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Abstract

The increasing demand for ocean-related activities, driven by needs such as envi-

ronmental preservation, offshore renewable energy deployment, border security and

weather forecasting, highlights the importance of underwater operations. With min-

imal human intervention, autonomous underwater vehicles (AUVs) are increasingly

employed to execute missions in water bodies. Improved AUV motion reliability

requires advanced controllers to cope with challenges posed by nonlinear dynamics,

coupled motion, actuator limits and environmental disturbances.

This thesis aims to foster the use of Model Predictive Control (MPC) for AUV

motion control, leveraging its capability to optimise the performance of both lin-

ear and nonlinear systems while accounting for system and operational constraints.

Standard MPC uses the receding horizon strategy to offer inherent robustness un-

der minor uncertainties. However, the effectiveness of AUV motion control in the

marine environment can degrade under substantial ocean currents and wave distur-

bances. Moreover, the full-order nonlinear AUV model is complex, rendering it less

appealing for MPC design due to the associated online computational cost. As a

result, this thesis proposes formulating the full-order nonlinear AUV model as a lin-

ear parameter-varying (LPV) system. This makes obtaining a convex optimisation

control problem possible, which can be efficiently solved using off-the-shelf solvers.

Building on the overall research goals discussed in Chapter 1, this thesis in-

troduces the mathematical model of an AUV in Chapter 2 and highlights issues

impacting its use in motion control design. Chapter 3 provides a state-of-the-art
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review of advanced predictive control methods to underscore the significance of this

work. This thesis proposes three main design approaches, leveraging the LPV model,

to address the effects of disturbances across various motion control tasks.

The first approach resulted in two novel MPC algorithms introduced in Chapter

4, both based on velocity models that use increment variables to counteract the ef-

fects of disturbances. The first controller, LPVMPC1, is designed for dynamic posi-

tioning, while the second controller, LPVMPC2, is developed for combined dynamic

positioning and trajectory tracking control of AUVs. The LPVMPC2 integrates a

planning scheme to facilitate a seamless transition from the trajectory tracking task

to dynamic positioning. In the LPVMPC2 design, persistent AUV operation is en-

sured by maintaining continuous functionality even when reference signals include

unreachable positions that violate the AUV workspace constraints.

The second approach, presented in Chapter 5, utilises the tube-based method

for a robust tube-based MPC (TMPC) design to achieve resilience against envi-

ronmental disturbances. The TMPC employs a line-of-sight (LOS) local trajectory

replanning strategy to mitigate input saturation effects, enabling the consideration

of realistic magnitude and rate constraints on input signals. An optimal state-

dependent feedback controller is proposed to construct time-varying tubes to ensure

the perturbed AUV system remains within a tube centred around the nominal tra-

jectory. The TMPC framework is computationally tractable as it requires the online

solution of a convex quadratically constrained quadratic problem.

The third MPC approach is presented in Chapter 6, which introduces an enclosure-

based LOS guidance system and a robust min-max MPC (MM-MPC) for AUV

path-following. By using the vehicle’s desired heading angle to generate reference

linear and angular position coordinates, the need to formulate an AUV error model

is bypassed. The simplicity of the LOS guidance system is then leveraged to de-

velop a multi-objective LOS guidance system (MO-LOSGS) to ensure collision-free

navigation amidst static obstacles. The MM-MPC is designed to stabilise the AUV

speed for time- and energy-efficient navigation. The high computational cost that
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had limited the application of MM-MPC is mitigated by developing a duality-based

transformation strategy to reformulate the problem into a quadratic minimisation

control problem.

All simulation validations of the developed controllers are performed using a re-

alistic Naminow-D AUV manufactured by Mitsubishi Heavy Industries Ltd. The

concluding chapter offers a summary of key research contributions to the develop-

ment of advanced MPC techniques for AUV motion control and proposes potential

avenues for future research.

Key Words: Model Predictive Control; Dynamic Modelling; Autonomous

Underwater Vehicles; Dynamic Positioning; Trajectory Tracking; Path-Following;

Robust Control; Convex Optimisation.
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Chapter 1

Introduction

This thesis presents research findings from an investigation into the three-dimensional

(3D) motion control problem of autonomous underwater vehicles (AUVs). This

chapter presents an overview of the research work performed, including the research

motivation, aims and objectives, contributions to the body of knowledge and the

thesis outline.

1.1 Research Context and Motivation

An AUV refers to a marine vehicle that can autonomously perform missions using

onboard sensors, guidance and control systems [2]. AUVs have drawn a lot of at-

tention in recent years from academia and industry due to their important role in

decreasing the risks involved in the exploration and the exploitation of underwater

resources [3]. The growing demand for underwater operations, driven by industries

such as petrochemicals, military, telecommunications (underwater cables) and sci-

entific research, has fueled enthusiasm for the design and manufacture of AUVs with

greater autonomy for inspection, maintenance and repair tasks [4, 5]. The need for

a high level of autonomy by AUVs to carry out desired tasks with minimum human

intervention makes it important to design advanced control schemes. The advanced

control strategies need to be able to achieve desired motion control objectives de-
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spite AUV’s high nonlinearities, coupled dynamics and environmental disturbances

in the form of ocean currents and waves [6]. Furthermore, important design factors

that should be considered include the limits on actuation capabilities, restricted

energy supply and the environmental constraints posed by obstacles that were not

accounted for during path planning.

The motion control problems can be classified into three main categories based

on the nature of the set-point or reference signal [6]. Dynamic positioning, also

known as station keeping, is a form of point stabilisation problem. It involves

manoeuvring the AUV to maintain a fixed position and orientation, often in the

presence of environmental disturbances. Path-following control refers to missions

where an AUV is directed to follow a spatially constrained reference path. There is

no restriction on the time taken to travel along the path, but the AUV is usually

required to maintain a defined orientation. Finally, trajectory tracking involves

guiding an AUV to track a time-parameterised reference signal. In this case, the

reference imposes both spatial and temporal requirements on the AUV.

Model predictive control (MPC) is a potent optimisation-based control strat-

egy that relies on dynamic system models, enabling the optimisation of predicted

future actions while accommodating operational constraints. Historically, the use

of MPC has been restricted to slow industrial processes like those prevalent in the

petrochemical sector due to computational constraints. However, advancements

in constrained optimal control problem (COCP) solvers, multi-core processors and

field-programmable gate arrays (FGPAs) have substantially mitigated this limita-

tion, broadening the applicability of MPC to faster systems [7]. The ability of MPC

to handle nonlinearities, system constraints and optimise AUV performance has

significantly bolstered its adoption in AUV motion control. The recent successful

real-time implementation of MPC-based control algorithms in autonomous marine

vehicles (AMVs) [8–11] strongly indicates that computational challenges may not

hinder the deployment of MPC in AUVs.

Consequently, there have been significant efforts in developing MPC-based mo-
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tion controllers for AUVs [12]. The doctoral thesis [13] provided novel theoretical

results to enhance the application of advanced predictive controllers for AUV hori-

zontal motion control problems by mostly relying on the inherent robustness of the

MPC strategy. These controllers require additional schemes such as PID to stabilise

the AUV vertical motion [6]. Moreover, standard MPC can handle small uncertain-

ties such as model mismatch and additive disturbances to some extent. However,

it has limited robustness and may not perform well in practical applications of

AUVs subject to significant uncertainties and environmental disturbances [14]. This

awareness has prompted the adoption of diverse disturbance handling strategies, in-

cluding observer-based methods [15], the fusion of MPC and Sliding Mode Control

(SMC) [16], and robust MPC strategies [17]. In [18], recent advancements in MPC

for AUVs were discussed, focusing primarily on motion control within a local plane.

These local plane controllers need supplementary mechanisms to manage depth, roll,

and pitch motions to maintain vehicle stability. These supplementary mechanisms

could include PID and LQR stabilisers [6,19] whose performance often deteriorates

under strong nonlinearities and external disturbances. Even for a well-designed LQ-

based controller tracking curved trajectories, linearisation along the path is required,

with restrictive assumptions on the nature of the curved path [20].

The choice of MPC for local plane motion control is due to the significant com-

plexity associated with using a complete 6 Degree-of-Freedom (DoF) model in non-

linear MPC (NMPC) design [18]. In [21], the AUV model is simplified into horizontal

and dive planes, allowing for the implementation of two linear MPC controllers and

avoiding the use of traditional controllers like PID to stabilise some AUV dynamics.

It is pertinent to mention that some studies [16, 22, 23] on 3D motion control also

assume negligible roll and pitch motion while others [17, 24] neglect only the roll

motion. The work by Zhang et al. [25] considered a full-order model but relied on

the availability of accurate models, as the input forces and moments were computed

using the dynamic parameters of the AUV. Another significant yet challenging as-

pect involves designing MPC frameworks that incorporate realistic input constraints,
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where both magnitude and rate limits are enforced to prevent abrupt variations in

thruster forces. Such abrupt changes are either operationally prohibited or acceler-

ate actuator wear, thereby compromising system longevity and reliability [13,14].

Driven by the need for computational efficiency, the development of full 6-DoF

model-based controllers, mitigation of actuator saturation issues, and effective dis-

turbance handling, this thesis seeks to advance the application of MPC-based motion

controllers for AUVs operating under disturbances in 3D motion tasks. In consider-

ing the full 6-DoF AUV model, this research aims to achieve various motion control

tasks without reliance on traditional controllers to stabilise any subsystem. The work

attempts to develop disturbance-handling strategies to improve tracking precision

and resilience under model uncertainties and environmental disturbances. Besides,

the developed strategies strive to mitigate computational resource requirements by

avoiding nonlinear optimisation control problems associated with standard NMPC,

which is renowned for its substantially higher computational burden than its lin-

ear MPC counterpart. Additionally, the research also explores the development of

predictive controllers for AUVs in uncertain environments containing obstacles. It

also considers a strategy that incorporates both input and input rate constraints to

reflect realistic types of control inputs. These design considerations prompted the

development of research questions that became the foundation for this work, and

they are outlined in the following section.

1.2 Research Questions

The following set of questions underpinned the strategy adopted in the conduct of

this research.

1. How can effective and computationally efficient MPC-based motion controllers

be designed without relying on traditional controllers like PID to stabilise some

AUV dynamics?
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2. How can the tracking accuracy of MPC-based motion controllers be enhanced

under disturbances, especially for dynamic positioning that is critical for suc-

cessful docking operations?

3. How can trajectory tracking and dynamic positioning be integrated to en-

able an AUV to transition seamlessly from executing tracking missions to safe

docking?

4. Can robust predictive control be designed for a high-dimensional AUV system

without prohibitive computational requirements for real-time applications?

5. How can robust optimal path-following be achieved in a time-efficient manner

when tracking 3D waypoints in uncertain environments including obstacles?

1.3 Research Aim and Objectives

This research aims to promote the broader application of advanced MPC strate-

gies to AUV motion control problems, eliminating reliance on traditional controllers

such as PID, particularly in the presence of environmental disturbances and sys-

tem constraints. It seeks to achieve this by developing predictive algorithms with

disturbance-handling capabilities that can be efficiently implemented using off-the-

shelf solvers.

This research work covers three motion control tasks, namely, dynamic position-

ing, trajectory tracking and path-following problems while outlining the assumptions

that underpin the developed controllers. The methodology for designing the con-

trollers is divided into three, each based on a distinct approach to managing system

disturbances. The first method uses increment variables to reduce steady-state error

for improved tracking performance under disturbances. The second method employs

a tube-based approach to robustly track the nominal state trajectory, maintaining

the real vehicle trajectory within a tube set despite the influence of disturbances.
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The third method is based on the so-called min-max MPC approach, which consid-

ers the worst-case scenario under bounded disturbances. Motivated by these ideas

and the research questions in Section 1.2, the objectives of this research are stated

as follows:

1. The first objective of this study is to improve the positioning accuracy of

AUVs during dynamic positioning tasks by introducing a velocity form predic-

tion model to mitigate the effects of external disturbances. The task entails

maintaining a predetermined position and orientation, which is particularly

crucial to facilitating docking operations. Consequently, the precision of the

positioning controller holds significant importance in ensuring the successful

execution of such motion control tasks. The proposed method strives to en-

hance tracking accuracy without assuming constant disturbances, making it

more suitable for real-world scenarios.

2. The second objective is to design an algorithm for combined trajectory tracking

and dynamic positioning to maintain a desired position and orientation/pose

during docking operations. Given that docking operations typically occur

after completing motion control tasks such as trajectory tracking, ensuring

the smooth transition of the vehicle to the docking task is paramount. This

is particularly crucial as the endpoint of the trajectory tracking task may not

exactly correspond to the docking station. This needs to be addressed by

employing a temporal path planner to generate a feasible path for guiding the

AUV towards the docking station. Additionally, in the trajectory tracking

task, the controller should ensure continuous AUV operation even if certain

parts of the reference trajectory are unreachable due to workspace constraints.

3. The third objective is to develop a computationally efficient robust tube-based

control system for AUV 3D trajectory tracking subject to external disturbance

and input saturation. The input saturation problem is likely to occur when

input magnitude and rate limits are imposed, representing more realistic input
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signals. The goal is to formulate a strategy to achieve local replanning in

order to limit the tracking error experienced by the controller. The re-planned

trajectory can subsequently be used to design a robust tube-based control

framework that respects the input magnitude and rate limits.

4. The fourth objective is to develop a guidance system capable of achieving 3D

waypoint following for the coupled AUV system without the need to create

an error model, while also ensuring collision avoidance with static obstacles.

The aim is to leverage the simplicity of the conventional LOS strategy to

derive a position and orientation tracking problem. Using the reformulated

LOS approach, a multi-objective LOS guidance system (MO-LOSGS) can be

developed to achieve collision avoidance.

5. The final objective of this thesis is to develop a robust min-max MPC con-

trol system to track the reference from the MO-LOSGS for path-following

control of an AUV in an uncertain environment with static obstacles. To en-

sure the timely and energy-efficient completion of path-following tasks, the

velocity vector increment is used to formulate an objective function that min-

imises excessive fluctuations in the AUV’s travel speed during path-following.

To address the computational complexity of solving the min-max problem, a

duality-based transformation technique is employed, reformulating the prob-

lem into a convex quadratic minimisation control problem.

1.4 Research Contributions

The main contributions of this thesis to motion control of AUVs are divided into

two main categories. They are summarised as follows.

◦ Predictive control algorithms for motion control tasks:

1. A velocity MPC (LPVMPC1) algorithm that exploits the interdependence of

the kinematic and dynamic equations of an AUV to avoid increased state
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dimensions associated with traditional velocity MPC algorithms is developed

for dynamic positioning of an AUV. Performance is compared to other existing

MPC-based controllers.

2. A second velocity MPC algorithm (LPVMPC2) is developed, which circum-

vents the necessity for model augmentation, thereby preventing an increase in

state dimensions. By formulating the optimisation problem to satisfy a defined

reachable set, the method allows an AUV to track trajectories containing both

reachable and unreachable positions, ensuring that the workspace boundary is

always respected when operating in a constrained workspace. It is noteworthy

that the LPVMPC2 described here is not limited to AUVs and similar systems

but applies to a wide range of practical linear time-invariant and linear time-

varying systems. Furthemore, a simple re-planning scheme is used to enable

integrated trajectory tracking and dynamic positioning control of AUVs by

facilitating a seamless transition between the two motion control tasks.

3. A Tube-based MPC (TMPC) is proposed for 3D trajectory tracking using a

6-DoF AUV model, taking into account both input magnitude and increment

constraints. Determining a local linear feedback law to characterise this tube

presents a challenge for the nonlinear AUV model. To address this, we pro-

pose an optimal state-dependent feedback gain to replace the conventional

linear feedback law used in traditional tube-based MPC designs. This state-

dependent feedback is employed for constructing time-varying tubes to ensure

that the perturbed AUV system remains within a tube centred around the

nominal AUV trajectory.

4. A fast robust min-max MPC (MM-MPC) strategy that minimises velocity

variations in the constrained optimisation control problem is developed. This

helped to ensure roughly constant AUV speeds during the path-following task,

making it possible to complete the task in a considerably shorter duration, re-

sulting in energy savings of up to 40% compared to an MPC that does not
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include velocity increments in the cost function. Additionally, the computa-

tional complexity associated with solving the min-max problem is reduced by

developing a duality-based transformation strategy to reformulate the problem

into a convex quadratic minimisation control problem.

◦ Guidance system and replanning for input saturation mitigation:

5. A modified 3D LOS local trajectory re-planning algorithm is developed and in-

corporated into the TMPC to mitigate input saturation problems in trajectory

tracking control of AUVs.

6. A LOS guidance system which redefines the conventional heading and depth

control problems into a 3D LOS path-tracking problem is proposed. This

approach circumvents the need to develop a kinematic error model. In contrast

to conventional waypoint tracking methods, the proposed approach does not

just track the desired heading but instead uses it to compute the desired

position and orientation vector. This guidance system is combined with the

MM-MPC to achieve a 3D path-following control for fully coupled AUVs.

7. A MO-LOSGS is developed by leveraging the simplicity of the reformulated

LOS strategy, enabling both path-following and collision avoidance with de-

tected obstacles.

1.5 Thesis Organisation

This thesis is organised into seven chapters. Fig. 1.1 shows a conceptual flow of the

work presented in the thesis. The main content in each chapter is briefly discussed

as follows.

1.Chapter 1 introduces the rationale behind the research and delineates its aims and

objectives. In addition, it provides a concise overview of the primary

contributions made by this research.
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Fig. 1.1: Conceptual organisation of the thesis chapters.
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Chapter 2 presents the mathematical modelling of the AUV with coupled motion

and highlights assumptions that can simplify the control design model.

Furthermore, it provides the realistic dynamic parameters of the Naminow-

D vehicle, which are used to numerically validate the proposed control

frameworks in Chapters 4–6 within the MATLAB/SIMULINK environ-

ment. It underscores crucial aspects of the vehicle model, as well as

the modelling of environmental disturbances such as ocean currents and

waves.

Chapter 3 contains a critical review of MPC-based motion controllers for AUVs, re-

lying on the context provided by the AUV modelling described in Chapter

2. It begins by presenting advancements in AUV development and appli-

cations, followed by a discussion on the primary motion control tasks of

an AUV. The chapter then reviews disturbance-handling methods within

the MPC framework for AUV motion control, followed by an extensive

discussion of key research insights. The chapter concludes by highlighting

the key research gaps that this thesis has sought to address.

Chapter 4 presents two velocity form MPC frameworks. First, it outlines an MPC

framework for dynamic positioning, leveraging the interdependence be-

tween the kinematic and dynamic equations of an AUV to prevent in-

creased state dimension. The prediction model relies on the vehicle’s

velocity increments to mitigate disturbance effects, eliminating the need

for an estimator. The second MPC framework uses both position and

velocity increments, avoiding the necessity for model augmentation to

maintain standard vehicle state dimensions. The scheme incorporates a

switching law and an offline replanner, enabling its deployment for com-

bined trajectory tracking and dynamic positioning.

Chapter 5 investigates trajectory tracking control for an AUV subject to input sat-

uration and unknown environmental disturbances. A LOS method is em-
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ployed to develop a local trajectory re-planner used to design a TMPC,

aiming to limit the magnitude of tracking errors experienced by the tra-

jectory tracking controller. This approach mitigates abrupt changes in

velocities and control inputs. The robust constraint satisfaction and the

state-dependent feedback control law used to confine the state trajectory

to time-varying tubes are described.

Chapter 6 presents a guidance and MPC-based control system for path-following

control of an AUV in an uncertain environment with static obstacles.

A LOS-based strategy with online collision avoidance is developed for

guidance by formulating a multi-objective optimisation problem. The

path-following objective is achieved via a robust min-max MPC strategy.

This algorithm penalises the velocity increment in the cost function rather

than the actual input forces and moments to ensure timely and energy-

efficient task completion. The computational efficiency of min-max MPC

is improved tenfold by developing a duality-based technique to transform

the problem into a convex minimisation problem.

Chapter 7 provides a summary of the research presented in this thesis and discusses

potential areas for future investigation.
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Chapter 2

Autonomous Underwater Vehicle

Modelling

In general, marine vehicles have six degrees of freedom (DoF), which encompasses

translational motion in surge, sway and heave, along with angular motions involving

roll, pitch and yaw. Various design considerations such as plane of motion control

can influence the simplification of the mathematical model employed for control

design, leading to the adoption of different assumptions.

As shown in Fig. 2.1, the position and velocity of an AUV are typically described

using two reference frames, namely, the body-fixed (or motion) reference frame {OB}

and the earth-fixed (or inertia) reference frame {OE}. The position, velocity and

input variables used in describing the model of an AUV are summarised in Table 2.1.

To aid the review of existing works in the next chapter, both the full 6-DoF model

and the reduced 3D motion model typically used for horizontal motion control of an

AUV are described.

2.1 6-DoF Model for AUVs

The AUV motion model can be described by both kinematic and dynamic equations.

The kinematic model forms the basis for the transformation from the vehicle’s mo-

14



Chapter 2. Autonomous Underwater Vehicle Modelling

Table 2.1: Notations used for developing AUV model.

DoFPosition and Vehicle Force/ Motion
Euler angle Velocities moment Type

1 x (m) u (m/s) τX (N) Motion in the x-axis (surge)
2 y (m) v (m/s) τY (N) Motion in the y-axis (sway)
3 z (m) w (m/s) τZ (N) Motion in the z-axis (heave)
4 ϕ (rad) p (rad/s) τK (Nm) Rotation about the x-axis (roll, heel)
5 θ (rad) q (rad/s) τM (Nm) Rotation about the y-axis (pitch, trim)
6 ψ (rad) r (rad/s) τN (Nm) Rotation about the z-axis (yaw, heading)

tion reference frame to the earth-fixed coordinate system. Whereas the earth-fixed

reference frame is used to define the position and orientation of the vehicle, the

motion reference frame is used to describe the velocities of the vehicle.

2.1.1 AUV Kinematics

The kinematics of the AUV based on Euler angles is given as [6]:

η̇ = J(η)ν =

J1(η) 03×3

03×3 J2(η)

ν1

ν2

 , (2.1)

where

η = [x y z ϕ θ ψ]⊤ = [η1 η2]
⊤ denotes the position and orientation vector in the

earth-fixed reference frame.

ν = [u v w p q r]⊤ = [ν1 ν2]
⊤ represents the translational and angular velocities in

the body-fixed reference frame.

Further, τ = [τX τY τZ τK τM τN ]
⊤ is the generalised input forces and moments

acting on the AUV, J1(η) represents the rotation matrix from the body-fixed frame

to the earth-fixed frame, following the z − y − x rotation sequence and J2(η) is a

matrix representing the transformation of the angular velocity from the body-fixed
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Fig. 2.1: Diagram showing the 6 DoF of an AUV with body-fixed and earth-fixed
reference frames illustrated.

frame to the earth-fixed frame. The matrices are given as

J1(η) =


cosθcosψ −sinψcosϕ+ cosψsinθsinϕ cosψcosϕsinθ + sinψsinϕ

sinθcosψ cosψcosϕ+ sinϕsinθsinψ sinθsinψcosϕ− cosψsinϕ

−sinθ cosθsinϕ cosθcosϕ

 ,

J2(η) =


1 sinϕtanθ cosϕtanθ

0 cosϕ −sinϕ

0 sinϕ/cosθ cosϕ/cosθ

 .

2.1.2 Nonlinear AUV Dynamics

The 6-DoF AUV motion dynamics that rely on the Newton-Euler equation and

Quasi-Lagrange equation can be written as [6]:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ , (2.2)
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where each term in the dynamic model is defined below.

• M = MRB+MAM ∈ R6×6 is the inertia matrix consisting of two matrices, with

subscript ‘RB’ standing for rigid body and ‘AM’ for added mass components,

defined explicitly as

MRB =



m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ixx 0 0

mzg 0 −mxg 0 Iyy 0

−myg mxg 0 0 0 Izz


,

MAM = −



Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 Yṙ

0 0 Zẇ 0 Zq̇ 0

0 0 0 Kṗ 0 0

0 0 Mẇ 0 Mq̇ 0

0 Nv̇ 0 0 0 Nṙ


,

where m is the mass of the vehicle, rbg = [xg yg zg]
⊤ is the distance vector

from the origin of the body-fixed coordinate system to the centre of gravity

of the AUV expressed in the same reference frame. Ixx, Iyy and Izz represent

the moment of inertia. The added mass matrix component Xu̇, represents the

hydrodynamic added force X along the x-axis due to acceleration u̇. Similar

notations are used for y− and z−directions, on the other five acceleration

terms, v̇, ẇ, ṗ, q̇ and ṙ. The entries in MRB and MAM are typically provided

in AUV specifications.

• C(ν) = CRB +CAM ∈ R6×6 is the Coriolis-centripetal matrix with rigid body

and added mass components. The rigid body component based on Lagrangian
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parameterisation is given by [6]:

CRB =

 03×3 −mS (ν1) +mS
(
rbg
)
S (ν2)

−mS (ν1)−mS (ν2)S
(
rbg
)

S (Ibν2)

, (2.3)

in which Ib = diag(Ixx, Iyy, Izz), ν1 = [u v w]⊤ and ν2 = [p q r]⊤.

For convenience of parameterization of the added mass component of the

Coriolis-centripetal matrix, the inertia matrix is written in a block structure

as

MAM =

M11 M12

M21 M22

 . (2.4)

The added mass Coriolis effects based on skew-symmetrical parameterisation

is written as

CAM =

 03×3 −S(M11ν1 +M12ν2)

−S(M11ν1 +M12ν2) −S(M21ν1 +M22ν2)

 ,
• D(ν) ∈ R6×6 is the vehicle’s hydrodynamic damping matrix. The Naminow-

D AUV [1] adopted in this work employs a coupled structure and nonlinear

representation of the damping effects such that D(ν) = −D|ν|, where

D =



X|u|u 0 0 0 0 0

0 Y|v|v 0 0 0 Y|r|r

0 0 Z|w|w 0 Z|q|q 0

0 0 0 K|p|p 0 0

0 0 M|w|w 0 M|q|q 0

0 N|v|v 0 0 0 N|r|r


,

in which X|u|u, · · · , N|r|r are the nonlinear hydrodynamic coefficients and |ν|

denotes the absolute value of the velocity vector.
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• The vector g(η) ∈ R6×1 describes the forces and moments due to the AUV’s

weight and buoyancy as follows:

g(η) =



(W −B) sinθ

−(W −B) cosθ sinϕ

−(W −B) cosθ sinϕ

−gycosθ sinϕ+ gzcosθ cosϕ

gzsinθ + gxcosθcosϕ

−gxcosθ sinϕ− gysinθ


,

where gx = (xgW − xbB), gy = (ygW − ybB) and gz = (zgW − zbB). Here,

the vector [xb yb zb]
⊤ denotes the centre of of buoyancy of the AUV and is

assumed to coincide with the centre of gravity, while W and B are the weight

and buoyancy of the AUV, respectively.

Table 2.2 summarises important properties of the AUV dynamic matrices and vec-

tors that can be explored in control design. It is important to note that the damping

matrix in many AUVs [6,18] is often a positive definite matrix, i.e., D(ν) ≻ 0, par-

ticularly when considering the linear component of the damping matrix. For the

Naminow-D AUV, Mitsubishi Heavy Industries Ltd modelled the damping matrix

as a nonlinear matrix as described above, making it a positive semi-definite matrix,

i.e., D(ν) ⪰ 0.

The use of the 6-DoF model is common when aiming for a high-fidelity simulation

model for the 3D motion control of relatively large AUVs. Note that it is not

uncommon to neglect [24] the effects of roll motion (i.e., p = 0), resulting in a

simplified 5-DoF model. Further simplification can be achieved depending on the

AUV such that both roll p, and pitch q, motions are neglected to obtain a 4−DoF

model [22]. This represents the simplest dynamic model employed for 3D motion

control tasks in the published literature.

19



Chapter 2. Autonomous Underwater Vehicle Modelling

2.2 Horizontal Motion Model: 3–DoF Model for

AUVs

The 3–DoF model is obtained by neglecting roll (ϕ, p), pitch (θ, q) and depth (z)

motions. In this case, the depth motion is assumed to be stabilised by some other

conventional methods. The resulting 3-DoF model is applied in [26] focused on

autonomous surface vehicles (ASVs) or AUV horizontal motion control.

Define η′ = [x y ψ]⊤ and ν ′ = [u v r]⊤, the kinematic equation in this case is

given as

η̇′ = J′(η′)ν ′, (2.5)

with

J′(η′) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 .
The dynamics of the vehicle is then simplified as follows:

u̇ =
1

m11

[
m22vr −Xuu−Xu|u|u|u|+ τX

]
, (2.6a)

v̇ =
1

m22

[
−m11ur − Yvv − Yv|v|v|v|+ τY

]
, (2.6b)

ṙ = − 1

m33

[
(m11 −m22)uv −Nrr −Nr|r|r|r|+ τN

]
, (2.6c)

where m11 = m −Xu̇, m22 = m − Yv̇, and m33 = Iz − Nṙ. The 3−DoF model can

be written in the compact form

ẋ′ =

 J′(η′)ν ′

−M′−1 (τ −C′(ν ′)−D′(ν ′)− g′(η′))

 := f (x′, τ ′) , (2.7)

where ẋ′ = [(η′)⊤ (ν ′)⊤]⊤, M′ = diag(m11,m22,m33), C′(ν ′) = diag(Xu, Yv, Nr),

g′(η′) = 0 and D′(ν ′) = diag(Xu|u|, Yv|v|, Nr|r|).
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Fig. 2.2: Diagram showing the dynamical models of the AUV and subsystems.

Fig. 2.2 shows the main parts of an AUV motion model and its different forms

based on vehicle characteristics or specific control objectives. This thesis focuses on

3D motion control using the nonlinear 6-DoF model of the vehicle, considering the

effects of modelling errors and environmental disturbances. The described 3-DoF

model is presented to aid a systematic review of the literature on motion control,

including techniques for handling disturbances within MPC framework.
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Table 2.2: Important properties of AUV model explored in control design.

