.3: Command line interaction with AFG, retrieving the description structure
for the Zeeman feature.

IDL> help, desc.parameters, /str
% Structure <96877a4>, 4 tags, length=1036, data
length=1036, refs=2:

POL STRUCT —> <Anonymous> Array[1]
OBSANGLE STRUCT —> <Anonymous> Array[1]
BVALUE STRUCT —> <Anonymous> Array[1]
FINDEX STRUCT —> <Anonymous> Array[1]

Figure 3.4: Examination of an AFG description structure, for the Zeeman feature, at
the command line.

47

The parameter sub-structures are comprised of ‘desc’ — a short description of what the
parameter is, ‘type’ — the data type associated with the parameter (float, integer, long,
pointer) and ‘units’ — the units of parameter. The structure also has fields ‘min’ and
‘max’ defining the bounds on the parameter value and, importantly, the field ‘disptype’.
This attribute provides a hint to external programs as to how they should handle input
for this parameter. Note that this is related to the parameter data type, but is more

specific. These ‘disptype’ selections are tabulated in Table 3.2.

‘disptype’ Description
continuous can be varied continuously over its range
selection takes on discrete values from a pre-defined set

field numeric value, but not continous variation
file name of a file
filelist array of filenames

Table 3.2: AFG ‘disptype’ options.

Finally, there are two switches, ‘log” — which indicates whether the feature depends
on this parameter in a logarithmic fashion, or not, and ‘alterslimits’ — which denotes
whether alteration of this parameter can alter the limits associated with another
parameter. An example interrogation of the parameter sub-structure for the magnetic
field strength (bvalue), from the Zeeman feature, at the command prompt is shown in
Fig. 3.5. It should be noted that if the disptype is set to ‘selection’, then an additional
attribute, ‘values’, will be present in the parameter description structure, which stores

the set of possible values.

IDL> help, desc.parameters.bvalue, /str
*%x Structure <96989b4>, 8 tags, length=60, data
length=60, refs=2:

DESC STRING >Magnetic field strength (T)’
TYPE STRING >float’

UNITS STRING T

MIN FLOAT 0.00000

MAX FLOAT 20.0000

DISPTYPE STRING >continuous ’

LOG INT 0

ALTERSLIMITS INT 0

Figure 3.5: AFG feature parameter sub-structure for the magnetic field strength, for
the Zeeman feature.

The parameter values are accessed through the method ‘getpars’ and are also returned

as a structure, with the same tag names as in the description structure. Retrieval of the

48

parameter structure allows for easy alteration of the values and consequently setting

these values for the feature evaluation (see Fig. 3.6). Alternatively, a more experienced

IDL> pars = zeeman—>getpars ()

IDL> help, pars, /str

*% Structure <95adc84 >, 4 tags, length=16, data
length=12, refs=2:

POL INT 1
OBSANGLE FLOAT 90.0000
BVALUE FLOAT 2.50000
FINDEX INT 15

IDL> pars.obsangle = 88.0

IDL> pars.bvalue = 1.97

IDL> print, zeeman—>setpars (pars=pars)
1

IDL> result = zeeman—>getcalc ()

Figure 3.6: Command line interaction with AFG, altering a parameter values structure.
In this case, the Zeeman feature’s structure is retrieved and its values altered before
passing the structure back to the AFG object for re-evaluation of the feature. Note that
all AFG set methods return a 1, or 0 — to signify success, or failure respectively.

user (who is familiar with the parameter short names) may set parameter values at the
point of evaluation. For example, a similar result to the interaction shown by Fig. 3.6,

via the succinct syntax shown in Fig. 3.7. In addition to getcalc, there is the related

IDL> result = zeeman—>getcalc(obsangle=88.0, bvalue=1.97)

Figure 3.7: Command line interaction with AFG, altering parameter values directly. A
similar effect is achieved to that seen by issuing the commands in Fig. 3.6, but in this
case, the user is familiar with the parameter short-names and sets them directly when
calling the ‘getcalc’ method that evaluates the feature.

method calc, which is used by getcalc but returns a flag to report success, or failure,
of the underlying evaluation routine rather than returning the result itself. This method
is able to take input of parameter values in the same way as getcalc. The method
‘getres’ is also available to retrieve the last calculated result, without re-calculation of

the feature.

Some of the special features have a large number of parameters, some of which may
be related to each other. There are varying levels of relationship too — perhaps they
are quite loosely related in that they control one particular aspect of the feature, but
some parameters may be very closely related, e.g. they are vector components of one
variable. In order to produce an interface to such features, that remains organisationally

clean, these relationships must be stored. This leads to the use of ‘subordinates’ and

49

‘groups’ in AFG. These optional attributes appear as additional fields of the top level

‘desc’ structure.

The subordinate structure is intended for use in the close relationship case and has three
fields, ‘title’ — a label for the set, ‘members’ — the related parameters that comprise
the set and, lastly, ‘after’” — the name of another parameter that it should appear
closest to in a GUI. The AFG Stark feature (ADAS305) implements subordinates
and an example command line interaction is shown in figure 3.8. From this example,
we can see that three of the parameters, ‘beam_dc x’, ‘beam_dc_y’ and ‘beam_dc_z’
(the x, y and z components of the beam direction) have been made members of
‘beam_direction’. The full subordinate structure, for the Stark feature, is shown

graphically by Fig. 3.9.

IDL> help, desc.subordinate, /str
% Structure <84dd394>, 4 tags, length=240, data
length =240, refs=2:

OBSERVATION_DIRECTION

STRUCT —> <Anonymous> Array [1]
BEAM_DIRECTION STRUCT —> <Anonymous> Array[1]
BFIELD_DIRECTION

STRUCT —> <Anonymous> Array[1]
EFIELD_DIRECTION

STRUCT —> <Anonymous> Array [1]

IDL> help, desc.subordinate.beam_direction, /str
x%* Structure <84db8c4>, 3 tags, length=60, data
length=60, refs=2:

TITLE STRING ’Beam Direction ’
MEMBERS STRING Array [3]
AFTER STRING ’beam_density ’

IDL> print, desc.subordinate.beam_direction.members
beam_dc_x beam_dc_y beam_dc_z

Figure 3.8: Examination of the AFG subordinate structure for the Stark feature from
the command line.

The groups structure is intended for use for more loosely related parameters. The
structure is comprised of two properties, ‘title’ — a label for the grouping and
‘members’ — array of names of the feature parameters, or indeed subordinate sets, that
make up the group. Figure 3.10 shows that the Stark feature has five groupings, ‘beam’,
‘plasma’, ‘bfield’, ‘efield” and ‘observation’. As an example, the beam group has been
examined; note that the beam_direction subordinate set is included as a member here

along with individual parameters.

Utilization of AFG subordinates and groups are best considered by example and usage
in the context of the AFG graphical user interface, ADAS605, which is discussed in
Section 3.2.

50

Observation Beam Direction B-field Direction E-field Direction

Direction

after: obs_pi after: beam density after: bfield_value after: efield_value

Figure 3.9: AFG ‘subordinate’ structure for the Stark feature (containing sub-
structures observation_direction, beam _direction, bfield_direction and efield_direction)
— cyan boxes. Contents of the sub-structures include: the title — white text, the
members — grey boxes and the closest logical parameter — the sky-blue coloured
boxes, labelled ‘after’.

IDL> help, desc.groups, /str
#*% Structure <84ddc64>, 5 tags, length=252, data
length =252, refs=2:

BEAM STRUCT —> <Anonymous> Array[1]
PLASMA STRUCT —> <Anonymous> Array[1]
BFIELD STRUCT —> <Anonymous> Array[1]
EFIELD STRUCT —> <Anonymous> Array[1]
OBSERVATION STRUCT —> <Anonymous> Array[1]

IDL> help, desc.groups.beam, /str
#% Structure <84dd69c>, 2 tags, length=72, data
length=72, refs=2:
TITLE STRING ’Beam’
MEMBERS STRING Array [5]
IDL> print, desc.groups.beam.members
beam_mass beam _energy beam_te beam_density beam _direction

Figure 3.10: Examination of the AFG group structure for the Stark feature from the
command line.

51

3.2 ADAS605 — GUI to AFG

The main drive behind AFG is to ease access to the ADAS special feature routines
such that they are easily incorporated into any external modelling code (such as FFS
— Section 4.4). It has been shown in Section 3.1 that it is possible to do this
through a series of simple commands — now common to all of the ADAS special
features. However, it was thought that AFG could be made even more accessible via
a graphical user interface (GUI); this code is known as ADAS605. A GUI to AFG
serves several purposes. Firstly, it allows the user to explore the parameter space of
the feature visually; the user can alter the parameters via tools such as sliders, drop-
boxes etc. and see a plot of the resulting feature alter in real-time. Secondly, using
the AFG ‘writecode’ feature, the GUI can act as an entry point to the novice user —
after manipulation of the feature in the GUI, it is then possible to auto-generate the
necessary code to create that feature, which can then be adapted for use in the user’s
own program. Finally, it also played a large role in the design of AFG — highlighting
what information AFG would have to impart to an external program, in order to be

useful.

ADAS 605 has been designed to heavily use the AFG API, such that the interface
is highly dynamic i.e. its appearance is very much dependent upon the feature under

consideration.

Upon selecting ADAS605 from the series 6 menu, you are presented with a simple
input screen (Fig. 3.11) with a dropbox allowing selection of the feature of interest.
A short description of the currently selected feature is given in the textbox below the
dropbox. The text description is made available to the GUI from a getdesc call to the
API, as in Fig. 3.3.

fanon % ADASBOS INPUT

Select ADAS Feature Zeeman —

Zeeman Feature

ADAS dwplementaion of Zeeman features
based on ¥Paschen code, original
irplementation in ADAS i1s ADASGO3.

Cancel | Donel y

Figure 3.11: ADASG605 input screen: feature selection.

52

The processing screen is split into two main segments; the left hand side is consistently
the same regardless of the feature selected — it is a graphical display area, the right
hand side is comprised of a set of control widgets to alter the special feature parameters
and will therefore adapt to the particular feature selected from the input screen. The
important item of note here, is that the control panel is not predefined in a static fashion.
Instead, ADAS605 is examining the parameter description structures returned from
method calls to the API (as seen in Fig. 3.5). Firstly, 605 determines the correct type
of widget to provide control of the parameter from the disptype tag (Fig. 3.12 shows
a selection of widgets that ADAS605 uses for different disptypes). For example, the
magnetic-field strength is of type continuous and 605 uses a slider for this type. Each
of the parameter structure tags is important on building the control widgets. The ‘desc’
field is required to produce the label, in the example considered, the ‘min’ and ‘max’
fields place limits on the slider, ‘unit’ places a label next to the value and with the

attribute ‘log’ set to 0, the slider will vary the value linearly between the two limits.

Hugnetic I_E_a.snnon T

field

g A anaan R0 nonn
- I | I I .

(a) continuous — slider widget

| » mmieetzaisa 1 - 45 1y 4340.40m1

B o pd dn) 3451 4[8] Al
din - 4f 17y 4840.4[A]

index

(b) selection — drop-list widget
Lower n of I?—
transition

(c) field — text field widget

HIF40 filenames

Yhomescnichdaf gdexan j
Ahomescnichsaf g exan 5
homedcnichsafgdexan new file...

Jod ——1 P

(d) file / filelist* — pick-file dialog widget

Figure 3.12: Screenshots showing examples of the IDL widgets generated by
ADASG605, corresponding to the various allowed ‘disptype’ values coming from the
AFG description structures (see Table 3.2). * For (d): note that the same widget is
used for both types, but that an option is set to restrict selection to a single file for
“file’.

The plot window will update (in most cases in real-time) in response to changes of

feature parameters and will re-scale the plot automatically. It may be desirable to keep

53

a specific, fixed scale as parameters are altered and, in this case, the ‘explicit scaling’
checkbox should be checked (which will activate the X-Y min/max textboxes). The
‘use current values’ button will auto-fill these textboxes with the current X-Y min/max

values.

eno |\ ADASE05 PROCESSING

PI+SIGMA ©

i50.0000 degrees
0.0 | 0.0

11.3000000 T
0.00000 20.0000

C I(%p () 3s 3 - 3p) 9086.8[A] K|

cancot | pono|

Figure 3.13: ADAS605 processing screen: allows interactive manipulation of chosen
feature via custom control widgets in right hand panel, with graphical output in left
panel.

As discussed in Section 3.1, some features have a multitude of parameters, some of
which may have a natural grouping, which should be reflected in the way the control
panel is laid out. AFG provides help to external programs like ADAS605 to organise
their interface. Consider Fig. 3.14 — the AFG subordinate structure coming from the
API has informed the GUI to provide a separate pop-up widget for the beam direction
set (accessed by the ‘set beam direction...” button). Additionally, the groups structure
has allowed the GUI to group together the parameters related to the neutral beam in an

organised way, encapsulated by rectangular section labelled ‘beam’.

The ADASG605 output screen (Fig. 3.15) follows the usual format i.e. a set of optional
output types, each with the familiar ‘replace’, ‘default file’ and ‘file names’, checkbox,
button and textbox respectively for specifying the output file. The output options
available are ‘graphical output’ — saving the plot window as a graphic (postscript in
the example Fig. 3.16), ‘X-Y output” — the plot data in a plain text file as co-ordinate
pairs (Fig. 3.17) and finally, ‘code listing output’” — AFG will auto-generate the
appropriate IDL source code (including in-line comments) to generate the feature using
the API directly, rather than via the GUI (Fig. 3.18). It is envisaged that production of

this template source code will serve as an entry point to most users looking to utilise

54

© 0 O\ Beam Direction

Beam Direction

Figure 3.14: ADAS605 processing screen when the Stark feature is selected. In this
case AFG groupings are in use — e.g. a selection of related parameter controls are
arranged together in the panel labelled ‘Beam’. The AFG subordinate structures can
also be seen at work — the ‘Beam Direction’ pop-up in the upper-left appears, upon
pressing the highlighted button, exposing the component parameters that define it.

AFG in their own codes.

55

Figure 3.15: ADASG605 output screen: option to produce three types of output:
graphical, X-Y plot data and finally, output of IDL source code that will recreate the
feature as seen in the interactive window.

56

@ adas605_zeeman (1 page)

L I S e BB S B B B

2080 9100
Wavelength

P AL

Figure 3.16: ADAS605 ‘graphical output’.

1 9. 07Z6BE+03 4.80000E-04
2 9. 08778E+03 E5.B8Z100E-02
3 0.08854E+03 1.10740E-01
4 9 08928E+03 5. 2TO00E-0Z
5 9. 12137E+03 2. 00000E-05
6 0. 12213E+03 4. 00000E-05
T 9. 12288E+03 2. 00000E-05
g 9. 06323E+03 5. TEZ900E-02
9 9. 06247E+03 1.10690E-01
10 9. 06173E+03 5. 37900E-02
11 9. 07829E+03 3. 93300E-02
12 9 07905E+03 1.95000E-0F
13 9.0775ZE+03 1. 80800E-02
14 9. 07829E+03 2.50000E-04
15 9. 07903E+03 2. 37100E-02
16 9.07755E+03 2. 21900E-02
17 9.07829E+03 4. 35400E-02
12 9.11105E+03 4. 29000E-0Z2
19 9.11181E+03 4. 10400E-02

9. 11257E+03 6. 54000E-03

Figure 3.17: ADAS605 ‘X-Y output’.

57

(< N Né) [adas605_example_zeeman.pro - [Users/nicholas/ferro/

File Edit Search Preferences Shell Macta Windows Help
flsersinicholas/ferro/adasB05_example_zeeman.pro byte 2164 of 2164 L:83 C:0

a8+ AFF APT. : SETDESC 3

40 ;+ ARG API. :SETPARS

41 ;+ ARG APT. - SETWRESGLVED

43 ;+ ARG APT. -WRITECODE

43 ;+ FPROCEDURE METHODS:

44 ;+ ARG APT: :CLEANUP

+

I I
46 FUMCTION adas605_example zeeman

47 ;creste the object:

48 o = OBJ_NEW('afqg_zeeman')

50 ;aedtain the Feature parameters Using getPars metiod
51 swhich will return the parameter structure:
E2 pars = o-»getPars()

5 camodify esch of the parameter values:
EE pars.pol=l

L& pars. ohsangle=20. 0000

ET pars. bwalue=1. 30000

58 pars. findex=15

60 ;zlternatively you can set e parameters Ay defining a2 structure like this:

61 ; pars = {ADAS FEATURE AFS ZERMAN, &
62 ; PoL: 1, @

£3 OBSANGLE: 90 0000, 3

£ BVALUE: 1 30000, 2

65 ; FINDEX: 15 &

EG

&7

68 snow set these values o de used Ay the feature ohject:
69 o-rafg api::setPars, PARS=pars

11 ;perform cafculation using these parameters:
72 o-:calc

T4 ;obtain the wavelengtiy and Intensity arrays:

15 wawvelength=o-:getir ()

76 intensity=o-rgetIntensity()

17

18 svou could, Ffor example, produce a plot of this data:

79 PLOT, wawelength, intensity, ETITLE='wawelength', ¥TITLE='intensity'
80

81 RETUBN. o

82 END

83T i
—_— &

Figure 3.18: ADASG605 ‘code listing output’.

58

Chapter 4

Combinations of Functions for

Spectral Fitting

The notation used in this section is such that functions are defined as f{a, b}(x) where
f 1s the symbol representing the function; a and b are enclosed in a set of {} and,
as such, are considered parameters of the function f; finally x is the independant
variable that the function f depends upon (in terms of spectra x is pixel / wavelength).
The distinction between the parameters (a & b) and x has been made since, although
in a mathematical sense they are all variables on which f depends, a and b remain
constant as the function is evaluated for each value of x to build up a spectral profile
for a given set of values of the parameters enclosed in {}. This means that f{a, b}
represents a function, rather than a single value of the function f evaluated for a given
pair of a and b. In turn, this means that it is valid to write the convolution of two
functions as f{a, b} * g{c,d}, with a value of that convolved function, at a given x:
[fla, b} = g{c,d}] (x). Additionally, the notation allows for the parameter set (a, b, etc.)
to be functions themselves. Finally, it should be noted that ‘non-fitting’ parameters,
that is to say properties of functions that will not vary during a fit (e.g. AFG parameters
that do not have continuous disptype — see Section 3.1, or tolerance settings for the

generating codes) are not included in the function definitions here.

59

4.1 Introduction

In order to model complex spectra, it is useful to consider a composite structure in
which various model elements are assembled together to represent the various features
present in the data. In a mathematical sense, these model elements provide a set of
basis functions for the model. A useful analysis system requires a reasonable set of
these elements, from basic spectral feature representations, such as a Gaussian line, to
complex features coming from specialised modelling codes, such as those provided by
ADAS (via AFG, as detailed in 3.1).

At this point, consideration is given to the mathematical formulations for the calcu-
lation of the most commonly occurring features and their partial derivatives. The
analytic representations of the partial derivatives provide substantial improvements
in performance; this is reviewed in Section 4.12. Further to the documentation
of model element calculation / partial derivative formulations, attention is given to
combinations of functions likely to be commonly encountered in spectral analysis.
Each of the functions defined here (including intermediates such as the broadening

functions (eq. 4.5) are implemented, programmatically in the FFS system.

4.2 Functions Considered

4.2.1 Un-broadened Line

The most basic element that must be included as part of the generalised modelling
system is a ‘Dirac-Delta-like’ function, attributing emissivity of an electronic transition
to a single point in wavelength space; in this respect, the element shall be described as
un-broadened. It should be noted that such an element is not of great use in isolation
— at the very least a spectral line will exhibit natural broadening (excited states have
a finite lifetime and the Heisenberg uncertainty principle suggests that there is an
associated width associated with the energy/time uncertainty in the transition from
upper state j to lower state i: Av;,; = %). For atomic transitions, this effect
is not significant and other broadening mechanisms (such as thermal Doppler and
instrumental effects) dominate. However, the point remains — this element requires

some form of broadening operator element to be useful in practical applications.

60

4.2.1.1 Definition

£{A0, #} (D) = ¢6 (4 =) 4.1)

where ¢ is the delta function (A.23 & A.24), A is the position of the line in wavelength

space and ¢ is the line intensity.

The convolution of two such functions is:

—+00

[e{x1, @1} * e{x2, h2}] (x) = f el{xi, ¢1} (X)e{xa, o} (x — X')dx’

—00

= @10, f (X" = x)6(x—x" —x2)dx’. 4.2)

(%)

Now, utilising the sifting property of the delta function (eq. A.25),

[e{x1, 1) * £{x2, $2}] (X) = h1¢h26 (x — X1 — X2)
= e{(x1 + x2), 12} 4.3)

4.2.2 Gaussian

One of the primary broadening mechanisms requiring representation in the modelling
system, is Doppler broadening. The thermal motion of the emitting atoms, relative to
the observer results in red or blue shifting of the emitted photons. The emitter velocity
distribution results in a spectral profile that is Gaussian in shape. The Gaussian line
shape is also commonly used to represent the instrument function associated with the

spectrometer’s finite resolution.

4.2.2.1 Definition

The normalised Gaussian function (centered on zero) is defined as:

Glwg}(x) =

C
Vru, 4.4)

where w, is the full width at half maximum and the constant C = 2 VIn 2 (see Section
A4).

61

A Gaussian broadening function can then be described by:

B, {ft-hw,} (@) = [Glwg) * fL...)| @)
= [G {w,} (x = X) (.. Y(x)dx’ (4.5)

[Se]

where f{...} represents a generic function, with an unknown parameter set. Note that
it is important to use a normalised Gaussian (i.e. of unit area) as the kernel in the
convolution operation for the broadening. The area of this integral is the product of the
area of the two operand functions (eq. A.6), therefore this choice of kernel preserves

the area (intensity) of the original function.

A Gaussian line is the result of the Gaussian broadening function (eq. 4.5) applied to
the line function (eq. 4.1) i.e. the convolution of the Gaussian function (eq. 4.4) with

the line function (eq. 4.1):

I,{0, 6, wy}(1) = By {& 1A, ¢}, wy} ()
=G {w,} 21200} (1)

-JW{MMﬂwmmmM

— ¢ f fw,} (A=)6 = 2p)a
= ¢G {w,} (1 -)

_Co (C*A - 10)2)
BV

(4.6)

4.2.2.2 Partial Derivatives

The partial derivatives of the Gaussian line function, with respect to its parameters Ay,

w, and ¢ are given by:

%Ig{ao,¢,wg}(ﬂ) W {ﬂo,qb, _,,}(ﬂ) (4.7)
ol o)) = %@ﬁﬂﬁ@-Q@mema (438)
Sl oo 0 = 51, o0 0. (4.9)

62

4.2.3 Doppler

Instead of abstracting to the (Gaussian) mathematical line shape, it may be preferable
to have a Doppler element, which is defined by physical parameters (i.e. temperature),

rather than line profile parameters (i.e. full-width at half maximum).

Assuming a Maxwell speed distribution along a line of sight, f(v), then f(v)dv is the

fraction of particles with speed in range v — v + dv such that:

2
f)dv = exp(— m)dv. (4.10)

m
2nkT

For non-relativistic thermal particles, the doppler shift is given by 4 = Ay (1 + g) and

s0, by substitution:

f(Dda =

207 1\2
me” (——mc (4~ 4o))d/l 4.11)

2kt 2P\ T

This is a normal distribution (Gaussian) with standard deviation:

kT
o= Ao —5- (4.12)
mc

The full width at half maximum (FWHM), w,, is related to the standard deviation o

as:

wy =20 V2In2. (4.13)

So, the FWHM for the Doppler element, wy, is given by:

24
B c

Wy 21n2(k—T) (4.14)

m

where m is the mass of the emitter.

4.2.3.1 Definition

The Doppler element is then defined in terms of the Gaussian element, but with a width

parameterised in terms of the the thermal temperature, as prescribed by eq. 4.14:

D{o, ¢, THA) = 1, {20, ¢, wa(Ao, T)} (D) (4.15)

63

note that there is a hidden variable (the mass, m) here — it is not included as it is

considered by FFES to be a property of the function, rather than a fitting parameter.

4.2.3.2 Partial Derivatives

0 2C2(/l—/10)(1) 1)

—D {4 Tt A =|——|1+—|——|D{A T}(A 4.16
o {0,¢, T} () ([wd(/lo,T)]2 + FN {0,0, T} (), (4.16)
0 1 (A=))

—D{A TY() = —[2¢2———— _ _1|D{a T}(A 4.17
oT {07¢’ }() 2T(C [wd(/lO,T)]Z {0’¢7 }()7 ()
0 1

—D{Ay,0, T} (1) = =D{Ag,d, T} (). 4.18
8¢{0¢}() ¢{0¢}() (4.18)

4.2.4 Lorentzian

As discussed in Section 2.4, another commonly observed broadening mechanism is
pressure broadening — the Coulomb interaction of the emitter with neighbouring par-
ticles results in Stark splitting of the states. The resultant line shape is approximately

Lorentzian.

4.2.4.1 Definition

The normalised Lorentzian function (centered on zero) is defined as:

wi

L{w}(x) = (1) — (4.19)

2
e

where wy is the full width at half maximum.

A Lorentzian broadening function can then be described by:

Bi{ff... Lwd (x) = [Lwg} = f{...}] (%)
= f L{wg) (x = x)f{... }(x)dx. (4.20)

[ee)

Similarly to the Gaussian broadener (eq. 4.5), a kernel of unit area is used to preserve

the operand area (intensity) in the result.

A Lorentzian line is the result of the Lorentzian broadening function (eq. 4.5) applied

to the line function (eq. 4.1) i.e. the convolution of the Lorentzian function (eq. 4.19)

64

with the line function (eq. 4.1):

Il {/10’ ¢’ wl} (/1) = B1{8 {/10’ ¢} > l,Ul}(/l)
= [LA{ws} = &{0, #}] (D)

—f L{wg} (4 = A)&{do, ¢} (DdA

=¢ f {wi} (A=) — A9)dA

= ¢L{w;} (1 = Ap)

wi

_(¢ 2
_()(A 4)22 (%)2 4.21)

4.2.4.2 Partial Derivatives

The partial derivatives of the Lorentzian line function, with respect to its parameters

Ao, wy and ¢ are given by:

0 21— A
Sl . 6.1} (1) = (-4 = | 2 {0, wi, A (D), (4.22)
0 (A= 20) + (%)
1) =40 -%°
a_ll {20, wi} (D) =|— 1o, wi, A} (), (4.23)
w Wy ((/l -) + %)
0 1
%11 {0, ¢, wi} (D) = 511 {0, wi, A} (). 4.24)

4.2.5 Voigt

It is possible that a spectral line will be subject to several broadening effects — pressure
broadening could result in a Lorentzian distribution of the line intensity, but the line
could also exhibit a Gaussian component due to its thermal temperature. Regardless
of individual broadening mechanisms, lines will have a characteristic width — the
instrument function. Consideration must be given to combining these effects and

firstly, the combined result of Gaussian and Lorentzian broadening is considered.

65

4.2.5.1 Definition

The Voigt function is the convolution of the Gaussian and Lorentzian functions (eqs

4.4 and 4.19 respectively):

|4 {wg, wz} (x) = [L{wz} o G{wg}] (x)

L ()G
il Eom e e e
’ dt _ C
where = w_g e w_g_

Note that:

V {wg, wi} () = [L{ws} * Glwg}| (1) = BAGwg}, w}(x) = BAL{wg} wh(x). (4.26)

Equation 4.25 can be re-written in terms of the complex error function (see A.8.1).
Specifically, it is the real part of this function, K (eqn A.40) that is useful here, with

the parameters of K, a and b given by:

C
a= = and b= Cwl
Wy 2wg

K is then substituted into equation 4.25, such that we obtain the result:

C Cx C
Vi (o) = —— K(w—jz—u";’) (4.27)
g

66

A Voigt broadening function can then be described by:

B,{fl... Lwgwi} () = [Viwg, wy) = £, }] ()
= f Ty {wg, wf (x = x) f(x)dx. (4.28)

(o)

Similarly to the Gaussian and Lorentzian broadening functions (eq. 4.5 and eq. 4.20),

a kernel of unit area is used to preserve the operand area (intensity) in the result.

Application of the Voigt broadening function (eq. 4.28) to the line function (eq. 4.1)
(equivalent to convolution of (eq. 4.27) and (eq. 4.1)) results in a Voigt line profile:

Iu{/l(), ¢’ Wy, Wy, ¢}(/1) = BU{S{/I(), ¢}9 Wy, wl}
= [V {wy. wi} = & (00,0} (O
= f V {wg. wi} (A = V)& {2, ¢} (V)d

—</)f wg,wl (A —=2)6(= Ag)dA

= ¢V {wg. w)} (A - o)
. C¢ K(cm) Cw,)
 aw, w, 2w,)

The parameters, a and b, of K are in this case:

(4.29)

4 4

= —C(/l_/l()) and b= %

Wy 2w,
4.2.5.2 Partial Derivatives

The derivatives of this function can also be expressed in terms of complex error
function (see Section A.8.1) and its partial derivatives with respect to the parameters
a and b (see Section A.8.2), along with the partial derivatives of a and b themselves,

with respect to the parameters of interest Ay, w, and w; (eq. 4.30).

First, note that:

da C(1- Q) 0a C

ow, w? ’ 0 w,’

ob ob C

o9 _ Cw P (4.30)
ow, 2w§ ow, 2w,

Using these results (eq. 4.30) together with those from Section A.8.2, we can define

67

the partial derivatives as follows:

a%zvuo, 6. wy, wy, () = é‘z}g (%Uﬂa’ b>>§—fo)
- \/f_ig (Z(bL(a, b) — aK(a,b))) (—w%))
- _ fgy"; (bL(a,b) — aK(a, b)), (4.3
é%glu{/lo, ¢, wy, wy, P}(A) = aiwg (\/f_rig) K(a,b)
N \/f_r‘z)g (%(K(a, b));—u‘; + %(K(a,b));—ul;)
TE v
L, Co (2(bL(a, b) — aK(a, b)) (— - AO))
w, Wy
" (aL(a, b) + bK(a,b) %) (—%))
[e
_ if_;‘g (6L(a.b) - akta, byt - 1)
; (L(a, b)a + bK(a, b) - %) (%)) (4.32)
8% oo, . wg, wi, () = éig (:—bw(a»b));—ui)
_ \/gigZ(aL(a, b) + bK(a, b) — %) (2%])
_ 5;‘; (aL(a, b) + bK(a, b) — %T) (4.33)

68

and

9 _9 (<
Iv{/10’¢’wg’wl’¢}(/1)_ (\/qu

K(a,b)

_ C

- Vrw,
1

= g[v{/l()’ ¢’ wg’ w, ¢}(ﬂ)' (434)

4.2.6 Linear Background

Typically, spectroscopic data will exhibit some sort of background emission, in
addition to discrete spectral lines (and/or special features). In some case, this
background could, itself, be diagnostically useful (e.g. analysis of Bremstrahhlung
emission) and so, the background should be modelled using a special feature element.
However, in other cases, the background may not be of any real interest or a suitable
model may not exist. In this situation, it may be desirable to use a cruder representation
for the background emission e.g. a simple line function. The definition of such a

function and its partial derivatives is trivial, but included for completeness.

yim, c}(x) = m(x — xo) + ¢ (4.35)

4.2.6.1 Partial Derivatives

0
%y(x) =X— X (4.36)

0
2oy =1 (4.37)

4.2.7 Addition Operator

In constructing a completely flexible, modular modelling system, it is necessary to
include some functions that have the sole purpose of connecting the other components
together. In FFS, these are known as operator elements. It should be noted that some
of these so-called operator element functions have already been defined above, whilst

deriving some of the functions — namely the broadening elements (eq. 4.5, 4.20, 4.28).

One of the most important operator elements to include in the system is a simple

addition operator; to allow for superposition of various primitive line features and/or

69

special features.

4.2.7.1 Definition

AL} fole () = Zf () (4.38)

4.2.7.2 Partial Derivatives

For parameters p of one, or more, of the functions f;:

N

9
p JUIN IS H(x) = Z (.)() (4.39)
p p

4.2.8 Scale Factor Operator

It is likely that a special feature modelling code will provide a synthetic form which
will provide the relative intensities of the components, rather than absolute intensities.
It is also possible to define a pseudo special feature by specifying set of connections
between feature parameters using the coupling system. In either case, such data must
be scaled for confrontation with experimental data. It is possible to define a generalised
multiplication operator that would multiply the output of the two operand elements, but
for the most commonly used scenario (simple scale factor multiplication) this would
require creation of another model element, for the sole purpose of holding the scaling
parameter. It is more useful to define this operator such that it only takes a single

operand function and that the scaling parameter is integral.

4.2.8.1 Definition

R{f{...},a}(x) =aff...}(x) (4.40)

4.2.8.2 Partial Derivatives

0

%a R{f{...},a}(x) = f{... }(x) 4.41)
a

For all other parameters p of the function f:

0

5, B }(X)—a—f{ 3(x) (4.42)
P

70

4.2.9 Shift Operator

Many of the special feature codes will produce a spectrum which is wavelength
resolved 1.e. a broadened feature; a true line shape rather than point impulse spikes.
It is possible that although the code is accurately predicting the feature in terms of
intensity, that the positioning is less accurate. The observed special feature emission
could also be subject Doppler shifting from the root position. Whatever the cause,
FFS must provide an operator for shifting features when there is disparity with the
experimental data to be fitted — the shift itself, of course, could be diagnostic. The
shift operator must also be able to handle shifts in terms of number of pixels on a CCD

as well as those specified by wavelength.

4.2.9.1 Definition

S{fl...Lsix) = fl... }(x—9) (4.43)

4.2.9.2 Partial Derivatives

0 0
aS{f{. S hosix) = . S)f{. S Hx =) (4.44)

For all other parameters p of the function f:

0

0
5, U Lsl) = o A= s) (4.45)
P P

4.2.10 AFG

One of the most significant modules included in FFS is the AFG interface element.
This allows seamless integration of the ADAS special features in FFS. The model
element interacts with the AFG API for access. This means that only a single element
class is required for all of the models within ADAS; it is not necessary to implement

an individual element class for any future AFG provided features.

