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Nomenclature 

ADM: Anomalous diffraction method. 

AOP: Apparent optical property. 

ChlA: Chlorophyll-A content. 

FC: Flow cytometry; or, flow cytometric. 

FFPF: Fournier-Forand phase function. 

FRRf: Fast repetition rate fluorometry. 

FWHM: Full width at half maximum. 

HPLC: High-performance liquid chromatography. 

IOP: Inherent optical property. 

iRI: Imaginary part of the complex refractive index. 

ISM: Inorganic suspended matter. 

OSM: Organic suspended matter. 

PMT: Photomultiplier tube. 

POC: Particulate organic carbon. 

PRID: Particle (real) refractive index distribution. 

PSD: Particle size distribution. 

RI: Complex refractive index. 

RMS%E: Root-mean-square percentage error. 

RMSE: Root-mean-square error. 

rRI: Real part of the complex refractive index. 

SEM: Scanning electron microscope. 

SPF: Scattering phase function. 

TSM: Total suspended matter. 

VSF: Volume scattering function. 
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Abstract 

Following the path of combining Mie theory and flow cytometry to assign size and 

refractive index to suspended particles in the steps of Ackleson & Spinrad (1988) 

and, more recently, Green et al. (2003a, 2003b), a Mie-based flow cytometry (FC) 

method was developed to retrieve particle size distributions (PSDs) and real 

refractive index (rRI) information in natural waters. The need for a technique capable 

of directly assessing both size and real refractive index of the particles was first 

established by carrying out a sensitivity analysis of the effect a spectrally complex 

refractive index and log-normal variations to commonly employed PSD models have 

on the optical behaviour of the particle population. The Mie-based FC method proper 

was then developed and tested, initially against standard particles of known diameter 

and rRI and secondly on two datasets, one of algal culture samples (AC dataset) and 

one of natural seawater samples collected in UK coastal waters (UKCW dataset).  

The method retrieved PSDs and real refractive index distributions (PRIDs) for both 

datasets. FC PSDs were validated against known algal sizes for AC samples and 

against independent PSDs measured via laser diffractometry for UKCW samples. 

PRIDs were then combined with FC PSDs and fed into Mie-based forward optical 

modelling to reconstruct bulk IOPs. These achieved broad agreement with 

independent IOP measurements, lending further support to the results of the FC 

method and to the employment of Mie theory within the context of optical modelling 

of natural particle populations. Furthermore, the unique insight offered by the FC 

method in terms of PSD and PRID determination allowed for the assessment of the 

individual contribution of particle subpopulations to the bulk IOPs, both by size 

(small/large particle fractions) and by particle type (inorganic/organic/fluorescent 

fractions). Lastly, PSDs and PRIDs were combined with literature-derived models of 

particle density, cell organic carbon and chlorophyll-A content, in an effort to 

explore the biogeochemical properties of the particle populations within the UKCW 

dataset. The models successfully estimated independent measurements of particulate 

suspended matter and (after an optimisation procedure) of organic carbon and 

chlorophyll-A content. 
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1. Introduction 

In this first chapter, an overall look at the background and goals of this thesis will be 

given, providing an introduction to the optical properties of water, to their 

relationship with the physical properties of suspended particle populations, and to the 

principal tools that will be used throughout this work to explore both: flow cytometry 

and Mie theory. The second half of the chapter will also provide a comprehensive list 

of relevant marine optics formulae, concepts and definitions, constituting a useful 

theoretical basis for the chapters to follow. 

1.1 Overview 

1.1.1 Marine optics, IOPs and flow cytometry 

The optical properties of the ocean are the result of many factors. Some of them are 

internal to the medium, such as temperature, salinity, composition of the dissolved 

material and suspended particles within it. The rich diversity of this suspended and 

dissolved content heavily affects light behaviour. Some other factors are instead 

external, such as intensity, direction and polarization of the incident light field. It is 

in this separation between internal and external factors that the two traditional 

groupings of optical properties, inherent and apparent optical properties, have their 

origin. Inherent optical properties (IOPs) are those that are solely dependent on the 

physical characteristics of the medium. Apparent optical properties (AOPs) are those 

that also depend on the angular structure of the light field.  

Of all IOPs, two are fundamental in the sense that all others can be derived from 

them: the spectral absorption coefficient, a, and the spectral volume scattering 

function (VSF), β. The spectral absorption coefficient a represents the wavelength- or 

λ-dependent fraction of light absorbed within a unit volume per unit of distance 

travelled in the medium, where λ is the wavelength. The spectral volume scattering 

function β represents the λ-dependent polar angular distribution of scattered intensity 

per unit of incident irradiance per unit volume, i.e. how much light is scattered into 

each angle, in bulk, by the water, with the angle ranging from zero to  radians 

(where zero is the direction of the incident light). 
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Both a and β are fundamentally dependent on the characteristics of the suspended 

particles and dissolved content of the water. Particles in suspension interact with the 

incoming light, scattering, absorbing and sometimes re-emitting it as fluorescence; 

dissolved substances chiefly contribute to total absorption. Together they produce a 

net effect which contributes to the bulk optical properties of the medium: a simple 

example is the difference between the brown, opaque, particle-rich waters of rivers 

and estuaries and the blue, relatively transparent waters of the open sea, where 

particle content is often scarce.  

Establishing a robust relationship between suspended particle composition and bulk 

IOPs remains an outstanding challenge, and one that has been intrinsic to the field for 

more than a century. In 1908, Gustav Mie published his famous analytical solution 

for light scattering from uniform spherical particles, which stemmed from the study 

of scattering from gold colloid solutions (Mie, 1908). By the 50s and 60s studies 

were already investigating familiar topics, e.g. particle size distributions in 

polydisperse systems through light scattering measurements (Chin et al., 1955), 

single particle scattering from latex beads suspended in water (Ashley & Cobb, 

1958), relative contributions of particle scattering and molecular scattering in sea 

water samples (Morel, 1965, expanding on earlier Jerlov, 1953 and Jerlov, 1963),  

measurements  at small angles of the volume scattering function in various particle 

suspensions (Bauer & Morel, 1967). Comprehensive textbooks about particle 

scattering from that era, such as van de Hulst (1957), are still relevant to this day. 

More recent works continue to explore the nature of the size distribution of 

suspended particles in the ocean (e.g. Risović, 1993; Jonasz & Fournier, 1996) and 

its effects on the optical properties of the water (Ulloa et al., 1994; Volten et al., 

1998; Peng & Effler, 2007). Yet, despite the long history of the field, many questions 

are left ananswered and many aspects of suspended particulate physics and dynamics 

are poorly understood and documented. The most important physical properties of 

the particle population in the context of marine optics are the size and complex 

refractive index of the particles, which are however also difficult to accurately 

determine over the entire range of optically relevant sizes.  

The complex refractive index (RI) is at the core of scattering and absorption. Light is 
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scattered at the interface between mediums with differing real parts of the refractive 

index (rRI), a basic example being Snell’s law of refraction, 

𝑛1 sin 𝜗𝑖 = 𝑛2 sin 𝜗𝑡 (1.1) 

where n1 and n2 are the real refractive indices encountered by light as it travels 

through the interface, ϑi is the angle of the incident light relative to the normal of the 

interface and ϑt is the angle of the transmitted light relative to the same normal (Fig. 

1.1). 

 

Figure 1.1 – Refraction of light passing through the interface of two materials with real refractive 

indices n1 and n2, as described by Snell’s law. 

Absorption of light is determined by the imaginary part of the refractive index (iRI) 

of the medium, a fundamental example being the relationship 

𝑎 =  
4𝜋𝑛𝑖

𝜆
 , (1.2) 

where ni is the imaginary part of the refractive index. At the same time, the complex 

refractive index of the particles is difficult to determine in the case of mixed 

populations: in most cases experimental results produce bulk values for the whole 
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assemblage of particles, and accordingly most literature values are given for 

suspensions of a single type of particle or provide an average for a whole population. 

Twardowski et al. (2001) offer a useful compendium of the real part of the refractive 

indices of typical marine particle population constituents (Tab. 1.1), expanding on 

Aas (1996) which provides real refractive indices for various phytoplankton types 

based on their mixture of basic components and adapting a list of relevant inorganic 

RIs from Lide (1997).  

 

Table 1.1 – Values of the real part of the complex refractive index for some of the main costituents of 

marine particle populations, given relative to water. Reference: a) Twardowski et al. (2001); b) from 

Lide (1997) via Twardowski et al. (2001). The number of mineral types included within each class is 

indicated within parentheses; c) from Aas (1996). 
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Relevant examples of the methods used in literature for real refractive index retrieval 

include old techniques such as immersion of particles in various media until 

scattering disappears (McCrone et al., 1967; Bryant et al., 1969); bulk derivation 

from volume scattering functions and size distributions (Gordon & Brown, 1972; 

Zaneveld et al., 1974); and bulk derivation from attenuation and absorption 

efficiencies (Bricaud et al., 1988; Stramski & Kiefer, 1990; Stramski & Morel, 

1990). Further bulk methods include the algorithm presented in Twardowski et al. 

(2001), and the anomalous diffraction method (Bricaud & Morel, 1986; Stramski & 

Mobley, 1997) which has also the advantage of calculating a value for the imaginary 

part of the RI. Values for the imaginary part of the refractive index are unfortunately 

quite sparse in literature, e.g. Ahn et al. (1992), Babin et al. (2003). 

Information about the size of the particles present in a suspension is conveyed in 

what is known as a particle size distribution (PSD). PSDs represent the concentration 

of particles within each size class of the particle population. These size classes are 

somewhat arbitrary subdivisions based on a definition of “size”, which can be 

variably represented through volume, equivalent area or relevant length of each 

particle. The choice is most often guided by either the context of the study, the shape 

of the particles or the nature of available measurements. PSDs can be combined with 

RIs to feed directly into IOP calculations, using optical models to describe the 

interaction between light and particles: one of the most widely used optical models is 

Mie’s solution to Maxwell’s equations, known as Mie theory for short, an analytical 

solution to scattering under the approximation of spherical, homogeneous spheres. 

Yet, PSDs too are difficult to determine completely due to the wide range of optically 

relevant sizes, spanning from tens of nanometres to a few millimetres (Reynolds et 

al., 2010; Davies et al., 2014). Submicron scales are still poorly investigated, with 

only a few suitable techniques applicable e.g. SEM (Peng & Effler, 2007). These are 

however only really suitable for minerogenic particles, as biological samples require 

extensive preparation, and are therefore not broadly suitable for natural waters.  

Most studies use some parametrization of the PSD, of which the most common form 

in the case of natural waters is the power law or Jungian distribution (Junge, 1963), 

adopted following studies which found small particles to far outnumber large 
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particles in the sea (Bader, 1970; Sheldon et al., 1972; Ulloa et al., 1994). A power 

law distribution is an open-ended, logarithmically linear spectrum, with ill-defined 

average size and average concentration always close to that of the smallest size 

considered. Other techniques involve the reconstruction of PSDs, either via inversion 

of the volume scattering function, e.g. using laser diffractometers such as the LISST 

series of instruments (Agrawal & Pottsmith, 1994; Traykovski et al., 1999; Agrawal 

& Pottsmith, 2000) which use Mie theory to calculate the scattering kernel relating 

energy received by the detectors to the number density of particles, or by iterative 

reconstruction of the measured VSF via modelled contribution of log-normal particle 

populations (Zhang et al., 2011). Overall, availability and reliability of PSD and RI 

determination are still largely partial to improvement, despite their fundamental 

influence on optical properties. 

A particular technique in the context of PSD and particle RI studies is flow cytometry. 

It is one of few techniques (another important example being Coulter counters) to 

investigate particle properties on a particle-by-particle basis rather than in bulk. It 

was originally developed (and is still largely employed) for biomedical applications 

(Shapiro, 1988; Dubelaar & Jonker, 2000), but was soon applied to marine biology as 

well. It was then applied in the field of marine optics for the determination of 

particulate properties for the first time about three decades ago (Ackleson & Spinrad, 

1988; Cunningham & Buonaccorsi, 1992). Flow cytometers analyze the particle 

population present in a suspension by focusing the fluid sample core within a high-

speed sheath flow, pushing the particles in single file in front of a light source (most 

often a laser). Scattered and fluoresced light is collected over two angle ranges (one 

close to the direction of the laser, the other orthogonal to it), with the collected light 

offering information on a variety of particle characteristics such as size, major axis 

length, shape, fluorescence, internal structure and (indirectly) refractive index, 

allowing for multi-parameter analysis of the particle population. Advantages of flow 

cytometry include not only particle-by-particle multivariate analysis, but also high 

sample throughput and relatively large working ranges (~1-100 m).  

The use of flow cytometry for the determination of size and refractive index on an 

individual particle basis was pioneered by Ackleson & Spinrad (1988) and 
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subsequently expanded upon (Green et al., 2003a; Green et al., 2003b). It has most 

recently been employed for the determination of scattering and backscattering cross-

sections (Duforêt-Gaurier et al., 2015; Moutier et al., 2016). 

1.1.2 Rationale and goals of the study 

The rationale behind this thesis is to apply flow cytometry for the determination of 

PSDs and RIs of particle populations, with particular attention to developing the 

capability to operate on complex natural populations. Specific goals are: 

 Development of a method capable of determining size and real refractive 

index of particles simultaneously and on a particle-by-particle basis. 

 Validation of the capabilities of the method and application on a dataset 

made up of a variety of natural water samples, without any ad hoc 

adjustment of the method itself. 

 Assessment of consistency with optical properties through forward 

modelling of IOPs via Mie theory and comparison with independently 

obtained scattering, backscattering and absorption coefficients. 

 Assessment of consistency with associated biogeochemical data from 

water sample analysis. 

Flow cytometry is well suited for the task: the technique by its very nature analyses 

particles individually and can retrieve information on the composition as well as the 

size of the particulate. Furthermore, Davies et al. (2014) show that a large part of the 

contribution to total scattering and backscattering comes from particles in a size 

range comprised between 0.1 and 10 m (Fig. 1.2), and this size range is well 

covered by flow cytometers.  
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Figure 1.2 – Cumulative (a) scattering and (b) backscattering for theoretical organic (n = 1.45+0.001i) 

and inorganic (n = 1.55+0i) Junge distributions of particles, where γ is the slope. Adapted from Davies 

et al. (2014). The horizontal lines mark 5% and 95% of contribution to the total scattering. 

This is not the entire optically relevant size range, which Davies et al. put between 

0.05 and 2000 m. Another goal is then to see if the use of Junge-type extensions in 

the fashion of Green et al. (2003b) is an effective tool in the bid for optical closure, 

i.e. the successful agreement between optical properties as determined by 

independent measurement techniques (in this case, IOPs as reconstructed from FC-

derived particle properties and as measured in situ). 

Finally, Mie theory is the optical model of choice in this study. Mie theory is 

analytical: given a set of input parameters, the output of the model is exact for 

particles of any size and any refractive index. At the same time, the hypotheses for 

which Mie theory holds are strict and in most cases represent an approximation of 

reality. The particles are required to be perfectly spherical and homogeneous; 

additionally, the incident light field is required to be an infinite plane wave, i.e. the 

particles must be completely bathed in the incident radiation field whatever their 

size.  

Faceted mineral particles, non-spherical objects like flocs and aggregates, many 

types of diatoms are all examples of typical components of marine particle 

populations which violate Mie theory assumptions. A large number of more complex 
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and accurate optical models have been developed: 

 Concentric layered spheres, an extension of Mie scattering to the case of 

multiple, concentric spheres (Aden & Kerker, 1951; Fenn & Oser, 1965; 

Kitchen & Zaneveld, 1992; Fuller, 1993b). 

 Non-concentric layered spheres, a generalization of the layered spheres 

model to include non-concentric spheres (Fikioris & Unuzoglu, 1979; 

Borghese et al., 1992; Fuller, 1993a; Ngo, Christesen & Videen, 1996).  

 Spheroids, both homogeneous and layered (Asano & Yamamoto, 1975; 

Barton, 2001; Xu et al., 2007). 

 Infinitely long cylinders (Sharma et al., 1997), useful to approximate particles 

with extreme aspect ratios such as long chain-forming diatoms and rod-

shaped phytoplankton. 

 Discrete dipole approximation (DDA), in which the scatterer (of arbitrary 

shape) is substituted by a set of point dipoles. The dipoles interact with each 

other and the incident light field, and a system of linear equations is 

generated to describe these interactions. Solving the system produces the 

dipole polarizations, from which scattering is derived (Purcell & 

Pennypacker, 1973; Draine & Flatau, 1994; Yurkin & Hoekstra, 2007). 

 T-matrix, a method which revolves around the computation of the transfer 

matrix relating incident field coefficients and scattered field coefficients in 

non-spherical particles (Waterman, 1965; Waterman, 1971; Mishchenko et 

al., 1996).  

 Packed spheres (generalized Mie Theory), extending Mie theory scattering 

calculations from the single sphere case to that of multiple packed spheres 

(Gouesbet & Grehan, 1999; Quinten, 2011). 

 Finite-difference time-domain method (FDTD), based on a time-domain 

solution of the Maxwell equations (Yang & Liou, 1996a). 
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 Improved geometric optics method (IGOM), based on the implementation of 

ray tracing (Yang & Liou, 1996b). 

Yet, despite the abundance of available models and the strict assumptions of Mie 

scattering, the fundamental advantage of Mie theory remains its role as a good first 

approximation in particle populations for which no previous structural or shape 

information is available. Furthermore, suspended particle populations are most often 

randomly oriented. In very large numbers (like those present at small scales in 

natural particle populations) particles for which Mie theory cannot individually apply 

tend to collectively behave like an ensemble of equivalent spheres (Morel, 1991). 

Finally, given the magnitude of potential errors in key IOPs previously used to assess 

the performance of Mie theory and recent advances in IOP corrections (McKee et al., 

2013), there is an opportunity to re-evaluate the utility of Mie theory for simulating 

bulk IOPs for natural particle populations. 

The succesful development of a robust method for the determination of particle size 

and real refractive indices in natural waters would further the case of flow cytometry 

as an important complement to classic methods like Coulter counting, and, 

increasingly, laser diffractometry. In particular the establishment of viable means of 

retrieval of RIs on a particle-by-particle basis would also offer a wealth of new 

information on the biogeochemical complexity of mixed particulates (normally 

tackled in bulk) and be a step forward towards bridging the divide between particle 

optics and particle dynamics. 

1.2 Marine optics fundamentals 

In this section a compendium of useful definitions and formulae will be provided as 

reference to the reader. 

The formulae in this section have been mostly adapted from Mobley’s “Light and 

Water” (Mobley, 1994), specifically Chapters 1 and 3. The subsection about cross-

sections and efficiencies has also been informed by Chapter 2 of van de Hulst’s 

“Light Scattering by Small Particles” (van de Hulst, 1957). 
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1.2.1 Geometrical radiometry 

Before introducing the IOPs proper, it is useful to consider the definitions for a few 

radiometric quantities: radiance, irradiance and intensity of the incident light. 

1.2.1.1 Radiance 

The (unpolarized) spectral radiance of light is defined as 

𝐿(�⃗�, 𝑡, 𝜉, 𝜆) ≡
Δ𝑄

Δ𝑡Δ𝐴ΔΩΔ𝜆
 (J s

-1
 m

-2
 sr

-1
 nm

-1
) (1.3) 

where ΔQ is the amount of radiant energy and Δt, ΔA, ΔΩ and Δλ are time, area, 

solid angle and wavelength intervals respectively. A spectral radiant power or 

radiant flux is then also defined as 

Φ ≡
Δ𝑄

Δ𝑡Δ𝜆
 . (J s

-1
 nm

-1
) (1.4) 

By combining eqs. (1.3) and (1.4) in the limit of infinitesimal intervals of the 

parameters considered and given the equivalence J s
-1

 = W, the definition of spectral 

radiance can be then rewritten as 

𝐿(�⃗�, 𝑡, 𝜉, 𝜆) ≡
∂2Φ

∂𝐴 ∂Ω
  . (W m

-2
 sr

-1
 nm

-1
) (1.5) 

Spectral radiance ties together the spatial, temporal, angular and wavelength 

information of light, and is the fundamental radiometric quantity in the sense that the 

other quantities can be derived by it. 

1.2.1.2 Irradiance 

The area ΔA is more suitably described as the area projected by the light beam as it 

crosses the surface, Δ𝑆 cos 𝜃, where ΔS is the surface crossed by the light beam and 

θ the (polar) angle of incidence. This is relevant when considering the spectral 

irradiance,  
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𝐸(�⃗�, 𝑡, 𝜆) ≡
∂Φ

∂𝐴
 , (W m

-2
 nm

-1
)  (1.6) 

which represents radiant flux per unit surface and is obtained as the result of 

integrating the radiance over a certain solid angle range: 

𝐸(�⃗�, 𝑡, 𝜆) = ∫ 𝐿(�⃗�, 𝑡, 𝜉, 𝜆) cos 𝜃 𝑑Ω

= ∫ ∫ 𝐿
𝜃2

𝜃1

2𝜋

𝜑=0

(�⃗�, 𝑡, 𝜉, 𝜆) cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜑 

(W m
-2

 nm
-1

) (1.7) 

where φ is the azimuthal angle. The specific spectral irradiance considered is 

dependent on the angle integration range. Depending on the choice of θ1 and θ2, the 

downward spectral planar irradiance 

𝐸𝑑(�⃗�, 𝑡, 𝜆) = ∫ ∫ 𝐿
𝜋/2

𝜃=0

2𝜋

𝜑=0

(�⃗�, 𝑡, 𝜉, 𝜆) cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜑 (1.8) 

and the upward spectral planar irradiance 

𝐸𝑢(�⃗�, 𝑡, 𝜆) = ∫ ∫ 𝐿
𝜋

𝜃=𝜋/2

2𝜋

𝜑=0

(�⃗�, 𝑡, 𝜉, 𝜆) cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜑  (1.9) 

can be variously defined. Finally, in the limit of the area crossed by the light being an 

infinitesimal point the “effective” area seen by the light is the same for all directions, 

and ΔA = ΔS, defining corresponding versions of what is known as the spectral 

scalar irradiance 

𝐸0(�⃗�, 𝑡, 𝜆) = ∫ 𝐿(�⃗�, 𝑡, 𝜉, 𝜆) 𝑑Ω

= ∫ ∫ 𝐿
𝜃2

𝜃1

2𝜋

𝜑=0

(�⃗�, 𝑡, 𝜉, 𝜆) sin 𝜃 𝑑𝜃𝑑𝜑 .  

(W m
-2

 nm
-1

)  (1.10) 

1.2.1.3 Intensity 

Similarly to spectral irradiance 𝐸(�⃗�, 𝑡, 𝜆), the spectral intensity 𝐼(�⃗�, 𝑡, 𝜉, 𝜆) is defined 



13 

 

as: 

𝐼(�⃗�, 𝑡, 𝜉, 𝜆) ≡
∂Φ

∂Ω
 . (W sr

-1
 nm

-1
)  (1.11) 

It is obtained as the result of the integration of the spectral radiance over the area ΔA 

which “sees” the solid angle ΔΩ, i.e. 

𝐼(�⃗�, 𝑡, 𝜉, 𝜆) = ∫ 𝐿(�⃗�, 𝑡, 𝜉, 𝜆) 𝑑A . (W sr
-1

 nm
-1

) (1.12) 

1.2.2 Inherent optical properties   

As described in the first section of this first chapter, the inherent optical properties or 

IOPs of a water volume are those properties which are only dependent on the 

inherent physical characteristics of the medium, independently from the 

characteristics of the light field which will interact with it.  

1.2.2.1 Absorptance and scatterance 

Consider Φi(λ) as the spectral radiant power incident on a small volume ΔV of water 

of thickness Δr and area ΔA. Φa(λ), Φs(λ) and Φt(λ) are respectively the fraction of 

power absorbed, scattered and transmitted by that volume. Assuming that no 

inelastic scattering or wavelength dispersion occurs, by conservation of energy 

Φ𝑖(λ) ≡ Φ𝑎(λ) + Φ𝑠(λ) + Φ𝑡(λ) . (1.13) 

The fraction of incident radiant power that is absorbed within the volume is known 

as spectral absorptance 

𝐴(𝜆) ≡
Φ𝑎(λ)

Φ𝑖(λ)
 (1.14) 

and the fraction of incident radiant power that is scattered as it travels through the 

volume is analogously defined as spectral scatterance 
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𝐵(𝜆) ≡
Φ𝑠(λ)

Φ𝑖(λ)
 . (1.15) 

Spectral transmittance is similarly defined but will not be used in the following. 

1.2.2.2 Attenuation, absorption, scattering coefficients 

Marine optics most often deals with absorption and scattering coefficients, which 

represent absorption and scatterance per unit distance within the medium.  

The spectral absorption coefficient is defined as 

𝑎(𝜆) = lim
Δ𝑟→0

𝐴(𝜆)

Δ𝑟
      (m

-1
)  (1.16) 

while the spectral scattering coefficient is defined as 

𝑏(𝜆) = lim
Δ𝑟→0

𝐵(𝜆)

Δ𝑟
 . (m

-1
)  (1.17) 

Their sum is known as the spectral attenuation coefficient 

𝑐(𝜆) = 𝑎(𝜆) + 𝑏(𝜆) .     (m
-1

) (1.18) 

1.2.2.3 Volume scattering function and phase function 

Consider B(ψ,λ) as the angular distribution of the spectral scatterance of (1.15), i.e. 

the fraction of the incident radiant power scattered through an angle ψ into a solid 

angle ΔΩ centred on ψ. The angle ψ is the scattering angle, with values comprised 

between 0 and π. Consider then the expression 

𝛽(𝜓, 𝜆) = lim
Δ𝑟→0

 lim
ΔΩ→0

B(𝜓, 𝜆)

Δ𝑟ΔΩ

= lim
Δ𝑟→0

 lim
ΔΩ→0

Φ𝑠(𝜓, 𝜆)

Φ𝑖(𝜆)Δ𝑟ΔΩ
 .  

(m
-1

 sr
-1

) (1.19) 

Since the spectral power scattered into ΔΩ can be interpreted as the spectral radiant 

intensity scattered into direction ψ multiplied by the solid angle, Φ𝑠(𝜓, 𝜆) =
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I𝑠(𝜓, 𝜆)ΔΩ; the corresponding incident irradiance is 𝐸𝑖(𝜆) = Φ𝑠(𝜓, 𝜆)ΔA. Eq. (1.19) 

can therefore be rewritten as 

𝛽(𝜓, 𝜆) = lim
ΔV→0

I𝑠(𝜓, 𝜆)

𝐸𝑖(𝜆)ΔV
 . (m

-1
 sr

-1
) (1.20) 

This is known as the spectral volume scattering function, or VSF for short, and it 

represents the angular distribution of the spectral scattered intensity per unit incident 

irradiance per unit volume. Together with the absorption coefficient a(λ) the volume 

scattering function is all that is required to inform the radiative transfer equations. 

Integration the VSF over all directions produces the total spectral scattered intensity 

per unit incident irradiance per unit volume, i.e the spectral scattering coefficient 

b(λ): 

𝑏(𝜆) = 2𝜋 ∫ 𝛽(𝜃, 𝜆) sin 𝜃 𝑑𝜃
𝜋

0

 . (m
-1

)  (1.21) 

The form of this last equation is due to the fact that scattering in natural waters is 

azimuthally symmetric about the incident direction, at least when light is unpolarized 

and the scatterers are randomly oriented. 

Different integration ranges for  ψ produce different scattering coefficients, the most 

relevant of which is the spectral backscattering coefficient 

𝑏𝑏(𝜆) = 2𝜋 ∫ 𝛽(𝜃, 𝜆) sin 𝜃 𝑑𝜃
𝜋

𝜋/2

 . (m
-1

) (1.22) 

Scattering and backscattering coefficients can also be combined to produce a spectral 

backscattering ratio, which is the relative magnitude of scattering in the backwards 

direction and total scattering: 

�̃�𝑏(𝜆) =
𝑏𝑏(𝜆)

𝑏(𝜆)
 . (1.23) 

The relationship between VSF and scattering coefficient can also be used to define 
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the spectral volume scattering phase function (SPF) 

𝛽(𝜃, 𝜆) =
𝛽(𝜃, 𝜆)

𝑏(𝜆)
 . (sr

-1
) (1.24) 

This separates the VSF into two components, one containing the strength of the 

scattering, b(λ), and one containing information on the angular distribution of the 

scattering, 𝛽(𝜃, 𝜆). Finally, the combination of (1.21) and (1.24) also provides the 

normalization condition for the scattering phase function : 

2𝜋 ∫ 𝛽(𝜃, 𝜆) sin 𝜃 𝑑𝜃
𝜋

0

= 1 . (1.25) 

It is also to be noted that IOPs are intrinsically additive, i.e. their values are the result 

of the addition of the single contributions from each of the constituents in the 

medium. The absorption coefficient of a volume of water can be written as 

𝑎(𝜆) = 𝑎𝑤(𝜆) + ∑ 𝑎𝑖(𝜆)

𝑛

𝑖=1

 , (1.26) 

where aw(λ) is the spectral absorption coefficient of pure water and n the number of 

constituents. Similarly, the expression for the VSF can be written as 

𝛽(𝜃, 𝜆) = 𝛽𝑤(𝜃, 𝜆) + ∑ 𝛽𝑖(𝜃, 𝜆)

𝑛

𝑖=1

 . (1.27) 

This constitutes the basis for the idea of a single-particle VSF, a concept which is 

useful in the context of forward modelling of IOPs from particulate size and RI data. 

1.2.3 Efficiency factors and optical cross sections 

Consider σb as the cross-sectional area required to remove from the incident light 

beam as much light as the total scattering from a certain particle. σb is then known as 

the scattering cross-section of that particle. Analogously, σa can be defined as the 

absorption cross-section of that particle and, in conformity with eq. (16), σc as the 
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attenuation cross-section of the particle, i.e. 

𝜎𝑐 = 𝜎𝑎 + 𝜎𝑏 . (1.28) 

By the same definition, spectral coefficients are the result of the total contribution of 

all cross-sections of the particulate. For example, in the case of absorption 

𝑎(𝜆) = 𝑁𝐶𝜎𝑎 (1.29) 

where 𝑁𝐶 is the number concentration of particles, in this simple example all 

considered identical. 

Optical cross-sections are generally functions of the orientation of the particle and of 

the polarization of the incident light: consequently, if G is the geometrical cross-

section of the particle, dimensionless efficiency factors Qa, Qb and Qc can be defined 

for absorption, scattering and attenuation respectively, where 

𝑄𝑎 ≡
𝜎𝑎

𝐺
 , (1.30) 

𝑄𝑏 ≡
𝜎𝑏

𝐺
 , (1.31) 

𝑄𝑐 ≡
𝜎𝑐

𝐺
 . (1.32) 

Once again  

𝑄𝑐 = 𝑄𝑎 + 𝑄𝑏 . (1.33) 

1.2.4 Particle size distributions  

Particle size distributions (PSDs) have been traditionally approximated with a 

number of different mathematical descriptions, which can be divided into 

continuously increasing and peaking distributions. The most common example of the 

former is the power law distribution, while the most common example of the latter is 

the log-normal distribution. The two are not employed indifferently: power laws are 
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often used to model natural seawater particle populations, while log-normals are 

better suited to model cultures or subpopulations. However, much as a population is 

the sum of its subpopulations so a power law distribution can be envisioned as the 

sum of a number of log-normal distributions (e.g. Jonasz & Fournier, 1996). In 

practical terms, a PSD is defined as 

𝑁(𝐷) = 𝑁′(𝐷)𝑑𝐷, (1.34) 

where N’(D) is the underlying, “true” distribution of particle sizes (i.e. the density 

function of the PSD) and dD is the width of the size class bin (Jonasz & Fournier, 

2007). 

1.2.4.1 Power law distributions 

The traditional mathematical description for PSDs of natural seawater particle 

populations is the power law, or Junge distribution (Stramski & Kiefer, 1991; Ulloa 

et al., 1994) (Fig. 1.3). In this study the form 

𝑁′(𝐷) = 𝑘𝐷−𝛾 (1.35) 

is used, where k is the scaling factor, γ is the slope and D is the diameter of the 

particle. The distribution is not just typical of natural particulate mixtures, but also of 

certain particulate aerosols, and it is in fact from there that it was originally adopted 

(Junge, 1963). Sheldon et al. (1972) found that in marine samples the concentration 

of particulate material was roughly the same across logarithmically equal particulate 

size intervals, so that it followed that small particles are far more numerous than 

large ones. The resulting distribution, the power law, is linear when viewed in a log-

log scale. Junge-type size distributions are scale invariant: they lack a well-defined 

average size and their average concentration overwhelmingly depends on the 

concentration of the lowest size considered. No matter the scale at which they are 

observed, they are always self similar, so that if in a certain volume a certain type of 

particle is twice as frequent as a second type which is twice as large, a third type that 

is half the size of the first will be twice as frequent as the first and four times as 

frequent as the second, and so on and so forth. 
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1.2.4.2 Log-normal distributions 

A second important way of approximating particle size distributions is through log-

normal distributions or sums of log-normal distributions (Jonasz, 1983; Jonasz & 

Fournier, 1996) (Fig. 1.3). In this study, the form  

𝑁′(𝐷) =
𝑒

−
(ln 𝐷−𝜇)2

2𝜎2

𝜎𝐷√2𝜋
 (1.36) 

was used. The log-normal distribution is the distribution of a variable the logarithm 

of which is normally distributed, and µ and σ are respectively the mean and standard 

deviation of that normal distribution. In the study of particles and sediments, log-

normals have been used to represent peaked distributions of monotypical 

populations, and their sum to represent mixed populations made of discrete groups, 

e.g. Jonasz & Fournier (1996) use an algorithm to reconstruct experimental PSDs 

into sums of log-normals, while Zhang et al. (2011) present a procedure to 

deconvolute VSF measurements into the contribution of various, log-normally 

distributed particle groups. Worthy of mention is a similar approach by Risović 

(1993) which substitutes gamma distributions to log-normals. 

 

Figure 1.3 – Examples of power law (black solid line) and log-normal (grey solid line) distributions 

as they appear in log-log scale. 
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1.3 Summary 

The major goals of marine optics are the precise determination of IOPs and AOPs of 

seawater and understanding how these can be exploited to assess and monitor the 

composition and concentration of the particulate and dissolved materials present 

within it. These two goals are fundamentally tied, as optical properties and IOPs in 

particular are strongly dependent on the physical properties of these materials.  

The most important properties of the particle population in the context of marine 

optics are the size and complex refractive index of the particles, which are however 

also difficult to assess over the entire range of optically relevant sizes. Of particular 

interest in the context of PSD and particle RI studies is then flow cytometry, a 

technique which has the potential to retrieve both size and real refractive indices 

simultaneously on a particle-by-particle basis. The rationale behind this thesis work 

is to apply flow cytometry to the determination of PSDs and rRIs of particle 

populations, with particular attention to developing the capability to operate on 

complex natural populations: by modelling light scattering within the instrument, 

signal response in the sensors can be tied to size and rRI of known standards and 

then extended to determine size and rRI of particles in general.  

To do so, an optical model of scattering is needed. Of the many available, Mie theory 

is the most frequently used optical model in marine optics. The hypotheses for which 

Mie theory holds are strict, requiring both homogeneity and sphericity of the 

particles: faceted mineral particles, complex organic structures, non-spherical objects 

like flocs and aggregates, many types of diatoms are all examples of typical 

components of marine particle populations which violate Mie theory assumptions. 

However, Mie theory is advantageous because it is analytical: given a set of input 

parameters, the output of the model is exact for particles of any size and any 

refractive index. Furthermore, Mie theory is a good first approximation for particle 

populations for which no previous information is available. Finally, natural marine 

particles are randomly orientated, and in very large numbers tend to behave like an 

ensemble of equivalent spheres (Morel, 1991). While this result is not strictly 

relevant to the reconstruction of the scattering properties of single particles within a 
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flow cytometer (part of the interest was in fact to assess how far Mie theory could be 

taken in terms of size and RI determination in increasingly non-spherical particles, 

e.g. elongated phytoplankton cells and chains), it is one that validates the use of Mie 

theory for the reconstruction of total particulate IOPs from the physical properties of 

the particle population. For all these reasons, Mie theory is the optical model of 

choice in this study. 

In the next chapter, a detailed look at the derivation and formulation of Mie theory 

will be given, together with a description of how it can be applied in forward 

modelling fashion to calculate IOPs from the size and refractive index distributions 

of a particle population. 
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2. Mie theory 

This chapter aims to provide a short, yet comprehensive derivation of Mie theory 

from Maxwell’s equations of electromagnetism. Mie theory is at the core of this 

thesis work, and forms the basis of the flow cytometric method of size and refractive 

index determination which will be described in Chapter 6. The second half of this 

chapter will focus on Mie forward modelling, and on how it can be used to calculate 

IOPs using the size and real refractive index properties of a suspended particle 

population as inputs. A thorough description of Mie theory and its derivation is 

available in Chapter 9 of van de Hulst (1957). An equally valid and possibly even 

more detailed description and derivation can also be found in Chapter 4 of Bohren & 

Huffman (1998). Much of the following is informed by these works. 

2.1 Derivation of Mie theory 

The goal of Mie theory is to provide an analytical solution to the problem of 

scattering by homogeneous spheres of arbitrary size. As any optical scattering 

problem is at its core an electromagnetic one which involves the determination of the 

incident, internal and scattered light fields, a general, exact solution necessarily 

involves Maxwell’s equations of electromagnetism. Coincidentally, this justifies the 

proper definition of Mie theory as Mie’s solution to Maxwell’s equations. Note that 

the derivation presented in the following is given for scatterers suspended in vacuum; 

the results however have general validity once wavelength of the incident light and 

absolute RI of the scatterer are scaled relative to the absolute RI of the surrounding 

medium. 

2.1.1 Maxwell’s equations 

Let 

∇ × �⃗⃗⃗� = 𝑖𝑘𝑚2�⃗⃗� (2.1) 

∇ × �⃗⃗� = −𝑖𝑘�⃗⃗⃗� (2.2) 
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be Maxwell’s equations in a periodic field with circular frequency ω, where 

𝑘 =  
𝜔

𝑐
=

2𝜋

𝜆
 

is the propagation constant in vacuum with c the speed of light and λ the wavelength 

and 

𝑚2 = 𝜀 −
4𝜋𝑖𝜎

𝜔
 

is the (squared) complex refractive index of the spherical scatterer with ε the 

dielectric constant and σ the conductivity. The notation m (instead of n) for the 

complex refractive index is used here to avoid confusion with further indices. �⃗⃗� and 

�⃗⃗⃗� represent the electric field strength and the magnetic field strength respectively. It 

should be noted that the following derivation is carried out using Gaussian units, and 

that the (relative) magnetic permeability µ was set at 1; this limits the derivation to 

the special case of non-magnetic particles, which holds true for all particles 

considered in this study. Under this latter condition the magnetic field strength �⃗⃗⃗� is 

also exactly equal to magnetic flux density �⃗⃗�. 

Let then 

Δ𝜓 + 𝑘2𝑚2𝜓 = 0 (2.3) 

Δ𝐴 + 𝑘2𝑚2𝐴 = 0 (2.4) 

respectively be the scalar and vector wave equations. In spherical coordinates (r, θ, 

φ) eq. (2.3) is separable and has solutions of the form 

𝜓𝑙𝑛 = {
cos 𝑙𝜑

sin 𝑙𝜑
} 𝑃𝑛

𝑙(cos 𝜃)𝑧𝑛(𝑚𝑘𝑟) . (2.5) 

The first factor may be either a sine or a cosine, 𝑃𝑛
𝑙 are Legendre polynomials and 𝑧𝑛 

is any spherical Bessel function. Indices n and l are integers and 𝑛 ≥ 𝑙 ≥ 0. 
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At the same time, given eqs. (2.1-2.2), �⃗⃗� and �⃗⃗⃗� satisfy eq. (2.4) and further solutions 

are given by 

�⃗⃗⃗�𝜓 = ∇ × (𝑟𝜓) (2.6) 

𝑚𝑘�⃗⃗⃗�𝜓 = ∇ × �⃗⃗⃗�𝜓 , (2.7) 

where ψ is the generic scalar wave equation solution described by eq. (2.5). By then 

taking u and v as two of these solutions and �⃗⃗⃗�𝑢, �⃗⃗⃗�𝑢, �⃗⃗⃗�𝑣 and �⃗⃗⃗�𝑣 as their derived 

vector fields (via eqs. 2.6-2.7), by substitution it can be finally found that 

�⃗⃗� = �⃗⃗⃗�𝑣 + 𝑖�⃗⃗⃗�𝑢 (2.8) 

�⃗⃗⃗� = 𝑚(−�⃗⃗⃗�𝑢 + 𝑖�⃗⃗⃗�𝑣) , (2.9) 

and that these satisfy eqs. (2.1-2.2). The extended forms of �⃗⃗⃗�𝜓 and �⃗⃗⃗�𝜓 are irrelevant 

to the problem at hand, and it is sufficient to know that they are functions of their 

respective scalar wave equation solutions. 

