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Abstract 

As the Advanced Gas-cooled Reactor (AGR) nuclear power stations are ageing, the 

nuclear core composed by graphite bricks can distort. The direct measurement of the 

core condition is costly and time-consuming, hence, alternative methods have been 

developed to provide the necessary information about the core condition.  

This thesis presents a model-based technique for condition monitoring of AGRs 

cores using measurements obtained during routine core refuelling process. It has 

been demonstrated that Fuel Grab Load Trace (FGLT) data gathered during 

refuelling operations provides, through the magnitude of its friction component, 

information relating to the condition of the graphite bricks. Therefore, the condition 

monitoring of an AGR leads to the estimation of the friction force resulting from the 

interaction of the fuel assembly and the core channel. To this end the main objective 

of this work is to investigate estimation techniques that are needed in industrial 

applications and in particular can be used in the refuelling filtering problem. As a 

result of this study, a novel LPV estimator and robust estimator have been designed 

and implemented.  

A model for the refuelling system was initially developed from the first principles 

of the process. Then its fuel assembly dynamics subsystem was identified to be used 

in a model based filtering application. Finally a H∞ robust estimator was employed to 

estimate the friction force to be used for the core condition analysis. 
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Chapter 1 

Introduction to Condition Monitoring for an 

AGR Nuclear Plant 

The importance of condition monitoring for Advanced Gas-cooled 

Reactor nuclear power stations will be discussed and the previous 

works on this topic will be presented. The objectives of the thesis will 

be stated and a brief summary of each chapter will be given. Finally 

the main contributions achieved with this research and the list of 

publications resulting from this thesis will be presented. 

1.1  Introduction 

Most electricity currently generated by EDF Energy in nuclear plants is based on 

Advanced Gas-cooled Reactor (AGR) technology. The reactor core of an AGR plant 

is composed of a large number of graphite bricks that form channels, into which 

uranium fuel assemblies and control rods are inserted. This brick structure provides 

mechanical support for the fuel assemblies and control rods and helps to moderate 

the fission process in order to achieve a continuous and controllable nuclear chain 

reaction. 

The graphite, used in the core structure, is a material that can tolerate the adverse 

conditions within the reactor relatively well, however it is not completely unaffected 

by the prolonged exposure to heat and radiation and therefore deteriorates over time. 

This core degradation, due to radiolytic oxidation and fast neutron doses, causes 

changes in the graphite properties and produce internal stresses in the core structure. 

As a result of this deterioration, cracks and deformations can occur in the graphite 

bricks that host the fuel assemblies components, however this process needs several 

decades to cause any significant damage to the core structure. 
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The AGR, second generation of UK commercial reactor systems, was designed 

during the late 60s and constructed during the 70s and early 80s (see Appendix A for 

an overview about AGR), hence the nuclear plants are approaching the end of their 

operating lives and the core may present the above-mentioned crack or deformation 

problems (see Appendix B for further details about graphite cracks). Although these 

distortions have remained within the expected and predicted limits, the condition of 

the reactor core bricks is increasingly becoming an important aspect of the 

monitoring phase [1-3].  

The major concerns are about the effects that graphite brick cracking and 

deformation will have on the mechanical integrity of the core structure ([4, 5]) and if 

a distorted core structure can change the geometry of the control rod channels in such 

a way that the control of the fission would be jeopardized ([6]). 

Detailed information relating to the condition of the graphite bricks can be obtained 

from channel inspections made every few years during routine outages (see 

Appendix C for further details). However, these inspections require the reactor to be 

shutdown and therefore cannot be executed on a regular basis without incurring a 

significant economical loss. Moreover the inspections can only cover a proportion of 

the core channels, thus consideration is being given to new methodologies  for 

determining the core condition via routine monitoring of reactor parameters. 

 

1.2 Condition Monitoring of AGR Nuclear Plant Research 

To support the safety cases and extend the lifetime of an AGR nuclear plant, one of 

the main areas of research, that has been undertaken by the nuclear graphite team, is 

from the point of view of materials behaviour ([5]) and modelling the physical 

process of core degradation ([4]). The graphite failure, an ultimate result of internal 

shrinkages and thermal stresses generated during operational processes, depends not 

only on component geometry and size, but also on loading mode ([5]), as the nuclear 

graphite is a brittle and polygranular material. In [5], a continuum damage mechanics 

model was presented to predict the failures of nuclear graphite and this model was 

implemented into the commercial finite element analysis (FEA) software ABAQUS.  

Recent studies have used measurements collected during routine refuelling of the 

reactor core called Fuel Grab Load Trace (FGLT). Each FGLT, collected whilst the 
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reactor remains in operation, describes in a dynamic way the force required to lift or 

lower each fuel assembly in and out of its fuel channel [7].  

It has been proved that FGLT data can infer the condition of the channel being 

refuelled and therefore provides an indirect measurement of the core crack 

conditions. In fact, FGLT are influenced by the core bore geometry since part of the 

total load force represents the friction force between the fuel assembly and the 

graphite wall, which in turn is linked to the core crack conditions. Thus, by applying 

appropriate analysis techniques to the FGLTs useful information about the core crack 

condition can be extracted. 

In recent years, many research studies have been made to assess the core condition 

using the refuelling process. An intelligent system for interpreting this process within 

an AGR reactor was developed in [7] by employing a knowledge-based system, 

Kohonen neural network-based classification, K-means clustering techniques, and 

rule induction methods. This system was designed to automate the process of data 

analysis by evaluating the large amounts of data produced during the refuelling 

process used to ensure the proper set-down of a fuel assembly within the given fuel 

channel. Currently engineers collate and assess the FGLT data.  

Additionally a software system called BETA (British Energy Trace Analysis), that 

archives, visualizes and analyses data, has been developed to evaluate the condition 

of individual bricks and channels within the graphite cores ([8-11]).  

In [12] a data mining approach was proposed to support graphite core condition 

monitoring by taking the FGLT data as the main source of information. A model of 

expected behaviour based on historical data was developed, which highlight events 

containing unusual features that may suggest the presence of brick cracking.  

The FGLT data can also be used to infer the level of shrinkage within AGR reactor 

core bricks [13]. The refuelling measurements, versus the inspection data and 

theoretical ageing studies, confirms the expected shrinkage. The FGLT data is, 

moreover, used to build a predictive model of brick shrinkage. This allows for an 

understanding of how the graphite core bricks are ageing and gives an indication of 

the remaining useful life of the graphite core. 

In [14] the effects of reactor parameters on the measured load of fuel assemblies 

during the refuelling process are considered. 
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The use of hidden Markov models (HMM) for anomaly detection in graphite core 

condition monitoring has been published recently ([15]). In this method, the presence 

of anomalous behaviour in candidate traces is inferred through the underlying 

statistical foundation of the HMM to give an observation likelihood averaged along 

the length of the input sequences. However, with the likelihood measure, the 

inference engine can only alert us to any anomalous behaviour and further detailed 

analysis will be needed.  

Two benchmarking techniques were used in [16] to support the use of the FGLT 

data for the condition monitoring of graphite cores. The first technique was the 

minimum variance performance index method in which the traces that have 

performance indices out of the expected range are considered as abnormal. To 

identify the crack-related peaks in the traces, the recursive least squares (RLS) 

algorithm was employed as the second benchmarking technique. Like the data 

mining and HMM methods, the benchmarking techniques were also unable to 

directly separate the friction forces from the masked FGLT data. Their practical 

applications will be dependent on the availability of large data sets. The time-varying 

properties of the ageing core will also affect the scalability and generalization of the 

benchmarking techniques.  

To separate out the friction forces from the masked FGLT data, model-based 

condition monitoring methods have attracted much attention over the last few years 

([17, 18]).  

In [19] a fault detection and isolation filter based on unknown input observer 

techniques is developed. The role of this filter is to estimate the friction force 

produced by the interaction between the wall of the fuel channel and the fuel 

assembly supporting brushes.  

From this previous work it is clear that it is possible to estimate the friction forces 

from the masked FGLT data. However, in [17-19], the aerodynamic forces that are 

normally significant and varying were considered as system noises and as a result the 

estimate of friction force may be not accurate and reliable.  

Due to the unknown properties of the aerodynamic forces involved in the model 

and filter as described above, the accuracy of estimating the friction forces will be 

affected significantly. A new approach is therefore required to reliably estimate the 



 

Introduction to Condition Monitoring of an AGR Nuclear Plant 5 

 

friction force from the masked FGLT data obtained during the routine refuelling 

process. 

 

1.3 Research Goals and Challenges 

Obtaining consistent and reliable estimates of the friction force from FGLT data is 

difficult because the friction is just one of many physical phenomena that contribute 

to the final shape of the FGLTs. The weight of the fuel assemblies, the gas 

circulating in the channel and the fuel channel geometry are also components of the 

FGLTs and since their respective influence tend to vary in a seemingly random way 

the estimation of the friction force consequently becomes a challenging task.  

This work proposes a strategy that deals with this challenge by developing 2 main 

areas of research, the model system identification and the estimator design, that 

converge in the estimation of the friction for the nuclear application (see Figure 1.1). 

A summary of this approach is given below:  

• System identification of the refuelling process by using the knowledge of 

the physical processes and the measurements gathered during the refuelling 

operation. 

• Development of novel algorithm estimators that suits our system model 

specifications. 

• Estimation of the friction force for the purpose of condition monitoring of 

the core channels. 

 

1.4 Contributions of this Thesis 

The main contributions of the thesis are summarized as follows: 

• A linear parameter varying (LPV) model and nonlinear operator based 

approach to estimation and filtering is introduced for discrete-time multi-

channel systems including time-delays. The validation of the theory and the 

design of the Nonlinear Minimum Variance (NMV) estimator for LPV system 

is done by using the Matlab/Simulink implementation for various case 

studies. 

• Design and synthesis of a nonlinear operator based approach to H∞ robust 

estimator. The estimator was implemented in Matlab/Simulink and the 
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simulation result proved that the H∞ filtering problem is particularly 

appropriate for nonlinear uncertain systems. 

• Design and synthesis of a robust optimal nonlinear estimator for uncertain 

systems. In the limiting case of a linear system the estimator has the form of 

a Wiener filter in discrete-time polynomial matrix system form. Simulations 

are carried out to corroborate the estimation algorithm theory. 

• Development of a first principle model for the refuelling process of an AGR 

nuclear plant and identification of model parameters. Real data from an AGR 

nuclear power plant are employed to demonstrate the effectiveness of the 

nonlinear system identification approach. 

• Estimation of the friction component of the FGLT data resulting from the 

interaction of the fuel assembly with the channel wall is performed by using 

a NMV estimator for a state-dependent model, particular class of the LPV 

estimator developed in Chapter 3 and the H∞ estimator developed in chapter 

4. The friction estimation, integrated in the BETA system ([8-11]), would be 

used to assess the condition of the nuclear core. 

  

1.5 Organization of this Thesis 

The thesis is organised as follows: 

Chapter 1, gives an introduction to condition monitoring for an AGR nuclear plant, 

along with a background of related previous work. The motivation, organisation and 

main contributions of this thesis are presented. Finally the list of publications raised 

with this research are listed. 

Chapter 2, provides an overview on the current state of the art in nonlinear 

estimation theories. The NMV estimation, the basic theory upon which this thesis is 

developed, is also introduced. 

Chapter 3, describes the theory, design and simulation results, for a numerical and 

experimental case study, of the LPV NMV estimator. 

Chapter 4, presents a robust nonlinear estimator for uncertain system and a H∞ 

robust nonlinear estimator. Simulation results for 2 different case studies are also 

provided to validate the two novel estimators. 
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Chapter 5, describes a nonlinear system identification approach for the refuelling 

operation of an AGR nuclear plant. The model identification technique takes into 

account the physics law of the process and uses the Trust-Region Reflective Newton 

method to find the optimal parameters in the nonlinear refuelling model.  

Chapter 6, presents the estimation of the friction force component of the FGLT data 

which can be used to assess the condition of the core channels. This estimation is 

obtained by using the filters designed in chapter 3 and chapter 4 and the nonlinear 

refuelling model identified in chapter 5. Simulation results for simulated cracks are 

also provided to highlight the efficacy of the method to evaluate the core condition. 

Finally, Chapter 7 summarises the results presented in this thesis, draws some 

conclusions and discusses the proposed further work to be done in this area of 

research.  

The outline of this thesis is visualized in Figure 1.1. 

 

1.6 List of Publications 

The outcomes of this thesis resulted in the following papers: 

1. S. Inzerillo and M. J. Grimble, "H∞ Robust Nonlinear Estimation for 

Condition Monitoring of AGR Nuclear Graphite Cores", to be submitted to 

IET signal processing. 

2. S. Inzerillo and M. J. Grimble, "State-dependent Nonlinear Minimum 

Variance Estimation for Condition Monitoring of AGR Nuclear Graphite 

Cores", to be submitted to IEEE Transaction on Nuclear Science. 

3. S. Inzerillo and M. J. Grimble, "Robust Wiener Optimal Nonlinear 

Estimation for Uncertain Systems" in 20th Mediterranean Conference on 

Control and Automation, Barcelona (Spain), July 3-6, 2012 

4. S. Inzerillo and M. J. Grimble, "H∞ Robust Nonlinear Estimation," in 18th 

IFAC World Congress, Milano (Italy), Aug 28-Sept 2 2011 pp. 6634-6639. 

5. E. Yang, M. Grimble, S. Inzerillo, and M. Katebi, "Nonlinear model-based 

condition monitoring of advanced gas-cooled nuclear reactor cores," in 7th 

International Conference on Control & Instrumentation in Nuclear 

Installations, Lancaster University, UK, 2011. 
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6. E. Yang, M. Grimble, G. West, S. Inzerillo, M. Katebi, S. McArthur, 

"Model-based Estimation and Filtering for Condition Monitoring of AGR 

Nuclear Graphite Cores," in Proceedings of the UKACC International 

Conference on Control, Coventry, UK, 2010, pp. 1206-1211. 
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Chapter 2 

Estimation Theory 

The subject of nonlinear estimation is introduced by a very brief 

survey of the various nonlinear estimation methods. It represents 

only a limited survey but helps to put into context the new approach 

mentioned at the end of the chapter on which much of the rest of the 

thesis is based. A new nonlinear estimation paradigm which leads to 

simple filters, smoothers and predictors for classes of nonlinear 

stochastic systems is introduced. This new approach will be used in 

this thesis as the main theory for the design of a few novel estimators. 

2.1 Introduction 

Estimators like the Wiener ([20]) and Kalman filters ([21, 22]) provide well 

established solutions to the optimal linear filtering and estimation problems. 

The Kalman filter has dominated the filter theory for decades in signal processing 

and control areas and it has been applied in various engineering and scientific areas. 

However its theory is for linear-Gaussian problem and since most of the real world 

systems are nonlinear and/or non-Gaussian many efforts have been made to develop 

nonlinear filtering methods.  

Historically the first nonlinear filter was the extended Kalman filter (EKF) ([23]), 

which has the same structure as the Kalman filter but has a nonlinear model within 

the loop. To accommodate the nonlinearity the model is linearized at each time step 

to estimate the transition matrix and this is used to update the estimated covariance 

matrix. The EKF along with the dual EKF are the best known techniques for 

nonlinear estimation. The dual EKF uses two EKF’s running concurrently (one for 

state estimation and one for neural network weight estimation).   
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The main problem of the EKF lies in the inherent approximations that are involved 

in its derivation mainly caused by the linearization of the nonlinear dynamic and/or 

measurement equations at each time-step.  

Recently, there have been interesting developments in derivative-free nonlinear 

state estimation techniques as efficient alternatives to the extended Kalman filter. 

These include the so-called sigma point filters such as the unscented Kalman Filter 

(UKF) ([24, 25]), the central difference filter (CDF) ([26]), and the divided 

difference filter (DDF) ([27, 28]). The UKF is based on a set of discretely sampled 

sigma points that are used to parameterize the mean and covariance of the Gaussian 

random variables and the posterior mean and covariance are propagated through the 

true nonlinear function without the linearization steps so no explicit derivation of the 

Jacobian or Hessian matrix is necessary. The UKF approximation is generally much 

better than EKF (see [29]) and presents the same computation complexity.  

The CDF and DDF compute the numerical derivative of a function at any point by 

approximating the function by some polynomial in the neighborhood of the selected 

point; this leads to efficient implementation of filters for nonlinear estimation 

applications. 

The nonlinear filtering methods introduced so far, based on local linearization of 

the nonlinear system equations (EKF and dual EKF) or local approximation of the 

probability density of the state variables with the sampled sigma points (UKF, CDF 

and DDF), assume that the probability density of the state vector is Gaussian. For 

nonlinear and/or non-Gaussian filtering problems, the Gaussian sum filter (GSF) 

which approximates the posterior density function by a weighted sum of Gaussian 

densities has been adopted. 

The main idea of the Gaussian sum filter is based on the principle that certain  

posterior densities can be approximated by a linear combination of Gaussian 

densities. However, this method may have a high computational complexity because 

a large number of densities could be necessary to approximate a non-Gaussian 

density. Another class of nonlinear and/or non Gaussian filter methods is based on 

the Monte Carlo approach. These estimators are flexible and relatively easy to design 

and they are promising candidates for a range of industrial problems ([30, 31]). Such 

methods are referred to as particle filtering because the continuous distributions are 
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approximated by a discrete set of weighted samples. These weighted samples are 

called particles, where each sample represents the system evolving through a random 

trajectory in the state-space. The weight represents the probability of the trajectory 

([32, 33]). If the number of samples is large, the Monte Carlo approximation 

approaches a posterior probability density function (pdf) representation and the 

particle filter approaches the optimal Bayesian estimate. The main drawback with the 

particle filter (PF)  is that it is very demanding computationally.   

An overview of the main nonlinear filters methods introduced can be seen in Figure 

2.1. 

A direct numerical approximation to the optimal nonlinear filter can be employed. 

It calculates the Fokker-Planck equation (FPE) that is a partial differential equation 

governing the evolution of the probability density of the state conditioned on the 

measurements. Hence the approximation of this equation in real time can solve the 

nonlinear filter problem, however, the computational complexity grows 

exponentially with dimension of the state vector so the numerical solution of the FPE 

is feasible for low dimensional problems (see [34]). 

An exact filter solves the nonlinear filtering problem by transforming a partial 

differential equation to a ordinary differential equation. In 1981 an exact filter for a 

special class of nonlinear problems was derived by Beneš ([35]), this filter was not as 

powerful as the Kalman filter for linear estimation problems. In 1986 this filter was 

generalized by Daum ([36]) to handle a much broader class of nonlinear problems 

and solving all Kalman filter problems. 

In the following sections the Extended Kalman Filter, the Unscented Kalman Filter, 

the particle filter algorithms and the Nonlinear Minimum Variance (NMV) estimator 

are presented. To describe all the details of these algorithms is beyond the scope of 

this work, therefore, an algorithm description is presented omitting some theoretical 

considerations. The proposed NMV estimation theory, the base of this work, is rather 

different in nature of the above mentioned estimators, being model based and of a 

fixed structure. 
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Figure 2.1: Nonlinear Stochastic Filtering Methods 

 

2.2 Extended Kalman Filter 

The extended Kalman filter is a set of mathematical equations that implement a 

predictor-corrector mechanism; it linearizes the process model at each step, 

calculates  the current state of the system and then updates it by using the available 

sensor measurements.  

Consider the following nonlinear system, described by the difference equation and 

the observation model with additive noise: 

 
( )
( )

1 1k k k

k k k

− −= +

= +

x f x w

y h x v
 (2.1) 

The initial state 0x  is a random vector with known mean [ ]0 0Eµ = x  and 

covariance ( )( )0 0 0 0 0

T
E µ µ = − − P x x . 

We assume that 
kw  denotes the model uncertainties and 

kv  represents the 

measurement noise. These random vectors are uncorrelated, zero-mean and with 

known covariances and they are uncorrelated with the initial state 0x . 

Initially, since the only available information is the mean, 0µ , and the covariance, 

0P , of the initial state then the initial optimal estimate 0x and error covariance are: 

Gaussian pdf 

Nonlinear Stochastic Filtering 
 

Non Gaussian pdf 

EKF Dual
EKF 

UKF CDF DDF Particle 
Filter 

Gaussian 
Sum Filter 
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[ ]

( )( )
0 0 0

0 0 0 0 0

ˆ

ˆ ˆ
T

E

E

µ= =

 = − − 

x x

P x x x x
 (2.2) 

Assume now that we have an optimal estimate 1 1 1
ˆ

k k k
E− − −
 =  x x y  with 1k−P  

covariance at the time 1k − , we can perform the prediction step that consists in 

deriving a priori state estimate ˆ
k

−
x . This operation can be done by considering the 

first-order terms of the function ( )⋅f  expanded in Taylor series in the point 1ˆ
k−x  and 

after a straightforward derivation we have 1ˆ ˆ( )k k

−
−=x f x . 

Then, we find that the a priori estimate of the error covariance matrix is: 

 1
T

k k k k k

−
−= +P Φ P Φ Q  (2.3) 

where 
kQ is the process noise covariance, 1k−P  is the posteriori estimate of the error 

covariance, and 
kΦ  is a Jacobian matrix which linearizes the process function f : 

 
( )

( )

ˆ( )i

k k

j

f

x

−∂
=
∂

Φ x  (2.4) 

After the prediction step, the correction step calculates the posteriori state estimate 

using 

 ( )ˆ ˆ ˆ
k k k k k k

− −= + −x x K y H x  (2.5) 

where 
kK is the Kalman gain and 

kH is the measurement matrix used to combine the 

measurement vector 
ky , obtained from the tracking device, with ˆ

k

−
x . The Kalman gain is 

computed using 

 ( ) 1
T T

k k k k k k

−− −= +K P H H P H R  (2.6) 

 
where R  is the measurement noise covariance, and the measurement matrix is 

calculated using  

 
( )

( )

ˆ( )i

k k

j

h

x

−∂
=
∂

H x  (2.7) 

a Jacobian matrix that linearizes around the nonlinear measurement function h . 