4.2.10.1 Definition

f{func_name, ... }(x) = AFGtunc_name{. - - }(x) (4.46)

71

4.2.10.2 Partial Derivatives

i f{func_name, ... }(x) = iAFGfunmame{. LX) 4.47)
dp dp

4.3 Practical Examples

4.3.1 Convolution of two Normalized, Un-shifted Gaussian Func-

tions

|Glw,,} * Gluwg,}| (x)

= f Glwy, }(x = X')Glw,, }(x)dx

(o)

CZ +00 _CZ(x _ x/)Z _CZ(XI)Z ,
= exp|———5——|exp > dx
TWg, Wy, J -0 Way Wy,

C? f+°° (—Cz()c2 —2xx’ — (x’)z))
exp

ﬂ'wglwgz
_C2 \2
exp (*)) dx’'

(%)

2
92

C? —C22\ [11
exp(zx)f exp (—Cz(x’)2 (—2 + —2)
TTwy, Wy, w oo w2 ow

g1
2 2
+(¢ x)x’)dx’ (4.48)

Equation 4.48 is a standard integral:

+00
f exp (—p*22 + gx)dx = exp (q—z) M > 0] (4.49)
oo 4p*) p
2c2 2
with p=C,|—+— and g¢g= 2x
wa w92 w!}l

72

Now it is possible to re-write equation 4.48 as:

C —C?x? —C?%x?
exp — |exp| ———
Vrwg wy, [+ 4 Wy, w (LI LZ)

Wy, g1 wa w

|Glw,,} + Glwg,}| (x) =

C —C*x? 1
= exp :
2 2 w 2 1 1
VI 0% U ()

2.2 2
- 2 2 2
VA Ju?, + w2, Wy,)\ Wy, + Wy,

(4.50)

[Glwy,) Glu,,)| (x) = G{, w2, + w2 }(x) 4.51)

Therefore, the convolution of two normalized, un-shifted Gaussian functions results in
another Gaussian profile, with a FWHM that is given by wpew = | /wgl +w? . This is

an important result for optimisation of this model representation in Section 4.7.

4.3.2 Convolution of N-Gaussian Profile with Gaussian

We can define an instrumental profile function in terms of a sum of Gaussian functions,

each with their own area (¢;), width (w,,) and finite shift (7;):

II.F.{Tla SD],U)[,...,T”, <Pn, wn ZB Tt’ SDI wa}('x)

_Z {w} = elri @i} | () (4.52)

Consider the convolution of such a profile with a Gaussian line:

1{ Ao, ¢, wy} * I {{Ti}, @i}, {wg, ()

from the distributive property of convolution (eqn A.4),

- Z (g} * £lo, #}) * (Gluwg,} * &lrs, 01})] (D

73

and using the the associative property of convolution (eqn A.3),
= > |(Glwg) + Glug}) (sldo, 91 = &lri, i) | (1)
i=1

substituting the result of equations 4.3 and 4.50,

[{ w42} < lo + . G} @)

i=1
from the result of eq. 4.6,

n

1 (o + 7. @, \Juz + w2}

Co;

=1 T w +w?,

(?%() — —)2
- T‘)) (4.53)

2 2
wg + wgi

exp (

74

4.4 Framework for Feature Synthesis

Theoretical representations of experimental spectra can be considered to be comprised
of a set of model elements; from simpler mathematical line shapes to more complex
special feature representations. One can also define a set of ‘operator elements’ which
can apply a function to the results of other elements, in some cases the function will
bring together combinations of element results to represent the spectra in its entirety.
Section 4.2 has detailed the mathematical representation of the various element types.
Programmatically, each of the elements can be represented by an object that provides
a method for performing calculation of that component of the spectra. This is the
approach taken by the package developed for this work — the Framework for Feature

synthesis (FFS). The computational organisation of the package can be seen in Fig. 4.1.

ffs_executor f: ffs_parser | ffs_simplify , ffs_fit

\ﬂ'; ffs_contain

5

ffs_primitive rl———

Py
X Depends on

A Inherits from /‘\
4 Implements interface ffs_par .

N Is associated with
Q Is an aggregate of ﬁ%
W |s composed of

. Note connector

ffs_prop

ffs_couple

Figure 4.1: Class diagram for FFS.

The ‘ffs_model’ class is central to FFS, acting as the main manager of the spectral
model — providing control of the component features (or model elements) and
respective parameters. The model class can set parameter values, limits, coupling (see
Section 4.6) and will enact the evaluation of the model spectra and partial derivatives.
The framework is constructed such that ‘ffs_model” objects use an ‘ffs_contain’ object
to manage a set of ‘ffs_element’ objects, which, themselves, use ffs_contain objects to

manage a set of ‘ffs_par’ and ‘ffs_prop’ objects. This basic view of the hierarchy, for a

75

simple example model, is displayed in Fig. 4.2.

model
(ffs_model)

\

gaussian gaussian voigt
(ffs_element) (ffs_element) (ffs_element)

pos area pos area pos fwhmg trap
[(ﬁs _par] [(ﬁs_par)] [(ﬁs _par] (ffs _par) (ffs_par) @

fwhm trap fwhm trap fwhml area
(ffs_par, (ffs_prop) (ffs. _par) f’S PI'OP (ffs _par (ffs_par,

Figure 4.2: The model-element-par hierarchy for a simple model in FFS, consisting of
two Gaussian lines and a voigt line shape. The Gaussian shapes have three parameters:
position, full-width at half maximum and area. The voigt has four: position, lorentzian
component of width, Gaussian component of width and area. The three elements, in
this case also have a property ‘trap’ — see main text for discussion on ffs_prop objects.

To clarify, the use of ffs_par and ffs_prop: a distinction has been made between what
are considered to be fitting parameters (those which may be varied during a fit to
experimental spectra) and those which are considered to be properties / settings of
the feature codes, but considered as static quantities with respect to fitting. This is
related to the identification of parameter types discussed in Section 3.1. Note that this
should not be confused with the ability to set (possible) fitting parameters to a fixed

value during a fit.

In terms of implementation, ffs_element is an abstract class, from which FFS compo-
nent features should inherit. Figure, 4.3 shows a few example features gaining access
to the plethora of methods available from the superclass. Note that the subclasses
are, in all cases, required to supply a ‘calculate’ method which overrides the abstract
method in the ffs_element superclass. This method provides the means to evaluate the
spectral component. If available, the ffs_element subclasses also provide analytical
forms for the partial derivatives of the element (with respect to its parameters) via
method ‘calcpd’. If not, then a call to ‘calcpd’ will result in usage of the superclass

implementation, which uses a finite difference method to evaluate these quantities.

76

ffs_element
container pdsetup
p_xdata removechild
ffs_lorentzian nxdata removepar
result saveresult
memoparvals setchildren
calcpd changed setelementname
calculate clearmemo setmaxchildren
init children setminchildren
minchildren setname
maxchildren setnxdata
ffs_gaussian ggﬂ:ﬁ‘; Setparerrors
setparfixed
deplcl setparhardlimits
calcpd depcou setparlimits
calculate cache_pars setpars
init expandpix setparvals
addchild setsubtype
addpar setxdata
ffs adas ——{> addprop getmaxchildren
- calcpd getminchildren
afg_api [——#» changed getname
calculate evaluate getnumpars
refreshlimits expand_wavegrid | gatnydata
fastsetup getparerrors
flatten getparfixed
getchildren getparhardlimits
getcontainer getparinfo
getdepcou getparlimits
getdephow getparnames
getdeplcl getpars
getdepwhat getparvals
getelementname getpd
getxdata getresult
haschildren getsubtype
init storedepcou
Ispar . storedephow
isparnamevalid storedeplcl
Isprop storedepwhat
memaoclear trim_wavegrid
memocleared

Figure 4.3: FFS element class and some example subclasses. Note that the class
data entries are intentionally blank for the subclasses — they only have inherited data
members. Also note that a summary of the methods of the core FFS classes is presented
in Appendix D.

77

An element of particular note is ‘ffs_adas’, which interfaces with AFG (discussed in
sec 3.1). Since AFG standardises access to the ADAS special features, all current and

future inclusions are immediately available for use in FFS via this class.

Figure 4.2 displayed a model in which there is only a single layer of elements in the
tree structure — elements that are independent of each other. As mentioned previously,
FFS is not limited to this case — there is support for operator elements that take the
output of one or more of the other elements as input. To manage this in a generalised
way, the ffs_element class caters for the storage of ‘child elements’ i.e. those elements
on which it is dependent. By storing a reference to a ‘root’ element, the ffs_model
element can then initiate recursive traversal of the tree to ensure that element results

are calculated in the correct order.

Manually setting such parent-child relationships for the model elements would soon
become cumbersome for a model of any degree of complexity, so it was quickly
established that it would be important to find another way to define such relations.
This, together with the need for a quick easy method to set parameter values and limits
for fitting, as well as a method of defining cross-element parameter coupling, led to the

creation of a new scripting language to define such information for the model.

4.5 Model Definition Language

Section 4.4 discussed the formation of a system to manage complicated spectra by
means of modular constructs referred to as elements. In the case of an operator
element, it requires input of the result of other elements. This, of course, means that
such elements must be provided with a list of operand elements to act upon. In fact, in
order to specify the construct for an arbitrarily complex model spectra, it was necessary
to set out a model definition language (MDL). The syntax of this language was chosen
to follow the format of the ‘LISt Processor’ language (LISP) syntax [65]. This means
that a model is defined by a set of nested element definition expressions, each enclosed
in a set of brackets. The expressions themselves are of prefix notation i.e. an operator
followed by a set of operands. It should be noted that one, or indeed all, of the operands

can be further MDL expressions.

The expressions defining elements take the form of that shown in Fig. 4.4 where

(elementclass[—optinput] [operands] elementname)

Figure 4.4: MDL — element definition syntax.

78

‘elementclass’ is the name of the class type of the element, ‘operands’ (as noted above)
is optional and can in fact be a list of element definition expressions, ‘elementname’,
as expected, specifies a reference name for the element being defined. The ‘optinput’
parameter, as the name suggests, is optional and simply provides a method of passing

an additional parameter to the specified element class at the point of creation.

To illustrate the use of this syntax consider a simple example model spectrum (named
‘example’) shown in Fig. 4.5 comprised of a Gaussian broadening function (eq. 4.5) to
represent an instrument (apparatus) function, with two lines of interest, one represented
by a Lorentzian shape (eq. 4.21) and the other by a Gaussian shape (4.6) with a linear
background. Note that ‘addition’ operator elements (eq. 4.38) have been used where

necessary.

(model
(+
(broaden_gauss
(+
(gaussian g)
(lorentzian 1)
)
brdg)
(background—-linear bg)
)

example)

Figure 4.5: MDL — model definition syntax.

Following the mathematical notation defined at the start of this chapter, the example

FFS model defined in Fig. 4.5 is equivalent to:

| BB ABUL g0, B, wo, I, 1, i), wi, }, ylm, 1| (D). (4.54)

4.6 Parameter Coupling

One of the issues encountered when performing spectral fitting is ‘overfitting’, which
results in fits that may well provide a set of modelled values that are very close to the
experimental data points, i.e. producing a very low residual, but in fact the model is
really providing an excellent fit to the statistical ‘noise’ of this particular data set, rather
than the underlying function. This can be the result of having too many free parameters
in the model compared with the number of data points (see Section 4.8 for more
details). It is also likely that as the number of parameters increase, there will be higher

levels of covariance between the parameters. This reduces confidence in accurately

79

estimating the values of any of these parameters independently. To overcome these
problems, it is possible to increase the number of recorded data points, or decrease
the number of free parameters. Often, it is difficult, or indeed impossible to control
the former. This leaves the possibility of reducing the number of free parameters. One
could simply set some of the parameters of the model to be fixed — using data obtained
from some other experimental measurement, for example. Alternatively, the fixed
parameter can be considered as an assumption of the model used in fitting the data.
However, it is also possible to impart some theoretical knowledge onto the numerical
model and couple parameters together to help constrain a fit. Effectively, the coupled
parameters appear fixed from the point of view of the fitting algorithm (i.e. removed
from the set of free parameters), but in terms of model calculation, they are varying as

a function of the (still free) parameter, to which they are coupled.

FFS provides a system for handling complex coupling between parameters. Coupling
is again specified by the model definition language (see Section 4.5). The format of
the coupling expressions is demonstrated by Fig. 4.6, where ‘parname’ is the name of
the parameter being coupled and ‘elementname’ is the name of the element to which it

belongs.

(couple elementname.parname cexpression)

Figure 4.6: MDL — main coupling syntax.

The coupling expressions, ‘cexpression’ are prefix statements defining how the
parameter is coupled (Fig. 4.7). The operators are arithmetic (+, -, *, /, 7) and
the operands are numeric values, model parameters (specified in the same way as
the parameter being coupled i.e. elementnamex.parnamex), or indeed further nested

expressions — allowing for definition of more complex coupling functions.

(operator operands)

Figure 4.7: MDL — coupling expression syntax

The coupling of model parameters results in an issue for partial derivative calculation
— analytic expressions for partial derivatives of the model may be known, with respect
to some or all of the parameters that the free parameter has been coupled to. However,
the performance associated with the use of the analytic partial derivatives is lost, unless
the coupling expressions themselves are differentiable, giving the inter-parameter
dependence derivative i.e. the terms required for applying the chain rule. FFS allows

for exactly this — the coupling object can programmatically perform analytic partial

80

differentiation of the textual coupling expressions of the form shown in Fig. 4.6. It is
important to note that calculation of partial derivatives of complex coupling functions,
with respect to the coupled parameters is being done analytically using custom, FFS

algorithms.

The manner in which this is done requires several steps. Firstly, the parsing object,
ffs_parser, takes the MDL coupling statements and pre-parses these into a new form
for the coupling object to deal with. This is necessary because coupling objects must
be associated at the parameter level and, as such, are ‘unaware’ of other elements (and
associated parameters) in the hierarchy. The model parser does, of course, work at
model level and therefore the ffs_parser is capable of translating MDL statements into
a simple intermediate syntactical form and supplies this to the coupling object, along
with the associated list of operand parameter object references for those included in the
coupling expression. This intermediate syntax is (intentionally) not greatly removed
from the MDL coupling syntax defined in figures 4.6 and 4.7 — in fact the only change
is that the text labels for the parameters are replaced with ‘$i” where i is an integer

({1...n}) used to identify each of the n parameters in the expression.

The coupling object must then analyse the newly formed coupling statement —
extracting the various fragments of data: the operator, parameters, constants and nested
expressions. This step happens as soon as the coupling expression is set for a given
coupling object and the results cached for fast access when the partial derivatives are
requested. When the request is made, each of the (now tabulated) nested expression
must be taken in turn (most highly nested, outward) and the partial derivative of each
operand taken. If the operand is a constant, then the result is immediately known to be
zero. However, should an operand be a parameter, a check must be done to establish
whether this parameter is also coupled to another parameter (potentially the parameter
for which the partial derivative has been requested is somewhere along the coupling
chain). In this case this entire procedure must be carried out for the coupled parameter
(and so on, through the coupling chain) to obtain the result. If the parameter is not
coupled, then there are only two trivial outcomes: the parameter is the dependency
being sought — the result is 1, or the parameter is not and the result is 0. If the
operand is an expression, then the result has already been pre-calculated and can be
stored here. Regardless of operand type, the value of the operand is also cached. This

sequence is detailed in figure 4.8.

With the operand values and partial derivatives stored, the calculation has been vastly
simplified. For each nested expression the operator is applied to the stored list

of operand partial derivatives and the list of stored values used where appropriate

81

‘s19)owrered pardnod y3noayy soaneAlrop [ented onAreue SUIAILIQI 10 WIYILIOS[R Ay} SUIMOYS MRYIMO[]]t 9IN3I

(saijeAd‘sapio ‘xpued
‘J21 ‘151|61e ‘J031€12d0O
vun‘_mnu_muAlb_wmuEme

ﬁ [[++noxpudxa)xpudxa]sas = [isi|bie

:TGxn:nxu_xv:nxa_wﬂaxw = [sa1eAs

++110xpued
0T = [Msnbse

(123qo Bu1ydnod sed)pdiediab = [asibie 00 = [M

++.

10xpued [++41225U02Ja5U0D = [f]saijeAd
bie

1 s1pdos
o pd paisanbai s sed

s3A|

++10xpued pd p bas au sed s1

123fqo Buidnod
511 01 |[ed saunbai -
pajdnod osje si aed siy)

= ou

pd paisanbai JON sed

o

u

saA

129fqo buidnod sey Jed

019z si1 pd os
J913wesed siyl uo aduepuadap ou

(anjeneb<-
[[1>xpued]xpued]sied =
[Nsaifens

& (adxa a1y
Z=I[Nspuesado

i (35U0d "3°1)
1=[1]spuesado

£ (ed)
0=[1]spuesado

(J3pJo0, Jo 3zIS)
spuesado jo ‘ou > [

(19p10) 1s1] puesado jo buuapio
(3su0d) sjueIsuod

(xpudxa) sad1pul uoissaidxa
(xpued) sacipul Ja1awesred
101e13d0

:[1]s1dxa jo spjaly aAaLRL

(,54dxa, Jo 2zI15)
suolssaidxa paisau
Jo Jaquinu > 1

,S24, JO U 1SB| UIMAI

(sied) simpwered

(sa11dx?) synsal uoissaidxa
(s1dxa) 21n1dnns suoissaidxa
:pR101S AR

82

(application of the product rule for the multiplication operator, for example).

Consider an example of parameter coupling across two elements in a model — elem1
has a parameter (parl) which depends on two parameters of elem2 (par2 and par3). The
function defining the dependency is such that parl is to be coupled to the sum of par3
and three times par2 i.e. in traditional infix notation: eleml.parl = 3.0*elem2.par2 +

elem2.par3. The equivalent MDL describing this is shown in Fig. 4.9.

(couple eleml.parl (+ (* elem2.par2 3.0) elem2.par3))

Figure 4.9: Example of an MDL coupling statement. The infix equivalent of this
expression is: eleml.parl = 3.0*elem2.par2 + elem2.par3.

After translation by the model parser, the expression stored by the parameter]l coupling
object is as seen in Fig. 4.10. Note that (as stated previously) the coupling object is

also supplied with the corresponding parameter object references.

(+ (= $1 3.0) $2)

Figure 4.10: The coupling statement shown in 4.9 after pre-parse for use by coupling
object.

As described above, the coupling object extracts the information from this statement
and stores it as a useful structure for inter-parameter partial derivative calculation. The
debug mode of the program allows us to follow the program logic output of the code
running in this mode. This is shown in figures 4.11 and 4.12, as it parses the inner-

nested and then outer expressions (these are ‘exprs’ in Fig. 4.8), respectively.

expression parsed: x $1 3.0
operator:

pars (index): 0
constants : 3.0000000
other expressions (index): -1
order of evaluation (O:par, l:const, 2:expr): 0 1
error status (O:none, l:operator, 2:par, 3:const,
4:num_expr): 0

Figure 4.11: Debug output from ffs_couple as it parses the inner expression of the
coupling statement displayed in Fig. 4.10. The coupling object has extracted various
tokens from the original expression relevant to value and partial derivative retrieval
(see main text for details).

In the order in which they appear in the debug output (Fig. 4.11 and Fig. 4.12), with
the labels used in figure 4.8 in brackets, the output displays: the nested expression

83

itself, operator (operator), pars (paridx), constants (const), other expressions (expridx),
order of evaluation (order) and error status. Most of the entries are self-explanatory.
However, to clarify a few of the items, ‘paridx’ is an array of zero-based indices for
the parameter list supplied by the main model parser, ‘const’ is a list of constants used
in the expression and ‘expridx’ is a one-based index referencing any cached nested
expressions. In each case, if none of the operands of the current expression are of that
particular type then this is indicated by the value —1. The quantity labelled ‘order’
labels each of the operands for that expression: O indicates a parameter, 1 denotes a
constant and 2 implies that the operand is an expression. If necessary, the error status
helps indicate to the user which part of the the coupling string appears to be causing a

parsing error.

expression parsed: + (x $1 3.0) $2
operator: +

pars (index): 1
constants : -1
other expressions (index): 1
order of evaluation (O:par, l:const, 2:expr): 2 0
error status (O:none, l:operator, 2:par, 3:const,
4:num_expr): 0

Figure 4.12: Debug output from ffs_couple (similar to that shown in Fig. 4.11 —
except that this is related to the outer expression of the coupling statement displayed
in Fig. 4.10 rather than the inner). A main point to note is that the results of Fig. 4.11
are referenced here. See main text for details.

84

4.7 Optimisation of the Model

It is possible that some models will possess combinations of elements that can be
readily reduced to a more optimum representation i.e. it is possible that there is a
well known analytic solution for an operator element acting on some other element,
that provides more efficient function evaluation, the possibility of utilising analytic
expressions for the parameter partial derivatives, or both. Consideration of an example
best demonstrates the requirement for a ‘simplification’ system and the advantages
that it brings. Let us return to the example model shown to demonstrate the MDL
syntax (Fig. 4.5). This model incorporates a Gaussian broadening function ‘brdg’
that could be considered to represent the instrumental broadening function for a given
spectrometer. The two child elements, the Gaussian ‘g’ and the Lorentzian ‘1’ could
represent some spectral lines of interest. It makes sense to define the model in this
way from an experimental point of view; the instrumental broadening acting on the
underlying line shapes. However, this model is not efficient for spectral fitting —
the broadening function must perform convolution of a normalised (to preserve area)
Gaussian function with that of the operand element (eq. 4.5). In this example, the
convolution performed would be the Gaussian kernel with the result of its child of
the addition element (which is the sum of a Gaussian and Lorentzian element). Since
convolution exhibits a distributive property (eq. A.4) this is equivalent to the sum of the
convolutions of the broadening Gaussian with the Gaussian and Lorentzian lines (see
eq. 4.25). The results of these two convolutions are known — it has been demonstrated
that the convolution of a Gaussian with another results in another related Gaussian
(eq. 4.51). Similarly, convolution of a Gaussian function with a Lorentzian function
results in the Voigt function (see eq. 4.25) and, further to that, a computationally
efficient form of that function is available (eq. 4.29). Fast computation of the partial
derivatives are also possible from this definition of the Voigt function. Clearly it is
highly desirable to have access to these functional forms. The ffs_simplify class is the
component of FFS that allows this type of optimisation to be exploited. It does so by
traversing the model element hierarchy (Fig. 4.2) seeking combinations of elements
for which an optimisation is known (such as the Gaussian-Lorentzian example given
here). This process takes place recursively. Initially the optimal form of the root
element of the model tree is requested, but this result is dependant upon the optimal
form of its child elements and those on theirs and so on. Once the leaf nodes pairs have
been optimised, the new form will ‘bubble up’ through the tree until the entire tree has
been optimised. This means that at the end of the process, FFS will have a second,

more efficient model, built from a new set of elements from those originally created by

85

the user. Since the new model will be constructed using a new set of elements, this has
the consequence that the parameter set for this model is now also different. This is not
desirable from the user’s point of view — they are interested in the original parameter
set from the input model. However, via use of the coupling system, defined in Section
4.6, ffs_simplify couples the new parameters to those from the original model. In fact,
from the user (and fitting program) perspective, FFS’ use of an optimised model is

completely opaque.

(model
(+

(broaden_gauss (gaussian new_gauss)

(+ (voigt new_voigt)
(gaussian g) (background—-linear new_bg)
) optimized)
brdg)

(background—-linear bg)
)

I
I
I
I
I
(lorentzian 1) |)
I
I
I
I
example) |

Figure 4.13: The ‘simplification’ of a user specified model. On the left is the originally
defined model, on the right is an equivalent, optimised, version.

In order to perform this task, the ffs_simplify routine uses a reference table of rules
defining more efficient representations for a set of operator element-element pairs (the
set of rules can be found in Appendix C). This is implemented by storing structures
with fields ‘parent’ and ‘child’, which denote the type of element that the operator
element and operand element are respectively. In addition to this, the structures have
‘replacement’, which is the type of element that the pairing is to be replaced by and
then finally there is the ‘coupling’ field, which defines how the new element parameters
should relate to the original model representation. The ‘coupling’ entry is an array of
string pairs — one for each new parameter; the first element is the name of a new
parameter and the second is an FFS coupling expression (see Section 4.6) relating
the new parameter to those of the original element pair. The simplification rule list
structure for the broaden_gauss — gauss pairing (as in the optimisation example in
Fig. 4.13) is shown in Fig. 4.14.

The full procedure for optimisation of the model (including the use of the rule-list
for known pairs) is described by Fig. 4.15. Note that there are also some special
cases to be accounted for and that these are handled independently from the rule-list
approach. Currently, the system deals with two special cases — addition element

branches in the model tree and broadening elements, with an addition element child.

86

{parent:’ ffs_broaden_gauss ’, $

child:’ ffs_gaussian ’, $

replacement:’ ffs_gaussian ’, $

coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhm’, °(° (+ (° parent.fwhm 2) ("~ child.fwhm 2)) 0.5)°], $
[’area’, ’(child.area)’] $

D s

Figure 4.14: Rule list structure example.

The ‘expand_add’ method, referred to in the diagram, is a recursive routine that extracts
all child elements of all addition elements in that branch and inserts them into the
model tree, at the depth level of the top-level addition element. This is shown in
Fig. 4.16. The ‘expand_broaden’ method, handles a broadener element operating on
an addition child element. In this case, it is necessary to extract the child elements
of the addition element and create duplicate broadener elements — one for each of
the elements within the addition — such that on the next pass of the optimiser any
known pairings between the broadener operator and the grandchild elements become
apparent. The algorithm used to handle optimisation of broadener element branches is

shown in Fig. 4.17.

87

retrieve rule list

retrieve element's children

duplicate element

i < number
of children

At this point all elements at greater
depth in the tree will have completed
this simplification algorithm in full.

replace childl[i]

checkrules

matching rule?

is element
ffs_broaden?

is element
ffs_add?

d_add
expand_a expand_broaden

unknown case -
duplicate element

create new elements ®
as specified by rule list

L

couple new element parameters
to original element parameters
as specified by rule list

Figure 4.15: Optimisation procedure. Note that the operation replace child follows the
algorithm defined by this flowchart i.e. this is a recursive method call.

88

getchildren(count=count)

is child[i]
of type 'add"?

replace child[i] with
expand_add(child[i])
return new child list

Figure 4.16: Dealing with an addition element branch.

89

get broaden's add child

get grandchildren

create main_add
(addition element)

create numerical broaden
(duplicate of original)
and add as child of main_add

gaussian or
lorentzian
broadener?

no no

voigt

unknown broadener

~>exit

. . " retrieve width parameters (value and attributes
retrieve width parameter (value and attributes) it p ¢)

for and lorentzian ¢

L l

copy width attributes to num_brd width

copy width attributes (for both pars) to num_brd width

l

couple num_brd widths to original pair

couple num_brd width to original

i < num grandchildren

create new (duplicate) broadener
and add grandchild[i] as child
(additionally, new broadener made child of main_add)

rule for broadener - grandchild[i]?

add grandchild[i] as a child of num_brd

return main_add

Figure 4.17: Dealing with a broadener element branch.

90

4.8 Non-linear Least Squares Fitting

The statistical basis of y? fitting is detailed by Bevington [66] and further details,
including the computational implementation of various methods used to perform least
squares fitting of experimental data are well described and discussed by ‘Numerical
Recipes: The Art of Scientific Computing’ [67]. However, a short summary is provided

here for completeness.

To determine physical parameters from a recorded experimental spectrum (wave-
length/pixel, x and intensity, y), it is possible to define a parameterised model
representation of the data (f) and fit this to the observed spectra via modification of
the model parameter set (p) until an optimal solution is obtained. Least-squares fitting
is named such as it involves iteratively minimising the merit function, y?, which is the
sum of the squared residuals between data values (y;) and modelled values (f{p}(x;)),
weighted by the square of the inverse of the standard deviation (o7;) of each data point.

So, for N data points:

(o

N-1 2
)(Z{P}=Z(yi_f{?}(xo) ‘ (4.55)

i=0
There are a variety of methods to achieve minimisation of such a function. The method
of steepest descent is one of the simplest approaches, with the parameter increments
simply calculated by taking a step along the gradient (in the negative direction) of the
x? surface at the current point:

opi = —hiaiz, (4.56)

opi

where /; is a constant defining the size of the step taken. This method is useful in
that it will work reliably from reasonably far away from the true minimum, i.e., from
relatively poor initial estimates. Unfortunately, however, it is not obvious what value
should be selected for 4;; too large and the step could over-shoot, but selecting a small
step could result in slow convergence. The speed of convergence is also hampered if
the hypersurface consists of long, narrow ‘valleys’ as the algorithm would spend many

iterations traversing the valley rather than the more direct route along the floor.

An alternative route to minimisation is prescribed by the ‘Gauss Newton’ method.
Firstly, consider the Taylor expansion of the function that is to be minimised, y?, noting
that the series is truncated at second order, essentially making the assumption that the

x* surface is parabolic near the minimum:

2o O W Peur) 1 90 O P peur) 3
X~ X Per) +) o opi+ 5 D o spidp;+0(op*). (4.57)
i=0 ! j=0 i=0 SO

The gradient of this surface is a vector given by:

-1
a?
; a_ (4.58)

the components of which (using the approximation of 4.57) are described by:
Pt T PH Per)
Vy?) ~ 2 ————0p; (4.59)
(%) pi ; Op;9pi
such that:
Vi % Vo peur) + Vox peurlSp. (4.60)

Returning to the expression for y? (eq. 4.55), we can evaluate the first and second

derivatives terms in eq. 4.59 (or, equivalently, in eq. 4.60):

N-1
(VXz)i 6)({pcur) (pcur (-xz)(af Dcur (xz) (461)

i=0 apl
and:
2o PP N0 L [0 pard () [9f Peur)(x)
(V)= Zopam opiop: _2,2 [()(ap;)
02 cur
= (Ui — fAPeur}(x) (M)] : (4.62)
dp;opi

V2)? is known as the Hessian matrix and, unfortunately, is computationally expensive
to calculate — it requires calculation of both first and second derivatives. In practice,

an approximation to V2y?,

1
= SV, (4.63)

is used (i.e. dropping the second order terms in expression 4.62, also note that the
factor % is conventionally added to eliminate the factor 2). This matrix is often referred
to as the curvature matrix as it gives a measure of the curvature of the y? surface. The
approximation is in keeping with the one implicitly made when truncating the Taylor
series; that the function is being assumed to be almost linear at very small deviation
from the solution. It should be noted that the term dropped also contains the residual;
the method is sensitive to the the initial conditions of the fit, i.e. , the residuals must be
relatively small. The main advantage of the method, however, is that it provides rapid

convergence to the solution.

92

Coupled with our definition of the curvature matrix a, is the definition of the vector:

1
ﬁ = _EV/\/Z{pcur} (464)

By substitution of these quantities and setting Vy? = 0 to find the minimum and solving

eq. 4.60 for the parameter adjustment vector, dp:
6p = aﬁlﬂ, (465)

The fitting algorithm implemented for use in this work, is a version of that developed
by Marquardt; the so called ‘Levenberg-Marquardt algorithm’ [18]. The method has
become one of the most widely used in optimisation problems. The advantage of this
algorithm is that it manages to smoothly vary between two methods of minimising a
function mentioned above: steepest descent and the Gauss-Newton method. The two
methods complement each other in that each is effective under conditions that are less
favourable for the other. There are two main features of the algorithm that achieve this.
The first is that consideration of the dimensionality of eq. 4.56 shows that /; has units
of p?. The reciprocal of the diagonal elements of the curvature matrix, i.e. QL share
these units, so this at least gives some information of as to the size of the constant
involved. The approximate nature of this is compensated for by a numerical fudge
factor A, such that eq. 4.56 becomes:

opi = (Aay)™' Bi. (4.66)

The Marquardt algorithm then blends the two methods by re-defining the curvature
matrix a, by multiplying the diagonal elements by the factor 1 + A:

G(L+A) i=]
@) = o+ 1= (4.67)
Q;; 1+]
such that the parameter increments are now given by:
sp=a B (4.68)

This means that the damping factor A can be adjusted to be large, making the matrix
a’ diagonally dominant such that it moves towards eq. 4.56, i.e. the method of steepest
descent. However, A can also be adjusted to a small value, moving the solution to that
of the Gauss-Newton method (eq. 4.65).

93

The inverse of the curvature matrix, is known as the covariance matrix:
C=al. (4.69)

The matrix is so called because the elements C;;(i # j) give the covariance between
the two parameters p; and p;. The diagonal elements, C;; are the variances of the

parameters p;, so the standard deviation of the parameters is given by:

o= +/Ca. (4.70)

Rather than the covariances, it is often more useful to consider the derived quantity,
correlation!, when considering interdependence of the parameters. This has elements
defined by:
C;;
cN=__Y 4.71)
7 GG
Finally, note that when evaluating the quality of the fit, it is more useful to consider a

)(2 statistic that is normalised to the number of degrees of freedom, that is:

2 = 4.72
XN N-n, ()

where N is the number of data points and n,, is the number of free parameters in the fit.
x% = 1 indicates a high quality fit. However, it should be noted that 3 < 1 suggests
an unexpectedly good fit. This can occur due to over-estimation of the errors on the
experimental data values (i.e. that the values of o; are too large). Alternatively, this
can be an indication of over-fitting — that is to say that the model contains too many

free parameters compared with the number of data points.

4.9 A Custom Fitting Code

FFS is a computational framework for provision of complex spectral model specifica-
tion. The spectral fitting process itself, however, is (by design) handled by a separate
module to allow for flexibility for the user. Despite this design decision, it should
be noted that FFS was originally intended to be used in conjunction with the readily
available fitting program MPFIT [68]. This code is an IDL port of a well known
Fortran fitting routine, MINPACK-1 [69], part of the the Netlib library of routines.

This package has, at its core, the Levenberg-Marquardt algorithm detailed above.

I Also referred to as normalised covariance.

