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Abstract

The world is full of complex systems, with many interconnected parts interacting in

some way, and the whole system cannot be understood simply by looking at each part

individually. Instead, it is necessary to consider the system as a whole, which may

exhibit emergent behaviour as a result of the many interconnections. Network theory

is a very powerful tool for analysing complex systems, and has been applied to a wide

range of phenomena with great success.

This work is concerned with spatial networks, which are the ones that are naturally

embedded in physical space in some way. For example, wireless sensor networks in a

geographical region such as a city where the flow of information is essential, or plant

populations in a crop field where it is important to understand and try to limit the

spread of diseases. Another example is the rocks found deep underground in the Gulf of

Mexico that are highly fractured; these fractures can clearly be thought of as spatially

embedded networks through which fluids such as oil and gas can flow. There is great

commercial interest in efficiently extracting the oil and gas from the rocks, and there

are also serious efforts to use the depleted rocks as a means of carbon sequestration

to help combat the problem of greenhouse gases. Therefore, it is clearly important to

understand the nature of the structure and dynamical properties of these real-world

networks.

It is intuitive that the topological and dynamical properties of spatial networks

depend on the shape of the space in which they are embedded. In this work we discuss

the generalisation of two spatially-defined random graph models to consider nodes

located in a unit rectangle. We generalise the random geometric graph (RGG) to the

random rectangular graph (RRG), and the relative neighbourhood graph (RNG) to the
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Abstract

rectangular relative neighbourhood graph (RRNG). We found an analytic expression for

the expected value of the average node degree of RRGs, as well as useful bounds for the

diameter, the average path length, and the algebraic connectivity, and approximations

to the degree distribution, connectivity, and clustering coefficient. For the RRNGs we

found an approximation to the average node degree and a bound on the diameter and

algebraic connectivity.

Using this generalisation, we examine the behaviour of diffusion in RRGs and find

that increasing the elongation causes diffusive particles to spread more slowly. We also

discuss some results relating to epidemics in crop fields, where we show that elongating

the field makes it more difficult for a disease to become epidemic. Finally, we find

that the relative neighbourhood graphs work well to mimic the properties of the rock

fracture networks compared to other null models, and we are able to optimise the value

of the elongation in the model for each fracture network.
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Introduction

Network theory has received a lot of attention in recent years, though it is difficult

to say precisely when it was established. An early example of the mathematics that

would eventually develop into network theory is the origin of graph theory in 1736 when

Euler tackled the famous bridges of Kőnigsberg problem. He needed a mathematical

tool that captured how certain discrete objects were linked to each other in order to

understand the topology of the problem and answer certain questions, and that tool

was graph theory. In order to say if it is possible to use each bridge connecting the four

landmasses exactly once, the exact geographical layout is not important, but rather

which pieces of land are connected to which other pieces of land, and by how many

bridges. By considering the problem in this way, it is easier to tackle the problem,

and Euler managed to show that such a traversal, now known as an Eulerian trail, was

not possible. It is amusing that the origin of network theory involved ignoring spatial

information and only considering how the different areas are connected, but in this

Thesis the geometric setting of the networks is the central idea.

One can think of a large number of examples of situations where there are many

individuals or components that are connected or interacting in some way, and the overall

structure of the connections is fundamental to understanding the system. Network

theory is the ideal tool to analyse these systems [118, 48]. For example, consider people

in a social network, neurons in the brain, proteins in a cell, webpages on the Internet, or

road intersections, and the links as friendships, neural connections, interactions within

a cell, hyperlinks, or roads respectively. Networks can capture the structure of these

systems and provide a very useful framework for analysing their properties, which is

why network theory is now being put to use on a wide range of real-world problems
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across the various sciences with a lot of success [33, 12, 120]. Graph theory alone is not

enough to fully understand these systems, so network theory also relies on topics such

as statistical mechanics, geometry, topology, and dynamical systems.

Many real-world networks are naturally embedded in space and are therefore in-

herently geometrical, so-called spatial networks [13]. These include infrastructural net-

works such as road networks [160] and airport transportation networks [106, 158, 27],

certain biological networks such as brain networks or the networks representing the

proximity of cells in a biological tissue [90, 48], networks of patches and corridors in

a landscape [150], the networks of galleries in animal nests [130, 24], wireless sensor

networks (WSNs) and peer-to-peer networks [74, 62, 132, 101, 67, 42, 11, 128], geo-

graphical populations where epidemics can spread [91, 42, 148, 114, 96, 76], and the

networks of fractures in rocks [104, 1, 7, 89, 25, 83, 153], among others.

This Thesis is a step forward in the analysis of real spatial networks. It is clear

that spatial networks come in a variety of shapes, and the shape of the space in which

the network is embedded should have a significant impact on the properties of the

network. Previous work on spatial networks has given little consideration to these

shapes however. For example, the random geometric graph model is defined in the

unit hypercube [127, 69], and so in a 2D application it is assumed that the system

being modelled is square-shaped. However, in general this assumption is not a good

one. For example, Fig. 1 shows two cities: San Francisco is approximately an 11 km

by 11 km square, whereas Manhattan is approximately a 21.6 km by 3.7 km rectangle.

Then, in one case the assumption of having the network embedded in a square region

is reasonable, and in the other it is clearly far from accurate. Therefore, instead of

assuming all spatially embedded networks are square, we introduce a generalisation of

the models used to consider rectangles to account for networks that are more elongated,

which is a useful step in making models that more accurately reflect reality.

We consider two different types of geometrically defined random graph models,

and generalise the models to distribute the nodes in rectangles instead of just squares.

The random geometric graphs (RGGs) [127] are generalised to the random rectangular

graphs (RRGs) and the relative neighbourhood graphs (RNGs) to the rectangular rel-
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Figure 1: San Francisco (left) is approximately square but Manhattan (right) is ap-
proximately rectangular. Images from Google Maps.

ative neighbourhood graphs (RRNGs), where the RNG model is a special case of the

more general β-skeleton graphs [149, 95]. We discuss different topological properties of

these models, then we consider their use in three different applications.

First, we discuss diffusion in RRGs. We use a simple heat equation, which we may

also consider as a consensus process [110]. The interpretation as a consensus process is

used in the study of WSNs, for example, where the RGG model has been applied [101].

A WSN consists of sensors (nodes) distributed in some location and they are each

collecting information such as air temperature. They need to be able to communicate

this wirelessly through forming a network with each other, such that information from

every node can be extracted efficiently. However, if we consider WSNs in the cities

of San Francisco and Manhattan as above, we find that the square domain of the

RGG could be a good approximation to the true shape of the city, but for Manhattan

the generalisation to the RRG model is important since it more closely resembles an

elongated rectangle. In this section we consider the behaviour of diffusion in RRGs in

general, with the understanding that the results are applicable to various real-world

scenarios [101, 42, 91, 74, 114].

The second application we consider is that of epidemiological models on networks [17,

115, 116, 129, 159]. It is predicted that climate change will have a significant impact

on crops, including susceptibility to diseases [145, 84]. Therefore, it is very impor-

tant to develop better crop-growth models to gain more understanding of such prob-

lems in order to take effective action. There has been recent progress on the analy-
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sis of plant ecosystems using network theory, partially due to more data being avail-

able [136, 70, 137]. When studying the propagation of diseases in plants there is an

important factor that needs to be taken into account. It is obvious that plants are not

as mobile as humans and animals, thus they reach lower levels of mixing in a given

population. The immediate consequence of this lack of mobility is that the shape of

the plot or field in which the plants are distributed may significantly affect disease

dynamics [126, 157, 93, 65, 21, 113, 112, 164, 63], with square fields being more prone

to the spread of diseases than elongated ones of the same area [126, 157, 93, 65]. We

give some discussion of using RRGs to model this phenomenon, and we find that in

simulations the elongation of the rectangle does indeed increase the epidemic threshold.

We also give some theoretical arguments to further justify this conclusion, including an

analytical result bounding the epidemic threshold
1

λ1
.

Finally, we consider oil reservoirs containing rocks that have been fractured by

geological stress. These fractures in the rocks contain fluids of petrochemical inter-

est, and can be considered as a network through which the fluids can flow. Then,

understanding the flow of these fluids requires understanding the structure of these

networks. These fractures have long been studied in hydrocarbon geology and hy-

drogeology due to the role that these fractures play on the evaluation of potential oil

reservoirs [1, 7, 89, 25, 83, 153]. The analysis of rock fracture networks (RFNs) plays a

fundamental role in determining the nature and disposition of heterogeneities appear-

ing in petroliferous formations to determine the capability for the transport of fluid

through them [18, 75, 77, 162, 94]. In many of the analyses described in the literature

the use of synthetic fracture networks facilitates the analysis due to the sometimes

scarce availability of real-world data [14, 121, 36, 163, 117, 143, 68]. In contrast, San-

tiago et al. have published a series of papers [138, 139, 140] in which they used real

fracture networks derived from original hand-sampled images of rocks extracted from

a Gulf of Mexico oil reservoir. These works have used a graph-theoretic analysis of

these real-world networks in order to extract information about the topological (static)

characteristics of this set of rocks. These analyses are relevant even after the oil has

been extracted, since once an oil reservoir has been depleted it can be used to store
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other fluids, such as carbon dioxide [86, 147, 85, 35, 142]. Rock fractures have also

been studied in a more general sense for their applications to both oil reservoirs and

other fluid flows within rocks such as groundwater, examining properties such as fractal

scaling and anomalous diffusion [15, 20, 43, 155, 88, 87].

A discrete version of the diffusion equation is used to study the diffusion of a fluid

through the channels of the real RFNs. Although the Boussinesq equation is the natural

way to model diffusion on porous media, it has been found that the simple diffusion

equation performs very well compared to the experimental results for modelling oil

diffusion on rocks. The reason for that resides in the high pressure and temperature

at which the flow occurs deep below the Earth’s surface. The diffusion through the

real RFNs is compared to diffusion on the synthetic models, showing that the RRNGs

reproduce not only the most important structural properties of the real networks but

also their diffusive properties. As in the series of papers by [138, 139, 140], two-

dimensional cuts of rocks that show a fracture network embedded into the rock sides

are considered. Then, a potential criticism to these works is the fact that rock networks

are three-dimensional [6, 105, 103], and that inferring these 3D networks from 2D

information is hard. However, as has been previously documented, the analysis of 2D

rock fractures identifies important parameters that allow the characterisation of real

rock samples [92, 141, 138, 139, 140]. In addition, note that the generalised proximity

graphs that are introduced in this work can be easily extended to the 3D case. Thus,

3D rock fracture networks extrapolating the topological information that is obtained

here from the analysis of 2D samples can be easily generated.

The first chapter of this Thesis discusses existing theory and general concepts in

network theory, the notation that will be used throughout this work, and the random

graph models that are relevant here. The second chapter contains our theoretical results

for the RRG model, and the third chapter similarly contains our theoretical results for

the RRNG model. The fourth chapter covers the three applications we have analysed:

diffusion on RRGs, epidemics on RRGs, and RFNs. The fifth chapter is where we give

our conclusions and discuss future work. Finally, we have one appendix followed by the

list of references used in this work.
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Theory
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Chapter 1

Networks and Graphs

1.1 Definitions and Concepts

The study of networks is related to graph theory, and so we will sometimes use the

terms graph and network interchangeably. However, network theory relies not only

on graph theory, but also makes use of topics such as statistical mechanics, geometry,

topology, and dynamical systems. A graph is the pair of sets G(V,E), where V is the

set of nodes and E ⊆ V × V is the set of edges or links. That is, E consists of those

pairs (vi, vj) for which there is a link from vi to vj. The sizes of these sets are denoted

as n = |V | and m = |E|. A useful way to represent the structure of a graph is the

adjacency matrix. This is an n× n matrix that is defined as

Aij =











1 if (vi, vj) ∈ E,

0 otherwise.

(1.1)

If we were to consider instead a weighted graph where each link is assigned the value

of some real number, then each entry Aij , (vi, vj) ∈ E, is the weight of the link from

vi to vj . A loop is a link from a node to itself, and multiple edges refers to a pair

of nodes with more than one link between them. A graph with no loops or multiple

edges is said to be simple. If when (vi, vj) ∈ E we also have (vj , vi) ∈ E, the graph

is said to be undirected, otherwise it is directed. For the majority of this Thesis and

unless stated otherwise we will deal only with simple undirected graphs. Therefore, we
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1. Networks and Graphs

present the background theory as it applies to simple undirected graphs and note that

some concepts require modification when applied to other types of graphs.

1.1.1 The Structure of Graphs

Here we introduce some basic terminology that we will need to describe further con-

cepts. More in-depth discussions of the basics of network theory can be found in many

places, such as [48], and we provide references for the introduction of the various prop-

erties where applicable.

• Adjacent, incident : We describe the edges connected to a node as being incident

to that node. Two nodes are adjacent if there is an edge joining them, and two

edges are adjacent if there is a node they are both incident to.

• Neighbourhood : The neighbourhood of a node vi is the set {vj |(vi, vj) ∈ E}

• Node degree: The degree of a node vi is the number of nodes to which it is

connected, and is written as ki. The diagonal matrix Kii = ki is the degree

matrix of the graph.

• Walk, path: A walk is a sequence of edges (v1, v2), (v2, v3), . . . , (vk, vk+1), the

length of the walk is the number of edges; a path is a walk without repeated

nodes. A closed walk is one in which the first and last nodes are the same.

• Connected : A graph is connected if there is a path between any pair of nodes. If it

is not connected, we may consider it as the union of several connected components.

• Subgraph: A graph G′ is a subgraph of a graph G (G′ ⊆ G) if it is considered

as a subset of the nodes and edges of G. This may be G itself or the null graph

(containing no nodes), but it is usually somewhere in between.

• Complete graph: A complete graph Kn has n nodes that are pairwise connected.

• Triangle: A triangle is a subgraph of 3 nodes in a graph that are pairwise con-

nected.
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1. Networks and Graphs

• Bipartite: A graph is bipartite if the set of nodes V can be split into two disjoint

subsets V1 and V2, such that all edges link a node in V1 to a node in V2. That is,

there are no edges linking two nodes in the same subset.

• Regular : A graph is regular if every node has the same degree.

1.1.2 Matrices

Since it is convenient to store information about networks in matrices, we use some of

the mathematics of matrices in order to manipulate the information for our purposes,

and so we recall here some properties of matrices. We will be using n × n real-valued

matrices unless stated otherwise.

There is a fundamental link between powers of the adjacency matrix and walks in

the graph. For example, (A2)ij =
∑n

k=1AikAkj counts the number of nodes vk such

that there is a path vi → vk → vj, which is the number of walks of length 2 that start

at node vi and end at node vj . Note that (A2)ii is then the number of closed walks of

length 2 starting at node vi, which is just the node degree ki. In general, (Al)ij counts

the number of walks of length l from vi to vj. Walks, and in particular closed walks,

are related to subgraphs and this relationship will be considered in more detail later.

The identity matrix In×n has Iii = 1 and all other entries equal to 0, and we usually

denote it simply by I if the size is obvious in context. Note that A0 = I for any square

matrix A.

We will also make use of matrix functions. In general, extending the definition of

functions from scalar variables to matrices can be subtle and complicated [82]. In most

cases, primary matrix functions are desirable, and these can be defined via the Jordan

canonical form, Hermite interpolation, or the Cauchy integral. However, we consider

here only functions that can be easily defined as a Taylor series, which is compatible

with the other definitions. Given some matrix A, we can write a matrix polynomial

p(A) = a0I + a1A+ · · ·+ akA
k. (1.2)

As with polynomials of scalar variables, it is possible to extend this to an infinite
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1. Networks and Graphs

sum that will converge. As a motivating example, the scalar differential equation

dx

dt
= αx, x(0) = x0 (1.3)

has solution x(t) = etαx0. This extends naturally to a system of ordinary differential

equations
dx

dt
= Ax, x(0) = x0, (1.4)

that has a solution that can be written in the same form as the scalar version, x(t) =

etAx0, using the matrix exponential. The matrix exponential can be defined as a series

in the expected way, which always converges:

eA =
∞
∑

k=0

Ak

k!
. (1.5)

This also works for other well-known functions such as sinh and cosh. It is even

possible to extend properties of these functions from the scalar case, for example we

have

cosh(A) =
eA + e−A

2
, sinh(A) =

eA − e−A

2
(1.6)

Some other matrices that will be used within this work are the Laplacian L and

the normalised Laplacian L̂. The motivation for the Laplacian matrix is given in

Subsection 1.3.1 later in this chapter, where we begin to discuss dynamical processes

on graphs and find that it arises naturally.

Lij =



























−1 if (vi, vj) ∈ E,

ki if i = j,

0 otherwise,

; L̂ij =































− 1
√

kikj
if (vi, vj) ∈ E,

1 if i = j,

0 otherwise.

(1.7)

We also use the distance matrix D

D = [dij]n×n , (1.8)
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1. Networks and Graphs

where the graph metric dij is the number of edges in the shortest path connecting vi

and vj.

1.1.3 Spectral Graph Theory

One method for obtaining information about the structure of a network is to use spectral

graph theory. Given some matrix A, we may consider the equation Ax = λx. The pairs

of scalars λ and vectors x that satisfy this equation are incredibly important, and are

known as eigenvalues and eigenvectors respectively. As discussed previously, there are

several matrices that can be associated with a given network, and the eigenvalues and

eigenvectors of these matrices can contain important information about the structure

of the network.

The adjacency matrix A has eigenvalues denoted by λ1 ≥ λ2 ≥ · · · ≥ λn and corre-

sponding eigenvectors φ1, φ2, · · · , φn. The spectral gap ∆ = λ1−λ2 is quite important,

as a high value indicates a lack of structural bottlenecks. We can construct a matrix

Φ = [φ1φ2 · · ·φn], an orthonormal matrix (meaning ΦΦT = ΦTΦ = I, where ΦT is

the transpose of Φ) containing the eigenvectors, and a diagonal matrix of the eigen-

values Λii = λi, then we can write the adjacency matrix as its spectral decomposition

A = ΦΛΦT . Since the adjacency matrix is real valued and symmetric, all the eigenval-

ues are real. Since it is also non-negative, there is also an eigenvalue λ1 = ρ(A), the

spectral radius, due to Perron’s theorem. We will see later that λ1 is closely related to

the dynamics of epidemics on networks.

The Laplacian matrix has eigenvalues 0 = µ1 ≤ µ2 ≤ · · · ≤ µn with corresponding

eigenvectors ψ1, ψ2, · · · , ψn. The quantity µ2 is often called the algebraic connectivity

and is closely connected to the behaviour of dynamic processes taking place on the

network [64, 37]. The corresponding eigenvector ψ2 is known as the Fiedler vector

and is also important. It is known that the multiplicity of the 0 eigenvalue is equal

to the number of connected components of a graph, and so if we have a connected

graph we have that µ2 > 0. The spectral decomposition of the Laplacian is written

as L = ΨMΨT , where Ψ = [ψ1ψ2 · · ·ψn] is an orthonormal matrix containing the

eigenvectors and Mii = µi is a diagonal matrix of the eigenvalues. Since L1 = 0 gives
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1. Networks and Graphs

us µ1 = 0, and since Ψ is orthonormal, we get that ψ1 = n−1/21.

It is sometimes helpful to use the spectral decomposition of a matrix instead of the

matrix itself. If we want to understand the effect of a function on a matrix, it can be

easier to understand its effect in terms of the eigenvalues and eigenvectors if something

is known about these. In network theory it is common to be interested in the diagonal

elements of a matrix, and it can be shown that

tr(Ap) =
n
∑

j=1

λpj , (1.9)

and since we consider matrix functions as powers of the adjacency matrix, we can write

tr(f(A)) =
n
∑

j=1

f(λj). (1.10)

As an example, we can then deduce that the value of tr(eA) will be dominated by

the contribution from the largest eigenvalues. If the spectral gap is large, this will be

dominated by just the largest eigenvalue: tr(eA) ≈ eλ1 .

1.1.4 Global Properties

Many different concepts have been proposed to describe and compare the structural

properties of networks. In practice, it is common to use matrices to represent the

network in some way, and then these are used to calculate quantities of interest that

try to capture some information about the network. Here we describe some of these

quantities relating to the global properties of networks that will be used in this work.

We start with some important concepts related to the node degrees. One basic

statistic is the average node degree k̄ = 1
n

∑n
i=1 ki. It can be helpful to consider

the density δ(G) = k̄/(n − 1) in some situations. We can also consider the degree

distribution of a network. We write p(k) for the probability that a node selected

uniformly at random will have degree k, and we can visualise this by plotting p(k)

against k. The shape of this distribution is useful and can say many things about the

network, such as giving hints about how the network was formed or developed, though
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1. Networks and Graphs

it does not uniquely determine the full structure of the network [48]. Similarly, we can

look at the distribution of node degrees for random graph models, and different models

will typically have different distributions.

We can also look at other aspects of the node degrees. Recall that a regular graph

is one in which all the nodes have the same degree, so then we might try to quantify the

irregularity of a network, such as by considering the variance of the node degrees [146].

The Collatz-Sinogowitz index [156] CS(G) = λ1 − k̄ can also be used to capture the

regularity of the network, which is because λ1 is a kind of ‘average-degree’ of the

network, and is equal to k̄ only when the network is completely regular, and in general

kmax ≥ λ1 ≥ k̄. Another is the degree heterogeneity [47], ρ =
∑

i,j L̂ij, which uses the

normalised Laplacian matrix.

The assortativity [119] is a measure of the degree correlations between nodes that

are linked. An assortative network is one in which nodes tend to be connected to nodes

of a similar degree, in contrast a disassortative network has a tendency for nodes with

high degree to link to nodes with a low degree, which can be found in a network with

hubs.