Parameter Properties
4-DoF model 6-DoF model

Rotation matrix J(η)−1 = J(η)⊤ J1(η1)
−1 = J(η1)

⊤, J2(η2) is un-
defined for θ = ±π/2

Inertia matrix M = M⊤ ≻ 0 M = M⊤ ≻ 0
Coriolis-centripetal
matrix

C(ν) = −C(ν)⊤ C(ν) = −C(ν)⊤

Damping matrix D(ν) ⪰ 0 D(ν) ⪰ 0
Weight and buoyancy
forces

∥ g(η) ∥∞< ḡ ∥ g(η) ∥∞< ḡ, ḡ is an upper
bound.

2.3 External Disturbance Modelling

The movements of AUVs can be affected by various environmental disturbances,

depending on whether the AUV is operating in shallow or deep waters. These

disturbances are complex and are caused by spatio-temporal fluctuations induced

by the turbulent nature of the ocean. Some of the factors that impede AUV motion

include tides, topographic perturbations, wind-induced waves, and current effects.

The effects of waves, radiating in all directions due to external interference, and

currents, directional water movements driven by wind, density variations, or gravity,

have been extensively studied in the academic literature [22, 27–32]. When AUVs

operate in shallow waters, they are more affected by water waves, and this effect

grows as the AUV size decreases [33]. It is noted that some studies [34–36] have

modelled waves as simple sinusoidal signals with defined frequencies. Although this

approach may not accurately represent real ocean waves, researchers often employ

it for the sake of simplicity. In this thesis, a more representative model of the wave

disturbance is considered and this is presented in the next subsection.

2.3.1 Wave Model

To model the effects of ocean waves, denote τw = [τwX τwY τwZ τwK τwM τwN ]
⊤ ∈ R6×1

as the forces and moments generated by ocean waves affecting the vehicle’s motion,
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with superscript ‘w’ standing for waves. Each component of the 6 DoFs ocean wave

vector τw, can be modelled by a second-order system [6], i.e.,

żwi,1
żwi,2

 =

 0 1

−ω2
e,i −2ξiωe,i

zwi,1
zwi,2

+

 0

Kw,i

wi, (2.8)

τwi =
[
0 1

]zwi,1
zwi,2

+ di, (2.9)

where the subscript i (= X, Y, Z, K, M, N) corresponds to the DoF of the vehicle,

the amplitude of τwi in the i−th DoF can be changed by the choice of parameter

Kw,i. The term wi is a zero-mean white process noise, ξi is the damping coefficient,

ωe,i is the frequency of encounter. It is noted that ωe,i is relevant only when the

vehicle is moving at a forward speed u > 0 m/s since it is related to peak frequency

ω0,i of the wave spectrum by

ωe,i =

∣∣∣∣ω0,i −
ω2
0,i

g
ucos(βi)

∣∣∣∣ . (2.10)

Here, βi is the encounter angle. The term di in the output equation can be modelled

as slowly changing bias terms (Wiener processes). It is recommended in [6] that a

maximum value of dmax
i is applied to di, i.e., |di| ≤ dmax

i .

2.3.2 Ocean Current Model

To incorporate the influence of ocean currents, adjustments are made to the AUV

6-DOF coupled motion model (2.2). This modification involves considering the

velocity component νc = [uc, vc, wc, pc, qc, rc]
⊤ of the current disturbance relative

to OB. It is typical to assume that the currents are irrotational in an inertial

frame of reference [1, 37–39]. This assumption of irrotational currents implies that

pc = qc = rc = 0 m/s, and for a resultant current speed Vc, the 3D irrotational
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current model is formulated as [40]:

νc = [uc vc wc 0 0 0]⊤, (2.11)

where uc = Vccos(αc)cos(βc), vc = Vcsin(βc) and wc = Vcsin(αc)cos(βc) with αc

denoting the angle of attack and βc is the sideslip angle.

When the current speed Vc is not assumed to be stochastic, it may be modelled

as a first-order Gauss-Markov process [41]

V̇c + µVc = wn, (2.12)

in which µ ≥ 0 is a constant and wn is white Gaussian noise and the ocean current

speed is considered bounded i.e., |Vc| ≤ Vmax. The vehicle’s relative velocity with

respect to the ocean current, given as νr = ν − νc, can then be determined.

2.4 AUV Motion Model with Disturbances

The 6–DoF coupled motion model considering the ocean current and wave distur-

bances is given as

Mν̇ +C(νr)νr +D(νr)νr + g(η) = τ + τw. (2.13)

Since the ocean current is generally constant or slowly-changing, it is assumed that

the current acceleration is negligible, that is, ν̇c ≈ 0. The nonlinear system dynamics

of an AUV subject to disturbances is established as

ẋ =

 J(η)νr

M−1 (τ −C(νr)νr −D(νr)νr − g(η) + τw)

 := f (x, τ ) , (2.14)

where x = [η⊤ ν⊤]⊤ ∈ R2n is the state vector and τ ∈ Rm denotes the control input.

Here, n and m represent the number of DoF and input variables, respectively. An
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AUV is said to be underactuated if m < n and fully-actuated for m = n. A

similar procedure can be used to introduce the effects of currents and waves into the

horizontal motion dynamic model (2.7).

Foward-facing
sonar

Main
Thruster

Fins

Inertia Navigation
System

Central Control
System Module

GPS Antenna

Wireless Power Transfer Module

Fig. 2.3: Naminow-D AUV in a demonstration task in the sea. Adapted from [1].

The thesis focuses on the 3D motion control of AUVs employing a coupled 6-DoF

model. Specifically, the research utilises the Naminow-D AUV as depicted in Fig.

2.3. This AUV prototype, developed by Mitsubishi Heavy Industries Ltd, measures

3 m in length and is a scaled version of the REMUS AUV. AUVs use various sensors

to gather data, navigate and perform motion tasks efficiently. A key sensor is the

sonar, which maps underwater terrain and detects obstacles to prevent collisions.

Underwater acoustic positioning systems for marine applications can be categorised

into Long Baseline (LBL) [100 m - 6000 m], Short Baseline (SBL) [20 m - 50 m] and

Ultra-Short Baseline [USBL] [<20cm] systems [42]. The spacing between beacons

in the calibrated network is called the baseline.

LBL systems use seabed-mounted transponder beacons and a vessel-mounted

sonar transducer. The transducer, mounted on a ROV or AUV, sends an acous-

tic signal detected by the transponder [43]. SBL systems consist of three or more

sonar transducers connected by wire to a central control unit. The spacing between
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transducers and the mounting approach influences their accuracy. With wider spac-

ing, such as from a large fixed platform, the performance of SBL can closely match

the performance of LBL systems [42]. USBL or the super short baseline (SSBL)

systems use a compact transducer array. They are typically mounted on a pole to

determine the target distance via the signal run time and direction via phase shift.

Thus, the technology differs from LBL and SBL, which rely on multiple distance

measurements [42].

The inertial navigation system (INS) estimates the AUV’s position by integrat-

ing acceleration and angular velocity data [6]. However, INS drifts over time and

requires corrections from external references like Global Positioning System (GPS)

or Doppler Velocity Log (DVL) data. Note that GPS provides absolute positioning

but only works at or near the surface, allowing the antenna to periodically update

the AUV position before submergence.

Wireless power transfer modules are increasingly used in AUVs, enabling bat-

tery recharging without physical connectors. This is especially beneficial for long-

duration missions, where docking stations support continuous operation without

human intervention. To maintain precise control underwater, the central control

system module integrates sensor data for real-time thruster force computation and

autonomous navigation. Refer to Table 2.3 for the Naminow-D AUV model parame-

ters. In this thesis, the nonlinear AUV model (2.14) is solved using the fourth-order

Runge-Kutta method, as detailed in Appendix A.

2.5 Summary

In this chapter, the kinematic and dynamic modelling of the AUV were described,

encompassing both the 6-DoF and reduced 3-DoF motion control models. It is

emphasised that the adoption of the 6-DoF model in this research ensures that

the proposed algorithms can achieve not only 2D motion control but also 3D mo-

tions. Additionally, the modelling of environmental disturbances was presented. The
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Table 2.3: Naminow-D AUV Dynamic Parameters

Parameter Value Units
m 197.8 kg

Model & hull W , B 1940, 1999 N
parameters xb, yb, zb −1.378, 0, 0 m

Ixx, Iyy, Izz 5.8, 144, 114 kg·m2

Xu̇, Yv̇, Zẇ −6,−230,−230 kg
Added mass Yṙ, Zq̇ 28.3,−28.3 kg·m/rad
coefficients Mẇ, Nv̇ −28.3, 28.3 kg·m

Kṗ,Mq̇, Nṙ −1.31,−161,−161 kg·m2/rad
M|w|w, N|v|v 27.4,−27.4 kg

Hydrodynamic Y|r|r, Z|q|q 12.3, 12.3 kg·m/rad2

coefficients X|u|u, Y|v|v, Z|w|w −12.7,−574,−574 kg/m
K|p|p,M|q|q, N|r|r −0.63,−4127,−4127 kg·m2/rad2

Naminow-D AUV, developed by Mitsubishi Heavy Industries, is chosen for software

simulation validation of the motion controllers. To facilitate this validation, the

hydrodynamic parameters of the vehicle are outlined. The next chapter presents a

critical review of the literature on MPC-based motion controller design for AUVs

under disturbances, providing justification for the research conducted in this thesis.
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Chapter 3

Model Predictive Control of

Autonomous Underwater Vehicles

- A Review Perspective

3.1 Introduction

Over the past two decades, AUVs have garnered considerable attention from academia

and industry for their potential to reduce risks associated with ocean exploration

and resource exploitation. With advancements in computational power, optimisa-

tion algorithms, perception, and communication technologies, MPC has emerged as

a crucial motion control design method due to its ability to accommodate system

and environmental constraints while optimising AUV performance. This chapter ex-

plores the advancements in the design of MPC-based motion controllers for AUVs.

The remainder of this chapter is structured as follows. Section 3.2 presents an

overview of the development of AUV technology and highlights some important

applications. The rationale behind this review is provided in Section 3.3. Sec-

tion 3.4 delves into the primary motion control tasks of an AUV. In Section 3.5,

techniques for handling disturbances in MPC-based motion control design are ex-
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amined, emphasising essential features related to performance and implementation.

The reviewed works are critically analysed to establish a foundation for the main

contributions of this thesis, which are detailed in the subsequent chapters in Section

3.6. This is followed by a summary of the key points of interest to this research in

Section 3.7.

3.2 Advances in AUV Applications

The ocean, covering approximately 70% of the Earth’s surface, is vital for sustaining

life and requires comprehensive understanding across diverse domains [44]. Increas-

ing demands for ocean-related activities, propelled by concerns like environmental

preservation, border security, offshore renewable energy deployment, and weather

forecasting, have spotlighted underwater operations. Unmanned underwater vehi-

cles (UUVs), comprising remotely operated vehicles (ROVs) and autonomous under-

water vehicles (AUVs), have emerged as indispensable tools for diverse underwater

tasks. ROVs, controlled either via a tether or remotely by a human operator on the

surface, excel in tasks with direct human oversight. Conversely, AUVs, self-propelled

and operating autonomously or semi-autonomously, offer the capability to execute

missions with minimal human intervention.

The need to advance ocean research led to the development of the first true AUV

in the 1950s, known as SPURV (Self-Propelled Underwater Research Vehicle), by

the Applied Physics Laboratory of the University of Washington, USA [45]. Initially

designed for deepwater research, the development of the UARS (Unmanned Arctic

Research Submersible) followed, dedicated to under-ice research [46]. Subsequently,

various research centres across the globe, driven by different applications and uses,

have developed different AUV technologies [47–56]. These vehicles were primarily

developed for government use [47, 48, 57], university-based ocean-related research

[53, 58], or commercial applications [50, 54, 55]. Some vehicles initially designed for

research were later commercialised, such as the Odyssey-class AUVs developed by the
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Massachusetts Institute of Technology (MIT), which were later offered commercially

through Bluefin Robotics, now providing models like Bluefin 9, 12, 21, and HAUV

[55,59–61]. The commercialisation of Odysseys targeted offshore oil services [59].

Over the years, AUVs have seen extensive applications across various sectors,

driven by the offshore industry’s increasing need to explore deep and ultra-deep wa-

ters. This industry encompasses not only oil and gas but also telecommunications,

offshore renewable energy infrastructure, ocean mining, sub-ice surveys, environmen-

tal monitoring, pollution monitoring and cleanup endeavours, and geo-environmental

studies [62–67]. Rising defence needs have further propelled the adoption of AUV

technology [68]. Advancements in electronics and energy sources have significantly

transformed modern AUVs, enabling them to achieve six degrees of freedom (6 DoF)

motion, higher speeds, and greater compactness, making them accessible for a wide

range of applications [3, 69].

Table 3.1 outlines some important tasks performed by AUVs, highlighting var-

ious industrial applications they have been deployed to perform. Equipping AUVs

with appropriate sensors, such as magnetometer sensors, enables them to localise,

map, and detect irregularities in ocean power cables, as demonstrated by the RE-

MUS 600 AUV [70]. Moreover, unconventional intervention tasks, including valve

turning, plugging and unplugging connectors, and item recovery, have become feasi-

ble by integrating manipulators into traditional AUV systems [71–75]. For example,

the Girona 500 from the TRIDENT project, equipped with a 3-finger arm, has been

tested for retrieving black boxes, illustrating its potential for search and rescue mis-

sions [74]. Another notable example is the Girona AUV, equipped with an embedded

manipulator and end-effector, capable of performing valve turning operations [71].

With such remarkable advancements achieved over the past decades, the demand

for AUV technology continues to rise steadily [76–78].
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Table 3.1: Applications/tasks for which AUVs have been deployed.

Sector Application References

Industry

Oil and Gas Offshore site survey [79–81]

Pipeline inspection, monitoring and mapping [82–87]

Valve turning [71,88]

Chain inspection and cleaning [88,89]

Structure inspection [88–90]

Connector plugging and unplugging [72,91,92]

Pipeline leak detection [80,86,93]

Subsea plumes tracking and monitoring due to oil

and gas leaks

[94]

Environmental monitoring and asset integrity [95,96]

Pipe transportation [97]

Transport ROVs to docking station [57]

Telecommunication Structural monitoring of underwater cables [98]

Underwater or under-ice cable laying [99–101]

Detection and tracking a specific cable [102–104]

Inspection of underwater cables [70,105]

Geophysical survey for cable route determination [106–108]

Search and recovery of cable [109]

Offshore Renewable

Energy

Inspection/mapping of offshore wind farm [5,110]

Surveys e.g., soil types and seabed features, power

cables used to take power from offshore wind tur-

bines to land

[111,112]

Maintenance such as cleaning of bio-fouling of off-

shore renewable energy structures

[113]

Scientific Research Survey for bio-logging and general sea animal envi-

ronmental studies

[114–117]

identification of predators [115]

tracking of sea animals [118–120]

geological studies [121–123]

environmental effects monitoring [124–127]
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Table 3.1: Applications/tasks for which AUVs have been deployed.

Sector Application References

Industry

archaeological studies [128–131]

Military Surveillance [54,132–134]

Mine countermeasures [135–137]

Search and rescue [138–143]

Wreckage inspection [144–147]

Bathymetric surveys and ocean exploration [148–154]

Ocean floor mapping [133,155–159]

Claim maritime borders based on continental shelf

data

[133,160,161]

Payload delivery to seafloor [162]

Time critical strikes [163]

Anti-submarine warfare [164–168]

3.3 Motivation for the Review

Despite the considerable advancements in AUV technology, numerous areas require

further development [3, 12], particularly in the realm of designing more efficient

controllers to enhance the reliability of marine vehicle motion [18]. Traditional mo-

tion control methods, such as Proportional-Integral-Derivative (PID) controllers and

Linear Quadratic (LQ) control, often rely on linearisation around specific operating

points or decomposition into subsystems like depth and surge [6, 20,169]. However,

these approaches may not be suitable for modern AUVs that need to track com-

plex paths and adapt dynamically to uncertain environments. The performance of

these control strategies often deteriorates significantly under external disturbances.

Even for a well-designed LQ-based controller, linearisation along the path is required

with restrictive assumptions regarding the path that can be tracked [20]. As a result,

there has been a surge in interest in more advanced model-based control strategies in
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recent years. These approaches aim to develop the capabilities of modern AUVs by

incorporating models and control algorithms to achieve robust and adaptive motion

control in complex environments.

One advanced model-based control approach is backstepping based on Lyapunov

theory [170,171]. A drawback of backstepping approach is the requirement of an ac-

curate mathematical AUV model which is not always available [172]. Consequently,

different methods such as fuzzy logic [173], exponential observers [174] and neural

networks (NNs) [175] are often deployed to estimate unknown dynamics and environ-

mental disturbances. Another challenge often faced in backstepping strategy is the

so-called complexity explosion that can arise from backstepping due to repetitive dif-

ferentiations of virtual control signals. First-order filters including those augmented

with hyperbolic tangent functions [176,177] and time-delay introduction [178] have

been deployed to address this problem.

Sliding mode control (SMC) serves as an alternative motion control design method

widely applied to AUVs because of its high robustness against parameter variations

and ability to mitigate the effects of external disturbances [179]. The major setback

of traditional SMC is that it is characterised by high switching gains and is heavily

affected by chattering around the sliding surfaces which inevitably results from the

high gains [180]. The phenomenon is undesirable because it can lead to reduced

control accuracy, high heat losses in power circuits and increased mechanical wear

of parts [181]. One way of addressing the chattering problem is through the use

of integral SMC (ISMC) which ensures that the order of the sliding mode equa-

tion is equal to the original system’s order; consequently, guaranteeing robustness

throughout the entire response of the system. In the context of AUV motion con-

trol, several advanced SMC-based algorithms have been proposed e.g., output feed-

back adaptive nonsingular terminal SMC (ANTSMC) [182], adaptive non-singular

integral terminal SMC (ANITSMC) [183], globally finite-time stable tracking con-

trol (GFTSTC) [184], adaptive high-order SMC (AHSMC) [185], to mention but

a few. Besides, intelligent methods including fuzzy logic, NN and Reinforcement
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learning (RL) have been adopted to improve the performance of SMC-based mo-

tion controllers [186–192]. Although chattering may be reduced, its effects are often

not entirely eliminated. Moreover, neither backstepping nor SMC methods offer a

straightforward solution for managing opertional constraints.

MPC has also been widely used for AUV motion control. Its capability to in-

corporate system constraints, including environmental constraints, as well as input

and state constraints, renders MPC particularly suitable for AUV applications [22].

Initially, its application was limited to slower systems due to high computational

demands. However, recent advancements in computing, perception, algorithm effi-

ciency, and communication technologies have facilitated widespread adoption across

diverse application domains, and the strategy can be applied to linear, nonlinear,

and time-delay systems [14]. Over the past two decades, MPC-based algorithms

have become increasingly popular in AUV motion control, driven by promising ex-

perimentally validated results in Autonomous Surface Vehicles (ASVs) and AUV

motion control in a local plane, as reported in various studies [8–11,193,194].

For autonomous marine vehicles, several reviews have been published regarding

specific topics such as collision avoidance [195, 196], planning [197], dynamic posi-

tioning [198], guidance, navigation and control (GNC) systems [3, 199]. The recent

review by [12], which focused on MPC applications to various motion planning and

control tasks for single and multiple AUVs, is the most closely related to this review.

However, the review in this chapter is distinct from [12] because its primary objec-

tive is to critically explore MPC design techniques, including assumptions related to

modelling, deployed to handle the effects of unknown environmental disturbances.

It aims to outline the nuances associated with design and performance and identify

areas open for further investigation. This focus is motivated by the realisation that

while standard MPC provides robustness to small disturbances, it lacks adequate

robustness against significant disturbances [200] such as those encountered in under-

water environments. The next section examines the primary motion control tasks

of an AUV from the perspective of MPC-based controllers.
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Fig. 3.1: A generic illustration of MPC application to AUV motion control.

3.4 MPC for AUV Motion Control

The primary goal of describing AUV dynamics is to achieve effective motion control

of the vehicle using model-based design techniques. However, various challenges such

as environmental disturbances, actuator constraints, uncertain model parameters,

underactuation, and nonlinearities pose significant hurdles to developing effective

motion control schemes. Motion control typically involves generating input forces

and moments to achieve defined motion control objectives. In general, control prob-

lems for AUVs fall into three categories: dynamic positioning, path-following, and

trajectory tracking [41,201,202]. Each of these control problems is crucial in differ-

ent operational scenarios. This section focuses on MPC-based strategies for AUVs.

Fig. 3.1 illustrates the process of applying MPC to motion control of AUVs, where

the reference signal depends on the specific motion task and/or the DoFs of the

model used for control design. The observer is included to generalise the illustration

to cases where it is needed for state, disturbance or parameter estimation. The fol-

lowing subsections discusses the three primary motion control tasks and introduces

the basic MPC problem that is used for their execution.
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3.4.1 MPC for Dynamic Positioning

The goal of dynamic positioning is to steer the AUV to maintain a predetermined

position and orientation despite the impacts of time-varying environmental distur-

bances [6,203]. The variable ηd = [xd, yd, zd, ϕd, θd, ψd]
⊤ defines the desired position

and orientation of the AUV. In this task, defining the orientation of the AUV, par-

ticularly the heading angle ψd indicating the direction of the vehicle’s movement is

crucial [12]. From a control perspective, the dynamic positioning of AUVs is syn-

onymous with point stabilisation and station keeping [12, 28]. In general, achieving

dynamic positioning of AUVs poses a significant challenge. This difficulty arises not

only from the complexities associated with nonlinearities, disturbances, and coupling

but also due to potential nonholonomic1 constraints on the vehicle’s motion [204].

These constraints can render it impossible to achieve point stabilisation using any

continuous or smooth constant state-feedback control law.

This control objective is crucial for inspection tasks, where the vehicle must

maintain a specific position and orientation to allow a non-rotating onboard camera

to inspect a facility or structure. Additionally, it is vital in docking scenarios, where

the vehicle needs to hover around a predetermined point with a defined orientation to

be captured by a remotely-operated docking station. It is worth noting that practical

docking scenarios involve a combination of trajectory tracking/path-following and

dynamic positioning, as the vehicle must move from its current position to a vicinity

around the docking station. Moreover, dynamic positioning plays a crucial role in

missions such as target reconnaissance and obstacle detection [28]. In MPC-based

controller design for dynamic positioning, the objective is to compute the optimal

control sequence U(k) = {τ ∗(k + j|k)} , j ∈ [0, N − 1], where τ ∗(k + j|k) denotes

the k + j prediction of the optimal input sequence at sampling instant k. The

input sequence is obtained by solving a Finite Horizon Optimal Control Problem
1A constraint on a system which does not lead to a reduction in DoF because it only limits how

certain configurations can be achieved without restraining the number of possible configurations.
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(FHOCP), at every sampled instant k, as follows:

U(k)∗ = argmin
U(k)

VDP (U(k),x(k))

s.t : x(k + j + 1|k) = f(x(k + j|k), τ (k + j|k)),

x(k + j|k) ∈ X , j = 1, . . . , N,

τ (k + j|k) ∈ T , j = 0, . . . , N − 1,

x(k|k) = x(k),

(3.1)

where N is the prediction horizon, X and U are the state and input constraint sets,

respectively; and the cost function VDP (U(k),x(k)) is given by

VDP (U(k),x(k)) =∥ ηd − η(k +N |k) ∥2P +
N−1∑
j=0

∥ ηd − η(k + j|k) ∥2Q

+ ∥ τ (k + j|k) ∥2R,

in which ηd denotes the desired position and orientation vector, Q,R and P are

positive definite weighting matrices.

The vast majority of MPC applications for dynamic positioning problems are fo-

cused on horizontal motion control of AUVs or ASVs [201,205–207]. The algorithms

described in the aforementioned works may not be directly suitable for the dynamic

positioning of underactuated AUVs with nonholonomic constraints. As a result, an

MPC algorithm that relies on a time-varying feedback law and homogeneous sys-

tem dynamics was deployed for underactuated AUVs [208]. Additionally, authors

of [209–211] investigated this problem using tube-based MPC strategies for ASVs.

Since the focus of the above studies is typically on the horizontal plane, separate

depth controllers such as PIDs are needed in practical scenarios involving AUVs.

Recent studies such as [1, 211] proposed MPC algorithms for positioning control

in 3D space. These studies employed the LPV AUV model for control design to

circumvent the computational complexity linked with nonlinear MPC for higher-
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order systems. However, many of these studies [1, 211, 212] on dynamic positioning

assume constant disturbances or overlook their effects. This is particularly due to

the significant challenge of maintaining precise positioning control in the presence

of persistent disturbances. Therefore, research on the dynamic positioning problem

of AUVs, particularly in 3D space, remains an area ripe for further exploration.

3.4.2 MPC for Trajectory Tracking

Trajectory tracking deals with steering an AUV to track a time-parameterised path.

In this motion control problem, the spatial and temporal requirement of the trajec-

tory is defined. For studies based on 3−or 4−DoF models, the reference trajectory

is typically assumed to be generated by a virtual AUV, that is, the reference state

trajectory x′
d satisfies the nonlinear trajectory of the AUV as

ẋ′
d = f(x′

d, τ
′
d), (3.2)

with τ ′
d denoting the corresponding reference input, which may be taken as zeros for

simplicity. By defining the error state as x′
e(k) = x′(k)− x′

d(k), the error dynamics

of the reduced-order AUV model is given by

ẋ′
e = f(x′

e, τ
′). (3.3)

The error dynamics is then employed in the formulation of a stabilisation MPC

problem. The discretised finite-horizon optimal control problem (FHOCP) is given

as
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U(k)∗ = argmin
U(k)

VTT (U(k),x′
e(k))

s.t : x′
e(k + j + 1|k) = f(x′

e(k + j|k), τ ′(k + j|k)),

x′(k + j|k) ∈ X , j = 1, . . . , N,

τ ′(k + j|k) ∈ T , j = 0, . . . , N − 1,

x′
e(k|k) = x′

e(k),

(3.4)

in which x′
e(k + j|k) denotes the error state predictions at future time step k + j

computed at sampling instant k, and the cost function is defined as

VTT (U(k),x′
e(k)) =

N−1∑
j=0

∥ x′
e(k + j|k) ∥2Q + ∥ τ ′(k + j|k) ∥2R

+ ∥ x′
e(k +N |k) ∥2P .

However, when dealing with 3D trajectory tracking, particularly with the use of a

5- or 6-DoF model, the MPC problem is frequently framed as a tracking problem

similar to that of dynamic positioning MPC problem (3.1), with the distinction that

ηd = ηd(k) i.e., the reference position and orientation vector varies with time. While

numerous studies [21,22,25,212] on 3D trajectory tracking primarily concentrate on

the translational position reference trajectory (xd, yd, zd), it is crucial to acknowledge

the significance of attitude, particularly the heading angle ψd, in practical scenarios.

In such instances, one might set pd = qd = 0 while defining ψd to represent the

desired heading direction [16].

Although the trajectory tracking control problem for fully actuated AUVs is

well-understood [213], there is still scope for future investigation, especially in ad-

dressing more practical control inputs by considering input magnitude and rate

constraints [13]. Furthermore, the utilisation of the 6-DoF AUV model for control

design remains underexplored [18].
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3.4.3 MPC for Path-Following

The path-following control objective arises in scenarios where the vehicle must ex-

ecute a time-independent manoeuver along a feasible path, maintaining a specified

orientation [214–216]. This means that the task imposes spatial constraints with no

limits on the temporal travel along the defined path, making it possible to separately

control the spatial and temporal constraints. Closely related to path-following is the

path manoeuvring task which involves two tasks - the geometric task that enables

the AUV to follow the desired path and the dynamic task that specifies the time,

speed or acceleration with which the law is updated [217].

In path-following control problem, an error model of the form (3.3) is typically

obtained, even for higher-order models such as the 5-DoF model based on the as-

sumption of negligible roll motion [218]. However, in this case, the reference path

xd(s) ∈ R2n is parameterised by the time-independent variable s ∈ R. Based on this

desired path, error dynamics are derived, transforming the control problem into a

regulation problem. The vehicle error dynamics are of the form:

ẋe = f(xe, τ ), (3.5)

in which ẋe ∈ X ⊂ R2n is formulated to include the heading and cross-track er-

rors [218]. Generally, the MPC problem formulated for this motion control task is

similar to the trajectory tracking problem (3.4). In the realm of MPC, research

on this topic has predominantly focused on ASVs [219–222] or the horizontal mo-

tion control of AUVs [216, 221, 223–225]. In the 3D path-following context, authors

of [226] considered a 4-DoF model of a robotic penguin propelled by median and

paired fin (MPF). Their proposed approach introduces an event-triggered fuzzy lin-

ear MPC method for path-following. The event-triggered condition is used to reduce

optimisation frequency. Simulation results validated the effectiveness of the scheme.

In [227], an error model for a decoupled 5-DoF AUV model is developed using Lya-

punov techniques, employing MPC as the kinetic controller. Subsequently, an SMC

40



Chapter 3. Model Predictive Control of Autonomous Underwater Vehicles - A
Review Perspective

Fig. 3.2: Number of published articles on “MPC for motion control of AUVs/ASVs”
indexed in the Web of Science database between 2000 and 2023.

scheme was utilised as the dynamic controller to track the reference speed computed

by the MPC-based kinematic controller.

While numerous studies have explored 3D path-following control using alterna-

tive model-based control design techniques [224, 228–231], there remains a paucity

of MPC-based investigations in this area. Path-following, just like dynamic posi-

tioning, in 3D space, is not widely studied under the MPC framework. In contrast,

path-following has garnered considerable attention in 2D motion control over the

years, as illustrated in Fig. 3.2. The figure summarises published articles indexed

in the Web of Science (WOS) database between 2000 and 2023. These articles were

identified using the following keywords in the titles: “autonomous underwater vehi-

cle/AUV”, “Underwater robot,” “model predictive control/MPC”, “autonomous ma-

rine vehicle/AMV”, “remotely operated vehicle/ROV”, “control”, and “autonomous

surface vehicle/ASV.” Note that the works in Fig. 3.2 do not include those focusing

on 1D motion, such as in the vertical direction. It is noted that the less amount of
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work on 3D paths compared to 2D paths, especially in path-following, may be ex-

plained by the fact that it is more straightforward to formulate an error model of the

form (3.3) that satisfies the dynamics of the vehicle when compared to higher-order

models of marine vehicles. Therefore, this domain presents ample opportunities for

future research endeavours.

