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Abstract

My PhD research is devoted to enriching the strong convergence theory of modified
Euler-Maruyama methods for stochastic differential equation with locally Lipschitz
coefficients. In this PhD thesis, we will introduce several modified Euler-Maruyama
methods and establish their strong convergence theory. First, we will use new numer-
ical analysis techniques to improve strong convergence results of the truncated Euler-
Maruyama method. We then combine analysis techniques for polynomially growing
coefficients and concave coeflicients to extend the truncated EM method for multi-
dimensional SDEs with polynomially growing drift and concave diffusion coefficients
satisfying the Osgood condition.

Then we will pay attention to scalar SDEs with locally Lipschitz coefficients. We
will start with improving strong convergence results of the logarithmic truncated Euler-
Maruyama method. To be concrete, we will use new numerical analysis techniques and
further extend them for the constant elasticity of variance model and the Ait-Sahalia
model with almost full parameter ranges. We will prove that the logarithmic truncated
Euler-Maruyama method is strongly convergent with order one half in general £P-norm.

In the rest of this thesis, we will focus on the projected Euler-Maruyama method.
It has good convergence properties for scalar SDEs with locally Lipschitz coefficients.
For example, it is strong LP-convergent with order one half for the Cox-Ingersoll-Ross
model with a wide parameter ranges. In particular, we will introduce a novel numerical
analysis technique to prove that the projected Euler-Maruyama method may have finite
inverse moments, which other modified Euler-Maruyama methods generally do not

have. We will use finite inverse moments to prove that the projected Euler-Maruyama

iii



1 method is strong LP-convergent with order one for many useful scalar SDE models,
2 e.g., the constant elasticity of variance model, the Ait-Sahalia model, the Heston-3/2

s volatility model, the Wright-Fisher model and so on.
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positive
negative

nonnegative

Notations

> 0.

< 0.

= 0.

almost surely, or Pr-almost surely, or with probability 1.
A is defined by B or A is denoted by B.
the empty set.

the indicator function of a set S,

ie, Is(x) =1if x € S or otherwise 0.

the complement of A in 2, i.e., A°=Q — A.
ANBC=1.

Pr(An B¢) =0.

the maximum of a and b.

the minimum of a and b.

the integer part of real number a.

the mapping f from A to B.

the m-dimensional Fuclidean space.

the real line.
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the set of all positive real numbers.

the set of all nonnegative real numbers.
the m-dimensionsal Euclidean space.
the space of real m x n-matrices

the set of natural numbers.

the set of positive natural numbers.
the Borel-o-algebra on R™

the Euclidean norm of a vector z.

the transpose of a vector or matrix A.
d
the trace of a square matrix A = (a;;j)dxq, i.e. ,tr(A4) = Z ;.
i=1

the trace norm of a matrix A, i.e. |A| = /tr(ATA).
the step size of the Euler-Maruyama method,

and its value is between 0 and 1.

tr = kA, for k € N,

a complete probability space with a filtration {F;}¢>0

satisfying the usual conditions, i.e., this filtration is right continuous,

increasing and Fg contains all Pr-null sets.

the expectation corresponding to Pr.

a Brownian motion, but its dimension varies in different sections.
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LP(Q;R™)

LP([a, b]; R™)

MP([a, b]; R™)

PR R™)

MP(R;R™)

the family of R"-valued random variables X with E|X|? < oo.

the family of R™-valued Fi-adapted processes { f(t)},c(q
such that /b |f(t)[Pdt < 00 a.s.

the family of processes {f(t)}ef,p i £7([a,0; R™)
such that E/b |f(t)[Pdt < o0.

the family of processes {f(t)};.q such that for every T' > 0,

{FO}epor € £7([a, B R™).

the family of processes {f(t)},5q such that for every T' > 0,

{f(t)}te[O,T] € Mp([% b];Rm)-
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Chapter 1

Introduction

1.1 background

Let B(t) be a Brownian motion. Then an m-dimensional stochastic differential equation

(SDE) can be expressed as:
da(t) = f(x(t), t)dt + g(x(t), t)dB(t),

where f and g are called the drift and diffusion coefficients, respectively. SDEs are
very useful to describe natural phenomena and real life activities. For example, the
geometric Brownian motion is used to model stock prices in the Black-Scholes model.
The Cox-Ingersoll-Ross model models the evolution of interest rates. Except for math-
ematical finance models, there are also many famous SDE models in physics, biology,
engineering and so on (see for more examples). However, most of SDEs do
not have analytical solutions. That is, we generally have to use numerical approxima-
tion methods to simulate SDEs in practice.

The classical Euler-Maruyama (EM) method is one of most useful numerical ap-

proximation methods. Its strong convergence theory is well established for SDEs with

globally Lipschitz coefficients (e.g., the GBM model in [Table 1.1.1)), i.e, there exists a
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1.1. background

Model Drift coefficient Diffusion coefficient
Geometric Brownian motion (GBM) model ax ox
Scalar stochastic Ginzburg-Landau equation (ax - st) ox
Cox-Ingersoll-Ross (CIR) model Ap— ) ox'/?
Ait-Sahalia model (a_lm’l —ag+ a1x — a2$9) oxf
Constant elasticity of variance (CEV) model Ap— ) oxl/>+0
Lamperti-transformed CEV model (1/2-10) (/\;uf% - 207“0217’1 - )\.’L’) (1/2—-0)o
Wright-Fisher (WF) mode (o = Bx) o]z (1 —2)|
Lamperti-transformed WF model (o — 0?/4) cot(z/2) — (B — a — 0?/4) tan(z/2) o

Table 1.1.1: A selection of important SDE models

constant K > 0 such that

[f(u,t) = f(0, )] V]g(u, t) = g(v, )| < Klu—v]

for all u,v € R™. However, there are also many useful SDE models with locally
Lipschitz coefficients (e.g., the CEV model in . Then numerical analysis
methods for globally Lipschitz coefficients will fail, and the classical strong convergence
theory fails. In this thesis, we will develop modified EM methods and new numerical

analysis methods. We will focus on three types of locally Lipschitz coefficients:

i. polynomially growing coefficients (e.g., the scalar stochastic Ginzburg-Landau equa-

tion in [Table 1.1.1J);

ii. have reciprocal parts (e.g., the Ait-Sahalia model in [Table 1.1.1J);

iii. Holder continuous near some points (e.g., the CEV model in [Table 1.1.1)).

To make our introduction easier to read, detailed background, challenges and previous
works for each type will be systematically introduced in corresponding chapters.

This thesis is organized as follows. First, Chapter 2 provides basic mathematical
background and useful inequalities. In particular, we will briefly introduce the classical
EM method and its strong convergence theory for SDEs with globally Lipschitz coeffi-
cients. We will point out why the classical strong convergence theory fails for locally
Lipschitz coefficients. We will also introduce useful indices to judge the EM method,

which we will frequently use in next chapters.
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1.1. background

Then we will develop modified EM methods for different types of locally Lipschitz
coefficients. In Chapter 3, we are concerned with multi-dimensional SDEs with poly-
nomially growing drift and concave diffusion coefficients satisfying the Osgood condi-
tion. We will introduce a modified EM method, called the the truncated EM method,
for SDEs with polynomially growing coefficients. Then we will extend it for multi-
dimensional SDEs with polynomially growing drift and concave diffusion coefficients
satisfying the Osgood condition.

In Chapter 4, we will focus on modified EM methods for the CEV model and the
Ait-Sahalia model. We will introduce the logarithmic truncated EM method, which
can preserve positivity of numerical solutions. Then we will introduce new numerical
analysis techniques and use weaker assumptions to prove finite inverse moments of the
logarithmic truncated EM numerical solution, which is necessary to establish the strong
convergence theory. In addition, we will show that our new numerical analysis methods
can improve strong convergence results of the truncated EM method. We will prove
that the logarithmic truncated EM method is strongly convergent with order one half
in general £P-norm for almost all parameter settings.

The strong convergence theory of the logarithmic truncated EM method is now valid
for more parameter settings. However, it only works for the CEV model and the Ait-
Sahalia model. Then the projected EM method is developed to cover more SDE models.
It is valid for the CIR model, the CEV model, the Ait-Sahalia model, the Heston-3/2
volatility model, the epidemic SIS model and so on. Nevertheless, concrete numerical
analysis for each model is different. Therefore, Chapters 5-7 are devoted for different
SDE models and different numerical analysis methods. In Chapter 5, we will focus
on the CIR model at first. We will invoke Cozma and Reisinger’s numerical analysis
technique for the full truncated EM method, and prove that the projected EM method
is also LP-strongly convergent with order one half but for more parameter settings. In
Chapter 6, we are concerned with SDEs whose coefficients are polynomially growing and
have reciprocal parts (e.g., the Ait-Sahalia model in. It is worth noting that
the CEV model, the Heston-3/2 volatility model and the epidemic SIS model will be

covered after applying the Lamperti transformation (e.g., see the Lamperti-transformed

3
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1.1. background

CEV model in . We will introduce a new numerical analysis technique and
prove that the projected EM method has finite inverse moments, which many modified
EM methods do not have. With this good property, we can then further prove that
the projected EM method is strong L£P-convergent with order one. Finally, we extend
numerical analysis in Chapter 6 for SDEs whose coefficients are locally Lipschitz near

two finite points (e.g., the drift coefficient of the Lamperti-transformed WF model in

7 [Table 1.1.1)). We will show that the projected EM method is also strong £P-convergent

8

9

10

11

with order one for the WF model in Chapter 7.
Please note that the materials in Chapters 3 and 4 have been published in Jour-
nal of Computational and Applied Mathematics and Applied Numerical Mathematics,

respectively (see [1] and [2]).
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Chapter 2

Preliminaries

First, we will introduce some basic mathematical background to make our thesis self-
contained. However, for the sake of simplicity, we only offer necessary introduction.
We recommend [3] for further readings. In addition, we will introduce the classical
EM method and establish its strong convergence theory for SDEs with linear growth
condition and globally Lipschitz condition. Some analysis methods and concepts about

EM methods will also be introduced and will be frequently referred in this thesis.

2.1 Random variables

Probability space

Let (©2,F) be a measurable space. Then a measurable function Pr : F — [0,1] on

(Q, F) is a probability measure, if it satisfies
i. Pr(Q) =1,
ii. for any disjoint sequence {A4;};°; C F, we have Pr(U°, 4;) = > 22, Pr(4;).

The triple (€2, F,Pr) is then called a probability space.
Let F = {A C Q: there exist B,C € F such that Pr(B) = Pr(C) and B C A C C}.
F is a og-algebra and is called the completion of F. If ¥ = F, then (Q, F, Pr) is said to

be complete. In this thesis, we always let (€2, F, Pr) be a complete probability space.

5



1

10

11

12

13

14

15

16

17

18

19

20

21

2.1. Random variables

In addition, if A € F with Pr(A4) = 1, then it is said to happen almost surely. If
Pr(X #Y) =0, it is reasonable think they are same, since they are only different on

a null set which happens with probability zero.

Random variables

The measurable mapping X : (2, F) — (R™,B™) is called a R™-valued random vari-
able. For sake of convenience, we simply call X a random variable in this thesis.

The cumulative distribution function of X is given by Fx(u) = Pr(X < u).

Example 2.1.1. Normal distribution The cumulative distribution function of a

normal distribution N(u,o?) is given by

1 v eew?
F(u) = / e 202 dv,

2o

—00

where p,0 € Ry,

Independence

Let I be an index set. A family of sets {4; : i € [} C F is said to be independent, if
Pr (All n...N Alk) = PI‘(A“) .. PI‘(A%),

for all possible choices of indices i1,--- ,iy € I. Let X : (Q,F) — (R™,B™) and
Y : (2,F) = (R", B") be two random variables. If

Prlwe: X(w)eAYw) eB)=Prwel: X(w)eA)Pr(weQ:Y(w) e B),
for all A € B™, B € B", then X and Y are independent.

Expectation

Let X be a random variable and is integrable with respect to Pr, then

IE(X):/QX(w)dPr(oJ)



2.1. Random variables

1 is called the expectation of X. We also call Var(X) =E ((X - E(X))2> the variance

2> of X. If Y is also an integrable random variable but independent with X, then XY is

3 also integrable and E(XY) = E(X)E(Y).

4 Let p > 0. Let X be an R™-valued random variable and let E(X) = (E(X1),--- ,E(X,,)).
5 Then E|X|P is said to be the p-th moment of X. More useful inequalities for the ex-

6 pectation can be found in later section.

7 Example 2.1.2. Normal distribution The mean and variance of the normal distri-
s bution N(u,0?) are u and o?.

o Conditional expectation

10 Let X be a random variable in £P(Q;R™) and G be a sub-c-algebra of F. No matter
1 whether X is G-measurable, by the Radon-Nikodym theorem, there always exists an

12 integrable G-measurable almost surely unique random variable Y such that
13 E(IgY) =E(IX), / Y(w)dPr(w / X(w)dPr(w), forall Geg.

12 Y is then called the conditional expectation of X under the condition G, and we write
15 Y =E(X|G).

16 The conditional expectation has some properties:

v i E(E(X|G) = B(X);

18 ii. if X is G-measurable, then E(X|G) =

1o iii. if X is a constant ¢, then E(X|G) = ¢;

2 iv. if X >0, then E(X|G) >0

o v [E(XI9)| < B(X]|G);

22 vi. if X is G-measurable, then E(XY|G) = XE(Y|G);

23 vil. E(aX 4 0Y|G) = aE(X]|G) + VE(Y|G), for any a,b € R;

2 viil. 0(X), G are independent, then E(X|G) = E(X);
7
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2.2. Stochastic process

ix. let Gi C Go C F, then E (E(X|G2)|G1) = E(X|G1).

2.2 Stochastic process

Stochastic process

Let (2, F,Pr) be a complete probability space. A filtration is a family {F;},, of
increasing sub-o-algebras of F,i.e., Fs C F; C F,forall0 < s <t < oo. If Ft = Ng=eFs
for all ¢ > 0, the filtration is said to be right continuous. If {F;},. is right continuous
and Fp contains all Pr-null sets, the filtration is said to satisfy the usual conditions.
In this thesis, we always work on a given complete probability space (€2, F,Pr) with a
filtration satisfying the usual conditions.

A set of random variables {X;};>0 defined on (€, F,Pr) is said to be a stochastic
process. Given a t > 0, we have a R"-valued random variable X;(w). Given a w € (,
we have a function X;(w) : Ry — R™, which is called a sample path of the stochastic
process. For sake of convenience, { X; }>0 will usually be simply denoted by X; or X (¢).

{Xt}=0 is said to be continuous, if for for almost all w € Q, function Xy(w) is
continuous on ¢ > 0. It is integrable, if for any ¢ > 0, X(¢) is an integrable random
variable. If for any ¢t > 0, X(t) is Fy-measurable, then it is said to be adapted. If

E|X;:|? < oo for every t € R, then it is said to be square-integrable.

Stopping time

A random variable 7 : 2 — [0, 00] is called a stopping time, if for any ¢ > 0
{weQ:7(w) <t} € F.

If 7 and 6 are stopping times, then 7 A § and 7V @ are also stopping times. We also

define
Fr={AeF: An{weQ:7(w) <t} € F, fort >0},

which is a sub-o-algebra of F. Then we have the next theorem.
8
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2.3. Stochastic differential equation

Theorem 2.2.1. If {X;}i>0 is a progressively measurable process and T is a stopping
time, then X;Irooy is Fr-measurable. In particular, if T is finite, then X is Fr-

measurable.

Martingale

An R™-valued, adapted, integrable process {M;};>¢ is called a martingale, if
E(My|Fs) = Mg a.s. forall 0 <s<t< oc.

Let X = {X;}:>0 be a progressively measurable process and let 7 be a stopping time,

then X7 = {Xya:}i>0 is called a stopped process of X.

Theorem 2.2.2. (Doob stopping theorem) Let {M;}i>0 be an R"™-valued martin-
gale, and let T, 0 two finite stopping times. Then

E(Mg|Fr) = Mgrnr  a.s.

In particular, the stopped process M™ = {Mn,} is a martingale.

2.3 Stochastic differential equation

Brownian motion

A one-dimensional Brownian motion is a real-valued, continuous, adapted process

{B(t) }+>0 with:
i. B(0) =0 a.s.;

ii. for 0 < s <t < oo, the increment B(t) — B(s) is normally distributed with mean

0 and variance t — s;
iii. for 0 < s <t < oo, the increment B(t) — B(s) is independent of Fj.

In particular, {B(t)}+>0 is a martingale.



2.3. Stochastic differential equation

1 An m-dimensional process {(Bi(t), . . ., Bim(t)) }5 is called an m-dimensional Brow-
> nian motion if every {B;(t)}, is a one-dimensional Brownian motion, and {B;(t)},5

s are independent.