94

MPFIT provides some additional machinery around the core algorithm such as setting
some parameters in the model to be fixed, or imposing boundary constraints, basic
parameter coupling and suggested step sizes (for numerical partial derivatives). These
facilities influenced the parameter structure for FFS, thus it remains compatible with
the routine, but FFS retains control of these properties as they are considered to be
part of the model definition, rather than the concern of a fitting program. Similarly,
coupling is handled internally (to arbitrary complexity and so, surpasses the capability
of the MPFIT specification). Finally, upon confrontation with experimental data,
the core algorithm did not appear to be entirely robust. Under many circumstances,
fitting would fail, often reporting that the curvature matrix was singular. Investigation
as to the cause of the apparent frailty was undertaken and the cause found to be
numerical instability in the calculations for the suggested parameter corrections (eq.
4.68). The instances where this occurred involved parameter sets where individual
parameter values (and partial derivatives) were highly disparate in absolute terms. This
means that in performing the Householder operations for the QR-decomposition of
the matrix, numerical inaccuracies can quickly occur. Technically, it can be said that
the curvature matrix, in these cases, is ill-conditioned to numerical operations. The
condition number, k, of a matrix A is calculated via x(A) = ||A||||A7!||; a condition
number close to 1 indicates a well-conditioned matrix. The condition numbers in
the failing scenarios were of the order ~ 10° or, in some case, even ~ 10° This
behaviour is well known and, often, the approach taken to tackle this issue, is to
normalise the experimental data (in intensity and/or wavelength dimensions). The
reason for this, is that typically mathematical line shapes such as Gaussians are being
used to fit the data and the ‘problem’ parameter is that which controls the intensity
(area) of the line shape which may be of the order ~ 10'!; the other parameters,
wavelength and line-width could be ~ 100 and ~ 1 respectively. However, this
approach may be simple to implement, but for a complex fitting system such as FFS,
where model could exhibit a great range of physical parameters (of disparate absolute
values) this is not appropriate. Instead, it is necessary to instead scale (normalize) the
parameters themselves. Unfortunately, the parameter scaling must occur within the
fitting routine; it is necessary to scale the parameters (as well as the corresponding
parameter limits and model partial derivatives) when assembling the curvature matrix
to find the (scaled) parameter improvements, but these values must be ‘un-scaled’, at
each iteration, to enable model re-evaluation for the ‘goodness-of-fit’ (y?) test. This
requirement, combined with the fact that FFS already handled the additional features
(such as parameter limits and coupling) provided by MPFIT, led to the creation of a
custom fitting code ffs_fit (also based on the Levenberg-Marquardt algorithm) which

95

handles the parameter scaling. This may initially sound trivial, but there are some
important details to consider here. Ideally, one would make it such that all parameters
are scaled such that they are altered over the range [0,1] (the scaled limits), with
the initial scaled value taken as the fraction of the initial true value over the true
range. However, in practice, the model parameters may not have an upper bound,
lower bound, or indeed no specified limits at all. Further to this, computationally it
is undesirable to perform all of this scaling/un-scaling at each fitting iteration, so care
must be taken to do so as efficiently as possible. The FFS code therefore performs
an initial scale setup procedure which caches the various data required to allow rapid
scaling/unscaling of parameter values, limits and partial derivatives. The data cached
includes the initial (true) parameter value (p;), the scaled limits, the scaling factor (f)
which is the effective range and the scaling constant (c¢) which is the effective lower
pi=c

limit. The initial scaled value is set to: p; = - As stated above, setup is straight

forward if the parameter has specified lower and upper limits (bounds); the scaled

limits are taken as [0,1], f = [— u and ¢ = [such that the scaled value is the fractional
proportion of the range that the initial true value is. In all other cases, the initial scaled
value will be 0.5. If the parameter only has an upper limit set, the scaled limits are set
to (—oo, 1], f =2(u—p;)and c = —%f+p,- = 2p; —u. In the case of a single lower limit,
the scaled limits become [0, +00), f = 2(p; —[) and ¢ = —%f + p; = L. If the parameter
has no limits, then the scaled limits remain (—oo, +o0), f = 2p; and ¢ = 0. The various

model partial derivatives can now be quickly scaled, without traversing the decision

om
ops

errors are readily un-scaled: p = fp, +cand o, = fo,,, respectively.

tree present in setup, via: =f %i[f. Similarly the parameter values and parameter

4.10 Batch Fitting

It is often the case that an experiment will record multiple spectra — usually a series
of spectra in time, space or both. It is desirable to fit all of the spectra in a systematic,
automated scheme to identify trends in the derived parameters across the series. To this
end, scripts exist as part of FFS which cycle through the frames of spectra performing
fits using a single model definition. Batch fitting in this way therefore calls for
compromise — it is possible that as conditions change across the series, the model used
may no longer be suitable and so, the resultant fits are poor i.e. the value of the y? merit
function are unexpectedly high (i.e. greater than a set tolerance). Improvement may be
achieved by relaxation of parameter limits in the model to allow more flexibility, but

this should not be done indiscriminately. The poor fits, however, may be the result of

96

another problem — the fitting routine may have discovered a local minimum in the y?
surface and become ‘stuck’. This is an artifact of the Levenberg-Marquardt algorithm
which, while not overly sensitive to initial conditions, is not a global fitting algorithm.
There is no simple solution to this problem and so, typically one selects an alternate
set of initial parameter values in an effort to find the true minimum. To do so in an
automatic fashion, the batch routine fits all of the spectral frames for a given track and
then, for any poor fits, attempts to use the final, determined parameter values for the
closest frames, for which the fits were deemed acceptable, as the initial value set to re-
fit the failed frames. The rationale behind this selection is that the neighbouring frames
are the most likely to have similar spectral signatures to those that require re-fits and so
this parameter set is more likely to be in the vicinity of that which will truly minimise
the x* merit function. In any case, regardless of the validity of the rationale, the new
initial parameter values provide an alternate starting point in the function parameter
space to try and avoid the local minimum and find a path to the true solution. The
number of re-fit attempts is arbitrary and is decided upon the basis of trade-off against

computation time.

4.11 Validation of Results

In order to have confidence in complex systems such as FFS, it is necessary to validate
the results of the code. For instance, the partial derivatives calculated via the analytic
expressions, outlined in Section 4.2, must produce similar results to those obtained
via numerically derived derivatives (within a tolerance accounting for the inherent
inaccuracy of numerical methods). Here, the results for the most commonly used
lineshapes (Gaussian, Lorentzian and Voigt) are considered (Fig. 4.18). In all cases
it can be seen that the code returns equivalent results, when the mode of operation is

changed from numeric, to analytic, as required.

Another area requiring validation is the simplification system — it is important that
the new model representation produces a modelled spectrum that is, within reason,
the same as that resulting from the original definition. Again, only a selection of
example comparisons can be shown here; specifically the broadening elements, when
applied to a selection of operands. The operands are varied in that some are wavelength
resolved (gridded in FFS terminology), whilst others are like point impulse functions
specified at a single wavelength (i.e. un-broadened lines), further to this the number
of data points for the operand are altered. Each of theses cases must be examined,

as the broadening elements use different numerical methods for each (for efficiency

97

- 1.00F 3
g 050F 3
2.0[o o00of 3
[< -0.50F 3
[& —1.00E 3
0 5 10 15 20
1.5 r 1 "
T 0.30F 3
E 0.10F -
>~ 1.0F - = —0.10F E
[g -o0p 3
& -0.50E 3
[0 5 10 15 20
0.5 s b
[S 0.20F
[g 015F
L o 0.10F
0.0 | | L T qosk
0 5 10 15 20 & ook
X 0 5 10 15 0
x
(a) Gaussian function.
- Q.40F E|
2 020F 3
150 = 000 =
X -020F 3
€ —0.40E 3
20 25 30 35 40
X
’g Q.10
£ -0.00
Z —010F
8 —020F
& —0.30
20 25 30 35 40
X
5 0.8F
£ o0a2F
= 008F
€ 003E
& -0.03E
X 20
(c) Lorentzian function. (d) Lorentzian partial derivatives.
~ 020 e 005
g o0.10 < -0.00
S 0.00 = -0.05
T 010 % ~0.10
€ -0.20 > 015
40 45 50 55 60 40 45 50 55 60
X X
’g 0.08 < 015
[0
£ 003 £ 0.0
T —002 < 0.05/\
> ~
T -0.07 L 0.00
> 012 & -0.05
40 45 50 55 60 40 45 50 55 60
X X X
(e) Voigt function. (f) Voigt partial derivatives.

Figure 4.18: The left-hand column (a, ¢ & e) show plots of example functions
(Gaussian, Lorentzian and Voigt). The right-hand column (b, d & f) displays plots
of the partial derivatives of these functions — when calculated numerically (method
of finite difference), shown by the red, dashed line and the result when using the
analytic solution (the solid black line). Note that the element names are g/, // and
v1 respectively, with the plots labelled accordingly.

98

of calculation). Firstly, we take the simplest example of the broadener applied to a
single un-broadened line — these are the convolutions as shown by eq. 4.6, 4.21 and
4.29, which re-distribute the line intensity over a finite wavelength range — resulting
in a Gaussian, Lorentzian, or Voigt, respectively. The numerical broadeners discretise
the convolution integral into a finite sum of the product of the (normalised) broadening
kernel with the function to be broadened. However, in this situation (where the operand
function is a point impulse), discretised sum or otherwise, the impulse function sifts
out a single non-zero product term i.e. the numerical and analytical results are identical.
To verify this, plots were made of the results when using the original model definitions
and compared with those resulting from the model specified by the FFS simplifier (see

Table 4.1). There were no differences for these examples, as expected.

| Original Simplified
(a) | (broaden_gauss (line 11) bg) (gaussian new_gaussian)
(b) | (broaden_lorentz (line 11) bl) (lorentzian new_lorentzian)
(c) | (broaden_voigt (line 11) bv) (voigtian new_voigt)

Table 4.1: The ‘simplification’ of the various broadener elements acting upon an un-
broadened line element. On the left is the originally defined model, on the right is an
equivalent, optimised, version. Note that the internal coupling expressions, connecting
the parameters of the original and simplified models have been omitted here.

As discussed above, the convolution integral is approximated by a discretised sum.
Therefore, unlike the un-gridded cases, one should not expect exact correspondence
between the numerically broadened model and FFS optimised model output. In order
to avoid re-calculation of the operand of the broadening element, or interpolation of
calculated values, the approximation made is a simple one — the composite midpoint
rule. For a set of wavelength values {x, xi, ..., x,}, the sub-interval width (step) for a
point, x;, (x; < x; < x,_; is taken as %(x,ﬁ | — X,—1). At the end points, x, and x,, the
intervals are x; — xo and x, — x,_; respectively. At this point it is important to note,
that as well as providing more efficient model calculation (and therefore, rapid fitting),
that the use of the FFS simplifier bypasses the need for the approximations made here.
In fact, to describe this trial as a ‘test of the FFS simplification system’, is a misnomer
— the FFS simplified model should provide a more accurate result than the original
and provide a benchmark for the quality of the numerical broadening. In any case,
the results should be fundamentally similar and this is supported by the output of the
code for another trial shown in Fig. 4.19. In this illustration, the model (evaluated
with, and without, the simplification enabled) is a Gaussian broadener applied to a

another Gaussian function (MDL shown in Fig. 4.20). As expected, there is a marginal

99

difference in the two outputs (for the reasons discussed above) but, importantly, the
absolute value of the difference between y, and y, is very small compared with the
function values. Further to this, when evaluated for a larger number of data points
(see Fig. 4.19) the difference is reduced — this supports the reasoning that numerical
accuracy is the source of the discrepancy as the step size has been effectively reduced

i.e. moving towards a continuous representation of the integral.

1.5F] 1.5F
1.0F B! 1.0 E
>] >
0.5F *; 0.5F E
0.0E b 0.0t
0 10 20 30 40 50 0 10 20 30 40 50

~ 1x107°F
> 5x107'°F
! of

> —5xwo*‘“§

0 10 20 30 40 50 0 10 20 30 40 50
X X

(a) 1000 data point calculation. (b) 5000 data point calculation.

Figure 4.19: The upper pair of graphs show overlaid plots of the function as calculated
via original model representation, i.e. a Gaussian broadener acting upon Gaussian, (the
blue line) and via optimisation, i.e. a Gaussian, (the red, dashed line). The lower plots
show the differences of the two pairs of functions — there is a small discrepancy due
to the limitation of the numerical approximation, which improves with the number of
data points. (a) and (b) are calculated for 1000 and 5000 abscissae respectively.

(broaden_gauss
(gaussian g)

(gaussian new_gauss)

(couple new_gauss.pos = g.pos)

(couple new_gauss.fwhm (° (+ (° bg.fwhm 2)
(" g.fwhm 2)) 0.5))

(couple new_gauss.area = g.area)

bg)

Figure 4.20: The ‘simplification’ of the Gaussian broadener acting on a Gaussian.
On the left is the originally defined MDL. On the right is an equivalent, optimised
representation, complete with MDL coupling statements.

There is another, more significant, error that can occur when using the numerical
broadener that must be dealt with — edge truncation. When using the FFS simplifier,
the model is reformed via analytical convolution of the functions and the resultant
function is then evaluated over the desired wavelength range. However, when the
numerical broadening elements are used, FFS must approximate the resultant function
using the discrete values of the component functions which have been evaluated over

the specified wavelength grid. This is an important distinction because it means that

100

the broadening kernel can only be applied to the data points supplied by the child
element branch. This presents an issue if the child function is truncated at the edge
of the wavelength range — contributions to the integral outside the bounds will be
omitted, with the consequence that the numerical solution will be diminished at the
edges of the grid. To overcome this, the broadener must expand the wavelength region
for the child branch and evaluate the model in these regions to provide the required
top-up at the edge. The broadener can then truncate the new result, back to the original
region of interest. The extent to which the wavelength bounds should be extended
is not well defined; compromise must be made between addition of a larger number
of data points and the increase in accuracy and a lower number of data points, with
fewer calculations and therefore faster computation. The minimum expansion region
is, however, related to the width of the broadener and so, provides some indication of
scale — FFS defaults to twice this width. Returning to the example model defined
in Fig. 4.20, with the centre of the Gaussian line, g, moved to the lower wavelength
bound, such that a large proportion of the non-zero values of the function exist outside
the region evaluated. The model was calculated with and without the expansion of the
operand wavelength grid (in this case, the operand is just the Gaussian g). Figure 4.21

demonstrates the marked difference that is observed when this correction is included.

15F] 1.5F]
1.0F o E 1.0F E
> - S] > E]
05F E 0.5F E
0.0E 3 0.0E 3

0 5 10 15 20 0 5 10 15 20

= _B9F =~ 2x107°F E
>~ -0.2F >]
B -]
5 —05F 5 T2x10 E
-0.6 -4x107°k E

0 5 10 15 20 0 5 10 15 20

(a) (b)

Figure 4.21: (a) and (b) show, in the upper graph, overlaid plots of the function
as calculated via original model representation (the blue line) and via optimisation
(the red, dashed line). The lower plots shows the difference of the two functions.
Sub-figure (a) was calculated without extending the wavelength region that the child
elements were calculated over, whilst (b) does exactly this — to reduce the discrepancy
compared with the analytical result.

Similarly, it is important to again verify analytic versus numerical partial derivative
calculation in this case. This also, simultaneously, verifies that the coupling system

is working as expected; the parameters of the simplified model are connected via

101

coupling to the originally specified model definition.

4.12 Analytic / Numerical fitting Speed Comparison

One of the main advantages of using analytic formulae for partial derivatives is
performance; use of finite difference methods requires multiple function evaluations
which can potentially be computationally expensive. Similarly, the use of the
simplification feature is designed to use the most optimum functional form and retain
analytical forms for partial derivatives, wherever possible, on the same performance-

related grounds.

This is an important consideration when attempting to perform inter-shot analysis
of spectra i.e. parameter estimates from spectral fits from one pulse influencing the
decisions made on control parameters for the next pulse. This time window can be
approximately 10 minutes and so, speed of computation can be important if there is a
large amount of data. The number of spectra to be analysed varies depending on the
confinement time and the temporal and spatial resolution of the instrument involved,
but typically one could easily expect to be fitting approximately 200 frames of data,
for 10 spatial positions, i.e. thousands of spectra. Each of the individual spectra must
be fitted with a theoretical representation and in doing so the x? based algorithms
evaluate the model, at least once, every iteration to check for improvement in fit. The
algorithm must also calculate partial derivatives with respect to all model parameters.
If analytical solutions are not known, then finite differences are used and depending
on whether one-sided, or two-sided differences are used, then this adds another one or

two function evaluations to each iteration.

Table 4.2 shows time taken when requesting calculation of the model partial deriva-
tives, one hundred times, for a selection of models. The first column describes
the model in use, but the usual MDL has been reduced for brevity — names for
each element have been dropped and the element types have been abbreviated. For
the purposes of this table: bg — broaden_gauss, bl — broaden_lorentz, bv —
broaden_voigt, gs — Gaussian, 1z — lorentzian, vt — voigt and 1 — un-broadened
line. The columns that follow reflect the various modes that FFS can have active —
from left to right they are the times taken when using: numerical derivatives, analytical
derivatives, a simplified model with numerical derivatives and finally simplified model

with analytical derivatives.

The first thing to note from the results is that, in most cases, there is a dramatic decrease

in calculation time when the model simplifier is used e.g. from the first row, numerical

102

Model Num. Ana. Num. (sim.) Ana. (sim.)

(bg (bg (+ gs 1z vD))) 849.67 850.41 6.93 1.04
(bg (bl (+ gslzvD))) 533.61 53291 7.53 0.85
(bg (bv (+ gslz vt))) 1702.32 1697.88 8.45 121
(bg (+ gs 1z vt)) 290.18 289.79 4.98 0.69
(bg 1) 0.37 0.33 0.48 0.14
(bl (bg (+ gs Iz v))) 74429 743.54 7.54 0.85
(bl (bl (+ gslzvt))) 42580 425.94 6.35 0.79
(bl (bv (+ gs 1z vt))) 1591.30 1591.58 8.19 1.02
(bl (+ gs 1z vt)) 189.37 188.82 5.80 0.62
(bv (bg (+ gslzvt))) 1917.16 1915.20 8.40 1.21
(bv (bl (+ gs Iz v))) 1573.48 1572.71 8.22 1.01
(bv (bv (+ gslz vt))) 2923.82 2920.48 9.15 1.36
(bv (+ gs 1z vt)) 1228.51 1224.72 7.51 0.84
(bg (bg (+ gs V) * 37125 369.85 2.43 0.74
(bg (+ gs Vb)) * 19423 193.91 2.22 0.48
gs 0.34 0.06 0.41 0.11
(+ gs vb) * 1.57 0.21 1.79 0.30
Iz 0.24 0.07 0.31 0.11
vt 0.64 0.09 0.76 0.16

Table 4.2: Partial derivative calculation performance test. Entries are time taken (in
seconds) to evaluate all partial derivatives 100 times (for each respective model). With
respect to the column titles — ‘Num.” is FFS running in numeric calculation mode
(finite differences), while ‘Ana.’ signifies ‘analytic’ mode was active. The ‘sim.” in the
third and fourth columns signifies that the simplifier was in use. Entries marked with a
”*” have coupling between the positions of the lines.

103

calculation of the partial derivatives using the simplifier takes just 0.82% of the time
taken without its use. Secondly, the benefits of known analytic solutions for partial
derivatives is clearly hidden from us, unless the simplifier is used; again, looking
at the the first entry — there is very little difference in the calculation time with
FFS in numerical mode versus the analytic option (in fact, we see a slight increase
in calculation time), but with once the simplifier is in use — we can see that the
simplified model with analytics is taking just 15.03% of the time taken to calculate
via finite differences. Comparing the two extrema, use of analytics combined with the

optimisation system, partial derivative calculation time has been reduced by 99.88%.

Similar performance gains are seen for all models which involve broadening elements
acting upon known child elements (e.g. Gaussian). This is not, of course going to be
seen for all element combinations (those that the simplifier is unaware of) and in these
circumstances there may even be an increase in calculation time due to the overhead
of the simplifier machinery (i.e. creation of a secondary model and parameter value
linkage via coupling). The table contains entries for models containing single elements
which, by definition, cannot be reduced to a simpler form — which demonstrate FFS
taking longer to calculate the partial derivatives when the optimiser is active. In the
case of the model comprised of a single Gaussian element, when using numerically
evaluated partial derivatives, the optimiser overheads can be seen to be adding 0.07s
onto the time taken for one hundred model partial derivative requests. This is a 21.63%
increase in calculation time which, in isolation, seems somewhat poor. However,
consideration of the overall picture must come into play here. Firstly, FFS is more
likely to be in use for more complicated models than a simple Gaussian fit. For models
of higher complexity, it is likely that performance enhancement for some parts of
the model will outweigh detrimental overheads on parts where no improvement has
been made. Secondly, even in the case of the single Gaussian model, improvement in
partial derivative calculation from use of analytic solution far exceeds the deficit from
simplifier overheads. By default, use of analytics and simplifier are both enabled and
calculation takes just 32.35% of the time taken without either. Finally, there is the
simple fact that use of the optimiser is entirely optional and the user can disable its use

if preferred.

104

Chapter 5
Experimental Analysis

In this chapter, the objective is to report on the practical implementation and testing
of the theoretical feature representation discussed in the previous chapter. Use will
be made of spectral data coming from both astrophysical and magnetically confined
fusion sources. The chapter will be progressive in that it will begin with the simplest of
individual line spectra and move to more advanced cases where there is a relationship
between the governing parameters by connection through coupling, or indeed using
a full special feature. In this sense, the development will follow ADAS itself. The
first code in the ADAS package, called ADAS602, was a principal fitting code used
in astrophysics for many years. It was based on a maximum likelihood method and
has been used extensively for the examination of spectra from the Coronal Diagnostic
Spectrometer (CDS) on the SOHO spacecraft. These fittings with ADAS602 were, in
fact, used to produce the quiet sun spectral atlas for CDS [70]. Subsequent ADAS
development in spectral fitting led to the use of the code XPASCHEN. This code,
which became ADAS603, was developed at Forschungszentrum Jiilich [10, 11] for
fitting Zeeman split features (due to the magnetic field — see Section 2.2). It will
be important for these code capabilities to be reproduced by the present development.
The full power of AFG and FFS is, of course, realised by much more complex and
inter-related special features (the FFS models used in the examples that follow are
documented in Appendix B). For testing these capabilities, this thesis is dependent
upon data coming from the magnetically confined fusion domain, particularly from the
JET tokamak. JET has a number of distinct plasma regions which result in markedly
different spectral features. It is an objective to explore in this chapter a few of these,
including emission created at the extreme periphery of the plasma, emission from the
hot core of the plasma, emission from the beam penetrated plasma and emission from

heavy species near the last closed flux surface. This set of special features spans a

105

great range of wavelengths and spectrometers. So, the data will come from visible
spectrographs, from UV and EUV survey spectrometers and soft X-ray instruments.

Our starting point, however, is a test, noisy synthetic spectrum.

5.1 Initial Validation

Consider an example of two, nearby, spectral lines sitting on a sloping background and
subject to substantial noise. The lines are brought together, with a fixed noise level. In
the first trial, all FFS model parameters are free. In subsequent trials, constraints are
placed on the parameters, via coupling. The correlation matrices from the results of
the fits are examined and compared. Figure 5.1 shows the data and fitted models for
two cases. Tables 5.1 and 5.2 show the correlation matrices from the resultant fits. In
Table 1, note the diagonal entries correspond to full, self-correlation of unity. With the
first placing of the lines (trial 1) there is low cross-correlation between the two lines,
~ 0.1, on the other hand there is a more substantial correlation of magnitude ~ 0.7
between the linear background y-intercept, gradient, left-most line area and full-width

at half maximum parameters, as expected.

With the placing in trial 2, where the lines are nearly overlapping, note the strong
cross-correlation both within and between the parameters of the two lines. Physically,
the fit is suggesting that the two line model is becoming less favourable compared to a
single line model. In this trial, with the only constraint that the line positions remain
within the data wavelength interval, it is possible that, depending on initial conditions,
the algorithm can find local minima in which one of the lines is effectively ‘removed’
from the fit as its position is moved to the edge of the wavelength grid and reduced to

Z€ro arca.

5.2 An Illustration from SOHO-CDS

Moving on from synthetic data, this next study is of spectral data from the Normal
Incidence Spectrometer (NIS) of the Coronal Diagnostic Spectrometer (CDS) on
the Solar and Heliospheric Observatory (SOHO) spacecraft [71]. NIS has two
spectrometers, NIS-1 and NIS-2, which span spectral ranges 308 — 381 A and 513
—633 A. Inthe preparation of the quiet sun spectral atlas [70] a wavelength calibration
was established for each of the detectors based on a reference set of strong, un-

blended lines with low variance in the fitting parameters (a star rating system was

106

Intensity / orbitrary units

140 161
Wavelength / arbitrary units

(a) trial 1

0 180 200

Intensity / orbitrary units

120

0

140 161
Wavelength / arbitrary units

(b) trial 2

Figure 5.1: The two plots here show the data to be fitted along with an overlay of the
FFS model for two cases. Both have two Gaussian lines sitting on a linear background.
The data is represented by a solid black line and the fitted model result is in red. The
FFS model elements are indicated by various dashed, coloured lines.

gl.pos gl.fwhm gl.area g2.pos g2.fwhm g2.area bg.c bgm

gl.pos | 1.00 -0.13 -0.15 0.08 0.15 0.18 026 -0.29
gl.fwhm | -0.13 1.00 0.66 -0.13 -0.09 -0.11 -0.64 0.50
gl.area | -0.15 0.66 1.00 -0.15 -0.10 -0.13 -0.74 0.58
g2.pos | 0.08 -0.13 -0.15 1.00 0.14 0.17 024 -0.26
g2.fwhm | 0.15 -0.09 -0.10 0.14 1.00 0.67 029 -0.51
g2.area | 0.18 -0.11 -0.13 0.17 0.67 1.00 035 -0.61
bg.c| 0.26 -0.64 -0.74 0.24 0.29 0.35 1.00 -0.90
bg.m | -0.29 0.50 0.58 -0.26 -0.51 -0.61 -0.90 1.00

Table 5.1: Correlation matrix resulting from the fit of trial 1. The labels follow the
prescription of Section 4.5. ‘gl’ and ‘g2’ refer to the two Gaussian lines. ‘bg’ refers to
the linear background where parameter ‘c’ is the y-intercept at the lower wavelength
bound and ‘m’ is the gradient.

107

gl.pos gl.fwhm gl.area g2.pos g2.fwhm g2.area bg.c bgm

gl.pos | 1.00 0.97 1.00 0.98 -0.91 -1.00 -0.17 0.18
gl.fwhm | 0.97 1.00 0.97 0.93 -0.83 -096 -0.22 0.18
gl.area | 1.00 0.97 1.00 0.99 -0.93 -1.00 -0.19 0.18
g2.pos | 0.98 0.93 0.99 1.00 -0.95 -099 -0.16 0.17
g2.fwhm | -0.91 -0.83 -093 -0.95 1.00 093 0.12 -0.21
g2.area | -1.00 -0.96 -1.00 -0.99 0.93 1.0 0.17 -0.19
bg.c | -0.17 -0.22 -0.19 -0.16 0.12 0.17 1.00 -0.77
bgm | 0.18 0.18 0.18 0.17 -0.21 -0.19 -0.77 1.00

Table 5.2: Correlation matrix resulting from fit of trial 2. Labelling is as Table 5.1.

used for the lines). The spectral line shape used in the ADAS602 fitting program was
Gaussian. Around 1999, in the course of a periodic re-alignment of the spacecraft
platform, communication with SOHO was lost. SOHO is located at the L1 Lagrange
point and calculations suggested that the high-gain antenna, over a period of a few
months, would move back towards Earth’s direction and allow re-establishment of
communications. This was somewhat a race against time as the spacecraft would move
out of the Lagrange stability region within about four months. A weak signal was
ultimately picked up by the Spanish ground station of the NASA ground network. Full
communication was gradually restored and the spacecraft brought ‘back to life’. The
CDS spectrometer returned to operation, but had experienced extremes of temperature
and it was found that the spectral profiles had become substantially distorted. A line,
which was originally a pure Gaussian, was now asymmetric. Spectral fitting at that
time suggested that the new profile could be represented by a composite line shape
with a Gaussian and Lorentzian component, with the significance of each controlled
by additional fitting parameters. The function used is defined by equation 5.1, where
Ao is the line centre, I, is the line height, w is the line width and @, and «, are the
parameters which control the prominence of the Gaussian and Lorentzian components

for the left-hand and right-hand sides of the line shape respectively [72].

EPRY
]0[(1—&’1)6XP(—%)+Q’1W) A< Ay
+
L1y, o, w, @y, az} = i 22w (5.1)
Iy [(1 —ag)exp(—%)+azm A=Ay
+
2Vin2w

The test of FFS, in this case, comprises two parts. Firstly, a fitting of a ‘pre-loss’
spectral interval from NIS-2 for direct comparison with ADAS602 is made. Secondly,
an FFS model, using a Gaussian and Lorentzian pair, is used to represent one of

108

the reference lines in the spectral survey, but with ‘post-loss’ data. Once this was
complete, this fit provided a new spectral primitive that could be replicated, using the
FFS coupling system, to represent each of the lines in a blended OIV (2s*2p ?P —
2s2p? 2P) multiplet feature at ~ 553A.

FFES value FFS error ADAS602 value ADASG602 error

11.pos | 553.410 0.060 553.410 0.098
11.intensity 5.435 1.107 5.436 1.591
12.pos | 554.146 0.097 554.147 0.088
12.intensity 9.716 3.620 9.713 3.203
13.pos | 554.591 0.047 554.591 0.033
13.intensity | 26.352 4.054 26.356 1.035
14.pos | 555.330 0.059 555.330 0.031
14.intensity 5.844 1.143 5.845 1.607
bg.fwhm 0.551 0.055 0.551 0.248
backg.c 1.251 0.664 1.251 6.798
backg.m 0.030 0.214 0.004 90.093

Table 5.3: The fit parameters resulting from the fit to the (pre-loss) NIS-2 OIV
multiplet (2s?2p 2P — 2s2p? 2P). Parameter names are specified as described in Section
4.5, where ‘11°, “12°, ‘13’ and ‘14’ are the four lines, ‘bg’ is the Gaussian broadening
element and ‘backg’ is the linear background. Note that, in this case, the line intensities
values quoted are those from dummy parameters that sum the two components that are
used to represent the lines (see main text for details) — however, the original labels
for the simplified model are retained here for clarity. The first two columns give the
parameter values and standard error as determined by FFS (from the diagonal elements
of the covariance matrix) while the third and fourth columns show similar quantities,
but as determined by ADAS602.

In the first case, it can be seen that FFS replicates the functionality of the ADAS602
and obtains a fit that is almost identical, as expected. This can be seen from Fig. 5.2,
which compares the fitted models and experimental data, and from the results Table
5.3. For clarity, the fitted, relative intensities, as calculated by both programs, have

been normalised to that of the left most line in the multiplet and tabulated in Table 5.5.

Due to the distortion on the recorded spectra, it is more problematic to fit the post-
loss data. As discussed, ADAS602 uses a custom form to fit the new line shapes.
The approach taken here is slightly different in that a connected pair of functional
forms are used to fit each of the multiplet components. Specifically, a Gaussian and
Lorentzian, coupled using FFS’ MDL (see 4.5) are used and the example MDL is
shown in Fig. 5.3. In order to determine suitable coupling between the Gaussian
and Lorentzian primitives, to create the asymmetric line shape suitable for post-loss

spectra, one of the high quality (4-star) reference lines was taken in isolation and

109

FFS value FFS error ADAS602 value ADAS602 error

11.pos | 553.521 0.090 553.520 0.064
11.intensity 3.131 0.918 3.382 0.898
12.pos | 554.242 0.142 554.246 0.054
12.intensity 5.665 3.131 6.149 1.802
13.pos | 554.672 0.069 554.671 0.021
13.intensity 15.089 3.417 15.787 0.624
14.pos | 555.379 0.104 555.393 0.025
14.intensity 3.450 1.099 3473 1.130
bg.fwhm 0.535 0.086 0.518 0.182
backg.c 0.717 0.735 0.976 4.185
backg.m 0.009 0.247 -0.005 29.875

Table 5.4: The fit parameters resulting from the fit to the (post-loss) NIS-2 OIV
multiplet (2s?2p 2P — 2s2p? 2P). Parameter names are specified as described in Section
4.5, where ‘11°, ‘12°, ‘13’ and ‘14’ are the four lines, ‘bg’ is the Gaussian broadening
element and ‘backg’ is the linear background. The first two columns give the parameter
values and standard error as determined by FFS, while the third and fourth columns
show similar quantities, but as determined by ADAS602.

‘ 11 1211 13/11 14/11

FFS | 1.000 1.788 4.849 1.075

ADAS602 | 1.000 1.787 4.849 1.075
ADAS208 (PEC) | 1.000 2.023 5.001 1.046

Table 5.5: Comparison of line intensities as determined by fitting the pre-loss data with
FFS and ADAS602 with the theoretically calculated photon emissivity coefficients
(PEC) values from ADAS208. In all cases the values have been normalised to the
intensity of the the left most line comprising the multiplet, for clarity.

110

(o)
(@]

N »
o o
LI L B L B L

N
(@]

(@)

Intensity / photon—events pixel™

(@)

553 554 555 556
Wavelength / Angstrom

S

5 1.0 ' - : :
© o]
~ 05F g
8 0.0 W
O o]
© o]
 ~05F E
~ —1.0t 3

353 554 555 556
Wavelength / Angstrom

Figure 5.2: OIV multiplet as recorded by NIS-2 before the loss of SOHO, with fitted
models from FFS and ADAS602 overlaid. Both fitting programs are using a similar
model: four Gaussian line shapes, with a common width parameter, plus a linear
background. The experimental data is in black, the FFS fit is the red, dashed line
and the fit from ADAS602 shown in a blue, dashed line. A similar colour scheme is
retained for the residual shown in the lower plot. Note that larger values of the scaled
residual only occur at regions of low intensity.

111

fitted, with free, dummy parameters connecting the offset and intensity ratio of the two
components. The line chosen in this case, was He I (1s? 'Sy — 2s2p 'P) at 584.334A.
These parameters (along with the fitted Lorentz width) could then be set fixed and
used, in effect, to form a new feature primitive, for each of the multiplet components,
in place of the Gaussian used in the pre-loss data. Figure 5.3 details the MDL used to
do this and the resulting fit, using this model in Fig. 5.4

(dummy d)

(setval d.wingfactor 0.5)
(fixed d.wingfactor)
(setval d.wingshift 0.5)
(fixed d.wingshift)

(couple llwing.intensity = d.wingfactorxll.intensity)
(couple llwing.pos = 11.pos + d.wingshift)

Figure 5.3: MDL statements to form the custom line shape for ‘post-loss> SOHO-
CDS data. FFS dummy parameters are used to control the displacement of the
centre of the Lorentzian from the centre of the Gaussian (d.wingshift) and the relative
intensity of the Lorentzian to that of the Gaussian (d.wingfactor). Note that these
are set to a fixed value, derived from another fit (see main text for details). The
coupling statements shown then make the connection between the main (Gaussian) line
intensity (11.intensity) and the (Lorentzian) wing distortion intensity (11wing.intensity)
and similarly for the displacement in line centres (11.pos and 11wing.pos). Further
statements of this type are then used to couple the rest of the lines in a similar way.

‘ 11 1211 13/11 14/11

FFS | 1.000 1.809 4.819 1.102

ADAS602 | 1.000 1.818 4.668 1.027
ADAS208 (PEC) | 1.000 2.023 5.001 1.046

Table 5.6: Comparison of line intensities as determined by fitting the post-loss
data with FFS and ADAS602 with the theoretically calculated photon emissivity
coefficients (PEC) values from ADAS208. In all cases the values have been normalised
to the intensity of the the left most line comprising the multiplet, for clarity.