Finally, we compute the posteriori estimate of the error covariance using 

 ( )k k k k

−= −P I K H P  (2.8) 

Further theoretical details can be found in [23]. 
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The EKF is one of the most popular nonlinear estimators and this is justified for the 

simplicity of the linear approximation for nonlinear systems. However due to this 

linearization and the Gaussian assumption of the priori or posterior estimated mean 

and covariance, the mean and covariance are only an approximations to the true 

quantities. 

 

2.3 Unscented Kalman Filter 

In the UKF the probability density function, that it is assumed Gaussian, is sampled 

at a number of so-called sigma points to approximate the multidimensional integrals 

required ([37]). This process is called unscented transformation and it maps the 

sigma points using some weights in a way that yields a relationship between the 

moments of the input parameters and the weights of the sigma points; in other words 

the sigma points are chosen to have as mean and covariance 1ˆ
k−x  and 1k−P  

respectively. 

Consider the following nonlinear system, described by the difference equation and 

the observation model with additive noise: 

 
( )
( )

1 1k k k

k k k

− −= +

= +

x f x w

y h x v
 (2.9) 

Initially, since the only available information is the mean, µ0, and the covariance, 

0P , of the initial state then the initial optimal estimate 0x and error covariance is: 

 
[ ]

( )( )
0 0 0

0 0 0 0 0

ˆ

ˆ ˆ
T

E

E

µ= =

 = − − 

x x

P x x x x
 

Let 1k−x  be a set of 2 1n+  sigma points (where n is the dimension of the state 

space) and their associated weights: 

 ( ){ }1 1, 0,1,...., 2j j

k k W for j n− −= =X x  (2.10) 

Consider the following selection of sigma points, selection that incorporates higher 

order information in the selected points ([38]): 
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0
1 1

0

1 1 10

1 1 10

0

ˆ

1 1

ˆ 1,...,
1

ˆ 1,...,
1

1
1,...,

2

k k

i

k k k

i

i n

k k k

i

j

W

n
for all i n

W

n
for all i n

W

W
W for all i n

n

− −

− − −

+
− − −

=

− < <

 
= + =  − 

 
= − =  − 

−
= =

x x

x x P

x x P

 (2.11) 

where the weights must obey the condition: 

 
2

0

1
n

j

j

W
=

=∑  

Each sigma point is propagated through the nonlinear process model: 

 ( )1ˆ j j

k k

−
−=x f x  

The transformed points are used to compute the mean and covariance of the 

forecast value of 
kx : 

 

( )( )

2

0

2

1
0

ˆ ˆ

ˆ ˆ ˆ ˆ

n
j j

k k

j

n
T

j j j

k k k k k k

j

W

W

− −

=

− − − − −
−

=

=

= − − +

∑

∑

x x

P x x x x Q

 (2.12) 

where Q  is the process noise covariance. 

Then the sigma points through the nonlinear observation model are propagated and 

their mean and covariance (innovation covariance) are computed: 

 ˆ ( )j j

k k

− =y h x  (2.13) 

 

( )( )

2

0

2

ˆ ˆ
0

ˆ ˆ

ˆ ˆ ˆ ˆ
k k

n
j j

k k

j

n
T

j j j

k k k k k

j

W

W

− −

=

− − − −

=

=

= − − +

∑

∑y y

y y

P y y y y R

 (2.14) 

where R  is the measurement noise covariance. 

The cross covariance between ˆ
k

−
x  and ˆ

k

−
y  is: 

 ( )( )
2

ˆ ˆ
0

ˆ ˆ ˆ ˆ
k k

n
T

j j j

k k k k

j

W − − − −

=

= − −∑x yP x x y y  (2.15) 
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The information obtained in the forecast step is now combined with the new 

observation measured 
ky .  

Assume that the estimate has the same form as in the KF: 

 ( )ˆ ˆ ˆ
k k k k k

−= + −x x K y y  (2.16) 

where the Kalman gain is given by the following: 

 1
ˆ ˆ ˆ ˆk k k kk

−= x y y yK P P  (2.17) 

The posterior covariance is updated by using the following: 

 ˆ ˆk k

T

k k k k

−= − y yP P K P K  (2.18) 

 

2.4 Particle Filters 

Particle filters include a large class of suboptimal nonlinear filters based on 

sequential Monte Carlo simulations, in which the distributions are approximated by 

weighted particles that are generated using pseudo-random number generators.  

The general discrete-time model used in particle filters is as follow: 

 
( )
( )

1k k k

k k k

+ = +

= +

x f x w

y h x v
 (2.19) 

Process noise kw and the measurement noise 
kv  are not necessarily assumed to be 

Gaussian processes and this represents the main difference between particle filters 

and the other filters previously introduced. The distributions of 0x , 
kw  and 

kv , 

denoted by ( )0p x , ( )kp w  and ( )kp v , respectively, are assumed to be known and 

mutually independent. The probabilities ( )1k kp +x x  and ( )k kp y x  can be derived 

from the above model and are assumed to be available. 

The state trajectory { }
0

k

j j=
x  and the measurement history { }

1

k

j j=
y , are denoted by 

the variables 
kX  and 

kY  respectively. The discrete approximation of the posterior 

distribution ( )k kp x Y  with N  weighted particles { }( ) ( )

1
,

N
i i

k k i
ω

=
x  is given by 

 ( ) ( )( )

( )

1

i
k

N
i

N k k k kx
i

P d dω δ
=

≈∑x Y x  (2.20) 
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where ( )i
kx  are the particles drawn from the importance function or proposal 

distribution ( )( )
1 1,i

k k kq + +x X Y , ( )i
kω  are the normalized importance weights, satisfying 

( )

1
1

N i

ki
ω

=
=∑ , and ( )( )i

k
kx

dδ x  denotes the Dirac-delta mass located in ( )i
kx . The 

importance weight is the ratio of the posterior distribution to the importance function 

evaluated at ( )i
kx . The expectation of a known function ( )kf x  with respect to 

( )k kp x Y  is then approximated by ( )( ) ( )

1

N i i

k ki
ω

=
∈∑ f x .  

After few iterations the samples tend to spread and the weights will be almost zero 

for most of them, which means that the samples do not contribute much to the 

estimation of the posterior distribution. This phenomenon is known as the 

degeneracy problem in the sequential importance sampling particle filter step. A 

solution to this problem is found by introducing a selection (resampling) step to 

eliminate samples with low importance ratios and multiply samples with high 

importance ratios. 

The resampling step alleviates the inherent particle degeneracy of sequential 

importance sampling, but also reduces the number of distinct particles, which is often 

called the problem of particle impoverishment. Simple remedies for the 

impoverishment problem include roughening and regularization. 

The particle { }( )

1
,

N
i

k k i
ω

=
x  is updated recursively and at any step; first the sequential 

importance sampling step is calculated followed by the resampling step: 
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The importance function can be chosen from a large class of distributions. A 

popular suboptimal choice of the importance function is 

( ) ( )( ) ( ) ( )
1 1 1,i i i

k k k k kq p+ + +=x X Y x x  and the resulting particle filter is called bootstrap 

filter (BF). Sampling ( )
1

i

k+x  from ( )( )
1

i

k kp +x x  is equivalent to the dynamic 

propagation of ( )i
kx  to time 1kt + . The information contained in the measurement 1k+y  

is not employed in the sampling process. The corresponding update of the 

importance weight in Eq. (2.21) leads to the following simpler form: 

 ( )( ) ( ) ( )
1 1 1

i i i

k k k kpω ω+ + +∝ y x  (2.22) 

which is useful when the evaluation of ( )1k kp +x x  is difficult. 

 

2.5 Nonlinear Minimum Variance Estimator 

The solution of a very special class of Nonlinear Minimum Variance estimation 

problems is considered here using least squares method.  The generality of the 

 
 
 

 
 
 

For 1,...,i N= , sample ( )
1

i

k+x
 from the 

importance function ( )( )
1 1,i

k k kq + +x X Y  

For 1,...,i N= , evaluate and normalize the importance weights : 

( ) ( )
( )

( ) ( ) ( )
1 1( ) ( )

1 ( ) ( )
1 1,

i i i

k k k ki i

k k i i

k k k

p p

q
ω ω

+ +

+

+ +

∝
y x x x

x X Y
   (2.21) 

Resampling 
 
 
 

Multiply/Discard particles { }( )
1 1

N
i

k i+ =
x with respect to 

high/low importance weights ( )
1

i

kω +  to obtain N new 

particles { }( )
1 1

N
i

k i+ =
x with equals weights. 

Particle Filter Cycle 
 

Sequential Importance Sampling 
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problem is restricted so that a simple nonlinear estimator algorithm is derived. This is 

the dual problem to the so-called NGMV optimal control approach introduced by 

Grimble (2005, [39]) and by Grimble and Majecki (2005, [40]).  The cost-function to 

be minimised involves the variance of the estimation error and a relatively simple 

optimisation procedure and solution results.  This was considered for systems 

represented by polynomial matrices by Grimble (2007, [41]), however, state equation 

methods of modelling are sometimes more natural when the system is represented by 

physical differential or difference equations and state models may also be preferable 

for larger systems because of numerical properties. 

The filtering problem involves a signal that is generated by white noise into a 

colouring filter. The signal then goes through a nonlinear signal channel which is 

assumed to be stable but is otherwise quite general.  One of the main strengths of the 

technique is that the nonlinear channel dynamics can be represented by a general 

nonlinear operator.  This might involve a set of nonlinear equations or could even be 

a black box model containing unknown code or look-up tables.  This black box 

model may be obtained from a neural or fuzzy-neural network.  The delayed output 

of the communications channel is assumed to be measured but the measurements are 

corrupted by a signal representing either measurement noise or channel uncertainties.   

The solution requires an assumption that a particular nonlinear operator has a stable 

inverse.  This operator depends upon the nonlinear channel interference noise model 

which is included for design purposes and represents expected uncertainties. The 

uncertainty is modelled by a parallel communications path which can represent a 

possible interference signal. This may not be a physical path but is included for 

design purposes to shape the interference and measurement noise attenuation 

characteristics.  

It has potential applications in control systems, fault monitoring, communications 

and signal processing systems.  
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Chapter 3 

Linear Parameter Varying Estimation 

A linear parameter varying (LPV) model and nonlinear operator 

based approach to estimation and filtering is discussed in this 

chapter. The problem involves a signal entering a communication 

channel that includes nonlinearities and transport delay elements.  

The measurements are assumed to be corrupted by a coloured noise 

signal which is correlated with the signal to be estimated.  The 

communication channel may include either static or dynamic 

nonlinearities represented by a general nonlinear operator and/or a 

LPV model form.  The theoretical solution does not involve empirical 

assumptions or linearization approximations. The resulting 

algorithm is relatively simple to derive and to implement. The 

validation of the nonlinear estimator theory is done by using a 

numerical example and a pursuit-evader problem case study. 

3.1 Introduction 

The control theories for linear time invariant systems are well established and 

dominant in the classical control theories, however real plants are often very 

complicated, thus control systems have to deal with nonlinear and/or time-variant  

systems; hence, over the last few decades the study of nonlinear systems have 

attracted considerable attention.  

The gain-scheduling technique has been largely employed for nonlinear system 

controllers where linear models, obtained in different operating points, approximated 

the nonlinear model. The system controller is the combination of the controllers of 

the linear models, thus the well known theory of linear system synthesis is used for a 

nonlinear system. However, many of the gain scheduling techniques require a large 
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number of linear models and a slow varying operating point to guarantee that the 

closed loop specifications are achieved ([42]). 

A solution to these problems may be the use of a particular type of time-varying 

model called Linear Parameter Varying (LPV) systems. An LPV model can be seen 

as a linear system where the system matrices depend upon a time varying parameter. 

Hence a nonlinear system can be brought to a LPV system by linearizing along a 

time-varying trajectory. A discrete LPV systems is represented in state space as: 

 
( 1) ( ( )) ( ) ( ( )) ( )

( ) ( ( )) ( ) ( ( )) ( )

x k A p k x k B p k u k

y k C p k x k D p k u k

+ = +

= +
 (3.1) 

where ( )p k is the varying parameter, ( )x k is the state, ( )u k is the input, ( )y k  is the 

output and ( ( ), ( ( ), ( ( ), ( ( )A p k B p k C p k D p k  are the parameter varying system 

matrices. 

The terminology of LPV was first introduced in [43] and with the introduction of a 

Linear Fractional Transformation (LFT) structure for the LPV system ([44, 45]), 

advanced control synthesis techniques can be applied to these systems, such as the 

parameter dependent H∞ controller introduced in [46, 47]. 

In the following sections the solution of a special class of Nonlinear Minimum 

Variance (NMV) estimation problems for LPV system is considered using least 

squares estimation methods. A simple nonlinear estimator algorithm is obtained 

which is a consequence of the choice of system structure and noise models. The 

estimation problem solution involves inferential estimation of a signal which enters a 

communication channel that contains transport delays and nonlinearities represented 

by nonlinear operator and an LPV set of nonlinear dynamics. It is assumed that the 

measurements are corrupted by a coloured noise signal correlated with the signal to 

be estimated. The cost-function to be minimized involves the variance of the 

estimation error and requires a very simple optimisation procedure ([48]). 

 

3.2 Signal Processing System Description 

The signal to be estimated passes through a transmitting channel which possesses a 

delay 0z−Λ , a LPV model coW  and a general nonlinear operator 1cW . The 
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measurements are assumed to be corrupted by a noise signal ( )n t . The message 

signal to be estimated is at the output of a linear block: 
cs y=W . 

For greater generality is introduced a dynamic cost weighting function that 

penalized the signal in particular frequency range: q qs s=W  then is the signal to be 

estimated. The signal processing problem is illustrated in Figure 3.1. An additional 

nonlinear parallel channel with dynamics 0cF  and delay 0z
−Λ  is also introduced in 

our nonlinear filtering problem (shown by dotted lines in Figure 3.1). This channel 

which is assumed to have a stable inverse will not exist physically but can be used to 

represent the uncertainties in channel, which provides additional design freedom. In 

Figure 3.1 the white noise signal ε  is assumed to be zero mean. 

 

3.2.1 Signal Processing System Equations 

In this section is given a mathematical description of the signals in the system.  

Input Signal: 

 ( ) ( )sy t tε=W  (3.2) 

Disturbance Noise Signal:  

 ( ) ( )nn t tε=W  (3.3) 

where ( )tε is white driving noise 

Channel input: 

 ( ) ( ) ( )f t y t n t= +  (3.4) 

Channel input:  

 ( ) ( )0

0 0f t z f t
Λ= −Λ  (3.5) 

 Input Channel Subsystem: 

 ( )( )0 0 0( ) cs t f t= W  (3.6) 

Channel Interference:  

 ( ) ( )( )c cn t tε= F  (3.7) 

Nonlinear parallel channel: 

 0

0( ) ( )c ct t z
−Λ=F F  (3.8) 

 



 

  

 

 

 

Figure 3.1: Canonical Nonlinear Filtering Problem with Noise Sources and Channel Interference  
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Figure 3.2: Linear Message and Noise Models and Linear and Nonlinear Channel Dynamics
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Nonlinear channel subsystem output: 

 ( )( )1 0( )c cs t s t= W  (3.9) 

Observations signal: 

 ( ) ( ) ( )c cz t n t s t= +  (3.10) 

Message signal to be estimated: 

 ( ) ( )( ) c c ss t y t tε= =W WW  (3.11) 

Weighted message signal:  

 ( )( ) ( ) ( )q q q c q c ss t s t y t tε= = =W WW WWW  (3.12) 

3.2.2 LPV Dynamics and Models 

Consider now the various sub-systems which may be represented in either a linear 

state-space or a LPV state equation matrix form, as revealed more clearly in Figure 

3.2. Recall the state-equation matrices are time-varying since they are allowed to 

depend upon the system parameters ([49]). This time dependence can be denoted 

( ) ( ( ))t p t=A A , or to simplify notation, simply as A .  

The total observations signal, representing the output of the communication 

channel, has the form: 

( ) ( ) ( ) ( )( )0c( )( )
1c c cz t n t s t t s tε= + = +F W

 

The signal and noise entering the communication channel: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C C Es s n n nf t y t n t t x t t x t t tε= + = + +  (3.13) 

Note that all the models may be LPV with the exception of the cost weighting 

which is assumed to be linear and time-invariant.  The state-space matrix form of the 

system models may therefore be listed as follows: 

Signal generator: 

 ( 1) ( ) ( ) ( ) ( )s s s sx t t x t t tω+ = +A D  (3.14) 

 1 1( ) ( ) ( ) ( ) ( )( ( )) ( )s s s s s sy t t x t and operator z t zI t t
− −= = −C W C A D  (3.15) 

Coloured input noise:  

 ( 1) ( ) ( ) ( ) ( )n n n nx t t x t t tε+ = +A D  (3.16) 

 ( ) ( ) ( ) ( ) ( )n n nn t t x t t tε= +C E  (3.17) 
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 ( ) ( ) ( )( ) ( ) ( )
1

n n n nt t zI t t t
−

= − +W C A D E  (3.18) 

Note that if a through term ( )n tE is included then a white noise signal is present in 

the observations. 

Inferential signal path:  

 ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c c c c c s sx t t x t t y t t x t t t x t+ = + = +A B A B C  (3.19) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c c c c s ss t t x t t y t t x t t t x t= + = +C E C E C  (3.20) 

 1( ) ( )( ( )) ( ) ( )c c c c cand t t zI t t t−= − +W C A B E  (3.21) 

Input channel sub-system:  

 0 0 0 0 0( 1) ( ) ( ) ( ) ( )x t t x t t f t+ = +A B  (3.22) 

 0 0 0 0 0( ) ( ) ( ) ( ) ( )s t t x t t f t= +C E  (3.23) 

 1
0 0 0 0 0( ) ( )( ( )) ( ) ( )c t t zI t t t−= − +W C A B E  (3.24) 

Weighting on message: 

 ( 1) ( ) ( ) ( ) ( ) ( )q q q q q q q c c q c s sx t x t s t x t x t x t+ = + = + +A B A B C B E C  (3.25) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )q q q q q q q c c q c s ss t x t s t x t t x t t t x t= + = + +C E C E C E E C  (3.26) 

 1( ) ( )( ( )) ( ) ( )q q q q qt t zI t t t−= − +W C A B E  (3.27) 

3.2.3 Combined LPV Models 

First consider the sub-system involving the channel input signal and noise models 

with system states defined as: [ ]f

T

s nx x x= .  Then the signal and noise equations 

may be expressed in a LPV equation form: 

Combined state equation:  

 ( 1) ( ) ( ) ( ) ( )f f f fx t t x t t tε+ = +A D  (3.28) 

Signal plus noise: 

 ( ) ( ) ( ) ( ) ( )f f ff t t x t t tε= +C E  (3.29) 

 where  

 
0

0f f

s s

n n

and
   

= =   
   

A D
A D

A D
 (3.30) 

  

 [ ]f s n f nand= =C C C E E  (3.31) 
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Also define the resolvent time-varying operator for the combined signal and noise 

as: 

 1( ) ( ( ))f ft zI tΦ −= −A and let ( ) ( ) ( ) ( ) ( )f f f f ft t t t tΦ= +W C D E . 

The LPV sub-system model that contributes to the weighted error:  

 ( ) ( ) ( ) ( )q q q q q scs t x t s t tε= + =C E W WW  (3.32) 

may also be introduced by defining the state vector as 
T

s c qx x x x =   .  Then 

the signal, inferential path and weighting equations may be expressed in the 

following combined LPV form: 

 ( 1) ( ) ( ) ( ) ( )x t t x t t tε+ = +A D  (3.33) 

Weighted output: 

 ( ) ( ) ( ) ( ) ( )qs t t x t t tε= +C E  (3.34) 

The augmented time-varying system matrices follow, using (3.16), (3.19) and 

(3.25) as: 

 

0 0

0 0

0

0

s s

c s c

q c s q c q

q c s q c q

and

B B A

E E C and

   
   = =   
     

 = = 

A D

A B C A D

E C C

C E C C E

 (3.35) 

The resolvent operator for the augmented system is defined as 1( ) ( ( ))t zI tΦ −= −A  

3.3 NMV Estimation Problem 

The NMV filter involves the minimization of variance of the estimation error (Moir, 

1986 [50]): 

 ˆ( ) ( ) ( )s t t l s t s t t l− = − −ɶ  (3.36) 

where ˆ( )s t t l−  the optimal linear estimate of the signal s(t) at time t, given 

observations ( )z t  up to time t l− . The value of l may be positive or negative 

according to the following conditions: 

0l = , for estimation 

0l >  , for prediction 

0l < , for fixed-lag smoothing 
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The criterion to judge optimality for the uncertain system models minimum 

variance estimation problem can be expressed as below:  

 { {( ( | )( ( | ) }}T

q qJ trace E s t t s t t= − −ɶ ɶℓ ℓW W  (3.37) 

where {}E ⋅  denotes the expectation operator. The qW  ([51]) denotes a linear 

dynamic weighting function matrix which is assumed to be strictly minimum phase, 

square and invertible. 