2.1.2 Incident, scattered and internal field solutions 

The next step involves Mie theory proper, i.e. the scattering of a plane wave by a 

homogeneous sphere. Assume that the external medium is vacuum and that the 

incident radiation is linearly polarized. The origin is fixed at the centre of the sphere 

with the positive z-axis along the direction of propagation of the incident wave. The 

incident wave is therefore described by 

�⃗⃗� = �⃗⃗�𝑥𝑒−𝑖𝑘𝑧+𝑖𝜔𝑡 (2.10) 

�⃗⃗⃗� = �⃗⃗�𝑦𝑒−𝑖𝑘𝑧+𝑖𝜔𝑡 , (2.11) 

where �⃗⃗�𝑥 and �⃗⃗�𝑦 are the unitary vectors along the x-axis and y-axis respectively. The 

scalar wave equation solutions which provide eqs. (2.10-2.11) via (2.8-2.9) are found 

to be 
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𝑢 = 𝑒𝑖𝜔𝑡 cos 𝜑 ∑(−𝑖)𝑛
2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)𝑗𝑛(𝑘𝑟)

∞

𝑛=1

 (2.12) 

𝑣 = 𝑒𝑖𝜔𝑡 sin 𝜑 ∑(−𝑖)𝑛
2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)𝑗𝑛(𝑘𝑟)

∞

𝑛=1

 , (2.13) 

with 𝑗𝑛 the spherical Bessel function derived from the Bessel function of the first 

kind, 𝐽𝑛+1/2.  

The field outside the sphere is given by eqs. (2.12-2.13) plus the scattered wave. The 

latter has solutions 

𝑢 = 𝑒𝑖𝜔𝑡 cos 𝜑 ∑ −𝑎𝑛(−𝑖)𝑛
2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)ℎ𝑛
(2)

(𝑘𝑟)

∞

𝑛=1

 (2.14) 

𝑣 = 𝑒𝑖𝜔𝑡 sin 𝜑 ∑ −𝑏𝑛(−𝑖)𝑛
2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)ℎ𝑛
(2)

(𝑘𝑟)

∞

𝑛=1

 , (2.15) 

with ℎ𝑛
(2)

 the spherical Hankel function derived from the Hankel function of the 

second kind, 𝐻𝑛+1/2
(2)

. Coefficients 𝑎𝑛 and 𝑏𝑛 are to be determined. 

Finally for the wave within the sphere 

𝑢 = 𝑒𝑖𝜔𝑡 cos 𝜑 ∑ 𝑚𝑐𝑛(−𝑖)𝑛
2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)𝑗𝑛(𝑚𝑘𝑟)

∞

𝑛=1

 (2.16) 

𝑣 = 𝑒𝑖𝜔𝑡 sin 𝜑 ∑ 𝑚𝑑𝑛(−𝑖)𝑛
2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)𝑗𝑛(𝑚𝑘𝑟)

∞

𝑛=1

 . (2.17) 

Coefficients 𝑐𝑛 and 𝑑𝑛 are also to be determined. 

2.1.3 Mie coefficients 

Under the assumption of sharp boundary conditions between homogeneous media, 
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�⃗⃗� × (�⃗⃗⃗�2 − �⃗⃗⃗�1) = 0 (2.18) 

�⃗⃗� × (�⃗⃗�2 − �⃗⃗�1) = 0 (2.19) 

where �⃗⃗� is the normal to the surface of the sphere. Accordingly, the field components 

𝐸𝜃, 𝐸𝜑, 𝐻𝜃 and 𝐻𝜑 have to have equal values on either side of the surface of the 

sphere. Components 𝐸𝜃 and 𝐸𝜑both contain the terms 𝑣 and 
1

𝑚

𝜕(𝑟𝑢)

𝜕𝑟
 while 𝐻𝜃 and 𝐻𝜑 

both contain 𝑚𝑢 and 
𝜕(𝑟𝑣)

𝜕𝑟
, and the boundary conditions (2.18-2.19) are ensured by 

the continuity of these four functions.  

Modified Bessel functions called Riccati-Bessel functions are now introduced to help 

simplify subsequent calculations: 

𝜓𝑛(𝑧) = 𝑧𝑗𝑛(𝑧) = √
𝜋𝑧

2
𝐽

𝑛+
1
2

(𝑧) (2.20) 

𝜒𝑛(𝑧) = −𝑧𝑛𝑛(𝑧) = −√
𝜋𝑧

2
𝑁

𝑛+
1
2

(𝑧) , (2.21) 

where 𝑁𝑛+1/2 is the Bessel function of the second kind.  

The Hankel function of the second kind is also tied to the two Bessel functions by  

𝐻𝑛
(2)(𝑧) = 𝐽𝑛(𝑧) − 𝑖𝑁𝑛(𝑧) , (2.22) 

providing a third Riccati-Bessel function: 

𝜁𝑛(𝑧) = 𝜓𝑛(𝑧) + 𝑖𝜒𝑛(𝑧) . (2.23) 

Eqs. (2.18-2.23) can then be put together with the expressions for the key terms 

within field components 𝐸𝜃, 𝐸𝜑, 𝐻𝜃 and 𝐻𝜑 to rewrite the boundary conditions in 

terms of 𝜓𝑛, 𝜒𝑛 and 𝜁𝑛 and finally obtain  

[𝑚𝑢]: 𝜓𝑛(𝑥) − 𝑎𝑛𝜁𝑛(𝑥) = 𝑚𝑐𝑛𝜓𝑛(𝑦) 
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[
1

𝑚

𝜕(𝑟𝑢)

𝜕𝑟
]: 𝜓′𝑛(𝑥) − 𝑎𝑛𝜁′𝑛(𝑥) = 𝑐𝑛𝜓′𝑛(𝑦) 

[𝑣]: 𝜓𝑛(𝑥) − 𝑏𝑛𝜁𝑛(𝑥) = 𝑑𝑛𝜓𝑛(𝑦) 

[
𝜕(𝑟𝑣)

𝜕𝑟
]: 𝜓′𝑛(𝑥) − 𝑏𝑛𝜁′𝑛(𝑥) = 𝑚𝑑𝑛𝜓′𝑛(𝑦) 

⟹       𝑎𝑛 =
𝜓′

𝑛
(𝑦)𝜓𝑛(𝑥) − 𝑚𝜓𝑛(𝑦)𝜓′𝑛(𝑥)

𝜓′
𝑛

(𝑦)𝜁𝑛(𝑥) − 𝑚𝜓𝑛(𝑦)𝜁′𝑛(𝑥)
 (2.24) 

⟹       𝑏𝑛 =
𝑚𝜓′

𝑛
(𝑦)𝜓𝑛(𝑥) − 𝜓𝑛(𝑦)𝜓′

𝑛
(𝑥)

𝑚𝜓′
𝑛

(𝑦)𝜁𝑛(𝑥) − 𝜓𝑛(𝑦)𝜁′
𝑛

(𝑥)
 , (2.25) 

where 𝑥 = 𝑘𝑎 =
2𝜋𝑎

𝜆
, 𝑦 = 𝑚𝑘𝑎 and a is the radius of the spherical scatterer. 

Equipped with these definitions and the knowledge that the spherical Hankel 

function ℎ𝑛
(2)

 has asymptotic behaviour 

lim
𝑘𝑟→∞

ℎ𝑛
(2)(𝑘𝑟) =

𝑖𝑛+1

𝑘𝑟
𝑒−𝑖𝑘𝑟 

the expression for the scattered wave is ultimately obtained as 

𝑢 = −
𝑖

𝑘𝑟
𝑒−𝑖𝑘𝑟+𝑖𝜔𝑡 cos 𝜑 ∑ 𝑎𝑛

2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)

∞

𝑛=1

 (2.26) 

𝑣 = −
𝑖

𝑘𝑟
𝑒−𝑖𝑘𝑟+𝑖𝜔𝑡 sin 𝜑  ∑ 𝑏𝑛

2𝑛 + 1

𝑛(𝑛 + 1)
𝑃𝑛

1(cos 𝜃)

∞

𝑛=1

 . (2.27) 

Lastly, by defining 

𝜋𝑛(cos 𝜃) =
𝑃𝑛

1(cos 𝜃)

sin 𝜃
 (2.28) 

𝜏𝑛(cos 𝜃) =
𝑑

𝑑𝜃
𝑃𝑛

1(cos 𝜃) (2.29) 
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 the resulting scattered field components are 

𝐸𝜃 = 𝐻𝜑 = −
𝑖

𝑘𝑟
𝑒−𝑖𝑘𝑟+𝑖𝜔𝑡 cos 𝜑 𝑆2(𝜃) (2.30) 

𝐸𝜃 = 𝐻𝜑 = −
𝑖

𝑘𝑟
𝑒−𝑖𝑘𝑟+𝑖𝜔𝑡 sin 𝜑 𝑆1(𝜃) . (2.31) 

The functions defined as 

𝑆1(𝜃) = ∑
2𝑛 + 1

𝑛(𝑛 + 1)

∞

𝑛=1

[𝑎𝑛𝜋𝑛(cos 𝜃) + 𝑏𝑛𝜏𝑛(cos 𝜃)] (2.32) 

𝑆2(𝜃) = ∑
2𝑛 + 1

𝑛(𝑛 + 1)

∞

𝑛=1

[𝑏𝑛𝜋𝑛(cos 𝜃) + 𝑎𝑛𝜏𝑛(cos 𝜃)] (2.33) 

are the scattering amplitude functions for polarization parallel and perpendicular to 

the plane of scattering. These are the core quantities to be computed in any Mie 

scattering problem, and can be further manipulated to give 

𝑖1 = |𝑆1(𝜃)|2 (2.34) 

𝑖2 = |𝑆2(𝜃)|2. (2.35) 

These two terms provide the value of the scattered intensity, as will be shown in the 

next paragraph. 

2.1.4 Efficiency factors and scattered intensity 

Once 𝑎𝑛, 𝑏𝑛, 𝑆1(𝜃), 𝑆2(𝜃), 𝑖1 and 𝑖2 are known, scattered intensity and all three 

efficiency factors for attenuation, scattering and absorption (1.30-1.32) of a 

homogeneous sphere of known radius and refractive index can be calculated exactly. 

These are 
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𝑄𝑐 =
2

𝑥2
∑(2𝑛 + 1)𝑅𝑒(𝑎𝑛 +  𝑏𝑛)

∞

𝑛=1

 , (2.36) 

𝑄𝑏 =
2

𝑥2
∑(2𝑛 + 1)[|𝑎𝑛|2 +  |𝑏𝑛|2]

∞

𝑛=1

 (2.37) 

and for absorption from (1.33) simply 

𝑄𝑎 = 𝑄𝑐 − 𝑄𝑏 . (2.38) 

Parameter x is the same 𝑥 = 𝑘𝑎 =
2𝜋𝑎

𝜆
 size parameter that appears in eqs. (2.20-

2.23). Note that the summations of eqs. (2.36-2.37), just like those of eqs. (2.12-

2.17), (2.26-2.27) and (2.32-2.33), are defined for an infinite number of terms; these 

are required to provide the exact Mie solution. In practice, the series are truncated at 

maximum value 𝑛𝑚𝑎𝑥, which in this study was defined as 𝑛𝑚𝑎𝑥 = 2 + 𝑥 + √𝑥
3

 

(rounded up to the nearest integer). 

The calculation of the scattered intensity requires some further considerations. As 

will be described in detail in Chapter 3, the laser beam within the flow cytometer 

used in this study is split into two parallel beams with overlapping distributions, with 

linear polarizations set perpendicular to each other at +45° and -45°. In the ideal case 

all particles processed by the flow cytometer will flow through the centre of the 

combined distribution, intercepting equal amounts of light from both polarizations. 

For polarization perpendicular to the plane of scattering, scattered intensity is given 

by 

𝐼⊥ =
𝑖1

𝑘2𝑟2
𝐼0 (2.39) 

where 𝐼0 is the incident intensity. Analogously, for polarization parallel to the plane 

of scattering, scattered intensity is given by 

𝐼∥ =
𝑖2

𝑘2𝑟2
𝐼0 . (2.40) 
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The light scattered in any one direction from the particles in the flow cytometer will 

contain varying fractions of intensity comprised between the extremes of (2.39-2.40), 

and due to the relative geometry of the +45°/-45° polarization such fractions will 

compensate each other, so that the total scattered intensity will be ∝ (𝑖1 + 𝑖2). This is 

true for both side scattering, which doesn’t select for polarization, and forward 

scattering, for which the twin photodiodes filter +45°/-45° polarizations to give 

information on laser beam alignment. Accordingly, total scattered intensity is 

calculated using the formula for unpolarized light 

𝐼 =
𝑖1 + 𝑖2

2𝑘2𝑟2
𝐼0 . (2.41) 

Correct proportionality between this modelled intensity and measured intensity is 

then ensured by scaling factors, as will be described in Chapter 6. 

2.2 Mie forward modelling 

Just as optical models can be used to derive the physical properties of the particle 

population from its scattering behaviour, the physical properties of the particles (once 

known) can be used to shed light on their bulk scattering behaviour. As will be 

shown in Chapter 6, optical modelling of the scattering within the flow cytometer 

provides the means to determine the PSDs and particle refractive index distributions 

(PRIDs) within a sample; and as will be shown in Chapter 7, forward optical 

modelling using the PSDs and PRIDs so determined provides the means to estimate 

the IOPs of the sample. This also offers a potential way to test the reliability of flow 

cytometry as a technique for determining diameters and rRIs of natural mixed 

particle populations, as successful comparison with IOPs obtained using other 

techniques establishes optical closure between different instruments: if all 

measurements are found to agree with each other, the various techniques can be 

confidently used to inform and support one another. In doing so there is also an 

implicit evaluation of the extent to which Mie theory, with all its assumptions, is 

sufficient to support this kind of study. 
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2.2.1 Theory 

The foundation of Mie forward modelling rests on the additive nature of the inherent 

optical properties. All IOPs are the result of the sum of the single contributions from 

each of the constituents of a water volume, pure water itself included. 

Recalling eq. (1.27) the expression of an axially symmetrical total VSF is given as 

𝛽(𝜃, 𝜆) = 𝛽𝑤(𝜃, 𝜆) + ∑ 𝛽𝑖(𝜃, 𝜆)

𝑛

𝑖=1

 , (1.27) 

where 𝛽𝑤(𝜃, 𝜆) is the VSF contribution of pure water and 𝛽𝑖(𝜃, 𝜆) the VSF 

contribution of the i-th component in the water volume. The concept extends to 

integrating contributions from single particles which collectively make up the 

suspended particle population. From the definition of PSD given in Chapter 1, it has 

been shown that 

𝑁(𝐷) = 𝑁′(𝐷)𝑑𝐷 , (1.34) 

where 𝑁′(𝐷) is the underlying density function of the PSD, i.e. 

𝑁′(𝐷) =
𝑑𝑁

𝑑𝐷
 . (2.42) 

It follows that eq. (1.27) is rewritten as  

𝛽(𝜃, 𝜆) = 𝛽𝑤(𝜃, 𝜆) + ∫ 𝛽𝐷(𝜃, 𝜆) 𝑁′(𝐷)𝑑𝐷 , (2.43) 

where 𝛽𝑤(𝜃, 𝜆) is the VSF contribution of pure water and 𝛽𝐷(𝜃, 𝜆) the VSF 

contribution of a single particle of diameter D. Since in turn 𝛽𝐷(𝜃, 𝜆) is the result of 

the contribution of particles with different refractive indices n, eq. (2.43) is more 

rigorously written as 
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𝛽(𝜃, 𝜆) = 𝛽𝑤(𝜃, 𝜆) + ∬ 𝛽𝐷,𝑛(𝜃, 𝜆)𝑁′(𝐷, 𝑛)𝑑𝐷𝑑𝑛 , (2.44) 

where 𝛽𝐷,𝑛(𝜃, 𝜆) is the VSF contribution of a single particle of diameter D and 

refractive index n and 𝑁′(𝐷, 𝑛) the corresponding value of the density function. 

Scattering and backscattering for the water volume are then simply calculated by 

integrating the total 𝛽(𝜃, 𝜆) over the appropriate angle ranges, following eqs. (1.21-

1.22). 

Analogously, for absorption 

𝑎(𝜆) = 𝑎𝑤(𝜆) + ∑ 𝑎𝑖(𝜆)

𝑛

𝑖=1

  (1.26) 

and  

𝑎(𝜆) = 𝑎𝑤(𝜆) + ∬ 𝑎𝐷,𝑛(𝜆)𝑁′(𝐷, 𝑛)𝑑𝐷𝑑𝑛 , (2.45) 

where 𝑎𝑤(𝜆) is the absorption contribution of pure water, 𝑎𝑖(𝜆) the absorption 

contribution of the i-th component in the water volume and 𝑎𝐷,𝑛(𝜆) the absorption 

contribution of a single particle of diameter D and refractive index n. 

It follows from eqs. (1.29-1.30) that for spherical particles 

𝑎(𝜆) = 𝑎𝑤(𝜆) + ∬
𝜋𝐷2

4
𝑄𝑎

𝐷,𝑛(𝜆)𝑁′(𝐷, 𝑛)𝑑𝐷𝑑𝑛 , (2.46) 

2.2.1.1 Single particle VSF  

Before beginning the derivation of the single particle VSF, the definitions for spectral 

irradiance and spectral intensity are recalled here from Chapter 1: 

𝐸(�⃗�, 𝑡, 𝜆) ≡
∂Φ

∂𝐴
 (1.6) 
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𝐼(�⃗�, 𝑡, 𝜉, 𝜆) ≡
∂Φ

∂Ω
 . (1.11) 

By integrating over the whole radiant sphere and whole solid angle respectively and 

equating the results, the relationship 

4𝜋𝑟2𝐸 = 4𝜋𝐼 ⇒ 𝐸 =
𝐼

𝑟2
  (2.47) 

is obtained, where r is the distance from the scattering centre. The definition for the 

spectral volume scattering function is also recalled here as 

𝛽(𝜓, 𝜆) = lim
ΔV→0

I𝑠(𝜓, 𝜆)

𝐸𝑖(𝜆)ΔV
 (1.20) 

Given eq. (2.41), a simple substitution within eq. (1.20) in the limit of a point 

scatterer (which holds true when 𝑟 ≫ 𝑎 where 𝑎 is the radius of the spherical 

particle) and considering the axial symmetry of the scattering finally produces 

𝛽(𝜃, 𝜆) =
1

2

1

𝑘2𝑟2

(𝑖1 + 𝑖2)𝐼𝑖(𝜆)

𝐸𝑖(𝜆)
=

1

2

(𝑖1 + 𝑖2)

𝑘2
 (2.48) 

which is the single particle spectral volume scattering function for a homogeneous 

sphere under unpolarized incident light. Given eqs. (2.44), (2.46) and (2.48), the Mie 

forward modelling procedure therefore requires the determination of 𝑖1, 𝑖2 and Qa as 

defined by eqs. (2.34-2.35) and (2.38) for each n and D pair. It is important to 

remember that n represents a complex refractive index, comprising both a real 

component rRI and an imaginary component iRI. While the former is half of the 

focus of the flow cytometric method described in this work (together with particle 

diameter), the latter cannot be determined by it; literature values will be adapted for 

iRI instead, the specifics of which will be discussed in Chapters 4 & 7, where 

applications of Mie forward modelling are presented. 

2.2.2 PSD extrapolations 

It follows from the previous section that any kind of forward modelling will 
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necessarily require the entire optically relevant particulate to be included as the input, 

or the output will not be comparable with any independently measured IOP. As noted 

in Chapter 1, flow cytometers can cover particle diameter ranges which contribute a 

large fraction of the total scattering and backscattering: nevertheless, the entire 

optically relevant range spans from tens of nanometres to a few millimetres. 

Therefore, the undetectable fraction of the particle population has to be accounted for 

using an approximation of the PSD to extend the range of the distribution over the 

whole relevant range. Any of the commonly used approximations for the PSD may 

be used towards this end: Green et al. (2003a) used a best fit of the measured PSDs 

made using a Junge distribution model. This same approach is used in this study, and 

its results will be discussed in Chapter 7.  

Values for the real refractive index in the Junge extensions have to be approximated 

as well, and various methods may be used. The most conservative approach is to 

assign a fixed value to the rRI, either the same on both ends of the extension (i.e. for 

both particles smaller and larger than the detectable diameter range) or a separate one 

for each. The specific rRI values may be assigned in a variety of ways, e.g. by using 

the average rRI value of the measured fraction of PSD on both ends of the extension; 

by using the average  rRI values at the extremes of the measured fraction of PSD on 

the respective ends of the extension; or by using literature-derived rRIs values based 

on an hypothesis of the probable particle population composition for the size ranges 

covered by the extension (cf. Tab. 1.1). Details on the rRI approximations used in 

this study will also be given when presenting the application of Mie forward 

modelling to natural marine particle populations in Chapter 7. Values for the 

imaginary refractive index iRI, which as will be shown are assigned according to the 

value of the real component of the RI (i.e. according to the type of material specific 

to each particle), will be dependent on the rRI approximation used. 

2.3 Summary 

As anticipated in Chapter 1, when Mie modelling is informed by the proper 

characterisation of the optical setup and performance of a flow cytometer, a 

comparison between flow cytometric measurements of standard particles with known 
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diameter and RI and corresponding modelled results becomes possible: the flow 

cytometric method for size and RI determination rests on these very premises. The 

first half of this theoretical framework was established by exploring in detail how 

Mie’s solution to Maxwell’s equations, generally known as Mie theory, provides the 

means to analytically calculate the angular structure of scattered intensity and the 

efficiency factors for attenuation, absorption and scattering for a spherical scatterer 

of any diameter and RI. It was then further described how Mie theory allows for the 

calculation of bulk IOPs when its results are integrated over a whole particle 

assemblage for which PSD and PRID are known.  

Flow cytometry, the eponymous second half of the theoretical framework behind the 

flow cytometric method, will be the subject of the next chapter. In it, a general 

overview of flow cytometry both as a technique and a technology will be given, 

followed by specific details about the flow cytometer used throughout this study and 

its operation. Finally, a characterisation of the flow cytometer in its performance will 

be carried out, detailing correction parameters designed to ensure precise particle 

concentration measurements.  

  



36 

 

3. Flow Cytometry 

The following chapter will focus both on flow cytometry as a measurement 

technique and on flow cytometers as practical instruments. The first half of the 

chapter will offer an overview of the methodology, and include details on the systems 

and functions common to all flow cytometers. It will then give specific details on the 

particular instrument used in this study, the CytoSense (CytoBuoy b.v., Netherlands), 

including procedures for its correct operation and maintenance. The second half of 

the chapter will then be dedicated to the characterization procedures which were used 

to assess the precision of the particle concentration measurement capabilities of the 

CytoSense. 

3.1 Overview 

Strictly (and etymologically) speaking, flow cytometry is the process by which a 

fluid stream of cells is focused so that they pass in single file through a measurement 

apparatus where a number of measurements of their physical and chemical 

characteristics is carried out. By extension, the process is applicable to biological 

particles in general and, particularly in the context of this study, to inorganic 

suspended particles as well.  

The nature of the measurements carried out on the particles can be quite diverse, as 

are the types of sensors that can be employed. Historically, sensors used in flow 

cytometry have included acoustic, electronic, optical and radiation sensors (Shapiro, 

1988). Optical sensors have been the most widely used and are still common; 

advancements in the quality and availability of CCD and CMOS imaging sensors and 

digital computing power have also resulted in the rise of imaging flow cytometry, 

based on direct image analysis of the particles (Basiji et al., 2007). A number of flow 

cytometry systems now focus exclusively on imaging-based approaches (particularly 

for biology applications), using different techniques to tackle the superior resolution 

requirements inherent to imaging. Examples include: camera-based systems using 

time delay integration of multiple images (Basiji et al., 2007; Elliott, 2009); timed 

pulse excitation of fluorescence and synchronised imaging to eliminate motion blur 
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(Gorthi et al., 2013); and PMT-based systems for ultrafast optical imaging using a 

broadband femtosecond laser (Goda et al., 2012). Worthy of mention is also the 

Imaging FlowCytobot (Olson & Sosik, 2007), a system geared towards simple 

brightfield imaging but designed to be deployed underwater in situ for extended 

periods of time, conducting automated monitoring of algae populations through a 

supervised learning algorithm (Sosik & Olson, 2007). In all cases, many kinds of 

measurements can be carried out on the analysed particles, characterising intrinsic, 

structural parameters such as size, shape, structure and concentration of the particles 

or determining DNA content, composition and physiology of cells and fluorescent 

lifetime of phytoplankton in association with fluorescent dyes and DNA stains 

(Shapiro, 1988). Overall, the key application of flow cytometry is the 

characterization of subpopulations of particles within mixed populations. This can be 

ultimately achieved either through identification of discrete groupings by isolating 

subsets within the multivariate datasets produced by the instrument (gated analysis) 

or by physically isolating and separating a specific subpopulation of interest from the 

particle population (particle sorting), although the latter technique is usually 

informed by the former. 

Flow cytometry is akin to microscopy, as both techniques employ a light source to 

illuminate a specimen and collect the light transmitted, scattered or re-emitted by it. 

In microscopes the light forms a real image in the objective, which is then observed 

directly by the operator or visualized on a screen; in flow cytometers the light is 

collected by photodetectors, and converted into electrical signals or images to be 

subsequently processed. However, flow cytometers also differ from microscopes for 

a few fundamental reasons. Microscope operators actively navigate the sample by 

moving it in, out and around the field of view, limiting the processing rate of the 

sample to low levels. Flow cytometers instead process individual particles for a few 

microseconds each, providing much higher sampling rates than those available to 

microscopy. Accordingly, illumination in a flow cytometer must be many times more 

powerful than in a microscope, as flow cytometer sensors must collect in a few 

microseconds the light that the eye of the microscope operator can collect in a few 

milliseconds (Shapiro, 1988). Optical flow cytometry commonly employs lasers as 

light sources (Shapiro & Telford, 2009), being both powerful and versatile as 



38 

 

monocromatic lasers can target individual fluorescent dyes and chlorophyll groups. It 

also generally resorts to darkfield techniques, based on collection of light scattered 

and fluoresced at large angles. This is again in contrast with microscopes, which 

commonly operate using brightfield (transmitted light) techniques. Imaging flow 

cytometers can straddle the divide between the two, offering either darkfield images 

of fluorescent emission and side scattering (from laser emission), brightfield images 

of transmitted light (e.g. from LED sources) or a combination of the two (Basiji et 

al., 2007). 

In general, flow cytometry has a few key advantages when compared with other 

techniques (Dubelaar & Jonker, 2000): high sample throughput, permitting 

statistically significant results within shorter sampling time than other techniques 

(e.g. microscopy); a single-particle approach to particle analysis, compared to the 

bulk approach of other methods of particle analysis (e.g. laser diffractometry); and 

the large variety of parameters available for the study and characterization of the 

particles. Flow cytometry has drawbacks as well (Dubelaar & Jonker, 2000). It is a 

mechanically intensive process, and the strain put on the particles as they are pumped 

and focused to a single file can break up chains and aggregates. Furthermore, 

although flow cytometers can sample thousands of particles per second, the 

processed sample volumes are quite small (~1-10 l/s), so that measurements are 

time consuming when trying to achive statistical significance for low concentrations 

of particles (e.g. large particles in natural mixed populations). Finally, flow 

cytometers are very expensive pieces of equipment and require continuous care to be 

kept in working order. 

3.2 Flow cytometry fundamentals 

3.2.1 Flow system 

In a typical optical flow cytometer the single file flow of particles is generated by 

coaxially injecting the sample or core flow into a flowing jacket of particle-free fluid 

known as sheath fluid (Fig. 3.1). To avoid turbulence at the interface between the two 

fluids the speed of the flow is adjusted to make the flow laminar. The transparent 
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chamber (flow cell) into which sheath and core are injected tapers gradually, 

preventing disturbances while accelerating the flow to the required single file regime. 

Most often the flow is vertical and directed either naturally downwards or upwards to 

facilitate the removal of air bubbles. The sheath fluid must also be as clean as 

possible as well as close as possible to the refractive index of the medium within 

which the particulate is suspended. This eliminates interference with the 

measurements in the form of scattering from particles outside the core flow and/or 

refraction from the interface between core and sheath. 

 

Figure 3.1 – Typical setup of a classic optical flow cytometer. The vertical sample flow is 

hydrodynamically focused by the sheath fluid so that particles intercept the incident laser beam one by 

one. Scattered light is collected at near forward angles and orthogonally to the beam, while the laser 

beam proper is intercepted by a beam stop before reaching the sensors. 

3.2.2 Optics system 

Incident laser beam and optical sensors are arranged around the flow cell in an 

orthogonal fashion. The light beam is focused using a cylindrical lens to be at its 

narrowest where it intercepts the focused core flow. It is important to note that laser 

beams most commonly operate to produce a Gaussian-shaped energy distribution in 

the beam. Width in a such a beam is defined as the distance between the points at 
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which the intensity falls to e
-2

 times the peak, and the core flow must be confined 

well within this width to avoid the scattering from identical particles to be overly 

dependent on their position within the flow (Fig. 3.2).  

 

Figure 3.2 – Power distribution of the laser beam in a typical flow cytometer. The vertical lines mark 

the beam width, defined as the space between the points where the intensity of the beam decreases to 

e
-2 

times the value of its peak. The core flow must be centred and confined within a column much 

thinner than the beam width to avoid particle scattering being dependent on the position of the particle 

within the flow. Note that the x-axis values illustrate a theoretical position relative to the center of the 

distribution; the physical dimension is length, but the specific unit (and values) will depend on the 

particular instrument used.  

The forward scattering detector (most often a photodiode) collects light scattered 

next-to-axially with respect to the incident laser; here some form of beam stop blocks 

the bulk of the transmitted beam while permitting light scattered at small angles to 

reach the detector proper (Fig. 3.1). The side scattering detectors (most often 

photomultiplier tubes, PMTs for short) collect light scattered and fluoresced 

orthogonally with respect to the laser beam, with a large optical aperture to collect as 

much light as possible. Scattered and fluoresced light are separated after collection: 

fluorescence measurements use bandpass optical filters to select a specific desired 

wavelength, such as chlorophyll emission wavelengths or wavelengths specific to 

particular dyes. 
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3.2.3 Signal Processing 

Acquisition of particle data in a flow cytometer starts when a particle reaches the 

observation point, hitting the laser beam and scattering its light. The scattered (or 

fluoresced) light enters the detectors and produces signals which are amplified into 

voltage pulses. One or more of these channels are used as triggers; if the signal pulse 

reaches above a threshold level, the acquisition and analysis of the signal can begin. 

In older optical flow cytometer models, signal analysis is analog (Shapiro, 1988) 

(Fig. 3.3). A comparator circuit using both signal pulse and threshold voltage as 

inputs discriminates signals reaching above the threshold, usually set by the operator 

from a computer interface. When the signal reaches above the threshold voltage the 

comparator outputs a logical one, which is a set voltage dependent on the electronics 

used; otherwise, the comparator output is logical zero, or ground. When the 

comparator outputs one, the electronics “know” a particle is present. Analog analysis 

of the signal is carried out using peak detectors and integrators: both circuits store 

their values in capacitors, which can be small since within the short times involved in 

single particle analysis the voltage stored in the capacitors drops negligibly. 

 

Figure 3.3 – Basic signal pulse analysis in older flow cytometers. A) Particle signal pulse and 

threshold level (grey line). B) Comparator output. C) Trigger pulse. D) Peak detector. E) Delayed 

particle signal pulse. F) Integrator gating. 
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The output state change in the comparator triggers a brief reset pulse which is sent to 

the capacitors, resetting the previously stored voltage and readying them for the new 

pulse. The change of state in the comparator and the subsequent reset signal are not 

instantaneous; taken together, their duration amounts to a few hundred nanoseconds. 

While this is not a problem for peak detectors, since particles take a few 

microseconds to transit and the peak detector capacitor is reset and ready to accept a 

new value well before the signal peak, integrators would miss out a chunk of the 

signal pulse. Because of this the original signal pulse is not fed directly into the 

integrator, but goes through a delay line first. Timing pulses derived from the 

comparator output are used to precisely gate the integrator, as precise timing is 

essential for the integrator as starting or ending integration at the wrong time may 

add spurious noise to the total value. At this point the voltage values in the peak 

detectors and integrators can be converted to digital and sent to a computer for 

further analysis. 

In modern optical flow cytometer models, signal analysis is digital. A comparator 

circuit is used to discriminate when a signal reaches above the user-operated 

threshold, but no peak detectors or integrators are present. The comparator triggers 

the analog-to-digital conversion of the raw analog voltage signals, which are then 

sent to a computer for analysis. The digital pulse shape can be analysed to provide 

basic parameters such as baseline width (time-of-flight), full-width at half-maximum, 

peak height and total area, and algorithms can be developed to estimate values for a 

number of other parameters such as skewness and number of peaks of the curve. 

Imaging flow cytometers function much in the same way, with the obvious difference 

that particle information comes from image analysis of the snapshots triggered by the 

particle events. 

In all cases, particle parameters are ultimately typically visualised in a characteristic 

dot plot, or cytogram; two among the many available variables are chosen as the x 

and y inputs and each parameter pair (corresponding to a single particle) is displayed 

as a dot on the graph. The cytograms are then visually inspected to identify 

subgroups within the particle population which can be ultimately isolated using gated 

selections (Adan et al., 2016). 
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3.3 CytoBuoy CytoSense   

3.3.1 Overview 

The CytoBuoy CytoSense is an optical flow cytometer with brightfield imaging 

capabilities. It employs a square section cuvette (inner width: 1 mm) to hold the flow 

of core and sheath fluid to minimize edge effects and refraction from the flow cell 

walls, and features a two stage sheath injection system (Fig. 3.4). Fluids within the 

CytoSense flow cell flow upwards to facilitate air removal: bubbles are trapped and 

removed from the upper part of the sheath fluid injectors. In the first stage of the 

injector a stream of sheath fluid is injected coaxially with the core flow needle in 

classic flow cytometric fashion. The combined flow is then focused further by a 

triple injection of sheath fluid from three needles set at a 120° angle from each other.  

 

Figure 3.4 - Diagram of the flow cell and injector assembly in the CytoSense. A) Sample injector. B) 

Sheath fluid 1st stage injector. C) Sheath fluid 2nd stage triple injector (two shown). D) Air bypass. E) 

Flow cell. 

This provides some degree of control on the stability of the core flow by moving the 
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core flow relative to the three injection needles. The final speed of the focused 

combined flow is ~2 m/s, resulting in a sample core about 60 µm wide (the final 

width of the core varies depending on the flow rate of the sample pump). The 

CytoSense used in this study uses a single 488 nm semiconductor laser (OBIS 

488LS, Coherent Inc., CA). It deals with the issue of presenting a Gaussian power 

distribution to the particles by splitting the laser beam into two parallel beams with 

overlapping distributions, producing a flat-topped total distribution of radiant power 

(Fig. 3.5).  

 

Figure 3.5 – Power distribution of the incident laser beam in the CytoSense. The laser beam is 

polarized to produce two gaussian distributions, one with +45° polarization (dashed line) and one with 

-45° polarization (dotted line). Due to their polarization, no interference takes place between the two 

distributions and their sum (solid line) presents a flatter profile to the incoming particles. Note that the 

diagram is qualitative and doesn’t reflect the exact power distribution within the instrument.  

To avoid interference between the incident beams their polarization is set 

perpendicular to each other at 45° and -45° degrees; as anticipated in Chapter 2 the 

combination of orthogonally polarised input beams produces scattering signals which 

are essentially equivalent to those that would be produced by an unpolarised input 

beam of the same intensity. A further advantage of the flat-topped distribution is that 

it provides a way of determining the position of the particle relative to the center of 

the beam and the means to adjust it accordingly: the forward scattering sensor is 
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made up of a pair of twin photodiodes, each collecting light scattered to the left or 

right of a vertical beam stop (in the CytoSense a gap between prisms used to redirect 

forward-scattered light towards the detectors); particles going through the centre of 

the beam will scatter roughly even amounts of light into each photodiode, so that the 

balance between left and right forward scattering signal may be used as an indicator 

of beam alignment. The composite laser beam is further shaped into a flat blade of 

light before passing through the cuvette, with a 5 µm thickness and a ~300 µm width. 

This is achieved using a cylindrical lens (Fig 3.6) 

 

Figure 3.6 – (a) Beam shaping lens configuration within the CytoSense and (b) detail of the relative 

positions of sample core flow (light grey) and shaped laser beam (blue). Note that both diagrams are 

not to scale.  

The sensor apertures within the instrument have different shapes for forward 

scattering and side scattering/fluorescence respectively. As mentioned, the forward 

scattering aperture intercepts two vertical strips of light on both sides of the laser 

beam using twin prisms. The light is then re-directed vertically at 90° through a 

circular hole before reaching the detectors. The final effective shape is that of two 

vertical segments of a circle collecting between 2° and 9.7° of polar angle on either 

side of the direction of the laser beam. The side scattering aperture is large and 

circular instead, designed to collect as much light as possible. It collects between 45° 

and 135° of polar angle. The geometry of the sensor apertures will be discussed in 

further detail in Chapter 6. 
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The fluidics system within the CytoSense is divided into 3 main lines (Fig. 3.7). The 

sample line is the shortest and is used to take the sample from its container to the 

flow cell. It is driven by a peristaltic pump the flow rate of which can be set by the 

operator. Adjusting the flow rate of the pump influences the width of the core flow. 

The sheath line is divided in two by the particulate filters. It is driven by a vacuum 

pump, the flow rate of which can also be set by the operator. Adjusting the flow rate 

of the pump influences the speed of the core flow. The first section of the sheath line 

takes the mixed sample waste from the flow cell towards the particle filters. Filtering 

happens in two stages: a first 0.45 µm main catch filter effects the bulk of the 

filtering, while a second 0.1 µm cleanup filter removes remaining particles, including 

ones produced by the wear in the sheath vacuum pump, which is located between the 

two filters. An overpressure outlet connects here – fluid exiting this outlet is a visual 

cue of clogging in the system. The second section of the sheath line re-circulates the 

filtered sheath fluid, feeding it back into the two-stage injector and closing the circle. 

Finally, the waste line takes excess fluid and any excess air from the main catch filter 

to a waste container. The waste line also includes a small 5 µm hydrophobic filter. 

Unlike older flow cytometer models, the CytoSense does not use peak detectors or 

integrator circuits to quantify the signals produced in the sensors after triggering, but 

rather digitizes the signal pulses at 4 MHz and sends the resulting profiles to the 

computer for further analysis. The CytoSense employed in this study has three signal 

channels available: forward scattering, side scattering and red fluorescence (685 nm), 

the latter being selected using a 675 ± 15 nm bandpass filter. Particle detection can 

be triggered on any of the three and the threshold level can be set independently on 

all of them by the operator. The gain setting of the side scattering and red 

fluorescence photomultipliers is variable and can also be set independently on each 

of the two by the operator. 

A description of the operation and maintenance procedures of the CytoSense flow 

cytometer is given in Appendix A as reference. 
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Figure 3.7 – General diagram of the fluidics system within the CytoSense and simple overlay of the 

sensor setup. The black dots indicate the points where the tubing sections interconnect through Luer 

locks. A) Sample inlet. B) Sample peristaltic pump. C) Flow cell. D) Side scattering and fluorescense 

sensor aperture. E) Forward scattering mirrors (note that the main laser beam is left uncollected rather 

than being actively removed using a beam stop. A beam stop is indeed present but located on the 

optical block casing wall). F) Forward scattering left/right polarization photodiodes. G) Mixed fluid 

external bypass (with valve for external access). H) Primary 0.45 µm glass fibre main catch filter. I) 

Waste outlet. J) Sheath vacuum pump. K) Secondary 0.1 µm glass fibre cleanup filter. L) 

Overpressure outlet. M) Sheath fluid 1st stage injector. N) Sheath fluid 2nd stage triple injector. 
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3.4 CytoSense characterization 

This section describes the characterization procedures that were used to validate the 

correct functioning of the CytoSense and its capabilities for precision concentration 

measurements. Empirical correction factors designed to ensure the latter are also 

described in the following. 