112

-1
IN
(@)

N N
(@] (@]
L JLJNLINLINL AL N L L L L L L

(@)

Intensity / photon—events pixel

0
553 554 555 556
Wavelength / Angstrom
S
O 1.0 r)]
© o .
~ 05F g
2 0.0p—— —
o g]
 ~05F E
— —1.0E , , , ,]
~ 553 554 555 556

Wavelength / Angstrom

Figure 5.4: OIV multiplet as recorded by NIS-2 after the loss of SOHO, with fitted
models from FFS and ADAS602 overlaid. In this case, the models differ slightly.
ADASG602 is using four shapes resulting from the function as defined by eq. 5.1, while
FFS is using four Gaussians, each with an associated Lorentzian with coupled relative
intensity and positional offset (these parameters were determined from a previous fit of
reference line He I at 584 A). The experimental data is in black, the FFS fit is the red,
dashed line and the fit from ADAS602 shown in a blue, dashed line. A similar colour
scheme is retained for the residual shown in the lower plot.

113

5.3 Divertor Detachment Experiment at JET

This example stems from an interesting series of experiments on approaching the
divertor density limit on JET [43]. A schematic of the divertor region is shown
in Fig. 5.5 showing the magnetic flux surfaces of the plasma, the positions of
Langmuir probes (KY4D) on the strike plate and the lines of sight of the spectrometer,
KT3A, which observes the divertor region from above. Langmuir probes provide an
established method for direct measurement of local electron temperature and density
in attached plasmas. Unlike a passive measurement technique, such as spectroscopy,
probes have the disadvantage that they can introduce impurities into the plasma,
through physical sputtering from the probe surface due to ion bombardment; this, of
course, also erodes the probe. The charged electrode of the probe means that it can
also locally distort the electrical properties of the plasma. If the machine is operated
with a detached divertor plasma, as is the case in this experiment, there is a more
significant issue to consider — the probe will no longer be in contact with the plasma.
Operation in this mode will be particularly necessary for higher power devices such
as ITER [28], where the heat load, with a fully attached plasma, on the divertor target
plates will be significant. In order to alleviate the load on the divertor surfaces, neutral
hydrogen gas (or indeed impurity seeded gas) can be introduced to the divertor. Charge
exchange can occur between the neutral gas atoms and the ions and atoms reaching the
divertor from the main plasma, which then undergo radiative cooling, making them
less energetic and so less efficient at sputtering. In this scenario, we look towards
spectroscopic techniques (such as the vertical LOS offered by KT3) to diagnose the

divertor temperature and density.

The experiments involved a real-time feeback control system for gas puffing, with the
intention of operating in a stable detached regime. The feedback arrangement used
data from the far infra-red (FRI) interferometry diagnostic, KG1 [73] which provides a
line-integrated electron density measurement. Spectroscopic observation, from KT3A,
was of a spectral interval encompassing a series of Deuterium Balmer lines. The
KT3 lines of sight pass through an entire vertical section of plasma, but neutral
hydrogen emission is localised to a zone of existence, determined by its temperature
and ionisation potential. This zone is close to the divertor target. As discussed in the
introduction, the Balmer series of lines can be treated as an integral special feature,
from which density, temperature and transient ionisation state can be deduced. In the
present example, FFS will operate using a simpler model comprising Voigt line shapes,
where the Lorentzian components of the widths of the lines are coupled to density.

In addition to these, Gaussian line shapes will be used to represent a further seven

114

SURF Lx201.1
—

o

?\

Height [m]

R eI

2777
BOAOE |

2.2 2.4 2.6 2.8 3.0
Major radius [m]

#70578 /JETPPF /EFIT/0 t=63.213802

ky4d (MKIIHD)

Figure 5.5: Poloidal cross-section of JET. The magenta squares mark the positions
of the Langmuir probes (KY4D). The set across the divertor strike plate provide a
comparison to the spectroscopic data of this study. Note the position of the ‘private flux
region’ enclosed by the last closed flux surface and the base of the divertor (indicated
by the grey-shaded area). The probes in this region do not receive direct plasma flux.
Figure produced by the JET utility program, SURF.

115

2x10"

1x10"

370 372 374 376 378 380 382
Wavelength / nm

Intensity / photons cm™2sr™'pixel”

-1.0
370 372 374 376 378 380 382
Wavelength / nm

(fit — data) / data

Figure 5.6: Spectrum as recorded by instrument KT3A at JET, pulse #70578. The
higher members of the Balmer series, commencing with D(n=10—2), are present,
merging into the free-bound continuum. Note the strong Beryllium multiplet at 372nm.
The fitted model is shown in red, with the fit residual shown in the lower plot.

impurity lines present in the spectrum and a simple, linear background element is also
included. This builds upon the work of Meigs et al [74, 32]. Multiple observations
were taken throughout the discharge, of which one frame, complete with the fitted
model, is shown in Fig. 5.6. The KT3A system has multiple lines of sight through the
divertor, so the complete data set allows reconstruction of the density profile across the

divertor at each time.

In order to reduce the number of free parameters in the fit, several couplings are made
between the model parameters. The Gaussian components of the Balmer lines are
coupled — the emission is fairly localised and so, thermal broadening should be similar

and, in any case, a large proportion of this width component will be instrumental. The

116

positions of the Balmer lines, can be readily coupled relative to each other. Similar
couplings have been made between the Gaussian widths and positions of the three
strong Be III lines in the model spectrum. Relative positional couplings have also been
made between four weak oxygen lines in the spectrum. In this case, the coupling has
been made with a view to fitting many spectra (for each time and radial position) in a
batch operation. It is not practical to create individual models for each recorded frame,
instead we will re-use a single FFS model definition for each fit. It is likely that some
of the weaker features will not appear in many frames and fitting, with what is now
an inappropriate model, will prove problematic unless such constraints are made from
the outset. Despite the effort to reduce the parameter set in this way, this remains a

38-parameter model.

Using the described model, all of the observations from KT3A, for JET pulse number
70578 were fitted. A contour plot of the derived density parameter is shown in Fig. 5.7,
along with the particle flux density time trace from a Langmuir probe near the divertor
strike-point. The data from the probe shows an oscillating pattern — the divertor
plasma periodically switching from detached operation back to an attached divertor
leg. The same oscillation is seen in the spectroscopically derived density measurement.
This was in fact accidental behaviour resulting from incorrect gain setting on the real-
time control system controlling the gas puffing into the divertor. However, this actually
serves as an excellent point of comparison between density measurement from the
divertor probes and those obtained spectroscopically — a comparison can be made
in the time interval at the points of detachment (or re-attachment). Recorded data
from 11 of the divertor probes from diagnostic KY4D can been used to construct a
density profile across the divertor at several times during the pulse. The density profile
obtained from the spectral fits can then be compared. The probes record at a much
higher temporal resolution than the spectrometer and so the measurements are, in fact,
averages over the exposure time of the recorded frames. Figures 5.8 shows this for

frames around ¢ = 63.23 s (where the plasma is beginning a detachment cycle).

117

N
~
o

1 020

N
@
®

electron density / m™
radius / m

2.66

2.64

10" 60 61 62 63 64 65

2,5)(1023 T T T T T T T

2.0x10%

1.5%10% 1

1.0x10%

surface flux density / m™2

5.0x10%

(@]

(o)}
o
o
(o]
N

63 64
time /s

o
(o))

(b) Particle flux arriving at Langmuir probe S17C at JET

Figure 5.7: (a) A colour-shaded representation of the electron density, as a function
of position and time, as extracted from a set of KT3 measurements by FFS. Note the
broad periodicity in time arising from attachment / detachment of the divertor plasma
from the strike plate. (b) A graph of ion fluxes as measured by one of the probes (S17C)
on the strike plate at R=2.679m. The anti-phase relationship supports the attachment
/ detachment scenario, as discussed in the main text. In (a), the bright (red) features
occurring in periods of attachment, suggesting very high density are spurious. The
signals at these points are very weak and it is not possible to infer density from the fits.
The display program does not reject these failed fits.

118

4x10°P T T T T T T T T T T T T T T T T T T T

N t = 63.17s

3x10%

2x10%

electron density / m™

1x10%°

L B B L L L B B

N (S N SRR SN

2.62 2.64 2.66 2.68 2.70 2.72 2.74
Rodius / m

N
~
<]

(a) t=63.17s

TR T e e e e e e e e e S B e s e s

RS \ t = 63.23s

-3

2x10%

electron density / m

1x10%

LI L
Codc v b by

2.62 2.64 2.66 2.68 2.70 2.72 2.74
Radius / m

I
~
o

(b) t=63.23s

25x100 T T T T T T T T T T T T T T [T T T

t = 63.29s
2.0x10%

1.5%10%°

1.0x10%

electron gensity / m ~

5.0x10'®

2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76
Radius / m

(c) t=63.29s

Figure 5.8: Electron density measurements versus radial position from FFS fits to
spectroscopic data (KT3A, in red) and Langmuir probes (KY4D, in blue) at three times
during the pulse. The fall off below 2.68m of the probe signals indicates the private
flux region (see Fig. 5.5). The spectroscopic signals remain valid as the the emitting
volume moves up from the divertor floor. The large error bar on the spectroscopic data
at 2.63 m, reflects known increased noise levels for this track. It can be seen from 5.7
that moving from (a) — (c), the plasma progresses from attached to fully detached. By
time (c), the probes are seen to be ineffective — the signal falls substantially.

119

5.4 Zeeman Split Features

At the relatively cool temperatures in the JET divertor and with magnetic fields circa
~ 3 T, the Zeeman splitting of impurity spectral lines is evident and diagnostic. If
resolvable, the separation of the components gives a measure of the local magnetic
field strength. A familiar example is the CI (2s22p3s *P — 2s*2p3p *P) ~ 909 nm for
which a simulation was shown in fig 2.1. It is noted that the nominally complex feature
is quite condensed, with strong sub-feature overlap. At issue, therefore, is whether
information on field strength can still be extracted. For such extraction, the availability
of a theoretical special feature model, incorporating the sub-feature connections is
essential. As discussed in section 2.2, ADAS has some history of handling the Zeeman
/ Paschen-Back split features, stemming from work by Hey [10, 11]. ADAS has
archived Zeeman / Paschen-Back special features in the code xPaschen (the underlying
code for ADAS603). AFG provides access to these special features. An FFS-AFG fit

using the xPaschen primitive is shown in Fig. 5.9.

This model was then used by FFS in batch operation (Section 4.10) to fit all of the
spectra exhibiting this Zeeman split carbon feature for shot #78658 at JET. The results
of the fits allow for construction of a magnetic field strength profile in time and space
for the shot (as shown in Fig. 5.10). The magnetic equilibrium code Flush was then
used to construct a similar contour, over the same radii/time range. There is broad
correspondence between the two data sets, rather than complete agreement. However,
it should be noted that the spectra from which the magnetic field values are inferred are
from lines of sight which are not completely vertical, and that the carbon emission will
be from a (range of) finite height(s) above the divertor floor. This means that there is
some uncertainty as to the radius that should be attributed to the derived magnetic field
values. Also pertinent to this issue is the fact that the height at which the radial profile
has been calculated by Flush was arbitrarily set to z = —1.6 m. The smooth nature of
the Flush plot is the result of the interpolative nature of the routine — a reconstruction
of the magnetic field structure is being performed using data points external to the

vacuum vessel (diagnostic field coils).

Gafert attempted the more difficult task of determining the relative levels of carbon
emission from the inner and outer scrape-off layer at JET [75] (a similar study has
been carried out at the Axially Symmetric Divertor EXperiment Upgrade (ASDEX-U)
tokamak [76]). This meant using a horizontal, mid-plane view, which would display
two overlapped features corresponding to emission from impurity atoms near the in-
board wall (high magnetic field) and out-board wall (low magnetic field). The analysis

sought to use two xPaschen features to infer the intensity ratio of the two zones

120

S
™
o
X
o
N

-1_-1

(@)
X
(©)
N
I
|

Intensity / photons cm™?sr™'pixel

5.0x10"
907 908 909 910 911
Wavelength / nm

S

O 1.0F
© o
~ 0.5;
© oo
(@)

© o
. -0.5f
= —1.0E

906 907 908 909 910 911
Wavelength / nm

Figure 5.9: C I (2s?2p3s *P — 2s?2p3p *P) emission at ~ 909 nm as recorded by KT3C
at JET, pulse #78658 (R = 2.749 m, t = 61.3 s). The fitted xPaschen / ADAS603
model is shown in red, with the fit residual shown in the lower plot. The magnetic
field, determined from the fit, is 2.665 = 1.89 x 1073 T.

121

275 2.30% §
2.63
2781 S
-
~ 251 €
- ~
& 2 2.76
s 240l 3
o e
g
g 2.29 r
€ 2.74
2.19
209 2.72
2.00
2.70
1910 55 60 65 70

time / s

(a) Magnetic field obtained from FFS fit.

3.02 T T T T
2.82 1

2.88

2.75

2.40

radius / m

magnetic field / T
-

2.29

2.19

2.09

2.00

19104 55 60 65 70
time / s

(b) Magnetic field as determined by magnetic reconstruc-
tion code Flush.

29F T T T T T ™)

28F =

magnetic field / T

2.5k L L L L . =

2.70 2.72 2.74 2.76 2.78 2.80 2.82
radius / m

(c) Radial magnetic field profile (= 60s).

Figure 5.10: (a) A colour-shaded representation of the magnetic field, as a function
of position and time, as determined from batch fitting a series of KT3C spectra using
FFS. (b) A similar contour plot, over similar space and time, as calculated by Flush.
The two plots, while not identical, show a broad agreement across time and space. (c¢)
A time-slice (at t = 60s) of the 2D magnetic field data. Flush results are shown in
black, whilst the red line shows the data from FFS.

122

of emission. It was noted that there strong cross-correlation of line widths and the
separation of the Zeeman components. In practice, the magnetic field parameter was
removed from the fit — instead these were treated as input data, with the values coming
from the magnetic equilibrium data (EFIT). Further to this, only a single electron
temperature parameter was used (rather than two; for the inner and outer emission
sources) with a fixed ratio between inner and outer components of the spectra. That is
to say that the Gaussian broadening applied to the xPaschen output is controlled by a

single parameter.

For this work, an attempt is made to fit the same C III (1s?2s3sS — 1s?2s3p°P)
multiplet, observed at JET, pulse #75898, using spectrometer KS8, which is using a
viewport previously used for the (now redundant) KS3 horizontal line of sight (see
Fig. 5.11). The FFS model used for the fit actually makes use of four FFS-AFG
xPaschen elements (Section 3.1); separate model elements are used for the 7 and o
components for both the high and the low field side. This allows for optical effects
that may suppress the polarised components to varying degrees. The ratio of the
multiplication factors (Section 4.2.8) applied to the 7 and oo components is, however,
retained across the inner and outer pairs via coupling. Finally, the in-board / out-
board elements are allowed separate wavelength shifts (Section 4.2.9) to account for

the differing flow velocities at these locations.

The FFS fit (shown in Fig. 5.12) provides estimates of the magnetic field strengths of
3.89 £ 0.02 T at the in-board wall (R ~ 1.9 m) and 1.85 + 0.02 T at the out-board wall
(R ~ 3.8 m). If we compare these results to the magnetic field strength, as a function of
major radius, as calculated by Flush (Fig. 5.11(b)), we see that these estimates appear

reasonable.

123

SURF Lx201.1
[T T T A e e]

magnetic field / T

L L L L 3
2.0 2.5 3.0 3.5 4.0
radius / m

#75898 /JETPPF /EFIT/D t=65.037804

ks3g (Mk2HD-)

(a) b)

Figure 5.11: (a) Shows the KS8 line of sight across the JET mid-plane — figure
produced by, JET utility program, SURF. (b) Displays the magnetic field strength as
a function of major radius, at height z = 0.2 m i.e. indicative of the magnetic field
variation along the line of sight. The red crosses indicate the magnetic field values
as calculated by the FFS fit. Note that the associated values of radii are approximate
— without modelling the impurity transport, one can only assume that the emission is
very close to the walls of the machine.

1,5%10*F

1.0x10*F 3
O:]

464.7 464.8 464.9 465.0 465.1 465.2
wavelength / nm

intensity / counts

(fit — data) / data

464.7 464.8 464.9 465.0 465.1 465.2
wavelength / nm

Figure 5.12: C III (1s*2s3sS — 1522s3p*P) multiplet at ~ 465 nm as recorded by KS8
at JET, pulse #75898. The fitted FFS model is shown in red, with the low-field and
high-field side Zeeman component features indicated in green and blue, respectively.
The fit residual shown in the lower plot.

124

5.5 Diatomic Molecular Spectra in the JET Divertor

A previous study at JET identified molecular spectral emission resulting from CD,
C, and BeD by Duxbury et al [42]. An AFG module has been produced to allow
manipulation of the CALCAT synthetic feature [45] for use in a pedagogical sense and
for confrontation with experiment via FFS. At this point, we return to the experimental
analysis undertaken in the aforementioned study [42], which was performed only in
a qualitative sense, and attempt a more quantitative analysis, using FFS-AFG. Firstly,
the data recorded by the survey spectrometer KS3A is considered for analysis. KS3A,
at the time of this experiment, provided wavelength coverage of 414 nm — 736 nm, over
1010 pixels — therefore, the data is of relatively low resolution. The model utilised
two CALCAT features to represent the BeD (A’I1 — X2X) molecular emission (Duxbury
et al suggests that it is possible to see overlapping features, at different temperature,
along the line of sight). Figure 5.13 shows the results of the fit to KS3A data for JET
pulse #35687. It should be noted that with a complex feature like this, where fitting
parameters alter a finer sub-structure of the feature and data of low resolution is used,
then confidence in the determined parameters is low. In this case, a spread of so-called

rotational and vibrational temperatures will provide similarly good fits.

Attention is, therefore, turned to higher resolution data coming from KS3B, which
provides coverage of ~ 8 nm over 750 pixels. As this wavelength interval is far smaller
than that of KS3A, which displayed the molecular feature in its entirety, we must focus
on a sub-region of the spectral signature. It was found that the band head assists the
fitting algorithm localise the emission. The P and R branches of the feature show
a large degree of repetition and the model uses a ‘shift element’ (Section 4.2.9) to
account for discrepancy in wavelength between the theoretical model and experiment

— the fitting algorithm can easily find local minima.

Experiments at the PISCES-B divertor simulator [77] indicate that molecules resulting
from chemical erosion processes will exhibit vibrational bands that are not in
Boltzmann proportions. It has also been suggested that the impact energies of the
fuel ions in a divertor are low — such that chemical, rather than physical, sputtering
is the dominant formation mechanism [78]. Therefore we should expect that the
emission considered here requires a model with additional free parameters to control
the proportions of the the molecular vibrational bands. These parameters can be

considered as deviates from Boltzmann.

125

3><']O5 [LI T L L]
.
S 2x10°F -
o :
U -
~ :
i C
= :
& 1x10°F Q .
kS i
ot .
480 490 500 510
wavelength / nm
S
O -]
© C]
~ osf :
T ool :
O o]
© o5k E
| 5 5
= 480 490 500 510

wavelength / nm

Figure 5.13: Observed beryllium deuteride (BeD) spectrum from instrument KS3A
during JET pulse #35687. The transition shown is ATl — X?Z. Some atomic lines
are also present (e.g. deuterium line Dg (n=4—2) at ~ 486 nm). A fitted FFS
model is overlaid in red. The model, via AFG, is utilising the CALCAT molecular
modelling code to represent the BeD molecule, whilst the atomic lines are represented
by simple Gaussian line shapes. A linear background element is also included. The
vibrational and rotational temperatures determined from the fit are: 7, = 3962 K and
T, = 5509 K. There is broad correspondence between the simulated spectrum and the
data — agreement is seen for the Q and R branches, but there is a marked discrepancy
in the P branch.

126

30X1O4"||,

2.5x10*
2.0x10*

1.5x10*

1.0x10*

intensity / counts

5.0x10°

(O P T T T T B

497.5 498.0 498.5 499.0 499.5
wavelength / nm

1.0
0.5

0.0

-0.5
-1.0

TTTT[TTITT

TTTT[TTL
RN FREE |

(fit — data) / data

497.5 498.0 498.5 499.0 499.5
wavelength / nm

Figure 5.14: Similar beryllium deuteride (BeD) feature as displayed in fig 5.13 but,
at higher resolution, from instrument KS3B during JET pulse #35689. A fitted FFS
model is overlaid in red. The model consists of two AFG-CALCAT elements, with a
linear background. Connected Gaussian lines have also been included, which appear to
be the result of transitions in Fe I, the source of which is unknown. The vibrational and
rotational temperatures determined from the fit are: 7,, = 5847 K and 7,, = 2106 K,
T,, =8392 K and T,, = 2746 K. There is broad correspondence between the simulated
spectrum and the data — but it cannot be described as a good fit.

127

5.6 VUV Divertor Impurity Spectra

Thus far, the analysis scenarios considered have either not required an atomic
population model or, in the case of the Balmer series feature (Section 5.3), not relevant
in extracting the parameter of interest (density). Now we consider a Violet / Ultra
Violet (V/UV) spectrum from diagnostic KT7 at JET. This apparatus is a ‘double
SPRED’ spectrometer with two fixed gratings (2105 g/mm and 450 g/mm) and has
a vertical LOS through the core plasma, to the divertor region and is primarily used
to analyse the emission from impurity species present here. In this example, a
spectrum from the 2105 g/mm grating during JPN #35421 at t = 18.02 s showing
various CIII and CIV lines is examined. As discussed in Section 2.3, such lines,
for a given ionisation stage, are connected; the ratio of their intensities defined by
the underlying atomic populations. Further to this, there is of course the connection
between the various ionisation stages of the ion. The ratios of these lines are then
very much diagnostic — they can infer the density and temperature environment of
the emitters. ADAS can provide the required photon emissivities required to model
these spectra (ADAS208). An AFG module has been written that allows interpolation
of the archived data (PEC) for each of the ionisation stages required, for the input
parameters (7, n,). The FFS model uses two ADF15 data files (one for the C III and
the other for the C IV emission present) via the FFS-AFG feature (Section 3.1). To
each of these, a multiplier element (Section 4.2.8) is used to scale the PECs), before
a Gaussian broadening function is applied. A Voigt function is used to fit the He II
nuisance line at 304 A and, finally, a linear background element has been included.
The results of the fit of this model to the data is shown in Fig. 5.16. The electron
temperature extracted from the C III line components of the model is 5.53 + 0.18 eV
and from the C IV lines, 15.72 + 0.60 eV. It was not possible to deduce the electron
densities from the observed data — these fit parameters exhibited very large error
bars. Examination of the dependance of the PECs on temperature and density, over a
reasonable range for the experiment, however, shows that this is not unexpected - there
is very weak dependence of the PECs with density over the expected density range —
a large spread of densities are equally likely from a fitting perspective. An example
plot of the PEC surface for the C IV (1s22s — 1s*3p) line at 312.4 A is displayed in
Fig. 5.15.

128

Figure 5.15: Surface plot of PEC for C IV (1s?2s — 1s?3p) at 312.4 A for the range of
density and temperature in the archive files used for the fit (Fig. 5.16). Note that there
is a strong dependance on electron temperature (7,), but the density (n,) dependence
is not nearly as significant.

129

5X105 E' T T T T T T T T T T T T T T T T T T

4x10° -

3x10°F -

2x10° .

kUL)

OE- L 1 L L L 1 L L L 1 L L L | s s s |

30 32 34 36 38
wavelength / nm

intensity / counts

data
o

T
s laaay

~ 05F

I
e 9o
o o
llll
L

I
—_
.
o

TT

(fit — data)

30 32 34 36 38
wavelength / nm

Figure 5.16: Spectrum recorded by JET diagnostic KT7/2, JET pulse #35421 (¢ =
18.02 s). The experimental data is shown by the black solid line, whilst the FFS fit is
shown in red. The lower plot shows the residual from the fit. The electron temperature
extracted from the fit to the C III line components of the model is 5.53 + 0.18 eV and
from the C IV lines, 15.72 + 0.60 eV.

130

5.7 He-like Argon Spectra from TEXTOR

This example considers soft x-ray spectra emitted by He-like Argon, as recorded
at the Tokamak EXperiment for Technology Oriented Research (TEXTOR) [79].
Specifically, experimental data from shot 81156 is examined here [80]. The apparatus
involved is a bent-crystal Johann-Bragg spectrometer [81], with a horizontal, radial
line of sight, which provides high resolution data across a narrow wavelength region
0f 3.94 - 4.05 A. Following the notation of Gabriel [52], the familiar w, x, y and z lines
of the He-like system (see Table 5.7 for details) can be identified in the experimental
data. The n = 2 (a, k, g, r) satellite lines (arising from the related Li-like system) are
resolved. The s, t and j lines of the Li-like ion are also visible, although they blend
with the x, y and z lines respectively. Details of these n = 2 satellite lines are given in
Table 5.8. Additionally, there is an envelope of n = 3 satellites observed in the wing
of the main w resonance line. There is an accumulation of n = 4 satellites which are
heavily blended with the w line too. Lines with spectators lying in higher n will not
deviate greatly from the w line centre and are not readily resolved (but will ‘enhance’

the intensity of the w line).

Label Transition A" /s Wavelength / A
W 1s2p 'P; — 1s* 'Sy 1.09 x 10 3.9491
X 1s2p3P, — 152 1Sy 3.16 x 108 3.9661
y 1s2p3P; — 1s* 'Sy 1.46 x 102 3.9696
z 1s2s3S; — 1s2'Sy 4.45 x 10° 3.9945

Table 5.7: Details of the spectral lines of interest arising from the He-like stage of
Argon (Ar'®*). The labelling follows Gabriel’s notation [52]. The corresponding
atomic transition, associated radiative rate (A" / s~') and the wavelength of the emission
are listed for each.

Label Transition A" /s7! A*/s™' Wavelength / A
a 1s2p? ZP% — 1s*2p 2P% 1.36 x 10" 9.50 x 10" 3.9857
i 1s2pP?Dy - 1822p?P; 4.94x 108 154x 104 3.9938
Kk 1s2p22Dy - 1s2p?P, 5.69x 104 147x 10" 3.9898
q 1s2s2p ZP% — 1s%2s 25% 9.73x 10 3.23x 10" 3.9813
r 1s2s2p ZP% — 1s%2s ZS% 8.44x 10 1.59x 10" 3.9834
S 1s2s2p 2P% — 1s%2s ZS% 8.07 x 102 9.41 x 10" 3.9678
t 1s2s2p *P) — 15?25 ?S; 243 x 10" 8.18 x 10" 3.9687

Table 5.8: Similar to Table 5.7, except for satellite lines (with n = 2 spectator electrons)
from the Li-like stage of Argon (Ar'>*).The Auger rates of the doubly excited states

(A%) are given in addition to the data included in Table 5.7.

131

The FFS model used to fit this data comprises of a a He-like satellite line feature
(as described in Section 2.7) together with a simple linear background. The fitted
spectrum is displayed in Fig. 5.17. The fitted model shows broad agreement with
the experimental data and deduces parameter values of 7, = 442 + 0.14 eV and n, =
9.36x 10 +£5.38x10'> cm™>. The temperature determined is somewhat low compared
to that suggested by Marchuk (1.01 — 1.05 keV) [80], however, it is noted in this work
that charge exchange recombination contributes to the intensities of the lines in this
spectra — an effect not included in the model used here. Additionally, there is an issue
regarding errors in the energies of the levels coming from the atomic structure codes.
Due to the fact that this feature is observed in such a narrow wavelength region (and
therefore a small range of energy) even small errors in the atomic energy levels will
result in a corresponding error in the transition energies between levels. This can lead
to spectral lines having significantly incorrect wavelength positions. For the current
model, the level energies were adjusted to the best available data, recommended by
NIST, compiled by Saloman [82]. However, the data is not a complete set; it does not
contain all of the necessary energy levels and so, some of those used in the modelling
remain un-adjusted. Therefore, it is possible that some of the lines in the simulated

spectra could be incorrectly placed — distorting the results of the fit.

As discussed in Section 2.7, the model used here used only a partial implementation
of the full model as described, due to time constraints. However, the modelling work
is now complete and it is anticipated that this will lead to further analysis, of new JET

data, once operations resume, in late 2011.

132

5><1O4 """"" T T T T T]

4x10*

3x10*

intensity / arbitrary units

0FE. =~ . E

0.394 0.395 0.396 0.397 0.398 0.399 0.400
wavelength / nm

TTTT[TT T T [TTR[TrrT
RN EEE Y PR AR

(fit — data) / data

-1.0

0.395 0.396 0.397 0.398 0.399
wavelength / nm

Figure 5.17: He-like Argon x-ray spectrum from TEXTOR shot #81156. The
experimental data is shown by the black solid line, whilst the FFS fit is shown in red.
The lower plot shows the residual from the fit.

133

Chapter 6
Conclusions and Future Work

The outcome of this work is the provision of two useful tools for analysis of
atomic and molecular spectra. Firstly, the ADAS Feature Generator (AFG) facilitates
ease of access to a range of special feature models within ADAS (Section 3.1).
The accompanying graphical exploration program (Section 3.2) delivers a visual
demonstration of special feature parameter response as a prelude to the automated
fitting of such features to experimental data (which is handled by the second of
the aforementioned tools, the Framework for Feature Synthesis (FFS). The FFS
package (sec. 4.4) accomplishes its task by providing a highly flexible, modular model
representation that can draw upon ADAS provided special features (via AFG) in
addition to a basis set of familiar mathematical functions. Models are easily specified
by a custom model definition language (Section 4.5). Consideration has been given
to several aspects of spectral fitting and the required functionality incorporated into
the system e.g. complex coupling relations between model parameters can be set (also
specified via the model definition language) — Section 4.6. This facility can reduce
the free parameter set of the model and so, help constrain the fitting problem. The
FFS implementation goes beyond that offered by existing packages by allowing for
specification of arbitrarily complex functional dependence between parameters via the

model definition language.

Another practical aspect of spectral fitting that has been investigated, is computational
performance; the analytic results of common combinations of the basis functions have
been documented and efficient forms of the functions and/or their partial derivatives
identified (Section 4.2)). A model ‘simplification’ module optimises any inefficient
representations using the derived analytic solutions to form a new model, yet connects
the new parameter set, via the coupling system, to the originally specified set (Section

4.7). Importantly, the coupling system can also perform analytic differentiation of

134

the coupling relations — such that the computational benefit of using known partial
derivative expressions is not lost when such parameters become intermediates within
a coupling chain defined for a free parameter. A brief practical study of the success of
the model optimisation, in terms of performance, is carried out in Section 4.12. The
attention given to performance permits inter-shot analysis of spectra i.e. fitting and
analysis of spectra within the time period between experimental pulses at tokamaks
such as JET. This means that FFS can provide useful data that can, in turn, be used
to direct the setup of subsequent pulses in the experimental session — an important
practical consideration in a scenario where access for experiments is time-restricted

due to high demand.

In addition to the flexible modelling framework, a custom fitting code has been
developed to exploit such models for analysis of data (Section 4.9) and further scripts
are in place that allow automated fitting of spectra — providing spatial or temporal
profiles of fit parameters (Section 4.10). Finally, the framework has been taken through
to full application for a range of spectra resulting from a number of different plasma
scenarios and therefore confronted with spectral signatures that require models of
various degrees of complexity (Chapter 5). The first experimental scenario considered
(SOHO-CDS spectra — see Section 5.2) demonstrated that FFS is able to replicate
the functionality of an existing dedicated fitting code ADAS602. This included
providing an alternative method of dealing with an irregular instrument function
problem, without any additional coding — the MDL was flexible enough to provide
a solution using the coupling system. FFS was then used to examine a quite different
set of spectra; visible-region spectra sourced from the JET divertor (Section 5.3). In
this study, the coupling system again proved useful for coupling deuterium Balmer-
series line widths to the parameter of interest — electron density. This improves
upon previous analysis [74] in which physical parameters are inferred, retrospectively,
from fits that have determined line shape parameters. Instead, FFS allows for direct
inference of the physical parameter and is determined by the best fit to the entire
connected feature; rather than individual lines. The divertor detachment study also
involved use of the batch fitting scripts and demonstrated how FFS can be used to
build the aforementioned spatial and temporal profiles of parameters. The chapter also
displays the results of the use of special feature models in FFS (accessed via AFG) for
Zeeman features, diatomic molecular emission, V/UV impurity spectra and He-like
satellite lines in the x-ray region (Sections, 5.4, 5.5, 5.6 and 5.7 respectively). The
initial fit of a single Zeeman feature demonstrates the ability of FFS to replace another
dedicated fitting code ADAS603. The example study then moves past the capabilities

of ADAS603 and uses two ADAS Zeeman special features simultaneously model two

135

overlapping features observed along the line of sight. Again, the number of free
parameters is reduced by use of the coupling system which, in this case, maintains a
similar ratio of the m and o~ polarised components across the two features. The diatomic
molecular example attempts to re-examine the data considered in previous work [42].
Whereas this study used the CALCAT program to establish a more qualitative piece
of analysis, effort is made here to obtain more quantitative results using FFS in
conjunction with an AFG-CALCAT feature — with some success. The V/UV impurity
spectra and satellite line analysis are both examples of the range of features that are
immediately available for fitting with FFS due to the access to ADF15 archive files
(photon emissivity coefficients) via AFG. It is important to note that although there is
a difference in complexity of the models required in these cases, the end product (the

ADF1S5 file) is a standardised format and so, can be used in a similar way.

The system has proved effective across the range of studies considered and the design
of the framework remains flexible enough such that it can be used in support of
analysis of any astrophysical or fusion spectra — a new special feature model is easily

integrated by means of a lightweight AFG wrapper to an external modelling code.

This is not to say that the development of the modelling and fitting framework is
complete. To reach its full potential, there are several key areas that require attention,
some of which are more practical concerns (i.e. software related) while others stem

directly from experimental requirements.

Firstly, there is the issue of bringing the various FFS software elements together to
form a complete user-friendly package, most likely GUI driven. Secondly, there
were some issues with the model definition language that were highlighted during
confrontation with experiment; mostly irritations rather than genuine flaws. Of these,
one of the most apparent was that if a model contains a number of model elements of
the same type, a user would spend a lot of time typing very similar commands to set the
values, limits and so on, for each — inclusion of array-like syntax would alleviate this
problem. Another MDL issue was identified during the analysis of ‘post-loss® SOHO
data (Section 5.2). In this case it was desirable to define a new line shape which
was a composite of the supplied basis functions. Currently, this requires excessive
repetition of the definition for the composite shape and manually written coupling
statements. It would be far better to allow for something akin to Lisp macros; that is
to say, allow for on the fly element definition, without the need for a new FFS-AFG
module. However, attention is drawn to the fact that this is an extension to the MDL
and does not require redesign. Finally, there is a problem, not yet handled by FFS,
driven by the experimental data; line-of-sight issues. There are two main concerns in

136

this regard. Firstly, there is the fact that, typically, any given spectrum is the result of
emission from the plasma atoms along that line of sight i.e. non-local. In some cases,
such as the high-n Balmer series recombination feature considered in Section 5.3, it
is reasonable to assume that the emission is occurring over a small length along the
line of sight. Further to this, again using the current FFS capabilities, it is possible to
model something like the high/low field Zeeman-split signature considered in Section
5.4, where the emission is coming from two distinct regions, by use of a duplicate
(overlapping) feature for the second region. In general, however, it is not suitable
to make such assumptions and/or the use of multiple ‘cells’ to model the full line of
sight becomes cumbersome and ultimately unworkable. Ideally, one would allow for a
further functional form that would define how a given model representation would be
integrated over the line of sight. The second issue related to line-of sight, is the ability
to perform parallel fitting of spectral frames from multiple lines-of-sight. One could
envisage a construct that allows for connections to be made across several tracks (i.e.
data from different radial positions) via an additional function that models the plasma
transport across this region and everything is fit simultaneously. Substantial additional
infrastructure is required to facilitate this type of functionality into FFS, but the result

would realise the full potential of the current system.