3.3.1 Spectral Factorization 

Assume a combined signal and noise model is defined so that the signal ( )f t
 
may be

 

realized as:
 

( ) ( ) ( )ff t t tε= Y , where ( ) ( ) ( )f s nt t t= +Y W W
 
and that ( )f tY

 
is a stably 

invertible operator.  If this assumption is not satisfied, ( )f tY  may be defined to be 

stably invertible using a time-varying spectral-factorization computation. If these 

sub-systems are time-invariant and linear a standard polynomial computation may of 

course be used to compute ( )f tY .  However, for the state-space approach taken this 

operator may be found by exploiting the relationships from a Kalman filter for a 

time-varying  plant (Grimble and Johnson, 1988 [51]).   

Recall that if the signal ( )f t is measured the Kalman filter may be computed where 

the covariance matrix for the noise { }( )tε  is cov[ ( ), ( )] tt Q σε ε σ δ=  and 

0.
T T

f f f f

T T

f f f f

Q Q

Q Q

 
≥ 

  

D D D E

E D E E
   The resulting

 
Kalman filter gain matrix for such a time-

varying system (Grimble and Johnson, 1988 [51]): 
  

1( )T T

f f f f f fQ R−= +K A PC D E  where the Riccati equation solution satisfies the 

apriori covariance: 

T T T

f f f f f f fQ R= + −P A PA D D K K
 
and ( )T T

f f f f fR E QE C C= + P , 

and the spectral-operator of the combined signal and noise satisfies:  

( ) ( ) ( ( ) ( )) ( ( ) ( ))T T T

f f s n s n
t t t t Q t t= + +Y Y W W W W   

The spectral-operator may then be defined from the state models as:  

 1/2( ) ( ( ) )f r f f f ft I t RΦ= +Y C K  (3.38) 
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3.3.2 NMV Estimation Solution 

The estimator can be designed from the spectral factor and by separating future and 

past terms to minimize the variance of the estimation error ([39, 48]) given in 

equation (3.36). 

The estimate ˆ( )s t t − ℓ  can be generated from a nonlinear estimator of the form: 

 ˆ( ) ( ) ( )fs t t t z t− = −ℓ ℓH  (3.39) 

 1 1
0 0 0c( )

1f q fc c
− −= +H W H F W W Y  (3.40) 

( )f tH denotes a minimal realization of the optimal nonlinear estimator. The block 

diagram representation of ( )f tH  will be as shown in Figure 3.3. The subsystems in 

this estimator that generate the signals ( )g t  and ( )q t  have LPV models that can be 

used for implementation. 

The signal 0( ) ( ) ( )g t t m t=H  has the LPV model form: 

 ( 1) ( ) ( ) ( ) ( )g gx t t x t t m t+ = +A D  (3.41) 

 

1

1

( ) ( ) ( ) ( 1) 1

1 .

k l

p

j

m

j

g t t k t j x t k l

if m j

+ −

=

= + + + + ∀ + ≥

= <

∏

∏

ℓC A

 (3.42) 

and the signal 1/2( ) ( ) ( ) ( ( ) ) ( )f r f f f fq t t m t I t R m tΦ= = +Y C K  may be implemented 

as: 

 1/2( 1) ( ) ( ) ( ) ( )q f q f fx t t x t t R m t+ = +A K  (3.43) 

 1/2( ) ( ) ( ) ( )f q fq t t x t R m t= +C  (3.44) 

 

3.3.3 State Space Prediction Results 

Before presenting the proof of the estimator solution let consider a system which 

may or may not be time-varying. Assume for the present that the future values of the 

control signal are known, so that the future values of the system matrices may be 

computed. The future values of the states and outputs, at different times t may be 

obtained as:  



 

                                                                                                                                             

Linear Parameter Varying Estimation 31 

 

 
( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x t t x t t t

y t t x t t t

ε
ε

+ = +

= +

A D

C E
 

   

( 2) ( 1)[ ( ) ( ) ( ) ( ) ]x t t t x t t tε+ = + +A A D ( 1) ( 1)t tε+ + +D  

  ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)t t x t t t t t tε ε= + + + + + +A A A D D  

( 1) ( 1) ( 1) ( 1) ( 1)y t t x t t tε+ = + + + + +C E  

( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)t t x t t t t t tε ε= + + + + + +C A C D E  

 

( 3) ( 2)[ ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)]

( 2) ( 2)

( 2) ( 1) ( ) ( )

( 2) ( 1) ( ) ( ) ( 2) ( 1) ( 1)

( 2) ( 2)

x t t t t x t t t t t t

t t

t t t x t

t t t t t t t

t t

ε ε
ε

ε ε
ε

+ = + + + + + + +

+ + +

= + +

+ + + + + + +

+ + +

A A A A D D

D

A A A

A A D A D

D

 

( 2) ( 2) ( 2) ( 2) ( 2)

( 2) ( 1) ( ) ( ) ( 2) ( 1) ( ) ( )

( 2) ( 1) ( 1) ( 2) ( 2)

y t t x t t t

t t t x t t t t t

t t t t t

ε
ε

ε ε

+ = + + + + +

= + + + + +

+ + + + + + +

C E

C A A C A D

C D E
 

The expression for the i steps-ahead state-vector for  2i ≥   may be obtained by 

generalising the above result to obtain: 

( ) ( 1) ( 2).... ( ) ( )

( 1) ( 2)... ( 1) ( ) ( )

... ( 1) ( 2) ( 2) ( 1) ( 1)

x t i t i t i t x t

t i t i t t t

t i t i t i t i t i

ε
ε ε

+ = + − + −

+ + − + − +

+ + + − + − + − + + − + −

A A A

A A A D

A D D

 

Generalising this result, obtain the state and output at the future times t i+  as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

0
1

0
1

1

( ) 1 1 1

( ) 1 1

1

where 1, 0

1

i
i i

p

p

i
i i

p

p

i

i
q pp

x t i A t x t A t p t p i

y t i t i A t x t t i A t p t p

t i t i i

t q p i
A i p

p i

ε

ε

ε

=

=

−

=

+ = + + − + − ∀ ≥

 
+ = + + + + − + − + 

 
+ + + ∀ ≥


+ <

= ∀ ≥ ∀ ≥
 ≥

∑

∑

∏

D

C C D

E

A

 (3.45) 
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3.3.4 NMV Estimation Proof 

An expression for the weighted estimation error: ( ) ( )q qs t t s t t− = −ɶ ɶℓ ℓW  is required 

first.  The weighted message signal is given by (3.12) as: 

 c( ) ( ) ( )q q q scs t y t tε= =W W W W W  (3.46) 

 

 

Figure 3.3: Nonlinear Estimator Structure 

From equations (3.39) and (3.46) obtain the weighted estimation error:  

 ˆ( ) ( ) ( ) ( ) ( )q q q q s q fcs t t s t s t t t z tε− = − − = − −ɶ ℓ ℓ ℓWWW WH  (3.47) 

Recall from (3.10) that the observations 
c cz n s= +  and substituting from equation 

(3.47): 

 ( ) ( ) ( ( ) ( ))q q s q f c ccs t t t n t s tε− = − − + −ɶ ℓ ℓ ℓWWW WH  (3.48) 

From (3.4), (3.7), (3.5) and (3.9) obtain: 

 

( )

( )
( )

0 0

c 0

0 0

0 0 0 0

c

c

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

q q s q f c

q s q f

q s q f

c

c c c

c c c

s t t t t s t

t z t z f t

t t f t

ε ε

ε ε

ε ε

−Λ −Λ

− = − − + −

= − − + −

= − − −Λ + − −Λ

ɶ ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ

1

1

1

WWW WH F W

WWW WH F

WWW WH F

W W

W W

 (3.49) 

or advancing time: 

 
( )

0 0 0

0 0c

( ) ( )

( )( ) ( )( )
1

q q s

q f

c

c c

s t t t

t f t

ε

ε

+ Λ + + Λ = + Λ + −

+

ɶ ℓ ℓWWW

W H F W W
 (3.50) 

ˆ ( | )qs t t l−   

Estimated 

signal 

 

( )cz t  

Nonlinear estimator 

- 

+ 

0 1c cW W  

Transmission 

path model 

0H  

Design path 

fY  

Spectral 

factorization 

1
ipF −

 

Inverse noise  

design channel 

1
q
−

W  

Inverse 

Weighting 

Dynamics 

 

Observations 

 

( )m t  ( )g t  

( )q t  
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The first term on the right of (3.50) must now be split into terms which depend 

upon the future and terms which depend upon the past white noise components ( )tε .  

Consider the case of the same channel delays of magnitude k so that 0 kIΛ = .  

To obtain an expression for the weighted signal 

0 0( ) ( )q q scs t W tε+Λ + = +Λ +ℓ ℓWW
 
( 1k + ≥ℓ ) that can be separated in future and 

past terms use (3.45) and applied it to this LPV system, for  : 

( )

0
1

1

( ) ( ) ( ) ( ) ( 1) ( 1) ( ) ( ) ( )

where 1, 0

1

i
i i

q p

p

i

i
q pp

s t i t i A t x t A t p t p t i t i t i

t q p i
A i p

p i

ε ε
=

−

=

+ = + + + − + − + + + +


+ <

= ∀ ≥ ∀ ≥
 ≥

∑

∏

C D C E

A  

where the summation term is defined to be null when i 1= . Thence, obtain for the 

future times
 

1k + ≥ℓ : 

 

0

1

( ) ( ) ( ) ( )

( 1) ( 1) ( ) ( ) ( )

k l

q

k l
k l

p

p

s t k l t k l A t x t

A t p t p t k l t k l t k lε ε

+

+
+

=

+ + = + +

+ + − + − + + + + + + +∑

C

D C E
 (3.51) 

For 1k + =ℓ : 

 ( 1) ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)qs t t t x t t t t t tε ε+ = + + + + + +C A C D E  

For 2k + =ℓ : 

 
( 2) ( 2) ( 1) ( ) ( ) ( 2) ( 1) ( ) ( )

..... ( 2) ( 1) ( 1) ( 2) ( 2)

qs t t t t x t t t t t

t t t t t

ε

ε ε

+ = + + + + +

+ + + + + + +

C A A C A D

C D E  

For 2k + >ℓ  the lower term in the summation p=1 can be removed to obtain, 

0 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1) ( ) ( ) ( )

k l k l

q

k l
k l

p

p

s t k l t k l A t x t A t t t k l

A t p t p t k l t k l t k l

ε

ε ε

+ +

+
+

=

+ + = + + + + + +

+ + − + − + + + + + + +∑

C D C

D C E  

First note that, ( )1 1 1 1( ) ) ( ) ( ( )) ) ( ( ) )t Φ( z + I = t zI t Φ( z I t z− − − −+ − = −A A A A  

Hence write: 

 1 1
0 0( ) ( ) ( ) ( ) ( )qs t k z t z t kε ε− −+ + = + + +ℓ ℓH F  (3.52) 

1i ≥
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 ( )
( )

1 1
0 0 1

1
1 1

1
1

11
1

where : ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1

k l k l

k l k l

k l

k l

z t k l A t z t t k l A t

t k l A t A t z t t k l A t

t k l A t A t z t

t k l A t I t z t k l

Φ

Φ

Φ

− + − +

+ − +

+ −

−+ −

= + + + + + =

+ + + + + =

+ + + Ι =

+ + − ∀ + ≥

H C D C D

C D C D

C D

C A D

 (3.53) 

 

( )

( )

( 1 )
0

2

1

( ) ( ) ( 1) ( )

1

where 0 1 and

1,

1

k
k l m k l

m

m

k l

k l
q mm

t t k A t m z t k

k l

for k l

m k l t q
A k l m

m k l

+
+ − − −

=

+ −

+
=

= + + + − + + +

∀ + ≥

= + =


< + +

= ∀ + ≥ ∀
 ≥ +

∑

∑

∏

ℓ

ℓ ℓF C D E

A

 (3.54) 

  

It follows that the weighted signal to be estimated, for
 
future times

 
1k + ≥ℓ , may 

be expressed in the concise form: 

 0 0( ) ( ) ( ) ( )qs t k t t t kε ε+ + = + + +ℓ ℓH F  (3.55) 

where the stable filter 0( )tH and the finite pulse response estimation term 1
0( )z−F

 

may be defined as in the equations above. Reviewing the above results note that the 

signal ( )qs t k+ +ℓ
 

( )q sc t kε= + +ℓWWW
 
may now be

 
represented in

 
terms of the 

signals
 0( ) ( )t tεH

 
and 0 ( )t kε + + ℓF , which involve terms dependent on past and 

future values of the white noise signal ( )tε , respectively.  

p(t) Calculation: Note that the sub-system 

( ) 1 1 1
0( ) ( )kt t k l I z+ − − −= + + −ℓH C A A D , defined in (3.53) forms part of the 

estimator and may conveniently be implemented, by the LPV equation model: 

 ( 1) ( ) ( ) ( ) ( )p px t t x t t m t+ = +A D  (3.56) 

 

1

0

1

1

where : ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1; 1 .

k l

p

j

k l

j

m

j

p t t k t j x t

t k t j t m t

k l if m j

+ −

=

+ −

=

= + + +

+ + + +

∀ + ≥ = <

∏

∏

∏

ℓ

ℓ

C A

C A D  (3.57) 
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The future values of the LPV matrices may not of course be known and in this case 

they may be assumed to be held constant at the values evaluated at time t.  

q(t) Calculation: Similarly, the spectral operator 

1 1 1/2( ) ( ( ) )f r f f f fz I z RΦ− −= +Y C K , where 1( ) ( ) ( )fq t z m t−= Y , may be realized in the 

state equation form:  

 1/2( 1) ( ) ( ) ( ) ( )q f q f fx t t x t t R m t+ = +A K  (3.58) 

 1/2( ) ( ) ( ) ( )f q fq t t x t R m t= +C  (3.59) 

After establishing the above properties we may return to the solution for the 

optimal nonlinear estimator. The weighted estimation error in equation (3.50)  may 

be written, using the definitions of terms in (3.55) and the last assumption, as: 

( )
( )( )

0 0 0 0 0

0 0 0 0 0

c

c

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

1

1

q q s q f

q f

c c c

c c

s t t t t f t

t t t f t

ε ε

ε ε ε

+ Λ + + Λ = + Λ + − +

= + Λ + + − +

ɶ ℓ ℓ

ℓ

WWW WH F W W

F H WH F W W  

The assumption on the spectral-factor enables the combined signal and noise to be 

written as ( ) ( ) ( )ff t t tε= Y , so that: 

 ( )0 0 0 0 0 0 0c( ) ( ) ( ) ( )
1q q f fc cs t t t W tε ε+ Λ + + Λ = + Λ + + − +ɶ ℓ ℓF H H F W W Y  (3.60) 

This equation may be written in a form which is useful to define the block diagram 

of the estimator:  

 
( )

0 0

1
0 0 0 0 0 0c

( )

( ) ( ) ( )
1

q

q f f cc c

s t t

t I tε ε−

+Λ + +Λ =

+Λ + + − +

ɶ ℓ

ℓF H WH W W Y F F
 (3.61) 

where 0 1Λ + ≥ℓ  or 01≥ − Λℓ  is assumed (meaning that the sum of the diagonal 

elements of 0Λ  plus 1)≥ℓ . 

It has been established that the first term in (3.61) is dependent upon the future 

values of the white noise signal components: ε( 1)t + , ε( 2)t + ,.....  The second group 

of terms in (3.61) are all dependent upon past values of the white noise signals.  It 

follows that these two groups of terms are uncorrelated and the expected values of 

any cross terms are null. Also note that the first terms on the right hand sides of 

(3.60) or (3.61) are independent of the choice of estimator. It follows that the 

smallest variance is achieved when the remaining terms are set to zero ([48, 52]).  

Assuming the existence of a finite gain stable causal inverse to the nonlinear operator 
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(see Appendix G for more details) the optimal estimator is therefore obtained by 

setting this second group of terms to zero, giving:       

 1 1
0 0 0c( )

1f q fc c
− −= +H W H F W W Y  (3.62) 

The optimal estimation error is defined by the terms that remain in (3.61) and these 

may be written as: 

 min 0 0 0 0( ) ( )qs t t tε+Λ + +Λ = +Λ +ɶ ℓ ℓF  (3.63) 

  

3.4 Numerical Example 

In this section, the estimator results for a fault detection  problem are presented. Let 

us consider a fault-corrupted LPV system: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x A x t B u t F f t

y t C x t t

δ δ δ
δ µ

= + +

= +

ɺ
 (3.64) 

where u(t) is the system control command, 1 2 3 4[ , , , ]Tx x x x x=  is the state vector, 

f(t) is the unknown actuator fault to be detected and µ(t) is the sensor noise on the 

measurement y. The sensor noise µ(t) is added to the system output through the 

following noise design channel: ( ) ( )1
0 375* 1 0.9048 .c z z−= + −F  

In this example the matrices F and C are considered  constant. The matrices in 

equation (3.64) can be defined as: 

 

( )

( ) [ ]

[ ]

0.046 0.027 0.065 0.455

0.058 1.010 0.028 2.020
,

0.140 0.390 0.070 0.619

0 0 1

0.181

2.564
, 0 1 0 0 ,

1

0

1 0 0 0
T

A

B C

F

δ
δ

δ
δ

δ

δ

δ
δ

− + − 
 + − =
 + −
 
 
− + 
 − = =
 +
 
 

=

 (3.65) 

  where the parameter δ varies as follow: 
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 ( )

1

1
1

1

1

0.15 0.7

0.1 0.7 0.5

0.05 0.5 0.3

0.05 0.3

x

x
x

x

x

δ

− − <
 − − ≤ < −

= 
− − ≤ < −
 − ≤

 

In order to validate the estimator the simulations are carried out for 4 different fault 

signals. In the simulations the unknown message signals are estimated by using the 

LPV filter introduced above. 

The state variable 1x  values, over the 30 sec simulation and the corresponding 

parameter δ, whose value depends on 1x , are shown in Figure 3.5 for the fault 1f .  

 

Figure 3.4:  The unknown fault signal f1 vs its estimation 

 

Table 3.1: Variance of estimation error for the 4 unknown faults detection cases. 

Unknown Signal Variance of 

Estimation Error 
Fault f1 1.3146e-007 

Fault f2 1.4558e-007 

Fault f3 1.4346 e-007 

Fault f4 1.3097e-007 
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The estimated fault signal and the actual signal are shown in Figure 3.4. It can be 

seen that the actuator fault is greatly estimated and its estimation error variance is

71.3146 10J −= × . Table 3.1 presents the results of the 4 case studies in terms of 

estimation error variance, confirming the efficacy of the LPV estimator. 

 

 

Figure 3.5:  State variable 1x  (top) and parameter δ (bottom) over the 30s simulation (fault 

1f  case) 

 

3.5 Experimental Results 

In this section, the estimator results for a pursuit-evader problem are presented. 

This pursuit-evader problem represents an endgame of intercepting a maneuverable 

target by a guided missile (see [52, 53] for more details). The optimal missile 

guidance implementation law requires knowledge of the lateral acceleration of the 

target. This information cannot be directly measured so there is a need to estimate 

this variable. Since the lateral acceleration depends on the evader command signal, 

its value becomes the objective of the estimation. 
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The pursuer-evader system can be written as a fault-corrupted linear parameter-

varying system: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t u t v t

t t tρ µ
= + +

= +

x Ax B L

y C x E

ɺ
 (3.66) 

Where u(t) is the pursuer command, v(t) is the unknown evader command, and µ(t) 

is the sensor noise on the first measurement, 1y . The state vector [ , , , ]T

E Py y a a=x ɺ  

is composed by relative position, relative speed, evader acceleration and pursuer 

acceleration respectively.  

In equation (3.66) the matrices can be defined as below: 

 

max

max

0 1 0 0 0

0 0 1 1 0
,

0 0 1 0 0

0 0 0 1

1 0 0 0 1
,

1 0 0 0

0 0 0

E

P P P

T

E E

a

a

τ
τ τ

ρ

τ

   
   −   = =
   −
   

−   

   
= =   
   

 =  

A B

C E

L

 (3.67) 

Where ( )1/ ,ft tρ = −
 Eτ  

and Pτ  are the time constants and m ax
Ea and m ax

Pa are the 

maximal achievable acceleration of the evader and pursuer respectively. 

The simulation presents the last few second of a pursuer–evasion endgame where 

the unknown input, the evader input change is estimated by using the LPV filter 

above introduced. 

The  measurement of relative position 1y  and relative speed 2y ,  between evader 

and pursuer is shown in Figure 3.6, and the pursuer control input signal is shown in 

Figure 3.7.  

The estimated evader command input and estimated lateral evader acceleration are 

compared to the actual message signals in Figure 3.8 and Figure 3.9 respectively.  

It can be seen that the unmeasured evader command is sufficiently estimated and 

its estimation error variance is 52.5723 10J −= × . 

Software implementation details can be found in Appendix F. 
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Figure 3.6: Measurement of relative positive y1 and relative speed y2 between evader and 
pursuer 

 

Figure 3.7: Pursuer command input 
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Figure 3.8: Actual evader command input vs estimated evader command signal 

 

Figure 3.9: Actual evader acceleration vs estimated evader acceleration 
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3.6 Conclusions 

The proposed nonlinear filter is easy to understand and to implement and its resulting 

block structure can be explained intuitively. The new LPV approach introduced here 

for modelling various sub-systems adds considerably to the generality of the results, 

in fact previously only the unstructured channel sub-system c1W  (see Figure 3.1) was 

assumed to be nonlinear. The uncertainties were represented in a parallel channel that 

also introduces design freedom.  

An advantage of the general philosophy is that the nonlinear subsystem in the 

signal channels can be represented by either a set of known nonlinear equations or 

can be replaced by a neural network to provide learning features.  

The potential can be exploited in applications that currently use or are exploring 

LPV models such as in the wind turbine, flight control and the automotive engine 

control industries. The potential in fault detection applications still has to be explored 

and there is also a role for the estimator in feedback control systems. 