+ Ito integral

s We now introduce the It integral. Let f € M?2([0,T];R), i.e., EfOT |f(5)]?ds < oo.
6 Then we can define a random variable, called the It6 integral of f with respect to
7 {B(t)}, and denote it by fo (t)dB(t). Let 0 < 7 < 0 < T be two stopping times, then

s we define

: / F(5)dB(s / F(5)IperydB ()

10 and

" /de /de /de

12 The It6 integral has some nice properties. Let a,b € R and f, g € M?([a,b];R), we

13 then have
w o f; f(s)dB(s) is Fp-measurable;

ii. Efff(s)dB(s) = 0;

—

15

1 iii. E

Bs)| =B [ 17(s) s

7o iv. fab(clf(s)—chg(s))dB —clf f(s +02f g(s)dB(s);

E ([} f(s)dB(s)|Fa) = 0;

19 Vvi. IE(

o vii. E [? f(s)dB(s) = 0;

<

18

L@ 17) = 1B (176 F 1) ds

a1 vii, E‘f F(s)dB(s ] —E [°|f(s)|ds;

2 ix. E( /e f(s)dB(s)]fT) — 0

10
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2.3. Stochastic differential equation

x B

Let f € M?([0,T];R). Moreover, we can define a continuous stochastic process

{I(t)}ogth by

7 sean)[ 17:) =2 (17 1)

1) = /O F()dB(s).

It is a square-integrable martingale with respect to the filtration {F;}>0. If 0 <7 < T,

then

I(r) = / " f(s)dB(s).

Finally, we consider multi-dimensional cases. Let f € M?2([0,T]; R™*"). Then the

multi-dimensional indefinite It6 integral is defined by

[ s = [

It is an m-column-vector-valued process, and the i-th component is the sum of one-

Jii(s) -+ fia(s) dBi(s)
fm1(s) -+ fmn(s) dBy(s)

dimensional Ito integrals: > 7, fé fij(s)dBj(s). Similarly, we have

i E (ff f(s)dB(s)]]—"T> =0

ii. E(

for two arbitrary stopping times 0 <7< 0 < T.

2 sape)| 17) =5 (16 P a7,

Ito formula

We now introduce the Itd6 formula, which can be considered as the stochastic version
of chain rule for the It6 integral. It will be frequently used in this thesis.
Let {B(t)}:+>0 be an m-dimensional Brownian motion. An m-dimensional It6 pro-

cess is an R™-valued, continuous, adapted process (z1(t),---,z4(t))’ on Ry, of the

11



2.3. Stochastic differential equation
1 form
t t
o al)=a0)+ [ f)ds+ [ g(s)aBls)
0 0

s where f = (f1,, fm)T € LYR;R™) and g = (gij)mxn € L2(R4; R™*™). We shall

«+ say that x(t) has an It6 differential dz(t) on R, which is given by
5 dx(t) = f(t)dt + g(t)dB(t).

6 Let V(x,t) € C*1(R™ x R ;R), i.e., the family of all real-valued functions defined

7 on R™ xR, such that they are continuously twice differentiable in x and once in ¢ with

oV ov ov o2V
° V=5 V—(axlaxm) VW(axiaxj)mm-

s Theorem 2.3.1. (Itd formula) Let z(t) be an m-dimensional Ité process on R, with

10 the Ito differential

" dz(t) = f(t)dt + g(t)dB(t).

2 Let V(z,t) € C*HR™ x Ry ;R). Then V(x(t),t) is a real-valued It6 process with Ito
13 differential

eV (a(0)1) = (Vilelo) )+ Va(alo): 070 + 5tr (67 (0Vaa(ol0),09(0) ) eV a0). 090050,

15 where tr(A) is the trace of a square matriz A.

1 Stochastic differential equation

17 Let {B(t) = (B1(t),. .. ,Bn(t))T}t> be an n-dimensional Brownian motion on this
18 space. Let 0 < tg < T < oo and let x4, be an Fi,-measurable R™-valued random
10 variable such that E|xs|? < co. Let f : R™ x [tg, T] — R™ and g : R™ x [tg, T] — R™*"
20 both be Borel measurable.

21 If an R™-valued stochastic process {x(t)},c, 77 has the following properties:

12
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2.3. Stochastic differential equation

1. {x(t)}te[to,T} is continuous and F;-adapted;
i. {f(z(t),t)} € Ll([to,T];Rm) and {g (z(t),t)} € EQ([tO,T];RmX");

iii. z(t) = xtOJrft'; f(z(s),s) derft'; g (x(s),s)dB(s), for all t € [tg, T] with probability

one,

then it is called a solution of the m-dimensional stochastic differential equation of It6

type
dz(t) = f (x(t),t) dt + g (z(t),t) dB(t)

with initial value z4,. In particular, a solution {x(¢)} is said to be unique if any other

solution {Z(t)} is indistinguishable from {z(¢)}, that is
Pr({w: z(t) = z(t), fort € [ty,T]}) = 1.

As an example, we give two classical assumptions to guarantee the existence and

the uniqueness of solutions here.

Assumption 2.3.1. (globally Lipschitz condition) Assume that there exists a

constant K > 0 such that
‘f(u7t) - f(U,t)‘ \ ’g(uat) —g(’l),t)| < K|’LL - U|7 for u,v € ]Rmvt € [t07T]

Assumption 2.3.2. (Linear growth condition) Assume that there exists a constant

K > 0 such that

£ D)V g, )] < KL+ ul), for w € R™, ¢ € [to,T).

Theorem 2.3.2. Existence and uniqueness Assume that [Assumptions 2.53.1 and

hold. Then there exists a unique solution x(t), and it belongs to M?([to, T]; R™).

For some special criteria to ensure existence and uniqueness, we recommend [3-5]

for further readings.
13
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2.4. Useful inequalities

1 2.4 Useful inequalities

> First, we list some useful inequalities for moments. Let 0 < ¢ < p < co. Let X,Y be

3 two R™-valued random variable with E|X P < oo and E|Y'|? < co. Then we have

4 1. (Holder’s inequality) let p,q > 1 and 1/p + 1/q = 1, then we have

Q|

: E(XTY) < (E[X[P)7 (E[Y]%)

I

6 2. (Lyapunov’s inequality) let 0 < ¢ < p < oo, then we have

._.
B =

7 (E[X]7)7 < (E[XP)

9

8 3. (Minkowski’s inequality) let p = ¢ > 1, then we have

[

’ (E|X + Y)» < (B|X]P)7 + (E[Y|?)5 ;

10 4. (Chebyshev’s inequality) let p > 0 and ¢ > 0, then we have

Bl X
<=

11 Pr ({w : ]X(w)] 2 C}) e

12 We will also frequently use the Young inequality. Let a,b > 0 and p,q > 1 with
s 1/p+1/qg =1, we then have

(pg) 7q/p
q

14 ab < ed? + be.

15 Then we introduce the Burkholder-Davis-Gundy inequality.

16 Theorem 2.4.1. (The Burkholder-Davis-Gundy inequality) Let g € £2([0,T]; R™*")

7 and let p > 0 be arbitrary. Define
¢ ¢
; 2(1) = / o(s)dB(s) and A(t) = / 1g(s)[2 ds,
0 0

14



2.4. Useful inequalities

1 for allt € [0,T]. Then there exist universal positive constants c,, Cp, only depending

2 on p, such that

w

ElA(t)2 <E ( sup \x(s)\p> < GLE[A(t)?,
s€[0,t]

4 forallt €[0,T). In particular, we may take

5 cp = (p/2)7, Cp = (32/p)", p € (0,2);
6 szl, Cp:47 p:2’

7 e = (2) 772, Cp = (7 /20— 1), p>2.

8 We also have another upper bound estimation theorem.

s Theorem 2.4.2. Let p > 2 be arbitrary and let g € L2([0, T); R™*™) with

T
10 E/ lg(s)[Pds < 0.
0

1 Then we have

E

=
N

p p/2 T
—1
< <p(p2)> Tp/2—1E/0 lg(s)|Pds.

In particular, the equality holds for p = 2.

T
/ 4(s)dB(s)
0

[
w

14 Now we introduce two useful inequalities, which will be frequently used in this

5 thesis.

=

16 Theorem 2.4.3. (The Bihari inequality) Let T > 0 and ¢ > 0. Let u(t) be a

17 Borel measurable bounded nonnegative function on [0,T], and let v(t) be a nonnegative

=
[

integrable function on [0,T]. Let K : Ry — Ry be a continuous non-decreasing function

such that K(t) > 0 for all t > 0. Let

=
©

T ds
G(r) = —, forr>0.
: R AN

15
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2.5. Classical Euler-Maruyama method
If
t
u(t) < e —l—/ v(s)K (u(s))ds, for allt € [0,T],
0
then we have

u(t) < G- (G(c) + /Otv(s)ds) ,

for all t € [0,T] such that

G(c) —|—/0 v(s)ds < G(00).

Especially, if K(x) = z, we have the Gronwall inequality.

Theorem 2.4.4. (The Gronwall inequality) Let T > 0 and ¢ > 0. Let u(t) be a
Borel measurable bounded nonnegative function on [0,T], and let v(t) be a nonnegative

integrable function on [0,T]. If
¢
u(t) < e +/ v(s)u(s)ds, for allt e [0,T],
0
then we have

u(t) < cexp (/Otv(s)ds> . forallte[0,T).

2.5 Classical Euler-Maruyama method

Basic introduction

Let B(t) be an n-dimensional Brownian motion on this space. Let 0 < tg < T < o0
and let x4, be an Fj,-measurable R™-valued random variable such that E|xs|? < oc.
Let f: R™ X [tg,T] — R™ and ¢ : R™ X [tg,T] — R™*™ both be Borel measurable.
Then we consider the SDE:

dx(t) = f(x(t), t)dt + g(x(t),t)dB(t), t e [to,T]
16
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2.5. Classical Euler-Maruyama method

with the initial x;,. Moreover, we assume that [Assumptions 2.3.1] and [2.3.2] hold.

However, an SDE may not have an analytical solution even under these two simple
assumptions. Therefore, it is necessary to develop numerical approximation methods
to approximate the exact solution x(t). The classical EM method is one of useful
numerical methods. In this section, we will introduce the classical EM method and
establish its strong convergence theory for SDEs with globally Lipschitz coefficients.

Let A € {(T'—to)/k : k € N1} be a step size. We first define the classical EM
numerical solution on the [kA, (k+1)A]. The classical EM numerical solution xa (t) is

defined by starting from z(tg) and computing the recursion

t t

rat) = za(kA) + [ flea(kD), s)ds + / o(za(kA), $)dB(s),
kA kA

for t € [kA, (k+ 1)A] and k € N. It gives an expression for the continuous version of

the scheme over a single step. Then we define

Zat)= > walid)Igepa iinay-

In addition, we have

za(t) = za(to) + f(xa(S),S)dtJr/ 9(za(s), 5)dB(s),

to to

for all ¢ € [to, T]. It gives an expression for the continuous version of the scheme over
the full time set.

Now we establish the strong convergence theory of the classical EM method. We
will use C' to stand for generic positive real numbers which are dependent on T, tg, K,
K and p, but independent of A and its values may change between occurrences. We

first establish two necessary lemmas.

Lemma 2.5.1. (Finite p-moments of xa(t)) Let p > 2. There then exists a constant

17
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2.5. Classical Euler-Maruyama method

C > 0 such that

sup sup Elza(t)]P < C.
A€(0,1] t€(to,T)

Proof. Given a k € N, we define a stopping time 7, = inf{t € [to,T] : |xa(t)| > k}.
In particular, we set inf () = oo, where () is an empty set. Using the Ité formula and

taking expectations on both sides, we have

Eloa(t A n)l? Blaa(o)l? + 8 [ Y lea(9)P2xa(s)T (Za(s), s)ds

to

+ p(p2_2)1E /to " ea()P g @a(s), s)zals) Pds

P tATY
+28 [ )P lg(ea(s).s) s

to

+pE/t . jza(s)P~2zals)” g(a(s), s)dB(s),

for all t € [to, T.
Since |xa(t)| < k for t € [to, T AT7y), each component of |z (t)[P~2za(t) T g(za(t),1)

is bounded for t € [to, T A 7%]. Therefore,

{lza@®)P2za(t)  g(za(t), t)I{tE[T/\Tk}}}te[to,T] € M?([to, T|;R™).

It then implies that

E/ ' lza(s)P~2za(s)" g(za(s), s)dB(s) = 0,

to

for ¢ € [to, T).

18
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2.5. Classical Euler-Maruyama method

Using the linear growth condition and the Young inequality, we have

t/\Tk
Elza(t A7)l <E|m(to)!”+pKE/ za(s)[P7H (1L + |Za(s)])ds
to

-1 K2 tATY B
PP [ aaoP 20+ oa (o))
0

<Elza(to)” + KE/t " ((p = D]zals)l? + 20711 + |za(s)P)) ds

" (p_;)KE/ " (0~ Dlea@ + 20+ [7a())) ds

tATY
<Elra(to)]? + CE / (1 + lza(s)P + |Za(s)P) ds,

to

for ¢ € [to, T).
Using the Fubini theorem, we then have
tATE
B[ W+ lealo)l + foals)P) ds
to

t
QE/ (I+ |za(s ATi)|P + |Za(s A 1) |P) ds
to

t
:/ E (1 + |za(s A )P + [Za(s A 7)|P) ds
to

t
g/ <1+2 sup E\xA(u/\Tk)p> ds.
to

u€lto,s]

Using the Fubini theorem

t
sup E|lza(uA1)P < (C+Elza(to)lP) + C sup El|za(u A 7x)|Pds,
u€[to,t] to u€lto,s)

for t € [to,T]. Then the Gronwall inequality implies that

sup Elza(u A7) < C.
u€[to, T

Letting & — oo, we then have the conclusion. O

By similar arguments, we have the next lemma for the exact solution x(t).

Lemma 2.5.2. (Finite p-moments of x(t)) Let p > 2. There exists a constant C > 0
19



1

10

-

1

13

14

15

16

17

2.5. Classical Euler-Maruyama method

such that

sup Elz(t)]P < C.
t€lto,T]

Lemma 2.5.3. Let p > 2. There exists a constant C > 0 such that

Elza(t) — Za(t)]P < CAP/Z,

for allt € [to,T] and A € (0,1].

Proof. Using the Holder inequality and [I'heorem 2.4.2) we have

Elza(t) —za(®)”

t t
/ F(Za(s), s)ds + /
[t/A]A [t/A]A

t
<2PE ( / f(@a(s),s)ds
lt/A]A

t

=E

<2PIAPTIR /
[t/AlA

Using the linear growth condition and we have

Elza(t) —za(t)]”

gzplN’lE/t
[t/A]A

t
<22P—2AP/2-1 (Ap/2 + 1) Kp/
<CAP/? (AW n 1)

<CAP/2,

t/A)A

t
|f(zA(s),s)Pds + 2p—1Ap/2—1E/
lt/A]A

KP(1 4 |za(s)])Pds + 2p1Ap/21IE/

(1 +E|za(s)|P)ds

lt/A)A

20

A 9(7a(s), 5)dB(s)

)

l9(Za(s), s)[" ds.

t

[t/AlA

KP(1+ |za(s)|)Pds
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2.5. Classical Euler-Maruyama method

Definition 2.5.1. If we have

lim E|z(T) —za(T)P =0,

A—0

then the classical EM method is said to be £P-strongly convergent (at time 7). If there

further exist positive real numbers C' and § such that

Elz(T) — za(T)]” < CAP,

for every A € (0, 1], then the classical EM method is said to be £P-strongly convergent

with order 6.

Theorem 2.5.1. Let p > 2 The classical EM method is LP-strongly convergent with

order one half. That is, there exists a constant C such that

E|x(T) — za(T)|” < CAP,

for all A.

