
i

ii

Classification of Arabic Extremist

Web Content through Arabic

Textual Analysis

A Thesis

Presented to

Department of Computer and Information Sciences

University of Strathclyde

In Partial Fulfillment

of the Requirements for the Degree

OF DOCTOR OF PHILOSOPHY

of Ph.D. of Computer Science (Ph.D.)

by

Haya Mesfer Alshahrani

2020

i

ii

PREFACE

The basis for this research originally stems from recognizing the need for

developing better methods of data classification in Arabic. As the world moves further

into the digital age, the internet may become a source of dangerous and destructive

information. Violent content will surely have a damaging effect on young minds. This

raises an important question: How can we sort and classify this content? Our intention

is to find ways to organize such content in Arabic and break down barriers of

classification for future research.

iii

DEDICATION

I dedicate this thesis . . .

All this effort and hard work . . .

This project, every letter Included, all the data gathered, all information written, proofs,

evidence, assembling and references . . .

To my little precious one . . . Deema

Who discovered she suffers from cancer during my PhD studies,

and suffered pain . . .

We both suffered every fatigue and every burning chemotherapy session . . .

With the hope in her eyes, making me forgets everything . . .

Most of this research was written in the hospital’s lobby . . .

Between the corridors of surgery rooms & treatment rooms . . .

Where my sole and main motivation and concern in this world was that light of hope in

her beautiful eyes urging me to continue my work and finish this research.

iv

ACKNOWLEDGMENT

I would like to acknowledge my thanks with all the efforts spent to my supervisor

in my PhD Dr. George Weir, who contributed and helped me all the way in each word and

moment of research, and in every stages of my study, by his sincere instructions and

opinion.

I would like to express my thanks to my internal supervisor Dr. Alaaldine Hafez

who was my other eye by contacting, supervising & helping me with his personal

consultation.

I would also like to express my thanks and gratitude to Professor Meg, for

proofreading my study with all sincerity and providing all efforts to support me.

I send my great thanks to the Viva committee and examiners, who supervised

my research, and helped me improving and adjusting any deficiencies in the research.

I would like to thank Dr. Murray for organizing and running the discussion in

a smooth and nice manner despite the current Covid 19 conditions.

I would like to thank Dr. David the internal examiner who supported me with

his wise guidance and observations, which helped me to overcome some mistakes I

made and to fill some limitations in my research, as his notes were an expert reviews,

and he had an insightful eye that helped me improve the quality of my work.

I want also to thank Dr. Amir for his valuable remarks and his decent manner during

the time of the discussion and for his advices to cover all the gaps in my research

I deeply thank the University of Strathclyde that gave me the opportunity to study for

doctorate and awarded me the degree. And I want to thank the university of princess

Nora who granted me the scholarship, and I especially thank Dr. Fatima Al- Shehri the

director of the mutual supervision program for her endless support during my study.

Also I would like to present my thanks, gratitude and my deep feelings to my

dear father who was always beside me since my early age and was my first fan and my

everlasting supporter of everything I do.

v

I want also to present this success to my first role model, my beloved mother,

who I believe she is the owner of this presentation. And also to present my thanks and

gratitude to my husband who stood by me and supported me since the beginning of

this journey to the end, and always surrounded me with his love, care and help. And

from the bottom of my heart, I want to thank my family, and my kids who beard my

absence and busyness during my study period.

I also dedicate this great work to my brothers and sisters and thank them so much for

being there for me.

Finally, I want to thank everyone who helped me and supported me during this difficult

and beautiful period at the same time.

vi

ABSTRACT

Many scholars have attempted to study the written and spoken word of terrorist

groups and individuals to understand the underlying motivation for terrorist acts.

However, until today, those scholars have not made use of automated linguistic

analysis programs, especially those focusing on Arabic corpus, in an attempt to

understand the mentality behind terrorist acts. A contribution in this regard will be

made.

The division and classification of texts is an important science of linguistics,

whether Arabic or otherwise, it summarizes the effort and time consuming of humans

to classify these language texts. The importance of this research stems from not only

the importance of the classification itself, but also a classification based on the extreme

orientation of these linguistic texts.

In this research, the researcher has tried to prove his new methodology based

on the division and classification of Arabic texts, a classification that distinguishes

them from others according to the identity of the speakers, whether as extremists or

against extremism or as neutral people who do not have any ideas belonging to any

terrorist or counter category. This methodology is a numerical methodology that relies

on dividing speech using two different tools and then analyzing the results using more

than six algorithms in the Wiccan program. The researcher got very good results that

make the judgment on this methodology a resounding success.

This thesis aims to put forward a comprehensive and detailed classification

system to categorize different Arabic-speaking website pages with unscrupulous

intentions and questionable language. It uses three specific Arabic corpora, (Pro-

terrorism, Anti-terrorism, and neutral), from more than 7000 Arabic text to construct

corpus (1,000,000 words approx.) from different sites and sources.

The division and classification of texts is an important science of linguistics,

whether Arabic or otherwise, it summarizes the effort and time consuming of humans

to classify these language texts. The importance of this research stems not only from

the importance of the classification itself, but also a classification based on the extreme

orientation of these linguistic texts.

vii

In this research, the researcher has tried to prove his new methodology based

on the division and classification of Arabic texts, a classification that distinguishes

them from others according to the identity of the speakers, whether as extremists or

against extremism or as neutral people who do not have any ideas belonging to any

terrorist or counter category. This methodology is a numerical methodology that relies

on dividing speech using two different tools and then analyzing the results using more

than six algorithms in the WEKA program. The researcher got very good results that

make the judgment on this methodology success.

This thesis employs a quantitative approach by using different algorithms

(supervised) to build a model for data classification by using manually categorized

information. The classification algorithm used to construct the model uses quantitative

information extracted by Posit or SAFAR textual analysis framework. This model

functions with (58) features combined from Posit – n-grams and morphological

SAFAR V2 POS tools. This model achieved more than (94 %) success in the level of

precision.

This model uses Posit method to make appropriate changes to the code so it

can deal with Arabic content, secondly SAFAR V2, which is more suited to the domain

of Arabic being based on analyzing the morphology of the word, and therefore, it can

highlight all the essential features overlooked in Posit. This model has manual

classification, pre-processing steps and can apply eight different experiments using

WEKA APIs, a GUI (Graphical user interface) application.

The research concludes that the best results reaching 94% precision have been

achieved by combining Posit + SAFAR + (18 attributes Posit+ SAFAR N-Gram).

Moreover, the most reliable results have been achieved by applying a Random Forest

classification algorithm using regression. The research recommends working more on

this topic and using new algorithms and techniques.

viii

TABLE OF CONTENTES

Title Page no.

PREFACE ii

DEDICATION iii

ACKNOWLEDGMENT iv

ABSTRACT vi

TABLE OF CONTENTES viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF APPENDICES xvi

CHAPTER ONE: INTRODUCTION

1.1 Over view 1

1.2 Research Introduction 1

1.3 Research Importance 3

1.4 Research Questions 3

1.5 Research Aim & Objectives 4

1.6 Research Contributions 4

1.7 Research Structure 5

CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW

2.1 Background overview 7

2.2 Definitions 7

2.2.1 Neutral text 7

2.2.2 Extremist 8

2.2.3 Terrorism 11

2.3 Social Media and Extremism 12

ix

2.4 Arabic Language Processing and Machine Learning-Based

Systems
13

2.5 Arabic Morphology 15

2.6 Data Mining 19

2.7 Machine learning 20

2.8 Classifier Modelling 22

2.9 Cross Validation 31

2.10 SAFAR Framework 33

2.11 Posit Framework 34

2.12 Literature Review 35

2.12.1 Sentiment Analysis of Arabic Text (Opinion Mining) 36

2.12.2 Classification and Comparing Algorithms on Arabic Text 38

2.13 Summary 39

CHAPTER THREE: METHODOLOGY

3.1 Overview 41

3.2 Methodological Approach 42

3.3 Data collection 43

3.3.1 Gathering data 43

3.3.2 Verification 44

3.4 Research design 45

3.5 Research methods 48

3.5.1 Data collection and preprocessing stage 48

3.5.2 Data analysis stage 48

3.5.3 Data classification stage 49

3.6 Research tools 51

3.6.1 Posit Toolset 51

x

3.6.2 SAFAR 52

3.6.3 WEKA API 52

3.7 Sample 53

3.8 Validity and Reliability 53

3.9 Summary 53

CHAPTER FOUR: IMPLEMENTATION

4.1 overview 54

4.2 Data Collection 54

4.2.1 Corpus Building and compiling 54

4.3 Data Preprocessing 60

4.3.1 Working with Posit 60

4.3.2 Working with SAFAR V2 in windows environment 62

4.3.3 Summary of Data Pre-Processing 65

4.4 WEKA Implementation 65

4.4.1 GUI used to Implement WEKA 66

4.4.2 ARFF file 66

4.4.3 Prepare N-Gram Data 70

4.5 Summary 75

CHAPTER FIVE: EXPERIMENTS

5.1 Overview 75

5.2 Experimental setup 75

5.3 WEKA 77

5.4 Our approach 78

5.5 Summary 81

CHAPTER SIX: RESULTS AND DISSCUSION

6.1 Overview 82

xi

6.2 Analysis 82

6.2.1 Output Specifications 84

6.3 Experiments Results 86

6.3.1 Results 1 (Posit dataset) 86

6.3.2 Results 2 (Posit + N-Gram dataset) 88

6.3.3 Results 3 (SAFAR dataset) 91

6.3.4 Result 4 (SAFAR + N-Gram dataset) 94

6.3.5 Result 5 (Posit+SAFAR dataset) 96

6.3.6 Result 6 (POSIT+SAFAR) + Posit N-Gram dataset 99

6.3.7 Result 7 (Posit+SAFAR) + SAFAR N-Gram dataset 102

6.3.8 Result 8 (Posit+SAFAR) + (Posit+SAFAR) N-Gram

dataset
105

6.4 Test Results Summary 108

6.4.1 Final Posit datasets discussion 108

6.4.2 Final SAFAR dataset discussion 108

6.4.3 Posit + SAFAR dataset discussion 109

6.4.4 Final Results 109

6.5 Discussion 110

6.6 Summary 114

CHAPTER SEVEN: CONCLUSION AND FUTURE WORK

7.1 Conclusion 115

7.2 Research Answers 118

7.3 Future Work 120

References 121

xii

LIST OF TABLES

Table 2.1 Examples of proclitic and enclitics 18

Table 2.2 Cross validation 32

Table 2.3 Research studies conducted on Arabic text mining in terms of

sentiment analysis

38

Table 4.1 Complete file names according to file description 67

Table 4.2 n-gram Reference files properties 70

Table 4.3 Processing duration trials to reach the optimized processing time 73

Table 4.4 Example for calculating the prediction for token occurrence 74

Table 6.1 classifiers to obtain results 82

Table 6.2 Tool sets to generate the summary files 83

Table 6.3 Sample of Model file name 84

Table 6.4 The entries in the confusion matrix 85

Table 6.5 Posit classification datasets 86

Table 6.6 Posit datasets classification results 87

Table 6.7 Posit + N-Gram classification dataset 88

Table 6.8 Posit + N-Gram datasets classification results. 89

Table 6.9 SAFAR classification datasets 91

Table 6.10 SAFAR datasets classification results 92

Table 6.11 SAFAR+N-Gram classification dataset 94

Table 6.12 SAFAR + N-Gram datasets classification results 94

Table 6.13 Posit +SAFAR classification dataset 96

Table 6.14 Posit +SAFAR datasets classification results 97

Table 6.15 (Posit +SAFAR) + Posit N-Gram classification dataset 99

Table 6.16 (Posit +SAFAR) + Post N-Gram datasets classification results 100

Table 6.17 (Posit +SAFAR) + SAFAR N-Gram classification dataset. 102

Table 6.18 (Posit +SAFAR) + SAFAR N-Gram classification results 103

xiii

Table 6.19 (Posit +SAFAR) + (Posit +SAFAR) N-Gram classification dataset 105

Table 6.20 (Posit +SAFAR) + (Posit +SAFAR) N-Gram results 106

Table 6.21 Posit classification results 108

Table 6.22 SAFAR classification results 108

Table 6.23 Posit +SAFAR best Classification Results 109

Table 6.24 All datasets best classification sorted results 109

Table 6.25 Tweet Classification 110

Table 6.26 Sentence Level Arabic Sentiment SVM and Naïve Bayes. 111

Table 6.27 Sentence Level Arabic Sentiment (2-3 grams) SVM

(normalization, stemming, and stop words removal)

111

Table 6.28 Combined approach for Arabic language classification 112

Table 6.29 Comparing other classification results to our classification

methodology

112

Table 6.30 Random Forest classifier against some other classifiers 113

xiv

LIST OF FIGURES

Figure 2.1 Example of cliticization. 17

Figure 2.2 Stages of data mining 20

Figure 2.3 Workflow of supervised machine learning algorithm 21

Figure 2.4 Unsupervised Learning 21

Figure 2.5 Linear regression process 26

Figure 2.6 Multiple linear regressions. 28

Figure 2.7 Sample of data to be classified 29

Figure 2.8 Random selection of data files 30

Figure 2.9 Decision tree created 30

Figure 2.10 Classifier ranking process 31

Figure 2.11 SAFAR architecture 33

Figure 2.12 Twitter classification block diagram 37

Figure 3.1 Proposed methodological design 42

Figure 3.2 Main process to perform text classification 47

Figure 3.3 Cross validation and model creation 50

Figure 3.4 Classification process 50

Figrue 4.1 Corpus before splitting 57

Figure 4.2 text file format 58

Figure 4.3 The resulting database table 59

Figure 4.4 Reading input for the Summary Generator 63

Figure 4.5 The function of looper 64

Figure 4.6 Process of summary generator 65

Figure 5.1 results of changing some environment of Weka 77

Figure 5.2 Classifier-Dataset Selection and prediction calculation

Diagram

79

Figure 5.3 Work Flow for different calculation methods 80

xv

Figure 6.1 Posit datasets classification results. 87

Figure 6.2 Posit +N-Gram datasets classification results. 89

Figure 6.3 SAFAR datasets classification results 92

Figure 6.4 SAFAR + N-Gram datasets classification results 95

Figure 6.5 Posit +SAFAR datasets classification results 97

Figure 6.6 (Posit+SAFAR) + Posit N-Gram datasets classification results 101

Figure 6.7 (Posit+SAFAR) + SAFAR N-Gram results. 104

Figure 6.8 (Posit+SAFAR) + (Posit+SAFAR) N-Gram results. 107

xvi

LIST OF APPENDICES

Appendix A: Defining some terms used in our work

Appendix B: Some codes and WEKA Scripts.

Appendix C: Published paper.

Appendix D: detailed classifier results

1

CHAPTER ONE: INTRODUCTION

1.1 Over view

In this brief chapter, the research will explain itself. As this chapter contains

all the principles that may be useful to the reader in understanding this research.

Beginning with the explained introduction, which is considered as a gateway to the

search, as it contains many semantic words and matters related to the search. It charts

the path taken by the researcher to walk through to the main objectives of the research

and reaches what he is trying to establish from the beginning to reach the final results

of the approach used. This chapter also contains the basic research questions that the

researcher seeks to answer and contains the contributions made by the research in the

world of information security and how this approach can make a significant

contribution to revealing the extremist content of Arabic texts.

1.2 Research Introduction

Extremists and terrorists are similar in their forms of expression, political

activities and in their use of mass media. Nevertheless, extremism expresses political

thoughts and programs that are rejected by most ordinary people. However, terrorism

chooses the use of force as a means to achieve a political agenda (El Zein, 2015).

Extremism can be literally defined as "the quality or condition of extremism"

or "advocating extremist views." A term defined in the religious or political sense to

refer to an ideology that is very far from the prevailing attitudes of society, where the

views of extremists’ contrast with the opinions of moderate people (Mogahed, 2006).

There is no universal agreement on a definition, but it can be said that terrorism

is intentional, politically motivated violence committed by underground groups or

agents. In general, terrorism includes the use of threats or violence, to achieve

religious, political, social, or ideological goals (Schmid, 2011).

2

Media are essential for extremists and terrorists. Since the early sixties, both

groups have recognized the importance of the media as a vehicle to disseminate their

propaganda achieves their goals and spread their word. Extremists and terrorists have

succeeded in using the media for this purpose, despite leaders in their countries vainly

trying to stop this. Using the worldwide accessibility of the Internet, social media and

other platforms, extremists and terrorists have made it possible to provide unrestricted

access their websites. Some of these sites are designed to attract would-be militants

and sympathizers in Western countries. To support their causes, terrorist organizations

utilize the internet to raise funds for finance.

In 2005, the Secretary-General of the United Nations created the CTITF (The

United Nations Counter-Terrorism Implementation Task Force) to secure all necessary

cooperation and concerted efforts of the United Nations regime in the field of anti-

terrorism.

The last few years have seen a significant increase in the activities of

radicalized extremists, launching terrorist attacks around the whole world. They

exploit modern technologies such as the Internet and social media, widely used by the

general public, to plan and maintain contact with their group (Alvari, Sarkar, &

Shakarian, 2019).

Social media like Facebook and Twitter are currently being utilized by

extremist groups to create direct contact with their worldwide groups. By the very

nature of these applications (i.e., free and unregulated), encouraged extremists to

quickly form virtual societies and disseminate their thoughts and their coaching tools

without paying attention to the usual means of censorship in the general media (Alvari

et al., 2019).

During this last year or so, social networks have started to intervene by

implementing countermeasures against these groups. Twitter was considered the main

promotional vehicle for ISIS, so in August 2016, Twitter started taking more stringent

measures by closing more than 36,000 feeds that were believed to belong to ISIS

(Alvari et al., 2019).

3

This thesis employs a quantitative approach by using different algorithms

(supervised) to build a model for data classification by using manually categorized

information. The classification algorithm used to construct the model uses quantitative

information extracted by Posit or SAFAR textual analysis framework. During each

experiment, the corresponding model was used to classify unseen data.

1.3 Research Importance

Fundamentally, the benefits of using data collected from social media depend

on the factual accuracy of the statements being collected from the users or their groups.

However, it was established that additional effective procedures such as utilizing

algorithms to uncover clues in the content that points to violence automatically

supported this feedback and improved its performance. Notwithstanding, the feedback

resulted in social websites closing a significant number of accounts, however, it was

not guaranteed to be accurate, because owners of the pending accounts can create new

accounts and resume their activities, or are able to relocate to different social websites.

More research is required to be carried out by governments in order to counter the

radicalized extremists and stop, or at least reduce their threat (Alvari et al., 2019).

Therefore, is thesis employs a quantitative approach by using different

algorithms (supervised) to build a model for data classification by using manually

categorized information. The classification algorithm used to construct the model uses

quantitative information extracted by Posit or SAFAR textual analysis framework.

During each experiment, the corresponding model was used to classify unseen data. in

fact, this technique aids identification of Arabic extremist websites, enabling

authorities to remove them, thus preventing their harmful ideology on impressionable

minds and help combat terrorism in the world.

1.4 Research Scopes and Questions

The thesis seeks to establish a comprehensive system to reveal any publication

or entity that has malicious intentions emanating from extremism or seeks terrorism,

and that is in various Arabic web pages. This is crucial to a comprehensive

understanding of the extreme world. So, the main question that this message hopes to

https://www.google.com/search?q=safar+arabic+textual+framework&tbm=isch&source=univ&sa=X&ved=2ahUKEwitofOEupviAhUR7eAKHSo5C2wQsAR6BAgIEAE

4

answer is, "How can we improve and automate the classification of Arabic words in

scenarios where the intention is vague or misleading?"

This central question can be broken down into two sub-questions:

a. “Can we label different occurrences of the same item (for example, word or

phrase) under various contexts (Pro extremist – Anti extremist –neutral)?”

b. “Can we train robust and discriminative features to uncover any misleading

emotional Arabic text, and properly categorize said text according to its underlying

message, within a quantitative approach?”

1.5 Research Aim & Objectives

The main goal of this thesis is to put forward a comprehensive and detailed

classification system to categorize different Arabic-speaking website pages with

unscrupulous intentions and questionable language. The objectives of this research can

be listed as follows:

 Visiting and determining several websites related to terrorism, neutral and anti-

terrorism websites.

 Extracting keywords and Build corpus of Arabic words, this corpus is divided

three categories (terrorist & extremist, anti-terrorist, neutral).

 Develop a new system based on the Posit and SAFAR tools that can distinguish

between (terrorist & extremist, anti-terrorist, neutral) sites in Arabic language.

 Train the System the collected corpus using the machine learning feature

 Test the new system on new sites to determine the effectiveness and make any

required modifications if it needed

1.6 Research Contributions

The main contributions of the thesis can be summed up as follows:

1- Building an individually combined corpus of (5,100) text files, and more than

(1,000,000) Arabic words; some of them from extremist websites, others from anti-

file:///D:/aamal%20private/Emad%20Rababah/proofreading%2017-1-2020/final.doc%23_bookmark6

5

extremist and neutral ones. Such a collective corpus was not available for this type

of research, which is why we had to compile a corpus for ourselves, and it is hoped

that further research will be carried out that will increase the corpus size and

accuracy.

2- Introducing new enhanced POS (part of speech) from the Posit tool developed by

Weir (2007, 2009); however, it was necessary to modify the code to deal with

Arabic content.

3- Developing a classification model that functions with (58) features combined from

Posit – n-grams and morphological SAFAR V2 POS tools. This model achieved

more than (99 %) success in the level of precision.

1.7 Research Structure

This thesis is divided into an introduction and seven chapters; Chapter two

presents a general overview and literature review of previous work and Arabic

morphological classification. This covers some of the contributions to the main aspects

of extremism classification and examines supervised modeling and feature selection

and review in the same or similar fields, which was used to great benefit.

Chapter three introduces the new methodology used in this thesis, beginning

with Data Preparation, compiling, and building of the Arabic corpus, and covering the

classification methodology. Chapter four explains the implementation of this

methodology detailing the code used to split the massive corpus into individual text

files. Information preparation began by extracting quantitative information from

Arabic corpus using Posit and SAFAR frameworks. Chapter five discusses the

experiments and the setup required - starting with the software and ending with WEKA

and how it was edited to fit with our approach. This chapter also explains all the details

of POS and SAVAR and the attribute of N-gram.

Chapter six tackles the classification results, analysis of the eight hypotheses

that have been put forward and the discussions. The first part of this chapter will detail

the hierarchical system evolved from the idea of forming a table of the results. Within

this table, eight test datasets are experimented by applying six classifiers. After that,

6

the results of applying these classifiers to those variants will be explained in detail.

After that, these variants, and the reasons for using them will be discussed. The third

part of this chapter contains the main discussion of the approach and the main aspects

of the results. The results to those of an application previously custom-built by

researcher will be compared.

In chapter, seven presents the conclusions after applying these experiments. A

discussion any future work intended to be carried out, and the individual and separated

utility applications and classifiers into one web-based application will be integrated.

7

CHAPTER TWO: BACKGROUND AND LITERATURE

REVIEW

2.1 Background overview

This chapter discuss the most important terms and methods used in the research, with

the most important related concepts and aspects. Extremism terms will be defined and its

relationship to social media. I will also shed light on Arabic language processing and how this

language is characterized by strength, abundance of meanings and topics related to data

processing systems and machine learning. I will also write briefly about data systems and

mining including classification process. I will cover some of the famous and used models in

texts classification. Once you have finished reading the first and second chapters, you will

have a sufficient perception of the research. You will also have a slight idea of all basic terms

in this research; beginning with extremism and means used by people in this area. Also, will

talk about some of the approaches through which the Arabic texts were classified, which is the

basic idea of this research. It will talk about the most relevant of them and its results.

2.2 Definitions

2.2.1 Neutral text

A neutral text is a general text that tackles extreme issues neither positively nor

negatively, and thus conveys general meanings as it tackles a neutral life topic either

religious, political, sports, artistic, scientific. However, the text conveys a completely

neutral orientation. These neutral topics are often far from racism, hatred, or any other

topic related to any affiliations or group that calls from extremism and one man’s

ideology (Ogun, M. N. (2012).

Spoken and written speech was one of the most important means used to

express what is going on in man’s mind. Therefore, the importance of messages

addressed through texts is highlighted. Any text may preserve its content and

orientation. However, a neutral content is always a content that does not belong to any

political or religious extremism. (Hamzah,S, Mohamed (2012).

file:///D:/aamal%20private/Emad%20Rababah/proofreading%2017-1-2020/final.doc%23_bookmark1

8

However, an extreme text is one that belongs to a particular religious or

political policy, and implies an attempt to incite this trend. ‘Extremism’, as defined by

Sheikh Mohamed Habib, is being far from moderation regarding everything. An

extremist is a person who is far from the sound approach; moderating in everything

(Hamzah,S, Mohamed (2012).

- In his book ‘Countering terrorism & extremism, De-radicalization’, Major

Muhammad Hamza defined ‘extremism’ linguistically as being in the far

extreme away from the middle, like sitting or standing or walking at the edge..

He then tackles extremism in religion, politics, behaviors or ideologies. It

means also the end of anything and being extreme means excessiveness and

going beyond moderation.

Moreover, extremism is a normative term that depends on religious and

legal norms, traditions and standards of a society, and that is why such a

concept is debated among societies. For example, a flexible society may

consider some certain behaviors legitimate, while another fundamental one

does not.

 However, Social wise, extremism is to deviate from the ideals,

traditions and customs of the society, to either the right, or left, positively or

negatively.

Legal wise, it means violation or deviation from the social or legal

controls that govern the behavior of individuals within a society, and this

deviation vary as an act that society denounces, or a crime that falls under the

law.(Hamzah,S, Mohamed (2012).

2.2.2 Extremist

The term extremist and terrorism, which was widely used recently,

indicates a certain type of crime (it is that occurs sometimes through violence

or threatening, and perpetrators aim to compel the relevant authorities or bodies

to perform an act or refrain from another that serves a political or national or

personal interest, and thus jeopardize lives and wealth in case their demands

are not met). Consequently, the mere fact that a crime is a crime of violence,

even if this violence reaches its maximum, does not make it a terrorist crime as

9

per current definition, whatever the means used in such crime (Keene, S. D.

(2011))

Thus far, the global community reaches no consensus upon a specific

definition for ‘terrorism’ in spite of everyone agreeing to condemn and fight it.

This is due to a clear reason that the terrorist, in some views, is fighting for

freedom. Thus, a distinction must be made between national liberation

struggle, and terrorism. However, the difficulty in such distinction is due to

several reasons, including the following:

 The difficulty to reach an abstract definition of terrorism without

introducing external elements; represented by divergent opinions about

the legitimacy of the organizations and their activities.

 The difficulty in reaching international agreements or treaties in this

regard due to the different interests of states, and that each is attempting

to impose their point of view consistent with their principles, interests

and historical backgrounds. All of this makes the goals and content of

the agreements debatable.

 The conceptual confusion between political violence and terrorism,

thus distinguishing can be hardly made between them, and it goes

further to be mixed up with some forms of war or even ordinary crimes.

 Conceptual and terminological confusion between terrorism, as a

phenomenon that has a specific role in political conflict, and as a form

of political violence with many other forms of violence such as rebel

movements, strikes and coups(Hamzah,S, Mohamed (2012).

As for anti-extremism texts, they are any texts that are against terrorism in all

its forms, and defend peace and always condemn and abominate any violent, racism,

or racial or human discrimination.

The neutral text is a general text that does not include any extreme subjects in

its content positively or negatively. So, its general meaning will be related to a topic

of life, whether religious, political, sports, artistic or scientific. However, the subject's

orientation is completely neutral approach. Often neutral subjects are far removed from

10

racism, hatred, and any subjects in which they belong to any orientation or belong to

any group that calls for extremism or a unifying ideology (Ogun, M. N. (2012).

Spoken and written speech was one of the most important means used to

express what is going on in the minds of people. Hence, the importance of messages

addressed through texts where any text that you may be able to preserve its content

and orientation. Always neutral content is content that does not belong to any extreme

political or religious orientation (Bin Hassan, M. H., & Pereire, K. G. (2006).

Extreme text is the text that belongs to a particular religious or political policy,

and includes an attempt to incite this trend.

Extremism is as defined by Sheikh Mohamed Habib, the distance from

mediating in everything. An extreme human is a person who is far from the correct

and moderate approach in everything. Major Muhammad Hamzah also defined it in

his book Combating Terrorism and Extremism and the Method of Intellectual Review.

Extremism in the language means standing on the side, like extremism in standing,

sitting, or walking(Hamzah,S, Mohamed (2012).

Then he turned to morale, such as extremism in religion, thought or behavior.

Alternatively, it is the forelock and the end of everything, Extremism means reaching

the side and exceeding the level of moderation and not mediating. - Extremism is a

standard word that means violating the general or other line, which is defined by the

traditions, customs, and legal and religious norms prevailing in society, which makes

its concept subject of difference between societies, as the flexible environment may

see legitimacy in certain actions while the tough see the opposite. It means the distance

from the normal line of society, from a legal standpoint, it means departing or deviating

from the social or legal controls that govern the behavior of individuals in society, this

departing varies from an act that society denounces to an act, which constitutes a crime

under penalty of law (Keene, S. D. (2011)..

11

2.2.3 Terrorism

These are the crimes that are sometimes committed through violence or the

threat of it, its perpetrators aim to compel the authorities or bodies concerned to take

action or refrain from an action that realizes political, national or private interests, and

makes the lives of innocent people or their money at risk if their demands were not

met.(Bin Hassan, M. H., & Pereire, K. G. (2006).

Consequently, the mere fact that crime is a violent crime 9, and even if this

violence reaches, it does not involve it in the terrorist crime circle as it is meant by this

word currently, and by whatever means used in it.

Until now, the global community has missed the consensus on a specific

definition of terrorism, despite everyone agreeing to condemn and fight it, this is due

to a clear reason that the terrorist in the view of some, is a warrior for the freedom

from the point of view of others.

From here, we must distinguish between the fighters of the national liberation

issues and the terrorists. The difficulty in this matter is due to several reasons,

including the following:

It is difficult to reach an abstract definition of terrorism without introducing

external elements of it, represented by divergent opinions about the legitimacy of the

organizations and their activities. Difficulty in reaching international agreements or

treaties in this regard due to the different interests of states and the attempt of each

group of them to impose their point of view that is consistent with its principles,

interests and historical backgrounds makes the goals and content of the agreements a

disputed matter (Bin Hassan, M. H., & Pereire, K. G. (2006)

The confusion of political violence forms with terrorism, so that the separation

between it and some forms of political crime and organized crime has become blurred.

Rather, the matter goes beyond the confusion of the concept of terrorism with some

forms of war or even ordinary crimes.

12

The confusion of the concept and meaning of terrorism as a phenomenon that has a

specific role in political conflict, and a type of political violence with many other forms of

violence such as rebel movements, insurrection and coups(Bin Hassan, M. H., & Pereire,

K. G. (2006))

As against extremism, they are any texts that are against terrorism in all of its

forms, and they defend peace and always abhor any act of violence, racism, or human

or ethnic discrimination.(Bin Hassan, M. H., & Pereire, K. G. (2006)

2.3 Social Media and Extremism

In recent years, social media has afforded a dynamic form of communication

and interaction between people around the world. Instant exchange of information and

data among users has become easy. Making contacts and transferring ideas worldwide

is now commonplace through services such as Facebook, Twitter, and Tumblr. Other

varieties of media are also readily exchanged, e.g., via websites for transferring

pictures, like Flicker and Imager, and websites for displaying videos such as

Dailymotion, YouTube, and Vimeo. The popularity of social networking worldwide

has a detrimental effect in that these platforms can be exploited by terrorist

organizations as a vehicle to spread their doctrines and make available their training

tools through direct communication with supporters around the world, with little fear

of the censorship and supervision present in conventional regulated media (Agarwal

& Sureka, 2015).

There are many paradigms of extremists and extremist organizations utilizing

different social media and other Internet services. Jose Pimentel is an example of an

extremist who has made extensive use of the Internet. Pimentel was captured preparing

rudimentary bombs for attacks on police cars and postal offices in the United States.

Tracking Pimentel’s activities on the Internet showed that he was very active and was

in regular contact with like-minded people, via activities on his Blogger website and

YouTube channel. Anders Behring Breivik, from Norway, is another extremist who

was utilizing the web and obtained information on how to create a destructive fertilizer

bomb. He explicitly detailed his opposition to Islam and Socialism. Another example

13

of using the Internet to spread extremism ideology is Timur Abdul Wahab Al-Abdali,

who, in 2010, killed himself with a suicide bomb in Stockholm. He also had engaged

extensively on different social media websites like Facebook and YouTube

(Johansson, Kaati, & Sahlgren, 2017).

Extremists have recognized the advantages offered by the Internet and have

rapidly moved to social media chat to present their current thoughts, issues, and beliefs.

They have adopted the simple usage, fast, inexpensive, secure, un-policed, and

unmanaged platforms of the Internet. In consequence, they often succeeded in

developing communities with similar beliefs, to induce the collecting and diffusion of

information, inspiration to boost their income, and to defeat their opposition. Forums

on the Internet have also allowed extremists to display their radical thoughts and

extremist beliefs have been strengthened, instead of encouraging anti-extremist

sentiments. These online areas provided stimulation and support to users, and

extremist thoughts were reinforced, instead of meeting extreme opposition (Scrivens,

Davies, & Frank, 2018).

With the dramatic growth in the online world and widespread use of

information exchange, the manual procedures that had previously been used became

almost impossible as measures to look for extremists, or potential terrorists, or indeed,

users who publish radical views via the Internet and social media Web Pages. As a

response, some researchers have turned to Machine Learning as a solution to help in

quqiscrutinizing the vast quantities of data (Scrivens et al., 2017).

2.4 Arabic Language Processing and Machine Learning-Based Systems

Natural language processing (NLP) is an area of computer science that

researches in developing theories, methods, and applications that can be used to

understand, survey, and create the languages of the human beings to allow interaction

among the people and the machine via writing or talking in a human language. In other

words, NLP assists computers in accommodating the methods that people use in

natural communication between humans (Marie-Sainte, Alalyani, Alotaibi, Ghouzali,

& Abunadi, 2019).