Next, we recall the distance matrix D and consider the usual graph metric, that

is the distance function d where d(vi, vj) is the length of the shortest path from vi to

vj. In the case of an unweighted graph this is the number of edges in the path and for

a weighted graph it is the smallest sum of edge weights in a path from vi to vj. This

suggests some structural parameters of interest. The diameter of a graph is the length

of the longest of all the shortest paths,

dmax(G) = max
i,j,i 6=j

d(vi, vj), (1.11)

which is simply the largest element of D. The eccentricity ε(vi) of a node vi is the

maximum value of d(vi, vj) over all j 6= i, and so the diameter can also be considered

as the largest eccentricity. We can also define the average path length, which is the

13



1. Networks and Graphs

average of all the shortest path lengths between all pairs of nodes

l̄(G) =
1

n(n− 1)

∑

i,j,i 6=j

d(vi, vj). (1.12)

We can gain clues about how a network was formed by looking at the occurrences of

small subgraphs. For example, in a social network it is intuitively clear that if person

A is friends with both person B and person C, there is a relatively high chance that

then person B and person C will also be friends. This results in a lot of triangles in

the network and is a characteristic of social networks. An excess of a particular small

subgraph is known as a network motif. There are 18 small subgraphs that will be

considered in this work (see [48]), which are shown in Appendix A.

The occurrences of triangles are commonly of particular interest, and so there are

ways to calculate the tendency of the network to form triangles. For a given node,

the clustering coefficient [161] or transitivity of the node is the ratio of the number of

triangles incident to that node to the number of paths of length 2 that are centred on

that node, |P2,i|. This follows from the fact that every pair of edges incident to a node

is a potential triangle, since triangles are precisely those instances where the two nodes

these edges link to are themselves joined by an edge. The number of triangles incident

to a node is calculated as

|C3,i| =
(

A3
)

ii

2
, (1.13)

since the cube of the adjacency matrix captures paths of length three, and its diagonal

then counts closed walks of length 3. However, each triangle may be traversed in each

of two directions and so we double count, and therefore we have to divide by two to

correct for this. The number of paths of length 2 centred on a node vi is calculated as

|P2,i| =
(

ki
2

)

=
ki(ki − 1)

2
, (1.14)

which is simply the number of ways of picking two edges from the ki edges incident to
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1. Networks and Graphs

the node. Then, the clustering coefficient of the node is

Ci =
|C3,i|
|P2,i|

=
|C3,i|

ki(ki − 1)
, (1.15)

where we define Ci = 0 if ki < 2. There are two ways to calculate the overall cluster-

ing of the network. The one that will be used in this work is the average clustering

coefficient, also known as the Watts-Strogatz clustering coefficient, which is simply the

average value of Ci

C̄(G) =
1

n

n
∑

i=1

Ci. (1.16)

The other option is the Newman clustering coefficient, which considers the total

numbers of triangles |C3| and paths of length 2, |P2|:

C(G) =
3|C3|
|P2|

. (1.17)

Perhaps surprisingly, these two clustering coefficients are not necessarily correlated,

so a graph may have a high Watts-Strogatz clustering coefficient and a low Newman

clustering coefficient, or vice versa.

An idea that was first considered in the context of social networks is centrality,

which is the intuition that some nodes are more important or influential than oth-

ers [22]. Many different ways of characterising the importance of each node have been

developed, which are not necessarily correlated with each other. A simple approach is

node degree centrality, which considers that nodes with a higher degree are more im-

portant. There is certainly some merit to this definition, but it only uses information

about nearest neighbours and so it is quite limited in the information that it captures.

More sophisticated approaches can be used that also consider nodes that are at a larger

distance from the node to determine how influential that node is, thereby capturing

more of the structure of the network as a whole. In this work we consider undirected

networks where the in-degree equals the out-degree for every node, but in a directed

graph such as the world wide web this is not true, and concepts such as the Page-Rank

centrality exploit this.
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1. Networks and Graphs

One way to obtain centrality measures is to consider weighed sums of the adjacency

matrix,

f(A) =
∞
∑

l=0

clA
l, (1.18)

which corresponds to considering walks in the graph and assigning some weight based

on the length of the walks. The coefficients must be chosen carefully so that the series

converges, though out of the choices we discuss here only one is not guaranteed to

converge, but this exception will converge if it satisfies a particular straightforward

condition. All the coefficients should be non-negative, and larger weights should be

given to smaller powers of the adjacency matrix and thus to shorter walks. The diagonal

entries of Al count the number of closed walks from each node to itself of length l, and

so these values are related to subgraphs of the network. Then, by giving a larger weight

to smaller powers of A we are giving more weight to smaller subgraphs. We give the

definitions of a few useful subgraph centralities [46, 57]:

EEi =

( ∞
∑

l=0

Al

l!

)

ii

=
(

eA
)

ii
(1.19)

EEodd
i =

( ∞
∑

l=0

A2l+1

(2l + 1)!

)

ii

= (sinh(A))ii (1.20)

EEeven
i =

( ∞
∑

l=0

A2l

(2l)!

)

ii

= (cosh(A))ii. (1.21)

The quantity EE(G) =
∑n

j=1EEi is known as the Estrada index [46]. The EE

centrality measure considers all possible walks in the graph, while EEodd only considers

closed walks of odd length and EEeven only considers closed walks of even length. Since

a bipartite graph has no cycles of odd length, such a graph will have EE = EEeven.

In practice, we may have a graph that is close to being bipartite, which means that

we can make it bipartite by removing some small number of edges, and therefore we

are interested in quantifying how close the network is to being bipartite. One obvious

method for this would be to calculate the smallest set of edges that can be removed

to make the graph bipartite, but in general this is very computationally expensive.

Instead, we can use the properties of the subgraph centralities. A good way to do this
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1. Networks and Graphs

is to consider the difference between the number of closed walks of even length and

odd length, and normalise by the total number of closed walks. This gives the so-called

spectral bipartivity [57]

bs(G) =
tr(cosh(A))− tr(sinh(A))

tr(cosh(A)) + tr(sinh(A))
=

tr(exp(−A))
tr(exp(A))

=

∑n
j=1 exp(−λj)
∑n

j=1 exp(λj)
. (1.22)

We note that there are other notable centrality measures that we do not find to be

useful in this context. There are several commonly used centrality measures based on,

for example, node degree, betweenness, and the main eigenvector [22]. Other centrality

measures with a similar derivation to the Estrada index include the Katz centrality,

which converges when α < 1/ρ(A) [100]

Ki =
[(

α0A0 + α1A1 + α2A2 + . . .+ αkAk + . . .
)

1
]

i
=
[

(I − αA)−1
1
]

i
, (1.23)

as well as more recently proposed variations such as the double factorial subgraph

centrality [61]

Γi =

( ∞
∑

l=0

Al

l!!

)

ii

. (1.24)

Since networks are used as models of real-world phenomena, it makes sense to apply

concepts from such physical systems to network analysis. While these may superficially

not make sense if the network we are considering is not obviously related to the physical

systems from which we take these concepts, they can still be used to extract useful

information about the network. The concepts can be seen as an analogy, and may be

able to be interpreted in terms of some feature of the network being considered. We

consider here some analogies taken from statistical physics [54]. The entropy and the

free energy are calculated as

S(G) = −
n
∑

j=1

pj ln pj, (1.25)

F (G) = − lnEE, (1.26)

respectively, where pj =
exp (λj)

EE
. We also consider an analogy from electrical circuits,
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which was introduced by Kirchhoff when considering the resistance in the circuits and

is known as the Kirchhoff index or resistance distance [102]:

Kf(G) =
∑

i<j

n
∑

k=2

1

µk
(ψk,i − ψk,j)

2 . (1.27)

Another important concept in the study of networks is communicability, which is a

measure of how well information can flow around the network. The communicability

between two nodes is characterised by the number of walks between them, with a larger

weight given to shorter walks. We can define the communicability between vi and vj

as

Gij =
∞
∑

k=0

ck(A
k)ij . (1.28)

We impose the same restrictions on the coefficients ck as we did for the subgraph

centrality (Eq. 1.18). If we choose ck = 1/k! we obtain

Gij = (eA)ij . (1.29)

Note that subgraph centrality of a node vi is Gii. We refer to Eq. 1.29 as the

communicability function, though of course there are other useful choices of coefficients

that result in other communicability functions. In the famous experiment by Milgram,

people were instructed to try to send a letter to a certain destination by only passing the

letter to someone they knew, to try to discover how many steps separate people in social

networks. In each case, either the letter reached its target, or it got lost somewhere.

In general, if we are trying to transmit some information through a network we can

consider the information transmitted from vi that reaches vj , and the ‘disruption’ in

the communication is the information that ends up returning to vi. The quantity

Gij represents the information that is successfully transmitted from vi to vj, and if the

communication is bidirectional, also from vj to vi; then Gii is the disrupted information

travelling from vi andGjj the disrupted information leaving from vj . We define an index

that considers the successfully transmitted information and the disrupted information
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as

ξ′ij := Gii +Gjj − 2Gij . (1.30)

Minimising the value of ξ′ij corresponds to increasing the information successfully

transmitted. It can be shown that

ξij =
√

ξ′ij (1.31)

is a Euclidean distance, and so ξij is called the communicability distance [49]. It is

useful to define the average communicability distance

ξ̄(G) =

∑

i 6=j ξij

n(n− 1)
. (1.32)

A related concept is the communicability angle [55], which is defined as

θij = arccos

(

Gij
√

GiiGjj

)

. (1.33)

Again, it is useful to consider the average value of the communicability angle

θ̄(G) =

∑

i 6=j θij

n (n− 1)
. (1.34)
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1. Networks and Graphs

1.2 Random Models

1.2.1 Erdős-Rényi

The idea of random graphs was first described by Erdős and Rényi [45, 134]. If one uses

the phrase “random graph”, it usually refers to this model, though it is also commonly

referred to as the Erdős-Rényi (ER) model. There are two parameters in the graph,

the number of nodes n and a connection probability p. Each pair of nodes is then

connected independently with probability p. Alternatively, some number of edges m

is specified and links are added uniformly at random until m edges have been added.

It is widely used as a null model because it is randomly-generated - the properties of

an ER random graph demonstrate what happens if a network is constructed randomly.

Therefore, if a real-world network has properties that differ significantly from this we

can conclude that there is some mechanism guiding its formation, and gain clues about

what that mechanism might be. This makes it a crucial tool for analysing networks.

This model has been studied in great depth and many of its properties are known.

The expected node degree is k̄ = (n − 1)p, and it has a Poisson degree distribution

p(k) =
e−kk̄k

k!
. The average clustering coefficient is C̄ = p, and the average path length

is l̄ =
lnn− γ

ln(pn)
+

1

2
. As the value of p is increased, the size S of the largest component

grows in a known way, in three stages.

• Subcritical k̄ < 1: all components are small, and the largest is of size O(lnn).

• Critical k̄ = 1: there is a single largest component of size O(n2/3).

• Supercritical k̄ > 1: P((f − ǫ)n < S < (f + ǫ)n) → 1 as n→ ∞, where f = f(k̄)

is the positive solution to e−k̄f = 1− f .

1.2.2 Barabási-Albert

Another widely-used type of random graph is the Barabási-Albert (BA) model [10].

The main distinguishing feature of the BA model is that it has a power-law degree
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distribution with exponent −3, and therefore it displays scale-free properties. That

is, it’s degree distribution extends over several orders of magnitude, and therefore

has features at various scales. It is constructed using the idea that many real-world

networks, such as webpages on the internet linking to each other or actors working

together on movies, grow over time. When new nodes are added to these networks,

i.e. a new webpage is created or an actor appears in their first movie, they are more

likely to connect to high-degree nodes rather than nodes with a small degree that

are more obscure, which is known as preferential attachment. A BA random graph is

created by taking some small ‘seed’ graph (usually an ER random graph), and adding

one node at a time; each time a node is added, it is connected to each existing node with

a probability depending on the degree of those nodes. Nodes that already have a high

degree are more likely to have new nodes connect to them, thus making their degree

even larger. This results in ‘hubs’ that are connected to a large number of other nodes,

and peripheral nodes that are poorly connected. When a large number of nodes has

been added, the effect of the seed graph becomes quite small and unimportant. Many

real-world networks have, or have been claimed to have, scale-free properties, and so

it is useful to have a random graph model that produces scale-free graphs in order to

analyse how such graphs behave. The degree distribution is of the form p(k) ≈ αk−3.

The preferential attachment causes high-degree nodes to be more important, and

this heterogeneity in the importance of the nodes only grows as more nodes are added.

In contrast, in the spatial networks we consider in this Thesis, such as WSNs or crop

fields, all of the nodes are established at once and there is neither growth nor preferential

attachment. Then, we should not expect such networks to be scale-free with a power-

law degree distribution.

1.2.3 Random Geometric Graph

One problem with the above models in certain applications is that they do not consider

any spatial information. There are several random graph models currently considered in

the literature that are defined geometrically. They consider nodes distributed in some

metric space, and the distance between the nodes in a specified metric is used to decide
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which pairs of nodes are connected by edges and which are not. Such graphs are referred

to in general as proximity graphs [95]. Typically, the space is some subset of Rd, the

nodes are distributed uniformly at random, and the metric is the Euclidean distance.

We first consider the random geometric graph (RGG) model that was introduced by

Gilbert [69].

The RGG is defined by distributing uniformly and independently n points in the

unit d-dimensional cube [0, 1]d [127]. Then, two points are connected by an edge if their

Euclidean distance is at most r, which is a given fixed number known as the connection

radius. That is, we create a disk of radius r centred at each node, and every node

inside that disk is connected to the central node. An example of an RGG is shown in

Fig. 1.1. This disk plays the role of the area of influence of a given node, such as the

area of coverage of a mobile or wireless sensor. A variation of the model is sometimes

considered where the probability of two nodes being connected is some function of the

distance between them. Then, we are simply considering the case where this probability

is 1 if the distance between the nodes is less than r and 0 otherwise.

0 1

0
1

Figure 1.1: Illustration of an RGG created with 500 nodes, the nodes are connected if
they are at a Euclidean distance smaller than or equal to r = 0.07.

The RGG model has been widely used in the study of wireless sensor networks

(WSNs) and peer-to-peer networks [74, 62, 132], where the problem of consensus has
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received great attention due to the fact that it allows tasks to be achieved with a

minimum overhead of communication [101, 67, 42, 11, 128]. In the consensus protocols,

as they are known in technological applications, the problem consists of making the

scalar states of a set of agents converge to the same value under local communication

constraints [122, 110]. Thus, since the communication requires only local information

there is no congestion due to network traffic. RGGs are also used to model populations

that are geographically constrained in a certain region, like a city. This scenario is

important, for instance, for the analysis of epidemic spreading in such populations [91,

42, 148, 114]. In this sense Riley et al. [135] have remarked that RGGs “provide a nice

way of escaping the lack of local correlation and clustering that are implicit properties of

the configuration graphs often used to explore epidemic dynamics”. In a similar fashion,

RGGs can be used to model structured populations in which opinions, instead of viruses,

are propagated. In this case the RGGs also capture very well the geographic constraints

of the population and, in comparison with other models [166], they “are more realistic

for a number of reasons: (i) RGG is isotropic (on average) while regular lattice is not;

(ii) the average degree for an RGG can be set to an arbitrary positive number, instead of

a small fixed number for the lattice; (iii) RGGs closely capture the topology of random

networks of short-range-connected spatially-embedded artificial agents”. RGGs have

even been used to model systems that are less obviously geometrical, such as protein-

protein interaction networks [81].

Some work has been done to determine the properties of the RGG model. Taking

toroidal boundary conditions for the RGG greatly simplifies the analysis since the area

that lies within the connection radius r of each node is always a circle, and so this is

frequently done. The expected average node degree is very easy to compute in this

regime as

E(k̄) = (n − 1)πr2 ≈ nπr2. (1.35)

In the case of closed (non-toroidal) boundary conditions, Eq. 1.35 is approximately

true if r is very small, otherwise the boundary starts to have a significant effect.

The RGG model has been tackled analytically mostly in terms of some infinite

limit, and in the case of the general hypercube. By letting the number of nodes tend
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to infinity, it is possible to find the smallest value of the connection radius such that in

the limit there is some nonzero fraction of the nodes in the largest cluster. Considering

toroidal boundary conditions, the analysis is simplified to find a simple expression for

the node degree and clustering coefficient, and obtain this percolation threshold. This

concept of continuum percolation has been used to explain the stretched exponential

relaxation in certain systems such as polymers and glasses [97]. Consideration of the

limit as n → ∞ has also been shown to give analytical results on sharp thresholds

where a certain property of the RGG appears, such as connectivity [72].

The average clustering coefficient of a RGG has been obtained by Dall and Chris-

tensen [34] for r2 =
log n+ α

nπ
when n→ ∞ and α→ ∞, where α ∈ R is a constant for

a given number of nodes:

C̄d =











1−Hd(1) d even

3
2 −Hd(1/2) d odd,

(1.36)

where d is the dimension of the hypercube in which the nodes are embedded and

Hd (x) =
1√
π

d/2
∑

i=x

Γ (i)

Γ
(

i+ 1
2

)

(

3

4

)i+ 1

2

, (1.37)

where Γ(i) is the Gamma function. Thus, for d = 2, C̄2 = 1 −
3
√
3

4π
≈ 0.5865 and for

d = 1, C̄1 = 3/4 = 0.75.

In contrast, there has been relatively little work considering finite RGGs with

boundary in 2D. There has been some work considering the connectivity of such

RGGs [31, 30], that is, under what conditions the graphs are likely to connected. This is

important because when considering some dynamical process taking place on a graph,

nodes can have no interaction with other nodes when there are no paths between them,

and it is therefore helpful to be in a regime where there is a single component. The idea

is that the boundary will cause a heterogeneity in the node degrees such that nodes

that are near the boundary, especially near a vertex of the domain, will have a lower

degree since they are surrounded by fewer nodes. Then, to a first-order approximation,
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the cause of an almost-connected RGG to be disconnected is an isolated node that is

likely to be found near a vertex. This has also been explored in fractal regions [40]

and convex right prisms [32], which are notable for considering more interesting shapes

than squares or circles.

Some consideration has also been given to the RGG in the unit ball [44], and

hyperbolic space [125]. Furthermore, as a result of our introduction of the RRG model,

a recent paper considers spectral and eigenfunction properties of RRGs [4], and there

has been separate work by Estrada on the synchronisibility of RRGs [52].

1.2.4 Proximity Graphs and Relative Neighbourhood Graphs

The ‘classical’ β-skeleton graphs Gβ(V ) are a family of spatially defined graphs con-

structed from a point set V with parameter β ≥ 0, and are described by [95, 149].

For β ≥ 1 the lune-based definition of the β-skeleton model is used and described here

as it is more suitable for our needs, an alternative is the circle-based definition that

we do not examine here. Though we mostly consider the 2D case, the construction

detailed below also works in higher dimensions. We first discuss the construction then

demonstrate examples of β-skeleton graphs in Fig. 1.2.

Let pi and pj be two arbitrary points that are separated by a Euclidean distance

L, and let B(p, r) denote the open ball located at point p with radius r. Two circles,

B((1− β
2 )pi +

β
2 pj ,

β
2L) and B((1− β

2 )pj +
β
2 pi,

β
2L) are constructed, and let R be the

intersection of the circles. It is obvious that the area of R increases as β is increased.

Although it was previously stated that we are only considering the lune-based definition

for β ≥ 1, the case of 0 < β < 1 is also defined. In this case two circles of radius L/(2β)

that pass through both points pi and pj are instead constructed and the intersection is

again denoted by R, and note that the construction of the circles differs from the case

of β ≥ 1.

Then, if there is no other point pk included in the region R, the points pi and pj are

connected by a segment of line, otherwise the points are not connected. By considering

this process for all pairs of points, a graph Gβ = (V,E) is constructed in which the

set of vertices V is formed by the points pi and the set of edges E is formed by the
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segments of lines connecting pairs of vertices. Obviously, for small values of β, e.g., for

0 < β < 1, the chances that there is a point in the region R associated with pi and pj

is very small, and there is a high probability that these two points are connected. As a

consequence of this, the resulting graphs are very dense, containing a large number of

triangles. It can be seen that if β = 0, the resulting graph is just the complete graph.

Special cases that are commonly considered in the computational geometry literature

are when β = 1 or β = 2, which corresponds to the Gabriel graph (GG) and relative

neighbourhood graph (RNG) respectively. We note here that the β = 2 case (RNG)

will be especially important in this Thesis.

The β-skeletons are monotone in β, that is if β1 > β2 then Gβ1
(V ) ⊂ Gβ2

(V ). The

β-skeletons are related to other well-known proximity graphs such minimum spanning

trees (MST) and Delauney triangulations (DT). It has been shown that in R
2 with the

Lp norm, MST (V ) ⊂ Gβ(V ) ⊂ DT (V ) for 1 ≤ β ≤ 2. This implies that for 1 ≤ β ≤ 2

the β-skeleton is both connected and planar. It also gives bounds on the number of

edges of these graphs of n − 1 ≤ m ≤ 3n − 6, where the lower bound comes from the

connectedness and the upper bound comes from the planarity of DT(V).

It is clear that the literature for the relative neighbourhood graphs and other β-

skeletons is mostly concerned with efficient computation of the graphs in various cir-

cumstances [152, 98, 99], their use in identifying clusters of points [151], and broad

properties of the resulting graphs. This is because it has mostly been of interest in

computational geometry and pattern recognition, and less so as a random graph model,

and so it has received relatively little discussion in terms of its properties and how they

change as the parameters of the model are changed.
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β Value
Construction of
β-skeleton

Example of β-skeleton

β < 1 i j
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β = 1 i j
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1 < β < 2 i j

a

b

0 1

0
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β = 2 i j

a

b

0 1
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1

Figure 1.2: Illustration of the construction of β-skeletons in a unit square for different
values of β, where the region R is shaded grey, with an example graph with n = 500
nodes for each. From top to bottom: β = 0.8, 1.0, 1.8, 2.0.
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1.3 Dynamics on Networks

Many real-world networks are not static in nature. There may be some dynamical

process taking place on the objects represented by the nodes, and also the network itself

may be evolving over time. Understanding the behaviour of these processes and how

they are influenced by the topology of a particular network is of great practical interest

in many areas. There are two possibilities for interpreting the network representation

of the system. Either the nodes represent some individual that is interacting with other

individuals in some way, or they represent possible locations for the flow of information,

people, particles, etc. In either case, we can consider some variable for each node that

contains the information about its state.