It is worth noticing that an extension can be done to assume the system matrices are 

also functions of system known inputs or system states  (the estimator results can 

therefore be extended to include so-called state-dependent systems).  That is, a 

system with time-varying linear state-space matrix ( ( ), ( ), ( ))x t u t p tA , which might 

be considered a state-dependent system. 

 

 

 

 

  

 

  



 

43 

 

Chapter 4 

Robust Nonlinear Estimation 

A nonlinear operator based approach to robust estimation is first 

introduced for discrete-time systems. The signal and noise model 

parameters are assumed to be subject to perturbations represented 

by random variables with known means and covariances. In the 

limiting case of a linear system the estimator has the form of a 

Wiener filter in discrete-time polynomial matrix system form. A 

nonlinear operator based approach to ∞H     robust estimation is then 

presented for discrete-time multichannel systems. The ∞H  filtering 

problems can be solved by using a NMV embedding procedure. That 

is, an auxiliary minimum variance filtering problem can be solved 

for a cost function with dynamic weighting. A Lemma linking the 

solutions of the NMV and ∞H  problems can then be employed to 

provide the desired solution.  

4.1 Introduction 

In the last couple of decades the study of robust signal estimation methods has 

attracted considerable attention. Plant equations provide only an approximation of 

the real systems and the development of robust theory can deal with these model 

errors. In [54] was introduced a robust Kalman filtering problem for systems with 

bounded parameter uncertainty;  this problem was solved in [55, 56] for systems with 

bounded parameter uncertainty in both the state and measurement matrices. In [57] a 

state estimator with guaranteed cost bounds for linear systems with parametric 

uncertainties was proposed.  

In the first part of this chapter a robust Wiener optimal nonlinear estimation is 

presented for frequency domain or polynomial system whose signal and noise 
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models present uncertainties. The solution requires the introduction of an average 

spectral factorization and minimization of an error variance cost criterion. 

The H∞  
filtering problem was pioneered by Grimble ([58]) and by Elsayed and 

Grimble ([59, 60]). A filter was derived using a polynomial systems model and a 

frequency-domain-based solution. The role that the H∞  filter could play in signal 

processing problems was recognized since its early development. However, its 

importance in the robust control problem was only realized in more recent work by 

Doyle et al. ([61]), where a state-space solution of the problem was employed. 

The state-space solution of H∞  filtering problems has also been considered by 

Shaked ([62]) and Yaesh and Shaked ([63]). 

The solution of the optimal H∞  smoothing problem was considered by Grimble 

([64]) using a polynomial system analysis.  

In the H∞  estimation the filter is designed to minimize the H∞ norm of an operator 

that relates the external input signals with the estimation errors to make it below a 

defined threshold. When the systems under consideration are subject to some 

uncertainties, a robust estimator can be designed to guarantee good performance for 

all the tolerated range of uncertainties. To solve the robust H∞  estimation problem 

many approaches have been employed such as algebraic Riccati equation based 

approach ([56, 65, 66]) and Linear Matrix Inequalities (LMI) based approach ([67-

69]).  

In this chapter an H∞  filtering problem is solved by using an NMV embedding 

procedure ([48]). That is, an auxiliary minimum variance filtering problem is solved 

for a cost function with dynamic weighting. A Lemma linking the solutions of the 

NMV and H∞  problems can then be employed to provide the desired solution. 

4.2 Robust Wiener Optimal Nonlinear Estimation for Uncertain 

System 

In the following a related frequency domain or polynomial system approach to robust 

nonlinear estimation problems is presented. The system, signal and noise models are 

assumed to include uncertain elements that can be represented by linear models with 

probabilistic parameter deviations. The optimal robust filter, smoother, or predictor 
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can be obtained from the results of a frequency weighted estimation problem. The 

estimation problem involves inferential estimation of a signal which enters a 

communication channel that contains nonlinearities and transport delays. The 

measurements are assumed to be corrupted by a colored noise signal correlated with 

the signal to be estimated ([70]). The solution of the nonlinear estimation problem is 

obtained using nonlinear operators. The cost-function to be minimized involves the 

averaged variance of the estimation error and requires a very simple optimization 

procedure ([48]). The averaged mean square error has been previously used in 

literature by Grimble ([71]), Speyer and Gustfson ([72]), and Sternad and Ahlén 

([73]). In the latter was demonstrated that if the uncertainty in the system elements is 

described by soft bounds, the optimal robust estimator can be found for the solution 

of the minimum variance problem. 

4.2.1 Signal Processing System Description 

The signal and noise models are assumed to be time-invariant, asymptotically stable 

and discrete-time and represented in transfer-function or polynomial matrix form.  

The signal to be estimated passes through a transmitting channel which possesses a 

delay kz− , linear dynamics lW  and nonlinear dynamics nlW . The signal generated by 

white noise goes into a colouring filter and then enters the linear subsystem lW

representing part of the channel dynamics which can be non-minimum phase (inverse 

unstable). It then enters the nonlinear subsystem nlW  which is assumed to be stable. 

The measurements are assumed to be corrupted by a noise signal ( )n t . The message 

signal to be estimated is at the output of a linear block cs W y= . 

For greater generality a dynamic cost weighting function is introduced that 

penalizes the signal in a particular frequency range q qs W s=  and this becomes the 

signal to be estimated. The signal processing problem is illustrated in Figure 4.1. An 

additional nonlinear parallel channel with dynamics ipF  and delay kz−  is also 

introduced in our nonlinear filtering problem (shown by dotted lines in Figure 4.1). 

This channel will not exist physically but can be used to represent uncertainties in the 

nonlinear subsystem. This provides additional design freedom. 
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In Figure 4.1 the white noise signals ε  and ω  are assumed to be mutually 

independent and trend free.  

The covariance matrices for the white noise signals are defined as 

cov[ ( ), ( )]T

s tt t Q τε ε δ=  and cov[ ( ), ( )]T

n tt t Q τω ω δ= , respectively, where tτδ  denotes 

the Kronecker delta function. 

4.2.2 System Equation 

In this section a mathematical description of the signals in the system is introduced. 

The estimation problem shown in Figure 4.1 is first modified to the problem in 

Figure 4.2. 

The mathematical justification and derivation of the innovation signals in Figure 

4.2 is described in [74, 75].  

Input Signal:   

 ( ) ( )* * 1
0s s s fy t W Q C D tε−=  (4.1) 

  Disturbance Noise Signal: 

 ( ) ( )* * 1
0n n n fn t W Q C D tε−=  (4.2) 

where ( )tε is white driving noise 

 1
0( ) ( ) ( ),s sW t A t C t−=  (4.3) 

 1
0( ) ( ) ( )n nW t A t C t−=  (4.4) 

 1
0( ) ( ) ( ) ( )l s lsand W t W t A t C t−=  (4.5) 

Linear channel subsystem output: 

 ( )* * 1
0 0( ) ( )l l s s s fs t W y t WW Q C D tε−= =  (4.6) 

Channel input:  

 ( ) ( ) ( )0f t s t n t= +  (4.7) 

Nonlinear parallel channel:  

 -k

c ipF (t)= F (t)z  (4.8) 

Channel Interference: 

 ( ) ( )( )c cn t F f t=  (4.9) 

Nonlinear channel input output: 

 ( ) ( ) ( )k

ds t z f t f t k−= = −  (4.10) 



 

 

 

 

 

 

 

Figure 4.1: Signal Source, Noise Sources and Nonlinear Communication Channel Dynamics 
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Figure 4.2: Nonlinear Filtering Problem with Innovation Signals 
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Nonlinear channel subsystem output: 

 ( )( )( )c nl ds t W s t=  (4.11) 

Observations signal: 

 ( ) ( ) ( )c c cz t n t s t= +  (4.12) 

Message signal to be estimated: 

 ( ) ( )* * 1
0( ) c c s s fs

W Qs t W y t W C D tε−= =  (4.13) 

Weighted message signal: 

 ( )* * 1
0( ) ( ) ( )q q q c q c s s fs

W Qs t W s t W W y t W W C D tε−= = =  (4.14) 

4.2.3 Uncertain System Model Representation  

The system models sW , 
n

W  and lW  are assumed to be uncertain, hence the notation 

for their models will now be modified to allow for the uncertainty: 

s s sW W Wδ=  

n n nW W Wδ=  

l l lW W Wδ=  

where for iW i = s,n,l represents the nominal model and sWδ , nWδ  and lWδ  are 

linear in the random parameters. 

For simplicity a scalar uncertain problem is considered. Let {}pE ⋅ denote the 

expectation taken with respect to the random parameters, then for the scalar system 

the transfer function of the uncertainty , ,iW for i s n lδ =  is assumed to have the 

following polynomial form:  

/ ,i inum idenW W Wδ δ δ= where  { } { } 1p inum p idenE W E Wδ δ= =  

The numerator and denominator terms, denoted as inumWδ  and idenWδ respectively, 

can be written in the form 1inum inumW Wδ δ= + ɶ and 1iden idenW Wδ δ= + ɶ  where 

{ } { } 0p inum p idenE W E Wδ δ= =ɶ ɶ . 

For example, the second-order uncertain polynomials inumWδ  and idenWδ  may be 

represented in the linear form: 

 1 2
1 2(1 )inumW z zδ α α− −= + +  
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 1 2
1 2(1 )idenW z zδ β β− −= + +  

where the means and the variances of the random parameters are as follow: 

{ } { } { } { }1 2 1 2 0p p p pE E E Eα α β β= = = =

{ } { } { } { }2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2, , ,p n p n p d p dE E E Eα σ α σ β σ β σ= = = =

 

These random parameters are, for simplicity, taken to be independent.   

The work by Grimble ([71]), reveals that the solution of the Wiener filter problem 

for an uncertain system in the form described is very similar to the traditional Wiener 

filtering problem. However, the spectral factor involving products of random 

variables include the corresponding covariance terms. The remaining polynomial 

models describing the plant, signal and noise transfers functions are simply the 

polynomials with mean levels of parameters included. 

In the limiting case when the channel dynamics are absent and the problem reverts 

to a Wiener filtering problem we require the nonlinear proposed estimator to be 

identical to the optimal Wiener filter for the uncertain system. 

The approximation taken is therefore to make these substitutions before solving the 

nonlinear estimation problem. For simplicity of notation it will assumed the 

polynomials therefore include mean values but where products of uncertain terms are 

present the expectation {}pE ⋅  will be included which signifies the variances of 

uncertain parameters will be involved. 

4.2.4 Robust Optimal Estimator 

The NMV filter involves the minimization of variance of the estimation error: 

 ˆ( ) ( ) ( )s t t l s t s t t l− = − −ɶ  (4.15) 

where ˆ ( )s t t l−  denotes the average with respect to the random parameters of the 

weighted estimation signal at time t, given observations ( )cz t  up to time t l− . The 

value of l may be positive or negative according to the following conditions ([50]): 

0l = , for estimation 

0l >  , for prediction 

0l < , for fixed-lag smoothing 

The criterion to judge optimality for the uncertain system models minimum 

variance estimation problem can be expressed as below ([76]): 
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 { {( ( | )( ( | ) }}T

s q qJ trace E W s t t W s t t= − −ɶ ɶℓ ℓ  (4.16) 

where {}sE ⋅  denotes the expectations with respect to the stochastic signals. The 

qW  ([48]) denotes a linear dynamic weighting function matrix which is assumed to 

be strictly minimum phase, square and invertible and may be represented in 

polynomial matrix form as: 1 1 1 1( ) ( ) ( )q q qW z A z C z− − − −= . 

4.2.5 Spectral Factorization 

The solution of the nonlinear estimation problem requires the introduction of an 

average spectral factorization of the signal f . The power spectrum for the combined 

linear models can be calculated by using the Parseval’s theorem ([48])  

 { }*( )( )ff p l s n l s nE WW W WW Wε ω ε ωΦ = + +  (4.17) 

where the notation for the adjoint of 
sW  implies * 1( ) ( )T

s sW z W z− = , and in this case 

the z denotes the z-domain complex number. The averaged generalized spectral-

factor fY   that is required may be computed using 

 *
f f ffY Y = Φ  (4.18) 

 -1
0 0where f fY A D=  (4.19) 

The system models are assumed such that 
0fD  is a strictly Schur polynomial matrix 

([72, 77]) satisfying:  

 { }* * *
0 0f f p ls s ls n n nD D E C Q C C Q C= +  (4.20) 

A realization of the averaged signal f with respect to the random parameters can 

be obtained from the average spectral factor:   

 ( ){ }( ) ( )p ff t E f t Y tε= =  (4.21) 

4.2.6 The Robust Wiener Optimal Estimator Solution 

The estimator can be designed from the spectral factor and Diophantine equation to 

minimize the variance of the estimation error ([41, 74]) given in equation (4.15). 

The estimate ˆ ( )s t t − ℓ  can be generated from a nonlinear estimator of the form: 

  

 ˆ ( ) ( ) ( )f cs t t H t z t− = −ℓ ℓ  (4.22) 
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and it is shown in the next section that for an uncertain system this will be of the 

form: 

 1 1 1( ) (F )f f f ip nlH t G A Y W− − −= +  (4.23) 

( )fH t
 
denotes a minimal realization of the optimal nonlinear estimator. The block 

diagram representation of ( )fH t
 
will be as shown in Figure 4.3. 

The generalized spectral factor 1
0 0f fY A D−= used in this filter can be obtained from 

the equation (4.20) where 
0fD  is required to be asymptotically stable. The minimal 

degree solution of 0G  and 0F  can be obtained with the help of the following 

Diophantine equation: 

 { }* * ( )
0 0 0

g k l g

cs q f p cs s sA A F G D z E C Q C z− + −+ =  (4.24) 

The minimum value of theoretical variance in this case will be as follows: 

 { }* 1 1 *
0 0 0 0f fJ trace F D D F− −=  (4.25) 

 

 

Figure 4.3: Block Diagram of the Robust Optimal Estimator for Uncertain System 

 

4.2.7 The Robust Wiener Optimal Estimator Solution Proof 

To obtain a proof of the estimator we start from the expression of the weighted 

estimation error: 

 ˆ( ) ( ) ( )q q qs t t l s t s t t l− = − −ɶ  (4.26) 

Using equation (4.14) and (4.22): 
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( ){ } { }* * 1

0

ˆ( ) ( ) ( )

( )

q q q

p q c s s s f p q f m

s t t l s t s t t l

E W W W Q C D t E W H z t lε−
− = − − =

− −

ɶ
 (4.27) 

Recall (4.12) and substitute in (4.27): 

 ( ){ } { }* * 1
0( ) ( ( ) ( ))q p q c s s s f p q f c cs t t l E W W W Q C D t E W H n t l s t lε−− = − − + −ɶ  (4.28) 

Considering equation from (4.8) to (4.11) and after simple manipulations we 

obtain: 

 ( ){ } { }* * 1
0( ) ( ) ( )q p q c s s s f q f ip nl ps t t l E W W W Q C D t W H F W E f t k lε−− = − + − −ɶ  (4.29) 

Recall (4.21) and substitute in (4.29): 

 ( ){ }* * 1
0( ) ( ) ( )q p q c s s s f q f ip nl fs t t l E W W W Q C D t W H F W Y t k lε ε−− = − + − −ɶ  (4.30) 

Advancing by t+l+k in (4.30) we obtain: 

 ( ){ }* * 1 ( )
0( ) ( ) ( )k l

q p q c s s s f q f ip nl fs t k l t k E W W W Q C D z t W H F W Y tε ε− ++ + + = − +ɶ  (4.31) 

Now introduce the left-coprime polynomial matrices for the weighted signal model 

( 1
q q qW A C−= ): 

 1
cs cs q c sA C C W W− =  (4.32) 

Using (4.32) in (4.31) we can write: 

 
{ } ( )1 1 * * 1 ( )

0( )

( ) ( )

k l

q p q cs cs s s f

q f ip nl f

s t k l t k E A A C Q C D z t

W H F W Y t

ε

ε

− − − ++ + + =

− +

ɶ
 (4.33) 

The equation in (4.33) can be simplified using the Diophantine equation defined in 

(4.24):  

 
( )

( )

* 1 1 1 1
0 0 0

* 1 1 1
0 0 0

( ) ( ) ( ) ( )

( ) ( )

g

q f q cs q q f ip nl f

f q cs q f ip nl f

s t k l t k F D z A A G t A C H F W Y t

F D t g A A G C H F W Y t

ε ε

ε ε

− − − −

− − −

+ + + = + − + =

 + + − + 

ɶ
 (4.34) 

The second group of terms in the square brackets in (4.34) is all dependent upon 

past values of the white noise signals, whereas the first term depends only upon 

future values. It follows that these two groups of terms are statistically independent 

and the expected value of the cross terms is null. 

Also note that the first term of (4.34) is independent of the choice of estimator. It 

follows that the smallest variance is achieved when the remaining terms are set to 

zero.  
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The optimal estimator is obtained by setting this second group of terms to zero for 

any sequence of ( )tε : 

1 1
0 ( ) ( )q cs q f ip nl fA A G C H F W Y tε− − − +   

Assuming the existence of a finite gain stable causal inverse to the nonlinear 

operator, this equation is satisfied if the optimal estimator is defined as:  

1 1 1 1
0 (F )f q cs f ip nlH C A G Y W− − − −= +

 

There may normally be difficulties in guaranteeing the existence of the inverse.  

However, this may be achieved by construction.  That is, we know we can produce 

an inverse of the operator (F )ip nlW+  if it is assumed Fip can be chosen so that inverse 

is stable.
 

This relationship may be simplified by defining the following right coprime 

polynomial matrix as: 

 1 1 1
0q cs fC A G G A− − −=  

So that we obtain the result shown in the previous section: 

1 1 1( ) (F )f f f ip nlH t G A Y W− − −= +
 

See Appendix G for further details about the realization of the inverse operator.  

This can be realized easily through a block structure implemented in Simulink. 

 

4.2.8 Experimental Results 

The robust filter is computed below for a typical application and a simulation is 

used to verify the results.   

Consider a system having linear non-minimum phase channel characteristics as: 

 1 2
( ) 0.3482 0.8704 0.3482t z zW − −= + +  

The model is generally used in channel equalization case studies. The nonlinearity in the 

signal channel is modelled as ( )0tanh ( )( ) f tz t − Λ= , where 0Λ  
is the channel delay. The 

nonlinearity is a function of the signal output of the linear channel dynamics ( )W t , and 

takes into account, saturation effects due to the transmitting amplifier.  

The overall system when implemented with the robust Wiener filter will be as 

shown in Figure 4.5. 

Software implementation details can be found in Appendix F. 
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In Figure 4.4 is shown a comparison between actual and estimated signals using the 

Wiener NMV estimator ([74, 75]) and robust Wiener estimator for the system 

described above without any uncertainty. The results from the estimators are the 

same as we could have expected from the theory, in fact with no uncertain models 

the robust wiener filter correspond to the Wiener NMV filter. When the system plant 

differs from the nominal model, the estimation using the robust estimator is lower in 

term of variance of estimation error than the Wiener NMV filter (see Figure 4.6 for 2 

different case of studies). 

In Figure 4.7 is introduced an uncertainty in the signal and noise model. The robust 

filter variance error for this simulation also happens to be less than the variance error 

for the Wiener NMV estimation. 

Simulations are also carried out for either system plant and signal/noise models 

differing from their nominal models (see Figure 4.8 for 2 different case of studies). 

All the above simulations are summarised in Table 4.1 where a comparison 

between Wiener NMV estimation and robust optimal estimation are carried out for 

two different case of studies which differ 7% and 15% respectively from their 

nominal models. 

The expectation is that the robust estimator has benefits compared to the Wiener 

NMV estimator since it can have less sensitivity to dynamic model uncertainties. 

It is useful to consider the limiting form of the estimator so that it may be related to 

existing filter solutions. In the limiting case as the nonlinear channel dynamics tend 

to the identity and the uncertainty weighting ipF  tends to zero, the estimator becomes 

equivalent to a Wiener deconvolution estimator with uncertain models in the linear 

polynomial matrix equation form 1 1
f f fH G A Y− −= . 
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Table 4.1: Variance of estimation error for Wiener NMV and Robust Wiener estimators 

Variance of Estimation Error 

Deviation from  

Nominal Value 
Uncertainty Type 

Wiener NMV 

Filter 

Robust Wiener 

Filter 

 None 0.0187 0.0187 

CASE 1 

(7%) 

Plant Model  0.0725 0.0314 

Signal & Noise Models  0.0221 0.0202 

Signal, Noise & Plant 0.0777 0.417 

CASE 2 

(15%) 

Plant Model 0.1044 0.0823 

Signal & Noise Models 0.0231 0.0228 

Signal, Noise & Plant 0.1135 0.1034 

 

 

 

Figure 4.4: Comparison between actual and estimated signals using Wiener NMV and 

Robust Wiener estimators without any uncertainty. 



 

 

 

 

 

   

Figure 4.5: System Model Along with Channel Dynamics and Robust Estimator 
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Figure 4.6: Comparison between actual and estimated signals using the Wiener NMV and the 

robust Wiener estimators with plant differing from its model. 

 

Figure 4.7: Comparison between actual and estimated signals using the Wiener NMV and the 

robust Wiener estimator for signal and noise uncertainty.  
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Figure 4.8: Comparison between actual and estimated signals using the Wiener NMV and the 

robust Wiener estimator for either plant and signal/noise uncertainty. 

4.3 H∞ Robust Nonlinear Estimation  

In the following the solution of a H∞ robust nonlinear estimation problems is 

considered.   