14

After a sustained period of NLP on English and other natural languages, Arabic

Natural Language Processing (ANLP) has recently grown to become an area of

research interest, and numerous ANLP laboratories have been established. This

growing interest has led to the development of many different ANLP applications,

including word categorization, detection of spam and moral analysis (Marie-Sainte,

Alalyani, Alotaibi, Ghouzali, & Abunadi, 2019).

Facing these advances in ANLP tools, are the fundamental issues with Arabic

language, the set of letters of the Arabic language, and the role of diacritics that modify

the vowels (Boukhatem, 2014).

Lately, ANLP implementations have advanced by utilizing Machine Learning

(ML) algorithms. ML is a branch of artificial intelligence whose main target is to make

computers capable of understanding without requiring explicit, comprehensive

programming. ML has been successfully implemented in many application areas,

including NLP generally and ANLP in particular (Boukhatem, 2014).

With the context outlined above, the importance of the subject addressed in the

present research and its association with current events around the world, where many

nations and individuals suffer from the dangers of extremism and terrorism. Those

working on this issue, face significant challenges, especially about tracking the

activities of extremism and terrorism organizations through the Internet and social

websites. Also, how difficult it is when it publishes in Arabic in non-Arabic speaking

countries and the challenges to detect it.

Arabic is a language with a rich cultural history. Computational Linguistic

research applications of the Arabic language are more urgent today than they were a

decade ago. In the next section, a look at Arabic morphology will be taken, with

examples to illustrate how challenging and important this is when working with an

ANLP application. Through this point, the issue of ambiguity will be appreciated with

the massive quantity of terminology and terms of demystifying about Arabic

morphology frequently used in social media websites. This is not intended to be a

comprehensive account but may afford sufficient information that can be understand

the scale of the challenge with Arabic tutoring.

15

Computational linguistics is an area that ranges from linguistics to computer

science with the assistance of psychology and logic. It utilizes computers to help with

language problems. It is considered a branch of computer science as well as in

linguistics. However, cooperation must be between computer science and linguistics.

2.5 Arabic Morphology
Arabic is a morphologically powerful language; such morphological richness

poses a challenge to any attempt to tag parts-of-speech (POS) in Arabic. Because of

the morphological complexity, a single word in Arabic may be equivalent to a phrase

or an entire sentence in English, which leads to great difficulty in data analysis. Since

each word can be complicated, it will be divided into segments or morphemes, and

then, each morpheme will then take its individual POS tag (Kübler & Mohamed,

2012).

For example:

In Buckwalter transliteration, Eng (In addition, they will write it) is assigned the

following POS tag:

[CONJ (و(+

FUTURE PARTICLE)س(+

VERB PREFIX (ي) +

VERB (كتب) +

VERB SUFFIX MASCULINE PLURAL

Third PERSON (ون) +

OBJECT PRONOUN FEMININE SINGULAR (ها)]

As an example, the Arabic word (و سيكتبونها) If it divided into clips, it would be

like that (w + s + y - ktb - wn+ hA) which is meaning "and they will write it ". With

two proclitics, the first one is ("و" spell as "W" and it means "and"). The second one is

 and spell as "Y" that"ي") A prefix which is .("spell as "S" and it means "will "س")

16

refers to the third person).A suffix which is ("ون" spell as "wn" and refers to the

masculine plural), and a pronominal enclitic which is ("ها" spell as "ha" that refers to

it or her)[10] (W. Salloum & Habash, 2014).

This word تبونها()و سيك is equivalent to an entire sentence in English, consisting

of conjunction, then a future particle, followed by an inflectional prefix, and the verb

stem, then, an inflectional suffix, and finally, a pronominal object.

The separation- between segments are highlighted by + signs. As can be seen

from this example, three of the parts, namely, the conjunction, the future particle, and

the object pronoun, are independent as far as syntax goes, as the case with the stem ktb

(to write). However,they cannot exist on their own and must be part of the written form

of the word, So, orthographically speaking, i.e., they are clitics (Kübler & Mohamed,

2012).

When dealing with POS tagging in Arabic, if it is to be done automatically, one

has two choices: either one can assign specific tags to complete words, or one may

split the word into individual units, or segments, then assign POS tags to those

individual segments. Previous work (AlGahtani, Black, & McNaught, 2009; Diab,

Hacioglu, & Jurafsky, 2004; Kübler & Mohamed, 2012; Van den Bosch, Marsi, &

Soudi, 2007) have opted for the segmentation method. Such work focused on POS

segment tagging with the help of the Penn Arabic Treebank (ATB) (Maamouri & Bies,

2004)

Habash (2010) said, “Morphology is the study of internal word structure," a

point to consider with NLP tasks. This project will focus on functional morphology in

Arabic the function of a unit or segment within a word. Discussing functional

morphology, two primary operations will be came across: cliticization and inflectional

morphology. According to Anderson, the term, the clitic is the novel form of

generalization of the more traditional categories of enclitic and proclitic. It comes at

the start or end of a host or base word. Clitics include Determiner DET, and

Pronominal PRO, conjunctions CNJ, and questions QST as well as particle proclitic

PRT (see Table 2.1 examples in Arabic) (Anderson,2010). Attached to a base word,

clitics take the following position:

17

In Arabic, the pronominal enclitic could be joined to nouns as per possessives,

or verbs and prepositions functioning as objects. However, in the case of the

determiner, it can be attached to nouns only. Therefore, clitics cannot stand alone as

words. The following type is a conjunction, which can occupy any position in a word.

The first letter in the Arabic alphabet, and it comes at the beginning of the word,

functioning as an interrogative sign. Lastly, the future particle is joined to verbs only.

Question enclitics come at the beginning of the sentence and it, working as an

interrogative sign. The Arabic equivalent of letter A is the first letter in the Arabic

alphabet. Lastly, the future particle is joined to verbs only (Habash, 2010).Fig 2.1 show

example of cliticization:

Figure 2. 1: Example of cliticization (Habash, 2010)

18

Table 2. 1: Examples of proclitic and enclitic (Habash, 2010)

Moreover, there are negative particles in Arabic, amongst which are "ما" ma

and "لا" "la". There is also the vocative particle "يا" "yA," used when calling out to

someone, and finally, we have the interrogative particle "ما" "mA" which is the

equivalent of "what". Furthermore, some Arabic dialects have additional clitics.

The second operation by which functional morphology takes place is

inflection. The form of the word changes according to several aspects, among which

are voice, subject (which differs with gender and number), and finally, mood. This part

will focus on changes in the subject form concerning the person, gender and number

(Habash, 2010).

The verbal subject in Arabic has the following features:

a. The person doing the action may be either: 1st“متكلم” “mutakalim” (speaker),

2
nd

 .γAŶb"(absent)" "غائب"mukhATab" (addressee) and 3rd" "مخاطب ا

b. Gender differs: it is either masculine "مذكر" "muðkar" or feminine

 .”mŴnath“"مؤنث"

c. A number of the person may be singular " مفرد "mufrad", dual "مثنى" "muthný" or

plural "جمع"”"jama".

19

According to Habash (2010), “verbal subject is indicated through affixations,

whose form is constrained at the verbal aspect". That is to say, the form of the verb

changes by adding suffixes in the perfective aspect “ماضي” “mADy”, and circumfixes

for imperfective مضارع” “muDAriς” and imperative “ أمر Amr”.

Many language researchers have categorized English texts and much more

such as French, Spanish, Japanese, and Chinese. Nevertheless, on the other side, it can

be found that the researchers classifying texts for the Arabic language is somewhat

limited.

The issue at the classification of a text that consists of many different sub

problems that have been deliberated extensively through a lot of studies. Also, many

different techniques were used for the classification of text like; Neural Networks

(NN), Support Vector Machines (SVMs), Naïve Bayes (NB), K Nearest Neighbor

(KNN), Decision Trees (DT), N-Grams, Association Rules and Maximum Entropy

(ME) (Ayadi, Maraoui, & Zrigui, 2016).

After an extremist has been identified within social media and the concepts of

Arabic language processing has been displayed. The tools will be displayed that the

machine would use on these outputs using Data Mining to detect the extremists using

Machine learning science and the Artificial Intelligence algorithms.

2.6 Data Mining

Data Mining is the operation of arranging vast amounts of data to determine

patterns and build problem-solving relationships via analysis of the given data. Data

Mining creates association rules by studying the data for repetitive patterns. After that,

by utilizing support and confidence standards, almost all central relationships through

the data are determined. Support indicates how often items be present in the database,

and confidence indicates how often the data is precise (Rouse, 2019).

Data mining consists of different criteria like path analysis, classification,

aggregation, and prediction. Path analysis or so-called sorting criteria find patterns in

which behaviors are interdependent. A sequence is a list of items grouped into groups

in a specific order. The classification is the operation of searching for new patterns and

20

can rearrange the data. The classification algorithm uses the factors in the database to

extract variables figure 2.2 (Rouse, 2019).clustering parameter detects a set of

previously unknown facts, they visually record them. Clustering gathers a collection

of objects and groups them depending on their resemblance (Rouse, 2019).

Figure 2. 2: Stages of data mining (Rouse, 2019)

2.7 Machine learning

Via machine learning, machines acquire knowledge of obtained data in a very

professional way. When data is accessible and displayed, mainly with the availability

of modern devices features that help to speed up the flow of information quickly,

machine learning will be required. This flow illustrated in Fig 2.3.

Machine Learning (ML) is a class of algorithms that assists the programs in

improving their performance to produce precise results without being programmed in

advance. The prerequisite for ML is to create algorithms, which can utilize the received

data by analyzing the data statistically to be able to produce renewable outcomes

according to the novel inserted data (Burnes & Rouse, 2018).

ML algorithms are divided into two classes, which are supervised

and unsupervised. The supervised algorithms perform by using input data analyzer

through ML capabilities to achieve the desired results. Also, it gives feedback on the

accuracy of the expected results at the stage of learning the algorithm. Data researchers

identify variables or characteristics that need to be analyzed and used to improve

forecasts. When the training phase ends, the algorithm implements the training on the

new data (Burnes & Rouse, 2018).

21

Figure 2. 3: Workflow of supervised machine learning algorithm (Dey, 2016)

The unsupervised algorithms Fig 2.4 should not be trained in the data of the

desired results. Instead, they use a repetitive method called “deep learning” to analyze

data and draw conclusions. Unsupervised learning algorithms are also known to neural

networks, which are used to perform more complex processing than supervised

learning systems like image identification, text-to-speech, and natural language

creation.

Neural networks work by filtering enormous training data models, often

finding small connections between multiple variables. After training, the algorithms

can use their distribution bank to illustrate new data. These types of algorithms became

available and possible in the era of big data because they needed a massive amount of

training data(Burnes & Rouse, 2018).

Figure 2. 4: Unsupervised Learning(Burnes & Rouse, 2018)

22

2.8 Classifier Modelling

In this thesis, a tackling process of the subjects of data mining and Natural

Language Processing (NLP) will be performed. This will require the use of WEKA, a

graphical user interface. WEKA is, in fact, a machine-learning environment, capable

of applying classification algorithms for NLP and data mining tasks. The input data to

WEKA should take the form of an ARFF file, the formats suitable for WEKA

(Mavengere, 2013).

WEKA gives different types of classification algorithms, each with its own

four kinds of experiments, namely, Percentage Split, Cross-Validation, as well as Use

Training Set, in addition to Supplied Test Set. The first experiment performs the

function of splitting input information into categories for training and testing data.

 The algorithms employed here are J48 decision tree algorithm, together with

Naïve Bayes Simple algorithm, KNN, SVM, Random Forest and classification by

Regression. Text classification algorithms are carried out with a supervised learning

approach. This is done to train the classifier, which means algorithms deduce and learn

classification patterns from reading labeled data.

 Decision tree algorithm (J48)

J48 is a decision tree for classification. Each node in the said tree depicts an

attribute of the input data. A tree is built to act as a model for the classification process.

Each tuple of the input data is included within the construction of the tree , and the

result is the classification of that tuple (Dunham, 2006). Let us not forget that the input

data is actually the outcome of our experiments.

The Univariate Decision Tree approach is implemented in this project, using

the J48 algorithm. The Multivariate approach is presented as the Linear Machine

method; both require using the Absolute Error Correction, as well as the Thermal

Perceptron Rules. Decision Tree is a well-functioning technique for supervised

classification, mainly when the results are examined manually. Multivariate Decision

23

Tree employs the idea of attributes correlation and yields the best performance for

conditional tests, by comparison to Univariate approach (Kaur & Chhabra, 2014).

 Naïve Bayes classifier

The naïve Bayes algorithm can be described as a probabilistic classifier; it is

rather simple, hence the term naïve and it gives several of probabilities by keeping

count of the frequency as well as the combinations of values in a given body of data.

The algorithm employs Bayes theorem and works under the assumption that every

attribute of a given object is considered independent of the value of any other

characteristic of the said object. This independence assumption has its shortcomings,

since, in the real world, attributes are not always independent. Nonetheless, the

algorithm tends to function well and learn quickly in supervised classification

problems (Patil & Sherekar, 2013).

In other words, it is a classification method based on Bayes’

Theorem, operating on the principle of independence among features to be

classified. A Naive Bayes classifier assumes that any feature of an object is unrelated

in value to any other feature (Schutt & O'Neil, 2013).

Therefore, it can be said that although naïve Bayes is rather simple, it is suitable

for sizable amounts of data. In comparison to other algorithms, it has a much higher

success rate (Schutt & O'Neil, 2013).

 K-Nearest Neighbors (KNN)

Another classification algorithm is referred to as IBk or Instance-Bases

learning with parameter (K). It can be also referred to this algorithm as Knn and; it

works on the assumption that all features are of the same importance. In case the

dataset is noisy, then by chance, it may be found a wrongly classified training instance

to be the closest one to the test instance (Kirchner, 2010).

So, if one has two values of K where k=1 and k=3, then the value of k, would be

considered the set of neighbors to query to come up with a prediction.

24

 Support Vector Machines (SVM)

Support vector machines are built on the Structural Risk Minimization concept

from computational learning theory. The idea behind the structural risk minimizations

are to come up with a hypothesis h for which one can ensure the least confirmed error.

The true or confirmed error of H is actually the probability that h may cause an error

on a test example that must be unseen before and, at the same time, randomly selected.

A higher threshold can be used to link the true error of Hand the error of the

same hypothesis h on the test set. And the complexity of H (calculated by VC-

Dimension), as well as the hypothesis space, including H. Support vector machines

found that the hypothesis H (approximately) reduces this threshold as far as the true

error is concerned by efficiently taking control of the VC-Dimension of H.

SVMs are universal learners. SVMs can learn a linear threshold function.

However, by a simple “plug-in” of a suitable kernel function, they can be employed to

acquire knowledge of polynomial classier. They can also be used in the domain of

basic radial function (REF) networks, as well as three-layer sigmoid neural nets.

One unique property of SVMS is that they can learn in ways that are being

independent of the dimensions of the feature space. SVMs examine how complex

hypotheses are based on the margin used to split the data, not the specific number of

attributes or features. Thus, one can generalize, even in the presence of an abundance

of features, as long as the data can be categorized with a wide margin, using functions

from the hypothesis's environment.

The same margin concept brings to mind a heuristic approach for choosing

reliable parameter settings for any new learner (like the kernel width in an RBF

network). The most efficient parameter setting is the one that generates the hypothesis

with the least VC—Dimension. This permits fully automated parameter tuning without

the costly cross-validation (Joachims, 1998).

25

 Classification by regression

Regression: it is to find out the value for any given input by using a minimal

approximation method. The result is to come up with a mathematical rendering for a

data sample.

One may also define it as the process of examining the relationship

(Interpolation) and the impact of this relationship on future values outcomes

(Multidimensional). Regression helps to identify how a variable behaves when other

variables are altered in the process. That is why Regression analysis is of use in the

domain of prediction and forecasting applications.

To be brief, when items areas signed to different categories, one may use

classification algorithms; however, when it comes to predicting future values, then

regression algorithms are the way to go (Ceci, Hollmén, Todorovski, Vens, &

Džeroski, 2017).

 Multivariate Adaptive Regression Splines (MARS)

For several classifications, one uses several or multi regression. Machine

learning performs linear regression; therefore, the output was set to 1for the instances

that are linked to the class and 0 for others that do not belong. Then, the class was

chosen to have the highest output. This technique extends linear regression to a process

of classification by regression.

Classification: is to identify the class or category in which a given output fits.

What we have tried to do is to use a regression technique to classify a given set of data.

In cases where the class values are depicted as {0,1}, the process of

classification depends on a selected threshold value, and consequently, all readings

that come below are predicted as (0). Any text above this threshold value is predicted

as (1).

Two class problem:

1. Training: the classes are called 0 and 1.

2. Prediction: a threshold was set for predicting class 0 or 1.

26

a. Multiclass problem: “multi‐response linear regression”:

1. Training: perform regression for each class, where the output was set to 1 for

training instances belonging to the class and set 0 for cases that do not belong.

2. Prediction: select the class with the highest output or use “pairwise linear

regression," which carries out a regression for every pair of classes (Hall et al,

2009)

3. Try to add a new attribute (classification) wherein to store the regression result.

Figure 2. 5: Linear Regression process (Hall et al., 2009)

First, we must make sure that the class attribute is converted to binary 0,1. After

that, we apply Linear Regression. Following the process of Linear Regression, the

prediction values are now to be stored in the new attribute classification. Then, the

type of class is turned back to nominal.

The algorithm is going to use the two values response from regression process

classification , and the binary class attribute {0, 1} is used by One R to optimize the

split point for the two classes (Hall et al., 2009).

27

 One R Algorithm

Another classification algorithm is One R, which is short for "One Rule"; it is

a simple but precise classification algorithm that produces one rule for each predictor,

and then chooses the rule with the least total error as its "one rule". To generate a rule

for a predictor, one builds a frequency table for each predictor against the target. it

found that One R produces rules that are not much less accurate than top-notch

classification algorithms, while still being easy enough for humans to interpret (Soman

& Bobbie, 2005).

How does it work?

 For every value of the predictor, this research follow this following rule (Sayad,

2017):

a. Firstly, examine how often each value of a target (class) comes up and

make a count of it, then identify the most frequent class.

b. Then, make the rule to assign that particular class to this value of the

predictor.

c. Next, calculate the total error of the rules of each predictor.

d. Then, select the predictor with the least total error.

This is the method of applying a regression technique for classification. This

algorithm helps to enhance the performance in the case of binary classification;

however, in the case of multi-dimensional classification, one must opt for a multi-

response linear regression.

Multiple linear regressions (MLR): is defined as a method used to model the

linear relationship between a dependent variable (target) and one or more independent

variables (predictors).

28

Figure 2. 6: multiple linear regressions (Sayad, 2017)

MLR Figure 2.6 is built according to the principle of ordinary least squares

(OLS); the model is made by minimizing the sum of squares of differences of two

values, namely, the observed and predicted ones. Minimize ∑ (y – y`)2.

The MLR model rests on several assumptions, among which, for example, that

errors are distributed with zero mean as well as constant variance. As long as the

assumptions are fulfilled, the regression estimators are deemed optimal. That is to say,

they are unbiased and efficient, as well as consistent. Unbiased implies that the

expected value of the estimator is equivalent to the actual value of the parameter.

Suitable means that the estimator has considerably less variance than other estimators

do. As for consistency, it implies that the bias and variance about the estimator

approaches zero, whereas the sample size approaches infinity (Sayad, 2017).

 Random Forest

The combination of various learning models enhances the level of accuracy

about classification, a process referred to as Bagging. Bagging is used as an averaging

approach to noise, functioning with on-triggered models to make a model with low

changeable values. This concept explains the idea of the Random Forest algorithm as

a big group of de-correlated decision trees, utilized to make recognition patterns.

The term Forest was used here about many decision trees, which serve as tools

to make the classification. Such is the utilization of the Bagging technique, in simple

terms. Many different decision trees are made by randomly selecting various items.

The next point explains how Random Forest is built. Let us have a look at the

data set to be classified below, as shown in Figure 2.8.

29

Figure 2. 7: Sample of data to be classified (Kaur & Chhabra, 2014)

Where:

αa1, αb1, αc1, ……, αcN are attribute values.

C1, C2, C3 …............ CN are class values.

1, 2, 3. ………...……... N are the sample file number.

Random Forest algorithm randomly selects a number of data files to create

random subsets, as shown in figure 2.8.

Figure 2. 8: random selection of data files (Kaur & Chhabra, 2014).

30

Every subset of datasets, created at random is in fact used to build a different

decision tree. The group of decision trees makes up the Random Forest as shown in

Figure 2.9.

Figure 2. 9: decision tree created (Kaur & Chhabra, 2014)

Decision tree created for every randomly selected subset of data. The Random

Forest concept relies on two main beliefs:

a. Most of the decision trees yield correct predictions.

b. The decision trees make errors at different points.

The algorithm makes use of all the decision trees to come up with a ranking

approach for all classifiers. This ranking is carried out by applying every decision tree

to predict the test file. Figure 2.10 demonstrates an example of ranking classifiers.

31

Figure 2. 10: Classifier ranking process (Kaur & Chhabra, 2014)

One can sum up the Classification process as its algorithm goal to sort and

group records into classes. To put it differently, it is actually predicting.

2.9 Cross Validation

The results of the classifier are summed up in 3 parameters, derived from the

confusion matrix, and they are:

a. Precision

b. Recall

c. F-measure

The definition of a Confusion matrix is the result of performing classification.

The confusion matrix depicts the 4 probabilities:

a- The Class is True:

i. Prediction is Positive (TP)

ii. Prediction is Negative (TN)

b- The result is False:

i. Prediction is Positive (FP)

ii. Prediction is Negative (FN)

32

 Prediction

Positive Negative

Class True TP TN

False FP FN

Table 2. 2: Cross validation

Table 2.2 is confusion matrix 2x2, showing how the four results from the

classification process are derived from it.

i. Accuracy: may be defined as the correct prediction divided by the total

predictions.

ii. Precision: one can calculate precision through this ratio and it shows how many

events of the positive class were in fact positive.

iii. Recall: this ratio calculates the positive events that have been predicted

correctly as positive:

iv. F-measure: known as F1, expressed as the weighted average of the precision

and recall.

2.10 SAFAR Framework

SAFAR is a platform dedicated to Arabic natural language processing (ANLP).

It is an open source platform, and it follows the basic systems and modules, to provide

an integrated development environment (IDE), which includes the resources needed

33

for different ANLP treatments, basic levels of the language, especially Arabic (such

as formation, grammar and semantics), and ANLP applications as well.

Figure 2. 11: SAFAR architecture (SAFAR, 2013)

As shown in Figure 2.11 the construction of the Safar tool consists of several

layers each layer developed as a set of interfaces using Java reusable application

programming, and included tools, which consist of a set of technical services

(statistical functions, division of sentences, test tools , Etc.), and also contained

resource services, which provide linguistic advice to resources such as dictionaries.

And NLP services, which contain several layers which are morphology, semantics,

and syntax. As for the applications, they contain high-level applications and finally the

blind, which are used in the direct use of the services layer (SAFAR, 2013).

2.11 Posit Framework

According to Weir (2007), the Posit Textual Analysis Toolset generates 27

features from any input text, including frequency data, in addition to Part-of-Speech

(POS) tagging. Posit contains these profilers:

34

POS Profiler: Performs analysis of a given text corpus to derive statistics on

the POS characteristics of that Text, among which are types/tokens, number of

sentences, average sentence, word length, common nouns, and proper nouns, verb

tenses and total frequency of each POS token or type.

Vocabulary Profiler: Based upon the statistical data output by the POS

Profiler, the Vocabulary Profiler can determine the relative frequency of occurrence

for vocabulary items in the selected corpus. These frequency data may be compared to

a reference set of frequency data (derived from the British National Corpus) to pinpoint

unusual word occurrences or individual terms, the use of which is likely to prove

unfamiliar to English readers. The module is also able to determine n-gram

frequencies, which can compare word and n-gram frequencies of a text to a reference

frequency list.

Readability Profiler: This software component, (under development) will

focus on text readability, based upon the statistical analyses from the POS Profiler and

the frequency data from the vocabulary profiler. Word commonality (Weir & Ritchie,

2006) and average collocation frequency (Weir & Anagnostou, 2007).

1. Posit text profiling tools as applied on English text

i. The main Posit analysis gives a detailed analysis of data on three levels:

a. Summary analysis,

b. Aggregated analysis, and

c. Individual post-level analysis.

ii. Posit actions are invoked at the command line, using one or more of the

following operations:

a. pos_all.sh – invokes the main Posit analysis and generates most

statistics on target text;

b. ngram.sh – invokes a n-gram frequency analysis (for n=1 to 4) on target

text;

c. pos_ngram.sh - invokes a part-of-speech n-gram frequency analysis

(for n=1 to 4) on target text;

35

d. Results – a comprehensive set of analysis results is output to a ‘results’

folder for any target text.

The Posit software is designed to operate under Unix. Posit is designed to

generate quantitative analyses of text. To this end, three levels of detail are output for

any analyzed text sample. These are (i) summary, (ii) aggregated and (iii) pos-level.

The summary level gives an overview of detail. This includes the total number of word

types and tokens, type-token ratio, number of sentences, average sentence length,

number of characters and average word length. Counts of ten separate parts-of-speech

are listed for tokens and types. The summary file contains 27 features which used by

the classifier later in our approach (see Appendix A) to see an example summary

output for the text file after posit processing.

At the aggregate level of detail, Posit provides counts of ten aggregated parts-

of-speech. These are listed by specific part-of-speech. Finally, at the part-of-speech

level of detail, Posit lists the frequency of individual word occurrence within its part-

of-speech, for every word in the original text.

Posit is a Unix command-line system that comprises a series of individual

programs. These include the main analysis facility (pos_all.sh), an n-gram analysis

program (ngram.sh) and a part-of-speech n-gram analysis program (pos_ngram.sh).

2.12 Literature Review

Once you have finished reading the first and second chapters, you will have a

sufficient perception of the research. You will also have a slight idea of all basic terms

in this research; beginning with extremism and means used by people in this area. This

Chapter will talk about some of the approaches through which the Arabic texts were

classified, which is the basic idea of this research. It will talk about the most relevant

of them and its results.

36

2.12.1 Sentiment Analysis of Arabic Text (Opinion Mining)

Aldayel and Azmi (2016) carried out a study on sentiment analysis that

connected various domains of study such as NLP, computational linguistics, and text

mining (Aldayel & Azmi, 2016). It concerns the extraction of the given information

from textual data. It may be called sentiment analysis or opinion mining (Pang & Lee,

2008) they used the Twitter API to collect Twitter data from a specific domain in a

specific language. Preprocessing was done by the removal of irrelevant information,

tweet cleaning and other preprocessing techniques. The classification technique is

based on a Lexicon-based classifier. To extract features used in the classification

process, they used the term frequency inverse document frequency (TF-IDF)

weighting scheme on the n-grams (1-2-3 gram) and selected the features that have

frequencies greater than a certain threshold.

They used two measures to evaluate the classification process:

- The error rate (percentage of misclassification twists).

- Accuracy Rate (percentage of correctly classified twists).

The Twitter API for Arabic data collection was used. The data was then passed

through data cleaning and attribute extraction using 1-2-gram statistical processing.

This is to prepare the data to obtain the feature vector for the main purpose of research,

i.e., classification. The machine learning classifiers used are Naive Bayes (NB), and

Support Vector Machines (SVM). They apply both classifiers twice. First, they apply

both classifiers on features extracted based on unigrams. Then, use the features

extracted based on bigram statistics (Amira Shoukry; Ahmed Rafea, 2012).

37

Figure 2. 12: Twitter classification block diagram (Amira Shoukry; Ahmed Rafea, 2012)

The SVM classifier was employed as the research classifier and the data

collection used the Twitter API. Data cleaning and normalizing, with stemming, and

stop words removed was applied to make data suitable for feature extraction. The data

sets were organized using 1- Unigrams, 2- Bigrams + Unigrams and 3- Unigrams +

Bigrams + Trigrams (Shoukry A and Rafea A., 2012).

The SVM classifier was applied before after applying each stage of the

preprocessing to test its effect on the system’s performance. Sentiment analysis studies

vary in pre-treatment techniques, analysis methods, and review design. Some have

used the supervised method, others the unsupervised learning method. A multi-level

technique based on semantic orientation (lexical classifier to handling unnamed

tweets) and ML (SVM classifier) was suggested by Aldayel and Azmi (2016) to

identify the polarity of Arabic tweets. The biggest challenge of this mixed approach,

however, is to deal with the application of Twitter in dialectical Arabic.

Moraes, Valiati and Neto (2013) compared the execution of SVM (support

vector machines) and NN (neural networks) at document-level sentimental Arabic

analysis. They have found that NN execution is better than SVM on the same records

(Moraes, Valiati, & Neto, 2013).

Li and Li (2013) have gauged the objectivity and the truthfulness by utilizing

SVM as a method (Li & Li, 2013). Cherif, Madani and Kissi (2015) worked on the

execution of three famous techniques (bagging, boosting and random subspace). This

38

was instituted on five algorithms, which are (Naive Bayes, Maximum Entropy,

Decision Tree, K Nearest Neighbor, and Support Vector Machines) for sentiment

categorization. The results showed that the random subspace was more accurate

(Cherif, Madani, & Kissi, 2015). Table 2.3 contains some of these studies.

Study Problem Methodology Results

(Aldayel

& Azmi,

2016)

Recognizing the polarity of Arabic

tweets and the practice of tweeting in

dialectical Arabic

Hybrid classifier, Lexical-

based classifier, Feature

extraction, and Support

Vector Machines classifier

The general quality of

the obtained results in

this study from hybrid

classifier quantified by

F-measure is 84%, and

accuracy is 84.01%

(Cherif

et al.,

2015)

Evaluating the influence of Arabic

grammatical richness on opinion

mining accuracy, building a new

accurate statistical approach that

supports the Arabic language syntactic

and grammatical complexity, and

analyzing Arabic reviews and

comments more accurately

Sentiment classification,

Support Vector Machines,

a dataset composed of 625

Arabic reviews and

opinions of the public

obtained from the official

website of Trip Advisor

Results obtained were

rooted in Support

Vector Machines

depicted that this

method dramatically

affects the identification

of opinions.

(Duwairi

&

Qarqaz,

2014)

The effects of stemming feature

correlation and n-gram models for

Arabic text on sentiment analysis

Support Vector Machines,

Naive Bayes, and K-

nearest neighbor classifiers

The results of the

experiments suggested

that choosing the

method of

preprocessing on the

reviews will enhance

the performance of the

classifiers

Table 2. 3: Research studies conducted on Arabic text mining in terms of sentiment analysis

2.12.2 Classification and Comparing Algorithms on Arabic Text

El Kourdi Bensaid and Rachidi (2004) categorized Arabic documents on the

internet automatically by using an NB classifier with ML algorithms to classify

soundless Arabic documents to one of five pre-determined classes. The results of the

experiments confirmed the effectiveness of the NB classifier. El Koudri utilized groups

of 1500 documents under five categories each with 300 text documents. Through 2000

expressions and roots, the precision of the classification varies in-between categories

with an average precision overall for the classifiers of 68.78 %. Moreover, the highest

performance of categories in these experiments reached 92.8% (El Kourdi, Bensaid,

& Rachidi, 2004).

39

KNN algorithm (K-Nearest Neighbor) is one of the best classifiers for

categorizing text documents in English with the SVMs algorithm. This was used by

Al-Shalabi Kanaan and Gharaibeh (2006) on Arabic language for texts classification.

They utilized the DF (Document Frequency) technique to extract the main words and

minimize dimensions. The results proved that the KNN is suitable to categorize Arabic

documents (Al-Shalabi, Kanaan, & Gharaibeh, 2006).

Maximum Entropy (ME) was applied by El-Halees (2015) and Sawaf, Zaplo

and Ney (2001) to categorize Arabic news articles. El-Halees pre-processes data,

utilizing natural language processing methods such as tokenizing, stemming, and part

of speech then uses the maximum entropy method to categorize Arabic documents.

The best-reported accuracy was 80.41% and 62.7% when using statistical methods by

Sawaf without morphological analysis (El-Halees, 2015; Sawaf, Zaplo, & Ney, 2001).

Al-Zoghby, Eldin, Ismail and Hamza (2007) proposed a novel system that was

developed to determine association rules using similarity measurements based on the

derivation of the Arabic language. It also offered the advantage of using the "Frequent

Closed Item sets" (FCI) concept when extracting the association rules instead of

"Frequent Item sets" (FI) (Al-Zoghby, Eldin, Ismail, & Hamza, 2007).

2.13 Summary

In this chapter, many concepts and related terms were presented, which give

the reader a complete understanding of the most ambiguous terms in this research. It

also talked about Arabic language – the main topic of the research – and highlighted

many of the most important strengths and difficulties in it. It talked about the automatic

classification of texts and the most famous models used in this regard. The next chapter

will talk about (literature review) related to some of the curricula that have addressed

Arabic language texts processing, how it classified these texts and the approach used

by these studies and the results obtained by the researchers. So in our Background and

Literature Review chapters, the following topics have been reviewed:

 The difficulty in differentiating the use of each word, sentence and idea of the

author in the Arabic language.

40

 The optimum algorithms for text mining in the Arabic language to automate the

process of extremist website recognition.

 The different classification algorithms used in text mining that have different

treatment approaches.

 The confusion matrix and how it helps to build classification process measures

and metrics.

 The decision tree and how to create a forest of decision trees that have randomly

selected know to form Random Forest.

 The quantitative Analysis, for text mining to obtain deferent unbiased, objective

datasets to use with classification algorithms to differentiate pro-terrorism sites.

Many studies have been discussed in this research; all of them are interested in

the classification of Arabic texts. The next chapter of this study will be about

the methodology used in this research.

41

CHAPTER THREE: METHODOLOGY

3.1 Overview

This chapter introduces the methodology proposed in this thesis, containing,

research design, methods, tools, data preparation, compiling and building of the Arabic

corpus, and covering the classification methodology. This chapter details the workflow

process of our research. The proposed system was accomplished through several

different stages. The first of these stages was data collection; the data were preliminary

data, due to the lack of previous studies with the same type of current study.