For example, in social groups information such as opinions will propagate through

people interacting. Alternatively, we may be interested in the propagation of some

disease that is being transmitted by people in close proximity to one another. Un-

derstanding the dynamics of these systems will help in understanding, predicting and

influencing the spread of disease in order to minimise the risk of epidemics occurring.

This kind of epidemic spreading also applies to other situations, such as plants in fields

where a disease may spread to another plant if it is within close enough proximity.

Another example is the flow of information in a wireless sensor network. Wireless

sensors may be distributed over a geographical area in order to make some measure-

ments, e.g. for measuring air pollution. They can only communicate with nearby sensors

without causing interference and excessive power consumption. This means that it is

crucial to ensure that information can spread through the entire network, and that it

can do so efficiently.

We model a dynamical process on a network by assigning a value to each node.

These are independent variables that we identify with some quantity of interest in the

real system. Therefore, we can describe the state of the system at a time t ≥ 0 by

the vector u(t) = (u1(t),u2(t), . . . ,un(t))
T . We clarify that ui is the ith entry of u,

in contrast to eigenvectors where we recall that ψi is the ith eigenvector of L, and
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we will write ψi,j for the jth entry of the ith eigenvector. The vector u contains the

information of the state of every node as the dynamics evolves in time, as nodes interact

with each other along the links of the network.

1.3.1 Diffusion (Consensus) Process

Here we discuss diffusion processes in graphs, how they are related to consensus pro-

tocols, and show a derivation of the Laplacian matrix that is crucial to this work. We

consider first a simple diffusion process taking place on the nodes of the graph, which

is governed by the following equation.

dui(t)

dt
= u̇i(t) =

∑

j:(vi,vj)∈E
(uj(t)− ui(t)), i = 1, 2, . . . , n. (1.38)

To visualise this, consider the small graph shown in Fig. 1.3. For each of the

neighbours of node vi, we consider that its contribution to the rate of change of the

state node vi is proportional to the difference in the states of the two nodes. Then,

the rate of change of the state of a node is just the sum of these differences over all

adjacent nodes as in Eqs. 1.39. This is equivalent to a simple consensus process (also

discussed as a consensus protocol) where every node is trying to reach an agreement

with its neighbours [110, 122, 123, 38, 124], though other consensus protocols exist.

1

2

3

4

Figure 1.3: A small graph to help demonstrate the equations governing dynamics.
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u̇1 = (u2 − u1) + (u3 − u1)

= u2 + u3 − 2u1

u̇2 = (u1 − u2) + (u3 − u2)

= u1 + u3 − 2u2

u̇3 = (u1 − u3) + (u2 − u3) + (u4 − u3)

= u1 + u2 + u4 − 3u3

u̇4 = (u3 − u4).

(1.39)

More concisely and in general, this can be written for each node vi as

u̇i(t) = −
n
∑

j=1

Aij(ui(t)− uj(t))

=

n
∑

j=1

Aijuj(t)− kiui(t).

(1.40)

This suggests that we may write the set of equations for our example as

















u̇1

u̇2

u̇3

u̇4

















= −

















2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1

































u1

u2

u3

u4

















(1.41)

It is obvious now that we can write Eq. 1.38 by using the Laplacian matrix of the

graph as in Eq. 1.41,

u̇(t) = −Lu(t), u(0) = u0 (1.42)

where in a slight abuse of notation we have some initial condition u(0) = u0, and write

u0,i for the ith entry of u0. This shows how the Laplacian matrix arises naturally

when considering dynamical processes on graphs. In Eq. 1.42 the Laplacian matrix

is acting over the vector u(t); this is simply the heat equation on a graph, and then

the interpretation is that each node has a temperature and will exchange heat with its
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neighbours until thermal equilibrium is reached. The solution of this equation is

u(t) = e−tLu0. (1.43)

Recalling that 0 = µ1 < µ2 ≤ · · · ≤ µn are the eigenvalues and ψ1, ψ2, · · · , ψn are

the eigenvectors of the Laplacian matrix, the solution of the diffusion equation on the

graph is given by

u(t) = e−tµ1(ψ1 · u0)ψ1 + e−tµ2(ψ2 · u0)ψ2 + · · ·+ e−tµn(ψn · u0)ψn, (1.44)

where x · y represents the inner product of the corresponding vectors.

For the sake of simulations it is sometimes useful to consider the discrete-time

version of the equation, which can be written as [110, 122]:

ui(k + 1) = ui(k) + ǫ

n
∑

j=1

Aij(uj(k)− ui(k)), (1.45)

where 0 < ǫ < k−1
max is the time step for the simulation and Aij is the (i, j)th entry of

A. Equation 1.45 can also be written in matrix form as

u(k + 1) = (I − ǫL)u(k). (1.46)

The matrix (I − ǫL) is usually known as the Perron matrix. An example of a

diffusion process taking place on a graph is shown in Fig. 1.4.

In general, the best structural parameter describing the diffusion time is the alge-

braic connectivity, µ2. In order to understand this relation, we consider the solution of

the diffusion equation (Eq. 1.42). Since we can consider this to be a consensus process

we now use some corresponding terminology and results. When the time tends to in-

finity every node tends to the state dictated by the average of the values of the initial

condition. This state is usually known as the consensus set [110] and it can be formally

defined as the set A ⊂ R
n, which is the subspace span {1}, i.e.,

A = {u ∈ R
n|ui = uj , ∀i, j ∈ {1, . . . , n}} . (1.47)
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Figure 1.4: Illustration of the diffusion dynamics in an RGG. The simulations were
carried out using a discrete time diffusion model (see Eq. 1.46) with a random allocation
of initial states for the nodes.

The following is a well-known result in the theory of consensus dynamics on net-

works.

Theorem 1.3.1. ([110] p. 46) Let G be a connected graph. Then, the consensus

dynamics converges to the agreement set with a rate of convergence that is dictated by

µ2.

Proof. As t→ ∞
u(t) → (ψ1 · u0)ψ1 =

1 · u0

n
1, (1.48)

and hence ut → A. As µ2 is the smallest positive eigenvalue of the graph Laplacian, it

dictates the slowest mode of convergence in Eq. 1.44.

To understand this in more detail, consider that the time tends to the time of

consensus t → tc, where tc is the time at which |ui(t) − uj(t)| ≤ δ for all i, j. Denote

this time by t−c . Note that we refer to the time of consensus as the time of diffusion or

diffusion time when we are discussing diffusion. Then,

up

(

t−c
)

=
1

n

n
∑

q=1

u0,q +

n
∑

j=2



ψj,pe
−t−c (p)µj

n
∑

q=1

ψj,qu0,q



 , (1.49)
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where here t−c (p) means the time at which the node p is close to reaching the diffusion

state. Let 〈u0〉 = 1
n

∑n
q=1 u0,q and write Eq. 1.49 as follows

up

(

t−c
)

− 〈u0〉 =
n
∑

j=2



ψj,pe
−t−c (p)µj

n
∑

q=1

ψj,qu0,q



 . (1.50)

A node vp is selected such that ψ2,p has the same sign as ψ2 · u0. Since µ2 is the

smallest eigenvalue in the sum on the right hand of the expression, this terms tends to

0 slower than the terms for the other values of j. This means that, if δ is sufficiently

small, the values of tc and thus t−c will be very large. Thus, it is possible to ensure that

the left side of the equation is small enough such that
n
∑

j=3

(

ψj,pe
−t−c (p)µj

(

ψj · u0

)

)

< 0.

This implies that

(

up

(

t−c
)

− 〈u0〉
)

< ψ2,pe
−t−c (p)µ2 (ψ2 · u0) . (1.51)

Now, because |up (t
−
c )− 〈u0〉| ≥ δ,

δ ≤
∣

∣up

(

t−c
)

− 〈u0〉
∣

∣ <
∣

∣

∣
ψ2,pe

−t−c (p)µ2 (ψ2 · u0)
∣

∣

∣
. (1.52)

Then, the time at which the diffusion is reached tc (p) is bounded by

tc (p) ≥ t−c (p) ≥ 1

µ2
ln

∣

∣

∣

∣

ψ2,p (ψ2 · u0)

δ

∣

∣

∣

∣

. (1.53)

Finally, the average time of diffusion is bounded by

〈tc〉 ≥
1

µ2n

n
∑

p=1

ln

∣

∣

∣

∣

ψ2,p (ψ2 · u0)

δ

∣

∣

∣

∣

. (1.54)

1.3.2 Epidemics on Networks

Networks are very appealing for the application of epidemiological models in ecology on

the different spatial and temporal scales. The discovery of the fact that networks with
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fat-tailed degree distribution do not display an epidemic threshold in the asymptotic

limit is a relevant example of how the connectivity pattern of interacting agents can

dramatically change the course of an epidemic [19, 28]. The use of network theory in

epidemiological models provides a way to incorporate the individual-level heterogeneity

necessary for a mechanistic understanding of the spread of infectious disease. However,

in a recent review about the implications of modelling disease using networks for plant

sciences, Jeger et al. [96] has recognized that there has been “relatively little use of

network theory in plant epidemiology” and claimed that models of epidemics on net-

works “might work better for animal or human than for plant diseases”. Among the

models that have found applications to study plant diseases, those using spatial fea-

tures for characterising the structure of populations in heterogeneous landscapes have

gained recent interest [96]. In such models it is possible to consider spatial networks

that treat interactions as a continuous variable that decays with increasing distance or

by distributing randomly and independently a set of vertices on the Euclidean plane

to represent the relative spatial location of individual hosts or habitat patches. The

second kind of model is based on RGGs.

Brooks et al. [23] have used RGGs to model the interactions between the anther

smut fungus and fire pink using a temporal data that span 7 years of field studies. They

have concluded that the use of spatially explicit network models “can yield important

insights into how heterogeneous structure can promote the persistence of species in

natural landscapes”. Since plants are not mobile, the shape of the plot or field in which

the plants are distributed may have a significant impact on the spread of disease. In

fact, there is both empirical and theoretical evidence that supports this hypothesis [126,

157, 93, 65, 21, 113, 112, 164, 63]. In general, it has been suggested that square

plots and fields favoured higher spreading of plant diseases than elongated ones of

the same area [126, 157, 93, 65]. It is important to remark that the area of the field

also plays a fundamental role, with larger plots and fields better favouring the spread

of diseases [113, 164, 63]. Also, the orientation of elongated fields may affect the

disease propagation with orientations perpendicular to prevalent winds suppressing

epidemic progression [157, 65]. All in all, for plots and field of the same area and
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orientation there is empirical and theoretical evidence that elongated shapes decreases

the impact of epidemics on plant populations. It is worth noting that the theoretical

models [112, 164, 63] used in the previously mentioned studies do not use network

theory as a tool for the study of epidemic spreading.

When using networks to model infectious diseases spreading between individuals of

a population, nodes correspond to individuals and edges correspond to contact between

them through which the infection can spread [9, 5]. There are three states individuals

can be in: they are susceptible (S) when they can be infected by the disease, infected

(I) when they can spread the pathogen, and recovered (R) when they have been pre-

viously infected and are now immune. There are two common models that are used,

depending on the nature of the pathogen. The Susceptible-Infected-Recovered (SIR)

model is appropriate when a previous infection provides immunity to further infection,

and Susceptible-Infected-Susceptible (SIS) when this does not happen. The dynamics

of both SIS and SIR models are governed by two parameters. The per contact infection

rate β, which is the rate at which a susceptible individual will catch the infection from

an infected individual, and the recovery rate µ, which is the rate at which an infected

individual recovers. Let si, xi and ri be the probabilities that the node vi belongs to

S, I, or R respectively. The SIS model is then written as

ṡi = −βsi
∑

j

Aijxj + µxi,

ẋi = βsi
∑

j

Aijxj − µxi,
(1.55)

while the SIR model is written as

ṡi = −βsi
∑

j

Aijxj,

ẋi = βsi
∑

j

Aijxj − µxi,

ṙi = µxi.

(1.56)

The ratio β/µ is crucial to the dynamics of the infection. The epidemic threshold (or
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basic reproduction number) τ = (β/µ)c is defined as the critical value of the transition

and depends on the topology of the network. There are two phases, an absorbing phase

β/µ < τ where the infection dies out before infecting a large number of nodes, and

an active phase β/µ > τ where it succeeds in spreading through a large fraction of

the nodes. When β/µ = τ the infection becomes endemic in the population. The

transition from the absorbing to the active phase strictly resembles a non equilibrium

second order phase transition in statistical physics [109, 79]. In particular, it has been

shown that τ is inversely related to the spectral radius [29, 73, 154]:

τ =
1

λ1
. (1.57)

1.3.3 The Flow of Fluids

The flow of fluids through porous media is frequently described by the Boussinesq

equation, which is also known as the porous media equation:

∂

∂t
u(x, t) =

∂

∂x
(u(x, t)

∂

∂x
u(x, t)), u(x, 0) = u0, (1.58)

where u(x, t) is a non-negative scalar function on x ∈ Ω = [0, 1] and time t ≥ 0.

Suppose that the fluid is flowing through a capillary of length L and height h0, and

suppose that the capillary is much longer than it is thick: L ≫ h0. Then, according

to [78] (see especially Fig. 4) and [131], the Boussinesq equation can be very well

approximated by a simple heat equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(x, 0) = u0. (1.59)

Obviously, the channels produced by the fractures of rocks are less than a millimetre

thick and a few centimetres long. Thus, L≫ h0 is always true and the use of the heat

equation is justified for modelling the diffusion of oil and gas through the channels

formed by the network of rock fractures. In the case of diffusion through the edges of
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1. Networks and Graphs

a network the previous equation can be written as

∂

∂t
u(x, t) = −Lu(x, t), u(x, 0) = u0. (1.60)

Therefore, we recover the same model as for the diffusion (consensus) process.

1.4 Summary

In this part of the Thesis we introduced the background theory relevant to this work,

and established the notation and concepts that will be required. A table of useful

notation may be found on page xii. We first gave an overview of some basic graph

theory and network theory, then we discussed several random graph models that are

used within this work, and finally we discuss some dynamical processes on networks.

In the next part of this Thesis we first present some theoretical results on a gen-

eralisation of the spatially defined random graph models we have introduced. Then,

we consider three applications of these random graph models, with an emphasis on the

three dynamical processes we have mentioned here.
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Chapter 2

Structure and Connectivity of

Random Rectangular Graphs

In all the real-world scenarios where the RGG model has been applied, the shape of the

location in which the nodes of the graph are distributed may play a fundamental role in

the topological and dynamical properties of the resulting graphs. That is, it is intuitive

to think that the connectivity, distance, clustering and other fundamental topological

properties of the graphs are affected if we, for instance, elongate the unit square in

which the points are distributed. We present a new model that generalises the RGG by

allowing the embedding of the nodes in a unit rectangle instead of a unit square. Our

main goal is to investigate how the elongation of a unit square influences the topological

properties of the graphs generated by the model. We call these graphs the random

rectangular graphs (RRGs) and have published several results [58, 59, 56], see also [52].

In this work we study the influence of the length of the rectangle on the topological

properties of the graphs emerging on them, such as their average degree, connectivity,

degree distribution, average path length and clustering coefficient. In particular, we find

analytical expressions and bounds for all of them and provide computational evidence

of the tightness of the bounds for relatively large RRGs. Then, we consider dynamical

processes taking place on the RRGs and study how the behaviour of such processes

changes with the elongation of the rectangle. Throughout this work, R was used to

perform most of the numerical calculations and to produce most of the figures. All
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2. Structure and Connectivity of Random Rectangular Graphs

other calculations and figures used MATLAB.

2.1 Definition of RRGs

Let us now define a unit hyperrectangle as the Cartesian product [0, x1]× [0, x2]×· · ·×
[0, xd] where xi > 0 ∈ R, and

∏

1≤i≤d xi = 1. Hereafter we will restrict ourselves to

the 2-dimensional case, the unit rectangle, except to discuss future work. The RRG

is defined by uniformly and independently distributing n points in the unit rectangle

R = [0, a] × [0, b] where a ≥ 1, b = 1/a, and then connecting two points by an edge if

their (Euclidean) distance is at most r. Though of course we may write all results in

terms of a, we may also make use of b explicitly when it is useful to do so. It is evident

that the only change we have introduced here is to consider a rectangle of unit area

instead of the analogous square. The rest of the construction process remains the same

as for the RGG. This means that RRG → RGG as a → 1. In this sense we can say

that the RRG is a generalisation of the RGG. In Fig. 2.1 we illustrate an RRG.

a

b

0 2

0.
0

0.
5

Figure 2.1: Illustration of a random rectangular graph with a = 2 (b = 0.5). It has 500
nodes and r = 0.07, which is the same as Fig. 1.1.

An interesting question is what happens at the other extreme, when a becomes very

large. In this case b ≈ 0, which means that the n points behave as though they are

uniformly and independently distributed on the straight line. Let us consider a disk of

radius r > 0 centred at each of these points and connect every point to the other points

that lie inside its disk. The resulting graph resembles a one-dimensional RGG, that is

a graph created by placing the n points uniformly and independently on the interval

[0, 1] and then connecting pairs of nodes if they are at a (Euclidean) distance smaller

than or equal to a certain connection radius r (see for instance [39, 66, 71]).
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2. Structure and Connectivity of Random Rectangular Graphs

2.2 Topological Properties of RRGs

In order to understand the behaviour of the RRG model, determine that it is indeed

different from the RGG model, and obtain useful insight into the behaviour of dynamical

processes on the graphs that model some real-world scenario, we need to examine

various key topological properties. As well as simply examining the behaviour, we

would like to find bounds on the values of these properties for different parameter

values, and if possible, find an analytical expression for the expected value of these

properties. In this section, we present the results we have found for several important

structural parameters of RRGs.

2.2.1 Average Node Degree

We start the study of the topological properties of RRGs by considering an analytical

expression for the average degree k̄.

Theorem 2.2.1. The expected value of the average node degree k̄(GRRG) of an RRG

is [58]

E
(

k̄
)

= (n− 1)f, (2.1)

where f is given by

f =


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
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3 − b2r2 + 1
6b

4 + (43ar
2 + 2

3b)
√
r2 − b2

+2r2 arcsin
(

b
r

)

,

a ≤ r ≤
√
a2 + b2 −1

2r
4 − (a2 + b2)r2 + 1

6 (a
4 + b4)

+(43ar
2 + 2

3b)
√
r2 − b2 + (43br

2 + 2
3a)

√
r2 − a2

+2r2(arcsin
(

b
r

)

− arccos
(

a
r

)

).

(2.2)

Proof. To start with, let us consider that for a given node, there are n − 1 nodes dis-

tributed in the rest of the rectangle. Define A(x) to be the area within the radius r of a
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2. Structure and Connectivity of Random Rectangular Graphs

point x that lies within the rectangle. Since the nodes are uniformly and independently

distributed, the expected degree of a node vi is E(ki) = (n− 1)A(vi), where in a slight

abuse of notation A(vi) uses the point where node vi is located. This is because dividing

the nodes between the area within distance r and the rest of the rectangle gives rise

to the Binomial distribution Bin(n − 1, A(vi)). Averaging this over all possible node

locations x ∈ R gives

E
(

k̄
)

=

∫

R
(n− 1)A(x) dx = (n− 1)

∫

R
A(x) dx. (2.3)

We simply write the integral with respect to dx for now, and will do so again

for similar integrals, but note that this is indeed a 2D integral and we deal with a

specific parametrisation separately to solve this as a double integral. Recalling that

δ(G) = k̄/(n − 1), let f(a, b, r) = E (δ(G)) be the area within radius r of a point

that lies in the rectangle, integrated over all points, i.e., f(a, b, r) =
∫

RA(x) dx. We

find that we need to consider the following three regions: 0 ≤ r ≤ b, b ≤ r ≤ a and

a ≤ r ≤
√
a2 + b2, recalling that a ≥ b. We call these cases 1, 2 and 3, respectively.

Thus, the function f(a, b, r) takes different forms fi for each case i. This means that

we can write

E
(

k̄
)

= (n− 1)f, (2.4)

with

f =



























f1 0 ≤ r ≤ b,

f2 b ≤ r ≤ a,

f3 a ≤ r ≤
√
a2 + b2.

(2.5)

We now find analytical expressions for each fi by constructing suitable integrals.

We consider the rectangle in Fig. 2.2, which shows 3 quarter circles of different

radii (each corresponding to one of the three cases) as they intersect the interior of the

rectangle. We exploit the symmetry of the problem to simplify analysis by considering

only quarter circles instead of circles, then we quadruple the result at the end. For

each of these quarter circles, we divide them into vertical rectangular strips of width

∆x that will approximate the areas of the intersection between the quarter circles and
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2. Structure and Connectivity of Random Rectangular Graphs

Figure 2.2: Illustration of three different quarter circles in the rectangle corresponding
to 0 ≤ r ≤ b (solid line), b ≤ r ≤ a (broken line) and a ≤ r ≤

√
a2 + b2 (dotted line).

The direction used for displacing the circles is represented as bottom-top (B–T) with
an arrow in the graphic.

the full rectangle; this will of course become exact in the limit as ∆x → 0 to form an

integral. We now consider several possibilities for these strips.

First, the strips may approximate an area that is not rectangular, which occurs

when the height of the strip is smaller than the height b of the rectangle. For a strip

of distance x from the left of the rectangle, this corresponds to 0 ≤ x ≤ r for the

smaller quarter circle (case 1),
√
r2 − b2 ≤ x ≤ r for the medium quarter circle (case

2), and
√
r2 − b2 ≤ x ≤ a for the largest quarter circle (case 3). Setting p = min(a, r),

q = min(b, r), we have
√

r2 − q2 ≤ x ≤ p.