Proof. Using the Ito formula and taking expectations on both sides, we have

Elz(t) —za®)l

_l’_

p

t

j2(s) = za($)P72 (2(s) —2als)" (F(2(s),8) = f(Za(s),5)) ds

to

=2 [*

;&) [2(s) = za ()P (9(w (), 5) — 9(Zals),5)" (2(s) = za(s)) ds

t

+PE [ Ja(s) — wals)P2lg(w(s), s) — g(Tals), )| ds

2

to
t

+pE | |z(s) — za(s)P7 ((s) — za(s))" (9(x(s), 8) — 9(a(s), 5)) dB(s),

to

for all ¢ € [to, T.
Using [Lemmas 2.5.1 and 2.5.2] we have

pE

t

to

[2(s) — za(s)[P72 (2(s) —2a ()" (9((s),5) — g(@a(s),5)) dB(s) = 0.
21
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2.5. Classical Euler-Maruyama method

Using the globally Lipschitz condition and the Young inequality, we then

have

Bla(t) — a ()]

8 [ Ja(6) ~ 22 (72 0(6) ~ 206 (Fle(6).8) — 25, s
P [ ae) - o (ae(0).) = @ (619 ol6) — 2 (6) s
#58 [ 1o(6) — 2alla(o(s). ) - atea(e). o)

<PKE [2(s) — 2a (5P (j2(s) — 2a ()| + [2a(5) — BA($)]) ds
#olo = DR?E | las) ~ 2al6) 21 (o(6) ~ 2a (5P + oals) - aa (o))

< (2 DE +2(p— 1K) E [ Jals) — za(s)Pds

to

+ (K +2(p - )E?) /t Elwa(s) — 7a(s)|Pds

SCAP2 4 C | Elz(s) — za(s)[Pds,

to

for all ¢t € [tg, T]. Finally, the Gronwall inequality implies the conclusion. O

Under [Assumptions 2.3.1] and [2.3.2] the strong convergence theory of the classical

EM method for SDEs is established. It has some properties.

i. It is an explicit numerical method, i.e., there exists a function F' such that za ((k+
1)A) = F(za(kA)). On the other hand, some numerical methods require solving
an equation F(za((k+1)A),za(kA)) = 0.

ii. It is LP-strongly convergent with order one half;

iii. Its numerical solution takes values in the whole of the Euclidean space.

Challenges

Now we consider three types of locally Lipschitz coefficients:

22
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2.5. Classical Euler-Maruyama method

i. polynomially growing coefficients;
ii. have reciprocal parts;
iii. Holder continuous near some points.

First, we consider polynomially growing coefficients. The drift coefficient of the
scalar stochastic Ginzburg-Landau equation is ax — 3, where o, 3 > 0. It does
not satisfy the linear growth condition. Therefore, numerical solutions may fail to
have finite p-moments. As a concrete example, Hutzenthaler, Jentzen and Kloeden
[6] showed the moments of the EM numerical method may diverge to infinity within a

finite time even when the moments of the exact solution are finite. It is then impossible

to give an upper bound for E|za(t) — Za(t)|P, which is necessary in [Theorem 2.5.1} In

addition, we have
(au — Bu?) — (av — Bv°) < (a — B(u? +uv + v?)) (u —v).
Then we have

j2(s) — za(s)PH | f(2(s),8) = flzals), s)]

< (a = Bla(s)? + z(s)zals) + zals)?)) |z(s) —zals)P

in which means that we cannot apply the Gronwall inequality here.

However, we also notice that

l2(s) — za ()P (2(s) — za(s))(f(2(s), 8) — f(zals),s))
<Ja(s) —za(s)P72 (alz(s) — za(s))?)

=alz(s) — za(s)|P.

That is because the drift coefficient of the scalar stochastic Ginzburg-Landau equation
is one-sided Lipschitz. With this relaxed coefficient condition, we will improve the
classical EM numerical analysis methods. These new numerical analysis techniques

will be introduced in Chapter 3, and the strong convergence theory will be established.
23
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2.5. Classical Euler-Maruyama method

For the second case, similar problems arise. Moreover, the classical EM numeri-
cal solutions take values in the whole of the Euclidean space, the Brownian motion
takes values in the whole of the Euclidean space. For example, the classical EM nu-
merical solutions to the Ait-Sahalia model always generate negative approximations.
However, the exact solution to the Ait-Sahalia model only takes value to positive real
numbers, i.e., the classical EM is not boundary preserving. Furthermore, the classical
EM numerical solutions do not have inverse moments, i.e., it is even impossible to de-
fine E (xA (t)*l). However, finite inverse moments are necessary to estimate the upper
bound for E|xa(t) — Za(t)|P. Therefore, additional corrections and related numerical
analysis techniques are needed. We will address these problems in two ways in Chapters
4,6 and 7.

Finally, we will consider SDEs with Hélder continuous coefficients. To be precise,
we are concerned with the CEV model and the CIR model. There are similar problems
for these two SDE models, e.g., the exact solution only take values in positive real
numbers and the derivative of the diffusion coefficient is reciprocal. Some numerical
analysis techniques in the previous chapters can be applied for the CEV model, but
fail to work for the CIR model. In Chapter 5, we will introduce a new EM method and

slightly improve proven convergence results for the CIR model.
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Chapter 3

The modified truncated EM
method for stochastic differential
equations with concave diffusion

coeflicients

3.1 Background

In 2002, Higham, Mao and Stuart [7] proved the strong convergence theory under
the condition that the exact solution and the numerical solution both have finite p-
th moments. They then introduced the split-step backward EM method, which is

computed by

2 (1) =za(te) + f(@R (te1)) A,

TA(the1) =2 (trar) + 9(@R (trr1)) (Bltesr) — B(t))

where t, = kA and A is the step size. They then proved finite p-th moments for
exact solutions and split-step backward EM numerical solutions to SDEs with the one-

side Lipschitz continuous drift coefficients and globally Lipschitz continuous diffusion
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3.1. Background

coefficients. However, we have to solve an implicit function to compute % (¢;41). That
is, expensive computational cost is required for implementation of this implicit EM
method. In addition, they did not prove a concrete convergence rate order.

Many explicit numerical methods for polynomially growing coefficients were also de-
veloped in recent years. For example, Hutzenthaler, Jentzen and Kloeden [8] proposed
the tamed EM method. Sabanis [9,/10] then further developed the strong convergence
theory of the tamed EM method. Liu and Mao [11] developed the stopped EM method.
Especially, inspired by [7], Mao [12,|13] established the truncated EM method. Mao
also proved that the truncated EM method has a concrete convergence rate order under
appropriate assumptions. Li, Mao and Yin [14] then used several truncation methods
and extended the truncated EM method.

However, diffusion coefficients in the above articles both are globally Lipschitz con-
tinuous, which exclude some important SDE models. For example, Malliavin [15]
studied the right invariant canonic horizontal diffusion and deduced a relevant dif-
fusion coefficient —z(¢) In'/?(|2(¢)|) which is not globally Lipschitz continuous. There
are some papers which are concerned with this type of diffusion coefficient (e.g., see
[16-30]). Nevertheless, both of them are concerned with the constant elasticity of vari-
ance model model or the Cox-Ingersoll-Ross model, whose drift coefficients are globally
Lipschitz continuous. In [31H33], researchers developed different modified EM methods
and established their strong convergence for SDEs with polynomially growing drift co-
efficients and Holder continuous diffusion coefficients. These three papers both use the
Yamada and Watanabe’s analysis method, so they can establish the strong convergence
theory only for one-dimensional SDEs.

This chapter is extracted from [1]. In this chapter, we will establish the strong con-
vergence theory of the truncated EM for multi-dimensional SDEs with polynomially
growing drift coefficients and concave diffusion coefficients. Section 2 first introduces
assumptions and establishes some useful lemmas. Then section 3 investigates the con-
vergence of the modified truncated EM method at a given time T". Moreover, we study
the convergence of the modified truncated EM method over a finite time interval in

section 4. In section 5, we present an example and conduct simulations to support our
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3.2. Preliminaries and assumptions

theoretical results. Finally, we make a brief conclusion in section 6.

3.2 Preliminaries and assumptions

Let B(t) = (By(t), Ba(t), ..., Bn(t))" be an n-dimensional Brownian motion defined on
this space. Let f : R™ — R™ and g : R™ — R™*" both be Borel measurable. In this
chapter, we will use C to stand for generic positive real numbers which are dependent on
T, ~, L, Hy, etc., but independent of A and its values may change between occurrences.
We also let inf ) = oo.

In this chapter, we consider an m-dimensional SDE
dx(t) = f(z(t))dt + g(x(t))dB(t), (3.2.1)

on 0 < t < T with the initial value 2(0) = zp € R™, where T € (0,00) is fixed. We

impose the following standing hypotheses in this chapter.

Assumption 3.2.1. Assume that there is a pair of positive constants v and L such

that
|f(w) = f(0)] S L1+ [u]” + |v|7)|u — o],

for all u,v € R™.

Assumption 3.2.2. Assume that there exists a continuous non-decreasing concave

function k : Ry — R4 such that

du
/0+ ) =% (3.2.2)

and we have

l9(u) = 9(0)* < K(lu— ),

for all u # v, where u,v € R™,
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Assumption 3.2.3. Assume that there exists a positive constant H; such that
(u— )" (f(u) = f(v)) < Hilu—v]?,

for all u,v € R™.

Example 3.2.1. If k1(u) = Ku with K > 0, then it satisfies (3.2.2)). In this case,

[Assumption 3.2.2) reduces to the globally Lipschitz condition.

Let u* € (0,0.5¢71), we define

(W) —ulnwu, 0<u<ur,
RrRo(UW) =
—uw*Inu* — (1 4+ Inu*)(u—u*), u>u*.

(13.2.2)) is satisfied.

Let u* € (0,e73), we define

—ulnuln(—Inwu), 0 <u<u",
k3 (u) =
—u*Inu*In(—Inu*) + k4 (u*)(u — u*), u>u*.

(3.2.2)) is satisfied.

Remark 3.2.1. If [Assumption 3.2.2| holds, then concavity implies that there exists a

positive constant C' such that
l9(u) = g(v)[> < C(L+ u—v[?),
and therefore

lg(u)|* < 2g(u) = g(0)[* +2|9(0)]* < C(1 + [uf).

Combining this with [Assumption 3.2.3] we have

ul f(u) = (u—0)" (f(u) = £(0)) +u" f(0) < C(L+[ul?).
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3.2. Preliminaries and assumptions

Then we derive the Khasminskii-type condition: there exists a positive constant C(p)

depending on p such that
p—1
u® f(u) + ?Ig(u)\2 < C(p)(1+ |ul?), (3.2.3)

for all w € R™ and p > 2.

To study the strong convergence theory, we first introduce a variant of x which also

satisfies [Assumption 3.2.2|

Lemma 3.2.1. Let p > 2. There exists a continuous non-decreasing concave function

R(u) = k(u) + (k(1) + 1)u such that

and k(u) satisfies (3.2.2]).

Proof. To satisfy [Assumption 3.2.2] it is clear that lim,_,o+ x(u) = 0. Now we define

k(0) =0. If m > 1, then

) > (ol + (1= )0 ) = ()

for 0 < u <.

Now we let p > 2 and set 4(u) = k(u) + (k(1) + 1)u. Since k(u)/u is decreasing, we

have
2
—2 2 p
u'P k(ur) = K(UQ ) < u/{(u) = k(u) < k(u),
urp u
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3.2. Preliminaries and assumptions

for 0 < u < 1. Besides, we have

—2
for 1 < w. Then we have &(u) is concave and &(u) > u%ﬁ(u%) V u, for all u > 0.

If k(u) < (k(1) 4+ 1)u, for all u > 0, then we have ﬁ < ﬁ Therefore & (u)

(r(1)+1
satisfies (3.2.2). If there exists a u* > 0 such that

k(u) > (k(1) + 1)u,

then we have

for 0 < u < u*. It follows that, for 0 < u < u*, 5— L

B-2-2).

? 2k(u) #(u)

Remark 3.2.2. Since lim,,_,g+ k(u) = 0, we can find a u* > 0 such that x(u*) < 1. Since

k(u)/u is decreasing, we have

Therefore, for p > 2, it is clear that

()5 = R Iy + 1) E Loy < () + <’”"<“ >> us.

[N4S)
[N4S]

If k(u) < u, we directly have k(u)2z < uz.

Now we cite Theorem 1 in Yamada [34] as an auxiliary lemma.

Lemma 3.2.2. Assume that

[f(u) = f(0)] Vg(w) = g(0)]* <v(lu—vf),

30
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3.2. Preliminaries and assumptions

where v satisfies (3.2.2)). Then SDE (3.2.1)) has a unique solution on [0,T], and it can

be constructed through the Picard iteration method.

Theorem 3.2.1. Under |Assumptions 3.2.1, |3.2.9 and [3.2.5, the SDE (3.2.1) has a

unique solution z(t) on [0,T]. Moreover, we have

sup E|lz(t)|P <oo and E| sup |z(?)|P | < oo,
te[0,T] t€[0,7]
for all p > 2.

Proof. We divide the whole proof into three parts.
(i) Existence

For each positive integer £ € N and u € R™, we define

m(u)z,’;‘u and  fu(u) = f(m(w)),

where we set u/|u| = 0 when u = 0. Therefore, fj(u) is globally Lipschitz continuous

and
doy(t) = fr(wx(t))dt + g(wx(t))dB(t)

has a unique solution on [0, 7] by Now we define the stopping time
O = inf{t € [0,T] : |zk(t)| = k},

for all positive integer k. It is clear that x(t) = x;(t), for 0 <t < 6 AT, where j > k.
Then 6, is non-decreasing, and we then let 0, = limg_,o 0.

Let w € Q. Let t < 6 (w) be arbitrary, then there exists a k(w) > 0 such that
t < Ok(w) < Ooo(w). Then we define z(t,w) = zx(t,w), and it is well-defined by the
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3.2. Preliminaries and assumptions

above arguments. For each k € N, we have

x(t VAN Qk) :Sck(t AN Qk)
tA), A0y
=1 +/O fr(zk(s))ds +/0 g(zk(s))dB(s)

tAO), tAO)
— /0 F(a(s))ds + /O o(x(s))dB(s),

for t € [0,T7.

Now we prove 0, = co. By the It6 formula, we have
tAOy
ot 80)F =laof +2 [ (@ Fla(s) + laa(o)) ds
tAOy
b2 [ (s glals)dB (o)
0
for all ¢ € [0,T]. Using (3.2.3)), there exists a constant C' such that
t
Eja(t A 0)[2 < C + CE/ (s A 0y [2ds.
0
Then the Gronwall inequality implies that there exists a constant C' such that
E|z(T A 6;))* < C.
If Pr(fs < 00) = Pr(fs <T') > 0, then
E|z(T A6k)]> = k*Pr(0p <T) 2 k*Pr(fs < T),

which is unbounded by letting k — oo. This is a contradiction and hence 0o, = co. In
other words, x(t) is a solution on [0, T7.
(ii) Uniqueness

Let z(t) and Z(t) be two solutions of SDE (3.2.1). We define the stopping times
7 =inf{t € [0,T] : |x(t)| = k} and 7, =inf{t €[0,T]:|Z(¢)| > k}.
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Clearly, z(t A 7 A Tx) and Z(t A 7 A T) are solutions of

dzg(t) = fe(zu() i< nnydt + 9(2k () L {t<rnn 1 B (1)

and

dfk(t) = fk(ik(t))j{tgrk/\%k}dt + g(jk(t))j{tém/\—?k}dB(t);

respectively.

Since fr(u) is globally Lipschitz continuous, it satisfies [Assumption 3.2.2, Using

7 cemma o.4.

10

11
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has a unique solution on [0,7]. Therefore, we have zy(t) = z(t), for all ¢t € [0,T].
Then we have z(t A ATi) = Z(t AT A Tg), for all t € [0,T]. Letting k — oo, we then
have x(t) = Z(t), for all ¢t € [0, T].
(iii) Finite Moment

By SDE satisfies the Khasminskii-type condition and then its
finite moments are known results (e.g. see [3/[12]). O

Now we construct the modified truncated EM numerical solutions by borrowing the
truncation method from and instead of using the classical truncation method
in [12], and [32]. Using [Assumption 3.2.1] and the triangle inequality, we have

[f(w)] <[f(w) = £(0)] + [£(0)]
<L A Jul")|ul +[£(0)]
<L A1) (4 [uM)(1 + |ul)

<ep(ul) (1 + [ul), (3.2.4)

33



10

11

12

13

14

15

16

17

18

3.2. Preliminaries and assumptions

where L = L +|f(0)| and ¢(r) = L(1 + |r|7), for r € R.. Using (3.2.4)), we have

@ ¢ o

lu|<r 1+ |u| h

1

for all 7 > 0. Denote the inverse function of ¢ by ¢! and obviously ¢~ : [f/, oo) — R,

is a strictly increasing continuous function. Given a stepsize A € (0,1], let us define

the truncation mapping ma : R™ — R™ by

ra(w) = (Ju ne™t (KATH)) 2

Jul

where K = ¢(|zo|). We then define the truncated function
fa(u) = f(ma(u)),

for all v € R™. We then have
[Fau)] < KATE(1+ [ra(w)]) < KA1+ Ju]),

for all u € R™.
The discrete-time truncated EM numerical solutions Xa (tx) =~ x(tx) for tx = kA

are defined by starting from Xa(0) = xg and computing

Xa(te+1) = Xalte) + fa (Xa(te) A + g (Xa(tk)) ABy,

for k € N, where ABy, = B(ty41) — B(tx). Now we form two versions of the continuous-

time truncated EM solutions. The first one is defined by

EA (t) = Z XA (tk)I[tk7tk+1) (t)7
k=0

for t > 0. Clearly, it is a simple step process and its sample paths are simple functions.
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3.2. Preliminaries and assumptions

The continuous version is defined by

za(t) ::CO—}—/O Ia (SCA(S))dS‘f'/O g(Za(s))dB(s),

for t > 0. It is easy to observe that za (tx) = Ta(tx) = Xa(tr), for all £ > 0. Moreover,

xzA(t) is an It6 process with its It6 differential
dza(t) = fa (Za(t))dt + g (Za(t)) dB(2).