The solution presented allows for the presence of a nonlinear communication 

channel between the signal and the measurement. Uncertainties can also be 

represented in a parallel noise or interference signal channel.  The channel includes 

an operator or “black box” subsystem.  It is well known that uncertainties can often 

be bounded in a frequency response way. For a linear system this suggests frequency 

response shaping certain sensitivity functions and this can best be achieved by 

minimizing an H∞ norm. For a nonlinear system the sensitivity functions are replaced 

by sensitivity operators but frequency response shaping of estimator responses still 

has some significance. 

An optimal robust estimation problem is therefore defined, where the H∞ norm of a 

cost index is to be minimized. This includes a frequency response weighting 
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function. There is also design freedom introduced by the way the model for 

uncertainty is included. The resulting estimator is relatively simple to understand and 

to implement. It has potential applications in control systems, fault monitoring, 

communications and signal processing systems.  

4.3.1 Signal Processing System Description 

The signal and noise models are assumed to be time-invariant, asymptotically stable 

and discrete-time and represented in transfer-function or polynomial matrix form.  

The signal to be estimated passes through a transmitting channel which possesses a 

delay kz− , linear dynamics lW  and nonlinear dynamics nlW . The measurements are 

assumed to be corrupted by a noise signal ( )n t . The message signal to be estimated 

is at the output of a linear block: cs W y= . 

For greater generality is introduced a dynamic cost weighting function that 

penalized the signal in particular frequency range: q qs W s=  then is the signal to be 

estimated. The signal processing problem is illustrated in Figure 4.9. An additional 

nonlinear parallel channel with dynamics ipF
 
and delay kz−  is also introduced in our 

nonlinear filtering problem (shown by dotted lines in Figure 4.9). This channel which 

is assumed to have a stable inverse will not exist physically but can be used to 

represent the uncertainties in channel, which provides additional design freedom. In 

Figure 4.9 the white noise signal ε  is assumed to be zero mean. 

4.3.2 System Equations 

In this section is given a mathematical description of the signals shown in Figure 4.9. 

Input Signal: 

 ( ) ( )sy t W tε=  (4.35) 

where ( )tε
 
is white driving noise. 

Disturbance Noise Signal:  

 ( ) ( )nn t W tε=  (4.36) 

 1
0where ( ) ( ) ( )s sW t A t C t−=  (4.37) 

 1
0and ( ) ( ) ( )n nW t A t C t−=  (4.38) 
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Channel input:  

 ( ) ( ) ( )f t y t n t= +  (4.39) 

Nonlinear parallel channel: 

 ( ) ( ) k

c ipF t F t z−=  (4.40) 

Channel Interference:  

 ( ) ( )( )c cn t F tε=  (4.41) 

Linear channel subsystem output: 

 ( )( )0 ( ) k

ls t W z f t−=  (4.42) 

Nonlinear channel input output: 

 ( ) ( ) ( )k

d o os t z s t s t k−= = −  (4.43) 

Nonlinear channel subsystem output: 

 ( )( )( )c nl ds t W s t=  (4.44) 

Observations signal: 

 ( ) ( ) ( )m c cz t n t s t= +  (4.45) 

Message signal to be estimated: 

 ( )( ) ( )c c ss t W y t W W tε= =  (4.46) 

 

Weighted message signal: 

 ( ) ( ) ( ) ( )q q q c q c ss t W s t W W y t W W W tε= = =  (4.47) 

 

4.3.3 Nonlinear Minimum Variance Estimation 

The Nonlinear Minimum Variance estimator must first be considered since its 

solution will provide the results upon which the robust H∞ estimator solution will be 

based.  

The NMV filter involves the minimization of variance of the estimation error: 

 ˆ( ) ( ) ( )s t t l s t s t t l− = − −ɶ  (4.48) 

where ˆ( )s t t l−  denotes the estimate of the signal ( )s t  at time t, given observations 

( )mz t  up to time t l− . The value of l may be positive or negative according to the 

following conditions: 



 

 

 

 

 

 

Figure 4.9: Signal Sources, Noise Sources and Nonlinear Communication Channel Dynamics 
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0l = , for estimation 

0l >  , for prediction 

0l < , for fixed-lag smoothing 

The criterion to judge optimality for the minimum variance estimation problem can 

be expressed as below: 

 { {( ( | )( ( | ) }}T

q qJ trace E W s t t W s t t= − −ɶ ɶℓ ℓ  (4.49) 

where {}E ⋅  denotes the expectation operator and qW  ([78]) denotes a linear strictly 

minimum-phase dynamic cost-function weighting function matrix which is assumed 

to be strictly minimum phase, square and invertible. 

The above equation at the optimum can be written in complex integral form, in fact 

one of the estimator properties is that, at the optimum the system is behaving like a 

linear system:  

 *

1

1

2
q ee q

z

dz

j z
J trace W W

π =

 
= Φ 

 
∫�  (4.50) 

where eeΦ  denotes the power spectrum of the estimation error 

ˆ( ) ( ) ( ) ( )e t s t t l s t s t t l= − = − −ɶ . 

The solution of the nonlinear estimation problem requires the introduction of the 

spectral factorization of the signal f.  The power spectrum for the combined linear 

models can be calculated by using the Parseval’s theorem ([48]): 

 * *( )( )ff s n s nW W W WΦ = + +  (4.51) 

where the notation for the adjoint of sW  implies * 1( ) ( )T

s sW z W z− = , and in this case the z 

denotes the z-domain complex number. The generalized spectral-factor fY  that is required 

may be computed using *
f f ffY Y = Φ , where  

 1 1
0 0f f fY A D D A− −= =  (4.52) 

The system models are assumed such that 0fD
 
is a strictly Schur polynomial 

matrix ([74, 79]) satisfying:  

 * * *
0 0 ( )( )f f s n s nD D C C C C= + +  (4.53) 

The right-coprime polynomial matrix may now be defined as: 

 1
f f c s fC D A W W Y−   =     (4.54) 
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According to NMV filter theory the estimate ˆ( )s t t − ℓ , assuming the existence of a 

finite gain stable causal inverse to the nonlinear operator ( )
ip nl l f

F W WY+ , can be 

generated from a nonlinear estimator of the form: 

 1ˆ( ) ( , ) ( )f ms t t H t z z t−− = −ℓ ℓ  (4.55) 

 1 1 1 1
0where ( , ) ( )f q ip nl l fH t z W G A F W WY− − − −= +  (4.56) 

The proof is given in [41, 74, 80]. 1( , )fH t z−  denotes a minimal realization of the 

optimal nonlinear estimator. The block diagram representation of 1( , )fH t z− will be 

as shown in Figure 4.10.  

The NMV estimator given in (4.56) can be designed from the spectral factor and 

Diophantine equation to minimize the variance of the estimation error given in (4.48)

. The generalized spectral factor 1
0 0f fY A D−= used in this filter can be obtained from 

the equation (4.53) where 1
0fD−  is required to be asymptotically stable. The minimal 

degree solution of 0G  and 0F  can be obtained with the help of the following 

Diophantine equation: 

 0 0
k l

q fF A G z W C− −+ =  (4.57) 

while the minimum value of theoretical variance in this case will be as follows: 

 *
0 01

1

2 z

dz

j z
J trace F F

π =

 
=  

 
∫�  (4.58) 

 

 

Figure 4.10: Block Diagram of the NMV Estimator 
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4.3.4 The H∞ Robust Nonlinear Estimator 

In this section the Nonlinear H∞ (NH∞) cost-function is proposed and minimized. The 

NH∞ filtering problem can be solved by using a NMV embedding procedure. This 

enables most of the attention to be focused on the auxiliary NMV problem which can 

be solved for a cost function with dynamic weighting. The NH∞ cost-function to be 

minimized includes the same type of weighted error and control terms in the NMV 

criterion (4.50) but employs the H∞ norm.  

To relate the two problems let the dynamics weighting function 
qW in equation (4.50) 

be written as: 

 0qW W Wλ=  (4.59) 

The term 0W  is a dynamic weighting function introduced on the estimation error and 

it is selected by the designer to shape the frequency response of the estimation error 

spectrum. The weighting Wλ is necessary to link the NMV and H∞  problems.     

The function 1( )X z−  to be minimized can be defined in terms of the weighted 

estimation error as: 

 *
0 0eeX W WΦ≜  (4.60) 

where eeΦ is a positive definite function. 

Hence the cost-function to be minimized is given as:  

 { }{ } { }{ }1 *
max max 0 0

1 1

sup ( ) sup ee
z z

J X z W Wσ σ−
∞

= =
= = Φ  (4.61) 

A lemma, linking the solution of the NMV and the NH∞  problems, can then be used 

to obtain the desired solution.  

4.3.5 Auxiliary problem and linking lemma 

Lemma: Consider the auxiliary problem of minimizing the variance J of the 

estimation error in the NMV filtering problem for the system introduced in the 

previous section and represented in Figure 4.9:  

 1 1 * 1

1

1

2
( ) ( ) ( )

z

dz

j z
J trace W z X z W zλ λ

π

− − −

=

 
=  

 
∫�  (4.62) 

Suppose that for some real-rational matrix: 
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* 1 1( ) ( ) 0W z W zλ λ
− − ≥  the cost function J  is minimized by a function 

1 * 1( ) ( )X z X z− −= , for which 1 2( ) rX z Iλ− =  (a real constant matrix on 1z = ). Then 

the function 1( )X z−  also minimizes: 

 { }1
max

1

sup ( ( ))
z

J X zσ −
∞

=
=  (4.63) 

Proof:  The proof of the above lemma is derived by contradiction. Assume that there 

exists a function 1 2
0 ( ) T

rX z Iλ− = ΛΛ = which minimizes the cost function J: 

 1 1 * 1
min 01

1

2
( ) ( ) ( )

z

dz

j z
J trace W z X z W zλ λ

π

− − −

=

 
=  

 
∫�  (4.64) 

In the above equation λ  is a scalar and Λ  is a diagonal matrix that at the optimum 

solution for the estimator reduces to rIλ . Then according to the Lemma the function 

1
0 ( )X z−  also minimizes J∞  (the H∞ norm of itself, see (4.63)). 

Let P denote the assertion: 1
0 ( )X z−  minimizes the cost function J∞ . Now assume 

that there exists another function 1
1( )X z−  that also minimizes the cost function J  but 

with a lower H∞  norm. It follows that at the optimum:  

 { } { }1 1 2
1 max 1 0 max 0

1 1

sup ( ( )) sup ( ( ))
z z

J X z J X zσ σ λ− −
∞ ∞

= =
= < = =  (4.65) 

From the above equation: 1 1 2
1 0( ) ( ) rX z X z Iλ− −< =  hence the cost function related 

to 1
1( )X z−  is as below: 

 1 1 * 1
1min 1 0min1

1

2
( ) ( ) ( ){ }

z

dz

j z
J trace W z X z W z Jλ λ

π

− − −

=
= <∫�  (4.66) 

This contradicts the assumption that the function 1
0 ( )X z −  minimizes the cost 

function J.  Then, since the negation of the assertion P implies a contradiction, it 

follows that the assertion P is true. 

 

4.3.6 Solution strategy and weighting 

The problem is now to determine the function Wλ which when substituted into the 

results of the NMV estimation will ensure the conditions of the above lemma are 

satisfied. 
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The function Wλ is calculated using an equalizing solution between the NMV and 

the auxiliary problem cost-functions. This solution corresponds to an equalizing 

solution 1 2( )X z λ− = . The H∞ estimator solution then follows. 

Assume that the scalar λ in the above Wλ must now be found which leads to an 

equalizing solution: 

 1 2( ) 1T

rX z I on zλ− = ΛΛ = =  (4.67) 

From a comparison of the integrand of the auxiliary problem cost-function (4.62) 

and the cost-function for the NMV estimator (4.58) we obtain: 

 * *
0 0

TF F W Wλ λ= ΛΛ  (4.68) 

Let 0sF denote a Schur polynomial matrix which satisfies: 

 * *
0 0 0 0s sF F F F=  (4.69) 

Then the equation (4.67) is satisfied if 0sW FλΛ =  or  

 1
0sW Fλ

−= Λ  (4.70) 

4.3.7 The H∞ Nonlinear Minimum Variance Estimator 

The H∞ estimator, which minimized the criterion (4.61), for the system shown in Figure 4.9, 

can be computed from the solution ( 0 0 0, , ,sG F F λ ) of the following generalized eigenvalue  

problem: 

 1
0 0 0 0

k l

s fF A G z F W C− − −+ = Λ  (4.71) 

The polynomial matrix 0F  has to be of minimal degree and λ  a minimum. To 

obtain (4.71) we start from the expression of the weighted estimation error: 

 ˆ( ) ( ) ( )q q qs t t l s t s t t l− = − −ɶ  (4.72) 

Using equation (4.47) and (4.55): 

 ˆ( ) ( ) ( ) ( ( ) ( ))q q q q c s f ms t t l s t s t t l W W W t H z t lε− = − − = − −ɶ  (4.73) 

Recall (4.59) and consider the expression of Wλ (see (4.70)) which ensures 

satisfaction of the above lemma: 

 
0 0

1 1
0 0 0 0

( ) ( ) ( ))

( ) ( ))

q c s f m

s c s s f m

s t t l W W W W t W W H z t l

F W W W t F W H z t l

λ λε

ε− −

− = − −

= Λ − Λ −

ɶ
 (4.74) 

Define the equation below: 
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 1
f f c s fC D A W W Y−   =     (4.75) 

Substituting (4.75) in (4.74): 

 1 1 1
0 0 0 0( ) ( ) ( ))q s f s f ms t t l F W C A t F W H z t lε− − −− = Λ − Λ −ɶ  (4.76) 

The first term in equation (4.76) can be simplified by using the following 

Diophantine equation: 

 1
0 0 0 0

k l

s fF A G z F W C− − −+ = Λ  (4.77) 

which represents the generalized eigenvalue problem in (4.71). The NH∞ estimator 

can now be found from (4.56), (4.59) and (4.70): 

 

1 1 1 1 1 1 1
0 0 0

1 1 1 1 1 1 1 1
0 0 0 0 0 0

( , ) ( ) ( ) ( )

( ) ( ) ( )

f q ip nl l f ip nl l f

s ip nl l f s ip nl l f

H t z W G A F W W Y W W G A F W W Y

F W G A F W W Y W F G A F W W Y

λ
− − − − − − −

− − − − − − − −

= + = +

= Λ + = Λ +
 (4.78) 

In the above is it assumed the existence of a finite gain stable causal inverse to the 

nonlinear operator ( )
ip nl l f

F W WY+ .  

The block diagram representation of the H∞ version of 1( , )fH t z−  is shown in 

Figure 4.11.  

The minimal cost is: 

 * 2
0 01

1

2
ee

z

dz

j z
J trace W W

π
λ

=

 
= Φ = 

 
∫�  (4.79) 

 

 

 

 

Figure 4.11: Block Diagram of the NH∞ Estimator 
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4.3.8 Design and Experimental Results 

First we illustrate the procedure to solve the generalized eigenvalue problem (4.71). 

For this purpose we use an example which matrices are in parameterized form. Let 

 1 2 1
0 1 2 0 1

1
0 0 1

,

,

k

f

D k l

A a a z a z C c c z

W w w z

− − −

−

= −

= + + = +

= +

 

We are looking for the solution of smallest degree therefore 0deg( ) 2kF D< = . The 

latter implies 1
0 0 1F f f z−= + and hence 1

0 1 0sF f f z−= + . To balance the degrees of the 

first and second member of (4.71) 0G  has to be of order 1: 1
0 0 1G g g z−= +  

We can write 1 2
0 00 01 02fW C c c z c z− −= + + . 

From the above equations follow: 

1 1 2 2 1 1 1 2
0 1 0 1 2 0 1 1 0 00 01 02( )( ) ( ) ( )( ) /f f z a a z a z z g g z f f z c c z c z λ− − − − − − − −+ + + + + = + + +  

Equalizing the coefficients in iz− ( 0,1,2i = ) we can write the above equation in 

matrix form: 

000 0

00 011 0 11

01 022 1 0

022 1

0 0 00 0 0

0 00 0
0

0 01 0

0 0 00 1 0

ca g

c ca a g

c ca a f

ca f

λ−

     
     
     − =                

 

This equation can be written as 1
1 2( ) 0T T xλ −− =  where 1T  is in Toeplitz form, 

which guarantee that its inverse exist and the equation can be written as: 

0( ) 0I T xλ − =  where 1
0 1 2T T T−= . This is a classic eigenvalue/eigenvector problem, 

which can be solved for the eigenvalue of smallest magnitude. The corresponding 

eigenvector is the solution of the Diophantine equation: 0 1 0 1[ ]Tx g g f f=  

where the solution 1
0 0 1F f f z−= +  is non-Schur. 

 

4.3.8.1 Automotive Lambda Sensor Estimation Problem 

An important sensor in an automotive engine fuel control feedback loop is the 

exhaust gas oxygen sensor or lambda sensor. The sensor measures the residual 
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oxygen in the exhaust gas and passes the information to the engine control unit, and 

according to this information the engine control unit regulates the air/fuel ratio in 

order to achieve an optimum performance. There is a significant delay in the 

measurement since the lambda sensor is some distance from the point of interest (see 

Figure 4.12). Two types of lambda or Air/Fuel ratio sensor are used in the 

automotive industry; the Universal Exhaust Gas Oxygen (UEGO) and the Exhaust 

Gas Oxygen (EGO) sensors. The static nonlinear characteristics of the EGO and 

UEGO sensors are shown in Figure 4.13 and Figure 4.14 respectively. 

In Figure 4.15 and Figure 4.16 are shown a comparison between actual and 

estimated signals using NMV and NH∞ , respectively for EGO and UEGO sensors. In 

Table 4.2 the results of the 3 case studies illustrated in Figure 4.15 and Figure 4.16 

are summarized. If system uncertainties are not present (Case study 1) the variance 

of the NMV estimator is, of course, lower than NH∞,  but if the system differs from 

the nominal model as in Case Study 2 and 3, where some uncertainties are introduced 

through the design parallel channel, this is not necessarily the case as can be seen in 

the previous figures and in Table 4.2  

The NH∞ estimator does not of course aim to minimize variances but the visual 

performance often accords with variance so it is a useful measure to assess.   

In Figure 4.18 the results are shown for the same situation where the UEGO sensor 

characteristic is the one shown in Figure 4.17. The NH∞ variance error for this 

simulation also happens to be less than the variance error for NMV estimation (see 

Table 4.3).  The expectation is that NH∞ estimator has benefits compared to the NMV 

estimator since it can have less sensitivity to dynamic model uncertainties. 

Software implementation details can be found in Appendix F. 
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Figure 4.12: Location of Lambda or Oxygen Sensor in Automobile Engine 

Table 4.2: Variance of estimation error for EGO and UEGO sensors for 2 different case 

studies 

Variance of Estimation Error 

  EGO Sensor UEGO Sensor 

CASE STUDY 1 

No Uncertainties 

NMV Estimation 4J =3.0611 10−×  5J =8.4408 10−×  

NH∞ Estimation 
.

4J =4.0198 10−× . 
4J =1.0804 10−×  

CASE STUDY 2 
1

1

1 1.212
=

1 0.7788
ip

z
F

z

−

−

+
−

 

NMV Estimation 4J =4.8506 10−×  4J =1.7093 10−×  

NH∞ Estimation 
4J =4.1080 10−×  4J =1.1303 10−×  

CASE STUDY 3 
1

1

1 1.212
=10

1 0.7788
ip

z
F

z

−

−

+
−

 

NMV Estimation 4J =6.8022 10−×  4J =2.7789 10−×  

NH∞ Estimation 
4J =4.2442 10−×  4J =1.1864 10−×  

 

Table 4.3: Variance of estimation error for NMV and NH∞ estimation for EGO sensor 

Variance of Estimation Error EGO Sensor 

NMV Estimation 4J =5.5445 10−×  

NH∞ Estimation 4J =4.1413 10−×  
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Figure 4.13: EGO Lambda Sensor Nonlinear Behaviour 

 

 

Figure 4.14: UEGO Lambda Sensor Nonlinear Behaviour 



 

Robust Nonlinear Estimation 73 

 

 

Figure 4.15: Comparison between actual and estimated signals using NMV and NH∞ for EGO 

sensor 
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Figure 4.16: Comparison between actual and estimated signals using NMV and NH∞ for 

UEGO sensor 
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Figure 4.17: EGO Sensor Characteristic in practice may differ from its mathematical model 

 

Figure 4.18: Comparison between actual and estimated signals using NMV and NH∞ for EGO 

sensor which characteristic is shown in Figure 4.17 
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4.4 Conclusions 

In this chapter, the theory, design and the implementation of two robust polynomial 

based estimators have been investigated. The robust filtering problems introduced are 

particularly appropriate for nonlinear uncertain systems. The system, for both cases, 

presents a channel sub-system nlW  represented by a nonlinear operator, which is a 

very general approach. Possible nonlinear channel dynamics uncertainties are 

represented in a parallel channel that also introduces design freedom. 

For the robust Wiener optimal estimator the uncertainty in signal, noise and plant are 

represented by a probabilistic system description and the variances are assumed to be 

given. In the limiting case when the dynamics are linear, the estimator has the form 

of a Wiener filter in polynomial system description form. 

The H∞ filtering problems solution is based on the so-called NMV embedding 

procedure, where an auxiliary minimum variance filtering problem is solved for a 

cost function with dynamic weighting and a linking lemma is introduced. The 

dynamic weighting is chosen to relate the two problems, that is, when it is substituted 

into the results of the auxiliary NMV estimation will ensure the conditions of the 

linking lemma which in turn guarantees the minimization of an H∞ norm. This H∞ 

norm minimization provides different opportunities for tailoring the response of the 

estimator to uncertainties that can only be frequency response bounded.  It may 

therefore have potential in applications.  