Since we need to integrate these areas over all possible quarter circles, given a fixed

radius, we wish to know how we can translate the quarter circle in the rectangle and

preserve a particular strip. That is, for a particular strip of distance x from the left of

the rectangle, we may find a corresponding strip on the other quarter circles of the same

radius. Since we have a rectangular strip of width ∆x, height
√
r2 − x2, and distance x

from the centre of the (quarter) circle, we may find this strip in any of the (a−x−∆x)

positions horizontally, and (b −
√
r2 − x2) vertically. Thus, we can use integration to
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2. Structure and Connectivity of Random Rectangular Graphs

find the total area of all these strips by multiplying (a− x−∆x)(b−
√
r2 − x2) by the

area of the strip
√
r2 − x2∆x, and taking the limit to obtain

I1 =

∫ p

√
r2−q2

(a− x)(b−
√

r2 − x2)
√

r2 − x2 dx

=

∫ p

√
r2−q2

(a− x)(b
√

r2 − x2 − (r2 − x2)) dx. (2.6)

Secondly, we note that if these strips are translated far enough in the bottom-top

(B–T) direction, they become truncated by the top of the rectangle. For a particular

truncated strip, we may still find a corresponding strip in any of the (a − x − ∆x)

positions horizontally, and the truncated height t of a strip may be any value between

0 and the full height of the strip:

I2 =

∫ p

√
r2−q2

(a− x)

∫

√
r2−x2

0
t dt dx

=

∫ p

√
r2−q2

1

2
(a− x)(r2 − x2) dx. (2.7)

Alternatively, we may have
√
r2 − b2 > b, in which case the rectangular strip is

exact and of height b. In this case, the only contribution is from the truncated strips.

We note that this applies for 0 ≤ x ≤
√

r2 − q2 by a similar argument as before, and

we integrate as follows

I3 =

∫

√
r2−q2

0
(a− x)

∫ b

0
t dt dx

=

∫

√
r2−q2

0

1

2
(a− x)b2 dx. (2.8)

Thus, we have the expression for f as four times the sum of the above integrals

f = 4(I1 + I2 + I3)

=

∫

√
r2−q2

0
2(a− x)b2dx+

∫ p

√
r2−q2

(a− x)(4b
√

r2 − x2 − 2(r2 − x2))dx. (2.9)

Evaluation of these integrals yields the closed-form expression given in the theorem.
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2. Structure and Connectivity of Random Rectangular Graphs

Now we demonstrate this result computationally. In Fig. 2.3(a) we plot the values

of the average degree observed for RRGs with three different values of the rectangle

side length. These observed values (represented by solid squares, circles and triangles)

are the average of 100 random realisations of RRGs with 1500 nodes. The solid lines

represent the expected values according to the expressions (2.2). The Pearson corre-

lation coefficients for the linear regression between the observed and expected values

are larger than 0.9999 in all three cases. We enlarge the region of small radii for the

case a = 30 (see Fig. 2.3 (b)) where it can be seen that it is a perfect fit also for this

region with Pearson correlation coefficient as good as for the general case. As per the

discussion of the node degree in the RGG with toroidal boundary (Eq. 1.35), for small

radii we see that the average node degree looks quadratic in r, since k̄ ≈ nπr2, but

here we precisely account for the effect of the boundary.
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Figure 2.3: (a) Illustration of the fit between the observed (black circles (a = 1), red
squares (a = 3), and green triangles (a = 30)) and expected (solid line) values of the
average degree for RRGs with different side lengths of the rectangle. (b) Wider range
of radii for a = 30 (zooming in for small radii in the inset).

We now consider the change in the average node degree as the rectangle elongation
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2. Structure and Connectivity of Random Rectangular Graphs

varies. Specifically, we want the partial derivative ∂f/∂a to be negative, or at least

never positive, so that the average node degree will generally decrease as we increase the

elongation. In Fig. 2.4 we demonstrate the behaviour of this partial derivative, both for

varying the elongation for several values of connection radius (r = 0.05, 0.01, 0.15, 0.20),

and for varying the connection radius for a = 1.5. We find that the value is 0 when

r = 0, r =
√
a2 + b2, or a = 1, and negative otherwise, and we then provide a proof

that this holds in general.
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Figure 2.4: Illustration of the partial derivative ∂f/∂a (a) versus a for r = 0.05 (black),
r = 0.10 (red), r = 0.15 (green), r = 0.20 (blue), (b) versus r for a = 1.5.

Theorem 2.2.2. The average node degree k̄(GRRG) = (n − 1)f is a non-increasing

function of rectangle elongation a, that is,

∂f

∂a
≤ 0, (2.10)

with equality only when a = 1, r = 0 or r =
√
a2 + b2

Proof. Result follows from Lemmas 2.2.3, 2.2.4 and 2.2.7.

Let f = fi(a, r), and for convenience we sometimes use the subscript notation fa

46



2. Structure and Connectivity of Random Rectangular Graphs

to indicate the partial derivative of fi w.r.t. a, where we do not write the i for clarity

since it is obvious from context.

Lemma 2.2.3. For r ∈ [0, a−1] (case 1), we have that fa ≤ 0 with equality only when

a = 1 or r = 0.
∂f1
∂a

= −4

3
r3
(

1− a−2
)

≤ 0, (2.11)

Proof. Follows immediately since
(

1− a−2
)

≥ 0, with equality only when a = 1 or

r = 0.

Lemma 2.2.4. For r ∈ [a−1, a] (case 2), we have that fa ≤ 0 with equality only when

a = 1
∂f2
∂a

= −4r3

3
+

2r2

a3
− 2

3a5
+

4(a2r2 − 1)3/2

3a3
≤ 0. (2.12)

Proof. Follows from the Lemma 2.2.5 and Lemma 2.2.6, since
∂f2
∂a

≤ 0 at both ends

of the interval [a−1, a] and
∂3f2
∂a∂r2

> 0 on this interval, we can conclude that
∂f2
∂a

≤ 0

over the entire interval.

Lemma 2.2.5. For r ∈ [a−1, a] (case 2), we have that fa ≤ 0 at the endpoints of the

interval, with equality only when a = 1

∂f2
∂a

(

a, a−1
)

=
4(a−5 − a−3)

3
≤ 0, (2.13)

∂f2
∂a

(a, a) =
−4a8 + 6a4 − 2 + (4a6 − 4a2)

√
a4 − 1

3a5
≤ 0. (2.14)

Proof. The case of r = a−1 is trivial, especially since the partial derivative is continuous

and so lemma 2.2.3 applies, and is it straightforward to see that fa(1, r) = 0 here. Next,

we investigate r = a, and we establish that for a > 1 it is negative for at least one value
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2. Structure and Connectivity of Random Rectangular Graphs

of a and has no roots. First,

∂f2
∂a

(

21/4, 21/4
)

=
25/4

3
− 23/4

2
≈ −0.048 < 0. (2.15)

Now, we set fa(a, a) = 0, and after some algebraic manipulation we get

(a4 − 1)2 = 0, (2.16)

which indeed has no roots for a > 1, and the result follows.

Lemma 2.2.6. For r ∈ [a−1, a] (case 2), we have that fa,r,r > 0

∂3f2
∂a∂r2

=
8a4r2 − 4a2 + (4− 8a3r)

√
a2r2 − 1

a3
√
a2r2 − 1

> 0. (2.17)

Proof. We simplify the analysis by first multiplying by the denominator, and dividing

by 4 to simplify the constants: call this y∗(a, r). The denominator equals 0 when

r = a−1, but this is not a problem as the expression simply tends to infinity as r → a−1

and the denominator is non-negative otherwise. We set

α(a, r) =
√

a2r2 − 1, (2.18)

β(a, r) = 2a4r2 − a2 − 2a3r
√

a2r2 − 1, then (2.19)

y∗ = α+ β. (2.20)

It is obvious that α ≥ 0, now we show that β > 0. After some algebraic manipula-

tion, we find that β = 0 ⇒ a4 = 0, which has no roots for a > 1 and therefore β cannot

change sign, and β(
√
2, 1) = 6 − 4

√
2 ≈ 0.3432 > 0. Therefore, α is non-negative and

β is positive, so y∗ > 0 and we have the required result.

Lemma 2.2.7. For r ∈ [a,
√
a2 + a−2] (case 3), we have that fa ≤ 0 with equality only
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when a = 1 or r =
√
a2 + a−2

∂f3
∂a

= 2r2
(

1

a3
− a

)

+
2

3

(

a3 − 1

a5

)

+
4(a2r2 − 1)3/2

3a3
− 4(r2 − a2)3/2

3a2
≤ 0, (2.21)

Proof. Follows from lemma 2.2.8, since it is easily verified that fa(1, r) = 0 and

∂f3
∂a

(a,
√

a2 + a−2) = 0. (2.22)

Lemma 2.2.8. For r ∈ [a,
√
a2 + a−2] (case 3), we have that fa,r ≥ 0 with equality

only when a = 1 or r =
√
a2 + a−2

∂2f3
∂a∂r

= −4r(a4 − 1− a2
√
a2r2 − 1 + a

√
r2 − a2)

a3
≥ 0 (2.23)

Proof. We demonstrate that this has no roots inside the interval (a,
√
a2 + a−2) and is

positive somewhere. First we note that

∂2f3
∂a∂r

(1.1, 1.2) ≈ 0.184 > 0. (2.24)

For finding the roots, after setting fa,r = 0 and some manipulation, we get

(a− 1)2(a4 − a2r2 + 1)2 = 0, (2.25)

which only has positive roots at a = 1 and r =
√
a2 + a−2.

2.2.2 Degree Distribution

In the RRG the n nodes are distributed uniformly and independently on the unit

rectangle. Then, the degree distribution can be easily estimated by considering the

probability density function of a node vi having degree ki given that there are n − 1
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other nodes uniformly distributed in the unit rectangle (see for instance [8]). This gives

rise to the binomial distribution, which when (n− 1) ≈ n is given by

P(ki = k) =

(

n

k

)

A(vi)
k (1−A(vi))

n−k . (2.26)

When n is large and r is sufficiently small, A(vi) takes the same value for most

of the nodes and this binomial distribution approaches a Poisson distribution of the

form [58]

p(k) ≈ k̄k exp
(

−k̄
)

k!
. (2.27)

As we have previously obtained an analytic expression for the average degree k̄

we can easily compute the degree distribution for RRGs. We select RRGs with 5000

nodes and radius of connection equal to 0.025. Then, we obtain the degree distribution

for different values of the rectangle side length and take the average of 100 random

realisations. In Fig. 2.5(a) we also plot the expected distribution using the equation

(2.27) in which we have plugged the values of the expected average degree obtained

previously. As can be seen, independently of the side length of the rectangle the RRG

displays Poisson degree distributions. That is, the elongation of the rectangle does not

affect the degree distribution of the nodes from being Poisson.

However, if r is not small, then the distribution may not be well approximated

by a Poisson distribution. Then, we may naively compute the degree distribution

numerically as

p(k) =

∫

R

(

n− 1

k

)

A(x)k(1 −A(x))n−k−1 dx. (2.28)

This is reasonable to compute in practice, and we demonstrate the resulting distri-

bution for an RGG in Fig. 2.5(b). It is clear that this is not a Poisson distribution as

it is bimodal. The shape of the distribution may be understood from the fact that, if r

is large, there will be relatively many nodes that lie within distance r of the boundary

and will have a lower degree on average than the nodes in the bulk, where the bulk

is the area of the rectangle that does not lie within distance r of the boundary. The

degree distribution of nodes in the bulk will have a peak at a larger value of k than for

nodes near the boundary, and both make significant contributions to the overall degree
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Figure 2.5: (a) Degree distribution of RRGs with n = 5000, connection radius r =
0.025, and rectangle side lengths a = 1 (black circles), a = 50 (red squares), a = 100
(green diamonds). The circles, squares, and diamonds correspond to the average of 100
random realisations for the given network. The solid lines correspond to the shape of
the Poisson distribution (2.27) with the corresponding average degree obtained from
Eq. (2.2). (b) Degree distribution of an RGG with n = 500 and connection radius
r = 0.28. The black line corresponds to the observed degree distribution and the red
dashed line corresponds to the numerical approximation from Eq. 2.28

.

distribution. As a result, the degree distribution has a shape that is non-trivial and

clearly distinct from the Poisson distribution.

2.2.3 Diameter and Average Path Length

We now consider the diameter dmax, which is of course closely related to the average

shortest path length l̄. This bound will be useful when describing the algebraic con-

nectivity of the RRG, which in turn is very important for describing the behaviour of

diffusive processes. We are careful here to ensure that r is large enough that the RRG is

connected. For given values of a and n, there is a critical value of the connection radius

which ensures that the RRG is connected with high probability. Since we only want

to examine the diameter in the connected regime, we only consider values of r above

this threshold so that the RRGs are connected. Connectedness of RRGs is discussed

further in subsection 2.2.8.
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2. Structure and Connectivity of Random Rectangular Graphs

Theorem 2.2.9. The diameter dmax(GRRG) of an RRG is bounded from below as [58]

dmax (GRRG) ≥
√
a2 + b2

r
. (2.29)

Proof. The nodes of the RRG are uniformly and independently distributed in the unit

rectangle. We consider the expected eccentricity of a node vc located exactly at a

corner, and let c =
√
a2 + b2. To reach a node located at the opposite corner of the

rectangle, a path must take at least ⌈c/r⌉ steps since each adjacent pair of nodes in the

path has length at most r, which is a lower bound on the expected eccentricity of vc

and therefore the diameter.

The tightness of this bound is demonstrated in Fig. 2.6(a). We use logarithmic axes

to help illustrate the behaviour, as it demonstrates that the bound is then a straight

line. As expected, the diameter of the RRG decreases as we increase the radius and

increases as we increase the elongation of the rectangle, and the bound seems to perform

well. In the worst case here, for very small r and a = 1, the bound is about 28, which

is quite close to the correct value of about 35. For larger values of r the bound is even

better. Figure 2.6(b) shows the behaviour of the diameter and the bound for small

RRGs with only n = 100 nodes, and so we conclude that the bound is tight. We note

the interesting fact that as the connection radius is increased, the diameter does not

always vary smoothly, but rather forms a step-like shape especially when the diameter

is small.

The average shortest path length is related to the diameter, and so the bounds are

constructed in a similar way.

Theorem 2.2.10. Let c =
√
a2 + b2 be the length of the diagonal of the rectangle R,

cr = ⌈c/r⌉ be the smallest multiple of r that exceeds the length c, and Ac(s) be the area

that lies within the rectangle and is within distance s of a specified corner. Then, the
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Figure 2.6: Change in the diameter of RRGs with a = 1 (black circles) and a = 2 (red
triangles) and a = 10 (green diamonds), with (a) n = 100 and (b) n = 1500 nodes, for
both observed values (solid lines) and bounds (dashed lines), as the connection radius
r is varied (log-log scale). The number of random realisations used for each choice of
parameter values was 20 and 100 respectively. (c) Change in the average path length
for RRGs with n = 1500 nodes for a = 1 (black circles) and a = 2 (red triangles), for
both observed values (solid lines) and bounds (dashed lines), as the connection radius r
is varied (log-log scale). 20 random realisations were used for each choice of parameter
values.

expected value of the average path length l̄ of an RRG is bounded from above as

E(l̄) ≤ cr −
cr−1
∑

j=1

Ac(jr). (2.30)

Proof. We again consider that the n points are distributed homogeneously in the rect-

angle, and that we are in a regime where the RRGs are connected. We expect the

main contribution to the average path length bound to be from nodes located near the

corners of the rectangle. Thus, we approximate the expected average path length lc

of a node located exactly at a corner vc, by assuming that the length of the shortest

path between two nodes vc and vi is equal to the smallest multiple of r that exceeds

the Euclidean distance between the nodes |vc − vi|. This gives a bound on the average

path length l̄. Since we are already overestimating the value of l̄ by considering the

largest contribution possible from a node at a vertex, the error introduced from the

53



2. Structure and Connectivity of Random Rectangular Graphs

approximation is not problematic. Then we can write

E(l̄) ≤ E(lc)

= E(

cr
∑

j=1

jP((j − 1)r < |vc − vi| < jr))

=
cr
∑

j=1

j(Ac ((jr) −Ac(j − 1)r))

= crAc(crr)−
cr−1
∑

j=1

Ac(jr)

= cr −
cr−1
∑

j=1

Ac(jr).

(2.31)

By a similar reasoning, we can obtain a lower bound on the average path length by

considering the average path length lm of a node placed in the middle of the rectangle

vm with coordinates (a/2, b/2). Let mr = ⌈c/(2r)⌉ and define Am(s) to be the area

that lies within the rectangle and is within distance s of the centre of the rectangle.

Theorem 2.2.11. The expected value of the average path length l̄ of an RRG is bounded

from below as

E(l̄) ≥ mr −
mr−1
∑

j=1

Am(jr). (2.32)

Proof. The proof is analogous to the upper bound. We consider a node vm located

in the centre of the rectangle and such a node has the lowest expected average path
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length, and proceed as expected

E(l̄) ≥ E(lm)

= E(

mr
∑

j=1

jP((j − 1)r < |vm − vi| < jr))

=
mr
∑

j=1

j(Am ((jr)−Am(j − 1)r))

= mrAm(mrr)−
mr−1
∑

j=1

Am(jr)

= mr −
mr−1
∑

j=1

Am(jr).

(2.33)

In Fig. 2.6(c) we illustrate the variation of l̄ with the connection radius for a = 2

and a = 10. In the same plot we illustrate the values of the upper bound using Eq. 2.30,

and the lower bound obtained with Eq. 2.32. It can be seen that the bounds are very

close to the average shortest path obtained for these RRGs. Particularly, for large

values of r the observed values are almost identical to those of the upper and lower

bounds.

2.2.4 Clustering Coefficient

Here we are interested in an expression that accounts for the variations of the clustering

coefficient with both the connection radius and the rectangle side length, with a finite

number of nodes. Since finding a good analytical approximation here is difficult, we

instead present two observations which capture some crucial aspect of the behaviour

of the clustering coefficient, and we hope that these can give some useful insights and

help guide future work.

Observation 2.2.12. The average clustering coefficient C̄(GRRG) may be approximated

as [58]

C̄ ≈
2r2 arccos

(

δ

2r

)

− 1

2
δ
√
4r2 − δ2

πr2
, δ = an−

a
a+b . (2.34)
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Since this is undefined for r < δ/2, we set C̄ ≈ 0 in this range.

Justification. Our strategy is similar to the one used in [34]. That is, let vi and vj be

two connected nodes in a RRG that are separated at a Euclidean distance δ from each

other. Let us draw two circles of radius r centred respectively at vi and vj. Because vi

and vj are connected, any point in the area formed by the overlap of the two circles will

form a triangle with the nodes vi and vj . In addition, any node inside the two circles

that is not in the overlapping area forms a path of length two with the nodes vi and

vj. Thus if we quantify the ratio of the overlapping area to the total area of the circle

we account for the ratio of the number of triangles to open triads in which the nodes

vi and vj take place, i.e., the clustering coefficient. The boundary will have an effect

here, since these areas may lie partially outside of the rectangle, but this is difficult to

account for and so we ignore it here for simplicity. This ratio is given by

2r2 arccos

(

δ

2r

)

− 1

2
δ
√
4r2 − δ2

πr2
. (2.35)

At this point we only need an estimation of the length δ between two connected

nodes in a RRG. Since this is just a crude estimate we use a simple approach based on

the following intuition. Let us start by considering n nodes in a square in such a way

that they form a regular square lattice. Then, δ is proportional to the length of the side

of the rectangle a divided by the number of circles along this side. As we have a square,

the number of points along the side of length a is the same as that for the other side.

Consequently, δ ∼ n−1/2. If we elongate the rectangle to a → ∞, which resembles a

straight line, we will have that the separation between the two points is just the length

of the straight line divided by the number of nodes, δ ∼ an−1. For a general rectangle

the separation between two points in a line along the edge side of length a is given by

δ ∼ an−γ , where γ ∼ a (a+ b)−1. Notice that when a = 1 (b = 1) we have δ ∼ n−1/2

and when a→ ∞ (b→ 0) we have δ ∼ an−1.

Observation of the clustering coefficient in RRGs gives some surprising results. In

Fig. 2.7(a) we illustrate the dependence of C̄ on a for different radii based on Eq. 2.34,
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with the estimated value of δ given before. Notably, the clustering coefficient is pre-

dicted to change non-monotonically with the rectangle side length. Instead, for small

values of a the clustering coefficient is predicted to increase to a maximum value and

after it the clustering decreases linearly. In addition, according to this model, as the

connection radius increases the clustering coefficient is expected to increase for the

same value of a. It is this qualitative behaviour, especially the non-monotonicity, that

we are trying to capture here. We expect a more sophisticated version of this approach

to capture this behaviour more accurately, such as by taking into account boundary

effects and pair-distance statistics.

In order to demonstrate these findings we compute the average clustering coefficient

of RRGs and compare these to the analytical formulas. The results of the variation of

the clustering with the rectangle elongation are illustrated in Fig. 2.7(a). As can be seen

the clustering increases up to a maximum, whose location depends on the connection

radius, and then decays with the increase of the elongation of the rectangle. We have

not been able to capture the dependence of δ with the radius in our previous reason-

ing, but we have captured the behaviour of the clustering of having a non-monotonic

change with a. Also, these experiments show that the increase of the connection ra-

dius increases the average clustering coefficient as predicted by our analytical results.

As can be seen in Fig. 2.7(b) for a = 1 and small radius the average clustering co-

efficient is C̄ ≈ 0.61, which is very close to the expected value for the 2-dimensional

RGG according to [34]. When a = 30 and the radius is relatively large, the average

clustering coefficient is C̄ ≈ 0.75, which coincides with the exact value expected for the

one-dimensional RGG according to [34]. Consequently, the RRG generalises the values

of the clustering coefficient of both the one- and two-dimensional RGG, for a = 1 and

a → ∞, respectively. In addition, it provides a series of intermediate values of the

clustering coefficient for intermediate values of the side length of the rectangle.