At the start of the process for addressing the objectives of this research, data

were collected from various sources and classified manually, with the aid of

specialists. Insight on this manual classification and the specialists’ role is provided in

the data collection section. The second stage was creating the Arabic Corpus and data

processing of its content through the Posit and SAFAR frameworks. The third stage

was training the system classifier (WEKA API) on a set of text files pre-classified

manually by specialists in the data collection stage. The last stage was to confirm the

validation of the system by testing it against a separate test dataset. Figure 3.1 shows

the four methodological steps in this process.

Figure 3. 1: Proposed methodological design

42

3.2 Methodological Approach

In every research, the methodological approach explains the nature of data

being used by the researcher. The most commonly used methodological approaches

are categorized as a qualitative, quantitative or mixed approach. The qualitative

methodological approach shows that the nature of the information collected for the

study is fact-based or non-numeric. However, the quantitative methodological

approach ensures that the data collected for the research is comprised of numbers and

quantities, which can be statistically tested or calculated for gathering research

findings (Kumar, 2019). In contrast, qualitative data is non-numeric; therefore, it is

interpreted for obtaining research results. Thirdly, the mixed methodological approach

refers to the usage of both qualitative as well as quantitative data for data analysis

(Ledford & Gast, 2018). As far as the present research is concerned, we have selected

a quantitative method that we considered suitable for numerical data analysis. The use

of this approach seems to be justified because it features selection, categorizing,

identifying classes and measuring. According to Fletcher (2017), using quantitative

data in research can facilitate in generating authentic and most relevant research

findings because it helps in statistically testing and estimating the most accurate

results.

In this research, the selected methodological approach is suitable for

categorizing different Arabic-speaking website pages with unscrupulous intentions

and questionable language. The use of this approach is also considered to be effective

because it can help in representing data and findings in the form of numbers and graphs

which are easy to explain and interpret. For this research, we have selected this

approach according to the need for analyzing text data, extracting parts-of-speech

features - as an example, verb or noun counts in certain text - so that we can test or

validate the experiments directed toward our classification objective.

Considering these facts, it can be assumed that the selected methodological

approach is the most appropriate method for the current research. This methodological

approach can be further justified based on the work completed by Wiek & Lang (2016)

43

who argued that the quantitative methodological approach could turn out to be

effective for research because it focuses on objective measurement as well as

statistical, numerical and mathematical analysis. The selection of this approach will

ultimately allow us to present the statistical basis for our conclusions, along with

graphical illustrations.

3.3 Data collection

Data collection and data preprocessing play a major role in research. Data is

viewed as an important source of information and knowledge. It can form the basis of

the research results and findings. The term data collection is used to define the process

being used or followed by the researcher for aggregating and assembling desired

information. This information can be used for generating research outcomes

(Hofmann, 2013). In like manner, the term data pre-processing is used to describe a

cleaning process which is considered an important step. In simple words, data

preprocessing is a data refining technique that seeks to eliminate noise and obvious

aberrations from the raw data.

3.3.1 Gathering data

 The proposed system depends on the analysis of an Arabic dataset but a

specific one; it must contain text data for encouraging extremism, anti-extremism and

neutral data, in Arabic language. Since such an existing resource proved elusive, we

had to develop our own means of gathering such a dataset (using tools like sketch

engine). To this end, we used a ‘seed list’ of Arabic words and sentences in an input

list box and the sketch engine will fetch around one million words per search. The data

range was the most likely used words for extremism websites, tweets and any social

media website, e.g., the Arabic equivalent of “ kill the disbeliever and you enter

heaven“.

Through this process, we collected more than 7000 Arabic text files and

processed them to form the downloaded corpus of individual files, in which everyone

represents pro-extreme text, with associated id and URL. The same approach was

followed for Anti-extremism and neutral data.

44

3.3.2 Verification

In order to verify our grouped collection, five people specializing in different

jobs, checked the corpus files, and managed to manually categorize the text files into

three categories (Pro, Anti and Neutral). This manual stage in the process took six

months to complete.

To validate our original categories, we compared the results of the five

specialists, and if at least four of them agreed to classify a specific file, this was

included under the agreed category. In this way, we extracted about 5000 files that

were manually reviewed for the three categories mentioned above, in order to build

our own corpus specifically for the present research.

The process of collecting the content from different sites proved to be more

difficult than we had expected. The first challenge was the lack of sites containing

words belonging to one of the three categories (anti-neutral-pro). In other words, we

did not find sites containing a simple set of words that carried a clear unified content.

Almost all sites contain a mixture of different words, which are language combinations

used to convey the concept that the writer seeks to communicate to the reader. We

found that sites belonging to terrorist organizations use extremist words, and at the

same time, words against terrorism to deceive sympathizers and to attract new

members and followers. Most of the extreme sites use words to deceive the reader,

giving the impression that they defend the truth and stand as a wall to protect society

from the forces of darkness. These words that extremists use belong to the other party

to inspire the recipient to adopt their corrupt thoughts.

On the other hand, writers who oppose extremist ideologies and terrorist groups

have to use the rhetoric of extremism to inform the recipient of the extent to which

extremist groups have been brainwashed and misled by those who do not know who

they are. Even the neutral sites did not avoid terms that can be used by the advocates

of extremism in their suspicious calls, as well as other terms used to combat extremist

thought. All of the above shows the challenge faced when collecting files from

different sites and the difficulty encountered in classifying these files manually.

Moreover, it wasn't straightforward to reclassify a file from one category to another,

45

especially in light of the development of the algorithm used for the process of

classification.

The second challenge was the rarity of sites that can openly be classified as

inciting terrorism or calling for extreme ideas, because of governmental efforts to stop

such sites, delete extremist content, and arrest the offenders. Also, it is improbable that

these sites would declare themselves as extremist sites. In addition to that, most

newspapers with extreme ideas that incite terrorism have been taken out of circulation

or put out of business. Many suspicious accounts have been removed from social

network sites, and writers who espouse these ideas have been banned from publishing

their hate-spewing articles. This led to the scarcity of publications that openly incite

terrorism in Arabic, and the difficulty of establishing a base for starting the research,

and the need to increase our efforts to provide the necessary material to feed our

classification process.

As a measure to reduce the problems we encountered when choosing search

keywords to distinguish between different sites, we used a word sequence (N-Gram)

instead of individual keywords. The result from data collection using this strategy is a

large text file containing tens of thousands of words separated by HTML tags that

contain the site URL.

3.4 Research design

The research design is explained as the methodological purpose behind

carrying out research. The researcher must select a suitable research design because

it can facilitate an effective data collection and analysis strategy. The most commonly

used research designs are descriptive, exploratory or explanatory. The design of an

investigation is selected based on several underlying factors including the research

problem/question. In research, the descriptive design is used to simply describe a

research problem without statistically testing any variable or relationship. On the other

hand, the explanatory design of the research is used in cases when the researcher is

testing a relationship between predefined variables. However, the exploratory design

of the study is presumed to be experiment-based because it can help in generating new

knowledge and information regarding unidentified variables (Nahar et al., 2019). The

46

research described in this thesis has opted for experimentations. The use of this design

is suitable because it helps in generating authentic and relevant research data. The

collection of authentic research information can affect the overall credibility and

authenticity of obtained research results and findings. This can lead us to the

quantitative approaches.

Quantitative research is the systematic experimental research of phenomena

that are recorded and monitored through statistical, mathematical or mathematical

techniques. Quantitative research is used to develop theories of phenomena and the

mathematical relationships they represent. The measurement process is an important

aspect of quantitative research to find the link between empirical observation and the

mathematical relationship of the study (Given, 2008).

This quantitative research is used in the form of numbers that can be analyzed

by the researcher using statistics to reach an unbiased result, and it can be generalized.

While qualitative research produces only information about the cases studied only, and

therefore is used to test the validity of general conclusions only (hypotheses).

Therefore, we find that qualitative research studies the depth of specific experiences,

to describe and explore the meaning through texts or visual data (Hunter & Leahey,

2008). The quantitative methodology that was appropriate for research was chosen in

terms of digital data analysis, feature selection, classification, category classification

and measurement.

 The quantitative approach assists in representing data by numbers and graphs.

This method was successful according to the need to analyze textual data, and extract

part of the speech features as an example of verbs or names in a text, so that we can

test or agree to experiments that will be explained later. As we mentioned earlier, this

thesis aims to design a methodology based on certain algorithms, to extract

quantitative information from the Arabic text file and then classify it into three types

(extreme, non-extremist, neutral). Since all previous researches (in Arabic), were

based on a qualitative rather than quantitative approach, we did not find enough data

in the literature to support this type of methodology. In this thesis, we were compelled

to collect his information and classify it manually to build the algorithm, train and test

it correctly. This methodology is designed in several stages, as shown in the following

47

figure. Figure 3.2 shows the main process to perform text classification.

Figure 3. 2: Main process to perform text classification

As shown in the previous figure, the system design can be divided into three

main phases. The stage of data collection and pre-processing, where data was collected

manually from more than 7000 text files in the Arabic language from various sources

and it contained terrorist, anti-terrorist, neutral data. These files were classified

manually by specialists. After extracting the files that fit the subject of this thesis, they

were pre-processed in several steps to be suitable for the next stage. The stage of data

processing where data will be summarized, extracting its features through specific

programs, will be discussed later. The last stage is the data classification stage where

data is classified into our three categories (extremism, anti-extremism, and neutral

data) using classification software (WEKA). After all this, the system will be trained

through the training set, and then it will be examined through the test set.

3.5 Research methods

As we explained earlier, the research has been divided into several stages, and

in each stage certain methods and tools have been deployed. The following sections

48

will explain these methods and equipment.

3.5.1 Data collection and preprocessing stage

Our research starts with data collection from sites. The data collected should

be a mixture of locations that considered to be antiterrorism, pro-terrorism, and neutral

sites to ensure balanced datasets for training and test datasets. Next to collecting

datasets is to perform preprocessing for the data that include but not limited to:

 Removing non-Arabic text,

 Removing HTML tags,

 Excluding empty files,

 Splitting pages of websites, and

 Adding file ID to each file.

3.5.2 Data analysis stage

The step following data preprocessing is to apply text analysis toolkits to derive

detailed information on the Arabic file content. The result of this process is to generate

summary files containing all numeric, quantitative information about the Arabic text

files. In addition, an N-Gram file is created to be used for the classification process

and prediction calculations.

The main competition among the different data processing tools available lies

in the number of distinct features that can be extracted from Arabic text. The more

features, the more quantitative information, and, potentially, the more precise will be

the classification. We should note the need for an Arabic language expert working

side-by-side with the developer to review and audit the results coming out of each tool,

to make sure they are semantically correct.

The main operations on the Arabic text should include the following:

 Stem counting,

 Sentence Processing,

49

 Morpho-Syntactic Processing,

 Summarizing,

 Arabic Parsing, and

 Morphological analyzing.

We used the Posit and SAFAR tools, which gave more than 58 features

together, to create Summary files. Once we get summary and N-Gram files we are

ready for data classification. The classification process is divided into two main steps;

the first step is to ensure that the training data set, which is manually classified, will

produce a high-quality model for future use. Then, in the second step, we can test and

create the model.

3.5.3 Data classification stage

The next step is to use the model file that is created in the first step for

classification of the unseen dataset to calculate a prediction for each file individually.

To calculate prediction and to construct a confusion matrix, we store the extracted

quantitative data as well as N-Gram data in a suitable format for training and test

datasets. The classification is done by studying the attribute parameters during the

training phase, and then considers the hidden files in order to predict the class for each

new data item. The classification process can be divided to two main steps. Figure 3.3

(above) shows cross validation and model creation. Figure 3.4 (below) shows the

classification process.

50

Figure 3. 3: cross validation and model creation

Figure 3. 4: classification process

To perform the classification process for the unseen dataset, we follow these

detailed steps:

 Divide the collected corpus into a training dataset and test (unseen) dataset.

 Put all information collected that relates to each file into a suitable format for the

classification process (ARFF file format).

 Manually classify the data samples by a high-qualified person for the training

dataset. The purpose of the training dataset is to create a classification model used

subsequently in the classification of the unseen dataset.

 Examine the training dataset for the quality of classification. We divide the data

51

into 70% and 30% subsets. We use 70% datasets as a self-training dataset and

30% as self-test datasets.

 Explore the use of different algorithms for classification. To choose the most

suitable classification algorithm, we study many classifiers that can be listed under

different classification concepts. The results are not selected based on the

classifier only but also depend on dataset combinations of the two text analysis

toolkits and the use of N-Grams generated by both text analysis toolkits.

 Select the best combination of dataset and classifier, based upon the precision,

Recall, and F-Measure.

We selected WEKA (machine learning environment) as a basis for our

classification work because it is rich with a classification environment with

attribute processing like attribute selection and a rich library of machine learning

algorithms. Moreover, it has an API to be used to throw user-made applications.

 The programming language selected for creating the user interface is JAVA. It

can utilize WEKA API to produce an efficient application that can fulfill all

research requirements, including classification, and put the results in a suitable

form for analysis.

3.6 Research tools

3.6.1 Posit Toolset

According to Weir (2007), the Posit Textual Analysis Toolset generates 27

features, including frequency data, in addition to Part-of-Speech (POS) tagging. It

contains several profilers:

POS Profiler: Performs analysis of a given text corpus to derive statistics on

the POS characteristics of that text, among which are types/tokens, number of

sentences, average sentence, word length, common nouns, and proper nouns, verb

tenses and total frequency of each POS token or type.

Vocabulary Profiler: Based upon the statistical data output by the POS Profiler,

the Vocabulary Profiler can determine the relative frequency of occurrence for

vocabulary items in the selected corpus.

52

Readability Profiler: This software component, (under development) will focus

on text readability, based upon the statistical analyses from the POS Profiler and the

frequency data from the vocabulary profiler. Word commonality (Weir & Ritchie,

2006) and average collocation frequency (Weir & Anagnostou, 2007).

3.6.2 SAFAR

The SAFAR (Software Architecture For ARabic language processing)

program is a platform dedicated to natural Arabic language processing (ANLP). It is

an open source program, cross-platform, modules, and provides an integrated

development environment (IDE) that includes: resources for different treatments,

ANLP, basic language level units, especially those for the Arabic language, namely

morphology, syntax, semantics, and finally requests for ANLP. This program was used

in the stage of data processing in the proposed system, as it worked on extracting

quantitative information from text file data.

3.6.3 WEKA API

The text document classification problem is a special case of a supervised data

mining issue. To solve the problem of categorizing a text document, some steps are

required. Common steps are: feature extraction, feature selection, rating and

visualization. WEKA is a framework that helps categorize any text document after

extracting its features. WEKA's began as a Java library to help implement data mining

applications and was later developed to avoid the need for Java programming skills.

WEKA components are also available visually within the "WEKA Knowledge Flow

Environment". The most important feature of this framework is the ability to test

different visual styles without programming capabilities.

This framework was used in the proposed system in order to classify the

processed text data into three types (terrorist, anti-terrorist, and neutral). As a

supervised learning approach, this needed training on pre-classified dataset.

3.7 Sample

 WEKA API classifier needs training in a pre-categorized dataset to learn how

to differentiate between our three categories (pro-terrorism, anti-terrorism, neutral)

53

and the distinct features and words for each category. In this system, a train data set of

300 files of textual data containing the three categories was used to train the classifier,

and then this was tested to check its accuracy and effectiveness.

3.8 Validity and Reliability

 Validity and reliability were taken into consideration in each step of the system

design and implementation. First, collecting data, which was done by using several

different sources (neutral sources, sources supporting terrorism, and anti-terrorism

sources), whether it is on the Internet, social media, and elsewhere.

Manual data classification stage was performed by five different specialized

people. Once classified in a category by at least four people the file is considered

classified and added to the Corpus, otherwise it is removed from the Corpus group. In

the next stage, a program was used to process the Arabic texts.

The next stage was to train the classifier through a group consisting of 300 text

files of the three types. Finally, to ensure the validity of the training, progress and

design of the program, the program was tested through a test dataset consisting of 200

text files of the three categories. The 200 files were completely correctly categorized,

which demonstrated the validity of the proposed program's work for this message.

3.9 Summary

From the foregoing description, we see that our quantitative approach is best

suited to our research. The next chapter will provide a more detailed account of our

implementation.

54

CHAPTER FOUR: IMPLEMENTATION

4.1 overview

This chapter will be the core and the Practical application of the study. In which

the clarification of what will be done during this study in terms of data collecting,

organizing, and preparing. How the data was manually classified to get a ready-to-

study corpus, and what methods were used. This chapter also describes the

configurations of Posit and SAFAR that were required to deal with the Arabic

language. In addition to how this research used them to extract the properties which

are the basis for the Arabic text classification. Later in this chapter, the results will be

explained how it converted into a format that WEKA can identify and deal with.

Finally, it describes how to benefit from WEKA and its capabilities to classify Arabic

texts based on the information extracted by Posit and SAFAR.

4.2 Data Collection

4.2.1 Corpus Building and compiling

A web-crawler was used to browse the web and the dark web, to collect and

retrieve Arabic language pages, concerning extremism and related topics. The

retrieved pages were analyzed and the links from those pages followed recursively.

The best tool found and tested for this purpose was Crawler 4j, which is a Java API

independent platform that has proven to be a reliable toolset and especially beneficial

because it also contains a parser. Via the visited site domain and web URL, all retrieved

data files were automatically labelled for future classification.

In order to deploy this tool in collecting a new Arabic extremist dataset,

additional effort had to be made using this tool. Many websites contained data that was

potentially related to our target, but this tool requires that URLs be identified

beforehand. About 175 MB (1865 files) of related data have been collected. Figure 1

in Appendix A shows sample of the crawler code, while Appendix B includes some

codes.

55

The initially collected data proved to be smaller in quantity than it hoped. The

majority of known Arabic extremist websites, including their Twitter feed and

Facebook accounts, are banned and have been shut down by the relevant authorities.

Researcher had to search further into the open web and the dark web, but such

searches could expose the researcher to dangerous consequences from both

governments and hackers. To overcome this issue, a paid VPN called Speedify has

been subscribed, to make us anonymous and untraceable as far as possible

Further means of retrieving Web-based data was secured by subscribing to a

specialized facility called Sketch Engine. This Website, enabled us to search by words,

websites, and URLs through the open web, gather the data, compile the text into

sentences. It allowed downloads of the generated corpus in text or vertical files (A

vertical file is a text file where each token (or word) is on a separate line) format.

That’s mean it gave the user more facilities to work (see figure 2 in Appendix A).

The search keywords as an example ("مقاومة التطرف"" ,داعش"" ,"الجهاد ضد الكفار,

 are collected from ("الجهاد الإسلامي ضد الحكام العرب" , "مناهضة الحكم الكافر" ,"جبهة النصرة"

internet web sites related to the main categories, which are:

 Pro-terrorism,

 Anti-terrorism, and

 Neutral.

The file was forwarded to the java tool, which split the resultant file into as

many files as the number of sites collected, by Sketch Engine. Now we had many text

files supposed to belong to the category related to the search word collection. This was

the result of an internet search for common words linked to the selected category.

According to the nature of the decided research to use a variety of the text files

collecting from internet. with different categories (Pro-terrorism, Anti-terrorism, and

Neutral)

Initially about 7000 files were collected which were manually classified. The

first phase of supervised machine learning is to make manual classification to ensure

that the learning and test text files are correctly classified; this provides a ‘ground truth’

56

and should yield better accuracy of classification. Manual classification may solve the

problem of the wrong categorization during data collection from websites, and

partially solve the problem of repeated site content. After the initial classification and

to achieve high accuracy of the data, the manual classification for data samples was

achieved by giving the sample data to five different people with higher education

levels but belonging to various fields of knowledge (accountant - social sciences

scholar- Kindergarten teacher – Ph.D. in Arabic Linguistics – Translator). A contract

has been made with these advisers to read the files one by one and make the

classification depending on the content of each file. After receiving their responses, all

the results were compared, and approved the classification of files for which the

informants had unanimously agreed. Files that lacked this unanimity were excluded

from the data set.

The result of this process was 5,124 text files, manually classified in 3 folders:

pro, anti, and neutral. |In addition, the data was cleaned to remove HTML, any rubbish

data, and every line with a sentence in XML is tagged, with the first line of the file’s

given URL tag. To do this, a Java class was programmed to read the whole text corpus

and split it into files according to </files> tag embedded in the Sketch Engine

compilation. To retrieve data from the dark web, a browser engine was installed that

contains a simple VPN that permitted us to search Onion websites which is a specific

web file extension special used in dark web pages and not available in ordinary normal

internet websites.

The Arabic extremist ideas are truly hidden within the text, and a try to develop

means by which to detect them was performed. The research continued to crawl more

Arabic data from the open and dark web. The corpus downloaded from the Sketch

Engine after compilation is one big text file, formatted with XML tags.

57

Figure 4. 1: Corpus before splitting

Figure 4.1 shows the data extracted from Sketch Engine. This significant

corpus needs to be split into files to represent each original HTML webpage, then

cleansed and normalized. It also needs to be referenced in a database by ID to keep its

origins after normalization and processing. The Text normalization is the process of

transforming text into a single certain form to be able to stored or processed and is

used when converting text to speech. Numbers, dates, acronyms, and abbreviations are

non-standard "words" that need to be pronounced differently depending on context”

as by (Sproat, 2001) to split the corpus a java splitter class, was programmed, which

reads the corpus line by line, and at the specific tags performs the file splitting (see

Appendix A).

The manual or visual inspection of the Arabic Text files is an essential step in

the classification procedure. These results were in content across our three categories:

Anti, Pro, and Neutral. Due to the large number of files and the likelihood of human

error, some files could be classified into two or more categories. This issue has raised

the need for some semi-automated processes to help in discovering instances of mis-

classification.

Our solution to this problem involved two main components:

1. A database (named corpusDB.db).

2. A Java code (named corpusDatabase.java).

58

The database is composed of one table that contains information about all the

files, including the file ID, the file location, and other information. The Java code’s

role is to loop through all the files, extract the required data, and insert them into the

database. After that, an SQL query was made to discover any repetition in the files.

Having file names provides the additional step, namely, locating that file and visually

re-inspecting it to check whether it is in the correct folder. If not, it is deleted manually

from the wrong folder. Referencing the files in a database is the next step with all the

data that enables identifying the files automatically.

A SQLite database engine has been used to create the database (see Appendix

A). This has been chosen because of its portability, as it is a server-less database, and

because of its cross-platform features, which will facilitate using it under Windows

and Linux alike. DB Browser for SQLite has been used as the database browser.

One table has been created (see Appendix A) to contain all the data attributes

collected from each file. All files are formatted in the same way so that the first line

always holds the URL origin of the file and the file id. Figure 4.2 shows the file

formatting before extracting the attributes to the database table.

Figure 4. 2: text file format

Java code has been written using Eclipse with jdk 1.8 and the sqlite-jdbc-3.2.1

library to extract the required data from each file, i.e., ID, file name, URL, first line

and the manual classification of each file, and insert them into the database.

59

The java program loops through the three folders with the three file categories

(anti, pro, and neutral) using a function called “looper” to scan the folder; moreover,

within this function, a call to another function called “insert” is made to insert the

extracted data into the database. For approximately 5,100 files, the code took about 4

minutes to finish and the resulting database table is shown in figure 4.3.

Figure 4. 3: The resulting database table

As shown in the figure 4.3 the file id, file name, URL, and the first line are

extracted from each file and inserted as fields in the table. There is a field named

“manual”; that holds an integer value of:

 0 for pro,

 1 for anti and

 2 for neutral.

The field named “auto” is intended for future use when automatic analysis is

conducted in WEKA classification experiments for these files. The results will be

compared to the number in the “manual” field to calculate the percentage accuracy of

the automatic classification process.

Also, it is worth mentioning that the table will help us, in the preparation phase,

to locate redundancy in the corpus files, if any does exist, and to remove the repeated

files easily. This is done by using a SQL code to group by id all the files that may have

60

different names but the same content. The result is a list of file names for the files that

have the same ID, and this is used to delete these duplicates.

4.3 Data Preprocessing

The essential differences between Arabic language and English meant that

changes were required in configuration for the software tools being targeted at our

Arabic data.

4.3.1 Working with Posit

This was applied particularly to the Posit toolset that was designed originally

to analyses English language texts. The following details the changes required for our

Arabic context.

1. The first one is to modify the Posit toolset to be capable of POS tagging Arabic

words and extract n-grams from Arabic sentences, whilst keeping the original

27 powerful Posit text features.

2. The second requirement is to use an Arabic-specific package, a tool named

SAFAR v2, which can be used for POS and morphological analysis on Arabic

datasets that are sourced from the web and produce 31 features.

Modifying Posit text profiling tools for use on Arabic text

i. Using Arabic tagger:

The first modification to Posit is to make it deal with Arabic rather than English

parts-of-speech. This requires a process on the text using an Arabic tagger (the

Stanford NLP POS-tagger) instead of the Lapos (English language) tagger from the

original Posit tools package. The Stanford postagger-3.8.0 package that was applied

for tagging the Arabic corpus includes a shell script named Stanford-postagger.sh that

can be used to call the Arabic model.

ii. Using Arabic models:

61

 The second modification that made to Posit to make it deal with Arabic text

was to use Arabic language models in conjunction with the Arabic tagger. Integrating

the Stanford tagger with Posit could then work successfully. Figure 5.15 shows the

Arabic Models that are provided with the Stanford tagger (StanfordNLPGroup, 2019).

iii. Modifying Code:

Some changes to the Posit code have been made to allow it work with Arabic

text and, as noted previously, Posit is a Unix command-line system that comprises a

series of individual programs.

Firstly, by applying some changes on the file pos_all.sh, which is a shell script

file used for calling every intermediate shell command in order of execution. These

shell commands perform data preprocessing and functionality to analyze corpus files

and stream out a summary of all the part-of-speech features needed for later

processing. The changed tagger to the Arabic tagger, to be able to process Arabic text.

These figures highlight the changes made to invoke the Stanford Arabic tagger (see

Appendix A).

iv. Results

After applying the amended Posit to the Arabic files, it has been successfully

generated the results for each text file. The main need result to use in our approach is

the summary file. The summary file contains 27 features, which were used later in the

classification phase. An example Arabic text file before processing by Posit and after

the Arabic text has been processed by Posit is shown in Appendix A. This details 27

features extracted from the original text.

v. N-grams

The other modification to Posit was to ensure that the n-gram calculations were

effective on Arabic Text. In the fields of linguistics and probability, an n-gram is a

contiguous sequence of n words or items from a given text or speech. The items can

be phonemes, syllables, letters, words or base pairs according to the application. When

the items are words, n-grams may also be called shingles. The size of n can be 1,

62

referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size

3 is a "trigram".

In Appendix A two figures shows the original ngram.sh in Posit and highlights

changes made to the modified ngram.sh. Specifically, the cat command was used to

trim and clean Arabic text and add the result to a temporary file, in order to apply the

n-gram coding on a cleaned text. The original code removed any numeric and non-

alphabetic letters, but this approach is not useful in our case as all Arabic letters are

non-alphabetic, so the code was changes to trim all alphanumeric letters and special

characters, leaving only the unrecognized letters and non-English letters. Thereby,

after trimming any noise, the result is a successful clean file of Arabic text tokens that

the n-gram program can process effectively.

4.3.2 Working with SAFAR V2 in windows environment

1- Summary Generator

In this section, the use of the SAFAR tool will be described as an alternative

means to Posit for preparing a dataset to be used as the training dataset. The Posit

textual analysis offers 27 distinct features involving frequency data and POS tagging

while SAFAR offers 31 distinct features as shown in figure 5.43.

Two classes in the SAFARV2 package for morphology analysis have been

tested; BAMA and ALKHALIL. The results of the ALKHALIL class have been

visually inspected and proven to generate more accurate details than BAMA class, and

in turn, more accurate summaries than that in the BAMA.

A Java application, SummaryGenInteractive.java, has been written to generate

the following outputs for each Arabic text file:

i. Summary file: containing all the Arabic features extracted from the file as shown

in figure 5.43 and it includes the 31 features.

ii. 2-gram file.

iii. 3-gram file.

iv. 4-gram file.

https://en.wikipedia.org/wiki/Bigram
https://en.wikipedia.org/wiki/Trigram

63

The execution of this operation involves the following procedural steps:

i. Reading all the input files by selecting the folder containing them.

ii. Generating an output folder to hold two processed files (Split-out file,

Normalized file) for each input file:

 Split-out file: with all the recognized sentences in XML format.

 Normalized file: with all the sentences removed all noise and non-Arabic

characters.

iii. Generating an output folder to hold the required output files (n-gram, and

summary)

iv. Generating the helping files.

v. Generating the summary files.

vi. Generating n-gram files.

 GUI coding and explanation

This section shows how all these details of SAFAR operate by starting with the

summary generator.

i- Summary Generator:

Reading the input files. In the figure below this step show how the Java

application allow you to generate the input files and select them from your files.

Figure 4. 4: Reading input for the Summary Generator.

A pop-up file dialog will arise, from which was selected our input files, the

desired files were selected, then analysis will be started and the output generated.

64

After analysis, the output generated, a number of files processed were displayed on the

screen. In the “output” folder, a folder will be created for each of the input folders.

And in each folder, there will be a folder for each of the input files.

Since there is a need to loop through all the files in all the selected folders, this

is done with a function called "looper" that accepts an array of file names and the folder

where they reside. The operation of the looper function is clarified in Figure 4.5.

Figure 4. 5: The function of looper

The function “generate outputs” is responsible for generating the “split-out”

file and the “normalized” file. The generated files will be named after the original

name of the file, for easy referencing in the code.

The split-out file is a result of a method in SAFAR Sentence Splitter class

called split () that generates an XML file with the sentences of the file, each appearing

as an element in the file.

This file is accepted as a parameter in another function that generates the

normalized file using a function called normalize (), which is a method in SAFAR

normalize class. Figure 4.6 shows this process.

65

Figure 4. 6: Process of summary generator

After finishing (generate Outputs), generate Summary is called. This is where

all the quantitative analysis results are stored as features in the summary files.

The POS noun analysis, for example, is made on each word in a file that has

been identified as a noun using a class named Noun Morphology Analysis. This

analysis provides a method called get(Pos) that is used for counting the number of

occurrences of each noun type in the file.

An example of a generated summary file called: summary_antiextr13.txt with

the features and their counts showed in Appendix A. For each file, after generating

the summary, the 2, 3, and 4-gram files are generated using the function called

generate N-gramFiles

4.3.3 Summary of Data Pre-Processing

As seen in Appendix A, results from both Posit and SAFAR toolsets are

summary files and n-gram files 2, 3, 4-gram files. Before going forward, many

features resulting were found from the two pre-processing tools (Posit and SAFAR)

seem to be the same (at least in property name) but, due to different processing

algorithms, the results are not identical, with slight differences that can be cited as

Posit, it is not giving some features as singular, plural, feminine, muscular, modaf,

mansob and majror count which is some grammatical features not found in English

language but SAFAR V2 package could offer it as its specialized in Arabic language

grammar processing. This helps to analyze each file with different algorithms. The

final results show that the two different approaches support each other and help us to

achieve higher model accuracy in the classification phase.

4.4 WEKA Implementation

 a Java project was created to perform all the tasks required for data

classification. GUI (Graphical User Interface) was implemented because it is easy to

66

use and simple to understand. In the following, it illustrated the user interfaces and the

steps to fulfil the tasks required for the classification.

4.4.1 GUI used to Implement WEKA

A. GUI-A: Database Preparation, and N-Gram Calculation

(GUI-A) interface allows the user to prepare the database and conduct the n-gram

calculations. The operations resulting from use of this interface are listed below.

- Add file names to the database according to manual classification for the three classes

{anti, pro, neutral}.

- N-Gram reference data are storing in the database (table names: 2_ref, 3_ref, 4_ref).

- Calculate the 9 n-gram values average values (low/high/average for 2-3-4 N-Gram)

and store it in database (table: ngram, sgram).

- This process is done for Posit and SAFAR data in separate tables. All result data are

stored in SQLite database for use in ARFF file creation.

B. GUI-B: ARFF file creation

The second interface (GUI-B) is used to create the required ARFF file formats

for use in WEKA. The operations resulting from use of this interface are listed below.

- Create ARFF files containing all possible combinations of Posit/SAFAR

with/without N-Gram and mixing Posit+SAFAR attributes to create ARFF files

according to user selection.

- Create all required subsections of ARFF files for classification (70% & 30% Datasets

–100% dataset – unseen datasets for each dataset.

Each single click adds more than one file, each file contains a dataset to be

used in the classification process and model building. The datasets required are 70%

training dataset, and 30% test dataset as well as other datasets required for the

supervised unseen tests. Naming is done according to the file content. A complete list

of file names and file descriptions is given in Table 4 (below).

67

 ARFF Files Number of Instances Purpose of Dataset

POS

pos_70.arff

pos_30.arff

2100

900

70% training sample

30%test sample

pos_100.arff 3000 Create Module

pos_test_class.arff 2124 Supervised Test

POS + N-Gram

posGram_70.arff

posGram_30.arff

2100

900

70% training sample

30%test sample

posGram_100.arff 3000 Create Module

posGram_test_class.arff 2124 Supervised Test

SAFAR Toolset

safar_70.arff

safar_30.arff

2100

900

70% training sample

30%test sample

safar_100.arff 3000 Create Module

safar_test_class. Arff 2124 Supervised Test

SAFAR+N-Gram

safarGram_70.arff

safarGram_30.arff

2100

900

70% training sample

30%test sample

safarGram_100.arff 3000 Create Module

safarGram_test_class.arff 2124 Supervised Test

POS + SAFAR

total_70

total_30

2100

900

70% training sample

30%test sample

total_100 3000 Create Module

total_test_class 2124 Supervised Test

POS + SAFAR + POS N-

Gram

total_pGram_70

total_pGram_30

2100

900

70% training sample

30%test sample

total_pGram_100 3000 Create Module

total_pGram_test_class 2124 Supervised Test

POS + SAFAR + SAFAR

N-Gram

total_sGram_70

total_sGram_30

2100

900

70% training sample

30%test sample

total_sGram_100 3000 Create Module

total_sGram_test_class 2124 Supervised Test

POS + SAFAR + Total N-

Gram

total_psGram_70

total_psGram_30

2100

900

70% training sample

30%test sample

total_psGram_100 3000 Create Module

total_psGram_test_class 2124 Supervised Test

Table 4. 1: complete file names according to file description

c. GUI-C: WEKA classification

The third interface (GUI-C) is used to invoke the classification process on the

prepared data. This Java interface employs the WEKA API to apply a classifier on the

selected dataset and output the file prediction. This interface (GUI-C) supports the

following operations:

- Apply selected classifier algorithm on selected dataset

- Show (30%-70%) cross-validation test results.