The advantage of the above robust estimation solutions is the relative simplicity of 

the theoretical approach and ease of implementation. 
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Chapter 5 

A Nonlinear System Identification Approach to 

Condition Monitoring of AGR Nuclear Cores  

A nonlinear first principles model is initially developed to describe 

the refuelling process. Secondly, the friction effects are 

mathematically investigated and comparatively evaluated under the 

static friction model, LuGre friction model, and Dahl friction model, 

respectively. Finally, a nonlinear system identification method, the 

trust-region reflective Newton, is used to find the optimal parameters 

in the nonlinear refuelling model.  

5.1  System Identification Overview 

In control engineering applications a description of the dynamic behaviour of the 

system is necessary for synthesis or analysis studies. However most of the work of 

the research community has focused on linear identification that presents elegant 

solution ([81, 82]), the real-life systems always present nonlinear dynamic behaviour 

and a linear model can only describe such a system for a small range of input and 

output values. Therefore, a considerable interest in identification methods for 

nonlinear systems has risen over the last twenty years. Nonlinear dynamic models 

can be built using solely the laws of physics, in a so-called first principles model or 

white model. However, due to the complex nature of many systems and processes, 

such models are difficult to develop and usually require detailed understanding of 

physical processes. 

Another method to derive a model for a process is using the system identification 

technique. In this approach dynamic models are built directly from measured data 

and this usually leads to compact accurate models.  
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An important task in system identification is the choice of the model that will 

represent the system examined; this decision is based on knowledge of the system 

and properties of the model. Attention has been focused on black-box methods such 

as neural networks ([83]). The models identified from the black-box approach have 

some drawbacks, in fact they cannot be extrapolated in general, it is difficult to 

interpret the black-box models and their parameters do not have direct physical 

interpretations. Therefore, other model structures have received considerable 

attention over the years.  

The most noteworthy models are control-affine models ([84]), Volterra models 

([85]), Hammerstein models ([86]), Wiener models ([87]), nonlinear autoregressive 

moving average models with exogenous inputs (NARMAX), nonlinear autore-

gressive models with exogenous inputs (NARX), and nonlinear additive 

autoregressive models with ex-ogenous inputs (NAARX). 

Another important class of system identification is the grey-box approach ([88, 89]) 

where the model structure of the system is derived from the first principles and the 

system identification is used to estimate the unknown parts or parameters of the 

model. A grey-box model utilises the measured data for the system identification part 

and a priori knowledge of physical laws of the process to create a model structure 

that has an interpretable representation compared to the artificial structure of the 

black-box. Hence this approach, which is in between the first principles and the 

black-box, is used in this work as it should offer advantages over those methods. 

 

5.2 Refuelling Process 

Within an AGR nuclear power plant each reactor has hundreds of channels that 

house over 300 fuel assemblies and control rods (see Figure 5.1 and Figure 5.2). The 

fuel assembly needs to be removed when its irradiation level becomes less than a 

predefined threshold. The refuelling is the process by which the original fuel 

assembly is first removed and then a new fuel assembly is inserted to the same fuel 

channel by a refuelling machine (see Figure 5.3 and Figure 5.4). Over a period of 

about 5 to 7 years, every fuel channel in the AGR reactor is refuelled. In Figure 5.5 

we can see a cross view of a graphite moderator brick with fuel element. 
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The refuelling process consists of a charge (insertion) operation and a discharge 

(vacation) operation. In the charge stage, the fuel assembly is lowered by a charge 

machine into a fuel channel, as opposed to the discharge stage when the exhausted or 

part exhausted fuel assembly is removed from the channel by the hoist machine. 

The aim of this chapter is to establish the refuelling model by working from first 

principles in the AGR refuelling process and identifying the model parameters using 

the FGLT data ([90]). The range of interest is the core region of approximately 300 

channels, each of which comprises 12 graphite brick layers. The depth of the graphite 

stack is approximately 11m. On top of the brick stacks each channel presents 

tundishes, guide tubes and standpipes. During the refuelling process, the fuel 

assembly has to travel through all of these components to achieve full set down at 

approximately 30m at the bottom of the channel. It should be noted that reactor 

dimensions and attributes vary depending on which power station is being discussed. 

During the refuelling process, each time the fuel assembly is inserted or removed, 

two load cells directly measure and record the grab load. The height of the fuel 

assembly in the brick stack is also recorded.  

To drive the fuel assembly through the channel and prevent any contact between 

the channel wall and the assembly, the latter is equipped with two sets of stabilizing 

brushes (see Figure 5.6). Their interaction with the channel wall generates a 

frictional force whose magnitude contributes to the load value. Any variation in the 

wall geometry results in a corresponding change in the frictional force, and therefore 

in the FGLT data. An analysis of the refuelling data can provide information about 

the channel shape and thus it can be used for channel condition monitoring.  

The value of the measured load is usually affected by a number of factors, such as 

the weight of the fuel assembly, friction forces, and the upthrust of the gas 

(aerodynamic forces) circulating through the core and wall geometry. All these 

components are considered to develop a nonlinear system model,  using a grey model 

based approach, for the refuelling process which will be used to estimate the friction 

forces. 

In Figure 5.7 a schematic drawing of the simplified nuclear refuelling machine is 

given. From this figure the nonlinear first principle model is derived in the following 

sections. 
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In this work, the refuelling model is used in a model-based filtering application, 

however, it can also be used to simulate the whole refuelling system in which a 

controller, such as a PID controller is also included. Figure 5.8 illustrates such an 

application for the developed nonlinear first principles models, in which a speed 

feedback closed-loop control is employed. It should also be noted that in the figure 

the symbol “s” is used as a derivative operator for the purpose of simplifying the 

representation. 

 

Figure 5.1: Partially complete AGR Graphite Core (Source: [91]) 

 

Figure 5.2: AGR System of Radial Keys and Keyways (Source: [91]) 
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Figure 5.3: AGR core and fuelling assembly (Source: [92]) 

 

Figure 5.4: Dungeness B Refuelling Machine (Source: [92]) 
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Figure 5.5: Graphite Moderator Brick with Fuel Element (Source: [93]) 

 

 

Figure 5.6: AGR Fuel assembly elements and Brick Keying Arrangement 

 

5.2.1 Fuel Assembly Dynamics 

The most significant elements that contribute to the value of the net load are the 

following: 

Stabilizing 
Brushes 
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• the weight of the fuel assembly; 

• frictional force generated by the interaction between the stabilizing brushes of 

the fuel assembly and the channel wall; 

• up-thrust effect of the gas circulating through the core. 

The weight of the fuel assembly depends on its mass, which is known in the charge 

process and unknown during the discharge, but can be determined once the fuel 

assembly is extracted from the channel. 

The magnitude of the frictional force is directly linked with the wall geometry, 

because it is created by the interaction between the fuel assembly stabilizing brushes 

and the channel wall. That means that any possible distortion in the channel will 

affect the frictional force. The sign of the frictional force changes depend on the 

operation performed, but always in opposite direction of the fuel assembly. Thus, 

during the reactor discharge operation, the frictional force opposes the extraction of 

the fuel assembly from the channel resulting in an apparent load raise. The opposite 

is true obviously for the fuel charging, when the frictional force support the weight of 

the channel. 

The gas circulating in the core generates a buoyancy force that makes the fuel 

assembly weight appear lighter.  

All the above forces act simultaneously during the refuelling process and therefore 

all affect the dynamical behaviour of the fuel assembly, as apparent when Newton’s 

Law is applied to the fuel assembly motion: 

 1
[ sgn( ) ]f av mg F v

v

F
m

h

F= − + −

=

ɺ

ɺ

 (5.1) 

where sgn( )v  denotes the discharge (“+”) and charge (“−”) stage, h, v, and m 

denote the height, velocity, and mass of the fuelling assembly, respectively, F

represents the grab load force, fF  and aF  denote  the frictional and aerodynamic 

force, respectively.  

 

5.2.2 Aerodynamic model 

The net between the upthrust and the downthrust is the main aerodynamic force 

experienced by the fuel assembly. Because the downthrust is much smaller than the 
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upthrust during the normal operation of AGR power plant, the upthrust is therefore 

considered as the main aerodynamic force in this work ([94]).  

M
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Figure 5.7:  Schematic drawing of the simplified nuclear refuelling process 

The aerodynamic force in this study is modelled by ([94]): 

 21
[ sgn( ) ]

2
a dF C A U v vρ= +  (5.2) 

where,

: mass density of the coolant gas;

U : speed of the coolant gas;

: crossing sectional area;

: drag coefficient.

       

      

    

  D

A

C

ρ

 

If all the parameters ρ , 
dC , and A  are unknown and need to be identified, then it 

is unlikely to estimate them separately by only using the input-output data set. 
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However, for the purpose of the condition monitoring we can treat the term / 2dC Aρ   

as a new parameter, i.e., generalised aerodynamic coefficient ψ , 

 
1

2
dC Aψ ρ=  (5.3) 

 

5.2.3 Friction modelling 

In order to reliably derive the estimates of the core cracking conditions from the 

FGLTs it is critical to understand how the friction force between the fuel assembly's 

guide brushes and the fuel channel walls can be mathematically modelled and 

analysed. 

Currently there have been many friction models available in different engineering 

domain to deal with diverse application problems. In this work, we will investigate 

the three popular friction models, i.e., static friction model, LuGre friction model, 

and Dahl friction model to examine if they can describe the friction phenomenon in 

the nuclear refuelling process. Toward this end, a comparative study will be carried 

out against real plant data sets. 

 

5.2.3.1 Static Friction Model 

The general friction model for describing the average behaviour of the bristle 

deflection between two contacting surfaces has the following form: 

 0 1 2f

dz
F z v

dt
σ σ σ= + +  (5.4) 

where fF is the friction force, z is the average deflection of the bristles, v is the 

relative velocity between the two surfaces; 0σ  is the stiffness, 1σ is the damping 

coefficient, and 2σ  is  the viscous coefficient.  

The static friction model describes how the friction force depends only on the 

velocity in the sliding regime. It is given by   

 2 ( )( ( ) )s

v

V

f c s cF v sign v F F F e

δ

σ
−

= + + −  (5.5) 

where 
s

F  is the static force, 
c

F  represents the Coulomb force, 
s

V  is the Stribeck 

velocity, and δ is a shape factor. The first term in (5.5) gives the viscous friction 

force, whereas the second term models the Stribeck effect. 
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5.2.3.2 Dahl Friction Model 

The Dahl model was a first attempt by Dahl ([95]) to describe the friction behaviour 

in the presliding regime. It is given by 

 0 1 ( ) (1 ( ))f f f

c c

dF F F
v sign v sign sign v

dt F F

κ

σ= − −  (5.6) 

where κ  is a shape factor. In the Dahl model, the Stribeck effect is not considered. 

It also exhibits a hysteretic behaviour with nonlocal memory. 

A Dahl friction model is relatively simple to identify as it is only determined by 

three parameters, i.e., the stiffness 0σ , the Coulomb friction 
cF , and the shape factor 

κ . 

 

5.2.3.3 LuGre Friction Model 

In 1995, Canudas de Wit ([96]) proposed a new dynamic friction model, i.e., the 

LuGre friction model.  It is given as follows: 

 

0

0 1 2

( )

( ) ( )

,

s

v

V

c s c

f

vdz
v z

dt s v

s v F F F e

dz
F z v

dt

δ

σ

σ σ σ

−

= −

= + −

= + +

 (5.7) 

The LuGre friction model is able to describe both the presliding and sliding regime. 

Therefore, it is popular in many areas such as control engineering, mechanical 

application, and robotics. The internal state variable z  is used to represent the 

average deflection of the bristles. The first-order nonlinear part in (5.7) describes the 

friction lag in sliding regime. 

Unlike the static and Dahl friction model, there are seven parameters in the LuGre 

friction model. Therefore, it often raises more challenging issues in identifying these 

parameters in practice due to its hysteresis-like behaviour in presliding and varying 

breakaway force. Since the LuGre friction model cannot be transformed into a linear 

form of its unknown parameters, the traditional linear system identification methods 

cannot be applied.  
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5.2.4 Hoist Dynamics 

From Figure 5.7 we can derive the following differential equations for the hoist 

machine (for further details see [94]): 

 

0
0 0 0 1 0

dv
m m v F m g

dt
= = −ɺ

 (5.8) 

 1
1 0

dL
L v

dt
= = −ɺ  (5.9) 

 1
1 1 1 1 0( )p p

dF
L L F R EA F EA v

dt
ω= = − −ɺ  (5.10) 

 
dh

h v
dt
= =ɺ  (5.11) 

 1( ) ( )p p

dF
h hF R EA F EA F v

dt
ω= = − + −ɺ  (5.12) 

0

0

1

1

where,

: equivalent counterweight and tensioning mass (ECTM);

: velocity of the ECTM;

: tension of the left hoist rope;

: length of the left hoist rope;

: radius of the drive shave;

: angular

     

     

       

       

      

   

m

v

F

L

R

ω velocity of the drive shave;

E, A : tension coefficient and crossing area of the hoist rope.

: tension of the right hoist rope;

: velocity of the grab;

: height position of the grab.

     

          

      

      

     

p

F

v

h  

 

5.2.5 Motor Dynamics 

From Figure 5.7 we can write the following differential equations for the motor 

dynamics: 

 1
m

m m a

n TJ d J
F F B R

R dt R R

T k I

ω
ω ω

⋅
= = − + −

=

ɺ
 (5.13) 

where, 

n: ratio of motor gear-box; 

J: inertia of the motor 

Tm: torque exerted by the motor; 



 

88 
A Nonlinear System Identification Approach to  

Condition Monitoring of AGR Nuclear Cores 

 

B: viscous friction coefficient of the motor shaft system; 

km: motor torque coefficient. 

From (5.13), a linear transfer function can be derived as follows: 

1

( )

( ) [ ( ) ( )] 1
m

m m

Ks

n T s F s F s R s

ω
τ

=
⋅ + − +

 

In which, 1 /mK B= is the mechanical gain and 2/m J BRτ = is the mechanical time 

constant. 

 a a a
a a

a a a

dI R k v
I I

dt L L L

ω ω= = − − +ɺ  (5.14) 

where,

: current of the motor amature;

: voltage of the motor amature;

: inductance of the motor electric circuit;

: resistance of the motor electric circuit.

       

     

       

       

a

a

a

a

I

v

L

R

 

Since (5.14)  is linear, the following transfer function can be obtained as well: 

( )

( ) ( ) 1
a a

a a

I s K

v s e s sτ
=

− +
 

in which, ( ) ( )me s k sω=  , 
aK is the rotor gain, /a a aL Rτ = is the rotor time constant. 

 

5.3 Nonlinear  system  identification 

Since there are a number of unknown parameters in the nonlinear dynamic model 

developed for the refuelling process, it is paramount to identify these parameters 

from noisy input/output data to implement the nonlinear first principles model in the 

condition monitoring of nuclear graphite cores. 

The nonlinear system can be described by the following continuous-time SISO 

(single-input single output) form: 

 
u

y h u

=

=

x f(x, ,p)

(x, ,p)

ɺ
 (5.15) 

where x  is the state vector, y and u  are the scalar output and input, respectively; 

( )⋅f  is a nonlinear vector field, ( )h ⋅  a nonlinear scalar function; p  is a parameter 

vector with a appropriate dimension.  
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In this study, the nonlinear system identification is directly performed in 

continuous-time domain because it can allow us to have a better understanding of the 

physical behaviour of the nuclear refuelling system under consideration. The models 

of the nuclear refuelling system are derived from the first principles, therefore they 

are inherently continuous in time. Moreover, the parameters in the continuous-time 

models are strongly linked with the physical properties of the nuclear refuelling 

system. However, the main difficulty in dealing with the continuous-time system 

with conventional methods is the presence of the derivative operators associated with 

the noisy input and output data ([97, 98]). To avoid this difficulty in the nonlinear 

system identification of the continuous-time nuclear refuelling models, a simulation-

based optimization method is adopted in this study. The optimization method will be 

detailed in the next section. 

The complete system for the refuelling process is very complex. If the entire 

system is considered, the number of unknown parameters is very large. This would 

be a very challenging task for the nonlinear system identification, i.e. large-scale 

identification problem. Therefore, a system decomposition strategy is adopted in this 

study. The key idea here is to decompose the whole system into smaller sub-systems 

and for each sub-system the aim is to use an efficient nonlinear system identification 

method, given an input-output measurement data trend, to tune its parameters such 

that the output data trend can be reproduced by the model under the input data traces. 

 

5.3.1 Trust-Region Reflective Newton method 

The nonlinear system identification problem can be solved by finding the solution to 

the nonlinear constrained optimization with the following form: 

 
min ( )

. . , 1, 2, ,      

nR

i i i

f

s t l x u i n

∈

≤ ≤ =
x

x

⋯
 (5.16) 

where ( )f x is a real scalar function to be minimized,  il  and 
iu  are the lower and 

upper boundedness for the optimization variable 
ix , respectively.  
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Figure 5.8: Speed feedback closed-loop control block diagram 

To solve the above optimization problem, the classic methods are the line search 

algorithms. The descent direction can be found by solving a sub-problem which 

approximates the original optimization problem near the current iteration. Therefore, 

the major drawback for the line search methods is that they cannot guarantee a 

descent direction can be always found.  

In this work the trust-region method is used to solve the nonlinear optimization 

problem (see Appendix D for theory details). 
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5.3.2 Numerical experiments 

In this section, a case study for the fuel assembly subsystem is performed (see Figure 

5.9). In Appendix F the software implemented for this case study is presented.  

The objective is to have a comparative study for the three different friction models, 

i.e., static friction model, LuGre friction model, and Dahl friction model. The 

aerodynamic force will be also fully considered in the case study. In all the numerical 

experiments, the cost function to be minimised is defined as the sum of squares of 

errors between the measured and simulated outputs. Because the fuel assembly 

subsystem is considered in this case study, the input and output are the FGLT and 

height, respectively, which can be measured and collected for each fuel channel 

during the routine refuelling activities.  

The FGLT and height data used in this case study are chosen from one channel in 

an AGR nuclear power station, as given in Figure 5.10. If the parameters in the 

developed models are not correctly estimated, none of these models are able to 

properly describe the true output (height measurements) under the true, noisy input 

(FGLT data traces). Therefore, the key issue in applying the developed first 

principles model to the condition monitoring of AGR graphite cores is to correctly 

estimate these model parameters by taking advantage of proper nonlinear system 

identification method.  

For each friction model, three numerical experiments are carried out in this study. 

Among the three numerical experiments, the first and third are used for nonlinear 

system identification purpose, the second experiment is for validating the nonlinear 

model with identified parameters. 

The experiments are carried out in Matlab using a nonlinear grey-box model 

estimator. The first step in the system identification process is specifying the 

nonlinear grey-box model structure, then a idnlgrey object (the grey-box model) is 

constructed, finally using the function pem which implement a trust-region approach, 

the nonlinear parameters are estimated. 
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Figure 5.9: Refuelling subsystem 

 

5.3.2.1 Static Friction Model 

When the static friction model is used with the fuel assembly dynamics and 

aerodynamic force model, there are in total seven parameters in the subsystem, i.e., 

the mass of the fuel assembly m, the viscous coefficient 2σ , the Coulomb force cF , 

the static force sF , the shape factor δ , the aerodynamic coefficient ψ , and  the gas 

velocity U. In many literatures, the shape factor is chosen as 2. Therefore, in all the 

experiments performed, the shape factor was simply fixed to be 2 in this case study. 

This can also speed up the process of nonlinear system identification and reduce the 

complexity of the optimisation problem. So there are six parameters to be identified. 

As the static friction model is used, there are two state variables, i.e., the height h 

and the velocity v of the fuel assembly. During the refuelling, the velocity v of the 

fuelling assembly is strictly constrained to be about 0.01 m/s when it is in the 

graphite core region. Therefore, the constrained state is one of the challenging issue 

when the nonlinear system identification approach is used in the condition 
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monitoring of AGR nuclear graphite cores. In all our experiments, the velocity v of 

the fuel assembly is constrained to the range [0.0085, 0.0115] m/s. For the height 

state variable, its range is [0, 50] m. In comparison with the velocity, the constraint to 

the height is much relaxed. 

 

Figure 5.10: FGLT and Height data set for numerical experiments 
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Figure 5.11 shows the evolutions of cost function in the system identification with 

the static friction model.  It can be seen that the cost function converged very fast. 

Within a few iterations, it became less than 0.001. This demonstrated that the static 

friction model can be used to quickly obtain the estimations of the system parameters 

if the dynamics is not significant in the system under consideration.

 

Figure 5.11: The cost function in the system identification with

 

In Table 5.1 are given a

Figure 5.12, the measured and simulated outputs are compared for both the training 

and validating input-output data sets.
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Table 5.1: System parameters under the static fric

Parameter 

Mass 

Viscous coefficient 

Coulomb force 

Static force 

Stribeck velocity 

Shape factor 

Aerodynamic coeff 

Gas velocity 

A Nonlinear System Identification Approach to  

Condition Monitoring of AGR Nuclear Cores 

: System parameters under the static friction model 

Symbol Unit Value Range

m  kg 2857.06 [2800, 2900]

2σ  N.s/m 10008.6 [0, ∞]

cF  N 10.0247 [0, ∞]

sF  N 14.6449 [0, ∞]

sV  m/s 
0.00097742

8 
[0, ∞]

δ  N/A 2 Fixed

ψ  N.s2/m2 10.5355 [0, ∞]

U  m/s 10.6398 [0, ∞]
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Range Note 

[2800, 2900] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

Fixed Fixed 

∞] Identified 

∞] Identified 
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Figure 5.
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5.3.2.2 Dahl Friction Model 

The Dahl friction model has only a few parameters to be identified and this is an 

advantage over other friction models. After plugging the Dahl friction model in the 

fuel assembly subsystem, there are in total 5 parameters meaning there are less to be 

identified than in the static friction model case, although the Dahl friction model has 

more state variables. All the constraints to the state variables are similar to the static 

friction model case; in particular, the velocity v  of the fuelling assembly is 

constrained to the range [0.0085, 0.0115] m/s. Therefore, the challenge raised in the 

static model by the state constraints remains unchanged in the Dahl friction model 

case. 