3.5 Disturbance Handling in Motion Control of

AUVs

AUVs are subject to model uncertainties and external disturbances caused by envi-

ronmental factors such as ocean currents and waves. While nominal model param-

eters can be estimated through parameter and/or system identification techniques,

they may still exhibit variations due to unmodeled dynamics and unpredictable envi-

ronmental disturbances [6]. Handling disturbances in AUVs has been a longstanding

research focus, with ongoing investigations employing a variety of techniques [232].

In the context of MPC, various methods for handling disturbances have been in-

vestigated. These can broadly be categorised into incremental variable-based MPC

methods, observer-based MPC methods and robust MPC methods. In what fol-

lows, the main techniques utilised for disturbance handling are critically discussed,

emphasising nuances in their design and applications.

3.5.1 Increment Variable-Based MPC Design

This approach to handling disturbances in MPC design for AUVs has garnered con-

siderable interest in the literature. Methods in this category utilise AUV velocity

increment to facilitate MPC design for AUVs operating in the presence of distur-

bances. The motion controllers in this category are usually designed using MPC by

creating a kinematic model where the velocity increment is considered as the input

signal. A MPC controller, known as the kinematic controller, is designed using this
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model to compute the desired velocity of travel for the vehicle. Then, a dynamic

controller, which may or may not be an MPC scheme, is used to track the desired ve-

locity despite the effects of unknown disturbances. The link between the kinematic

and dynamic controllers is illustrated in Fig. 3.3.

Disturbances

Reference
Optimiser

prediction
model

Kinematic MPC controller

Kinematic

Dynamic model
controller

νd = ν(k − 1) + ∆ν∗

ν

η

τ

ηd

AUV System

Fig. 3.3: An illustration of increment-variable MPC design strategy for disturbance
handling in AUV motion control.

The work [25] proposed a LTV MPC strategy as the kinematic controller with

AUV velocity increment, ∆ν, as the input signal to be computed. Through this

formulation, an efficient quadratic MPC problem can be solved online to determine

the optimal velocity vector of the vehicle. Subsequently, the optimal velocity ref-

erence is used to compute the input forces and moments from the dynamic model

directly. However, this approach may be overly sensitive to modelling errors and

external disturbances due to its reliance on the accuracy of the dynamic model.

In [24], a second dynamic controller based on an LTV MPC problem where the

prediction model incorporates the increment of the input forces and moments is

proposed. Unlike [25] which is based on the 6-DoF model, the approach [24] as-

sumes a pre-stabilised roll motion and utilises a 5-DoF model. It is worth noting

that the technique of augmenting state variables with input signal increment does

not effectively mitigate disturbances. It is similar to the so-called partial velocity
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form of MPC, which fails to provide offset-free control for linear time-invariant (LTI)

systems in the presence of constant disturbances unless an observer is employed to

estimate both states and input signals used for predictions [233]. Given that distur-

bances in AUVs are typically persistent and varying in time, and studies [24,25] did

not employ an observer, the performance of these methods [24, 25] can deteriorate

substantially under significant disturbances.

An interesting advantage of the increment variable-based MPC design approach

is its compatibility with alternative techniques for disturbance management in dy-

namic controller design. SMC-based methods have emerged as primary strategies

for enhancing the effectiveness of disturbance mitigation, resulting in an integrated

MPC-SMC framework. A significant contribution in this domain was made by [16],

where the authors initially devised an error kinematic model for a 4-DoF AUV

model. Subsequently, the error model is transformed into a partial velocity form,

employing velocity increment as the input. The authors [16] employed SMC to com-

pute the input forces and moments based on the optimal reference velocity computed

using MPC. A similar scheme was also deployed by [23] in dynamic target tracking.

The merit of these schemes over [24, 25] is that they take advantage of the robust-

ness of SMC to modelling error and external disturbances. Nevertheless, it should

be noted that SMC may lead to input chattering. To mitigate chattering, authors

of [10] incorporated ISMC into an integrated NMPC-SMC framework for local plane

motion control of an AUV. Therefore, the method relating to formulating the kine-

matic model with velocity increment as input may rely on other methods such as

SMC–based techniques to mitigate disturbances.

One of the main methods used for ensuring offset-free control in LTI systems

is the use of velocity form state space models in MPC design [234]. This involves

formulating a prediction model by augmenting the state increment with the plant

outputs and using the change in the input signal as the input to the resulting ex-

tended model. This method eliminates the need for an estimator to handle constant

or slowly changing disturbances. The approach was proposed for nonlinear systems
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by approximating their dynamics using quasi-LPV model [235]. This approach is yet

to receive any interest in AUV motion control, particularly when navigating curved

trajectories in 2D and 3D space. This lack of use can be attributed to the presence

of nonlinearities and coupling effects, which make it challenging to approximate the

system model using linear methods. Additionally, employing augmented models

in the FHOCP increases the state dimension of the prediction model, resulting in

higher computational costs and potential loss of stabilisability [236].

3.5.2 Disturbance Model-based MPC Design

Disturbance model-based MPC design encompasses strategies that incorporate mod-

elled disturbances through various techniques to mitigate the impact of unmeasured

disturbances within the MPC framework. Depending on the approach adopted for

disturbance modelling, these methods are further classified into observer-based, lin-

ear wave theory-based and intelligent design methods. These classifications are

elaborated upon in the following subsections.

3.5.2.1 Observation-Based MPC Design

Observation-based techniques refer to methods where estimators are utilised to di-

rectly approximate external disturbances or to reconstruct the states of the system

to account for the effects of internal and external disturbances. Authors of [237]

proposed an extended state observer (ESO)-based MPC strategy for 3D trajectory

tracking for an underactuated 4-DoF AUV model. This scheme employs MPC to

compute the reference velocity vector using the input increment technique as in [16].

The impacts of underactuation and disturbances are accounted for through a control

law that uses ESO for lumped disturbance approximation [237]. Indeed, it would

have been intriguing to compare the ESO-based MPC with a standard MPC con-

troller, given the latter’s advanced capabilities. In [238], a super-twisting-algorithm

(STA)-based observer was used to estimate unknown disturbances, which was then
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utilised in an MPC algorithm. This MPC algorithm leveraged feedback linearisation

to facilitate efficient computation. Simulation results showcased the effectiveness of

this strategy for horizontal motion control of an AUV.

Under the premise of constant current disturbance, authors of [211] devised

an offset-free NMPC (OFNMPC) based on a 4-DoF model for docking operations

wherein a disturbance model is integrated with the system dynamics and estimated

utilising a Kalman filter. The study [1] proposed an LTV MPC algorithm employ-

ing an LPV Kalman filter to estimate disturbances by comparing estimated and

measured states. However, assuming constant disturbances is not always practical

due to the dynamic nature of the ocean environment [6]. Authors of [212] devised

an MPC-based 3D trajectory tracking algorithm incorporating an Extended State

Kalman Filter to estimate disturbances by augmenting system states with an inte-

grating disturbance model. While the work [212] accounted for measurement noise,

it relies on the impractical assumption of a constant ocean current disturbance.

Authors of [15] conducted a comparative study of two OFNMPC algorithms

integrated with EKF and Moving Horizon Estimation (MHE) for AUV dynamic

positioning control. The study revealed that the OFNMPC-EKF combination of-

fers superior robustness in the presence of varying disturbances. The study [239]

proposed the use of an extended active observer as a disturbance estimator under

an NMPC framework for 3D trajectory tracking. In [240], an EKF was employed

for wave disturbance estimation, serving as feedback to enhance the performance of

LTV-MPC for 2D station keeping control in the xz-plane. The scheme’s performance

was benchmarked against a PID controller. However, one can argue that a more

appropriate comparison could have been made with conventional MPC without the

observer. An important point to note is that approaches relying on observers to es-

timate additive disturbances for correcting prediction models often assume constant

disturbances, which may not always be practical in real-world scenarios.

Lyapunov-based MPC (LMPC) design is a methodology that imposes closed-

loop stability for complex nonlinear systems by incorporating a Lyapunov stability
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Fig. 3.4: Lyapunov-based MPC generic framework for motion control of an AUV.

contraction constraint into the NMPC problem as illustrated in Fig. 3.4. In this

method, the derivative of the Lyapunov function of the MPC controller should not

exceed that of the Lyapunov function of a pre-designed auxiliary controller. While

this concept was first introduced by [241,242], its application to AUV motion control

was pioneered by [206]. They formulated [206] a Lyapunov constraint within the

MPC framework to ensure closed-loop stability for dynamic positioning control in

the horizontal plane. This approach is advantageous as it avoids local linearisation

to ensure stability. Subsequently, the scheme was extended to trajectory tracking

in a later work [243]. However, these initial applications to AUVs did not explicitly

incorporate methods for mitigating the effects of disturbances and thus relied on the

inherent robustness of NMPC. Observer-based LMPC design has been employed to

estimate and mitigate the impact of disturbances in the trajectory tracking of co-

operative AUVs [244]. By utilising an ESO-based auxiliary controller, closed-loop

stability is ensured [244]. The distributed LMPC inherits the robustness and stabil-

ity features of the ESO-based controller, leveraging online optimisation to enhance

performance. This observer-based LMPC approach has been extended to guarantee

closed-loop stability for underactuated cooperative ASVs as well [245]. Extending

these observer-based LMPC schemes to facilitate 3D motion control of AUVs is likely

to receive interest from researchers in the near future.
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3.5.2.2 Linear Wave Theory-Based MPC Design

Linear Wave Theory (LWT) describes a wave field in a random sea as a superpo-

sition of sinusoidal components. The authors of [246] proposed a MPC strategy

that relies on LWT to approximate the fluid dynamics within a wave field. The ap-

proximated disturbances are then incorporated into the MPC future predictions to

counteract the effects of wave-induced disturbances. The LWT-based wave predic-

tion was experimentally validated using an ROV [247]. Under the assumption that

the velocities of currents, waves, and wind remain constant for short periods, authors

of [207] devised a mathematical model to approximate the effects of disturbances

on an AUV in the horizontal plane. The unknown model parameters are estimated

by minimising the least square criteria between the measured velocities and those

of the disturbance model. Through performance metrics such as average mean er-

ror, RMS error, and average maximum error, the approach demonstrated superior

performance compared to conventional MPC lacking disturbance predictions [207].

3.5.2.3 Intelligent MPC Design

Artificial intelligence has taken centre stage in different fields and is today closely

linked with control system design. In the context of AUVs, intelligent methods such

as neural networks and fuzzy logic have found extensive use as approximators for

actuator faults, unknown dynamics and external disturbances in motion control un-

der backstepping and sliding mode control frameworks [248–252]. The study [253]

proposed a modification to the MPC-SMC framework from [16], using a nonsingular

terminal sliding mode control (NTSMC) instead of SMC as the dynamic controller.

The authors [253] then used a RBF-NN for lumped disturbance estimation to en-

hance the adaptiveness of the scheme. In [8], a combined reinforcement learning

(RL) and system identification method was used to learn and identify modelling

errors and disturbances to improve the performance of an MPC motion controller

for an ASV. Experimental results demonstrated the potential of this method. It
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is worth mentioning that fuzzy- and NN-based methods have been proposed for

data-driven predictive control, which aims to develop predictive control strategies

without relying on a mathematical model of the system. The authors of [254] pro-

posed a predictive control using a Takagi–Sugeno (T–S) fuzzy model predictor with

sliding window (SDW), omitting the need for a detailed AUV model but ignoring

disturbances. In [255], the fuzzy-based predictor was extended to estimate distur-

bances and compensate for time delays. However, they lacked comparisons with

model-based schemes for a more comprehensive assessment of their performances.

In a recent study [256], the parameters of an RBF-NN model-based predictor were

optimised using an adaptive sparrow search algorithm. This method compensates

for disturbances by updating the neural network output layer’s deviation from the

desired trajectory.

3.5.3 Robust MPC Design

Due to its receding-horizon nature, standard MPC can handle small uncertainties

such as model mismatch and additive disturbances to some extent. However, it has

limited robustness and may not perform well in practical applications when model

uncertainties or disturbance levels are high. Hence, researchers have been developing

robust MPC methods to ensure good performance while robustly satisfying system

constraints. See [14] for an extensive review of robust MPC techniques, namely, min-

max optimisation-based approaches [257, 258], tube-based methods [259, 260], and

constraint-tightening techniques [258,261]. Robust MPC design has received consid-

erable interest for ASV and AUV motion control under the influence of disturbances.

The authors of [262] proposed a min-max NMPC for ASVs, where the worst-case

scenario, based on the disturbance upper bound, is considered in the computation

of the input forces and moments. However, considering the worst-case scenario is

likely to result in conservative controller performance. Based on linear matrix in-

equalities (LMI), the authors of [216] proposed a robust MPC scheme based on H∞
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criterion to achieve path-following for AUVs in the presence of model uncertainties

and environmental disturbances. The robust MPC scheme relies on a factorised

Extreme Learning Machine (fELM) dynamic model for prediction. Simulation and

experimental results verified the effectiveness of the proposed scheme in achieving

the path-following in the horizontal plane. The following subsections explore robust

strategies, tube-based and energy-optimal methods, which have received interest in

the AUV control literature.

Nominal Controller
(MPC)

Disturbance Controller
(State feedback)

u(k)∗

Tube-based MPC Controller

AUV system

Disturbances

Measurements

Reference

Fig. 3.5: Tubed-based MPC generic framework for motion control of an AUV.

3.5.3.1 Tube-Based MPC Design

The tube-based MPC (TMPC) is a robust control strategy aimed at confining the

system’s evolution within a tube surrounding a desired nominal trajectory. As

shown in Fig. 3.5, TMPC typically consists of two control laws. The first is a

nominal controller, which employs the nominal model for prediction in an MPC

problem. The second is an auxiliary or state-feedback controller, often referred to

as the disturbance controller, used to ensure that the actual trajectories of the sys-

tem remain within a state tube centred along the nominal state trajectories. The

size of the tube is determined by the system’s dynamic constraints and the upper

bound of the disturbances. A combined TMPC and ISMC approach is proposed

for dynamic positioning in the horizontal plane, addressing system constraints and

disturbances, including faults [263]. Given that the vehicle operates within a small

50



Chapter 3. Model Predictive Control of Autonomous Underwater Vehicles - A
Review Perspective

known neighbourhood, a conventional linear state feedback design is employed [263]

to characterise the tubes.

However, characterising the tube with a local linear feedback gain remains chal-

lenging for nonlinear AUV trajectory tracking problems. To address this, the

work [264] employed an ancillary nonlinear optimisation method to formulate an

implicit control law aimed at minimising the distance between the perturbed sys-

tem and the nominal system. The study [22] developed a TMPC for 3D trajectory

tracking of an underactuated AUV represented by a 4-DoF model where the state

feedback control law is formulated using a backstepping technique. The authors

of [17] introduced a dual-loop TMPC for a 5-DoF AUV model, inspired by the input

increment approach outlined in [24], to tackle model uncertainties in 3D trajectory

tracking control. The dual-loop TMPC utilised a finite-time ESO to estimate dy-

namic system uncertainties to achieve adaptiveness under disturbances. The major

drawback of this approach lies in the computational intensity required for its imple-

mentation as it relies on the sequential solving of a state-dependent discrete-time

algebraic Riccati equation (SD-DARE) and two distinct constrained optimisation

control problems. Additionally, the work [17] assumes negligible roll motion based

on the assumption that the roll motion of the vehicle is pre-stabilised by an appro-

priate method. Therefore, further research is encouraged to explore TMPC for 3D

motion control utilising full 6-DoF models.

3.5.3.2 Robust Energy-Optimal MPC Design

An interesting technique mostly deployed for path-following is the so-called robust

energy-optimal methods. In the work [265], a robust energy-optimal LOS MPC

(ELOS-MPC) was employed for surge and yaw control while PID was deployed for

heave and pitch control. To account for uncertainty, the authors [265] analysed

how the optimal surge speed changes when the current deviates from its nominal

value. Then, minimisation of the maximum potential energy loss is performed to

make the optimal surge speed robust. Simulation results demonstrated that the
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scheme has the potential to provide satisfactory path-following while resulting in

considerable energy savings. The authors of [21] introduced a modified technique,

known as the robust energy-optimal integral LOS MPC, for achieving 3D path-

following without relying on PID controllers. To ensure feasibility in the tracking

problem, reference signals for sway (v) and roll (p) directions were set to zeros due

to the AUV’s lack of actuation in these directions. The yaw angle reference (ψd) was

determined using the standard ILOS technique, while setpoints for surge velocity

(ud), heave velocity (wd), and pitch angle (θd) were obtained from an optimisation

problem. This problem, designed to robustly account for uncertainties, aimed at

minimising energy consumption. The scheme concurrently solves two MPC problems

to track (ud, ϕd) and (wd, θd), respectively [21]. It is noted that the scheme relies

on an EKF to estimate model uncertainties and constant ocean currents that are

used in robust reference computation. However, it is essential to note that this

scheme’s development relies on the assumption that surge, heave, pitch and yaw

dynamics remain in a steady state, which may not hold true for arbitrary 3D motion.

Moreover, assuming a constant current is impractical due to the time-varying nature

of environmental disturbances in the ocean environment.

The next section discusses key points from the review of various disturbance-

handling techniques, highlights research gaps and outlines their implications for

future research.

3.6 Discussions and Research Outlook

This chapter has offered a critical review of applications and MPC-based motion con-

trol strategies of AUVs, emphasising design intricacies and techniques for handling

disturbances. It acknowledges that while the receding horizon principle inherently

provides robustness for standard MPC against relatively small uncertainties, the

complex mix of model uncertainties and environmental disturbances encountered by

AUVs in underwater environments necessitate the incorporation of more advanced
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methods to effectively mitigate disturbances in MPC applications for AUVs. De-

veloping MPC-based motion controllers for 3D problems is inherently complex due

to the requirement of using higher-order models, which leads to solving compu-

tationally intensive optimal control problems online. Controllers for AUVs based

on MPC have mainly focused on planar motions, with those targeting 3D motion

relying on simplified AUV models. The strategies for handling disturbances in MPC-

based motion controllers were categorised into three main subheadings: increment

variable-based methods, observation-based methods and robust methods. It is im-

portant to note that not all algorithms neatly fit into one specific category, as some

approaches may incorporate elements from multiple strategies. This is illustrated in

Fig. 3.6, where certain algorithms exhibit characteristics that span across various

disturbance management strategies.

Fig. 3.6: Selected papers used to exemplify the interconnectedness among various
techniques for managing disturbances in AUV motion control.
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In the AUV literature, the increment variable-based method has relied on the

so-called partial velocity form where a virtual input (AUV velocity) increment is

augmented with the state vector. It is noted that this method on its own does not

adequately mitigate the effects of disturbances and as such requires the design of

approaches such as SMC-based techniques to ensure robustness against disturbances

and model uncertainties. In MPC literature, an alternative increment variable-based

MPC is known as the velocity form MPC. The velocity form, which appears to

have seen no applications in AUV 2D or 3D motion control, involves utilising the

increments of both states and inputs to construct a prediction model, aimed at

mitigating the effects of disturbances. The advantage of the so-called velocity form

MPC stems from the fact that it does not require a separate observer to mitigate the

effects of disturbances. While this technique was traditionally applied to LTI systems

[234], the work by [235] developed a velocity form MPC for nonlinear systems by

using quasi-LPV models for predictions. A major drawback of this method and other

velocity form MPC algorithms is the requirement for model augmentation, which has

made this approach less appealing because it can potentially increase computational

burden due to increased state dimension. Hence, the development of velocity MPC

algorithms for AUVs remains an ongoing research challenge, particularly algorithms

capable of bypassing the need for model augmentation.

Observation-based techniques, utilising estimators like Kalman filtering-based

methods, MHE, or intelligent tools such as NN and fuzzy logic, are commonly em-

ployed for disturbance rejection in AUV motion control. These methods are popular

because they can be integrated into different MPC formulations. In MPC design,

where disturbances are assumed additive, the estimators are used to compensate for

the unknown disturbances [1, 211, 239, 240]. A drawback of these methods is that

they mostly rely on the impractical assumption of constant disturbances. In robust

control, estimators allow adaptability by adjusting disturbance bounds based on

the prevailing operating conditions [17, 266]. Thus, the observation of uncertainties

is expected to continue to play an important role in control design. This includes
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mitigating disturbances in nominal MPC design and reducing the conservatism as-

sociated with robust strategies, such as the min-max approach, which considers the

worst-case scenario.

The robust TMPC approach has garnered increased interest in AUV motion

control, and this trend is expected to continue due to its ability to achieve effective

trajectory tracking, often with theoretical stability guarantees under disturbances.

However, tracking curved trajectories is challenging as it is difficult to obtain a

linear stabilising feedback controller to characterise the state and input tubes. To

address this in horizontal motion control, the work [264] proposed a technique that

requires solving two nonlinear optimisation problems, which may pose challenges for

deployment in real applications due to computational complexity. The 3D trajectory

tracking approach proposed by [17] based on a 5-DoF model involves sequentially

solving two quadratic optimisation problems and an SD-DARE. Moreover, there is

a lack of research using the 6-DoF model, which would eliminate the need for an

additional method to pre-stabilise roll motion. Hence, this research area presents

ample opportunities for future investigation and development.

In the context of path-following control, robust energy-optimal methods have

been introduced to enhance robustness in MPC design through the computation

of robust optimal reference signals [21, 265]. Further exploration is warranted in

this area to develop schemes that consider time-varying disturbances. The study

of coupled AUVs with up to 6-DoF remains an open challenge, particularly for

waypoint-following. Indeed, disturbance handling has received more attention in the

context of trajectory tracking and dynamic positioning compared to path-following

from an MPC perspective. So, studies may seek to advance the deployment of MPC

in this area, particularly for 3D path-following control.

In the domain of min-max MPC design for AUV motion control, there is still

considerable potential for exploration. Min-max MPC design is appealing for its

ability to ensure robust satisfaction of system constraints. While the work by [262]

provided an NMPC algorithm for horizontal motion control, further research can
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focus on the development of quasi or relaxed min-max MPC algorithms [267–269].

These avenues offer promising opportunities for investigation, especially considering

the growing interest in approaches where the AUV model may be formulated as an

LTV system. Hence, avoiding the need for obtaining a nonlinear optimisation control

problem. For the AUV horizontal model, researchers may consider formulating the

system as a LPV system with the yaw angle as the parameter. Furthermore, limited

attention has been given to the use of higher-order models in min-max MPC in

AUV control problems, and this area warrants further investigation as it provides a

relatively straightforward approach to robustly satisfy system constraints.

Indeed, the increasing role of data-driven methods in AUV motion control can-

not be overlooked. Traditionally, designing MPC-based motion controllers involves a

two-stage process: system identification followed by controller design [12]. However,

due to the complex nature of AUV systems, including cross-coupling, hydrodynamic

forces, nonlinearities, and disturbances, developing accurate mathematical models is

challenging. Data-driven MPC strategies, such as those proposed by [216,254,255],

offer a promising solution by leveraging input-output data obtained from AUVs,

thereby bypassing the need for extensive system identification. Given the rapid

advancements in computing, artificial intelligence and the potential impact of data-

driven control methods on advanced motion control, it is evident that future research

will persist in advancing this research domain. The author argues that enhancing

mathematical models with intelligent techniques will likely gain greater industry

acceptance, at least in the near future, as mathematical models offer a clearer un-

derstanding of system behaviour compared to relying solely on input-output data.

3.7 Summary

This chapter provides an overview of MPC-based motion controller design for un-

manned marine vehicles, with a specific focus on disturbance-handling strategies. It

reviews state-of-the-art design strategies for MPC-based motion controllers, cat-
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egorising them into increment variable-based approaches, observation-based ap-

proaches, and robust MPC-based approaches. The review highlights the strengths

and weaknesses of various strategies, along with subtleties related to the design,

implementation and performance. Despite the advancement of various techniques

for disturbance handling in MPC-based motion controllers for AUVs, the pursuit

of safer disturbance handling methods within MPC algorithms, especially for 3D

motion control applications, remains ongoing.

Section 3.6 explores potential areas for research aimed at enhancing the per-

formance of AUVs in the presence of environmental disturbances. The survey un-

derscores the necessity for research endeavours aimed at addressing the key issues

highlighted by the research questions of this thesis as outlined in the first chapter.

Some of the identified key issues that motivated the research carried out in this

thesis are listed below.

• The limitations of MPC-based algorithms that rely on partial velocity form

MPC and disturbance estimation for the dynamic positioning of AUVs subject

to time-varying environmental disturbances.

• Existing works have not employed velocity MPC for AUV motion control in

either 2D or 3D motion control. This may be due to the need for model

augmentation, which can increase computational cost and negatively affect

model properties.

• Although tube-based MPC is well recognised for its advantages in the AUV

literature, none of the studies have employed the full-order model for control

design. Furthermore, the computational cost of existing strategies for reduced-

order models may be prohibitive for real-time implementation.

• While MPC controllers for AUVs typically account for input constraints, they

rarely address input rate constraints, thereby overlooking potential saturation

issues in practical applications.
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• The requirement of efficient energy utilisation during path-following control of

marine vehicles where the reference path is not subject to time constraints.

In the subsequent chapters, this work aims to address the research gaps identified

above in the realm of 3D motion control using 6-DoF design models, as described

in Chapter 2.
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Chapter 4

Velocity Form MPC for Dynamic

Positioning and Trajectory

Tracking of an Autonomous

Underwater Vehicle

4.1 Introduction

The operational duration of an AUV is limited by the internal battery which typi-

cally acts as the sole energy source. Remotely operated docking stations have been

developed to avoid frequent launching and recovery tasks of the vehicle, enabling

charging and data upload to be performed underwater [40]. For AUVs with un-

derwater docking stations, it is necessary to steer the vehicle during underwater

operations through desired trajectories which may be curved before returning to the

docking point where the vehicle needs to maintain a defined constant position for

docking. In the literature [26,28,270], the trajectory tracking and dynamic position-

ing problems are often studied separately because it is challenging to provide good

performance in both curved and constant reference signal tracking by AUVs subject
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to disturbances. In the AUV context, tracking constant reference signals is known

as dynamic positioning which is closely related to point stabilisation [28]. Many

studies [25, 271] on AUV control have been dedicated to trajectory tracking tasks

without necessarily considering how the proposed controllers would perform when

tracking piece-wise constant signals under persistent disturbances such as ocean

currents. The need to consider the effects of both ocean currents and waves adds

complexity to the controller design.

This chapter is divided into two main parts. In the first part, the dynamic

positioning control of an AUV is considered for docking operations in the presence

of varying tidal currents. The AUV model is described by a dynamic model and

a kinematic model, both formulated as LPV systems. A velocity form LPVMPC1

scheme is proposed, in which the AUV dynamic model is used for the states and

the kinematic model is used for the output. The interdependence of the AUV

kinematic model and dynamic model is exploited to avoid increased state dimension.

This complete velocity form controller design enables the cancellation of disturbance

effects through the use of the AUV’s velocity vector increment for predicting the

future evolution of the system.

The second part of the chapter considers combined trajectory tracking and

dynamic positioning. This is achieved by proposing an alternative velocity form

LPVMPC2 strategy that can effectively steer AUVs along 3D trajectories that may

be curved, and also provide effective tracking of piece-wise constant reference signals

required to maintain a desired position and orientation as in underwater docking op-

erations. The second controller uses the increment in AUV position and velocity

vectors without requiring model augmentation.

The main contributions of this chapter are described in the following points.

1. A LPVMPC1 algorithm is developed that uses the interdependence between

the kinematic and dynamic equations of an AUV to formulate a velocity form

prediction model. The model depends on the AUV velocity increment to cancel
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disturbances, enabling effective dynamic positioning control.

2. A combined trajectory tracking and dynamic positioning controller is devel-

oped. In conventional velocity form MPC algorithms [234,235,272], augmented

models are used which can lead to increased computational requirements due

to increased state dimensions. This challenge is reported [236] to be a limiting

factor for the wide use of velocity form MPC algorithm to high-order systems.

The developed novel velocity LPVMPC2 algorithm does not require model

augmentation. Here, both increments in position and velocity variables are

employed in the prediction model to mitigate disturbances. The velocity form

LPVMPC2 problem is formulated to ensure closed-loop asymptotic stability

through the imposition of terminal state constraints.

3. To smoothly transition from 3D trajectory tracking to dynamic positioning

and avoid jump discontinuity, a time parameterization of the transition path

is proposed. This helps mitigate abrupt changes in input forces and velocities

during the transition phase.

4. The developed LPVMPC2 scheme can cope with tracking reachable references

and also trajectories including unreachable points. For AUVs operating in a

constrained workspace, this feature can be used to ensure the AUV remains

within the workspace boundaries that define the set of reachable output refer-

ences.

The remainder of this chapter is structured as follows. Section 4.2 outlines

the proposed velocity form LPVMPC algorithm for dynamic positioning control of

AUVs. In Section 4.3, the alternate velocity MPC strategy is developed for combined

trajectory tracking and dynamic positioning. Concluding remarks are provided in

Section 4.4.
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4.2 AUV Positioning Control - a Velocity Form

LPVMPC Approach

This section presents the development of a velocity LPVMPC strategy, denoted

LPVMPC1, for dynamic positioning control of an AUV by exploiting the interde-

pendence of the dynamic and kinematic models.

4.2.1 A Systematic Synthesis of the Velocity Form Predic-

tion Model

In [25], a predictive control algorithm based on partial velocity model was developed

for AUV path tracking, in which η(k) was taken as the state vector and ν(k) as the

virtual control input to be computed such that η(k) follows a time-parameterised de-

sired reference, ηd(k). Consequently, the velocity given as ν(k) = ∆ν(k)+ν(k − 1),

was augmented with the kinematic equation to formulate the prediction model. With

this approach, the effects of disturbance can be mitigated only when an observer

is used to estimate the control signal employed in the augmented state prediction

model [233]. As a result, the complete velocity form MPC design approach, which

is well-known for attenuating disturbance effects [234,235,273], is considered in this

chapter.