68

- Generate model file using (100%) dataset.

- Using a Model file to classify unseen test dataset with or without N-Gram

attributes.

- Optionally show prediction details (per file).

4.4.2 ARFF file

In order to use the summary file information (the output of the Posit and

SAFAR text analysis toolkits) in classification, this output has to be in ARFF file

format (Attribute Relation Format File) that is suitable for WEKA framework

processing.

 ARFF files have two distinct sections. The first section is the Header

information, which is followed by the Data information. The ARFF file format

is as follows:

 The Header of the ARFF file contains the name of the relation, a list of the

attributes (the columns in the data), and their types (Paynter, Trigg, Frank, &

Kirkby, 2008).

 The data section is made up of individual lines; each line contains comma-

separated values of the attributes arranged according to their order in the header

section.

 Create ARFF Files

The detail in the Attribute-Relation File Format (ARFF) file consists of 3 parts:

 @relation: represents dataset name.

 @attribute: indicates the name and data type of features extracted from the

document.

 @data: each instance is held in a single line, with each line separated by a

carriage return.

As noted, attribute values for each instance are delimited by commas and must

appear in the order that they were declared in the header section, i.e., the data

69

corresponding to the nth @attribute declaration is always the nth field of the attribute

(Al-Zoghby et al., 2007).

Create ARFF file

1- Source text file:

The dataset in the form of an ARFF file is created from the summary files that

result from applying the Posit and SAFAR tools. Each summary file represents the

result of calculating all parameter values extracted from each source web site.

2- Creating an ARFF file using summary file information includes the following

steps:

• Collecting summary file names.

• Read the file information line by line.

• Split line string into sets of attribute and value pairs.

• Form result ARFF file and save the file.

• Split ARFF files into standard 70 % for later training and 30 % for later

testing and the results.

The ARFF creation step is processed in three stages. In the first stage, data is

collected from files considered as “anti” files into the dataset. The second stage,

collects data from files considered as “pro” files into the dataset and the third stage

collects information from files considered as “neutral” files into the dataset. Finally,

these details are all saved into the ARFF file.

Summary files and 2,3 and 4 N-Gram are arranged in folders so that they can

be accessed by JAVA code. The Java code is designed to read summary files from

both the Posit and the SAFAR data files path. The steps of reading are as follows:

 Read folder files as a list of files and store the result in a database.

 Access all files, one by one, to collect data form file inside.

 Read file content as lines and parse each line for attribute and value pairs.

 Add all available attributes to an array of attributes and values.

 Connect to the SQLite database to get the last 9 n-gram attributes for each

file and add them to a long array.

70

 As soon as the data is collected from all files, it starts to build the ARFF file

using data stored in a long array after updating the last attribute by class

value (pro, anti, neutral).

 The ARFF Saver method is used to save in ARFF format.

4.4.3 Prepare N-Gram Data

As a result of using the Posit and SAFAR tools, it have been derived 2-gram,3-

gram, and 4-gram files, which contain n-gram details. This n-gram information

indicates the frequency of occurrence of each sequence of words in the given text.

The first step to extract useful information from the n-gram file is to recognize

the file structure. Each file name indicates the type of n-gram files 2, 3 and 4. The next

step is the file inside; this consists of multiple lines, as many as n-gram items (tokens),

extracted from the text. Each line contains the n-gram information with the n-gram

tokens. The second part of the line is the frequency of occurrence of the n-gram token.

The next step is to gain information about the prediction of “How often the

token is used in the text relative to the Arabic Language,” or, in other words, how to

calculate the probability of using the token in the text. To calculate this probability, it

need a reference to compare the frequency of a particular token to the frequency of the

occurrence of the same token in the language. Of course, the larger our n-gram

reference files, the higher the plausibility of the prediction values, and therefore, the

better the prediction for any token.

The reference n-gram is text files called Arabic_news_plainText which

consists of 1200 Arabic news files from different aspects of news (), each line contains

phrase contexts, and frequency is separated by a colon “:”.

Table 4. 2: n-gram Reference files properties. (sourceforge, 2017)

Reference File Token count File size

2-Gram 1,737,701 52,822 KB

3-Gram 3,040,427 121,694 KB

4-Gram 3,565,402 179,607 KB

71

The idea of collecting n-gram information is to add reference n-gram

information into a database and then read 2-3-4 gram files into an array. The text array

is scanned, item by item, to get the token used to search the reference database (Table

4.2) for corresponding reference frequency.

The file size is one of the faced challenges for the following reasons:

i. Having 5124 files.

ii. There are three files (for 2-3-4 Gram information) associated with each text file.

iii. Each N-Gram file consists of 1000 – 4000 Token.

iv. Each token has to be searched in the corresponding reference file2-3-4

Reference Gram files.

v. Each search consumes from a few seconds up to minutes, when using traditional

mechanical hard disk HDD to store database files and the 2,3- and 4-Gram files.

This means that the time required to collect token text frequency and reference

frequency and store results (low average, high average, and overall average) in the

database may take a few months. This is the time needed to calculate data required to

add n-gram attributes to the ARFF file (9 attribute fetchers are planned to be stored in

the database) .The taken steps in this experiment have managed to accelerate the

process by speedup read/write process, exploiting the advanced properties of the

SQLite database:

i. Studying the use of SSD (solid-state hard disk):

Using SSD rather than HDD enhances the performance and reduces processing

time. Appendix A has a comparison table between mechanical and solid-state disk

drive. However, this is not quite enough to significantly enhance performance. In the

end, SSD did not used, but went for faster storage; it will be covered in the next step.

ii. Studying the use of RAM disk

This technology is an effective way to increase the read/ write speed. Using a

RAM disk enhances the read/write performance, so that the time consumed by the

processing does not depend on disk access, but on its database access and search

algorithm. As a result, performance is enhanced by 18.61%. This, however, is not quite

72

enough to help the overall process. The free version of RAMDISK have been used, a

program that takes a portion of system memory and uses it as a disk drive. The more

RAM the computer has, the larger the RAMDISK it can create (Diffen, 2019).

Complete installation and uses are available on the RAMDISK site. it did not benefit

from read/write speed enhancement because most of the time was consumed in the

search process but not in the reading /write process.

iii. Studying database access performance:

One of the essential topics of database access performance is the index. Every

table may add to the index (AUTO_INCREMENT PRIMARY KEY). This index is

useful for selecting item or items from the table. However, it is not searchable. When

a query on the text column was executed, a way to avoid searching through every row

to find the intended one was found.

Indexes are used to find rows with specific column values quickly. Without an

index, MySQL must begin with the first row and then read through the entire table to

find the relevant rows. The larger the table is, the more time this process takes. If the

table has an index for the columns in question, MySQL can quickly determine the

relevant point in the middle of the data file, without having to look at the entire range

of data. This is much faster than reading every row sequentially (RAMDisk, 2019).

After creating a Text-Index, the search process becomes an easy one as its

duration significantly decreases by 99.61%. Table 4.3 shows the improvement of using

text index.

SUM of processing duration

HDD SDD Text Index

3,994,000 3,249,000 12,670

Enhancement Percentage %

 SSD Text Index

Enhancement 18.6 % 99.61 %

Table 4. 3: Processing duration trials to reach the optimized processing time

73

 Concerning the percentage of performance enhancements for N-Gram Low-

High Average calculations, a SQLite official site informs us that Text-Index

Indexes are special lookup tables the database search engine can use to speed up data

retrieval.

An index is a pointer to data in a table. An index in a database is very similar

to an index at the back of a book (Mysql, 2019).

The enhancement result is archived by efficient use of the database through

utilizing the Text-Index, which applies various algorithms to reduce search time. The

result values of processing duration to calculate low-average, high- average and

overall-average using Java code can be found Appendix A.

The prediction of a particular was determined for N-Gram data provided by

Posit. The frequency of occurrence of a specific sequence of the word does not present

information about text type (Pro, Anti or neutral) unless this frequency is compared to

the typical Arabic language use for this particular token. This gives us more

information about how common or usual the use of particular 2-3-4 Gram is for the

given token. To do that, an equation was applied that described by MichaelP. Oakes,

in his paper “Text Categorization: Automatic Discrimination Between US and UK

English using the Chi-Square Test and High Ratio Pairs.” (SQLite, 2019).

E = row total x column total / grand total

Where:

Row total: token frequency + reference frequency.

Column total: total token frequency.

Grand total: total (token frequency + reference frequency).

Table 4.4 shows an example of calculating the prediction for token occurrence.

2 Gram Text Freq. Reference Freq. Row Total Expected value

 4.065667323071977 16861 16859 4 الأخرى التي

 0.6447775589760077 8022 8020 2 في العراق

 6 24879 24883

Table 4. 4: Example for calculating the prediction for token occurrence

74

Another similar table named “n-gram” is used to store 2-3-4 Gram values for

N-Gram information for data, provided by SAFAR.

The average frequency was calculated of the reference file by the following

simple equation:

The result is as follows:

avgRef2 = 4

avgRef3 = 2

avgRef4 = 2

The prediction value is used to calculate three average values for each file,

which are low-average, high-average, and overall-average. The low average is the

average of the sum of E for all values of E below or equal to the reference n-gram

average. Similarly, the high-average is the average sum of E for all values of E above

the reference n-gram average. The overall-average is the average of all values of E. As

soon as this value was got, it is added to n-gramDB.db in n-gram. The rows represent

n-gram information about all 2-3-4 n-gram average values corresponding to each file.

 4.5 Summary

This chapter details the important applications in this study, how the basic data

in this study was collected, how data was prepared for the study, and how Posit and

SAFAR were used to extract important data that will benefit our study in the

classification process. Also, a discussion of how to handle the results of our analyses

to work with WEKA in the classification stage. The next chapter will describe how to

deal with these programs, how these were applied in this experiment and what the

obtained results were.

75

CHAPTER FIVE: EXPERIMENTS

5.1 Overview

This chapter details the experiments that were carried out on several datasets.

The first part (70% training dataset and 30% test dataset) of our experiments was

carried out to ensure the quality of manual classification. To create the model file, we

use 100% (70%+30%) of the training data. Once a model file was obtained which

carries all of the information derived from the training process for 100% of the training

dataset, which was used to classify the unseen dataset.

The results from the manual classification process are the production of ARFF

files for each dataset, for the Posit or SAFAR datasets including average ratios for 2-

3-4 grams. The data classification process where applied different algorithms to each

of our various datasets to get the classification prediction of each file in any dataset.

5.2 Experimental setup

In order to run this experiment, two main stages were followed. The first is

collecting data from the internet, preprocessing, and extracting quantitative

information, and storing these details in summary files. The second stage is to create a

classification model to use into classifying unseen data samples.

There are two environments employed in our experiments:

1. Linux: Kali-Linux was used for data collection and preprocessing.

2. MS-Windows: Windows 10 was used for running the classification

process.

In support of this effort, Java JDK 8 must be installed to provide the necessary

libraries for the classification process and WEKA APIs for Windows must be installed.

Several issues were encountered in this practical phase of our work. First, a

problem was encountered with Arabic text not being displayed and having insufficient

memory for processing ARFF files. This problem could be fixed by changing some

environment variables in the Run WEKA file. Specifically, the File Encoding was set

76

to utf-8 instead of Cp1256 in order to have the WEKA framework recognize and

display an Arabic character set where needed. Increasing the assigned runtime memory

for Java, served to address the ARFF file processing issue. These changes ensured that

WEKA ran without further problem (Figure 5.1).

Figure 5. 1: results of changing some environment of Weka

5.3 WEKA

 “WEKA is a collection of machine learning algorithms for data mining tasks.

The algorithms can either be applied directly to a dataset or called from your own Java

code by adding WEKA API reference to the JAVA application. WEKA API is a library

prepared by WEKA. It is a set of functions and procedures that allow the creation of

applications, which access these features directly. WEKA contains tools for data pre-

processing, classification, regression, clustering, association rules, and visualization.

It is also well-suited for developing new machine learning schemes” (Oakes, 2019).

It is a free machine learning software that provides a user interface and reference

library (to be used from within Java code). It also provides algorithms for machine learning,

including attribute selection filters and classification algorithms. WEKA was used for

77

selecting experiments and applying classification algorithms to the dataset. Then came

applying the resulting model to approve the precision and accuracy of the model.

To be able to apply classification algorithms using WEKA (Waikato

Environment for Knowledge Analysis) on both Posit and SAFAR results, the result

should be formatted or arranged in a suitable way for processing. This format is called

the ARFF file format (Attribute Relation File Format), and it is used by WEKA. This

text file describes a list of instances sharing a set of attributes.

5.4 Our approach

The results from all steps or phases help us to produce quite enough data in a

suitable format to produce file prediction. Every phase produces results that are

required by the next phase. The collection process produces text files that contain all

text information from the corresponding web page. Unfortunately, these text files

contain HTML tags and other languages text (e.g., English). The second phase cleans

all superfluous other language text and HTML tags. Next, all quantitative information

were derived using the Posit and SAFAR toolkits. This quantitative information is used

to produce different datasets, each in ARFF file format, to be used for the classification

process by producing ARFF files, it is ready for the classification process to get the

main results for our research, and to calculate the file class prediction (anti-pro-neutral)

for each file in the test dataset using different classification algorithms.

After creating an ARFF file that is used to supply WEKA with input and test

data, this automatically finds the data model (prediction pattern) to be able to

determine data class (anti-pro-neutral) in the future. The other part of the data is used

for the test set (unseen data) against the data model to ensure proper operation of the

data prediction.

The classification process takes place by establishing recognition patterns to

be able to make predictions about newly provided data (unseen data). The data

available for building the recognition pattern is divided into two parts, the training

sample for machine learning and the other sample for testing the recognition pattern

created during the machine learning phase.

78

Figure 5. 2: Classifier-Dataset Selection and prediction calculation Diagram

Each of the two text analysis tools creates two sets of files; summary files that

contain information about words inside the text and the n-gram files. To begin the

machine learning, three pairs of sample/test ARFF files were prepared. The first group

is created by utilizing the results of the summary file of Posit toolset (after making

necessary customization to the toolset to suit the Arabic language). The second group

uses the summary files result from the SAFAR toolset. The third group utilizes both

Posit and SAFAR. each of the three groups in two phases will be treated, the first one

is to classify the data without n-gram information, and the second phase is to classify

for all information, including n-gram information. Figure 5.3 illustrates the different

calculation methods.

The application of the classifier is made by dividing the text file into two main

groups; training group used for machine learning and test group for validating the

recognition pattern resulting from the machine learning process. The ratio of training

data to test data is 4:1. The Posit data has 27 attribute values extracted from summary

files. The SAFAR data has 31 attribute values extracted from summary files.

Next, the same classifier to the other ARFF files were applied, i.e., files

containing the 27 attributes from Posit summary files and 31 attributes from SAFAR

79

summary files, plus nine attributes representing the 2, 3, and 4 n-gram information

average values (low-average, high-average, and overall-average).

Figure 5. 3: Work Flow for different calculation methods

The different values of the 2 ,3 and 4 N-Gram average are calculated for each

text file as:

 Where N-Gram value <= Ref Average.

 Where N-Gram value > Ref Average.

 For all values of N-Gram values.

Many algorithms have been tried during the early stages to discover the best

classifier, side by side, with the commonly used classifier for text processing. For this

purpose, the following classifier was used to examine the most suitable algorithm for

our machine learning.

1. J48 classifier,

2. Naïve Bayes,

3. K-Nearest Neighbor (KNN), for which an investigation of two values of K were

performed (where k=1 and k=3). The value of k is the number of neighbors to

query to make a prediction,

80

4. Support Vector Machines (SVM), and it have been found that the best parameter

setting is the one that produces the hypothesis with the lowest VC—Dimension.

This allows for a fully automatic parameter tuning without expensive cross-

validation,

5. Random Forest, and

6. Classification by Regression (Using Random Forest classifier).

5.5 Summary

In this chapter, research experiments have been described to cover all

combinations of applying selected classifiers on different datasets. The calculation of

n-gram ratios was added as additional parameters to the summary file parameters

derived from the Posit and SAFAR text analysis toolkits. In the next chapter, a discus

will be performed of the collected results from classification process for training

dataset cross validation and the results obtained from applying the classification model

on unseen datasets.

81

CHAPTER SIX: RESULTS AND DISSCUSION

6.1 Overview

Classification is a data management process used to sort or categorize a dataset

to distinct types. We apply different algorithms to a manually classified dataset (known

as the training dataset) to produce classification requirements model then apply this

model, containing dataset requirements, to unseen data (known as the test dataset) to

calculate a prediction for each item. This chapter contains the analysis of our approach

and results.

6.2 Analysis

The results can be summarized as file type prediction (anti-pro-neutral) and a

confusion matrix that is used to calculate parameters (Precision – Recall- F.Measures)

describing how accurate the classification is. The classifiers algorithms used to obtain results

shown in Table 6.1 :

 Classifier

1 J48

2 Naïve Bayes

3 k-Nearest Neighbors (kNN3)

4 SVM

5 Random Forest

6 Classification by Regression (Random Forest classifier)

Table 6. 1: classifiers to obtain results

The datasets are arranged so that classifiers were applied on the summary data

of each toolset used for the analysis of Arabic text files. The two toolsets used to

generate summary files are in Table 6.2 .

82

 TOOLSET Abbreviation

1 parts-of-speech Text Profiling Toolset POSIT

2 Software Architecture for Arabic Language Processing SAFAR

Table 6. 2: Tool sets to generate the summary files

Each summary file divided into two subsets:

 3000 files used to create the Model and 70%-30% test.

 The rest of the files used for supervised labeled and unseen datasets

classification process.

Four ARFF files were generated for each case; the first three files are created

by using the manually selected files, which are the 70% training-set, 30% test-set, and

the 100% dataset consisting of the 30%+70% files. The last ARFF files are the

remaining 2124 files formed to suit the purpose of supervised datasets classification.

The used training-set and test-set to ensure proper operation of the manual

selection, as soon as the best value of 70-30 classification precision was gotten, the

Model file was generated, used as a classifier for Unseen data.

The model describes the information that is used when trying to deal with the

new dataset. In a simple spam detection scenario, the algorithm determines which

words seem to point to spam and which do not, by looking at annotated emails. The

lists of words then form the model.

When receiving a new email, this won't be compared with other real emails;

instead, the new email's words will be considered and checked against the model (word

lists) to see whether they seem to indicate a spam mail or not. This way, your data will

be independent from the training data. As a result, you will have a piece of knowledge

that tries to model the whole "spam vs. non-spam"-reality, the model creation is done

for each classifier in a separate file and stored in the ". /modelOut/" folder.

Eight files per classifier were created as follows (j48 and random forest were

used, for example in Table 6.3:

83

 Dataset J48 Random Forest

1 Posit 1j48.Model 1randomForest.model

2 Posit + N-GRAM 2j48.Model 2randomForest.model

3 SAFAR 3j48.Model 3randomForest.model

4 SAFAR + N-GRAM 4j48.Model 4randomForest.model

5 Posit + SAFAR 5j48.Model 5randomForest.model

6 Posit + SAFAR + Posit N-GRAM 6j48.Model 6randomForest.model

7 Posit + SAFAR + SAFAR N-GRAM 7j48.Model 7randomForest.model

8 Posit+ SAFAR + (Posit+SAFAR) N-GRAM 8j48.Model 8randomForest.model

Table 6. 3: Sample of Model file name

6.2.1 Output Specifications

Applying a model as the classifier is done in the last stage by means of GUI-

C. Therefore, the model is a file carrying prediction criteria used to classify new unseen

data. The corresponding model for each dataset will be used. Every single click is used

to do several operations and display the results before going forward to the next step.

The three-classification processes are:

i. 70-30% Classification cross validation,

ii. 100% Classification and module creation,

iii. Supervised unseen dataset classification.

The final evaluation figure results from the classification process are

summarized in three parameters, which are:

i. Accuracy.

ii. Precision,

iii. Recall, and

iv. F-measure.

All three results are derived from the confusion matrix.

A confusion matrix (Kohavi and Provost, 1998) contains information about

actual and predicted classifications carried out by a classification system. The

84

performance of such systems is commonly evaluated using the data in the matrix. The

following Table 6.4 shows a generic confusion matrix for a two-class classifier.

The entries in the confusion matrix have the following meaning in the context

of our study:

a- The class is True:

1. TP is the number of correct predictions that an instance is positive.

2. TN is the number of incorrect predictions that an instance is negative.

b- The class is False:

1. FP is the number of the wrong of predictions that an instance positive.

2. FN is the number of correct predictions that an instance is negative

Prediction

Positive (correct) Negative (Incorrect)

Class
True TP TN

False FP FN

Table 6. 4: The entries in the confusion matrix

This confusion matrix 2x2, which is used to derive the three results from the

classification process.

- Precision: this helps to calculate precision as the ratio of how many events of

the positive class were positive.

- Recall: is defined as sensitivity, and this ratio represents the ratio of the positive

events predicted correctly as positive:

- F-measure: (known as F1), is calculated as the weighted average of the

precision and recall.

85

6.3 Experiments Results

6.3.1 Results 1 (Posit dataset)

In this test, the used ARFF file created depending on summary files resulting

from the Posit dataset. Each classification process requires a training dataset and test

dataset.

 Training dataset Test dataset

1
70–30%

CLASSIFICATION.
pos_70. Arff Seen dataset: pos_30.arff

2 100 % Classification pos_100.arff Seen dataset: pos_100.arff

3 Supervised Classification.

1j48.mode

1bayes.mode

1iBk_3.mode

1smo.mode

1randomForest.mode

1randomForestR.mode

Unseen dataset:

pos_test_class.arff

Table 6. 5: Posit classification datasets

List of attributes (count = 27):

1) Total words (tokens)_pos 2) Particle_types_pos

3) Total unique words (types)_pos 4) Determiner_types_pos

5) Type/Token Ratio (TTR)_pos 6) Interjection_types_pos

7) Number of sentences_pos 8) Nouns_pos

9) Average sentence_pos length (ASL)_pos 10) Verbs_pos

11) Number of characters_pos 12) Prepositions_pos

13) Average word length (AWL)_pos 14) Adjectives_pos

15) Verb_types_pos 16) Determiners_pos

17) Noun_types_pos 18) Particles_pos

19) Adverb_types_pos 20) Possessive pronouns_pos

21) Adjective_types_pos 22) Personal pronouns_pos

23) Preposition_types_pos 24) Adverbs_pos

25) Possessive_pronoun_types_pos 26) Interjection_pos

27) Personal_pronoun_types_pos

The classification results are listed below Table 6.6, where it can be noticed

when using Posit dataset that the performance measures were higher in case of the

Random Forest classifier, while the least achieved was Naïve-Bayes classifier.

file:///D:/aamal%20private/Emad%20Rababah/proofreading%2017-1-2020/final.doc%23_bookmark39

86

Table 6.6 Posit datasets classification results.

Figure 6.1 shows test classification results obtained by applying desired

classifiers on Posit unseen datasets.

Figure 6. 1: Posit datasets classification results

The classification process for the Posit summary dataset shows the best result

achieved by Random Forest classifier for 70%-30% and 100% datasets and supervised

test for the unseen dataset.

However, Classification by Regression using Random Forest took second place

for 70%-30% and 100% datasets and the supervised test for the unseen dataset. This

is the first achieved result; these results push two classifiers to be the suitable

classifiers for Arabic text classification, and they are:

i. Random-Forest.

ii. Classification by Regression using Random-Forest.

 70-30 %. 100 % Unseen

 Prec. Recall F-Meas. Prec. Recall F-Meas. Prec. Recall F-Meas.

J48 0.971 0.971 0.971 0.975 0.975 0.975 0.703 0.660 0.672

Naïve-Bayes 0.811 0.611 0.597 0.765 0.622 0.608 0.708 0.386 0.426

KNN k=3 0.904 0.903 0.903 0.951 0.950 0.950 0.650 0.637 0.639

SVM 0.959 0.959 0.959 0.911 0.909 0.909 0.700 0.690 0.690

Rand-Forest 0.992 0.992 0.992 1.000 1.000 1.000 0.797 0.785 0.786

Classification by

Regression
0.978 0.978 0.978 0.967 0.966 0.966 0.716 0.711 0.712

87

6.3.2 Results 2 (Posit + N-Gram dataset)

In this test, the used ARFF file created depending on summary files resulting

from Posit + (Posit 2-3-4-Gram) dataset. Each classification process requires training

and test datasets.

 Training dataset Test dataset

1 70–30% Classification. posGram_70.arff Seen dataset: posGram_30.arff

2 100% Classification posGram_100.arff Seen dataset: posGram_100.arff

3 Supervised Classification.

2j48.mode

2bayes.mode

2iBk_3.mode

2smo.mode

2randomForest.mode

2randomForestR.mode

Unseen dataset:

posGram_test_class.arff

Table 6.7 Posit + N-Gram classification dataset

List of attributes (count = 36):

1) Total words (tokens)_pos 2) Verbs_pos

3) Total unique words (types)_pos 4) Prepositions_pos

5) Type/Token Ratio (TTR)_pos 6) Adjectives_pos

7) Number of sentences_pos 8) Determiners_pos

9) Average sentence_pos length (ASL)_pos 10) Particles_pos

11) Number of characters_pos 12) Possessive pronouns_pos

13) Average word length (AWL)_pos 14) Personal pronouns_pos

15) Verb_types_pos 16) Adverbs_pos

17) Noun_types_pos 18) Interjection_pos

19) Adverb_types_pos 20) Gram2low_pos

21) Adjective_types_pos 22) Gram2high_pos

23) Preposition_types_pos 24) Gram2avg_pos

25) Possessive_pronoun_types_pos 26) Gram3low_pos

27) Personal_pronoun_types_pos 28) Gram3high_pos

29) Particle_types_pos 30) Gram3avg_pos

31) Determiner_types_pos 32) Gram4low_pos

33) Interjection_types_pos 34) Gram4high_pos

35) Nouns_pos 36) Gram4avg_pos

The classification results for applying desired classifiers on Posit + n-gram

dataset are listed below Table 6.8, where it can be noticed when using Posit dataset+

88

N-Gram that the performance measures were higher in case of the Random Forest

classifier, while the least achieved was Naïve-Bayes classifier.

 70-30 %. 100 % Unseen Labeled

 Prec. Recall
F-

Meas.
Prec. Recall F-Meas. Prec. Recall

F-

Meas.

J48 0.835 0.829 0.831 0.960 0.959 0.959 0.671 0.616 0.634

Naïve-Bayes 0.770 0.583 0.534 0.730 0.577 0.515 0.615 0.314 0.326

KNN k=3 0.834 0.828 0.827 0.901 0.900 0.899 0.725 0.634 0.665

SVM 0.780 0.767 0.764 0.768 0.771 0.767 0.743 0.625 0.658

Rand-Forest 0.899 0.899 0.899 1.000 1.000 1.000 0.778 0.654 0.696

Classification

by

Regression

0.890 0.886 0.886 0.932 0.930 0.930 0.734 0.661 0.690

Table 6.8: Posit + N-Gram datasets classification results.

Figure 6.2 shows test classification results obtained by applying desired

classifiers on Posit + N-gram unseen datasets.

Figure 6. 2: Posit + N-Gram unseen datasets Classification

89

The classification process for the Posit + 2-3-4 N-Gram summary dataset

shows the best results achieved by Random Forest classifier for 70%-30% and 100%

datasets and supervised test for the unseen dataset.

However, Classification by Regression using Random Forest took the second

for 70%-30% and 100% datasets and supervised test for the unseen dataset. These

results push two classifiers to be the suitable classifiers for Arabic text classification,

and they are:

i. Random-Forest.

ii. Classification by Regression using Random Forest.

90

6.3.3 Results 3 (SAFAR dataset)

In this test, the used ARFF file created depending on summary files resulting

from the SAFAR dataset. Each classification process requires a training dataset and

test dataset.

 Training dataset Test dataset

1 70–30% Classification. safar_70.arff Seen dataset: safar_30.arff

2 100 % Classification safar_100.arff Seen dataset: safar_100.arff

3 Supervised Classification.

3j48.mode

3bayes.mode

3iBk_3.mode

3smo.mode

3randomForest.mode

3randomForestR.mode

Unseen dataset: safar_test_class. Arff

Table 6.9: SAFAR classification datasets

List of attributes (count =31):

1) Number of characters_arab 2) Double Count_arab

3) Total words (tokens)_arab 4) Plural Count_arab

5) Total unique words (types)_arab 6) Masculine Count_arab

7) Number of sentences_arab 8) Feminine Count_arab

9) Type/Token Ratio (TTR)_arab 10) MojarradCount_arab

11) Average sentence length (ASL)_arab 12) MazeedCount_arab

13) Average word length (AWL)_arab 14) LazemCount_arab

15) Verb POS Type Count_arab 16) Mota3adi Count_arab

17) Noun POS Type Count_arab 18) Mota3adi_w_Lazem Count_arab

19) NakiraCount_arab 20) verb_types_arab

21) Ma3rifa Count_arab 22) noun_types_arab

23) ModafCount_arab 24) particle_types_arab

25) Marfo3 Count_arab 26) verbs_arab

27) MansobCount_arab 28) nouns_arab

29) MajrorCount_arab 30) Particl

31) Singular Count_arab

The following table lists the classification results from this experiment.

91

 70-30 %. 100 % Unseen Labeled

 Prec. Recall
F-

Meas.
Prec. Recall F-Meas. Prec. Recall

F-

Meas.

J48 0.835 0.829 0.831 0.960 0.959 0.959 0.671 0.616 0.634

Naïve-Bayes 0.770 0.583 0.534 0.730 0.577 0.515 0.615 0.314 0.326

KNN k=3 0.834 0.828 0.827 0.901 0.900 0.899 0.725 0.634 0.665

SVM 0.780 0.767 0.764 0.768 0.771 0.767 0.743 0.625 0.658

Rand-Forest 0.899 0.899 0.899 1.000 1.000 1.000 0.778 0.654 0.696

Classification

by

Regression

0.890 0.886 0.886 0.932 0.930 0.930 0.734 0.661 0.690

Table 6.10: SAFAR datasets classification results

Figure 6.3 shows test classification results obtained by applying desired

classifiers on SAFAR unseen datasets, where it can be noticed when using SAFAR

dataset that the performance measures were higher in case of the Random Forest

classifier, while the least achieved was Naïve-Bayes classifier.

Figure 6. 3: SAFAR unseen datasets Classification

92

The classification process for the SAFAR summary dataset shows the best

result achieved by the Random Forest classifier for 70%-30% and 100% datasets and

supervised test for the unseen dataset.

However, SVM took the second for 70%-30% and 100% datasets and

supervised tests for the unseen dataset. These results push two classifiers to be the

suitable classifiers for Arabic text classification, and they are:

i.Random Forest.

ii.SVM

93

6.3.4 Result 4 (SAFAR + N-Gram dataset)

In this test, the used ARFF file created depending on summary files resulting from

SAFAR + (SAFAR 2-3-4-Gram) dataset. Each classification process requires a training

dataset and test dataset.

 Training dataset Test dataset

1
70–30%

Classification.
safarGram_70.arff Seen dataset: safarGram_30.arff

2
100 %

Classification.
safarGram_100.arff Seen dataset: safarGram_100.arff

3
Supervised

Classification.

4j48.mode

4bayes.mode

4iBk_3.mode

4smo.mode

4randomForest.mode

4randomForestR.mode

Unseen dataset:

safarGram_test_class.arff

Table 6.11: SAFAR+N-Gram classification dataset

List of attributes (count = 40):

1) Number of characters_arab 2) MojarradCount_arab

3) Total words (tokens)_arab 4) MazeedCount_arab

5) Total unique words (types)_arab 6) LazemCount_arab

7) Number of sentences_arab 8) Mota3adi Count_arab

9) Type/Token Ratio (TTR)_arab 10) Mota3adi_w_Lazem Count_arab

11) Average sentence length

(ASL)_arab

12) verb_types_arab

13) Average word length (AWL)_arab 14) noun_types_arab

15) Verb POS Type Count_arab 16) particle_types_arab

17) Noun POS Type Count_arab 18) verbs_arab

19) NakiraCount_arab 20) nouns_arab

21) Ma3rifa Count_arab 22) particles_arab

23) ModafCount_arab 24) arab_gram2low

25) Marfo3 Count_arab 26) arab_gram2high

27) MansobCount_arab 28) arab_gram2avg

29) MajrorCount_arab 30) arab_gram3low

31) Singular Count_arab 32) arab_gram3high

33) Double Count_arab 34) arab_gram3avg

35) Plural Count_arab 36) arab_gram4low

37) Masculine Count_arab 38) arab_gram4high

39) Feminine Count_arab 40) arab_gram4av

The classification results are listed in the following table:

 70-30 %. 100 % Unseen Labeled

 Prec. Recall
F-

Meas.
Prec. Recall

F-

Meas.
Prec.

E-

call

F-

Meas.

J48 0.944 0.940 0.940 0.980 0.980 0.980 0.673 0.647 0.652

Naïve-Bayes 0.777 0.640 0.626 0.748 0.650 0.632 0.674 0.438 0.495

94

KNN k=3 0.906 0.903 0.903 0.939 0.937 0.937 0.734 0.657 0.684

SVM 0.906 0.893 0.893 0.905 0.900 0.899 0.717 0.665 0.679

Rand-Forest 0.990 0.990 0.990 1.000 1.000 1.000 0.805 0.771 0.783

Classification by

Regression
0.977 0.977 0.977 0.966 0.965 0.965 0.745 0.739 0.742

 Table 6.12: SAFAR+ n-gram datasets classification results

Figure 6.4 show test classification results obtained by applying desired classifiers on

SAFAR + N-Gram unseen datasets , where it can be noticed when using SAFAR + N-

Gram dataset that the performance measures were higher in case of the Random Forest

classifier, while the least achieved was Naïve-Bayes classifier.

Figure 6. 4: SAFAR + N-Gram datasets supervised classification results

The classification process for SAFAR + N-gram summary dataset shows the

best result achieved by Random Forest classifier for 70%-30% and 100% datasets and

supervised test for the unseen dataset.