3.4.1 Pump flow rate calibration 

3.4.1.1 Semi-automated calibration procedure 

As shown in the previous sections, the CytoSense uses a peristaltic pump to carry the 

sample towards the flow cell assembly. The sample is injected into the sheath fluid 

stream, so that the speed of the sample flow within the flow cell is driven by the 

sheath vacuum pump. Given a fixed sample flow speed, the revolution rate of the 

peristaltic pump controls the amount of sample intake and the thickness of the 

sample core instead. Since the volume estimations provided by the instrument 

through its software will be the basis for all concentration measurements, a precise 

calibration of the correspondence between pump flow rate (given as volume flow, 

ml/s) and actual total sample volume intake is required, so that the instrument can 

give the best possible estimate of the analysed volume. 

A software-driven estimation of the analysed volume is particularly necessary 

because total processed volume (sample volume used up during a measurement) and 

total analysed volume (sample volume actually analysed by the instrument) are not 

coincident. The discrepancy is due to data transfer overhead – the time during which 

particle data is acquired and sent to the computer and the instrument is not analysing 

(but still consuming) the sample (CytoBuoy, private communication). The 

discrepancy is not constant, but increases as the number of detection events 

increases, e.g. in high particle concentration samples or with high sensitivity settings 

in the PMTs. 

To calibrate the peristaltic pump flow rate the CytoSense uses a semi-automated 

calibration procedure which can be initiated from the CytoUSB interface. The 
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procedure should be repeated periodically, and the instrument software prompts the 

user to do so every few months. The procedure is based on two steps: a first 

automated cycle of sample intake at a high pump flow rate which takes a few 

minutes to complete and a second phase of precision weighing of the total sample 

uptake. This is done by the operator by measuring the mass of the sample before and 

after the calibration cycle. After the automated cycle the software prompts the 

operator to input the mass of the sample before and after the cycle, along with the 

density of the calibration liquid used. The obvious (but not obligatory) choice is to 

use water as the calibration sample, and two pre-sets are available for it within the 

software (0.998 g/cm
3
 for pure water and 1.024 g/cm

3
 for salt water). The density 

value can otherwise be set by the user to suit any other calibration liquid. 

3.4.1.2 Manual validation procedure 

After successfully completing the calibration procedure, it is desirable to manually 

verify that the total processed volume correctly reflects sample intake at a set flow 

rate and for a set amount of time. To do so a simple verification protocol is set up. 

Using the same principle used during the calibration itself, precision weighings of a 

water sample were made, for a few different flow rates and multiple times each. 

Sample runs are executed at 0.13, 0.26, 0.52, 1.04, 2.53 and 5 μl/s, with the sample 

mass being recorded before starting each run and then three more times at 2, 4 and 6 

minutes into the run. Total processed mass values are then simply compared with 

expected values produced by combining nominal processed mass, pump flow rate 

and density, calculated as 𝑀𝑟𝑒𝑓 = 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 ∙ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∙ 0.12, where 0.12 is the 

nominal volume processed in 120 s at 1 μl/s in cm
3 

(Tab. 3.1). The displayed pump 

flow rate was found to slightly underestimate the actual flow rate, with the effect 

becoming increasingly visible at high pump flow rates (best fit line: y = 1.058x - 

0.003, adj. R-squared: 0.999, RMSE: 0.004), although the high linearity of the 

relationship demonstrates that correct proportionality is preserved between different 

flow rate settings (Fig. 3.8). Forcing the intercept of the fit line to pass through zero 

produces marginally worse results (y = 1.051x, adj. R-squared: 0.999, RMSE: 0.004), 

but provides a correction factor (5.1%) for the actual volume intake at all pump flow 

rates. 
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Table 3.1 – Values for the mass of Milli-Q water left in the sample container during the pump flow 

rate calibration manual validation procedure. All measurements were taken using a precision scale at 

the start of each flow rate run and subsequently 2, 4 and 6 minutes into the run. At higher flow rates 

the mass intake projected using the calibrated values underestimates the actual intake values (ΔMref) 

slightly.  

 

Figure 3.8 – Linear fit of the mass measurements for the pump flow rate calibration manual validation 

procedure as presented in Table 3.1, shown in comparison with the 1:1 line (grey line). The expected 

values given by the calibration underestimate the actual measured intake, but the high linearity of the 

relationship (best fit line: y = 1.058x - 0.003, adj. R-squared: 0.999, RMSE: 0.004) suggests that the 

correct proportionality is maintained between different flow rates. 
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3.4.2 Assessment of precision concentration measurement capabilities 

The validation of the pump flow rate calibration procedure and the capability of the 

CytoUSB software to correctly estimate the sample volume intake enables further 

validation of the concentration measurement capabilities of the CytoSense 

instrument. This further validation can be carried out in two ways: either by using a 

single sample containing a known amount of particles or by using a dilution series 

made from a sample containing an unknown amount of particles. In the first case the 

validation is successful if the instrument is capable of measuring the expected 

amount of particles. In the second case the validation is successful if the relative 

concentrations measured for the series are consistent with the relative dilution.  

3.4.2.1 2 μm precise counting beads 

For the first case a ready-made sample of 2 μm polymer beads (EZY-CAL 

Microsphere Size Standards, Thermo Fisher Scientific) was used. The sample is 

supplied pre-counted by the manufacturer with a nominal concentration of 2000 ± 

10% particles per ml, enclosed in its own bottle and complete with a magnetic stirrer. 

Exploratory measurements were made at 0.50, 0.99 and 2.98 μl/s. Results at low 

flow rates provided concentrations which were markedly lower than the nominal one, 

while results at higher flow rates produced concentrations closer to provided 

parameters (Tab. 3.2). This hints to a systematic underestimation of particle 

concentrations at low pump flow rates. 

 

Table 3.2 – Numerical concentration values for the EZY-CAL 2 m polymer beads sample test run. 

All three values underestimate the expected value of ~2000 part./ml, with larger discrepancy at lower 

flow rates.  
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3.4.2.2      1 μm beads dilution series 

For the second case a sample of 1 μm latex beads (Duke Particle Counter Size 

Standards, Thermo Fisher Scientific) was used, in a proportion of 1 droplet (ca. 0.05 

ml) of bead suspension per 10 ml of Milli-Q water. Concentration within the bead 

suspension bottle is given as approximately 1x10
9
 part./ml, so that no precise 

quantity for the final concentration within the sample can be given. However, the 

nature of a dilution series is so that the operator doesn’t need knowledge of the 

original concentration, as all subsequent concentrations in the dilutions can be 

normalized by the original value. The dilution series was made up of the original 

sample and of three dilutions with concentrations 12.5%, 25% and 50% of the 

original. All four samples were measured three times each with each run lasting 120 s 

(Tab. 3.3). Resulting concentrations were normalized by the average concentration of 

the three 100% concentration runs, and found to fit the 1:1 line with an adjusted R-

squared value of 0.996 and an RMSE of 0.023 (Fig. 3.9). 

 

 

Table 3.3 – Numerical concentration values for the 1 μm polymer beads dilution series. The average 

values were normalised using the average concentration of the undiluted sample. 
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Figure 3.9 – Normalised numerical concentration values for the 1 μm polymer beads dilution series. 

The measured concentrations maintain the correct proportionality between dilutions (goodness of fit 

for the 1:1 line: adj. R-squared: 0.996, RMSE: 0.023). 

3.4.3 Concentration underestimation correction 

The results of the concentration measurements validation hinted at the CytoSense 

underestimating the actual particle concentrations when running at low pump flow 

rate settings. A further series of measurements was therefore carried out to 

characterize the underestimation and develop a correction for it, both on the EZY-

CAL 2 m polymer beads sample and on a second sample of 10 μm polymer beads 

(Duke Particle Counter Size Standards, Thermo Fisher Scientific). 

3.4.3.1      2 μm beads measurement series 

The first measurement series was carried out on the EZY-CAL 2 μm polymer beads 

sample for pump flow rates set at 0.99, 1.99, 2.98, 3.97, 4.97, 5.96 and 9 μl/s, with 

ten replicates for all settings but the last. Only seven replicates were made for 9 μl/s 

due to the large consumption of sample at this flow rate. The results were integrated 

with those presented in paragraph 3.4.2.1, and found to plateau at ~3 μl/s without 

ever reaching the nominal concentration expected for the sample. The expected value 

of ~2000 part./ml was found to be 1.088 times the plateau value obtained as the 
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average concentration of all replicates at 4.97, 5.96 and 9 μl/s. Finally, all 

concentrations were normalized using the plateau value (Tab. 3.4).   

 

Table 3.4 – Numerical concentration values for the EZY-CAL 2 μm polymer beads sample at various 

flow rates. The average values were normalised using the average concentration of all replicates at 

4.97, 5.96 and 9 μl/s. The concentration value for the plateau never reaches the expected concentration 

of ~2000 part./ml. 

The results indicate a clear relationship between pump flow rate settings and 

measured concentration in the sample. Such relationship was found to be well fitted 

by an exponential curve of the type 

𝑦 = 𝑎𝑒−𝑏𝑥 + 𝑐 , (3.1) 

suggesting the possibility of developing a correction to compensate for the 

underestimation (Fig. 3.10). The correction curve is given via a least-squares fit of 

pump flow rate vs. normalized concentration of the reference beads, providing the 

means of calculating a concentration correction factor for each particular pump flow 

rate i.e. given a set sample pump flow rate, concentrations are corrected by dividing 

by the corresponding resulting factor. Curve parameters for the 2 μm polymer beads 

correction curve: a = -0.653, b = 1.148, c = 0.988. 
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Figure 3.10 – Pump flow rate concentration correction curve (y = ae
-bx

 + c) for the EZY-CAL 2 μm 

polymer beads normalised concentration values presented in Table 3.4. Curve parameters: a = -0.653, 

b = 1.148, c = 0.988. 

However, such relationship can be broadly applied to a mixed sample only if no large 

selection bias between different particle classes is present. One likely cause for 

underestimation may be settling/inertia of large particles, so that size variations may 

be subject to selection bias in concentration measurements. 

3.4.3.2      10 μm beads measurement series 

The same measurement protocol applied to the EZY-CAL 2 μm polymer beads 

sample was applied to a sample of 10 μm polymer beads (Duke Particle Counter Size 

Standards, Thermo Fisher Scientific) to investigate the influence of size selection 

bias in the underestimation of particle concentrations at low pump flow rates. The 

measurement series used the same pump flow rate settings as the 2 μm beads series, 

starting from 0.99 μl/s, and a smaller number of replicates (6 for all flow rates but 9 

μl/s, for which 4 replicates were made). The actual concentration within the sample 

is unknown a priori, but not needed as all data are normalized to the value of the 

plateau (Tab. 3.5). 
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Table 3.5 – Numerical concentration values for the 10 μm polymer beads sample at various flow rates. 

The average values were normalised using the average concentration of all replicates at 5.96 and 9 

μl/s.  

When the exponential curve model is fitted to the 10 μm data, differences are visible 

in comparison with the 2 μm curve. The curve rises more slowly towards the plateau, 

indicating that larger particles require faster pump flow rates (Fig. 3.11).  

 

Figure 3.11 – Pump flow rate concentration correction curve (y = ae
-bx

 + c) for the 10 μm polymer 

beads normalised concentration values presented in Table 3.5. Curve parameters: a = -0.634, b = 

0.496, c = 1.020. 
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As a result, the plateau value was obtained as the average concentration of all 

replicates at 5.96 and 9 μl/s pump flow rates only. Curve parameters: a = -0.634, b = 

0.496, c = 1.020. 

3.4.3.3      General correction curve 

In a compromise between exactness and wider applicability of the method, the 

differences between the two exponential curve models were considered small enough 

for the two datasets to be merged and a single correction model to be consequently 

produced (Fig. 3.12), with curve parameters:  a = -0.544, b = 0.623, c = 1.003. 

 

Figure 3.12 – Pump flow rate concentration correction curve (y = ae
-bx

 + c) for the combined 2 μm 

(squares) and 10 μm (circles) polymer beads normalised concentration values. Curve parameters: a = -

0.544, b = 0.623, c = 1.003. 

3.5 Conclusions 

The CytoSense flow cytometer is found to slightly underestimate the flow rate of the 

sample pump, which in turn leads to an underestimation of the actual processed 

sample mass and, consequently, of the actual processed sample volume. It should be 

noted that the degree of underestimation (~5% for all flow rates) is negligible at low 

pump flow rates, and that the strongly linear relationship between actual and 

expected processed sample mass at various pump flow rates (adj. R-squared: 0.999, 
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RMSE: 0.004) demonstrates that correct proportionality is preserved between 

different flow rate settings. This consistency is further demonstrated by the analysis 

of normalized particle concentrations in a dilution series of a 1 μm polymer beads 

suspension, which also produces highly linear results when compared with expected 

normalized concentrations (adj. R-squared: 0.996, RMSE: 0.023 for the 1:1 line). 

Particle concentration analysis in a 2 μm polymer beads suspension for which the 

particle concentration is known shows that the CytoSense consistently 

underestimates particle concentrations at all flow rates, and increasingly so at low 

pump flow rates. Particle concentrations measured by the instrument are found to 

plateau at concentration values on average 1.088 times lower than expected; this is 

interpreted as a systematic discrepancy, and the value kept as a correction factor to be 

applied at all flow rates in the remainder of this work. Coincidentally, this correction 

also accounts for the processed/analysed sample volume discrepancies as far as 

particle concentrations are concerned. Furthermore, the concentration 

underestimation vs. pump flow rate relationship is found to be well represented by an 

inverse exponential model (y = ae
-bx

 + c), which is used to develop a concentration 

correction curve. When correction curves are produced for both 2 μm and 10 μm 

polymer beads suspension, differences can be seen in the curve parameters which 

suggest some degree of size selection bias is taking place, likely due to the higher 

sinking speed of larger spheres; however, the differences are assumed small enough 

for a general correction curve to be calculated from a merger of the 2 μm and 10 μm 

datasets, with curve parameters:  a = -0.544, b = 0.623, c = 1.003. This is of course a 

compromise, and in fact density as well as shape of the particles can also be expected 

to produce a bias in the measured concentrations. Nevertheless, the effect of particle 

size is the only one that could be assessed reliably, and the loss of exactness caused 

by the adoption of a generalised model is deemed an acceptable trade-off in 

exchange for a wider applicability of the method. As with the 1.088 plateau 

concentration ratio, the general correction curve is also used to correct flow-rate-

induced concentration underestimations in the remainder of this work. In practice, 

the final expression for the particle concentration correction factor takes the form 
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𝑥𝑃𝑈𝑀𝑃(𝑄) =
1.088 

𝑦(𝑄)
 , (3.2) 

where Q is the flow rate and y the value of the general correction curve at that flow 

rate.  
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4.      Impact of particle size and RI distributions on the 

scattering properties of particle populations 

In this chapter the Mie-based IOP forward scattering model presented in Chapter 2 is 

employed to explore the effects that spectral dependence of the complex refractive 

index and variations in the PSD have on the scattering behaviour of a particle 

population (within the frame of Mie theory) and on the -dependence of VSF and 

backscattering ratio �̃�𝑏. The same features are also used to investigate the resilience 

of two frequently-used empirical approaches to the description of VSF and 

backscattering: the Fournier-Forand phase function approximation and the χ factor 

method for particle backscattering derivation. 

4.1 Introduction 

In Chapter 1 the VSF was shown to be one of the fundamental IOPs, as it describes 

the angular structure of the scattering, i.e. it provides information on which fractions 

of the incident light are scattered into each angle θ ∈ [0,π] (the scattering being 

assumed to be axially symmetric). Integration of the VSF over the appropriate angle 

ranges produces the scattering coefficient b and the backscattering coefficient bb. 

Measuring the VSF over the complete angular range is, however, technically 

challenging: this is due to the complexity of the instrument design required to make 

large numbers of discrete measurements over the broad angle range and the large 

dynamic range of the scattering signals (Sullivan & Twardowski, 2009). 

A number of works over the years have faced this challenge using custom-made 

instruments (Jerlov, 1961; Kullenberg, 1968; Petzold, 1972; Lee & Lewis, 2003; 

Sullivan & Twardowski, 2009; Tan et al., 2013) and while some VSF meters are now 

commercially available (e.g LISST-VSF, Sequoia Scientific, Inc., WA) it is still 

common practice to employ mathematical functions to analytically approximate the 

shape of the VSF, the most prominent of which is the Fournier-Forand phase 

function (Fournier & Forand, 1994; Mobley et al., 2002). Other approaches sidestep 

the necessity of measuring the entirety of the VSF, for example by deriving the 
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backscattering coefficient from a single, broad angle measurement using a coefficient 

known as the χ factor (Maffione & Dana, 1997; Boss & Pegau, 2001). 

PSDs are especially tied to the VSF in the sense that efforts can be made to derive 

one from the other and vice versa. On one hand, recent works have described ways to 

invert volume scattering functions to reconstruct particle size distributions (Zhang et 

al., 2011; Zhang et al., 2014); on the other hand, all approaches to approximate the 

VSF have to include some definition of the properties of the PSD in their procedure. 

In Chapter 1 the power law or Junge distribution was introduced as the most 

common approximation for the PSD of mixed marine particle populations. Ulloa et 

al. (1994) showed that this kind of distribution, when matched with spectrally 

independent RIs, has the effect of making the backscattering ratio -independent, 

which in terms of VSF means that the angular structure of the scattering, represented 

by the SPF of eq. (1.24), remains unchanged across visible wavelengths. 

However, this raises the question of just how sensitive this potentially helpful 

outcome is to deviations from the underlying assumptions of a Junge particle size 

distribution and a spectrally flat complex refractive index. The Mie-based IOP 

forward scattering model presented in Chapter 2 was therefore employed to assess 

the effect that a series of perturbations to these standard assumptions has on the 

modelled IOPs. This was done firstly by introducing spectral dependence of the 

complex refractive index and secondly by adding a series of log-normal curves to the 

power law distribution. These log-normal perturbations are intended to reproduce 

sub-populations with varying average size (by controlling the mode of the 

distribution), number of individuals (by changing the peak height of the distribution) 

and size variability (by controlling the scale width parameter of the distribution), 

broadly representative of events such as phytoplankton blooms and plumes of 

sediment. The effectiveness of the Fournier-Forand phase function in reproducing the 

shape of the scattering phase function (SPF) and the resilience of the χ factor were 

also both tested using the same set of log-normal variations. 

Note: the backscattering ratio is defined as a percentage of the scattering coefficient; 

unless explicitly stated, a reported increase or decrease in its value is meant to be 
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interpreted as such, and not compounded as a percentage increase or decrease of the 

value itself (e.g. a 2% increase of �̃�𝑏 = 1% is to be understood as �̃�𝑏 = 3%, not as 

�̃�𝑏 = 1.02%). 

4.2 Theory 

4.2.1 Fournier-Forand phase function 

The Fournier-Forand phase function (FFPF) is an analytic function made to 

approximate the SPF of a power law size distribution of suspended particulate, 

specifically conceived to replicate the SPF given in the landmark Petzold (1972) 

paper. It is useful in situations where technical limitations impede the direct 

determination of the SPF over the entire angular range. This study adapts the 

equations and methodology given by Mobley et al. (2002), which built upon the 

original work (Fournier & Forand, 1994) by parametrizing it on backscattering ratio 

�̃�𝑏 alone. In this formulation, the FFPF is given by 

𝛽𝐹𝐹(𝜃) =
1

4𝜋(1 − 𝛿)2𝛿𝜈
{𝜈(1 − 𝛿) − (1 − 𝛿𝜈)

+ [𝛿(1 − 𝛿𝜈) − 𝜈(1 − 𝛿)] sin−2 (
𝜃

2
)}

+
1 − 𝛿180

𝜈

16𝜋(𝛿180 − 1)𝛿180
𝜈 (3 cos2 𝜃 − 1) , 

(4.1) 

where  

𝜈 =
3 − 𝜇

2
 (4.2) 

and 

𝛿(𝜃) =
4

3(𝑛 − 1)2
sin2 (

𝜃

2
) . (4.3) 

Here n is the real part of the refractive index and 𝜇 the slope of the power law 

distribution.  
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Equation (4.1) can be integrated to get the backscattering ratio  

�̃�𝑏 = (−
1

2
)

1 − 𝛿90
𝜈

(1 − 𝛿90)𝛿90
𝜈  , (4.4) 

but no unique pair of n and 𝜇 exists for a given �̃�𝑏 value: to proceed forward the 

procedure would need ancillary measurements which are most often problematic. To 

circumvent this, a linear relationship is postulated between the two variables 

(Mobley et al., 2002), 

𝑛 = 1.01 + 0.1542(𝜇 − 3) (4.5) 

Equations (4.4-4.5) can then be used to produce a lookup table of backscattering ratio 

values. The table is used to find the closest match with the backscattering ratio 

modelled from Mie theory, and the corresponding n and 𝜇 values are used to produce 

𝛽𝐹𝐹(𝜃). 

4.2.2 χ factor 

The technical challenges posed by VSF measurements have the effect of making 

backscattering coefficient measurements equally difficult. An alternative approach to 

the problem is to estimate the backscattering coefficient by measuring scattering 

𝛽(𝜃) at a single angle or small angular range and multiplying the value by a constant 

factor . This method revolves around the idea of a special angle for which scattering 

𝛽(𝜃) has a linear relationship with bb irrespective of the properties of the particle 

population (Oishi, 1990; Maffione & Dana, 1997; Boss & Pegau, 2001). 

Using the 𝜒 factor, bb is obtained through 

𝑏𝑏 = 2𝜋𝜒(𝜃)𝛽(𝜃) . (4.6) 

Since the scattering is partly due to particles and partly due to water, the 𝜒 factor is 

similarly divided to give 
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𝜒(𝜃) =  𝜒𝑤(𝜃)𝑦 + 𝜒𝑝(𝜃)(1 − 𝑦), (4.7) 

where 𝑦 ∈ [0,1] represents the fraction of scattering due to water. It follows that the 

optimal angle for backscattering estimation is the angle where 𝜒(𝜃) =  𝜒𝑤(𝜃) =

 𝜒𝑝(𝜃), because at this angle there is no need to know the relative contributions of 

water and particles to the overall scattering. The approach was found by Boss & 

Pegau (2001) to work best for 𝜃 = 117° ± 3°, with a reference 𝜒 factor value given 

as 𝜒𝑝(117°) = 1.1 ± 4%. A more recent work by Sullivan & Twardowski (2009) 

further reports the 𝜒 factor approach to work best between 110° and 120°, with 

values respectively 𝜒𝑝(110°) = 1.000 ± 0.026 and 𝜒𝑝(120°) = 1.097 ± 0.032 

compatible with previous sources. 

4.3 Methods 

4.3.1 Spectral dependence of the complex relative refractive index 

A first set of perturbations to the spectral independence of the backscattering ratio 

was introduced in the form of -dependence in the complex refractive index, given 

relative to water (𝑛𝑟  =  1.333). The -dependent RIs were applied to a single power 

law distribution with slope value 𝛾 = 4. Typical spectral values for the real 

component of the refractive index of organic matter were estimated from Fig. 2 

(lower panel) of Stramski et al. (1988). No useful literature including spectral rRI 

information for mineral particles was found, and the inorganic real refractive index 

was set at a fixed value of 1.15 (cf. Tab 1.1). Using the same procedure, typical 

values for the imaginary component of the relative refractive index were estimated 

from Fig. 8 of Babin et al. (2003), for both organic and inorganic particles. 

Variability for both the real and imaginary components of the refractive index was 

considered simultaneously, so that for this sensitivity test a combined, λ-dependent 

complex relative refractive index was fed into the model (Tab. 4.1, Fig. 4.1). 
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Table 4.1 – Spectral values for the real and imaginary parts of the refractive index as adapted from 

literature – Stramski et al. (1988), Fig. 2, lower panel, and Babin et al. (2003), Fig. 8. The inorganic 

real refractive index was set at a fixed value of 1.15. 

 

Figure 4.1 – The profiles for the organic and inorganic spectral values of (a) the real part of the 

refractive index and (b) the imaginary part of the refractive index presented in Tab. 4.1. 
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4.3.2 Log-normal variations in the PSD 

The second set of perturbations to the spectral independence of the backscattering 

ratio was introduced with the addition of log-normally distributed populations to the 

classic power law PSD, as defined in eq. (1.36). A baseline population was 

represented with a fixed power law distribution with slope 𝛾 = 4 and particle 

diameters ranging between 10
-8

 and 10
-4

 m. The log-normal deviations were made to 

vary along three parameters: the mode, the scale width parameter σ and a scaling 

population multiplier K (Tab 4.2), defined so that the resulting log-normal 

distribution peaks at K times the corresponding N(mode) value in the baseline power 

law distribution. The mode of a log-normal is tied to the other parameters of the 

distribution by  

𝑚𝑜𝑑𝑒 = 𝑒(𝜇−𝜎2) . (4.8) 

The effects of increasing values for K (with fixed σ = 0.1) and of increasing scale 

width σ (with fixed K = 1) at various points along the power law distribution were 

considered separately (Fig. 4.2). 

 

 

Table 4.2 – The values of the mode, population multiplier K and scale width parameter σ used in the 

test of sensitivity to log-normal perturbations to the power law PSD. 
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Figure 4.2 – Log-normal variations corresponding to the values of (a) population multiplier K and (b) 

width parameter σ presented in Tab. 4.2 (for clarity, curves are displayed for mode = 0.5 m only). 

4.3.3 Quantification of -dependence 

The spectral backscattering ratio resulting from both types of perturbations is the 

outcome of the effects induced by the deviations on the angular structure of the VSF. 

While a purely power-law-like distribution with spectrally flat RIs has the same 

angular structure at all wavelengths, it is generally not so for the modified PSDs (Fig. 

4.3) and/or when the complex RI is -dependent.  

 

Figure 4.3 – (a) An example of log-normal distribution added to a power law size distribution and (b) 

the effect it has on VSF at various wavelengths (blue to dark red, going from 400 to 700 nm). 
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All resulting spectral backscattering ratios were fitted linearly against , using the 

slope of the fit line as a measure of -dependence (Fig. 4.4). For the sake of 

simplicity, all slopes are given using microns as the unit measure of wavelength: 

under this convention a slope value m = 1 corresponds to a rate of change of 1% �̃�𝑏 

per µm, which translates to 0.3% over the 400-700 nm wavelength range here 

considered. Note that although all observed spectral dependencies are mostly linear 

with , the degree to which they agree with this simple model varies; the linear best 

fit model was chosen as a slightly crude but rather convenient way to characterise the 

broader aspect of the -dependence. 

 

Figure 4.4 – The effect on the -dependence of the backscattering ratio for the same distributions 

presented in Fig. 4.3. The slope of the linear fit is used as a measure of the -dependence in terms of 

rate of change of the backscattering value over the 400-700 nm wavelength range considered. 

4.3.4 FFPF calculations 

Following eqs. (4.4-4.5) a lookup table of backscattering ratio values was generated 

starting from an array of 1000 𝜇 values, linearly spaced between 𝜇 = 3 and 𝜇 = 5. 

The �̃�𝑏 values provided by the forward scattering model were then compared with 

the values within the lookup table to find the closest match and produce the 

corresponding 𝛽𝐹𝐹(𝜃). The FFPF approximation was tested by applying the same 

PSD deviations described in Paragraph 4.3.2. For each of the perturbations described 

and each of the 16 linearly spaced wavelengths between 400 and 700 nm a FFPF and 
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a SPF were produced, for a total of 2460 significant FFPF-SPF pairs. The quality of 

the FFPF approximation was assessed by calculating a  𝛽𝐹𝐹(𝜃)/�̃�(𝜃) ratio for each 

of these pairs over the whole angular range, providing an indication of the agreement 

between the two for each individual angle. 

4.3.5 χ factor calculations 

𝜒𝑝(𝜃) was calculated using eq. (4.7) over the entire angular range for each of the 

PSD deviations considered in paragraph 4.3.2. Average 𝜒𝑝(𝜃) and its variance were 

determined for each individual angle across all cases to locate the angular 

neighbourhoods of major stability, with particular attention to the ~117° area for 

which no information on the relative contribution of water to the scattering is needed 

(Boss & Pegau, 2001).  

4.4 Results 

4.4.1 IOP forward modelling validation 

The IOP forward modelling used in this case-study follows the lines described in 

Section 2.2 of Chapter 2 and builds on the Mie theory foundations provided in 

Chapter 2 in general. To validate its correct functioning the model was employed to 

reproduce the results given by Ulloa et al. (1994). Three Junge distributions used in 

their work were replicated, with slope value 𝛾 = 4 and the real part of the complex 

refractive index set to 𝑛𝑟 = 1.04, 𝑛𝑟 = 1.05 and 𝑛𝑟 = 1.06 respectively (all real 

refractive indices values in this chapter are given relative to water). The imaginary 

part was set to 𝑛𝑖 = 0.001. The particle distributions thus produced were fed into the 

model and the results compared with those presented by Ulloa et al.; all three 

backscattering ratios were found to be 𝜆-independent and to follow closely the results 

of the paper (Fig. 4.5a). It is interesting to note that although the angular distribution 

of the scattering (the SPF) is 𝜆-independent under these conditions, the magnitude of 

the scattering (and therefore the VSF) is not (Fig. 4.5b). 
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Figure 4.5 – (a) Wavelength-independence in the backscattering ratio for a power law PSD and fixed 

refractive indices. The scattering model successfully reproduces the results presented in Fig. 4 of 

Ulloa et al. (1994) when the same parameters are used. (b) Detail of the VSF for n = 1.05-0.001i. The 

backscattering ratio is spectrally flat because the angular distribution of the scattering is the same at all 

wavelengths (blue to dark red, going from 400 to 700 nm); the magnitude of the scattering, however, 

is not constant between wavelengths. 

4.4.2 Spectral dependence of VSF and backscattering ratio 

4.4.2.1 Effects of complex refractive index λ-dependence 

Spectral dependence in the complex relative refractive index induced a range of 

variability of 0.145% (2.702-2.847%) over the 400-700 nm wavelength range in the 

backscattering ratio of inorganic-like particles, as opposed to a range of variability of 

0.111% (0.709-0.820%) for organic-like particles (Fig. 4.6). The linear best-fit of the 

backscattering ratio produced slope values γ = 0.141 and γ = 0.475 for organic- and 

inorganic-like particles respectively, with corresponding R-squared values 0.147 and 

0.932. This corresponds to an average rate of change of 0.042% and 0.280% 

respectively over the 400-700 nm range. The small R-squared value obtained for 

organic-like particles indicates that variability is dominated by oscillations around 

the mean. Overall it can be concluded that λ-dependent complex relative refractive 

indices did cause some variability in the backscattering ratio, but of small magnitude. 
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Figure 4.6 - Effect on the -dependence of the backscattering ratio of the introduction of λ-dependent 

complex refractive indices in a power law PSD (slope value  = 4), for both organic-like and 

inorganic-like refractive indices. 

4.4.2.2  Effects of log-normal variations in the PSD 

When the height of the added log-normal populations (the population multiplier K) 

was made to vary, substantial variability was seen for distribution modes ranging 

from 0.05 to 1 µm for organic-like particles, and up to 10 µm for inorganic-like ones 

(Fig. 4.7a-b). Using λ = 550 nm as sample wavelength, the backscattering ratio was 

generally seen to increase with increasing log-normal height for particles smaller 

than 1 µm, and to decrease (or remain largely constant) for larger particles. In the 

most extreme case observed (mode = 0.1 µm, K = 100) the linear fit across all 

wavelengths provided slope values 𝑚 = −18.660 for organic-like particles and 

𝑚 = −29.720 for inorganic-like ones, corresponding to a rate of change of -5.598% 

and -8.916% respectively over the 400-700 nm wavelength range (Fig. 4.7c-d). The 

sign of the slope was also found to switch between 0.1 and 0.5 µm, changing from a 

decreasing trend to an increasing one from blue to red wavelengths. In general, 

organic-like particles mirrored the behaviour of inorganic-like ones, but with smaller 

absolute values for both �̃�𝑏 and �̃�𝑏 slope. Overall, in both cases the largest effects 

were found for the smallest particles, and as a general rule the magnitude of the 
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spectral slope increased as the height of the distribution increased, with slope 

direction varying in a progressive manner with mode value. 

 

Figure 4.7 – Resulting �̃�𝑏 values at the 𝜆 = 550nm sample wavelength due to log-normal deviations 

made to vary along the height (K), for (a) organic- and (b) inorganic-like particles. In the bottom row, 

resulting slopes of the linear fit of the spectral �̅�𝑏 values due to the same log-normal deviations, for (c) 

organic- and (d) inorganic-like particles. 

When the width of the log-normal (the scale width parameter 𝜎) was made to vary, 

large deviations were seen to correspond to distribution modes ranging from 0.05 to 

0.1 µm for organic- and up to 5 µm for inorganic-like particles. Using λ = 550 nm as 

sample wavelength, �̃�𝑏 was generally seen to irregularly decrease across all modes, 

with only 0.05 and 0.1 µm producing an initial increase before settling to lower �̃�𝑏 

values as well. As it was the case for log-normal height variations, organic-like 

particles mirrored the behaviour of inorganic-like ones, but with smaller absolute 

values (Fig. 4.8a-b). The behaviour of the �̃�𝑏 slope was found to be non-uniform; the 

slope for mode 0.05 µm becomes negative at first, before quickly growing highly 
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positive and finally settling close to zero. The slope for mode 0.1 µm steadily grows 

at first, but eventually settles towards zero as well (Fig. 4.8c-d). For organic-like 

particles, all other cases remain largely constant and close to zero (Fig. 4.8c); 

inorganic-like particles continue to show a variety of behaviours instead, with slopes 

irregularly increasing to values above zero for particles between modes 0.5 and 10 

µm, slightly decreasing for modes 50 and 100 µm, and constant at zero for 500 µm 

only (Fig. 4.8d). 

 

Figure 4.8 – Resulting �̃�𝑏 values at the 𝜆 = 550nm sample wavelength due to log-normal deviations 

made to vary along the width (𝜎), for (a) organic-  and (b) inorganic-like particles. In the bottom row, 

resulting slopes of the linear fit of the spectral �̅�𝑏 values due to the same log-normal deviations, for (c) 

organic- and (d) inorganic-like particles. 

The most extreme case corresponded to mode 0.05 µm, with �̃�𝑏 slope ranging from a 

minimum value 𝑚 = −1.501 (𝑚 = −4.003) to a maximum value 𝑚 = 8.090 

(𝑚 = 16.230) for organic-like (inorganic-like) particles, corresponding to 𝜎 = 0.4 

and 𝜎 = 0.6 (𝜎 = 0.4 and 𝜎 = 0.6 as well). These largest deviations (mode = 0.05 
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µm, 𝜎 = 0.6) respectively result in a rate of change of 2.427% and 4.869% in �̃�𝑏 

between 400 and 700 nm. 

4.4.3 Resilience of the FFPF 

The FFPF script was first of all tested in its capability to emulate the results 

presented in Mobley et al. (2002). The backscattering ratio value given for Petzold’s 

data (�̃�𝑏 = 0.0183) provided values for slope and refractive index 𝜇 = 3.5826 and 

𝑛 = 1.0998, respectively differing by 0.018% and 0.025% from the 𝜇 = 3.5835 and 

𝑛 = 1.10 values given by Mobley et al. (2002). The values thus obtained were used 

to produce a corresponding 𝛽𝐹𝐹(𝜃), which was compared with Petzold’s SPF: the 

FFPF produced by the script successfully matched Petzold’s data with an average 

FFPF/SPF ratio of 0.99 ± 0.10 across the angular range (Fig. 4.9). 

 

Figure 4.9 – Validation of the FFPF script and comparison with the SPF produced for the same 

parameters by Mie-based forward modelling in (a) log-linear and (b) log-log scales. 

After validating the FFPF script, the resilience of the FFPF approximation was tested 

against the set of log-normal variations in the PSD, producing a variety of results 

(Fig. 4.10). Overall, as indicated by each 𝛽𝐹𝐹(𝜃)/𝛽(𝜃) ratio, the FFPF approximated 

the SPF to within ±10% of its value (0.9 < 𝛽𝐹𝐹(𝜃)/�̃�(𝜃) < 1.1) in less than half of 

the 2460 significant cases for the angle range 0° − 70°, and in less than a fifth of 

them for the angle range 0° − 60° (except for two local maxima around 1.7° and 5.9° 
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for organic-like and inorganic-like particles respectively). At the opposite end of the 

angle range, the FFPF approximated the SPF within 10% of its value in less than a 

third of the significant cases for the angle range 175° − 180°. However the FFPF 

approximation fared considerably better when mid-backwards angles were 

considered, roughly in the range 90° − 165°. Three maxima were found at 99°, 120° 

and 162°. At the overall maximum, located at 120°, the FFPF approximated the SPF 

to within ±10% of its value in 92.561% of the 2460 significant cases, conforming to 

the idea that this angular neighbourhood is one of particular stability in terms of 

angular structure of the VSF, even in the case of major deviations from a power law 

distribution (Fig. 4.10).  

 

Figure 4.10 – Angular percentage of all significant cases considered for which the FFPF 

approximates the corresponding Mie-based SPF to within ±10% of its value (0.9 < 𝛽𝐹𝐹(𝜃)/𝛽(𝜃) <

1.1), both in (a) linear and (b) logarithmic angular scale. The FFPF fares poorly at forward and 

narrow-backward angles, but presents three compatibility maxima at 99°, 120° and 162°. At the 

overall maximum (120°) the FFPF approximated the SPF to within ±10% of its value in more than 

90% of the cases. 

When considering organic- and inorganic-like particles separately, the former were 

found to be better approximated by the FFPF as reflected by a general broadening of 

the maxima and a resulting higher rate of approximation within 10% across the 
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90° − 165° range. When considering K and 𝜎 perturbations separately, the former 

were found to be better approximated by the FFPF across most of the entire angle 

range for both organic- and inorganic-like particles. Singularly, the 𝜎 perturbations in 

the inorganic case produced their global compatibility maximum at 99° instead of 

120°. 

4.4.4 Resilience of the χ factor 

The reference value for the 𝜒 factor is given as 𝜒𝐵𝑃(117°) = 1.100 ± 0.044 by Boss 

& Pegau (2001). A more conservative value by Oishi (1990) (when converted into an 

𝜒 factor as per the definition given by Boss & Pegau) is given as 𝜒𝑂𝑖𝑠ℎ𝑖(120°) =

1.140 ± 0.114, with a corresponding 𝜒𝐵𝑃(120°) = 1.120 ± 0.047 and 

𝜒𝑆𝑇(120°) = 1.097 ± 0.032 (Sullivan & Twardowski, 2009). In our results (Tab. 

4.3), varying the height of the log-normal distributions produced 𝜒𝑝(117°) =

1.052 ± 0.056 and 𝜒𝑝(117°) = 1.090 ± 0.046 for inorganic- and organic-like 

particles respectively.  

 

Table 4.3 – 𝜒𝑝(117°) and 𝜒𝑝(120°) values obtained from the 2460 log-normal perturbations added to 

the power law PSD, given individually by varying height or varying width for both organic- and 

inorganic-like particles and together as the overall total. 

Varying the width instead produced 𝜒𝑝(117°) = 1.046 ± 0.069 and 𝜒𝑝(117°) =

1.106 ± 0.053, again for inorganic- and organic-like particles respectively. In both 

cases only organic-like particles produced 𝜒 factors compatible with 𝜒𝐵𝑃(117°); this 

is likely to be a reflection of the broader compatibility maxima found in the FFPF 

approximation for the organic case. As a result, when the overall 𝜒 factor for all 2460 
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significant cases is considered for  = 117° (𝜒𝑝(117°) = 1.074 ± 0.062) (Fig. 

4.11a) compatibility with 𝜒𝐵𝑃(117°) can be rejected at a 5% confidence level using 

an unequal variances T test (𝑡 = 3.852, 𝜈 = 46.77). When all 2460 significant cases 

are considered for  = 120° instead (𝜒𝑝(120°) = 1.118 ± 0.076) (Fig. 4.11b) 

compatibility with 𝜒𝐵𝑃(120°) cannot be rejected at a 5% confidence level (𝑡 =

0.276, 𝜈 = 47.11), although compatibility with 𝜒𝑆𝑇(120°) can. Even then, values 

for 𝜒𝑝(120°) and 𝜒𝑆𝑇(120°) are found to differ by 1.88%. When  = 117° is 

considered, 84% (93%) of all significant cases are found to lie within one (two) 

standard deviation(s) from the mean, while if  = 120° is considered, 87.7% (95%) of 

all significant cases are found to lie within one (two) standard deviation(s) from the 

mean. Standard deviation values are 5.8% and 6.8% of the mean for  = 117° and  = 

120° respectively. 