In addition to the direct improvements that can be made to the FFS software, there
is a great deal that can be explored with the system in its current form. Certainly,
there is further work that will be enabled by use of the enhanced satellite line feature
model (2.7), taking it beyond the preliminary demonstration shown in Section 5.7.
However, there is also further breadth in the range of special feature analysis possible
with FFS, using the features provided by AFG. Modelling of emission from heavy
species (Section 2.6) is already relevant for machines like ASDEX-U (all tungsten
PFCs) and will shortly be important for JET which will feature a tungsten divertor
when operations resume in 2011. This upgrade has, of course, been made with a view
towards ITER which will also exhibit tungsten components, so there is some mileage
in such studies. FFS-AFG will also be relevant in providing special feature modelling
of the motional Stark effect seen from the beams. As discussed in Section 2.2, an
enhanced version of the ADAS305 code will be available via AFG in due course.
There is also interest in creating a new special feature model for Balmer/Paschen
series emission. A preliminary model, combining ADAS population modelling with
advanced Stark broadening routines already exists. A complete solution would
also incorporate a model to handle merging between resolved spectral lines and the
continuum. This type of model is relevant for JET divertor spectra and would be an

advancement compared with the demonstrative study shown in Section 5.3 which used

137

Voigt line shapes. This feature could be used in support of analysis for recombination
spectra studies at other fusion devices, e.g. MAST, where a current upgrade program

will include the installation of a new Super-X divertor configuration.

It is hoped that the flexibility and breadth of coverage of the modelling package
developed here will make it an effective, favoured tool for spectral analysis of

astrophysical and fusion plasmas.

138

Bibliography

[1]

(2]

[6]

J. Wesson. ‘The Science of JET’. Technical Report JETR(99)13, EFDA-JET
(1999)

V. Kashyap and J. J. Drake. ‘PINTofALE: Package for the interactive analysis
of line emission’. Bull. Astron. Soc. India, 28 (2000) 475-476. ADS: http:
//adsabs.harvard.edu/abs/2000BASI...28..475K

E. Landi, G. D. Zanna, P. R. Young, K. P. Dere, H. E. Mason and M. Landini.
‘Atomic Database for Emission Lines. VII. New Data for X-Rays and Other
Improvements’. Astrophys. J. Suppl. Ser., 162(1) (2006) 261-280. doi:
10.1086/498148

R. K. Smith, N. S. Brickhouse, D. A. Liedahl and J. C. Raymond. ‘Standard
Formats for Atomic Data: the APED’. In ‘ASP Conference Series’, volume 247,
159. Astronomical Society of the Pacific (2001)

J. S. Kaastra, R. Mewe and H. Nieuwenhuijzen. ‘SPEX: A New Code for Spectral
Analysis of X and UV Spectra’. In ‘Proceedings of the Eleventh Colloquium on

UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas held on
May 29— June 2, 1995, Nagoya, Japan.’, 411-416. Univ. Acad. Press. (1996)

A. D. Whiteford, M. G. von Hellermann, L. D. Horton and K.-D. Zastrow.
‘CXSFIT — User Manual’. Technical Report ADAS-R(07)01, ADAS (2007).
Available from: http://www.adas.ac.uk/notes/adas_r07-01.pdf

M. G. von Hellermann, R. Barnsley, W. Biel, E. Delabie, N. Hawkes, R. Jaspers,
D. Johnson, FE. Klinkhamer, O. Lischtschenko, O. Marchuk, B. Schunke,
M. Singh, B. Snijders, H. P. Summers, D. Thomas, S. Tugarinov and P. Vasu.
‘Active beam spectroscopy for ITER’. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 623(2) (2010) 720-725. doi:10.1016/j.nima.2010.
04.011

139

http://adsabs.harvard.edu/abs/2000BASI...28..475K
http://adsabs.harvard.edu/abs/2000BASI...28..475K
http://dx.doi.org/10.1086/498148
http://dx.doi.org/10.1086/498148
http://www.adas.ac.uk/notes/adas_r07-01.pdf
http://dx.doi.org/10.1016/j.nima.2010.04.011
http://dx.doi.org/10.1016/j.nima.2010.04.011

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. P. Summers (2007). Atomic Data and Analysis Structure User Manual.
Available from: http://www.adas.ac.uk

D. W. Fanning. IDL Programming Techniques. Fanning Software Consulting
(2000). ISBN 978-0966238327

J. D. Hey, Y. T. Lie, D. Rusbiildt and E. Hintz. ‘Doppler Broadening and
Magnetic Field Effects on Some Ion Impurity Spectra Emitted in the Boundary
Layer of a Tokamak Plasma’. Contrib. Plasma Phys., 34(6) (1994) 725-747.
doi:10.1002/ctpp.2150340605

J. D. Hey, C. C. Chu and P. Mertens. ‘Zeeman Spectroscopy as a Tool for
Studying Atomic Processes in Edge Plasmas.” Contrib. Plasma Phys., 42 (2002)
635-644. doi:10.1002/1521-3986(200211)42:6/7<635: :AID-CTPP635>
3.0.C0;2-M

F. R. Meysman, J. J. Middelburg, P. M. J. Herman and C. H. R. Heip. ‘Reactive
transport in surface sediments. I. Model complexity and software quality’.
Comput. Geosci., 29(3) (2003) 291-300. doi:10.1016/S0098-3004(03)
00006-2

F. R. Meysman, J. J. Middelburg, P. M. J. Herman and C. H. R. Heip. ‘Reactive
transport in surface sediments. II. Media: an object-oriented problem-solving
environment for early diagenesis’. Comput. Geosci., 29(3) (2003) 301-318. doi:
10.1016/S0098-3004(03)00007-4

J. Jarvi. ‘Object-oriented model for partially separable functions in parameter
estimation’. Acta Cybernetica, 14(2) (1999) 285-302. Available from: http:

//parasol.cs.tamu.edu/~jarvi/papers/acta99.ps

G. Booch, R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Conallen and K. A.
Houston. Object-oriented Analysis and Design with Applications (third edition).
Addison Wesley (2007). ISBN 978-0201895513

K. A. Arnaud. ‘XSPEC: The First Ten Years’. In ‘Astronomical Data Analysis
Software and Systems V’, volume 101 of Astron. Soc. Pac. Conf. Ser., 17 (1996).
Available from: http://adsabs.harvard.edu/abs/1996ASPC..101...17A

B. Dorman and K. A. Arnaud. ‘Redesign and Reimplementation of XSPEC’.
In F. R. Harnden Jr., F. A. Primini, & H. E. Payne (Editor), ‘Astronomical Data
Analysis Software and Systems X, volume 238 of Astron. Soc. Pac. Conf. Ser.,

140

http://www.adas.ac.uk
http://dx.doi.org/10.1002/ctpp.2150340605
http://dx.doi.org/10.1002/1521-3986(200211)42:6/7%3C635::AID-CTPP635%3E3.0.CO;2-M
http://dx.doi.org/10.1002/1521-3986(200211)42:6/7%3C635::AID-CTPP635%3E3.0.CO;2-M
http://dx.doi.org/10.1016/S0098-3004(03)00006-2
http://dx.doi.org/10.1016/S0098-3004(03)00006-2
http://dx.doi.org/10.1016/S0098-3004(03)00007-4
http://dx.doi.org/10.1016/S0098-3004(03)00007-4
http://parasol.cs.tamu.edu/~jarvi/papers/acta99.ps
http://parasol.cs.tamu.edu/~jarvi/papers/acta99.ps
http://adsabs.harvard.edu/abs/1996ASPC..101...17A

[18]

[19]

[20]

[22]

[23]

[24]

[26]

[27]

415—+ (2001). ADS: http://adsabs.harvard.edu/abs/2001ASPC. .238.
.415D

D. W. Marquardt. ‘An Algorithm for Least-Squares Estimation of Nonlinear
Parameters’. J. Soc. Indust. Appl. Math., 11(2) (1963) 431-441

F. James and M. Roos. ‘Minuit - a system for function minimization and analysis
of the parameter errors and correlations’. Comput. Phys. Commun., 10(6) (1975)
343-367. ISSN 0010-4655. doi:10.1016/0010-4655(75)90039-9

F. James. ‘MINUIT Function Minimization and Error Analysis Reference
Manual v. 94.1°. CERN Program Library Long Writeup D506, CERN (1998).
Available from: http://tevewwg.fnal.gov/tools/minuit.ps

S. Kirkpatrick, J. C. D. Gelatt and M. P. Vecchi. ‘Optimization by Simulated
Annealing’. Science, 220(4598) (1983) 671-680. doi:10.1126/science.
220.4598.671

J. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. The
MIT Press, 1* mit press edition (1992). ISBN 978-0262581110

D. H. Besset. Object-oriented Implementation of Numerical Methods: An
Introduction with Java and Smalltalk. Academic Press (2001). ISBN 978-
1558606791

B. W. Char, K. O. Geddes, W. M. Gentleman and G. H. Gonnet. ‘The design
of maple: A compact, portable and powerful computer algebra system’. In
‘Computer Algebra’, volume 162 of Lecture Notes in Computer Science, 101—
115. Springer (1983). doi:10.1007/3-540-12868-9_95

B. W. Char, K. O. Geddes and G. H. Gonnet. ‘The maple symbolic computation
system’. SIGSAM Bull., 17(3—4) (1983) 31-42. doi:10.1145/1089338.
1089344

S. Wolfram. The MATHEMATICA Book. Cambridge University Press (1999).
ISBN 978-0521643146

P. J. Mohr, B. N. Taylor and D. B. Newell. ‘CODATA recommended values of the
fundamental physical constants: 2006’. Rev. Mod. Phys., 80(2) (2008) 633—730.
doi:10.1103/RevModPhys.80.633

141

http://adsabs.harvard.edu/abs/2001ASPC..238..415D
http://adsabs.harvard.edu/abs/2001ASPC..238..415D
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://tevewwg.fnal.gov/tools/minuit.ps
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/3-540-12868-9_95
http://dx.doi.org/10.1145/1089338.1089344
http://dx.doi.org/10.1145/1089338.1089344
http://dx.doi.org/10.1103/RevModPhys.80.633

[28] R. Aymar, P. Barabaschi and Y. Shimomura. ‘The ITER design’. Plasma Phys.
Control. Fusion, 44(5) (2002) 519-565. doi:10.1088/0741-3335/44/5/304

[29] W. H. Heintz. ‘Determination of the Runge-Lenz Vector’. Am. J. Phys., 42(12)
(1974) 1078-1082. ISSN 0002-9505. doi:10.1119/1.1987941

[30] H. A. Bethe and E. E. Salpeter. Quantum Mechanics of One- and Two-Electron
Atoms. Dover Publications Inc. (2009). ISBN 978-0486466675 (paperback)

[31] L. D. Landau and E. M. Lifshitz. Quantum Mechanics (Non-Relativistic Theory:
Volume 3). Butterworth Heinemann (1981). ISBN 978-0750635394

[32] A. Meigs, W. Fundamenski, C. Jupen, A. Larsen, S. Loch, M. O’Mullane
and H. Summers. ‘Density and Temperature Measurements in Detached
Recombining JET Divertors’. In ‘27th EPS Conference on Controlled Fusion
and Plasma Physics’, volume 24B, 1264—-1267 (2000). Available from: https:
//fusion.gat.com/conferences/meetings/eps00/pdf/p3_121.pdf

[33] M. Koubiti, S. Loch, H. Capes, L. Godbert-Mouret, Y. Marandet, A. Meigs,
R. Stamm and H. Summers. ‘Smooth line merging into the continuum
and Stark broadening of deuterium Balmer lines for plasma diagnostics’. J.
Quant. Spectrosc. Radiat. Transfer, 81(1-4) (2003) 265-273. doi:10.1016/
S0022-4073(03)00079-7

[34] D. R. Inglis and E. Teller. ‘lonic Depression of Series Limits in One-Electron
Spectra’. Astrophys. J., 90 (1939) 439-448. ADS: http://adsabs.harvard.
edu/full/1939ApJ....90..4391I

[35] H. R. Griem. Spectral Line Broadening by Plasmas. Academic Press Inc. (1974).
ISBN 978-0123028501

[36] H. R. Griem. Principles of Plasma Spectroscopy. Cambridge University Press
(1997). ISBN 978-0521455046

[37] E. Oks. Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in
Plasmas. Alpha Science (2006). ISBN 1-84265-252-4

[38] B. Talin, A. Calisti, L. Godbert, R. Stamm, R. W. Lee and L. Klein. ‘Frequency-
fluctuation model for line-shape calculations in plasma spectroscopy’. Phys. Rev.
A, 51(3) (1995) 1918-1928. doi:10.1103/PhysRevA.51.1918

[39] B. Talin, A. Calisti, S. Ferri, M. Koubiti, T. Meftah, C. Moss, L. Mouret,
R. Stamm, S. Alexiou, R. W. Lee and L. Klein. ‘Ground work supporting the

142

http://dx.doi.org/10.1088/0741-3335/44/5/304
http://dx.doi.org/10.1119/1.1987941
https://fusion.gat.com/conferences/meetings/eps00/pdf/p3_121.pdf
https://fusion.gat.com/conferences/meetings/eps00/pdf/p3_121.pdf
http://dx.doi.org/10.1016/S0022-4073(03)00079-7
http://dx.doi.org/10.1016/S0022-4073(03)00079-7
http://adsabs.harvard.edu/full/1939ApJ....90..439I
http://adsabs.harvard.edu/full/1939ApJ....90..439I
http://dx.doi.org/10.1103/PhysRevA.51.1918

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

codes based upon the frequency fluctuation model’. J. Quant. Spectrosc. Radiat.
Transfer, 58(4—6) (1997) 953-964. doi:10.1016/S0022-4073(97)00101-5

K. Behringer. ‘Measurement of CH4/CD4 fluxes and of chemical carbon erosion
from CH/CD band emission’. J. Nucl. Mater., 176-177 (1990) 606-610. doi:
10.1016/0022-3115(90)90114-3

S. Brezinsek, A. Pospieszczyk, M. Stamp, A. Meigs, A. Kirschner, A. Huber and
P. Mertens. ‘Identification of molecular carbon sources in the JET divertor by
means of emission spectroscopy’. J. Nucl. Mater., 337-339 (2005) 1058-1063.
doi:10.1016/j. jnucmat.2004.10.114

G. Duxbury, M. F. Stamp and H. P. Summers. ‘Observations and modelling
of diatomic molecular spectra from JET’. Plasma Phys. Control. Fusion, 40(3)
(1998) 361-370. doi:10.1088/0741-3335/40/3/002

S. Brezinsek, A. Meigs, S. Jachmich, M. Stamp, J. Rapp, R. Felton, R. Pitts,
V. Philipps, A. Huber, R. Pugno, G. Sergienko and A. Pospieszczyk. “The impact
of divertor detachment on carbon sources in JET L-mode discharges’. J. Nucl.
Mater., 390-391 (2009) 267-273. doi:10.1016/j. jnucmat.2009.01.100

G. Duxbury, M. G. OMullane, H. P. Summers, A. D. Whiteford, A. G. Meigs,
M. F. Stamp, K. H. Behringer, S. Brezinsek and JET EFDA contributors.
‘Detectability of diatomic tritides on the JET tokamak’. In ‘Proceedings of the
31st EPS Conference’, volume 28G, P5.175 (2004). London, UK. 28th June —
2nd July. Available from: http://epsppd.epfl.ch/London/pdf/P5_175.
pdf

H. M. Pickett. ‘The fitting and prediction of vibration-rotation spectra with
spin interactions’. J. Mol. Spectrosc., 148(2) (1991) 371-377. doi:10.1016/
0022-2852(91)90393-0

R. Neu, R. Dux, A. Kallenbach, T. Piitterich, M. Balden, J. Fuchs, A. Herrmann,
C. Maggi, M. O’Mullane, R. Pugno, I. Radivojevic, V. Rohde, A. Sips,
W. Suttrop, A. Whiteford and the ASDEX Upgrade team. ‘Tungsten: an
option for divertor and main chamber plasma facing components in future fusion
devices’. Nucl. Fusion, 45(3) (2005) 209-218. doi:10.1088/0029-5515/45/
3/007

R. Neu, R. Dux, A. Geier, O. Gruber, A. Kallenbach, K. Krieger, H. Maier,
R. Pugno, V. Rohde and S. Schweizer. ‘Tungsten as plasma-facing material in

143

http://dx.doi.org/10.1016/S0022-4073(97)00101-5
http://dx.doi.org/10.1016/0022-3115(90)90114-3
http://dx.doi.org/10.1016/0022-3115(90)90114-3
http://dx.doi.org/10.1016/j.jnucmat.2004.10.114
http://dx.doi.org/10.1088/0741-3335/40/3/002
http://dx.doi.org/10.1016/j.jnucmat.2009.01.100
http://epsppd.epfl.ch/London/pdf/P5_175.pdf
http://epsppd.epfl.ch/London/pdf/P5_175.pdf
http://dx.doi.org/10.1016/0022-2852(91)90393-O
http://dx.doi.org/10.1016/0022-2852(91)90393-O
http://dx.doi.org/10.1088/0029-5515/45/3/007
http://dx.doi.org/10.1088/0029-5515/45/3/007

[48]

[49]

[52]

[53]

[54]

[55]

ASDEX Upgrade’. Fusion Engineering and Design, 65(3) (2003) 367-374. ISSN
0920-3796. doi:10.1016/S0920-3796(02)00381-2

T. Piitterich, R. Neu, R. Dux, A. D. Whiteford, M. G. O’Mullane and the ASDEX
Upgrade Team. ‘Modelling of measured tungsten spectra from ASDEX Upgrade
and predictions for ITER’. Plasma Physics and Controlled Fusion, S0(8) (2008)
085016. doi:10.1088/0741-3335/50/8/085016

A. D. Whiteford. On the spectral emission of impurity species for diagnostic
application to magnetically confined fusion plasmas. Ph.D. thesis, University
of Strathclyde (2004). Available from: http://www.adas.ac.uk/theses/
whiteford_thesis.pdf

A. R. Foster. On the Behaviour and Radiating Properties of Heavy Elements in
Fusion Plasmas. Ph.D. thesis, University of Strathclyde (2008). Available from:
http://www.adas.ac.uk/theses/foster_thesis.pdf

M. J. Nelson, R. Barnsley, F. Keenan, H. Meyer, C. A. Bunting, P. G. Carolan,
N. J. Conway, G. Cunningham, I. Lehane and M. R. Tournianski. ‘A high-
resolution soft x-ray spectrometer on the MAST tokamak’. Rev. Sci. Instrum.,
75(10) (2004) 3734-3736. doi:10.1063/1.1781373

A. H. Gabriel. ‘Dielectronic satellite spectra for highly-charged helium-like
ionlines’. Mon. Not. R. Astr. Soc., 160 (1972) 99-119. ADS: http://adsabs.
harvard.edu/abs/1972MNRAS. 160...99G

N. R. Badnell, M. G. O’Mullane, H. P. Summers, Z. Altun, M. A. Bautista,
J. Colgan, T. W. Gorczyca, D. M. Mitnik, M. S. Pindzola and O. Zatsarinny.
‘Dielectronic recombination data for dynamic finite-density plasmas I. Goals and
methodology’. Astron. Astrophys., 406(3) (2003) 1151-1165. doi:10.1051/
0004-6361:20030816

A. D. Whiteford, N. R. Badnell, C. P. Ballance, M. G. O’Mullane, H. P. Summers
and A. L. Thomas. ‘A radiation-damped R-matrix approach to the electron-
impact excitation of helium-like ions for diagnostic application to fusion and
astrophysical plasmas’. J. Phys. B, 34(15) (2001) 3179-3191. doi:10.1088/
0953-4075/34/15/320

P. Burke and K. A. Berrington. Atomic and Molecular Processes: An R-Matrix
Approach. Institure of Physics Publishing (1993). ISBN 978-0750301992

144

http://dx.doi.org/10.1016/S0920-3796(02)00381-2
http://dx.doi.org/10.1088/0741-3335/50/8/085016
http://www.adas.ac.uk/theses/whiteford_thesis.pdf
http://www.adas.ac.uk/theses/whiteford_thesis.pdf
http://www.adas.ac.uk/theses/foster_thesis.pdf
http://dx.doi.org/10.1063/1.1781373
http://adsabs.harvard.edu/abs/1972MNRAS.160...99G
http://adsabs.harvard.edu/abs/1972MNRAS.160...99G
http://dx.doi.org/10.1051/0004-6361:20030816
http://dx.doi.org/10.1051/0004-6361:20030816
http://dx.doi.org/10.1088/0953-4075/34/15/320
http://dx.doi.org/10.1088/0953-4075/34/15/320

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

D. C. Griffin, N. R. Badnell and M. S. Pindzola. ‘R-matrix electron-impact
excitation cross sections in intermediate coupling: an MQDT transformation
approach’. J. Phys. B, 31(16) (1998) 3713-3727. doi:10.1088/0953-4075/
31/16/022

F. Robicheaux, T. W. Gorczyca, M. S. Pindzola and N. R. Badnell. ‘Inclusion of
radiation damping in the close-coupling equations for electron-atom scattering’.
Phys. Rev. A, 52(2) (1995) 1319-1333. doi:10.1103/PhysRevA.52.1319

T. W. Gorczyca and N. R. Badnell. ‘Radiation damping in highly charged ions:
an R-matrix approach’. J. Phys. B, 29(7) (1996) L283-1.290. doi:10.1088/
0953-4075/29/7/007

T. W. Gorczyca and N. R. Badnell. ‘Quantum defect theory with deeply closed
channels’. J. Phys. B, 33(13) (2000) 2511-2523. doi:10.1088/0953-4075/
33/13/311

N. R. Badnell and D. C. Griffin. ‘Electron-impact excitation of Fe 20+, including
n=4 levels’. J. Phys. B, 34(4) (2001) 681-697. doi:10.1088/0953-4075/34/
4/316

N. R. Badnell. ‘On the effects of the two-body non-fine-structure operators of
the Breit-Pauli Hamiltonian’. J. Phys. B, 30(1) (1997) 1-11. doi:10.1088/
0953-4075/30/1/005

A. D. Whiteford, N. R. Badnell, C. P. Ballance, S. D. Loch, M. G. O’Mullane and
H. P. Summers. ‘Excitation of Ar 15+ and Fe 23+ for diagnostic application to
fusion and astrophysical plasmas’. J. Phys. B, 35(17) (2002) 3729-3740. doi:
10.1088/0953-4075/35/17/309

N. R. Badnell and M. J. Seaton. ‘Quantum defect theory with long-range
multipole potentials’. J. Phys. B, 32(15) (1999) 3955-3964. doi:10.1088/
0953-4075/32/15/323

K. Nygaard and O.-J.Dahl. ‘The development of the SIMULA languages’. In
R. L. Wexelblat (Editor), ‘History of programming languages I’, 439—-480. ACM,
New York, NY, USA (1981). ISBN 0-12-745040-8. doi:10.1145/800025.
1198392

J. McCarthy. ‘Recursive functions of symbolic expressions and their computation
by machine, part I'. Commun. Assoc. Comp. Mach., 3(4) (1960) 184-195. doi:
10.1145/367177.367199

145

http://dx.doi.org/10.1088/0953-4075/31/16/022
http://dx.doi.org/10.1088/0953-4075/31/16/022
http://dx.doi.org/10.1103/PhysRevA.52.1319
http://dx.doi.org/10.1088/0953-4075/29/7/007
http://dx.doi.org/10.1088/0953-4075/29/7/007
http://dx.doi.org/10.1088/0953-4075/33/13/311
http://dx.doi.org/10.1088/0953-4075/33/13/311
http://dx.doi.org/10.1088/0953-4075/34/4/316
http://dx.doi.org/10.1088/0953-4075/34/4/316
http://dx.doi.org/10.1088/0953-4075/30/1/005
http://dx.doi.org/10.1088/0953-4075/30/1/005
http://dx.doi.org/10.1088/0953-4075/35/17/309
http://dx.doi.org/10.1088/0953-4075/35/17/309
http://dx.doi.org/10.1088/0953-4075/32/15/323
http://dx.doi.org/10.1088/0953-4075/32/15/323
http://dx.doi.org/10.1145/800025.1198392
http://dx.doi.org/10.1145/800025.1198392
http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/367177.367199

[66]

[67]

[68]

[71]

[72]

[73]

[74]

P. R. Bevington and D. K. Robinson. Data Analysis and Error Reduction for
the Physical Sciences. McGraw-Hill Higher Education (2002). ISBN 978-
0071199261 (paperback)

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computing: 3rd Edition. Cambridge University
Press (2007). ISBN 978-0521880688

C. B. Markwardt. ‘Non-linear Least-squares Fitting in IDL with MPFIT’. In
D. A. Bohlender, D. Durand and P. Dowler (Editors), ‘Astronomical Society of
the Pacific Conference Series’, volume 411 of Astron. Soc. Pac. Conf. Ser., 251
(2009). ADS: http://adsabs.harvard.edu/abs/2009ASPC. .411..251M

J. J. Moré, B. S. Garbow and K. E. Hillstrom. ‘User Guide for MINPACK-1".
Technical report, Argonne National Laboratory (1980). Available from: http:
//www.mcs.anl.gov/~{}more/ANL8074a.pdf

D. H. Brooks, G. A. Fischbacher, A. Fludra, R. A. Harrison, D. E. Innes, E. Landi,
M. Landini, J. L. A. C. Lanzafame, S. D. Loch, R. W. P. McWhirter, H. P.
Summers and W. T. Thompson. ‘The quiet Sun extreme ultraviolet spectrum
observed in normal incidence by the SOHO coronal diagnostic spectrometer’.
Astron. Astrophys., 347 (1999) 277-312. ADS: http://adsabs.harvard.
edu/abs/1999A%26A. ..347..277B

B. Fleck and Z. Svestka. The First Results from SOHO. Springer (1998). ISBN
978-0792348825 (1998 hardback)

W. T. Thompson. ‘Post-recovery broadened line profiles’. CDS Software
Note 53, NASA Goddard Flight Center (1999). Available from: http://solar.

bnsc.rl.ac.uk/swnotes/cds_swnote_53.pdf

A. Boboc, M. Gelfusa, A. Murari, P. Gaudio and J.-E. Contributors. ‘Recent
developments of the JET far-infrared interferometer-polarimeter diagnostic’.
Rev. Sci. Instrum., 81(10) (2010) 10D538. doi:10.1063/1.3478146

A. G. Meigs, G. M. McCracken, C. Maggi, R. D. Monk, L. D. Horton, M. von
Hellermann, M. F. Stamp and P. Breger. ‘Spectroscopic Electron Density
Measurements and Evidence of Recombination in High Density JET Divertor
Discharges’. In ‘Proceedings of the 1998 ICPP & 25th EPS Conference on
Plasma Physics and Controlled Fusion’, volume 22C, 373-376 (1998). Available
from: http://epsppd.epfl.ch/Praha/WEB/98ICPP_W/B161PR.PDF

146

http://adsabs.harvard.edu/abs/2009ASPC..411..251M
http://www.mcs.anl.gov/~{}more/ANL8074a.pdf
http://www.mcs.anl.gov/~{}more/ANL8074a.pdf
http://adsabs.harvard.edu/abs/1999A%26A...347..277B
http://adsabs.harvard.edu/abs/1999A%26A...347..277B
http://solar.bnsc.rl.ac.uk/swnotes/cds_swnote_53.pdf
http://solar.bnsc.rl.ac.uk/swnotes/cds_swnote_53.pdf
http://dx.doi.org/10.1063/1.3478146
http://epsppd.epfl.ch/Praha/WEB/98ICPP_W/B161PR.PDF

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

J. Gafert, W. Fundamenski, M. Stamp, J. D. Strachan and JET EFDA
Contributors. ‘Distribution of Carbon Impurity Sources Between Low and High
Field Side Measured via Zeeman-Spectroscopy in JET’. In ‘Proceedings of
the 28th EPS Conference on Contr. Fusion and Plasma Phys.’, volume 25A,
1637-1640 (2001). Funchal, Portugal. 18th June — 22nd June. Available from:
http://www.iop.org/Jet/fulltext/EFDC010254.PDF

R. Pugno, A. Kallenbach, D. Bolshukhin, R. Dux, J. Gafert, R. Neu, V. Rohde,
K. Schmidtmann, W. Ullrich and U. Wenzel. ‘Spectroscopic investigation on
the impurity influxes of carbon and silicon in the ASDEX upgrade experiment’.
J. Nucl. Mater., 290-293 (2001) 308-311. ISSN 0022-3115. doi:10.1016/
S0022-3115(00)00633-4

D. Nishijima, R. P. Doerner, M. J. Baldwin, G. D. Temmerman and E. M.
Hollmann. ‘Properties of BeD molecules in edge plasma relevant conditions’.
Plasma Phys. Control. Fusion, 50(12) (2008) 125007. doi:10.1088/
0741-3335/50/12/125007

A. Kirschner, D. Borodin, S. Droste, V. Philipps, U. Samm, G. Federici,
A. Kukushkin and A. Loarte. ‘Modelling of tritium retention and target lifetime
of the ITER divertor using the ERO code’. J. Nucl. Mater., 363-365 (2007) 91—
95. doi:10.1016/j.jnucmat.2007.01.002

O. Neubauer, G. Czymek, B. Giesen, P. W. Hiittemann, M. Sauer, W. Schalt
and J. Schruff. ‘Design features of the tokamak TEXTOR’. Fusion Sci.
Technol., 47 (2005) 76-86. Available from: http://juwel.fz-juelich.de:
8080/dspace/bitstream/2128/2735/1/63286.pdf

O. Marchuk, G. Bertschinger, H.-J. Kunze, N. R. Badnell and S. Fritzsche.
‘Cascades between doubly excited levels in helium-like argon’. J. Phys. B: At.
Mol. Opt. Phys., 37(9) (2004) 1951. doi:10.1088/0953-4075/37/9/014

J. Weinheimer, I. Ahmad, O. Herzog, H.-J. Kunze, G. Bertschinger, W. Biel,
G. Borchert and M. Bitter. ‘High-resolution x-ray crystal spectrometer/polarime-
ter at torus experiment for technology oriented research-94’. Rev. Sci. Instrum.,
72(6) (2001) 2566-2574. doi:10.1063/1.1370558

E. B. Saloman. ‘Energy Levels and Observed Spectral Lines of Ionized Argon,
Ar II through Ar XVIII’. J. Phys. Chem. Ref. Data, 39(3) (2010) 033101. doi:
10.1063/1.3337661

147

http://www.iop.org/Jet/fulltext/EFDC010254.PDF
http://dx.doi.org/10.1016/S0022-3115(00)00633-4
http://dx.doi.org/10.1016/S0022-3115(00)00633-4
http://dx.doi.org/10.1088/0741-3335/50/12/125007
http://dx.doi.org/10.1088/0741-3335/50/12/125007
http://dx.doi.org/10.1016/j.jnucmat.2007.01.002
http://juwel.fz-juelich.de:8080/dspace/bitstream/2128/2735/1/63286.pdf
http://juwel.fz-juelich.de:8080/dspace/bitstream/2128/2735/1/63286.pdf
http://dx.doi.org/10.1088/0953-4075/37/9/014
http://dx.doi.org/10.1063/1.1370558
http://dx.doi.org/10.1063/1.3337661
http://dx.doi.org/10.1063/1.3337661

[83] P. Heinzel. ‘Derivatives of the Voigt functions’. Bulletin of the Astronomical
Institutes of Czechoslovakia, 29 (1978) 159-162. ADS: http://adsabs.
harvard.edu/abs/1978BAICz..29..159H

[84] R. J. Wells. ‘Rapid approximation to the Voigt/Faddeeva function and its
derivatives’. J. Quant. Spectrosc. Radiat. Transfer, 62(1) (1999) 29-48. doi:
10.1016/S0022-4073(97)00231-8

148

http://adsabs.harvard.edu/abs/1978BAICz..29..159H
http://adsabs.harvard.edu/abs/1978BAICz..29..159H
http://dx.doi.org/10.1016/S0022-4073(97)00231-8
http://dx.doi.org/10.1016/S0022-4073(97)00231-8

Appendix A

Mathematical Notes

A.1 Convolution — Definition and Basic Properties

The definition of the convolution of two functions, f and g is given as:
—+00
Lf *gl(x) = f J(xXNg(x — x)dx’ (A.1)

Convolution has several mathematical properties which can be easily proven using the

integral definition. Among these the following are useful:

axb=bxa (commutative) (A.2)

(axb)xc=ax(b=*c) (associative) (A.3)

ax(b+c)=(axb)+ (axc) (distributive) (A4)
b

i (a*xb) = ('9_61 x*b=ax* 8_ (derivative) (A.5)

0x 0x 0x

A.2 Area of Convolved Functions

The area under a convolution integral is simply the product of the areas of the functions

undergoing convolution:
+00 +00
Afy = f f f(xXg(x — x")dx' dx

:fwf(x’)[fwg(x—x’)dx]dx’

149

lety=x—-x

= f f(xX) [f g(y)dy]dX’

:Agf wf(x’)dx’
= A,A, (A.6)

A.3 Raw Moments of Convolved Functions

The (normalized) n™ raw moment of a function f is denoted by:

_ f X" f(x)dx
[fdx

n

<x'>; (A7)

A.3.1 First Raw Moment

The first raw moment (centroid) of the convolution of the functions f and g i.e. f * g

is given by:
S LAy €
O 1+ gl0dx
1 / / /
:A,,Af fx[ff(x)g(x—x)dx]dx
1 / [/ /
:AgAf ff(x)_fxg(x—x)dx]dx
lett=x—x = 4L =1

dx —

|)
vy f f(xX) » f (t+ x')g(t)dt] dx’

1 / / /
= AA, ff(x) »ftg(t)dt+ X fg(t)dt] dx

1 / ’ 4
vy f FO)|Ay < x>, +xAy|dx

1
= AgAf [< X >y AgAf+ <X >y Ang]

=<X >, + < x> (A.8)

150

A.3.2 Second Raw Moment

The second raw moment of f * g is:

BP0
"1 % gl

— 1 2 ’ - ’
_AgAf fx [ff(x)g(x x)dx]dx

— 1 ’ 2 o ’
Wy ff(x))[x g(x x)dx]dx

letr=x—x — %L -1

dx
|)

= Wy ff(x’) f(t + x')zg(t)dt] dx’
1 ,

=Aﬁﬁfﬂﬂ

[f g(tdt + 2x’ f fg(dt + (x')? f g(t)dt] dx’

1
vy f FD|Ay < x> 420 Ay < x >, +(X')'A,| dx’
9

1 2
= <x >, A A+
AgAf[x 9 26f

2<x>p< x>, AA+ <X >p AjAs]

=< X >, 42 <X > < X >y + < X >y (A.9)

A.4 Gaussian Line Widths

The normal distribution function is given by:

2

exp (—%) (A.10)

1

o N2

f(x) =

We can define a characteristic ‘half width at half maximum’ by considering the value

of the variate, x when the function value is half of its maximum value. The constant

151

factor can be ignored and so,

i All

EA b
—x2 1

— =In= A.12

2072 2 ()

x> =20%In2 (A.13)

x=+V2In20 (A.14)

such that the half width at half maximum is:

XHWHM = 21In20 (A 15)

It immediately follows that the full width at half maximum is:

XFWHM = 2V21In20 (A16)

It is also possible to define this function in terms of a ‘i—width’, which we can be

determined in a similar way:

.2

exp(r‘x_z) = exp(=1) (A.17)
X =20 (A.18)
x=+V20 (A.19)

So, the 1-half-width and 1-width are:
Xipar = V200 (A.20)

x1=2V2o (A.21)

e

In this work, we will typically use the full width at half maximum when referring to the
width of a Gaussian line, so we will use equation A.16 to define the normal distribution

function as:

2vVIn2 41n 2x?
o= o[-
C C2 2
- exp(wg) (A.22)

152

where C = 2 VIn2 and w,, is the full width at half maximum

A.5 Delta Function

The delta function is defined by the following:

{0 Xx#0
5(x) = (A.23)
oo x=0
f‘” o(x)dx =1 (A.24)

This means that the delta function exhibits the so called ‘sifting” property:

f ()6 (x = x0) dx = f(x0) (A.25)

(o)

A.6 Error Function

A.6.1 Definition

The error function is defined as:

erf(z) = % fo Ce i (A.26)

A.7 Complementary Error Function

A.7.1 Definition

The complementary error function is defined as:

153

erfc(z) = 1 — erf(z)
2 f <
=1-— e "dt
v Jo
2 (o)

=1-— f e"Zdt—f e_tzdt)
\/%(0 z

2 <
=1 - erf(c0) + —f e "dt
Vr J.