We now further explore the relation between the radius r and the clustering for

RRGs with different side lengths. We consider graphs with n = 1500 nodes and a =

1, 5, 10, 30. As the radius increases the graph is becoming more and more dense, which

means that the clustering coefficient is characterised by an abrupt increase at the
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Figure 2.7: Illustration of the dependence of the clustering coefficient with the rectangle
side length for different connection radii: r = 0.05 (black), r = 0.1 (red), r = 0.15
(green) r = 0.20 (blue). In plot (a) we show the analytical results and in plot (b) the
numerical ones. Both results are obtained for RRG with n = 1500 nodes, and for the
observed results we averaged the results of 100 random realisations.

beginning of the plot and then a mostly linear increase until the value of C̄ = 1 is

reached for the complete graph (see Fig. 2.8).

This guides our second observation, which is to try to approximate the clustering

coefficient using the observed trends in a piecewise fashion. Recalling Eq. 1.36 (page 24),

C̄2 = 1−
3
√
3

4π
≈ 0.5865 and C̄1 = 0.75, and we refer to our previous approximation of

Eq. 2.34 as C̄nm for the non-monotonic motivation behind it. We see that for a = 1 the

clustering increases sharply as we increase r until r = r∗ where C̄ ≈ C̄2, and C̄nm is

a reasonable approximation in this regime. Then, it increases in an almost linear way

until C̄ ≈ 1 at r ≈ a = 1.

For larger values of a, the initial sharp increase is almost identical. Then, it increases

almost linearly to C̄ ≈ C̄1 at r ≈ b, and then to C̄ ≈ 1 at r ≈ a.

Observation 2.2.13. The average clustering coefficient C̄(GRRG) may be approximated
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as

C̄ ≈














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

























0 r ≤ δ/2

C̄nm δ/2 ≤ r ≤ r∗

C̄2 +
(r − r∗)(1− C̄2)

a− r∗
r∗ ≤ r ≤ a

1 a ≤ r

(2.36)

for a = 1, and

C̄ ≈
























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
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






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











0 r ≤ δ/2

C̄nm δ/2 ≤ r ≤ r∗

C̄2 +
(r − r∗)(C̄1 − C̄2)

b− r∗
r∗ ≤ r ≤ b

C̄1 +
(r − b)(1 − C̄1)

a− b
b ≤ r ≤ a

1 a ≤ r

(2.37)

for large values of a. We note that this does not provide a smooth transition form

a = 1 to large values of a, and has the same problem as C̄nm for very small values of

r. If these shortcomings can be addressed then we expect this to be a practical way to

approximate the value of the clustering coefficient for RRGs.
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Figure 2.8: (a) Variation of the clustering coefficient with the radius for RRGs with
n = 1500 nodes and a = 1 (black), a = 5 (red) and a = 30 (green). Every point
is the average of 100 random realisations. (b) Demonstration of the same data with
approximation of Observation 2.2.13 (dashed lines), with a smaller range of radii for
clarity.
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2.2.5 Algebraic Connectivity

Since the algebraic connectivity is such a useful concept for network dynamics, we

provide an upper bound on its expected value.

Theorem 2.2.14. The algebraic connectivity µ2(GRRG) of an RRG is bounded as [59]

µ2 (GRRG) ≤
8(n − 1)r2

a2 + b2
log22 n. (2.38)

Proof. In order to prove Theorem 2.2.14 we need the following result by Alon and

Milman for the algebraic connectivity of any simple graph.

Theorem 2.2.15. From [3]: the second smallest eigenvalue of the Laplacian matrix of

any graph is bounded as

µ2 (G) ≤
8kmax

d2max

log22 n. (2.39)

Then, by substituting 2.29 into 2.39 we have

µ2 (GRRG) ≤
8kmax

d2max

log22 n ≤ 8kmaxr
2

a2 + b2
log22 n ≤ 8(n − 1)r2

a2 + b2
log22 n, (2.40)

where the last inequality uses the fact that for any simple graph kmax ≤ n− 1.

In Fig. 2.9 we demonstrate this bound. We find that while it is not tight, it does

appear to follow the same trend as the observed values. Then, we conclude that if we

elongate the rectangle, which causes the diameter to increase, the algebraic connectivity

will decay in the expected way.

2.2.6 Spectral Radius

We consider the following well-known bounds for the largest eigenvalue of the adjacency

matrix of a simple graph λ1, which we recall is also the spectral radius

kmin ≤ k̄ ≤ λ1 ≤ kmax. (2.41)
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Figure 2.9: Variation of the algebraic connectivity with elongation for RRGs with
n = 500 nodes and r = 0.15: observed values (blue squares) and bound of Eq. 2.38 (red
circles). Every point is the average of 100 random realisations.

Let us now consider what happens to λ1 when we elongate the rectangle. We

have already proven in Theorem 2.2.2 that when a increases, k̄ does not increase, and

in most cases decreases. Consequently, the spectral radius of the adjacency matrix

λ1 also decreases. Strictly speaking, proving that the average degree decreases with

the elongation of the rectangle is not a proof that the spectral radius also decreases.

However, it is possible to infer such a relation between the elongation and the spectral

radius as follows. In particular, we are interested here in showing whether the average

degree and the spectral radius of RRGs show the same trend when the rectangle is

elongated. In Fig. 2.10 we illustrate the the plot of the spectral radius versus the average

degree for RRGs with a = 1 (left), a = 30 (centre) and a = 1, 2.5, 5, 7.7, 15, 20, 25, 30

(right) for different values of the connection radius. As can be seen in all cases, and

particularly in the last one, the trend of the spectral radius and the average degree

is exactly the same and indeed they are very highly linearly correlated. Thus, our

conclusion here is that proving that the average degree has a certain behaviour when

the rectangle is elongated can be directly extrapolated to the behaviour of the spectral

radius.
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Figure 2.10: Scatter plots of the spectral radius versus the average degree for RRGs
with a = 1 (a), a = 30 (b) and a = 1, 2.5, 5, 7.5, 10, 15, 20, 25, 30 (c) for different values
of the connection radius.

2.2.7 The λ−1 Eigenvalue

It has been noted that the spectrum σ(A) of the adjacency matrix of an RGG has an

obvious peak at −1, and in particular a high multiplicity of λ = −1. We denote this

multiplicity as m−1. It has been proven that in the infinite limit of n → ∞ there is a

singularity in the spectrum at −1 [16]. This is attributed to the presence of symmetric

subgraphs [107, 108, 41]. In particular, pairs of nodes that are connected and which

may be permuted without changing the structure of the graph contribute to m−1. It

follows readily from the definition that the property of a pair of nodes having this

symmetry is transitive, that is if vp and vq are symmetric and vp and vr are symmetric,

then vq and vr are symmetric. Then, the subgraph induced by all the nodes that have

this symmetry form disjoint cliques. If there are ni nodes in clique i, then it contributes

(ni− 1) to the value of m−1. This is shown by a simple construction. Let nodes v1 and

v2 be symmetric, then we construct a vector v with entries

vj =



























1 if j = p

−1 if j = q

0 otherwise

(2.42)

By construction, (Av)p = vq = −vp, (Av)q = vp = −vq, and (Av)i = 0 otherwise
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since every other node is connected to both p and q or neither, and so, Av = −v. Then,
we have constructed an eigenvector corresponding to an eigenvalue of −1. In clique i of

mutually symmetric nodes we may construct (ni−1) linearly independent eigenvectors

in this manner, with each having only two non-zero entries corresponding to a pair of

symmetric nodes, each of these contributes to the multiplicity of the eigenvalue. Note

that the complete graph Kn is well-known to have spectrum [n − 1, (−1)n−1], which

is explained by the above construction and the fact that the graph is regular with all

node degrees equal to (n − 1). In general, m−1 is more subtle as other, higher-order

structures containing more than two nodes also contribute to its value. For now, we

give a general construction, then we use an example of such a structure that is relevant

to the case of the RRG to demonstrate some of the characteristics of these structures.

Lemma 2.2.16. Let V = V0 ∪ V1 ∪ V2 be a partition of the nodes of a graph into three

disjoint subsets, such that only V0 may be empty. Such a partition allows a construction

of an eigenvector with eigenvalue −1 if the following holds

∑

j∈V1

Aij =
∑

k∈V2

Aik − δ(i), for each vi ∈ V, where (2.43)

δ(vi) =



























0 if vi ∈ V0

1 if vi ∈ V1

−1 if vi ∈ V2

. (2.44)

Proof. We construct a vector with entries vi = δ(i). By construction, Av = −v, and
m−1 is at least the number of linearly independent eigenvectors that can be constructed.

Remark 2.2.17. We get structures relating to the multiplicity of λ = 0, the nullity of

the graph, if we take the above construction and modify the condition to be

∑

j∈V1

Aij =
∑

k∈V2

Aik, for each vi ∈ V. (2.45)

From the arguments we present relating to m−1, we may expect to find such struc-
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tures in an RRG since it also deals with a symmetry between nodes. However, they

appear to be less frequent.

Figure 2.11 shows a simple example of such a higher-order structure, with the three

subsets of nodes highlighted in different colours, which we can observe in RRGs. We

refer to this and similar structures as a neighbourhood chain, which we describe and

explain gradually. We now discuss why m−1 = 2 in this example. Nodes v1 and v2

are symmetric and so we have the eigenvector v1 = (1,−1, 0, 0, 0, 0)T , and the chain

highlighted in the figure gives an eigenvector v2 = (1, 0,−1, 0, 1,−1)T . Therefore, we

have two linearly independent eigenvectors and m−1 ≥ 2. Of course, we may instead

include node v2 in V1 instead of node v1 giving a third eigenvector v3, but it is clear

that this is not linearly independent of the other two since v3 = v2−v1. Therefore, we
can completely explain each contribution to the value of m−1 is this case. In an RRG

where the value of r is not too large and it is disconnected, we can often observe this

subgraph as a component of the graph. Note that nodes v1 and v2 form a complete

graph K2, and node v6 can be considered as K1. Then, we may replace these with

any complete graphs Kn1
and Kn2

, and we observe that in such a graph we have

m−1 = (n1−1)+(n2−1)+1 = n1+n1−1, as expected by considering the two subsets

of symmetric nodes and the neighbourhood chain we have described here. Also, we

may include more nodes that have the same topological role as node v4, that is they

connect to nodes v3 and v5 and no other nodes where v2 is non-zero. We may also

introduce any number of nodes that connect to nodes v1 and v6 in a similar way; the

cyclic graph C6 has m−1 = 2 for this reason, taking into account symmetry and the

requirement for linear independence of the eigenvectors.

This neighbourhood chain is not unrelated conceptually to symmetric nodes. Let

N ′(vi) be the closed neighbourhood of vi, that is the set of nodes adjacent to vi and

including vi itself. Then, for symmetric nodes we have N ′(vi) = N ′(vj), and so we

can consider that the eigenvalue −1 is capturing some correlation between the neigh-

bourhoods of adjacent nodes. Now, note that in Fig. 2.11 we have N ′(v3)\N ′(v1) =

N ′(v5)\N ′(v6) = v4, where X\Y is the set difference operator. This is not a coinci-

dence, and considering the product Av2 in terms of the nodes of the graph make this
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Figure 2.11: Example of a small graph with a neighbourhood chain that contributes to
m−1, where V0 is black, V1 is red and V2 is green.

clear: the value of the vector Av2 at a given node is equal to the sum of the values of

v2 over all adjacent nodes. Then, there is still some correlation between the neighbour-

hoods of adjacent nodes, but also a longer-range correlation between the nodes that are

almost symmetric, and frustrated by the same node (or nodes, in general). Both sym-

metric nodes and these correlations between neighbourhoods of adjacent nodes across

larger scales are what λ = −1 seems to be detecting.

Further, this can be easily extended to similar structures with more non-zero el-

ements in the eigenvector. In the path graph P3k−1 for k > 1, we can can have the

vector v = (1,−1, 0, . . . , 0, 1,−1), and clearly Av = −v so this is an eigenvector with

eigenvalue −1. Additional nodes may be added to such a path graph as discussed in

the previous paragraph, and these structures may indeed be found in RRGs. This is

because, by construction, nodes that are in close proximity are connected, and there is

clearly some correlation between the other nodes they are connected to. It is then com-

mon that either their neighbourhoods are exactly the same and the nodes are therefore

symmetric, or they are very similar. If their neighbourhood is only similar, we may find

another pair of nodes not too far away that also have similar neighbourhoods, with a

small set of nodes lying between these two pairs and frustrating the symmetry of both.

Therefore, we have explained the nature of the structures that contribute to m−1 and

why they are so common in RRGs. We take this further, and demonstrate this excess

in neighbourhood correlations in more detail.

We consider the peak at −1 in the spectrum of the adjacency matrix of an RRG

in two ways. First, we can simply count the multiplicity of λ = −1. Secondly, we
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2. Structure and Connectivity of Random Rectangular Graphs

introduce an index that will take a large value if the spectrum of a graph is concentrated

at −1 and a small value if it is not. Recall that the Estrada index EE(G) takes the

trace of the exponential of the adjacency matrix, which can be written as the sum

of the exponentials of the eigenvalues. This sum is dominated by the most positive

eigenvalues. The work in [51] considers an index that is similar to the Estrada index,

but instead computes

G̃ = tr(exp(−A2)) =

n
∑

i=1

exp(−λ2i ). (2.46)

This is dominated by the part of the spectrum near 0, since of course the largest

value exp(−λ2i ) can take is 1 when λ = 0, and so the idea is to ‘fold’ the spectrum

around 0. It is then simple to consider

G̃x = tr(exp(−(A− xI)2)) =
n
∑

i=1

exp(−(λi − x)2), (2.47)

and we are of course interested here in G̃−1. We compute the value of this index for

the RRG for various elongations and across the range of possible connection radii, with

the average taken over many random realisations, and show the results in Fig. 2.13.

We also do this for the ER graph with p varying from 0 to 1, and also for the BA and

RRNG graphs. A similar analysis is performed for the multiplicity of λ = −1. We

consider RRNGs in this analysis since it is mainly concerned with RRGs, rather than

having a small separate discussion in the next chapter where we focus on RRNGs.

It is clear that the RRG has on average significantly larger values of m−1 and G̃−1,

which we expect from our previous analysis. The ER and BA graphs do not have any

spatial aspect, and so do not have the correlations between neighbourhoods of nodes

that we find in the RRG. It might be expected that the RRNG, which is also spatially

defined, would also have a large value of m−1 from symmetric pairs of nodes, but this

is not what is observed. The reason for this is that when two adjacent nodes vi and

vj have the same neighbourhood and are connected to at least one other node vk, then

vi, vj and vk form a triangle. Since RRNGs are connected and we do not concern

ourselves with RRNGs on only two nodes, any two adjacent nodes that have the same
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2. Structure and Connectivity of Random Rectangular Graphs

neighbourhood must take part in at least one triangle. However, RRNGs constructed

on a set of randomly distributed points almost never contain a triangle, and therefore

symmetric nodes are practically impossible. Note, however, that higher order structures

contributing to m−1 are more plausible but not abundant. For example, we may find

a chordless 6-cycle in which only one pair of opposite nodes is connected to any other

node in the graph, as in Fig. 2.12.

1

2 3

4

56

7 8

Figure 2.12: Example of a subgraph based on C6 that contributes to m−1 in RRNGs,
where V0 is black, V1 is red and V2 is green as per Fig. 2.11.

We show in Fig. 2.13 that the values of m−1 and G̃−1 are higher in the RGG than in

other random graph models, where we put density on the x-axis to make a comparison

fair. We also show that in the RRG, these values typically increase as the rectangle is

elongated. This can be explained by the fact that if a pair of adjacent nodes are not

symmetric, the nodes that frustrate this will be near the boundaries of the circles of

radius r centred at each node. As the rectangle is elongated, there is more boundary,

which means there are more nodes near the boundary, and therefore more nodes where

the boundary of their circle of radius r intersects the boundary of the rectangle. Then

there is a smaller chance that some node will frustrate the symmetry between that node

and an adjacent node, and we expect more pairs of symmetric nodes.

In Fig. 2.14 we show examples of the structures we have discussed in an RRG. In

this example with n = 500, a = 1.5, and r = 0.065, we find that m−1 = 47. We

highlight one pair of symmetric nodes (labelled ‘pair’) and one neighbourhood chain

(labelled ‘chain’), where we colour the nodes with red and green colours as before, and

also circle the nodes to highlight them. The value of m−1 indicates that there are

several other such structures in this graph.
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Figure 2.13: Plot of (a) m−1 and (b) G̃−1 against density for the RGG (black circles),
RRNG (red diamonds), ER (green squares) and BA (blue triangle). Plot of (c) m−1

and (d) G̃−1 against density for RRGs for a = 1 (black) through a = 5 (red) in steps
of 0.5. In all cases n = 500.

To conclude this discussion, we briefly mention some further investigations that

could be made. The value of m−1 cannot be fully explained by the presence of symmet-

ric nodes and neighbourhood chains. As a simple example to prove this fact, consider

the following graph with 6 nodes in Fig. 2.15 with the same colouring rules as before.

It is not difficult to construct even larger examples. We do not know the relative

abundance of these structures larger then pairs of nodes in RRGs or other graphs, but

presume they are rare.

However, perhaps symmetric nodes, neighbourhood chains, and the generalisation
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pair

chain

Figure 2.14: Example of a pair of symmetric nodes and a neighbourhood chain in an
RRG, where V0 is black, V1 is red and V2 is green for each structure as per Fig. 2.11.

of the neighbourhood chains to include larger structures as well as pairs of nodes are

enough. Since these all give eigenvectors with entries in {0, 1,−1}, this gives us the

following conjecture.

Conjecture 2.2.18. A basis of the eigenspace corresponding to the eigenvalue −1 of a

simple undirected graph can be chosen such that all the components of each eigenvector

lie in the set {0, 1,−1}.

2.2.8 Connectivity

In this section we examine the connectivity of the RRG. This has been investigated in

the general case by Coon et al. [30], and we demonstrate their result for the RRG and

also present a modification of their result. In an RRG it is harder to have connected

nodes located near the boundary of the rectangle and particularly near the corners.

Then, if an RRG is not connected, we could expect that the lack of connectivity is

due to the existence of some isolated node, probably near a corner of the rectangle.

We then draw a circle of radius r around the point. Let A be the fraction of the area

of the circle that is inside the rectangle. For example, a point not near the boundary

has A = πr2 since the full circle is inside the rectangle, but for a point exactly on
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2. Structure and Connectivity of Random Rectangular Graphs

Figure 2.15: Example of a larger structure similar in nature to the pairs of nodes found
in neighbourhood chains, where V1 is red and V2 is green as per Fig. 2.11.

a corner of the rectangle A = 1
4πr

2 since only one quarter of the circle is inside the

rectangle. For a general point near the boundary, it will take some value between these

two extremes because some part of the circle will lie outside the rectangle. We can use

this observation to approximate the probability that the RRG is connected.

In Fig. 2.16(a) we illustrate the variation of the connectivity of RRGs with the

change of the connection radius for different values of the rectangle elongation. As

can be seen the probability that the RRG is connected changes as a sigmoid function

with the increase of the connection radius in a similar way as in the case of the RGGs.

However, as the elongation of the rectangle increases it is more difficult for the graph to

be connected and the critical radius guaranteeing that the graph is connected increases

significantly with a.

The work by Coon et al. [30] considers an expansion around the point of becoming

fully connected. We consider the first-order approximation for the RRG, which we

rewrite in the relevant notation for our purposes:

Pfc ≈ 1− n

∫

R
(1−A(x))n−1 dx. (2.48)

The intent of this approach is to have a good approximation in the region of the

parameter space near the critical radius where the RRG is connected with high proba-

bility, which is the most important region for establishing the connectivity of the RRG.

We may use this to find the approximate value of the connection radius r such that the
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RRG is connected with high probability. For example, we may use a numerical root-

finding algorithm to find r such that P(RRG is connected) = 0.999. Note that trying

to find P(RRG is connected) = 1 should not work well since in theory this should only

equal 1 when r =
√
a2 + b2, so a small tolerance is used for practical purposes. Using

too small a tolerance is likely to be numerically unstable since the curve is very flat in

this region.

The approach in Eq. 2.48 gives a very poor approximation of the probability of being

connected when the connection radius is much smaller than the critical radius, even

taking negative values, which is to be expected as it considers an expansion about the

critical radius. Then, we use similar reasoning in order to approximate the connectivity

over all values of the connection radius such that we capture the sigmoid shape better.

In particular, we make a simplifying assumption that the node degrees are independent,

which is known to be false but the approximation does not suffer too much as a result.

Then, we reason as follows:

P(connected) ≈ P(ki > 0,∀i ∈ V )

=

n
∏

i=1

P(ki > 0)

≈ P(ki > 0)n

= (1−P(ki = 0))n

= (1−
∫

R
P(Bin(n − 1, A(x)) = 0) dx)n

= (1−
∫

R

(

n− 1

0

)

A(x)0(1−A(x))n−1 dx)n

= (1−
∫

R
(1−A(x))n−1 dx)n.

(2.49)

Again, this involves computing an integral, which can be done numerically.

In panel (b) of Fig. 2.16 we illustrate the way in which we determine the critical

radii. For a given value of a we find the minimum value of r for which P(connected) = 1.

Although in all cases we use the values obtained from the simulations we can see that

both theoretical bounds for P(connected) produce very similar results near the critical

radius. The approximation of Eq. 2.48 does provide a closer approximation for most

71



2. Structure and Connectivity of Random Rectangular Graphs

of the region where the RRG is only sometimes connected, but when the connectivity

is near zero we see that the approximation becomes negative. The approximation of

Eq. 2.49 tends towards zero off the left side of the plot, thus forming a sigmoid shape,

but not providing as tight an approximation as we would have hoped for from this

approach. Since it is just a first-order approximation, the second-order approximation

may provide a much closer fit to the numerical results while maintaining the sigmoid

shape, thus providing a better overall approximation. A simpler improvement would

be to take the maximum of Eq. 2.48 and 0.