In the design of the positioning controller, the effects of tidal currents are con-

sidered. Tidal current (2.11) is simulated using a Vc as the resultant speed with

variations in the current disturbances caused by the time-dependent angle of attack

αc(t) and side slip βc(t). Since the assumption of a zero mean disturbance is not

always practical, a constant offset term is introduced into the current disturbance
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to obtain:

νc =



Vccos(αc(t))cos(βc(t)) + dx

Vcsin(βc(t)) + dy

Vcsin(αc(t))cos(βc) + dz

0

0

0


. (4.1)

To allow controller design without an observer, the motion dynamic model is

used rather than the kinematic model as a basis for controller design. The devel-

oped complete velocity form of the predictive model minimises the impact of model

mismatch as well as constant-type/slowly-varying disturbances via the use of incre-

ments in the AUV’s velocities.

Since the ocean current is unknown to the controller, the model in (2.14) is used

solely for the vehicle’s motion simulation. As a result, the discretised kinematic and

dynamic equations used for controller design are not based on νr but ν as follows.

η(k + 1) = η(k) + J(ν(k))Tsν(k), (4.2)

ν(k + 1) =
(
I−M−1(C(ν(k)) +D(ν(k)))Ts

)
ν(k)

+M−1τ (k)Ts −M−1g(η)Ts,
(4.3)

where Ts is the sampling time, I ∈ R6×6 is the identity matrix of appropriate dimen-

sion. This LPV model in (4.2)-(4.3) is used for controller design while the nonlinear

model (2.14) is used for AUV motion simulation.

Using the motion dynamic model in (4.3) as the transient state model and the

kinematic model in (4.2) as the output, the following LPV discrete-time state space

model is established by setting g(η) = 0 for the AUV.

ν(k + 1) = E(k)ν(k) + Fτ (k), (4.4)
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y(k + 1) = H(k)ν(k) + y(k), (4.5)

in which E(k) = I −M−1(C(ν(k)) +D(ν(k)))Ts, F = M−1Ts, H(k) = J(η(k))Ts

and the output, y(k), is the vehicle position and pose vector.

To reduce steady-state error due to disturbances in the control scheme, consider

the impact of the unknown ocean current on the AUV velocity as ν(k) = νr(k) +

νc(k). Hence, the vehicle velocity increment is defined as

∆ν(k) = ∆νr(k) +∆νc(k), (4.6)

where ∆ν(k) = ν(k) − ν(k − 1), ∆νr(k) = νr(k) − νr(k − 1) and ∆νc(k) =

νc(k)−νc(k−1). By using the vehicle’s velocity increment in (4.6), the effect of the

slowly-varying component of the unknown ocean current νc(k) can be minimised

and the constant offset term can be cancelled.

The following velocity form model is written from the LPV model in (4.4) - (4.5).

ξ(k + 1) = Ã(k)ξ(k) + B̃∆τ (k) + D̃∆y(k), (4.7)

y(k) = G̃ξ(k). (4.8)

Here, ξ(k) = [∆ν⊤(k) y⊤(k)]⊤ is the augmented state vector, ∆y(k) = y(k) −

y(k − 1), ∆τ (k) = τ (k)− τ (k − 1), and

Ã(k) =

E(k) 0

H(k) I

 , B̃ =

F
0

 , D̃ =

0
I

 , G̃ =
[
0 I

]
. (4.9)

For all j = 1, . . . , N , ξ(k + j|k) denotes the j-th prediction of ξ, at time k. To avoid

the computational burden associated with the update of the LPV model in each

prediction instant [274], the following assumption is made.

Assumption 1. At each sampling instant, Ã(k + j|k) = Ã(k|k) = Ã(k) for all

j = 1, . . . , N .
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Based on Assumption 1, the output prediction using (4.7)-(4.8) gives

Y(k) = Ap(k)ξ(k) +Bp(k)∆U(k) +Dp(k)∆Y(k), (4.10)

in which

Y(k) =


y(k + 1|k)

y(k + 2|k)
...

y(k +N |k)

 , ∆Y(k) =


∆y(k|k)

∆y(k + 1|k)
...

∆y(k +N − 1|k)

 ,

Ap(k) =


G̃Ã(k)

G̃Ã(k)2

...

G̃Ã(k)N

 , ∆U(k) =


∆τ (k|k)

∆τ (k + 1|k)
...

∆τ (k +Nu − 1|k)

 ,

Bp(k) =


G̃B̃ 0 · · · 0

G̃Ã(k)B̃ G̃B̃ · · · 0
...

... . . . ...

G̃Ã(k)N−1B̃ G̃Ã(k)N−2B̃ · · · G̃Ã(k)N−NuB̃

 ,

Dp(k) =


G̃D̃ 0 · · · 0

G̃Ã(k)D̃ G̃D̃ · · · 0
...

... . . . ...

G̃Ã(k)N−1D̃ G̃Ã(k)N−2D̃ · · · G̃D̃

 .

Here, Nu is the control horizon for MPC, 1 ≤ Nu ≤ N . Since constant output

increment ∆y(k) is known in every time step, define ∆y(k + j|k) = ∆y(k) for all

j = 1, . . . , N , which means that ∆Y(k) = 1N×1 ⊗∆y(k).

Remark 1. It is noted that Ã(k) is the only time-varying matrix in the velocity

predictive model (4.7)-(4.8) that needs to be computed at each time k to enable the

output prediction over horizon N .
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4.2.2 Velocity Form LPVMPC1 Algorithm

Take ∆U(k) =
[
∆τ (k|k)⊤ · · · ∆τ (k|k +Nu − 1)⊤

]⊤
as the vector of the decision

variables at time k, the FHOCP for the AUV to follow a desired position yd(k) is

formulated as follows.

∆U∗(k) = arg min
∆τ (k+i|k)

∥ y(k +N |k)− yd(k +N |k) ∥2P

+
N−1∑
j=1

∥ y(k + j|k)− yd(k + j|k) ∥2Q +
Nu−1∑
i=0

∥ ∆τ (k + i|k) ∥2R

s.t. (4.7) & (4.8),

ymin ≤ y(k) ≤ ymax,

(4.11)

where P,Q ⪰ 0 ∈ R6×6 and R ≻ 0 ∈ R6×6. The two terms ymax and ymin define

the maximum and minimum bounds on the position and orientation/pose output

by incorporating the constraint on the pitch angle |θ| < π/2 and the AUV depth

z ≤ 0 m.

The MPC problem can be written in a more compact form by making the following

definitions:

R̃ = blkdiag(R, . . . ,R),

Q̃ = blkdiag(Q, . . . ,Q,P),

Yd(k) =
[
yd(k + 1|k)⊤ . . . yd(k +N |k)⊤

]⊤
.

The resulting quadratic program (QP) to be solved at each sampling time is written

as
∆U∗(k) = arg min

1

2
∆U(k)⊤Π(k)∆U(k) + f(k)⊤∆U(k)

s.t. Γ∆U(k) ≤ b,

(4.12)

where

Π(k) = 2(Bp(k)
⊤Q̃Bp(k) + R̃),
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Optimizer
Naminow-D Nonlinear

Model

AUV Position and
Orientation

y(k) = η(k)

Prediction
Model (4.10)

Reference position
and orientation τ∗(k)

ν(k)

ξ(k)

∆y(k)

Update Prediction
Model Variables

Predicted
output

QP (4.12)

Fig. 4.1: Proposed LPVMPC1 control system configuration.

f(k) = 2Bp(k)
⊤Q̃(Ap(k)ξ(k) +Dp(k)∆yp(k)−Yd(k)),

Γ =

 Bp(k)

−Bp(k)

 ,b =

 Ymax −Ap(k)ξ(k)−Dp(k)∆Y(k)

−Ymin +Ap(k)ξ(k) +Dp(k)∆Y(k)

 ,
Ymax = 1N×1 ⊗ ymax, Ymin = 1N×1 ⊗ ymin.

where ⊗ denotes the Kronecker product. Based on the receding horizon principle,

∆τ ∗(k) = ∆τ ∗(k|k), and the forces and moments applied to the vehicle at each

time step is

τ ∗(k) = ∆τ ∗(k) + τ (k − 1). (4.13)

The proposed velocity form LPVMPC control system configuration is shown in Fig.

4.1. The control strategy implementation steps are summarised in Algorithm 1.

4.2.3 Benchmark Controllers

The benchmark algorithm is the original predictive controller jointly developed by

Industrial Systems & Control Ltd and Mitsubishi Heavy Industries Ltd for the

dynamic positioning of the Naminow-D AUV [1]. Recall the definition of the state

vector x := [η⊤ ν⊤]⊤ ∈ R12 in (2.14), the continuous-time nonlinear dynamic model

(2.14) of the AUV can be written in state-dependent form as:

ẋ = Ac(x)x+Bcτ +Dcg(η) +Bcτ
w, (4.14)
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Algorithm 1: Velocity form LPVMPC1 algorithm
Input: Set up Q, R, N , Nu, and the desired output trajectory yd(k).

1 k ← 0
2 Get the measurements of current position η(k) and velocities ν(k).
3 repeat
4 Compute the augmented state x(k) and the output increment ∆y(k).
5 Determine E(k) and H(k) to update Ã(k).
6 Calculate the model prediction using (4.7) and (4.10).
7 Solve the optimisation problem in (4.12) to find ∆U∗(k).
8 Take the first element of ∆U∗(k) as ∆τ ∗(k) = ∆τ ∗(k|k).
9 Calculate the optimal forces and torques vector τ (k)∗ using (4.13).

10 Implement τ ∗(k) for one sampling period.
11 Update the state measurement as x(k + 1).
12 k ← k + 1
13 until end

in which

Ac(x) =

0 J(η)

0 −M−1(C(ν) +D(ν))

 ,
Bc =

 0

M−1

 ,Dc =

 0

−M−1

 .
Here, 0 ∈ R6×6 is the zero matrix. Since wave-induced disturbances are neglected

due to their minimal effects in deep underwater conditions [6], the model is expressed

as:

ẋ = Ac(x)x+Bcτ +w, (4.15)

where w is the system disturbance due to model mismatch and environmental dis-

turbance due to ocean currents. By using the sampling period Ts, the discrete-time

state space model for control design is obtained as:

x(k + 1) = Axx(k) +Bτ (k) +w(k), (4.16)

y(k) = Gx(k), (4.17)
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where Ax = A(x(k)) for compactness and the matrices in (4.16) and (4.17) are

given by

Ax =

I J(η(k))Ts

0 I−M−1(C(ν(k)) +D(ν(k)))Ts

 , (4.18)

B =

 0

M−1Ts

 ,G =
[
I 0

]
, (4.19)

where I ∈ R6×6 is an identity matrix. To counter the impact of ocean currents,

the unknown disturbance w(k) in (4.16) was estimated using the Kalman filtering

technique to improve the accuracy of the prediction model [1]. This benchmark

algorithm was proposed under the assumption that the tidal current disturbance is

bounded and constant. In addition to the benchmark controller, the algorithm based

on the increment variable-based MPC in [25], which adopts the partial velocity form

strategy, is also employed for comparison to the proposed algorithm.

4.2.4 Simulation Results

4.2.4.1 Simulation Set-up

The simulation study considers the positioning control of the Naminow-D AUV.

The model parameters of the AUV are given in Table 2.3. The task is to drive

the AUV to the docking position, where it can be caught by remote operation.

The AUV model, the control algorithms and operating conditions are developed in

MATLAB environment. To implement the controllers, the quadprog solver is used to

solve the formulated QP. The transformation matrix J(η) is the standard 6 DoF

transformation matrix with |θ| ≤ 2π/5 rad. The ocean current speed is Vc = 0.2

m/s with αc = 0.002t, βc(t) = (3π/20)t and the offset terms are dx = 0.2 m/s,

dy = 0.2 m/s and dz = 0.15 m/s.

The initial position and orientation of the AUV is given by y(0) = [0 0 0 0 0 0]⊤.

Despite the effects of time-varying tidal currents, the control objective is to position
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the AUV as close as possible to yd(0) = [0.5 0.5 0 0 0 0]⊤. The proposed complete

velocity form LPVMPC1, Algorithm 1, is denoted as MPC1, the benchmark con-

troller in [1] is denoted as MPC2, and the partial velocity form LPVMPC method

in [25] is denoted as MPC3. The manually tuned parameters for the three controllers

are listed in Table 4.1. While the three controllers use the same control and pre-

diction horizons, the weighting matrices differ significantly because the algorithms

are fundamentally different in design. Overall, the tuned controller parameters are

selected to minimise the AUV’s position and orientation tracking errors as much as

possible.

Table 4.1: Controllers turning parameters.

Parameter Symbol MPC1 MPC2 MPC3
Prediction horizon N 20 20 20
Control horizon Nu 2 2 2
Control weights R 2× 10−3I 2× 10−3I 20I
Output weights Q 1000I, diag(1, 1, 1, .1, .1, .1) I
Terminal weights P DARE∗ 105I DARE∗

∗Solution to the discrete-time algebraic Riccati equation (DARE) based on
the dare function in MATLAB.

The measurement noises in the installed INS sensors are considered additive

white Gaussian noise. Two scenarios are studied for conditions with and without

tidal currents.

4.2.4.2 Test without Ocean Current

In the absence of current, the simulation results are presented in Fig. 4.2. All

three predictive controllers achieve the desired position and orientation at steady

state. Compared to the benchmark MPC2, the proposed MPC1 is less sensitive to

measurement noise and provides reduced output peaks and control input oscilla-

tions. MPC3 tends to show reduced sensitivity to measurement noise, which can be

explained by the fact that the computed input signals are not directly dependent
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Fig. 4.2: No current test: controlled output (left) and manipulated variables (right)
of the AUV.

on the measured states but on the optimal velocities computed by an intermediate

control law.

4.2.4.3 Test under Ocean Current

The results under the time-varying tidal current are shown in Fig. 4.3. At steady-

state, MPC1 removes tracking error and shows minimal oscillations due to time-

varying tidal disturbances. MPC2 also minimises tracking error but yields significant

oscillations due to the disturbances. MPC3 fails to eliminate the tracking error and

shows the largest oscillations among the three controllers. It is worth noting that

71



Chapter 4. Velocity Form MPC for Dynamic Positioning and Trajectory Tracking
of an AUV

0 5 10 15 20 25 30

-0.2
0

0.2
0.4

0 5 10 15 20 25 30

-0.2
0

0.2
0.4

0 5 10 15 20 25 30

-0.1

-0.05

0

0 5 10 15 20 25 30
-0.4

-0.2

0

0 5 10 15 20 25 30

0

5

10
10-3

0 5 10 15 20 25 30

-0.2

-0.1

0

Target
MPC1
MPC2
MPC3

0 5 10 15 20 25 30

-200
0

200
400

0 5 10 15 20 25 30
-200

0
200
400

0 5 10 15 20 25 30

-40
-20

0
20
40

0 5 10 15 20 25 30
-20

0

20

0 5 10 15 20 25 30

0

100

200

0 5 10 15 20 25 30
-600
-400
-200

0
200

Fig. 4.3: Tidal current test: controlled output (left) and manipulated variables
(right) of the AUV.

MPC1 performance under the influence of ocean current is close to the no-current

test results in Section 4.2.4.2, which demonstrates the effectiveness of the proposed

scheme in handling tidal currents.

The three controllers are compared for both maximum current and no current

conditions. The results are shown in Table 4.2 using the root-mean-square-error

(RMSE), calculated based on the difference between the controlled output and the

desired values. A smaller RMSE value means a smaller accumulated tracking error

over the simulation time range. The results show that the proposed MPC1 provides

smaller RMSE values than MPC2 for all outputs in both scenarios. Whereas MPC3
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generally gives the competitive RMSE values among the three controllers under the

no-current test, its performance deteriorates greatly under the maximum current

test. For MPC2, the variables z, ϕ and θ show large oscillations. Thus, the reliance

on Kalman filter by MPC2 for disturbance rejection is not effective for time-varying

disturbances and tends to increase the controller’s sensitivity to measurement noise.

It can be concluded that, under the influence of time-varying ocean current distur-

bances, the developed MPC1 show superior performance over MPC2 and MPC3 by

providing smaller tracking errors in the AUV position and orientation and smoother

control activities.

Table 4.2: RMSE-based performance comparison of predictive controllers.

MPC1 MPC2 MPC3
Output/ No Maximum No Maximum No Maximum
Unit Current Current Current Current Current Current
x/mm 70.6 71.9 71.5 84.2 69.5 302.2
y/mm 69.1 69.3 68.9 73.2 68.3 304.6
z/mm 0.6 3.1 0.7 14.7 0.1 129.6
ϕ/mrad 0.09 5.4 0.2 55.2 0.1 4.4
θ/mrad 0.2 1.2 0.3 2.8 0.05 1.3
ψ/mrad 1.1 4.2 19.5 33.0 0.1 7.4

4.3 Combined Trajectory Tracking and Dynamic

Positioning of an AUV

This section introduces the velocity LPVMPC designed for combined trajectory

tracking and dynamic positioning. This algorithm is denoted LPVMPC2. This

section includes a description of the system constraints including velocity and input

constraints, a statement of the control problem, the MPC design and simulation

results.
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4.3.1 AUV Dynamics and Constraints

The 6-DoF AUV motion model given in (2.14) with ocean current and wave distur-

bances is considered. The generated forces and moments generated by the vehicle’s

thrusters are defined in a 6-DoF vector as τ = [τX τY τZ τK τM τN ]
⊤ ∈ R6×1. Their

constraint sets are defined as follows:

τ 1 = [τX τY τZ ]⊤ ∈ T1 ⊆ R3, (4.20)

τ 2 = [τK τM τN ]⊤ ∈ T2 ⊆ R3, (4.21)

for which the following is defined

T1 :=
{
τ 1 ∈ R3 : |τX |, |τY |, |τZ | ≤ τ 1,max

}
, (4.22)

T2 :=
{
τ 2 ∈ R3 : |τK |, |τM |, |τN | ≤ τ 2,max

}
. (4.23)

Here τ 1,max and τ 2,max denote upper bounds on the input forces and moments,

respectively. The constraint set is

T :=
{
τ ∈ R6 : |τ | ≤ τmax

}
, (4.24)

where τ = [τ⊤
1 τ⊤

2 ]
⊤, τmax = [τ⊤

1,max τ⊤
2,max]

⊤.

Note that J(η) is singular for θ = ±π/2. Hence, the constraint |θ| < π/2 is

implemented to prevent this singularity problem. Moreover, it is desired that the

translational velocities of the underwater vehicle have an upper bound since most

tasks are performed at relatively low speeds [22]. Hence, the constraint set X for

the state vector is defined as

X :=
{
x ∈ R12 : |x| ≤ xmax

}
, (4.25)

where xmax defines a hard constraint on the state vector.
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4.3.2 Problem Statement

Assume a smooth time-dependent desired trajectory defined by

yd(k) =
[
xd(k) yd(k) zd(k) ϕd θd ψd

]⊤
. (4.26)

After tracking (4.26), the AUV is required to accurately dock at the position with

the specified orientation defined by

yd,ss =
[
xd,ss yd,ss zd,ss ϕd θd ψd

]⊤
. (4.27)

Note that although (4.26) is smooth, there may be a jump discontinuity between its

final position and the desired docking position (4.27). The problem considered in

this work includes two tasks:

1. 3D tracking. Steer the AUV, modelled by the nonlinear, coupled model for

x(k), y(k) and z(k) to follow [xd(k) yd(k) zd(k)]
⊤ until the AUV reaches the

docking vicinity. The orientation variables, ϕ(k), θ(k) and ψ(k), do not need

to accurately track the desired orientation during this task period.

2. Dynamic positioning. When the AUV reaches the docking vicinity, the ob-

jective here is to maintain the vehicle at the desired position and orientation,

yd,ss.

These two control objectives need to be achieved while ensuring

• the smooth transition from the 3D trajectory to the desired docking location;

• the capability to minimise the impact of environmental disturbances and model

mismatch during trajectory tracking;

• the AUV can achieve, with minimum error, the desired position and orientation

for docking via the integral action in the MPC controller;
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• the physical limitations in the form of input saturation for forces and moments

and state constraints for pitch angle and translational velocities are satisfied;

• the vehicle can track both reachable and unreachable reference signals.

4.3.3 Predictive Control Design

In this section, the design of a predictive controller is presented based on the LPV

model of the AUV.

4.3.3.1 Prediction Model Formulation

The discretised model in (4.16) - (4.17) is used by ignoring the disturbance term,

i.e., d(k) = 0, as follows:

x(k + 1) = Axx(k) +Bτ (k),

y(k) = Gx(k),
(4.28)

To reduce the impact of the modelling errors and external disturbances, the ve-

locity form of MPC is considered. Specifically, a new formulation of the optimisation

problem is employed where the state augmentation can be avoided. First, write the

increment form of the LTV model as

∆x(k + 1) = Ax∆x(k) +B∆τ (k),

y(k) = G∆x(k) + y(k − 1),
(4.29)

where ∆x(k) = x(k)− x(k − 1), ∆τ (k) = τ (k)− τ (k − 1), and there is an implicit

velocity term ∆ν(k) = ν(k)− ν(k − 1).

The following assumptions are made for the LPV model.

Assumption 2.

1. The sets defined by the constraints X in (4.25) and T in (4.24) are convex

sets containing the origin.
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2. Model (4.28) is locally stabilisable for all x(k) ∈ X .

The second item in Assumption 2 implies that the pair (Ax,B) is point-wise

stabilisable in the linear sense for all x ∈ X .

4.3.3.2 Velocity Form LPVMPC2 Design

It is worth noting that trajectory generation algorithms typically produce smooth

paths for navigation [6]. However, the transition towards the docking point specified

by yd,ss may result in a jump discontinuous reference signal. This can be addressed

by parameterising the straight line joining the final point of the trajectory to the

docking position. This may be done by defining pt = [xt yt zt]
⊤ as the tail of the

smooth trajectory (4.26) and pd,ss = [xd,ss yd,ss zd,ss]
⊤. The transition must be

performed at a low resultant speed defined as Us =
√
u2 + v2 + w2. Based on this,

the transition time ts can then be approximated as

ts =
∥ pt − pd,ss ∥

Us
. (4.30)

Assuming the desired trajectory is sampled at Ts like the AUV model, it is important

to clarify that ts, measured in seconds is a continuous-time variable that should be

divided by Ts to obtain its discrete equivalent in the discrete-time implementation

of the controller. Define h = m/ts with m = 1, 2, 3 . . ., then, the parameterisation

is obtained as

pd,ss(k) =

(h− 1)pt + hpd,ss, if h ≤ 1

pd,ss, Otherwise
(4.31)

where pd,ss(k) = [xd,ss(k) yd,ss(k) zd,ss(k)]
⊤.

Through (4.31), a smooth transition from the end of the 3D trajectory to the

docking point can be achieved since yd,ss is replaced by the time-parameterised

reference signal defined by yd,ss(k) = [xd,ss(k) yd,ss(k) zd,ss(k) ϕd θd ψd]
⊤.

Several velocity/increment MPC algorithms have been developed for linear and

nonlinear systems [234, 235, 273, 275]. The nonlinear method in [235] leads to a
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quasi-LPV MPC, where the state vector increment is augmented with the system’s

output vector and used as the prediction model. Applying such a method in AUV

control would increase the dimension of the state prediction model from R12 to

R18, leading to increased computational cost. Moreover, the stabilisability of the

augmented model may not be locally guaranteed even when the original system

(Ax,B) is locally stabilisable since there would be a need to ensure that the original

system has no zeros at the origin. In this work, a different approach is proposed in

the implementation of the velocity form MPC, with the aim to achieve the tracking

capability without applying state augmentation.

Define the set of reachable states in N steps as

RNX = {xr(k) | ∃(∆τ (k|k), . . . ,∆τ (N − 1|k) :

∆x(k + j|k) = Ax∆x(k|k) +
j−1∑
i=0

Ai
xB∆τ (k + i|k),

x(k +N |k) = xr(k), x(k + j|k) ∈ X ,

τ (k + j − 1|k) = τ (k − 1) +

j−1∑
i=0

∆τ (k + i|k) ∈ U ,

∆ν(k +N |k) = 0, j = 1, . . . , N} .

The corresponding reachable output set is denoted by RN
Y . For workspace con-

strained AUV operation, the translational position variables, (x, y, z), may become

unreachable. To avoid this, define r ∈ Yr, in which Yr ⊆ Y denotes the set that

incorporate the workspace positional constraints. Then, the set for reachable output

reference signal is defined as

RY =
{
r ∈ RN

Y | λr+ (1− λ)y(k) ∈ RN
Y , r ∈ Yr

}
,

where 0 ≤ λ ≤ 1 is a constant coefficient, ensuring r and y(k) belong to the same

convex set of RN
Y . Then, the reachable reference trajectory in every time step r(k),
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is computed by solving the problem

r(k) = arg min
r∈RY

∥ r− yd(k) ∥2Pr
, (4.32)

with Pr ≻ 0. Given the desired trajectory yd(k) in (4.26), determine r(k) based

on which the output error is defined as ye(k + j|k) = r(k + j|k)−y(k + j|k). Then,

the following cost function is considered:

V (r(k),Ye(k),∆U(k)) =
N−1∑
j=1

∥ ye(k + j|k) ∥2Q +
N−1∑
i=0

∥ ∆τ (k + i|k) ∥2R, (4.33)

where

∆U(k) = [∆τ (k|k)⊤ . . . ∆τ (k +Nu − 1|k)⊤]⊤,

Ye(k) = [ye(k + 1|k)⊤ . . . ye(k +N − 1|k)⊤]⊤,

Q ≻ 0 and R ≻ 0 are the weighting matrices for output tracking and control

activities, respectively.

Velocity form

LPV-MPC2
τ(k)Reachable

trajectory
calculator

yd(k) r(k) x(k)AUV

Combined LPVMPC2 strategy

Fig. 4.4: Control strategy leveraging reachable references and velocity dynamics.

The proposed MPC is formulated as a finite-horizon constrained optimal control

problem using the velocity form prediction model (4.29). Considering a quadratic
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cost function, the novel velocity form LPVMPC2 problem is formulated as

∆U∗(k) = argmin
∆U(k)

V (r(k),Ye(k),∆U(k))

s.t :

y(k + j|k) = C∆x(k + j|k) + y(k + j|k − 1),

∆x(k + j|k) = Aj
x∆x(k|k) +

j−1∑
i=0

Ai
xB∆τ (k + i|k),

x(k + j|k) ∈ X , j = 1, . . . , N,

τ (k + i|k) ∈ T , i = 0, . . . , N − 1,

∆x(k|k) = ∆x(k),

y(k + j|k − 1) = y(k − 1),

y(k +N |k) = r(k), ∆ν(k +N |k) = 0,

(4.34)

whereN is the prediction horizon, and ∆U∗(k) = {∆τ ∗(k|k), . . . ,∆τ ∗(k +Nu − 1|k)}

is the optimal control sequence. It is noted that obtaining the control sequence by

solving (4.34) satisfies the reachable set requirement and assures that the AUV’s

prescribed trajectory does not exceed the workspace boundary.

Furthermore, the constraints defined as y(k +N |k) = r(k) and ∆ν(k +N |k) =

0 are enforced to impose stability. For every time step k, the stability constraint

ensures that the reachable state is given as xr(k) = [r(k)⊤ ν(k + N − 1|k)⊤]⊤.

They are set up to assure that the terminal state in each N -window, x(k +N |k), is

a forced equilibrium when the reference r(k) is constant during point stabilisation

task as the AUV navigates at a constant speed. For time-varying reference signal

r(k), these constraints ensure x(k +N |k) is always feasible because r(k) is defined

within the reachable set according to (4.32).

Based on the receding horizon strategy, the optimal input increment at k is
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∆τ ∗(k|k) and the corresponding control input applied is

τ ∗(k) = τ (k − 1) + ∆τ ∗(k|k). (4.35)

The control strategy leveraging the concept of reachable set is depicted in Fig. 4.4.

Algorithm 2: MPC for 3D trajectory tracking and point stabilisation
(LPVMPC2)
Input: AUV LPV model, Q, R and the prediction horizon, N .

1 Define the transition resultant speed Us.
2 Implement (4.31) to assure a smooth transition from trajectory tracking to

point stabilisation.
3 for k ≥ 0 ∈ N do
4 if ∆yd(k)/Ts = 0 then
5 Q = Q2

6 else
7 Q = Q1

8 end
9 Solve (4.32) to obtain r(k)

10 Get ∆x(k) and y(k − 1); then, solve (4.34).
11 Obtain the optimal input τ ∗(k) based on (4.35).
12 Apply input to the AUV to obtain x(k + 1)
13 k ← k + 1

14 end

Denote Q1 ∈ R6×6 and Q2 ∈ R6×6 as two diagonal matrices on the output

error weighting, used for the 3D trajectory tracking and the point stabilisation for

docking, respectively. For the trajectory tracking problem, the weighting priorities

are put on minimisation of the three error terms on translational positioning

ex(k) =xd(k)− x(k), ey(k) = yd(k)− y(k), ez(k) = zd(k)− z(k). (4.36)

For point stabilisation, the setting of Q2 needs to cover all 6 DoFs, that is, in addition

to the three errors in (4.36), the following three orientation errors

eϕ(k) =ϕd − ϕ(k), eθ(k) = θd − θ(k), eψ(k) = ψd − ψ(k), (4.37)
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also need to be minimised so that the specified translational position and orientation

are maintained. Switching between the use of Q1 and Q2 depends on the nature of

the reference signal, yd(k). When yd(k) is time-varying, Q = Q1 holds; when yd(k) is

time-invariant, Q = Q2 is applied. With sampling time of Ts, ∆yd(k)/Ts ̸= 0 for time-

varying yd(k), and for time-invariant reference, ∆yd(k)/Ts = 0. The implementation

procedure for the developed predictive controller is outlined in Algorithm 2.