This modified truncated EM solutions for SDEs with concave diffusion coeflicients

have a number of nice properties which are similar to those established in [12}33].

Lemma 3.2.3. Under |Assumptions 3.2.1), [5.2.2 and [5.2.5, there exists a constant C

such that
T b= 1 2 < C 1 2
ol fa ) + 2= lg()? < €+ [uf),

for allu € R™, p > 2 and stepsize A € (0,1].

Proof. Note that

quA(U) = |7Trz|u)|7rA(u)Tf(7TA(U))
= |7TLIELL)| ((TFA(U) - O)T (f(ﬂ'A(U)) — f(O)) + WA(U)Tf(O))

< Hilul|ma(u)] + [ul|£(0)]

< ((H1+0.5) vV 0.5]£(0)]) (1+ [uf?),

for |ma(u)| > 0 and the inequality also holds when |7ma(u)| = 0. By the similar argu-

ments in the result is obvious. O

Theorem 3.2.2. Let p > 2. Under |Assumptions 5.2.1], [5.2.2 and |3.2.5, there exist

constants Cy and Cy, depending on xqg, p, T, etc. but independent of A, such that

sup E( sup |za(t)) < Ch,
A€(0,1]  t€[0,T)
35
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and
sup E|za(t) — Za(t)]P < CoAZ.
t€[0,T]
Proof. The proof is similar to that of Theorem 3.2.1 in [33]. O

3.3 Strong convergence at a finite time T'

In the following, we set ea(t) = x(t) — xza(t) and let R > |z¢| be a real number. We

also define two stopping times,
T =inf{t € [0,T] : |=(t)] > R} and 75 =inf{t € [0,T]: |za(t)] > R}.

In addition, we set 7 = 7 A Tﬁ. From now on, we use C to stand for generic positive
real constants depending on xg, 7', etc. but independent of A and R. Besides, its

values may change between occurrences.

Lemma 3.3.1. Let [Assumptions 3.2.1], [3.2.9 and hold and fix a R > 0. Let

1 p = 2. Let A € (0,1] be sufficiently small such that @fl(KA_%) > R for given R.

13

14

15

16

17
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21

Then we have

sup Elea(t AT)P < G (G (CH(A) n CA%) v CT) :
te[0,T]

where G(r) = f %, forr >0, and G™' is the inverse function of G.

Proof. Before the proof, we observe that |za(s)] < R for s € [0,7 A 7]. Since
<p*1(KA_%) > R, we have fa(za(s)) = f(za(s)) for s € [0,T A 7).

Under [Assumption 3.2.3] we use the It6 formula to derive

ea(t AT <p [ leal)P eals) (o) Haa(s))ds

+p/0 Jea(s)P2ea(s)” (9(2(s)) — g(2a(s)) dB(s)

yoe-l /0 Jea(s)P2lg(a(s)) — g(aa(s)) Pds,
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3.3. Strong convergence at a finite time T’

1 for all t € [0,T].

2 Using the Young inequality and [Assumption 3.2.1, we have

3 E|6A(t/\7')’p

s <pE/O Jeal&)lP2ea(s)” (F(a(s)) — f(za(s) ds

: 48 [ leal)l (s (s) — F@alo)l ds
0
; o= DE [ lea)P la(a(s) - alaa(9) s
: o=V [ lealo)P loaa(s) — oz (o) s,
o -0 E [ feats)Pas+E [ [f(wa(s) - f(aa(s))ds
0 0
: (= DE [ leats)l la(s) - glaa(9) s
0 L 2(p— 1E / " lo(za(s)) — g@als)Pds,

1 for t € [0,7T]. Using|[Remark 3.2.2) we have

-

2 g(a(s)) —glzals)P < wllz(s) —za(s)P)P? < w(la(s) —zals)]?) + Cla(s) —zals)l,

s for s € [0,T]. Using [Lemma 3.2.1} we have

[

14 lea(s)P2lg(z(s)) — g(za(s))]* < lea(s) P *w(|lea(s)?) < A(leal(s)P),
15 and
16 lea(s)l” < Aleals)l?),
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3.3. Strong convergence at a finite time T’

for s € [0,T]. Using [Assumption 3.2.1} we have

Elea(t A T)|P

<CE /0 "Allea(s)P)ds + CE /0 (1+ [za )] + |22 (5)Plaals) — Ta(s)Pds

t
+CE [ (a(s) = 2a(s)) + laals) — 22 () ds,
0
for t € [0,T]. Using the Holder inequality and the Jensen inequality, we have

Elea(t A7)

gC/Ot/\r (Elen(s)P)ds + C/Ot (k(Elza(s) — Za(s)]?) + E|lza(s) — za(s)[P) ds

1/2

e / (E(L+ |za ()27 + |2a(s)?) " (Elza(s) - za(s)*?) " ds,

for ¢ € [0,T). Using |Theorems 3.2.1| and [3.2.2] we finally have

t
Elea(t AT)|P < C'/ k(Elea(s AT)|P)ds + C (/{(C’A) + Ag) ,
0

for t € [0, 7.
Since k is non-decreasing and mk(u) > k(mu), for m > 1, K(CA) < (C V 1)k(A).

Using [Lemma 3.2.1) #(u) a continuous non-decreasing positive concave function for
u > 0. Then

is well-defined, for r > 0. Let G~! be the inverse function of G, then the domain of

G~ is the real line. Then the Bihari inequality implies

Elea(t AT)P < G (G (Cm(A) n CA%) n CT) .
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3.3. Strong convergence at a finite time T’

Theorem 3.3.1. Let|[Assumptions 3.2.1,(3.2.9 and|3.2.5 hold. Let p > 2. Then

sup Elea(t)|P < 267! <G (CH(A) + cﬁ) + CT) ,
t€[0,T]

h.‘N

for all A € (0, (4

)2} . In other words,

lim sup Elea(t)[P = 0.
A=04ef0,1)

1
1\ %
Proof. Given A € <0, (%)2}, we let R = <K§L 2 > " Then we have

1
e(R)=L(1+|R") =L (1 + — ) < KAz,
Now we use the Young inequality and to derive

sup E(lea(t)[PIir<1y)
t€[0,T]

(SIS

1 1
<5 sup Elea(t)[?? A% + G Pr(r <T)ATE,

te[0,7)
< AB 1 E (SuptE[O,T} “r(t)|2p7> +E (Supte[O,T] |SCA (t)’?p’y) A
seart 2 R2pv
<CA%,
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3.4. Strong convergence over a finite time interval

Using the above results and we have

sup Elea(t)[”
t€[0,T]

= sup E(lea(t)["Ir>7y) + sup E(lea(t)"Ir<ry),
t€[0,T)] t€[0,T]

< sup Elea(tAT)P+ sup E(lea(t)[PIr<1y),
t€[0,7) t€[0,7]

<G (¢ (cn(a)+cat) +oT) + oAk,
,

=671 (G (Cr(a) + 0at) +CT) + 67 (G(ead)),

<267 (G (Cn(a) +cat) +cT),

since G and G~ is non-decreasing.

As A =0, Ck(A) + CA% — 0. Using [Lemma 3.2.1|and (3.2.2),

G (Cr(A)+ CAE) +OT — —c0 as A 0.
It follows that
G (G (Cr(a)+ CAE) +CT) -0 as A 0.
Therefore, lima o supycpo, ) Elea(t)[P = 0. O

3.4 Strong convergence over a finite time interval

In this section, we establish the strong convergence theory of the modified truncated

EM method over a finite time interval.

Theorem 3.4.1. Let|Assumptions 3.2.1|,13.2.2 and|3.2.5 hold. Let p > 2. Then

E ( sup ]eA(t)]p> <267 (G <C/<;(A) + CA%) + CT> ,
te[0,7
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for all A € (0, (%)2} In other words,

A=0 \ tefo,17]

Proof. Let Ty € [0,T] be arbitrary. Let J =E ( TinT lea(s)|?P72|g(x(s))

lim E ( sup eA(t)]p> —

0

Using the Burkholder-Davis-Gundy inequality, we have

ThAT
E( sup / lea(s)[P2eals)” (g(x(s)) —g(fA(S)))dB(S)>
10

te[0,11

N

=J.

B ( | M ea(s) P 2lg (e (s)) - sles(s)Pds)

Using the Young inequality, we have

J <E< sup |lea

te[07TI]

=

T AT
(A T)I”/O lea(s)P2[g((s)) — g(fA(S))|2d8>

p

— g(za(s)Pds)".

=

N

Y

Ty AT
S LY RNCTEVEE) —g(fA<s>>|2ds+;E< sup lea<w>l”>-

t€[0,T1]

Using arguments in we have

E( sup |ea(tAT)P
tE[O,Tﬂ

gc/OTl #(Elea(s AT)|P)ds + C (K(C’A) n A%>

+pE [ sup
te(0,T1]

Ty AT
/0 lea(s)P~2eals)” (9(x(s)) — 9(za(s))) dB(8)> :

<0/0T1 R(Elea(s AT)P)ds + C (m(CA) + A%)

2

T
gC/ H(E<
0

sup lea(t A T)|P
0<t<s

Ty AT
* Z;E/O ea(®)"2lg(a(s)) — g(za(s)ds + AE ( sup lea

2 te[0,11]

))ds+C(m(CA)+A§> +;E<

41
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3.4. Strong convergence over a finite time interval

1 Then the Bihari inequality implies

) E ( sup lea(t A T)yp> <G (G (Cﬁ(A) + CA%) + c:rl) :
te[0,Th]

; <G (G (cr(a)+cat) v cr).
4 By similar arguments in [I'heorem 3.3.1] we have

te[0,7

. E ( sup ymw;p) <267 (G (C’m(A) + CA%) + CT) .
s As A — 0, Ck(A) 4+ CAZ — 0. Using and (3.2.2),
. G(Cm(A)JrC’Ag) FOT = —00, as A — 0.

s It follows that

] G (G (Cr(a)+ CAR) +CT) >0, as A0,

o Therefore,

=

1 lim E ( sup eA(t)]p> =0.

A=0 \ tefo,17]
12 D

13 We now consider a non-linear concave function « and derive a concrete convergence

4+ rate for fixed T by applying our new theorems (see [Example 3.5.1| for concrete diffusion

15 coefficients which satisfies [Assumption 3.2.2| with this ).

fun

=
o

Example 3.4.1. Let p=2 and A € (O, (%)2} Let

—ulnu, 0<u<e?,
17 k(u) =

u+672, u>e

42



3.5. Example and simulation

1 Therefore, we can set #(u) = k(u), and we have G(r) = —In(—Inr)+2In2—-2—In(1+

> e ?), for 0 < r < e 2. We now use [Theorem 3.4.1| to derive

3 E ( sup ]eA(t)]2> < 2G7H (G(CK(A)) +CT)
t€[0,T]

4+ since k(u) > u. It follows that

5 E ( sup ]eA(t)|2> <2671 (G(CK(A)) 4+ CT),

t€[0,T]
6 <2G ' (~In(-InC —Ink(A)) +2In2 -2 —In(l +e %) + CT),
7 <Cr(A) 7"

s Given € € (0,1), we then have —In A < CA™¢, for some a constant C' and sufficiently

o small A > 0. Therefore, we have

10 E( sup lea(t)]? | < CAC2e ",
te(0,7)

11 The £2-strong convergence rate is of order 0.5(1 — £)e~¢7, which is smaller than 1/2.

12 An explicit bound on the actual rate of convergence will depend on C. It follows that

13 lim E ( sup eA(t)]2> = 0.

A=0 te[0,T]
1w 3.5 Example and simulation

5 Before we apply the modified truncated EM method to an example, we first state a

=

property of the concave function x(u).

=
o

-

7 Remark 3.5.1. Let x(u) be a continuous non-decreasing concave function which satisfies

s (3.2.2). Since Jr(u) > k(v), for 0 < u < v, we have

=

v K(utv) <

N

o forall 0 <u<o.
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Example 3.5.1. We now consider a two-dimensional Langevin equation (see [8]) but

with locally logarithmic diffusion coefficient of the form

do(t) = z1(t) — (21(t)? + 22(1)?) 21 (1) dt k1 (z1(t)) + 22(t) JB(O).

a(t) — (21(t)” + w2 (t)?)22(t) ra(w2(t)) + 1 (t)

where

0.5u — 0.5e7 !, u< —e 1,

£1(w) = § uy/—1nul, —et<u<ge™,

0.5u +0.5e7 !, u>el,

and

au — b, u< —e 2,
ka(u) = § uy/—Inuln(—Inu), —e2?<u<e?
au + b, u>e 2,

where a = ;’5‘% and b = v/21n2e~2. We also define

—ulnu, O0<<u<e?,
r3(u) =
u+e_2, u>e “

and

—ulnuln(—Inw), O<u<e™,

(6In2 —1)(u—e?) +84In2, u>e?
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For u,v € R?, we let z = v — v. Then we have

(u—=0)"(f(u) = f(v) =" (1= |o+2*) (v +2) = (1 = [v]*)v)
=[z|? — [v]?|2]> = Qv+ 2)T 22T (v + 2)

:|z|2 — |v|2|z|2 — |zT(v + z)|2 — |va|2 —vT2T,

3 1

:|z|2 — ]v|2\z|2 — |sz + szv|2 + f]zTUIQ
2 4

<[z

=|u — v|?,

since [2Tv|? < |v]?|2|%. In other words, f satisfies [Assumption 3.2.3] Also, we have

[f () = F)P =[(u—v) = ul*(w —v) = (u—v)" (u+w)of
<B(ju = o + [ultfu — v + |u + oo |u — vf)

<L+ [ul* + o) u — vf?,

for u,v € R2. In other words, f satisfies [Assumptions 3.2.1]

Using we have

—k1(lu —v|) < K1(u) — k1 (v) < K1 (ju —v]),
for u,v > 0. Then we have
k1(u) — K1 (0)[* < m1(Ju — v])? < 0.5k3(|u — o),

for u,v > 0. The symmetry implies that this inequality also holds for u,v < 0. When

v<0<wuoru<0<uv, we have

|1 () — 1 () = [1(ul) + ma(Jo])* < i (Ju = v)* < 263(Ju — of?).
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3.5. Example and simulation

Similarly, we have
|2 (u) = w2(v)|? < 2k4(|u — v]?).

Therefore, we have

lg(u) — g(v) > <2(k1(u1) — K1 (v1))? + 2(uz — v2)* + 2(ka(uz) — K2(v2))? + 2(ug — v1)?,

<L20u — 0\2 + 2kr3(ju — 1}’2) + 2k4(|Ju — 0\2),

for u,v € R2.

Here, we have

k(u) = 2u + 2k3(u) + 2k4(u).

When u € [0,e74], In(—Inu) > In4 > 1. Since (6In2 — 1) > 3, we have r4(u) >

k3(u) > u. kq(u) satisfies [Example 3.2.1) and we have

/o+ ﬂfg;) -

Therefore, we have

/0+ ffcgz) g /0 6f<il(bu> -

in this example. That is, g satisfies [Assumption 3.2.2]

Let ' =1 and z¢ = (1,2). We now conduct numerical simulations with 1000 sample

paths for stepsizes A = 210,279

solution for this SDE, we regard the numerical solution with stepsize A = 2718 as the

“exact” solution. Using the linear regression, the experimental errors (see|Figures 3.5.1
and [3.5.2]) show that the strong convergence error for the second moment have order

about 1.18 and 1.12, which validate our theory.
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logzA

Figure 3.5.1: The strong errors of Example 3.5.1 between modified truncated EM
method and “exact” solution at time T

3.6 Conclusion

In this chapter, we study and establish the strong convergence of the modified truncated
EM method for multi-dimensional SDEs with polynomially growing drift coefficients
and concave diffusion coefficients satisfying the Osgood condition. We derive a concrete
strong LP-strong convergence of the modified truncated EM method. Our result does
not rely on the Yamada-Watanabe method and therefore is valid for multi-dimensional
SDEs. An interesting thing is that the numerical simulations show that the exact strong
convergence error may also have order 1/2 which is the same as that in the classical
case. The experimental strong convergence error is better than our theoretical error

and will be tackled elsewhere.
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-1
== = rederence line with slope=1

+ experiment error

l0g,E(MaXgeper| X(0)-1,(1) %)

-10 -9 -8 -7 -6 -5 -4
log,L

Figure 3.5.2: The strong errors of Example 3.5.1 between modified truncated EM
method and “exact” solution over [0, T].
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Chapter 4

The logarithmic truncated EM

method with weaker conditions

4.1 Background

In this chapter, we will focus on the CEV model and the Ait-Sahalia model. Coeffi-
cients of these two SDE models are not globally Lipschitz near some finite points. For
example, the diffusion coefficient of the CEV model is oxt/2t? which is Holder contin-
uous near the zero. In recent years, many researchers developed many useful modified
EM methods and establish their strong convergence theory for these two models (see
[16], [18-20], [22,123] [28] and [35H37]).