T
2 f‘” »
= e "dt (A.27)
Vr J.

By change of variable and subsequently integrating by parts, we can acquire series

representation of erfc:

2 2

|
u=1t Zdu:dt ; =7 > u=z" ; t—ooo = u—oo (A28

154

(Y B I YA R T
= (Z’LZH) (ZZM)(?)ﬂzl—l] (A.29)

A.7.2 Derivative

For clarity, first make the following assignment:

A@) = (-1 (zZ"H) (2_) []2i-1 (A.30)
n=1 i=1

such that

erfc(z) = L\/_e—zz (% + A(z)) (A.31)
T

155

Now taking the derivative of erfc:

(9 l 2 2 2 2
a—zerfc(z) = % (—2€_Z 7% + e B +e” C(z))

= ﬁe—zz (-2-272+B@ +C) (A32)

where the following substitutions have used:

B(z) = -2zA(2)
= Z(1)”“()]—[21—1 (A.33)

and

0
C(Z) = 8_ZA(Z)

- —Qn+ 1)@
— Z (_ n+1 (2I’l + 1)()1—[2i—1 (A34)
n=1

The first term of the summation in eqn A.33 can be extracted and so, re-written in

terms of C as follows:

_1 x el 2l—n n .
B_z_2+;(_1) (ZT 1;121—1
let j=n-1

co 2-j j+1
= Z(1)”(2(,“))1]_[21—1

now extracting the last term f h e product,

o0 J
—+Z 1)f+2(2j+1)(2j+2)]—[21
=

i=1

1
2 C (A.35)

Substitution of this result into eqn A.32 yields:

; 2
(()_Z (erfc(z)) = —ﬁe (A36)

156

A.8 Complex Error Function

A.8.1 Definition

w(z) = e erfe(—iz) (A.37)
(1 ¢ 2 f Z ’Zdt) (A.38)
=e P e .
Vi Jo
The complex error function can be represented as:
w(z) = K(a,b) +il(a,b) (A.39)

The real part of the complex error function is given as:

2

b [e’
K(a,b) = —f —————dt (A.40)
TJw (a—1)°+Db?
and the imaginary part:
Lia.b) = - fm efazn (A41)
a,b) = — —_— .
7)o (@a—0%+0b2

A.8.2 Derivative

An expanded version of the derivation of Heinzel [83] is presented here. For
computational details relevant to this work (i.e. fast calculation of the voigt function,
see Wells [84]).

A complex function can be differentiated with respect to the complex variable z in the
same fashion as a real function by a real independent variable, if a unique derivative
exists, regardless of the path taken in the complex plane as z — z + 6z. That is to
say that if the Cauchy Riemann equations hold, then the complex function is ‘complex

differentiable’.

If we consider alternative forms of the functions K(a,b) and L(a,b) respectively
(obtained by taking the Fourier transforms of the functions, some manipulation,

followed by invertion):

2 00
K(a,b) = % f e cos(2ar)dt (A.42)
0

157

and 5 .
L(a,b) = — f e sin(at)dt. (A.43)
Vi Jo

Now, taking the partial derivatives of these functions, with respect to a and b:

0 2 (T,

—K(a,b) = —— f 26”2 sinar)d, (A.44)

aa ﬁ 0

éK(a Sy— f et cos(2ar)dt (A.45)

8b ’ \/7—1_ 0) .

9 Haby = 2= f " e cos(2at)dt (A.46)

86{ B \/% 0 ’ .

0 2 - —12-2bt _:

o La.b) = i 2te™" " sin(2at)dt. (A.47)
T Jo

So, this shows that:

0K(a,b) _ L(a,b) . OLa@b) __9KGb)
oa ob an oa _ ob

(A.48)

1.e. that the Cauchy Riemann equations are satisfied.

We can now safely take the derivative of the function w(z) with respect to the complex

variate z (using the result A.36):

iw(z) = erfc(—iz)ie_Zz + e‘zzi (erfc(—iz))
dz dz

dz
= —2ze‘zzerfc(—iz) + %e_zzez2
_ o)+ % (A.49)
Substitution of z = a + ib and w(z) = K(a, b) + iL(a, b):
iw() = —2(a + ib)(K(a,b) + iL(a, b)) + ﬁ
a7 ’ ’ T
= -2 (aK(a, b) + iaL(a, b) + ibK (a, b) — bL(a, b) - L)
\r
=2(bL(a,b) — aK(a,b)) —2|al(a,b) + bK(a,b) — L) I (A.50)
\r

158

It is possible to also obtain the following expression for d%w(z):

d d .
zzw(z) = d—Z (K(Cl, b) + lL(a7 b))
d d
- d—ZK(a, b) + ld_zL(a’ b)
0 da 0 db
- (%(K(a,b))a—z + o, (K, b))a_z)

[0 da 0 ob
+ l(%(L(a, b))a—Z + %(L(a, b))a_z)

_ [0K(a,b) 0L(a,b) [(O0L(a,b) 0K(a,b)
—(% + b)+z(% b) (A.51)
Comparing real and imaginary parts of results A.50 and A.51:
Re{ L@\ _0K@.D) [OH@D) o4 by~ akia, b)), (A.52)
dz Oa ob

{dw(z)} 0L(a,b) 0K(a,b) (
Im = - =-2

1
dz da ob al(a,b) + bK(a,b) - —) (A.53)

=

159

Appendix B

FFS MDL Listings

The following section comprises the various FFS model definitions used in performing
the fits detailed in Section 5.

Listing B.1: Model used to fit the pre-loss SOHO data in Section 5.2

(model oiiimultiplet

(+
(broaden_gauss
(+ (line 11)
(line 12)
(line 13)
(line 14)

bg)
(background—-linear backg)

(setval backg.c 0.01)
(setval backg.m 0.01)

(setval bg.fwhm 0.3)
(setlimits bg.fwhm 0.1 1.0)

(setval 11.pos 553.307)

(setlimits 11.pos 553.0 554.0)
(setval 11.intensity 3.0)
(setlimits 11.intensity 0.01 100.0)

(setval 12.pos 554.125)

(setlimits 12.pos 554.0 555.0)
(setval 12.intensity 2.5)
(setlimits 12.intensity 0.01 100.0)

(setval 13 .pos 554.475)

(setlimits 13 .pos 554.0 555.0)
(setval 13 .intensity 5.0)

160

(setlimits 13 .intensity 0.01 100.0)

(setval 14 .pos 555.292)

(setlimits 14 .pos 555.0 556.0)
(setval 14 .intensity 2.5)
(setlimits 14 .intensity 0.01 100.0)

Listing B.2: Model used to fit the post-loss SOHO data in Section 5.2

(model oiiimultiplet

(+
(broaden_gauss
(+ (line 11)
(line 12)
(line 13)
(line 14)
)
bg)
(broaden_lorentz
(+
(line wingll)
(line wingl2)
(line wingl3)
(line wingl4)
)
bl)
(background—-linear backg)
)
)
(dummy d)

(setval d.wingfactor 0.51002621)
(fixed d.wingfactor)

(setval d.wingshift 0.41592492)
(fixed d.wingshift)

(couple d.combinedintensityl = 11.intensity + wingll.intensity)
(fixed d.combinedintensityl)
(couple d.combinedintensity2 = 12.intensity + wingl2.intensity)
(fixed d.combinedintensity2)
(couple d.combinedintensity3 = 13 .intensity + wingl3.intensity)
(fixed d.combinedintensity3)
(couple d.combinedintensity4 = 14 .intensity + wingl4.intensity)
(fixed d.combinedintensity4)

(setval bl.fwhm 1.4657422)
(setlimits bl.fwhm 0.1 2.0)
(fixed bl.fwhm)

(setval backg.c 0.01)
(setval backg.m 0.01)

(setval bg.fwhm 0.3)
(setlimits bg.fwhm 0.1 1.0)

(setval 11.pos 553.307)

161

(setlimits 11.pos 553.0 554.0)

(setval 11 .intensity 10.0)

(setlimits 11.intensity 0.01 100.0)

(couple wingll.pos = 11.pos + d.wingshift)

(couple wingll.intensity (x 1l.intensity d.wingfactor))

(setval 12.pos 554.125)

(setlimits 12.pos 554.0 555.0)

(setval 12.intensity 20.0)

(setlimits 12.intensity 0.01 100.0)

(couple wingl2.pos = 12.pos + d.wingshift)

(couple wingl2.intensity (* 12.intensity d.wingfactor))

(setval 13 .pos 554.475)

(setlimits 13 .pos 554.0 555.0)

(setval 13 .intensity 20.0)

(setlimits 13 .intensity 0.01 100.0)
(couple wingl3 .pos = 13.pos + d.wingshift)

(couple wingl3.intensity (* 13.intensity d.wingfactor))

(setval 14 .pos 555.192)

(setlimits 14 .pos 555.0 555.5)

(setval 14 .intensity 10.0)

(setlimits 14 .intensity 0.01 100.0)

(couple wingl4.pos = 14.pos + d.wingshift)

(couple wingl4.intensity (* 14.intensity d.wingfactor))

Listing B.3: Model for deuterium recombination spectra (Balmer series) observed in
the JET divertor (Section 5.3)

(model balmer_kt3a_70578

(+
(voigtian d10t2)
(voigtian dl11t2)
(voigtian d12t2)
(voigtian d13t2)
(voigtian d14t2)
(voigtian d15t2)
(voigtian d16t2)
(gaussian gl)
(gaussian g2)
(gaussian g3)
(gaussian g4)
(gaussian g5)
(gaussian g6)
(gaussian g7)
(gaussian oiiia)
(gaussian oiiib)
(gaussian oiiic)
(gaussian be3a)
(gaussian be3b)
(gaussian be3c)
(gaussian g8)
(background—-linear backg)

162

(dummy d)

(setval backg.m —1.0e9)
(setlimits backg.m —-6.0e9 —1.0e7)

(setval backg.c 1.0el0)
(setlimits backg.c 1.0e9 4.0el0)

(setval d.dens 2.0e20)
(log d.dens)
(setlimits d.dens 1.0el19 8.0d20)

(couple d10t2.fwhml (x (/ (x 0.00139 (° (x d10t2.pos
(" d.dens (/ 2.0 3.0)) (- (* 10.0 2) (* 2.0 2)))
(couple d11t2.fwhml (+ (/ (* 0.00139 (° (% d11t2.pos
(" d.dens (/ 2.0 3.0)) (- (° 11.0 2) (* 2.0 2)))
(couple d12t2.fwhml (x (/ (+* 0.00139 (° (x d12t2.pos
(" d.dens (/ 2.0 3.0)) (- (* 12.0 2) (* 2.0 2)))
(couple d13t2.fwhml (x (/ (* 0.00139 (° (* d13t2.pos
(" d.dens (/ 2.0 3.0)) (- (* 13.0 2) (* 2.0 2)))
(couple d14t2.fwhml (* (/ (* 0.00139 (~ (x dl14t2.pos
(" d.dens (/ 2.0 3.0)) (- (* 14.0 2) (* 2.0 2)))
(couple d15t2.fwhml (* (/ (+* 0.00139 (° (x d15t2.pos
(" d.dens (/ 2.0 3.0)) (- (* 15.0 2) (* 2.0 2)))
(couple d16t2.fwhml (* (/ (x 0.00139 (° (* d16t2.pos
(" d.dens (/ 2.0 3.0)) (- (* 16.0 2) (* 2.0 2)))

(setval d10t2.pos 379.7) 10->2 379.826
(setval d11t2.pos 377.099) 11->2 377.099
(setval d12t2.pos 375.051) 12->2 375.051
(setval d13t2.pos 373.472) 13->2 373.472
(setval dl14t2.pos 372.229) 14->2 372.229
(setval d15t2.pos 371.232) 15->2 371.232
(setval dl16t2.pos 370.4) 16—>2 370.4

(couple dl1t2.pos (+ (° (/ 11.0 10.0) 2) (/ (- (° 10.

(= (¢~ 11.0 2) (* 2.0 2))) d10t2.pos))

(couple d12t2.pos (+ (°~ (/ 12.0 10.0) 2) (/ (- (° 10.

(= (12.0 2) (" 2.0 2))) d10t2.pos))

(couple d13t2.pos (+ (°~ (/ 13.0 10.0) 2) (/ (- (° 10.

(= (13.0 2) (" 2.0 2))) d10t2.pos))

(couple dl14t2.pos (+ (°~ (/ 14.0 10.0) 2) (/ (- (° 10.

(= (C 14.0 2) (* 2.0 2))) d10t2.pos))

(couple d15t2.pos (* (° (/ 15.0 10.0) 2) (/ (= (° 10.

(= (15.0 2) (" 2.0 2))) d10t2.pos))

(couple d16t2.pos (+ (° (/ 16.0 10.0) 2) (/ (- (* 10.

(= (" 16.0 2) (* 2.0 2))) d10t2.pos))

(setlimits d10t2.pos 379.0 381.0)
(setlimits dl11t2.pos 376.0 378.0)
(setlimits dl12t2.pos 374.0 376.0)
(setlimits d13t2.pos 373.0 374.0)
(setlimits dl14t2.pos 371.5 372.5)
(setlimits d15t2.pos 371.0 371.5)
(setlimits d16t2.pos 370.1 371.0)

163

le-9) 2)

1.8836516e09) 1e9))

le-9) 2)

1.8836516e09) 1e9))

le-9) 2)

1.8836516e09) 1e9))

le-9) 2)

1.8836516e09) 1e9))

le-9) 2)

1.8836516e09) 1e9))

le-9) 2)

1.8836516¢e09) 1e9))

le-9) 2)

1.8836516e09) 1e9))

2))

2))

2))

2))

2))

2))

(setval d10t2
(setval dl11t2
(setval dl12t2
(setval d13t2
(setval d14t2
(setval d15t2
(setval d16t2

(setval d10t2
(setval d11t2
(setval d12t2
(setval d13t2
(setval d14t2
(setval d15t2
(setval dl16t2.

(setval dl10t2.
(setval d11t2.
(setval dl12t2.
(setval dl13t2.
(setval d14t2.
(setval d15t2.
(setval d16t2.

(setmin d10t2.
(setmin d11t2.
(setmin d12t2.
(setmin d13t2.
(setmin d14t2.
(setmin d15t2.
(setmin d16t2.

(setlimits
(setlimits
(setlimits
(setlimits
(setlimits
(setlimits
(setlimits

(setlimits
(setlimits
(setlimits
(setlimits
(setlimits
(setlimits
(setlimits

(couple dl1t2
(couple dl12t2
(couple d13t2
(couple dl4t2
(couple d15t2
(couple d16t2

d10t2
dl1t2
d12t2
d13t2
d14t2
d15t2
d16t2

d10t2
dl1t2
d12t2
d13t2
d14t2
d15t2

.fwhmg
.fwhmg
.fwhmg
.fwhmg
.fwhmg
.fwhmg
.fwhmg

.fwhml
. fwhml
. fwhml
. fwhml
. fwhml
.fwhml
fwhml

area
area
area
area
area
area
area

area
area
area
area
area
area

area

S O O O O o o S ©O © © © © O

N B~ B~ O 0 = N

.0
.0
.0
.0
.0
.0
.0

. fwhmg
. fwhmg
.fwhmg
.fwhmg
.fwhmg
.fwhmg
.fwhmg

. fwhml
. fwhml
. fwhml
. fwhml
. fwhml
. fwhml
d16t2.

fwhml

.fwhmg =
.fwhmg =
.fwhmg =
.fwhmg =
.fwhmg =
.fwhmg =

(setval gl.pos 381.3)

.08)
.08)
.08)
.08)
.08)
.08)
.08)

1)
1)
1)
1)
1)
1)
1)

e9)
e9)
e9)
e9)
e9)
e9)
e9)

S © ©O O O O O

S O O O O © O

d10t2.
d10t2.
d10t2.
d10t2.
d10t2.
d10t2.

10->2
11->2
12->2
13—>2
14->2
15->2
16—>2

10

->2

11->2

12
13
14
15
16

0ell)
0ell)
.0el0)
.0el0)
.0el0)
.0el0)
.0el10)

—>2
—>2
—>2
—>2
—>2

10->2
11->2
12->2
13->2
14->2
15->2
16->2

10->2
11->2
12—>2
13—>2
14—>2
15->2
16—>2

.02

02
02
02
02

.02
.02

.01
.01

01
01
01
01

.01

.0)
.0)
.0)
.0)
.0)
.0)
.0)

[SSJ N [R NS RN (SRR (SR

.0)
.0)
.0)
.0)
.0)
.0)
.0)

BN NN NN NN

10->2
11->2
12->2
13->2
14->2
15->2
16—>2

10—>2
11->2
12->2
13->2
14->2
15->2
16—>2

fwhmg)
fwhmg)
fwhmg)
fwhmg)
fwhmg)
fwhmg)

Be I 3813.454

164

(setlimits

(setval gl.

(setlimits

(setval gl

(setval g2.

(setlimits

(setval g2.

(setlimits

(couple g2.

(setval g3
(setlimits

(setval g3.

(setlimits
(couple g3

(setval g4.

(setlimits

(setval g4.

(setlimits

(couple g4.

(setval g5
(setlimits

(setval g5.

(setlimits
(couple g5

(setval g6
(setlimits

(setval g6.

(setlimits

(couple g6.

(setval g7

(setlimits

(setval g7.

(setlimits
(couple g7

(setval g8
(setlimits

(setval g8.

(setlimits
(setval g8
(setlimits

(setval
(setlimits
(setval

(setval

(couple
(setval
(setval

.fwhm =

oiiia.pos

oiiia .

oiiia
oiiib

oiiib .

oiiib

gl.pos 381.0 381.5)
area 1.0e8)

gl.area 1.0e7 1.0e9)
.fwhm 0.10)

pos 379.13)

g2 .pos 378.0 380.0)
area 2.0e9)

g2.area 1.0e8 1.0el0)
fwhm = oiiia .fwhm)
.pos 377.4015)

g3 .pos 377.0 378.0)
area 1.0e9)

g3.area 1.0e8 7.0e9)
.fwhm = oiiia .fwhm)
pos 374.9075)

g4 .pos 374.0 376.0)
area 2.0e9)

g4 .area 1.0e8 1.0el0)
fwhm = oiiia .fwhm)

.pos 373.6792)

g5.pos 373.0 374.0)
area 9.0e8)

1.0e8 1.0el0)
oiiia .fwhm)

g5.area

.pos 372.9161)

g6.pos 372.0 375.0)
area 9.0e8)

g6.area 1.0e8 1.0el0)
fwhm = oiiia .fwhm)
.pos 370.3291)

g7 .pos 370.0 371.0)
area 9.0e8)

g7.area 1.0e8 1.0el0)
.fwhm = oiiia.fwhm)
.pos 381.3657)

g8 .pos 381.0 382.0)
area 2.0e9)

g8.area 1.0e8 1.0el0)
.fwhm 0.1)

g8 .fwhm 0.02 0.5)

375.987)
oiiia.pos 375.0 377.0)
1.0e9)

fwhm 0.1)

arca

.pos (— oiiia.pos 0.266))
area 1.0e9)

.fwhm 0.1)

O III 3791.26
O III 3774.026
Be II 3749.3
o 1V 3736.85
OIII 3729.225
O III 3703.37

O IIT 3 759.87

O III 3 757.21

165

(couple oiiic.pos (-

(setval oiiic.area 1.0e9)

(setval oiiic.fwhm 0.1)

oiiia.pos 0.520)) O III 3 754.67

(couple gl.fwhm = oiiia.fwhm)

(couple oiiib.fwhm = oiiia.fwhm)

(couple oiiic.fwhm =

(setval be3a.pos 372.092)
(setval be3a.area 1.0ell)
(setval be3a.fwhm 0.05)

(setval be3b.pos 372.14)
(setval be3b.area 5.0el0)
(setval be3b.fwhm 0.05)

(setval be3c.pos 372.298)
(setval be3c.area 5.0el0)
(setval be3c.fwhm 0.05)

(setlimits
(setlimits
(setlimits

(setlimits
(setlimits
(setlimits
(setlimits

(setlimits
(setlimits
(setlimits

(setlimits

(setlimits

oiiia .fwhm)

Be III 3720.92

Be III 3721.4

Be III 3722.98

oiiia.area 1.0e8 1.0el0)
oiiib.area 1.0e8 1.0el0)
oiiic.area 1.0e8 1.0el0)

gl.fwhm 0.02 0.3)

oiiia.fwhm 0.02
0iiib .fwhm 0.02
oiiic .fwhm 0.02

be3a.area 1.0e7
be3b.area 1.0e7

be3c.area 1.0e7

oiiia.pos 375.5

0.3)
0.3)
0.3)

8.0ell)
8.0ell)
8.0ell)

376.5)

be3a.pos 371.8 372.2)

(setlimits be3a.fwhm 0.02 0.2)
(couple be3db.fwhm = be3a.fwhm)

(couple be3c
(couple be3db.pos
(couple be3c

.fwhm = be3a.fwhm)
be3a.pos + 0.048)
.pos = be3a.pos + 0.206)

Listing B.4: Model for C I Zeeman split feature observed in JET divertor (Section 5.4)

(model zeeman

(+

(shift —lambda

(broaden_gauss

(adas—zeeman cizeemanpi)

(+
(*
bgpi)
cimultpi)
(3

(broaden_gauss

(adas—zeeman cizeemansig)

166

bgsig)
cimultsig)

sh)
(background—-linear backg)

(setval sh.lambda 0.01)
(setval backg.m -8.0e9)
(setval backg.c 1.0ell)

(setval bgpi.fwhm 0.1)
(setlimits bgpi.fwhm 0.05 1.0)

(setval cizeemanpi.findex 15)

(setval cizeemanpi.obsangle 90.0)

(fixed cizeemanpi.obsangle)

(setval cizeemanpi.bvalue 2.0)

(setlimits cizeemanpi.bvalue 1.0 4.0)
(setval cizeemanpi.pol 2)

(setval cimultpi.factor 1.0el3)
(setlimits cimultpi.factor 1.0ell 1.0el5)

(setval bgsig.fwhm 0.1)
(setlimits bgsig.fwhm 0.05 1.0)
(couple bgsig.fwhm = bgpi.fwhm)

(setval cizeemansig.findex 15)

(setval cizeemansig.obsangle 90.0)

(fixed cizeemansig.obsangle)

(setval cizeemansig.bvalue 2.0)

(setlimits cizeemansig.bvalue 1.0 4.0)

(couple cizeemansig.bvalue = cizeemanpi.bvalue)
(setval cizeemansig.pol 3)

(setval cimultsig.factor 1.0el3)

(setlimits cimultsig.factor 1.0ell 1.0el5)

Listing B.5: Model for overlapping high/low field C III Zeeman feature as seen at JET
(Section 5.4)

(model zeeman
(+
(shift —lambda
(broaden_gauss
(+
(* (adas—zeeman ciiilowpi)ciiilowpimult)
(* (adas—zeeman ciiilowsigma)ciiilowsigmamult)
low_add)
bgl)
shl)
(shift —lambda
(broaden_gauss
(+
(¥ (adas—zeeman ciiihighpi) ciiihighpimult)
(* (adas—zeeman ciiihighsigma) ciiihighsigmamult)

167

high_add)
bg2)
sh2)
(background—-linear backg)
add)

(setval shl.lambda 0.01)
(setlimits shl.lambda 0.0 0.05)
(setval sh2.lambda 0.01)
(setlimits sh2.lambda 0.0 0.05)

(setval backg.c 50.0)
(setlimits backg.c 0.0 200.0)
(setval backg.m 0.0001)
(setlimits backg.m 0.0 100.0)

(setval bgl.fwhm 0.02)
(setlimits bgl.fwhm 0.01 0.04)
(setval bg2.fwhm 0.02)
(setlimits bg2.fwhm 0.01 0.04)

H##HHH S H AR AR R A R
zeeman features
H##HHH A AR R A R
(setval ciiilowpi.findex 28)
(setval ciiilowpi.obsangle 90.0)
(fixed ciiilowpi.obsangle)
(setval ciiilowpi.bvalue 1.9)
(setlimits ciiilowpi.bvalue 1.7 2.0)
(setval ciiilowpimult.factor 1000.0)
(setlimits ciiilowpimult.factor 1.0 3000.0)

(setval ciiilowpi.pol 2)

(setval ciiilowsigma.findex 28)

(setval ciiilowsigma.obsangle 90.0)

(fixed ciiilowsigma.obsangle)

(couple ciiilowsigma.bvalue = ciiilowpi.bvalue)
(setval ciiilowsigmamult. factor 1000.0)
(setlimits ciiilowsigmamult. factor 1.0 3000.0)
(setval ciiilowsigma.pol 3)

(setval ciiihighpi.findex 28)

(couple ciiihighpi.obsangle = ciiilowpi.obsangle)
(setval ciiihighpi.bvalue 3.8)

(setlimits ciiihighpi.bvalue 3.0 4.5)

(setval ciiihighpimult.factor 1000.0)

(setlimits ciiihighpimult.factor 1.0 3000.0)
(setval ciiihighpi.pol 2)

(setval ciiihighsigma.findex 28)
(couple ciiihighsigma.obsangle = ciiilowsigma.obsangle)
(couple ciiihighsigma.bvalue = ciiihighpi.bvalue)
(couple ciiihighsigmamult. factor
(* ciiithighpimult. factor
(/ ciiilowsigmamult. factor ciiilowpimult.factor)))
(setlimits ciiithighsigmamult. factor 1.0 3000.0)

168

‘ (setval ciiihighsigma.pol 3)

Listing B.6: Model for BeD diatomic molecular emission from JET divertor (Section
5.5)

(model molecule

(+
(broaden_gauss
(*(shift -lambda (adas—picket bed)sh) mult)
bg)
(broaden_gauss
(#(shift —-lambda (adas—picket bed2)sh2) mult2)

bg2)
(background—linear backg)
(gaussian fei49705)
(gaussian fei49731)
(gaussian fei49786)
(gaussian fei49825)
(gaussian fei49833)
(gaussian fei49838)
(gaussian fei49853)
(gaussian fei49889)
(gaussian fei49922)

)
(dummy fei)

(setval fei.fwhm 0.03)

(setval fei49705.pos 497.14958) 497.04958
(setlimits fei49705.pos 497.1 497.2)
(couple fei49705 .fwhm = fei.fwhm)

(setval fei49705.area 55.0)

(setval fei49731.pos 497.41016) 497.31016
(setlimits fei49731 .pos 497.38 497.45)
(couple fei49731 .fwhm = fei.fwhm)

(setval fei49731.area 162.0)

(setval fei49786.pos 497.96030) 497.86030
(setlimits fei49786 .pos 497.9 498.0)
(couple fei49786 .fwhm = fei.fwhm)

(setval fei49786.area 105.0)

(setval fei49825.pos 498.34996) 498.24996
(setlimits fei49825.pos 498.3 498.4)
(couple fei49825.fwhm = fei.fwhm)

(setval fei49825.area 615.0)

(setval fei49833.pos 498.42504) 498.32504
(setlimits fei49833 .pos 498.4 498.5)
(couple fei49833 .fwhm = fei.fwhm)

(setval fei49833.area 325.0)

169

(setval fei49838 .pos 498.48256) 498.38256
(setlimits fei49838 .pos 498.44 498.5)
(couple fei49838 .fwhm = fei.fwhm)

(setval fei49838.area 445.0)

(setval fei49853.pos 498.62526) 498.52526
(setlimits fei49853 .pos 498.6 498.7)

(couple fei49853 .fwhm = fei.fwhm)

(setval fei49853 .area 360.0)

(setval fei49889 .pos 498.99498) 498.89498
(setlimits fei49889 .pos 498.9 499.05)
(couple fei49889 .fwhm = fei.fwhm)

(setval fei49889.area 144.0)

(setval fei49922.pos 499.22680) 499.12680
(setlimits fei49922 .pos 499.2 499.25)
(couple fei49922 .fwhm = fei.fwhm)

(setval fei49922.area 140.0)

(setval backg.m -10.0)
(setval backg.c 1506.6)
(setlimits backg.c 1000.0 2500.0)

(setval bg.fwhm 0.03)
(setlimits bg.fwhm 0.01 0.1)
(fixed bg.fwhm)

(couple bg2.fwhm = bg.fwhm)

(setval sh.lambda 0.18) 1.87
(setlimits sh.lambda 0.0 0.3)

(setval mult. factor 5000.0)
(setlimits mult. factor 1000.0 15000.0)

(setval bed.rtemp 2200.0)

(setlimits bed.rtemp 1000.0 10000.0)
(setval bed.vtemp 8000.0)

(setlimits bed.vtemp 1000.0 12000.0)
(setval bed.a 0.1)

(setlimits bed.a 0.01 0.99999999)
(setval bed.b 0.1)

(setlimits bed.b 0.01 0.99999999)
(setval bed.c 0.1)

(setlimits bed.c 0.01 0.99999999)
(setval bed.d 0.1)

(setlimits bed.d 0.01 0.99999999)

(setval sh2.lambda 0.24)
(setlimits sh2.lambda 0.0 0.3)

(setval mult2.factor 5000.0)
(setlimits mult2. factor 1000.0 15000.0)

(setval bed2.rtemp 3000.0)
(setlimits bed2.rtemp 1000.0 9000.0)

170

(setval bed2.vtemp 3000.0)
(setlimits bed2.vtemp 1000.0 9000.0)

(setval bed2.a 0.1)
(setlimits bed2.a 0.01 0.99999999)
(setval bed2.b 0.1)
(setlimits bed2.b 0.01 0.99999999)
(setval bed2.c 0.1)
(setlimits bed2.c 0.01 0.99999999)
(setval bed2.d 0.1)
(setlimits bed2.d 0.01 0.99999999)

Listing B.7: Model for C III / C IV emission in the V / UV region as observed at JET
(Section 5.6)

(model
(+
(shift —lambda
(broaden_gauss (* (+(adas—adflSarchive carbon2)) mult2) bg2)
shift2)
(shift —lambda
(broaden_gauss (* (+(adas—adflSarchive carbon3)) mult3) bg3)
shift3)
(background—-linear backg)
(voigtian heii304)
(gaussian 0ii312)

(setval o0ii312.pos 31.386)
(setlimits o0ii312.pos 31.0 31.5)
(setval o0ii312.fwhm 0.1)

(setmin 0ii312 .fwhm 0.05)

(setval o0ii312.area 1.0e4)
(setlimits o0ii312.areca 1.0e3 1.0e5)

(setval heii304.pos 30.5)

(setval heii304 .fwhmg 0.05)
(setlimits heii304 .fwhmg 0.03 0.8)
(setval heii304 .fwhml 0.05)
(setlimits heii304 .fwhml 0.03 0.8)
(setval heii304.area 5.0e4)
(setlimits heii304.area 1.0e4 1.0e5)

(setval shift2.lambda 0.15)
(setlimits shift2.lambda 0.1 0.25)

(setval shift3 .lambda 0.15)
(setlimits shift3 .lambda 0.1 0.2)

(setval backg.c 6.0e4)
(setlimits backg.c 5.0e4 1.2e5)
(setval backg.m 0.0)

(setlimits backg.m —-200 0.0)

(setval carbon2.te 10.0)

171

(setlimits carbon2.te 5.0 20.0)
(setval carbon2.dens 5.0el3)
(setlimits carbon2.dens 1.0el3 2.2el4)

(setval carbon2.filenames /home/cnich/afg/examples/c2_pec.pass)

(setval carbon3.te 20.0)

(setlimits carbon3.te 5.0 40.0)

(setval carbon3.dens 5.0el3)

(setlimits carbon3.dens 1.0el3 2.2¢el4)

(setval carbon3.filenames /home/cnich/afg/examples/c3_pec.pass)

(setval bg2.fwhm 0.07)
(setlimits bg2.fwhm 0.03 0.3)

(setval bg3.fwhm 0.07)
(setlimits bg3.fwhm 0.03 0.3)

(setval mult2.factor 2.0el3)
(setlimits mult2. factor 1.0el3 5.0el4)

(setval mult3.factor 8.0el2)
(setlimits mult3. factor 5.0el2 3.0el3)

172

Appendix C

FF'S Simplification Rules

This appendix displays an extract of the current ffs_simplify source code, showing the

IDL structures that define the rule list used when optimising a model definition.