The cost function in the system identification with the Dahl friction model are 

depicted in Figure 5.13.  After 8 iterations, the cost function was assuming a steady 

value of about 0.01 which is far from the optimisation target 0.001. However, the 

cost could not be further decreased even the iteration number increased up to 50.  

The system parameters obtained through the nonlinear system identification 

approach are listed in Table 5.2. In Figure 5.14, the measured and simulated outputs 

are compared for all the three numerical experiments. Obviously, the performance of 

the subsystem with the Dahl friction model is much worse in this case study. 

 

 

Figure 5.13: The cost function in the system identification with Dahl friction model. 
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Figure 5.14
 

Table 5.2: System parameters under Dahl friction model

Parameter 

Mass 

Stiffness coefficient 

Static force 

Aerodynamic 
coefficient 

Gas velocity 

5.3.2.3 LuGre Friction Model

Like the Dahl friction model, the LuGre friction model is also designed to describe 

the dynamic behaviour of friction phenomena. There are seven parameters in the 

LuGre friction model, i.e., the stiffness coefficien

the viscous coefficient

A Nonlinear System Identification Approach to  

Condition Monitoring of AGR Nuclear Cores 

14: Numerical experiments for the Dahal friction model.

System parameters under Dahl friction model 

Symbol Unit Value Range

m  kg 2853 [2800, 2900]

0σ  N/m 658.978 [0, ∞]

sF  N 9.2472 [0, ∞]

ψ  N.s2/m2 5.27225 [0, ∞]

U  m/s 15.4674 [0, ∞]

 

LuGre Friction Model 

Like the Dahl friction model, the LuGre friction model is also designed to describe 

the dynamic behaviour of friction phenomena. There are seven parameters in the 

LuGre friction model, i.e., the stiffness coefficient 0σ , the damping coefficient

the viscous coefficient 2σ , the Coulomb force cF , the static force
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l friction model. 

Range Note 

[2800, 2900] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

Like the Dahl friction model, the LuGre friction model is also designed to describe 

the dynamic behaviour of friction phenomena. There are seven parameters in the 

, the damping coefficient 1σ , 

, the static force sF , the Stribeck 
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velocity sV , the shape factor κ . From the aerodynamic force model, there are 

another two parameters to be identified, i.e., aerodynamic coefficient ψ  and gas 

velocity U . In addition, the mass of the fuel assembly m  also needs to be identified.  

If the shape factor is fixed, there are 9 parameters to be identified by using the 

proposed nonlinear system identification approach. 

Figure 5.15 shows the evolutions of cost function in the system identification with 

the LuGre friction model. Although the number of parameters to be identified was 

increase to 9 in comparison with both the static and the Dahl friction models, the 

convergence of the optimisation process with the LuGre friction model is much 

faster. From the figure, the cost can be quickly reduced to 0.0001 with less than 6 

iterations.  

Table 5.3 gives all the obtained parameters of the fuel assembly subsystem with the 

LuGre friction model and the aerodynamic model. For all the three numerical 

experiments, the measured and simulated outputs are compared in Figure 5.16 over 

the whole input-output data sets.  

 

 

Figure 5.15: The evolutions of cost function in the system identification with the LuGre 

friction model.  

 

 

0 2 4 6 8 10 12
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Iteration

C
o

s
t

System Identification with LuGre Friction Model



 

A Nonlinear System Identification Approach to 

Conditi

 

Table 5.3: System parameters under L

Parameter 

Mass 

Stiffness coefficient 

Damping coefficient 

Viscous coefficient 

Coulomb force 

Static force 

Stribeck velocity 

Shape factor 

Aerodynamic coeff 

Gas velocity 
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System parameters under LuGre friction model 

Symbol Unit Value Range

m  kg 2859.92 [2800, 2900]

0σ  N/m 18.8273 [0, ∞]

1σ  N.s/m 2.012 [0, ∞]

2σ  N.s/m 22007.9 [0, ∞]

cF  N 14.1654 [0, ∞]

sF  N 15.0422 [0, ∞]

sV  m/s 0.00100161 [0, ∞]

κ  N/A 2 Fixed

ψ  N.s2/m2 10.3139 [0, ∞]

U  m/s 10.3385 [0, ∞]
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Range Note 

[2800, 2900] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

∞] Identified 

Fixed Fixed 

∞] Identified 

∞] Identified 
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Figure 5.16
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Numerical experiments for the LuGre friction model. 
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5.3.2.4 Performance Comparison 

In this section the performance of each model is investigated by comparing the true 

outputs with its simulated outputs under both modelling and validating input-output 

data sets. If the absolute error between the measured output and the simulated output 

is less than the specified tolerance, then the modelling accuracy is satisfied at that 

point. The total modelling accuracy is defined as the percentage (%) of the total 

satisfaction points against all points.   

To compare the performance, the modelling accuracy under the different friction 

models is given in Table 5.4.  From the table, it can be seen that in this case study the 

LuGre friction model outperformed both the static and Dahl friction models. In the 

given input-output data sets as shown in Figure 5.10, the velocity of the fuel 

assembly seems nearly constant, however, it still exhibits some dynamics. Because 

the LuGre friction model is able to capture this weak dynamics in the nonlinear 

system, its performance is slightly better than the static friction model. 

 

Table 5.4: Modelling  Accuracy under Different Friction Models 

Friction Model Experiment 1 Experiment  2 Experiment 3 

Dahl 15% 11.59% 6.447% 

Static 87.8% 88.17% 87.87% 

LuGre 90.78% 91.62% 91.35% 

 

    One of the interesting observations is that although the Dahl friction model was 

also intended to consider the system dynamic problem, its performance is much 

worse than the LuGre friction model in this case study. The reason was that the Dahl 

friction model was mainly designed to describe the presliding behaviours of 

frictional phenomena.  However, all the training and validating input-output data sets 

were given from the sliding (moving) regime.  In addition, the Dahl model does not 

take the Stribeck effect into account, so it cannot describe the stick-sly motion in the 

process and this may affect its performance.  
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5.4 Conclusions 

A simplified model for the refuelling system is obtained and mathematically 

implemented from the first principles of the process. Then its fuel assembly 

dynamics subsystem is identified to be used in a model based filtering application.  

The identification process consists in the unknown model parameters estimation 

that leads to a nonlinear optimization problem which is solved using the trust-region 

method. 

The identification process is carried out in Matlab using a nonlinear grey-box 

model estimator for 3 different data sets. The grey-box structure varies depending on 

which friction model is considered between the static friction model, the Dahl model 

and the LuGre model. The latter seems to have a better accuracy compared to the 

other two models likely because in its nature take into account the dynamic of the 

system and the stick-slip motion. 
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Chapter 6 

H∞ Friction Estimation for Condition 

Monitoring of AGR Nuclear Graphite Cores 

In this chapter a model-based technique for condition monitoring of 

an AGR core is introduced. First a state-dependent model and 

nonlinear operator based approach to estimation and filtering is 

applied to estimate the friction component of the FGLT data 

resulting from the interaction of the fuel assembly and the core 

channel. Then the friction force is estimated by using a H∞ robust 

estimator to deal with model uncertainties. 

6.1 Friction Estimation by using a State-Dependent NMV Filter 

In the previous chapter a nonlinear model for the refuelling operation was 

implemented starting from the forces acting in the process to form the fuel assembly 

motion's law then both aerodynamics and friction forces were further investigated in 

order to have a full physical description that represents the model structure. Finally 

the model parameters were identified by a trust-region method.  

In this section a first attempt to estimate the friction component of the FGLT data is 

done by using a state-dependent based estimator which is a particular form of the 

LPV estimator developed in chapter 3. 

The friction force in the model is not modelled, it is considered as a lump force 

term instead and this leads to a state-dependent model and state-dependent estimation 

problem. This choice was undertaken to simplify the parameters identification 

process which may introduce model uncertainties. It is worth highlighting how in a 

second instance a robust estimator was used to estimate the friction force to cope 

with likely model mismatch. 

Recall the main contributors to the load recorded during the refuelling process: 

a) the weight of the fuel assembly; 
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b) frictional force generated by the interaction between the stabilizing 

brushes of the fuel assembly and the channel wall; 

c) up-thrust effect of the gas circulating through the core. 

Hence we consider the Newton’s Law applied to the fuel assembly motion to 

obtain the general dynamics of the refuelling process:   

 1
[ sgn( ) ]f av mg F v

v

F
m

h

F= − + −

=

ɺ

ɺ

 (6.1) 

The aerodynamic force is modelled by the following (recall equ. (5.2)) 

 
2[ sgn( ) ]aF U v vψ= +  (6.2) 

where 1
2 dC Aψ ρ= , ρ  and U are the mass density and speed of the coolant gas, 

respectively, A  is the cross-sectional area, 
dC is the drag coefficient.

 

Thus the overall system is how shown in Figure. 6.1. 

. 

−

1
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1

s

1

s

mg
hv

−

21
[ sgn( ) ]

2
dC A U v vρ +
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aF

+

f
F

sgn( )v

F

+

Nonlinear Aerodynamic Model aF

 

Figure. 6.1:   Refuelling process model 

 

6.1.1 State-Dependent System Model 

In order to formulate the problem in a state-dependent model, let equation (6.1) be 

expressed by the following fault-corrupted state-dependent system: 

 
[ ]1 2( ) ( ) ( ) ( ) ( )

( ) ( )

T
t x x t u t v t

y t t

= = + + +

=

x A x x B L K

Cx

ɺ ɺ ɺ
 (6.3) 

 
where the two states x1 and x2 are height and speed respectively, u(t) is the FGLT 

data, v(t) is the unknown friction force, K is an additive matrix term and y(t) is the 

measured fuel assembly height. 
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The following matrices are derived by plugging equation (6.2)  into equation (6.1) 

and rearranging in state space form. Note that the matrix A depends on the state 2x . 

 

  

( )

[ ]

2

2

0 1 0 0

, , ,2 1 1
0 2

0

, 1 0 .2

u

u

A B Lk
k x

m mm

K Ck k
g

m

ψ

ψ

     
     = = =
     − −− +
      

 
 = = −
  

 (6.4) 

 

 

6.1.2 State-Dependent NMV Filter for Friction Force Estimation 

In chapter 3 an LPV model based estimator was developed, however, in the following 

the solution of a state-dependent model and nonlinear operator based filter is used to 

estimate the friction force component of the measured FGLT data.  

LPV and state-dependent models appear similar but they are fundamentally 

different in that a state-dependent model can represent a non-linear system whereas 

an LPV model is a special type of linear time varying system. However, if we 

consider the particular form of matrix system ( ( ), ( ), ( ))x t u t p tA  we can extend the 

LPV solution to the state-dependent based model as highlight in the conclusion of 

chapter 3. 

The refuelling system, as described in the previous section, can be expressed by a 

fault-corrupted state-dependent model (see equation (6.3)), where its term v(t) is the 

unknown input, the friction force, we want to isolate from all the forces involved in 

the process. 

In the numerical experiments the input of the fuel assembly subsystem are the 

FGLT data and the friction force to be estimated and the output is the height. The 

FGLT and height data used in this case study, which are measured and collected for 

each fuel channel during the routine refuelling activities, are chosen from 5 channels 

in the same AGR nuclear power station. Two channels are used in this section to 

present the results of the estimation (see those data in Figure 6.3 and Figure 6.4) then 

the results are validated against the other 3 channels' refuelling process 

measurements (see Appendix E for simulation plots related to these 3 channels). 
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The state-dependent NMV estimator is used to obtain the friction force generated 

by the fuel assembly going through the channel and which the value depends on the 

wall channel geometry. The friction estimation is analysed afterwards in order to 

gather information about the core condition.  

The friction force of the refuelling channel goes through a “communication 

channel” represented by the state-dependent model and the output from this block is 

fed to the estimator which gives an estimation of the friction force entering the 

communication channel. 

The overall system and resulting state-dependent NMV filter is as shown in Figure 

6.2. 

Let the sample time 0.1 seconds and the signal and noise models are as follows: 
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The friction force fF
 
is indeed thought to be generated by white noise into a 

colouring filter (the above sW ). 

The message signal path transfer function cW  and the estimation error dynamic 

weighting qW  will be assumed unity. 

The estimated signal and the message signal from the model for channel 1 and 

channel 2 are shown in Figure 6.6 and Figure 6.8 respectively; the estimation error 

variance is 7.1277e-004J =  for channel 1 and 2.5033e-003J =  for channel 2 (see 

Table 6.1). The effectiveness of these solutions is more obvious when the 

observations (measurement from the channel) and the estimate are compared in 

Figure 6.5 and Figure 6.7. 

In Appendix F can been found the software implementation details. 
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Figure 6.2: Model and State-dependent estimator framework. 
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Table 6.1: Variance of estimation error for the 5 channels case studies 

Channel 
Variance of  

Estimation Error 

1 7.1277e-004 

2 2.5033e-003 

3 4.6828e-003 

4 8.6205e-004 

5 3.4115 e-003 

 

 

 

Figure 6.3: Refuelling measurements data channel 1: FGLT data (above) and height (below) 
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Figure 6.4: Refuelling measurements data channel 2: FGLT data (above) and height (below) 

 

Figure 6.5: Channel 1 measured height vs height from model 
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Figure 6.6: Channel 1 friction from model vs estimated friction 

 

Figure 6.7: Channel 2 measured height vs height from model 
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Figure 6.8: Channel 2 friction from model vs estimated friction 

 

6.1.3 Results analysis in terms of core condition assessment 

The friction force, component of the FGLT, is well estimated using the state-

dependent estimator, as seen in the previous section, however it is important to 

investigate as the friction force can give details about the wall geometry and 

consequently about the core condition.  

For a better understanding of the friction estimation shape, a physical explanation 

of the interaction of fuel assembly and the channel is provided in Figure 6.9. 

First of all we can observe how the friction forces from various channels have the 

same shape (see Figure 6.12 and Figure 6.13) and this can help to assess the core 

condition. The idea, in fact, is to create an envelope of expected behaviour, i.e. an 

expected trace, and if there is a deviation from the benchmark created, it can be 

considered as an abnormal condition. 

The friction force estimation is first examined to identify peaks; this would 

represent, for a fault free channel, the locations of the brick layers interfaces. In 

Figure 6.16 it can be seen that the peaks in the friction force (top) and FGLT 



 

 

  

Figure 6.9: Physical explanation of friction estimation shape 
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(middle) correspond to the brick layer interfaces (see CBMU in the bottom). Then 

the peaks have to be classified either as brick-layer interfaces or as potential cracks 

or just noise. This operation is done comparing to the benchmark created, in other 

words we look for the similarity between the trace analyzed and the average trace. 

This crack analysis is not within the scope of this thesis and it is undertaken in BETA 

which uses statistical or ruled-based techniques. The integration of the work 

developed into the BETA framework can be seen in Figure 6.11. Figure 6.10 shows 

instead the overall analysis platform used by EDF Energy for the graphite core 

condition monitoring. The Intelligent Monitoring Assessment Panel System 

(IMAPS) helps to review the monitoring and inspection information ([99]). 

To study the reliability of the condition monitoring of the core using the refuelling 

data, simulated cracks have been created by Skelton ([94]) using an experimental rig 

to simulate the FGLT response of different types of cracks. In Figure 6.17, a 

simulated crack in channel 1 is investigated by comparing the friction estimation, the 

original FGLT and the CBMU data for that channel. We can see how the crack is 

spotted by looking at the friction (top) but it is not detected by using the FGLT data 

(middle). 

Figure 6.14 and Figure 6.15 show that the friction estimation is very sensitive to 

the plant uncertainties, for this reason there is the need to use a robust estimator that 

can cope well with unavoidable system uncertainties. The different values of the 

variance errors for the friction estimation of channel 1 and channel 2, for the 4 

different plant uncertainties considered in Figure 6.14 and Figure 6.15, can be seen in  

Table 6.2. 

 

 

 



 

 

 

 

 

Figure 6.10: The analysis platform used by EDF Energy for core condition monitoring assessment (Source: [100]) 
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Figure 6.11: Integration of the model-based condition monitoring in BETA framework 

 

Table 6.2: Variance of estimation error for channel 1 and channel 2 for 4 different plant uncertainties 

Uncertainty 
Variance of  

Est Error Channel 1 

Variance of  

Est Error Channel 2 

( )1
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1 0.4724
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−
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−
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Figure 6.12: Friction estimation for channel 1 vs friction estimation of channels 3, 4 and 5 

 

Figure 6.13: Friction estimation for channel 2 vs friction estimation of channels 3, 4 and 5 
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Figure 6.14: Friction estimation for channel 1 for 4 different uncertainties 

 

Figure 6.15: Friction estimation for channel 2 for 4 different plant uncertainties 
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Figure 6.16: Comparison between friction estimation (top), FGLT (middle) CBMU (bottom) 

of channel 2 
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Figure 6.17: Comparison between friction estimation (top) and FGLT (middle) for channels 

1, 3, 4 and 5 and the CBMU (bottom) of channel 1 

6.2 Friction Estimation by using a H∞ Robust Nonlinear Estimator 

In the previous section the state-dependent NMV filter was applied to estimate the 

friction force, however the drawback is, it presents a sensitivity to model 

uncertainties. A case study for the fuel assembly subsystem is performed in the rest 

of the chapter with the objective to produce an estimation that is insensitive to model 

uncertainties; to this end the H∞ robust nonlinear estimator introduced in chapter 4  is 

used.  

Crack 

Crack not detected 

Crack detected 
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In the numerical experiments the refuelling model includes, along with the 

aerodynamics model, the friction model as introduced in chapter 5 (see Figure 5.9). 

The input and output of the fuel assembly subsystem are, as for the previous section, 

the FGLT and height respectively (see data in Figure 6.6 and in Figure 6.8). 

The friction force from the refuelling channel model goes through a 

“communication channel” represented by a nonlinear and a linear term, the inverse 

relation of the friction model fF  (see Equation (5.7)) and an integrator respectively. 

 The output from this block is fed to the NH∞ filter which gives an estimation of the 

friction force entering the communication channel. 

The overall system and resulting NH∞ filter is as shown in Figure 6.18. 

Consider, as for the state-dependent filter, that the friction force fF  is generated by 

white noise into a colouring filter sW , the sample time is 0.1 seconds,  nW  as the 

noise model (both transfer functions as defined in the previous section) and the 

message signal path transfer function cW  and the estimation error dynamic weighting 

qW
 
are assumed unity. 

 

6.2.1 Friction Estimation Results 

The estimated signal and the message signal from the model for channel 1 and 

channel 2 are shown in Figure 6.20 and Figure 6.22 respectively; the estimation error 

variance is 1.6876e-003J =  for channel 1 and 2.9134e-003J =  for channel 2            

(Table 6.3 shows the estimation error for the 5 channels investigated). The 

effectiveness of these solutions is more obvious when the height from the channel 

and its estimation are compared in Figure 6.19 and Figure 6.21. 

Table 6.4 illustrates the variance of the estimation error for the 4 dynamic 

uncertainty cases used in the state-dependent estimator to compare the friction results 

for the two estimators in term of uncertainty sensitivity. This shows that the variance 

for the robust estimator would not change significantly for different channel 

uncertainties and this just confirms that the NH∞ filter is particularly appropriate for 

nonlinear uncertain systems. Figure 6.23 and Figure 6.24 show the friction 

estimation for channel 1 and channel 2 respectively for the 4 different uncertainties. 
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In Figure 6.25 and Figure 6.26 the friction estimation of channel 1 and channel 2 

are compared with the other 3 channels (see Appendix E for simulation plots related 

to these 3 channels) for validation purpose and it is shown as for the state-dependent 

case that the friction traces have the same shape. Moreover the friction force from 

channel 1 and channel 2 are compared to the FGLT data and CBMU (see Figure 6.27 

and Figure 6.28) to examine if the estimation gives information about brick-layer 

interfaces and possible cracks.  

The results of applying the robust estimator are almost identical to the ones 

obtained from the state-dependent filter with the advantage that the estimation is 

pretty insensitive to model system uncertainties. 

Software implementation details can be found in Appendix F. 