In particular, Neuenkirch and Szpruch [20] established the drift-implicit EM method
for a series of SDEs which take values in a given domain. Their examples include the
CIR model, the Heston-3/2 volatility model, the CEV model, the Ait-Sahalia model
and the Wright-Fisher model. The drift-implicit EM method is boundary preserving,
e.g., the numerical solution of the Aft-Sahalia model is still positive like the exact
solution is positive. In particular, it is LP-strongly convergent with order one, while
many modified EM methods are generally £P-strongly convergent with order only one
half. However, expensive computational cost is required since the drift-implicit EM

method is an implicit numerical method.
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4.1. Background

In 2016, Chassagneux, Jacquier and Mihaylov |23 developed an explicit EM scheme,
which works for these two SDE models. The domain preserving property of their
numerical solutions are guaranteed by the projection technique. They proved that
their EM method also are £!-strongly convergence with order one.

There are also some modified EM methods with strong convergence order one half.
In [16], the reflected EM method is proved to be LP-strong convergence with order one
half for the CEV model. In particular, a competitive explicit positivity preserving EM
scheme, called the logarithmic truncated EM method (see [35] and [36]), is developed
for scalar SDEs which take values in the positive domain. To be concrete, researchers
apply the logarithmic transformation for appropriate SDEs, and then use the truncated
EM method for transformed SDEs.

The logarithmic transformation will generate exponentially growing coefficients.
Therefore, numerical analysis methods and assumptions in [12] and [13] cannot be used
directly for transformed SDEs. In [35] and [36], authors give restricted assumptions to
derive finite exponential moments for numerical solutions. They then prove that the
logarithmic truncated EM method is £P-strongly convergent with order one half for the
CEV model and the Ait-Sahalia model with appropriate parameter settings.

The main aim of this chapter is to further study the logarithmic truncated EM
method. We will apply weaker assumptions (see section 4 for detailed examples) and
use a new numerical analysis method to prove finite exponential moments of numerical
solutions. We will prove that the logarithmic truncated EM method is £P-strongly
convergent with order one half. Compared to results in [23], the logarithmic truncated
EM method has better theoretical convergence rates for large p.

This chapter is extracted from [2] and is organized as follows. In section 2, we
first introduce assumptions and establish some useful lemmas. Then we construct the
logarithmic truncated EM method and investigate its convergence rates in section 3. In
addition, our numerical analysis methods in section 3 can improve strong convergence
results in [13] and [38]. Two examples will be presented in section 4 to illustrate that
the logarithmic truncated EM method can work well for the CEV model and the Ait-

Sahalia model with mild parameter settings. Finally, we make a brief conclusion in
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4.2. Preliminaries and assumptions

section 6.

4.2 Preliminaries and assumptions

Let B(t) = (Bi(t), Ba(t),...,Bn(t))" be an n-dimensional Brownian motion defined
on this space. In this chapter, we will use C' to stand for generic positive real numbers
which are dependent on T', K1, Ks, o, 8, H, etc., but independent of k£, A and R (used
below) and its values may change between occurrences. We also let inf () = co.

In this chapter, we consider a scalar SDE
dz(t) = f(z(t))dt + g(x(t))dB(t) (4.2.1)

on t € [0,7T] with the initial value z(0) = xo € Ry, where T is a fixed positive number
and f: R — R and g : R — R"™ are Borel measurable.

We first impose three hypotheses.

Assumption 4.2.1. Assume that the drift coefficient f satisfies the locally Lipschitz

condition: there exist real numbers K7 > 0, a > 0 and 8 > 0 such that
f(w) = f()] S Ki(T+u® + 0P + 0% + 077 Ju— o],

for all u,v € R4.

Assumption 4.2.2. Assume that there exist positive real numbers u* > 0, p* > 1,

q* > 0 and K5 > 0 such that

uf (u) = T3 g(u)?

uf(u) + E5tlg)]? < Kol +u?), ue [u,00).

WV

0, u € (0,u*),

Assumption 4.2.3. Assume that there exists a pair of positive real numbers r* > 2

and H > 0 such that

l9(u) = 9(v)* < Hlu — o],
51
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4.2. Preliminaries and assumptions

for all u,v € Ry.

The Ait-Sahalia model and the transformed CEV model satisfy the above assump-

tions (see section 4).

Remark 4.2.1. From |Assumption 4.2.1] we can conclude that

IF@)] < |f(w) = fFD]+FD)] < BK (14w +u ) ju—1]+[f(1)],
and therefore

) < ST WL w1,

Therefore, [Assumption 4.2.1| implies that

()] < Q2K v [FD(E +ut a7,

for u € Ry.

[Assumption 4.2.2| requires that

2 2(1266, v |£(1)
il < T

lg(u)]* < (u+ut? +u ),

and

2

lg(u)” < (lull f(u)| + K2(1+v?)),

p*—1
2
p*—1

< (2K V SO+ w2+ u ™) 1 Ko(1 4+ 4?)),

for u € (0,u*) and u € [u*, 00), respectively. Therefore, there exists a constant C' such

that
lg(u)* < C(1+ T2 +u FtH),

for u € Ry.
52



1

10

11

12

13

14

15

16

17

18

19

4.2. Preliminaries and assumptions

The following lemma shows that SDE (4.2.1)) has a unique strong solution on [0, 7.
In addition, the lemma shows that this solution takes values in the positive domain,

Pr(z(t) € (0,00), for t € [0,T]) = 1.

Therefore, as the above assumptions show, we only need to check properties of drift

and diffusion coeflicients for positive real numbers.

Lemma 4.2.1. Let|Assumptions 4.2.1,[4.2.9 and|.2.5 hold with aV (8+1) < p* +q*.
Then SDE (4.2.1) has a unique strong solution on [0,T]. Moreover, there exists a

constant C such that
sup Elz(tAO)P" < C and sup Elz(tA0)™7 < C,

te[0,77] t€[0,T

where 0 is an arbitrary stopping time. Furthermore, we have that
Pr(z(t) € (0,00), fort e [0,T]) = 1.

Proof. Let k € Ny be a positive integer. Define
me(w) =k~ yap-1y + 2l cucny + klpeuys

for v € R. From

fe(u) = f(mp(u)) and  gg(u) = g(mi(u))

are globally Lipschitz and therefore linear growing. Then the uniqueness and existence

of the solution on [0,77] to

dry(t) = fe(zr(t))dt + gr(zx(t))dB(t)
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4.2. Preliminaries and assumptions

are given in Chapter 4.2.3 of [3]. Now we define the stopping time
T = 1inf{t € [0,T] : xx(t) ¢ (1/k, k)}.

By the uniqueness of z(t), we have z;(t) = x(t), for t € [0,T A 73], where j > k
and j and k are sufficiently large. Therefore, 7, < 7; for all j > k. We then define
Too = 1M 00 7j.

Let w € Q. For an arbitrary ¢ < 7o (w), there exists a k(w) > 0 such that ¢ <
Ti(w) < Too(w). Now we define z(t,w) = zx(t,w) and it is well-defined by the above
arguments. Let m € N, be sufficiently large such that u* € (1/m,m). Let t € [0,T] be

arbitrary, we have

T(t A T) =T (A Ti)
o+ /0 T @ (s))ds + /0 ™ g (5))AB(s)
oo+ /0 F(a(s))ds + /0 9(w(s))dB(s).

Using the It6 formula, we have

Tt A TR)P +x(t A1) T

R —q
=z, + %

o T (w661 et +

[ e gtaleanto

tAT, *
—q" mxs_(‘I*Q):vs z(s —Q+1 2(s)? ) ds
v [t +(<>f<<>> |g<<>>|)d

tATm .
0" [ () gla(s)aB(e). (4:22)

for all ¢ € [0,T].
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4.2. Preliminaries and assumptions

Using [Assumption 4.2.2] [Remark 4.2.1| and the Young inequality, we have

o (a0 + 2

1
lg(x

0P

<C$(t)p*_2 (1 + l‘(t) + $(t)a+2 + I(t)_6+1> I{x(t)G(O,u*)}

+ EKox(t)” 72 (L+ 2(t)?) Ipyefus00)»

<C (1 ()P + x(t)p*’ﬁ’1> ,

for all ¢ € [0, T A 7,,]. Similarly, we have

—x@r@””<dwﬂﬂﬂ%-
g_x@>ww@(awﬂmww—

- +1

2
g +1

2

gu@»P)

g@wnﬁ)qwmmw»

+wx@)*@*+2)(1+—x@)%—x(ﬂa+2%—x(ﬂ‘ﬂ+l)]{dwemﬁaﬂb

<C (Ju |7 4 [T ()7 4 ) T e oy

<C (L a(t) o),

for all t € [0,T A 7). Since a V (8 + 1) < p* + ¢*, we further have

C (142 + ()P P +2()77*) <O (1420 +2()7),

for all t € [0,T A 7p,).

Taking expectations on both sides of (4.2.2]), we then have

E (x(t ATm)P + z(t A Tm)_q*>

tATm
<z a7 + CE/ (1 +a(s)P +a(s)? ) ds,
0

t
<zf 4207 —i—C’E/ (1+:L‘(s/\7m)p*+x(s/\7m)_Q*) ds,
0

for all t € [0,T7].
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4.3. The logarithmic truncated EM method

Then the Gronwall inequality implies that there exists a constant C' such that

sup E (m(t ATm)P + z(t A Tm)_q*> <C.
t€[0,T]

If Pr(7o0 < T') > 0, then we have
E <x(T A TP+ 2(T A Tm)_‘f) >mP N Pr(re < T),

which is unbounded by letting m tend to infinity. It is a contradiction, and therefore
we have Pr(7oc > T') = 1. It means that SDE (4.2.1) has a unique strong solution on
[0,7] and

Pr(z(t) € (0,00), for t € [0,T]) = 1.
By similar arguments as above, there exists a constant C' such that

sup Elz(t A Q)P <C and  sup Elz(tA0) 7 <C,
t€[0,7)] t€[0,T]

where 6 is an arbitrary stopping time. O

4.3 The logarithmic truncated EM method

In [12,|13], Mao established the truncated EM method for SDEs with polynomially
growing coefficients. The truncated EM method is an explicit EM method and it
does not preserve the positivity if it is applied to the SDE (4.2.1). It follows that
the truncated EM numerical solution cannot have finite inverse moments, which are
critical to establish the strong convergence rate theory of the truncated EM method.
However, if we use the logarithmic transformation, then transformed SDEs take values
in the whole of real line. Then we only need to adjust the truncated EM method for
transformed SDEs.

To define the logarithmic truncated EM numerical solutions, we first take the log-
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4.3. The logarithmic truncated EM method

arithmic transformation
y=Inz, ze€R".
Using the It6 formula, we have a new SDE:

y(t) = F(y(t))dt + G(y(t))dB(1),

F(u) = e “f(e") — 0.5e " 2|g(e™)|* and G(u) =e “g(e%),

for u € R.
From we can conclude that

‘F(u)| \ |G(U)|2 < Co(1l+ e + (gf(ﬁJrl)u)7

for some a constant Cy > 1. Now we set o(r) = Co(2 + e(*VB+D)) which is a strictly

increasing continuous function such that

sup |F(u)| V [G(u)]* < ¢(r),

lul<r

L and obviously ¢! : [3C), o) — Ry

for r > 0. Denote the inverse function of ¢ by ¢~
is also a strictly increasing continuous function.
[6] showed that the classical EM numerical solution will explode for SDEs with
polynomially growing coefficients, as the step size tends to zero. Similar phenomena also
happen here. To avoid the explosion, we use two controlled functions |Fa (u)|V|Ga (u)|?
to construct the numerical solutions. First, we define a function hA(A) to control the
value of |F(u)| V |G(u)|?. Tt gives an upper bound of value of |F(u)|V |G(u)|? that the

step size A € (0, 1] can control.
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4.3. The logarithmic truncated EM method

Definition 4.3.1. Let h: (0,1] — [1,00) be a strictly decreasing function, such that

iim0 h(A) = 0o, AR(A) < 4CyV 2¢(|Inzg|) and h(1) > 3Cy V ¢(|Inxg]), (4.3.1)
%

for A € (0,1]. In|Theorem 4.3.1| and [Remark 4.3.2| we will give precise expressions of

h(A), for different parameter settings.
Given a stepsize A € (0, 1], let us define the truncation mapping 7a : R — R by

u

ma(u) = (Jul A~ (R(A))) Tk

where we use the convention ﬁ = 0 when u = 0. We then define the truncated function
Fa(u) = F(ra(u)) and Ga(u) = G(ma(u)),

for all uw € R and therefore
|Ea(u)| VIGa(u)? < o(p™ (A(A))) = (D), (4.3.2)

for all u € R. The discrete-time logarithmic truncated EM numerical solution to
transformed SDEs YA (tx) = y(ty) for t; = kA is defined by starting from YA (0) = yo =

In zg and computing
Ya(ti1) = Ya(te) + Fa (Ya(tr)) A+ Ga (Ya(ty)) AB,

for k € N, where ABy, = B(tg4+1) — B(tr). Now we form two versions of the continuous-
time logarithmic truncated EM solution to transformed SDEs. The first one is defined

by

INOEDIR NCIHLIRION
k=0

for t € Ry. It is a simple step process and its sample paths are simple functions. The
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4.3. The logarithmic truncated EM method

continuous version is defined by

yalt) = vo + /0 Fa (ga(s)) ds + /0 Ga (5a(s)) dB(s),

for t € Ry. We have ya(tr) = ya(tx) = Ya(ti), for all k£ > 0. Moreover, ya(t) is an It6

process with its It6 differential
dya(t) = Fa (Ja(t)) dt + Ga (Ga(t)) dB(t).

Finally, we use the transformation Za (t) = e¥2(®) and z (t) = e¥2® to derive numerical
solutions Z(t) and xa(t) for original SDEs.
To establish the strong convergence theory of the logarithmic truncated EM method,

we first prove some necessary lemmas.

Lemma 4.3.1. Given a real number p, there exists a constant C1(p), depending on p,

such that
P
sup sup E <J_UA(t)> < Ci(p)-
Ac(0,1)tefo,r]  \Za(t)

Let p > 2. Then there exists a constant Ca(p), depending on p, such that

zalt)

fA(t)

sup E
t€[0,T]

for all A € (0,1], where h(A) is defined in|Definition 4.3.1,

Proof. In this proof, we use C(p) and Cy(p) to stand for generic positive real constants
which depend on p but independent of A and k and their values may change between

occurrences. By definitions of za(t) and ya(t), we have

rA(t) = Ta(t) exp (Fa (Ja(t)) (t —tr) + Ga (a(t)) (B(t) — B(tr)))

B2A

for t € [tg,txy+1). Lemma 4.6 in |35 states that E (emZ') < 2e 2, where 8 > 0 and
Z ~ N(0,v/A) is a one dimensional normal random variable. Let p be an arbitrary
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real number. We have

E (?A(t))p —E (exp (pFa (7 (8)) (£ — 1) + pGa (3 (8)) (B(H) — B(t))).
:L‘A(t)

<E (exp (Ip|h(A)A + [plh(A)™°[ (B(t) = B(tx)) ) ,

np2h(A)A> |

<Pexp (\p|h<A>A Ll

fort € [tg,tk+1), where n is the dimension of the Brownian motion B(t). Since Ah(A) <

4Cy V 2¢(| Inzp|), there exists a constant C(p) depending on p such that

E (mA(t)>p < Cilp),

TA(t)

for all ¢ € [0,T] and A € (0,1].