However, Classification by Regression using Random Forest took the second

for 70%-30% and 100% datasets and supervised test for the unseen dataset.

These results present two classifiers as suitable for Arabic text classification,

namely:

i. Random Forest

ii. Classification by Regression

95

6.3.5 Result 5 (Posit+SAFAR dataset)

In this test, the used ARFF file created depending on summary files resulting from

Posit+ SAFAR dataset. Each classification process requires a training dataset and test dataset.

 Training dataset Test dataset

1
70–30%

Classification.
total_70.arff Seen dataset: total_30.arff

2
100 %

Classification.
total_100.arff Seen dataset: total_100.arff

3
Supervised

Classification.

51j48.mode

5bayes.mode

5iBk_3.mode

5smo.mode

5randomForest.mode

5randomForestR.mode

Unseen dataset:

total_test_class. Arff

Table 6.13: Posit +SAFAR classification dataset

List of attributes (count = 58):

1) Total work (tokens)_pos 2) Total unique words (types)_arab

3) Total unique words (types)_pos 4) Number of sentences_arab

5) Type/Token Ratio (TTR)_pos 6) Type/Token Ratio (TTR)_arab

7) Number of sentences_pos 8) Average sentence length (ASL)_arab

9) Average sentence_pos length (ASL)_os 10) Average word length (AWL)_arab

11) Number of characters_pos 12) Verb POS Type Count_arab

13) Average word length (AWL)_pos 14) Noun POS Type Count_arab

15) Verb_types_pos 16) NakiraCount_arab

17) Noun_types_pos 18) Ma3rifa Count_arab

19) Adverb_types_pos 20) ModafCount_arab

21) Adjective_types_pos 22) Marfo3 Count_arab

23) Preposition_types_pos 24) MansobCount_arab

25) Possessive_pronoun_types_pos 26) MajrorCount_arab

27) Personal_pronoun_types_pos 28) Singular Count_arab

29) Particle_types_pos 30) Double Count_arab

31) Determiner_types_pos 32) Plural Count_arab

33) Interjection_types_pos 34) Masculine Count_arab

35) Nouns_pos 36) Feminine Count_arab

37) Verbs_pos 38) MojarradCount_arab

39) Prepositions_pos 40) MazeedCount_arab

41) Adjectives_pos 42) LazemCount_arab

43) Determiners_pos 44) Mota3adi Count_arab

45) Particles_pos 46) Mota3adi_w_Lazem Count_arab

47) Possessive pronouns_pos 48) Verb_types_arab

49) Personal pronouns_pos 50) Noun_types_arab

51) Adverbs_pos 52) Particle_types_arab

53) Interjection_pos 54) Verbs_arab

55) Number of characters_arab 56) Nouns_arab

57) Total words (tokens)_arab 58) Particles_arab

59)

96

The following Table 6.14 and Figure 6.5 show the classification results for this

experiment, where it can be noticed when using Posit+ SAFAR dataset that the

performance measures were higher in case of the Random Forest classifier, while the

least achieved was Naïve-Bayes classifier.

 70-30 %. 100 % Unseen Labeled

 Prec. Recall
F-

Meas.
Prec. Recall F-Meas. Prec. Recall

F-

Meas.

J48 0.952 0.950 0.950 0.980 0.979 0.979 0.757 0.742 0.745

Naïve-Bayes 0.805 0.611 0.582 0.763 0.612 0.580 0.711 0.380 0.420

KNN k=3 0.942 0.942 0.942 0.958 0.957 0.957 0.728 0.675 0.687

SVM 0.984 0.983 0.983 0.949 0.947 0.947 0.755 0.754 0.754

Rand-Forest 0.993 0.993 0.993 1.000 1.000 1.000 0.872 0.864 0.867

Classification

by

Regression

0.890 0.886 0.886 0.932 0.930 0.930 0.734 0.661 0.690

Table 6. 14: Posit +SAFAR datasets classification results

Figure 6. 5: Posit +SAFAR datasets classification results

The classification process for the Posit + SAFAR summary dataset shows the

best result achieved by Random Forest classifier for 70%-30% and 100% datasets and

supervised test for the unseen dataset.

97

However, Classification by Regression using Random Forest took the second

for 70%-30% and 100% datasets and supervised test for the unseen dataset. These

results push two classifiers to be the suitable classifiers for Arabic text classification,

and they are:

i. Random Forest.

ii. Classification by Regression using Random Forest.

Rand Forest continues to maintain the lead with a value less than 90%.

Classification by Regression ranks second by a significant margin.

98

6.3.6 Result 6 (POSIT+SAFAR) + Posit N-Gram dataset

In this test, the used ARFF file created depending on summary files resulting

from (Posit+SAFAR) + (Posit 2-3-4-Gram) dataset. Each classification process

requires a training dataset and test dataset.

 Training dataset Test dataset

1 70–30% Classification. total_pGram_70.arff Seen dataset: total_pGram_30.arff

2 100 % Classification total_pGram_100.arff Seen dataset: total_pGram_100.arff

3 Supervised Classification.

6j48.mode

6bayes.mode

6iBk_3.mode

6smo.mode

6randomForest.mode

6randomForestR.mode

Unseen dataset:

total_pGram_test_class. Arff

Table 6.15 (Posit+SAFAR) + Posit N-Gram classification dataset

List of attributes (count = 67):

1) Total word (tokens)_pos 2) Verb POS Type Count_arab

3) Total unique words(types)_pos 4) Noun POS Type Count_arab

5) Type/Token Ratio (TTR)_pos 6) NakiraCount_arab

7) Number of sentences_pos 8) Ma3rifa Count_arab

9) Average sentence_pos length (ASL)_pos 10) ModafCount_arab

11) Number of characters_pos 12) Marfo3 Count_arab

13) Average word length (AWL)_pos 14) MansobCount_arab

15) Verb_types_pos 16) MajrorCount_arab

17) Noun_types_pos 18) Singular Count_arab

19) Adverb_types_pos 20) Double Count_arab

21) Adjective_types_pos 22) Plural Count_arab

23) Preposition_types_pos 24) Masculine Count_arab

25) Possessive_pronoun_types_pos 26) Feminine Count_arab

27) Personal_pronoun_types_pos 28) MojarradCount_arab

29) Particle_types_pos 30) MazeedCount_arab

31) Determiner_types_pos 32) LazemCount_arab

33) Interjection_types_pos 34) Mota3adi Count_arab

35) Nouns_pos 36) Mota3adi_w_Lazem Count_arab

37) Verbs_pos 38) Verb_types_arab

39) Prepositions_pos 40) Noun_types_arab

41) Adjectives_pos 42) Particle_types_arab

43) Determiners_pos 44) Verbs_arab

45) Particles_pos 46) Nouns_arab

47) Possessive pronouns_pos 48) Particles_arab

49) Personal pronouns_pos 50) Gram2low_pos

51) Adverbs_pos 52) Gram2high_pos

53) Interjection_pos 54) Gram2avg_pos

55) Number of characters_arab 56) Gram3low_pos

57) Total words (tokens)_arab 58) Gram3high_pos

99

59) Total unique words (types)_arab 60) Gram3avg_pos

61) Number of sentences_arab 62) Gram4low_pos

63) Type/Token Ratio (TTR)_arab 64) Gram4high_pos

65) Average sentence length (ASL)_arab 66) Gram4avg_pos

67) Average word length (AWL)_arab

The classification results for this experiment are shown in Table 6.16, where it

can be noticed when using (Posit+SAFAR) + (Posit 2-3-4-Gram) dataset that the

performance measures were higher in case of the Random Forest classifier, while the

least achieved was Naïve-Bayes classifier.

Table 6.16: (Posit+SAFAR) + Posit N-Gram datasets classification results.

Figure 6.6 show test classification results obtained by applying desired

classifiers on Posit + SAFAR + (Pos. N-Gram) unseen datasets.

 70-30 %. 100 % Unseen Labeled

 Prec. Recall F-Meas. Prec. Recall F-Meas. Prec. Recall F-Meas.

J48 0.960 0.960 0.960 0.982 0.982 0.982 0.764 0.752 0.754

Naïve-Bayes 0.805 0.644 0.637 0.759 0.638 0.623 0.691 0.428 0.488

KNN k=3 0.941 0.940 0.940 0.954 0.952 0.952 0.718 0.662 0.679

SVM 0.987 0.987 0.987 0.951 0.949 0.949 0.747 0.745 0.746

Rand-Forest 0.993 0.993 0.993 1.000 1.000 1.000 0.904 0.894 0.896

Classification by

Regression
0.977 0.977 0.977 0.973 0.972 0.972 0.797 0.790 0.791

100

Figure 6. 6: (Posit+SAFAR) + Posit N-Gram datasets classification results

The classification process for (Posit+SAFAR) + Posit N-Gram summary

dataset shows the best result achieved by Random Forest classifier for 70%-30% and

100% datasets and supervised test for the unseen dataset. However, Classification by

Regression using the Random Forest took a second place for 70%-30% and 100%

datasets and a supervised test for the unseen dataset. These results push two classifiers

to be the suitable classifiers for Arabic text classification, which are:

i. Random Forest.

ii. Classification by Regression using Random Forest.

Adding Posit N-Gram attributes to (Posit + SAFAR) attributes enhances

precision up to 90%. These results are archived by Random Forest. Classification by

Regression precision keeps its values unchanged but holds the second position.

101

6.3.7 Result 7 (Posit+SAFAR) + SAFAR N-Gram dataset

In this experiment, the used ARFF file created depending on summary files

resulting from (Posit+SAFAR) + (SAFAR 2-3-4-Gram) dataset. Each classification

process requires a training dataset and test dataset.

 Training dataset Test dataset

1 70–30% Classification. total_sGram_70.arff Seen dataset:

total_sGram_30.arff

2 100 % Classification total_sGram_100.arff Seen dataset:

total_sGram_100.arff

3 Supervised Classification. 6j48.mode

6bayes.mode

6iBk_3.mode

6smo.mode

6randomForest.mode

6randomForestR.mode

Unseen dataset:

total_sGram_test_class. Arff

Table 6.17: (Posit+SAFAR) + SAFAR N-Gram classification dataset

List of attributes (count = 67):

1) Total words (tokens)_pos 2) Verb POS Type Count_arab

3) Total unique words (types)_pos 4) Noun POS Type Count_arab

5) Type/Token Ratio (TTR)_pos 6) NakiraCount_arab

7) Number of sentences_pos 8) Ma3rifa Count_arab

9) Average sentence_pos length (ASL)_pos 10) ModafCount_arab

11) Number of characters_pos 12) Marfo3 Count_arab

13) Average word length (AWL)_pos 14) MansobCount_arab

15) Verb_types_pos 16) MajrorCount_arab

17) Noun_types_pos 18) Singular Count_arab

19) Adverb_types_pos 20) Double Count_arab

21) Adjective_types_pos 22) Plural Count_arab

23) Preposition_types_pos 24) Masculine Count_arab

25) Possessive_pronoun_types_pos 26) Feminine Count_arab

27) Personal_pronoun_types_pos 28) MojarradCount_arab

29) Particle_types_pos 30) MazeedCount_arab

31) Determiner_types_pos 32) LazemCount_arab

33) Interjection_types_pos 34) Mota3adi Count_arab

35) Nouns_pos 36) Mota3adi_w_Lazem Count_arab

37) Verbs_pos 38) Verb_types_arab

39) Prepositions_pos 40) Noun_types_arab

41) Adjectives_pos 42) Particle_types_arab

43) Determiners_pos 44) Verbs_arab

45) Particles_pos 46) Nouns_arab

47) Possessive pronouns_pos 48) Particles_arab

49) Personal pronouns_pos 50) Arab_gram2low

51) Adverbs_pos 52) Arab_gram2high

53) Interjection_pos 54) Arab_gram2avg

55) Number of characters_arab 56) Arab_gram3low

102

57) Total words (tokens)_arab 58) Arab_gram3high

59) Total unique words (types)_arab 60) Arab_gram3avg

61) Number of sentences_arab 62) Arab_gram4low

63) Type/Token Ratio (TTR)_arab 64) Arab_gram4high

65) Average sentence length (ASL)_arab 66) Arab_gram4av

67) Average word length (AWL)_arab

The classification results for this experiment are shown in Table 6.18, where it

can be noticed when using (Posit+SAFAR) + (SAFAR 2-3-4-Gram) dataset that the

performance measures were higher in case of the Random Forest classifier, while the

least achieved was Naïve-Bayes classifier.

Table 6.18: (Posit+SAFAR) + SAFAR N-Gram datasets classification results

Figure 6.7 show test classification results obtained by applying desired

classifiers on Posit + SAFAR (SAFAR N-Gram) unseen datasets.

 70-30 %. 100 % Unseen Labeled

 Prec. Recall
F-

Meas.
Prec. Recall

F-

Meas.
Prec. Recall

F-

Meas.

J48 0.962 0.962 0.962 0.979 0.979 0.979 0.776 0.768 0.766

Naïve-Bayes 0.799 0.646 0.637 0.764 0.654 0.640 0.692 0.435 0.495

KNN k=3 0.947 0.947 0.946 0.955 0.954 0.954 0.717 0.650 0.667

SVM 0.985 0.984 0.984 0.949 0.947 0.947 0.758 0.756 0.757

Rand-Forest 0.993 0.993 0.993 1.000 1.000 1.000 0.890 0.886 0.887

Classification

by Regression
0.968 0.967 0.967 0.972 0.971 0.971 0.786 0.778 0.779

103

Figure 6. 7: (Posit+SAFAR) + SAFAR N-Gram classification results

The classification process for (Posit+SAFAR) + SAFAR N-Gram summary

dataset shows the best result achieved by Random Forest classifier for 70%-30% and

100% datasets and supervised test for the unseen dataset. However, Classification by

Regression using Random Forest took the second place for 70%-30% and 100%

datasets and supervised test for the unseen dataset. These results push two classifiers

to be the suitable classifiers for Arabic text classification, and they are:

i. Random Forest.

ii. Classification by Regression using Random Forest.

The use of the SAFAR N-Gram attributes in addition to (Posit+SAFAR)

attributes has led to low precision with each classifier retaining its position. Random-

Forest classifier keeps the first position, and classification by Regression stays in the

second position.

104

6.3.8 Result 8 (Posit+SAFAR) + (Posit+SAFAR) N-Gram dataset

In this test, the used ARFF file created depending on summary files resulting

from (Posit+SAFAR) + (Posit+SAFAR) N-Gram dataset. Each classification process

requires a training dataset and test dataset.

 Training dataset Test dataset

1 70–30% Classification. total_psGram_70.arff
Seen dataset:

total_psGram_30.arff

2 100 % Classification total_psGram_100.arff
Seen dataset:

total_psGram_100.arff

3 Supervised Classification.

6j48.mode

6bayes.mode

6iBk_3.mode

6smo.mode

6randomForest.mode

6randomForestR.mode

Unseen dataset:

total_psGram_test_class.arff

Table 6.19: (Posit+SAFAR) + (Posit+SAFAR) N-Gram classification dataset

List of attributes (count = 76):

1) Total words (tokens)_pos 2) ModafCount_arab

3) Total unique words (types)_pos 4) Marfo3 Count_arab

5) Type/Token Ratio (TTR)_pos 6) MansobCount_arab

7) Number of sentences_pos 8) MajrorCount_arab

9) Average sentence_pos length (ASL)_pos 10) Singular Count_arab

11) Number of characters_pos 12) Double Count_arab

13) Average word length (AWL)_pos 14) Plural Count_arab

15) Verb_types_pos 16) Masculine Count_arab

17) Noun_types_pos 18) Feminine Count_arab

19) Adverb_types_pos 20) MojarradCount_arab

21) Adjective_types_pos 22) MazeedCount_arab

23) Preposition_types_pos 24) LazemCount_arab

25) Possessive_pronoun_types_pos 26) Mota3adi Count_arab

27) Personal_pronoun_types_pos 28) Mota3adi_w_Lazem Count_arab

29) Particle_types_pos 30) Verb_types_arab

31) Determiner_types_pos 32) Noun_types_arab

33) Interjection_types_pos 34) Particle_types_arab

35) Nouns_pos 36) Verbs_arab

37) Verbs_pos 38) Nouns_arab

105

39) Prepositions_pos 40) Particles_arab

41) Adjectives_pos 42) Gram2low_pos

43) Determiners_pos 44) Gram2high_pos

45) Particles_pos 46) Gram2avg_pos

47) Possessive pronouns_pos 48) Gram3low_pos

49) Personal pronouns_pos 50) Gram3high_pos

51) Adverbs_pos 52) Gram3avg_pos

53) Interjection_pos 54) Gram4low_pos

55) Number of characters_arab 56) Gram4high_pos

57) Total words (tokens)_arab 58) Gram4avg_pos

59) Total unique words (types)_arab 60) Arab_gram2low

61) Number of sentences_arab 62) Arab_gram2high

63) Type/Token Ratio(TTR)_arab 64) Arab_gram2avg

65) Average sentence length (ASL)_arab 66) Arab_gram3low

67) Average word length (AWL)_arab 68) Arab_gram3high

69) Verb POS Type Count_arab 70) Arab_gram3avg

71) Noun POS Type Count_arab 72) Arab_gram4low

73) NakiraCount_arab 74) Arab_gram4high

75) Ma3rifa Count_arab 76) Arab_gram4av

Table 6.20 and Figure 6.8 below show the classification results for this test,

where it can be noticed when using (Posit+SAFAR) + (Posit+SAFAR) N-Gram

dataset that the performance measures were higher in case of the Random Forest

classifier, while the least achieved was Naïve-Bayes classifier.

 70-30 %. 100 % Unseen Labeled

 Prec. Recall
F-

Meas.
Prec. Recall F-Meas. Prec. Recall

F-

Meas.

J48 0.949 0.948 0.948 0.982 0.982 0.982 0.763 0.750 0.752

Naïve-Bayes 0.803 0.661 0.658 0.767 0.678 0.672 0.691 0.456 0.514

KNN k=3 0.935 0.934 0.934 0.953 0.952 0.952 0.716 0.651 0.669

SVM 0.982 0.981 0.981 0.950 0.948 0.949 0.771 0.772 0.771

Rand-Forest 0.993 0.993 0.993 1.000 1.000 1.000 0.954 0.953 0.952

Classification

by

Regression

0.971 0.970 0.970 0.974 0.973 0.973 0.788 0.779 0.780

Table 6. 20: (Posit+SAFAR) + (Posit+SAFAR) N-Gram datasets classification

106

Figure 6.8 shows test classification results obtained by applying desired

classifiers on Posit + SAFAR (Posit + SAFAR N-Gram) unseen datasets.

Figure 6. 8: (Posit+SAFAR) + (Posit+SAFAR) N-Gram datasets classification results

The classification process for (Posit+SAFAR) + (Posit+ SAFAR N-Gram)

summary dataset shows the best results achieved by Random Forest classifier for 70%-

30%, 100%, and Supervised datasets. However, Classification by Regression using

Random Forest took the second for 70%-30% and 100% datasets and supervised test

for the unseen dataset. Finally, the accuracy exceeded 90% to 95% - such results were

reached by the Random-Forest classifier applied on (Posit+SAFAR having 58

attributes) attributes, in addition to (Posit+SAFAR N-Gram having 18 attribute) a total

of 76 attributes.

After applying classifiers on different datasets resulting from different toolsets

(Posit, SAFAR) either with or without adding N-Gram attributes, all collected results

from the different combinations of datasets and these are described in the next section.

107

6.4 Test Results Summary

A review of unseen dataset test only to summarize the final results for useful

information.

6.4.1 Final Posit datasets discussion

Table 6.21 shows Posit dataset classification best results.

Supervised

 Prec. Recall F-Meas.

Posit Rand-Forest 0.797 0.785 0.786

Posit+ N-Gram Rand-Forest 0.840 0.831 0.832

Table 6. 21: Posit Classification Results

By adding the N-Gram attributes to the Posit attribute, the Random Forest

classifier dominated over other classifiers with considerable value (about 5%) for the

supervised dataset.

6.4.2 Final SAFAR dataset discussion

Table 6.22 show Posit dataset classification best results.

Supervised

 Prec. Recall F-Meas.

SAFAR Rand-Forest 0.778 0.654 0.696

SAFAR + N-Gram Rand-Forest 0.805 0.771 0.783

Table 6. 22: SAFAR Classification Results

The above results show that less precision of 80% for SAFAR + N-Gram

dataset. SAFAR dataset without N-Gram attribute offers lower precision by about 3%.

108

6.4.3 Posit + SAFAR dataset discussion

Table 6.23 show Posit + SAFAR datasets classification results:

Supervised

 Classifier Prec. Recall F-Meas.

Posit+SAFAR Rand-Forest 0.872 0.864 0.867

Posit+SAFAR + (Posit N-Gram) Rand-Forest 0.904 0.894 0.896

Posit+SAFAR + (SAFAR N-Gram) Rand-Forest 0.890 0.886 0.887

Posit+SAFAR + (Posit+SAFAR N-Gram) Rand-Forest 0.954 0.953 0.952

Table 6. 23: Posit+SAFAR best Classification Results

Results show the minimum precision of 87.2% for (Posit+SAFAR) dataset and

best precision by using the Posit+SAFAR + (Posit+SAFAR N-Gram) dataset of value

95.4%.

6.4.4 Final Results

Here the best results from all tests and achieved the best performance (Precision

= 95%, Recall = 95%, F-Measure = 95%) by applying Random Forest classifier on

(Posit+SAFAR) + (Posit+SAFAR) N-Gram. Table 6.24 shows the classifier results

sorted in ascending order of performance.

Supervised

 Prec. Recall F-Meas.

(Posit+SAFAR) +

(Posit+SAFAR) N-Gram
Rand-Forest 0.95 0.95 0.95

Posit + SAFAR + (Posit 2-3-

4 Gram)
Rand-Forest 0.90 0.89 0.9

Posit + SAFAR + (SAFAR 2-

3-4 Gram)
Rand-Forest 0.89 0.89 0.89

Posit + SAFAR Rand-Forest 0.87 0.86 0.87

Posit + N-Gram Rand-Forest 0.84 0.83 0.83

SAFAR + N-Gram Rand-Forest 0.81 0.77 0.78

Posit Rand-Forest 0.80 0.79 0.79

SAFAR Rand-Forest 0.78 0.65 0.7

Table 6. 24: All datasets Classification sorted results

109

6.5 Discussion

Many researchers have tried to obtain the optimum classification algorithm for

different languages, especially Arabic. The common toolkit was set up, Posit, to work

for the Arabic language. This helped enhance the overall process by finding more than

one toolkit to extract meaningful quantum information from Arabic text. The use of

N-Gram was another way to process the amount of information used to learn the

parameters of attributes and to calculate the prediction of unseen data. WEKA data

processing environment is a rich environment for the Random Forest classification

algorithm.

Comparison

A similar approach to classification task is reported in the following sections:

1. (Aldayel & Azmi, 2016)

Algorithm used: Hybrid approach classifier for the Arabic language. The

approach is based on using lexical classifier for training data for the SVM classifier.

Lexical classifier. Used for first step classification to produce the training dataset for

model creation. Dataset: 1103 tweets (576 positives, 527 negatives).

Then the SVM classifier was used for classification of an unclassified dataset.

The hybrid classifier (Lexical + SVM) produce results as follows:

 Prec. Recall F-Meas. Accuracy

Tweet datasets Lexical + SVM 0.847 0. 838 0. 840

Table 6. 25: Tweet Classification

Our observations:

This research uses a lexical classifier for learning datasets rather than manual

classification to apply the SVM classifier to classify the unseen tweets dataset. This

combination enhances the overall operation.

Note: Accuracy is determined by:

110

2. (Shoukry & Rafea, 2012) worked to process tweets to provide their sentiments

polarity (positive or negative). SVM and Naïve Bayes (NB) used for both training and

classification, one by one. Dataset: 1000 tweets (500 positives, 500 negatives). Results

obtained were as follows:

 Classifier Prec. Recall F-Meas. Accuracy

Tweet datasets (Unigrams and

Bigrams)
SVM 0.726 0.728 0.726 0.725

Tweet datasets (Unigrams and

Bigrams) Naïve Bayes 0.652 0.652 0.652 0.652

Table 6. 26: Sentence Level Arabic Sentiment (1-2 grams) SVM and Naïve Bayes

Our observations:

This research use sentiments classification to produce a learning dataset and

supervised test for unseen tweets dataset using two different classification algorithms.

SVM gave better results over Naïve Bayes by 7.4%.

3. Its Arabic sentiment considers normalization , stemming, and stop word removal

for datasets(during the preprocessing phase) (Shoukry & Rafea, 2012). SVM is

used for both training and classification. Dataset: 1000 tweets (500 positives, 500

negative). Results obtained are as follows:

Supervised

Dataset Classifier Accuracy Recall F-Meas. Prec.

Unigrams - raw tweets SVM 0.740 0.740 0.740 0.740

Unigrams – normalized tweets SVM 0.756 0.756 0.756 0.756

Unigrams + Bigrams + Trigrams

stemmed tweets
SVM 0.787 0.787 0.787 0.787

Unigrams + Bigrams + Trigrams

after stop words removal
SVM 0.788 0.788 0.788 0.788

Table 6. 27: Sentence Level Arabic Sentiment (2-3 grams) SVM (normalization, stemming, and stop

words removal)

Our observations:

Adding 2-3-4 Gram information enriches the training and test datasets.

Preprocessing enhances the classification process by different factors.

4. (El-Halees, 2015)

111

Algorithm used: combined approach for Arabic language classification in the

beginning, the lexicon-based method is used to classify as many documents as

possible. The resultant classified documents are used as a training set for the maximum

entropy method, which subsequently classifies some other documents. Finally, the k-

nearest method used the classified documents from the lexicon-based method and

maximum entropy as a training set and classified the rest of the documents (El-Halees,

2015)

Dataset: 949 tweets (415 positives, 534 negatives) belong to "education", "politics"

and "sports" categories. Results collected as follows:

 Lexical Lexical + ME Lexical +ME + kNN

Accuracy 50.08 60.73 80.29

Dataset Classifier Prec. Recall F-Meas.

Politics Sports

Education datasets

Lexical + Maximum

Entropy + k-nearest
80.7 79.805 79.895

Table 6. 28: combined approach for Arabic language classification

Our observations:

A combined classification (Lexical + Maximum Entropy + k-nearest) approach

enhances classifier accuracy.

Observing the last 4 types of research, the researcher is going forward for the

Arabic classification process, which is considered to be an NP-complete problem

(nondeterministic polynomial time)

[https://www.ics.uci.edu/~eppstein/161/960312.html].

The overview shows that the researcher's results reach an acceptably high level

of precision by using different ways of data preprocessing thereby enriching the input

data by adding N-Gram or classifying by multiple classifiers. In the following Table

6.28 a comparison of results to reviewed researches results.

112

 Prec. Recall
F-

Meas.
Accuracy

1 Tweet datasets Lexical + SVM 0.847 0. 838 0. 840

2

Tweet datasets (Unigrams and

Bigrams)
SVM 0.726 0.728 0.726 0.725

Tweet datasets (Unigrams and

Bigrams) Naïve Bayes 0.652 0.652 0.652 0.652

3

Unigrams - raw tweets SVM 0.740 0.740 0.740 0.740

Unigrams – normalized tweets SVM 0.756 0.756 0.756 0.756

Unigrams + Bigrams +

Trigrams

stemmed tweets

SVM 0.787 0.787 0.787 0.787

Unigrams + Bigrams +

Trigrams

after stop words removal

SVM 0.788 0.788 0.788 0.788

4
Politics Sports Education

datasets

Lexical +

Maximum

Entropy + k-

nearest

80.7 79.805 79.895

5
(POSIT+SAFAR) +

(POSIT+SAFAR) N-Gram
Rand-Forest 0.95 0.95 0.95

Table 6. 29: comparing other classification results to our classification methodology

Our approach depends on manual classification for the training dataset (70% +

30% seen dataset) to ensure the best results. Note that the process of manual

classification is time consuming, especially if it is carried out on several thousand text

files. This is also influenced by the scientific level and culture of those involved in the

process of manual classification. After manual classification, the text-processing

toolkit was applied in order to build datasets for the training and classification process.

Attribute data is extracted by two different toolkits (Posit & SAFAR), which build

information obtained from text files.

 Unseen Datasets:

The Random Forest algorithm used for creating a classification model

employing a carefully and manually classified dataset gives us the best results over

other classification techniques.

113

Algorithm Dataset Prec. Recall F-Meas.

1
Random

Forest

Posit + SAFAR + (Posit + SAFAR

N-Gram)
0.95 0.953 0.952

2
RF Via

Regression
Posit+ SAFAR + (Posit N-Gram) 0.80 0.79 0.791

3 J48 Posit+ SAFAR + (SAFAR N-Gram) 0.78 0.768 0.766

4 SVM
Posit + SAFAR + (Posit + SAFAR N-

Gram)
0.77 0.771 0.771

5 IBk_3 SAFAR + N-Gram 0.73 0.657 0.684

6 Naïve Bayes Posit + SAFAR 0.71 0.38 0.42

Table 6. 30: Random Forest classifier against some other classifiers

The Random Forest algorithm gave the best result against the manually

classified dataset (Posit + SAFAR toolkits) and other algorithms with a precision of

0.95. Other algorithms (RF via Regression, J48, SVM, IBk_3, Naïve Bayes) show

good results with different datasets, all undergoing manual classification with results

of (0.71-0.80).

6.6 Summary

Our discussion shows that using a full details dataset adding all attributes

extracted by both Posit and SAFAR techniques and 2-3-4-gram attributes help improve

the prediction of an unseen dataset using supervised classification Random Forest

classifier. The quantitative approach gave very surprising and impressive results in the

classification.

114

CHAPTER SEVEN: CONCLUSION AND FUTURE

WORK

7.1 Conclusion

The impact of sites that encourage terrorism can be minimized, whether they

directly express their intentions or indirectly promote extremist ideas to influence

those with moderate views or extreme tendencies. Detecting the intentions of these

sites cannot be done manually, there are millions of pages that contain articles,

comments, and recorded reactions, that would make the task impossible.

Therefore, we have developed a mechanism to predict the message embedded

into texts written in Arabic. In this research, we have discussed most of the algorithms

used for text processing and have found the best way of predicting anti, neutral, and

pro-terrorism sites. Those algorithms can be used to identify the classification of text

files collected from different sites to determine whether they are encouraging terrorism

or condemning it.

In this research, we have tested several methods of classification to find the

best algorithm to classify text files and determine whether they encourage terrorism or

not. The first step to undertake file classification is the manual classification process.

We have tested the idea of classification based on the overall message of the text . This

process leads to fewer predictions since all the files come from different ideologies

and are written by different writers. In truth, files have been found to contain a mix of

words and statements used, in different contexts, by both sides, anti and pro-terrorism.

a. The steps used to reach optimal results are as follows:

1. First: Collect text information from different sites with different ideas (Pro –

Anti - Neutral).

2. Second: Use different text processing software (machine learning) to extract

text information from the collected text.

115

b. To do so, we have used two different text processing toolsets:

1. Posit Profiling Toolset: we have used POS for text analysis; for this reason, we have

made some modifications to suit the uniqueness of the Arabic language. The Posit

toolset targets three related aspects of textual analysis, comprising individual

software modules whose operations may be combined.

i. The first of these modules focuses on parts-of-speech (POS) and performs

analysis of a given text corpus to derive statistics on the POS characteristics of

that text. This component is known as the POS Profiler.

ii. The second module of the toolset is the Vocabulary Profiler. Based upon the

statistical data output by the POS Profiler, the Vocabulary Profiler can determine

the relative frequency of occurrence for vocabulary items in the selected corpus.

This frequency data may be compared to a reference set of frequency data (derived

from the British National Corpus) to pinpoint unusual word occurrences or

individual terms whose use is likely to prove unfamiliar to English readers.

iii. The third toolset module (presently under development) is the Readability

Profiler. This software component will focus on text readability, based upon

the statistical analyses from the POS profiler and the frequency data from the

vocabulary profiler. In keeping with our research in this area, this module will

go beyond the current ‘simplistic’ readability metrics. It will apply more

sophisticated analyses that include factors such as word commonality (Weir

& Ritchie, 2007) and average collocation frequency.

2. SAFAR (Software architecture for Arabic language processing): this is the

second software toolset that suites the Arabic language.

SAFAR is an integrated platform dedicated to ANLP written in Java. It is cross-

platform, modular, extensible, and provides an integrated development environment

(IDE). SAFAR brings together all layers of Arabic Natural Language Processing

(Jaafar & Bouzoubaa, 2015).

116

The result from machine learning done by Posit and SAFAR toolsets are a set

of files containing the information extracted from the raw text files. The most

important parts of the text processing toolsets are Summary and N-Gram files. These

two files are used for text mining to build recognition patterns that result from applying

a classification algorithm.

The manual classification process is done on the raw text data before

Posit/SAFAR processing.

The manual classification is done based on the file content, i.e., based on

quantities, side by side, with phrasal combinations (N-Gram attributes). However, we

have found that it is not right to use either a quantitative basis by itself or phrasal

combinations only. To achieve the best prediction precision results, we have to

manually classify the files based on both of these approaches combined.

After manual classification and getting summary files by Posit and SAFAR

toolsets, we tested the various algorithms. J48, Naïve-Bayes, KNN k=1, KNN k=3,

SVM, Rand-Forest and Classification by Regression are considered for text

classification. The research progress is made by applying a classifier on one of the

summary datasets.

The Posit only datasets show better precision than SAFAR datasets when using

K-Nearest Neighbors, where K= 3. Adding N-Gram attributes associated with each of

the datasets (Posit/SAFAR) enhances the SAFAR precision using the Random Forest

classifier but has not helped to improve the Posit classification process. Results

enhancement is achieved by adding the Posit attributes (27 attributes) to the SAFAR

attribute (33 attributes) as one bigger dataset. Adding Posit N-Gram has yielded better

results than those obtained by adding SAFAR N-Gram.

Best results reaching 94% precision have been achieved by combining Posit +

SAFAR + (18 attributes Posit+ SAFAR N-Gram), a total of 76 attributes. Random

Forest excels over all other classifiers during all classification processes, except for

Posit only dataset.