 

Figure 4.11 – Individual and overall values of (a) 𝜒𝑝(117°) and (b) 𝜒𝑝(120°). Each marker 

represents one of the cases, with smaller marks representing more extreme (less likely) deviations. 

The black, grey and light grey lines represent overall mean, standard deviation and 2x standard 

deviation of the 𝜒𝑝 values. 

4.5 Conclusions 

Approximating the suspended particle population to a power law size distribution of 

spherical, homogeneous particles with a spectrally independent complex refractive 
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index is common practice in optical oceanography, and many of the results on which 

modern backscattering fraction measurement techniques are based rely on these 

assumptions. There is conflicting evidence in the literature on spectral dependence or 

independence of the backscattering ratio (and VSF). The aim of this chapter has been 

to perform a sensitivity analysis that could reveal potential sources of λ-dependence 

and circumstances that could explain observations from nature. 

While the effect that a spectrally dependent complex refractive index has on the 

wavelength independence of the backscattering ratio is small, perturbations in the 

form of local additions of log-normal populations to the power law were found to 

induce sometimes large λ-dependence in both VSF and backscattering ratio. Of 

course, as a sensitivity study, the extreme perturbations presented here may be 

outside of those likely to be encountered in nature. However, they serve a useful 

purpose in exposing underlying trends and physical mechanisms that could explain 

observations of variable degrees of λ-dependence. These results demonstrate that the 

development of a reliable method for the routine determination of the PSDs of 

marine particle populations remains an important goal in the field of optical 

oceanography. Marked differences were also found in the results between organic- 

and inorganic-like particles; while the case of mixed populations was outside the 

scope of this sensitivity study it is to be expected that a mixed particle population 

would have a non-negligible effect on VSF and backscattering ratio. Overall, even 

though technically challenging, efforts towards a method of direct determination of 

the particle refractive index distribution remain essential to a complete and detailed 

description of the IOPs of water.  

The Mobley et al. (2002) parameterisation of the Fournier-Forand phase function 

was found unable to reproduce all the features generated on the SPF by the PSD 

perturbations, especially in the forward and narrow backward direction; the angular 

neighbourhood around θ = 120° was however confirmed to be one of particular 

stability for the scattering angular structure. In this area the otherwise poorly 

performing FFPF was found to approximate the value of the SPF within ±10% of its 

value in more than 90% of the cases considered.  
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Conforming to this, the χ factor method for backscattering coefficient determination 

is found to be a robust one. Results indicate that the refractive index composition of 

the particle population has important consequences on the choice of the individual 

angle where the 𝜒 factor is measured, and suggest that picking an angle at the upper 

end of the range of validity suggested by both Boss & Pegau (2001) and Sullivan & 

Twardowski (2009) (~120°) may improve the resilience of the method. Even for θ = 

120°, some individual χ factor values deviate markedly from the average; yet, they 

generally correspond to log-normal additions to the PSD which are extreme and 

therefore unlikely. A large majority of the cases here considered produce χ factor 

values which are close to expectations, with a correspondingly small standard 

deviation and an overall average 𝜒𝑝(120°) value compatible with existing literature. 
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5. Datasets 

5.1 Introduction 

This short chapter will present the datasets used to produce the results on which the 

second half of this thesis work will focus. The goal is to provide a convenient 

reference to inform the reading and comprehension of those results by collating all 

information pertaining to the available datasets and to the protocols used to retrieve 

them within a single, separate chapter. The chapter will be divided in two main parts, 

corresponding to the two main datasets used in this work: the algal cultures (AC) 

dataset and the UK coastal waters (UKCW) dataset. For each of these, flow 

cytometry measurement protocols will be described first. All other relevant data 

(such as IOP, biogeochemistry and independent PSD measurements) will then be 

presented along with a brief description of their working principles and their 

respective measurement protocols. 

5.2 Algal cultures 

The algal cultures dataset (AC) consists of phytoplankton culture samples selected as 

part of a separate study on toxic and nuisance species, and includes the following: 

Microcystis aeruginosa (MS), Synechococcus sp. (SC), Heterocapsa sp. (HS), 

Alexandrium minutum (AM), Karenia mikimotoi (KM), Pseudo-nitzschia seriata 

(PS), Skeletonema marinoi (SM). All cultures were provided by the Culture 

Collection of Algae and Protozoa (CCAP) of the Scottish Association for Marine 

Science (SAMS). The cultures were measured on two separate occasions: 10th-20th 

of June 2014 and 25th-26th of January 2016; all were allowed to reach stationary 

phase before measurement, and were in many cases in decline by the time the 

measurements were made. The highly concentrated culture samples were first diluted 

in ~ 15 litres of filtered sea water within a large black container to minimize light 

reflection and diffusion from the container walls and ensure best conditions for 

attenuation, absorption and backscattering measurements. These were carried out 

using an ac-9 absorption and attenuation meter and a BB9 backscattering meter 
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(WET Labs). Subsequently, the diluted samples were analysed using the CytoSense 

flow cytometer.  

5.2.1 Flow cytometry measurement protocol 

Samples processed in June 2014 (HS, AM, PS, SM) were measured in triplicates at a 

single side scattering PMT sensitivity setting (56) for 3 minutes at a flow rate of 0.98 

µL/s, while samples processed in January 2016 (MS, SC, KM) were measured a 

single time for each of four sensitivity settings of the side scattering PMT (50, 60, 

70, 80) for 6 minutes at a flow rate of 0.96 µL/s. Side scattering was used as the 

trigger channel in all cases. Additional standard polymer beads measurements 

necessary for FC method calibration (as will be described in Chapter 6) were taken 

twice on a weekly basis for the June 2014 sampling period and once at the beginning 

of the January 2016 sampling period. 

5.2.2 Attenuation and absorption measurements 

5.2.2.1      Absorption and attenuation meter working principle 

The WET Labs ac-9 instrument is a submersible, in situ absorption and attenuation 

meter designed to provide real-time measurements over nine individual wavelength 

channels; a detailed description of the instrument is given by Twardowski et al. 

(1999). In brief, the filters which select for the nine wavelengths are installed on a 

rotating mount and intercept the light beam generated by the instrument, which is 

then split into a reference beam and a primary beam. The latter is made to pass 

through the sample, and the amount of photons lost during transit is then determined 

from the negative natural logarithm of transmission (given as the ratio of the 

intensities of the reference and transmitted primary beams) divided by optical 

pathlength. The ac-9 absorption tube uses total internal reflectance from its internal 

glass wall to redirect scattered light towards the absorption sensor and minimize 

scattering losses; however, scattering corrections are still required to account for 

residual losses. Furthermore, the attenuation sensor may collect photons scattered in 

a forward direction at angles smaller than the attenuation sensor aperture, which is a 

lens-pinhole with collection angle θc = 0.9°. This artificially lowers attenuation 
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values. A number of different methods for scattering correction of absorption exist, 

the most commonly used of which has traditionally been the proportional correction 

(Zaneveld et al., 1994). In recent years, two new correction procedures have been 

proposed, the semi-empirical correction (Röttgers et al., 2013) and the iterative 

correction (McKee et al., 2013). The iterative correction in particular corrects for 

errors in both absorption and attenuation measurements. 

5.2.2.2      Absorption and attenuation measurement protocol 

The ac-9 attenuation and absorption meter was operated following methodologies 

established in the user’s manual and protocol for this instrument (WET Labs Inc., 

2008; WET Labs Inc., 2011); the procedure can also be found detailed in Lefering et 

al. (2016). For this specific set of measurements (wavelengths used: 412, 440, 488, 

510, 532, 555, 650, 676 and 715 nm) the diluted samples were poured into a 

reservoir and then pumped through the instrument using a hand-pump. The out-

flowing sample was then collected again within the black container. Attenuation and 

absorption data were scattering-corrected using the iterative correction proposed by 

McKee et al. (2013), and were further corrected for salinity and temperature 

dependence following Pegau et al. (1997); the final values for absorption and 

scattering (averaged over the measurement period) are shown in Fig. 5.1.  

 

Figure 5.1 – Spectral (a) absorption and (b) scattering coefficients for the AC dataset. Some 

absorption values resulted negative after scattering correction and are not represented. 
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5.2.3 Backscattering measurements 

5.2.3.1      Backscattering sensor working principle 

The WET Labs BB9 instrument is a submersible, in situ backscattering sensor which 

similarly to the ac-9 is designed to provide real-time measurements over nine 

individual wavelength channels. A thorough review and description of the principles 

behind backscattering measurements can be found in Sullivan et al. (2013). In 

essence, modern backscattering sensors like the BB9 are VSF meters: they take 

advantage of a peculiarity of scattering phase functions, which are observed to have 

low variability in their shape at backwards angles (Sullivan and Twardowski, 2009), 

leading to the determination of conversion factors capable of providing estimates of 

backscattering bb values from single measurements of the VSF at backward angles, 

known as χ factors (Oishi, 1990; Boss and Pegau, 2001). These are indeed the same χ 

factors discussed in Chapter 4. Similarly to ac-9 measurements, BB9 backscattering 

measurements need to be corrected too, this time for absorption over the pathlength 

of the beam used to illuminate the sample. This makes concurrent ac-9/BB9 

measurements important. 

5.2.3.2 Backscattering measurement protocol 

As with the ac-9, the BB9 was operated following procedures established in the 

user’s manual for the instrument (WET Labs Inc., 2010). For this specific set of 

measurements (wavelengths used: 412, 440, 488, 510, 532, 595, 660, 676 and 715 

nm) the head of the instrument was plunged in the diluted samples within the 

container and kept in place to gather a few minutes’ worth of data for each algal 

species. Backscattering data was then corrected for pathlength absorption using ac-9 

absorption data scattering-corrected using the proportional correction (Zaneveld et 

al., 1994) and averaged over the measurement period (Fig. 5.2). Finally, the 

backscattering values retrieved by the BB9 were interpolated to match the 9 

wavelengths used by the ac-9. In turn, the BB9 backscattering data was used to 

inform the iterative correction procedure used for ac-9 absorption and attenuation, 

which also explains why pathlength absorption was corrected using the proportional 

rather than the iterative method.  
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Figure 5.2 – Spectral backscattering coefficients for the AC dataset. 

5.3 UK coastal waters 

The UKCW dataset consists of natural water samples obtained during the HE442 

research cruise in UK waters (4th-21st of April 2015) on board the R/V Heincke. 

Sixty-two stations were sampled across a variety of case 1 and case 2 waters around 

the coast of the UK (Fig. 5.3), supplying a total of 50 samples with complete sets of 

FC data and matching data from other instruments. This includes backscattering, 

attenuation and absorption values retrieved using an ac-9 absorption and attenuation 

meter and a BB9 backscattering meter; PSD measurements obtained by two LISST-

100x laser diffractometers (Type B, size range: 1.25-250 μm and Type C, size range 

2.5-500 μm, both by Sequoia Scientific; LISST-B and LISST-C respectively in the 

following); and biogeochemistry parameters for suspended matter, organic carbon 

and chlorophyll-A concentrations.  
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Figure 5.3 – Track of the HE442 research cruise, which took place in April 2015 in UK waters aboard 

R/V Heincke. Out of the 62 measurement stations visited a total of 50 complete sets of data were 

retrieved, matching flow cytometric data and ancillary measurements (light grey circles). Dark grey 

circles denote stations where two samples were taken. The dataset was divided into area groupings to 

highlight regional behaviour in the metadata and the measured IOPs. In clockwise order: Bristol 

Channel (BC), Irish Sea (IS), Loch Fyne and Firth of Clyde (Fy), Hebrides and Skye (Heb), North 

Atlantic - Orkneys (Or) and North Sea (NS). 

5.3.1 Depth profiling 

Main depth profiling was done via an instrument frame equipped with Niskin bottles 

for sample retrieval and with both ac-9 and BB9 sensors and one of the two LISST-

100x instruments (LISST-C). The frame was lowered into water at each of the 

stations, kept near surface for a first round of sampling, then lowered to maximum 

depth to retrieve further samples. BB9, ac-9 and LISST-C instruments logged data 

throughout the procedure. The samples were taken from the Niskin bottles on the 

frame as quickly as possible after the frame was back on deck and filled into 10-liter 

plastic containers. In waters with high turbidity the Niskin bottles were flushed twice 

to avoid settling out of particulate matter. 48 out of the 50 samples of the UKCW 

dataset are surface samples (depth: 5-7 m), with two more samples taken from 

bottom depths instead.  
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5.3.2 Flow cytometry measurement protocol 

All samples were measured by the flow cytometer once for each of four sensitivity 

settings of the side scattering PMT (50, 60, 70, 80), for 6 minutes and at a flow rate 

of 0.5 µL/s. Side scattering was used as the trigger channel in all cases. Additional 

measurements of standard polymer beads for calibration of the FC method were 

taken daily across the whole sampling period. The low sample flow rate was 

necessary because of hardware problems which arised in the flow cytometer during 

the research cruise, causing the sample core to lose stability at higher flow rates. 

5.3.3 Attenuation, absorption and backscattering measurements 

The ac-9 absorption and attenuation meter and the BB9 backscattering sensor were 

operated along similar lines to those presented in paragraphs 5.2.2.2 and 5.2.3.2, with 

the only major difference that the instruments were installed on a submersible frame 

rather than kept in place within the lab. Attenuation, absorption, scattering and 

backscattering measurements were averaged over the stationary phase of the 

profiling, near the surface (or at bottom depth where it applied). As was the case for 

the AC dataset, ac-9 absorption data corrected using the proportional method was 

used to correct for pathlength absorption in BB9 backscattering measurements; these 

were then in turn used to inform the iterative correction of ac-9 absorption and 

attenuation values. Absorption, scattering and backscattering values for the UKCW 

dataset are shown in Fig. 5.4-5.6. 
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Figure 5.4 – Spectral absorption for (a) BC, (b) IS, (c) Fy, (d) Heb, (e) Or and (f) NS subsets of the 

UKCW dataset (see Fig. 5.3). Colors represent samples ordinally from dark blue to light green. Some 

absorption values resulted negative after scattering correction and are not represented. 
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Figure 5.5 – Spectral scattering for (a) BC, (b) IS, (c) Fy, (d) Heb, (e) Or and (f) NS subsets of the 

UKCW dataset (see Fig. 5.3). Colors represent samples ordinally from dark blue to light green. Some 

scattering values resulted negative after scattering correction and are not represented. 
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Figure 5.6 – Spectral backscattering for (a) BC, (b) IS, (c) Fy, (d) Heb, (e) Or and (f) NS subsets of 

the UKCW dataset (see Fig. 5.3). Colors represent samples ordinally from dark blue to light green. 
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5.3.4 LISST-100x PSD measurements 

5.3.4.1 LISST-100x working principle 

The LISST-100x is a laser diffractometer which allows for rapid acquisition of bulk 

PSD profiles (Agrawal & Pottsmith, 1994; Traykovski et al., 1999; Agrawal & 

Pottsmith, 2000). As the name implies, these instruments take advantage of a 

principle known as laser diffraction: specifically, Mie theory results show that for 

particles large compared to the wavelength of the incident light the distribution of 

light scattered at small forward angles appears identical to the diffraction patterns of 

light passing through an aperture of equal diameter. As diffracted light does not pass 

physically through the particle, small angle scattering is largely unaffected by the 

material and composition of the particle; therefore the method provides results which 

are chiefly functions of particle size. LISST-100x instruments collect small angle 

scattering using a series of 32 ring-shaped detectors, with logarithmically increasing 

radii and covering logarithmically increasing ranges of angles. Scattering from 

particles peaks at increasingly smaller angles as the particle diameters become larger, 

so that each detector ring mainly accounts for  a specific scattering dominant and 

therefore for a specific size class (although all detector rings receive some fraction of 

scattering from the particles). Finally, since total bulk scattering is the result of the 

sum of scattering from individual particles, the scattering intensity detected in each 

ring (weighted by the area of the ring itself) is a function of the total particle number 

within each respective size bin. By inverting the optical power distribution detected 

in the rings the LISST-100x produces the PSD of the particle population in a sample. 

Each LISST-100x is further equipped with a transmissometer photodiode, which is 

used to account and correct for the influence of attenuation on the light collected by 

the detector rings. 

5.3.4.2      LISST-100x PSD measurement protocol 

Both LISST-C and LISST-B were maintained and operated following the 

instructions found in the user’s manual for LISST-100x instruments (Sequoia 

Scientific Inc., 2013). As stated in paragraph 5.3.1, LISST-C was installed on the 

instrument frame used for main depth profiling together with the ac-9 and BB9 
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absorption, attenuation and backscattering meters. Similarly to the latter two 

instruments, PSD data obtained using the LISST-C was averaged over the stationary 

phase of the profiling, near the surface or at bottom depth as appropriate to each 

specific sample (Fig. 5.7a-b). LISST-B was installed on a separate submersible 

platform, which was deployed and operated independently from the main instrument 

frame. This second frame housed the Multi-angle Scattering Optical tool, or 

MASCOT (Sullivan and Twardowski, 2009), an instrument which measures VSFs at 

a single wavelength at angles between 10° and 170°. Data from the MASCOT is not 

included in this study.  

 

Figure 5.7 – (a) Collective view of all 50 UKCW PSDs obtained by the LISST-C and (b) median PSD 

for the same set of PSDs (quartiles and max./min. given as dark and light grey dashed lines 

respectively). In panels (c-d) the same plot is given for the UKCW PSDs obtained by LISST-B. Note 

that LISST-B data was available for only 28 out of the 50 samples of the UKCW dataset. 

Interestingly, differences are observed in the PSDs as determined by the two LISST instruments; these 

will be discussed in Chapter 6. 
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Depth information from the measurement profiles was compared between the two 

submersible platforms to extract the LISST-B PSDs matching the data obtained from 

the other instruments. Two casts were made at each station using the MASCOT 

frame; the LISST-B data used in the following is the result of averaging between the 

two casts. LISST-B data was available for only 28 out of the 50 samples of the 

UKCW dataset (Fig. 5.7c-d). 

5.3.5 Suspended matter, organic carbon and chlorophyll-A content 

5.3.5.1      Total, inorganic and organic suspended matter 

Total suspended matter (TSM, also found in literature as total suspended solids, TSS) 

was obtained from each sample following procedures detailed by Röttgers et al. 

(2014) (Fig. 5.8a). The sample was run through filter pads under low vacuum, then 

immediately placed in a petri dish after filtration and put to dry in a vacuum 

desiccator: TSM values were subsequently obtained by weighing the mass of dried 

sample and dividing it by the sample volume used.  Further separation into organic 

suspended matter and inorganic suspended matter fractions (OSM and ISM, also 

found in literature respectively as particulate organic matter and particulate inorganic 

matter, POM and PIM; Fig. 5.8b) was obtained by volatisation of organics at 500°C: 

ISM is given as the weight of the sample mass remaining after the combustion 

procedure divided by the sample volume used, with OSM simply determined as TSM 

minus ISM. 

5.3.5.2     Particulate organic carbon 

Particulate organic carbon (POC) was determined using the protocol described by 

Strickland and Parsons (1972) (Fig. 5.8c). The samples were initially prepared by 

filtering through a Millipore AA filter (Merck-Millipore) treated with magnesium 

carbonate to prevent adhesion to the membrane surface. Particulate matter caught in 

the filter was then washed off and re-filtered through a sintered glass filter disc under 

vacuum. The glass filter was subsequently removed, placed in a sample beaker with 

the sample deposit face up and mixed with 1 ml each of phosphoric acid and distilled 
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water; the beaker was then fitted with a coverglass and the sample heated to 110°C 

for 30 minutes. 

 

Figure 5.8 - (a) TSM, (b) ISM/OSM balance, (c) POC and (d) ChlA data for the UKCW dataset. In 

the last panel, grey circles represent HPLC-derived ChlA values and dark grey squares represent ChlA 

estimates given as 5.5 times the initial fluorescence Fo of the sample. Note that the latter weren’t 

available for all 50 samples of the UKCW dataset. 

After 30 minutes, the coverglass was removed to allow further addition of sulphuric 

acid-dichromate oxidant, which is produced as a mixture of potassium dichromate 

solution into concentrated sulphuric acid (full details in Strickland and Parsons, 

1972). The coverglass was then replaced and the sample heated for a further 60 

minutes. After 60 minutes, the mixture was finally left to cool before being 

thoroughly washed out of the beaker and into a suitably sized graduated cylinder 

using copious distilled water. After settling, a small volume of the final mixture was 
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centrifuged at 2000 rpm for a few minutes and then transferred to a 

spectrophotometer: the POC value of the sample is obtained as a function of the 

measured extinction of a blank solution against that of the mixture (full equation in 

Strickland and Parsons, 1972).  

5.3.5.3      Chlorophyll-A content 

Chlorophyll-A content (ChlA) was determined twice using independent methods 

(Fig. 5.8d). The first method employed high-performance liquid chromatography 

(HPLC) following Zapata et al. (2000): ChlA was determined from fluorescence 

values using excitation at 440 nm and emission at 650 nm and by comparison with 

standards of known chlorophyll concentration. The second method produced 

approximate values of chlorophyll-A content from an empirical power law 

relationship between chlorophyll-specific algal absorption and chlorophyll content, 

as described by Bricaud et al. (1995). This particular iteration of the technique used 

Fo as the input, that is the initial fluorescence of the sample as measured by fast 

repetition rate fluorometry (FRRf) (Connor, 2017); it was found that a simple scaling 

factor of 5.5 applied to Fo fitted the relationship described by Bricaud et al. (1995) 

well (Connor, 2017). Therefore, 𝐶ℎ𝑙𝐹  =  5.5𝐹𝑜 was used as an estimate of ChlA. 

The decision to utilise chlorophyll data from two separate techniques was taken 

following Connor (2017), who also worked on the UKCW dataset and found that the 

relationship between algal absorption and chlorophyll concentration was stronger for 

Fo-derived concentration values, suggesting that biogeochemistry modelling based 

on FC PSDs and PRIDs might also compare better with 𝐶ℎ𝑙𝐹 estimates of ChlA. The 

validation of biogeochemistry modelling of ChlA values against both sets of 

chlorophyll concentration data will be described in Chapter 8. 

5.4 Summary 

This short chapter presented the two main datasets used in this work, one consisting 

of phytoplankton culture samples (AC dataset) and one consisting of marine water 

samples retrieved in UK shelf waters (UKCW dataset). A description of the 

instruments used during both measurement campaigns was also provided along with 
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relevant principles and protocols. Having established a basis for all data processing 

and analysis, the rest of the thesis will focus on the presentation of results. The next 

chapter will describe the core topic of this work: the flow cytometric determination 

of particle diameters and rRIs, or FC method. Chapters 7 and 8 will then respectively 

focus on IOP forward modelling and biogeochemistry modelling.  
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6.       Flow cytometric method for particle diameter and real 

refractive index determination 

With the theoretical basis given in Chapters 1-4 for IOPs, flow cytometry and Mie 

theory, all elements are in place for the development of the flow cytometric method 

for size and real refractive index determination (FC method) and its application to the 

datasets presented in Chapter 5. The first half of this chapter will present the FC 

method, including the characterisation of the geometry of sensor apertures in the 

CytoSense and their respective weighting functions. The second half will discuss the 

application of the FC method, first to known standards of particle diameter and RI, 

then to the PSDs and PRIDs of the AC and UKCW datasets. 

6.1 Introduction 

As explained previously (Section 1.1), flow cytometry was originally developed for 

biological studies, and is still used in this fashion in a large majority of its 

applications. An estimation made a few years ago by Dubelaar & Jonker (2000) put 

the figure for biomedical applications at about 95% of the total, with the rest divided 

between fields as disparate as pharmaceutical industry, dairy industry, food and 

water quality control, botany and, of course, marine science; there is little reason to 

think the figure has changed much in the intervening years. Even within marine 

science itself, a large number of studies employ flow cytometry in its traditional 

fashion, using fluorescent dyes and DNA stains to label cells and study their 

physiology or exploiting in-line imaging to conduct monitoring and taxonomy 

assessments of marine populations (e.g. Mikulski et al., 2005; Sosik & Olson, 2007; 

Olson & Sosik, 2007; Thyssen et al., 2008; Thyssen et al., 2011; Brosnahan et al., 

2013). When it comes to marine optics, however, all components of a population of 

suspended particles contribute in some degree to the optical behaviour of the water, 

be they living cells, dead cells, organic detritus or indeed inorganic particles and 

suspended sediments. Therefore, while fluorescent signals are the most commonly 

used parameters for triggering particle detection and are certainly well suited when 

phytoplankton is the focus, they are also insufficient when the entirety of the particle 

population is considered. The FC method follows in the steps of Ackleson & Spinrad 
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(1988) and more recently Green et al. (2003a, 2003b) by using the scattering signal 

(specifically side scattering) as trigger instead, and combines Mie theory and flow 

cytometry to model the output of the sensors of the flow cytometer and assign size 

and refractive index to each individual particle.  

6.2 Flow cytometry method outline 

The method for assigning refractive indices and sizes used in this work was first 

developed by Ackleson & Spinrad (1988) based on algorithms by Dave (1968), and 

subsequently reprised by Green et al. (2003a).  

The FC method simulates scattering within the flow cytometer via eqs.  

𝛽(𝜃, 𝜆) =
1

2

1

𝑘2𝑟2

(𝑖1 + 𝑖2)𝐼𝑖(𝜆)

𝐸𝑖(𝜆)
=

1

2

(𝑖1 + 𝑖2)

𝑘2
 (2.48) 

and 

𝑏𝜃′,𝜃′′(𝜆) = 2𝜋 ∫ 𝛽(𝜃, 𝜆) sin 𝜃 𝑑𝜃,
𝜃′′

𝜃′

 (6.1) 

where θ’ and θ’’ are determined by the aperture of the sensors within the instrument. 

These Mie theory calculations are carried out for wide ranges of particle diameters 

and refractive indices and produce a look-up table of simulated forward and side 

scattering weighted for sensor-specific shape characteristics. After a correspondence 

between simulated and measured scattering values is established using standards of 

known diameter and RI, each new measurement pair of forward and side scattering is 

mapped against the closest node in the look-up table and assigned a corresponding 

diameter and rRI. The resulting particle data is then binned to produce PSDs and 

PRIDs. This technique is fundamentally different from traditional flow cytometric 

methods which directly assess the length of particles from the width of their signal 

curve (signal baseline length or full-width at half-maximum, FWHM, of the curve), 

but which cannot discriminate sizes smaller than the width of the laser beam (5 µm 

in the CytoSense) and do not provide rRI info. 
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The FC method described here employs an independently developed MATLAB 

script, using the FASTMie code developed by Slade (2006). The script produces the 

scattering amplitude functions 𝑖1(𝜃) and 𝑖2(𝜃), which by virtue of the Mie 

coefficients an and bn of eqs. (2.24-2.25) are fundamentally dependent on the 

diameter and RI of each particle. The imaginary refractive index was kept fixed and 

set at zero: a fixed value for the imaginary component is necessary as the method 

does not offer information on this term, and was appropriate for the polymer 

calibration beads which were used for tuning the model. Test simulations for realistic 

iRI values suggested negligible effect of this assumption on diameter and rRI 

identification. The quantities 𝑖1(𝜃) and 𝑖2(𝜃) were used to calculate the single-

particle VSF of eq. (2.48) for all combinations of 40 rRI values ranging from 1.335 

to 1.725 (relative to vacuum) in increments of 0.01, and 300 log-spaced diameter 

values ranging from 1e
-8

 to 1e
-4

 metres. The angular resolution for the VSF varied 

between 0° and 180°, with 0.01° increments between 0° and 1°, 0.1° increments 

between 1° and 10° and 1° increments between 10° and 180°, for a total of 361 

angular values. Finally, λ = 488 nm was used for the VSF calculations conforming to 

the wavelength of the laser source within the CytoSense. This wavelength (given for 

vacuum) was further corrected for transmission through water using the absolute rRI 

value of water (1.333). All particle rRIs in the following are also given relative to 

this value unless otherwise stated. 

Once obtained, each VSF was integrated to simulate scattering within the flow 

cytometer, and the results scaled to establish correspondence with measured 

scattering from the particles of known size and refractive index, thus producing the 

required look-up table. Having assessed the precision concentration measurement 

capabilities of the flow cytometer (Chapter 3, Section 3.4), the procedure can be 

divided in 4 steps:  

 Characterization of the sensor geometry within the instrument;  

 Scaling of the modelled scattering grid;  

 Rescaling and combination of measured data for different PMT sensitivity 

settings;  

 Final binning of particle sizes and refractive indices in PSDs and PRIDs.  
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FC method calculations were handled using an independently developed MATLAB 

code which integrates the FASTMie code provided by Slade (2006) to calculate Mie 

coefficients. All four core sections of the code, each corresponding to one of the 4 

steps of the FC method, are presented in Appendix B. 

6.2.1 Sensor shape functions 

Simulation of the FC scattering sensors requires characterisation of the correct 

[𝜃′, 𝜃′′] angles over which eq. (6.1) is to be integrated. Sensor angle ranges were first 

manually determined by rough approximation. Improved ranges were then refined 

iteratively until the model grid of look-up table nodes matched scattering data from 

reference polymer beads of known diameter and refractive index. It is important to 

remember that the VSF given here is axially symmetric along the direction of the 

incident light, so that integrating over an angular range accounts for the scattering 

into ring sections of the radiant sphere. The sensors however only intercept part of 

the ring sections, so that sensor shape functions are needed to further account for the 

relative weights. 

For the forward scattering sensor shape function (polar angle range: ±[2°, 9.7°]), 

consider the geometrical setup of Fig. 6.1a-b. The length of the arc 𝑛 = 𝑚 − 𝑙 for 

each point in the range [𝜃′, 𝜃′′] is to be determined and then used as a correction 

factor after normalisation to the corresponding arc x of a unit circle. From simple 

trigonometry, 

𝑎 = sin 𝑙 (6.2) 

and 

𝑙 = asin 𝑎. (6.3) 

The length of the arc to be determined is (in radians) 𝑛 =
𝜋

2
− 𝑙, and can be 

normalised as  
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𝑥 =

𝜋
2 − 𝑙

𝜋
2

 . (6.4) 

The condition of normalisation to a unit circle for a and b is given by 𝑎: 𝑏 = 𝑎′: 1. It 

follows that 

𝑎′ =
𝑎

𝑏
  ⇒  𝑥 =

𝜋
2 − asin

𝑎
𝑏

𝜋
2

 (6.5) 

and since from Fig. 6.1b-c it is clear that 

𝑎 = sin 𝜃′ (6.6) 

and 

𝑏 = sin 𝜃′′ , (6.7) 

it finally derives that the forward scattering sensor shape function is expressed as 

𝑥𝑆𝐻𝐴𝑃𝐸,𝑓(𝜃) =

𝜋
2 − asin

sin 𝜃′

sin 𝜃
𝜋
2

 . (6.8) 

The shape of the forward scattering sensor shape function is shown in Fig. 6.1d. Note 

that the weighting function is calculated for just a quarter of the actual area; correct 

proportionality is ensured by scaling factors. 
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Figure 6.1 – (a) General geometric setup for the forward scattering shape correction calculations and 

(b) front and (c) top view of the same geometric setup. (d) Shape of the forward scattering weighting 

function.  

For the side scattering sensor shape function (polar angle range: [45°, 135°]), 

consider the geometrical setup of Fig. 6.2a-b. The length of the arc 𝑥 for each point 

in the range [𝜃′, 𝜃′′] centred on 𝜃 =  90° =  𝜋/2 is the parameter to be determined. 

For each arc 𝑥, 

𝑎 = sin 𝑥. (6.9) 

But since the projection of the relevant area is a circle, the maximum value for a will 

be (in radians) 

𝑎𝑚𝑎𝑥 = sin (𝜃′′ −
𝜋

2
) (6.10) 

and a will vary between [𝜃′, 𝜃′′] like sin 𝜉 does, given the appropriate mapping 

between 𝜃 ∈ [𝜃′, 𝜃′′] and 𝜉 where 𝜉 ∈ [0, 𝜋], i.e. 
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𝜉(𝜃) = 𝜋
𝜃 − 𝜃′

𝜃′′ − 𝜃′
 (6.11) 

Thus 

𝑎(𝜃) = 𝑎𝑚𝑎𝑥 sin 𝜉(𝜃) = 𝑎𝑚𝑎𝑥 sin (𝜋
𝜃 − 𝜃′

𝜃′′ − 𝜃′
). (6.12) 

By inverting eq. (6.12) and normalising it, it finally derives that the side scattering 

sensor shape function is expressed as 

𝑥𝑆𝐻𝐴𝑃𝐸,𝑠(𝜃) =
asin [𝑎𝑚𝑎𝑥 sin (𝜋

𝜃 − 𝜃′

𝜃′′ − 𝜃′)]

𝜋
2

 . (6.13) 

The shape of the side scattering sensor shape function is shown in Fig. 6.2d. 

 

Figure 6.2 – (a) General geometric setup for the side scattering shape correction calculations and (b) 

forward and (c) side view of the same geometric setup. (d) Shape of the side scattering weighting 

function.  
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Similarly to forward scattering, note that the side scattering weighting function is 

calculated for just half of the actual area; correct proportionality is once again 

ensured by scaling factors.  

Having obtained the expressions for both sensor shape weighting functions, for a 

single wavelength and axially symmetric scattering the final form of the modelled 

forward and side scattering within the flow cytometer is given by 

𝑏𝑔𝑟𝑖𝑑
𝑖 = ∫ 𝛽𝑝(𝜃) 𝑥𝑆𝐻𝐴𝑃𝐸,𝑖(𝜃)𝑑𝜃, (6.14) 

where i denotes either forward or side scattering. 

6.2.2 Grid scaling 

Having established relevant angular ranges and respective weighting functions, 

simulated particle VSFs were integrated to model the output of the flow cytometer, 

producing a grid of isolines of diameter and real refractive index between the look-up 

table nodes (Fig. 6.3). The model was centred and scaled on instrument output data 

for standard particles of known diameter and refractive index. The average forward 

and side scattering measurement data for 0.5 µm polymer beads (Duke Particle 

Counter Size Standards, Thermo Fisher Scientific for these and all other polymer 

beads used in the remainder of this chapter) was used as reference for the centring of 

the model grid. The rRI of the beads was 1.197. After scaling the distance between 

the corresponding 0.5 µm and 1 µm points in the model grid to be the same as the 

distance between the measured 0.5 µm and 1 µm polymer bead averages, the 0.5 µm 

point in the scaled model grid was centred on the 0.5 µm polymer bead average, i.e. 

𝑥𝐺𝑆𝐶𝐴𝐿𝐸
𝑖 =

𝑏𝑎𝑣𝑔,1
𝑖 − 𝑏𝑎𝑣𝑔,0.5

𝑖

𝑏𝑔𝑟𝑖𝑑,1
𝑖 − 𝑏𝑔𝑟𝑖𝑑,0.5

𝑖
 (6.15) 

𝑏′𝑔𝑟𝑖𝑑
𝑖 = (𝑏𝑔𝑟𝑖𝑑

𝑖 − 𝑏𝑔𝑟𝑖𝑑,0.5
𝑖 )𝑥𝐺𝑆𝐶𝐴𝐿𝐸

𝑖 + 𝑏𝑎𝑣𝑔,0.5
𝑖  (6.16) 
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where i denotes either forward or side scattering, 𝑏𝑔𝑟𝑖𝑑
𝑖  the scattering values of the 

original model grid, 𝑏𝑎𝑣𝑔
𝑖  the average measured scattering values of the polymer 

beads, and 𝑏′𝑔𝑟𝑖𝑑
𝑖  the rescaled model grid values.  

 

Figure 6.3 – Scattering model grid produced by the FC method, with isolines of diameter (orange 

lines) and isolines of real refractive index (blue lines). 

6.2.3 PMT sensitivity 

The range of particle sizes that can be measured with a single PMT sensitivity setting 

is limited: low sensitivity settings let the instrument detect larger particles without 

saturating the side scattering PMT, but fail to capture smaller particles; high 

sensitivity settings let the instrument successfully detect small particles, but saturate 

the side scattering PMT, hampering the identification of larger particles. To 

overcome this issue multiple PMT sensitivity settings were used for each sample and 

results combined together into a single dataset representative of the whole sample.  

Care needs to be taken, as each PMT sensitivity setting needs a separate run 

(sensitivity run) and corresponding data ranges partly overlap, so that simple 

summation of the data matrices will artificially inflate measured concentrations. To 

deal with this, data from each sensitivity run was therefore cut along user-defined 

thresholds, producing data subsets that were then merged into a single dataset, 
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working under the necessary assumption that the instrument produces mutually 

consistent runs for each sub-sample. One sensitivity setting is used as the base setting 

to which all others are scaled: 

𝑥𝑆𝐶𝐴𝐿𝐸,𝑒
𝑖 =

𝑏𝑎𝑣𝑔,0
𝑖

𝑏𝑎𝑣𝑔,𝑒
𝑖

 (6.17) 

where i indicates either forward or side scattering, e the sensitivity setting, 𝑏𝑎𝑣𝑔,𝑒
𝑖  the 

average scattering value of the reference beads for that sensitivity setting, and 𝑏𝑎𝑣𝑔,0
𝑖  

the average scattering value of the reference beads at the base setting. The choice of 

PMT base setting in theory doesn’t affect the results of the merging; however, a PMT 

base setting capable of capturing the standard beads necessary for grid scaling 

without need for interpolation while still keeping PMT saturation in the larger 

particles at a minimum is preferable in practice. This is suggested as the lowest PMT 

sensitivity setting capable of clearly measuring both 0.5 µm and 1 µm polymer bead 

averages. In this study, multiple sensitivity runs for reference beads (1 µm polymer 

beads) were used to scale the sensitivity run data before cutting and merging the total 

dataset.  

Total analysed volumes for each sensitivity run differ even though the total 

processed volume is the same across all runs. The discrepancy is due to data transfer 

overhead – the time during which particle data is acquired and sent to the computer 

and the instrument is not analysing (but still consuming) the sample (CytoBuoy, 

private communication). This does not produce errors in the estimation of the 

concentration, but requires further care in the way the final dataset is composed. In 

this study, the largest total analysed volume among all sensitivity settings was used 

to scale all other total analysed volumes: 

𝑥𝑉𝑂𝐿,𝑒 =
𝑉0

𝑉𝑒
 (6.18) 

where e once again marks the individual sensitivity settings and V0 is the volume 

used as reference. This factor was used to adjust the concentrations of the 

corresponding sensitivity run. Data from all sensitivity runs was subsequently 
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merged into the total dataset, and the total number of particles divided by the largest 

total analysed volume. The resulting dataset is managed as single object, but the 

resulting concentrations are respectful of the individual contribution of each run: 

𝑁𝑡𝑜𝑡 = ∑ 𝑁𝑒𝑥𝑉𝑂𝐿,𝑒

𝑒

= ∑ 𝑁𝑒

𝑉0

𝑉𝑒
𝑒

⟹ 𝐶𝑡𝑜𝑡 =
𝑁𝑡𝑜𝑡

𝑉0
= ∑

𝑁𝑒

𝑉𝑒
𝑒

= ∑ 𝐶𝑒

𝑒

       𝑞. 𝑒. 𝑑. 

(6.19) 

Note that while in this implementation of the method the largest total analysed 

volume was used as reference to scale all other total analysed volumes, the choice is 

indeed arbitrary; any of the total analysed volumes (corresponding to any of the 

sensitivity settings) may be used. 

6.2.4 Binning 

In the last step, the rescaled and merged dataset is mapped on the centred and scaled 

model grid and binning can take place. Each experimental forward and side 

scattering data pair is assigned the diameter and refractive index of the closest node 

in the model grid. The closest node in the grid is identified as the one that minimizes 

the Manhattan distance 

𝑙 = |𝑏𝑔𝑟𝑖𝑑,𝑛
𝑓

− 𝑏𝑒𝑥𝑝
𝑓

| + |𝑏𝑔𝑟𝑖𝑑,𝑛
𝑠 − 𝑏𝑒𝑥𝑝

𝑠 | (6.20) 

where f and s indicate forward and side scattering respectively, 𝑏𝑔𝑟𝑖𝑑,𝑛 is the 

scattering value for the n-th node in the grid and 𝑏𝑒𝑥𝑝 is the experimental scattering 

value for the particle. Subsequent binning was carried out using 65 logarithmically 

spaced diameter bins and 40 linearly spaced rRI bins. Bin values for the diameter 

(µm) were calculated as 𝐷𝑖 = 𝑒𝑘𝑖+0.16557𝑁, with 𝑘𝑙 = −16.87296, 𝑘𝑢 =

−16.70739 and 𝑘𝑚 = −16.79017 for lower limit, upper limit and median values 

respectively and 𝑁 ∈ [0, 64] ⊂ ℕ. The seemingly arbitrary numbers are caused by 

the adoption of the size bins used in LISST-100x Type-C instruments, the range of 

which was then extended to cover the 0.05-2000 µm diameter range recommended 

by Davies et al. (2014). Bin values for the (absolute) real refractive index were 
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calculated as 𝑛𝑖 = 0.01𝑁 + 𝑘𝑖, with 𝑘𝑙 = 1.590, 𝑘𝑢 = 1.600 and 𝑘𝑚 = 1.595 for 

lower limit, upper limit and median values respectively and 𝑁 ∈ [0, 39] ⊂ ℕ. 