Using the It6 formula for e¥A®) we have

ra(t) = Za(t)+ / ra(s) (Fa(3a(9)) +0.5/Ga(Ga(s))?) ds+ / ra(s)Ca(9a(3))dB(s).

ty tg

for ¢t € [tg,trr1). Now we let p > 2. Since za(t),Za(t) € Ry, we use , (4.3.2),
the Holder inequality and Theorem 1.7.1 in [3] to derive

-
TA
=E /tk ;ig; (Fa(ga(s)) + 0.5|Ga(ga(s))?) d5+/tk ;igz;GA(yA(S))dB(S) ,

xA(S)

15

16

17

18

<Gt -y e [ " |Pa(a(s)) + 051G (7a(s)) 2" ds

ty

EA(S)

G N e x| NENCNETZS
<Capat@inay @b [ |28

60



10

11

12

13

14

15

16

17

18

4.3. The logarithmic truncated EM method

for ¢t € [tg,tg+1). In other words, there exists a constant Cy(p) such that

ZL‘A(t) P P P
E 1| < Cy(p)ABR(A)E,
Ll L (p)ASK(A)
for all t € [0,7] and A € (0,1]. O

Lemma 4.3.2. Let|Assumptions 4.2.1,[4.2.2 and|}.2.5 hold with aV (8+1) < p* +q*.

Let 0 be an arbitrary stopping time. Then there exists a constant C' such that

sup sup E|lza(tAB)P <C and sup sup Elza(tA6)|79 < C.
A€(0,1] te[0,T A€(0,1] t€[0,T

Proof. Let A € (0,1] and 7., = inf{t € [0,7] : xa(t) ¢ (1/m,m)}. Using the It6

formula, we have
P YARNTIAG) | o =a"ya(tATmAD) _ P Yo 4 o —q" Yo
tATmMAO . p*
+p*/ P yals) <FA(Z/A(3)) + 2GA(Z/A(S))|2) ds
0
tATmMm NG . q*
o [ e (Raalo) - LG ) ds
0
tATmM O .
b [ @G (9)dB()
0

tATI NO .
—q / 0V G A (Gin ())AB(s). (4.3.3)
0

Using [Assumptions 4.2.3| |Remark 4.2.1) and the Young inequality, we have

o (fa@alt) | p*—1|g(za(t)?
zalt) < ) T 2 Al )
. ZA()H + ZA ()P TA(H)2 4 Ta(t) A

« (Ka(1+2A(t)?%)
+za(t)? < NOE Iz a () eur 000}

za(®)\" _ . .
<¢ (iiEtD Za” T i eouryy + Czalt)”,
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and
Lo (Ta@a(t) ¢ +1]g(za(t)))?
—@alt) q( N0 2 Iat) >
. z *+1|g(z 2
< —za(t)™? <anEjt()t)) -4 ; ’g(xféf)ﬁ‘ >I{M<t>e(o,u*)}
147 atl 4 = —B 14+ 7 at2 4 & —B+1
+ Caa(t) ( + A(t)m(tﬂ; a®)” 14 A(t)m(ng(t) )I{IA(t)E[u*,oo)]w

*

O\ 7 . )
<C (xA( )) .fA(t)_q +a[{iA(t)€[u*,oo)} +C$A(t) q ,

for all t € [0,T A 1, A 0].

If p* = B —1 > 0, then Za(t)" P iz, he0u) is bounded. If —¢* + a < 0,
then Za(£)™7 "Iz, (1)efu 00y} i bounded. Since a V (8 + 1) < p* + ¢*, we have
p* =B —1> —q¢" and —¢* + a < p*. Let € > 0 be sufficiently small such that
(I+e)p*—p—1)> —¢" and (1 +¢)(—¢" + a) < p*, there exists a constant C' such
that

:EA(t)(p*_B_l)(1+€)l{£A(t)€(O,u*)} < i‘A(t)_q* +C,
and

EA(t)(_q*+a)(1+5)1{m(t)e[u*,oo)} < ZA(t)" +C,

for all ¢ € [0,T A 1, A 0].
Taking expectations on both sides of (4.3.3) and using the above arguments and
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4.3. The logarithmic truncated EM method

the Young inequality, we have

E (xA(t AT AOYP" + zA(EA Ty A «9)_‘1*)

tATIM G . )
éC—HE/ (xa(s)P +za(s)™? )ds
0

oE /Ot/\Tm/\9 ((zig>p*(l+el) . <§28>_q*(1+61)> i

tATM NG . N
+ CIE/ <1 +Za(s)P +za(s)™? ) ds.
0

Using there exists a constant C' such that

sup E ($A(u AT AOY 4+ A (U A Ty A 9)7(1*)

u€(0,t]
t

<C+C sup ]E(.QZA(U/\Tm/\Q)p* —i—a:A(u/\Tm/\@)*q*)ds,
0 u€l0,s]

for all ¢t € [0,T]. The Gronwall inequality implies that there exists a constant C such

that

sup E (xA(t AT AOYP" + ZA(t AT A 9)_‘1*> <C.
te[0,7]

Letting m — oo to conclude conclusions. O

In the following, we set ea(t) = z(t) — xa(t) and let R > |Inzp| be a real number.

Then we define two stopping times:
Tr =inf{t € [0,T] : |y(t)] > R} and 75 =inf{t € [0,T]: |ya(t)] > R},

where y(t) = Inz(t). In addition, we set 7 = 7 A 75"

p*,,,* < p* /\ﬂ
*

Lemma 4.3.3. Let|Assumptions 4.2. ZL |424 and|4.2.51 hold with 0 < = < axiNF-

Given a R > |Inxyg|, let T be the stopping time defined above. Let A be sufficiently small
such that = 1(h(A)) > R. Let 2 < r < r*, then there ervists a constant C, which is
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4.3. The logarithmic truncated EM method

independent of stepsize A, such that

sup Elea(t A7)[" < CATh(A)z,
t€[0,T]

where h(A) is defined in|Definition 4.5.1|

Proof. First we observe that |ya(s)| < R for s € [0, TA7]. Since we have the assumption
0 Y h(A)) = R, FA(ga(s)) = F(ga(s)) and Ga(ya(s)) = G(ya(s)), for s € [0,T A 7].

Using the It formula for e¥2®) and |z(t) — za(t)|", we have

eaten )l =r [ lea2eat) (flats) - 221 raa(o)) ) s
_ tAT oAl(s 2
1 [ s lotalo)) - 22 @ao)| s

T r—2 l’A(S) =
+r lea(s)" “eals) { 9(x(s)) — ——=9(Za(s)) ) dB(s).
0 Za(s)
Taking expectations on both sides and using the Young inequality, we then have

E]eA(t A T)‘r < Ji+ s,

where

tAT
Ji = TE/O lea(s)"? <6A(8) (f(z(s)) = fzals))) +

and

52 =1 [ lea2eals) (flea(e) - 20 f(aalo) ) as

r(r=1(* =1 [ r—2
i IE/O lea(s)|

g(zals)) -

Using |Assumption 4.2.3|7 we have J; < rHE fg/\T lea(s)|"ds. Using the Young in-
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4.3. The logarithmic truncated EM method

1 equality, we derive

tAT A (s
o RSCE [ leal ! |fleale) - f@al) + f@als) - T2 f(eats))| ds
T r—2 = = :EA(S) = 2
: 08 [ leal) ™ oaa(9) - glea(e) + g(ea(s) - 2 g(za(e)| ds
tAT tAT
4 gC’E/ lea(s)|"ds + C]E/ |f(xa(s)) — f(za(s))|"ds
0 0
tAT CL'A(S) ., . . tAT B .,
5 +C]E/ 1= —=I"f(Zals))] dSJrCE/ l9(za(s)) — g(Zals))|"ds
0 Za(s) 0
tAT
INCI .
—I—C]E/ 1— = "lg(zA(s))]"ds.
: - 2 rg(ea o)
7 Using |Assumption 4.2.1} [Remark 4.2.1) and the Holder inequality, we have
tAT tAT _&
: Jo <CE/ yeA(s)y’“dH/ (E\xA(s) NG )”5 (J3<s)ﬁ +J4(s)ﬁ) ds
0 0
tAT e
TA(S), Qtor | THe 1 1
E 1 - € € €
0 +c/0 < -2 ) <J5(s)1+ + Jg(s)TH )ds,
10 where
1 J3(S) =E (1 + xA(S)(lJrs)ar + mA(S)f(lﬂs)ﬁr + IEA(S)(1+E)QT + E:A(S)f(lJrs)ﬁr) 7
12 Ju(s) =E (1 aa(s)IFEr/2 g p (s)"AFEBr/2 7 (5)(1FE)ar/2 4 :iA(s)_(1+€)ﬁ’"/2> :
. Js(s) = E (1 + Ta(s)H) @D 4 @A(s)*ﬁﬂﬁﬁ“) ,
1 and
5 JG(S) - F (1 + jA(8)(1—i—€)(o¢—&-2)r/2 + jA(S)—(ﬁ—l)(H—e)rﬂ) )
16 Under the condition peﬁ:* < ap—il A %, there exists a € > 0 such that
P q . P
= 1 .
17 a+1/\ﬂ>(+€)r >p*—r*
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4.3. The logarithmic truncated EM method

If follows that

(I+e)(a+1)r* <p*, and (14¢)fr" <q".

Since r* > 2, we have oo V (8 + 1) < p* + ¢*. In addition, we have

(1+¢e)(p* —r*) >p*, and therefore 2 <

e

At+er

< p*

Using (4.3.1), (4.3.2)), Cemma 4.3.2] the Holder inequality and Theorem 7.1 in (3], we

then have

(1+e)r

Elza(t) —za(®)] -

=E

123

t
(1+€)r7
CO(t—ty) = 'E [ |za(s)]
ty
(A+e)r

t
+ Ot —ty) 2= 'E [ |za(

tg

h(A)

(1+4e)r 1 (1+4e)r
2 2e

<CA (A

(1+4e)r (1+e)r

<CA h(A) =

[ 2als) (Faloa(s) +051Ga(a(s) P ds+ [

(1+e)r
€

(14e)r

t

7%
(14e)r

(1+e)r

s)| = 1Ga@als))| = ds,

(1+e)r (14e)r
€

(1+e)r

+h(A)EE [ Jaals) T ds,

tg

Using |[Lemmas 4.3.1| and |4.3.2L we have Jy < CE ft/\T

0

lea(s)|"ds + CAZR(A)z.

the Gronwall inequality implies that sup,cio 71 Elea(t A 7)[" < CAzZh(A)z.

Now we state our results on convergence rates.

Theorem 4.3.1. Let |Assumpti0ns 4.2. ZL |424 and |4251 hold with 0 < 2

p*f’f‘*

%. Let 2 <r <7r* and A € (0,1], then there exists a constant C such that

) (P*Ag*)r

(p*—
sup Elea(t)]” < CAZET=1G7
te[0,7]

) F@V(EFPT |

66
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(14e)r
e

Fa(ga(s)) +0.5|Ga(gals))?| < ds

p*
< a+1 A
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h(A) = (3.5C

4.3. The logarithmic truncated EM method

_ (aV(B+1))p*r
V(| Inxzg|)) A 2= GFAd)+HaVEFDIP*T

Proof. Let R = ¢ Y(h(A)). Since 27— < 2 A% we have oV (8 + 1) < p* + ¢*.

Using the Young inequality, the Chebyshev inequality and then we have

pr—r* a+1 B

sup E(lea(t)|"I{r<1y)

t€[0,T)

= sup E (\eA(t

t€[0,T)

)|T§#I{T<T}57PL*> ;

. *— 2 __r
SL* sup Elea(t)P 5+%]E <I{”T<;}>5 o,

P tejo, 1)

*

=L sup Elea(t)[P 6 + pi:r Pr(r < T)0 77,
p

D" tefo, 1)

o)

Lo (E (|z(TAT)P) +E (lza(T AT)PT) N E(lz(T A7) +E (Jza(T AT)|[77)

er o= 1(h(A)) ed* ¢ (R(A))

<O + Ce~ P A9 (M(A) 5= 55

Letting § = e*((p**T)(P*/\q*)wfl(h(ﬂ)))/p*, then we have that

sup E(lea(t) ’rI{T<T})

te[0,7

<Ce (=)@ ") ((A))/P" o = 0" Aa")e ™ (B(A)) o (r (™ Aa™ )™ (R(A))) /p"

<Ce (" =)@ A )~ ((A)) /p*

Using the above results and [Lemma 4.3.3] we have

sup Elea ()|
te[0,7

= sup E(lea(®)["Iiz>7y) + sup E(lea®)] Iir<1y),
te[0,T] te[0,T7]

< sup Elea(tA7T)[" + sup E(lea(®)] Iir<1y),
te€[0,T] t€[0,7]

SOASR(A)E 4 Ce ("= Aa )™ (h(A)) /p"
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4.3. The logarithmic truncated EM method

Since h(A) = h(1) > 3Cp, we have

(?*7T)(P*Aq*) (" —r)(p* Aq*)

N CYCES < h(A) T (av(B+1)p*
=\ 3¢ '

o (0" =) (0 Ag )™ (h(A))) /" _ <h(A) B 2)
Co

Now we set

(v (B+1))p*r

h(A) = (3500 \Vi SD(‘ In ;1;0’)) A 207 0FAg)F(aV(BF1)pFr |

Then there exists a constant C' such that

@* =) (®*Ag*)r
sup Elea(t)]” < CAZ =0 @A) F@vV BT,
t€[0,T)]

O]

[Remark 4.3.1. In [13] and (38|, authors are concerned about a SDE satisfying

ftions 4.2.1] and [4.2.3| with 8 = 0. Since they only considered polynomially growing

when |z| — oo, they only require that there exist positive real numbers p* > 0 and

K5 > 0 such that

pt—1
2

uf(u) + l9(w)]” < Ka(1+u?),

for u € R, which is a part of [Assumption 4.2.2, In [38], authors pointed that conditions

of Theorem 4.3.4 in [13] are valid only for extremely small step sizes. Therefore, their
new Theorem 4.3.4 in [38] are developed for all A € (0,1]. Using their techniques, then

results can finally be expressed as

sup Elea(t)]” < CAZh(A) + Ce~ @ =Craine ! (h(A))/2
t€[0,T7

with assuming that p* > (1 4 «)r. However, [Theorem 4.3.1| shows that, using our new

techniques, their results can be improved as follows:

sup Elea(t)]” < CAZR(A)E 4 Ce @ )¢ (h(A))
t€[0,T]
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with assuming that p* > (o + 1)r. Since lima_,0 h(A) = +o0 and (p* —r) > p* — (1 +

a/2)r, our convergence rate results are better. Moreover, in [Theorem 4.3.1] we give an

explicit formula h(A) and a more detailed convergence rate:

(p*—r)r
sup Elea(t)]" < CATT ) Farr |
te[0,T]
In particular, if o = 0, then sup,c(o 71 Elea(t)[" < CA?2, which is exactly the optimal
convergence rate of the classical EM method for SDEs with globally Lipschitz coeffi-

cients.

Remark 4.3.2. Now we fix ¢ = 1/2 in [Lemma 4.3.3| If we further assume that 1.57* <

P" A 9 then we have

a+2 B+17
p* q . (4o
A > (1 =
a2 g1 e %

If follows that

(I+e)(a+2)r" .

1 1)r*
(I4+e)(a+1)r* < p*, (14e)Br* < q*, 5 <p* and (+6)(2€+ r < q*.

Using (4.3.1)), (4.3.2)), Remark 4.2.1} [Lemmas 4.3.1} 4.3.2, the Holder inequality and
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4.3. The logarithmic truncated EM method

Theorem 7.1 in , we have

(14e)r

zA(t)71‘75

ZA(t)

t 2as) t 2as) e

x S xT S

=& | [* TAT (Fa(aa(e) +051Ga@a()?) ds+ [ 22 GA@A)ABE) :

Jtg, TA(s) g, ZA(s)

Qiar gt |oa(s) |2 o QLo
<ct-t) e B[ |2 |Fa@a (o) +051Ga @A) ¢ ds
t ZA(s)
(142) . a+e)r
SOt —ty) 2 _1]E/ fA(S)GA@A(s))‘ ° g,
Sty ZA(s)
(1+e)r

(1+5)r71 (A+e)r 't |xza(s) e (14+e)r (A+e)r

N T IFA@a()] 25 +1Ga@a()] & ) ds
ty zA(s)
(14e)r
A4e)r 4 t |za(s) € _ (+te)r
+oaw e Ga@al) = ds,
t ZA(s)

n

A+e)d+n)r\ 145 1

(+e)r A+4e)r rt za(s) en a(l+e)A+m)r —B+H)(A+e)(A4n)r T+n

<CA ¢ h(A)  2e / E|— B E(1+4+za(s) 2e + za(s) 2e ds
St INE

10

11

12

n
14e) (14 Fea
Grar o [ Jeacs) ST T a(l4e)(14n)r — B+t (1n)r \ \ T
+ CA™ 2e / E|— ® El14+za(s) 2e + za(s) 2e ds,
tr TA(s
(A+te)r
oAz,

since

(I+e)(a+2)r* .