 Random Forest classifier parameters are set as follows:

117

 Bag Size Percent (100);

 Batch Size ("100");

 Break Ties Randomly (true);

 Calc. out Of Bag (false);

 Compute Attribute Importance (false);

 Debug (false);

 Do Not Check Capabilities (false);

 Max Depth (10);

 Num. Decimal Places (2);

 Num. Execution Slots (1);

 Num. Features (0);

 Num. Iterations (25);

 Output out Of Bag Complexity Statistics (false);

 Print Classifiers (true) and

 Seed (1);

The final result reached for classification by regression for the:

1. Summary files created by the Posit toolset (27 attributes).

2. 2, 3, and 4 N-Gram average values produced by Posit toolset (9 attributes).

3. Summary files created by the SAFAR toolset (31 attributes).

4. 2, 3, and 4 N-Gram average values produced by SAFAR toolset (9 attributes).

By using this amount of information provided by Posit , side by side, with

SAFAR toolsets (58 attribute) combined with 18 attributes of 2,3 and 4 N-Gram

produced by Posit, side by side, with SAFAR toolsets as input for machine learning,

we have obtained the best results by applying Random Forest classifier.

7.2 Research Answers

Our research question was mentioned in Section 1.2. The answer for this main

question can be broken down to the following:

c. “Can we label different occurrences of the same item (for example, word or

118

phrase) under various contexts (Pro extremist – Anti extremist –neutral)?”

d. “Can we train robust and discriminative features to uncover any misleading

emotional Arabic text, and properly categorize said text according to its underlying

message, within a quantitative approach?”

The answer showed the best way for file classification. We found that we can

improve and automate the classification process using Random Forest and Random

Forest via the Regression classification algorithm which is integrated into JAVA

application using the WEKA machine learning environment (WEKA API). The used

datasets for unseen data classification are different combinations of data extracted

using Posit and SAFAR toolkits and N-Gram attributes.

The answer for this main question can be broken down to the following :

a. Items in text writing (for example, word or phrase) can be labeled under various

tags (Pro extremist – Anti extremist –neutral). This makes it hard to distinguish

between different classes of context using the automated classification system. The

nature of the text makes it difficult reaching the maximum prediction that is equal

to one, but it reduces as much as the uncertainty of determining the item class

exists.

b. It has been shown from our practical experience that combining different attributes

deduced by combined two toolkits for analyzing Arabic text can be used to enhance

text categorization using a sufficient set of carefully manually classified files.

To achieve the best results, we have combined two sets of tools known for their

ability to analyze the Arabic text or use custom tools for Latin languages after changing

the configuration files to be able to recognize the Arabic text. This contribution helps

to enhance Arabic text classification.

7.3 Future Work

 Future work is based on the increasing diversity of a collection of data

from different site categories (sports – politics – social – food – health, etc.) to get

alternative ways of writing, also to overcome the lack of sites supporting terrorism, or

119

having extremist tendencies web sites by getting support from the relevant authorities

to provide archival copies of such sites. This would help produce a better model for

classification.

Find an algorithm that can use in conjunction with manual sorting to reduce the

effort and time required for manual classification. Using techniques like attribute

selection will have a better performance especially with datasets with larger n-gram

data.

Other future work is to automate the classification process using our produced

model and other models for multi-language websites including social media sites, and

to propose accepted datasets enhancing the model by re-training to produce a new

model file for future use.

120

REFERENCES

Agarwal, S., & Sureka, A. (2015). Applying social media intelligence for predicting

and identifying on-line radicalization and civil unrest oriented threats. arXiv

preprint arXiv:1511.06858.

Al-Shalabi, R., Kanaan, G., & Gharaibeh, M. (2006). Arabic text categorization using

KNN algorithm. Paper presented at the the Proc. of Int. multi conf. on computer

science and information technology CSIT06.

Al-Zoghby, A., Eldin, A. S., Ismail, N. A., & Hamza, T. (2007). Mining Arabic text

using soft-matching association rules. Paper presented at the 2007 International

Conference on Computer Engineering & Systems.

Aldayel, H. K., & Azmi, A. M. (2016). Arabic tweets sentiment analysis–a hybrid

scheme. Journal of Information Science, 42(6), 782-797.

AlGahtani, S., Black, W., & McNaught, J. (2009). Arabic part-of-speech tagging using

transformation-based learning. Paper presented at the Proceeedings of the 2nd

International Conference on Arabic Language Resources and Tools.

Alhawarat, M., Hegazi, M., & Hilal, A. (2015). Processing the text of the Holy Quran:

a text mining study. International Journal of Advanced Computer Science and

Applications (IJACSA), 6(2), 262-267.

Alvari, H., Sarkar, S., & Shakarian, P. (2019). Detection of Violent Extremists in

Social Media. arXiv preprint arXiv:1902.01577.

Ayadi, R., Maraoui, M., & Zrigui, M. (2016). A Survey of Arabic Text Representation

and Classification Methods. Research in Computing Science, 117(12), 51-62.

Af-Wåhlberg, A. (2017). Driver behaviour and accident research methodology:

unresolved problems. CRC Press.

Anagnostou, N.K. & Weir, G.R.S. (2007). Average Collocation Frequency as an

Indicator of Semantic Complexity. Proceedings of ICTATLL 2007,

Aston, G., Bernardini, S. & Stewart, D. (2004). Corpora and Language Learners. John

Benjamins, Amsterdam.

121

Boukhatem, N. (2014). The Arabic natural language processing: Introduction and

challenges. International Journal of English Language & Translation Studies,

2(3), 106-112.

Burnes, & Rouse. (2018). AWS analytics tools help make sense of big data. from

https://searchenterpriseai.techtarget.com/definition/machine-learning-ML

Broder, Andrei Z.; Glassman, Steven C.; Manasse, Mark S.; Zweig, Geoffrey (1997).

"Syntactic clustering of the web". Computer Networks and ISDN Systems. 29

(8): 1157–1166.

Bird, S. (2006). NLTK: the natural language toolkit. In Proceedings of the

COLING/ACL on interactive Presentation Sessions. Association for

Computational Linguistics, Morristown, NJ, 69-72.

Bin Hassan, M. H., & Pereire, K. G. (2006). An ideological response to combating

terrorism–The Singapore perspective. Small Wars and Insurgencies, 17(4),

458-477.

Clandinin, D. J., Cave, M. T., & Berendonk, C. (2017). Narrative inquiry: a relational

research methodology for medical education. Medical Education, 51(1), 89-96.

Ceci, M., Hollmén, J., Todorovski, L., Vens, C., & Džeroski, S. (2017). Machine

Learning and Knowledge Discovery in Databases: European Conference,

ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings

(Vol. 10535): Springer.

Cherif, W., Madani, A., & Kissi, M. (2015). A new modeling approach for Arabic

opinion mining recognition. Paper presented at the 2015 Intelligent Systems

and Computer Vision (ISCV).

Dey, A. (2016). Machine learning algorithms: a review. International Journal of

Computer Science and Information Technologies, 7(3), 1174-1179.

Diab, M., Hacioglu, K., & Jurafsky, D. (2004). Automatic tagging of Arabic text: From

raw text to base phrase chunks. Paper presented at the Proceedings of HLT-

NAACL 2004: Short papers.

Diffen. (2019). HDD vs. SSD. from

https://www.diffen.com/difference/HDD_vs_SSD

Dunham, M. H. (2006). Data mining: Introductory and advanced topics: Pearson

Education India.

http://www.diffen.com/difference/HDD_vs_SSD

122

Duwairi, R. M., & Qarqaz, I. (2014). Arabic sentiment analysis using supervised

classification. Paper presented at the 2014 International Conference on Future

Internet of Things and Cloud.

El-Halees, A. M. (2015). Arabic text classification using maximum entropy. IUG

Journal of Natural Studies, 15(1).

El Kourdi, M., Bensaid, A., & Rachidi, T.-e. (2004). Automatic Arabic document

categorization based on the Naïve Bayes algorithm. Paper presented at the

proceedings of the Workshop on Computational Approaches to Arabic Script-

based Languages.

El Zein, H. (2015). Is the internet the main medium of transmitting terrorism? Paper

presented at the 16th Australian Information Warfare Conference.

Fletcher, A. J. (2017). Applying critical realism in qualitative research: methodology

meets method. International journal of social research methodology, 20(2),

181-194.

Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using

wikipedia-based explicit semantic analysis. In IJcAI (Vol. 7, pp. 1606-1611).

Goddard, C. (2011). Semantic analysis: A practical introduction. Oxford University

Press.

Hamzah,S, Mohamed (2012) .Combating terrorism and extremism, and the method of

intellectual review.Ministry of the Interior of the Arab Republic of Egypt.

Habash. (2010). Introduction to Arabic natural language processing. Synthesis

Lectures on Human Language Technologies, 3(1), 1-187.

Habash, N., & Rambow, O. (2005). Arabic tokenization, part-of-speech tagging and

morphological disambiguation in one fell swoop. Paper presented at the

Proceedings of the 43rd annual meeting of the association for computational

linguistics (ACL’05).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

The WEKA data mining software: an update. ACM SIGKDD explorations

newsletter, 11(1), 10-18.

Hofmann, T. (2013). Probabilistic latent semantic analysis. arXiv preprint

arXiv:1301.6705.

123

Jaafar, Y., & Bouzoubaa, K. (2015). Arabic natural language processing from software

engineering to complex pipeline. Paper presented at the 2015 First

International Conference on Arabic Computational Linguistics (ACLing).

Joachims, T. (1998). Text categorization with support vector machines: Learning with

many relevant features. Paper presented at the European conference on

machine learning.

Johansson, F., Kaati, L., & Sahlgren, M. (2017). Detecting linguistic markers of

violent extremism in online environments Artificial Intelligence: Concepts,

Methodologies, Tools, and Applications (pp. 2847-2863): IGI Global.

Keene, S. D. (2011). Terrorism and the internet: A double‐edged sword. Journal of

Money Laundering Control.

Kaur, G., & Chhabra, A. (2014). Improved J48 classification algorithm for the

prediction of diabetes. International Journal of Computer Applications, 98(22).

Kirchner, M. (2010). A framework for detecting anomalies in http traffic using

instance-based learning and k-nearest neighbor classification. Paper presented

at the 2010 2nd International Workshop on Security and Communication

Networks (IWSCN).

Kübler, S., & Mohamed, E. (2012). Part of speech tagging for Arabic. Natural

Language Engineering, 18(4), 521-548.

Kumar, R. (2019). Research methodology: A step-by-step guide for beginners. Sage

Publications Limited.

Ledford, J. R., & Gast, D. L. (2018). Single case research methodology: Applications

in special education and behavioral sciences. Routledge.

Li, Y.-M., & Li, T.-Y. (2013). Deriving market intelligence from microblogs. Decision

Support Systems, 55(1), 206-217.

Maamouri, M., & Bies, A. (2004). Developing an Arabic treebank: Methods,

guidelines, procedures, and tools. Paper presented at the Proceedings of the

Workshop on Computational Approaches to Arabic Script-based languages.

Marie-Sainte, S. L., Alalyani, N., Alotaibi, S., Ghouzali, S., & Abunadi, I. (2018).

Arabic natural language processing and machine learning-based systems. IEEE

Access, 7, 7011-7020.

124

Mavengere, N. B. (2013). Information technology role in supply chain’s strategic

agility. International Journal of Agile Systems and Management, 6(1), 7-24.

Mesleh. (2007). Chi square feature extraction based svms arabic language text

categorization system. Journal of Computer Science, 3(6), 430-435.

Mesleh. (2011). Feature sub-set selection metrics for Arabic text classification. Pattern

Recognition Letters, 32(14), 1922-1929.

Moraes, R., Valiati, J. F., & Neto, W. P. G. (2013). Document-level sentiment

classification: An empirical comparison between SVM and ANN. Expert

Systems with Applications, 40(2), 621-633.

Muhammad, A. B. (2012). Annotation of conceptual co-reference and text mining the

Qur'an: University of Leeds.

Mysql (Producer). (2019). How MySQL Uses Indexes. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html

Nahar, K. M., Al Eroud, A. F., Barahoush, M., & Al-Akhras, A. M. (2019). SAP:

Standard Arabic Profiling Toolset for Textual Analysis. International Journal

of Machine Learning and Computing, 9(2).

Ogun, M. N. (2012). Terrorist use of internet: possible suggestions to prevent

the usage for terrorist purposes. Journal of Applied Security

Research, 7(2), 203-217.

Orngreen, R., & Levinsen, K. (2017). Workshops as a Research

Methodology. Electronic Journal of E-learning, 15(1), 70-81.

Oakes. (2019). from www.wlv.ac.uk/~in4326/old/2003_Oakes_RL.pdf

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and

Trends® in Information Retrieval, 2(1–2), 1-135.

Patil, T. R., & Sherekar, S. (2013). Performance analysis of Naive Bayes and J48

classification algorithm for data classification. International journal of

computer science and applications, 6(2), 256-261.

Paynter, Trigg, Frank, & Kirkby (Producer). (2008). Attribute-relation file format

(ARFF). Retrieved from http://www. cs. waikato. ac. nz/ml/weka/arff. html

RAMDisk. (2019). RAMDisk. from http://memory.dataram.com/products-and-

services/software/ramdisk

Rouse. (2019). AWS analytics tools help make sense of big data

http://www.wlv.ac.uk/~in4326/old/2003_Oakes_RL.pdf
http://www/
http://memory.dataram.com/products-and-services/software/ramdisk
http://memory.dataram.com/products-and-services/software/ramdisk

125

 from https://searchsqlserver.techtarget.com/definition/data-mining

Salloum, AlHamad, Al-Emran, & Shaalan. (2018). A survey of Arabic text mining

Intelligent Natural Language Processing: Trends and Applications (pp. 417-

431): Springer.

Salloum, W., & Habash, N. (2014). ADAM: Analyzer for dialectal Arabic

morphology. Journal of King Saud University-Computer and Information

Sciences, 26(4), 372-378.

Sawaf, H., Zaplo, J., & Ney, H. (2001). Statistical classification methods for Arabic

news articles. Natural Language Processing in ACL2001, Toulouse, France.

Sayad. (2017). Multiple Linear Regression. from https://www.saedsayad.com/mlr.htm

Schutt, R., & O'Neil, C. (2013). Doing data science: Straight talk from the frontline:

O'Reilly Media, Inc.

Scrivens, R., Davies, G., & Frank, R. (2018). Searching for signs of extremism on the

web: an introduction to Sentiment-based Identification of Radical Authors.

Behavioral sciences of terrorism and political aggression, 10(1), 39-59.

Sharaf, A. (2009). The Qur’an annotation for text mining. First year transfer report.

School of Computing, Leeds University. December.

Shoukry, A., & Rafea, A. (2012). Sentence-level Arabic sentiment analysis. Paper

presented at the 2012 International Conference on Collaboration Technologies

and Systems (CTS).

Soman, T., & Bobbie, P. O. (2005). Classification of arrhythmia using machine

learning techniques. WSEAS Transactions on computers, 4(6), 548-552.

SQLite (Producer). (2019). The CREATE INDEX Command. Retrieved from

https://www.tutorialspoint.com/sqlite/sqlite_indexes.htm

Suthaharan, S. (2016). Machine learning models and algorithms for big data

classification. Integr. Ser. Inf. Syst, 36, 1-12.

Van den Bosch, A., Marsi, E., & Soudi, A. (2007). Memory-based morphological

analysis and part-of-speech tagging of Arabic Arabic Computational

Morphology (pp. 201-217): Springer.

Weir. (2007). The Posit text profiling toolset.

Weir, & Anagnostou. (2007). Exploring newspapers: a case study in corpus analysis.

Paper presented at the Proceedings of ICTATLL 2007.

http://www.saedsayad.com/mlr.htm
http://www.tutorialspoint.com/sqlite/sqlite_indexes.htm

126

Weir, G. R., Dos Santos, E., Cartwright, B., & Frank, R. (2016). Positing the problem:

enhancing classification of extremist web content through textual analysis.

Paper presented at the 2016 IEEE International Conference on Cybercrime and

Computer Forensic (ICCCF).

Weir, G. R., & Ritchie, C. (2006). Estimating readability with the Strathclyde

readability measure. Paper presented at the ICT in the Analysis, Teaching and

Learning of Languages, Preprints of the ICTATLL Workshop 2006.

Wiek, A., & Lang, D. J. (2016). Transformational sustainability research

methodology. In Sustainability science (pp. 31-41). Springer, Dordrecht.

Appendix A:

Software:

-Computer software, or simply software, is a collection of data or computer instructions that tell

the computer how to work. This is in contrast to physical hardware, from which the system is

built and actually performs the work. In computer science and software engineering, computer

software is all information processed by computer systems, programs and data. Computer

software includes computer programs, libraries and related non-executable data, such as online

documentation or digital media.

 Security:

Security is freedom from, or resilience against, potential harm caused by others. Beneficiaries

(technically referents) of security may be of persons and social groups, objects and institutions,

ecosystems or any other entity or phenomenon vulnerable to unwanted change. Security mostly

refers to protection from hostile forces.

Extremist:

A person who holds extreme political or religious views, especially one who advocates illegal,

violent, or other extreme action. Extremist is a person who goes to extremes, especially in

political matters. A supporter or advocate of extreme doctrines or practices.

Neutral:

Commonly used to describe a person who doesn’t pick sides in disputes, neutral also pegs

anything that refuses to be bold. If a person or country adopts a neutral position or remains

neutral, they do not support anyone in a disagreement, war, or contest. Neutral also means that

not taking part or giving assistance in a dispute or war between others.

Pro Extremist

UNIX:

UNIX is a family of multitasking, multiuser computer operating systems that derive from the

original AT&T UNIX, development starting in the 1970s at the Bell Labs research center by Ken

Thompson, Dennis Ritchie, and others. Initially intended for use inside the Bell System, AT&T

licensed UNIX to outside parties in the late 1970s, leading to a variety of both academic and

commercial UNIX variants from vendors including University of California, Berkeley (BSD),

Microsoft (Xenix), IBM (AIX), and Sun Microsystems (Solaris).

POS: Part of speech:

Part-of-speech tagging (POS tagging), also called grammatical tagging or word-category

disambiguation, is the process of marking up a word in a text as corresponding to a particular

part of speech, based on both its definition and its context—i.e., its relationship with adjacent

and related words in a phrase, sentence, or paragraph. A simplified form of this is commonly

taught to school-age children, in the identification of words as nouns, verbs, adjectives, adverbs,

etc.

Tagger:

A piece of software that labels words in a document according to their grammatical and syntactic

role.

A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads text in some language

and assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc.,

although generally computational applications use more fine-grained POS tags like 'noun-plural'.

This software is a Java implementation of the log-linear part-of-speech taggers described in these

papers.

Stanford Tagger:

A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads text in some language

and assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc.,

although generally computational applications use more fine-grained POS tags like ’noun-

plural’. This software is a Java implementation of the log-linear part-of-speech taggers described

in these papers. Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network. The

tagger was originally written by Kristina Toutanova.

Classification:

 Classification is a process related to categorization, the process in which ideas and objects are

recognized, differentiated and understood. It is a systematic arrangement in groups or categories

according to established criteria.

WEKA: Waikato Environment for Knowledge Analysis

WEKA is tried and tested open source machine learning software that can be accessed through a

graphical user interface, standard terminal applications, or a Java API. It is widely used for

teaching, research, and industrial applications, contains a plethora of built-in tools for standard

machine learning tasks, and additionally gives transparent access to well-known toolboxes.

GUI: Graphical user interface

The graphical user interface is a form of user interface that allows users to interact with

electronic devices through graphical icons and audio indicator such as primary notation, instead

of text-based user interfaces, typed command labels or text navigation. GUIs were introduced in

reaction to the perceived steep learning curve of command-line interfaces (CLIs), which require

commands to be typed on a computer keyboard.

HDD: Hard disk drive

A hard disk drive is an electro-mechanical data storage device that uses magnetic storage to store

and retrieve digital information using one or more rigid rapidly rotating disks (platters) coated

with magnetic material. The platters are paired with magnetic heads, usually arranged on a

moving actuator arm, which read and write data to the platter surfaces. Data is accessed in a

random-access manner, meaning that individual blocks of data can be stored or retrieved in any

order and not only sequentially. HDDs are a type of non-volatile storage, retaining stored data

even when powered off.

SSD: Solid-state drive

A solid-state drive (SSD) is a solid-state storage device that uses integrated circuit assemblies to

store data persistently, typically using flash memory, and functioning as secondary storage in the

hierarchy of computer storage. It is also sometimes called a solid-state device or a solid-state

disk, although SSDs lack the physical spinning disks and movable read-write heads used in hard

drives ("HDD") or floppy disks.

ISIS: Intel System Implementation Supervisor

ISIS is an operating system for early Intel microprocessors like the 8080. It was originally

developed by Ken Burgett under the new management of Bill Davidow for the Intel

Microprocessor Development System starting in 1975, and later adopted as ISIS-II for systems

with floppy drives.

Twitter:

Twitter is an American microblogging and social networking service on which users post and

interact with messages known as "tweets". Registered users can post, like, and retweet tweets,

but unregistered users can only read them. Users access Twitter through its website interface,

through Short Message Service (SMS) or its mobile-device application software ("app").

Social media:

Social media is interactive computer-mediated technologies that facilitate the creation or sharing

of information, ideas, career interests and other forms of expression via virtual communities and

networks. Social media is the collective of online communications channels dedicated to

community-based input, interaction, content-sharing and collaboration. Websites and

applications dedicated to forums, microblogging, social networking, social bookmarking, and

wikis are among the different types of social media.

Appendix B:

Initialization Variables

Glob.java

package init;

import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Add;
import weka.filters.unsupervised.attribute.Remove;

public class Glob {

// public final static int learnCount = 210;
// public final static int testCount = 90;

// public final static int learnCount = 490;
// public final static int testCount = 210;

 public final static int learnCount = 700;
 public final static int testCount = 300;
 public final static int classCount = 50000;

 public final static String driveC = "G:\\weka_project\\";

 public final static String CONNECTION_STRING = "jdbc:sqlite:" + driveC + "ngramDB.db";

 public final static String summPathPos = driveC + "posData\\summary_pos\\";
 public final static String summPathSafar = driveC + "safarData\\summary_safar\\";

 ///
///////
 public static String userTraining = "";
 public static String userTest = "";

 // Module Data Set
 public static Instances moduleInsts;

 // Classification Data Set
 public static Instances classificationInsts;

 // Training Data Set
 public static Instances trainInsts;

 // Self Test Data Set

 public static Instances selfTestInsts;

 // Test Data Set
 public static Instances testInsts;

 public static void init(Integer executionIndex) {
 try {
 String strTrain = "", strTest = "", strSelfTest = "", strModule = "",
strClassification = "";
 switch (executionIndex) {
 case 1:
 strTrain = "1-PosTraining.arff";
 strSelfTest = "1-PosTraining_t.arff";
 strModule = "1-PosTraining_m.arff";
 strClassification = "1-PosTraining_c.arff";
 strTest = "2-PosTest.arff";
 break;
 case 2:
 strTrain = "3-PosNgram.arff";
 strSelfTest = "3-PosNgram_t.arff";
 strModule = "3-PosNgram_m.arff";
 strClassification = "3-PosNgram_c.arff";
 strTest = "4-PosNgramTest.arff";
 break;
 case 3:
 strTrain = "5-SafarTraining.arff";
 strSelfTest = "5-SafarTraining_t.arff";
 strModule = "5-SafarTraining_m.arff";
 strClassification = "5-SafarTraining_c.arff";
 strTest = "6-SafarTest.arff";
 break;
 case 4:
 strTrain = "7-SafarNgram.arff";
 strSelfTest = "7-SafarNgram_t.arff";
 strModule = "7-SafarNgram_m.arff";
 strClassification = "7-SafarNgram_c.arff";
 strTest = "8-SafarNgramTest.arff";
 break;
 case 5:
 strTrain = "9-TotalTraining.arff";
 strSelfTest = "9-TotalTraining_t.arff";
 strModule = "9-TotalTraining_m.arff";
 strClassification = "9-TotalTraining_c.arff";
 strTest = "10-TotalTest.arff";
 break;
 case 6:
 strTrain = "11-TotalPosNgram.arff";
 strSelfTest = "11-TotalPosNgram_t.arff";

 strModule = "11-TotalPosNgram_m.arff";
 strClassification = "11-TotalPosNgram_c.arff";
 strTest = "12-TotalPosNgramTest.arff";
 break;
 case 7:
 strTrain = "13-TotalSafarNgram.arff";
 strSelfTest = "13-TotalSafarNgram_t.arff";
 strModule = "13-TotalSafarNgram_m.arff";
 strClassification = "13-TotalSafarNgram_c.arff";
 strTest = "14-TotalSafarNgramTest.arff";
 break;
 case 8:
 strTrain = "15-TotalAllNgram.arff";
 strSelfTest = "15-TotalAllNgram_t.arff";
 strModule = "15-TotalAllNgram_m.arff";
 strClassification = "15-TotalAllNgram_c.arff";
 strTest = "16-TotalAllNgramTest.arff";
 break;
 }

 DataSource source = null;
 if (executionIndex == 9) {
 source = new DataSource(userTraining);
 } else {
 source = new DataSource(driveC + "arffOut\\" + strTrain);
 }
 trainInsts = source.getDataSet();

 int classIndex = trainInsts.numAttributes() - 1;
 trainInsts.setClassIndex(classIndex);
 ///

 // Model Data Set
 if (executionIndex == 9) {
 source = new DataSource(userTest);
 } else {
 source = new DataSource(driveC + "arffOut\\" + strModule);
 }

 moduleInsts = source.getDataSet();
 moduleInsts.setClassIndex(classIndex);
 ///

 // Module Data Set
 if (executionIndex == 9) {
 source = new DataSource(userTest);
 } else {
 source = new DataSource(driveC + "arffOut\\" + strClassification);

 }

 classificationInsts = source.getDataSet();
 classificationInsts.setClassIndex(classIndex);
 ///

 // Self Test Data Set
 if (executionIndex == 9) {
 source = new DataSource(userTest);
 } else {
 source = new DataSource(driveC + "arffOut\\" + strSelfTest);
 }

 selfTestInsts = source.getDataSet();
 selfTestInsts.setClassIndex(classIndex);
 ///

 // Test Data Set
 if (executionIndex == 9) {
 source = new DataSource(userTest);
 } else {
 source = new DataSource(driveC + "arffOut\\" + strTest);
 }

 testInsts = source.getDataSet();
 // testInsts = RemoveFilter(testInsts, new
 // String[]{"-R",String.valueOf(testInsts.numAttributes()-1)});
 testInsts.setClassIndex(classIndex);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static Instances RemoveFilter(Instances insts, String[] rem) {
 Remove remove = new Remove();
 try {
 remove.setOptions(rem);
 remove.setInputFormat(insts);
 Instances retInstances = Filter.useFilter(insts, remove);
 return retInstances;
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

 public static Instances AddFilter(Instances insts, String[] rem) {

 Add add = new Add();
 try {
 add.setOptions(rem);
 add.setInputFormat(insts);
 Instances retInstances = Filter.useFilter(insts, add);
 return retInstances;
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

 public static double[] calculateMean(double[] m) {

 double[] ret = new double[3];
 double min = 1, max = 0;

 for (int i = 0; i < m.length; i++) {

 if (min > m[i])
 min = m[i];

 if (max < m[i])
 max = m[i];

 ret[0] += m[i];
 }
 ret[0] = (ret[0]) / (m.length);
 ret[1] = min;
 ret[2] = max;

 return ret;
 }

 public static double[] calculateCount(double[] m) {

 double[] ret = new double[6];

 for (int i = 0; i < m.length; i++) {

 if (m[i] < 0.5)
 ret[0]++;

 if (m[i] >= 0.5 && m[i] <= 0.6)
 ret[1]++;

 if (m[i] > 0.6 && m[i] <= 0.7)
 ret[2]++;

 if (m[i] > 0.7 && m[i] <= 0.8)
 ret[3]++;

 if (m[i] > 0.8 && m[i] <= 0.9)
 ret[4]++;

 if (m[i] > 0.9 && m[i] <= 1)
 ret[5]++;
 }
 return ret;
 }

 public static double calculateStandardDeviation(double[] sd) {

 double sum = 0;
 double newSum = 0;
 double[] newArray = new double[sd.length];

 for (int i = 0; i < sd.length; i++) {
 sum = sum + sd[i];
 }
 double mean = (sum) / (sd.length);

 for (int j = 0; j < sd.length; j++) {
 newArray[j] = ((sd[j] - mean) * (sd[j] - mean));
 newSum = newSum + newArray[j];
 }
 double squaredDiffMean = (newSum) / (sd.length);
 double standardDev = (Math.sqrt(squaredDiffMean));

 return standardDev;
 }
}

SafarFiles.java
package init;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

class SafarFiles {

 public final static String driveC = "G:\\weka_project\\";

 public final static String sDir1 = "F:\\safar_project\\safarData\\sourceAnti30\\";
 public final static String dDir1 = "F:\\safar_project\\TextFolder\\textAnti30\\";

 public final static String sDir2 = "F:\\safar_project\\safarData\\sourceAnti70\\";
 public final static String dDir2 = "F:\\safar_project\\TextFolder\\textAnti70\\";

 public final static String sDir3 = "F:\\safar_project\\safarData\\sourceAntiTest\\";
 public final static String dDir3 = "F:\\safar_project\\TextFolder\\textAntiTest\\";

 public final static String sDir4 = "F:\\safar_project\\safarData\\sourceNeutral30\\";
 public final static String dDir4 = "F:\\safar_project\\TextFolder\\textNeutral30\\";

 public final static String sDir5 = "F:\\safar_project\\safarData\\sourceNeutral70\\";
 public final static String dDir5 = "F:\\safar_project\\TextFolder\\textNeutral70\\";

 public final static String sDir6 = "F:\\safar_project\\safarData\\sourceNeutralTest\\";
 public final static String dDir6 = "F:\\safar_project\\TextFolder\\textNeutralTest\\";

 public final static String sDir7 = "F:\\safar_project\\safarData\\sourcePro30\\";
 public final static String dDir7 = "F:\\safar_project\\TextFolder\\textPro30\\";

 public final static String sDir8 = "F:\\safar_project\\safarData\\sourcePro70\\";
 public final static String dDir8 = "F:\\safar_project\\TextFolder\\textPro70\\";

 public final static String sDir9 = "F:\\safar_project\\safarData\\sourceProTest\\";
 public final static String dDir9 = "F:\\safar_project\\TextFolder\\textProTest\\";

 private final static String mainDir = "F:\\safar_project\\TextFolder\\";

 private static String tmpFile = "";
 private static File sourceFolder = null;
 private static File[] sourceFiles = null;
 private static Path from = null;
 private static Path to;

 public static void main(String[] args) {

 movesFiles(sDir1, dDir1);
 movesFiles(sDir2, dDir2);
 movesFiles(sDir3, dDir3);
 movesFiles(sDir4, dDir4);
 movesFiles(sDir5, dDir5);
 movesFiles(sDir6, dDir6);
 movesFiles(sDir7, dDir7);
 movesFiles(sDir8, dDir8);
 movesFiles(sDir9, dDir9);
 }

 private static void movesFiles(String _from, String _to) {

 sourceFolder = new File(_from);
 sourceFiles = sourceFolder.listFiles();
 to = Paths.get(_to);

 for (int i = 0; i < sourceFiles.length; i++) {

 tmpFile = sourceFiles[i].getName().toString();

 from = Paths.get(mainDir + tmpFile);

 try {
 Files.move(from, to.resolve(from.getFileName()));
 } catch (IOException e) {
 System.out.print(tmpFile);
 System.out.print(_to);
 System.out.print("");
 }
 }
 }
}

User Interface

A_NGramCalcGUI.java
package userInterface;

import java.awt.EventQueue;

import javax.swing.JFrame;
import javax.swing.JTextPane;
import CalcNgram.CalcPosNgram;
import CalcNgram.CalcSafarNgram;
import arffCreator.ArffPosClass;
import arffCreator.ArffSafarClass;
import arffCreator.ArffTotal;

import java.awt.Font;
import javax.swing.JButton;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

import java.awt.Insets;
import java.awt.Color;
import java.awt.event.ActionListener;
import java.sql.SQLException;
import java.awt.event.ActionEvent;

public class A_NGramCalcGUI {

 private JFrame frame;
 private static JTextArea txtOut = new JTextArea();

 /**
 * Launch the application.
 */
 public static void main(String[] args) {
 EventQueue.invokeLater(new Runnable() {
 public void run() {

 try {
 A_NGramCalcGUI window = new A_NGramCalcGUI();
 window.frame.setVisible(true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 }

 /**
 * Create the application.
 */
 public A_NGramCalcGUI() {
 initialize();
 }

 /**
 * Initialize the contents of the frame.
 */
 private void initialize() {
 frame = new JFrame();
 frame.getContentPane().setBackground(Color.BLUE);
 frame.setBounds(100, 100, 450, 518);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().setLayout(null);

 JTextPane txtpnStepsOfOperation = new JTextPane();
 txtpnStepsOfOperation.setMargin(new Insets(5, 10, 10, 5));
 txtpnStepsOfOperation.setFont(new Font("Tahoma", Font.BOLD, 11));
 txtpnStepsOfOperation.setText("Steps of Operation:\r\n1- Extract all received RAR
files to the path C:\\weka_project.\r\n2- Insure that you are using copy of empty database.\r\n3-
Start the 3 interface in sequence:\r\n a- NGram >> apply pos ngram button >> apply sgram
button\r\n b- ArffCreator >> select all buttons >> check N-Gram >> select all buttons.\r\n c-
WekaCalc >> select the desired input Arff files >> select the desired classifiers >> select the execution
button.\r\n4- collect results by [copy] or [save] buttons.");
 txtpnStepsOfOperation.setBounds(0, 0, 434, 155);
 frame.getContentPane().add(txtpnStepsOfOperation);

 JButton btnPos = new JButton("POSIT");
 btnPos.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {

 //1
 try {
 CalcPosNgram.initBD();
 CalcPosNgram.calcNgram(false);
 CalcPosNgram.calcNgram(true);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 });
 btnPos.setFont(new Font("Tahoma", Font.BOLD, 11));
 btnPos.setBounds(25, 166, 89, 23);
 frame.getContentPane().add(btnPos);