We then plot the values of the connectivity radius versus the elongation of the

rectangles in Fig. 2.16(c). The curve joining the points of this plot makes a separation

between the RRGs that are connected (upper triangular part) from those that are

disconnected (lower triangular part). That is, the curve represents the critical radii

versus critical elongation, and it gives the critical region indicating the connectivity of

the RRGs. It can be read in two different ways. You can fix a value of a and then

determine the critical radius for which the network will be connected. For instance, for

a rectangle with longer side a = 15 it is necessary to use r > 0.17 to make the RRGs

connected. Alternatively, we have a fixed radius of connection and we can find what

elongation of the rectangle disconnects the network. For instance, if the connection

radius is fixed to r = 0.35 every RRG is connected for a < 30. Finally, in Fig. 2.16(d)

we show the outage near full connectivity, where outage = 1 − P(connected) is the

complement of connectedness, with the estimated connectivity using Eq. 2.48. We plot

the outage since we can then use a log-scale on the y-axis to get a better view of the

behaviour. We see that the expected outage is very similar for both a = 1 and a = 2.5,

and the observed values appear to follow this trend reasonably well. Note that for the

larger values of the connection radius than the ones shown on the plot we calculated

an outage of 0, and so these points are necessarily omitted.
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Figure 2.16: (a) Change of the connectivity of RRGs with the change of the connection
radius for different values of the rectangle elongation. (b) Connectivity of an RRG with
a = 2.5, with the upper bounds of Eq. 2.49 (red dashed line), Eq. 2.48 (green broken
line) and critical radius (vertical dotted line) illustrated. (c) Plot of the critical versus
the rectangle elongation. (d) Plot of outage near full connectivity for a = 1 (black) and
a = 2.5 (red): observed values (circles and triangles) and approximation of Eq. 2.48
(dashed lines), with logarithmic y-axis. All RRGs studied here have n = 1000 nodes.
Plots (a) and (c) use the average of 20 random realisations, plot (b) uses 500, and plot
(d) uses 5000.
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Chapter 3

Structure of Rectangular

Relative Neighbourhood Graphs

In the previous chapter we discussed RRGs, the extension of the RGG model to rect-

angles; here we perform an analysis for rectangular relative neighbourhood graphs

(RRNGs), which is the analogous extension of relative neighbourhood graphs to rect-

angles [60].

3.1 Definition of RRNGs

In this section, we consider the properties of the β-skeleton graphs when they are

embedded into unit rectangles in an analogous way to the extension of the RGG model

to the RRG model. Figure 3.1 illustrates two rectangular β-skeleton graphs with β = 2

and different values of the rectangle side length a and the same number of nodes. In the

first case when a = 1 the graph corresponds to the classical β-skeleton graph in which

the nodes are embedded into a unit square. The second case corresponds to a = 2,

which is a slightly elongated rectangle.

Since we are mostly interested in β-skeletons in the context of rock fracture net-

works, we wish to determine what the best parameter of β is to best replicate these

networks. We find that for all the RFNs we consider this is approximately β = 2,

and so from here onwards we consider only rectangular RNG (RRNG) graphs which
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a
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Figure 3.1: Example RNGs for a = 1 (top) and a = 2 (bottom). Each has n = 1686
nodes, which corresponds to a particular RFN.

correspond to β = 2. Note that if β > 2 then the graph would not be guaranteed to be

connected.
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3.2 Topological Properties of RRNGs

Here we show how some of the properties of the RRNG change with the elongation

parameter, to show why the model can be of practical interest. We let GRRNG(n, a)

be an RRNG with n nodes and embedded in a unit rectangle [0, a] × [0, b = a−1]. We

focus on just a few of the most important structural parameters here: the average node

degree, the diameter, and the algebraic connectivity µ2.

3.2.1 Average Node Degree

The average node degree of the RRNG model is more complicated than for the RRG

model, so we assume that n is not too small and a is not too large, and find what the

expected value of the average node degree should be in this regime. Fully understanding

the behaviour for more general parameter values is left as future work. First, we derive

the form that the formula should take. Then, we estimate the unknown constants

using numerical simulations. We then look at the behaviour of the average node degree

numerically, before concluding with a brief discussion justifying why we can make

simplifying assumptions when n is large and a is small and what happens when these

assumptions do not hold.

Theorem 3.2.1. Assuming that n is large and the elongation a is small, the expected

value of the average node degree k̄(GRRNG) of an RRNG takes the form

E
(

k̄
)

≈ α+ β
(

a+ a−1
)

n−1/2. (3.1)

Proof. Consider the following alternative construction of an RRNG, for which the mo-

tivation will become clear. We assume that n is large and a is small. In this discussion

we call the usual RRNG we construct G0, which has n nodes and m0 edges.

1. Distribute n nodes uniformly at random in the rectangle R.

2. Distribute nodes uniformly at random with the same density in a sufficiently large

region containing R.
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3. Structure of Rectangular Relative Neighbourhood Graphs

3. Construct an RRNG G1 in the usual way using all nodes.

4. Remove all edges Eb which intersect the boundary of R.

5. Remove all nodes and edges which lie outside of R.

6. Check whether each node has all the edges it would have in the usual RRNG

constructed on these n nodes, and add any missing edges Ea.

We illustrate this process in Fig. 3.2, in particular highlighting the edges Eb removed

in step 4 in red and the edges Ea added in step 6 in green, which are the main importance

of this construction. In step 2, the choice of region should ensure that all nodes inside

the rectangle are not subject to boundary effects in the construction of G1.

Figure 3.2: RRNG construction for average node degree proof. Nodes within the
rectangle (blue dashed line) are part of G0 and are black, those outside are in G1 only
and are grey. Edges common to G0 and G1 are black, edges in G1 only are grey, edges
in Eb are red, edges in Ea are green.

Let m1 be the number of edges attached to the n nodes inside R in G1 (total of

black and red edges in Fig. 3.2), mb be the number of edges Eb of G1 that intersect

the boundary of R, ma be the number of edges Ea added in step 6, d̂ be the average

distance along the boundary of R between two adjacent intersections with edges in Eb,

and p = 2
(

a+ a−1
)

be the perimeter of R. The number of intersections is mb = p/d̂.
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3. Structure of Rectangular Relative Neighbourhood Graphs

Considering how lengths scale, we can write d̂ = cdn
−1/2, where cd is a constant, so

then

mb =
pn1/2

cd
. (3.2)

We are now in a position to state our simplifying assumptions. First, nodes losing

or gaining edges at one edge of the boundary do not interact with such nodes at the

opposite edge of the boundary. In other words, the effect of removed nodes is ‘localised’.

Secondly, we assume that added edges occur as a result of removed edges, at a constant

average rate of γ = ma/mb ≪ 1. Note that the second assumption relies on the first

one. We then have

m0 = m1 −mb +ma = m1 − (1− γ)mb. (3.3)

Finally, we let k̄0 = m0/n and k̄1 = m1/n, then after multiplying Eq. 3.3 through

by 2/n and rewriting mb using Eq. 3.2, we find that the expected value of the average

node degree is

E
(

k̄(GRRNG)
)

= E
(

k̄0
)

= E

(

k̄1 −
4(1 − γ)

(

a+ a−1
)

n−1/2

cd

)

= α+ β
(

a+ a−1
)

n−1/2.

(3.4)

Remark 3.2.2. We have found computationally that α ≈ 2.557 and β ≈ −0.898, so

then

E
(

k̄
)

≈ 2.557 − 0.898
(

a+ a−1
)

n−1/2, (3.5)

where we use n = 400, 500, . . . , 1000 and a = 1, 1.5, 2, 2.5 in an attempt to stay in the

region of the parameter space where we expect the assumptions to hold. Though these

choices are somewhat arbitrary, experimenting with different choices leads us to believe

that they are sensible.

It is clear that as a becomes large the RRNG tends to the path graph Pn, which

will dictate the behaviour at larger elongations, and Fig. 3.3 (a) demonstrates this.
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As the elongation increases, the average node degree decreases since the perimeter

increases and mb is proportional to p; with further elongation the value will approach

k̄ = (2−2/n) ≈ 2. Figure 3.3 (b) demonstrates the effectiveness of Eq. 3.5 for 1 ≤ a ≤ 5

in steps of 0.5 and n = 100, 500, 1000. We see that when n is larger the average node

degree is slightly larger, around 2.50 for 1000 nodes in the square compared to 2.37

for n = 100. This is because mb is proportional to n1/2, so mb/n → 0 as n → ∞ and

thus mb has a diminishing effect as n is increased – indeed in the limit of n tending

to infinity it is easy to see that k̄ approaches the constant k̄1. We also note that our

approximation fits the curve very well for the larger values of n, but does not fit the

shape of the curve for n = 100 with the same accuracy. This is to be expected, since

we assumed that we are in the regime where n is large, and therefore we do not fully

capture the behaviour of the average node degree when there are relatively few nodes.

However, it appears to still give a good approximation, with an absolute error of only

0.8% for the case of n = 100 and a = 5, which is where we expect the approximation

to be the least reliable out of all the choices of parameter values used here.
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Figure 3.3: (a) Average node degree of RRNGs with n = 1000 nodes for a varying
between 1 and 50 to demonstrate the long-term behaviour. (b) Average node degree
with a = 1, . . . , 5 for n = 100 (black circled), n = 500 (red triangles), and n = 1000
(green diamonds). The dashed lines are the corresponding approximations from Eq. 3.5.
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We now give some discussion of when our assumptions do not hold. We can say

that

lim
a→∞

E
(

k̄0
)

= lim
a→∞

(

k̄1 −
4(1− γ)

(

a+ a−1
)

n−1/2

cd

)

= 2. (3.6)

Since lima→∞
(

(1− γ)
(

a+ a−1
))

= lima→∞ ((1− γ)a), we then have

lim
a→∞

((1− γ)a) =

(

k̄1 − 2
)

cdn
1/2

4
⇒ (1− γ) ∼ n1/2a−1. (3.7)

This means that the (1−γ) term decreases as n is decreased or a is increased, which

means that γ is increasing. We assumed that γ ≪ 1, which would mean that (1−γ) ≈ 1

is essentially constant, and now we see that this assumption must fail when n is too

small or a is too large. We demonstrate in Fig. 3.4 one reason why our assumptions

can fail when there are relatively few nodes in paths from the top edge of the rectangle

to the bottom. We had assumed that nodes which lose edges to opposite sides of the

rectangle do not interact and so the effect of steps 4 and 6 were localised, but here we

find two such nodes that become connected by an added edge.

Figure 3.4: RRNG construction similar to Fig. 3.2 but with n = 100 and a = 4. We
find an edge, highlighted with a red arrow, which demonstrates our assumptions being
broken.

3.2.2 Diameter and Algebraic Connectivity

First we prove the following result about the diameter of the RRNG.

Theorem 3.2.3. The diameter dmax of an RRNG G = GRRNG(n, a) is bounded as

dmax (G) ≥
√

(a2 + b2)n. (3.8)
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3. Structure of Rectangular Relative Neighbourhood Graphs

Proof. The nodes of the RRNG are uniformly and independently distributed in the

unit rectangle. Then, let us assume that the n points are equally spaced in the area of

the rectangle separated by a Euclidean distance L. The longest path should lie roughly

along the main diagonal of the rectangle. If the length of the main diagonal is c there

are
c

L
connected nodes in this line. Thus, the maximum shortest path distance in the

RRNG is
c

L
. For a connected RRNG this is the shortest the diameter can be, because

if two points in the main diagonal are separated at a Euclidean distance larger than

L, then the diameter of G will be larger than
c

L
. Now, the main problem here is to

place an upper bound on the value of L for the average separation of two points in the

RRNG. Here we consider that the n points can be distributed in the square (a = 1)

forming a regular square lattice. In this case there should be
√
n rows of

√
n points

equally spaced in the square. Thus, the separation between two points in the grid is

L = 1/
√
n. In the case of the rectangle we follow a naive approach of considering that

a rectangle of major length a > 1 can be obtained just by cutting the square a times in

the direction of the y-axis and pasting the cut rectangle along the x-axis. In this way it

is guaranteed that the separation between two points in the original square remains the

same in the elongated rectangle. That is, L ≈ 1/
√
n. Note that for very large values of

a the nodes will be placed on a line and the construction fails, but in that regime the

RRNG is barely 2D and therefore uninteresting for our purposes.

Since the nodes are placed randomly and not on a grid, we note that by construction

the points in the RRNG prefer to attach to nearby nodes, and any such connections

from say node vi to node vj will prevent node vi from attaching to slightly further

away nodes near vj . Therefore, there is a clear bias towards shorter edge lengths, and

we have an upper bound on the value of L. Since we consider a lower bound on the

diameter, this proves the result.

We note the following construction that gives a different insight into why the di-

ameter should be proportional to
√
n. First, construct an RRNG G1 on a rectangle

with n1 nodes in a rectangle [0, a] × [0, b]. The expected value of the diameter of

this graph is the expected number of steps required to travel distance c through an

RRNG. Now, we consider the subset of nodes of cardinality n2 in one quarter of the
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3. Structure of Rectangular Relative Neighbourhood Graphs

rectangle, say [0, a/2] × [0, b/2] and construct an RRNG G2 on these nodes. Clearly,

dmax (G1) ≈ 2dmax (G2) and n1 ≈ 4n2, which implies that dmax ∼ √
n.

Obviously, we can fit the values of the right-hand-side of (3.8) to the actual values of

the diameter in RRNGs of different sizes. That is, we can obtain an empirical relation

of the kind dmax (G) ≈ α
√

(a2 + b2)n, where here α is a fitting parameter. By doing so

for RRNGs with sizes n = 500, . . . , 1000 we found that α ≈ 1.414 and the correlation

coefficient between the observed and the calculated diameter is larger than 0.999. The

diameter of RRNGs is shown in Fig. 3.5(a), and the fitted value is demonstrated in

Fig. 3.5(b).

The previous results is very important because it allows us to bound the algebraic

connectivity of the RRNG. Then, we next prove the following result.

Lemma 3.2.4. The second smallest eigenvalue of the Laplacian matrix of the RRNG

G = GRRNG(n, a) is bounded as

µ2 (G) ≤
8kmax

a2 + b2
log22 n

n
, (3.9)

Proof. We simply substitute our bound for the diameter of the RRNG into the Alon–

Milman bound for the algebraic connectivity of any graph (Eq. 2.39), as we did for the

RRG.

It should be noticed that in RRNGs the value of kmax is typically quite small. In all

our simulations it is not larger than 6. In order to see these effects in practice we develop

a series of simulations considering RRNGs with n = 1000 nodes, 1 ≤ a ≤ 5 in steps

of 0.5, which we find to be a sufficiently large range of elongations for the analyses we

perform. These two theoretical results clearly indicate that the properties of the RRNG

are significantly and non-trivially affected by the elongation of the rectangle. The

diameter of the RRNGs increases almost linearly with the elongation of the rectangle.

On the other hand, the elongation of the rectangle in the RRNG makes the graphs

drastically less connected. As predicted by our theoretical results, the diameter of

the RRNGs increases almost linearly with the elongation of the rectangle and the

algebraic connectivity decays in a nonlinear fashion with it. Therefore, we conclude
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3. Structure of Rectangular Relative Neighbourhood Graphs

that as the elongation of the RRNG model is increased, the structural parameters also

change, including those closely connected to dynamical processes such as the algebraic

connectivity, which is shown in Fig. 3.5(c).
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Figure 3.5: Plots of how several structural parameters of the RRNG model change as
the elongation of the rectangle varies from a = 1 to a = 5 for n = 1000 nodes: (a)
diameter, (b) observed vs. fitted diameter, (c) algebraic connectivity.
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Chapter 4

Applications

In this chapter we discuss three applications of the RRG and RRNG models. First,

we consider diffusion (consensus) processes on RRGs; secondly, we consider epidemic

models on RRGs. For the third application we study how the models can be used to

model RFNs. The third application receives the most attention here because we were

able to get data for several RFNs, and therefore we were able to perform a detailed

study of the models in a real-world situation.

4.1 Diffusion (Consensus) in RRGs

Since RGGs have been used to model several real-world networks as we have previously

discussed, it is of practical interest whether the dynamical behaviour changes as we

generalise from RGGs to RRGs. In this section we discuss in more detail the dynamics

of diffusion in RRGs [59].

The importance of Theorem 1.3.1 is that when µ2 → 0 the time of diffusion grows

to infinity. We have already proved in Theorem 2.2.14 that the elongation of a random

geometric graph with a given number of nodes and a fixed connection radius will make

the algebraic connectivity go asymptotically to zero. The immediate consequence of

this result is that the diffusion time grows to infinity in RRGs when a→ ∞ due to the

inverse relation between the diffusion time and the algebraic connectivity.

We now study the influence of the rectangle elongation on the diffusion dynamics

on RRGs. We take care with the elongation process so that the graphs do not become
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disconnected. First we compare the discrete-time evolution of two RRGs with n = 500

nodes and r = 0.09, but one having a = 1 and the other having a = 2. In Fig. 4.1(a) we

plot the time evolution of the diffusion dynamics as the maximum pairwise difference

in the node states (compare Fig. 1.4, which gives a more in-depth illustration of the

diffusion process), where it can be seen that the time of diffusion for the graph embed-

ded into the unit square is at least 10 times shorter than that for the elongated RRG.

Because these plots are the results of only one random realisation we perform a system-

atic variation of the rectangle side length and report the average of the time of diffusion

after 100 random realisations for each value of a with a stopping criterion of δ = 10−4.

The results are illustrated in Fig. 4.1(b), where we plot the values of the average time

for diffusion versus the rectangle side lengths (blue squares). As can be seen the time

for diffusion increases with the elongation of the rectangle. The best fit for this corre-

lation is a 4th order polynomial: 〈tc〉 ≈ 0.1885a4 − 1.651a3 + 19.59a2 − 37.06a+ 30.59;

the fit has a Pearson correlation coefficient of 0.9997. Using this model we can obtain

a more precise estimation of the average time for diffusion of the random realisation

illustrated in Fig. 4.1(a). For a value of δ = 10−4 the diffusion is reached for a = 1 at

a time of 11.66, while for a = 10 at a time of 1853.

The estimated times for diffusion obtained from Eq. 1.54 on page 33 are also plotted

in Fig. 4.1(b) (red circles), where it can be seen that they follow the same trend as the

observed values. Indeed, the plot of the observed values versus those expected from

Eq. (1.54) (see Fig. 4.1(c)) indicates a perfect linear correlation between the two with

a Pearson correlation coefficient of 0.9999.

Finally, we plot in Fig. 4.2 the dependence of the time of diffusion with respect to

both the connection radius and the rectangle side length. Visually, the line that divides

the region of relatively fast diffusion (deep blue region in the contour plot) from that of

relatively slow one is given by a = κr− 1.5, where κ = 28 for the analytical and κ = 26

for the observed results. Thus, a condition for fast diffusion in RRG with n = 500 can

be simply approximated by
a+ 1.5

r
< κ. (4.1)

We briefly explore some of the consequences that our results have on the study of
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Figure 4.1: (a) Illustration of the difference in diffusion dynamics for RRGs with a = 1
(black) and a = 2 (red) in log-log scale, the y-axis is the maximum difference in the
state of any two nodes and diffusion is reached if this is value is small enough. The
simulations were carried out using a discrete time diffusion model (see Eq. 1.45) with
a random allocation of initial states for the nodes. Both networks have n = 500 nodes
and the connection radius is r = 0.09. The elongated rectangle takes over 10 times
longer to finish diffusion. (b) Dependence of the time for diffusion with the length
of the side of the rectangle. Here the squares represent the average values of the 100
simulations and the circles are the values obtained from Eq. 1.54. The solid lines are
the lines of best fit, which were obtained using 4th order polynomials. (c) Linear plot
of the observed and estimated (using Eq. 1.54) time of diffusion of the RRGs with
n = 500 nodes and r = 0.15.

diffusion in real-world situations. A city like Manhattan has dimensions that resemble

a rectangle more than a square. That is, Manhattan is 21.6km long and 3.7km wide.

This can be represented as a unit rectangle of dimensions a ≈ 2.42 and b ≈ 0.41. Using

our fitted model, and considering that we embed 500 nodes, e.g., wireless sensors to

monitor the city, we obtain the expected time for diffusion on this RRG, which is 38.3.

This time is 3.3 times longer than the one expected if the network is considered to

be embedded into a unit square. That is, we would be underestimating the time for

diffusion of the sensors by a factor of three. Also, according to Eq. 4.1 we can estimate

that a fast diffusion can be reached in this network only if r > 0.157.
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Figure 4.2: Contour plot showing the dependence of the time of diffusion with the
connection radius and the rectangle side length in RRGs with 500 nodes: (a) Analytical
results from Eq. 1.54 and (b) Observed results from the simulations. The diagonal white
line corresponds to the equations a = κr − 1.5, where κ = 28 for the analytical and
κ = 26 for the observed results.
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4.2 Epidemics in RRGs

We concentrate more on the phenomenology of the process than in deriving analytical

results about the dependence of the epidemic threshold with the topological parameters

of the RRGs. Equation 1.57 on page 36 tells us that λ1 is what determines the epidemic

threshold τ . Recalling that k̄ ≤ λ1, it is straightforward to realise that τ ≥ k̄−1. Then,

by substituting in Eq. 2.1 we can bound the epidemic threshold of an RRG as

τ ≥ 1

(n− 1) f
. (4.2)

This result generalises the one obtained by Preciado and Jadbabaie [133] for the

RGG to the case where we have a rectangle of any elongation and where we consider

explicitly the border effects of the rectangle. We have shown already that as elongation

increases, λ1 decreases, which implies that the epidemic threshold grows monotonically.