< d
5z p" an

(1+e)(B+1)r

2e
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Now we set h(A) =

A+e)r
Elea(t) —za(t)]

=E

173

4.4. Examples

t
(1+£)r_
<Ot — tp) "B / A (s)
ti

(14e)r

£

[ 2als) (Falma(s) + 035G (ma(5) ds+ [

t

ty

(1+4e)r

<s>GA<yA<s>>dB<s>\ o

(14e)r

FA(Ua(s)) + 0.5GA(Ga(s))| < ds

t
(Ate)r (A4e)r +E)T‘ (I+e)r
+Ct—tr) 2 'E | |za(s)] [Ga(ya(s))| = ds,
tg
t
(Ate)r E)T (A+e)r +e)r a(lte)r —(B+1)(A+e)r
<OAT (A E/ wa(s) s (1+§;A(s) L N e )ds
tg
t
(+4e)r E)T (I4e)r a(lt+e)r —(B+1)(A+e)r
+ oA 11[—3/ Als) e (1+£A(s) S L Ea(s) )ds,
tg

t
<cAS 1E/ 2al(s) 0 d

173

t
CA(H—) _1/ (E|$A(S)|
ti

(+e)(at2)r

+COA 2= 1+E)T l/t E J;A(S)
tr 'CEA(S)
<OA"E"

and [Theorem 4.3.1] we then have

since

te[0,7

pr—r>p —r"> Ba+4)

S

2¢e

2q*e—

—7r)(

sup Elea(t)]” < CAZ + CA e

/2.

)

[Zals)]

(+e) (0427 \ a2
) ds

2¢*e—(B—1)(1+e)r

2(14¢e)g*r

71

(B—

*ng*)

D(te)r

T <CA

2q*e

(Ba+4) (p* Ag™)r*

2(B+1)p*

(B=1)(A+e)r

(Blza(s) ™) ™7 as,

(4Co V 2¢(|Inxg|)) A=L. By similar arguments in [Lemma 4.3.3

.
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4.4. Examples

4.4 Examples

In section 3, we establish general convergence rate theorems for the logarithmic trun-
cated EM method. The convergence rate results are complicated. In this section, we
will apply the logarithmic truncated EM method for the Ait-Sahalia model and the

CEV model. It can be seen that convergence rate orders are exactly one half.

Example 4.4.1 (Ait-Sahalia model). The Ait-Sahalia model is given by
da(t) = f(x(t))dt + g(x(t))dB(t),

where
flu) = a_qu~t — ag + aju — asu’

and
g(u) = ou’

with a_1,a9,a1,a2,0 >0, p,0 > 1 and 0 + 1 > 2p.
Let r > 2 be a positive real number. Let 0 < v < u be arbitrary. The mean value

theorem implies that there exists a w € (v,u) such that

It follows that
|f(w) = f(0)] < [f/(w)]|lu—v| < (a—1+ a1 +a2) (A +u >+ o+’ 40" Hu -],
since

f/(w) = _a—lw_2 +a; — a29w9_1.

Therefore, [Assumption 4.2.1|is satisfied with « = 6 — 1 and 8 = 2.
72




1

9

11

=
N

13

14

15

16

17

=
o

=

9

4.4. Examples

Let 7* = 3r and ¢* = 15r. Since uf(u) — a—_1 and |g(u)|?> — 0 as u — 0, we can

always find a sufficiently small u* > 0 such that

g +1
2

lg(u)|* >0, ue (0,u”).

uf(u) -

Let p* = 5(6 4+ 1)r and we have

pt—1
2

uf(u) + lg(w)[* = a1 — apu + a1u’® — agu

2

0+1 + (p* — 1)02 u?

p.

It tends to negative infinity as u — oo since 8 + 1 > 2p. Therefore, there always exists

a K > 0 such that

pt—1

g < K(1+u?), we fu*,00)

uf(u) +

That is, the Ait-Sahalia model satisfies [Assumption 4.2.2]

Without loss of generality, we let v < uw. Using the mean value theorem, we have

a_i1(u—v)(ut—v7t) <o0.

Using the Holder inequality, we then have

r*—1

(u=v)(f(w) = f) + —5—lg(w) = g(v)[*

2

=a_1(u—v)(u "t —v ) +ar(u—v)? —ax(u—v) (=’ —y°) +

2

(r* —1)o?

|uf —v”
2

u *_ 1 2.2 u 2
<ai(u—v)? — azf(u — v)/ 27z + (= Vo'p” </ zpldz> ,

v

v * _ 1)o2p2
<ay(u — U)2 + (u—w) / (—a20z9_1 + Woz2p—2> dz,

2

<C(u—v)?,

since p,# > 1 and 6 + 1 > 2p. Therefore, drift and diffusion coefficients also satisfy

[Assumption 4.2.3|

We have 1.5r* < 25 A 5. That is, conditions in [Remark 4.3.2

73
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We also have

Ba+4)p*Ng)r* B0+1)BAO+1))r  3r

26+ Lp* 200+ 1) R

for # > 1. Therefore, we have

sup Elz(t) — za(t)]” < CAZ,
te[0,7

for all A € (0, 1].

Example 4.4.2 (CEV process). The CEV process is given by

dz(t) = Mp — x(t))dt + oz (t)*5+0dB(t),

where A\, u,0 > 0 and 6 € (0,0.5). Using the Lamperti transformation y = z

have a new SDE

dy(t) = fy(t))dt + g(y(t))dB(t),

where

20+ 1
flu) = (0.5-10) <Auu—}t32 VA 2021“) |

and

g(u) = (0.5 —0)o.

0.5—0

, We

Let r > 1 be a positive real number. Let 0 < v < u be arbitrary. The mean value

theorem implies that there exists a w € (v, u) such that
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1 It follows that

2
(14 20)\u s (20 4+ 1)o

: f(w)— f(v)] < (1-26) <1_29 1

) (1+U_ﬁ +v_ﬁ)|u—v|,

. 2
3 since 1555 > 2 and

=20 — )
1-—26 +

4 f'(w) = (0.5 -9) <—(1 - 20))\'“10_ : 20+ 102w2> .

5 Therefore, |Assumption 4.2.1| is satisfied with o = 0 and 8 = 1—2W'

6 Let r* = (8 + 2)r and ¢* = (1.56 4+ 4)r*. Since uf(u) — oo and g(u) is a constant,

7 we can always find a sufficiently small u* > 0 such that

g +1
2

lg(u)|* >0, ue (0,u”).

o uf(u) -

o Let p* = 4r* and we have

pt—1
2

10 uf(u) +

_ a0 ((20 — 1)p* + 2)0?
l9(w)? = (05— 0) <>\uu 2 u? — L ) |

-

1 Since it tends to negative infinite as u — oo, there always exists a K > 0 such that

pt—1
2

12 uf(u) + lg(w)> < K(144?), wu € [u*,00).

s That is, the transformed CEV process satisfies [Assumption 4.2.2]

=

=
IS

Finally, [20] shows that f(u) also satisfies |Assumption 4.2.3| for all r* > 2.

15 Since 1.57* < 2 A conditions in [Remark 4.3.2| are satisfied. Since

q*
a+2 ps+10

. (3a+4)(p*/\q*)r*: 2r* .
2(8 + L)p* B+~

7 we then have

fun

18 sup Ely(t) — ya(t)]*” < CA",
te[0,7
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for all A € (0, 1].

Using y = 29°~? and the mean value theorem, we have

() — za ()] =ly(H) T — ya () =),

2 1420 . .
= 1—26 .
|—5511€ 7% y(®) = ya(t);
14260 14260
< WO T+ ya )T y(t) — ya 0,

where ¢ is a real number between y(t) and ya(t). Using [Lemmas 4.2.1} [4.3.2] and the

Holder inequality, we then have

sup E|z(t) — za(t)]”
te€[0,7

1420 1420 ,
<C sup E (|y(H) T —ya(t) =3 "y(t) — ya(®)]")
te[0,7)

1/2

2(1420)r 2(1420)r

<C sup <E <y<t> EE ¢ (8 )) sup (Ely(t) —ya(®)P) 2,
te[0,7) t€[0,7]

<CA3,

for A e (0,1].

In [35] and [36], authors proved strong convergence theory only for the Ait-Sahalia
model with # > 4p — 3 and the CEV process with 8 € (0.25,0.5). However, our
convergence rate results can be applied for the Ait-Sahalia model with 6 > 2p — 1 and
the CEV process with 6 € (0,0.5). In other words, our convergence theory is established
for more parameter settings.

In addition, we prove that LP-strong convergence rate orders are 1/2 for these two
important SDE models. However, in [23|, theoretical £LP-strong convergence rate orders
are only 1/p, which decays when p becomes large. Therefore, compared to results in
[23], the logarithmic truncated EM method has better theoretical £P-strong convergence

rates when p is large.
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4.5. Numerical simulations

4.5 Numerical simulations

In this section, we will conduct numerical simulations for the Ait-Sahalia model and the
CEV model to support our theoretical results. Let T'= 1 and zg = 0.01. We will con-
duct numerical simulations with 1000 sample paths for stepsizes A = 2714 2713 9-12 o-11
In view of the fact that there is no analytical solution for the Ait-Sahalia model and
the CEV model, we regard the numerical solution with the stepsize A = 272% as the
“exact” solution.

First we consider the Ait-Sahalia model with a_1 = 9, ap = 2, a1 = 1, as = 2,

0=4,p=2and o =7. Then we have « = 3 and g = 2. We can then set

2
p(r) = (Y ai+0%)(2+@VEEDIT) = 63(2 + ),

i=—1

and
h(A) = 252A71,

Using the linear regression, the experimental error (see [Figure 4.5.1) shows that the

strong convergence error for the second moment has order about 1.2871, which is close

to the proven result in
We also consider the CEV model with A =9, u =2, 0 =0.25 and ¢ = 7. Then we

have = 0 and 8 = 4. We can then set

20 + 102)> (2+€(Oc\/(/3+1))7“) _ @(Q—FGST),

32

p(r) = ((0.5 —0)%0% + (0.5 — 0) (A + A+

and

461
8

h(A) AL

Using the linear regression, the experimental error (see [Figure 4.5.2) shows that the

strong convergence error for the second moment has order about 1.2786, which is close

to the proven result in
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Figure 4.5.1: The L£?-strongly convergence order of the logarithmic truncated EM
method for the Ait-Sahalia model.

4.6 Conclusion

In this chapter, we further study the logarithmic truncated EM method. We use weaker
assumptions so that the logarithmic truncated EM method can be applied for the Ait-
Sahalia model and the CEV model with more general parameter settings. We also
prove concrete LP-strong convergence rate of the logarithmic truncated EM method and
our numerical solutions are positive. For the Ait-Sahalia model and the CEV model,
convergence rate orders are half which is exactly the optimal convergence rate order
of the classical EM method for SDEs with globally Lipschitz coefficients. However,
our results excludes SDE models which stay in a given domain, e.g., stochastic SIS
epidemic models and the Wright-Fisher model. But we trust that our techniques can

be generalized for those SDE models with little modifications.
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Figure 4.5.2: The L£2-strongly convergence order of the logarithmic truncated EM
method for the CEV model.
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Chapter 5

Strong order 0.5 convergence of
the projected EM method for the
CIR model

5.1 Background

In this chapter, we are concerned with the CIR model. It is originally introduced to
model the evolution of interest rates (see [39]), and daily used in the financial engineer-
ing industry. In addition, we focus on the inaccessible boundary case. To be concrete,

we are concerned with the SDE of the form
dz(t) = A — z(t))dt + ox(t)2dB(t), z(0) ==z >0, >0, (5.1.1)

with a scalar Brownian motion B(t) and parameters A\, pu, o > 0. If 2A\u/0? > 1, then
its solution is strictly positive by the Feller test. In this chapter, we assume that
2\p/0? > 1.5, so that the boundary point zero is inaccessible.

In [40], Broadie and Kaya showed that its increments can be simulated exactly by
using a noncentral chi-squared conditional distribution. However, the exact sampling
method cannot perform well in some situations. As an example, the exact sampling

method is computationally inefficient and potentially restrictive if the CIR model is
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5.1. Background

part of a coupled system of SDEs with correlated driving Brownian motions (see [25]).
It happens when the CIR model plays the role of a stochastic volatility process, as
in the Heston model. Then the alternative numerical simulation methods are the EM
method, the Milstein method and their variants (see [16-30]).

In the last years, the speed of convergence with regard to convergence rates of these
modified EM methods and Milstein methods has been intensively studied. In
we give a summary of a selection of important EM methods and Milstein methods
with their proven strong convergence rates and corresponding parameter ranges, where
v = 23‘—2“ To the best of our knowledge, the first non-logarithmic convergence rate result
was derived by [16]. [16] introduced the symmetrized EM method and proved that it
is LP-strongly convergent with order one half. However, their parameter conditions are
restrictive. In [17], [19], [20] and [21], researchers combine the Lamperti transformation
and the backward EM method. Then they developed the drift implicit EM (actually it is
an explicit EM method for the CIR model) and proved that it is LP-strongly convergent
with order one for v > 1.5p. [23] introduced an explicit EM numerical method with
truncations and proved its theoretical convergence rate in the £!-norm. In [26] and [27],
Kelly and Lord combined the adaptive stepsize method with the splitting method. They
developed the adaptive splitting EM method, whose convergence rate is of order 1/4. In
[22], the truncated Milstein method was proved to have polynomial convergence rates
for full parameter range in the £'-norm. The full truncation EM method is proposed in
[24], and it is widely used in practice. In [25], Cozma and Reisinger proved that the full
truncation EM method is £P-strongly convergent with order one half for v > (p + 1).

Both of these results are valuable and make great contributions to developing effi-
cient EM methods and Milstein methods for the CIR model. In particular, Cozma and
Reisinger used a novel numerical analysis method in [25]. They studied the ratio of the
difference between the exact solution and the approximation numerical solution to the
value of the exact solution. In this chapter, we will combine the projection technique
with their novel method to study the general £P-strong convergence of the projected
EM method.

The projected EM method was used to approximate reflected SDEs with globally
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Method Norm Parameter Regime Convergence rate order
Classical EM (18], 28] £l Full parameter range 1/lnn
. 1 —1 ZJZ
Drift implicit EM [17], [19], [20], 21] £7,p>1 v > 1.5p 1
1/2-1/(v+1) ve (23,
Truncated EM [23] rl v>2 1/2 v e (3,5],
1, v e (5,00)
Truncated Milstein [|22] £ Full parameter range 05N (v—e¢)
Full truncated EM [24], |25 LPp>2 v>(p+1) 1/2
Adaptive splitting EM [26], [27] Lt c? v>2 1/4
1 T 1 92— € (0,1
Projected EM [29], [30 Ll Full parameter range v/2=¢, ve(01]
1 1 1/2—¢, ve(l,00)

Table 5.1.1: Important EM and Milstein methods with their proven convergence rates

and corresponding parameter requirements (v = 2(:‘—2“)

Lipschitz coefficients (see [41], [42] and [43]), and it is proved to be strongly convergent
with order 1/2 — e. Recently, some researchers also used it to approximate SDEs and
stochastic delay differential equations with superlinearly growing coefficients (see [44],
[45] and [46]). Its strong convergence theory for the Wright-Fisher model is established
in [47). In [29] and [30], researchers studied the weak and £!-strong convergence rate of
the projected EM method for the CIR model. In this chapter, we will study the strong
convergence in the £P-norm. As a result, we prove that the projected EM method is
LP-strongly convergent with order one half for v > (p +1)/2.

This chapter is organized as follows. In section 2, we first introduce notations and
present a lemma to show the uniform moment bound of the exact solution to the CIR
model. Then we construct the projected EM method and investigate its convergence
rates in section 3. In section 4, we will conduct numerical simulations for the CIR model
to support our theoretical results. We first conduct an experiment to validate
In [48] and [49], researchers showed that the £!-strong convergence of numerical
methods using equidistant evaluations of the Brownian process is at best of order
min(v,1). Although not included in our theoretical numerical analysis, we will also
conduct numerical experiments for v € (0,1.5) to numerically show the performance
of the projected EM method. We will also compare the performances of the projected
EM method and the full truncation EM method. Finally, we make a brief conclusion

in section 5.
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5.2. Preliminaries

5.2 Preliminaries

In this chapter, we consider the CIR model:
dz(t) = Mp — z(t))dt + ox(t)2dB(t) (5.2.1)

on t € [0,7] with the initial value x(0) = x¢ > 0, where A\, u,0,7 > 0. Moreover,
we consider cases v = 2;‘—2“ > 1.5 in this chapter. Throughout this chapter, the Feller

condition holds for all theoretical results.

Lemma 5.2.1. For anyp > —v,

sup E|z(t)|P < occ.
te[0,7

Proof. See Lemma 2.1 in [25]. O

5.3 The projected EM method

To define the projected EM method, we first choose a stepsize A € (0,1]. Then the

projected EM numerical solutions za(t) are defined by computing the recursion

Th(E) = walte) + A — 2a ()t — 1) + 0z (t) (B(E) — B(t)),

za(t) = 2} () V0,

where zA(0) = g, t, = kA and t € [tg, trr1]. We also define Na = {0,1,...,[T/A]},
where |T/A] is the largest integer which is smaller than T'/A.