Note that the proposed algorithm imposes a computational burden similar to

that of a standard MPC problem, with the only extra demand being the solution of

(4.32), which constitutes a relatively straightforward quadratic problem. It is noted

that the workspace limits, Yr, can either be a linear or nonlinear constraint which will

determine the nature of the problem (4.32). For instance, a linear workspace con-

straint results in a convex quadratic problem while a circular or spherical constraint

gives a quadratically constrained quadratic problem. Consequently, this approach

allows us to avoid the need to solve a high-dimensional nonlinear MPC problem

having both state and input constraints. Nevertheless, the author acknowledges sig-

nificant advancements that have been achieved in expediting computations within

the realm of nonlinear MPC [276,277].

Remark 2. The stability constraint is employed to theoretically demonstrate that the

MPC problem (4.34) ensures stability for the discretised model (4.28). Enforcing this

constraint typically means using a longer prediction horizon compared to scenarios

where the constraint is overlooked.

4.3.4 Offset-Free Control and Stability Analysis

Let d(k) represent the lumped unknown disturbances affecting the vehicle, including

both constant and time-varying components. The convergence of the system states is

a necessary assumption to assure the offset-free property of an MPC controller [278].

The states and outputs of the closed-loop system converge to steady state values as

k →∞, yd(k)→ yd,ss.
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Remark 3. Although tracking error may not be eliminated under time-varying dis-

turbances and reference signals, a well-posed optimisation problem can help to min-

imise the tracking error. Moreover, it is desirable to achieve offset elimination sub-

ject to the constant or slowly varying disturbances during docking so as to ensure

that the vehicle is driven as close as possible to the desired position and orientation.

The following theorem summarises the main properties of the proposed control

strategy.

Theorem 4.3.1. Under Assumption 2, the control law τ (k), obtained by solving

(4.34), starting from a feasible initial state increment ∆x(k), and applying (4.35),

is recursively feasible and (locally) stabilises the system (4.29). As k → ∞, this

controller makes the output converge to one of the following: (i) yd,ss if yd,ss ∈ RY ;

(ii) r(k) if yd,ss /∈ RY , where r(k) is obtained by solving (4.32).

Proof. This proof is given in three steps. Step I establishes recursive feasibility

and Step II shows that the proposed control strategy provides closed-loop stability.

In step III, it is shown that offset-free control is ensured for reachable piece-wise

constant references. For reference signals that are not reachable, the algorithm

converges to a reachable point that minimises the tracking error. The first two steps

follow the standard approach in MPC literature with some modifications to suit the

current study.

Step I : Given that the initial state increment ∆x(k|k) = ∆x(k) is feasible, the

optimal control sequence from solving (4.34) is

∆U∗(k) = {∆τ ∗(k|k),∆τ ∗(k + 1|k), . . . ,∆τ ∗(k +N − 1|k)}

and this yields the corresponding output error trajectory

Y∗
e(k) = {y∗

e(k + 1|k),y∗
e(k + 2|k), . . . ,y∗

e(k +N |k)} .

A feasible but sub-optimal solution given by {∆τ ∗(k + 1|k), . . . ,∆τ ∗(k +N − 1|k),0}
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can be obtained by shifting the current time by 1 so that k ← k + 1 and then set-

ting ∆τ ∗(k +N |k) = 0, which also implies τ ∗(k +N |k) = τ ∗(k +N − 1|k). The

constraint on the terminal output makes it possible to obtain:

Ye(k + 1) = {y∗
e(k + 2|k), . . . ,y∗

e(k +N |k),0} .

Based on the constraint ∆ν(k +N |k) = 0, keeping the input unchanged for a

constant reference yd,ss, makes the terminal state x(k +N |k) = xr(k), a forced

equilibrium at steady state and is feasible. For curved or time-varying reference

signals yd(k), the constraint ensures x(k +N |k) is a feasible state since r(k) is

reachable for all k.

Step II: Let V (k) be equal to the cost function (4.33) evaluated at time k.

We note that the cost function is always positive and equal to zero only when

|y(k + j|k)− r(k)| = 0 and ∆τ (k + i|k) = 0. To guarantee (Lyapunov) stability, we

now need to show that V (k) decays monotonously. Considering the feasible input

increment sequence at time step k + 1 constructed in Step I, a feasible, possibly

suboptimal, value of the cost function V (k + 1) is given by

V (k + 1) =
N−1∑
j=1

∥ ye(k + 1 + j|k + 1) ∥2Q +
N−1∑
i=0

∥ ∆τ (k + 1 + i|k + 1) ∥2R

=
N∑
j=2

∥ y∗
e(k + j|k) ∥2Q +

N∑
i=1

∥ ∆τ ∗(k + i|k) ∥2R

=
N−1∑
j=1

∥ y∗
e(k + j|k) ∥2Q +

N−1∑
i=0

∥ ∆τ ∗(k + i|k) ∥2R

− ∥ y∗
e(k + 1|k) ∥2Q − ∥ ∆τ ∗(k|k) ∥2R + ∥ y∗

e(k +N |k) ∥2Q

= V (k)− ∥ y∗
e(k + 1|k) ∥2Q − ∥ ∆τ ∗(k|k) ∥2R + ∥ y∗

e(k +N |k) ∥2Q

(4.38)

From (4.38), it is straightforward to see that the stability constraint ensures that

∥ y∗
e(k +N |k) ∥2Q= 0. This implies V (k+1) ≤ V (k) holds because ∥ y∗

e(k +N |k) ∥2Q
− ∥ y∗

e(k + 1|k)(k) ∥2Q − ∥ ∆τ ∗(k|k) ∥2R≤ 0, and the only condition that will enable
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the equality to hold is when the system reaches steady state with yd(k) = yd,ss and

∆τ (k|k) = 0 as k →∞. In sum, V (k) is a Lyapunov function that decreases along

the prescribed trajectories. Thus, the predictive controller is (locally) asymptotically

stable given r(k) ∀k.

Step III Here, we follow an approach similar to that used in [278] where con-

straints are assumed inactive at steady state which means that the predictive control

law can be considered unconstrained. Under the assumption of piece-wise constant

reference, yd(∞) = yd,ss and d(k) → d(∞) at steady state when the vehicle con-

verges towards the docking point. The stability of the closed-loop system at steady

state implies that x(k) = x(∞), y(k) = y(∞) and τ (k) = τ (∞) as k →∞.

First consider the case where yd,ss ∈ RY . In this case, the steady state reachable

reference r(∞) = yd,ss because it minimises (4.32) and fulfills the properties of RY

with λ = 1. Assume that the predictive controller (4.34) is unconstrained at this

steady state. For this unconstrained case, it is evident that the optimal control

increment is given by

∆τ ∗(∞) = KMPC(r(∞)− y0(∞)) (4.39)

where KMPC is the unconstrained controller gain and y0(∞) is the “free" trajectory

which represents the part of y(∞) that depend on the past control and the current

measurement i.e., without terms in ∆U∗
k to be computed. Based on the system

convergence, ∆τ ∗(∞) = 0 which means that y0(∞) = r(∞) holds from (4.39).

Furthermore, y0(∞) = y(∞) because y(k−1) = y(k) = y(∞) as k →∞ considering

the output vector in (4.29). Therefore, the system converges to yd,ss, i.e., the plant

output reaches the reference because y0(∞) = r(∞) =⇒ y(∞) = yd,ss at steady

state and this ensures offset-free control.

For the second case in which yd,ss /∈ RY , The vector r(∞) that minimises (4.32)

is not exactly equal to yd,ss, that is, r(∞) ̸= yd,ss. However, r(∞) can take any

arbitrary reachable output that minimises (4.32) while ensuring it remains in the

85



Chapter 4. Velocity Form MPC for Dynamic Positioning and Trajectory Tracking
of an AUV

same set RY as the current steady state reachable output y(∞). Following similar

procedure under the assumption of unconstrained law as in the first case, it follows

that the closed-loop system converges with y(k) = r(k) ̸= yd,ss as k → ∞. Hence,

completing the proof.

4.3.5 Simulated Results

The Naminow-D dynamic model is considered. A state constraint is implemented

on the pitch angle such that |θ| < π/2 always holds. Since in many underwater

tasks AUVs are required to move at relatively low speeds [22], the upper bounds on

the translational velocities are defined as follows: umax = 1.5 m/s, vmax = 1 m/s

and wmax = 0.5 m/s. The input forces and moments are constrained as follows:

τ 1,max = [600 600 600]⊤ N and τ 2,max = [300 300 300]⊤ Nm.

Table 4.3: Tuned parameters of the proposed MPC4 (LPVMPC2).

Parameter N Nu R Q1 Q2 Pr

Value 20 2 0.05I diag(2, 2, 2, 1, 1, 1)× 1000 1000I I

The parameter setting for the proposed MPC (4.34) (MPC4) is shown in Table

4.3. The weights on the translational position terms in Q1 are selected to be twice

those in Q2 to prioritise minimisation of the translational position errors during

trajectory tracking control. The simulation experiment was set up in MATLAB envi-

ronment where (4.32) and (4.34) are solved using quadprog to obtain the control

signals applied to the nonlinear model (2.14).

4.3.5.1 Comparison of Controllers Performance in Dynamic Positioning

Denote the developed LPVMPC2 algorithm as MPC4. First its performance in

dynamic positioning is compared with the proposed algorithm LPVMPC1 (MPC1).

The results from tracking the constant reference under the sinusoidal ocean current,

as detailed in Section 4.2.4, using MPC1 and MPC4 are presented in Fig. 4.5. It is
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evident that MPC1 tends to result in higher variations in the forces and moments

required to perform the dynamic positioning task.

Table 4.4 summarises the performance of the two velocity form MPC algorithms.

It is observed that both algorithms offer similar performance in terms of minimising

the outputs RMSEs with MPC1 showing a slightly better performance. However,

MPC4 outperforms MPC1 in reducing the peak tracking error, as measured by the

absolute maximum error (MAX Error). Additionally, MPC4 requires significantly

smaller input forces and moments than MPC1, underscoring the former’s superiority

in providing good tracking performance with reduced thruster force variations nec-

essary for mitigating mechanical wear in the system. A possible explanation for the

differences in the performance of the controllers, despite both being of the velocity

form MPC type, lies in the way they incorporate the increment of the position vector

into the prediction model. While LPVMPC1 adds the output vector increment to

the state prediction model (4.7), which uses the state vector, ξ(k), containing only

the vehicle velocity increment, LPVMPC2 employs a prediction model (4.29) with

the state increment, ∆x(k), incorporating both the position and velocity vector in-

crements. For the remainder of this simulation study in this subsection, the focus

will be on MPC4, showcasing its capabilities.

Table 4.4: A comparative results of the two proposed velocity form MPC algorithms
under tidal ocean current.

RMS Error MAX Error RMS Value
Output/unit MPC1 MPC4 MPC1 MPC4 Input/unit MPC1 MPC4
x/mm 71.9 73.4 500 496.6 τX/N 79.7 26.5
y/mm 69.3 70.1 495.2 477.9 τY /N 36 14.9
z/mm 3.2 2.8 47.9 37.6 τZ/N 9.8 1.6
ϕ/mrad 5.4 4.9 38.4 37.6 τK/Nm 2.3 0.42
θ/mrad 1.2 3.1 3.9 3.5 τM/Nm 87.2 82.5
ψ/mrad 4.2 5.8 30.4 28.6 τN/Nm 83.4 26.6
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Fig. 4.5: A comparative results of velocity form MPC algorithms, LPVMPC1 and
LPVMPC2, under tidal current test: controlled output (left) and manipulated vari-
ables (right) of the AUV.
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Fig. 4.6: Wave signal produced using modified Pierson–Moskowitz Spectrum.
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Fig. 4.7: Case 1: (a) AUV 3D closed-loop response for combined trajectory tracking
and point stabilisation control (b) Motion in the x−direction (c) Motion in the
y−direction (d) Motion in the z−direction.
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4.3.5.2 Case 1: Combined 3D Trajectory Tracking and Dynamic Posi-

tioning

The wave model in (2.8) and (2.9) is considered in approximating the effects of ocean

waves on the vehicle’s motion. Here, the modified Pierson–Moskowitz Spectrum [6] is

employed with ξi = 0.2573 and ωe,i = 0.8 rad/s under beam sea condition. The gain

Kw,i = 1.5 and wi is modelled as a white process noise with zero mean and standard

deviation of 0.15. Furthermore, di is modelled as a standard Wiener process in the

range [−100, 100]. These parameters are assumed to hold for i = X, Y, Z, K, M, N ,

i.e., the wave is considered the same in all 6 DoFs.

The ocean current is modelled in the Cartesian plane with uc = 0.2 m/s, vc =

0.15 m/s, wc = 0.1 m/s. In the studied scenario, the dynamics of the AUV are

considered to be affected by both ocean currents and waves according to (4.15).

The wave signal impacting the six DoFs of the AUV dynamics is shown in Fig. 4.6.

The 3D reference trajectory considered in Case 1 is defined as

yd(t) = [10sin0.03t 10cos0.03t − 0.5t 0 0 π/6]⊤, t ≤ 350 s (4.40)

and the final docking position is

yd,ss = [−9.0 − 12 − 175 0 0 π/6]⊤, t > 350 s, (4.41)

where t = kTs. Notice that the AUV needs to perform the task with a 30◦ heading

angle. Also, it is generally desired to always keep roll motion, (ϕ, p), minimal for

improved stability of marine vehicles [279]. Since the final point pt = [−8.797 −

4.755 −175]⊤ on the trajectory (4.40) is significantly distant along the y−axis from

the docking position pd,ss = [−9 − 12 − 175]⊤ in (4.41), the straight line joining

these points is parameterised by considering a resultant AUV speed of Us = 0.15

m/s. When the vehicle approaches the docking point defined at t ≥ 350s, it is

essential to control the AUV’s translational and angular positions such that the
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Fig. 4.8: Case 1: Evolution of errors (left) and input forces and moments (right).
The green lines in the selected input plot show their constraints.
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errors in the 6 outputs are as small as possible for effective docking operation.
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Fig. 4.9: Case 1: Evolution of translational (left) and angular (right) velocities of
the AUV.

The AUV’s initial position is η(0) = [2 8 0 0 0 π/5]⊤. The 3D motion profiles

of the Naminow-D AUV along with the defined trajectory for the two predictive

controllers are shown in Fig. 4.7. Fig. 4.8 shows the time profiles of the position

tracking errors and input signals for both control methods, from which it is seen that

the proposed controller provides better tracking performance. In the second phase

when the vehicle is driven towards the docking position, the merit of the proposed

controller, LPVMPC2 (MPC4), is even more evident. With MPC3 in [25], steady

state errors are maintained due to the persistent non-zero disturbances, whereas

the proposed MPC4 achieves the docking position with close-to-zero errors in all 6

DoFs. The translational and angular velocities of the AUV are shown in Fig. 4.9.

A salient point worthy of note is that the translational velocities do not converge to

zeros at the docking point because the AUV needs to maintain speeds that counter

the effects of the non-zero translational velocities of ocean currents νc. Compared

to the results from MPC3, the proposed MPC4 offers improved stabilisation of roll

motion by reducing the sensitivity of the roll angular error eϕ and roll velocity p to

environmental disturbances, as shown in Figs. 4.8 and 4.9, respectively. Therefore,
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the results show the superiority of the proposed MPC4 in 3D trajectory tracking

and point stabilisation control tasks.
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Fig. 4.10: Case 1: Predicted velocity increment trajectories at selected time instants.

Furthermore, in Fig. 4.10, the predicted velocity changes of the AUV at time

steps during the transition from the spiral trajectory to the straight-line trajec-

tory, specifically at t = [342, 346] s, are depicted to capture the predictions during

the spiral trajectory tracking and the transition towards the docking station. The
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graph illustrates that the stability constraint is satisfied by guaranteeing that the

predictions converge to zero at the end of the prediction horizon.

Fig. 4.11: Case 2: Evolution of position variables (left) and input forces and moments
(right) under Test 1 and Test 2. The green lines represent input constraints.

4.3.5.3 Case 2: Tracking in Constrained Workspace

In Case 2, two test scenarios are considered to demonstrate the capability of the pro-

posed controller to track trajectories containing unreachable points due to workspace

constraint and the limits of the AUV dynamics. The reference trajectory yd(k) is

defined by two straight lines with a sharp turn, in the xy−plane, with no changes in

the z−direction. The rate at which the AUV can change its direction is constrained,

making such a sharp turn infeasible. Hence, in addition to the translational velocity
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Fig. 4.12: Case 2: Closed-loop motion of the AUV in the x−y plane with the impact
of unreachable reference signals demonstrated.

constraints considered in Case 1, the yaw velocity of the AUV is constrained by

|r| ≤ 0.05 rad/s. In Test 1 of Case 2, no vehicle positional workspace constraints

are applied; therefore, the reference trajectory yd(k) is regarded as reachable but

may be infeasible at points requiring sharp turns. In Test 2, the workspace is con-

strained by |x| ≤ 16 and |y| ≤ 25, which makes part of the reference stay outside

the constrained region.

The time profiles of the position outputs and control inputs in both Test 1

and Test 2 are shown in Fig. 4.11. To make the convergence properties of the

proposed MPC visible, the response in the xy−plane is shown in Fig. 4.12 along

with the implemented workspace constraints. Evidently, the result of Test 1 is
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Fig. 4.13: Case 2: Evolution of translational (left) and angular (right) velocities of
the AUV.

as expected because the outputs tracked the desired trajectories throughout the

simulation range, avoiding the instantaneous sharp turn due to the limits on the

rate of heading change that makes it dynamically infeasible for the AUV. In Fig.

4.13, the velocities of the AUV are shown, and it can be observed that the yaw

velocity is saturated around t = [300, 320] s that corresponds to the time when

the trajectory has a sharp turn, ensuring that the physical limits imposed by the

AUV dynamics are not violated. In Test 2, there are unreachable points along

the defined trajectories due to the workspace constraints, which deviates the AUV

movement from the reference until the desired trajectories become reachable. Based

on the reference calculation in (4.32), it is expected that the AUV will converge

to the optimum values within the reachable set RY , i.e., the optimum points that

correspond to the boundaries defined by the intersecting vertical and horizontal

constraint lines.

In this scenario, the velocity increments at specific time steps are displayed in

Fig. 4.14. The time steps t = [301, 305] seconds are shown to demonstrate that the

velocities converge to zero, as required by the stability constraint. It is noted that

this occurs despite the abrupt change in orientation after t = 300 seconds and the
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vehicle’s need to navigate the sharp edge at the intersection of the x and y axes.
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Fig. 4.14: Case 2: Predicted velocity increment trajectories at selected time instants.

4.4 Summary

The design of the first LPVMPC1 strategy for the positioning control of an AUV

is investigated considering the influence of slowly varying current disturbance. The

interdependence of the kinematic and dynamic models of the vehicle is exploited to

97



Chapter 4. Velocity Form MPC for Dynamic Positioning and Trajectory Tracking
of an AUV

formulate a velocity form LPVMPC1 to facilitate accurate position tracking at the

steady state. The algorithm relies on a prediction model that mitigates constant or

time-varying disturbance effects via the increments of vehicle velocities. Compared

to the benchmark controller (MPC2) and a partial velocity form MPC (MPC3),

the proposed complete velocity form LPVMPC1 does not require an estimator yet

eliminates steady state error effectively. Simulation experiments demonstrate the

advantages of the proposed scheme under current disturbance.

However, the input signals from the LPVMPC1 show significant oscillations,

which also negatively impacts the transient performance, especially when step changes

occur in the reference signals. This was made evident when LPVMPC1 is compared

to the alternate LPVMPC2 designed for combined trajectory tracking and dynamic

positioning. The LPVMPC2 showed minimal oscillations in control signals and also

reduced the peak deviation of the AUV’s track from the reference. This LPVMPC2

was formulated with input and state constraints considered in the optimisation de-

sign. The designed predictive controller also achieves close-to-zero errors in the 6

DoFs of the vehicle in dynamic positioning, as required for effective docking opera-

tion. The constraint on the pitch angle is imposed to prevent the rotation matrix

from becoming singular. The control input constraints are a result of the limits

on the forces and moments that the vehicle can generate, and the velocity bounds

are usually required for a variety of underwater tasks. The closed-loop stability of

LPVMPC2 is guaranteed by enforcing a terminal equality constraints. Additionally,

offset-free tracking is shown under the assumption of asymptotically constant refer-

ence and disturbance which is essential for effective docking operations. Further sim-

ulation results are presented under different operating conditions to demonstrate the

effectiveness of the proposed LPVMPC2 algorithm for combined trajectory tracking

and positioning control.

The works presented in this chapter have been published. Algorithm 1 was fea-

tured at the 2023 IFAC World Congress [280], while Algorithm 2 has been accepted

for publication in the IEEE Journal of Oceanic Engineering [281].
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Chapter 5

Tube-based Model Predictive

Control of an Autonomous

Underwater Vehicle using 3D

Line-of-Sight Re-planning

5.1 Introduction

The tube-based MPC (TMPC) design presented in this chapter is a robust control

strategy developed to ensure the system response stays within a tube around a de-

sired nominal trajectory [282]. As highlighted in the critical review of the literature

in Chapter 3, TMPC has the potential to provide robustness against environmental

disturbances in AUV control. However, the difficulty associated with determining a

local linear controller poses a significant challenge for trajectory tracking problems.

Moreover, existing techniques are either focused on local plane motion [264] or rely

on simplified AUV models for control design [17,22]. Additionally, these techniques

are computationally expensive, making them less suitable for real-time applications.

Furthermore, AUVs typically rely on thrusters to generate input forces. In the
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aforementioned MPC-based motion controllers, thrust limits are usually considered

as input constraints. However, this approach overlooks how quickly rapid input vari-

ations may degrade control performance. As a result, the work in [18] emphasised the

necessity of developing MPCs that incorporate realistic input constraints, including

both input magnitude and rate limitations. In advanced nonlinear time-invariant

control strategies, this problem has been extensively investigated. For instance, a

strategy for adaptive adjustment of the desired trajectory was proposed to obtain

region tracking in the presence of input magnitude and rate saturation [283]. A fuzzy

re-planning scheme was proposed to obtain a local trajectory to mitigate input sat-

uration that causes chattering in SMC when an AUV’s initial position significantly

deviates from the desired trajectory [41].

The literature review shows the benefits of TMPC in AUV motion control, show-

ing the need to include realistic constraints in controller design and the challenging

issue of determining tubes for nonlinear AUV trajectory tracking. This chapter seeks

to develop a robust discrete-time TMPC for AUVs using the full-order model while

considering realistic input constraints, including both magnitude and rate limits.

The primary contributions of this chapter can be summarised as follows.

1. A 3D LOS local replanner is proposed to tackle the problem of input saturation

in the MPC-based trajectory tracking controller. The scheme is developed

by modifying a conventional enclosure-based LOS strategy [6] used for path-

following control. It constrains the error signal to a user-defined spherical

region, thereby preventing excessive variations in the input signals that would

otherwise be induced by a substantial tracking error. To provide an informed

guess of the spherical error limit, a technique is developed that considers the

average distance between consecutive points along the desired trajectory. For

a smooth path, this technique may generally provide a suitable value, but the

value may need to be tuned for non-smooth trajectories.

2. A discrete-time TMPC framework is developed for 3D trajectory tracking con-
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trol of an AUV whose coupled model is approximated by an LPV model. This

results in solving a convex quadratically constrained quadratic optimisation

(QCQP) problem that can be efficiently solved online. To further strengthen

the computational effectiveness of the algorithm, we circumvent the need to

solve a nonlinear optimisation problem [264] or a SD-DARE [17] by deriving

a state-dependent feedback gain to stabilise the AUV error dynamics. The

feedback gain is obtained from the analytical solution of a finite-horizon op-

timal control problem. The AUV error model can be locally asymptotically

stabilised by the derived state-feedback control law. Furthermore, theoretical

results on the input-to-state stability of the TMPC law are presented under

the stated assumptions.

3. In addition to the conventional performance metrics on tracking accuracy and

input chattering, a performance metric on the rate of energy consumption

in Watt-hour (Wh) is introduced to assess the effectiveness of the proposed

control law.

The rest of this chapter is organised as follows. Section 5.2 defines the control

problem that is tackled in this chapter. In Section 5.3, the LOS guidance system

used for local trajectory generation is presented while Section 5.4 presents the robust

tracking LPV TMPC design. Simulation results are presented in Section 5.5. Finally,

concluding remarks are given in Section 5.6.

5.2 Problem Formulation

The LPV system (4.16) is considered and given as follows:

x(k + 1) = A(x(k))x(k) +Bu(k) +w(k), (5.1)

where k is the time index.
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In (5.1), the states and the control inputs (both magnitude and rate of change)

have bounded constraints. The state constraint is applied to the pitch angle, θ, to

avoid the singularity of the transformation matrix. Define the compact set for the

states with constraints xmax as

X =
{
x(k) ∈ R12 : |x(k)| ≤ xmax

}
. (5.2)

Thus, the state constraint defined by this set can be rewritten as

x(k) ∈ X =
{
x(k) ∈ R12 : Gxx(k) ≤ hx

}
, (5.3)

in which

Gx =

 I

−I

 , hx =
 xmax

−xmax

 .
Also, the compact sets that define the control input and its rate constraints are

given by
u(k) ∈ U =

{
u(k) ∈ R6 : |u(k)| ≤ umax

}
,

∆u(k) ∈ ∆U =
{
∆u(k) ∈ R6 : |∆u(k)| ≤ ∆umax

}
,

(5.4)

where ∆u(k) = u(k)−u(k− 1). The two constraints in (5.4) can be combined into

a single compact set:

u ∈ U =
{
u(k) ∈ R6 : Guu(k) ≤ hu

}
, (5.5)

where

Gu =


I

−I

I

−I

 , hu =


umax

umax

∆umax

∆umax

+


0

0

I

−I

u(k − 1).
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Let the desired position and attitude of the AUV be defined as

ηd(k) = [xd(k) yd(k) zd(k) ϕd(k) θd(k) ψd(k)]
⊤.

Denote the desired translational 3D trajectory at time k as pd(k) = [xd(k) yd(k) zd(k)]
⊤.

When the 3D tracking error is large, a local desired 3D trajectory, denoted by

plos(k) = [xlos(k) ylos(k) zlos(k)]
⊤ is re-planned using a LOS guidance system ap-

proach. The reference position trajectory to be used for control implementation is

written as
r(k) = [rx(k) ry(k) rz(k) ϕd(k) θd(k) ψd(k)]

⊤,

[rx(k) ry(k) rz(k)]
⊤ = H ·

[
pd(k)

⊤ plos(k)
⊤]⊤ , (5.6)

where H ∈ R3×6 is constructed to choose the reference between pd(k) and plos(k)

depending on the current AUV position, p(k) = [x(k) y(k) z(k)]⊤.

The following assumptions are made on the LPV model.

Assumption 3.

1. The state and input constraint sets X and U are convex sets.

2. The unknown lumped disturbance w(k) is bounded and belongs to the polytopic

set W defined as

W =
{
w(k) ∈ R12 : |w(k)| ≤ wmax

}
, (5.7)

where wmax is the disturbance upper limit.

3. The LPV model (A(x(k)),B) is locally or pointwise stabilisable in the linear

sense for all x(k) ∈ X .

In Assumption 3, the first item implies that the state and input limits can be

expressed as linear inequality constraints. The second item implies that if the up-

per bound wmax is known, then the worst-case scenario of the disturbance can be
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considered when designing an input u(k) = τ (k) that stabilises the LPV model

(5.1).

The objective of the controller design is to drive the LPV system (5.1) to track

the reference trajectory r(k) in (5.6) such that: (i) when ∥ p(k) − pd(k) ∥2≤ Ra,

r(k) = ηd(k); (ii) when ∥ p(k) − pd(k) ∥2> Ra, r(k) is temporarily formed by

replacing pd(k) with plos(k) via a LOS re-planner. The radius Ra is the user-defined

sphere of acceptance for local replanning. This switching is meant to mitigate input

saturation and ensure robust tracking performance under disturbance.

5.3 LOS Based Local Trajectory Generation

Traditionally, the LOS guidance system is used to generate trajectories between

two waypoints in motion planning [6] and is commonly deployed in path-following

control of marine vehicles [284]. Here, we apply the technique to local re-planning in

3D trajectory tracking problem. Given the AUV current position, (x(k), y(k), z(k)),

the reference position, (xd(k), yd(k), zd(k)), and a sphere of acceptance defined by

radius Ra, if the vehicle’s position is within the acceptance sphere around the desired

trajectory, i.e.

(xd(k)− x(k))2 + (yd(k)− y(k))2 + (zd(k)− z(k))2 ≤ R2
a, (5.8)

the selector matrix in (5.6) is chosen as H = [I3 03] meaning Pd is selected, oth-

erwise, H = [03 I3] meaning the re-planned local trajectory plos(k) is selected. In

the latter, plos(k) will be computed such that it lies on the surface of a sphere with

radius Ra. When the AUV lies outside the sphere of radius Ra, the re-planned local

trajectory is employed instead of the original reference trajectory until the tracking

error is controlled back to the sphere defined by (5.8).

The re-planned reference trajectory can be obtained by solving the following set
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of equations:

(xlos(k)− x(k))2 + (ylos(k)− y(k))2 + (zlos(k)− z(k))2 = R2
a, (5.9a)

(ylos(k)− y(k)) =
(
yd(k)− y(k)
xd(k)− x(k)

)
(xlos(k)− x(k)) , (5.9b)

(zlos(k)− z(k)) =
(
zd(k)− z(k)
xd(k)− x(k)

)
(xlos(k)− x(k)) . (5.9c)

The first equation (5.9a) is the standard sphere of acceptance used in the LOS

approach [6] and it implies that the local trajectory lies on the sphere defined by

Ra. In a conventional LOS strategy, a constant slope is maintained between two

successive reference positions, which is not suitable for the problem under study as

the reference in this chapter is considered not to have jump discontinuity. Hence,

Equations (5.9b) and (5.9c) are formulated to ensure that a constant slope between

the AUV’s position and the desired trajectory is maintained in the (x, y)-plane and

the (x, z)-plane, respectively.