For each sample, the result of the binning was a 𝑀65×40 matrix. Finally, recalling eq. 

(3.2) 

𝑥𝑃𝑈𝑀𝑃(𝑄) =
1.088 

𝑦(𝑄)
 (3.2) 

where Q is the flow rate and y the value of the general flow rate correction curve and 

combining all contributions and correction factors together, following eq. (6.19) the 

concentration for each bin in the matrix is given by 

𝐶𝐷,𝑛
𝑡𝑜𝑡 =

𝑁𝐷,𝑛
𝑡𝑜𝑡

𝑉0
𝑥𝑃𝑈𝑀𝑃  , (6.21) 

where D and n are indices of the size and RI corresponding to each bin. As a final 

result, summation along the refractive indices or along the diameters respectively 

provides the PSD and PRID of the sample. 

6.3 Flow cytometric method application 

The FC method was first applied to standard polymer beads of known diameter and 

oil suspensions of known refractive index to verify its correct functioning. After this 

validation, the method was applied to the datasets described in Chapter 5: the AC 

dataset of algal cultures and the UKCW dataset of marine water samples obtained 

during the HE442 research cruise in UK shelf waters. Resulting PSDs were 

compared with known algal parameters for the AC dataset and LISST-100x data for 

the UKCW dataset. PRIDs were compared with expected refractive index values and 

(for the AC dataset) with values reconstructed from FC PSDs and attenuation and 

absorption data using the anomalous diffraction method (ADM), which will be 

briefly described in the following. 
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6.3.1 Diameter and rRI standards 

6.3.1.1  Diameter retrieval 

To evaluate the overall reliability of diameter retrieval, the FC method was tested on 

a mixture of polymer beads of several different diameters and a known refractive 

index of 1.197 (Tab. 6.1).  

 

Table 6.1 – Nominal diameter values for the set of reference polymer beads used in the validation of 

the diameter retrieval capabilities of the FC method. 

The method was found to correctly identify small particle diameters down to the 

minimum detection limit of 0.5 µm (Fig. 6.4). Particles larger than 5 µm however 

presented increasingly anomalous side scattering profiles (Fig. 6.4c). This is possibly 

due to the breakdown of the Mie theory assumption of an incident plane wave, which 

becomes increasingly less true as particles become larger than the laser beam width 

(5 µm), a problem that was already recognized by Ackleson & Spinrad in their work 

(1988). This leads to substantial discrepancies between modelled and measured 

scattering, causing increasingly marked diameter underestimation (Fig. 6.4d).  
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Figure 6.4 – (a) The FC model grid of Fig. 6.3 is replicated here. (b) When data for the set of polymer 

beads of Tab. 6.1a is superimposed (orange squares) large particles (upper right area) show a marked 

discrepancy between measured and expected values. (c) This is due to the shape of the scattering 

profiles increasingly deviating from a Gaussian distribution as diameter increases, possibly due to the 

breakdown of Mie theory assumptions i.e. particles becoming substantially larger than the laser beam 

width (5 μm). (d) This is reflected in the resulting size distributions, with the FC method increasingly 

underestimating the diameter of the larger particles (d > 10 μm). Target values (Tab. 6.1) are 

represented by vertical lines.  

6.3.1.2 Real refractive index retrieval 

Polydisperse suspensions of oils with known refractive indices (Tab. 6.2, Fig. 6.5) 

were additionally used to test the retrieval of rRIs. The method was found to 

correctly identify low, organic-like rRIs as well as high rRIs when particle diameters 
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are smaller than 5 µm (Fig. 6.5b). Natural bundling of rRI isolines at high rRIs 

impeded unequivocal determination of a rRI value for particles ~5 µm, providing a 

generic high-rRI signifier for rRIs ≥ 1.15 as opposed to precise values (note that all 

rRI values in this study are given relative to water).  

 

Table 6.2 – Nominal rRI values for the set of oil suspensions used in the validation of the rRI retrieval 

capabilities of the FC method. 

 

Figure 6.5 – (a) Data points for the polymer beads and three oil suspensions and (b) the resulting rRI 

distributions. Target values are represented by vertical lines. The rRI detection works well at low 

refractive indices and/or high refractive indices when particles are small, but fails for high rRIs and 

larger diameters due to the overlap of the isolines of the model grid for these parameters. Real 

refractive index detection in very large particles produces values which grossly underestimate the 

expected ones. 
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Finally, anomalous side scattering profiles for particles larger than 5 m leads to 

gross underestimation of the real refractive index in high-rRI particles (Fig. 6.5b). 

Overall the FC method was seen to be effective in determining the size of particles in 

the 0.5-10 µm range and rRIs up to ~1.15; real refractive index values above 1.15 are 

not precise, but still positively indicate high refractive indices. 

6.3.2 AC dataset 

Before delving into the application of the FC method to the algal culture samples of 

the AC dataset, a brief description is given of the anomalous diffraction method, 

which will be used to model RI values with which to compare those retrieved by the 

FC method. 

6.3.2.1 Anomalous diffraction method 

The real and imaginary bulk refractive indices of the algal cultures were estimated 

using the anomalous diffraction method (ADM) (Bricaud & Morel, 1986; Stramski 

& Mobley, 1997). A thorough presentation of this method is beyond the scope of this 

study; in brief, the method compares the experimental bulk values of the absorption 

and attenuation efficiencies with their expression as derived from the anomalous 

diffraction approximation (van de Hulst, 1957), which is valid for relative real 

refractive indices nr close to unity and imaginary refractive indices ni close to zero. 

By minimising the difference between the two the ADM identifies an appropriate 

approximate complex refractive index for the sample. Assuming spherical particles, 

following eqs. (1.26) and (1.29-1.30) the bulk absorption efficiency is given by  

𝑄𝑎(𝜆) =
𝑎(𝜆)

∑ 𝑁(𝐷)𝐺
= 𝑎(𝜆) ∑

4

𝑁(𝐷)𝜋𝐷2
 , (6.22) 

where 𝑎(𝜆) is the bulk absorption coefficient at wavelength λ, N(D) the PSD within 

the sample and G is the geometric cross-section. The bulk experimental attenuation 

efficiency is similarly defined replacing 𝑎(𝜆) with 𝑐(𝜆). Under the anomalous 

diffraction approximation, the corresponding expressions for absorption and 

attenuation efficiencies are 
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𝑄𝑎(𝜌′) = 1 + 2
𝑒−𝜌′

𝜌′
+ 2

𝑒−𝜌′ − 1

𝜌′2
 (6.23) 

and 

𝑄𝑐(𝜌) = 2 − 4𝑒−𝜌 tan 𝜉 [
cos 𝜉

𝜌
sin(𝜌 − 𝜉)

+ (
cos 𝜉

𝜌
)

2

cos(𝜌 − 2𝜉)] + 4 (
cos 𝜉

𝜌
)

2

cos 2𝜉, 

(6.24) 

where 𝜌’ = 4𝛼𝑛𝑖, 𝛼 = 𝜋𝐷/𝜆, 𝜌 = 2𝛼(𝑛𝑟– 1) and 𝜉 = tan−1 (
𝑛𝑖

𝑛𝑟−1
). Both were 

calculated as weighted averages over the PSDs.  

To determine the bulk complex refractive indices, firstly an appropriate value for ni 

is found that minimises the difference between the bulk experimental and anomalous 

diffraction approximation values of Qa; the value for ni thus found is then fed into the 

anomalous diffraction approximation for Qc and the procedure repeated to find an 

appropriate value for nr. For the AC dataset, two arrays of iRI and rRI values were 

used in the procedure: 10
4
 values ranging from 10

-5
 to 10

-1
 in increments of 10

-5
 for 

the former and 10
4
 values ranging from 1 + 10

-4
 to 2 in increments of 10

-4
 for the 

latter. Values were iteratively extracted from the first array and fed into eq. (6.23) 

until an optimal value ni was found and applied to eq. (6.24); the iterative procedure 

was then repeated with the second array and eq. (6.24) until nr was similarly 

determined. 

6.3.2.2 AC diameter retrieval 

Figure 6.6 shows AC PSDs retrieved using the FC method. These were characterised 

by a power law background distribution with a superimposed log-normal component 

corresponding to the main phytoplankton population, suggesting that cultures had 

significant levels of detritus and possibly bacteria. After selecting for fluorescent 

particles only, size identification results for the FC method were mixed (Tab. 6.3).  
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Table 6.3 – Sizes as determined by the FC method, as given by particle signal length at 20% of its 

peak height and as expected for the phytoplankton species of the AC dataset. *Values given for the 

overall peak and the broader distribution. **Size range includes formae seriata and obtusa. ***The 

wide range corresponds to chains of various lengths. References: Tomas et al. (1997) (HS, AM, PS); 

Daugbjerg et al. (2000) (KM); Sarno et al. (2005); John et al. (2002) (MS); Waterbury et al. (1979) 

(SC). 

MS and SC size peaks were located at 2-7 and 1-1.5 µm respectively, although 

Synechococcus fluorescence couldn’t be isolated from the non-fluorescent 

background and peak data was taken from its overall size distribution. Both are 

compatible with expected dimensions for Synechococcus and M. aeruginosa. HS 

showed its size peak at 3-10 µm, smaller than the expected dimensions for the 

smallest species of Heterocapsa such as H. rotundata (10-12 µm). AM size peak was 

located between 10-15 µm, smaller than expected dimensions for A. minutum (15-30 

µm), while KR showed a broad distribution between 1-20 µm and an overall peak 

between 3-10 µm, smaller than expected dimensions for K. mikimotoi (20-40 µm). 

PS size peak was located between 10 and 20 µm, substantially less than the expected 

length but larger than the expected diameter of a single P. seriata cell, while SM 

showed its size peak at 5-15 µm, seemingly encompassing both expected diameter 

(2-4 µm) and length (10-12 µm) of a single S. marinoi cell.  
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Figure 6.6 – PSDs retrieved by the FC method for (a) small spherical or quasi-spherical species (M. 

aeruginosa, Synechococcus sp.), (b) large spherical or quasi-spherical species (Heterocapsa sp., A. 

minutum, K. mikimotoi) and (c) chain-forming species (P. seriata, S. marinoi) within the AC dataset: 

whole PSDs are dark grey, with the fluorescent part of the particle population highlighted in colour. 

Note that the fluorescent component of the Synechococcus sample couldn’t be extracted from the 

background. In the last panel (d), PSDs retrieved by the length method for the same species (MS and 

SC are too small for the method to apply). 

Size identification results obtained from particle signal length taken at 20% of the 

signal peak height were generally closer to literature values for each species (Tab. 

6.3), although only available for the largest species (HS, AM, KM, PS, SM) as per 

the limitations of the method (Fig. 6.6d). HS showed a wide size peak between 3-40 

µm, possibly indicative of a population of detrital particles (e.g. thecae fragments) 

associated with the main Heterocapsa population. AM, KM, SM size peaks were 

located between 15-30, 20-40 and 5-50 µm respectively, all compatible with 
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expected cell dimensions (and chains of various lengths in the case of S. marinoi). PS 

showed discrete peaks at 40-60, 90-100, ~150 and ~ 210 µm, corresponding to single 

P. seriata cells and two-, three- and four-celled chains respectively but still falling 

short of reported usual lengths for P. seriata cells (Tomas et al., 1997). Size values 

obtained from particle signal length were further substantiated by direct imaging of 

the phytoplankton cells (Fig. 6.7). Interestingly, available pictures of P. seriata 

support the finding that cells within the PS sample were indeed shorter than typical 

cell lengths reported in the literature, possibly indicating that the culture environment 

(as opposed to a natural one) had influenced the growth of the cells (Fig. 6.7e). 

 

Figure 6.7 – Direct imaging of phytoplankton as retrieved by the CytoSense in-flow camera: (a) M. 

aeruginosa; (b) Heterocapsa sp.; (c) A. minutum; (d) K. mikimotoi; (e) P. seriata; (f) S. marinoi. 

Synechococcus cells were too small to image successfully. Note that images support the finding that 

P. seriata cells were smaller than typical cell lengths reported in the literature. 

6.3.2.3 AC rRI retrieval 

Real refractive index determination results were found to follow two distinct trends 

(Fig. 6.8). The 2014 part of the dataset (HS, AM, PS, SM) displayed a background 

trend of relatively flat or increasing concentrations towards higher rRIs, with 
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superimposed log-normal distributions in the case of the culture samples. The 2016 

part of the dataset (MS, SC, KM) also displayed superimposed log-normal 

distributions, but on a background trend of decreasing concentrations towards higher 

rRIs.  

 

Figure 6.8 – PRIDs retrieved by the FC method for (a) small spherical or quasi-spherical species (M. 

aeruginosa, Synechococcus sp.), (b) large spherical or quasi-spherical species (Heterocapsa sp., A. 

minutum, K. mikimotoi) and (c) chain-forming species (P. seriata, S. marinoi). Real refractive index 

values above 1.15 are not precise, but still indicate high refractive indices. 

HS showed bi-modal rRI peaks, the first centred between 1.05-1.09 and the second 

between 1.13-1.16. This lends support to the concurrent presence of two populations, 

one of Heterocapsa cells and one of detritus derived from cellulose thecae. AM 

showed a single, wide rRI peak between 1.10-1.15, which is higher than expected 
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values for phytoplankton but falls short of values compatible with thecae detritus, 

while KM rRI peak was located at 1.04-1.06, which is within expected 

phytoplankton values. All other species considered (MS, SC, PS, SM) were within 

expected phytoplankton rRI values, with peaks at 1.04-1.07, 1.02-1.04, 1.02-1.04 and 

1.03-1.05 respectively. As noted, samples from the 2014 part of the dataset (HS, AM, 

PS, SM) all displayed large concentrations of particles with rRI values above 1.15. 

While the validation of the rRI detection capabilities of the method showed that high 

rRIs values are to be interpreted as generic rather than specific, the concentration 

spike visible at ~1.3 in particular is made up of particles above and outside the 

scattering model grid. Under the current implementation of the method these 

particles are defaulted at the highest rRI considered, i.e. 1.3.  

6.3.2.4  ADM bulk rRI comparison 

The FC method estimates of peak rRI were generally rather consistent with estimates 

for bulk rRI derived using the ADM technique (Tab. 6.4) and broadly consistent with 

values in the literature (Tab 6.5), with some disagreement in the case of SC and AM. 

The procedure produced an ADM rRI for MS (1.801) which is highly unrealistic; 

when this outlier was removed, comparison between average FC rRIs and ADM rRIs 

produced a RMS%E value of 6.627%.  

 

Table 6.4 – Real refractive indices as determined by the FC method for the phytoplankton species of 

the AC dataset and comparison with ADM rRIs. Compare the values of Tab. 6.5. 
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Table 6.5 – Tab. 1.1 is recalled here for the reader’s convenience, presenting values of the real part of 

the complex refractive index for some of the main constituents of marine particle populations given 

relative to water. Reference: a) Twardowski et al. (2001); b) from Lide (1997) via Twardowski et al. 

(2001). The number of mineral types included within each class is indicated within parentheses; c) 

from Aas (1996). 

6.3.3 UKCW dataset 

6.3.3.1      UKCW diameter retrieval 

Fig. 6.9a shows a typical set of FC data for a natural water sample. In all UKCW 

samples, the vast majority (>99%) of points were found to lie within the area of the 

grid predicted by Mie theory for reasonable estimates of rRI. Points lying outside the 

grid exhibit properties that diverge from the assumptions underpinning Mie theory, 
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with likely candidates being morphological characteristics such as strong non-

sphericity and presence of facets and vertices.  

 

Figure 6.9 – (a) Example of a typical sample from the UKCW dataset superimposed on the FC model 

grid and (b) collective view of all 50 UKCW PSDs produced by the FC method. (c) The slope for 

each PSD was calculated with a power law fit over the available range (minus the first and last two 

data points to avoid possible boundary effects, as indicated by vertical lines), as demonstrated on the 

median UKCW PSD (quartiles and max./min. given as dark and light grey dashed lines respectively). 

In the last panel (d), a comparison between the median FC and LISST PSDs. 

PSDs determined by the FC method were found to broadly follow power law 

distributions (Fig. 6.9b). PSD slope values were thus obtained through least squares 

best fit of power law distributions (cf. Paragraph 1.2.4) as defined by 
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𝑁′(𝐷) =
𝑁(𝐷)

𝑑𝐷
= 𝑘𝐷−𝛾 (6.25) 

after excluding both the first two and last two points in the PSD range to avoid 

possible boundary effects (Fig. 6.9c). The form given in eq. (6.25) is necessary 

because while the FC PSDs have bin-like nature, PSD slopes in literature are 

generally given as those of the underlying density function. Values of the distribution 

slopes for all 50 samples were found between 2.587-3.813 (mean slope: 3.361 ± 

0.250). All PSDs were observed to rapidly lose statistical significance above ~20 µm 

due to few particle counts and particle concentrations reaching a floor corresponding 

to bins containing a single particle. PSD data above this size threshold was therefore 

considered unreliable and subsequently ignored. Overall consistency in the UKCW 

PSDs was demonstrated when the dataset was reduced to its overall median, quartiles 

and max/min PSDs (Fig. 6.9c), with the exception of two obvious outlier samples 

that were collected in the turbid, mineral-rich waters of the Bristol Channel (cf. Fig. 

6.9b). These show a clear secondary feature centred on ~ 8 µm that could be 

associated with strong tidal resuspension of mineral particles in this area.  

Fig. 6.9d, showing median PSDs for the entire UKCW dataset for both FC and 

LISST instruments, demonstrates broad consistency between FC and LISST results. 

However, a closer look at ratios of corresponding PSD pairs between the three 

instruments revealed variability both between FC and LISST data and (perhaps more 

surprisingly) between the two sets of LISST data (Fig. 6.10). LISST-B PSDs were 

found to be similar to LISST-C PSDs in shape, slope and features, as evinced from 

the mostly flat profile of their median ratio (Fig. 6.10a), as were the FC PSDs and 

LISST PSDs when compared with each other (Fig. 6.10b-c). Similarity between FC 

and LISST PSD slopes was further demonstrated in the shape of the respective 

distributions of slope values (Fig. 6.11). As with FC PSD slopes, LISST PSD slopes 

were determined through least squares best fit of power law distributions after 

neglecting the extremes of the PSD-LISST overlapping size ranges, which were 

found to produce boundary effects in the PSD ratios (Fig. 6.10b-c). Unlike PSD 

shape and slopes, particle concentrations were instead found to differ between the FC 

and the two LISST instruments, with lower overall concentrations for the flow 
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cytometer and median FC/LISST-C and FC/LISST-B values of ~77% and ~32% 

respectively across the plateau (Fig. 6.10b-c). Surprisingly, particle concentrations 

were also found to differ markedly between the two LISST-100x instruments, with 

higher overall concentrations for LISST-B and a median LISST-C/LISST-B ratio 

value of ~48% across the plateau (Fig. 6.10a).  

 

Figure 6.10 – Comparison between PSDs produced by the FC method and the two LISST-100x 

instruments used in this study, given as the median of all PSD/PSD ratios for the (a) LISST-C/LISST-

B, (b) FC/LISST-C and (c) FC/LISST-B relationships (quartiles and max./min. given as dark and light 

grey dashed lines respectively). The vertical lines indicate the size range over which slopes for the 

LISST PSDs were calculated. 
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Figure 6.11 – Histograms of FC and LISST PSD slope distributions, paired as FC-LISST-C (a-c) and 

FC-LISST-B (b-d). Data is presented as two separate subsets because while LISST-C PSDs were 

available for all 50 samples of the UKCW dataset, LISST-B PSDs were available for only 28 out of 

those 50. 

6.3.3.2  UKCW rRI retrieval 

Real refractive index distributions in the UKCW dataset were found to be fairly 

homogeneous in shape across all samples (Fig. 6.12). Highest median concentrations 

were found in a broad feature between 1.05-1.15, with the overall peak at 1.07-1.09. 

This is in accordance with literature values of the rRI of the most common 

components of marine particle populations (Tab. 6.5). A tail of particles with rRI > 

1.15 is also observed in all samples, with median concentrations 5 to 10 times lower 

than peak ones. As discussed previously, real refractive index values above 1.15 are 

not to be interpreted as precise, but still positively indicate high refractive indices, 
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and the concentration spike visible at ~1.3 in particular is mostly made up of the 

particles above and outside the scattering model grid discussed in Paragraph 6.3.3.1. 

Under the current implementation of the method these particles are defaulted at the 

highest rRI considered, i.e. 1.3, forming the observed feature (cf. Paragraph 6.3.2.3). 

As mentioned, these particles were found to account for less than 1% of the total 

particle population in all samples of the UKCW dataset, and are possibly small, hard 

inorganic particles with facets and edges for which Mie theory breaks down. 

 

Figure 6.12 – (a) PRIDs retrieved by the FC method for the 50 samples of the UKCW dataset and (b) 

median of all 50 samples of the dataset (quartiles and max./min. given as dark and light grey dashed 

lines respectively). Real refractive index values above 1.15 are not precise, but still indicate high 

refractive indices. 

The PRIDs determined by the FC method offer the chance to identify and compare 

individual subpopulations of particles within the total PSD, and to explore the 

individual contributions of these fractions to the optical properties of the particle 

population; these will be described in greater detail in Chapter 7. At the number 

densities level, separating the particle population of a sample at the rRI = 1.1 

threshold (taken as the midpoint between 1.05 and 1.15 as typical organic and 

inorganic rRIs; see Tab. 6.5) allowed for broad assessment of population dynamics 

(Fig. 6.13a). Samples collected in the Bristol Channel and the Irish Sea showed a 

prevalence of inorganic particles, while samples collected west of Orkney and in the 

North Sea were dominated by organics and samples from Loch Fyne and the 
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Hebrides displayed a roughly balanced mixtures of organics and inorganics (Fig. 

6.13b). These results too will be discussed in further detail in Chapter 7 within the 

context of individual particle subpopulation contributions to the IOPs. 

 

Figure 6.13 – (a) Total, organic (rRI < 1.1) and inorganic (rRI ≥ 1.1) PSDs corresponding to the 

sample shown in Fig. 6.9a. (b) Organics vs. inorganics balance across the UKCW dataset. The vertical 

lines reflect the regional groupings of Fig 5.3. 

6.4 Discussion 

The FC method was found to be capable of identifying diameter and real refractive 

index within a range of diameters and rRIs in a variety of standard reference samples 

of polymer beads and oils suspensions (Fig. 6.4-6.5). Diameters and real refractive 

indices were successfully identified in a range from ~0.5 to ~10 µm for diameter and 

up to 1.15 for rRIs. Higher rRI values couldn’t be identified reliably, but still 

provided a generic high-rRI signifier as opposed to the more specific low rRI values. 

Results obtained using particle signal length at 20% of its peak height on the 

phytoplankton culture samples of the AC dataset showed that traditional flow 

cytometry techniques can easily identify the length of particles above the 10 µm 

threshold (Tab. 6.3); at the same time, the FC method was able to identify diameters 

below the width of the laser beam, where using signal length becomes unreliable. 

Furthermore, the FC method allows for the retrieval of refractive index information 
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along with particle size information, and is proposed as perhaps unique in its 

capability of offering both PSD and PRID determination within a single procedure. 

Size determination in phytoplankton culture samples using the FC method was seen 

to be strongly influenced by shape and likely structure of the phytoplankton cells 

(Tab. 6.3), as is particularly evident in the extreme case of P. seriata. Rounded, 

smaller cells offer the best results as it is to be expected in the context of Mie theory. 

Real refractive index detection was found to be much less affected than size 

detection by the aspect ratio of the particles (Tab. 6.4), even though the tendency for 

the FC method of underestimating the rRI of the largest particles (as in the case of 

very large polymer beads) may have biased the rRI results for phytoplankton towards 

organic-like values. 

When applied to natural water samples, the FC method produced PSDs which 

compared well with the features and slope of independent LISST-100x PSD 

measurements (Fig. 6.9-6.11). However, there was a lack of consensus on particle 

concentration between the two LISSTs and the FC (Fig. 6.11). Independent 

calibration of the latter against particle concentration standards adds weight to the FC 

data (see Section 3.4.2), but further work is required to fully establish the reliability 

of concentration data for natural samples. Natural FC PRIDs were found to be 

largely homogeneous with a broad maximum between 1.05-1.15 and peak values at 

1.07-1.09, consistent with a mix of organic and inorganic components (Fig. 6.12). 

The range of values accounts for most of the common components of marine 

suspended particulate matter (Tab. 6.5).  

A tail of particles with rRI > 1.15 is observed in all UKCW samples, with median 

concentrations 5 to 10 times lower than peak ones (Fig. 6.12). A concentration spike 

visible at ~1.3 in particular is found to be made up of particles outside the scattering 

model grid, which default to the highest rRI considered, i.e. 1.3. These were found to 

account for less than 1% of the total particle population in all samples of the UKCW 

dataset, and interpreted as small, faceted, high-rRI particles incompatible with Mie 

theory assumptions. Due to their relatively small number the influence of particles 

outside the scattering model grid is negligible. This is also true for particles larger 
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than 10 µm, which were found to be exceedingly few at least in the UKCW samples, 

although this is likely to be an effect of the measurement protocol described in 

Chapter 5, which selected for smaller particles. Finding statistically significant 

numbers of large particles will necessitate a revision of the measurement protocol or 

at the very least longer acquisition times. 

6.5 Conclusion 

The results presented in this chapter demonstrate the potential of a FC method 

capable of simultaneous particle size and refractive index identification, both in 

controlled samples with monotypic spherical particles (polymer beads, oil 

suspensions) and in natural water samples containing mixed populations. This 

implementation of a Mie theory inversion scheme, based on Ackleson & Spinrad 

(1988), not only enables estimation of PSDs and PRIDs for both algal cultures and 

natural seawater samples: the resulting ability to partition the PSD by particle type 

offers new capability to resolve changes in particle population dynamics in natural 

waters as well. Furthermore, it offers the chance to investigate the links of PSDs and 

PRIDs to optical properties and the individual contributions of particle 

subpopulations to the bulk IOPs, as the size range covered by the method (0.5-10 

µm) is particularly relevant for optical studies. These topics will be the focus of the 

next chapter, which is dedicated to Mie-based IOP forward modelling. 
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7.      Forward modelling of inherent optical properties from flow 

cytometry estimates of particle size and refractive index. 

Just as Mie theory was employed in Chapter 6 to retrieve particle diameters and 

refractive indices from the scattering properties of the particle population, so it can 

be employed in forward calculations to reconstruct bulk IOPs from the physical 

properties of the particles. In this chapter, a Mie-based forward modelling procedure 

is described and used to reconstruct bulk IOPs from the PSDs and PRIDs retrieved 

by the FC method for the particle suspensions of the AC and UKCW datasets. The 

first part of the chapter will summarise the procedure, the theory of which has been 

discussed in Chapter 2. A discussion of the refractive index approximations used in 

the PSD extrapolations which account for optically significant particles beyond the 

limits of FC detection is also included. The rest of the chapter will focus on the 

results of the IOP calculations, discuss their compatibility with the ac-9 and BB9 IOP 

values presented in Chapter 5 and explore the contributions of individual particulate 

subpopulations to the total IOPs. 

7.1  Introduction 

In Chapter 6, sets of rRI and diameter values were used as inputs for Mie theory to 

simulate scattering within the CytoSense and produce a look-up table of scattering 

values which allowed for the detection of size and refractive index distributions of 

particle samples. Much in the same fashion, the PSDs and PRIDs produced by the 

FC method can be used as inputs for Mie forward optical modelling. Given that the 

FC-determined PSDs only cover part of the optically relevant diameter range (0.05-

2000 μm; Davies et al., 2014), extrapolations are needed to account for the particle 

fraction outside the detection limits of the FC method. Complex refractive indices are 

then formed by combining the directly estimated PRIDs with imaginary refractive 

indices adapted from literature for both organic and inorganic components (cf. 

Paragraph 4.3.1). Once the appropriate PSDs and complex refractive indices are 

established for the entire optically relevant particle population, the Mie forward 

model produces volume scattering functions which are integrated to produce 

scattering and backscattering coefficients, and absorption efficiencies which are used 
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to calculate an absorption coefficient. Modelled IOPs provide insight into the effects 

of the particle population composition on the optical properties of water and can be 

validated against independent absorption, scattering and backscattering 

measurements. The chief focus of the forward modelling procedure is to confirm that 

the FC method produces PSDs and PRIDs which are compatible with the IOPs of 

their respective samples, and not to provide alternative means for determining IOPs: 

therefore, agreement between FC and ancillary IOPs serves as further validation of 

the FC method as a useful technique for concurrent diameter and rRI retrieval. 

Nevertheless, such agreement would also represent a step towards optical closure, i.e. 

the successful agreement of modelled and/or measured parameters between 

independent measuring techniques. Furthermore, the information contained in the 

PRIDs determined by the FC method offers the chance to explore the individual 

contributions of various fractions of the total particle population to the IOPs of a 

sample, highlighting population dynamics and possibly geographical trends in a 

dataset. 

7.2 Forward optical modelling 

As described in Chapter 2, the foundation of Mie forward modelling rests on the 

additive nature of the inherent optical properties: all IOPs are the result of the sum of 

the single contributions from each of the individual constituents of a water volume. 

Section 2.2 provided a detailed treatment of the concepts and equations at the basis 

of forward optical modelling; a few of those concepts are recalled here and expanded 

upon in light of the results obtained in Chapter 6. As with the FC method, forward 

optical modelling calculations were handled using an independently developed 

MATLAB code which integrates the FASTMie code (Slade, 2006) to calculate Mie 

coefficients. The core sections of the forward modelling code are presented in 

Appendix C. 
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7.2.1 Total particulate IOPs 

7.2.1.1 Scattering and backscattering 

In Chapter 2 it was shown that for a given density function of the PSD, the axially 

symmetrical total VSF is expressed as 

𝛽(𝜃, 𝜆) = 𝛽𝑤(𝜃, 𝜆) + ∬ 𝛽𝐷,𝑛(𝜃, 𝜆)𝑁′(𝐷, 𝑛)𝑑𝐷𝑑𝑛 , (2.44) 

where 𝛽𝑤(𝜃, 𝜆) is the VSF contribution of pure water, 𝛽𝐷,𝑛(𝜃, 𝜆) is the VSF 

contribution of a single particle of diameter D and complex refractive index n and 

𝑁′(𝐷, 𝑛) the corresponding value of the density function. Given that the ac-9 

instruments used in the AC and UKCW datasets are capable of isolating the IOP 

contribution of the particles from the pure water background, in practice the term 

𝛽𝑤(𝜃, 𝜆) can be neglected. Furthermore, it was shown in Chapter 6 that the PSDs and 

PRIDs determined by the FC method exist not as density functions but as discrete 

collections of bins. Consequently, for this application eq. (2.44) is more properly 

expressed as the axially symmetrical total particulate VSF  

𝛽𝑝(𝜃, 𝜆) = ∑ 𝛽𝐷,𝑛(𝜃, 𝜆)𝑁𝐷,𝑛

𝐷,𝑛

 , (7.1) 

where 𝑁𝐷,𝑛 is the total number of particles within the PSD × PRID bin corresponding 

to diameter D and complex refractive index n (see the 𝑀65×40 matrix described in 

paragraph 6.2.4). By way of eq. (2.48), eq. (7.1) is finally rewritten as 

𝛽𝑝(𝜃, 𝜆) = ∑
1

2

𝑖1𝐷,𝑛
+ 𝑖2𝐷,𝑛

𝑘2

𝐷,𝑛

𝑁𝐷,𝑛 . (7.2) 

Total particulate scattering and backscattering coefficients are calculated by 

integrating this total VSF over the appropriate angle ranges, following eqs. (1.21-

1.22). The spectral backscattering ratio is a derived quantity simply defined as the 

ratio between the backscattering and scattering coefficients, as per eq. (1.23). 
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7.2.1.2  Absorption 

The Mie coefficients an and bn can be used to calculate the efficiency factors for 

attenuation and scattering following eqs. (2.36-2.37), which in turn define the 

absorption efficiency factor via eq. (2.38). The absorption efficiency factor can be 

then combined with eqs. (1.29-1.30) to define the spectral absorption coefficient of a 

single spherical particle as 

𝑎𝑖(𝜆) =
𝜋𝐷𝑖

2

4
𝑄𝑎,𝑖(𝜆), (7.3) 

where Di is the diameter of the particle and 𝑄𝑎,𝑖(𝜆) the absorption efficiency of the 

particle. Analogously to eq. (7.1), the total particulate absorption is now simply 

defined as the sum of contributions from all particles,  

𝑎𝑝(𝜆) = ∑ 𝑎𝐷,𝑛(𝜆)𝑁𝐷,𝑛

𝐷,𝑛

= ∑
𝜋𝐷𝑖

2

4
𝑄𝑎,𝑖

𝐷,𝑛(𝜆)

𝐷,𝑛

𝑁𝐷,𝑛 . (7.4) 

7.2.2 PSD extrapolations  

Any kind of forward modelling will require the entire optically relevant particle 

fraction to be included as the input, or the output will not be comparable with any 

independently measured bulk IOP. In Chapter 6, the CytoSense was found to reliably 

retrieve diameters between ~0.5-10 µm using the FC method. This range covers a 

large fraction of the contribution to scattering and backscattering, but the whole 

optically relevant range spans from tens of nanometres to a few millimetres (Davies 

et al., 2014). The undetectable fraction of the particle population has to be accounted 

for using an approximation of the PSD to extend the range of the distribution over 

the whole relevant range. As discussed in Chapter 1, ever since pioneering work in 

the ‘60s and ‘70s found that the number of particles suspended in the ocean increased 

continuously and monotonically towards smaller scales (Bader, 1970; Sheldon et al., 

1972), power law distributions of the type used by Junge (1963) for aerosols have 

been the most common form of approximation for natural seawater particle 

populations (e.g. Stramski & Kiefer, 1991; Ulloa et al., 1994). The UKCW PSDs 
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determined by the FC method in Chapter 6 broadly conformed to this model (with 

notable exceptions in the samples retrieved in the waters of the Bristol Channel), and 

a least squares best fit of power law distributions was used to determine the slopes of 

the UKCW PSDs. Consequently, following in the steps of Green et al. (2003a), a 

least squares best fit of the measured PSDs through power law distributions as 

defined by  

𝑁(𝐷) = 𝑁′(𝐷)𝑑𝐷 = 𝑘𝐷−𝛾𝑑𝐷 (7.5) 

was used to extend measured PSDs as well. The form given in eq. (7.5) is necessary 

because the FC PSDs have bin-like nature; accordingly, the extrapolations need to be 

bin-like as well. This is in contrast with eq. (6.25), where the underlying density 

function was needed to define a PSD slope. 

7.2.3 RI approximations 

Values for the rRI in the Junge extensions must also be accounted for using some 

approximation of the PRID to extend the range of known refractive indices; various 

assumptions may be used to do so. The most conservative approach (and the one 

used in this study) is to assign a fixed value to the rRI, either the same on both arms 

of the extension or a separate one for each. This can be done in a variety of ways 

(Fig. 7.1), e.g. by using the average rRI of the entire measured fraction of PSD on 

both arms of the extension (mode A); by using the values of the rRI at the extremes 

of the measured fraction of PSD on the respective arms of the extension (mode B); or 

by using literature-derived rRIs based on an hypothesis of probable particle 

composition in the extension (mode C). The results obtained using each of these 

different approaches will be detailed in the following. Since the FC method doesn’t 

offer any information on the imaginary part of the refractive indices, iRI values are 

unknown both in the available FC PSDs and in their extrapolations. Following the 

same approach used in Chapter 4, typical values for the imaginary component of the 

relative refractive index were estimated from Fig. 8 of Babin et al. (2003), for both 

organic and inorganic particles. These were then assigned to the particles according 

to the value of the real refractive index of each bin, both directly determined by the 
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FC method and extrapolated. Accordingly, with this approach the values of the 

imaginary part of the refractive index in the PSD extensions will be ultimately 

dependent on the rRI approximation used. 

 

Figure 7.1 – Power law best fit and PSD extension rRI approximations in a typical natural particle 

population sample. A single rRI value averaged across the PSD range (�̅�𝑟) may be used on both upper 

and lower ends of the extension (mode A), or independent rRI values averaged over the extremes of 

the PSD (�̅�𝑟,1, �̅�𝑟,2) may be used on the respective ends of the extension (mode B). Alternatively, rRI 

values derived from literature based on the probable composition of the particle population in the 

extensions may be used (mode C). 

7.3 Forward optical modelling application 

Mie-based forward optical modelling was applied to the PSDs and PRIDs determined 

by the FC method for the datasets described in Chapter 5: the AC dataset of algal 

cultures and the UKCW dataset of natural seawater samples. The resulting IOPs were 

compared with corresponding absorption, scattering and backscattering coefficients 

determined by ac-9 and BB9 instruments. In all cases, 532 nm was used as the 

wavelength of choice for IOP calculations, as it is a green wavelength near the centre 

of the visible spectrum and one shared by both ac-9 and BB9 instruments without 

any need for interpolation. In the UKCW dataset, resulting IOPs were then further 

separated into individual contributions from fluorescent/organic/inorganic fractions 

and from different size classes. 
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7.3.1 AC dataset results 

7.3.1.1 PSD extrapolation and rRI approximation details 

The PSDs of the AC dataset as determined using the FC method were found in 

Chapter 6 to be heterogeneous, with power law distributions underlying 

superimposed log-normal distributions corresponding to the population peaks of each 

cultured species (Fig. 7.2a). Two separate trends were observed, corresponding to the 

separation between 2014 and 2016 samples. These were most likely caused by 

differences in the quality of the culture medium, and produced the clear difference in 

slopes observable in Fig. 7.2a.  

 

Figure 7.2 - Collective view of (a) AC PSDs and (b) AC PRIDs produced by the FC method. Lighter 

grey lines correspond to 2014 samples; darker grey lines correspond to 2016 samples. Note that real 

refractive index values above 1.15 are not precise, but still indicate high refractive indices. 

PSDs for the AC dataset were extended using power law extrapolations after an 

effort to isolate the underlying power law trend by subtraction of the fluorescent 

component of the PSDs. The extrapolations were carried out between 0.05 and 2000 

m, following the recommendations of Davies et al. (2014) to account for 

distribution slope values as low as 3.5, the lowest value considered in their study. 

Slope values for the 2014 cultures were however found to be even lower (mean slope 

value: 2.62); the mean slope value for the 2016 cultures was found to be 4.18. The 

PRIDs of the AC dataset were similarly found to follow two distinct trends 
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corresponding to the separation between 2014 and 2016 samples, with the latter more 

strongly peaking towards organic relative rRIs and possibly hinting at a lower overall 

quality of the culture medium in the 2014 samples (Fig. 7.2b). All three methods of 

approximation of the rRI in the PSD extensions described in Paragraph 7.2.3 were 

followed; in particular, when literature values were used, 1.05 was chosen as the 

relative rRI on both arms of the PSD extension. 

7.3.1.2  Forward modelling results 

Tab. 7.1 presents the results of the comparison between IOPs as determined by Mie 

forward modelling for the AC dataset and measured IOP values. Across all three 

modes of rRI approximation, large species with spherical or quasi-spherical aspect 

ratio (LS: Heterocapsa sp., A. minutum and K. mikimotoi) were found to differ 

greatly from measured values, while small species with spherical or quasi-spherical 

aspect ratio (SS: M. aeruginosa and Synechocccus sp.) and (perhaps surprisingly) 

chain-forming species (Ch: P. seriata and S. marinoi) generally performed better. 

Mode B was found as the best performing approximation: corresponding results are 

shown in Fig. 7.3. The cause of the disagreement is identified in the large 

overestimation of measured IOP values for species Heterocapsa sp. and A. minutum. 