 JButton btnSafar = new JButton("SAFAR");

 btnSafar.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 try {
 CalcSafarNgram.calcNgram();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 });
 btnSafar.setFont(new Font("Tahoma", Font.BOLD, 11));
 btnSafar.setBounds(124, 166, 89, 23);
 frame.getContentPane().add(btnSafar);

 JScrollPane scrollPane = new JScrollPane();
 scrollPane.setBounds(10, 198, 415, 270);
 frame.getContentPane().add(scrollPane);

 txtOut.setMargin(new Insets(5, 8, 5, 8));
 scrollPane.setViewportView(txtOut);
 txtOut.setColumns(10);

 JButton btnRunAll = new JButton("POS + SAFR");
 btnRunAll.setBackground(new Color(255, 255, 255));
 btnRunAll.setForeground(Color.RED);
 btnRunAll.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {

 //1
 try {
 CalcPosNgram.initBD();
 CalcPosNgram.calcNgram(false);
 CalcPosNgram.calcNgram(true);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 //2
 try {
 CalcSafarNgram.calcNgram();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 //3
 ArffPosClass.BtnCalc1(true, false, false);
 ArffPosClass.BtnCalc1(true, false, true);
 ArffPosClass.BtnCalc1(true, true, false);
 //4
 ArffPosClass.BtnCalc1(false, false, false);
 ArffPosClass.BtnCalc1(false, false, true);

 ArffPosClass.BtnCalc1(false, true, false);
 //5
 ArffSafarClass.BtnCalc1(true, false, false);
 ArffSafarClass.BtnCalc1(true, false, true);
 ArffSafarClass.BtnCalc1(true, true, false);
 //6
 ArffSafarClass.BtnCalc1(false, false, false);
 ArffSafarClass.BtnCalc1(false, false, true);
 ArffSafarClass.BtnCalc1(false, true, false);
 //7
 ArffTotal.BtnCalc1(1, false, false);
 ArffTotal.BtnCalc1(1, false, true);
 ArffTotal.BtnCalc1(1, true, false);
 //8
 ArffTotal.BtnCalc1(2, false, false);
 ArffTotal.BtnCalc1(2, false, true);
 ArffTotal.BtnCalc1(2, true, false);
 //9
 ArffTotal.BtnCalc1(3, false, false);
 ArffTotal.BtnCalc1(3, false, true);
 ArffTotal.BtnCalc1(3, true, false);
 //10
 ArffTotal.BtnCalc1(0, false, false);
 ArffTotal.BtnCalc1(0, false, true);
 ArffTotal.BtnCalc1(0, true, false);
 }
 });
 btnRunAll.setFont(new Font("Tahoma", Font.BOLD, 11));
 btnRunAll.setBounds(284, 166, 128, 23);
 frame.getContentPane().add(btnRunAll);
 }

 public static void PrintOut(String txt) {

 txtOut.append(String.valueOf(txt)+"\n");

 }

 public static void PrintOut2(String txt) {

 txtOut.append(String.valueOf(txt)+"\n");

 }
}

B_ArffCreatorGUI.java
package userInterface;

import java.awt.Color;
import java.awt.Desktop;
import java.awt.EventQueue;
import java.awt.Font;
import java.awt.Toolkit;
import java.awt.Window.Type;
import java.awt.datatransfer.Clipboard;
import java.awt.datatransfer.StringSelection;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStreamWriter;

import javax.swing.ButtonGroup;
import javax.swing.JButton;
import javax.swing.JCheckBox;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JRadioButton;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

import arffCreator.ArffPosClass;
import arffCreator.ArffSafarClass;
import arffCreator.ArffTotal;
import java.awt.Insets;

public class B_ArffCreatorGUI {

 private JFrame frmCreateArffFile;
 private static JTextArea txtOut = new JTextArea();

 /**
 * Launch the application.
 */
 public static void main(String[] args) {
 EventQueue.invokeLater(new Runnable() {
 public void run() {
 try {
 B_ArffCreatorGUI window = new B_ArffCreatorGUI();
 window.frmCreateArffFile.setVisible(true);
 } catch (Exception e) {

 e.printStackTrace();
 }
 }
 });
 }

 /**
 * Create the application.
 */
 public B_ArffCreatorGUI() {
 initialize();
 }

 int i = 0;

 /**
 * Initialize the contents of the frame.
 */
 private void initialize() {
 frmCreateArffFile = new JFrame();
 frmCreateArffFile.setForeground(new Color(0, 0, 0));
 frmCreateArffFile.setType(Type.UTILITY);
 frmCreateArffFile.setTitle("Create ARFF File");
 frmCreateArffFile.getContentPane().setBackground(new Color(0, 0, 255));
 frmCreateArffFile.setBounds(100, 100, 310, 540);
 frmCreateArffFile.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frmCreateArffFile.getContentPane().setLayout(null);

 JLabel lblSafar = new JLabel("\u221A");
 lblSafar.setVisible(false);
 lblSafar.setForeground(Color.BLACK);
 lblSafar.setFont(new Font("Tahoma", Font.BOLD | Font.ITALIC, 16));
 lblSafar.setBounds(10, 10, 17, 23);

 JLabel lblPos = new JLabel("\u221A");
 lblPos.setVisible(false);
 lblPos.setForeground(new Color(0, 0, 0));
 lblPos.setFont(new Font("Tahoma", Font.BOLD | Font.ITALIC, 16));
 lblPos.setBounds(10, 10, 17, 23);

 JLabel lblPosSafar = new JLabel("\u221A");
 lblPosSafar.setVisible(false);
 lblPosSafar.setForeground(Color.BLACK);
 lblPosSafar.setFont(new Font("Tahoma", Font.BOLD | Font.ITALIC, 16));
 lblPosSafar.setBounds(10, 10, 17, 23);
 txtOut.setMargin(new Insets(5, 8, 8, 5));

 txtOut.setBounds(10, 196, 275, 229);

 txtOut.setWrapStyleWord(true);
 JScrollPane scroll = new JScrollPane(txtOut);
 scroll.setBounds(10, 188, 275, 268);
 frmCreateArffFile.getContentPane().add(scroll);

 JPanel panel = new JPanel();
 panel.setLayout(null);
 panel.setBackground(new Color(0, 255, 102));
 panel.setBounds(10, 11, 275, 40);
 frmCreateArffFile.getContentPane().add(panel);
 panel.add(lblPos);

 JButton btnPos = new JButton("POS");
 JCheckBox chkPos = new JCheckBox("POS N-Gram");

 btnPos.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 lblPos.setVisible(true);
 lblSafar.setVisible(false);
 lblPosSafar.setVisible(false);
 btnPos.setText("POS ... in progress");

 if (chkPos.isSelected()) {
 ///////////////////// ngram, test, model
 //70% + 30%
 ArffPosClass.BtnCalc1(true, false, false);
 //100%
 ArffPosClass.BtnCalc1(true, false, true);
 // UnSupervised + Supervised
 ArffPosClass.BtnCalc1(true, true, false);
 } else {
 ArffPosClass.BtnCalc1(false, false, false);//3*700
 ArffPosClass.BtnCalc1(false, false, true);//3*1000
 ArffPosClass.BtnCalc1(false, true, false);//3*
 }
 btnPos.setText("POS");
 }
 });
 btnPos.setBounds(35, 10, 117, 23);
 panel.add(btnPos);

 chkPos.setBounds(158, 10, 111, 23);
 panel.add(chkPos);

 JPanel panel_1 = new JPanel();
 panel_1.setLayout(null);
 panel_1.setBackground(new Color(102, 255, 255));
 panel_1.setBounds(10, 57, 275, 40);

 frmCreateArffFile.getContentPane().add(panel_1);
 panel_1.add(lblSafar);

 JButton btnSafra = new JButton("SAFAR");
 JCheckBox chkSafar = new JCheckBox("SAFAR N-Gram");
 btnSafra.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 lblPos.setVisible(false);
 lblSafar.setVisible(true);
 lblPosSafar.setVisible(false);
 btnPos.setText("SAFAR ... in progress");

 if (chkSafar.isSelected()) {
 ///////////////////// ngram, test, module
 ArffSafarClass.BtnCalc1(true, false, false);
 ArffSafarClass.BtnCalc1(true, false, true);
 ArffSafarClass.BtnCalc1(true, true, false);
 } else {
 ArffSafarClass.BtnCalc1(false, false, false);//3*700
 ArffSafarClass.BtnCalc1(false, false, true);
 ArffSafarClass.BtnCalc1(false, true, false);
 }
 }
 });
 btnSafra.setBounds(35, 10, 117, 23);
 panel_1.add(btnSafra);

 chkSafar.setBounds(158, 10, 111, 23);
 panel_1.add(chkSafar);

 JPanel panel_2 = new JPanel();
 panel_2.setLayout(null);
 panel_2.setBackground(new Color(255, 153, 255));
 panel_2.setBounds(10, 105, 275, 72);
 frmCreateArffFile.getContentPane().add(panel_2);
 panel_2.add(lblPosSafar);

 ButtonGroup radGrp = new ButtonGroup();
 JButton btnPosSafar = new JButton("POS + SAFAR");
 JCheckBox chkPosSafar = new JCheckBox("N-Gram");
 JRadioButton radPos = new JRadioButton("POS");
 radPos.setSelected(true);
 JRadioButton radSafar = new JRadioButton("SAFAR");
 JRadioButton radPosSafar = new JRadioButton("POS + SAFAR");
 radGrp.add(radPos);
 radGrp.add(radSafar);
 radGrp.add(radPosSafar);

 btnPosSafar.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 lblPos.setVisible(false);
 lblSafar.setVisible(false);
 lblPosSafar.setVisible(true);
 if (chkPosSafar.isSelected()) {
 if (radPos.isSelected()) {
 ///////////////////// ngram, test, module
 //70% //30%
 ArffTotal.BtnCalc1(1, false, false);
 //100%
 ArffTotal.BtnCalc1(1, false, true);
 //UnSupervised + //Supervised
 ArffTotal.BtnCalc1(1, true, false);
 }
 if (radSafar.isSelected()) {
 ArffTotal.BtnCalc1(2, false, false);
 ArffTotal.BtnCalc1(2, false, true);
 ArffTotal.BtnCalc1(2, true, false);
 }
 if (radPosSafar.isSelected()) {
 // ///////////////// ngram, test, model
 ArffTotal.BtnCalc1(3, false, false);
 ArffTotal.BtnCalc1(3, false, true);
 ArffTotal.BtnCalc1(3, true, false);
 }
 } else {
 ArffTotal.BtnCalc1(0, false, false);
 ArffTotal.BtnCalc1(0, false, true);
 ArffTotal.BtnCalc1(0, true, false);
 }
 }
 });
 btnPosSafar.setBounds(35, 10, 117, 23);
 panel_2.add(btnPosSafar);

 chkPosSafar.setBounds(158, 10, 111, 23);
 panel_2.add(chkPosSafar);

 radPos.setBounds(10, 42, 70, 23);
 panel_2.add(radPos);

 radSafar.setBounds(86, 42, 70, 23);
 panel_2.add(radSafar);
 radPosSafar.setBounds(162, 42, 105, 23);
 panel_2.add(radPosSafar);

 JButton btnSave = new JButton("Save");
 btnSave.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {

 JFileChooser fileChooser = new JFileChooser();
 int retval = fileChooser.showSaveDialog(btnSave);
 if (retval == JFileChooser.APPROVE_OPTION) {
 File file = fileChooser.getSelectedFile();
 if (file == null) {
 return;
 }
 if (!file.getName().toLowerCase().endsWith(".txt")) {
 file = new File(file.getParentFile(), file.getName() +
".txt");
 }
 try {
 txtOut.write(new OutputStreamWriter(new
FileOutputStream(file), "utf-8"));
 Desktop.getDesktop().open(file);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 });
 btnSave.setBounds(205, 467, 80, 23);
 frmCreateArffFile.getContentPane().add(btnSave);

 JButton btnCopy = new JButton("Copy");
 btnCopy.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 String myString = txtOut.getText();
 StringSelection stringSelection = new StringSelection(myString);
 Clipboard clipboard =
Toolkit.getDefaultToolkit().getSystemClipboard();
 clipboard.setContents(stringSelection, null);

 }
 });
 btnCopy.setBounds(10, 467, 70, 23);
 frmCreateArffFile.getContentPane().add(btnCopy);

 JButton btnClear = new JButton("Clear");
 btnClear.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 txtOut.setText("");
 }

 });
 btnClear.setBounds(90, 467, 70, 23);
 frmCreateArffFile.getContentPane().add(btnClear);
 }

 public static void PrintOut(String txt) {

 txtOut.append(String.valueOf(txt) + "\n");

 }

}

C_ClassifierGUI.java
package userInterface;

import java.awt.EventQueue;

import javax.swing.JFrame;
import java.awt.Color;
import java.awt.Desktop;

import javax.swing.JPanel;
import javax.swing.JRadioButton;

import javax.swing.JCheckBox;
import javax.swing.JFileChooser;
import javax.swing.ButtonGroup;
import javax.swing.JButton;
import java.awt.Font;
import java.awt.event.ActionListener;
import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStreamWriter;
import java.awt.event.ActionEvent;
import javax.swing.border.TitledBorder;
import javax.swing.filechooser.FileFilter;
import javax.swing.filechooser.FileNameExtensionFilter;

import init.Glob;
import wekaCalc.FinalCalc;

import javax.swing.UIManager;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import java.awt.Insets;
import java.awt.Toolkit;
import java.awt.datatransfer.Clipboard;
import java.awt.datatransfer.StringSelection;
import javax.swing.JLabel;
import javax.swing.event.ChangeListener;
import javax.swing.event.ChangeEvent;

public class C_ClassifierGUI {

 private JFrame frmCreateApply;
 private static JTextArea txtOut = new JTextArea();

 private static JFileChooser fileChooser = new JFileChooser();
 private JCheckBox chkEnhanceDetails;

 /**
 * Launch the application.
 */
 public static void main(String[] args) {
 EventQueue.invokeLater(new Runnable() {
 public void run() {
 try {
 C_ClassifierGUI window = new C_ClassifierGUI();
 window.frmCreateApply.setVisible(true);
 FileFilter filt = new FileNameExtensionFilter("ARFF File",
"arff");
 fileChooser.setFileFilter(filt);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 }

 /**
 * Create the application.
 */
 public C_ClassifierGUI() {
 initialize();
 }

 /**
 * Initialize the contents of the frame.
 */
 private void initialize() {
 frmCreateApply = new JFrame();
 frmCreateApply.setTitle("CREATE & APPLY CLASSIFICATION MODULE");
 frmCreateApply.getContentPane().setBackground(Color.BLUE);
 frmCreateApply.getContentPane().setLayout(null);

 JPanel panel = new JPanel();
 panel.setBackground(new Color(255, 255, 204));
 panel.setBounds(10, 8, 192, 675);
 frmCreateApply.getContentPane().add(panel);
 panel.setLayout(null);

 ButtonGroup radGrp = new ButtonGroup();

 JRadioButton radPOS = new JRadioButton("POSIT Toolkit");
 radPOS.setBackground(new Color(255, 255, 204));
 radPOS.setFont(new Font("Tahoma", Font.BOLD, 11));
 radPOS.setBounds(16, 4, 105, 23);
 radPOS.setForeground(new Color(0, 128, 128));

 panel.add(radPOS);

 JRadioButton radSAF = new JRadioButton("SAFAR Toolkit");
 radSAF.setFont(new Font("Tahoma", Font.BOLD, 11));
 radSAF.setBackground(new Color(255, 255, 204));
 radSAF.setBounds(16, 27, 105, 23);
 radSAF.setForeground(Color.BLUE);
 panel.add(radSAF);

 JRadioButton radPOSSAF = new JRadioButton("POS + SAFAR Attributes");
 radPOSSAF.setSelected(true);
 radPOSSAF.setFont(new Font("Tahoma", Font.BOLD, 11));
 radPOSSAF.setBackground(new Color(255, 255, 204));
 radPOSSAF.setBounds(16, 50, 161, 23);
 radPOSSAF.setForeground(Color.RED);
 panel.add(radPOSSAF);

 JRadioButton radUser = new JRadioButton("User");
 radUser.setBounds(16, 138, 49, 23);
 radUser.setFont(new Font("Tahoma", Font.BOLD, 10));
 radUser.setBackground(new Color(255, 255, 204));
 panel.add(radUser);

 radGrp.add(radPOS);
 radGrp.add(radSAF);
 radGrp.add(radPOSSAF);
 radGrp.add(radUser);

 JCheckBox chkNgram = new JCheckBox("N-Gram");
 chkNgram.setForeground(Color.RED);
 chkNgram.setSelected(true);
 chkNgram.setFont(new Font("Tahoma", Font.PLAIN, 14));
 chkNgram.setBackground(new Color(255, 255, 204));
 chkNgram.setBounds(16, 163, 161, 23);
 panel.add(chkNgram);

 JPanel panel_1 = new JPanel();
 panel_1.setBackground(new Color(255, 255, 204));
 panel_1.setBorder(new TitledBorder(
 new TitledBorder(UIManager.getBorder("TitledBorder.border"), "",
TitledBorder.LEADING, TitledBorder.TOP,
 null, new Color(0, 0, 255)),
 "", TitledBorder.LEADING, TitledBorder.TOP, null, new Color(51, 204,
255)));
 panel_1.setBounds(16, 80, 161, 35);
 panel.add(panel_1);
 panel_1.setLayout(null);

 ButtonGroup radGrpT = new ButtonGroup();
 ButtonGroup radGrpC = new ButtonGroup();

 JRadioButton radP = new JRadioButton("P");
 radP.setFont(new Font("Tahoma", Font.BOLD, 10));
 radP.setBackground(new Color(255, 255, 204));
 radP.setBounds(6, 7, 45, 23);
 panel_1.add(radP);

 JRadioButton radS = new JRadioButton("S");
 radS.setFont(new Font("Tahoma", Font.BOLD, 10));
 radS.setBackground(new Color(255, 255, 204));
 radS.setBounds(53, 7, 45, 23);
 panel_1.add(radS);

 JRadioButton radPS = new JRadioButton("P+S");
 radPS.setForeground(new Color(255, 0, 0));
 radPS.setFont(new Font("Tahoma", Font.BOLD, 10));
 radPS.setBackground(new Color(255, 255, 204));
 radPS.setSelected(true);
 radPS.setBounds(100, 7, 55, 23);
 panel_1.add(radPS);

 radGrpT.add(radP);
 radGrpT.add(radS);
 radGrpT.add(radPS);

 JPanel panel_2 = new JPanel();
 panel_2.setLayout(null);
 panel_2.setBorder(new TitledBorder(
 new TitledBorder(UIManager.getBorder("TitledBorder.border"), "",
TitledBorder.LEADING, TitledBorder.TOP,
 null, new Color(0, 0, 255)),
 "", TitledBorder.LEADING, TitledBorder.TOP, null, new Color(51, 204,
255)));
 panel_2.setBackground(new Color(204, 255, 204));
 panel_2.setBounds(16, 188, 161, 194);
 panel.add(panel_2);

 JRadioButton radJ48 = new JRadioButton("J48");
 radJ48.setFont(new Font("Tahoma", Font.BOLD, 11));
 radJ48.setBackground(new Color(204, 255, 204));
 radJ48.setBounds(6, 4, 149, 23);
 panel_2.add(radJ48);

 JRadioButton radNaivebayes = new JRadioButton("NaiveBayes");
 radNaivebayes.setFont(new Font("Tahoma", Font.BOLD, 11));
 radNaivebayes.setBackground(new Color(204, 255, 204));

 radNaivebayes.setBounds(6, 31, 149, 23);
 panel_2.add(radNaivebayes);

 JRadioButton radIBK_1 = new JRadioButton("IBk_1");
 radIBK_1.setFont(new Font("Tahoma", Font.BOLD, 11));
 radIBK_1.setBackground(new Color(204, 255, 204));
 radIBK_1.setBounds(6, 58, 149, 23);
 panel_2.add(radIBK_1);

 JRadioButton radIBk_3 = new JRadioButton("IBk_3");
 radIBk_3.setFont(new Font("Tahoma", Font.BOLD, 11));
 radIBk_3.setBackground(new Color(204, 255, 204));
 radIBk_3.setBounds(6, 85, 149, 23);
 panel_2.add(radIBk_3);

 JRadioButton radRF = new JRadioButton("Random Forest");
 radRF.setSelected(true);
 radRF.setFont(new Font("Tahoma", Font.BOLD, 11));
 radRF.setBackground(new Color(204, 255, 204));
 radRF.setBounds(6, 139, 149, 23);
 panel_2.add(radRF);

 JRadioButton radCVR = new JRadioButton("RF Via Regression");
 radCVR.setFont(new Font("Tahoma", Font.BOLD, 11));
 radCVR.setBackground(new Color(204, 255, 204));
 radCVR.setBounds(6, 165, 149, 23);
 panel_2.add(radCVR);

 radGrpC.add(radJ48);
 radGrpC.add(radNaivebayes);
 radGrpC.add(radIBK_1);
 radGrpC.add(radIBk_3);
 radGrpC.add(radRF);
 radGrpC.add(radCVR);

 JRadioButton radSMO = new JRadioButton("SMO");
 radSMO.setBounds(6, 112, 149, 23);
 panel_2.add(radSMO);
 radSMO.setFont(new Font("Tahoma", Font.BOLD, 11));
 radSMO.setBackground(new Color(204, 255, 204));
 radGrpC.add(radSMO);

 JButton btnClear = new JButton("Clear");
 btnClear.setMargin(new Insets(2, 4, 2, 4));
 btnClear.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 txtOut.setText("");
 }

 });
 btnClear.setBounds(71, 560, 50, 23);
 panel.add(btnClear);

 JButton btnCopy = new JButton("Copy");
 btnCopy.setMargin(new Insets(2, 4, 2, 4));
 btnCopy.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 String myString = txtOut.getText();
 StringSelection stringSelection = new StringSelection(myString);
 Clipboard clipboard =
Toolkit.getDefaultToolkit().getSystemClipboard();
 clipboard.setContents(stringSelection, null);

 }
 });
 btnCopy.setBounds(16, 560, 50, 23);
 panel.add(btnCopy);

 JButton btnCalculatePredection = new JButton("Calculate Predection");
 btnCalculatePredection.setFont(new Font("Tahoma", Font.BOLD, 12));
 btnCalculatePredection.setBounds(16, 469, 161, 61);
 panel.add(btnCalculatePredection);

 JButton btnSave = new JButton("Save");
 btnSave.setMargin(new Insets(2, 4, 2, 4));
 btnSave.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {

 int retval = fileChooser.showSaveDialog(btnSave);
 if (retval == JFileChooser.APPROVE_OPTION) {
 File file = fileChooser.getSelectedFile();
 if (file == null) {
 return;
 }
 if (!file.getName().toLowerCase().endsWith(".txt")) {
 file = new File(file.getParentFile(), file.getName() +
".txt");
 }
 try {
 txtOut.write(new OutputStreamWriter(new
FileOutputStream(file), "utf-8"));
 Desktop.getDesktop().open(file);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 }
 });
 btnSave.setBounds(127, 560, 50, 23);
 panel.add(btnSave);

 JLabel lblTraining = new JLabel("Training");
 lblTraining.setForeground(new Color(211, 211, 211));
 lblTraining.setFont(new Font("Tahoma", Font.BOLD, 11));
 lblTraining.setBounds(88, 121, 50, 14);
 panel.add(lblTraining);

 JLabel lblTest = new JLabel("Test");
 lblTest.setFont(new Font("Tahoma", Font.BOLD, 11));
 lblTest.setForeground(new Color(211, 211, 211));
 lblTest.setBounds(144, 121, 33, 14);
 panel.add(lblTest);

 JButton btnTraining = new JButton("...");
 btnTraining.setEnabled(false);
 btnTraining.setBounds(88, 138, 33, 23);
 panel.add(btnTraining);
 btnTraining.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {

 int result = fileChooser.showOpenDialog(btnTraining);
 if (result == JFileChooser.APPROVE_OPTION) {
 try {
 File f = fileChooser.getSelectedFile();
 Glob.userTraining = f.getAbsolutePath();
 lblTraining.setForeground(Color.RED);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 });
 btnTraining.setMargin(new Insets(2, 4, 2, 4));

 JButton btnTest = new JButton("...");
 btnTest.setEnabled(false);
 btnTest.setBounds(144, 138, 33, 23);
 panel.add(btnTest);
 btnTest.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 int result = fileChooser.showOpenDialog(btnTest);
 if (result == JFileChooser.APPROVE_OPTION) {

 try {
 File f = fileChooser.getSelectedFile();
 Glob.userTest = f.getAbsolutePath();
 lblTest.setForeground(Color.RED);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
 });
 btnTest.setMargin(new Insets(2, 4, 2, 4));

 JCheckBox chkDisplayDetails = new JCheckBox("70/30 Details");
 chkDisplayDetails.setFont(new Font("Tahoma", Font.BOLD, 11));
 chkDisplayDetails.setBackground(new Color(255, 255, 204));
 chkDisplayDetails.setBounds(16, 389, 161, 23);
 panel.add(chkDisplayDetails);

 JCheckBox chkTrainingDetails = new JCheckBox("Training Predic. Details");
 chkTrainingDetails.setFont(new Font("Tahoma", Font.BOLD, 11));
 chkTrainingDetails.setBackground(new Color(255, 255, 204));
 chkTrainingDetails.setBounds(16, 415, 161, 23);
 panel.add(chkTrainingDetails);

 JCheckBox chkTestDetails = new JCheckBox("Test Predic. Details");
 chkTestDetails.setFont(new Font("Tahoma", Font.BOLD, 11));
 chkTestDetails.setBackground(new Color(255, 255, 204));
 chkTestDetails.setBounds(16, 439, 161, 23);
 panel.add(chkTestDetails);

 JCheckBox chkUpdateModule = new JCheckBox("Update Model");
 chkUpdateModule.setSelected(true);
 chkUpdateModule.setForeground(Color.RED);
 chkUpdateModule.setFont(new Font("Tahoma", Font.BOLD, 12));
 chkUpdateModule.setBackground(new Color(255, 255, 204));
 chkUpdateModule.setBounds(16, 535, 161, 23);
 panel.add(chkUpdateModule);

 JPanel panel_3 = new JPanel();
 panel_3.setBackground(Color.RED);
 panel_3.setBounds(16, 590, 161, 63);
 panel.add(panel_3);

 JCheckBox chkMoveSelf = new JCheckBox("Self");
 JCheckBox chkMoveCross = new JCheckBox("Cross");
 chkMoveSelf.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 if (chkMoveSelf.isSelected()) {

 chkMoveCross.setEnabled(false);
 chkDisplayDetails.setSelected(true);
 chkTestDetails.setSelected(true);
 chkTrainingDetails.setSelected(true);
 } else {
 chkMoveCross.setEnabled(true);
 chkDisplayDetails.setSelected(false);
 chkTestDetails.setSelected(false);
 chkTrainingDetails.setSelected(false);
 }
 }
 });
 chkMoveSelf.setForeground(Color.WHITE);
 chkMoveSelf.setFont(new Font("Tahoma", Font.BOLD, 11));
 chkMoveSelf.setBackground(Color.RED);
 panel_3.add(chkMoveSelf);

 JLabel lblA = new JLabel("A");
 JLabel lblP = new JLabel("P");
 JLabel lblN = new JLabel("N");

 chkMoveCross.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 if (chkMoveCross.isSelected()) {
 chkMoveSelf.setEnabled(false);
 chkDisplayDetails.setSelected(true);
 chkTestDetails.setSelected(true);
 chkTrainingDetails.setSelected(true);
 } else {
 chkMoveSelf.setEnabled(true);
 chkDisplayDetails.setSelected(false);
 chkTestDetails.setSelected(false);
 chkTrainingDetails.setSelected(false);
 }
 }
 });
 chkMoveCross.setForeground(Color.WHITE);
 chkMoveCross.setFont(new Font("Tahoma", Font.BOLD, 11));
 chkMoveCross.setBackground(Color.RED);
 panel_3.add(chkMoveCross);

 JButton btn100 = new JButton("Complete 100%");
 btn100.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {
 int res = 0;
 res = FinalCalc.Complete100("anti");
 lblA.setText(res + "");
 res = FinalCalc.Complete100("pro");

 lblP.setText(res + "");
 res = FinalCalc.Complete100("neutral");
 lblN.setText(res + "");
 }
 });
 panel_3.add(btn100);
 btn100.setFont(new Font("Tahoma", Font.BOLD, 12));

 JCheckBox chkEnhance = new JCheckBox("Enhance");
 panel_3.add(chkEnhance);
 chkEnhance.setForeground(Color.WHITE);
 chkEnhance.setFont(new Font("Tahoma", Font.BOLD, 11));
 chkEnhance.setBackground(Color.RED);

 lblA.setBounds(16, 655, 46, 14);
 panel.add(lblA);

 lblP.setBounds(71, 655, 46, 14);
 panel.add(lblP);

 lblN.setBounds(131, 655, 46, 14);
 panel.add(lblN);

 chkEnhanceDetails = new JCheckBox("Enhance Details");
 chkEnhanceDetails.setVisible(false);
 chkEnhanceDetails.setFont(new Font("Tahoma", Font.BOLD, 11));
 chkEnhanceDetails.setBackground(new Color(255, 255, 204));
 chkEnhanceDetails.setBounds(16, 465, 161, 23);
 panel.add(chkEnhanceDetails);

 JScrollPane scroll = new JScrollPane();
 scroll.setBounds(212, 8, 462, 675);
 frmCreateApply.getContentPane().add(scroll);
 txtOut.setFont(new Font("Monospaced", Font.PLAIN, 14));
 txtOut.setMargin(new Insets(5, 8, 5, 8));
 txtOut.setBackground(new Color(224, 255, 255));

 scroll.setViewportView(txtOut);
 txtOut.setColumns(10);
 btnCalculatePredection.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 boolean details7030 = chkDisplayDetails.isSelected();
 boolean detailsTraining = chkTrainingDetails.isSelected();
 boolean detailsTest = chkTestDetails.isSelected();
 boolean detailsEnhance = chkEnhanceDetails.isSelected();

 boolean NGram = chkNgram.isSelected();

 boolean moveSelf = chkMoveSelf.isSelected();
 boolean moveCross = chkMoveCross.isSelected();
 boolean moveEnhance = chkEnhance.isSelected();
 boolean UpdateModule = chkUpdateModule.isSelected();

 int[] classifier = new int[7];

 if (radJ48.isSelected())
 classifier[0] = 1;

 if (radNaivebayes.isSelected())
 classifier[1] = 1;

 if (radIBK_1.isSelected())
 classifier[2] = 1;

 if (radIBk_3.isSelected())
 classifier[3] = 1;

 if (radSMO.isSelected())
 classifier[4] = 1;

 if (radRF.isSelected())
 classifier[5] = 1;

 if (radCVR.isSelected())
 classifier[6] = 1;

 String ESC = "\033[";
 System.out.print(ESC + "2J");

 txtOut.setText("");

 if (radUser.isSelected()) {
 if (!Glob.userTraining.equals("") &&
!Glob.userTest.equals("")) {
 FinalCalc.calcPrediction(9, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 false, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 } else {
 PrintOut("Wrong ARFF File Selection");
 System.out.println("Wrong ARFF File Selection");
 }
 } else if (radPOS.isSelected()) {
 if (NGram) {
 FinalCalc.calcPrediction(2, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,

 false, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 FinalCalc.calcPrediction(2, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 true, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 } else {
 FinalCalc.calcPrediction(1, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 false, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 FinalCalc.calcPrediction(1, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 true, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 }
 } else if (radSAF.isSelected()) {
 if (NGram) {
 FinalCalc.calcPrediction(4, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 false, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 FinalCalc.calcPrediction(4, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 true, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 } else {
 FinalCalc.calcPrediction(3, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 false, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 FinalCalc.calcPrediction(3, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 true, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 }
 } else if (radPOSSAF.isSelected()) {
 if (NGram) {
 if (radP.isSelected()) {
 FinalCalc.calcPrediction(6, classifier,
UpdateModule, details7030, detailsTraining,
 detailsTest, false, moveSelf,
moveCross, moveEnhance, detailsEnhance);
 FinalCalc.calcPrediction(6, classifier,
UpdateModule, details7030, detailsTraining,
 detailsTest, true, moveSelf,
moveCross, moveEnhance, detailsEnhance);
 } else if (radS.isSelected()) {

 FinalCalc.calcPrediction(7, classifier,
UpdateModule, details7030, detailsTraining,
 detailsTest, false, moveSelf,
moveCross, moveEnhance, detailsEnhance);
 FinalCalc.calcPrediction(7, classifier,
UpdateModule, details7030, detailsTraining,
 detailsTest, true, moveSelf,
moveCross, moveEnhance, detailsEnhance);
 } else if (radPS.isSelected()) {

 FinalCalc.calcPrediction(8, classifier,
UpdateModule, details7030, detailsTraining,
 detailsTest, false, moveSelf,
moveCross, moveEnhance, detailsEnhance);

 FinalCalc.calcPrediction(8, classifier,
UpdateModule, details7030, detailsTraining,
 detailsTest, true, moveSelf,
moveCross, moveEnhance, detailsEnhance);
 }
 } else {
 FinalCalc.calcPrediction(5, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 false, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 FinalCalc.calcPrediction(5, classifier, UpdateModule,
details7030, detailsTraining, detailsTest,
 true, moveSelf, moveCross,
moveEnhance, detailsEnhance);
 }
 }

 lblA.setText(new File(Glob.driveC +
"posData\\summary\\anti").listFiles().length + "");
 lblP.setText(new File(Glob.driveC +
"posData\\summary\\pro").listFiles().length + "");
 lblN.setText(new File(Glob.driveC +
"posData\\summary\\neutral").listFiles().length + "");