Listing C.1: IDL source showing the FES simplification rules structure.

; FFS_.BROADEN_GAUSSIAN

{parent:’ ffs_broaden_gauss ’, $
child:’ ffs_gaussian ’, $
replacement:’ ffs_gaussian ’, $
coupling : ptr_new ([$
[’pos’, ’(child.pos
["fwhm’, °(° (+ (

)1, $
parent.fwhm 2) (°

[>area’, ’(child.area)’] $

1 $
1, $
{parent:’ ffs_broaden_gauss ’, §
child:’ ffs_lorentzian ’, $
replacement:’ ffs_voigtian ’, $
coupling : ptr_new ([$

[’pos’, ’(child.pos)’], $
[’fwhmg’, ’(parent.fwhm)’], $
[’fwhml’, ’(child.fwhm)’], $
[area’, ’(child.area)’] $
s

b, $

{parent:’ ffs_broaden_gauss ’, $

child:’ ffs_broaden_lorentz °, $

replacement:’ ffs_broaden_voigt’, $

coupling : ptr_new ([$

['fwhmg’, ’(parent.fwhm)’], $

[’fwhml’, ’(child.fwhm)’] $
1) $
b, $
{parent:’ ffs_broaden_gauss ’, §
child:’ ffs_voigtian *, $
replacement:’ ffs_voigtian ’, $

173

child .fwhm 2)) 0.5)°],

$

coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhmg’, ’(° (+ (° parent.fwhm 2) (° child.fwhmg 2)) 0.5)°’], $
[’fwhml’, ’(child.fwhml)’], $
[*area’, ’(child.area)’] $
D $
b, $
{parent:’ ffs_broaden_gauss ’, $
child:’ ffs_line ’, $
replacement:’ ffs_gaussian’, §
coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhm’, ’(parent.fwhm)’], $
[*area’, ’(child.intensity)’] $
D38
b, $

B

; FES.BROADEN_LORENTZ

{parent:’ ffs_broaden_lorentz ’, $
child:’ ffs_lorentzian ', $
replacement:’ ffs_lorentzian ’, $
coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhm’, °(+ parent.fwhm child.fwhm)’], $
[>area’, ’(child.area)’] $
1 $
b, $
{parent:’ ffs_broaden_lorentz ’, $
child:’ ffs_gaussian’, $
replacement:’ ffs_voigtian ', $
coupling: ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhmg’, ’(child.fwhm)’], $
[’fwhml’, ’(parent.fwhm)’], $
[*area’, ’(child.area)’] $
8
b, $
{parent:’ ffs_broaden_lorentz ’, $
child:’ ffs_voigtian ’, $
replacement:’ ffs_voigtian ’, $
coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[fwhmg’, ’(child.fwhmg)’], $
[’fwhml’, °(+ parent.fwhm child.fwhml)’], $
[>area’, ’(child.area)’] $
D38
b, $
{parent:’ ffs_broaden_lorentz ’, $
child:’ ffs_line ’, $
replacement:’ ffs_lorentzian ’, $
coupling: ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhm’, ’(parent.fwhm)’], $
[*area’, ’(child.intensity)’] $
1) $

174

B

; FFS_.BROADEN_VOIGTIAN

5

B

{parent:’ ffs_broaden_voigt’, $
child:’ ffs_voigtian *, $
replacement:’ ffs_voigtian ’, $
coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhml’, °(+ parent.fwhml child.fwhml)’], $
["fwhmg’, °(° (+ (° parent.fwhmg 2) (° child.fwhmg 2)) 0.5)°], $
[>area’, ’(child.area)’] $
1D $
1, $
{parent:’ ffs_broaden_voigt’, §
child:’ ffs_gaussian ’, $
replacement:’ ffs_voigtian ', $
coupling: ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhml’, ’(parent.fwhml)’], $
["fwhmg’, *(° (+ (° parent.fwhmg 2) (° child.fwhm 2)) 0.5)°], $
[*area’, ’(child.area)’] $
s
b, $
{parent:’ ffs_broaden_voigt’, $
child:’ ffs_lorentzian °, $
replacement:’ ffs_voigtian’, §
coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhml’, °(+ parent.fwhml child.fwhm)’], $
[’fwhmg’, ’(parent.fwhmg)’], $
[>area’, ’(child.area)’] $
D38

b, o8
{parent:’ ffs_broaden_voigt’, $

child:’ ffs_line ', $

replacement:’ ffs_voigtian ’, $

coupling: ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhml’, ’(parent.fwhml)’], $
[fwhmg’, ’(parent.fwhmg)’], $
[>area’, ’(child.intensity)’] $

1 $
1, $

B

; FFS_.MULTIPLY

>

{parent:’ ffs_multiply >, $

child:’ ffs_gaussian ’, $

replacement:’ ffs_gaussian ’, §

coupling: ptr_new ([$
[’pos’, ’(child.pos)’], $
[fwhm’, ’(child.fwhm)’], $
[*area’, ’(x child.area parent.factor)’] $

D $

b, $

{parent:’ ffs_multiply *, $

child:’ ffs_lorentzian >, $

175

replacement:’ ffs_lorentzian ’, §
coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhm’, °(child.fwhm)’], $
[*area’, ’(x child.area parent.factor)’] $
1) $
1, $
{parent:’ ffs_multiply *, $
child:’ ffs_voigtian >, $
replacement:’ ffs_voigtian ', §
coupling : ptr_new ([$
[’pos’, ’(child.pos)’], $
[’fwhmg’, ’child.fwhmg)’], $
[’fwhml’, ’(child.fwhml)’], $
[>area’, ’(x child.area parent.factor)’] $

D $

176

Appendix D

FFS Core Routine Methods

The following listings are extracts from the core routines’ documentation headers.

These are provided to show a summary of the methods associated with these classes.

Listing D.1: Public methods for class ffs_primitive

PUBLIC ROUTINES:

[seterrmsg]

PURPOSE :

Sets state variable errmsg with input error message string
INPUTS :

errmsg — String. The error message to set.

obj — Keyword. Indicates object return type to be used.
OUTPUTS :

Output is different, depending upong keywords set in method
call , but will be a typical error value for that type of variable (this
is for convienent use of the routine in the return statement of the
originating method).
If the ’obj’ keyword is set:
Object reference. Null object reference.
Default:
Integer. returns O.
SIDE EFFECTS:

None.

[geterrmsg]
PURPOSE :
Returns the currently set error message string.
INPUTS :
None
OUTPUTS:
String — returns the currently set error message string.
SIDE EFFECTS:
None

[setdebug]

PURPOSE:
Sets debug flag.

INPUTS :

177

Integer — 1 or O.
OUTPUTS:

Returns 1 if successful.

Returns O if unsuccessful.
SIDE EFFECTS:

None

[getdebug]
PURPOSE :
Returns value of debug flag.
INPUTS :
None .
OUTPUTS :
Integer — 1 or O.
SIDE EFFECTS:
None

Listing D.2: Public methods for class ffs_model

PUBLIC ROUTINES :

In addtion to the methods listed below, this object inherits methods from
ffs_primitive — refer to this class’ documentation for more details.

[mpfunct]

PURPOSE :
function for mpfit to use for evaluating the function
since it can’t access the methods of the model object.

INPUTS :

X - the independent variable.

p - parameter values.

modelobj - object reference of the model to be used for calculation.
OUTPUTS::

Returns the modelled intensity values.
SIDE EFFECTS:
None .
[iselement]
PURPOSE :
Checks if input array elements are ffs_element object references.
INPUTS :
Object reference to check.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
[ispar]
PURPOSE:
Checks if input array elements are ffs_par object references.
INPUTS :
Object reference to check.
OUTPUTS::
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
[getxdata]
PURPOSE :

Retrieves the object’s xdata.

178

INPUTS :
None .
OUTPUTS::
double; array comprising the x—axis data points.
SIDE EFFECTS:
None .
[setxdata]
PURPOSE :
Sets the wavelength grid that this model is intended to be placed upon
(This is not the same as ’wavelength’ field in calculate structure).
INPUTS :
double; array comprising the x—axis data points.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[setparfixed]
PURPOSE :
Sets specified parameters in specified elements to be fixed.
INPUTS :
integer (boolean); set to fix parameter.
Keywords to be passed to getpars to specify pars: elementname, position
parname , parpos, count, free, fixed, fullname.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getparfixed]
PURPOSE:
Retrieves the array of pars via method getPars then uses their getFixed
method to retrieve the value of ’fixed’ for each par.
INPUTS :
Keywords to be passed to getpars to specify pars: elementname, position
parname , parpos, count, fullname.
OUTPUTS::
integer; array of ’fixed’ flag values (0 or 1).
SIDE EFFECTS:
None .
[setparerrors |
PURPOSE:
Sets the error attribute for the specified parameters.
INPUTS :
double; the error associated with the parameter value.
Keywords to be passed to getpars to specify pars: elementname, position ,
parname, parpos, count, free, fixed, fullname.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getparerrors]
PURPOSE :
Retrieves the array of pars via method getPars then uses their geterror

179

s

method to retrieve the value of ’error
INPUTS :

Keywords to be passed to getpars to specify pars: elementname, position

for each par.

parname , parpos, count, fullname=fullname
OUTPUTS::
Returns the errors for the specified pars.
SIDE EFFECTS:
None .
[setparvals]
PURPOSE:
Retrieves the array of parameters via method getPars then uses their
setValue methods to set appropriate value in the parameter value array
passed in ’parVals’
INPUTS :
if for fitting ffs_pars (/fitting) — then double; array of par values.
if for non-fitting ffs_props (/static) — then any type can be set as value.
Keywords to be passed to getpars to specify pars: elementname, position ,
parname , parpos, static , fitting , fixed, free, fullname.
OUTPUTS::
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getparvals]
PURPOSE :
Retrieves the array of parameters via method getPars then uses their
getValue methods.
INPUTS :
Keywords to be passed to getpars to specify pars: elementname, position
parname , parpos, static , fitting , fixed, free, fullname.
OUTPUTS :
If for fitting ffs_pars (/fitting) — then double; array of par values.
If for non—fitting ffs_props (/static) — then pointer array to various
types.
Keyword ’count’ supplies the number of par values returned.
SIDE EFFECTS:
None .
[setpars]
PURPOSE :
Clears existing parameters and adds the new parameters passed in, for
specified elements.
INPUTS :
object reference; array of ffs_par objects.

>

Keywords ’elementname’ and ’position’ specify elements to setpars for;
default is for all elements.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getpars]
PURPOSE :
Retrieves the specified element’s parameter objects.
INPUTS :
Keywords to specify which pars are required:

180

elementname — string ; array of elementnames.

position - integer; position of element in container.

parname - string ; array of par names.

parpos - integer; position in par container.

count — integer; (outward); the number of elements returned.

static — integer (boolean); set to return only ffs_props in the element.

i.e. properties of the element that are non—fitting
parameters .
fitting = integer (boolean); set to only return the ffs_pars in
the element i.e. the fitting parameters.
Setting no keywords will default to returning all parameters.
OUTPUTS :
object reference; array of ffs_par objects
SIDE EFFECTS:
None .
[getnumpars]
PURPOSE:
Returns the number of pars in the specified element (can filter by
/static , /fitting).
INPUTS :
Keywords to be passed to getpars to specify pars: elementname, position ,
static , fitting.
OUTPUTS :
integer; the number of pars in the element.
SIDE EFFECTS:
None .
[getparindex]
PURPOSE:
Return the index of the parameter, specified by elementname and parname
(both are required), in the flattened list of all of the model’s

parameters.
INPUTS :
elementname - the element to which the specified parameter belongs.
parname - the parameter from which to obtain the index.
OUTPUTS:
integer; the index of the parameter in a flattened list of the model
parameters .
SIDE EFFECTS:
None .

[getparnames]
PURPOSE :
Retrieves the names of the parameters for those specified by:
containing element’s name or position and optionally by par position.
It is also possible to filter fitting pars and static properties.
INPUTS :
Keywords to specify pars:

elementname - string ; array of elementnames.

position - integer; position of element in container.

parpos - integer; position in par container.

static - integer (boolean); set to return only ffs_props in the

i.e. properties of the element that are non-fitting
parameters .

fitting — integer (boolean); set to only return the ffs_pars in
the element i.e. the fitting parameters.

181

element

Setting no keywords will default to returning all par names.
OUTPUTS:
string; array of parnames.
SIDE EFFECTS:
None .
[getnumelements]
PURPOSE :
Returns the number of pars in the element (can filter by /static , /fitting).
INPUTS :
Keywords to be passed to getpars to specify pars: static, fitting.
OUTPUTS :
integer; the number of pars in the element.
SIDE EFFECTS:
None .
[getelements]
PURPOSE:
returns an array of the elements stored within the container.
setting the postion or name keywords allows retrieval of specific elements.
by default, without supplying any keywords, the method will return ALL
elements. Outward keyword count supplies the number of parameters in the

container .
INPUTS :
Keywords to specify elements:
all - integer (switch); enable to return all element
position = integer; position of element in container.
elementname — string ; array of elementnames.
parname = string ; name of a parameter that the sought element

should have.
count — integer; (outward); the number of elements returned.
Setting no keywords will default to returning all parameters.
OUTPUTS :
object reference; array of the specified element object references.
SIDE EFFECTS:

[getelementnames]

PURPOSE :
Retrieves the array of specified elements via method getelements then
uses their getname methods.

INPUTS :
position = integer; keyword to be passed to getelements to specify
elements .
count - integer; (outward); the number of elements returned.
OUTPUTS:

string; array of element names
SIDE EFFECTS:

[getelementtypes |
PURPOSE :
Retrieves the class type of the element specified
INPUTS :
Retrieves the array of specified elements via method getelements then

utilises ’obj_class
OUTPUTS :

to get the type of object.

182

string ; the element object class type.
SIDE EFFECTS:
None .
[addelement]
PURPOSE :
Adds an ffs_element object to the model, either by object reference or

by element name — if the latter , then a new ’ffs_element’ with that name
is created and added to the element.
INPUTS :
in - object reference; an existing ffs_element.
elementname - string ; the name of the new element to be added in.
OUTPUTS:

Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[setmodelname]
PURPOSE :
Sets the name of the model. Used to identify model at higher level in FFS.
Note that this knowingly duplicates setname functionality .
INPUTS :
String; the name of the model.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getmodelname |
PURPOSE:
Retrieves the model’s name. Note that this knowingly duplicates getname
functionality .
INPUTS :
None .
OUTPUTS::
String; the name of the model.
SIDE EFFECTS:
None .
[setname |
PURPOSE :
Sets the name of the model. Used to identify model at higher level in FFS.
Note that this knowingly duplicates setmodelname functionality .
INPUTS :
String; the name of the model.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getname]
PURPOSE :
Retrieves the model’s name. Note that this knowingly duplicates
getmodelname functionality .
INPUTS :
None .
OUTPUTS :

183

String; the name of the model.
SIDE EFFECTS:

None.

[evaluate]

PURPOSE :
Evaluates the model.
INPUTS :
memo = enables buffering of previous evaluation result and parameter
values — should improve performance during fitting.
If there has not been a change in parameter values, then this
eliminates the need for re—calculation.
OUTPUTS :
A structure containing the following fields:
wavelength — wavelength grid for intensity values.
intensity - intensity values.
gridded - whether the intensity values are mapped to a wavelength

grid or not: 1 or O.
SIDE EFFECTS:

None.

[getresult]

PURPOSE:
Returns the saved model evaluation result structure.
INPUTS :
None .
OUTPUTS:
A structure containing the following fields:
wavelength — wavelength grid for intensity values.
intensity = intensity values.
gridded - whether the intensity values are mapped to a wavelength

grid or not: 1 or O.
SIDE EFFECTS:
None .
[findpar]
PURPOSE :
Gives which element a par belongs to
INPUTS :
A par object reference.
OUTPUTS:
The name of the element which the par belongs to.
Returns —1 if the par is not found in the model.
SIDE EFFECTS:
None .
[fastsetup]
PURPOSE:
Sets cacheing state variables up so routines can use
the /fast option
INPUTS :
None
OUTPUTS::
Returns 1 if succesful.
SIDE EFFECTS:

Use of this facility assumes the model will not change

between calls (i.e. setup of coupling, limits etc. etc.)

184

Listing D.3: Public methods for class ffs_element

PUBLIC ROUTINES:
In addtion to the methods listed below, this object inherits methods from ffs_primitive
— refer to this class’ documentation for more details.
[ispar]
PURPOSE :
Checks if input array elements are ffs_par object references.
INPUTS :
Object reference to check.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[isprop]
PURPOSE :
Checks if input array elements are ffs_prop object references.
INPUTS :
Object reference; the references to check.
OUTPUTS::
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[setxdata]
PURPOSE :
Sets the wavelength grid that this feature is intended to be placed upon
(This is not the same as ’wavelength’ field in calculate structure).
INPUTS :
double; array comprising the x—axis data points.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getxdata]
PURPOSE :
Retrieves the object’s xdata.
INPUTS :
None .
OUTPUTS :
double; array comprising the x—axis data points.
SIDE EFFECTS:
None .
[setname]
PURPOSE:
Sets the element’s name; used to identify element at higher level in FFS.
Note that this knowingly duplicates setelementname functionality .
INPUTS :
String; the name of the element, should be unique within a model.
OUTPUTS::

Returns a 1 or a 0 to signify success and failure respectively .

185

SIDE EFFECTS:
None .
[getname]
PURPOSE :
Retrieves the element’s name.
INPUTS :
None .
OUTPUTS :
String; the name of the element
SIDE EFFECTS:
None .
[setelementname |
PURPOSE:
Sets the element’s name; used to identify element at higher level in FFS.
Note that this knowingly duplicates setname functionality .
INPUTS :
String; the name of the element, should be unique within a model.
OUTPUTS::
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[setpars]
PURPOSE :
Clears the parcontainer and adds the new parameters passed in.
INPUTS :
object reference; array of ffs_par objects.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:

None .
[getpars]
PURPOSE :
Retrieves the element’s parameter objects.
INPUTS :
Keywords to specify which pars are required:
all = integer (boolean); set to retrieve all pars for the
element (default).
parname = string ; array of par names.
position = integer; position in par container
count — integer; (outward); the number of elements returned.
static = boolean; set to return only ffs_props in the element.

i.e. properties of the element that are non—fitting
parameters .
fitting - integer (boolean); set to only return the ffs_pars in
the element i.e. the fitting parameters.
OUTPUTS :
object reference; array of ffs_par objects
SIDE EFFECTS:
None .
[setparfixed]
PURPOSE :

Sets specified parameters in the element to be fixed.

186

INPUTS :
integer (boolean); set to fix parameter.
Keywords to be passed to getpars to specify pars: parname, position.
OUTPUTS:
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getparfixed]
PURPOSE :
Retrieves the array of pars via method getPars then uses their getFixed
method to retrieve the value of ’fixed’ for each par.
INPUTS :
Keywords to be passed to getpars to specify pars: parname, position ,
OUTPUTS :
integer; array of ’fixed’ flag values (0 or 1).
SIDE EFFECTS:
None .
[setparlimits]
PURPOSE :
Sets the (soft) limits for specified parameters in the element.
INPUTS :
double , two element array; specifies the lower/upper limits
for the parameter value (the range in which it is free to
vary during a fit).’ limited’ detailed above must be
specified together with these limits to enforce or
disable them.
Keywords to be passed to getpars to specify pars: parname, position.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getparlimits]
PURPOSE :
Retrieves the specified parameter’s (soft) limits.
INPUTS :
Keywords to be passed to getpars to specify pars: parname, position.
OUTPUTS :
double , two element array; specifies the lower/upper limits
for the parameter value (the range in which it is free to
vary during a fit).’
SIDE EFFECTS:
None .
[setparhardlimits |
PURPOSE:
Sets the hard limits for specified parameters in the element.
INPUTS :
double , two element array; specifies the lower/upper hard
limits for the parameter value. These values would normally
be set to prevent values being selected that will cause
evaluation of an FFS element to fail. These are, in a sense,
limits placed upon the other soft limits detailed above.
Keywords to be passed to getpars to specify pars: parname, position.
OUTPUTS :

187

Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getparhardlimits]
PURPOSE :
Sets the specified parameter’s hard limits.
INPUTS :
Keywords to be passed to getpars to specify pars: parname, position.
OUTPUTS :
double , two element array; specifies the lower/upper hard
limits for the parameter value. These values would normally
be set to prevent values being selected that will cause
evaluation of an FFS element to fail. These are, in a sense,
limits placed upon the other soft limits detailed above.
SIDE EFFECTS:
None .
[setparvals]
PURPOSE :
Retrieves the array of parameters via method getPars then uses their
setValue methods to set appropriate value in the parameter value array
passed in ’parVals’
INPUTS :
if for fitting ffs_pars (/fitting) — then double; array of par values.
if for non-fitting ffs_props (/static) — then any type can be set as value.
Keywords to be passed to getpars to specify pars: name/parname, position,
static , fitting.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getparvals]
PURPOSE :
Retrieves the array of parameters via method getPars then uses their
getValue methods.
INPUTS :
Keywords to be passed to getpars to specify pars: name/parname, position ,
static , fitting.
OUTPUTS :
If for fitting ffs_pars (/fitting) — then double; array of par values.
If for non—fitting ffs_props (/static) — then pointer array to various types.
Keyword ’count’ supplies the number of par values returned.
SIDE EFFECTS:
None .
[getparnames]
PURPOSE :
Retrieves the array of parameters via method getPars then uses their
getname methods.
INPUTS :
Keywords to be passed to getpars to specify pars: position, static , fitting.
OUTPUTS::
Returns a string array of the parameter names of the specified positions or all
by default.
SIDE EFFECTS:

188

[getnumpars]
PURPOSE :
Returns the number of pars in the element (can filter by /static, /fitting).
INPUTS :
Keywords to be passed to getpars to specify pars: static, fitting.
OUTPUTS :
integer; the number of pars in the element.
SIDE EFFECTS:
None .
[addpar]
PURPOSE:
If a parameter is passed in, validity of the object verified , then
added to the element. If instead keyword ’parname’ is set, then a

s

new ’ffs_par’ with that name is instantiated and added to the element.

INPUTS :
par - object reference; an existing ffs_par.
parname — string ; the name of a parameter to add.
OUTPUTS:

Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[addprop]
PURPOSE :
If a ffs_prop is passed in, validity of the object verified , then
added to the element. If instead keyword ’name’ is set, then a
new ’ffs_prop’ with that name is instantiated and added to the element.
INPUTS :

prop - object reference; an existing ffs_prop.
name - string ; the name of a property to add.
OUTPUTS :

Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .

[setchildren |

PURPOSE :

Sets the child element objects for this element.
INPUTS :

obj = object reference; the child object(s) to set.
OUTPUTS :

Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getchildren]
PURPOSE :
Retrieves the child element objects for this element.
INPUTS :
None .
OUTPUTS::
object reference; the child objects for this element.
count (keyword): Number of child objects
SIDE EFFECTS:

189

[evaluate]

PURPOSE :
Evaluates this element — generates the line profile. The result is stored
to the object as well as returned through this method.
INPUTS :
memo — enables buffering of previous evaluation result and parameter
values — should improve performance during fitting .
If there has not been a change in parameter values, then this
eliminates the need for re—calculation.
OUTPUTS :
A structure containing the following fields:
wavelength — wavelength grid for intensity values.
intensity - intensity values.
gridded - whether the intensity values are mapped to a wavelength

grid or not: 1 or O.
SIDE EFFECTS:
None .
[setsubtype]
PURPOSE :
Sets the element’s subtype; used for elements which can have
multiple behaviours (e.g. ADAS, broaden)
INPUTS :
String; the subtype of the element.
OUTPUTS:
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getsubtype]
PURPOSE:
Gets the element’s subtype; used for elements which can have
multiple behaviours (e.g. ADAS, broaden)
INPUTS :
None
OUTPUTS::
Scalar String specifying the subtype, blank string if not set.
SIDE EFFECTS:
None .
[fastsetup]
PURPOSE:
Sets cacheing state variables up so routines can use
the /fast option
INPUTS :
None
OUTPUTS :
Returns 1 if succesful.
SIDE EFFECTS:
Use of this facility assumes the model will not change

between calls (i.e. setup of coupling, limits etc. etc.)

190

Listing D.4: Public methods for class ffs_par

PUBLIC ROUTINES:

In addtion to the methods listed below,

this object inherits
— refer to this class’

methods from ffs_primitive
documentation for more details.

[setmpfitstr]
PURPOSE:

Sets all of the necessary object

of the form required by MPFIT.
INPUTS :

None .
OUTPUTS:

state data via a structure

Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:

None .
[getmpfitstr]
PURPOSE:

Retrieves all of the necessary object

required by MPFIT.
INPUTS :

None .
OUTPUTS:

state data and forms the structure

Returns an MPFIT parameter
SIDE EFFECTS:
None .

structure .

[setname]
PURPOSE:
Sets the parameter’s name; used to
Note that this
INPUTS :

identify par at higher level in FFS.

knowingly duplicates setparname functionality .

String; the name of the parameter, should be unique within a given element.
OUTPUTS :

Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:

None .
[getname]

PURPOSE :

Retrieves the parameter’s name.

INPUTS :

None .

OUTPUTS:

String; the name of the parameter.

SIDE EFFECTS:

None .

[setparname]

PURPOSE:

Sets the parameter’s name; used to
Note that this
INPUTS :

identify par at higher level in FFS.
knowingly duplicates setname functionality .
String; the name of the parameter,

should be unique within a given element.
OUTPUTS :

Returns a 1 or a 0 to signify success and failure

respectively .

191

SIDE EFFECTS:
None.

[setvalue]

PURPOSE :

Sets the parameter’s value.
INPUTS :

double; the value of the parameter.
OUTPUTS:

Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getvalue]
PURPOSE:
Retrieves the parameter’s value.
INPUTS :
None .
OUTPUTS::
double; the value of the parameter.
SIDE EFFECTS:
None .
[setfixed]
PURPOSE :
Specifies if the parameter value is allowed to vary during a fit.
INPUTS :
integer; 1 or O (true or false)
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getfixed]
PURPOSE :
Retrieves the value of ’fixed ’.
INPUTS :
None .
OUTPUTS:
integer; 1 or O (true or false)
SIDE EFFECTS:
None .
[setlimited]
PURPOSE:
Sets whether parameter has lower/upper bounds.
INPUTS :
integer , two element array with possible values 0 or 1;
to signify if the parameter is bound on lower/upper limit values
or not. e.g [0,1] indicates no bound on the low side and a bound
on the upper side.
OUTPUTS::
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .

[getlimited]

192

PURPOSE:
Retrieves the value of ’limited’
INPUTS :
None .
OUTPUTS::
integer , two element array with possible values 0 or 1;
to signify if the parameter is bound on lower/upper limit values
or not. e.g [0,1] indicates no bound on the low side and a bound
on the upper side.
SIDE EFFECTS:
None .
[setmin]
PURPOSE:
Sets the parameter’s lower (soft) limit.
INPUTS :
double; the value of the lower bound.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getmin]
PURPOSE :
Retrieves the value of the lower bound.
INPUTS :
None .
OUTPUTS :
double; the value of the lower bound.
SIDE EFFECTS:
None .
[setmax |
PURPOSE:
Sets the parameter’s upper (soft) limit.
INPUTS :
double; the value of the upper bound.
OUTPUTS::
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getmax]
PURPOSE:
Retrieves the value of the upper bound.
INPUTS :
None .
OUTPUTS :
double; the value of the upper bound.
SIDE EFFECTS:
None .
[sethardlimits]
PURPOSE :
Sets the parameter’s hard limits.
INPUTS :

double , two element array; specifies the lower/upper hard

193

limits for the parameter value. These values would normally
be set to prevent values being selected that will cause
evaluation of an FFS element to fail. These are, in a sense,
limits placed upon the other soft limits detailed above.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[gethardlimits]
PURPOSE:
Sets the parameter’s hard limits.
INPUTS :
None .
OUTPUTS :
double , two element array; specifies the lower/upper hard
limits for the parameter value. These values would normally
be set to prevent values being selected that will cause
evaluation of an FFS element to fail. These are, in a sense,
limits placed upon the other soft limits detailed above.
SIDE EFFECTS:
None .

[sethardmin]

PURPOSE :

Sets the parameter’s lower hard limit.
INPUTS :

double; the value for the lower hard limit.
OUTPUTS :

Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:

None .

[gethardmin]

PURPOSE :

Retrieves the parameter’s lower hard limit.
INPUTS :

None .
OUTPUTS:

double; the value for the lower hard limit.
SIDE EFFECTS:

None .

[sethardmax]

PURPOSE:

Sets the parameter’s upper hard limit.
INPUTS :

double; the value for the upper hard limit.
OUTPUTS :

Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[gethardmax]
PURPOSE :
Retrieves the parameter’s upper hard limit.
INPUTS :

194

None .
OUTPUTS:
double; the value for the upper hard limit.
SIDE EFFECTS:
None .
[setlimits]
PURPOSE :
Sets the parameter’s (soft) limits.
INPUTS :
double , two element array; specifies the lower/upper limits
for the parameter value (the range in which the user wishes
the par to vary during a fit). limited’ detailed above must be
specified together with these limits to enforce or
disable them.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getlimits]
PURPOSE :
Retrieves the parameter’s (soft) limits.
INPUTS :
None .
OUTPUTS:

double , two element array; specifies the lower/upper (soft) limits
for the parameter value (the range in which it is free to
vary during a fit). Note that this should not be confused with
*getefflimits ° (see below).
SIDE EFFECTS:
None .
[getefflimits]
PURPOSE :
Retrieves the parameter’s (effective) limits.
INPUTS :
None .
OUTPUTS:
double , two element array; specifies the lower/upper limits
for the parameter value (the range in which it is free to
vary during a fit). This will be the same as the soft limits

when limited is ’[1,1]°. If either soft limit is disabled, i.e.
limited is ’[0,1]°, ’[1,0]", or ’[0,0]° hard limit values will be
substituted .

SIDE EFFECTS:
None .

[setstep]
PURPOSE :
Sets the step size used for this parameter in numerical fitting.
INPUTS :
double; the iteration step size by which to alter the
parameter value. Notes: Setting zero step size means that
the step size is selected automatically. This value is
overridden when relstep (see below) is set.
OUTPUTS:

195

Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getstep]
PURPOSE :
Retrieves the step size used for this parameter in numerical fitting.
INPUTS :
None .
OUTPUTS:
double; the iteration step size by which to alter the
parameter value. Note: zero step size means that the step size is selected
automatically . This value is overridden when relstep (see below) is set.
SIDE EFFECTS:
None .
[setrelstep]
PURPOSE:
Sets the step size used for this parameter in numerical fitting ,
as a fraction of the parameter value.
INPUTS :
float; the iteration step size by which to alter the
parameter value, as a fraction of the value. Notes: This
setting overrides ’step’ if also present. A default step is
selected if the par value is zero.
OUTPUTS:
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getrelstep]
PURPOSE :
Retrieves the step size (as a fraction of the parameter value) used for
this parameter in numerical fitting ,
INPUTS :
None .
OUTPUTS::
float; the iteration step size by which to alter the
parameter value, as a fraction of the value. Note: A default step is
selected if the par value is zero.
SIDE EFFECTS:
None .
[setmpside]
PURPOSE:
Specific to mpfit; the sidedness of the finite
difference when computing numerical derivatives.
INPUTS :
integer; this field

can take four values:

0 — one-sided derivative computed automatically
1 — one-sided derivative (f(x+h) - f(x))/h
—1 — one-sided derivative (f(x) - f(x-h))/h

2 — two-sided derivative (f(x+h) — f(x-=h))/(2xh)
Where H is the STEP parameter described above. The
“automatic” one—sided derivative method will chose a
direction for the finite difference which does not

196

violate any constraints. The other methods do not
perform this check. The two-sided method is in
principle more precise, but requires twice as many
function evaluations.

OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .

SIDE EFFECTS:
None .

[getmpside]

PURPOSE:
Retrieves the value of mpside.

INPUTS :
None .

OUTPUTS :
integer; this field

can take four values:

0 — one-sided derivative computed automatically
1 — one-sided derivative (f(x+h) - f(x))/h
—1 — one-sided derivative (f(x) - f(x-h))/h

2 — two-sided derivative (f(x+h) — f(x-=h))/(2xh)
Where H is the STEP parameter described above. The
“automatic” one—sided derivative method will chose a
direction for the finite difference which does not
violate any constraints. The other methods do not
perform this check. The two-—sided method is in
principle more precise, but requires twice as many
function evaluations.
SIDE EFFECTS:
None .
[setcoupled]
PURPOSE:
Set the parameter to utilise a coupling object to determine it’s value.
INPUTS :
object reference; a coupling object.
OUTPUTS::
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getcoupled]
PURPOSE :
Retrieves the coupling object reference.
INPUTS :
None .
OUTPUTS :
object reference; a coupling object (null object signifies no coupling
or error with coupling object).
SIDE EFFECTS:
None .
[uncouple]
PURPOSE :
Destroys coupling object — uncouples this parameter.
INPUTS :
None .

197

OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[setmpmaxstep]
PURPOSE :

Sets the maximum change allowed in parameter value in one fitting

iteration .
INPUTS :
double; the maximum change to be made in the parameter value. During the

fitting process, the parameter will never be changed by more than this
value in one iteration. A value of 0 indicates no maximum.

OUTPUTS:
Returns a 1 or a 0 to signify success and failure respectively .

SIDE EFFECTS:
None .

[getmpmaxstep]
PURPOSE:

Retrieves the maximum change allowed in parameter value in one fitting

iteration .
INPUTS :
None .
OUTPUTS:
double; the maximum change to be made in the parameter value. During the

fitting process, the parameter will never be changed by more than this
value in one iteration. A value of 0 indicates no maximum.
SIDE EFFECTS:
None .
[setmpprint]
PURPOSE:
Specific to mpfit; sets whether this parameter value will be printed by
the default mpfit ’iterproc ’ that is executed each iteration.
INPUTS :
integer , 0 or 1; if set to 1, then the default ITERPROC (see mpfit) will
print the parameter value. If set to O, the parameter value will not be
printed. This tag can be used to selectively print only a few parameter
values out of many.
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:
None .
[getmpprint]
PURPOSE:
Retrieves the value of mpprint.
INPUTS :
None .
OUTPUTS :
integer , 0 or 1; if set to 1, then the default ITERPROC (see mpfit) will
print the parameter value. If set to 0O, the parameter value will not be
printed. This tag can be used to selectively print only a few parameter
values out of many.
SIDE EFFECTS:
None .