Interestingly, when the PSD extrapolations are taken out of the forward modelling 

calculations, the values of modelled IOPs for these two species are found to be much 

closer to measured IOP values with a corresponding improvement in the degree of 

agreement (Tab. 7.1). 
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Table 7.1 – Results of the comparison between modelled and measured IOPs for the AC dataset. 

Values are displayed for both the rRI approximation modes A, B and C described in Paragraph 7.2.3 

(see also Fig. 7.1) and for the non-extended PSD case. 

Care should be taken in the interpretation of RMS%E values in the context of quality 

of agreement between the modelled and measured IOPs, as although RMS%E values 

for the non-extended PSDs are lower, inspection of Fig. 7.3 shows general 

underestimation of the measured IOPs as is to be expected when optically significant 

particles are excluded from calculations.  
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Figure 7.3 – Optical closure analysis of the AC dataset for non-extended PSDs (red squares) and for 

Mode B of rRI approximation in the Junge extensions (grey squares) for (a) absorption, (b) scattering, 

(c) backscattering and (d) backscattering ratio. RMS%E values for the closure analysis are given in 

Tab. 7.1. 

Nonetheless, the results for Heterocapsa sp. and A. minutum indicate that in some 

cases the PSD extrapolations add more particles than are likely to be actually present. 

On one hand, it could be argued that such a result should be obvious in culture 

samples where the largest particles present should logically be the cultured 

phytoplankton cells; on the other hand, Mie forward modelling for chain-forming 

species from the same sampling period is shown to perform much better using 

similar extrapolations. Furthermore, there was reason to doubt the quality of the 

culture medium, so that the presence of foreign particles in unknown quantities 
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couldn’t be ruled out. Overall, the results of Mie forward optical modelling for the 

AC dataset highlight the risks of using power law extrapolations on samples which, 

despite seeming to follow power law-like trends, do not represent natural particle 

populations. 

7.3.2 UKCW dataset 

7.3.2.1 PSD extrapolation and rRI approximation details 

The PSDs of the UKCW dataset were found in Chapter 6 to broadly follow power 

law distributions, with the main difference between stations being the overall 

concentration of the particle population (Fig. 7.4a). Two obvious outliers are present, 

corresponding to samples from the turbid waters of the Bristol channel; close 

inspection reveals structures that may be closer in nature to models such as the 

double gamma distribution proposed by Risović (1993), and that indeed may be 

identified to a lesser degree in the other samples as well. Nonetheless, the power law 

approach remains a reasonable approximation for a large majority of the dataset, and 

was used for the PSD extrapolations accordingly. PSDs for the UKCW dataset were 

extended between 0.05 and 2000 m following Davies et al. (2014); the mean slope 

value of the UKCW dataset was found to be 3.35. Particle refractive index 

distributions were found to be fairly homogeneous across all samples (Fig. 7.4b), 

with distribution peaks found between 1.05-1.15 and within expectations for the rRI 

of the most common components of marine particle populations. All three methods 

of approximation of the rRI in the PSD extensions described in Paragraph 7.2.3 were 

followed; in particular, when literature values were used, 1.15 was chosen as the rRI 

of particles smaller than 1 µm and 1.05 as the rRI representative of particles larger 

than 10 µm. A few rare instances occurred of gaps being present in some PSDs at 

~10 µm when overall particle concentrations were low. This caused the loss of 

statistical significance caused by low particle counts to occur earlier and sometimes 

produce empty size bins. Where these gaps were present in the PSDs, a value of 1.1 

was used for the power law extrapolation between 1-10 µm. 
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Figure 7.4 – The collective view of all 50 (a) UKCW PSDs and (b) UKCW PRIDs produced by the 

FC method is recalled here from Fig. 6.9 and 6.12. Note that real refractive index values above 1.15 

are not precise, but still indicate high refractive indices. 

7.3.2.2  Forward modelling results 

Tab. 7.2 presents the results of the comparison between IOPs as determined by Mie 

forward modelling for the UKCW dataset and measured IOP values. Mode B was 

found to provide the best overall retrieval of IOPs, and corresponding results are 

shown in Fig. 7.5.  

 

Table 7.2 – Results of the comparison between modelled and measured IOPs for the UKCW dataset.  
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Figure 7.5 – Optical closure analysis of the UKCW dataset for Mode B of rRI approximation in the 

Junge extensions for (a) absorption, (b) scattering, (c) backscattering and (d) backscattering ratio. 

Retrieval of IOPs was found to be variable, with trends to either underestimate or 

overestimate at higher values for each IOPs. Nonetheless, overall agreement is rather 

good for absorption, scattering and backscattering, with the backscattering ratio 

demonstrating the negative impact of compounding errors by taking ratios. When 

considering the sample-by-sample ratio of modelled FC IOPs vs. measured IOPs, 

different behaviours can be observed for each of the IOPs. FC absorption displayed 

large variance across the entire dataset (Fig. 7.6a), while FC scattering was generally 

lower than ac-9 scattering, with disagreement progressively increasing in later 

samples which displayed relatively high chlorophyll-A content (see Chapter 5) (Fig. 

7.6b). This could represent a breakdown in the performance of the ac-9 iterative 
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correction used to correct ac-9 data (Paragraph 5.3.3) under algal bloom conditions, 

possibly as a consequence of deviations from the Fournier-Forand phase function 

that underpins the method (McKee et al., 2013).  

 

Figure 7.6 – FC vs. ac-9-derived IOP ratios for (a) the absorption coefficient and (b) the scattering 

coefficient and FC vs. BB9-derived IOP ratios for (c) the backscattering coefficient and (d) the 

backscattering ratio. The vertical lines reflect the regional groupings presented in Fig. 2. Note that the 

first two data points for BB9 backscattering and backscattering ratio are missing because of saturation 

in the BB9 backscattering meter. 

FC backscattering was generally lower than BB9 backscattering, with larger 

disagreement in the Irish Sea, Orkneys and North Sea samples (Fig. 7.6c). FC 

backscattering ratios (Fig. 7.6d) generally replicated the pattern displayed by the 

backscattering data (Fig. 7.6c). For b, bb and �̃�𝑏, samples from the Firth of Clyde and 
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the Hebrides were seen to produce results which were consistently closer to the 

validation IOPs.  

The capability of the FC method to determine the size and real refractive index of 

each particle, combined with the ability to detect fluorescence, enabled the analysis 

of the individual contribution of fluorescent and non-fluorescent organic and 

inorganic fractions of the particle population to the IOPs, although limited to the 

effective size detection range of the method. Across the 50 samples in the UKCW 

dataset, inorganic particles were seen to account for particle population fractions 

ranging from 16.6% to 62.2% of the total, with an average value of 43% (Fig. 7.7a). 

Samples from the Bristol Channel and the Irish Sea displayed the largest inorganic 

content, while later samples collected west of Orkney and from the North Sea were 

generally dominated by organic particles. Fluorescent organic particles were found to 

account for a small fraction of the particle population (0.1-15.6%), lower than 5% in 

most samples. The organic fraction was seen to have a strong influence on both 

absorption and scattering, with fraction contributions between 18.9-93.7% and 23-

82.6% of the total respectively across the UKCW dataset (Fig. 7.7b-c). Lowest 

organic contributions came from the Irish Sea and (particularly) from the Bristol 

Channel. Fluorescent organic content was also observed to have significant impact 

on ap and bp despite its small population fraction, with contribution values as high as 

73.9% and 53.8% respectively and generally higher than 20% in a large number of 

samples. Once again, the Irish Sea and Bristol Channel samples (where the 

fluorescent content was found to be numerically negligible) displayed the lowest 

fluorescent fraction contribution to both IOPs. In contrast, backscattering was found 

to be largely dominated by the inorganic fraction of the particle population, with 

values ranging from 63.3% to 93.1% of the contribution (Fig. 7.7d).  
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Figure 7.7 – (a) Relative abundance of the inorganic and organic (fluorescent and non-fluorescent) 

fractions of the total particle populations, and contribution of each of these population fractions to (b) 

total absorption, (c) scattering and (d) backscattering coefficients. 

The reason behind the different observed fractional IOP contributions rests in the 

different response that the IOPs have to particles of the same size, as demonstrated 

when the individual IOP contribution of the measured FC fraction of the PSD is 

compared to those induced by the upper and lower PSD extensions (i.e. large and 

small particles respectively). Absorption a (Fig. 7.8a) was found to be dominated by 

large particles above ~ 10 m (27.1-98.1%), with only minor contribution from 

particles smaller than ~0.5 m (0.1-12.1%). Scattering b (Fig. 7.8b) was found to be 

overwhelmingly influenced by particles larger than ~0.5 m (92.1-99.9% of the 

contribution), with a non-negligible contribution from particles larger than ~10 m 
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(3.3-80.6%). Finally, backscattering bb (Fig. 7.8c) was found to be largely influenced 

by particles smaller than ~10 m (53.4-99.4% of the contribution), with a sizeable 

influence from particles smaller than ~0.5 m (1.4-49.9%).  

 

Figure 7.8 – Comparison of the relative contributions of the FC PSD and of its upper and lower 

power law extensions (i.e. large and small particles respectively) to (a) total absorption, (b) scattering 

and (c) backscattering coefficients. 

Considering these results, the large inorganic contribution to the total backscattering 

shown in Fig. 7.7d may be interpreted to suggest that small particles in the UKCW 

dataset were mostly of inorganic nature; it should be noted however that the lower 
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diameter detection limit of the FC method is slightly higher for organic particles than 

it is for inorganic particles, because given equal diameters a higher refractive index 

produces a higher side scattering signal. Therefore, organic number densities fall off 

slightly earlier than inorganic ones as diameters approach the detection limit. 

Although all care was taken to minimise this spurious effect, it is likely that some 

part of the bb fraction of Fig. 7.7d was caused by it. 

7.4 Discussion 

The results of closure analysis between modelled and measured IOPs in the AC 

dataset were found to vary greatly between algal species, with large, roughly 

spherical species Heterocapsa sp. and A. minutum found to largely overestimate 

corresponding measured IOPs while small-rounded and chain-forming species 

achieved good agreement across all IOPs considered (Tab. 7.1). The disagreement 

was diminished greatly when the PSD extrapolations were excluded from IOP 

calculations, suggesting that the power law extensions introduced more particles than 

were actually present in the samples; at the same time, not only other species 

achieved better agreement using similar PSD extrapolations, but removing the 

contribution of undetected particles from the IOP calculations caused general (if not 

large) underestimation of the measured IOPs (Fig. 7.3). A definitive interpretation of 

the nature of the problem is difficult, although it appears clear that the application of 

a PSD approximation designed for natural particle populations to culture samples is 

risky, and produces unpredictable results. 

The best results for the closure analysis between measured and modelled IOPs for the 

UKCW dataset were achieved for scattering and backscattering coefficients. In the 

latter case, more refined approximations for the rRIs used in the Junge extensions of 

the PSDs (i.e. rRI averages based on available data as opposed to fixed values 

adapted from literature) markedly improved the quality of the agreement, an effect 

consequently also reflected in backscattering ratio values. Agreement between FC 

and ac-9 absorption coefficients remained the least successful across all three rRI 

approximation used, perhaps as expected for a quantity which is chiefly influenced 

by imaginary refractive indices. The FC method of flow cytometric determination of 
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size and refractive index used in this study offers no information on the imaginary 

component of the refractive index, so that no better solution than adapting literature 

values to the organic/inorganic fractions of the particle population could be used.  

Given the relatively narrow size range that the FC method addresses, the need to 

extrapolate both size and RI values, and the absence of direct observations of iRI, the 

degree to which forward modelled IOPs match measured values is surprisingly good. 

Variation in the quality of match-ups across the dataset can be attributed to a number 

of interwoven factors. For example, selection bias in favour of small particles 

potentially affects absorption retrieval more than scattering and backscattering, as 

Fig. 7.8a demonstrates the relatively strong contribution from the upper 

extrapolation. Fig. 7.6 indicates that there may be regional factors at play, probably 

corresponding to changes in the composition of the particle population. It is worth 

noting that it is quite likely that such changes might also influence the performance 

of scattering correction procedures for ac-9 absorption and attenuation 

measurements, and therefore influence the degree of compatibility between the 

measured IOPs and IOPs derived from Mie forward modelling. There is scope to 

extend the FC sampling procedure to capture a wider range of particle sizes at the 

high end and to improve statistical significance throughout. However, it is clear that 

the current iteration of the FC method as it was presented in Chapter 6 already 

provides a useful insight into the contribution of different particle components to the 

formation of bulk particulate IOPs. 

The overall broad agreement between measured and modelled IOPs provides useful 

validation of the PSDs and PRIDs generated by the FC method. In doing so, it also 

suggests that Mie theory is sufficient to provide useful estimates of bulk IOPs for 

natural particle populations. This is not to say that Mie theory is capable of 

accurately predicting optical properties for all marine particles; indeed, there are 

many well-established situations where more complex optical models are required 

(see Paragraph 1.1.2). Rather, results indicate that Mie theory, which is analytical, 

conservative and computationally fast, has the ability to reproduce bulk IOPs for 

randomly orientated, mixed populations of naturally occurring marine particles. In 

this context, it is interesting to evaluate the results of the optical closure analysis for 
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the AC dataset, in particular for the chain-forming species P. seriata and S. marinoi. 

Surprisingly, these species were found to produce the best agreement between 

modelled and measured IOPs. While this may be easier to justify in the case of S. 

marinoi, the cells of which are structurally complex but have ellipsoidal aspect ratio, 

it is a remarkable result for P. seriata, which has spindle-shaped individual cells 

possessing rather extreme aspect ratios. This is compounded by the dynamics of FC 

measurements, which, being carried out within a flow system, tend to arrange long 

particles along the direction of the sample flow. A possible interpretation of such 

results would be to suggest that the nature of the FC method makes it so that the 

diameter and rRI values produced by it correspond to spheres optically equivalent to 

the particles processed by the flow cytometer; the modelled IOPs therefore would be 

compatible with bulk IOP measurements taken by instruments which observe 

ensembles of randomly orientated particles. However, more data is required to 

substantiate this interpretation.   

Finally, it is important to consider that in situ IOPs used to validate the forward 

modelling are themselves subject to variable degrees of error. Forward modelled 

scattering values, resolved down to 0.01° in the forward direction, provide useful 

validation of (or at least demonstrate mutual consistency with) in situ values 

generated using iterative correction of the scattering error in the ac-9 attenuation 

measurements. Similar degrees of closure with uncorrected in situ bp data is possible 

by restricting calculations to angles beyond the transmissometer collection angle but 

are no better in quality. This is good circumstantial evidence that the iterative 

scattering correction is a useful development. On the other hand, as mentioned 

previously, the iterative correction relies on selection of appropriate scattering phase 

functions and there is evidence (Fig. 7.6b) that there is possibly some degree of 

breakdown in performance as waters become increasingly dominated by large 

phytoplankton. 

7.5 Conclusions 

PSDs and PRIDs determined using the FC method for both algal cultures and natural 

seawater samples were used as inputs to Mie forward optical modelling. With the 
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selection of appropriate PSD extrapolations and rRI approximations, which 

accounted for undetected particles, the calculations produced IOP values which were 

then compared with corresponding measured IOPs. AC dataset results were mixed, 

highlighting the unreliability of using PSD extrapolation models developed for 

natural samples on non-natural samples like algal cultures. The good agreement 

reached with modelled IOPs of chain-forming algae may also indicate that the FC 

method produced PSD and PRID results actually representing equivalent spheres. 

UKCW dataset IOP match-up results were found to be variable, reflecting 

geographic variability and possibly limitations in the quality of in situ IOPs used for 

validation. However, given the relatively narrow FC method size detection range, the 

need to extrapolate PSDs and approximate rRIs to account for undetected particles, 

and an inherent lack of direct iRI measurements, the degree of agreement between 

modelled and measured IOPs is surprisingly good. These results validate the PSDs 

and PRIDs produced by the FC method, suggest a reassessment of the value of Mie 

theory in the context of predicting bulk IOPs for natural particle populations and 

underline the requirement to consider the role of measurement uncertainties, 

particularly systematic errors, when using in situ IOPs for validation of forward 

optical modelling. Finally, PSDs and PRIDs as determined by the FC method offered 

the chance to gain useful insight into the individual contributions of different particle 

subpopulations to the bulk IOPs of seawater samples; in the next and final chapter, a 

similar approach will be taken to investigate to what degree the same PSDs and 

PRIDs can be used to successfully inform models of particle density and of organic 

carbon and chlorophyll content, and to explore the biogeochemistry of the particle 

populations of the UKCW dataset.  
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8. Biogeochemistry 

8.1 Introduction 

Knowledge of the size and refractive index distributions within a particle population 

not only allows for IOP forward modelling and for an assessment of the relative 

contribution of the particle fractions to the optical behaviour of water; coupled with 

models of particle density and carbon content, PSDs and PRIDs offer the chance to 

explore the biogeochemical properties of a particle population as well. In this 

chapter, models of organic and inorganic particle density are adapted from literature 

together with information on carbon and chlorophyll-A cell volume scaling to 

produce modelled values of total suspended matter (TSM), organic suspended matter 

(OSM), inorganic suspended matter (ISM), particulate organic carbon (POC) and 

chlorophyll-A content (ChlA) from the particle data of the UKCW dataset. The 

modelled values thus obtained are then compared against the results of actual 

biogeochemical measurements, and the parameters used to assess carbon and 

chlorophyll content are optimized on a dataset-wide basis to explore the physiology 

of the cells encountered during the HE442 research cruise. 

8.2 Data inputs and UKCW comparison data 

It is convenient to recall here the biogeochemical data presented in Chapter 5 for the 

UKCW dataset (Fig. 8.1); TSM, OSM, ISM, POC and ChlA measurements taken 

during the HE442 research cruise will be used in the following sections as 

comparison for the results of the modelling. Accordingly, PSDs and PRIDs as 

determined in Chapter 6 by the FC method for the UKCW samples will be used as 

inputs for the biogeochemical models. 
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Figure 8.1 – (a) TSM, (b) ISM/OSM balance, (c) POC and (d) ChlA data for the UKCW dataset. In 

the last panel, grey circles represent HPLC-derived ChlA values and dark grey squares represent ChlA 

estimates given as 5.5 times the initial fluorescence Fo of the sample. The vertical lines reflect the 

regional groupings presented in Chapter 5: Bristol Channel (BC), Irish Sea (IS), Loch Fyne and Firth 

of Clyde (Fy), Hebrides and Skye (Heb), North Atlantic - Orkneys (Or) and North Sea (NS). 

By exploiting the particle composition information given by the PRIDs, the total 

PSD of each UKCW sample is further separated into an inorganic PSD, an organic 

PSD and a fluorescent fraction, which is itself a sub-fraction of the organic PSD (Fig. 

8.2a). These will be respectively used to calculate OSM & POC, ISM and ChlA, 

while TSM will be calculated both from the total PSD and as the sum of the model 

ISM and OSM. To account for the fraction of the particle population undetected by 

the FC method, the total, organic and inorganic PSDs must be extended following the 

methodology used in Chapter 7 (Fig. 8.2b); note that since the PSD extrapolations 
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only approximate the particle populations outside the FC method detection range, the 

sum of the extended organic and inorganic PSDs generally is not exactly equal to the 

extended total PSD, making the dual calculation of TSM from both the total PSD and 

as the sum of model ISM and OSM values a useful check of the error thus 

introduced. 

 

Figure 8.2 – (a) Total (black), organic (green), inorganic (blue) and fluorescent (red) PSDs for a 

typical sample of the UKCW dataset and (b) power law extension of the total, organic and inorganic 

PSDs. Note that the extended organic and inorganic PSDs intersect the extended total PSD; therefore 

the sum of the extended organic and inorganic PSDs is not exactly equal to the extended total TSM. 

To evaluate the error thus introduced, TSM values are modelled both from the total PSD and by 

summing model ISM and OSM values. 

8.3 Particle mass modelling from apparent density of hydrated matter 

Calculations for modelled values of TSM, OSM and ISM were made following the 

technique presented by Zhang et al. (2014). Building on the approach presented by 

Morel and Ahn (1990) and Babin et al. (2003) the technique estimates an apparent 

density for the particulate matter which is dependent on the real part of the refractive 

index of the particles and is designed to account for their water content. The equation 

takes the form 
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𝜌 =  𝜌𝑜𝑉𝑜 =  𝜌𝑜

𝑛 − 1

𝑛𝑜 − 1
 , (8.1) 

where n is the apparent real refractive index of the whole particle and no, ρo and Vo 

are respectively the real refractive index, density and fractional volume of the dry 

matter fraction of the particle. Values for the ρo/(no - 1) ratio were defined following 

those employed by Zhang et al. (2014). For organic particles (defined as the fraction 

of the particle population with n < 1.1) the mean value of the ratio was set at (8.56 ± 

1.1)×10
6
 g/m

3
; these are particles with a high water content, as high as ~80 ± 10% 

for algal cells (Aas, 1996). For mineral particles (defined as the fraction of the 

particle population with n ≥ 1.1) the mean value of the ratio was instead set at (15.52 

± 1.84)×10
6
 g/m

3
. These particles have low water content; when the fractional 

volume of dry matter reaches unity (i.e. water content within the particles is zero) the 

apparent density of the particle becomes equal to the density of the dry mineral 

matter and can be calculated accordingly. Zhang et al. (2014) find n = 1.16 as the 

threshold above which Vo = 1, and give ρ = [(6.42 ± 0.85)n - (4.86 ± 0.99)]×10
6
 g/m

3
 

as the corresponding density based on a linear regression of literature values of 

density and refractive index for a number of mineral species. Overall, the final 

expression of eq. (8.1) used in practice was 

𝜌 = 

8.56 × 106(𝑛 − 1) 

15.52 × 106(𝑛 − 1) 

6.42 × 106𝑛 − 4.86 × 106 

𝑛 < 1.1 

1.1 ≤ 𝑛 < 1.16 

𝑛 ≥ 1.16 

(8.2) 

with all density values given as g/m
3
. Keeping with the assumption of particle 

sphericity used in the models employed thus far, a first attempt of total particle mass 

calculation for the total, organic and inorganic fractions of the particle population 

was made as a simple bin-by-bin summation of spherical masses, i.e. 

𝑚𝑡𝑜𝑡 = ∑ 𝜌𝑛𝑉𝐷𝑁𝐷,𝑛
𝐷,𝑛

 (8.3) 

where VD is the volume of a sphere of diameter D, D and n are the diameter and rRI 

corresponding to each bin and ND,n is the number of particles within each bin. Given 
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eq. (8.3) TSM, ISM and OSM can then obtained respectively by summing over the 

entire range of rRIs or by limiting the summation to real refractive index values 

above or below the n = 1.1 threshold. The model TSM, ISM and OSM values 

produced using this simple particle volume model however grossly overestimated the 

corresponding UKCW measurements, in certain cases by over two orders of 

magnitude (Fig. 8.3).  

 

Figure 8.3 – Comparison of modelled vs. measured (a) TSM, (b) ISM and (c) OSM values for a 

simple spherical volume model. TSM values derived from the total PSD are represented as dark grey 

squares, while TSM values calculated as the sum of ISM and OSM are represented as light grey 

diamonds. 
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A second calculation attempt was therefore carried out using a slightly modified 

version of the particle volume and total mass model employed in Zhang et al. (2014). 

This model is designed to account for the fractal nature of some marine particles, 

which can exist as aggregates of smaller units rather than as individuals exclusively, 

and takes the form 

𝑚𝑡𝑜𝑡 =  ∑
4𝜋

3
(

𝑟

𝑟𝑜
)

𝐹(𝑟)

𝑟𝑜
3𝜌𝑛𝑁𝑟,𝑛

𝑟,𝑛
 (8.4) 

where 

𝐹(𝑟) = 3 (
𝑟

𝑟𝑜
)

𝛽

 (8.5) 

is the fractal dimension of the particles, ro is the radius of the primary particles of 

which the aggregates are typically made up of and r is the effective radius of the 

particles. 

The value of ro and of exponent β are given as 0.5 µm and -0.0533 respectively 

(Khelifa and Hill, 2006, via Zhang et al., 2014), and for r < ro the value of F is fixed 

at 3. Crucially, the implementation of the model used here substitutes summation for 

the original integration to reflect the nature of the FC PSDs, extends the original 

range of 0.25-1000 µm to the 0.05-2000 µm one suggested by Davies et al. (2014) 

and used throughout this work, and implements the effective radius r directly as half 

the particle diameter D determined by the FC method (rather than as the geometric 

formulation 4/3×V/A used by Zhang et al., where A is the average projected area). 

This usage of Mie-derived parameters within a fractal model of mass highlights the 

dual nature of such modelling procedure: Mie theory is initially employed within the 

FC method to retrieve an optical size for the particles; the fractal model then 

reconciles this value with their physical size. Over the extended size range the value 

of F was found to vary between 3 (its maximum possible value) and 1.998. The 

TSM, ISM and OSM values produced using this fractal procedure were found to 

model the corresponding UKCW measurements much better than those produced 
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using the simple spherical model, with RMS%E values 57.4%, 148.5% and 83.1% 

for TSM, ISM and OSM respectively (Fig. 8.4).  

 

Figure 8.4 - Comparison of modelled vs. measured (a) TSM, (b) ISM and (c) OSM values for the 

fractal volume model. TSM values derived from the total PSD are represented as dark grey squares, 

while TSM values calculated as the sum of ISM and OSM are represented as light grey diamonds. 

TSM values obtained as the sum of ISM and OSM were found to be close to those 

derived from the total PSD (RMS%E value 65.2%), indicating that the error 

introduced by the PSD extension is small. The first two samples of the UKCW 

dataset (corresponding to stations with large particle load in the Bristol Channel) 

produced clear outliers on all three accounts and were not included in the analysis. 

Median cumulative distributions of TSM, ISM and OSM were also produced, 
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showing that in a majority of samples 90% of the contribution to all three parameters 

is done by particles between 0.2 and 200 µm (Fig. 8.5). 

 

Figure 8.5 – Cumulative distributions of modelled (a) TSM, (b) ISM and (c) OSM values for the 

fractal volume model. The TSM curves refer to TSM values calculated from the total PSD. Solid, 

dashed and dotted lines represent median, upper/lower quartiles and maximum/minimum values 

respectively. 

8.4 Particulate organic carbon and chlorophyll-A content modelling 

8.4.1 Literature-derived models 

POC and chlorophyll-A content within a cell are not linear functions of the cell 

volume (also defined as biovolume by some authors); total per cell content of either 
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of the two quantities is instead derived using empirical relationships defined by 

volume scaling exponents, which can be then summed over organic and fluorescent 

PSDs to obtain POC and ChlA values respectively, i.e.  

𝐶 = ∑ 𝑦(𝑟)𝑁𝑟
𝑟

 ,  (8.6) 

where C represents either POC or ChlA, y is the corresponding total carbon or 

chlorophyll content per cell and Nr is the number of particles within each size bin. A 

number of these empirical conversion relationships can be found in the literature for 

the modelling described here: 4 sets of parameters for carbon (Verity et al., 1992; 

Montagnes et al., 1994; Menden-Deuer & Lessard, 2000) and 2 sets of parameters 

for chlorophyll-A (Montagnes et al., 1994, Álvarez et al., 2017) were employed. 

These are for carbon 

𝑦 = 0.433 𝑉0.863 (Verity et al, 1992) 

𝑦 = 0.109 𝑉0.991 (Montagnes et al., 1994) 

𝑦 = 0.288 𝑉0.811 (Menden-Deuer & Lessard, 2000 – Diatoms) 

𝑦 = 0.216 𝑉0.939 (Menden-Deuer & Lessard, 2000 – Non-diatom mixed 

protists) 

and for chlorophyll-A 

𝑦 = 0.00429 𝑉0.917 (Montagnes et al., 1994) 

𝑦 = 0.0398 𝑉0.863. (Álvarez et al., 2017) 

Here the particle volume V was defined using a simple spherical model. Of the four 

models used to calculate POC values, only the diatom model given by Menden-

Deuer and Lessard produced results compatible with POC measurements (RMS%E: 

92.9%, Fig. 8.6a). This possibly reflects the taxonomical composition of the algal 

populations encountered during the HE442 research cruise being mainly composed 

of diatom species typically associated with the spring bloom. The median cumulative 
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distribution of POC for the diatom model shows an almost linear contribution from 

all size classes in a majority of samples, although results are shown to range widely 

from cases where the contribution is dominated by small particles to cases where, 

oppositely, the largest particles contributed the most (Fig. 8.6b). This is likely the 

result of the interaction between the model parameters and the slope of the PSDs, and 

may also indicate that the parameters of the model work well for a majority, but not 

all of the samples. 

 

Figure 8.6 – (a) Comparison of modelled vs. measured POC. POC values calculated using the diatom 

model (Menden-Deuer & Lessard, 2000) are represented by dark grey squares; the RMS%E value 

refers to these. POC values calculated using the other three models are represented by light grey 

diamonds and triangles. (b) Cumulative distribution of modelled POC for the diatom model. Solid, 

dashed and dotted lines represent median, upper/lower quartiles and max./min. values respectively. 

The two chlorophyll-A cell content models were applied to both HPLC-derived and 

fluorescence-estimated ChlA values (see Paragraph 5.3.5.3). In both cases, results 

were found to be mostly incompatible with ChlA measurements, but ChlA values 

obtained from initial fluorescence Fo (RMS%E of the combined dataset: 177.9%; 

Fig. 8.7a) performed notably better than the HPLC-derived ones (RMS%E of the 

combined dataset: 389.5%; Fig. 8.7b). This was found in agreement with results 

presented by Connor (2017) for the same UKCW dataset, which showed 

fluorescence-estimated ChlA values to perform slightly better than HPLC-derived 

ones when compared against algal absorption. The fluorescence-estimated values 
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were accordingly selected as the best representation of total chlorophyll-A content; 

ChlA values in the following will solely refer to these. 

 

Figure 8.7 - Comparison of modelled vs. measured ChlA for (a) HPLC-derived and (b) fluorescence-

estimated total chlorophyll-A content. ChlA values calculated using the Montagnes et al. (1994) 

model and the Álvarez et al. (2017) model are represented by dark grey squares and light grey 

diamonds respectively; the RMS%E value refers to a combined dataset of both. 

8.4.2 POC and Chlorophyll-A content model optimization 

A simple inversion of the procedure used to calculate POC and ChlA values allows 

for the empirical optimization of the parameter pairs used in the models. Maintaining 

the general form 

𝑦 = 𝑘𝑉ℎ, (8.7) 

arrays of values for the parameters k and h can be generated, combined and 

substituted in eq. (8.7), and the results compared and fitted against available 

measurements to identify the best parameter combinations, respectively (h1, k1) and 

(h2, k2) for POC and chlorophyll-A content. The optimization was initially applied to 

the whole UKCW dataset. Three parameter arrays were generated, one shared by 

exponents h1 and h2 plus one each for factors k1 and k2. The ranges were designed to 

encompass the parameter values of the models used thus far: specifically, 201 

linearly spaced values for exponents h1 and h2 in a 0.6-1 range, 301 linearly spaced 
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values for factor k1 in a 0.05-0.65 range and 461 linearly spaced values for factor k2 

in a 0.004-0.05 range. Each (h1, k1) and (h2, k2) combination was then applied 

dataset-wide, compared against measured POC and ChlA and evaluated using the 

goodness-of-fit of a forced linear fit of the 1:1 line. The best parameter combinations 

were selected as those that concurrently maximized the adjusted R-square and 

minimized the RMSE values of the forced fit, i.e. as those that minimized a 

combined 𝑅𝑔𝑜𝑓 = 𝑅𝑀𝑆𝐸 − 𝑅2 value. The best POC model for the UKCW dataset 

(Fig. 8.8a) was found as 

𝑦 = 0.446 𝑉0.728, (8.8) 

while the best chlorophyll-A content model (Fig. 8.8b) was found as  

𝑦 = 0.036 𝑉0.762. (8.9) 

Comparisons of the optimised model results with the measured POC and ChlA 

values of the UKCW dataset are shown in Fig. 8.9. RMS%E values for the 

comparisons were found to be 47.3% and 98.4% for POC and ChlA respectively. 

 

Figure 8.8 – Optimal model parameters identification for (a) POC and (b) chlorophyll-A volume 

scaling relationships, calculated over the whole UKCW dataset. The colours represent a combined 

𝑅𝑔𝑜𝑓 = 𝑅𝑀𝑆𝐸 − 𝑅2 value, rescaled to a range between 0 and 1 (blue to dark red). The red lines 

represent a continuum of minima separating the two poles of maximum  𝑅𝑔𝑜𝑓 values. The best 

combinations (red cross) are the ones corresponding to the respective global 𝑅𝑔𝑜𝑓minima. 
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Figure 8.9 – Comparison of (a) POC and (b) ChlA values as determined by the optimised models of 

eqs. (8.8-8.9) vs. their respective measured values. 

8.5 Discussion 

The modelling of suspended matter parameters for the samples of the UKCW dataset 

produced an interesting result: PSDs and PRIDs generated using a sphere-based, 

Mie-derived methodology failed to produce TSM, ISM and OSM values which 

compared successfully with their corresponding measured parameters when paired 

with an equally simple spherical volume model (Fig. 8.3); however, the same PSDs 

and PRIDs produced comparable results when used directly as inputs for a fractal 

model of particle volume instead (Fig. 8.4). On one hand, this result offers further 

proof that the particle diameters found by the FC method are equivalent diameters 

rather than a measure of the physical dimension of the particles strictly (cf. Section 

7.4); the former will tend to the latter the closer a particle gets to an ideal 

homogeneous sphere. On the other hand, this result may also shed light on the 

outcome seen in Chapter 6 for the FC-LISST comparison. The LISST reconstructs 

PSDs using measurements of the bulk VSF of a sample, and its measurement 

procedure is not mechanically intensive: flocs and aggregates are left relatively intact 

by the instrument as it descends through the water column. By contrast, the FC 

method reconstructs PSDs by composing together thousands of individual particle 

measurements, and flow cytometry itself is a mechanically intensive method which is 
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quite likely to affect the integrity of flocs and aggregates as they are processed by the 

machine. However, the apparent paradox of having consistently similar PSD slopes 

and features between the two techniques may be solved if the FC method also 

calculates equivalent sphere diameters even in the presence of scale invariant fractal 

structures, and if the LISST “sees” not only scattering from whole flocs, but also 

from the primary units within them, as suggested by Graham et al. (2012). 

POC and ChlA modelling had some success in reproducing measured quantities from 

literature-derived parameters (Fig. 8.6a-8.7) using a spherical model of particle 

volume, although the highly variable rate of success between models mirrors the lack 

of consensus on a single model to accurately represent size-physiology relationships 

in marine phytoplankton. Indeed, a single set of model parameters is likely to be 

simply insufficient to adequately represent the metabolic complexity of all algal 

organisms (Marañón et al., 2007). Nevertheless, the further application of an 

empirical optimisation procedure to select POC and ChlA model parameters 

produced good match-ups between modelled and measured POC and ChlA values 

across the UKCW dataset (Fig. 8.9). Given the results obtained for TSM, ISM and 

OSM using a fractal model of particle volume, at a first glance the application of 

POC and ChlA modelling to simple spherical volumes appears incongruous. 

However, close inspection of eqs. (8.4-8.5) and (8.7) quickly reveals that the POC 

and ChlA empirical volume scaling relationships hide proportionalities which are 

very close to those of the TSM, ISM and OSM models. Specifically, from eqs. (8.4) 

and (8.7) and for a single particle: 

𝑚 =  𝑟𝑜
3−𝐹(𝑟)

𝜌 (
4𝜋

3
)

1−
𝐹(𝑟)

3
(

4

3
𝜋𝑟3)

𝐹(𝑟)
3

= 

= 𝑢(𝑟)𝑉
𝐹(𝑟)

3 ∝  𝑦 = 𝑘𝑉ℎ . 

(8.10) 

Of particular interest is then the comparison between the exponents h and F(r)/3. 

Over the 0.05-2000 µm size range considered here the value of F(r) was found to 

vary between 3 and ~2, producing values of F(r)/3 between 1 and 2/3. These not only 

cover the range of values of exponent h in literature-derived and UKCW optimised 
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models for both POC and ChlA, but also echo general results found in literature for 

the volume scaling coefficients of chlorophyll and organic carbon and their 

relationship with cellular metabolism. Metabolic rate under optimal growth 

conditions is seen to scale with volume following a 3/4 exponent for a large number 

of organisms in what is known as the 3/4 rule or Kleiber’s rule (Finkel et al., 2004), 

and in phytoplankton this relationship is directly tied to the photosynthetic rate, and 

ultimately to the intracellular chlorophyll-A concentration; in general, phytoplankton 

cells regulate their pigment concentration in response to environmental irradiance 

changes (Finkel et al., 2004). Values for the volume scaling coefficient are then 

variably predicted to range between 3/4 and 2/3 for optimal growth and light limited 

conditions respectively (Finkel et al., 2004), or to reach ~1 when nutrients are 

abundant (Marañón et al., 2007). Álvarez et al. (2017) report values between 3/4 and 

1, and Mei et al. (2009) modelled cellular growth rate scaling exponents using 

chlorophyll-A content scaling exponents ranging between 2/3 and 1. Similarly, 

empirical estimates of the scaling between cell volume and particulate carbon also 

vary. Some authors find particulate carbon content to decrease proportionally with 

increasing cell size i.e. h < 1 (Verity et al., 1992; Menden-Deuer & Lessard, 2000), 

while other find it to be isometric to cell size i.e. h ~ 1 (Montagnes et al., 1994). 

Ultimately, the results presented in this chapter seem to suggest that, while cellular 

metabolic rate can be logically expected to play an important part in defining the 

chlorophyll and organic carbon content of organic particles, structural characteristics 

of the organic particles as described by fractal models can also offer a 

complementary interpretation for the proportionalities observed in nature and 

described in existing literature.  

8.6 Conclusions 

In this final chapter, the results obtained by the FC method for the UKCW dataset 

were combined with models of particle density and of organic carbon and 

chlorophyll-A content to investigate the biogeochemical properties of the particle 

populations. The success of the resulting TSM, ISM, OSM and (after empirical 

optimisation) POC and ChlA estimations lends further credibility to the PSD and 

PRID determination capabilities of the FC method, and further supports the 



163 

 

usefulness of flow cytometry and of the FC method as a tool to complement other 

established techniques. The fact that a fractal model of particle structure was key to 

ensure the quality of the TSM, ISM and OSM match-ups suggests that the FC 

method observes particles as equivalent spheres, and is therefore to some extent 

resilient both to particles which violate Mie-compatible aspect ratios (cf. Chapter 7) 

and to the likely break-up of flocs and aggregates which derives from the flow 

cytometric measurement technique. Furthermore, this characteristic makes FC 

method results more readily comparable with those of other more common marine 

optics instruments, which for the most part observe bulk seawater IOPs and PSDs. 

The models used to calculate POC and ChlA, despite being at a first glance applied 

to simple spherical particles, were in fact revealed to hide proportionalities analogous 

to those caused by fractal structures in the TSM, ISM and OSM models, shining 

interesting new light on the volume scaling coefficients described in marine 

microbiology literature. Finally, the diameter discrimination offered by FC further 

allows for a better understanding of the contribution of different size classes to the 

bulk biogeochemical properties, as it did for the IOPs of natural particle populations 

in Chapter 7. 
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9. Summary and conclusions 

Pioneering work carried out almost three decades ago demonstrated the possibility of 

associating particle scattering within a flow cytometer to the size and refractive index 

of each analysed particle (Ackleson & Spinrad, 1988), effectively providing a 

practical bridge between scattering and the physical properties of a particle. The 

effort remained isolated. The technique saw little use beyond a brief revival in 2003 

(Green et al., 2003a; Green et al., 2003b), and to this day even within the context of 

marine sciences flow cytometry is chiefly used in its main capacity as an instrument 

for fluorescence detection and characterisation.  

The aim of this work has been to recuperate this technique and to apply it anew, in an 

effort to determine whether the data quality provided by modern flow cytometry was 

sufficient to produce valid and useful PSDs and PRIDs from a particle-by-particle 

analysis of natural seawater particle population samples. While bulk measurements, 

with their relative ease of execution and high temporal resolution, remain a 

fundamental part of the marine optics toolkit, being able to associate single-particle 

measurements of particle size and refractive index to these techniques would unlock 

a wealth of knowledge which is still largely untapped. 