Table 6.3: Variance of estimation error for the 5 channels case studies 

Channel 
Variance of  

Estimation Error 

1 1.6876e -003 

2 2.9134e-003 

3 3.5718e-003 

4 1.0405e-003 

5 4.4617 e-003 

 

Table 6.4: Variance of estimation error for channel 1 and channel 2 for 4 different plant uncertainties 

Uncertainty 
Variance of  

Est Error Channel 1 

Variance of  

Est Error Channel 2 

( )1

1

1 0.4724
0.01

3 2.472

z

z

−

−

−
−

−
 1.6876e -003 2.9134e-003 

( )1

1

1 0.4724
0.1

3 2.472

z

z

−

−

−
−

−
 1.6876e -003 2.9134e-003 

( )1

1

1 0.4724
10

3 2.472

z

z

−

−

−
−

−
 1.6876e -003 2.9136e-003 

( )1

1

1 0.4724
100

3 2.472

z

z

−

−

−
−

−
 1.7921e -003 3.0156e-003 
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Figure 6.18: Model and NHinf estimator framework 
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Figure 6.19: Channel 1 measured height vs height from model 

 

Figure 6.20: Channel 1 friction from model vs estimated friction 
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Figure 6.21: Channel 2 measured height vs height from model 

 

Figure 6.22: Channel 2 friction from model vs estimated friction 
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Figure 6.23: Friction estimation for channel 1 for 4 different uncertainties 

 

Figure 6.24: Friction estimation for channel 2 for 4 different uncertainties 
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Figure 6.25: Friction estimation for channel 1 vs friction estimation of channels 3, 4 and 5 

 

Figure 6.26: Friction estimation for channel 2 vs friction estimation of channels 3, 4 and 5 
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Figure 6.27: Comparison between friction estimation (top) and FGLT (middle) for channels 

1, 3, 4 and 5 and the CBMU (bottom) of channel 1 

 

Crack 

Crack not detected 

Crack detected 
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Figure 6.28: Comparison between friction estimation (top), FGLT (middle) CBMU (bottom) 

of channel 2 

6.3 Conclusions 

This chapter first presents a new model-based technique for condition monitoring of 

a nuclear reactor core using a state-dependent filter to estimate the friction 

component of the fuel grab load trace data resulting from the interaction of the fuel 

assembly and the core channel. In fact, a key role for brick cracking detection is the 

analysis of the friction force that provides information of the condition of the reactor 

core.  

The proposed nonlinear filter is easy to understand and to implement and it gives a 

good friction estimation but it presents a snag, its results are very sensitive to the 

model uncertainties. This is the reason why a second model-based technique for 

condition monitoring of a nuclear reactor core is presented. In this approach a H∞ 

robust nonlinear filter is used to estimate the friction force.   



 

                                                                                                                                               

H∞ Friction Estimation for Condition Monitoring of AGR 

Nuclear Graphite Cores 
131 

 

The results show that the NH∞ filtering technique is clearly suitable for nonlinear 

uncertain systems, in fact the results vary only slightly with different uncertainties. 

The main strength of the robust filter approach is that it is able to predict consistently 

the friction force from a model which for its complicated physics would unavoidably 

present uncertainties.  

It is also shown how the friction forces can be used to create an envelope of 

expected behaviour to be used in future comparison to assess the core condition.  
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Chapter 7 

Conclusions and Future Work 

7.1 Summary and Conclusions 

This thesis has tried to contribute to the theoretical development of nonlinear and 

LPV systems estimation and also to the nuclear plant condition monitoring problem. 

Both the theoretical developments and the applications are important. Many 

processes are in fact nonlinear and the type of LPV model utilized can provide a 

much better approximation than switched linear models. The method utilized for 

dealing with systems represented in LPV form is quite generic and the estimate 

developed is easy to implement.  

There is also a useful contribution for robust estimation. Uncertainties are an 

important feature in real systems and the chapter on robust estimation methods  

provides a reasonably practical estimation technique. The philosophy adopted is 

fairly similar for both problems and the benefit in applications is that the theoretical 

basis required only involves relatively straightforward concepts. These theoretical 

tools have been shown to be a value in the nuclear reactor condition monitoring 

problem. In this study the models and the understanding of the physical problem 

were also important. The feedback from EDF Energy helped to develop the 

theoretical aspects referred to. 

In recent years a lot of research efforts have been made towards extending the 

lifetime of AGR nuclear power stations in the UK. There is an increasing need to 

closely monitor the condition of the graphite core within the reactor to ensure its 

continued safe operation. It has been thought that the FGLT measurements gathered 

during the nuclear refuelling process can be utilised as a main information source to 

infer the core condition.  

To use the FGLT data for core condition monitoring, the essential and key 

challenge is how to reliably and accurately separate friction forces from the masked 

FGLT measurements; in fact the apparent load recorded during the refuelling process 
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is the combination of different effects. All the forces involved in the process were 

considered to develop a nonlinear first principles model which include a 

aerodynamics and LuGre friction models, then a nonlinear identification method was  

needed to identify its parameters. The identification process, consisting of the 

unknown model parameters estimation, leads to a nonlinear optimization problem 

which was solved using the trust-region method. This identification introduces some 

grade of uncertainty in the model; for this reason initially a more simplified model, 

where the friction force is not modelled, was considered in order to have less 

parameters to be identified. This simplified model can be written in state-dependent 

form, bringing us to the estimation of the friction force for a state-dependent model. 

To this end an estimator was designed and implemented for LPV systems, which in 

its general form can be used for state-dependent models. The validation of the 

nonlinear estimator theory was done by using a numerical example and a pursuit-

evader problem case study. The friction force was estimated for a few channels to be 

able to validate one against the others. In other words it was investigated that if the 

estimation presents the same shape along different channels same wall conditions 

could be guaranteed. In fact a deformation or crack in the core geometry would be 

reflected as a peak or as a fall in the friction force. 

Inspection data and a simulated crack were also used to validate the data and 

compare this method to detect cracks with the one that uses the original FGLT data. 

Instead of a state-dependent estimator, an LPV estimator was designed to deal with 

future development of the condition monitoring analysis framework. 

The proposed nonlinear filter gives a good friction estimation but it presented a 

drawback its results are very sensitive to the model uncertainties. This is the reason 

why first a H∞ robust theory was introduced and implemented where its validation 

was done for a case study that involves the exhaust gas oxygen sensor or lambda 

sensor. Then a second model-based technique for condition monitoring of a nuclear 

reactor core was investigated applying the H∞ robust nonlinear filter to estimate the 

friction force. The results show that the H∞ filtering technique was suitable for 

nonlinear uncertain systems; in fact the results vary only slightly with different 

uncertainties.   
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The estimators presented in this thesis are based on a nonlinear minimum variance 

estimation problem ([41, 74, 79]). The new LPV estimator introduced here adds 

considerably to the generality of the results, in fact previously only the unstructured 

channel sub-system 1cW  (see Figure 3.1) was assumed to be nonlinear. The potential 

can be exploited in applications that currently use or are exploring LPV models such 

as in the wind turbine, flight control and the automotive engine control industries.  

The potential of this estimator in fault detection applications still has to be explored 

and there is also a role for the estimator in feedback control systems. 

The robust filtering problem is given in the form of a robust Wiener optimal 

estimator and a H∞ nonlinear estimator. In the first estimator the uncertainty in 

signal, noise and plant are represented by a probabilistic system description and the 

variances are assumed to be given. In the limiting case when the dynamics are linear, 

the estimator has the form of a Wiener filter in polynomial system description form. 

The H∞ filtering problem is related to the NMV through an embedding procedure, 

where an auxiliary minimum variance filtering problem is solved for a cost function 

with dynamic weighting and a linking lemma is introduced to relate the two 

problems. The H∞ norm minimization exploited in this approach provides different 

opportunities for tailoring the response of the estimator to uncertainties that can only 

be frequency response bounded.  It may therefore have potential in applications.  

7.2 Future Work 

To completely rely on the condition monitoring analysis developed in this thesis 

further study would need to be done.  

The fuel assembly is equipped with a pair of stabilizing brushes, however they were 

considered as one. The friction force is the sum of the effects of both brushes and the 

brushes acting in different channel areas behave in a different way along the 

refuelling process. This consideration would require a model modification and the 

two friction forces to be estimated. 

In our model the bristle deflection was considered as constant along the channel 

however it is thought that as the heat changes in the channel the deflection would 

change accordingly. In this case an LPV model may be used to model the situation 

where the state matrices vary according to a parameter (i.e. the heat). 
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The estimators implemented, due their simplicity, could be used in real time 

applications. This would represent an additional method for EDF Energy to check the 

core condition. In fact they could check the friction estimation shape against the 

normal behaviour envelope during the discharge phase so in the case of a possible 

crack they would not have any stoppage during the charging phase and avoid any 

additional dynamics in the operation that may introduce noises. 
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Appendix A 

AGR Overview 

An AGR is enclosed in a concrete pressure vessel that prevents any radiation leak 

and contains the carbon dioxide (CO2) coolant gas (Figure A.1). The reactor core is a 

cylinder formed by an array of smaller cylinders which in turn are composed by 

graphite bricks that host the enriched uranium oxide fuel assemblies and control rods. 

The latter are steel cylinders, which contain boron, that are inserted or removed from 

their channels to regulate the chain reaction by absorbing neutrons. The fuel is 

instead the source of the fissile neutrons, which once moderated by the graphite 

sustain the fission reaction; therefore the fuel is the source of the heat production. 

The heat is captured by the coolant gas to be used to drive the generators turbines.  

 

Figure A.1: AGR core internals and coolant flows (Source: [91]) 
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The carbon dioxide was chosen as the gas coolant because it presents some 

advantages such as it does not corrode, it has a low capture cross section and it is 

cheap. Although using CO2 as the coolant gas implies having a large and expensive 

reactor vessel, the heat transfer is low and the coolant has to be pressurised to 40 bar 

to give sufficient heat capacity.  

The CO2 is pumped by the gas circulators to enter the bottom of the fuel assemblies 

where it is heated from the initial temperature of 390°C to a temperature of 630-

650°C. This high temperature gas is discharged above the gas baffle dome and goes 

to the boilers. The heat is then converted within the boilers to steam, which 

successively passes through the turbines to drive the electricity generators.  
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Appendix B 

Cracks Classification 

Due to the prolonged exposure to heat and radiation, the core graphite moderator is 

ageing, which could cause distortion and possible cracks in the reactor core. Two 

main types of cracks have been identified, the primary (axial) cracks and the 

circumferential cracks (see Figure B.1). 

 

Circumferential
Crack

Primary
Crack

 

Figure B.1: Two main types of cracks 

 

Primary cracks occur when the crack is extended from the top to the bottom of the 

brick layer and it may cause the brick to split, ending in a larger internal channel 

diameter. Although the brick might double crack and shear and in this case we would 

observe a diameter reduction. 

Single and double cracks, however, would most likely have caused the same result, 

a step change, in the load recorded across the brick layer where the crack is located. 

The dimension of the change in diameter and the direction of travel of the fuel 
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assembly, i.e. the refuelling operation performed during the data collection, 

determine the magnitude and direction of the step change in the FGLT. During the 

removal of the exhausted fuel assembly (discharge) from the core, the friction force 

is opposite to the movement of the assembly, therefore the friction is added to the 

weight of the assembly. In this case a larger diameter would result in a decrement of 

the friction force, thus of the apparent load of the assembly. Instead during the 

charge the frictional force supports the weight of the fuel assembly, so a broader fuel 

channel diameter would cause an increment of the apparent load. 

Circumferential cracking refers to cracks that propagate around the inner surface of 

the channel wall. The stresses built up within the brick cause it to distort at the crack 

interface, causing a restriction at the crack over time. This manifests itself as a peak 

on a discharge load trace and as a fall for a charge refuelling operation. 

These results have been validated for known cracks against the inspection data, i.e. 

CBMU. 
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Appendix C 

Core Inspection 

 Core inspection is an operation that provides information of the core graphite 

structure condition by investigating the effects of graphite degradation processes in 

the core brick layers. To assess the core structural integrity, we have to understand 

how stresses evolve within all the graphite components, and how other factors 

including neutron damage, ionizing radiation, and temperature affect the core 

geometry. To this end a trepanning small sample technique has been adopted by EDF 

Energy ([1]) to reveal the changes in the physical and mechanical properties such as 

tensile and compressive strength, Young’s modulus, and material density. The main 

advantage of extracting trepanned samples is that it can provide a precise indication 

of the state of fuel channel graphite. 

The channel dimension monitoring equipment specially developed for studies of 

core and channel geometry is called the channel bore monitoring unit (CBMU). The 

CBMU is able to provide information on brick ovality, tilt and bow, and overall 

column tilt and bow as well as the step changes between bricks (see Figure C.1 and 

Figure C.2).  

 

Figure C.1: Channel Bore Measurement Unit (Source: [101]) 
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To reduce the time required for the measuring and sampling operations, the 

trepanning, bore measurements along with TV inspection are usually joined and 

deployed together.  

Other approaches have been investigated like in [3] where non-destructive 

techniques using ultrasound or resistance networks for crack detection were 

discussed. Ultrasonic imaging is extremely difficult due to both brick geometry and 

the grain structure of the material as well as the back echoes from the methane holes 

present in graphite bricks.  

It is important to highlight that trepanning unit (TTU), CBMU and TV devices can 

only be employed during reactor shutdown so they cannot provide core condition 

information on a frequent basis. 

CBMU Unit:
4 feelers &

2 tilt transducers
to record data

 

Figure C.2: Cut view of CBMU within a channel during inspection operation 
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Appendix D 

Trust Region Reflective Newton Method 

Iterative methods for optimization can be classified into two categories: line search 

methods and trust region methods. In this appendix a trust-region algorithm for 

nonlinear optimization problems is presented. The constrained nonlinear 

optimization problem can be expressed as below: 

 
min ( )

. . , 1, 2, ,      

nR

i i i

f

s t l x u i n

∈

≤ ≤ =
x

x

⋯
 (D.1) 

where ( )f x is a real scalar function to be minimized,
il and 

iu are the lower and 

upper bounds for the optimization variable 
ix , respectively.  

Trust-region algorithms are simple and robust methods which, from a current guess 

of the solution x, constructs an approximate model q(x) of the original model f(x) 

near this current solution point. 

The simpler model q(x) reasonably approximates the behaviour of function ( )f x in 

the trust region, i.e. a neighbourhood N around the current point x.  A solution of the 

optimization problem, where the approximated model is employed, gives a trial step 

s used in the next iteration. Such trust-region sub-problem can be written as follow:  

 
min ( )

. . , 1, 2, ,      

N

i i i

q

s t l s u i n

∈

≤ ≤ =
s

s

⋯
 (D.2) 

If ( ) ( )f f+ <x s x , then the +x s  becomes the current point; otherwise, the current 

point remains unchanged and the trust region is reduced to compute a new trial step 

s. This process is repeated until a point can be accepted as a solution. 

In trust-region algorithms, the key questions are how to construct the 

approximation ( )q x at the current point x, how to decide whether a trial step s should 

be accepted, how efficiently to solve the trust-region sub-problem, and how to 

choose and adjust the trust region N. Since the trust region N is bounded, the non-

convex approximate models can be used in trust-region algorithms. This represents 

one of the advantages of trust region algorithms over line search algorithms. 
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In the standard trust-region algorithm ([102]), the trust-region sub-problem is 

defined by 

 
1

min{ , }
2

T T+ ≤ ∆s Hs s g Ds  (D.3) 

where H is the Hessian matrix, g  is the gradient of ( )f x  at the current point x , D

is a diagonal scaling matrix, and ∆ is a positive scalar. The above trust-region sub-

problem has been studied by many authors and a well known lemma ([102, 103]) 

solves it efficiently by computing a full eigensystem and solving the following 

secular equation by applying a Newton's method: 

 
1 1

0− =
∆ s

 (D.4) 

To reduce the computation time when the standard trust-region algorithm is applied 

to solve large-scale problems, a number of new approximation and heuristic 

strategies have been proposed in the literature. In this study, a two-dimensional 

subspace strategy ([104, 105])  is adapted to solve the nonlinear system identification 

problem for the model-based condition monitoring of AGR nuclear graphite cores. 

The key idea is to restrict the trust-region sub-problem to the two-dimensional 

subspace 1 2,S s s=< >  where 1s  is in the direction of the gradient g  and 2s is either 

in  the  direction of negative curvature  

2
H × s = -g  

or an approximate Newton direction  found by solving the following equation: 

0T ⋅ ⋅ <
2 2s H s  

By constructing such a two-dimensional subspace S , the global convergence can 

be reached via the steepest descent direction or the negative curvature. Instead 

through the Newton step, a fast local convergence can also be achieved.  
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Appendix E 

Friction Force Estimation Results Plots 

E.1 Input and Output Data for Channel 3, 4 and 5  

 

Figure E.1: Refuelling measurements data channel 3: FGLT data (above) and height (below) 

 

Figure E.2: Refuelling measurements data channel 4: FGLT data (above) and height (below) 
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Figure E.3: Refuelling measurements data channel 5: FGLT data (above) and height (below) 

 

E.2 Friction Estimation by using the state-dependent estimator 

 

Figure E.4: Channel 3 measured height vs height from model (above) and friction from 

model vs estimated friction (below) 
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Figure  E.5: Channel 4 measured height vs height from model (above) and friction from 

model vs estimated friction (below) 

 

Figure E.6: Channel 5 measured height vs height from model (above) and friction from 

model vs estimated friction (below) 
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E.3 Friction Estimation by using the robust estimator 

 

Figure E.7: Channel 3 measured height vs height from model (above) and friction from 

model vs estimated friction (below) 

 

Figure E.8: Channel 4 measured height vs height from model (above) and friction from 

model vs estimated friction (below) 
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Figure E.9: Channel 5 measured height vs height from model (above) and friction from 

model vs estimated friction (below) 
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Appendix F 

Overview of Software Developed 

F.1 LPV Estimation Software (Evader-Pursuit Problem) 

 

 

 

 

 

 

lpv_nmv_estimator.m 

Calculate Spectral Factor 
f
Y  

Design Filter 
0
L  

master_file_LPV.m 

Define System Specifications 

Define Models 

Define Weighting Dynamics 

Call Function lpv_nmv_estimator.m 

Run Simulation:    lpv_estimator.mdl 

Plot Results 

 

calcMatrices.m 

Calculate Matrices Runtime 

Called from simulink 

lpv_estimator.mdl 

Channel Dynamics 
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F.2 H∞ Robust estimation Software (UEGO & EGO Sensors Case 

Studies) 
 

 

 

 

 

hinf_estimator.m  

Calculate Spectral Factor 
f
Y

 
Call function  siso_dio_gep.m

 

Calculate Filter 
0
L  

master_hinf_ego_sensor.m 

Define System Specifications 

Define Models 

Define Weighting Dynamics 

Call Function nmv_estimator.m 

Call Function hinf_estimator.m 

Run Simulation: 

hinf_ego_sensor.mdl 

Plot Results 

 

siso_dio_gep.m 

Solution of the generalized 

eigenvalue problem 

 

master_hinf_uego_sensor.m 

Define System Specifications 

Define Models 

Define Weighting Dynamics 

Call Function nmv_estimator.m 

Call Function hinf_estimator.m 

Run Simulation: 

hinf_uego_sensor.mdl 

Plot Results 

 

Filter 

hinf_ego_sensor.mdl hinf_uego_sensor.mdl 
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F.3 Robust Wiener estimation Software (Channel Equalization 

Case Study) 
 

 

 

wnmv_estimation.m 

Calculate Averaged Spectral 

Factor 
f
Y  

Design Filter 
0
L  

master_rob_wnmv_NL_ChEqual.m 

Define System Specifications 

Define Models and Parameter Covariances  

Define Weighting Dynamics 

Call Function wnmv_estimation.m 

Run Simulation:    

wnmv_NL_ChEqualPr.mdl 

Plot Results 

 

Channel UEGO Sensor 

Channel EGO Sensor 

Filter EGO Sensor Filter UEGO Sensor 
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F.4 Nonlinear System Identification Software 

 

 

 

 

 

 

 Friction_Model_LuGre.m 
Define the model structure through an 

external file (Model_LuGre_c.c) 

 

Create an IDNLGREY object 

reflecting the modelling situation 

 

Identify the unknown parameters 

using real plant data 

 

Plot Results 

 

Save parameters 

 

 

Model_LuGre_c.c  

 

Define first principles model 

of the refuelling subsystem 

wnmv_NL_ChEqualPr.mdl 
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F.5 Friction Estimation by using the State-dependent estimator 

 

 

 

 

 

 

 

 

 master_stdep_friction_estim.m 
Define System Specifications 

Load Model Parameters 

Define Weighting Dynamics 

Call Function stdep_nmv_estimator.m 

Run Simulation:    

stdep_friction_estimation.mdl 

Plot Results 

 

 

stdep_friction_estimation.mdl 

Channel Dynamics 
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F.6 Friction Estimation by using the Robust estimator 

 

 

 

 

 

 

 

 

 

 master_hinf_friction_estim.m 
Define System Specifications 

Load Model Parameters 

Define Weighting Dynamics 

Call Function hinf_estimator.m 

Run Simulation:    

NHinf_friction_estimation.mdl 

Plot Results 
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Appendix G 

Implementable Nonlinear Inverse Operator Block 

Diagram 

Let us consider the system in Figure G.1 where ipF  is a nonlinear channel selected by 

the designer that has a stable inverse, lW  and nlW  are a linear channel (it may be the 

unit matrix) and a nonlinear operator respectively. Note that the above mentioned 

matrices are of appropriate dimensions. 

We can derive the procedure that follows, which constructs an inverse for the 

nonlinear operator ( )ip l nlF WW :  

 
1 1( ) ( )ipy t F m n    (G.1) 

 ( ) ( ); ( )ip l nl l nlm F WW t n WW y t    (G.2) 

Substituting equation (G.2) into (G.1) yields:  

 ( ) ( ) ( ) ( )ip ip l nl l nlF y t F WW t WW y t    (G.3) 

 ( ) ( ) ( ) ( )ip l nl ip l nlF WW y t F WW t m     (G.4) 

From the above equation we can see that the parallel blocks on the right of Figure 

G.1 produce an inverse of the operator Fip l nlWW with the assumption that ipF  is 

chosen in a way that the inverse of the operator is stable. 

 

 

Figure G.1: Block diagram of the construction of the inverse operator  
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From the above consideration and a proper choice of Fip  which guarantees the 

operator (F )ip nlW  
to have an inverse stable, by construction we can produce an 

inverse of this operator that can be therefore be implemented for simulation (e.g. 

simulink blocks).
 

 