The selection of radius Ra can be challenging and is typically influenced by the

nature of the reference trajectory. For smooth paths, a good choice for Ra is to

determine the parameter as the average distance between two consecutive points in

the desired trajectory as

Ra =
1

Nd

√√√√( Nd∑
i=1

|δxd(i)|

)2

+

(
Nd∑
i=1

|δyd(i)|

)2

+

(
Nd∑
i=1

|δzd(i)|

)2

, (5.10)

where δxd(i) = xd(i)− xd(i− 1), δyd(i) = yd(i)− yd(i− 1), δzd(i) = zd(i)− zd(i− 1)

and Nd represents the number of data points obtained from sampling the desired

trajectory. In practice, the desired trajectory is not always smooth1, such as a

Dubins’ path composed of a series of straight lines and curves [285]. Despite this, a

suitable estimate of Ra can be obtained by (5.10), giving a useful starting point for
1A smooth trajectory refers to a path with a continuous velocity profile, ensuring no jerks or

sudden changes in velocity or acceleration.
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tuning Ra used in the local trajectory generation scheme.

plos

pd

k + 1
k

k + 2
k + 3

Start
point

k
k + 1

k + 2

k + 3

k + 4

AUV

Fig. 5.1: The LOS-based local trajectory re-planning process.

For simplicity, assume the AUV depth coincides with the reference trajectory

depth and is constant. An example of the local trajectory re-planning process in

(x, y)-plane for the AUV based on the solution of (5.9) is illustrated in Fig. 5.1,

in which the solid orange curve denotes the reference trajectory, the blue curve

represents the generated re-planned local trajectory and the dotted lines correspond

to the constant slope line described by (5.9b) at each time step. The local trajectory

converges to the desired trajectory at k+4 because the desired trajectory lies within

the circle of acceptance, i.e., condition (5.8) is satisfied at time k + 3. The explicit

solution to (5.9) is analytically determined and given in Appendix A, including the

unique case of |xd(k) − x(k)| = 0. It is important to note that the proposed LOS

replanning is implemented so that the direction of the LOS changes at the same

rate as the reference trajectory, making it somewhat similar to the proportional

navigation system commonly used in missile technology.
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5.4 Tube-Based Control System Design

For the LPV system in (5.1), its prediction model defined over the prediction horizon

is written as

x(k + 1 + j|k) = A(x(k + j|k))x(k + j|k) +Bu(k + j|k) +w(k + j|k), (5.11)

for all j = 0, . . . , N−1, with x(k + j|k) denoting the j-th prediction of x, at time k.

To reduce the computational load on updating the model at each prediction step,

consider the following assumption to freeze the state-dependent system matrix over

the prediction interval.

Assumption 4. At each sampling instant, Ax = A(x(k + j|k)) = A(x(k|k)) for

all j = 0, . . . , N − 1.

Consider z(k + j|k) as the nominal state of the AUV model and v(k + j|k) as

the nominal input signal, when w(k) = 0 in (5.1). Then, the nominal prediction

model is written as

z(k + 1 + j|k) = Azz(k + j|k) +Bv(k + j|k), (5.12)

where Az = A(z(k|k)) and z(k|k) = x(k|k).

The difference between the nominal prediction model (5.12) and the actual pre-

diction model (5.11) can be characterised by the state prediction error,

xe(k + j|k) = x(k + j|k)− z(k + j|k) = Axxe(k + j|k) +Bue(k + j|k), (5.13)

where ue(k + j|k) = u(k + j|k) − v(k + j|k). The control law for (5.1) with dis-

turbances is designed to include two components, the nominal (zero disturbance)

model control and the disturbance controller, that is,

u(k + j|k) = v(k + j|k) +Kxe(k + j|k), (5.14)
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where K ∈ R6×12 is a stabilising feedback controller, referred to as the disturbance

controller [282]. Given that K is assumed to stabilise the system (Az,B), the

evolution of the stabilised state prediction error satisfies

xe(k + j + 1|k) = ΦKxe(k + j|k) +w(k + j|k), (5.15)

where ΦK = (Az +BK). Since w(k + j|k) is assumed to be bounded, it follows

that the evolution of the stabilised state error xe(k + j|k) is bounded.

At any prediction step j, let xe(k + j|k) ∈ Xe(k), where Xe(k) is a polytope

containing the origin, defined as

Xe(k) = {Xe(k|k),Xe(k + 1|k), . . . ,Xe(k +N |k)} . (5.16)

This implies xe(k|k) = 0 and the non-zero entries of Xe(k) are given by

Xe(k + j|k) =W ⊕ ΦKXe(k + j|k), j = 1, . . . , N. (5.17)

The notation ⊕ represents the Minkowski set addition.

Given that the state prediction error evolves according to (5.13), the state tra-

jectory over the horizon N evolves as inside a constrained tube with varying shape

and cross-section defined by the set Xe(k). This phenomenon is illustrated in Fig.

5.2.

5.4.1 MPC Design with Tightened Constraint Sets

For the tube-base MPC design [274, 282], it is noted that if the nominal state and

input variables, z(k + j|k) and v(k + j|k), are chosen to satisfy z(k + j|k)⊕Xe(k) ⊂

X and v(k + j|k) ⊕ KXe(k) ⊂ U , respectively, then the state and input signal

constraints are satisfied, that is, x(k + j|k) ∈ X and u(k + j|k) ∈ U . This means

that the nominal state and input signals can be restricted to tightened constraints
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Fig. 5.2: State tube illustration: the actual state x(k + j|k) evolves in the tube
centred along the trajectory of the nominal state z(k + j|k) with shape and cross
section determined by the polytope {Xe(k + j|k)} , j = 1, . . . , N .

to ensure that for any unknown disturbance w(k + j|k) ∈ W , the actual state and

control input satisfy the system constraints.

Denote the nominal position by η̄(k + j|k), which is related to the nominal state

prediction by

η̄(k + j|k) = Gpz(k + j|k), (5.18)

where Gp = [I6 06]. Denote z̃(k + j|k) as the nominal state predictions at k, which

rely on the optimal input sequence from k − 1, written as follows:

z̃(k + 1 + j|k) = Azz̃(k + j|k) +Bv(k − 1 + j|k − 1), j = 0, · · · , N − 2,

z̃(k +N |k) = Azz̃(k +N − 1|k) +Bv(k +N − 1|k),

η̃(k + j|k) = Gpz̃(k + j|k),

z̃(k|k) = z(k|k).

(5.19)

Remark 4. Although η̄(k + j|k) and η̃(k + j|k) both represent nominal position

vectors, they differ in that the former may depend on an unknown input variable,

v(k+j|k), at the current time step k. In contrast, the latter depends solely on known

previous input variables, v(k + j|k − 1).
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To minimise the nominal system’s tracking error, the cost function is defined as

J(k) =
N−1∑
j=1

∥ η̄(k + j|k)− r(k + j|k) ∥2Q +
Nu−1∑
j=0

∥ ∆v(k + j|k) ∥2R

∥ η̄(k +N |k)− r(k +N |k) ∥2P,

(5.20)

where Nu is the control horizon, ∆v is the input variation between k and k − 1, Q

and R are positive definite weighting matrices for the output and input, respectively.

At any time k, obtain x(k) and define z(k|k) = x(k), based on which the nominal

state z(k + j|k) is predicted using an optimally selected control sequence v(k + j|k)

for j = 0, . . . , N − 1. The controller design is achieved in two steps.

In the first step, the nominal optimal control signal sequence is defined as:

V(k) = {v(k|k),v(k + 1|k), . . . ,v(k +Nu − 1|k)}. The high-level MPC design for

the nominal system is obtained from the QCQP:

Q(z(k)) : V∗(k) = arg min
V(k)

J(k) (5.21a)

s.t. z(k + j|k) ∈ Z, j > 0, (5.21b)

v(k + j|k) ∈ V , j ≥ 0, (5.21c)

v(k + j|k) = v(k − 1) +

j∑
i=0

∆v(k + i|k), (5.21d)

v(k − 1) = u(k − 1), (5.21e)

∥ η̃(k +N − 1|k)− r(k +N − 1|k) ∥2Q

+ ∥ ∆v(k +Nu − 1|k) ∥2R≤ µ, (5.21f)

z(k|k) = x(k), (5.21g)

where Z = X ⊖Xe(k + j|k) and V = U ⊖KXe(k + j|k) are the tightened state and

input constraint sets. The notation⊖ represents the Minkowski set subtraction. The

solution to the quadratic program Q(z(k)) provides v∗(k+j|k) for j = 0, . . . , Nu−1,

representing the optimal input sequence. It is assumed that for Nu < N , v∗(k +
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j|k) = v(k + j − 1|k) for j = Nu, . . . , N which means ∆v(k + j|k) = 0 for j =

Nu, . . . , N . Based on the receding horizon principle, v∗(k) = v∗(k|k). Constraints

(5.21f) is used to impose a stability condition where µ is given as

µ = ∥ η̄(k − 1|k − 1)− r(k − 1) ∥2Q + ∥ ∆v(k − 1|k − 1) ∥2R

−
N−2∑
j=1

∥ η̃(k + j|k)− η̄(k + j|k − 1) ∥2Q −ε,
(5.22)

where ε > 0.

In the second step, to ensure the actual states of the AUV follow the reference

tube trajectory, the low-level disturbance control is computed by

u∗(k) = v∗(k) +K (x(k|k)− z∗(k|k)) . (5.23)

The control signal in (5.23) represents the actual control signal to be applied to

the nonlinear AUV model (2.14) for robust tracking of the desired trajectory r(k).

The optimal control problem (Q) is a convex QCQP because Q and R are positive

definite matrices which means the problem is computationally tractable [286]. The

framework of this proposed robust tube-based MPC is shown in Fig. 5.3.

By setting the initial state error to zero, xe(k|k) = 0, the state error prediction

terms are written as

xe(k + j|k) =
j−1∑
i=0

Φi
Kw(k + j − 1− i|k), j = 1, . . . , N. (5.24)

To implement the tightened constraint in (5.21), it is necessary to determine

w(k + j|k) ∈ W for j = 1, . . . , N−1. Based on the definition of the state constraint

set in (5.3), the tightened nominal state can be formulated as

Gxz(k + j|k) ≤ hx −Θ∞, (5.25)
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Fig. 5.3: Robust tube-based model predictive control framework for AUV.

where Θ∞ can be obtained from maxxe(k+j|k) {Gxxe(k + j|k) : xe(k + j|k) ∈ Xe(k)},

and xe(k + j|k) is calculated by (5.24). The exact knowledge of Θ∞ is not required

to satisfy the system constraints, instead, an outer approximation of the parameter

would be sufficient. Define Θ∞ ≤ (1−λ)−1ΘN with λ ∈ (0, 1), ΘN can be computed

from the linear programming problem

L : ΘN = arg max
w(k+j|k)∈W

{
Gx

N−1∑
j=0

Φi
Kw(k + j|k)

}
. (5.26)

It is noted that w(k|k) = 0 in (5.26) because of the definition of Xe(k + j|k) in

(5.17). Therefore, the tightened state constraint set is given by

Z =
{
z(k + j|k) ∈ R12 : Gxz(k + j|k) ≤ hx − ρΘN

}
, (5.27)

where ρ = (1 − λ)−1. Similarly, the tightened input constraint set is approximated

by

V =
{
v(k + j|k) ∈ R6 : Guv(k + j|k) ≤ hu − ρKΘN

}
. (5.28)

At each k, the optimisation problem L in (5.26) needs to be solved first before
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solving Q in (5.21). The stability condition for the nominal system is summarised

in the following theorem.

Theorem 5.4.1. Consider that the lumped disturbance is negligible and Assumptions

3 holds. Given the nominal system (5.12) and the MPC law (5.21) with the tightened

constraints defined by Z and V for state and input, respectively, the closed-loop

system ϕn(z(k)) = Azz(k) +Bv∗(k) is (locally) asymptotically stable.

Proof. If K is a stabilising gain for the error model (5.13), the tightened sets Z and

V are convex. Under negligible lumped disturbance w(k), for j = 0, the nominal

system (5.12) is equivalent to the actual AUV system (5.1). Hence, the proof of the

theorem follows from the results in [287].

Definition 5.4.2 ( [288]). The closed-loop of the perturbed AUV system ϕp(x(k)) =

(Axx(k) + Bu∗(k)) + w(k) is called input-to-state stable (ISS) if there exist a

KL−function β(·) and a K−function γ(·) such that, for every x(k) ∈ X and

w(k) ∈ W for all k, the state trajectories satisfy

∥ ϕp(x(k)) ∥≤ β(∥ x(k) ∥, k) + γ(∥ w(k) ∥). (5.29)

Definition 5.4.2 is the local version of discrete-time ISS and it is similar to the

robust asymptotic stability (RAS) property in [289].

Theorem 5.4.3. Suppose Assumption 3 holds; then the closed-loop system ϕp(x(k))

is ISS under the tube-based control law (5.23).

Proof. The asymptotic stability of the nominal system (5.12) based on Theorem

5.4.1 guarantees the existence of a KL−function β(·) such that the closed-loop

system, ϕn(x(k)), satisfies

∥ ϕn(x(k)) ∥≤ β(∥ x(k) ∥, k). (5.30)
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Considering the effects of disturbances, apply the control input (5.23) to system

(5.1), and then adding and subtracting Azz(k|k) yields

ϕp(x(k)) = Axx(k) +Bv∗(k|k) + ϕK(x(k|k)− z∗(k|k)) +w(k),

= z(k + 1|k) + ϕK(x(k|k)− z∗(k|k)) +w(k),

= ϕn(x(k)) + ϕKxe(k|k) +w(k).

(5.31)

From the definition of the set Xe(k) in (5.17), it follows that xe(k|k) = 0, therefore

ϕp(x(k)) = ϕn(x(k)) +w(k). (5.32)

Combining (5.32) and (5.30), it can be concluded that there exist a KL−function

β(·) and a K−function γ(·) that satisfy

∥ ϕp(x(k)) ∥≤ β(∥ x(k) ∥, k) + γ(w(k)). (5.33)

Hence, the closed-loop system ϕp(x(k)) is ISS.

5.4.2 Optimal State-Dependent Feedback Control Design

Designing the disturbance controller K is a critical step in implementing the pro-

posed robust MPC controller. However, it is difficult to determine the tube with

a local linear feedback gain due to system nonlinearities. An intuitive approach to

find K involves solving an infinite horizon, input affine regulator problem using the

SDRE method, which requires solving an SD-DARE numerically online. To avoid

the computation load, we consider a finite horizon control problem, with a termi-

nal equality constraint, that can be solved analytically to obtain a state-dependent

feedback gain.
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Define the cost function to regulate the state prediction error as

J1(k) =

N1∑
j=1

∥ xe(k + j|k) ∥Q1 +

N1−1∑
j=0

∥ ue(k + j|k) ∥R1 , (5.34)

where Q1 ∈ R12×12 is positive semi-definite, R1 ∈ R6×6 is positive definite and N1 is

the prediction horizon. The state feedback controller is determined by solving the

optimisation problem

P : U∗
e(k) = arg min J1(k) (5.35a)

s.t. xe(k + j|k) = Axxe(k + j|k) +Bue(k + j|k), (5.35b)

xe(k +N1|k) = 0, (5.35c)

where Ue(k) = {ue(k|k), . . . ,ue(k +N1 − 1|k)}. Under Assumption 4, the gain

matrix KMPC ∈ R6N1×12(N1−1) obtained from (5.35) satisfies


ue(k|k)

ue(k + 1|k)
...

ue(k +N1 − 1|k)

 = KMPC


Ax

A2
x

...

AN1−1
x

xe(k). (5.36)

Based on the receding horizon principle, the gain associated with the first control

input is extracted as the state-dependent gain as follows:

K = K0
MPC


Ax

A2
x

...

AN−1
x

 ∈ R6×12, (5.37)

where K0
MPC consists of the first 6 rows (dimension of control signal) of KMPC . The

steps needed to implement the proposed TMPC law are provided in the pseudo-code
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given in Algorithm 3.

Theorem 5.4.4. Suppose Assumptions 3 and 4 hold, the analytical solution (5.36)

obtained from solving (5.35) is (locally) asymptotically stabilising for the time-varying

error model (5.13).

Proof. It shows from the cost function in (5.34) that J1(k) ≥ 0 for k > 0. A sub-

optimal solution can be obtained by shifting the error state trajectory at k by 1 to

obtain the state trajectory at k + 1, that is,

J1(k + 1) =

N1∑
j=1

∥ xe(k + 1 + j|k + 1) ∥2Q1
+

N1−1∑
j=0

∥ ue(k + 1 + j|k + 1) ∥2R1
,

=

N1+1∑
j=2

∥ x∗
e(k + j|k) ∥2Q1

+

N1∑
j=1

∥ u∗
e(k + j|k) ∥2R1

,

=

N1∑
j=1

∥ x∗
e(k + j|k) ∥2Q1

+

N1−1∑
j=0

∥ u∗
e(k + j|k) ∥2R1

− ∥ x∗
e(k + 1|k) ∥2Q1

− ∥ u∗
e(k|k) ∥2R1

+ ∥ x∗
e(k + 1 +N1|k) ∥2Q1

,

= J1(k)− ∥ x∗
e(k + 1|k) ∥2Q1

− ∥ u∗
e(k|k) ∥2R1

≤ 0.

Therefore, the cost function in (5.34) is a Lyapunov function, that is, J1(k + 1) ≤

J1(k) holds and J(k) ≥ 0 for all k. Thus, the error model (5.13) is locally asymp-

totically stable.

Remark 5. The imposition of the zero terminal constraint (5.35c) has the drawback

of likely requiring a large control effort to steer the error state to the origin, especially

when N1 is short [290]. Therefore, it is recommended to choose N1 to be larger than

N .
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Algorithm 3: Tube-based MPC with LOS replanning
Input: AUV LPV model, Q, Q1, P, R, ϵ > 0, γ ∈ (0, 1), N and Nu.

1 k ← 0
2 Compute the sphere of acceptance radius Ra based on the desired trajectory

(xd, yd, zd) using (5.10).
3 Define the disturbance bound wmax.
4 Measure current state x(k) and set z(k|k) = x(k).
5 repeat
6 Determine the reference signal such that: (i) r(k) = ηd(k) when
∥ p(k)− pd(k) ∥2≤ Ra; (ii) r(k) = [xlos ylos zlos ϕd θd ψd]

⊤ when
∥ p(k)− pd(k) ∥2> Ra.

7 Determine the state-dependent feedback gain K from (5.37) using x(k).
8 Solve (5.26) to obtain ΘN .
9 Compute the tightened constraint sets Z and V using (5.27) and (5.28).

10 Solve (5.21) to obtain the input sequence
V∗(k) = {v∗(k|k), . . . ,v∗(k +Nu − 1|k)}.

11 Compute the low-level controller u∗(k) according to (5.23).
12 Implement τ (k) = u∗(k) for one sampling period.
13 Update the state measurement as x(k + 1)
14 k ← k + 1
15 until end
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5.5 Simulation Results

5.5.1 System Settings and Performance Metrics

The proposed control strategy is numerically validated using the Naminow-D AUV

prototype, a scaled version (3 m) of the REMUS AUV. Equipped with an Inertia

Navigation System (INS), the position and velocities are measured, allowing real-

time calculation of control forces and moments. To avoid excessive thrust forces

employed for the navigation task, the input forces and moments are limited to 1000

N and 1000 Nm, respectively. The unknown environmental disturbances τwX , τwY and

τwZ are assumed to be equal and modelled using the modified Pierson–Moskowitz

Spectrum as in Chapter 4. However, the offset term di is modelled as a standard

Wiener process in the range [−60, 60]. The wave force-time profile is shown in Fig.

5.4.
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Fig. 5.4: Wave disturbance evolution over time.

In the TMPC design, a sampling time of Ts = 0.1 s was used, and the prediction

and control horizons were tuned to be N = 6, N1 = 20 and Nu = 2. The weighting

matrices for the proposed TMPC were selected as Q = 2I6, Q1 = I12, R = R1 =
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0.6I6 and ε = 0.1. The lumped disturbance term is bounded by |w(k)| ≤ 0.5,

and the tightened constraint setting parameter λ is set to be 0.05. Additionally,

the input rate constraint is defined by δumax ≤ 100, which means that a maximum

variation of ±100 N or Nm is allowed at each control step. The pitch angle θ is

bounded by θmax = 2π/5 rad to avoid singularities in the transformation matrix.

The performance of the proposed TMPC in 3D scenarios was compared with an

NMPC. For the NMPC design, the input and output weightings were tuned to be

I6 and 600I6, respectively. The input rate constraints were not implemented in the

case of NMPC to preserve its feasibility.

The control performance is quantitatively analysed using different metrics. For

positioning errors (translational and angular) and input chattering (CT), the integral

of absolute error (IAE) and the absolute sum of input variations are used and they

are given as follows:

IAEpos =

Nd∑
k=1

3∑
i=1

|η(i, k)− ηd(i, k)|, IAEori =

Nd∑
k=1

6∑
i=4

|η(i, k)− ηd(i, k)|, (5.38a)

CTfor =

Nd∑
k=1

3∑
i=1

|δτ (i, k)|, CTmom =

Nd∑
k=1

6∑
i=4

|δτ (i, k)|, (5.38b)

where the subscripts ‘pos’ and ‘ori’ relate to AUV’s position and orientation, CT

represents chattering, the subscripts ‘for’ and ‘mom’ represent forces and moments,

the use of ‘(i, k)’ denotes the i-th entry of a vector at k.

The rate of energy consumption (EC) during navigation is directly related to both

the forces and moments applied to the AUV. The following EC metric is formulated:

ECtot =

Nd∑
k=1


3∑
i=1

|ν(i, k)u(i, k)|︸ ︷︷ ︸
ECpos

+
6∑
i=4

|ν(i, k)u(i, k)|︸ ︷︷ ︸
ECori

× Ts
3600

. (5.39)

The EC metric defined in (5.39) is in Wh.

119



Chapter 5. Tube-based MPC of an AUV using 3D Line-of-Sight Re-planning

Two types of reference trajectories are set up to examine the efficacy of the

proposed TMPC with LOS replanning. The first one is a spatial helical trajectory,

and the second is a 3D path created using the Dubins method, which includes a mix

of straight lines and curves. Simulations are implemented in the MATLAB/Simulink

environment using a PC with an Intel Core i7 processor running at 2.2 GHz and

16GB RAM.

Fig. 5.5: Helical desired trajectory with initial AUV position η1(0): AUV motion
in 3D space.
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Fig. 5.6: Helical desired trajectory (initial AUV position η1(0)): linear (left) and
angular (right) position responses.

5.5.2 Helical Trajectory Tracking

The desired helical trajectory is designed following the underwater pipeline inspec-

tion task in [22] as follows:



xd(t) = −10 + 0.04t m,

yd(t) = 6 sin(0.02t) m,

zd(t) = 10 cos(0.02t)− 10 m,

ϕd(t) = 0 rad,

θd(t) = −arctan(0.1/π) rad,

ψd(t) = 0.005πt rad.

(5.40)

Given ηd(0) = [−10 0 0 0 − 0.032 0]⊤ as the initial point in the desired trajectory,

two different initial AUV positions are considered in the simulation study. The first

initial AUV position is set as η1(0) = [−11 1 − 0.7 0 0 0]⊤. Using (5.10) and a
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simulation length of 600 s, the sphere of acceptance is calculated to be Ra = 0.42

m. To show how the choice of Ra may impact the controller’s performance, three

values of Ra are used in the simulation: Ra = 0.2 m, Ra = 0.42 m and Ra = 0.65 m.

The tracking results obtained from NMPC and the proposed TMPC are presented

in Figs. 5.5–5.8. Fig. 5.5 shows the 3D motion of the AUV, while the components

of the translational and angular position variables are presented in Fig. 5.6. The

AUV velocities are illustrated in Fig. 5.7, and the inputs along with their rates are

shown in Fig. 5.8.
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Fig. 5.7: Helical desired trajectory (initial AUV position η1(0)): linear (left) and
angular (right) velocity responses.

Compared to the NMPC, the two TMPC controllers with Ra = 0.42 m and

Ra = 0.65 m show superior tracking performance by having over 33% reduction in

translational position tracking error and 6.2% reduction in angular position tracking

error. Although using a larger value of Ra = 0.65 m leads to faster convergence

in translational position tracking, it also causes higher initial velocity variations,
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resulting in higher input saturation as compared to taking Ra = 0.42 m. When

Ra = 0.2 m, which is 52% smaller than the calculated value of 0.42, the proposed

TMPC could not achieve the desired control objective (see Fig. 5.6).

Table 5.1 summarises the quantitative performance of the controllers. For the

helical trajectory, compared to NMPC, the TMPC (Ra = 0.42 m) has lower chat-

tering in the moment input, higher chattering in the force input, and lower energy

consumption. This suggests that the proposed TMPC scheme achieves the control

objectives with a lower energy cost in control actuation.

To demonstrate the controller’s effectiveness, another AUV initial condition,

η2(0) = [−25 10 − 8 0 0 0]⊤, is simulated and the results are given in Figs. 5.9 –

5.12. In this scenario, the distance between η2(0) and ηd(0) is large. It took a longer

time for the TMPC controllers to converge to the desired path, compared to the case

with η1(0), still all the input magnitude and rate constraints were satisfied (see Fig.

5.12). It is noted that NMPC became infeasible in this case despite neglecting the

input rate constraints in its implementation.
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Fig. 5.8: Helical desired trajectory (initial AUV position η1(0)): the input forces
and moments (left) and their rates of change (right).
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Fig. 5.9: Helical desired trajectory with initial AUV position η2(0): AUV motion
in 3D.
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Fig. 5.10: Helical desired trajectory (initial AUV position η2(0)): linear (left) and
angular (right) position responses.
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Fig. 5.11: Helical desired trajectory (initial AUV position η2(0)): linear (left) and
angular (right) velocity responses.

5.5.3 Dubins Trajectory Tracking

The Dubins trajectory is created following the design in [285], but modified to suit

the larger size of the Naminow-D AUV in this work compared to the ODIN AUV.

The reference path consists of a dive trajectory for 80 s, followed by a horizontal

comb-shaped trajectory for 400 s. The desired trajectory is defined as follows:

xd(t) =



0 m, 0 ≤ t < 80 s

1/5t− 16 m, 80 ≤ t < 160 s

4sin((π(t/4− 40))/20) + 16 m, 160 ≤ t < 240 s

− 1/5t+ 64 m, 240 ≤ t < 320 s

− 4sin(π(t/4− 80)/20) m, 320 < t ≤ 400 s

1/5t− 80 m, 400 ≤ t < 480 s

(5.41)
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Fig. 5.12: Helical desired trajectory (initial AUV position η2(0)): the input forces
and moments (left) and their rates of change (right).

yd(t) =



4 m, 0 ≤ t < 80 s

4 m, 80 ≤ t < 160 s

8− 4cos((π(t/4− 40))/20 m, 160 ≤ t < 240 s

12 m, 240 ≤ t < 320 s

16− 4cos((π(t/4− 80))/20 m, 320 ≤ t < 400 s

20 m, 400 ≤ t < 480 s

(5.42)
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Fig. 5.13: Dubins desired trajectory: AUV motion in 3D space.

zd(t) =

− (t/5 + 4) m, 0 ≤ t < 80 s

− 20 m, 80 ≤ t < 480 s
(5.43)

ψd(t) =



0 rad, 0 ≤ t < 80 s

0 rad, 80 ≤ t < 160 s

π(t/80− 2) rad, 160 ≤ t < 240 s

π rad, 240 ≤ t < 320 s

π − π(t/80− 4) rad, 320 < t ≤ 400 s

0 rad, 400 ≤ t < 480 s

(5.44)

and ϕd = θd = 0 rad for all t. By computing the average velocity in the 3D directions,

the parameter Ra is determined using (5.10) to obtain Ra = 0.14 m, tuned to be

Ra = 0.2 m for the non-smooth trajectory. For the simulation, three choices are

employed: Ra = 0.1 m, Ra = 0.2 m, and Ra = 0.4 m. The initial position vector is

selected as η(0) = [0.5 5 − 3.9 0 0 0]⊤. The simulation results for this scenario are

presented in Figs. 5.13 - 5.16.
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Fig. 5.14: Dubins desired trajectory: translational (left) and angular (right) position
responses.

The position tracking time profiles are shown in Fig. 5.14. Since the input forces

and moments are directly related to the velocities, spikes are noticed in the input

magnitude and changing rate, as shown in Fig. 5.16, and this is more evident in τX ,

τK and τN and their rates of change when the largest step changes occurred in the

AUV translational velocities (see Fig. 5.15). In this case, the TMPC with Ra = 0.2

m does not lead to the input saturation, as such the AUV does not suffer from

velocity oscillations. It is noted that, compared to NMPC, the proposed TMPC

controllers generally show less sensitivity to the effects of disturbances on the AUV

velocities, which can be seen in Fig. 5.15. All three choices of Ra ensure that the

AUV operational constraints are satisfied.

With the Dubins trajectory, it can be seen from Table 5.1 that, compared

to NMPC, the TMPC controllers with Ra = 0.2 m and Ra = 0.4 m achieved

a tracking error reduction of over 42% in translational positioning and over 60%
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Fig. 5.15: Dubins desired trajectory: translational (left) and angular (right) velocity
responses.

reduction in angular position. When Ra = 0.2 m, the proposed TMPC reduced

moments’ chattering by 12.6% but showed a larger force chattering compared to

NMPC. When Ra = 0.4 m, the TMPC resulted in larger chattering in both input

forces and moments compared to the NMPC, as the TMPC experienced significant

initial input saturation due to the larger value of Ra. The use of Ra = 0.2 m led

to an energy saving of 0.05 Wh and 0.08 Wh compared to TMPC (Ra = 0.4 m)

and NMPC, respectively. Thus, the potential merit that can be obtained from the

proposed controller is also strengthened by this scenario.

5.5.4 Remarks on Results

It can be seen from Table 5.1 that TMPC gave significantly larger tracking errors

than the other controllers when taking Ra = 0.1 m for the Dubins trajectory and

Ra = 0.2 m for the helical trajectory. This suggests that the choice of Ra should
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Fig. 5.16: Dubins desired trajectory: The input forces and moments (left) and their
rates of change (right).
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Table 5.1: Numerical performance comparison of the controllers.