The first step was to justify the need to complement bulk measurements with a flow 

cytometry method geared towards individual particles. The practice of approximating 

natural particle populations to a power law size distribution of spherical, 

homogeneous particles with a single, spectrally independent complex refractive 

index is commonplace in optical oceanography, and offered the opportunity for a 

sensitivity analysis to reveal the potential effect on IOPs of variations from assumed 

conditions. These are the kind of PSD and PRID variations which single-particle 

measurements of particle size and refractive index would be ideal to detect. The 

effect of the addition of spectral dependence to the complex refractive index was 

found to be small; however, marked differences were found in the results between 

organic- and inorganic-like particles, suggesting that while this case was not directly 

examined within the sensitivity study, a mixed particle population as opposed to a 

single complex RI would have a non-negligible effect on VSF and other IOPs. Local 
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additions of log-normal populations to the power law were further found to induce 

sometimes large λ-dependence in the VSF and therefore in derived quantities like the 

backscattering ratio. Overall, the results demonstrated the potential usefulness of a 

reliable method for routine determination of the PSDs and PRIDs of marine particle 

populations.  

The sensitivity study also offered the chance to assess the resilience of the Fournier-

Forand phase function (Fournier & Forand, 1994; Mobley et al., 2002) and of the χ 

factor method for backscattering coefficient determination (Oishi, 1990; Maffione & 

Dana, 1997; Boss & Pegau, 2001). Both ultimately rely on the common 

approximations which were tested with the sensitivity study. The Fournier-Forand 

phase function was found unable to reproduce all the features generated on the 

scattering phase function by the PSD perturbations, especially in the forward and 

narrow backward direction; the angular neighbourhood around 120 degrees was 

however found as one of particular stability for the scattering angular structure. 

Conforming to this, the χ factor method for backscattering coefficient determination, 

which is valid for angles between 117 ± 3 degrees (Boss & Pegau, 2001), was found 

to be a robust one. Results indicated that the refractive index composition of the 

particle population has important consequences on the choice of the individual angle 

where the 𝜒 factor is measured, again underlying the usefulness of a method capable 

of directly assessing this composition. Results also confirmed that picking an angle at 

~120 degrees may improve the resilience of the χ factor method. 

The second step was to develop the FC method proper, employing Mie theory as the 

optical model of choice for scattering calculations. First of all, the flow cytometer 

was characterised in its capability of precisely determining particle concentrations 

within a sample. The characterisation procedure was carried out using polymer bead 

samples with known particle concentrations, and produced empirical corrections 

which ensured counting precision. The geometry of the detectors was then defined 

using weighting functions to account for forward and side scattering sensor aperture 

shape. Correct angular collection ranges were determined firstly in a rough 

approximation and then iteratively until agreement was reached with measured 

scattering from reference polymer beads of known diameter and refractive index. 
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These reference samples were further used to scale and centre the scattering model, 

establishing a relationship between particle physical properties and scattering as 

measured by the flow cytometer. Measurements taken at multiple PMT settings were 

combined to cover the entire FC detection range, spanning from ~0.5 microns to a 

few hundred micrometres, and resulting particle diameter and refractive index data 

was then double-binned within a matrix to produce final PSDs and PRIDs. 

Once developed, the FC method was initially applied to samples containing particles 

of known size (polymer reference beads) and known refractive index (oil droplet 

suspensions), and found to be capable of identifying diameter and relative rRI within 

a range of values, i.e. ~0.5 to ~10 µm for diameter and up to 1.15 for rRIs. Particles 

larger than 5 µm presented increasingly anomalous side scattering profiles, possibly 

due to the breakdown of Mie theory assumptions i.e. particles becoming larger than 

the laser beam width (5 µm). This hampered correct diameter recognition in very 

large particles. Relative rRI values higher than 1.15 couldn’t be identified reliably, 

but still provided a generic high-rRI signifier as opposed to more specific low rRI 

values. 

The method was then applied to the phytoplankton culture samples of the AC 

dataset. Size determination in phytoplankton culture samples using the FC method 

was found to be strongly influenced by shape and structure of the phytoplankton 

cells, as particularly evident in the case of species with extreme cell aspect ratio such 

as P. seriata. Rounded, smaller cells offered the best results as it is to be expected in 

the context of Mie theory. Real refractive index detection was found to be less 

affected than size detection by the aspect ratio of the particles, even though a general 

tendency for the FC method to underestimate rRI in very large particles may have 

biased the rRI results for phytoplankton towards organic-like values. 

Finally, the FC method was applied to the natural seawater samples of the UKCW 

dataset, producing PSDs which compared well with the features and slope of 

independent LISST-100x PSD measurements. However, all PSDs were observed to 

rapidly lose statistical significance above ~20 µm due to few particle counts and 

particle concentrations reaching a floor corresponding to bins containing a single 
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particle. This is likely to have been an effect of the measurement protocol, which 

selected for smaller particles. Finding statistically significant numbers of large 

particles will necessitate a revision of the measurement protocol or at the very least 

longer acquisition times. Furthermore, a lack of consensus on particle concentration 

was observed between the LISSTs and the FC, but also between one LISST 

instrument and the other. The calibration of the FC against particle concentration 

standards added weight to the FC data, but a definitive judgement on the reliability of 

the concentration measurements couldn’t be made. FC PRIDs of the UKCW dataset 

were found to be largely homogeneous with a broad maximum between 1.05-1.15 

and peak values at 1.07-1.09, consistent with a mix of organic and inorganic 

components. The range of values accounts for most of the common components of 

marine suspended particulate matter. A tail of particles with rRI > 1.15 was observed 

in all UKCW samples, with a particular concentration spike visible at ~1.3 found to 

be made up of particles outside the scattering model grid. These were found to 

account for less than 1% of the total particle population in all samples of the UKCW 

dataset, and interpreted as small, faceted, high-rRI particles incompatible with Mie 

theory assumptions. Due to their relatively small number, the influence of particles 

outside the scattering model grid was deemed negligible.  

The results of the PSD and PRID retrieval demonstrated the potential of a FC method 

capable of simultaneous particle size and refractive index identification, both in 

controlled samples with monotypic spherical particles (polymer beads, oil 

suspensions) and in natural water samples containing mixed populations. 

Furthermore, the inherent ability of the FC method to partition the PSD by particle 

type offered the chance to investigate the links of PSDs and PRIDs to optical 

properties and the individual contributions of particle subpopulations to the bulk 

IOPs, as the size range covered by the method (0.5-10 µm) is found to be particularly 

relevant for optical studies (Davies et al., 2014). The PSDs determined by the FC 

method for the AC and UKCW datasets were thus combined with their respective 

PRIDs and fed into Mie-based forward optical modelling to reconstruct total IOPs, 

which were then compared for optical closure against independent measurements of 

bulk absorption, scattering and backscattering. To successfully carry out IOP 

calculations, the FC PSDs were extrapolated beyond the FC detection range using a 
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power law distribution model, in an effort to account for the whole optically relevant 

range from tens of nanometres to a few millimetres (Davies et al., 2014). 

The results of closure analysis between modelled and measured IOPs in the AC 

dataset were found to vary between algal species. Large, rounded species 

Heterocapsa sp. and A. minutum were found to largely overestimate corresponding 

measured IOPs, while small-rounded and chain-forming species achieved good 

agreement across all IOPs considered. Disagreement for Heterocapsa sp. and A. 

minutum IOPs was diminished greatly when the PSD extrapolations were excluded 

from IOP calculations, suggesting that the power law extensions introduced more 

particles than were actually present in the samples; at the same time, other species 

achieved much better agreement using similar PSD extrapolations, and removing the 

contribution of undetected particles from the IOP calculations was found to 

predictably cause general underestimation of the measured IOPs. Overall, the results 

of Mie forward optical modelling for the AC dataset highlighted the risks of using 

power law extrapolations on samples which do not represent natural particle 

populations. The positive results of the closure analysis for chain-forming species 

were surprising, particularly in the case of P. seriata, and were interpreted to suggest 

that by nature the FC method produces diameter and rRI values corresponding to 

spheres which are optically equivalent to the measured particles. 

The best results for the closure analysis between measured and modelled IOPs for the 

UKCW dataset were achieved for scattering and backscattering coefficients, 

although broad agreement was reached for all IOPs considered. Given the relatively 

narrow size range covered by the FC method, the need to extrapolate PSDs and then 

approximate rRIs in the PSD extensions, and the lack of directly determined iRI 

values, the degree to which forward modelled IOPs matched measured values is 

surprisingly good. This provides useful validation of the PSDs and PRIDs generated 

by the FC method, and in doing so also suggests that Mie theory is sufficient to 

provide useful estimates of bulk IOPs for randomly orientated, mixed populations of 

naturally occurring marine particles. Finally, PSDs and PRIDs as determined by the 

FC method did provide useful insight into the individual contributions of different 

particle subpopulations to the bulk IOPs of seawater samples; as a last test of the 
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validity of FC method results and of the limits of the modelling enabled by them, a 

similar approach was taken to investigate to what degree the same PSDs and PRIDs 

could be used to successfully inform models of particle density and of organic carbon 

and chlorophyll content, and to explore the biogeochemistry of the particle 

populations of the UKCW dataset. 

Interestingly, combining PSDs and PRIDs obtained by the FC method for the UKCW 

dataset with literature-derived models of particle density and simple spherical 

particle volumes produced TSM, ISM and OSM values which failed to compare 

successfully with corresponding measured quantities. However, the same PSDs and 

PRIDs and particle density models produced suspended matter values comparable 

with measured TSM, ISM and OSM if applied to a fractal model of particle volume 

instead. This result once more lends support to the validity of the PSDs and PRIDs 

determined by the FC method, and further demonstrates the usefulness of flow 

cytometry and of the FC method as a tool to complement other established 

techniques. As with the results obtained by IOP forward modelling in chain-forming 

species, it also offers additional proof that the particle diameters found by the FC 

method are indeed equivalent diameters rather than a measure of the physical 

dimension of the particles (cf. Tab. 6.3, Fig. 6.7). 

POC and ChlA modelling had some success in reproducing measured quantities from 

literature-derived parameters, although the variable rate of success suggests that a 

single set of model parameters is likely to be insufficient to represent the metabolic 

complexity of all algal populations. Nevertheless, the further application of an 

empirical inversion procedure to select optimised POC and ChlA model parameters 

produced good match-ups between modelled and measured POC and ChlA values 

across the UKCW dataset. While the POC and ChlA models were applied to simple 

spherical volumes, their power law nature ultimately causes proportionalities which 

are in fact analogous to those seen in the TSM, ISM and OSM models for fractal 

particles. In other words, while they rigorously are power law equations applied to 

spheres, they are also ultimately revealed to be mathematically equivalent to 

polynomial equations applied to fractal structures, as was the case for TSM, ISM and 

OSM. These results shine new light on the volume scaling coefficients described in 
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marine microbiology literature: while cellular metabolic rate can be logically 

expected to play an important part in defining the chlorophyll and organic carbon 

content of organic particles, structural characteristics of the organic particles as 

described by fractal models can also offer a complementary interpretation for the 

proportionalities observed in nature and described in literature. 

In summary, this work has represented an effort to recover and re-evaluate a 

methodology that, at least to the best knowledge of the author, is unique in its 

capability of concurrently retrieving both size and refractive index of suspended 

marine particles on an individual basis. The information that the FC method provides 

in terms of PSD and PRID determination, coupled with the inherent fluorescence 

detection capabilities of flow cytometry, represents a large and yet to be used wealth 

of data which, once coupled with adequate models, straddles not only physical, but 

also optical and biogeochemical particulate properties. The FC method is not 

proposed as a technique capable of replacing any of the already established 

techniques for PSD, IOP or biogeochemistry measurements. Rather, it is proposed as 

a tool to assist and complement those other techniques, filling many blanks and 

unknowns which are usually glossed over or accounted for using wide assumptions. 

The capability of the FC method to identify individual fractions within the particle 

populations and to then estimate each fractional contribution to total particulate IOPs 

and biogeochemical properties in particular is seen as perhaps the most important 

new contribution that this technique can bring to marine sciences. In closing, while 

there is much scope for improvement on many aspects and especially on the front of 

the statistical significance of the results at large particle sizes, the reliability and 

usefulness of the FC method even in its present form have been vindicated multiple 

times throughout this work against both known standards and independent 

measurements obtained using other instruments. Although further development will 

be certainly needed, the methodology has the definite potential to become a relevant 

component of the toolkit of marine optics and of marine sciences in general.  
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10. Future work 

The work carried out on the FC method has revealed a few outstanding points where 

improvements are necessary. Furthermore, a number of avenues for future research 

are apparent. 

 The most immediate issue in the present iteration of the FC method is the 

lack of statistical significance for large particles beyond ~20 µm. This is in 

part an inherent problem of flow cytometry, due to the small sample volumes 

involved; however, there is scope for improvement in the measurement 

protocol used. The simplest option available is to extend the sampling time, 

although often the amount of time available for a measurement is limited by 

external circumstances, especially when working in situ. A second option is to 

reduce the number of PMT settings used to cover the particle size range, 

possibly moving from the current 4 settings to just 3 settings. This could 

naturally extend the sampling time for each PMT setting without impacting 

the current duration of FC measurements. Overall, improving the statistical 

significance of large particle counts remains a matter of compromise, and 

more data acquisition will be needed to evaluate the effectiveness of new 

measurement protocols. 

 A second important issue revealed in this study was the underestimation of 

particle sizes determined by the FC method for large particles above ~5-10 

µm; this was especially glaring in the case of large spherical polymer beads 

for which the method should be particularly suited. At least part of the 

problem seems to reside in a violation of the incident plane wave assumption 

of Mie theory, in the sense that the particles become increasingly larger than 

the width of the laser beam (5 µm). This particular issue looks difficult to 

surmount using the current laser beam shaping. However, there is anecdotal 

evidence that the issue may also be partly due to PMT effects caused by the 

large influx of scattered photons in the detectors, even before saturation 

actually occurs. Installing more resilient sensors may be a good starting point 

in investigating the extension of the functional size range of the FC method. 
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 There remains some uncertainty on the reliability of the particle 

concentrations retrieved by the FC method, as it was highlighted by the 

comparison between FC PSDs and LISST PSDs. Although the calibration of 

the FC method against standards of known concentration and the very 

disagreement between PSDs produced by different LISST instruments adds 

weight to the idea that the FC method is indeed capable of precision 

concentration measurements, a new set of measurements specifically geared 

towards resolving this outstanding issue is certainly desirable. A thorough 

measurement campaign carried out using both the FC method and other 

independent PSD meters on a set of various standards of known concentration 

seems the logical course of action towards this goal. 

 Commercial flow cytometers in general are not geared towards the kind of 

scattering-based application which has been described in this work. 

Conforming to their common usage as biomedical instruments, most flow 

cytometers are specifically designed around fluorescence applications, and in 

marine sciences as well they are mostly used in phytoplankton studies. 

Furthermore, the beam shaping within the CytoSense is specifically designed 

to improve the resolution of particle profiling and of signal length 

determination, but is detrimental to scattering-based assessments of size and 

refractive index in large particles. Specifically designing a new flow 

cytometric instrument with scattering applications in mind may be an 

interesting endeavour which could result in better quality of results for the FC 

method. Additionally, the integration of holographic imaging techniques and 

flow cytometry is proposed as an extremely promising new frontier of sensor 

technology which could be advanced in parallel with the scattering-based FC 

method. Ideally, the two techniques may be integrated within a single 

instrument. 

 A second aspect of desirable technological improvement would be to 

automate the FC method, at least to some degree. This would be done with 

the goal of direct in situ deployment, either for water column profiling from a 

vessel or for continued water monitoring from buoys. A precedent exists in 
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Imaging FlowCytobot (Olson & Sosik, 2007; Sosik & Olson, 2007), an 

imaging flow cytometer developed for long-term phytoplankton automated 

monitoring and recognition. Investigating the potential for the FC method to 

be employed in similar long-term fashion would require concerted advances 

in hardware, measurement protocol and data processing codes, and a rigorous 

testing of the consistency of results over long time periods. Nevertheless, 

automating the FC method procedure would greatly widen the scope of its 

application. 

 The connection with fractal models of particle volume which was identified 

while investigating the biogeochemistry of the particle population appears to 

be a promising new avenue of research which could potentially shine new 

light on the optical behaviour of flocs and aggregates. The single-particle 

analysis approach inherent to flow cytometry, coupled with the availability of 

associated imaging, could offer information that bulk methods or pure 

imaging methods cannot deliver on their own. In this context, the integration 

of holographic imaging techniques and flow cytometry is seen as even more 

desirable, possibly in tandem with multiscale models of particle size e.g. 

circle-packing (Graham et al., 2012) and generalised Mie theory calculations 

suited for multiple packed spheres (Gouesbet & Grehan, 1999). 

 Finally, the determination of particle physical parameters as equivalent 

spheres may potentially be exploited to determine the aspect ratio of the 

particles, providing more information than that available from simple sizing 

along one dimension and possibly informing more complex optical modelling 

or even just algal taxonomy. By evaluating the degree of underestimation 

between scattering as measured by the flow cytometer and theoretical 

scattering from a sphere with diameter equivalent to the physical length of the 

particle (as determined by signal length), a relationship may be established 

between underestimation and particle aspect ratio, the idea being that 

scattering underestimation will progressively tend towards zero as the aspect 

ratio itself becomes spherical.  
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A. Instrument operation 

In this appendix section a primer on the operation and maintenance of the CytoBuoy 

CytoSense is given as a reference manual for the reader. While it is no substitute for 

actual practice and experience in flow cytometer operation, it should nevertheless 

equip the reader with the knowledge necessary to carry out measurements with the 

CytoSense and keep the instrument in working order. 

A.1 Measurement setup 

The CytoSense is controlled by the operator through its dedicated software, 

CytoUSB. Here the instrument can be operated either in free mode or by setting up 

one or more executable measurements.  

In free mode the instrument does not log measurements, but its pumps and 

peripherals can be actively and dynamically controlled by the operator. This mode is 

especially useful for maintenance. The most important instrument features to be 

controllable in free mode are the sheath fluid vacuum pump (the global flow rate of 

which is also set at this level), the sample peristaltic pump, and the laser. 

An executable measurement is a measurement setup which can be edited and saved 

by the operator. It can be executed alone or within a series of other measurements 

which are then carried out sequentially by the software. Unlike free mode operation, 

the results of an executable mesurement are logged and saved by the software in a 

dedicated file format (.cyz) which is specific to the CytoClus data processing 

software supplied by CytoBuoy. The main variables which can be set in the 

measurement setup are: sample peristaltic pump flow rate for the measurement; 

triggering channel(s); PMT sensitivity for the side scattering and red fluorescence 

channels; and end-of-measurement conditions, which can be defined on a set time 

duration, a set number of detected particles, a set processed sample volume or a 

combination thereof (with the measurement ending as soon as at least one of the 

conditions is met). The CytoSense also offers the possibility of taking up to 150 

pictures of the particles, triggered either in smartgrid mode or in gated mode. The so-

called smartgrid mode uses an algorithm to take pictures of particles in a 
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logarithmically even fashion across the value range of a variable of choice. Gated 

mode takes pictures of particles within a range of x/y values for two variables of 

choice instead. The range can be selected and saved by the operator within the 

dedicated the CytoClus data processing software, to be later invoked in CytoUSB 

within the executable measurement setup. 

A.2 Maintenance 

A.2.1 Sample carryover and system cleaning 

Flow cytometers are delicate devices and great care has to be taken to maintain them 

in working order. One of the most common issues in flow cytometry is sample 

carryover from previous runs. Particles will often stick to the walls of tubing, flow 

cell and other components within the fluidics system, only to be dislodged by the 

continued flow at later times and mixed with subsequent samples. The problem can 

be negligible when measuring a series of samples which are similar and have similar 

concentrations, even more so if the samples are measured in order of concentration, 

from lowest to highest, but highly concentrated samples can seriously affect 

subsequent measurements. Filtering systems can be employed, as is the case with the 

CytoSense, but can also act as reservoirs of particles and exacerbate the problem if 

no other care is taken; keeping the instrument reasonably clean therefore calls for a 

combination of approaches, which were followed in this study in the fashion detailed 

below. 

The fluidics system must be run often even during downtime and continuously 

during a measurement session. During downtime periods in which the instrument 

was not actively used for measurement, the CytoSense was kept running using 

copious amounts of ultrapure filtered and deionized water (Milli-Q) through the 

sample line, 3-4 days a week, ~6 hours a day. No performance analysis was carried 

out on the length of rinsing periods during downtime, which was chosen to be as 

long as practically possible (the compromise here being with the amount of waste 

fluid generated). The sheath pump of the CytoSense was also kept on at all times 

during downtime rinsing and especially between and during sample runs. This 

continuously circulates the sheath fluid through the filters and keeps the core flow 
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confined, impeding particle-rich, turbulent plumes from reaching the recesses of the 

flow cell and injection stages. 

The filters must be cleaned periodically. The filters within the CytoSense were 

cleaned at irregular intervals following episodes of fluidics fouling or evidence of 

large particulate buildup in the measurements. The task can be accomplished through 

flushing and backflushing of the filters with a weak ~0.5% sodium hypochlorite 

solution using 50 ml Luer-lock plastic syringes (as suggested by CytoBuoy, private 

communication), following this procedure: 

 Clamp the tubing sections around both ends of each filter. 

 Remove the filters. 

 Backflush each of the filters with plenty of Milli-Q water.  

 Fill each of the filters with the sodium hypochlorite solution for about 30 

seconds.  

 Flush the filters with plenty of Milli-Q water before installing them back on 

the instrument.  

 Restore and unclamp all the tubing. 

The flow cell itself may also be cleaned. A good indicator of the necessity to clean 

the flow cell is diminishing scattering values in subsequent measurements, although 

the effect is usually only visible on long time scales. The cleaning procedure is 

simple and can be accomplished with a solution of Milli-Q water, Tween20 non-ionic 

viscous detergent (Sigma-Aldrich Co. LLC.) at 0.1% concentration and isopropyl 

alcohol at 20% concentration (as suggested by CytoBuoy, private communication): 

 Run the detergent solution through the sample line for a few minutes at high 

sample pump flow rate (~5-6 µl/s). 

 Lower the sample pump flow rate (~1-2 µl/s) and turn off the sheath pump. 
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Leave the system running in this fashion for a few minutes to let the solution 

diffuse into the flow cell and injectors. 

 Turn off the sample pump and let the system settle for 2-3 minutes. 

 Turn on both sheath and sample pumps again and rinse with plenty of Milli-Q 

water. 

Alternatively, the flow cell can be manually cleaned using the same solution and 50 

ml Luer-lock plastic syringes. 

 Make sure that both sample and sheath pumps are turned off. 

 Isolate the flow cell by clamping before and after the two Luer locks located 

where the sheath line separates into the two sheath fluid injection lines and 

after the flow cell. Open the Luer locks. 

 Fill a 50 ml Luer-lock plastic syringe with the detergent solution and connect 

it to one of the open ends; connect a second empty syringe to the other open 

end. 

 Manually flush and backflush the solution between the two syringes, multiple 

times.  

 Restore and unclamp all the tubing. 

 Turn on both sheath and sample pumps again and rinse with plenty of Milli-Q 

water. 

Finally, the CytoSense flow cell may also be accessed vertically through an o-ring 

sealed screw opening on the top. 

 Make sure that both sample and sheath pumps are turned off. 

 Remove the screw at the top of the flow cell. 
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 Dip a small brush in the detergent solution (bespoke brushes were supplied 

with the instrument). 

 Insert the brush in the flow cell and scrub gently.  

 Place the sealing screw back – don’t tighten excessively. 

 Turn on both sheath and sample pumps again and rinse with plenty of Milli-Q 

water. 

A.2.2 Core stability and laser alignment 

A second major concern in flow cytometry is the stability of the core flow and its 

alignment with respect to the flow cell and the laser beam. Bad laser alignment 

generally produces bad quality data as the particles intercept the least flat and least 

bright parts of the radiant power distribution, while bad stability of the core flow 

leads to variance in the scattering values produced by particles, especially evident in 

the case of particles of the same type and size. 

Bad laser alignment is caused by the laser beam not being centred between the walls 

of the flow cell and on the centre of the flow core. For the CytoSense, the laser 

alignment procedure is simple, as the mirror controlling the horizontal position of the 

laser beam can be moved by rotating a single screw. However, the laser alignment 

procedure requires the laser light from the instrument to be shone on a screen. Take 

all the precautions that apply.  

 Remove the laser beam stop. 

 Turn on the laser and shine it upon a screen, preferably rigid and writable 

upon.  

 Turn the alignment screw in one direction until the flow cell wall position 

becomes evident on the surface. Mark it with a pen. 

 Turn the screw in the opposite direction and repeat the procedure. 
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 Turn the screw until the laser light rests in the middle between the two wall 

marks. 

 Put the beam stop back.  

Bad stability of the core is usually caused by either or both of two processes. The 

first is the presence of air bubbles in the injectors; actual clogging is less problematic 

for the CytoSense than for most flow cytometers as the instrument has a large 

operating size range and can accept particles a few hundred microns wide. Air 

bubbles may be simply removed by clamping the tubing leading to the sheath 

injectors for a couple of seconds while the sheath pump is running. The sudden 

release of pressure buildup is normally sufficient to dislodge the air bubbles. The 

second cause of bad core stability is a badly arranged geometry of the sample and 

sheath fluid injectors. In the CytoSense the relative geometry of sample injector and 

sheath fluid injectors can be acted upon using two sets of screws: once again, the 

laser alignment procedure requires the laser light from the instrument to be shone on 

a screen. Take all the precautions that apply. 

 Remove the imaging camera module.  

 Install the viewer supplied with the instrument. The viewer magnifies the 

flow cell and lets the operator verify the position of the flow core relative to 

the centre of focus of the beam, parallel to the laser beam direction. 

 Remove the laser beam stop. 

 Turn on the laser and shine it upon a screen, preferably rigid and writable 

upon. If needed, repeat the marking procedure as described for laser 

alignment. This lets the operator verify the position of the flow core relative 

to the centre of the laser beam, perpendicular to the laser beam direction. 

 Turn on both sheath and sample pumps. Run the detergent solution through 

the sample line for contrast.  

 Align the field of view of the viewer until the laser going through the flow 
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cell is clearly visible. 

 Use the outer set of screws (those without springs) to align the flow with the 

laser. The core must rest in the middle of the laser beam on the screen and 

where the beam is thinnest in the viewer. It is advisable to move the core as 

close as possible to the center of the flow cell and to finalize alignment using 

the alignment screw of the laser mirror. 

 Use the inner set of screws to adjust the alignment of the three second-stage 

sheath injectors. Unfortunately, this is a trial-and-error process: slowly adjust 

the three screws until the core can be seen reaching a stable configuration on 

both screen and viewer.  

Ideally, the core must be both stable (no bumps or vibrations apart from the periodic 

ones induced by the peristaltic pump) and coherent (no splitting in double or triple 

cores). Care must also be taken not to loosen the inner screws excessively, as the 

flow cell assembly is likely to start leaking fluid.   
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B.    Flow cytometric method of size and RI detection: 

MATLAB code 

In this first appendix, the core sections of the MATLAB code which was used to 

determine PSDs and PRIDs of the particle populations are presented along with a 

flow chart of the code structure (Fig. B.1). The function of each line is described in 

the comments within the code. Code sections which require data inputs from the user 

are highlighted in light blue, final outputs are highlighted in orange. 

 

Figure B.1 – Flow chart for the FC method of size and RI detection procedure described in Chapter 6. 

The pump speed correction is the one presented in Paragraph 3.4.3.3. 
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B.1        Angular ranges, sensor shape and PMT sensitivity scaling coefficients 

%%% 1.1 Angular ranges     
 

%%% The next few lines define the scattering angles array. The  

%%% resolution is higher at small angles. 

  
theta1 = (0:0.01:1);      % Angle range 1. 
theta2 = (1.1:0.1:10);    % Angle range 2. 
theta3 = (11:1:180);      % Angle range 3. 
 

theta = [theta1 theta2 theta3];     % Scattering angles array. 
thetalength = numel(theta);         % Gets the number of scattering 

angles. 
theta_rad = theta./180*pi;          % Converts the scattering angles 

array into radians. 

  
%%% The collection angle ranges of the forward and side scattering  

%%% sensors are defined here. These fine-tune the shape of the model %%% 

curves. 

     
ang1 = 2;                 % Forward scattering sensor MIN angle. 
ang2 = 9.7;               % Forward scattering sensor MAX angle. 

     
ang3 = 45;                % Side scattering sensor MIN angle. 
ang4 = 135;               % Side scattering sensor MAX angle. 

  
[~,Iindex1] = min(abs(theta-ang1));    % Singles out the element in the 

scattering angles array corresponding to ang1 for integration purposes. 
[~,Iindex2] = min(abs(theta-ang2));    % Singles out the element in the 

scattering angles array corresponding to ang2 for integration purposes. 
[~,Iindex3] = min(abs(theta-ang3));    % Singles out the element in the 

scattering angles array corresponding to ang3 for integration purposes. 
[~,Iindex4] = min(abs(theta-ang4));    % Singles out the element in the 

scattering angles array corresponding to ang4 for integration purposes. 

  
dtheta = ones(1,thetalength);          % Preallocates the array which 

contains the increments between angles in the scattering angles array. 

For integration purposes. 
 

for S1 = 1:1:(thetalength-2)           % This small loop fills the angle 

increments array. 
dtheta(S1+1) = (theta_rad(S1+2)-theta_rad(S1))/2; 

end; 

  
dtheta(1) = dtheta(2);    % Defines the first element of dtheta. 
dtheta(thetalength) = dtheta(thetalength-1);      % Defines the last 

element of dtheta. 

  
sintheta = sin(theta_rad);             % The sines of the scattering 

angles. 
 

%%% 1.2 Sensor shape weighting functions 
 

%%% This section defines the weighting functions which account for the 

%%% collecting area of the sensors. 
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% Forward scattering weighting function 

shapecorr1=((.5*pi)-asin(sin(theta_rad(Iindex1))./ ...  
sin(theta_rad(Iindex1:Iindex2))))/(.5*pi); 

  
% Side scattering weighting function element 1  
shapecorr2space=sin(linspace(0,pi,numel(theta_rad(Iindex3:Iindex4)))); 

 

% Side scattering weighting function element 2  
Kprime = sin(theta_rad(Iindex4)-(.5*pi));  

 

% Side scattering weighting function element 3                               
shapecorr2core = Kprime*shapecorr2space; 
 

% Side scattering weighting function     
shapecorr2=asin(shapecorr2core)/(.5*pi); 

 

%%% 1.3 Reference polymer beads and PMT sensitivity settings 

 

%%% This section will define reference polymer bead scattering averages 

%%% and PMT sensitivity settings which will be used both to scale and 

%%% centre the scattering values of the FC model grid/look-up table and 

%%% to combine data from multiple sensitivity runs into a single sample 

%%% dataset. PMT setting 60 was the one used as reference. 
     

sensSetting = [50;60;70;80];        % Sensitivity settings array. 
sensS_num = numel(sensSetting);     % Gets the number of elements in 

the sensitivity settings array. 
 

%%% The following line will require input from the user. It is meant to 

%%% collect average scattering values for 1 micron reference beads into 

%%% a 4x2 matrix, with each row corresponding to a PMT setting and the 

%%% two columns corresponding to forward and side scattering  

%%% respectively.      

 

set1um = [avgs_1um{1};avgs_1um{2};avgs_1um{3};avgs_1um{4}];   % The set 

of scattering averages corresponding to 1 micron beads 
 

%%% The following line will also require input from the user. It is  

%%% meant to collect average scattering values for 5 and 10 micron  

%%% reference beads into a 2x2 matrix, with each row corresponding to a 

%%% bead diameter and the two columns corresponding to forward and side 

%%% scattering respectively.  

     
setMed60 = [avgs_5um;avgs_10um];  % The set of scattering averages 

corresponding to 5 and 10 micron beads 

 

%%% The following line will require a final input from the user. It is 

%%% meant to collect average scattering values for 50 and 100 micron  

%%% reference beads into a 2x2 matrix, with each row corresponding to a 

%%% bead diameter and the two columns corresponding to forward and side 

%%% scattering respectively. PMT setting 50 was the only one for which 

%%% side scattering of 50 and 100 micron reference beads didn’t  

%%% saturate. 

 
setLarge50 = [avgs_50um;avgs_100um]; % The set of scattering averages 

corresponding to 50 and 100 micron beads                                         
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%%% This next section uses the 1 micron set of bead scattering averages 

%%% to work out scaling coefficients necessary to compose data  

%%% corresponding to each sensitivity setting into one single dataset. 
%%% The type of the following fit models was determined after direct 
%%% examination of the data. 

     
f1 = coeffvalues(fit(sensSetting,set1um(:,1),'poly1'));    % Calculates 

the linear fit of the FWS averages of the 1 um set. 
f2 = coeffvalues(fit(sensSetting,set1um(:,2),'power1'));   % Calculates 

the power model fit of the SWS averages of the 1 um set. 

     
fws50coeff = set1um(2,1)/(f1(1)*sensSetting(1)+f1(2));     % FWS scaling 

coefficient for sensitivity setting 60. 
sws50coeff = set1um(2,2)/(f2(1)*(sensSetting(1)^f2(2)));   % SWS scaling 

coefficient for sensitivity setting 60. 
fws70coeff = set1um(2,1)/(f1(1)*sensSetting(3)+f1(2));     % FWS scaling 

coefficient for sensitivity setting 70. 
sws70coeff = set1um(2,2)/(f2(1)*(sensSetting(3)^f2(2)));   % SWS scaling 

coefficient for sensitivity setting 70. 
fws80coeff = set1um(2,1)/(f1(1)*sensSetting(4)+f1(2));     % FWS scaling 

coefficient for sensitivity setting 80. 
sws80coeff = set1um(2,2)/(f2(1)*(sensSetting(4)^f2(2)));   % SWS scaling 

coefficient for sensitivity setting 80. 

     
sensCorrCoeff = [[fws50coeff;1;fws70coeff;fws80coeff], ...               
[sws50coeff;1;sws70coeff;sws80coeff]];  % Scaling coefficient 

matrix 

  
%%% The next two lines scale the scattering averages corresponding to 

%%% 50 and 100 micron beads to PMT setting 60 

     
fwsLarge60 = setLarge50(:,1)*sensCorrCoeff(1,1); 
swsLarge60 = setLarge50(:,2)*sensCorrCoeff(1,2); 
     

%%% The next line compiles the set of bead scattering averages  

%%% corresponding to reference PMT setting 60. It also requires input 

%%% of the 0.5 micron bead scattering averages at PMT setting 60, which 

%%% was the lowest setting for which 0.5 micron beads were detectable. 

 
modelBeadSet = [[avgs_05um(1);avgs_1um{2}(1);setMed60(:,1); ... 

fwsLarge60],[avgs_05um(2);avgs_1um{2}(2);setMed60(:,2);swsLarge60]]; 
 

B.2        FC model grid calculations, scaling and mapping 

%%% 2.1 Refractive indices & wavelength 

 
%%% The refractive indices used in the model are defined here, as well 
%%% as the wavelength of the laser light incident on the particles. 

  
wnr = 1.333;        % Water refractive index 

  
lambda_air = 488e-9;          % Laser light wavelength in air. 
lambda = lambda_air/wnr;      % Laser light wavelength in water. 

  
%%% The refractive index of the standard is put first to simplify  

%%% scaling later on 
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nr = [1.595 (1.335:0.01:1.585) (1.605:0.01:1.725)]./wnr;     % Relative 

real refractive indices array. 
NV = numel(nr);     % Gets the number of elements in the real refractive 

index array. 
ni = 0;             % Imaginary refractive index - set at negligible 

absorption. 

     
%%% 2.2 Size & refractive index isolines i.e. Look-up table 
 

%%% This section of code calculates scattering value nodes, forming  

%%% curves of constant size and refractive index. These nodes  

%%% constitute a look-up table of scattering values which will relate 

%%% particle scattering to particle physical properties. Calculations 
%%% are based on Mie theory and handled by an implementation of the  

%%% FASTMie code by W. H. Slade, http://www.scattport.org/index.php/ 

%%% light-scattering-software/mie-type-codes/list/264-fastmie.html 
%%% The curves are then mapped to the dataset by using reference bead 
%%% scattering averages. 

     
%%% Two lines of code reassigning the two columns in the modelBeadSet 
%%% array to two different variables. 

     
beadsFSC = modelBeadSet(:,1); 
beadsSSC = modelBeadSet(:,2); 

  
%%% An array of particle sizes is now generated. 

 
D = (logspace(-8,-4,300));     % Array of log-spaced virtual particle 

diameters. 
r = D/2;                       % Array of log-spaced virtual particle 

radii. 
RV = numel(D);                 % Gets the number of virtual particles. 

  
sizes = [0.498;0.994;4.993;10.12;50.2;100]*1e-6;                        

% The actual NIST diameters for the 6 bead groups used as standard, in 

metres. 

  
[~,Bindex1] = min(abs(D-sizes(1)));      % Singles out the element in 

the diameters array corresponding to sizes(1). 
[~,Bindex2] = min(abs(D-sizes(2)));      % Singles out the element in 

the diameters array corresponding to sizes(2). 
[~,Bindex3] = min(abs(D-sizes(3)));      % Singles out the element in 

the diameters array corresponding to sizes(3). 
[~,Bindex4] = min(abs(D-sizes(4)));      % Singles out the element in 

the diameters array corresponding to sizes(4). 
[~,Bindex5] = min(abs(D-sizes(5)));      % Singles out the element in 

the diameters array corresponding to sizes(5). 
[~,Bindex6] = min(abs(D-sizes(6)));      % Singles out the element in 

the diameters array corresponding to sizes(6). 

     
If = ones(1,RV);        % Preallocates the array which will contain the 

computed total forward scattered intensity of the virtual particles. 
Is = ones(1,RV);        % Preallocates the array which will contain the 

computed total side scattered intensity of the virtual particles. 
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FSC = ones(NV,RV);      % Preallocates the array which will store 

modeled forward scatter for each refractive index/diameter pair. 
SSC = ones(NV,RV);      % Preallocates the array which will store 

modeled side scatter for each refractive index/diameter pair. 

SIZEs = repmat(D,NV,1);       % Preallocates the array which will store 

the virtual particle diameter for each refractive index/diameter pair. 
RIs = repmat(nr',1,RV);       % Preallocates the array which will store 

the virtual particle real RI for each refractive index/diameter pair. 

 
%%% The following loop calculates the total forward and side scatter 
%%% for each virtual particle. 

     
for N1=1:1:NV     % Iterates through refractive indices. 

for R1=1:1:RV        % Iterates through radii. 
m = nr(N1)+(1i*ni);      % Complex refractive index. 

            k = 2*pi/lambda;         % Wavenumber. 
            x = k*r(R1);             % Size parameter. 
            [S1,S2,Qb,Qc,Qbb] = fastmie(x,m,[],theta_rad);     % The 

core of the calculation is handled by the FASTMie script (by W. H. 

Slade, 2006). 
            i1=abs(S1).^2;           % Scattered intensity functions. 
            i2=abs(S2).^2;   % Scattered intensity functions. 

 
%%% The total forward and side scatter are now calculated using 
%%% an extremely stripped down version of the VSF integral 
%%% normally used to calculate scattering - all missing 
%%% factors and coefficients are taken care of by the 
%%% subsequent mapping.  
             

  Iratio=i1+i2;            % Simplified total scattered 

intensity (angular). 

 
            tsd = 2*pi*dtheta'.*sintheta'.*Iratio;     % The stripped 

down version of the VSF integral. 
   tsdf = tsd(Iindex1:Iindex2);               % Preparing the 

forward scatter sensor angle integration. 
            tsdfMOD = shapecorr1.*tsdf';               % Applying the 

sensor shape correction.   
            If(:,R1) = sum(tsdfMOD);                   % Integrates and 

computes the total forward scattering by the virtual particle (N1,R1). 
             

tsds = tsd(Iindex3:Iindex4);               % Preparing the side scatter 

sensor angle integration. 

            tsdsMOD = shapecorr2.*tsds';               % Applying the 

sensor shape correction. 
            Is(:,R1) = sum(tsdsMOD);                   % Integrates and 

computes the total forward scattering by the virtual particle (N1,R1). 
end 

         
%%% 2.2.1 FC model grid/look-up table mapping 

 
%%% In the following section the script takes the refractive index 
%%% isolines it has computed and maps them to the standard beadset. 
%%% To do so, it first calculates the X-axis and Y-axis 
%%% displacement between the averages for the 0.5 um bead group and 
%%% its virtual counterpart. It then translates the whole isoline 
%%% so that the positions of the two match before rescaling the 
%%% whole isoline by matching the X-axis and Y-axis distance 
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%%% between the 0.5 and 1 um bead groups and its virtual 
%%% counterpart. 

 
if N1 == 1           % The mapping is done with the RI nodes 

corresponding to the latex beads of the standard. 