 }
 });

 radPOSSAF.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 radP.setEnabled(true);
 radS.setEnabled(true);
 radPS.setEnabled(true);

 radP.setForeground(Color.black);
 radS.setForeground(Color.black);
 radPS.setForeground(Color.black);
 btnTraining.setEnabled(false);
 btnTest.setEnabled(false);
 lblTraining.setForeground(Color.LIGHT_GRAY);
 lblTest.setForeground(Color.LIGHT_GRAY);
 }
 });

 radPOS.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 radP.setEnabled(false);
 radS.setEnabled(false);
 radPS.setEnabled(false);
 radP.setForeground(Color.LIGHT_GRAY);
 radS.setForeground(Color.LIGHT_GRAY);
 radPS.setForeground(Color.LIGHT_GRAY);
 btnTraining.setEnabled(false);
 btnTest.setEnabled(false);
 lblTraining.setForeground(Color.LIGHT_GRAY);
 lblTest.setForeground(Color.LIGHT_GRAY);
 }
 });

 radSAF.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 radP.setEnabled(false);
 radS.setEnabled(false);
 radPS.setEnabled(false);
 radP.setForeground(Color.LIGHT_GRAY);
 radS.setForeground(Color.LIGHT_GRAY);
 radPS.setForeground(Color.LIGHT_GRAY);
 btnTraining.setEnabled(false);
 btnTest.setEnabled(false);
 lblTraining.setForeground(Color.LIGHT_GRAY);
 lblTest.setForeground(Color.LIGHT_GRAY);
 }
 });

 radUser.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 radP.setEnabled(false);
 radS.setEnabled(false);
 radPS.setEnabled(false);
 radP.setForeground(Color.LIGHT_GRAY);
 radS.setForeground(Color.LIGHT_GRAY);
 radPS.setForeground(Color.LIGHT_GRAY);

 btnTraining.setEnabled(true);
 btnTest.setEnabled(true);
 lblTraining.setForeground(Color.black);
 lblTest.setForeground(Color.black);
 }
 });

 frmCreateApply.setBounds(100, 100, 697, 732);
 frmCreateApply.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void PrintOut(String txt) {

 txtOut.append(String.valueOf(txt) + "\n");

 }
}

N-Gram Calculations

PositObj.java
package CalcNgram;

public class PositObj {

 public Double Total_words_pos2 = 0.0;
 public Double Total_unique_words_pos2 = 0.0;
 public Double Type_Token_Ratio_pos2 = 0.0;
 public Double Number_of_sentences_pos2 = 0.0;
 public Double Average_sentence_length_pos2 = 0.0;
 public Double Number_of_characters_pos2 = 0.0;
 public Double Average_word_length_pos2 = 0.0;
 public Double verb_types_pos2 = 0.0;
 public Double noun_types_pos2 = 0.0;
 public Double adverb_types_pos2 = 0.0;
 public Double adjective_types_pos2 = 0.0;
 public Double preposition_types_pos2 = 0.0;
 public Double possessive_pronoun_types_pos2 = 0.0;
 public Double personal_pronoun_types_pos2 = 0.0;
 public Double particle_types_pos2 = 0.0;
 public Double determiner_types_pos2 = 0.0;
 public Double interjection_types_pos2 = 0.0;
 public Double nouns_pos2 = 0.0;
 public Double verbs_pos2 = 0.0;
 public Double prepositions_pos2 = 0.0;
 public Double adjectives_pos2 = 0.0;
 public Double determiners_pos2 = 0.0;
 public Double particles_pos2 = 0.0;
 public Double possessive_pronouns_pos2 = 0.0;
 public Double personal_pronouns_pos2 = 0.0;
 public Double adverbs_pos2 = 0.0;
 public Double interjections_pos2 = 0.0;

 public PositObj(Double Total_words_pos2, Double Total_unique_words_pos2,
Double Type_Token_Ratio_pos2,
 Double Number_of_sentences_pos2, Double
Average_sentence_length_pos2, Double Number_of_characters_pos2,
 Double Average_word_length_pos2, Double verb_types_pos2, Double
noun_types_pos2, Double adverb_types_pos2,
 Double adjective_types_pos2, Double preposition_types_pos2,
Double possessive_pronoun_types_pos2,
 Double personal_pronoun_types_pos2, Double particle_types_pos2,
Double determiner_types_pos2,
 Double interjection_types_pos2, Double nouns_pos2, Double
verbs_pos2, Double prepositions_pos2,
 Double adjectives_pos2, Double determiners_pos2, Double
particles_pos2, Double possessive_pronouns_pos2,
 Double personal_pronouns_pos2, Double adverbs_pos2, Double
interjections_pos2) {

 this.Total_words_pos2 = Total_words_pos2;
 this.Total_unique_words_pos2 = Total_unique_words_pos2;
 this.Type_Token_Ratio_pos2 = Type_Token_Ratio_pos2;

 this.Number_of_sentences_pos2 = Number_of_sentences_pos2;
 this.Average_sentence_length_pos2 = Average_sentence_length_pos2;
 this.Number_of_characters_pos2 = Number_of_characters_pos2;
 this.Average_word_length_pos2 = Average_word_length_pos2;
 this.verb_types_pos2 = verb_types_pos2;
 this.noun_types_pos2 = noun_types_pos2;
 this.adverb_types_pos2 = adverb_types_pos2;
 this.adjective_types_pos2 = adjective_types_pos2;
 this.preposition_types_pos2 = preposition_types_pos2;
 this.possessive_pronoun_types_pos2 = possessive_pronoun_types_pos2;
 this.personal_pronoun_types_pos2 = personal_pronoun_types_pos2;
 this.particle_types_pos2 = particle_types_pos2;
 this.determiner_types_pos2 = determiner_types_pos2;
 this.interjection_types_pos2 = interjection_types_pos2;
 this.nouns_pos2 = nouns_pos2;
 this.verbs_pos2 = verbs_pos2;
 this.prepositions_pos2 = prepositions_pos2;
 this.adjectives_pos2 = adjectives_pos2;
 this.determiners_pos2 = determiners_pos2;
 this.particles_pos2 = particles_pos2;
 this.possessive_pronouns_pos2 = possessive_pronouns_pos2;
 this.personal_pronouns_pos2 = personal_pronouns_pos2;
 this.adverbs_pos2 = adverbs_pos2;
 this.interjections_pos2 = interjections_pos2;
 }
}

NGramObj.java
package CalcNgram;

public class NGramObj {
 public Double gram2low2 = 0.0;
 public Double gram2high2 = 0.0;
 public Double gram2avg2 = 0.0;
 public Double gram3low2 = 0.0;
 public Double gram3high2 = 0.0;
 public Double gram3avg2 = 0.0;
 public Double gram4low2 = 0.0;
 public Double gram4high2 = 0.0;
 public Double gram4avg2 = 0.0;

 public NGramObj(Double gram2low2, Double gram2high2, Double gram2avg2,
Double gram3low2, Double gram3high2,
 Double gram3avg2, Double gram4low2, Double gram4high2, Double
gram4avg2) {
 this.gram2low2 = gram2low2;
 this.gram2high2 = gram2high2;
 this.gram2avg2 = gram2avg2;
 this.gram3low2 = gram3low2;
 this.gram3high2 = gram3high2;
 this.gram3avg2 = gram3avg2;
 this.gram4low2 = gram4low2;
 this.gram4high2 = gram4high2;
 this.gram4avg2 = gram4avg2;
 }
}

Cloud-based textual analysis as a basis for document
classification

George R S Weir1, Kolade Owoeye, Alice Oberacker and Haya Alshahrani
Department of Computer & Information Sciences

University of Strathclyde
Glasgow, UK

{george.weir;kolade.owoeye}@strath.ac.uk, oberackera@googlemail.com, hayaalshahrani@yahoo.com

Abstract— Growing trends in data mining and developments in
machine learning, have encouraged interest in analytical
techniques that can contribute insights on data characteristics.
The present paper describes an approach to textual analysis that
generates extensive quantitative data on target documents, with
output including frequency data on tokens, types, parts-of-speech
and word n-grams. These analytical results enrich the available
source data and have proven useful in several contexts as a basis
for automating manual classification tasks. In the following, we
introduce the Posit textual analysis toolset and detail its use in data
enrichment as input to supervised learning tasks, including
automating the identification of extremist Web content. Next, we
describe the extension of this approach to Arabic language.
Thereafter, we recount the move of these analytical facilities from
local operation to a Cloud-based service. This transition, affords
easy remote access for other researchers seeking to explore the
application of such data enrichment to their own text-based data
sets.

Keywords-data mining; textual analysis; classification; feature-
set; Cloud-service; Posit.

I. INTRODUCTION
As diverse sources of data are increasingly being gathered to

create large pools of potential resource, techniques for analysis
that facilitate new insights and added value to the raw data are
sought with enthusiasm. In this setting, our previous work on
text analysis (see Section III) has proven useful as a basis for
enrichment of textual data.

The present paper outlines the context of text mining and
classification before describing quantitative text analysis using
the Posit textual analysis toolset. Thereafter, we detail the
application of Posit to the classification of text data. This is
followed by an account of Posit as a Cloud-based facility and the
potential benefits this affords for distributed third-party
application. We conclude with a description of on-going
developments to extend the available features in the Cloud-Posit
system.

1 Corresponding author

II. TEXT MINING AND CLASSIFICATION
Commonly, two main classes of text categorisation are

recognised [1, 2]: text clustering and text classification. The first
deals with finding a structure of groups within a given dataset,
while the latter is given a set of groups against which each text
is to be assigned. Moreover, the task of text classification is
subjective in a way that human and machine might disagree on
the classification of the data. Text classification can be single-
labelled meaning every document is as- signed a single category,
or multi-labelled in which case a document can be assigned to
several possible categories. This method has the advantage of
giving the user the possibility of a final decision to their own
subjective opinion as several texts can be closely related to
multiple categories. Several applications such as spam filtering,
webpage classification, author- ship attribution or genre
classification can be decided with text classifications. Among
the various machine learning algorithms that have been used to
build classifiers, [2] claims the ones that proved most successful
in recent years are support vector machines (SVM) and boosting.
SVM is a type of classification model, boosting, however,
combines the decisions of a group of classifiers in order to
achieve a better overall classification [2]. [3] agrees on the
effectiveness of SVM, but also points out that this approach
might find a suboptimal decision threshold for categories with
low occurrences.

However, it remains a challenge to achieve high accuracy for
all possible contexts at once, as no algorithm is most effective
on all applications [4, 5]. Moreover, the labelling of the
documents defines a bottleneck for every supervised
classification method as it has to be done manually.

To solve this problem [6] developed a system to
hierarchically classify unlabelled data. As already mentioned,
classifying data manually is extremely expensive and slows the
classification process down. Additionally, it grows to be an
inefficient approach as with larger datasets the number of
categories can exceed to thousands, of which each needs to be
represented by a sufficient number of labelled documents. The

672

2018 International Conference on High Performance Computing & Simulation

978-1-5386-7879-4/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCS.2018.00110

system solves this issue by using ontological knowledge and by
searching ’pseudo-relevant documents on the Web’ [6]. With the
ontology it is possible to create a hierarchical model including
the context of ancestors among different classes.

[3] compared the accuracy of SVM, k-Nearest Neighbours
(k-NN) and Rocchio-Style Prototype Classifier with each other
on the Reuters Corpus Vol. 1. Two variants of SVM were used.
The first one was trained for each category by using the default
settings and the latter tried to find optimal settings to improve
results for unbalanced classes for each category and was trained
using a leave-one-out cross validation. Results show that the first
SVM classifications achieve the best F1 values, followed closely
by the second SVM approach. k-NN and Rocchio-Style did not
achieve as good results, which underlines the statement made by
[2].

Another study by [4] compared results of k-NN, Rocchio-
Style and Linear Least Square Fit (LLSF) with each other.
Throughout the experiment k-NN achieved the best
classification results, with Rocchio and LLSF showing
reasonable efficiency. [4] however, states that SVM methods
can be used to improve upon the k-NN results. The k-Nearest
Neighbour method is a lazy learning method, because few
calculations are done during the training phase. During the
classification the distances to all training samples have to be
calculated to find the k nearest samples, which makes it a lazy
learning method and therefore more sensitive to noisy data as it
only considers a few samples to make a decision [7, chap. 4].

For classifying text corpora, one has to develop an internal
representation for the learning algorithms. The most common
approach represents each text as a vector in which every position
displays the existence of a word (set of words). Similar
techniques do not only acknowledge the existence but also the
frequency of words (bag of words) [8, 1]. The representation
usually has a large number of features due to the number of
unique words in the document. Therefore, it is appropriate to
remove irrelevant features to optimise the prediction [5].
However, it needs to be shown if feature selection plays an
important role when using the Posit toolset, as the number of
features that can be extracted from the computed quantitative
data do not expand the runtime of the learning algorithms
drastically. As it is suggested in multiple papers [5, 8, 9] feature
selection can improve the performance of classifiers.

[8] for example, points out that words with low frequencies
can be neglected as well as so called stop words, such as ’a’ and
’or’. However, for every approach one needs to bear in mind the
possibly varying size of documents as the occurrences need to
be normalised over the size of text. [5] suggest that the most
suitable classification performance metrics is the receiver
operating characteristic (ROC), which plots sensitivity against
1−specificity. The area under curve (AUC) can then be used to
differentiate between perfect classification (AUC=1),
classification by chance (AUC=0.5) and inverse classification
(AUC=0). The advantage of this metric is its insensitivity to
unbalanced categories.

In the field of computational linguistics n-grams are defined
as a sequence of characters or words of length n. The Posit tool
makes it possible to extract word grams of length 2, 3 and 4
including their frequency. Statistical features about word n-

grams have been appropriated for text classification by [10]. The
n-gram language model is handled in a similar way to a Naïve
Bayes model. Each category is trained with a language model
and every document can be evaluated on each of those models
to decide to which it agrees the most. In this experimental paper
it was shown that statistical data of n-grams can be used for a
chain augmented Naïve Bayes classifier. An optimal size for n-
grams can be found to improve the classification of documents.
This underlines the likely importance of n-grams data, as it
seems to be a source for improving upon classification accuracy.

III. QUANTITATIVE TEXT ANALYSIS
The most popular approach to text classification represents

each text as a vector of word occurrences (set or bag of words)
[4, 8, 11, 1]. One way of modelling such a vector is denoting the
occurrence of a word by setting the position to 1 and otherwise
to 0. There are other models which also include the frequency of
which a word appears in the text which can be of great
importance to the classification. However, these approaches
require a lot of computational time and optimisation, for
example, using feature selection.

Another approach, which enriches the representation of texts
for machine learning models is described in this section. Instead
of representing a text with its words, we may calculate
quantitative and statistical values for a text and use these features
as a basis for classification.

The Posit Text Profiling Toolset [12, 13] offers a thorough
quantitative analysis of an arbitrarily large text corpus with
highly customisable features. Posit applies a Part-of-Speech
tagger and outputs statistical details of the text content in terms
of individual words (tokens) and word types. This frequency
data is also provided for specific parts of speech, including
frequency ordered details of each specific word in an analysed
text. Significantly, in affording a basis for comparison between
samples of text data, Posit’s summary details can be employed
as a feature set for use in classification of textual data.

The summary data output from Posit includes values for total
words (tokens), total unique words (types), type/token ratio,
number of sentences, average sentence length, number of
characters, average word length, noun types, verb types,
adjective types, adverb types, preposition types, personal
pronoun types, determiner types, possessive pronoun types,
interjection types, particle types, nouns, verbs, prepositions,
personal pronouns, determiners, adverbs, adjectives, possessive
pronouns, interjections, and particles. This comprises 27
features in all. An example of such output is shown in Figure 1.

When analysing texts using Posit, output is generated at
several levels of detail. Of these, the summary level is the most
general, e.g., the total number of verbs, nouns, adjectives, etc.
(Figure 1). Two more detailed levels of output are provided: an
intermediate (aggregate) part-of-speech analysis, and a finely
detailed word types against parts-of-speech account.

At the intermediate level, frequency data is provided for the
contents of the analysed text in terms of specific parts-of-speech,
for example, types of verb: the base form of verbs, the gerund
form, the past tense form, the past participle form, the 3rd person
present form, the present tense (non-3rd person) form and the

673

modal auxiliary form. An illustration of this intermediate level
is shown in Figure 2.

Figure 1: Example Posit summary output

At the fine detail level, frequency data is provided for each
word in terms of part-of-speech type, for example, the number
of occurrences of every word that is a verb of gerund form. An
illustration of this fine detail level is shown in Figure 3.

Figure 2: Example Posit aggregate output

Figure 3: Example Posit fine detail output

IV. CLASSIFICATION USING POSIT
Since the basis of any classification is the ‘matching’ of

features present across data samples, the feature set produced
when texts are analysed using Posit provides a ready
characterization of texts that can be contrasted for the purpose of
classification. In our classification work to date, we have used
only the summary output produced by Posit as the basis for a
feature set that characterises each data sample.

To this end, [14] applied the Posit tool to generate summary
output for data retrieved by the Terrorism and Extremism
Network Extractor (TENE) web crawler [15]. This data had been
manually classified into the categories ’pro-extremist’, ’neutral’
and ’anti-extremist’. Posit was applied in order to provide the
quantitative syntactic features that ‘enrich’ the information
given by the text corpus.

When used for classification with the J48 algorithm, the
Posit approach matched 91.4% of the manually classified
webpages correctly. An improved result of 95.3% correctly
classified texts was accomplished with a Random Forest
algorithm. These results led us to believe that through
application of Posit analysis we could provide enriched insight
on the content of textual data and afford effective classification
of such data. The advantage of a quantitative approach, opposed
to a vector representation of the existence of words in the text
(bag of words), is that the number of features is much lower.
Instead of dealing with millions of features [16], the Posit tool
extracts 27 distinct values. Further research is underway to
explore the extension of the Posit feature set, including
frequency data on word combinations (n-grams) and frequency
ratios (e.g., ratio of common nouns to proper nouns).

Following this effective application of Posit to the
classification of extremist Web content, a similar approach was
adopted with a dataset containing drug related texts from the
Dark Web. Some of this data were manually classified as drugs-
related positive or negative. A total of 1,245,410 texts were
included in the initial set and this was reduced to 798,684 textual
data items after cleaning. In the final data set, 91,088 items were
pre-classified as drugs-related or not drugs-related.

A series of experiments using Posit-based classification were
performed on this Dark Web data set, aiming to match against
the training set provided by the manually classified subset of
data. The results (Table 1) show that the K Nearest Neighbour
algorithm (where k=1) gave the best performance (with an F-
measure of 0.995), closely followed by the J48 algorithm (with
an F-measure of 0.99).

TABLE I. CLASSIFICATION RESULTS FOR DRUGS-RELATED DATA SET

Algorithm Precision Recall F1
J48 0.99 0.99 0.99
kNN1 0.995 0.995 0995

V. POSIT IN THE CLOUD
In order to expand the scope and range of Posit application

in textual classification tasks, we are developing a full-featured
Cloud-based implementation. This facilitates third-party access
to the Posit analysis of plain text data sets.

674

The Cloud-Posit system is being developed in four phases.
In the initial Phase One version, third-parties may access an
interactive Cloud-based Posit facility that affords the upload of
multiple data files in a set. After file-upload, selecting the ‘run
Posit’ option, results in Posit being executed sequentially on
each file in the data set. The analysis output for each file is
output as a separate folder and the complete set of analysis
folders is compressed into a single file archive and downloaded
to the remote Web client. Figure 4 illustrates the interactive
Phase One Web interface to Cloud-Posit.

Figure 4: Cloud-Posit interactive facility

This Phase One facility will prove convenient for initial
third-party experimentation with Posit and is well-suited to small
data sets. Phase Two of Cloud-Posit will additionally afford API
access, without need for user interaction. Through this version,
remote users may directly connect, upload multiple files for
analysis and retrieve the result files directly, for further local
processing. The expectation is that the interactive mode will be
used initially by researchers seeking to ‘train’ their classification
model, e.g., using an appropriate classification algorithm and
cross-validation techniques. Once an effective model has been
constructed, the bulk of analysis data would then be processed
via the non-interactive API of Cloud-Posit.

The Phase Three version of Cloud-Posit will supplement the
default Posit set of 27 features with a multiword (ngram)
frequency analysis. As indicated above, ngram data is likely to
provide useful additional features for use in classification. In
due course, the aim is return not only raw ngram data on
submitted samples, but ngram ratios for high and low frequency
ngrams (e.g., against the Google ngram corpus [17]).

The planned Phase Four version of Cloud-Posit, will deploy
parallel developments in the use of Posit for Arabic textual
analysis. This applies a customized version of the Posit system
and an Arabic part-of-speech tagger with output that accounts
for Arabic-specific language characteristics. In addition to the
standard feature set, Arabic Posit supports ngram analysis for
Arabic texts. Figure 5 shows sample Arabic bigram data from
Posit. For Phase Four, the Posit feature analysis for Arabic and
the Arabic ngram analysis for 2, 3 and 4-grams will be added to
Cloud-Posit.

Figure 5: Example Arabic bigrams extract from Posit

VI. FURTHER APPLICATIONS
In addition to the use of Posit in supervised learning

applications, there are further roles that it can play in corpus
comparisons. For example, the detailed data analysis provided
by Posit allows for contrastive review of two or more documents
(or document sets). Such an approach was employed as a basis
for gauging the similarity of grammatical approach across
several generations of textbooks used to teach English in Japan
[18]. We expect that the extended insights afforded by the
aggregate and fine level details of Posit analysis will also find a
role in classification. For this reason, our implementation of
Cloud-Posit generates all three levels of quantitative textual
analysis.

For any context in which quantitative analysis may shed light
on textual data Posit can support such insights. By making this
facility available through a Web service as Cloud-Posit, we aim
to extend this utility to the academic and research community.

REFERENCES.
[1] F. Sebastiani. Machine learning in automated text categorization. ACM

Comput. Surv., 34(1):1–47, Mar. 2002.
[2] F. Sebastiani. Text categorization. In Encyclopedia of Database

Technologies and Applications, pages 683–687. IGI Global, 2005.
[3] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A New Bench- mark

Collection for Text Categorization Research. Journal of Machine
Learning Research, 5:361–397, 2004. doi: 10.1145/122860.122861.

[4] B. Harish, R. M. Hegde, N. Neeti, and M. Meghana. An Empirical Study
on Various Text Classifiers. Advanced Materials Research, pages 587–
593, 2012. doi: 10.1109/MSR.2017.60.

[5] Y. Aphinyanaphongs, L. D. Fu, Z. Li, E. R. Peskin, E. Efstathiadis, C. F.
Aliferis, and A. Statnikov. A comprehensive empirical comparison of
modern supervised classification and feature selection methods for text
categorization. Journal of the Association for Information Science and
Technology, 65(10):1964–1987, 2014. doi: 10.1002/asi.23110.

[6] V. Ha-Thuc and J.-M. Renders. Large-scale hierarchical text classification
without labelled data. Proceedings of the fourth ACM international con-

675

ference on Web search and data mining - WSDM ’11, page 685, 2011.
doi: 10.1145/1935826.1935919.

[7] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2011.

[8] G. Forman. An Extensive Empirical Study of Feature Selection Metrics
for Text Classification. Journal of Machine Learning Research, 3:1289–
1305, 2003. doi: 10.1162/153244303322753670.

[9] T. Joachims. Text Categorization with Support Vector Machines: Learn-
ing with Many Relevant Features. Proceedings of the 10th European
Conference on Machine Learning ECML ’98, pages 137–142, 1998. doi:
10.1007/BFb0026683.

[10] F. Peng and D. Schuurmans. Combining Naive Bayes and n-Gram Lan-
guage Models for Text Classification. Computer, pages 335–350, 2003.
doi: 10.1007/3-540-36618-0 24.

[11] K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan. Data Min-
ing: A Knowledge Discovery Approach. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

[12] G. R. S. Weir. The Posit Text Profiling Toolset. Proceedings of
PAAL2007, 2007.

[13] G. R. S. Weir. Corpus profiling with the posit tools. In Proceedings of the
5th Corpus Linguistics Conference. University of Liverpool, 2009.

[14] G. R. S. Weir, E. Dos Santos, B. Cartwright, and R. Frank. Positing the
problem: Enhancing classification of extremist web content through
textual analysis. 2016 IEEE International Conference on Cybercrime and
Computer Forensic, ICCCF 2016, pages 67–69, 2016. doi: 10.1109/
ICCCF.2016.7740431.

[15] M. Bouchard, K. Joffres and R. Frank. Preliminary analytical
considerations in designing a terrorism and extremism online network
extractor. InComputational models of complex systems, pages 171-184,
2014, Springer, Cham.

[16] A. L. Blum and P. Langley. Selection of relevant features and examples
in machine learning. Artificial Intelligence, 97(1-2), pages 245–271,
1997. ISSN 00043702. doi: 10.1016/S0004-3702(97)00063-5.

[17] K. Wang, C. Thrasher, E. Viegas, X. Li and B. J. Hsu. An overview of
Microsoft Web N-gram corpus and applications. InProceedings of the
NAACL HLT 2010 Demonstration Session 2010 Jun 2, pages. 45-48,
2010, Association for Computational Linguistics.

[18] G. R. S. Weir, and T. Ozasa. Learning from Analysis of Japanese EFL
Texts. Educational Perspectives, Journal of the College of
Education/University of Hawaii at Manoa, 43 (1 & 2). pp. 56-66, 2010.
ISSN 0013-1849

676

Appendix C:

 detailed classifier results:

Figure 7. 11 results of J48.

Figure 7. 13 results of KNN k=1

Figure 7. 14 results of KNN k=3.

Figure 7. 15 results of SVM.

Figure 7. 16 results of classification by regression.

Figure7.17 results of RANDOM-FOREST.

Dataset J48 NaïveBayes IBk_3 SVM
Random

Forest

RF Via

Regression

POS

Precision 0.703 0.708 0.650 0.700 0.797 0.716

Recall 0.660 0.386 0.637 0.690 0.785 0.711

f-Measure 0.672 0.426 0.639 0.690 0.786 0.712

POS +

N-Gram

Precision 0.693 0.676 0.658 0.672 0.840 0.712

Recall 0.674 0.463 0.627 0.663 0.831 0.708

f-Measure 0.680 0.514 0.630 0.664 0.832 0.708

SAFAR

Precision 0.671 0.615 0.725 0.743 0.778 0.734

Recall 0.616 0.314 0.634 0.625 0.654 0.661

f-Measure 0.634 0.326 0.665 0.658 0.696 0.690

SAFAR

+ N-

Gram

Precision 0.673 0.674 0.734 0.717 0.805 0.745

Recall 0.647 0.438 0.657 0.665 0.771 0.739

f-Measure 0.652 0.495 0.684 0.679 0.783 0.742

POS +

SAFAR

Precision 0.757 0.711 0.728 0.755 0.872 0.791

Recall 0.742 0.380 0.675 0.754 0.864 0.788

f-Measure 0.745 0.420 0.687 0.754 0.867 0.788

POS +

SAFAR

+ POS

N-Gram

Precision 0.764 0.691 0.718 0.747 0.904 0.797

Recall 0.752 0.428 0.662 0.745 0.894 0.790

f-Measure 0.754 0.488 0.679 0.746 0.896 0.791

POS +

SAFAR

+

SAFAR

N-Gram

Precision 0.776 0.692 0.717 0.758 0.890 0.786

Recall 0.768 0.435 0.650 0.756 0.886 0.778

f-Measure 0.766 0.495 0.667 0.757 0.887 0.779

POS +

SAFAR

+ POS +

SAFAR

N-Gram

Precision 0.763 0.691 0.716 0.771 0.954 0.788

Recall 0.750 0.456 0.651 0.772 0.953 0.779

f-Measure 0.752 0.514 0.669 0.771 0.952 0.780

Table 7. 33 complete experiment results for all unseen datasets and all

classifier

Figure 7. 18 complete experiment results for all unseen datasets and all

classifier.

As figure 7.18 shows, the rows represent the deferent datasets, and the column

represents the deferent classifier. Each classification process for any datasets results in

three measures to determine the best results. The three measures are precision, recall,

and f-measure.

The red font marked blue cells represents the best row-column best results.

It is clear that the best classifier achieved by using “classification using

constructing a forest of random trees,” in other words, “Classification using random

forest.” All datasets are giving best results in row results (relative to deferent classifier)

but the best results archived by the following datasets:

• POS + SAFAR + (POS N-Gram + SAFAR N-Gram)

This result shows how POSIT and SAFAR toolkits summary results reinforce

each other to produce the best prediction precision. Moreover, it shows how 2-3-4 gram

information helps to enhance prediction results.

Figure 1 Collecting Arabic extremist dataset using crawler.

Figure 2 Sketch engine Screen

Figure 4 .خطأ! لا يوجد نص من النمط المعين في المستندSQLite database engine

Figure 3 Java splitter class

Figure 5 Table created to contain the data.

Figure 6 Java code to extract data

Figure 7 Looper function.

Figure 8 Results of files have same ID.

Figure 10 example of the aggregate output

Figure 9 Example of Posit Summary output

Figure 11 The original Pos_all script file

Figure 12 The modified pos_all script file

Figure 33 original Arabic text file

Figure 31 summary results from Posit

Figure 15 Tagged text file.

Figure 16 Original n-gram.sh

Figure 31 The modified n-gram.sh

Figure 31 (2-grms.txt) file.

Figure 39 (3-grms.text) file.

Figure 20 pop-up file dialogs from selected input files.

Figure 21 the input folders and the input files in “anti” folder.

You can select

multiple folders containing

the required files.

Figure 22 Start analysis and output generation.

Figure 23 Create required folders

G:\work\mido\phD\analyzer\test1\input

Start analysis and output
generation

Output Folders. Creation function name:
create Required Folders ().

Figure 24 Number of files being processed and total number of files.

Figure 25 Total execution time.

Upon finishing, total
execution time

displayed

Figure 26 The structure of each output folder.

Figure 27Generating the name of the normalized file

Figure 28 Analysis and result generation from the normalized file

Output Folders. Creation function name:
create Required Folders ().

So, for an input file named: antiextr13.txt

The normalized file name will be :norm_out_antiextr13.txt

And the split-out file name will be: split_out_antiextr13.txt

Table 1: the summary output result of SAFAR

Table 2: Posit Text Profiling Toolset:

1) Total words (tokens) 2) Particle types

3) Total unique words (types) 4) Determiner types

5) Type/Token Ratio (TTR) 6) Interjection types

7) Number of sentences 8) Nouns

9) Average sentence length (ASL) 10) Verbs

11) Number of characters 12) Prepositions

13) Average word length (AWL) 14) Adjectives

15) Verb types 16) Determiners

17) Noun types 18) Particles

19) Adverb types 20) Possessive pronouns'

21) Adjective types 22) Personal pronouns'

23) Preposition types 24) Adverbs

25) Possessive_pronoun_types 26) Interjections

27) Personal_pronoun_types

antiextr13.txt: Input filename:

1 1823 Number of characters 14 684 Marfo3 Count

2 283 Total words (tokens) 15 601 Mansob Count

3 215 Total unique words (types) 16 732 Majror Count

4 13 Number of sentences 17 1688 Singular Count

5 0.759717 Type/Token Ratio (TTR) 18 93 Double Count

6 21.7692 Average sentence length (ASL) 19 281 Plural Count

7 6.4417 Average word length (AWL) 20 1195 Masculine Count

8 105 Verb POS Type Count 21 867 Feminine Count

9 51 Noun POS Type Count 22 360 Mojarrad Count

10 659 Nakira Count 23 349 Mazeed Count

11 483 Ma3rifa Count 24 145 Lazem Count

12 875 Modaf Count 26 136 Mota3adi Count

13 428 Mota3adi_w_Lazem Count

NUMBER OF TOKEN TYPES:

27 6 verb types 29 22 noun types

NUMBER OF POS TYPES:

30 709 Verbs

31 20 Particles

Table 3: SAFAR: Software Architecture For Arabic language processing

1) Number of characters 2) Double Count

3) Total words (tokens) 4) Plural Count

5) Total unique words (types) 6) Masculine Count

7) Number of sentences 8) Feminine Count

9) Type/Token Ratio (TTR) 10) Mojarrad Count

11) Average sentence length (ASL) 12) Mazeed Count

13) Average word length (AWL) 14) Lazem Count

15) Verb POS Type Count 16) Mota3adi Count

17) Noun POS Type Count 18) Mota3adi_w_Lazem Count

19) Nakira Count 20) Verb types

21) Ma3rifa Count 22) Noun_types

23) Modaf Count 24) particle_types

25) Marfo3 Count 26) Verbs

27) Mansob Count 28) Nouns

29) Majror Count 30) particle

31) Singular Count

Figure 29 GUI-B: ARFF files generator.

Figure 30 ARFF file format.

Table 4: different AREF files

 ARFF Files Purpose

POS

pos_70.arff / pos_30.arff 70/30 training/test

pos_100.arff Create Model

pos_test_class.arff Supervised Test

POS + N-Gram

posGram_70.arff / posGram_30.arff 70/30 training naïve Bayes /test

posGram_100.arff Create Model

posGram_test_class.arff Supervised Test

SAFAR Toolset

safar_70.arff / safar_30.arff 70/30 training/test

safar_100.arff Create Model

posGram_test_class.arff Supervised Test

SAFAR+N-

Gram

safarGram_70.arff / safarGram_30.arff 70/30 training/test

safarGram_100.arff Create Model

posGram_test_class.arff Supervised Test

POS + SAFAR

total_70 / total_30 70/30 training/test

total_100 Create Model

posGram_test_class.arff Supervised Test

POS + SAFAR

+ POS N-Gram

total_pGram_70 / total_pGram_30 70/30 training/test

total_pGram_100 Create Model

posGram_test_class.arff Supervised Test

POS + SAFAR

+ SAFAR N-

Gram

total_sGram_70 / total_sGram_30 70/30 training/test

total_sGram_100 Create Model

posGram_test_class.arff Supervised Test

POS + SAFAR

+ Total N-

Gram

total_psGram_70 / total_psGram_30 70/30 training/test

total_psGram_100 Create Model

posGram_test_class.arff Supervised Test

Figure 31 gram Reference SQLite tables.

Table 5: HDD and SSD comparison (https://www.cs.waikato.ac.nz/ml/index.html)

 HDD SSD

Speed

HDD has higher latency,

longer read/write times, and

supports fewer IOPS (input

output operations per second)

compared to SSD.

SSD has lower latency,

faster read/writes, and

supports more IOPS

(input output operations

per second) compared to

HDD.

File Copy /

Write Speed

Generally, above 200 MB/s and up to

550 MB/s for cutting edge drives

The range can be anywhere

From 50 – 120MB/s

Figure 32 Sample of time consumed by HHD vs RAMDISK based calc

Figure 33 Sum of proc. duration for data sample and enhance. percentage.