Trajectory Performance metric TMPC
Ra = 0.2

TMPC
Ra = 0.42

TMPC
Ra = 0.65

NMPC

Helical
IAEpos. 1× 103 [m] 289.297 2.191 2.174 3.292
IAEori. 1× 103 [rad] 28.354 0.300 0.301 0.320
CTfor. [kN] 9.777 9.439 10.698 6.551
CTmom. [kNm] 15.896 2.478 4.966 2.718
ECtot. [Wh] 1.201 4.137 4.212 4.20

Ra = 0.1 Ra = 0.2 Ra = 0.4

Dubins
IAEpos. 1× 103 [m] 18.25 0.772 0.754 1.352
IAEori. 1× 103 [rad] 5.099 0.121 0.122 0.307
CTfor. [kN] 8.013 7.564 9.119 5.553
CTmom. [kNm] 12.786 1.721 4.268 1.969
ECtot. [Wh] 0.569 0.579 0.626 0.663

not be too small, that is, the spherical error limit should not be too small when

implementing TMPC with a LOS replanner. Additionally, Ra can be chosen to be

larger than that computed by (5.10) for faster convergence of the AUV path to the

desired trajectory. However, a larger Ra may cause higher input saturation under

tight input constraints.

To summarise, the numerical study results demonstrate improved performance

of the proposed TMPC as compared to NMPC, in trajectory tracking and energy

consumption under disturbances. Moreover, the proposed TMPC avoids the pro-

hibitive computational load associated with NMPC design. For instance, the RMS

value of the CPU time for solving the proposed TMPC for the helical trajectory

tracking is 17 ms compared to the 523 ms for NMPC. The peak CPU time of the

TMPC is 47 ms compared to 822 ms of NMPC. Therefore, the proposed scheme

shows better potential to be deployed for real-time applications as the optimisation

problems can be solved in a much smaller time than the sampling time of 100 ms.
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5.6 Summary

A novel discrete-time tube-based 3D trajectory tracking MPC incorporating a LOS

guidance system has been developed for an AUV system. This controller was de-

signed to handle challenges posed by environmental disturbances and input satu-

ration. The re-planned local trajectory converges to the desired trajectory when

the AUV tracking error is controlled to satisfy a user-defined spherical error limit

defined by a sphere of acceptance. In the tracking MPC design, time-varying tubes

were employed to confine the future state evolution. To simplify the tube construc-

tion through constraint tightening, the stabilising gain used to characterise the state

and input tubes was determined by an analytical solution to an unconstrained MPC

based on the nominal state deviation from the actual AUV state.

Simulation results on the Naminow-D AUV dynamic model show that the pro-

posed control strategy has the potential to effectively track smooth and non-smooth

trajectories, limit input saturation and reduce energy consumption under environ-

mental disturbances. It was shown that the proposed tuning mechanism for the

LOS-based local re-planning can provide a good estimate of the sphere of accep-

tance necessary to avoid substantial input signals to guide the vehicle towards the

reference trajectory.

Future investigations will extend the control strategy to enable real-time collision

avoidance capability. The computation of a state-dependent feedback gain for the

state-dependent, time-varying AUV model will also be explored in future work.

The findings presented in this chapter have been published in Ocean Engineering

journal [291]. In addition, the methodology was extended to integrated speed and

power control of DFIG (doubly-fed induction generator) based wind turbines, where

the adaptiveness of the strategy was improved through Kalman filtering-based dis-

turbance bounds estimation, which is published in IEEE Transactions on Sustainable

Energy [292].
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Chapter 6

Accelerated Min-Max MPC for

Path-Following of an Autonomous

Underwater Vehicle in Uncertain

Environments

6.1 Introduction

Advances in navigation, guidance and control systems have a significant role in

the progress of improved AUV autonomy [293]. Typically, guidance systems and

control systems are developed independently. Popular guidance laws such as pro-

portional navigation guidance (PNG), Lyapunov-based guidance, and line-of-sight

(LOS) guidance systems were reviewed in [294]. In guidance systems, it is a com-

mon practice to split the desired AUV path into different waypoints that the vehicle

needs to go through in order to reach the final destination. Thus, waypoint guidance

refers to the process of steering the vehicle from one waypoint to the next [295]. LOS

strategy is the most popular guidance system in marine vehicles guidance [6].

A commonly employed method for path-following (PF) is LOS guidance. The
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LOS vector, which connects the marine vehicle to either the next waypoint or a

point along the path between two waypoints, may be utilised for both heading and

course control [6]. Guidance systems based on the LOS strategy are traditionally

implemented by generating reference heading angles between waypoints that are

then tracked using a suitable heading autopilot. This approach applies to marine

surface vehicles and AUV horizontal motion control which has been the main focus

of many PF control strategies [220, 296, 297]. For some AUVs whose roll, pitch

and heave motions can be assumed decoupled with negligible roll and pitch angles

[22, 215], their 3D guidance systems can readily be designed using methods similar

to those used for marine surface vehicles [295]. For the 3D case, in addition to the

heading angle, the corresponding depth reference is also determined and tracked to

achieve the 3D PF task [298]. However, these guidance and control schemes cannot

be directly applied to achieve accurate waypoint following for AUVs with coupled

motion.

While previous research has focused on 3D PF for smooth and continuous paths

[228–230], limited attention has been given to paths defined by 3D waypoints as

investigated in [295]. AUVs encounter uncertainties such as environmental obsta-

cles, making waypoint tracking challenging for control engineers due to incomplete

knowledge of the ocean environment during waypoint planning [22]. Consequently,

real-time collision avoidance with detected obstacles is crucial for demanding marine

industry tasks [195, 299]. In [227], a 3D waypoint following MPC-SMC controller

was designed based on the LOS approach for error model formulation, albeit without

considering disturbances. Nevertheless, the study incorporated a real-time collision

avoidance strategy that analytically determines the path to avoid detected obstacles.

In this chapter, a robust PF control strategy is proposed for coupled AUVs

operating in uncertain environments with environmental disturbances and obstacles.

The guidance and control system presented in this chapter comprises two main

components: reference computation and reference tracking.

For reference computation, the enclosure-based LOS strategy is employed to
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determine the horizontal 2D coordinate, from which the corresponding depth co-

ordinate is analytically derived. The resulting 3D LOS coordinate is then used to

design a PF control system. In the proposed design, the heading and depth control

problems are reformulated as a 3D LOS path-tracking problem to eliminate the need

for a kinematic error model. This approach is important as it avoids the necessity

for motion decoupling or the assumption of negligible roll motion [218]. However,

this straightforward approach does not account for situations where the vehicle

must avoid newly detected obstacles. To address this limitation, the conventional

enclosure-based LOS guidance strategy is leveraged to develop a multi-objective LOS

guidance system (MO-LOSGS) that enables both PF and online collision avoidance

of detected obstacles.

The reference tracking objective is achieved by formulating a min-max MPC

(MM-MPC) to ensure robust performance under time-varying environmental distur-

bances. To prevent excessive velocity fluctuations during PF control, the objective

function minimises increments in vehicle velocity. A duality-inspired method is used

to transform the MM-MPC problem into a convex quadratic minimisation problem

to obtain the accelerated MM-MPC algorithm, allowing for more efficient online

computations. The robust MPC requires a disturbance bound, which is adaptively

determined by employing a time-varying Kalman filtering strategy, mitigating the

conservatism associated with the use of a constant disturbance bound.

Simulations are conducted using the high-fidelity Naminow-D AUV model under

environmental disturbances. The main contributions of this chapter are summarised

below.

• A LOS guidance system is proposed, which redefines the conventional head-

ing and depth control problems into a 3D LOS path-tracking problem. This

approach circumvents the need to develop a kinematic error model.

• A novel MO-LOSGS is developed to enable online collision avoidance with

newly detected obstacles in PF control of AUVs.
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• A MPC-based control system is developed, aiming to mitigate fluctuations in

the AUV velocity vector. This is achieved by employing velocity increment as

the optimisation control variable. To ensure robustness against external dis-

turbances, the controller is formulated as a convex min-max control problem.

• A duality-inspired transformation method is developed to convert the min-max

optimisation problem into a convex minimisation quadratic problem (QP) that

can be solved more efficiently.

• A time-varying Kalman filtering strategy is proposed to adaptively deter-

mine the disturbance upper bounds required for implementing the MM-MPC

scheme.

The rest of this chapter is organised as follows. Section 6.2 describes the problem

statement to be addressed. The 3D LOS guidance is presented in Section 6.3 while

the MO-LOSGS is developed in Section 6.4. Section 6.5 presents the accelerated

robust MM-MPC controller. The simulation study and results are presented in

Section 6.6. Conclusions are given in Section 6.7.

6.2 Problem Statement

Due to its simplicity and ease of implementation, the LOS method is used by most

guidance laws [294]. This work avoids the need to formulate an error model which

often relies on simplifying assumptions such as negligible roll motion [218] by directly

determining the LOS coordinates (xlos, ylos, zlos) and the desired orientation vector

(ϕd, θd, ψd) required for PF.

We consider that the AUV operates in a workspace W ⊂ R3 containing scat-

tered obstacles. Based on the translational position vector η1 of the AUV, define

B(η1, rAUV ) and B(η1, rs) as the closed balls covering the entire volume of the ve-

hicle and the sensing area of its onboard sensors, respectively, with rs > rAUV .

Furthermore, the Q static obstacles are defined by the closed balls oq = B(poq , roq),
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Fig. 6.1: Illustration of the PF task in an uncertain environment with an AUV active
sensing radius of rs. Three obstacles are illustrated by central dots and circles with
green circumference.

where q ∈ {1, . . . ,Q}, poq is the obstacle centre coordinate, and roq is the obstacle’s

radius. A graphical illustration of this concept is shown in Fig. 6.1. Based on the

spherical world property [300], it is assumed that for each pair of obstacles q and q′

with q ̸= q′, we have ∥ oq − oq′ ∥> 2rAUV + roq + roq′ . This implies that obstacles q

and q′ are disjoint, ensuring that the entire AUV volume can pass through the free

space between them.

Consider an AUV denoted by (2.1) and (2.2) operating in the environment W

with input and state constraints imposed by sets T and X , respectively, and whose

motion is affected by unknown environmental disturbances, τw. The AUV waypoint

following control task involves the following aspects:

1. LOS Guidance: compute the reference translational and angular position based

on LOS guidance strategy to achieve waypoint following.

2. Collision Avoidance: For newly identified obstacles that were not factored into

the predefined waypoints, dynamically re-plan the path to avoid collision.
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Fig. 6.2: LOS guidance system for waypoints following.

3. Robust Path Tracking: Based on the computed reference, design MM-MPC

that achieves robust tracking in the presence of environmental disturbances.

This should be done such that input and state constraints are satisfied.

6.3 Line-of-Sight Guidance System

Due to its simplicity and ease of implementation, the LOS method is used by most

guidance laws [294]. In 3D motion control, the roll angle, ϕ, and pitch angle, θ,

and the corresponding angular velocities p and q are often assumed to be negligible.

This assumption applies mostly to under-actuated AUVs. This work avoids such

assumptions by directly determining the LOS coordinates and the orientation vector

needed for the desired waypoints following task.

With the 2D horizontal plane, as illustrated in Fig. 6.2(a), given the current

AUV position as (x(k), y(k)) at time k, the desired heading angle is given as [294]:

ψd = tan−1

(
yp − y(k)
xp − x(k)

)
, (6.1)

139



Chapter 6. Accelerated Min-Max MPC for Path-Following of an AUV in
Uncertain Environments

where (xp, yp) with p = 1, 2, ...,m are the coordinates of the m waypoints in the

horizontal plane. Since the waypoint position may be significantly distant from the

AUV position, the LOS coordinate (xlos(k), ylos(k)) is defined by the so-called circle

of acceptance as follows:

(xlos(k)− x(k))2 + (ylos(k)− y(k))2 = ρ2c , (6.2a)

(ylos(k)− y(k)) = (xlos(k)− x(k)) tanψd. (6.2b)

Here ρc is the radius of the circle of acceptance which the LOS coordinate should not

exceed. It is evident that the desired yaw angle ψd will be maintained by the LOS

coordinates obtained from (6.2) and the LOS point will lie on the circumference of

the circle of acceptance.

The value of ρc directly impacts the speed of the AUV along the prescribed

horizontal path since it determines the average distance between successive LOS

coordinates. To see this, from (6.2a) and (6.2b), there is

xlos(k) = x(k)± ρc
(1 + tan2ψd)1/2

,

= x(k)± ρccosψd.
(6.3)

In (6.3), the positive sign corresponds to (xp − x(k)) ≥ 0 while (xp − x(k)) < 0 is

related to the negative sign. Subtract xlos(k − 1) from both sides of (6.3) and then

divide by the sampling time, Ts, to obtain:

ulos(k) =
x(k)− xlos(k − 1)

Ts
± ρccosψd

Ts
, (6.4)

where ulos(k) = xlos(k)−xlos(k−1)
Ts

represents the discrete-time approximation of the

LOS surge speed. This equation reveals that the LOS surge speed is directly influ-

enced by the circle of acceptance used. When following a straight-line path where ψd

remains constant, the speed is mainly dictated by ρc. A significant speed change may
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occur when the vehicle adjusts its heading ψd to track the next waypoint (xp+1, yp+1).

Indeed, opting for ρc < L, where L is the length of the AUV, ensures that the AUV

maintains a relatively low speed along the path, which is often desirable for under-

water tasks, as it limits the effects of coupling. This is due to the fact that coupling

effects are stronger at higher speeds [6].

Since the target LOS depth is not necessarily equal to the desired depth, we

compute the LOS depth to be proportional to the distance between the LOS hor-

izontal coordinate and the AUV position. Consider the angle θ0, defined by the

line joining the vehicle’s depth, z, on the z−axis to the waypoint (xp, yp) on the

horizontal plane, as shown in Fig. 6.2(b). This angle is computed as

θ0 = tan−1 zp − z(k)√
(xp − x(k))2 + (yp − y(k))2

. (6.5)

To keep this angle for any current depth z(k), the desired depth of AUV is given by

zlos(k) = z(k) + tanθ0 · ρc. (6.6)

Aside from the 3D LOS path to be followed, it is important to define the condition

necessary for switching from one waypoint, (xp, yp, zp), to follow to the next way-

point, (xp+1, yp+1, zp+1). This is achieved by defining the “sphere of acceptance ρs"

around each waypoint in the 3D environment (see Fig. 6.2). The (xp+1, yp+1, zp+1)

is chosen when the following inequality is satisfied.

(xp − x(k))2 + (yp − y(k))2 + (zp − z(k))2 ≤ ρ2s. (6.7)

Furthermore, there is a need to define the reference orientation for the AUV

while moving along the path. Consider the straight line path Pk starting at the

waypoint (xp, yp, zp) and terminates at the next waypoint (xp+1, yp+1, zp+1). The

yaw and pitch angles from the path coordinates at (xp, yp, zp) with respect to the
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inertia frame is given as

ψd(k) = arctan2 (ylos(k)− yp, xlos(k)− xp) ,

θd(k) = −tan−1 zlos(k)− zp√
(xlos(k)− xp)2 + (ylos(k)− yp)2

,
(6.8)

where arctan2 is the four quadrant inverse function used to ensure −π ≤ ψp ≤ π.

Next, the set of equations in (6.2) forms the basis of the developed MO-LOSGS for

PF in the presence of obstacles.

6.4 Multi-Objective LOS Guidance System

Consider a single obstacle with the centre position denoted poq = (xo(k), yo(k), zo(k)).

The MO-LOSGS problem is presented as follows.

• Formulate a multi-objective optimisation problem to compute the LOS coor-

dinate (x∗los, y
∗
los, z

∗
los) such that:

– the coordinate exactly satisfies the set of equations (6.2) and (6.6) in an

obstacle-free scenario, that is, (x∗los, y∗los, z∗los) = (xlos, ylos, zlos);

– for obstacle constrained scenarios, the coordinate is modified to ensure

collision avoidance, that is, (x∗los, y∗los, z∗los) ̸= (xlos, ylos, zlos).

The obstacle can potentially result in a collision if

(x(k)− xo(k))2 + (y(k)− yo(k))2 + (z(k)− zo(k))2 ≤ r2s (6.9)

is satisfied. When (6.9) holds, the reference position (xlos, ylos, zlos) needs to be

generated to lie outside the unsafe region defined by the sphere of radius roq . The

safety-critical constraint to be satisfied by the generated horizontal LOS coordinate

is defined as

hs := (xlos(k)− xo(k))2 + (ylos(k)− yo(k))2 > r2oq . (6.10)

142



Chapter 6. Accelerated Min-Max MPC for Path-Following of an AUV in
Uncertain Environments

Note that zlos does not need to be included to avoid the obstacle since the modifi-

cation of the horizontal coordinate is sufficient to avoid the detected obstacle. This

follows from the fact that the LOS coordinate will be along the horizontal circle

around the detected obstacle.

For the obstacle-free scenario, the desired LOS horizontal coordinate can be

obtained from (6.2) as follows:

Case 1: |xp − x(k)| > 0 we have

xlos =
−b±

√
b2 − 4ac

2a
, (6.11)

where a = 1+d2, b = 2(dg−dy(k)−x(k)), c = x(k)2+y(k)2+g2−2gy(k)−ρ2c , g =

y(k)− dx(k) and

d =
yd(k)− y(k)
xd(k)− x(k)

.

For this case, the positive sign in (6.11) is adopted if xp − x(k) > 0 while the

negative sign is used when xp − x(k) < 0. Based on the computed xlos(k), the

ylos(k) is calculated as:

ylos(k) = d(xlos(k)− x(k)) + y(k). (6.12)

Case 2: If |xp − x(k)| = 0, then (6.2b) becomes invalid so we have xlos(k) = x(k)

and

ylos(k) = y(k)±
√
ρ2c − (xlos − x(k))2, (6.13)

where the positive sign is adopted if yp−y(k) > 0 while the negative sign is adopted

for yp − y(k) < 0.

To maintain the flexibility between obstacle-constrained and obstacle-free condi-

tions, a multi-objective optimisation problem is formulated. The following objective

function is defined:

Jmo(k) = [Jlos(k) Joa(k)]
⊤, (6.14)
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where

Jlos(k) = (x∗los(k))
2 + (y∗los(k))

2,

Joa(k) = (x∗los(k)− xlos(k))2 + (y∗los(k)− ylos(k))2 + s2v.

Based on the cost (6.14), the guidance system is implemented by solving the opti-

misation problem, called MO-LOSGS, as follows:

(x∗los(k), y
∗
los(k), sv) = arg min

x∗los(k),y
∗
los(k),sv

a⊤c Jmo(k) (6.15a)

s.t.

xlos(k)− x∗los(k) = 0, (6.15b)

ylos(k)− y∗los(k) + αsv = 0, (6.15c)

α((x∗los(k)− xo(k))2 + (y∗los(k)− yo(k))2 − (roq + ϵs)
2) ≥ 0, (6.15d)

ϵs = kpdo, sv ≥ 0, (6.15e)

where a⊤c = [1, α]⊤ with α = 0 or 1, sv is a slack variable used to impose a soft

constraint on the LOS coordinate in the y axis and kp > 0 is a design gain and

do =
(
(x(k)− xo(k))2 + (y(k)− yo(k))2

) 1
2

is the distance of the AUV to the obstacle. The margin of safety ϵs, added to the ra-

dius of the unsafe region defined by roq , dynamically reduces as the AUV approaches

the obstacle. This adjustment ensures smoother navigation around obstacles by pre-

venting a sudden need to turn around a circle with a constant radius. Notice that

the constraint (6.15b) ensures that x∗los(k) is equal to xlos(k) obtained from the so-

lution of (6.2a) while constraint (6.15c) makes it posible to make y∗los(k) different

from ylos(k) via the slack variable sv.

Remark 6. The MO-LOSGS (6.15) is implemented with α = 1 if inequality (6.9)

holds, and α = 0 otherwise. This maintains consistency with Cases 1 and 2 in
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the absence of obstacles. The LOS coordinate is modified to satisfy the obstacle

constraint (6.15d) when obstacles are detected.

Based on the horizontal LOS coordinate, the goal is to design a robust MPC law

such that the AUV position vector η, under unknown environmental disturbances,

robustly tracks the desired position ηd(k) = [x∗los(k) y
∗
los(k) z

∗
los(k) ϕd(k) θd(k) ψd(k)]

⊤,

with the orientation angles given by

ψd(k) = arctan2 (y∗los(k)− yp, x∗los(k)− xp) ,

θd(k) = −tan−1 z∗los(k)− zp√
(x∗los(k)− xp)2 + (y∗los(k)− yp)2

,
(6.16)

The desired roll angle is chosen as, ϕd(k) = 0 in order to keep it small for the

stability of the vehicle.

6.5 Accelerated Min-Max MPC Design

6.5.1 Robust MM-MPC Design

The AUV kinematic model is formulated as a discrete-time system to obtain:

η(k + 1) = η(k) + J(k)ν(k), (6.17)

where J(k) = J(η)Ts. The AUV increment velocity is defined as

∆ν(k) = ν(k)− ν(k − 1). (6.18)

Combine (6.17) and (6.18) to obtain:

x(k + 1) = A(η(k))x(k) +B(η(k))∆ν(k),

η(k) = Gpx(k),
(6.19)
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in which Gp = [I6 06], and

A(η(k)) =

I J(k)

0 I

 , B(η(k)) =

J(k)
I

 .
Here I and 0 represent identity and zero matrices of appropriate dimensions, respec-

tively.

Define the reference state as xd(k) = [η⊤
d (k) ν

⊤
d (k)]

⊤, where νd(k) is the desired

velocity vector. Define the stacked versions of the predicted future state, state

reference and velocity increment as

X(k) =
[
x(k + 1|k)⊤ . . . x(k +N |k)⊤

]⊤
,

Xd(k) =
[
xd(k + 1|k)⊤ . . . xd(k +N |k)⊤

]⊤
,

Y(k) =
[
η(k + 1|k)⊤ . . . η(k +N |k)⊤

]⊤
,

U(k) =
[
∆ν(k|k)⊤ . . . ∆ν(k +Nu − 1|k)⊤

]⊤
.

(6.20)

The state prediction model can be written as

X(k) = Ãx(k|k) + B̃U(k), (6.21)

where Ã ∈ R12N×12 and B̃ ∈ R12N×6Nu are defined below.

Remark 7. It is evident that the augmented matrices Ã and B̃ can be computed

online using only the current state measurement x(k), with the position and velocity

vectors updated according to (6.17) and (6.18), respectively.

To robustly handle the effects of disturbance on the AUV state, the same bounded

disturbance, w(k) ∈ W ⊂ R12, as in (5.8) is considered in this model. Considering

this disturbance, the state space representation of the AUV model becomes

x(k + 1) = A(η(k))x(k) +B(η(k))∆ν(k) +w(k). (6.22)
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Ã =


A(η(k))

A(η(k + 1))A(η(k))
...

A(η(k +N − 1)) . . .A(η(k + 1))A(η(k))

 ,

B̃ =


B(η(k)) 0 · · ·

A(η(k + 1))B(η(k)) B(η(k + 1)) · · ·
...

... · · ·
A(η(k +N − 1)) . . .A(η(k + 1))B(η(k)) A(η(k +N − 1)) . . .A(η(k + 1))B(η(k)) · · ·

 .

Let W(k) = [w(k + 1|k)⊤ . . . w(k +N |k)⊤]⊤, the prediction model (6.21) with

additive external disturbance yields

X(k) = Ãx(k|k) + B̃U(k) +W(k). (6.23)

With the defined upper bounds on the disturbances, the objective of robust con-

trol is to minimise the worst-case scenario, i.e., minimise the tracking error under

maximum uncertainties subject to input constraints. The MM-MPC approach is

employed because it offers a straightforward method to address this problem with-

out requiring an intermediate control law.

The objective function of the finite horizon MM-MPC problem is defined to

minimise the PF error which involves the difference between the AUV state vector

and the reference xd(k) as

V (U(k),x(k)) =
1

2

N∑
j=1

∥ x(k + j|k)− xd(k + j|k) ∥2Qx

+
1

2

Nu−1∑
j=0

∥ ∆ν(k + j|k) ∥2R,

(6.24)

where Qx ∈ R12×12 and R ∈ R6×6 are positive definite matrices, and Nu (Nu < N)

is the control horizon in MPC. The control law can be structured by assuming that

there is no variation in the control signal beyond Nu [301], i.e., ∆ν(k + j|k) = 0

for j = Nu, . . . , N − 1. In this case, the dimension of the MPC problem is reduced
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from 6N to 6Nu. Employing (6.24) as the performance index, the MM-MPC is

formulated as
U∗(k) = argmin

U(k)
max
W(k)

V (U(k),x(k))

s. t. : (6.23)

x(k + j|k) ∈ X , j > 0,

τ (k + j|k) ∈ T , j ≥ 0,

w(k + j|k) ∈ D, j ≥ 0.

x(k|k) = x(k).

(6.25)

It is noted that the dimension of the tracking objective in (6.25) can be reduced

by using the output position vector in the cost function instead of the state vector.

The output prediction of the AUV system is given by

Y(k) = G̃X(k), (6.26)

with G̃ = diag(G, . . . ,G). The cost function is then defined to minimise the path

following error which is the difference between the AUV position and the reference

yd as

V (U(k),Y(k)) =
N∑
j=1

∥ η(k + j|k)− ηd(k + j|k) ∥2Q

+
Nu−1∑
j=0

∥ ∆ν(k + j|k) ∥2R .

(6.27)

Based on the cost function (6.27), an alternative MM-MPC problem can be formu-
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lated as follows:
U∗(k) = argmin

U(k)
max
W(k)

V (U(k),Y(k))

s. t. : (6.23) & (6.26),

x(k + j|k) ∈ X , j > 0,

τ (k + j|k) ∈ T , j ≥ 0,

w(k + j|k) ∈ D, j ≥ 0,

x(k|k) = x(k).

(6.28)

Remark 8. Although obtaining the solution to (6.28) may offer computational speed

advantage due to the reduced dimensionality of the tracking objective, the min-max

problem in (6.25) is used for the remainder of the analysis in this chapter. This en-

sures that the developed accelerated optimisation problem is well-conditioned for nu-

merical solvers. The computational effort of the accelerated MPC problem is bench-

marked using the problem (6.28).

Note that to enforce constraints on input forces and moments, the variable

τ (k + j|k) must be expressed in terms of the optimisation variable ∆ν(k + j|k).

Hence, the AUV dynamic model (2.2) is re-written in the compact form

τ = Mν̇ +Ξ(ν), (6.29)

in which Ξ(ν) = C(ν)ν +D(ν)ν + g(η).

Given the optimal velocity increment, ∆ν∗(k) = ∆ν∗(k|k), the discrete-time

approximation of (6.29) as follows:

τ ∗(k) = M̄∆ν∗(k) + Ξ(ν(k − 1)), (6.30)

where TsM̄ = M. The desired velocity used to implement the MM-MPC in the next

time step is defined in terms of the optimal velocity increment as

νd(k) = ∆ν∗(k) + ν(k − 1). (6.31)
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The constraints on the generalised input forces and moments can be enforced over

Nu, using (6.30), as

τ (k + j|k) = M̄∆ν∗(k + j|k) + Ξ(ν(k − 1)). (6.32)

Remark 9. Compared to the formulation by [262], which leads to nonlinear optimi-

sation, the formulation (6.25) is a quadratic problem with linear constraints because

the system (A(η(k)),B(η(k))) is linear parameter-dependent. The convex optimi-

sation problem (6.25) can readily be solved using standard min-max solvers.

6.5.2 Duality-based Transformation of the MM-MPC

Here, a duality-based approach is proposed to convert the MM-MPC problem in

(6.25) into a minimisation problem. First, the problem (6.25) can be rewritten as

min
U(k)

max
W(k)

1

2

U(k)

W(k)

⊤

Hq

U(k)

W(k)

+

h1

h2

⊤ U(k)

W(k)

 (6.33a)

s. t. : G1U(k) ≤ g1, G2W(k) ≤ g2, (6.33b)

where Q̃ = diag(Qx, . . . ,Qx) ∈ R12N×12N and R̃ = diag(R, . . . ,R) ∈ R6Nu×6Nu , and

Hq =

B̃⊤Q̃B̃+ R̃ B̃⊤Q̃

Q̃B̃ Q̃

 =

H11 H12

H21 H22

 ,
h1 = B̃⊤Q̃(Ãx(k)−Xd),

h2 = Q̃(Ãx(k)−Xd),

G1 =


B̃

−B̃
˜̄M

− ˜̄M

 , g1 =


Xmax − Ãx(k)−W(k)

−Xmin + Ãx(k) +W(k)

Tmax − Ξ̃

−Tmin + Ξ̃

 ,
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G2 =

 I

−I

 , g1 =

Wmax

−Wmin

 ,
˜̄M = diag(M̄, . . . , M̄) ∈ R6Nu×6Nu , Ξ̃ = 1Nu×1 ⊗ Ξ,

Tmax = [τmax
⊤ . . . τmax

⊤]⊤ ∈ R6Nu , Tmax = −Tmin,

Wmax = [wmax
⊤ . . . wmax

⊤]⊤ ∈ R12N , Wmax = −Wmin,

Xmax = [xmax
⊤ . . . xmax

⊤]⊤ ∈ R12N ,

Xmin = [xmin
⊤ . . . xmin

⊤]⊤ ∈ R12N .

Although the optimization problem (6.25) is convex, min-max problems are compu-

tationally expensive due to the need to account for all possible worst-case distur-

bance scenarios [290].

To achieve the accelerated optimisation problem, re-write the cost function (6.33a)

as:
V (U(k),W(k)) =

1

2
U(k)⊤H11U(k) +U(k)⊤H12W(k)

+
1

2
W(k)⊤H22W(k) + h⊤

1 U(k) + h⊤
2 W(k).

(6.34)

First, focus on the maximisation objective of the min-max problem to obtain the

following QP:

max
W(k)

V1(W(k)) (6.35a)

s. t. : G2W(k) ≤ g2, (6.35b)

where

V1(k) =
1

2
W(k)⊤H22W(k) + (H⊤

12U(k)(k) + h2)
⊤W(k).