  
DisplX = If(:,Bindex1)-beadsFSC(1);      % 0.5 um bead 

group X-axis displacement. 
DisplY = Is(:,Bindex1)-beadsSSC(1);      % 0.5 um bead 

group Y-axis displacement. 

  
FSCtemp = If-DisplX;           % Applies the X-axis 

displacement to the whole isoline. 
SSCtemp = Is-DisplY;           % Applies the Y-axis 

displacement to the whole isoline. 

  
ScaleX = (beadsFSC(2)-beadsFSC(1))/(FSCtemp(:,Bindex2)- ...      

                beadsFSC(1));  % X-Axis scaling coefficient. 
ScaleY = (beadsSSC(2)-beadsSSC(1))/(SSCtemp(:,Bindex2)- ...      

                beadsSSC(1));  % Y-Axis scaling coefficient. 

  
FSC(N1,:)=((FSCtemp-beadsFSC(1))*ScaleX)+beadsFSC(1);     % 

FWS values of the mapped isoline. 
SSC(N1,:)=((SSCtemp-beadsSSC(1))*ScaleY)+beadsSSC(1);     % 

SWS values of the mapped isoline.             
end 

  
%%% The process is then applied to all other refractive indices. 

         
FSCtemp = If-DisplX;              % Applies the X-axis 

displacement to the whole isoline. 
SSCtemp = Is-DisplY;              % Applies the Y-axis 

displacement to the whole isoline. 

  
FSC(N1,:)=((FSCtemp-beadsFSC(1))*ScaleX)+beadsFSC(1);        % 

FWS values of the mapped isoline. 
SSC(N1,:)=((SSCtemp-beadsSSC(1))*ScaleY)+beadsSSC(1);        % 

SWS values of the mapped isoline. 

end 
 

 

B.3        PMT sensitivity scaling of particle data and sample dataset 

composition 

%%% 3.1 Rescaling and composition of measured particle scattering data 

 

%%% Measured particle scattering data (main_data) is input here. In the 

%%% present iteration of the code it is meant to be input as a cell  

%%% array of four Nx3 matrices, each corresponding to a separate PMT  

%%% sensitivity run for the same sample. N is the number of particles 

%%% within each sensitivity run, and the three columns represent  

%%% forward scattering, side scattering and red fluorescence signal  

%%% respectively. 
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main_data_corr = main_data;  % Preallocates cell array which 

will contain rescaled particle scattering values 

                                 
for q = 1:sensS_num 

if not(isempty(main_data{q})) 
main_data_corr{q}(:,1) = main_data{q}(:,1).* ...     

  sensCorrCoeff(q,1); % Sensitivity setting 

correction coefficient applied to FWS. 
main_data_corr{q}(:,2) = main_data{q}(:,2).* ...          

        sensCorrCoeff(q,2); % Sensitivity setting correction 

coefficient applied to SWS. 
      end 
end 

 

%%% The following part of the code will select “strips” of particle  

%%% data to eliminate overlap between rescaled PMT sensitivity run data 

%%% and avoid inflating particle counts. 

             
main_data_slice = cell(sensS_num,1);       % Preallocates cell array to 

contain the data “strips” 

             
cutoff = [1e7,3500,700,200,1];             % SWS cutoff values for each 

sensitivity setting. User determined by direct examination of the data 
cutoff_ind = cell(sensS_num,1);            % Prepares an array of cells 

to contain the arrays of indices of particles contained within the cut-

off boundaries.  
 

for q = 1:sensS_num                          % This loop operates all 

the data cuts 
if not(isempty(main_data_corr{q}))        % Checks if the cell 

isn't empty (to prevent the code from stopping). 
cutoff_ind{q} = find(main_data_corr{q}(:,2) ...    
< cutoff(q) & main_data_corr{q}(:,3) >= cutoff(q+1));  % 

Gets the indices of data points in main_data_corr{q} between 

cutoff(q) and cutoff(q+1). 
main_data_slice{q} = main_data_corr{q}(cutoff_ind{q},:);  % 

Assigns those data points to main_data_slice{q}. 
end 

end 

             
%%% The data “strips” are stitched back together into one single large 

%%% matrix. Fluorescence data is separated into a dedicated matrix. 

             
main_data_total = [main_data_slice{1};main_data_slice{2}; ...                  

main_data_slice{3};main_data_slice{4}];   % All cells from 

main_data_slice are compiled together into a single large array. 

 
if not(isempty(main_data_total)) 

main_data_total_FLR = main_data_total(:,3);      % Extracts the 

Max FLR column from the main_data_total matrix. 
      main_data_total = main_data_total(:,1:2);         % Reduces the 

main_data_total matrix to the FWS and SWS columns only. 
end  
 

%%% The number of particles left into each of the cells inside  

%%% main_data_slice are counted and kept track of.  
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main_data_nums = [size(main_data_slice{1},1); ...  

size(main_data_slice{2},1);size(main_data_slice{3},1);... 
size(main_data_slice{4},1)]; 
 

 

B.4        Size and RI binning: concentration corrections, PSDs and PRIDs 

%%% 4.1 Size and refractive index binning 
             

%%% Size and refractive index are assigned to each particle based on  

%%% their proximity to the nodes in the FC model grid. Before binning 

%%% proper, a few correction terms are needed. 

 

%%% 4.1.1 Sample pump flow rate correction 

 

%%% The first correction term accounts for particle concentration  

%%% underestimation at low sample pump flow rates. This correction will 

%%% need the parameter pumpSpeed to be set by the user to be equal to 

%%% that used during the measurement. The function coeffCorrFind simply 

%%% finds the correction curve value corresponding to pumpSpeed - see 

%%% pump flow rate correction results, Chapter 3. 
 

platCorr = 1.087628356;                  % Correction factor derived 

from flow rate test data - see pump flow rate correction results, 

Chapter 3 
pumpSpeed = 0.5;                         % Pump speed in uL/s. 
cCorr = coeffCorrFind(pumpSpeed);        % Sets the pump speed 

correction coefficient - more on this in the function definition and 

further on in this script. 
coeffCorr = (1/cCorr)*platCorr;  % Defines the final flow rate 

correction coefficient 

 
%%% 4.1.2 Sensitivity run volume correction 

 
%%% A further correction is required to account for data transfer  

%%% overhead time. While the instrument software transfers particle  

%%% data, it cannot analyse the sample. This means not only that the  

%%% analysed volume is always less than the processed volume, but that 

%%% the analysed volume depends on the amount of detected particles  

%%% too. The more particles there are, the larger the difference  

%%% between analysed and pumped volume. In turn, this means that the  

%%% analysed volume will be different for different sensitivity  

%%% settings (high sensitivity generally means that more particles are 

%%% detected by the sensors). Individual analysed volumes are imported 

%%% and compared to produce a correction that is applied to each  

%%% sensitivity setting. 

 
%%% The following line will require input from the user (sens_vols). It 

%%% is meant to identify the largest analysed volume among those  

%%% corresponding to each sensitivity run. These are provided directly 

%%% by the flow cytometer data analysis software (CytoClus).                         
 

sens_vols_max = max(sens_vols);         % Gets the largest analysed 

volume. 

 
%%% 4.1.3 Binning 
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FSClin = reshape(FSC,[1,NV*RV]);        % Reshaping FWS array. 
SSClin = reshape(SSC,[1,NV*RV]);        % Reshaping SWS array . 
SIZElin = reshape(SIZEs,[1,NV*RV]);       % Reshaping diameters 

array. 
RIslin = reshape(RIs,[1,NV*RV]);       % Reshaping RI array. 
 

dataN = size(main_data_total,1);          % Gets the number of data 

points in main_data_total. 

  
particleSIZEs = ones(dataN,1);              % Preallocates the array 

that will contain the sizes of each particle. 
particleRIs = ones(dataN,1);                % Preallocates the array 

that will contain the RIs of each particle. 
NUMb = ones(dataN,1);                       % A simple array of ones. 

Summing along this array effectively counts particles, and will be the 

basis of the concentration calculations. 

  
for q = 1:1:dataN                          % This loop assigns size & RI 

of the closest grid point to each particle. 
[~,ind] = min(abs(FSClin-main_data_total(q,1)) + ...                             

abs(SSClin-main_data_total(q,2)));    % Finds closest grid 

point. 

 
particleSIZEs(q) = SIZElin(ind);      % Assigns the size to the 

particle. 
      particleRIs(q) = RIslin(ind);         % Assigns the RI to the 

particle. 
end 

 
nrsort = sort(nr);   % Sorts the real refractive index values 

in ascending order 
B1 = ones(1,numel(nrsort)-1);       % Preallocates the array of values 

used as RI bin boundaries 

             
for h = 1:1:numel(nrsort)-1 

B1(h) = (nrsort(h)+nrsort(h+1))/2;  % Defines the values 

used as RI bin boundaries 
end          
B1 = [nrsort(1)-((nrsort(2)-nrsort(1))/2),B1,nrsort(end)+ ... 
                ((nrsort(end)-nrsort(end-1))/2)];  % Further redefines 

the first and last RI bin boundary values 
 

B1N = numel(B1);                    % Gets the number of values used as 

RI bin boundaries 

             
%%% The following line will require input from the user (size_bins).  

%%% These are log-spaced size bin boundaries. 

 

B2 = size_bins;          % The array of log-spaced values used as size 

bin boundaries 
B2N = numel(B2);         % Gets the number of log-spaced values used as 

size bin boundaries 

             
binMAT = zeros(B1N-1,B2N-1);        % Preallocates the matrix that will 

contain the particles after being binned by RI and by size  
binMAT_FLRaye = zeros(B1N-1,B2N-1);           % Preallocates the matrix 

that will contain the FL particles after being binned by RI and by size 
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binMAT_FLRnay = zeros(B1N-1,B2N-1);           % Preallocates the matrix 

that will contain the non-FL particles after being binned by RI and by 

size 

                         
loB = 1;                        % Primes the low boundary of the 

particles (relative to sensitivity setting). 
hiB = 0;                        % Primes the high boundary of the 

particles (relative to sensitivity setting). 

             
for u = 1:1:sensS_num 

if main_data_nums(u) ~= 0     % Checks if there are particles 

corresponding to the sensitivity setting. 
if u ~= 1               % Updates the low boundary with 

each step save the first. 
              loB = loB + main_data_nums(u-1); 
            end 

hiB = hiB + main_data_nums(u);    % Updates the high 

boundary. 
            for tR = 1:1:B1N-1                            

     indRI = find(particleRIs(loB:hiB) >= B1(tR) & ... 

                        particleRIs(loB:hiB) < B1(tR+1)); % Indices of 

the particles belonging to the RI bin 

                         
                  pinPoint = particleSIZEs(loB:hiB); % Singles out 

particles within the sensitivity boundaries 
                  SEL_binMAT = pinPoint(indRI);  % Singles out an 

array containing the particles within the boundaries and belonging to 

the RI bin, ready to be binned by size. 
                  NUMbSEL = NUMb(indRI);              % A reduced array 

of ones. Summing along this array effectively counts particles. 

  
                  pinPoint_FLR = main_data_total_FLR(loB:hiB);  % 

Singles out FL values of particles within the sensitivity boundaries 

                         
                  SEL_binMAT_FLR_pre = pinPoint_FLR(indRI);  % Singles 

out an array containing FL values of particles within the boundaries and 

belonging to the RI bin, ready to be binned by size. 
 

                  indRIFLRaye = find(SEL_binMAT_FLR_pre > 10); % Indices 

of the FL particles within the boundaries and belonging to the RI bin. 

10 is the value chosen to separate FL particles from the FL noise 

background 
 

                  indRIFLRnay = find(SEL_binMAT_FLR_pre <= 10); % 

Indices of the non-FL particles within the boundaries and belonging to 

the RI bin. 

 
                  SEL_binMAT_FLRaye = SEL_binMAT(indRIFLRaye);  % 

Singles out an array containing FL particles within the boundaries and 

belonging to the RI bin, ready to be binned by size. 
                  SEL_binMAT_FLRnay = SEL_binMAT(indRIFLRnay);  % 

Singles out an array containing non-FL particles within the boundaries 

and belonging to the RI bin, ready to be binned by size. 

 
                  NUMbSEL_FLRaye = NUMbSEL(indRIFLRaye);  % A 

reduced array of ones. Summing along this array effectively counts FL 

particles. 
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                  NUMbSEL_FLRnay = NUMbSEL(indRIFLRnay); % A reduced 

array of ones. Summing along this array effectively counts non-FL 

particles. 

                         
                  for tS = 1:1:B2N-1 
                        indSIZE= find(SEL_binMAT >= B2(tS) & ...  
                     SEL_binMAT < B2(tS+1)); % Indices of the 

particles belonging to the size bin. 

 
indSIZE_FLRaye= find(SEL_binMAT_FLRaye >= ...  

B2(tS) & SEL_binMAT_FLRaye < B2(tS+1));  

% Indices of FL particles belonging to the size bin. 

 
     indSIZE_FLRnay= find(SEL_binMAT_FLRnay >= ... 

B2(tS) & SEL_binMAT_FLRnay < B2(tS+1)); 

% Indices of non-FL particles belonging to the size bin. 

                             
                        binMAT_mult = sens_vols_max/...  
                            sens_vols(u);  % This is the 

analysed volume multiplier. 

 
                        binMAT(tR,tS) = binMAT(tR,tS) + ... 
                         (sum(NUMbSEL(indSIZE))*binMAT_mult); % 

Modified number of elements inside the bin. Adds number of elements from 

previous sensitivity settings to itself. 

 
                        binMAT_FLRaye(tR,tS) = ...                
                               binMAT_FLRaye(tR,tS) + ... 
                               (sum(NUMbSEL_FLRaye(indSIZE_FLRaye))*... 

 binMAT_mult);    

% Modified number of FL elements inside the bin. Adds number of elements 

from previous sensitivity settings to itself. 

 
                        binMAT_FLRnay(tR,tS) = ...                
                               binMAT_FLRnay(tR,tS) + ... 
                               (sum(NUMbSEL_FLRnay(indSIZE_FLRnay))*... 

 binMAT_mult);    

% Modified number of non-FL elements inside the bin. Adds number of 

elements from previous sensitivity settings to itself. 
end  

end 
end 

end 

 
binMAT = (binMAT.*coeffCorr)./(sens_vols_max*(1e-3));  % Final 

particle concentrations for the RI and size bins, after application of 

the flow rate and volume corrections. Converted to number concentration 

per millilitre 

binMAT_FLRaye = (binMAT_FLRaye.*coeffCorr)./(sens_vols_max*(1e-3)); % 

Final FL particle concentrations for the RI and size bins, after 

application of the flow rate and volume corrections. Converted to number 

concentration per millilitre 
binMAT_FLRnay = (binMAT_FLRnay.*coeffCorr)./(sens_vols_max*(1e-3)); % 

Final non-FL particle concentrations for the RI and size bins, after 

application of the flow rate and volume corrections. Converted to number 

concentration per millilitre 
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PSD = sum(binMAT,1);           % Final total PSD 
PRID = sum(binMAT,2);          % Final total PRID  
 

FL_PSD = sum(binMAT_FLRaye,1);           % Final total FL PSD 
FL_PRID = sum(binMAT_FLRaye,2);          % Final total FL PRID 

 

nFL_PSD = sum(binMAT_FLRnay,1);           % Final total non-FL PSD 

nFL_PRID = sum(binMAT_FLRnay,2);          % Final total non-FL PRID 

  



208 

 

C.    Mie forward optical modelling: MATLAB code 

The core sections of the Mie forward modelling MATLAB code which was used to 

calculate total particulate IOPs from FC PSDs and PRIDs are presented along with a 

flow chart of the code structure (Fig. C.1) in this second appendix. The function of 

each line is described in the comments within the code. Code sections which require 

data inputs from the user are highlighted in light blue, final outputs are highlighted in 

orange. 

 

Figure C.1 – Flow chart for the IOP forward modelling procedure. PSDs and PRIDs are those 

determined by the flow cytometric method which described in Chapter 6; the iRIs of the particles 

cannot be determined by the method, and are instead adapted from literature as outlined in Chapters 4 

& 7. 
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C.1 PSD power law best fit and PSD extrapolation 

%%% 1.1 PSD extrapolation 

 

%%% This section of the code defines the PSD extrapolations and  

%%% calculates the slope of the size distribution. It requires the 

%%% user to input the total PSD and the median particle size of each 

%%% size bin (plotSIZEs). Note that plotSIZEs must already contain 

%%% the bins that will correspond to the extrapolations. PSD must  

%%% accordingly contain empty (0) values in correspondence with  

%%% these bins. 

 

[~,indminA] = max(PSD);    % This index defines the particle size at 

which the PSD peaks before falling off due to size detection limit 
[~,indmaxA] = min(abs(plotSIZEs-2e-5));    % This index corresponds 

to 20 micron, the limit of statistical significance in a majority of 

UKCW PSDs         
 

%%% The next two lines will define derived indices. These further 

%%% neglect two size bins on each end of the PSD to avoid boundary 

%%% effects      

indminAf = indminA+2; 
indmaxAf = indmaxA-2; 

 

%%% The next two lines will define a reduced PSD using the two  

%%% indices just defined. 
reducedPSD = PSD*0; 
reducedPSD(indminAf:indmaxAf) = PSD(indminAf:indmaxAf); 
 

%%% The next lines define the arrays over which fitting takes place. 

%%% A further input from the user is required (plotBINs). This  

%%% contains the width of the size bins, and it will be required to 

%%% calculate the density function of the PSD. This is the one for 

%%% which distribution slope is calculated.  

fitmeXa = plotSIZEs(indminAf:indmaxAf); 
fitmeBa = plotBINs(indminAf:indmaxAf); 
fitmeYa = PSD(indminAf:indmaxAf); 
 

%%% The next line defines the number of bins considered 

binNum = numel(plotBINs); 

 

expungeInd = find(fitmeYa == 0); % Finds the zeroes corresponding 

to the yet-to-be-calculated extrapolations in preparation for the 

best fit calculations  

 

%%% The zeroes are subsequently eliminated from the fitting arrays 
fitmeXa(expungeInd) = []; 
fitmeBa(expungeInd) = []; 
fitmeYa(expungeInd) = []; 
         

pFITA = coeffvalues(fit(log(fitmeXa)',log(fitmeYa)','poly1')); % 

Power law best fit of the PSD. This one will be used for the PSD 

extrapolations proper. Note that the fit is actually carried out as 

a linear fit of the logarithm of the PSD and bin values as to limit 

the excessive influence of the largest values on the fit 

         
PDF = fitmeYa./fitmeBa;  % Density function of the PSD 
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pFITnA = coeffvalues(fit(log(fitmeXa)',log(PDF)','poly1'));   % 

Power law best fit of the density function, similarly carried out as 

a linear fit of log values 
 

slope = -pFITnA(1); % The slope of the PSD, given as the slope 

of the underlying density function 
 

%%% The following lines calculate the PSD extrapolations proper. 

         
N = ((pFITA(1).*log(plotSIZEs))+pFITA(2)); % Linear 

extrapolation 
jungePSD = exp(N); % Resulting power law extrapolation 
 

extPSD = reducedPSD; % Preallocates extended PSD array 

 

%%% The next line preallocates the complementary PSD array – this 

%%% contains ONLY the extensions. This is needed because IOP  

%%% calculation for the PSD will be made using the size & RI   

%%% concentration matrix rather than the single PSD. This avoids  

%%% averaging and maintains full details of the organic/inorganic 

%%% content of the particulate. On the other hand, the extensions 

%%% are NOT a matrix, but an array (which uses rRI approximations). 

%%% Calculations must be done separately and then combined. 

complPSD = PSD*0;    
         

for v = 1:1:binNum % This loop fills in complPSD and extPSD 
if reducedPSD(v) == 0  

complPSD(v) = jungePSD(v); 
extPSD(v) = jungePSD(v); 

end 
end 
 

 

C.2 Total particulate IOPs calculations 

%%% 2.1 FC PSD 

 

%%% This section calculates the IOPs limitedly to the FC PSD, that 

%%% is the unextended size distribution. In practice, calculations 

%%% are made for the size & RI concentration matrix (PSDmat), which 

%%% maintains all details about composition of the particulate and 

%%% allows for organic and inorganic IOP calculations 

 
N = PSDmat;   % The size & RI concentration matrix 
N = N*1e6;              % This is a cm3 to m3 conversion 

  
D = plotSIZEs;  % Median size of the bins 
RIs = plotRIs;  % Median RI of the bins. This needs to be 

input by the user, consistently with PSDmat 
 

%%% The following contains the RI approximations in the PSD  

%%% extrapolations. The lines given here are for Mode B (see Chapter 

%%% 7). The code checks for the first and last non-zero elements of 

%%% the PSD and uses those as starting and ending point for a 4-bin 

%%% average of RI (i.e. average over first non-zero element and next 

%%% three bins, and average over last non-zero element and previous 

%%% three bins) 
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multRIs1 = repmat(RIs',1,65); % Constructs a RI matrix to 

superimpose the size & RI matrix 
RI_avgMe = multRIs1.*N;  % Multiplies matrices in preparation 

for weighted average 
avgRI = sum(RI_avgMe(:))/sum(N(:));  % Weighted average over 

entire PSD 
 

check = 0;  % Primes non-zero element locator 
for nz = 1:1:size(N,2)  % Cycles through PSD matrix 

check = check+sum(N(:,nz));  % Sums over PSD matrix column 
if check ~= 0  % If “check” becomes non-zero... 

nz1 = nz; 
break   % ... break from loop 

end 
end 
check = 0;  % Primes non-zero element locator 
for nz = 1:1:size(N,2) % Cycles through PSD matrix 

check = check+sum(N(:,end-nz+1)); % Sums over PSD matrix 

column 
if check ~= 0  % If “check” becomes non-zero... 

nz2 = size(N,2)-nz+1; 
break   % ... break from loop 

end 
end 
 

multRIs2 = repmat(RIs',1,4);  % Constructs a RI matrix to 

superimpose the size & RI matrix 
N1 = N(:,nz1:nz1+3);  % Isolates the section of the size & 

RI matrix needed for the first averaging 
N2 = N(:,nz2-3:nz2);  % Isolates the section of the size & 

RI matrix needed for the second averaging 
RI_avgMe1 = multRIs2.*N1;  % Multiplies matrices in 

preparation for weighted average 
RI_avgMe2 = multRIs2.*N2;  % Multiplies matrices in 

preparation for weighted average 
avgRI1 = sum(RI_avgMe1(:))/sum(N1(:)); % Weighted average 
avgRI2 = sum(RI_avgMe2(:))/sum(N2(:)); % Weighted average 
 

RV = numel(D);  % Number of elements in the diameter array 
RIV = numel(RIs);  % Number of elements in the RI array 

 

%%% 2.1.1 FC PSD Mie calculations 

 

%%% This section will manage the Mie forward modelling calculations. 

%%% The first step is to calculate the single-particle VSF and  

%%% absorption corresponding to each size/RI bin of the size &  

%%% refractive index matrix. Although in this appendix the  

%%% corresponding code lines are given within the rest of the code, 

%%% it is advisable to conduct these calculations in a separate  

%%% script and to store the resulting data in a file, since these 

%%% don’t change if the RI and size arrays remain the same. The  

%%% resulting VSFs and absorptions can then be simply multiplied by 

%%% the number of elements within each bin to determine the total 

%%% particulate VSF and absorption. The angular resolution of the 

%%% VSF is defined here similarly to Appendix A. 

 

%%% Angular ranges     
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%%% The next few lines define the scattering angles array. The  

%%% resolution is higher at small angles. 

  
theta1 = (0:0.01:1);      % Angle range 1. 
theta2 = (1.1:0.1:10);    % Angle range 2. 
theta3 = (11:1:180);      % Angle range 3. 
 

theta = [theta1 theta2 theta3];     % Scattering angles array. 
thetalength = numel(theta);         % Gets the number of scattering 

angles. 
theta_rad = theta./180*pi;          % Converts the scattering angles 

array into radians. 

  
[~,index1] = min(abs(theta-90));    % Singles out the element in the 

scattering angles array corresponding to pi/2 for integration 

purposes. 
[~,index2] = min(abs(theta-180));    % Singles out the element in 

the scattering angles array corresponding to pi for integration 

purposes. 

  
dtheta = ones(1,thetalength);          % Preallocates the array 

which contains the increments between angles in the scattering 

angles array. For integration purposes. 
 

for S1 = 1:1:(thetalength-2)           % This small loop fills the 

angle increments array. 
dtheta(S1+1) = (theta_rad(S1+2)-theta_rad(S1))/2; 

end; 

  
dtheta(1) = dtheta(2);    % Defines the first element of dtheta. 
dtheta(thetalength) = dtheta(thetalength-1);      % Defines the last 

element of dtheta. 

  
sintheta = sin(theta_rad);             % The sines of the scattering 

angles. 

 

r = D/2; % Array of log-spaced virtual particle radii. 

     
Beta_ind_wvl = cell(RIV,RV);  % Preallocates the cell matrix 

which will contain all single-particle VSFs corresponding to each 

size/RI bin of the size & refractive index matrix for a certain 

wavelength. In this study this was chosen as 532 nm (see Section 

7.3) 

abs_ind_wvl = ones(RIV,RV);  % Preallocates the matrix which 

will contain all single-particle absorption corresponding to each 

size/RI bin of the size & refractive index matrix for the selected 

wavelength. 
 

%%% Wavelength is defined here 
lambda_air = 532*1e-9; % Chosen wavelength in air (nanometres). 
wnr = 1.333; % Absolute refractive index of water 
lambda = lambda_air/wnr; % Chosen wavelength in water. 

     
for RI1 = 1:1:RIV   % Iterates through RIs 

for R1 = 1:1:RV         % Iterates through radii  
 

%%% This part will require the user to input the imaginary 



213 

 

%%% refractive indices for the selected wavelength. In this study 

%%% these were adapted from Babin et al. (2003). 

if RIs(RI1) < 1.1 
ni = niOrg_wvl; 

elseif RIs(RI1) >= 1.1 
                ni = niMin_wvl; 
            end 
            m=RIs(RI1)+(1i*ni); % Complex refractive index. 
            w=2*pi/lambda;  % Wavenumber. 
            x=w*r(R1);              % Size parameter. 
            [S1,S2,Qb,Qc,Qbb] = fastmie(x,m,[],theta_rad);  % The 

core of the calculation is handled by the FASTMie script (by W. H. 

Slade, 2006).                                  

i1=abs(S1).^2; % Scattered intensity functions.                                                                  

i2=abs(S2).^2; % Scattered intensity functions.             
Beta_ind_wvl{RI1,R1}= ((1/w)^2)*0.5*((i1+i2));  % 

Single-particle VSF for diameter r(R1) and refractive index 

RIs(RI1) 

abs_ind_wvl(RI1,R1) = (pi/4)*(D(R1).^2).*(Qc-Qb); % 

Single-particle absorption for diameter r(R1) and refractive 

index RIs(RI1) 

end 
end 

  
Beta_ind = cell(RIV,RV); % Preallocates the cell matrix which 

will contain all total particulate VSFs corresponding to each 

size/RI bin of the size & refractive index matrix for the selected 

wavelength. 
abs_ind = ones(RIV,RV);  % Preallocates the cell matrix which 

will contain all total particulate absorptions corresponding to each 

size/RI bin of the size & refractive index matrix for the selected 

wavelength. 

 
for RI1 = 1:1:RIV   % Iterates through RIs 

for R1 = 1:1:RV  % Iterates through radii      
Beta_ind{RI1,R1}= Beta_ind_wvl{RI1,R1}.*N(RI1,R1); % 

total particulate VSF for diameter r(R1) and refractive index 

RIs(RI1) 
abs_ind(RI1,R1) = abs_ind_wvl(RI1,R1).*N(RI1,R1); % 

total particulate absorption for diameter r(R1) and refractive 

index RIs(RI1) 
      end 
end 
 

Beta_tot = 0;   % Primes the total particulate VSF 

(all sizes and RIs) 
for RI1 = 1:1:RIV 

for R1 = 1:1:RV  
Beta_tot = Beta_tot + Beta_ind{RI1,R1};         % Total 

VSF for this wavelength 
      end 
end 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot'; % Total particulate VSF 

integral 

 

%%% 2.1.2 FC PSD IOP calculations 

%%% This section handles the calculations of the IOPs proper. The 

%%% first part will calculate total FC PSDs, with cumulative,  
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%%% organic and inorganic IOPs following. 
 

FCPSD_b = sum(tsd);  % FC PSD total scattering coefficient 
tsda = tsd(index1:index2); % Backscattering VSF integral 

FCPSD_bb = sum(tsda); % FC PSD total backscattering coefficient 
FCPSD_bbr = (FCPSD_bb/FCPSD_b)*100; % FC PSD total backscattering 

ratio 
FCPSD_a_Qa = sum(sum(abs_ind)); % FC PSD total absorption 

coefficient 
 

%%% This small section calculates the FC PSD component of the  

%%% cumulative IOPs.  

 

cmlPSD1_b = zeros(RV);  % Preallocates cumulative scattering 

array 
cmlPSD1_bb = zeros(RV);  % Preallocates cumulative 

backscattering array 
cmlPSD1_a_Qa = zeros(RV); % Preallocates cumulative absorption 

array 
 

for c = 1:1:binNum % Iterates through size bins 
Beta_tot_cml = 0;  % Primes the total particulate VSF 

      for RI1 = 1:1:RIV  % Iterates through RIs 
for R1 = 1:1:c  % Iterates through radii up to bin c 

Beta_tot_cml = Beta_tot_cml + Beta_ind{RI1,R1};                             

% Total VSF for this wavelength 
            end 
      end 

tsd = 2*pi*dtheta.*sintheta.*Beta_tot_cml'; % Total 

particulate VSF integral 

cmlPSD1_b(c) = sum(tsd); % FC PSD component of cumulative 

scattering 
tsda = tsd(index1:index2); % Backscattering VSF integral 
cmlPSD1_bb(c) = sum(tsda); % FC PSD component of cumulative 

backscattering 
cmlPSD1_a_Qa(c) = sum(sum(abs_ind(:,1:c),2),1); % FC PSD 

component of cumulative absorption 
end 

 

%%% The following section determines organic and inorganic IOPs. 

 

%%% This next line finds the RI element closest to 1.1. 

[~,RIind] = min(abs(RIs-1.1)); 

  
Beta_tot = 0;   % Primes the total particulate VSF  

orgPSD_a_Qa = 0;   % Primes the total particulate organic 

absorption 
for RI1 = 1:1:RIind-1  % Iterates through organic RIs 

for R1 = 1:1:RV   % Iterates through radii 
      Beta_tot = Beta_tot + Beta_ind{RI1,R1};      % Total VSF 

for this wavelength 
      orgPSD_a_Qa = orgPSD_a_Qa + abs_ind(RI1,R1);  % 

Total organic absorption for this wavelength 
      end 
end 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot'; % Total particulate VSF 

integral 

orgPSD_b = sum(tsd);  % FC PSD total organic scattering 

coefficient 



215 

 

tsda = tsd(index1:index2); % Backscattering VSF integral 
orgPSD_bb = sum(tsda); % FC PSD total organic backscattering 

coefficient 
orgPSD_bbr = (orgPSD_bb/orgPSD_b)*100;  % FC PSD total 

organic backscattering ratio 

  
Beta_tot = 0;   % Primes the total particulate VSF  

minPSD_a_Qa = 0;   % Primes the total particulate 

inorganic absorption 
for RI1 = RIind:1:RIV  % Iterates through inorganic RIs 

for R1 = 1:1:RV   % Iterates through radii 
      Beta_tot = Beta_tot + Beta_ind{RI1,R1};      % Total VSF 

for this wavelength 
      minPSD_a_Qa = minPSD_a_Qa + abs_ind(RI1,R1);  % 

Total inorganic absorption for this wavelength 
      end 
end 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot'; % Total particulate VSF 

integral 

minPSD_b = sum(tsd);  % FC PSD total inorganic scattering 

coefficient 
tsda = tsd(index1:index2); % Backscattering VSF integral 
minPSD_bb = sum(tsda); % FC PSD total inorganic backscattering 

coefficient 
minPSD_bbr = (minPSD_bb/ minPSD_b)*100;  % FC PSD total 

inorganic backscattering ratio 

 

%%% 2.2 Extended PSD 

 

%%% This section calculates the IOPs of the extended PSD by  

%%% integrating the results of the FC PSD sections with IOP  

%%% calculations for the sole extensions to the PSD. The first step 

%%% calculates total particulate IOPs, followed by total cumulative 

%%% IOPs and IOPs corresponding to the upper and lower extensions of 

%%% the PSD. 

 
N = complPSD; % The complementary PSD array 
N = N*1e6;       % This is a cm3 to m3 conversion 

  
extRIs = D*0;  % Primes RI array in the extensions 
 

%%% The next loop assigns the average RIs to the extension as they 

%%% have been calculated earlier 
for p = 1:1:RV % Iterates through radii 

if plotSIZEs(p) < 1e-6  % First average assigned to 

particles smaller than 1 micron 
extRIs(p) = avgRI1; 

elseif plotSIZEs(p) > 1e-5 % Second average assigned to 

particles larger than 10 microns 
extRIs(p) = avgRI2; 

else     % Overall average assigned to 

particles between 1 and 10 microns 
extRIs(p) = avgRI; 

end 

%%% Imaginary RIs are assigned similarly as before. 
if extRIs(R1) < 1.1 

ni = niOrg_wvl; 
elseif extRIs(R1) >= 1.1 
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ni = niMin_wvl; 
end 

end 

             
Beta_ind = ones(RV,thetalength); % Primes total VSF 
abs_ind = ones(RV,1);   % Primes total absorption 

  
for R1 = 1:1:RV    % Iterates through radii 

m=extRIs(R1)+(1i*ni); % Complex refractive index 
w=2*pi/lambda;  % Wavenumber 
x=w*r(R1);              % Size Parameter 
[S1,S2,Qb,Qc,Qbb] = fastmie(x,m,[],theta_rad);          % The 

core of the calculation is handled by the FASTMie script (by W. H. 

Slade, 2006). 
i1=abs(S1).^2;       % Scattered intensity functions. 
i2=abs(S2).^2;  % Scattered intensity functions. 

  
Beta_ind_core = ((1/w)^2)*0.5*((i1+i2)); % Core VSF 

calculation for r(R1) 
abs_ind_core = (pi/4)*(D(R1).^2).*(Qc-Qb); % Core 

absorption calculation for r(R1)  

  
Beta_ind(R1,:)= Beta_ind_core.*N(R1); % Total particulate 

VSF for r(R1) 
abs_ind(R1) = abs_ind_core.*N(R1);  % Total particulate 

absorption for r(R1) 
end 

  
Beta_tot = sum(Beta_ind,1);       % Total VSF for the selected 

wavelength 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot; % Total particulate VSF 

integral 

complPSD_b = sum(tsd); % Total scattering coefficient in the 

extensions 
tsda = tsd(index1:index2); % Backscattering VSF integral 
complPSD_bb = sum(tsda); % Total backscattering coefficient in 

the extensions 
complPSD_a_Qa = sum(abs_ind); % Total absorption coefficient in the 

extensions 

  
extPSD_b = FCPSD_b+complPSD_b; % Total particulate scattering 

coefficient  
extPSD_bb = FCPSD_bb+complPSD_bb; % Total particulate 

backscattering coefficient  
extPSD_bbr = (extPSD_bb/extPSD_b)*100;  % Total particulate 

scattering ratio  
extPSD_a_Qa = FCPSD_a_Qa+complPSD_a_Qa;  % Total particulate 

absorption coefficient  
 

%%% This small section calculates the extension component of the  

%%% cumulative IOPs.  

 

cmlPSD2_b = zeros(RV);  % Preallocates cumulative scattering 

array 
cmlPSD2_bb = zeros(RV);  % Preallocates cumulative 

backscattering array 
cmlPSD2_a_Qa = zeros(RV); % Preallocates cumulative absorption 

array 
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for c = 1:1:binNum % Iterates through size bins 

Beta_tot_cml = sum(Beta_ind(1:c,:),1);      % Total VSF for 

this wavelength 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot_cml; % Total 

particulate VSF integral 
cmlPSD2_b(c) = sum(tsd); % Extension component of 

cumulative scattering 
tsda = tsd(index1:index2); % Backscattering VSF integral 
cmlPSD2_bb(c) = sum(tsda); % Extension component of 

cumulative backscattering 
  cmlPSD2_a_Qa(c) = sum(abs_ind(c)); % Extension component of 

cumulative absorption 
end 

  
cmlPSD_b = cmlPSD1_b+cmlPSD2_b; % Total cumulative particulate 

scattering coefficient 
cmlPSD_bb = cmlPSD1_bb+cmlPSD2_bb; % Total cumulative particulate 

backscattering coefficient 
cmlPSD_a_Qa = cmlPSD1_a_Qa+cmlPSD2_a_Qa; % Total cumulative 

particulate absorption coefficient 
 

%%% The following section determines IOPs in the upper and lower  

%%% extensions 

  
Beta_tot_upx = sum(Beta_ind(1:nz1-1,:),1);    % Total upper 

extension VSF for the selected wavelength 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot_upx; % Total particulate 

VSF integral 
upxPSD_b = sum(tsd);  % Total upper extension particulate 

scattering coefficient 
tsda = tsd(index1:index2); % Backscattering VSF integral 
upxPSD_bb = sum(tsda); % Total upper extension particulate 

backscattering coefficient 
upxPSD_bbr = (upxPSD_bb/upxPSD_b)*100; % Total upper extension 

particulate backscattering ratio 
upxPSD_a_Qa = sum(abs_ind(1:nz1-1)); % Total upper extension 

particulate absorption coefficient 

  
Beta_tot_lox = sum(Beta_ind(nz2+1:end,:),1); % Total lower 

extension VSF for the selected wavelength 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot_lox; % Total particulate 

VSF integral 
loxPSD_b = sum(tsd);  % Total lower extension particulate 

scattering coefficient 
tsda = tsd(index1:index2); % Backscattering VSF integral 
loxPSD_bb = sum(tsda); % Total lower extension particulate 

backscattering coefficient 
loxPSD_bbr = (loxPSD_bb/loxPSD_b)*100; % Total lower extension 

particulate backscattering ratio 
loxPSD_a_Qa = sum(abs_ind(nz2+1:end)); % Total lower extension 

particulate absorption coefficient 

  
%%% 2.3 Fluorescing PSD 

 

%%% This section repeats the calculations made in section 2.1 but 

%%% this time only on the fluorescent fraction of the FC PSD. 
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N = FLPSDmat;   % The size & RI concentration matrix 
N = N*1e6;              % This is a cm3 to m3 conversion 

      
Beta_ind = cell(RIV,RV); % Re-preallocates the cell matrix 

which will contain total fluorescent particulate VSFs  

abs_ind = ones(RIV,RV);  % Re-preallocates the matrix which 

will contain total fluorescent particulate absorptions 

 
for RI1 = 1:1:RIV   % Iterates through RIs 

for R1 = 1:1:RV  % Iterates through radii      
Beta_ind{RI1,R1}= Beta_ind_wvl{RI1,R1}.*N(RI1,R1); % 

total particulate VSF for diameter r(R1) and refractive index 

RIs(RI1) 
abs_ind(RI1,R1) = abs_ind_wvl(RI1,R1).*N(RI1,R1); % 

total particulate absorption for diameter r(R1) and refractive 

index RIs(RI1) 
      end 
end 

 
Beta_tot = 0;   % Primes the total particulate VSF  

FLPSD_a_Qa = 0;   % Primes the total particulate 

fluorescent absorption 
for RI1 = 1:1:RIind-1  % Iterates through organic RIs 

for R1 = 1:1:RV   % Iterates through radii 
       Beta_tot = Beta_tot + Beta_ind{RI1,R1};      % Total VSF 

for this wavelength 
       FLPSD_a_Qa = FLPSD_a_Qa + abs_ind(RI1,R1);  % 

Total fluorescent absorption for this wavelength 
      end 
end 
tsd = 2*pi*dtheta.*sintheta.*Beta_tot'; % Total particulate VSF 

integral 

FLPSD_b = sum(tsd);  % FC PSD total fluorescent scattering 

coefficient 
tsda = tsd(index1:index2); % Backscattering VSF integral 
FLPSD_bb = sum(tsda); % FC PSD total fluorescent backscattering 

coefficient 
FLPSD_bbr = (FLPSD_bb/FLPSD_b)*100;  % FC PSD total fluorescent 

backscattering ratio 

 