198

[setproperty]
PURPOSE:
Provides a common method for setting all object properties.
The appropriate set method is called depending upon the keyword used.
INPUTS :
There are keywords for each of the properties to set (name, parname,
value , error, fixed, limited , hardlimits , hardmin, hardmax, limits ,
step, relstep , mpside, mpmaxstep, coupled, mpprint). The appropriate
value should be supplied via these (see the individual set method for
details).
OUTPUTS :
Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
None .
[getproperty]
PURPOSE:
Provides a common method for setting all object properties.
The appropriate set method is called depending upon the keyword used.
INPUTS :
Set the appropriate keyword from the following list to retrieve the
property :
name, parname, value, error, fixed, limited, hardlimits , hardmin,
hardmax , limits , step, relstep , mpside, mpmaxstep, coupled, mpprint
OUTPUTS:
The value of the requested property (see individual get methods for details).
SIDE EFFECTS:
None .

Listing D.5: Public methods for class ffs_prop

PUBLIC METHODS:

In addtion to the methods listed below, this object inherits methods from ffs_primitive
— refer to this class’ documentation for more details.

[setname |
PURPOSE :
Sets property name.
INPUTS :
String — the name to give to the property.
OUTPUTS :
Integer — Returns 1 if successful.
Returns 0 if unsuccessful.
SIDE EFFECTS:
None
[getname]
PURPOSE :
Returns the property s name.
INPUTS :
None .
OUTPUTS :
String — property name.
SIDE EFFECTS:
None

[setvalue |

199

Sets property value.

INPUTS :
Any data type.
OUTPUTS:
Integer — Returns 1 if successful.

Returns O if unsuccessful.
SIDE EFFECTS:
None
[getvalue]
PURPOSE:
Returns the property ’s value.
INPUTS :
None .
OUTPUTS:
Unknown — returns whatever data the value pointer refers to.

Listing D.6: Public methods for class ffs_contain

PUBLIC ROUTINES:
In addtion to the methods listed below, this object inherits methods from

ffs_primitive — refer to this class’ documentation for more details.
[get]
PURPOSE :
Retrieves specified objects from the container.
INPUTS :
all - integer (switch); enable to return all objects

isa - string; filters the array returned by the all keyword,
returning only the objects that inherit from the

specfied class.

position - integer; position of object in container.

name - string ; FFS name of sought object.

count - integer; (outward); the number of objects returned.
OUTPUTS::

object reference; array of the specified object references.
SIDE EFFECTS:
None .
[getnames]
PURPOSE :
Checks if input array elements are ffs_element object references.
INPUTS :
None .
OUTPUTS :
string ; array of object names
SIDE EFFECTS:
None .

[nametoref]

PURPOSE :

Retrieves object reference for specified FFS name.
INPUTS :

name — string ; FFS name of sought object.
OUTPUTS :

object reference; of the named object.
SIDE EFFECTS:
None .

200

[add]

PURPOSE :
Adds object reference to the container.
INPUTS :
objects — object reference; of the object to be added.
position — integer; position within the container , at which the
object should be added.
OUTPUTS :

Returns a 1 or a 0 to signify success and failure respectively.
SIDE EFFECTS:

[remove]
PURPOSE:
Removes specified object reference from the container.
INPUTS :
objref - object reference; of the object to be removed.
name = string ; FFS name of object sought for removal.
position - integer; position of object in container.
all - integer (switch); enable to remove all objects
destroy - integer (switch); enable to destroy specified objects
in addition to simply removing their reference from the
container .
OUTPUTS :

Returns a 1 or a 0 to signify success and failure respectively .
SIDE EFFECTS:
Will destroy specified objects if “destroy” keyword set.

Listing D.7: Public methods for class ffs_parser

PUBLIC ROUTINES:

setdefinition

PURPOSE :

Sets the model from a string.
INPUTS :

String or stringarray with valid model
OUTPUTS :

Returns 1 if model parsed and validated
Returns 0 if error occurred, use geterrmsg
method for details of the error.

SIDE EFFECTS:
None

setfile
PURPOSE:
Reads a model from a specified file.
INPUTS :
Filename to read from.
OUTPUTS::
Returns 1 if model is successfully parsed etc.
Returns O if error occurred, use geterrmsg
method for details of the error.
SIDE EFFECTS:
None but note that if the file changes another
call to setfile must be done in order for the

model parser to realise.

201

apply
PURPOSE :
Applies information in parser to a model object.
INPUTS :
An ffs_model object to apply to.
OUTPUTS :
Returns 1 if model is successfully parsed etc.
Returns 0 if error occurred, use geterrmsg
method for details of the error.
SIDE EFFECTS:
No direct side effects but creates elements
and calls methods of ffs_model which may

have side effects.

Routines below this point are public but it is unlikely that
they will be required under normal usage of the parser. The
below routines make it possible to interface ffs_parser with

an element manager distinct from ffs_model.

setelements

PURPOSE :
Gives the parser the object references for
each individual element.

INPUTS :
elements — objarr of object references
in the same order as given out by the
required_elements method

OUTPUTS :
Always returns 1

SIDE EFFECTS:

None
info
PURPOSE :
Returns the elements required to generate
the model.
INPUTS :
None
OUTPUTS:
Returns a structure:
Ctitle : Overall model title
.elements: Array of required elements
.optional : Array of optional parameters
to these elements at
creation time.
.name: User—supplied name of the

element
SIDE EFFECTS:

None

geterrmsg
PURPOSE:
Gets error state.
INPUTS :
None .
OUTPUTS:

202

Returns string of error explanation of last

error , typically set when a function returned
a zero.

SIDE EFFECTS:
None
INHERITED FROM:
ffs_primitive

getmodel
PURPOSE :
Returns model string
INPUTS :
Keyword /strip: Returns model as one string
with all whitespace reduced to one space.
Otherwise , model will be returned as it was
given to the object either as a strarr or as
it appeared in the file.
OUTPUTS :
The string representation of the model.
SIDE EFFECTS:
None

getfile
PURPOSE :
Gives the filename which was read.
INPUTS :
None
OUTPUTS:
Filename which was read.
SIDE EFFECTS:
None

setvalues

PURPOSE:
Sets the values of parameters if declerations
of their values were set within the original
model string .

INPUTS :
None (gets input from modelstring which was

passed in via setfile or setdefinition methods)
OUTPUTS :

Returns 1 if successful.
Returns O if unsuccessful.
SIDE EFFECTS:

Changes element parameter values.

setchildren
PURPOSE:

Sets the children of the various elements.
INPUTS :

None (gets input from modelstring which was

passed in via setfile or setdefinition methods)
OUTPUTS :

Returns 1 if successful.

Returns 0 if unsuccessful.
SIDE EFFECTS:

Changes the children of each element

203

setlimits
PURPOSE :
Sets the limits of parameters if declerations
of their limits were set within the original
model string .
INPUTS :
None (gets input from modelstring which was
passed in via setfile or setdefinition methods)
OUTPUTS :
Returns 1 if successful.
Returns O if unsuccessful.
SIDE EFFECTS:
Changes element parameter limits.

setcouple

PURPOSE :
Sets the coupling of parameters if declerations
of their coupling were set within the original
model string .

INPUTS :
None (gets input from modelstring which was
passed in via setfile or setdefinition methods)

OUTPUTS :
Returns 1 if successful.
Returns 0 if unsuccessful.

SIDE EFFECTS:
Creates coupling object and passes it’s
reference to the targetted parameter.

setfixedfree
PURPOSE:
Sets the various parameters to fixed or
free if declerations of this was set
within the original model string.
INPUTS :
None (gets input from modelstring which was
passed in via setfile or setdefinition methods)
OUTPUTS:
Returns 1 if successful.
Returns O if unsuccessful.
SIDE EFFECTS:
Changes parameter switch via setfixed () method.

setloglinear
PURPOSE:
Sets the various parameters to have a
log or linear dependence from the point
of view of later fitting.
INPUTS :
None (gets input from modelstring which was
passed in via setfile or setdefinition methods)
OUTPUTS::
Returns 1 if successful.
Returns O if unsuccessful.
SIDE EFFECTS:
Changes parameter switch via setfixed () method.

204

docmds

PURPOSE :
Wrapper to setlimittvalues , sets, secouple,
setfixedfree and seinear. Also tloglindirectly
sets a flag to say er or not anwhethything
was found.

INPUTS :
None (gets input from modelstring which was
passed in via setfile or setdefinition methods)

OUTPUTS :
Returns 1 if successful.
Returns O if unsuccessful.

SIDE EFFECTS:
Changed parameters via subordinate methods
Resets the number of expressions found.

getexprfound

PURPOSE :
Gets whether or not an expression has been found
used to find if the last call to docmds actually
did anything or not.

INPUTS :
None

OUTPUTS :
Returns > 0 if expressions were found.
Returns 0 if no expressions were found.

SIDE EFFECTS:
None but note this is not an alternative
to checking the error state of docmds.
docmds will return O if a command
failed , whereas this variable will be

0 if no command was found at all.

getdefinition
PURPOSE :
Gets a string from the model.
INPUTS :
A model reference.
Tabstop (optional keyword) — The number of
spaces to use for indentation
OUTPUTS :
Returns a string or stringarray with a
valid model string.
SIDE EFFECTS:
None

writedefinition
PURPOSE:
Writes a model file from a model.
INPUTS :
A model reference.
A filename
Tabstop (optional keyword) — The number of
spaces to use for indentation
OUTPUTS:
Returns 1 if successful.

205

Returns 0 if unsuccessful.
SIDE EFFECTS:

Writes a file

Listing D.8: Public methods for class ffs_couple
PUBLIC ROUTINES:

In addtion to the methods listed below, this object

inherits methods from
ffs_primitive — refer to this

class ’ documentation for more details.

[getvalue]
PURPOSE:
Evaluates
INPUTS :
None
OUTPUTS::

Returns

the coupling expression.

the value obtained from evaluating the coupling expression.
SIDE EFFECTS:

None
[setexpr]
PURPOSE:

Sets the coupling expression.
INPUTS :

A string defining the coupling string , in the prescribed format
(see EXPLANATION’ above)
OUTPUTS :

Returns 1 if

Returns O if unsuccessful.
SIDE EFFECTS:
None

successful .

Listing D.9: Public methods for class ffs_simplify
PUBLIC METHODS:

In addtion to the methods listed below, this object

inherits methods from

ffs_primitive — refer to this class’ documentation for more details.
[apply]
PURPOSE :

main method to invoke simplification on a model reference.
INPUTS :

ref = object reference for the ffs_model to be ’simplified .
OUTPUTS :

A reference to

the new simplified ffs_model.
SIDE EFFECTS:

Creates a new ffs_model. This
ffs_model ,

objects .

will involve creation of (amongst others)

ffs_element , ffs_par ffs_contain, ffs_prop and ffs_couple

PRIVATE METHODS:

Although IDL does not support private routines ,
As they are not envisaged that

directly .

these are labelled as such

users will typical call these methods

[getrules]

206

PURPOSE:
Returns the rule list.
INPUTS :
None .
OUTPUTS::
Array of structures that represent the individual rules.
The structures have the following fields:

parent = string | parent object class,

child = string | child object class,

replacement — string | replacement object class,

coupling = pointer| to an 2 x ’number of replacement pars’

string array that details coupling
between the original parent & child pars
and the new replacement.
SIDE EFFECTS:
None .
[setrules]
PURPOSE :
Sets up the rule list to be used for element combination replacement.
INPUTS :
None .
OUTPUTS:
returns = integer | returns a 1 or a 0 to signify success and
failure respectively .
SIDE EFFECTS:
[cleanuprules]
PURPOSE :
Frees up pointers created in defining rule list (Including the rule list
pointer itself).
INPUTS :
None .
OUTPUTS :
returns - integer | a 1 or a 0 to signify success and failure
respectively .
SIDE EFFECTS:
None .
[checkrules]
PURPOSE :
Checks the rule list for a particular parent/child combination.
INPUTS :

ref = object reference | parent element,
child = object reference | child element.
OUTPUTS :
returns = integer | the index of the rule list identified as

corresponding to the input parent/child combination.
If no rule is found, a value of -1’ is returned.
SIDE EFFECTS:
[expand_add]
PURPOSE :
Takes an add element reference and checks through its evaluation
hierarchy for further add elements and extracts their child elements
forming a new list of children i.e. removes unnecessary add elements.
INPUTS :

207

ref - object reference | ffs_add element to expand.
OUTPUTS :

returns - object reference | array of the new children of the
expanded ffs_add.
count — integer (keyword) | provides number of references

being returned.
SIDE EFFECTS:
None .
[expand_broaden]
PURPOSE :
To deal with the case of an ’ffs_broaden_#’ element operating on an
*ffs_add ° element.

INPUTS :

ref - object reference | ffs_broaden_* element to expand.
OUTPUTS :

returns - object reference | new representation of the

original ’ref’. obj_new () is returned to signify
failure i.e. invalid object reference.
SIDE EFFECTS:
Creates new ’'ffs_broaden_x’ and ’ffs_add’ objects.
[duplicate]
PURPOSE :
To create a copy of the requested ffs_element. Including parameter
values and coupling.

INPUTS :
ref = object reference | ref of the element to be
duplicated .
no_children = keyword | if set then the child elements of ref will
not be duplicated and set.
OUTPUTS :
returns - object reference | the duplicated element. obj_new ()

is returned to signify failure i.e. invalid object
reference .
SIDE EFFECTS:
Creates an object of the same class as ’ref ’.

[bumpcplexpr]
PURPOSE :
Increments the markers in a given coupling expression.
INPUTS :
expr = string | the couple expression to modify.
increment = integer | number by which to increase the markers.
excludelst — keyword | if set, does not increment the first
marker .
OUTPUTS :
returns - integer | a 1 or a 0 to signify success and failure

respectively .

SIDE EFFECTS:

None .

[couple]

PURPOSE :

Creates a coupling object and sets it for the input destination.
INPUTS :

dest = object reference | par to be coupled.

208

source - object reference | pars to couple ’dest’ to.

expr - string (keyword) | expression defining how the ’dest’
par is to be coupled.
OUTPUTS:
returns — integer | returns a I or a 0 to signify success and

failure respectively .
SIDE EFFECTS:
Creates an ’ffs_couple

5

[replace]

PURPOSE :
Provides an appropriate replacement object for the input reference.

INPUTS :

ref = object reference | element to be replaced.
OUTPUTS:
returns - object reference | replacement element

SIDE EFFECTS:
Potentially calls some / all of: ’expand.add’, ’expand_broaden’, ’duplicate’

)

and ’couple ’. These have object creation side effects.

Listing D.10: Public methods for class ffs_fit

PUBLIC METHODS:
In addtion to the methods listed below, this object inherits methods from
ffs_primitive — refer to this class’ documentation for more details.
[apply]
PURPOSE :
Main method to begin fitting model to data (uses a Levenberg—Marquardt

algorithm).

INPUTS :
model - object reference for the ffs_model to be used in
fit.
data — object reference for the ffs_data to be used in fit
(temporarily this will actually be a structure with
three fields ’x’, 'y’ and ’error’
OUTPUTS :
Returns = integer | returns a 1 or a 0 to signify success and

failure respectively .
SIDE EFFECTS:
None .

[getstatus |

PURPOSE:
Gets the fit status — indicates the manner in which the fit completed.
INPUTS :
None .
OUTPUTS::
Returns - integer |
0 ”Fail .”
1 ”Reached relative tolerance (difference in

successive chisq) ’reltol *.”
2 ”Reached max number of iterations ’maxiter .”
SIDE EFFECTS:
None .

[getstatusmsg]

PURPOSE :
Returns the message associated with a given fit status.
INPUTS :
status — integer | the status number to get the message for.
if none supplied, current status will be used.
OUTPUTS :
Returns = string | the requested status message.
SIDE EFFECTS:
None .

[setmaxiter]
PURPOSE :
Sets maximum number of iterations the fitting routine will perform.
INPUTS :

maxiter = integer | maximum number of iterations.
OUTPUTS :
Returns = integer | returns a 1 or a O to signify success and

failure respectively .
SIDE EFFECTS:
None .
[getmaxiter]
PURPOSE :
Returns the maximum number of iterations that the fitting routine will
perform.
INPUTS :
None .
OUTPUTS :
Returns = integer | maximum number of iterations.
SIDE EFFECTS:
None .
[geterrors]
PURPOSE :
Returns the errors in the fitted parameter values.
INPUTS :
None .
OUTPUTS:
Returns = double | errors in the fitted parameter values.
Value of !values.d-nan signifies failure.
SIDE EFFECTS:
None .
[getcor]
PURPOSE:
Returns the parameter correlation matrix.
INPUTS :
None .
OUTPUTS :
Returns - double | matrix of correlation between the parameters.
Value of !values.d_nan signifies failure.
SIDE EFFECTS:
None .
[getscovar]
PURPOSE :

210

Returns the scaled parameter covariance matrix.
INPUTS :
None .
OUTPUTS:
Returns - double | matrix of covariances between the (scaled)
free parameters.
Value of !values.d-nan signifies failure.
SIDE EFFECTS:
None .
[getcurvm]
PURPOSE:
Returns the curvature matrix.
INPUTS :
None .
OUTPUTS :
Returns - double | curvature matrix.
Value of !values.d_nan signifies failure.
SIDE EFFECTS:
None .
[getchisqder]
PURPOSE :
Returns the matrix comprising of the values of the partial derivatives
(wrt each of the parameters) of chi-square.
INPUTS :
None .
OUTPUTS :
Returns = double | chisqder matrix.
Value of !values.d_nan signifies failure.
SIDE EFFECTS:

None .
[getdof]
PURPOSE :
Returns the number of degrees of freedom of the fit (number of data
points — number of free parameters).
INPUTS :
y — data (really just any array of number of data
points in length though). OPTIONAL (required with p)
p = free parameters (really just any array with number
of parameters in length though).OPTIONAL (required with y)
OUTPUTS:
Returns = double | degrees of freedom.

Value of -1 signifies failure.

SIDE EFFECTS:
None .
[getnchisq]
PURPOSE:
Returns the normalised chi-square value (chi-square/degrees of freedom).
INPUTS :
None .
OUTPUTS :
Returns — double | normalised chi—square.
Value of !values.d-nan signifies failure.

211

SIDE EFFECTS:
None .
[getchisq]
PURPOSE :
Returns the chi—square value.
INPUTS :
None .
OUTPUTS:
Returns = double | chi—-square.
Value of !values.d_nan signifies failure.
SIDE EFFECTS:
None .

Returns the fitted parameter values.
INPUTS :
None .
OUTPUTS:
Returns - double | parameter values.

Value of !values.d-nan signifies failure.
SIDE EFFECTS:

None.

PRIVATE METHODS:
Although IDL does not support private routines , these are labelled as such
As it is not envisaged that users will typical call these methods
directly .
[setsvals]
PURPOSE:
Sets the scaled parameter values.
INPUTS :
svals - double | scaled parameter values.
OUTPUTS::
Returns - integer | 1 (there is no error checking for this
method).
SIDE EFFECTS:
None .
[getsvals]
PURPOSE :
Returns the scaled parameter values.
INPUTS :
None .
OUTPUTS :
Returns - double | scaled parameter values (there is no error
checking for this method).

SIDE EFFECTS:
None .
[setslimits]
PURPOSE :
Sets the scaled parameter value limits.
INPUTS :

212

svals - double | scaled parameter value limits.
OUTPUTS:
Returns - integer | 1 (there is no error checking for this
method).
SIDE EFFECTS:
None .
[getslimits]
PURPOSE :
Returns the scaled parameter value limits.
INPUTS :
None .
OUTPUTS :
Returns - double | scaled parameter value limits (there is no
error checking for this method).

SIDE EFFECTS:
None .
[setivals]
PURPOSE :
Sets the initial parameter values.
INPUTS :
svals = double | initial parameter values.
OUTPUTS:
Returns = integer | 1 (there is no error checking for this
method).
SIDE EFFECTS:
None .
[getivals]
PURPOSE:
Returns the initial parameter values.
INPUTS :
None .
OUTPUTS::
Returns - double | initial parameter values (there is no error

checking for this method).

SIDE EFFECTS:
None .
[scalepd]
PURPOSE :
Determines the partial derivative of the model w.r.t. the scaled
parameters , given the partial derivatives w.r.t. the real parameter
values. Essentially applies the chain rule for derivatives.
INPUTS :

pd - partial derivatives of the model w.r.t. the real
parameter values.
pars - object ref | array of ffs_par object references.
OUTPUTS:
spd - the scaled partial derivaties.
SIDE EFFECTS:
None .
[unscale]

213

PURPOSE:

Recovers true parameter values from the scaled values used to improve
numerical stability of the fitting algorithm.

INPUTS :

pars — object ref | array of ffs_par object references.
OUTPUTS:

Returns — integer | a 1 or a 0 to signify success and failure

respectively .
SIDE EFFECTS:

Calls ’setp’ to store unscaled values.

[scale]

PURPOSE :
Scales parameter values such all are of the same order to improve
numerical stability of the fitting algorithm.

INPUTS :

pars - object ref | array of ffs_par object references.
OUTPUTS :

Returns - integer | a 1 or a 0 to signify success and failure

respectively .
SIDE EFFECTS:

Calls ’setsvals ’, ’setslimits

> >

and ’setivals To store relevant

quantities .
[setstatus]
PURPOSE :
Sets the fit status — the manner in which the fit completed.
INPUTS :
status = integer | the fit status.
OUTPUTS :
Returns - integer | a 1 or a 0 to signify success and failure
respectively .
SIDE EFFECTS:
None .
[setcurvm]
PURPOSE :
Stores the curvature matrix.
INPUTS :
curvm - double | curvature matrix.
OUTPUTS :
Returns = integer | a 1 or a 0 to signify success and failure
respectively .
SIDE EFFECTS:
None .
[calcmat]
PURPOSE:
Calculates the curvature matrix and the chi-square derivative matrix
(w.r.t. each parameter).

INPUTS :
y - double | data intensity values.
yerror - double | error in data intensity values.
f - double | modelled intensity values.
nfree — integer | number of free parameters.
pd — double | partial derivatives of the model wrt free.

free parameters, for each data point.

214

OUTPUTS :
Returns - integer | a 1 or a 0 to signify success and failure

respectively .

Keywords :
curvm - double | curvature matrix.
chisqder — double | chisqder matrix.
SIDE EFFECTS:
None .
[setdof]
PURPOSE:
Sets / calculates
INPUTS :
y - double | data intensity values.
yerror - double | error in data intensity values.
f - double | modelled intensity values.
nfree - integer | number of free parameters.
pd - double | partial derivatives of the model wrt free.
free parameters, for each data point.
OUTPUTS:
Returns — integer | a 1 or a 0 to signify success and failure
respectively .
Keywords :
curvm - double | curvature matrix.
chisqder = double | chisqder matrix.
SIDE EFFECTS:
None .

Listing D.11: Public methods for class ffs_executor

PUBLIC ROUTINES:
execute
PURPOSE :
Executes an FFS cmd on a model
INPUTS :
String containing command, may or
may not be surrounded by brackets
OUTPUTS:
Returns 1 if execution ok
Returns 0 if error occurred, use geterrmsg
method for details of the error.
SIDE EFFECTS:
None

setmodel

PURPOSE :
Sets the model to use

INPUTS :
The model

OUTPUTS:
Returns 1 if model is succesfully used etc.
Returns O if error occurred, use geterrmsg
method for details of the error.

SIDE EFFECTS:
If the model changes then the executor will

215

not notice, it needs to be explicitly

re—initalised via the setmodel method.

216

Appendix E

ADAS Glossary

Taken from the ADAS manual [8]:

The Atomic Data and Analysis Structure (ADAS) is an interconnected set of computer
codes and data collections for modelling the radiating properties of ions and atoms in
plasmas and for assisting in the analysis and interpretation of spectral measurements.
The three components of the package are an interactive system, a library of key
subroutines, and a very large database of fundamental and derived atomic data. The
interactive part provides immediate display of important fundamental and derived
quantities used in analysis together with a substantial capability for preparation of
derived data. It also allows exploration of parameter dependencies and diagnostic
prediction of atomic population and plasma models. The second part is non-
interactive but provides a set of subroutines which can be accessed from the user’s
own codes to draw in necessary data from the derived ADAS database. The database

spans most types of data required for fusion and astrophysical application.

E.1 Acronyms

ADAS uses a number of acronyms and mnemonics for certain data formats and sub-
classes. There are also some simple abbreviations. These are quite widely used in the

fusion community but may not be generally familiar. They include:

e ADF: ADAS data format
e (CXS: charge exchange spectroscopy, normally beam driven

e MSE: motional Stark effect, affecting beam atom emission

217

e RR: radiative recombination - ADF0&

e DR: dielectronic recombination - ADF09

e CR: collisional-radiative coefficients - ADF11. Subclasses:

ACD: effective recombination

SCD: effective ionisation

CCD: effective charge exchange recombination

PLT: effective low-level line power

PRB: effective recom + Brems power

PRC: effective charge exchange power

GCR - generalised collisional-radiative coefficients - ADF11. Subclasses as CR
+:

— QCD: effective metastable cross-coupling

— XCD: effective parent metastable cross-coupling

CD: collisional-dielectronic (synonym for collisional-radiative)

QFEF: effective emission coefficient (from CXS normally) - ADF12

SXB: ionisation per photon coefficient - ADF13

PEC: photon emissivity coefficient - ADF15
e BMS: beam stopping coefficient - ADF21

e BME: beam emission coeflicient - ADF22

E.2 ADAS Main Program Series

A summary of the main ADAS program suite is given here. The list here is correct
for the current version of ADAS (version 3.1) but note that some of the entries are
placeholders for future development and are subject to change. Refer to the latest

version of the ADAS manual [8] and / or webpage for up-to-date information.

ADAS Series 1 — Atomic Data Entry and Verification
ADAS101: Electron Impact Excitation Cross Section — Graphing and Rate Evaluation

218

ADAS102:
ADAS103:
ADAS105:
ADAS106:
ADAS107:
ADASI108:

Electron Impact Excitation Rate — Graphing and Interpolation
Dielectronic Recombination — Graphing and Interpolation

Electron Impact Ionisation Cross Section — Graphing and Rate Evaluation
Electron Impact Ionisation Rate — Graphing and Interpolation

Charge Exchange Cross Section — Graphing and Rate Evaluation

Electron Impact Excitation of Neutrals and Molecules — Graphing and

Rate Evaluation

ADAS Series 2 — General Z Data and Population Processing

ADAS201:
ADAS202:
ADAS203:
ADAS204:
ADAS?205:
ADAS?206:
ADAS207:
ADAS?208:
ADAS2009:
ADAS210:
ADAS211:
ADAS212:
ADAS213:
ADAS214:
ADAS215:
ADAS216:

Specific Z Excitation File — Graph and Fit Coefficient

General Z Recom./Ionis. File — Extraction from General Z File
General Z Excitation File — Extraction from General Z File

Specific Z Recom./Ionis. File — Process ACD,SCD and Population
Specific Z Excitation File — Process Meta./Excit. Population
Specific Z Excitation File — Process Line/Total Power

Meta./Excit. Population File — Process Line Emissivities

Specific Z Excitation File — Advanced Population Processing
General Level Bundling File — Process Effective Collision Strengths
General Level Unbundling File — Process Effective Collision Strengths
Radiative Recombination — Process for Specific Ion File
Dielectronic Recombination — Process for Specific lon File
Collisional Ionisation — Process for Specific Ion File

Escape Factors — Convert Specific ion File

Temperature Regrid — Convert Specific Ion File

Error Processing — Examine Errors in Specific ion Files

ADAS Series 3 — Charge Exchange Processing

ADAS301:
ADAS302:
ADAS303:
ADAS304:
ADAS306:
ADAS307:
ADAS308:
ADAS3009:
ADAS310:
ADAS311:

QCX File — Graph and Fit Cross Section

IONATOM File — Graph and Fit Cross Section

QEF File — Graph and Fit Coefficient

BMS File — Graph and Fit Coefficient

QCX File — Process Effective Coeflicient: J Resolved

QCX File — Process Effective Coeflicient: J Resolved/Scan
QCX File — Process Effective Coeflicient: L Resolved

QCX File — Process Effective Coefficient: L Resolved/Scan
BEAM STOPPING — Process Stopping Coefficient: H Beam
BEAM STOPPING — Process Stopping Coefficient: He Beam

219

ADAS312:
ADAS313:
ADAS314:
ADAS315:
ADAS316:

BDN File — Tabulate and Graph BMS and BME data: H beam
BNL File — Tabulate and Graph BMS and BME data: He beam
QCX File — Convert QCX to effective cross sections

QCX File — Arbitrary species CX cross sections

QCX File — Bundle-n CX emissivity sections

ADAS Series 4 — Recombination and Ionisation Processing

ADAS401:
ADAS402:
ADAS403:
ADAS404:
ADAS405:
ADAS406:
ADAS407:
ADAS408:
ADAS409:
ADAS410:
ADAS411:
ADAS412:
ADAS413:
ADAS414:
ADAS415:
ADAS416:
ADAS417:

Iso-Electronic Sequence — Graph and Fit Coeflicient
Iso-Nuclear Sequence — Graph and Fit Coefficient
Iso-Electronic Master File — Merge Partial Iso-Elec. Files
Iso-Nuclear Master File — Extract from Iso-Elec. Master Files
Equilibrium Ionisation — Process Meta. Pops. and Emis. Funcs.
Transient lonisation — Process Meta. Pops. amd Emis. Funcs.
Iso-Nuclear Param. Sets — Prepare Optimised Power Params.
Iso-Nuclear Master Data — Prepare from Iso-Nuc. Param. Sets
Equilibrium Ionisation — Prepare G(Te,Ne) Function Tables
Dielectronic Recombination — Graph and Fit Data

Radiative Recombination — Graph and Fit Data

Equilibrium Ionisation — Prepare G(Te) Function Tables
Collisional Tonisation — Graph and Fit Data

Prepare Soft X-ray Filter File

Display Spectral Filter File

Superstages — Repartition adf11 and emissivity datasets
Apply Filter to F-PEC Coefficients and F;(Te,Ne) Functions

ADAS Series 5 — General ADAS Interrogation Routines

ADASS01:
ADASS502:
ADASS503:
ADASS504:

SXB File — Graph and Fit Ionizations per Photon
SZD File — Graph and Fit Ionization Rate-Coefficients
PEC File — Graph and Fit Photon Emissivities

PZD File — Graph and Fit Radiated Powers

ADASS505: QTX File — Graph and Fit Thermal Charge Exch. Coeftt.
ADASS506: GFT File — Graph and Fit G(TE) Function

ADASS507: GCF File — Graph and Fit General. Contribution Function
ADASS508: GTN File — Graph and Fit G(TE,NE) Function

ADAS509: SCX File — Graph and Fit Charge Exchange Cross-sections

ADASS510:
ADASS11:

F-PEC File — Graph Envelope Feature Photon Emissivity Coefficients
F-GTN File — Graph Envelope Feature Photon Emissivity Function

220

ADAS Series 6 — Data Analysis Programs

ADASG601:
ADAS602:
ADAS603:
ADAS604:
ADAS605:
ADAS606:
ADAS607:
ADAS608:

Differential Emission Measure Analysis

Spectral Line Profile Fitting

Zeeman Feature and Spectral Line Profile Fitting
Dielectronic Satellite Line Profile Fitting

General ADAS feature inspection (AFG)

Helium Series Limit Feature Fitting

Non-Maxwellian Electron Distribution Function Fitting
Molecular Band Profile Fitting

ADAS Series 7 — Creating and Using Dielectronic Data

ADAST701:
ADAS702:
ADAS703:
ADAS704:
ADAS705:
ADAS706:
ADAS707:

AUTOSTRUCTURE

Postprocessor — AUTOSTRUCTURE > adf09 file
Postprocessor — AUTOSTRUCTURE > adf(04 file
Postprocessor — AUTOSTRUCTURE > adf18 file
Merge and Bundle Partial Files > adf04 file

Calculate Doubly Excited State Populations and Satellite Line Feature File

Doubly Excited Populations — Process Line Emissivities

ADAS Series 8 — Structure and Excitation Calculations

ADASS8O01:
ADASR802:
ADASS803:
ADAS804:
ADASR805:
ADAS806:
ADASS807:
ADASRS08:
ADASR809:
ADASS10:
ADASSI11:
ADASS812:

Cowan Structure Code — adf04 type 1 and 3

Calculate Distorted Wave Cross Sections

Post-Process Distorted Wave Cross Sections > adf04 file
Prepare Cross Sections and Rate Coeflicients

Calculate Radiative Gaunt Factors

Merge, Clean and Check adf04 file

Prepare Cross-Referencing Files

Prepare driver files for ADAS801

Non-Maxwellian Modelling — Change adf04 file type
Generate Envelope Feature Photon Emissivity Coefficient
Graph and Compare adf04 Files

Compare adf04 Files (scatterplot)

221

E.3 ADAS Data Formats

ADF00: Ground configurations and ionisation potentials
ADFO1: Bundle-n and bundle-nl charge exchange cross-sections
ADFO02: Ton impact cross-sections with named participant
ADFO03: Recombination, ionisation and power parameter sets
ADFO04: Resolved specific ion data collections

ADFO05: General z excitation data collections

ADEFO06: General z recombination/ionisation data collections
ADFO7: Direct resolved electron impact ionisation data collections
ADEFO08: Direct resolved radiative recombination coefficients
ADF09: Direct resolved dielectronic recombination coeflicients
ADF10: Iso-electronic master files

ADF11: Iso-nuclear master files

ADF12: Charge exchange effective emission coeflicients
ADF13: Ionisation per photon coeflicients

ADF14: Thermal charge exchange coefficients

ADF15: Photon emissivity coefficients

ADF16: Generalised contribution functions

ADF17: Condensed projection matrices

ADF18: Cross-referencing data

ADF19: Zero density radiative power

ADF20: G(Te) functions

ADF21: Effective beam stopping coefficients

ADF22: Effective beam emission coefficients

ADF23: State selective electron impact ionisation coefficients
ADF24: State selective charge transfer cross-sections

ADF25: Driver data-sets for ADAS204 calculations

ADF26: Bundle-n and bundle-nl populations of excited states in beams
ADF27: Driver data-sets for ADAS701 calculations

ADF28: Driver data-sets for ADAS702 calculations

ADF29: Driver data-sets for ADAS707 calculations

ADF30: Driver data-sets for ADAS708 postprocessing

ADF31: Feature files for spectral simulation

ADF32: Driver data-sets for ADAS802 calculations

ADF33: Driver data-sets for ADAS803 postprocessing

ADF34: Driver data-sets for ADAS801 calculations

222

ADF35:
ADF36:
ADF37:
ADF38:
ADF39:
ADF40:
ADF41:
ADF42:
ADF44:

Spectral filter data

Hydrogenic series limit feature file

Non-Maxwellian distribution function files

Opacity project extension: photoexcitation-autoionisation rate coefficients
Opacity project extension: photoionisation cross-sections

Envelope feature photon emissivity coefficients

Driver data-sets for offline ADAS8#1 calculations

Driver data-sets for ADAS810 calculations

Envelope feature photon emissivity functions

223