The objective here is to determine the disturbance realisation W(k) that maximises

(6.35) based on which the original problem (6.33) can be solved as a minimisation

151



Chapter 6. Accelerated Min-Max MPC for Path-Following of an AUV in
Uncertain Environments

problem given as:

min
U(k)

V (U(k),W(k)) (6.36a)

s. t. : G1U(k) ≤ g1. (6.36b)

To proceed, define the dual function of (6.35) as:

gd(λ) =max
W(k)

1

2
W(k)⊤H22W(k)

+
(
H⊤

12U(k) + h2 +G⊤
2 λ
)⊤

W(k)− g⊤
2 λ,

(6.37)

in which λ ≥ 0 is the Lagrange multiplier for the constraints defined on W(k).

Then, the Lagrangian is:

L(W(k),λ) =
1

2
W⊤H22W + (H⊤

12U(k) + h2)
⊤W

+ λ⊤(G2W − g2).

(6.38)

The gradient of the Lagrangian with respect to W(k) is

∇WL = H22W(k) +H⊤
12U(k) + h2 + λ. (6.39)

By setting the gradient to zero, the unconstrained maximisation problem (6.37)

is convex for every λ because H22 is positive definite. The optimal disturbance

realisation satisfies:

W∗(k) = −H−1
22

(
H⊤

12U(k) + h2 +G⊤
2 λ
)
. (6.40)
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Substitute W∗(k) into the problem (6.36) to obtain:

min
U(k),λ

V (U(k),W∗(k)) (6.41a)

s. t. G3

U(k)

λ

 ≤ g3, (6.41b)

λ ≥ 0, (6.41c)

where

G3 =


B̃−H−1

22 H
⊤
12 −H−1

22 G
⊤
2

−B̃+H−1
22 H

⊤
12 H−1

22 G
⊤
2

˜̄M 0

− ˜̄M 0

 ,

g3 =


Xmax − Ãx(k) +H−1

22 h2

−Xmin + Ãx(k)−H−1
22 h2

Tmin − Ξ̃

−Tmax + Ξ̃

 .

Note that the value of W∗(k) from (6.40) can only be assumed to satisfy (6.35b) in

the convex maximisation problem if the dual problem of (6.35) is solved to find the

optimal value of the Lagrangian λ∗. We clarify that (6.41) is not the dual problem

of (6.35). To ensure that the optimal value λ∗ obtained from solving (6.41) satisfies

the disturbance bound, the additional constraint defined in (6.35b) is introduced to

get the final optimisation problem:

U∗(k) = arg min
U(k),λ

V (U(k),W∗(k)) (6.43a)

s. t.

G3

G4

U(k)

λ

 ≤
g3

g4

 , λ ≥ 0, (6.43b)
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where

G4 =
[
−G2H

−1
22 H

⊤
12 −G2H

−1
22 G

⊤
2

]
,

g4 = g2 +G2H
−1
22 h2.

The proposed accelerated MM-MPC strategy implementation procedure is outlined

in Algorithm 4.

Remark 10. The problem (6.43) can generally be solved as a QP in
[
U(k)
λ

]
using

conventional quadratic solvers.

Next, the determination of the disturbance bound wmax required for the MM-MPC

implementation is discussed.

6.5.3 Disturbance Bounds Estimation

In the development of the MM-MPC, the disturbance upper bound wmax is assumed

to be known. However, in practice, obtaining this bound is challenging [6], and

using an arbitrary constant bound can result in a conservative performance by the

min-max controller [302]. To mitigate the conservatism associated with a constant

disturbance bound, a time-varying Kalman filtering technique is used to estimate the

disturbance bounds [292]. Unlike the prediction model (6.21), which is formulated

based on the AUV kinematics, the state estimation model incorporates both the

kinematics and dynamics as in (4.16):

x(k + 1) = Axx(k) +Bτ (k) +w(k). (6.44)

Here, w(k) ∈ R12 has two components defined as

w(k) = wu(k) +wn(k), (6.45)

in which wu(k) denotes the unknown environmental disturbance and modelling
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Fig. 6.3: Schematic diagram of the proposed accelerated robust control framework.

errors, wn(k) is known and given as

wn(k) =

 0

−M−1g(η)Ts

 . (6.46)

The estimated state is given by the time-varying Kalman filter as

x̂(k + 1) = A(x(k))x̂(k) +Bτ (k) +wn(k)︸ ︷︷ ︸
nominal prediction

+L(k)(x(k)− x̂(k))︸ ︷︷ ︸
correction term

, (6.47)

where x̂(k) is the state estimate and L(k) is the standard time-varying Kalman gain.

Since the disturbance bound needs to be known before solving the control problem

(6.43), the input signal τ (k) is an unknown that must be determined at the current

time step. Therefore, to approximate the disturbance, the measured states at time

steps k and k−1 are employed to capture the dynamics of the disturbances between

two consecutive steps. The disturbance estimate wu(k) is given by

wu(k) = x̂(k)− [A(x(k − 1))x̂(k − 1) +Bτ (k − 1) +wn(k − 1)]. (6.48)

The disturbance bound estimated as wmax = |wu(k)| is used to solve (6.43). The

proposed accelerated MM-MPC strategy implementation procedure is outlined in

Algorithm 4. Fig. 6.3 illustrates the interconnections between the main components

of the control framework.
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Algorithm 4: Accelerated Min-max LPV MPC
Input: AUV LPV model, Q, R, N and Nu.

1 k ← 0
2 Measure current state x(k) comprising η(k) and ν(k).
3 repeat
4 Compute wmax = |wu(k)|, where wu(k) is defined in (6.48).
5 Iteratively compute Ã and B̃ from j = 1 to j = N using (6.17) and (6.18).
6 Define W∗(k) as a function of λ according to (6.40).
7 Solve (6.43) with x(k|k) = x(k).
8 The optimal solution is U∗(k) = {∆ν∗(k|k), . . . ,∆ν∗(k +Nu − 1|k)}
9 Employ ∆ν∗(k|k) to compute τ ∗(k) using (6.30).

10 Implement τ ∗(k) for one sampling period.
11 Update the state measurement as x(k + 1)
12 Update reference velocity, νd, according to (6.31).
13 k ← k + 1
14 until end
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Fig. 6.4: Environmental disturbance based on modified Pierson–Moskowitz Spec-
trum.

6.6 Simulation Results

The simulation study considers the dynamic model of the Naminow-D AUV whose

parameters are presented in Table 2.3. The length of the AUV including installed

sensors is 3.0 m. The control objective is for the guidance and control system to

guide the AUV to follow a set of waypoints determined offline. The input forces and
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Fig. 6.5: Obstacle-free scenario: closed-loop AUV 3D PF using the accelerated MM-
MPC.

moments are constrained to ±2 kN and ±2 kNm, respectively. The surge, sway and

heave velocities are constrained as 0 m/s ≤ umax ≤ 1.5 m/s, |vmax| ≤ 1 m/s and

|wmax| ≤ 0.5 m/s, respectively while the pitch angle is constrained by ±2π/5 rad to

avoid singularity problem in the rotation matrix.

Similar to Chapters 4 and 5, this chapter considered the effects of ocean dis-

turbance modelled according to (2.8)-(2.9) using the modified Pierson–Moskowitz

Spectrum [6] but with di is modelled as a Wiener process that lie in the range

[−50, 50]. The ocean waves disturbance is modelled such that τwu = τwv = τww. The

evolution of environmental disturbance over time is illustrated in Fig. 6.4.

An underwater waypoint-following mission at varying depths is considered for

the simulation. The waypoints for the PF mission are defined as A = (20, 40,−16),
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Fig. 6.6: Obstacle-free scenario: Closed-loop AUV 2D PF using the accelerated
MM-MPC.

B = (50, 20,−16), and C = (70, 50,−8). The start and end waypoints are located

at (0, 0, 0) and (40, 70,−4), respectively. The tuned parameters for the guidance

and control system are given as follows: R = diag([27, 27, 27, 27, 27, 36]), Nu = 2,

N = 14, Q = diag([4, 4, 4, 0.4, 0.1, 0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]), and ρc =

ρs = L/5 and kp = 1.5. The sampling period Ts = 0.1 s is maintained.
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Fig. 6.7: Obstacle-free scenario: closed-loop AUV translational velocities (top) and
angular position using the accelerated MM-MPC.
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Fig. 6.8: Obstacle-free scenario: closed-loop input forces and moments of the AUV
using the accelerated MM-MPC.
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6.6.1 Path-Following in Obstacle-Free Scenario

The results for the scenario are depicted in Figs. 6.5 - 6.8. It can be observed that

the AUV successfully navigates through the specified waypoints, as illustrated in

Figs. 6.5 and 6.6, despite the influence of environmental disturbances. The velocity

plot in Fig. 6.7 indicates that the AUV maintains a roughly constant surge speed of

approximately u ≈ 0.8 m/s. Although not depicted here, a surge speed of 1 m/s is

achieved when ρc = L/4 is used in the simulation. The input forces and moments,

displayed in Fig. 6.8, adhere to the specified constraints.

The importance of penalising the velocity increment rather than the actual in-

put forces and moments in the cost function (6.24) is highlighted by performing the

same simulation using the LPVMPC2 scheme. This LPVMPC2 controller in Chap-

ter 4, which effectively mitigates disturbances, directly penalises the input forces

and moments in its cost function. The outcomes, presented in Figs. 6.9 - 6.12,

reveal that unlike the proposed MM-MPC, which stabilises the travel velocities, the

translational velocities under the LPVMPC2 control approach exhibit oscillatory

behaviour, and as a result, the surge velocity was not constrained by 0 ≤ u ≤ 1.5

m/s. The task under the LPVMPC2 controller took over 630 seconds to complete,

which is three times longer than with the proposed MM-MPC.

Table 6.1: The accelerated MM-MPC performance benchmarked by LPVMPC2. EC
= Energy Consumed.

Controller Task Duration [s] Improvement [%] EC [Wh] Improvement [%]
MM-MPC 229.4 60 5.35 47
LPVMPC2 634.7 – 10.19 –
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Fig. 6.9: Obstacle-free scenario: closed-loop AUV 3D PF using the LPVMPC2.
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Fig. 6.10: Obstacle-free scenario: closed-loop AUV 2D PF using the LPVMPC2.
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Fig. 6.11: Obstacle-free scenario: closed-loop translational velocities (top) and an-
gular position (bottom) using the LOS guidance and LPVMPC 2.
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Fig. 6.12: Obstacle-free scenario: closed-loop input forces and moments of the AUV
using the LOS guidance and LPVMPC2.
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Fig. 6.13: Obstacle-constrained scenario: closed-loop AUV 3D PF task using the
accelerated MM-MPC.

6.6.2 Path-Following in Obstacle-Constrained Scenario

In this scenario, static obstacles obstruct direct routes between waypoints A and B,

as well as between C and the goal, making them impractical. Specifically, obstacle 1

is located at coordinates (38, 30,−16), and obstacle 2 at (55, 60,−6.2). The unsafe

region is defined by the radius roq = 4.5 m, encompassing an obstacle with a radius

of 3 and a safe margin of 1.5 m. Note that the safe margin is set to half the total

length of the vehicle to ensure it does not collide with the obstacle when the AUV’s

centre position coincides with the boundary of the unsafe region. The useful sensing

range of the AUV onboard sensor is assumed to be rs = 6 m.

The results are depicted in Figs. 6.13 - 6.16. From Figs. 6.13 and 6.14, it is
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Fig. 6.14: Obstacle-constrained scenario: closed-loop AYV 2D PF task using the
accelerated MM-MPC.

evident that the AUV’s trajectory entirely avoids collision with the obstacles repre-

sented by the spheres. As seen in the horizontal plane in Fig. 6.14, after avoiding

the obstacles, the AUV follows an approximate straight line from its position to the

waypoint, rather than retracing the original straight line between the two successive

waypoints. This approach guarantees that the AUV travels the shortest distance

between its current position and the waypoint. Fig. 6.15 illustrates that the surge

velocity (u) of the vehicle decreases during the collision avoidance task. Regarding

the input forces and moments, as shown in Fig. 6.16, the resulting changes caused by

path modification for collision avoidance are modest compared to when the vehicle

alters its course from one waypoint to another.
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Fig. 6.15: Obstacle-constrained scenario: closed-loop translational velocities (top)
and angular position (bottom) using the accelerated MM-MPC.
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Fig. 6.16: Obstacle-constrained scenario: closed-loop input forces and moments of
the AUV using the accelerated MM-MPC.
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The transformation of the min-max problem (6.33) into the minimization prob-

lem (6.43) offers significant benefits in reducing computational effort. The results

were obtained using an Intel Core i7 processor running at 2.2 GHz with 16 GB of

RAM. The transformed problem (6.43) was solved using quadprog via the sdpvar

and optimize functions of YALMIP [303], while the min-max problem (6.33) was

solved using fminimax solver. Both solvers were employed because they are standard

MATLAB solvers for quadratic and min-max problems, respectively.

For the solution of problem (6.33), we considered only N = 12 and Nu = 2 to

benchmark the computational efficiency of the proposed method. The RMS value

of the solver time for the problem (6.33) was 3405 ms, and this is decreased by

more than fourfold to 826 ms by solving the output tracking alternative given in

(6.25). The problem-building time was 14.26 ms, including the time to solve (6.15)

and compute the matrices (Ã, B̃) in (6.23). Note that this formulation assumed

constant prediction matrices at each time step [304], avoiding the need to update

prediction matrices over the horizon N . Here, the more computationally efficient

output tracking formulation of the min-max problem (6.25) was used to benchmark

the proposed accelerated MM-MPC in (6.43).

Fig. 6.17 illustrates how the solver time for obtaining the solution to (6.43)

varies for different N and Nu. In general, the total computation time (solver plus

building time) required by the transformed problem (6.43) was approximately ten

times shorter than that needed for the min-max problem. The total computation

time for the transformed problem remained under 100 ms (the control sampling

time), except in three cases: (Nu = 3, N = 18), (Nu = 6, N = 16) and (Nu =

6, N = 18) as seen in Fig. 6.17. It is pertinent to note that using commercial solvers

like MOSEK or Gurobi can enhance computation speed, increasing the likelihood of

applying the controller in real-time applications.
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Fig. 6.17: Accelerated MM-MPC computational time for different prediction and
control horizons benchmarked by the min-max problem (blue lines) with Nu =
2, N = 12.

6.7 Summary

This chapter presented a guidance and control framework for waypoint-following

tasks by a coupled AUV. The system is designed to enable an AUV to follow 3D

waypoints even in the presence of unknown environmental disturbances. The pro-

posed guidance system operates without relying on simplifying assumptions such

as negligible roll motion or decoupled motion. It uses the desired heading angle to

determine the LOS horizontal coordinate, and the depth reference is proportional to

the distance of AUV’s current position to the LOS position in the horizontal plane.
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In the presence of detected obstacles, a collision avoidance strategy is developed to

adjust the reference position to ensure collision-free motion of the vehicle. This is

achieved by exploiting the simplicity of the enclosure-based LOS guidance system

to develop a MO-LOSGS that facilitates both PF and online collision avoidance

of detected obstacles. The proposed MO-LOSGS computed the desired horizontal

LOS coordinates, which are then used to determine the desired corresponding depth

coordinate and orientation vector.

To track the reference generated by MO-LOSGS, an MM-MPC strategy is devel-

oped to ensure robust performance under time-varying environmental disturbances.

The MM-MPC strategy used the velocity increment as the optimisation variable

to mitigate excessive velocity fluctuations. The significant computational demand

associated with the MM-MPC problem is addressed by developing a duality-based

approach to transform the min-max problem into a convex quadratic optimisation

control problem that off-the-shelf-solvers can solve efficiently.

Simulation results demonstrated the effectiveness of the proposed strategy in

both PF and collision avoidance. The robust MM-MPC stabilised the AUV’s surge

velocity, reducing PF task duration and enhancing energy efficiency. Additionally,

the transformed MM-MPC problem achieved a tenfold increase in computation

speed. Future work will aim to provide theoretical guarantees on feasibility and

stability.

The main results in this Chapter were presented at the 2024 IFAC CAMS con-

ference and published in IFAC-Papers Online [304]. Additionally, the accelerated

MM-MPC strategy has been submitted for consideration in a top-tier journal.
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Chapter 7

Conclusions and Future Works

This concluding chapter summarises the research findings presented in the previ-

ous chapters on 6-DoF MPC design for AUVs in various motion control problems.

It offers a comprehensive summary of the primary research findings and outlines

potential avenues for future investigation.

7.1 Conclusions

This thesis presented MPC-based controllers for 3D motion control of AUVs. The

three fundamental motion control problems, namely, dynamic positioning, trajectory

tracking and path-following are investigated and novel control frameworks are pro-

vided considering environmental disturbances. Chapter 3 presented a critical review

of the existing literature on MPC-based motion controllers for AUVs. It discusses

the main limitations of existing works and forms the basis for the research questions

presented in Chapter 1. Thus, the subsequent chapters focused on contributing

towards addressing these limitations.

In a bid to address the first research question, “How can effective and com-

putationally efficient MPC-based motion controllers be designed without relying on

traditional controllers like PID to stabilise some AUV dynamics? ”, all the developed

control algorithms are based on the LPV model formulation, where the state vector
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is used as the updated parameter for the state matrix. This approach avoids solving

the computationally prohibitive NMPC problem for high-order AUV models. Addi-

tionally, the need for simple controllers like PID is eliminated, as full-order models

are used in the controllers’ design to stabilise the 6 DoF of the vehicle.

To address the shortcomings of the partial velocity form MPC and the dis-

turbance modelling approaches in AUV dynamic positioning, two complete velocity

MPC algorithms were proposed in Chapter 4. These algorithms eliminate the neces-

sity for an estimator and offer substantial mitigation of disturbance effects, thereby

ensuring more accurate positioning of the vehicle. The first velocity MPC algorithm

denoted LPVMPC1, is developed for dynamic positioning, incorporating a predic-

tion model that utilises velocity increment to counteract the impacts of disturbances.

The dynamic model serves as the state space equation, while the kinematic model is

utilised as the output equation. The interrelation between these equations is lever-

aged to prevent an increased state dimension. The simulation results obtained for

this controller compared to existing strategies showed that the tracking accuracy of

MPC in dynamic positioning is significantly improved via the use of the velocity

MPC approach. Therefore, LPVMPC1 addresses Research Question 2: “How can

the tracking accuracy of MPC-based motion controllers be enhanced under distur-

bances, especially for dynamic positioning, which is critical for successful docking

operations? ” In addition, it contributes to achieving the first research objective

outlined in Chapter 1.

To provide more efficient use of input forces, an alternative velocity MPC algo-

rithm denoted as LPVMPC2 is developed for combined dynamic positioning and

trajectory tracking. This algorithm incorporates both position and velocity incre-

ments in the formulation of the prediction model. This approach entirely avoids the

need for model augmentation, thereby averting an increase in state dimensionality.

It is applicable to a broad spectrum of linear time-invariant and time-varying sys-

tems. In this formulation, the MPC problem is framed as a reachable set problem,

enabling the tracking of trajectories that contain unreachable positions for AUVs
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operating in a constrained workspace. Additionally, a time parameterisation of the

path followed by the AUV during the transition from trajectory tracking to dynamic

positioning is formulated. The LPVMPC2 demonstrates comparable performance to

LPVMPC1 in dynamic positioning, yet it requires significantly less input consump-

tion to accomplish the same task. The LPVMPC2 algorithm stability and capability

for offset-free tracking are established under the stated assumptions in Chapter 4.

The LPVMPC2 controller contributed to addressing both the second, “How can the

tracking accuracy of MPC-based motion controllers be enhanced under disturbances,

especially for dynamic positioning that is critical for successful docking operations? ”

and third, “How can trajectory tracking and dynamic positioning be integrated to

enable an AUV to transition seamlessly from executing tracking missions to safe

docking? ”, research questions of this thesis. This is due to the fact the LPVMPC2

improves AUV position and orientation accuracy for docking operations and offers

a seamless strategy for combined trajectory tracking and dynamic positioning. This

also implies that the second research objective was achieved through this controller.

The fifth chapter investigates robust trajectory tracking for an AUV subject to

input saturation using a tube-based approach to predictive control design. The input

saturation problem was addressed by formulating a LOS local replanning strategy

to limit the error signal encountered by the tracking controller, thereby avoiding

excessive variations in the generated input forces. To characterise the time-varying

tubes of the TMPC controller, an unconstrained finite-horizon control problem is

analytically solved to obtain a state-dependent feedback gain. This approach elim-

inates the need to solve a nonlinear optimization problem or an SDRE, further

reducing the controller’s online computational requirements. The chapter also pro-

vided closed-loop stability results for the TMPC law. Finally, extensive simulation

results demonstrated the effectiveness of this scheme over an NMPC controller, both

in terms of tracking performance and efficient energy consumption by the AUV. By

requiring only the online solution of a convex quadratically constrained quadratic

problem, which can be efficiently solved online, this demonstrated the feasibility
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of a computationally efficient robust MPC law, as required by the fourth research

question: “Can robust predictive control be designed for a high-dimensional AUV

system without prohibitive computational requirements for real-time applications? ”

By extension, the TMPC law helped achieve the third research objective.

In Chapter 6, the path-following control problem is investigated for an AUV

operating in uncertain environments containing obstacles. The path to be followed

is described by a series of waypoints. The developed framework comprised refer-

ence calculation and tracking subsystems. To compute the reference signals, the

enclosure-based LOS strategy is utilised to calculate the horizontal 2D coordinate,

from which the corresponding depth coordinate is determined analytically. In the

proposed framework, the heading and depth control problems are transformed into

a 3D LOS path-tracking formulation, eliminating the need for a kinematic error

model. However, this technique does not address scenarios where the vehicle needs

to avoid newly detected obstacles. This limitation is addressed by formulating a

multi-objective LOS guidance system capable of facilitating both path-following and

real-time collision avoidance of detected obstacles. The fourth research objective is

achieved via the developed multi-objective LOS guidance system.

To achieve the tracking objective, a robust MPC strategy employing min-max

optimistion is developed. During the AUV’s motion from one waypoint to the next,

maintaining a constant speed is desired for efficient task completion and minimal

input energy consumption [6, 223]. The developed min-max controller penalises

velocity increments in the optimisation cost function rather than the input forces

and moments to enhance task completion efficiency by minimising variations in

AUV speed. The use of MM-MPC helps to ensure robustness through the consid-

eration of the disturbance upper bounds but results in prohibitive computational

requirements. To mitigate the computational complexity associated with solving

the min-max problem, a duality-based transformation strategy is employed to refor-

mulate the problem into a quadratic minimisation control problem. This resulted

in the so-called accelerated MM-MPC scheme. Simulation results indicated that
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the proposed robust controller can yield over 40% reduction in energy consumption

while completing the path-following task in a considerably shorter duration. Ad-

ditionally, the reformulated minimisation problem yields a tenfold improvement in

online computational speed compared to the original min-max problem. Hence, the

results presented in Chapter 6 contributed to addressing both the fourth research

question, “Can robust predictive control be designed for a high-dimensional AUV

system without prohibitive computational requirements for real-time applications? ”

and fifth research question, “How can robust optimal path-following be achieved in

a time-efficient manner when tracking 3D waypoints in uncertain environments in-

cluding obstacles? ” Also, the final research objective was achieved via the developed

accelerated MM-MPC.

7.2 Recommendation for Future Works

The MPC-based motion controllers outlined in this thesis rely on a 6-DoF model

of an AUV, approximated as a linear time-varying system to ensure computational

tractability in solving the control optimisation problem online. While this thesis

presents promising results that support the deployment of advanced MPC algorithms

for 3D motion control of AUVs, several intriguing areas for future research have been

identified and are outlined below.

1. Data-aided MPC design for AUVs. The AUV model used in this thesis is a

well-established model for marine vehicles. However, accurately determining

the model parameters is challenging, and effective underwater navigation is

often compromised by unpredictable environmental disturbances. Given the

advancements in artificial intelligence, which have led to the development of

data-driven models showing promising results for AUV applications [254–256],

it is believed that investigating data-driven methods to enhance the perfor-

mance of mathematical model-based approaches is worthwhile. These data-

aided, model-based strategies can significantly enhance the adaptability of
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advanced control systems for AUVs by developing AI models for predicting

disturbances and their bounds.

2. 6-DoF MPC design for multiple AUVs. The cooperative control of multiple

marine vehicles has garnered significant interest in recent years [232]. MPC can

be a powerful tool for developing coordination control laws for AUVs. However,

most existing studies primarily focus on motion control in local planes [18] due

to the high computational demands associated with the 6-DoF model-based

MPC design. Based on the speed at which the optimal control problems can

be solved for the MPC laws developed in this thesis, future work can focus on

extending these strategies, and their variants, to the use of the 6-DoF AUV

model for distributed MPC in coordinating the motion of multiple AUVs.

3. Radius of acceptance determination. In Chapter 5, we presented a method to

estimate the sphere of acceptance Ra and this tends to provide a generally

good performance of the TMPC controller. Hence, it would be interesting to

develop a method to determine the value of the radius of acceptance, ρc, used

in the implementation of the MO-LOSGS presented in Chapter 6.

4. Intelligent tuning methods for MPC parameters. In the developed robust

schemes, namely the tube-based MPC and the accelerated MM-MPC, the

weighting matrices, control and prediction horizons, as well as parameters

such as the radius of acceptance, sphere of acceptance, and (ideal) safe region,

are manually tuned. Advances in machine learning can be exploited to develop

intelligent techniques for the automatic tuning of these parameters based on

predefined performance criteria and the physical limits of the vehicle.

5. Collision avoidance with dynamic obstacles. The guidance and control sys-

tem presented in Chapter 6 considers only static obstacles, which are realistic

as they could represent underwater rocks, seamounts, sandbanks, fixed struc-

tures used for oil and gas extraction (such as oil rigs and offshore platforms)
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and shipwrecks. However, dynamic obstacles are also prevalent, such as mov-

ing sea animals and other marine vehicles. Future work may investigate the

consideration of collision avoidance with dynamic obstacles.

6. Stability results. Although Chapter 6 provides a framework that may encour-

age the deployment of min-max MPC due to the accelerated computational

speed, theoretical guarantees on closed-loop stability remain an open area of

research for the developed strategy. Therefore, future work could focus on es-

tablishing theoretical guarantees for the closed-loop performance of the AUV

system under this control law. Additionally, the tube-based MPC in Chap-

ter 5 relies on a locally stabilising gain, so further investigations are needed

to develop a stabilising feedback controller for the unfrozen AUV model and

extend the stability properties of the overall tube-based controller.

7. Experimental validation of MPC-based motion controllers. This research is

based on simulation studies for control validation, leaving experimental vali-

dation of the algorithms as an open area of research interest. Furthermore,

existing experimental studies primarily focus on local planes, such as depth

control problems. Hence, investigations focused on 3D motion represent an

intriguing area for future work. Experimental validation in real-world sce-

narios, particularly in 3D motion contexts, would significantly enhance the

applicability of the developed algorithms.
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Appendix A

Fourth-order Runge Kutta

Method for AUV Simulation

For the nonlinear AUV model ẋ = f (x, τ ) given in (2.14), the Fourth-order Runge

Kutta method is used to solve the differential equation as follows: (2.14) as

x(k + 1) = x(k) +
Ts
6
(k1 + 2k2 + 2k3 + k4) (A.1)

with
k1 = f (x(k), τ (k))

k2 = f

(
x(k) +

Ts
2
k1, τ (k)

)
k3 = f

(
x(k) +

Ts
2
k2, τ (k)

)
k4 = f (x(k) + Tsk3, τ (k))
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Appendix B

Numerical Solution to the LOS

Re-planning Scheme

The set of equations (5.9) is analytically solved for two scenarios. To simplify the

notation, the time index k is dropped in the rest of this analytical solution.

Case 1: |xd − x| > 0. For brevity, let

d1 =

(
yd − y
xd − x

)
, d2 =

(
zd − z
xd − x

)

and g1 = y − d1x and g2 = z − d2x. It is trivial to show that

xlos =
−b±

√
b2 − 4ac

2a
. (B.1)

where
a = 1 + d21 + d22

b = 2(d1g1 + d2g2 − d1y − d2z − x)

c = x2 + y2 + z2 + g21 + g22 − 2g1y − 2g2z −R2
a

The positive sign is used if xd−x > 0 while for xd−x < 0, the negative sign is adopted

in (B.1). Based on the calculated xlos, the values of ylos and zlos can readily be

determined: ylos = d1 (xlos − x)+y = d1xlos+g1, zlos = d2 (xlos − x)+z = d2xlos+g2.
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Notice that ylos = y and zlos = z if yd − y = 0 and zd − z = 0, respectively.

Case 2: |xd − x| = 0, We have that xlos = x. In this scenario, only (5.9a) is valid

and the equation reduces to a circle in the yz-plane, i.e.,

(ylos − y)2 + (zlos − z)2 = R2
a. (B.2)

It is noted that there are multiple values of ylos and zlos that satisfy (B.2). To obtain

a solution that suite our application, define α ∈ [0, 1], based on which we obtain:

ylos = y ±Ra

√
α, zlos = z ±Ra

√
(1− α) (B.3)

where α can adaptively be determined as

α =
|yd − y|

|yd − y|+ |zd − z|
(B.4)

Notice that α → 0 as |yd − y| → 0 in which case ylos → y. Conversely, α → 1

as |zd − z| → 0 in which case zlos → z. We also remark that α is always defined

because the solution to (5.9) is not required when |xd − x| = |yd − y| = |zd − z| = 0

as the condition (5.8) will be fulfilled in such scenario. In (B.3), if (yd− y) > 0 then

ylos = y+Ra

√
α, if (yd− y) < 0 then ylos = y−Ra

√
α. Furthermore, if (zd− z) > 0

then zlos = z +Ra

√
(1− α) and if (zd − z) < 0 then zlos = z −Ra

√
(1− α).
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