Here we consider extensive numerical simulations of the SIS dynamics for different

values of the elongation a and fixed radius r with the goal of checking the goodness of

the bound in Eq. 4.2 and to illustrate how the elongation of the rectangle in the RRG

model changes the epidemic dynamics. In the simulations a small fraction ρ0 = 0.01 of

the nodes were seeded with the infection, and the SIS dynamics were allowed to evolve

for 5 · 104 time-steps. At this point, we let the simulations run for an additional 103

time-steps, and calculated the fraction of infected nodes ρ as the average of ρ(t) over

this period. For each choice of parameters 250 random realisations were used, each

with different initial conditions. The final value of ρ is the average over all repetitions.

Finally, we note that the resemblance of SIS and SIR epidemiological models translates

into identical expressions for the epidemic threshold [165]. We therefore anticipate that

our results will be also valid in a SIR framework, which could possibly be more relevant

for plant diseases.

Figure 4.3 shows the fraction of infected nodes in the stationary state against the

infection rate β for a = 1, 10, 20, 30.
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Figure 4.3: Fraction of infected nodes at the stationary state ρ as a function of the
infection rate β for a = 1, 10, 20, 30; a = 1 represents the first case (0 ≤ r ≤ a−1) of
Eq. 2.2 while a = 10, 20, 30 fall into the second case (a−1 ≤ r ≤ a). Other parameters
are: n = 1000, r = 0.35 and µ = 1.0. Each point is an average over 250 random
realisations.

To have a more detailed picture of the behaviour of the epidemic threshold, in

Fig. 4.4(a) we compare the theoretical bound with the epidemic threshold obtained via

the numerical simulations. This comparison covers two of the three cases of Eq. 2.2:

0 ≤ r ≤ a−1 and a−1 ≤ r ≤ a. We have then calculated the relative error for the values

of the epidemic threshold observed in the simulations respect to the bound obtained in

Eq. 4.2. The average relative error for all the RRGs having 1 ≤ a ≤ 35 is 2.93% and in

no case is the relative error larger than 10%. Also, we observe no trend in the relative

error related to the elongation of the rectangle.

Finally, in Fig. 4.4(b) we tested the third case of Eq. 2.2, a ≤ r ≤
√
a2 + a−2 for

a = 3 and r = 3.01. In all cases, as expected, the theoretical and the simulation

results show that increasing the elongation of the rectangle produces an increase of the

epidemic threshold. In other words, the elongation of the rectangle retards the disease

progress through the nodes embedded in the rectangle.

In the case of disease propagating on plants, these results—both analytical and

89



4. Applications

0 5 10 15 20 25 30 35
a

0

0.01

0.02

0.03

0.04

0.05

0.06
 τ 0 1 2 3 4 5 6 7

a

0.004

0.006

0.008

0.010

 τ
0 < r < b

b < r < a

(a)

0 0.0005 0.001 0.0015 0.002
 β/µ

0

0.1

0.2

0.3

0.4

 ρ

τ = 0.001001

(b)

Figure 4.4: (a) Comparison between the theoretical bound and the epidemic threshold
obtained via numerical simulations. Line represents the theoretical prediction of Eq. 4.2
while points represent the results of simulations. The inset shows a zoom for the first
case of Eq. 2.2 0 ≤ r ≤ a−1 (full line) and the second case a−1 ≤ r ≤ a (dashed line).
Other parameters are: n = 1000, r = 0.35 and µ = 1.0. Each point is the average
over 250 random realisations. (b) Fraction of infected nodes at the steady state ρ as a
function of the infection rate β for a ≤ r ≤

√
a2 + a−2. In the simulations a = 3 and

r = 3.01. Other parameters are: n = 1000 and µ = 1.0. Each point is the average over
250 random realisations.

simulations—coincide with the field observations and simulations using stochastic mod-

els [126, 157, 93, 65, 21, 113, 112, 164, 63], which suggest that square plots and

fields favoured higher spreading of plant diseases than elongated ones of the same

area [126, 157, 93, 65].

Our analytical and simulation results point to the fact that under the same condi-

tions, the propagation of an epidemic on a rectangular plot/field is much harder than

on a square one because a larger number of infected individuals is needed for the dis-

ease to become epidemic. Indeed, Fleming et al. [65] had very long ago concluded that

“decreasing field size and elongating field shape can retard disease progress and thus

reduce yield losses” when studying the spread of crop diseases. Here we have kept the

size of the field constant by considering unit rectangles in our analysis. However, it

is important to consider that other factors, such as the orientation of the field, play a

fundamental role in the propagation of a disease on plants.

For instance, if the rectangular plots are placed perpendicular to the direction of
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the prevalent winds the disease will not propagate as a consequence of this factor. To

account for this one option would be to replace the circle around each node with an

ellipse elongated in the downwind direction. Another option would be to somehow

introduce bias in the direction of the wind in the equations governing the time evolu-

tion of each node, such that an infected node may more easily infect a node directly

downwind compared to a node located crosswind.
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4.3 Rock Fracture Networks

This section describes the dataset of real-world networks consisting of the channels

and their intersections produced by fractures in rocks of petrophysical interest. The

procedures described hereafter are based on the analysis developed by [138]. These

authors have considered a series of rocks extracted from wells in the Gulf of Mexico.

We have made our own analysis of the data extracted from these rocks, and compared

the topology of the fractures to different random graph models, especially the RRG

and the RRNG, to determine which is the most suitable, and whether changing the

parameter of elongation is indeed useful [60]. This section is significantly longer than

the previous two because we had access to data to perform a detailed investigation of

real-world networks, and we had no such data for the other applications discussed in

this work.

4.3.1 Description of Fracture Networks

The rocks are cut into two halves and images are taken of one of the rock halves, which

show the fractures in the corresponding rock. An algorithm is then used to find the

skeleton of these fractures and construct a network representation of it, which is stored

as an adjacency matrix. In this work we worked only with the adjacency matrices that

resulted from this process, and did not have data from any prior step. The nodes of

the network correspond to where fractures intersect or terminate and an edge between

nodes corresponds to a channel between those points in the skeleton of the rock fracture.

A sketch of the process is illustrated in Fig. 4.5. Of course, in a practical setting it is

important to understand not just the fluid flow within the individual rocks where the

oil is trapped, but also in between the rocks. We only consider the former in this work

since we lack data on the latter.

In total 29 rock samples are considered here, kindly provided by [138, 140, 139].

The number of nodes n and edges m in the 29 networks studied here are provided in

Table 4.1 together with the labels used in the subsequent analysis in this work.
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Figure 4.5: Illustration of the process of creating rock fracture networks from rock
samples. (Left) A rock sample from the Gulf of Mexico showing one of the halves
of the rock. (Centre) Digital image of the rock illustrating the fractures existing in it.
(Right) Rock fracture network created from the digital image by taking the intersection
of channels as the nodes and channels as the edges of the network. This corresponds
to M20 in Table 4.1. Image is courtesy of E. Santiago [140].

No. n m a No. n m a

M1 93 109 1.0 M16 779 887 1.5

M2 46 54 1.5 M17 633 728 1.5

M3 71 74 2.0 M18 3585 4183 1.5

M4 109 124 1.5 M19 97 101 2.0

M5 346 380 3.5 M20 1567 1996 1.0

M6 85 89 2.5 M21 70 74 2.0

M7 55 60 1.0 M22 1686 1905 2.0

M8 87 94 1.0 M23 396 396 4.5

M9 44 46 1.0 M24 181 180 5.0

M10 296 336 1.5 M25 394 418 4.0

M11 47 48 2.0 M26 808 813 4.5

M12 46 47 1.5 M27 223 222 4.0

M13 215 233 2.5 M28 297 305 4.0

M14 132 144 1.5 M29 363 365 5.0

M15 40 40 2.0

Table 4.1: Rock fracture networks studied in this work, their number of nodes n, and
number of edges m.
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4.3.2 Similarity between Fracture Networks and RRNGs

We now compare the real-world rock fracture networks with their random analogues

created by using the β-skeleton approach. To achieve this goal, random rectangular

neighbourhood graphs are created with a value of β = 2 and having the same number of

nodes and edges as the corresponding real-world fracture network. The elongations of

the rectangle are varied in the range 1 ≤ a ≤ 5 with a step size of 0.5. We selected the

value of β = 2 based on empirical observations of the dataset of rock fracture networks

under analysis. First, these real-world networks are always planar and have a relatively

low number of triangles. These two characteristics are well-reproduced by the relative

neighbourhood graphs corresponding to β = 2. Furthermore, these RNGs have been

widely considered in the literature and can be constructed more easily and quickly then

an a β-skeleton for some arbitrary value of β.

Then, for each graph, we construct a k × 1 vector consisting of the structural

properties listed in Table 4.2 and the 18 small subgraphs given in Appendix A. That is,

every network is represented in a k-dimensional space (k = 37) in which each coordinate

represents a structural parameter, e.g., average degree, clustering coefficient, etc. A

number of random constructions of the RRNG are realised for each elongation and the

value averaged over all of them. The number of random realisations varies depending

on the size of the network for reasons of computational difficulty, with effort made to

ensure a large enough number of realisations such that the variance is not too large.

The similarity between the real-world rock fracture networks and their RRNG ana-

logues can then be calculated; we may also refer to the dissimilarity, which is simply

a different view of the same quantity. This similarity is quantified by simply using the

Euclidean distance between the corresponding points in the k-dimensional property

space in which they are represented, and thus the similarity may also be referred to as

the ‘distance’ when convenient. A potential problem arising here is the fact that the

values of the properties calculated lie in a very wide range of numerical values. Then,

the values of each property are normalised to lie in the range between 0 and 1. Such
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No. Property No. Property

1 Average degree 11 Largest eigenvalue of L
2 Largest eigenvalue of A 12 Algebraic connectivity

3 Degree variance 13 Estrada index

4 Collatz-Sinogowitz index 14 Spectral bipartivity

5 Degree heterogeneity 15 Average communicability distance

6 Degree assortativity 16 Average communicability angle

7 Clustering coefficient 17 Entropy

8 Diameter 18 Free energy

9 Average path length 19 Kirchhoff index (resistance distance)

10 Spectral gap

Table 4.2: List of network properties used for comparing RFNs to random graph models.

normalisation is carried out as follows. Let ri,0 be the property vector for the ith RFN,

and ri,j be the property vector for the RRNG analogous to the corresponding RFN

created with the jth elongation a of the rectangle, 1 ≤ j ≤ 9, and for each elongation

this is averaged over all random realisations to obtain a single vector for each. Each

vector ri,j is then normalised as follows for 0 ≤ j ≤ 9

r̂i,j(p) =
ri,j (p)−minj ri,j (p)

maxj ri,j (p)−minj ri,j (p)
, (4.3)

where ri,j (p) represents the pth entry of the ri,j vector. That is, for a given RFN and

property, the value of this property is normalised for the RFN and all corresponding

elongations of RRNG so that they lie between 0 and 1, with the smallest value mapped

to 0 and the largest mapped to 1. We have centred the data on the minimum for

simplicity since the goal is to ensure each range is the same length, and our results do

not depend on the choice of the endpoints of the interval we map to.

We observe that for each of the rock fracture networks there is a minimum in the

plot of the dissimilarity versus the rectangle elongation (see Fig. 4.6(a)), which indicates

that there is an optimal elongation for each RRNG that makes it most similar to the

real-world fracture network. In Fig. 4.6(b), the frequency with which the maximum

similarity occurs for a given value of the rectangle elongation a is plotted. It can be seen

that the histogram is two-peaked with the first maximum corresponding to elongations

between a = 1 and a = 2 and the second one for elongations around a = 4. The
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first peak clearly corresponds to rock fracture networks that are better reproduced by

almost square neighbourhood graphs. However, the second group of real-world fracture

networks are better reproduced by elongated rectangles in which one of the sides of the

rectangle is about 16 times longer than the other. A more detailed statistical analysis

of the histogram of the optimal elongations shows that the modal value of elongation

is a = 1.5, and elongations between a = 1 and a = 2 are the most common, accounting

for about 2/3 of the rocks. The rest of the values lie between a = 2.5 and a = 4.5,

except for a couple of rocks that have minimum at a = 5.

The most interesting observation carried out in this analysis is the following. Most

of the rock fracture networks that are better reproduced by almost square RRNGs

correspond to the smallest ones, while those that are better reproduced by elongated

RRNGs are those having the largest number of nodes. These results are illustrated in

Fig. 4.6(c and d) where the networks are split into two groups, those with n ≤ 150, and

those with n > 150. As can be seen in Fig. 4.6(c), which corresponds to the first group,

the maximum similarity occurs for 1 ≤ a ≤ 2. However, for the largest networks the

maximum similarity occurs for values of 3 ≤ a ≤ 4. In closing, the rock fracture net-

works are better described by the RRNGs depending on the size of the networks, with

almost square RRNG describing better the smallest RFNs and more elongated RRNGs

describing better the largest RFNs. In other words, it is more plausible that larger

RFNs are those coming from elongated rocks, and consequently better reproduced by

RRNGs with a > 1 which better reproduce this characteristic. The smallest RFNs ap-

pear to come from more rounded rocks, which are better reproduced by almost-square

RRNGs.

The RRNGs reproduce relatively well the main structural properties of real-world

RFNs of different sizes. This conclusion is reached by the fact that the dissimilarity

between the RFNs and the RRNGs is generally smaller than the dissimilarity between

the RFNs and other commonly used random graph models. In Fig. 4.7 we compare

the use of the RRNGs and the Erdős–Rényi (ER), Barabási–Albert (BA), and random

rectangular graph (RRG) models. Notice that all the random graphs must be connected

in order to calculate some of the structural parameters. For the ER model the value
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of p = 1
n log n was chosen, which is the critical value at which the large connected

component appears, with discarding of any random realisations in which the networks

were disconnected. For the RRG model, again elongations from a = 1 to a = 5 in

steps of 0.5 were used, and the best elongations were selected for each rock individually

in exactly the same manner as for the RRNG model. In every case, the radius r was

selected to ensure the RRG was connected with high probability, since selecting r to best

match the number of edges in the RFN would almost always give a disconnected graph.

In each case, several random realisations were used and the results averaged, with fewer

realisations used in the case of a large number of nodes for reasons of computational

difficulty.

With this data, the models were compared to see which of them works the best.

Let ri,0 be the property vector for the ith RFN, and ri,j be the property vector for the

jth model, 1 ≤ j ≤ 4, where for the RRNG and the RRG only the best elongation

is used. Then, the normalisation takes exactly the same form as Eq. 4.3. After this

normalisation, dissimilarities between the RFNs and each model were calculated. As

can be seen in Fig. 4.7(a) the RRG model is the worst, with a dissimilarity larger than 5

for all RFNs, which is more than double the largest dissimilarity for any other model. To

better compare the remaining models, the RRG model was removed from the analysis

and the dissimilarities were recomputed with the remaining three models, since the

presence of the data from the RRG model affects the normalisation values. The results

are illustrated in Fig. 4.7(b) where we observe that the ER model is much worse than the

other two, so this model was also removed. The result is the comparison of the best two

models, the RRNG and the BA, which is illustrated in Fig. 4.7(c). In the large majority

of cases the RRNG is observed to be the best model to reproduce the topological

properties of the rock fracture networks due to a smaller value of dissimilarity.
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Figure 4.6: (a) Variation of the dissimilarity between RFNs and the corresponding
RRNGs for different values of the rectangle elongation a. Each curve corresponds to
one RFN-RRNG pair. (b) Number of graphs for which the minimum dissimilarity is a
given value of the rectangle elongation a. Average variation of the dissimilarity between
RFNs and the corresponding RRNGs for different values of the rectangular elongation
a for RFNs with (c) less than n = 150 nodes and (d) more than n = 150 nodes. The
vertical bars represent the standard deviation.
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Figure 4.7: Relative normalised dissimilarity (the dissimilarity after the data has been
normalised as described in the main text) between the RFNs and four theoretical
models: random rectangular neighbourhood networks (RRNG), random rectangular
graphs (RRG), Erdős–Rényi (ER) and Barabási–Albert (BA). From left to right the
iterative process described in the main text is shown where the least similar model is
eliminated until the two best models remain.

99



4. Applications

4.3.3 Fluid Diffusion on RFNs and RRNGs

We now consider the process of diffusion on RFNs and RRNGs. In order to select

the initial condition vector u0 two different scenarios are considered. The first one

considers the case in which only a few nodes of the rock fracture network are in contact

with the reservoir as illustrated in Fig. 4.8(a). This initial condition is used mainly to

study the influence of the flow directionality on the diffusion through the rock fracture

network and will be referred to as directional diffusion. In this case the vector u0 is

constructed such that the entry u0,i is a random number for those nodes considered to

be in contact with the reservoir, and all random numbers used in the initial condition

are i.i.d. uniform random variables from [0, 1]. The nodes are are randomly selected

from the set of nodes of the graph and should have the condition that they are close in

space to each other. This set of points is selected to include one of the two extremes

of the longest path (diameter) of the graph and nearby nodes. The rest of the entries

of the initial condition vector are set to zero. The second scenario is based on the

assumption that the RFN is in contact with the reservoir from many different positions

as illustrated in Fig. 4.8(b), and will be called isotropic diffusion. In this case the

entries u0,i of the initial condition vector are selected randomly for each of the nodes

of the graph. The results of these two types of initial conditions are highly correlated,

with a Pearson correlation coefficient of 0.999. The directional diffusion takes longer,

since the oil must spread along the diameter of the rock from one end in this case,

whereas in the isotropic case there is already oil spread (unevenly) throughout the rock

at time t = 0. On average, the directional diffusion takes 1.44 times longer than the

isotropic one. Due to these similarities, hereafter only the case where the whole rock

is in contact with the reservoir is considered (Fig. 4.8(b)).

We consider that the diffusion process has taken place if |u (i, t) − u (j, t) | ≤ δ for

all pairs of nodes vi and vj in the graph when t → ∞. In this work a threshold of

δ = 10−5 is selected. This means that if the ‘concentration’ of the diffusive particle

in one node does not differ from that in any other node by more than δ = 10−5 it is
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Figure 4.8: Illustration of the two scenarios used for modelling the diffusion of oil and
gas from a reservoir through the fracture network of a rock. (a) Only a small region of
the rock is in contact with the reservoir (directional). (b) The whole rock is in contact
with the reservoir (isotropic).

considered that the diffusion process has ended. Then, the time at which this threshold

is reached is recorded, and is called the diffusion time. Due to the fact that many

realisations of the same process are carried out the average of this time is taken over all

these realisations. Once the values of the average time of diffusion are obtained for each

RFN, we calculate the correlations with the structural parameters considered in this

work in order to see which of them influence the diffusive process on the RFNs. Table

4.3 reports the Pearson correlation coefficients of these relations, where the entries

in red are those that are more significant from a statistical point of view. The next

subsection will analyse the theoretical foundations for these findings.

Figure 4.9 illustrates the correlation between the average diffusion time obtained

by simulation of the diffusive process on the RFNs versus the same process simulated

on the analogous RRNGs. In addition, it provides evidence that the average diffusion

time simulated on the RFNs is correlated to some of the most important structural

parameters of the RRNGs. This means that the real-world RFNs can be replaced by

their analogous random models in order to simulate the diffusion processes taking place

on the rocks.

4.3.4 Theoretical analysis

As can be seen from Eq. 1.54 the average diffusion time in a network inversely correlates

with the second smallest eigenvalue of the Laplacian matrix (see also the negative

Pearson correlation coefficient in Table 4.3). This analysis clearly indicates that µ2 can
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structural parameter correlation log structural parameter correlation log

1 0.026 F1 0.815 Y

3 −0.307 F2 0.415

4 0.225 F3 0.775 Y

5 −0.613 F4 0.764 Y

6 0.142 F5 0.423

7 −0.127 F6 0.418

8 0.809 Y F7 0.085

9 0.745 Y F8 0.387

10 −0.495 Y F9 0.419

11 0.449 F10 0.435

12 −0.995 Y F11 0.416

13 0.841 Y F12 0.409

14 0.104 F13 0.381

15 0.328 F14 0.424

16 0.872 F15 0.389

17 0.876 F16 0.407

18 −0.845 F17 0.000

19 0.923 Y F18 0.412

Table 4.3: Results of the regression analysis between the diffusion time in RFNs and
structural parameters of the same networks. The numerical values correspond to the
Pearson correlation coefficient, with entries larger than 0.7 in magnitude highlighted in
red, and ‘log’ indicates whether the correlation is in a log-log scale. The numbers used
for the structural parameters are given in Table 4.2 and the structure of the fragments
is given in Appendix A.

be used as an estimator of the rate of diffusion of oil and gas in rock fracture networks.

Using our previous results in which we found a bound for the diameter and for the

algebraic connectivity of RRNGs, we see why the diffusion time correlates relatively

well with the diameter of the graph. That is, as the elongation increases, the algebraic

connectivity decays as a consequence of the increase of the diameter of the graph,

which make the diffusion time increase. In other words, increasing the elongation of

the RRNGs makes the diffusion process take longer to finish.

A lower bound for the algebraic connectivity has also been reported by [111] in

terms of the average path length l̄ (G) of the graph, which explains the correlation
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obtained between the diffusion time and l̄ (G)

µ2 (G) ≥
4

2 (n− 1) l̄ (G)− (n− 2)
. (4.4)

On the other hand, the high correlation observed between the diffusion time and

the so-called Kirchhoff index can also be understood by using the relation in Eq. 1.54

because the Kirchhoff index is defined by

Kf =
∑

i<j

n
∑

k=2

1

µk
(ψk,i − ψk,j)

2 , (4.5)

from which it can easily be seen that the largest contribution is made by the second

smallest eigenvalue of the Laplacian matrix µ2 and its corresponding eigenvector (the

Fiedler vector).

The somehow unexpected relations are those observed between the diffusion time

and Estrada index, the entropy, the free energy and the average communicability angle,

which are based on the adjacency instead of on the Laplacian matrix of the graph. These

relations can be understood through the structural interpretation of the Estrada index

in term of subgraphs of the graph. This index can be written as

EE (G) = tr
(

A0
)

+tr (A)+
1

2
tr
(

A2
)

+
1

6
tr
(

A3
)

+
1

24
tr
(

A4
)

+
1

120
tr
(

A5
)

+ · · · . (4.6)

Clearly, tr
(

A0
)

= n and 1
2tr
(

A2
)

= m (notice that the adjacency matrix is traceless

due to the lack of any self-loops in the networks). It is well-known that
1

6
tr
(

A3
)

= F2

is the number of triangles in the graph. In a similar way tr
(

A4
)

= 2m + 4F1 + 8F5

and tr
(

A5
)

= 30F2 + 10F6 + 10F8. Consequently, the Estrada index of a graph can be

written as

EE = n+
13

12
m+

1

6
F1 +

5

4
F2 +

1

3
F5 +

1

12
F6 +

1

12
F8 + · · · , (4.7)

which indicates that this index can be expressed as a weighted sum of the number of

small fragments in the graph. The correlation coefficients between the diffusion time
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of the RFNs and their number of nodes and edges are 0.863 and 0.846, respectively.

Similarly, there are high correlations with the fragments F1, F3, and F4. Because

the RFNs are not very dense and as previously observed they do not contain a large

number of triangles (indeed there are a few RFNs that are triangle-free), this can be

approximated as

EE ≈ an+ bm+ cF1 + d, (4.8)

where a, b, c, d are coefficients. Linear regression analysis makes an estimation of these

parameters as

EE ≈ 0.85n + 0.93m + 0.40F1 + 1.56, (4.9)

with a Pearson correlation coefficient r > 0.99999 when including all 29 RFNs studied

here. Then, we conclude that the correlation observed between the Estrada index and

the diffusion time in RFNs is due to the fact that the diffusion time is well described

by a few small fragments of the graphs, namely the number of nodes, edges and paths

of length 2 (F1), which are the main contributors to the Estrada index in these graphs.

The correlations with F3, and F4 observed in Table 4.3) can be explained by the fact

that these fragments are numerous and are related to the fragment F1, since they

contain it as a subgraph with one fewer node, and we confirm this fact in Fig. 4.10.

Finally, the relatively high correlations observed for the entropy, the free energy and

the average communicability angle can be explained the fact that all of these measures

are in some way related to the Estrada index of the graph.
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Figure 4.9: Plots of the average diffusion time of the RFNs against different properties of
RRNGs: (a) diffusion time, (b) algebraic connectivity, (c) resistance distance (Kirchhoff
index), and (d) and average communicability angle.
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Figure 4.10: Plots of the correlations between fragment F1 and (a) F3, (b) F4, in RFNs
(log-log scale).
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Chapter 5

Conclusions

We have introduced a generalisation of two classes of proximity graphs to explicitly

consider the shape of the region in which the nodes are distributed. Instead of taking

a unit square, or in general a unit hypercube, we considered a simple generalisation to

unit rectangles or hyperrectangles. In particular, we considered the generalisation of

the random geometric graph model and the relative neighbourhood graph model.

For the RRG model, we found an analytic expression for the expected value of the

average node degree in terms of the elongation of the rectangle and the connection

radius. We also found useful bounds for the diameter, the average path length, and

the algebraic connectivity, as well as approximations to the degree distribution, con-

nectivity, and clustering coefficient. As the elongation is increased, the diameter and

average path length increase, which in turn contributes to a decrease in the algebraic

connectivity. We proved that the average node degree is a non-increasing function of

the rectangle elongation, and since the spectral radius is highly correlated with the

average node degree, this causes the spectral radius to decrease as the elongation is

increased. We discussed the relevance of the peak at −1 in the spectrum of the adja-

cency matrix of the RRG, which is not observed in the other random graph models we

used for comparison, in terms of structures relating to neighbourhoods of nodes found

within the graphs as a result of the way in which they are constructed.

Similarly, we find that in RRNGs increasing the elongation of the rectangle causes

a decrease in the average node degree and an increase in the diameter. Then, we
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can confidently state that the elongation parameter in these models is something new

and useful that has a significant impact on both important topological properties and

dynamical properties of these graphs.

The first application we discussed was diffusion in RRGs. Since the algebraic con-

nectivity is closely related to the behaviour of diffusive processes and this decreases

as the elongation is increased, we find that increasing the elongation parameter in-

creases the time taken for diffusive particles to spread out evenly. We give numerical

results demonstrating how the behaviour of diffusive processes in RRGs change as the

parameters of the model are varied.

Secondly, we have studied the propagation of diseases in plants using the RRG

model, deriving analytically a lower bound of the epidemic threshold for a SIS or

SIR model running on these networks. This model is appropriate for the simulation

of disease spreading on plants allocated on plots and fields of varied shapes. RRGs

account for the spatial distribution of nodes allowing the variation of the shape of

the unit square commonly used in RGGs. We have shown here by using analytical

results and extensive numerical simulations of the SIS dynamics for different values

of the elongation a and a fixed radius r that elongating the plots/fields in which the

nodes (plants) are distributed makes the network more resilient to the propagation

of epidemics. This is due to the fact that the epidemic threshold increases with the

elongation of the rectangle. These results agree with a large accumulation of empirical

evidence about the role of plot/field elongation on the propagation of diseases on plants.

This model represents a new way to analyse disease propagation on plants or similar

scenarios, by combining the heterogeneities introduced at individual level by networks

with the influence produced by the shape variation of the plots and fields where the

plants are growing.

Finally, we have then applied these two models to the problem of finding the most

suitable model for capturing the topological properties of RFNs using a comparison of

many important structural parameters. After fitting the models to each of the RFNs,

especially the elongation parameter of the RRG and RRNG models, the results clearly

show that the RRNG model is the best at replicating the properties of the RFNs. It
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seems that the RRG model does not have the ideal characteristics even though it is

spatially defined. The RRNG model is also better than the ER and BA models, which

we expected since those models are not geometric in nature, and so cannot capture the

spatial information of fracture networks or the varying elongations of the rocks. We

also observed strong correlations between the diffusion time in RFNs and key structural

properties of RRNGs, which is also an indication that the model performs very well for

mimicking the properties of RFNs.

We found that the properties of small rock fracture networks are well-described

by RRNGs with small values of the rectangle elongation. In contrast, larger RFNs are

better described by RRNGs with significantly longer elongations. This means that small

RFNs are embedded into more spherical rocks than the larger ones, which are mainly

embedded into rocks with a higher aspect ratio. The most important characteristic

of the RRNG is that it makes it possible to study a large variety of structural and

dynamical processes by changing the parameters of the model. This allows us to be

more independent of the existence of appropriate datasets of real-world RFNs, which

in many cases are scarce.

We note that the heat equation adapted to consider the graph as the space in which

the diffusive process is taking place is an appropriate tool for studying the diffusion

of oil and gas on RFNs. We studied the relationship between the structure of rock

networks and the diffusion dynamics taking place on them. In particular, a set of a

few structural parameters were obtained that describe well the diffusive process taking

place on the networks. Of special interest is the algebraic connectivity, which shows

a correlation coefficient larger than 0.99 with the average diffusion time on RFNs.

This index is then a very good predictor of the capacity of a given network to diffuse

substances through the channels produced by the fractures in the rock. All in all, we

consider that the newly proposed model based on random rectangular neighbourhood

graphs is very flexible and can be adapted to specific simulation requirements, and is

therefore appropriate to model RFNs in a variety of scenarios.

Overall, we can say that the RRG model and the RRNG model are useful generalisa-

tions of previous models for understanding various phenomena that can be represented
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by a spatially embedded network.

5.1 Future Directions

Although we have performed a detailed study of these models in different applications,

there are of course potential improvements that could be made, especially if more data

were available. Here we discuss some of the ways in which future work could build

upon the analyses presented here. As before, we have more to say about the modelling

of RFNs since we had access to the data for several such networks.

5.1.1 Topological properties of RRGs and RRNGs

In this work we have opened a new research area by investigating some of the impor-

tant topological properties of RRGs and RRNGs. We succeeded in finding the expected

value of the average node degree of RRGs. We also found approximations or bounds

for the degree distribution, diameter, average path length, clustering coefficient, alge-

braic connectivity, spectral radius and connectivity of RRGs, and for the average node

degree, diameter and algebraic connectivity for RRNGs. We recall that the clustering

coefficient and connectivity of RRNGs are trivial. Then, there is potential for improv-

ing these approximations or bounds of these important topological properties, perhaps

even finding an exact analytical formula for the expected value.

For example, the clustering coefficient of RRGs is difficult to pin down precisely

in an analytical manner, but we have presented two observations which are a step

towards finding a useful approximation. The connectivity of RRGs is also difficult to

calculate precisely - we saw that a known method provides a good estimate but the

wrong trend and a modification that has the correct trend but unfortunately a slightly

worse approximation, though both fare well in the important region near the critical

radius. We also note that the bound given for the algebraic connectivity of RRGs has

the correct trend, but is not tight.

Also, there are properties of these models for which we do not discuss any theoretical

results, such as the spectral gap or the maximum node degree, and they could be the
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subject of future work.

5.1.2 Epidemics in crop fields

We have considered the SIS model in RRGs to numerically model the spread of a

disease through a crop field. Though there are reasons to expect that the SIR model

is qualitatively similar to the SIS model, it may be worth performing the numerical

simulations to examine this in more detail. Furthermore, we note that the model

may be extended to make it more realistic, such as accounting for the prevailing wind

direction by altering the shape of the connection disc around each node. This should

be important since in an elongated field a wind blowing along the long axis of the field

will help an infection at the upwind end of the field propagate and infect all the crops,

whereas a wind blowing perpendicularly to this should help to limit the spread of the

disease.

5.1.3 Influence of fracture aperture in RFNs

Any model is always a simplification of the reality made on the basis of a series of phys-

ical assumptions, empirical observations and availability of mathematical and compu-

tational tools to solve it. In this work we have used a few of these simplifications to

produce a simple but effective modelling of the diffusion of fluids through rock fracture

networks. However, there are a few areas in which improvements can be implemented

in order to gain more realistic description of the physical processes taking place. One

of our assumptions in this model is that all the fractures have the same aperture. This

assumption is of course far from real, but it was used due to the lack of data about such

apertures for the rock fracture networks that we studied in this work. However, such

data is not difficult to obtain experimentally and we will give here some hints about

how to implement this parameter and how it would affect the modelling results.

When assuming that all fracture apertures were identical we used unweighted graphs

to represent the RFNs, i.e., every edge in the graph received an identical unit weight.

If information concerning the aperture of the fractures were available we can represent

it in our model by transforming the graphs representing RFNs into weighted graphs, in
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which every edge receives a weight corresponding to the aperture of that fracture. As

we do not have such data for the RFNs studied here we assume that such apertures are

randomly and independently distributed from [0, 1] over the fractures of a network. We

then repeat our simulations for these weighted graphs representing RFNs with different,

randomly distributed, apertures. We report here the average of the diffusion times for

10 random realisations.

In Fig. 5.1 we show the correlation between the diffusion time in the weighted

RFNs and the unweighted RFNs in a log-log scale. It is clear that there is a strong

correlation between the two results, with a correlation coefficient of 0.870. It is obvious

that the diffusion times will change in dependence of the type of aperture that we

use. For instance, the average times using apertures in the range [0, 1] is larger than

that when using all weights equal to one. If apertures of larger magnitude were used,

an acceleration of the diffusion process should be observed, with significantly smaller

diffusion times that those observed for the unweighted case. However, what is most

important here is that a power-law relation exists between the diffusion time in the

unweighted and the randomly weighted networks. That is,

〈tc〉 ∼
〈

t̃c
〉κ
, (5.1)

where t̃c is the time of diffusion in the weighted RFN and κ ≈ 0.92 is a fitting parameter

obtained by using nonlinear regression analysis for the data displayed in Fig. 5.1. More

work is needed to show whether this kind of power-law relation exists in general between

these two parameters, which would indicate some kind of universal scaling between the

network with identical apertures for all the fractures and that with apertures randomly

and independently distributed. In the meantime, we can assert that based on the

current results knowing the behaviour of diffusion on the unweighted RFNs also gives

information about the behaviour of the diffusion when the aperture of the fractures is

randomly and independently distributed.
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Figure 5.1: Plot of the diffusion time for the weighted RFNs against the diffusion time
with all edge weights equal to 1 (log-log scale).

5.1.4 Influence of long-range hops of diffusive particles

A potential criticism of the analysis of RFNs is that it only considers normal diffusion.

However, there is currently a vast volume of literature suggesting the lack of homo-

geneity in many unconventional naturally fractured reservoirs of oil [2]. These studies

point out to the existence of complex combinations of connected and isolated pores,

combinations of regions with discrete and continuous fractures and variable properties

of the hydrocarbon properties across the reservoir [26]. These geological and petro-

physical complexities cannot be described by using the simple diffusion equation and

much more sophisticated models have emerged, which exploit the fractal nature of such

irregularities. It has been well documented that such inhomogeneities in the proper-

ties of the systems to be modelled play a major role in the diffusion processes taking

place, which are quite similar to anomalous diffusion in disordered media. Then, it is

normal to model the geostatistics of these reservoirs by a fractional Brownian motion

and fractional Lévy motion [80, 144].

In this work we will follow a different path that connects in a natural way with our

previous model based on the normal diffusion equation on graphs. We consider here a

generalisation of this equation using the so-called d-path Laplacian operators introduced

in [50]. In a recent work, Estrada et al. [53] have proved analytically the existence of

anomalous diffusion—superdiffusive and ballistic behaviour—when this model is used
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in infinite one-dimensional systems. This work also shows that in the case of finite

graphs, the biggest possible acceleration of diffusion is obtained for certain parameters

of the model in any graph, independently of its topology.

Let us now define the d-path Laplacian matrices that account for the hopping of

the diffusive particle to non-nearest-neighbours in the graph. Let Pl(vi, vj) denote a

shortest-path of length l between vi and vj . The nodes vi and vj are called the endpoints

of the path Pl(vi, vj). Because there could be more than one shortest path of length l

between the nodes vi and vj we introduce the following concept. The irreducible set of

shortest paths of length l in the graph is the set Pl = {Pl(vi, vj), Pl(vi, vr), ..., Pl(vs, vt)}
in which the endpoints of every shortest-path in the set are different. Every shortest-

path in this set is called an irreducible shortest-path. Now, we have generalised the

Laplacian matrix to the so-called d-path Laplacian matrices that are defined as follows.

Let d ≤ dmax. The d-path Laplacian matrix, denoted by Ld ∈ R
n×n, of a connected

graph of n nodes is defined as

Ld(i, j) =



























kd(i) if i = j,

−1 if dij = d,

0 otherwise,

(5.2)

where kd(i) is the number of irreducible shortest-paths of length d that are originated at

node vi, i.e., its d-path degree. We can now define the generalised diffusion equation in

which the d-path Laplacian operators are transformed by certain coefficients that make

that the hopping probability of the diffusive particle decay with the distance that the

particle is going to hop. Estrada et al. have analysed mathematically three different

transforms of the d-path Laplacian operators and proved that for the infinite linear

chain there is superdiffusive behaviour when the operators are transformed by using

the Mellin transform with 1 < s < 3. Hereafter we adopt this generalised diffusion

equation that can be written in the following way:

∂

∂t
u (x, t) = −

(

dmax
∑

d=1

d−sLd

)

u (x, t) , u (x, 0) = u0. (5.3)
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Obviously, when s → ∞ the terms d−s → 0 for all d > 1, and we recover the normal

diffusion equation (1.60). In this framework we should expect just the normal diffusion

to take place. However, when s→ 0, the system behaves as a fully-connected graph in

which the diffusive particle can hop to any other node with identical probability.

We have calculated the diffusion time using the generalised diffusion equation (5.3)

with s = 1 for all the RFNs studied here and compare the generalised diffusion times

with those of the normal diffusion process. The normal diffusion time averaged for all

RFNs is 12 315, while that for the generalised process is 0.69. If we consider the ratio

of both times, i.e., the diffusion time under the normal conditions 〈tc〉 and the diffusion

time under long range hops of the diffusive particle
〈

t̂c
〉

, we see that on average it is

42 784. It other words, the time for diffusion on the RFNs decreases 40 thousand times

when we consider long-range hops. In Fig. 5.2 we illustrate the ratio 〈tc〉 /
〈

t̂c
〉

as the

effect of long-range hops for the 29 real-world fracture networks studied in this work.

The most interesting thing in these results is the fact that this ratio is dramatically

larger than the average for 3 of the RFNs studied. In these three cases the ratio

〈tc〉 /
〈

t̂c
〉

is ten times larger than the mean of this value for all the networks. Although

this is not a signature of superdiffusion it is worth further investigation to determine

whether superdiffusive behaviour is observed for these three networks under the long-

range hop scheme. This, however, is out of the scope of the current work and we leave

it for a further and more complete investigation of this phenomena.

Another important characteristic of the results obtained in this subsection of the

work is the lack of correlation between 〈tc〉 and
〈

t̂c
〉

(graphic not shown). In contrast

to what we have observed for the case of fracture aperture where a power-law relation

was observed between the time considering random apertures and that using a fixed

one, such a relation does not exist here. This lack of correlation between 〈tc〉 and
〈

t̂c
〉

could be indicative of a different physical nature of the processes of diffusion under

normal conditions and the diffusion under long range hops of the diffusive particle. This

could show that the multi-hop approach to diffusion captures some phenomenology not

captured by the normal diffusion process, which may include the case of superdiffusive

behaviour.
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Figure 5.2: Bar plot of the values of the ratio 〈tc〉 /
〈

t̂c
〉

used to account for the effect
of long-range hops on the 29 real-world fracture networks studied in this work. The
horizontal broken line represents the average value of this ratio for the 29 RFNs.

5.1.5 Influence of 3D environments

Another characteristic of the current model that can be easily incorporated into the

study of diffusive processes is its extension to higher-dimensional environments. We

have considered here the 2-dimensional problem only due to the fact that they are

suitable for the systems we consider, or the data we have. We consider WSNs spread

over a geographical region, plants in rectangular crop fields, and RFNs corresponding

to 2-dimensional rock slices. However, it is obvious that the fracture networks cover the

3-dimensional space of the rock and extend over its volume, and other spatial networks

such as neurons in a brain are 3-dimensional.

For modelling purposes we should remark that now the number of parameters in-

creases and that more kinds of shapes emerge. While for the case of the 2D scenario

we can have only square-like or elongated rectangle-like frameworks, in 3D we have the

following three main possibilities of environments: (i) a cube, (ii) an elongated cuboid,

(iii) a flat cuboid. We show them in Fig. 5.3. There are of course many possible choices

of the parameters in these models, which will cover a large variety of shapes in 3D

space.

To give a flavour of the differences between the 2- and 3-dimensional RRNGs we

study here the change in the average degree, the diameter, the algebraic connectivity
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Figure 5.3: Illustration of some of the possibilities for modelling rock fracture networks
in 3-dimensional space.

and the diffusion time with the elongation in the 2- and 3-dimensional RRNGs (see

Fig. 5.4). To make things comparable we study here only the case one side of the cube

changes, say 1 ≤ a ≤ 5 in steps for 0.5, keeping b = 1/a and c = 1. As for the case

of the 2D graphs, the elongation of the cube produces a decay of the average degree,

an increase of the diameter and a decrease of the algebraic connectivity. The resulting

effects on the diffusion is that elongation delays the diffusion process. It happens,

as expected, that the average degree of the 3D RRNG is larger than that of the 2D

analogue. This is due to the fact that nodes can now be connected in three directions of

space instead of two. More interestingly, the increase of the diameter of the 3D model

is much slower than that in the case of the 2D one. For instance, the diameter increases

almost linearly with the elongation according to dmax ≈ 14.8 + 40.66a for the 2D case,

while it is dmax ≈ 11.1 + 13.53a for the 3D case. That is, the growth of the diameter

in the 3D model studied is almost four times slower than in the 2D case for similar

elongations. These results can be understood by adapting our previous bound for the

3D case. In this case we should consider that the separation between the points in the

3D cube is given by 1/ 3
√
n, such as

dmax (G) ≥ 3
√
n
√

(a2 + b2). (5.4)

Then, it is clear that the diameter of the 3D RRNGs grows more slowly than that of

the 2D ones. This of course produces a dramatic decay of the algebraic connectivity
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with the elongation in the 3D model (µ2 = 0.0246a−1.87), where this parameter drops

much faster with the elongation than in the 2D case (µ2 = 0.00307a−1.92). The main

consequence of this elongation effect is observed in the slower growth of the diffusion

time for the cuboid model than for the rectangular one. While in the 2D case the

diffusion time increases as 〈tc〉 ≈ 0.064 + 0.093a with the elongation, in the 3D case it

grows as 〈tc〉 ≈ 0.059 + 0.028a. That is, the elongation of the cuboid seems to have an

effect on the diffusion time that is three times smaller than the effect of elongation of

the rectangle.
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Figure 5.4: Comparison of the effects of elongation on (a) the diameter, (b) the algebraic
connectivity, and (c) diffusion time in 2- (black dots) and 3-dimensional (red squares)
RRNGs having n = 1000 nodes.

In closing we can think that the combination of the three effects studied here as

potential extensions of our model will make the diffusion of oil and gas much faster than

what we have predicted using the normal 2D diffusion model with constant apertures of

the fractures. That is, if we consider apertures larger than one, include long-range hops

of the diffusive particles and consider a 3D space instead of a 2D one, we will observe

super-fast diffusion on the rock fracture networks studied. We should consider such

combinations when some experimental data is available, which permit us to compare

our theoretical predictions with reality. Also, the extension of the models to cuboids

in 3-dimensions should be of great interest to the study of other spatial networks.
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Appendix A

Small Subgraphs

F1 F2 F3

F4 F5 F6

F7 F8 F9

F10 F11 F12

F13 F14 F15

F16 F17 F18

Figure A.1: Illustration of the structure of the small subgraphs used in this work.
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