Lemma 5.3.1. Let p > 2 be arbitrary. There exists a constant Cy(p) such that
sup sup Elza()” < Ca(p).

A€(0,1] t€0,T]

Let k € No. For any A € (0,1], there exists a constant Ca(p), independent of A and
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k, such that

sup  EzRFL(t) — za(tp)]P < Ca(p)AS.
tE[tk,tk+1]

Proof. See Lemma 2.8 in [30]. O

Given a stepsize A € (0,1], for k € Na, we define ek (t) = z(t) — 25™(¢) on

t €[0,tr+1] and ea(t) = z(t) — za(t) pn t € [0, 7).

Theorem 5.3.1. Let 2 < p < (2v — 1), where v = 2;‘—2“ > 1.5 in this chapter. Then
there exists a constant C' such that, for all A € (0,1],

sup Elea(t)]? < CAY?,
t€[0,T]

where q € (0,p).

Proof. Let k € N. Then we define the stopping time 7' = inf{t € [ti, tiq1] : 2(t) <
1/n} for n € Ny, and set 7 = oo if it is an empty set. In this proof, we use C to
stand for generic positive real constants, independent of k, n and A, and its values may
change between occurrences.

Let € > 0 be sufficiently small such that v > 0.5(p+1)+2¢e. Let 3 =0.5(p—1) +e¢.
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5.3. The projected EM method

Using the It6 formula, we then have

et ATE) PR (E AT

AT AT
—a(ty) Pk (8P — BA / S a(s) PN ek (s)Pds + X | a(s) ekt (s) Pds
t t
t/\T,? * *
_pA / 2(5) P |k (s)P2ek L (s) () — 2 (t))ds
ti
_ 2 tAT
# R0 / " a(s) LA ) 2 (s)} — malti)d)ds
173
2 tAT
_,_W/ F x(s)75*1|eg+1(s)]pds
ty

e | T (e ()2 () () — () s

ty

—ﬁf’/ F ()P e AH(s)[PdB(s)

+pa/t i 2(s) |k (s)[P 26K (5) (2 (5) 2 — wa(ty)2)dB(s), (53.1)

for all t € [tg, trt1].

Using the Young inequality, we then have

= pAa(s) PR ()P ek (5) (2 (s) — za(th))
= —pAx(s) el ()Pl (5) (a(s) — 2R (5))

= pha(s) Plek" (s)Pek " (5) (2R (5) — wa(t),
<= paa(s) PR ()P + pAz(s) Plel (s)[P ek (s) — zate)l
< = pha(s) PR ()P

+(p = DAa(s) el ()17 + Aa(s) Pl (s) — za(tr)l?,

<= Aa(s) PR ()P + Az (s) I (s) — waltn) P, (5.3.2)

for all s € [tg, try1 A T

Substituting (5.3.2)) into (5.3.1) and taking expectations on both sides of (5.3.1)),
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we deduce

E (2(t A ) Plek (¢ AP

AT

<E (a:(tk A Tg)_ﬁ|ez+l(tk A 7‘,?)|p> —0.5602 (v —B—1) IE/ x(s)_ﬁ_l\ezﬂ(sﬂpds’

tg

B AT 8 ki1 »
(8- 1)AE / 1(s) ~PlekL () Pds

tg

t/\’r,?
L E / £(5) | (5) — a (t) Pds + Jen (),
tk

_ 0,2 AT
Jea®) "D [ (o) P ot

[N
|
8
>
—~~
o~
Eo
N
SIS
S~—
[N}
QL
V2)

~ pBo’E / T ) A (5) P2k () ()

We have

for s € [ty, tpp1 AT
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5.3. The projected EM method

Substituting the above formula into Jj ,,(t) and using the Young inequality, we have

kan(t)
t/\T,? N L .
<k (t) +p5"2E/ 2(s)" P a(s)2 (el ()PP (s) — ma(t)||z(s)? — wa(ty)?|ds,
tr

<Ik,n(t)

15/\7',;L
+pﬁ"2E/ 2(5) PP ()P 2kt () — wa(th)l|a(s)? + za(th)?[e(s)? — zalts)?|ds,
ty

tATy
<ien(t) +p5“2E/ 2(5) 7P R ()P 22kt (5) — walta)llz(s) — za(ty)|ds,
tr

10

11

12

13

14

15

16

17

18

19

t/\‘r,?
Din(®) 49308 [ ale) T (9 ok (o) - aa(t)lds
ty
AT
+p502E/ m(s)fﬁ*l\62+1(5)|p*2|xz+1(s) — xA(tk)|2ds,
tk
t/\TI:L
() + (2p — 3)5B0°E / 2(s) 0|k (s) [P ds
tr

AT
+ (677D 4 26~ P=2)/2) 552 / x(s) TP kT (s) — wa(ty)|Pds,
tk

where 6 > 0 and

T () = p(p—28—1)0?

2 tr

Then we have

E (ot A ) Pl e n )

E/ ' 2(5) ek ()2 (2(5)2 — wa(ty)

1
2

)2ds.

t
<E (m(tk AT Bk (1, A T,g)|p) + (8- 1))\E/ 2(s AT Bl (s A £ |Pds

173

tAT!
5 ,80'2E/ ' x(s) P ek (s)|Pds

ty

+ ((Qp —3)5+

p(p — 28— 1)0?

5+1—V>

+ E/ ! x(s)‘ﬁlelZH(S)!p_z(x(S)% — za(tr)?)2ds

2

tg

+AE / 2(s) |2k (5) — wa(t)Pds

173

t
F(5-®D 4 95-0-2/2) 5,2 / 2(s) Pk (s) — wa(te) Pds,
ty
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5.3. The projected EM method

for all t € [tk, tk+1].
Since v > 0.5(p+ 1) + 2¢ and 5 = 0.5(p — 1) + &, we have

B4+1—v

(2p—3)0 + >

<0 and p—28-1<0

by letting § > 0 be sufficiently small. Using the Holder inequality, and
we have

E (x(s)*(ﬂ+P)‘g;kA+1(s) — xA(tk)|p>

B+p lte—p

it Bt | Frive
< (B (ot +9)) 7 (i (1 100) — malon ) ) T

<COAS, (5.3.4)

M|

where p € {0,1}. Substituting (5.3.4) into (5.3.3), we have

E (ot A ) Pl (e n PP

t
= (m(tk ATE)Pleal b T’?)'p) - UAE/ (s A )Pk (s ATl [Pds + CATE,

173

for all t € [tk, tk+1].

Then the Gronwall inequality implies that

sup B (w(t Art) Olek (E A7)
te(t tit1]

< (E (x(tk A T,:L)*Ble’?l(tk A T£)|p> + 0A¥> ((B=DAVO)A
Since CU]Krl(tk) = za(ty) = 25 () V 0, we have

lex" (te AT = lea(te AT < JeR (b AT
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Then we have

sup B (w(t Ari) ek ATE)P)
tE[tk,thrl]

< <E <$(tk AT TP leh (A T,'g)|p) + CA%) ((B=DAV0)A
:<E <$<tk/\7k) ﬁ’eA (tx N T3 ]p> + CAS > 1)AV0)A

< (B ((te AT) Pleh (e A TP) + CATE ) -0,

<< sup E(I(t/\Tk>5‘€A(t/\Tkﬂp> + A )(( DAVO)A

tE[th—1,tk]

By induction, we have

sup E (:r(t/\Tk.) Blekt Lt A rp )yp) O ((k + 1)A) (B=DAVOR+DAAE

te ([t tit1]

and therefore

sup E (ac(t AT Plealt A T,g)yp) < OAB.
te[0,7

Letting n — oo, we then have

sup E (w(t)—ﬁy%(t)yp) < OAB.
te[0,7

Let ¢ € (0,p). Finally, the Holder inequality and [Lemma 5.2.1| imply that

Bg _Bq
sup Elea(t)|? = sup Elz(t)[ 7 |z(t)] » |ea(t)[?
te[0,7) t€[0,77]

< sup. ((Em o) (B (x<t>—5|eA<t>|p));) ,

p—

< ( sup E|z(t )\B> ' ( sup E<$(t)_'8’€A(t)’p>> )
t€[0,T) te[0,T]

<COA3,

s}
LSRN
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5.4. Numerical simulations

5.4 Numerical simulations

In this section, we will conduct numerical simulations for the CIR model to
support our theoretical results. We let 7' = 1 and use the plain Monte Carlo method.
First, we would like to estimate the rate of the decay of the errors. We will conduct
numerical simulations with 1000 sample paths for step sizes A = 2711 2710 29 9=8
We regard the truncated Milstein numerical solution (see [22]) with the step size A =

2718 as the “exact” solution. We will show that experimental L£P-strong convergence

errors have about order p/2 in[Example 5.4.1L We then perform the test for v € (0,1.5)
in

Example 5.4.1. In this example, we let p = 4, g = 0.001, A =3, 4 =7 and o = 4.
We have v = 2.625. Experimental errors of the projected EM method (see
show that the £%-strong convergence rate has order about 2, which validate
The L£*-strong convergence of the full truncation EM method has not been proved
in [25]. However, the numerical experiment shows that there is almost no difference

between the projected EM method and the full truncation EM method.

Example 5.4.2. In this example, we let p =1, g = 0, A =3, p = 4 and o = 11.
We have v ~ 0.1983 < 1.5 which is excluded in our theory. Experimental errors (see
show that the £*-strong convergence rate has order about v. Different
from the error constants of the projected EM method are now smaller
than that of the full truncation EM method.

Now we conduct numerical simulations for varying v. We still let 7' = 1 and regard

= 2720 a5 the “exact”

the truncated Milstein numerical solution with the step size A
solution. To approximate the strong convergence rate order, we use the linear regression

method.

Example 5.4.3. In this example, we let p = 1, g = 0, A = 3, u = 2 and v €
{0.05,0.1,0.15,0.3,...,1.5}. The numerical experiments show that the £!-strong con-

vergence rate has order about min(v, 1), which validate the result in [4§] and [49].
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Figure 5.4.1: The £*-strong convergence errors of the projected EM method and the
full truncation EM method.

5.5 Conclusion

In this chapter, we combine the projection technique with Cozma and Reisinger’s novel
numerical analysis technique to study the £P-strong convergence of the projected EM
method for the CIR model. We show that the projected EM method is £P-strongly
convergent with order one half for v > (p+ 1)/2. Compared to results in and [30],
our strong convergence theory is concerned with the general LP-strong convergence.
This chapter also answered the question in the conclusion of . The projection
technique can relax the condition on the parameters for the strong convergence theory

of the full truncation EM method without losing the convergence.
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Figure 5.4.2: The L'-strong convergence errors of the projected EM method and the
full truncation EM method.
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Chapter 6

Strong convergence order one of

the projected Euler-Maruyama
method for scalar SDEs defined

in the positive domain

6.1 Introduction

In 2014, Neuenkirch and Szpruch established the drift-implicit EM method [20] for a
series of scalar stochastic differential equations (SDEs) which take values in a domain.
The drift-implicit EM method covers many important SDE models in finance or biology,
e.g., the CIR, the CEV model, the WF diffusion and so on. The drift-implicit EM

method has the following advantages:
i. The drift-implicit EM method is £P-strongly convergent with order one;

ii. The drift-implicit EM numerical solution also takes values in the same domain

which the exact solution takes values in.

However, expensive computational cost is required for implementation of this implicit

numerical method.
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,  There also are many existing explicit EM methods for these SDE models (see
, where detailed parameter settings are explained in section 4), but most of
them are only convergent with order one half. Some of them prove strong order one
convergence, but only in at most £2-norm (see [23], [50], [51], [52]) or for certain param-
eter settings (see [51,/52]). Therefore, it is still meaningful to develop an explicit EM
method with convergence of order one for these SDEs. The main aim of this chapter
is to introduce an explicit EM method, called the projected EM method, to replace
the drift-implicit EM method to some extent. We will show that the projected EM
method is also LP-strongly convergent with order one for those SDE models with a

wide parameter range.

Model Method Norm Convergence Parameter range
rate order
Lamperti(ﬁgl;%cate(l EM !l 1 041>2
Truncated EM
(531, b)) Lr 1/(2p) 0+1>2p
Logarithmic truncated EM »
The Ait-Sahalia model (1351, 1361, 12]) £ 1/2 0+1>2
Exp011ent(i‘<;)10‘t;nned EM 2 1 941>2
Semi-discrete EM rr 1/2 0+1>2p
(51)) 1 0=2,p=15,a3/” > (2p — 0.5)
Positivity-preserving tamed EM 2 1/2 0+1>2p
(155]) 0+1=2p,az/0?>20-05
Projected EM cr 1 , JELRE e
+1=2p, (f+2) v 6p < 202/07H1
p—1 p—1
R,eﬂ?(‘:ltggl) EM Lr 1/2 full parameter range
The CEV model : —~
Logarithmic truncated EM rr 1/2 full parameter range
(135, 361, [2]) - i
Projected EM Lr 1 full parameter range
Lampertl(t‘gl;rzcated EM rl 1 a/a > 15
The Heston-3/2 volatility model Spiitting Milétcin—typc S S
(52) L 1 ai/a3 > 2.5
Projected EM Lp 1 ar/a3 > (3p—1)/2

Table 6.1.1: Existing explicit EM methods for the CEV model, the Ait-Sahalia model
and the Heston-3/2 volatility model.

To use the projected EM method, we have to apply the Lamperti transformation
to the original SDE at first (see section 3 in [20] for details). Then the transformed
SDEs have constant diffusion coefficients, which is critical to prove the strong order one
convergence. The drift coefficients of some transformed SDEs will contain reciprocal

parts (see section 4 for examples), e.g., the CEV model, the Ait-Sahalia model and
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6.1. Introduction

the Heston-3/2 volatility model. Therefore, finite inverse moments of the numerical
solutions may be necessary to prove the strong convergence rate order one.

There have been some research papers which are concerned with explicit EM meth-
ods for the Lamperti transformed SDEs (e.g., see [23], [50], [51], [56] and [57]). In [56]
and [57], researchers apply the truncated EM method [12] and [13] for the transformed
stochastic SIS epidemic model. However, the transformed stochastic SIS epidemic
model does not have reciprocal coefficients parts. In [23], researchers use some tricks to
avoid requiring finite inverse moments of the numerical solutions. Nevertheless, they
can only use those tricks to prove the strong convergence rate order one in £'-norm. In
[23], [51] and [54], the researchers did not consider finite inverse moments of the numer-
ical solutions either. Reciprocal parts are multiplied by an extremely small quantity to
guarantee the expectation of the product is finite. Then they have to make a balance
to derive an optimal convergence rate.

The projected EM has been studied in [29], [30], [41], [42], [43], [44], [45] and [46],
but none of them are concerned with finite inverse moments and applications to the
above SDEs. Finite inverse moments of the numerical solutions have been studied in
[2], [35] and [36], but an additional logarithmic transformation will generate a non-
constant diffusion coefficient. Then it may be hard to prove the strong order one
convergence. Therefore, the key innovation point of this chapter is that we prove finite
inverse moments of the projected EM numerical solutions. We then prove first strong
order convergence in a more general LP-norm for the above SDEs.

This chapter is organized as follows. In section 2, we first introduce notations,
assumptions and establish some useful lemmas. Then we construct the projected EM
method and investigate its inverse moments and convergence rates in section 3. In
section 4, we will illustrate that the projected EM method can be applied for the CEV
model, the Heston-3/2 volatility model and the Ait-Sahalia model. In section 5, we
then conduct numerical simulations for examples in section 4. Finally, we make a brief

conclusion in section 6.
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6.2. Notations and preliminaries

6.2 Notations and preliminaries

As before, we set inf() = oo, where () is an empty set. Moreover, we will use C' to
stand for generic positive real numbers which are dependent on T', «, 8, H, K1, etc.,
but independent of A, t, s, k and m (used below) and its values may change between
occurrences.

In this chapter, we consider a scalar SDE
dx(t) = f(x(t))dt + <dB(t) (6.2.1)

ont € [0, 7] with ¢ > 0 and the initial value x(0) = 29 € R, where T is a fixed positive
number and f : Ry — R is Borel measurable.

We first impose three hypotheses.

Assumption 6.2.1. Assume that the drift coefficient f is twice differentiable. Assume

that there exist real numbers K, Ko > 0, a > 0 and 8 > 2 such that
|f'(2)] < Kq (1 + z +afﬁ> , and |f"(2)] < Ko (1 4+ gol _i_xfﬁfl) 7

for all z € R;.

Assumption 6.2.2. Assume that there exists a positive real number r > 1 such that
liminf z f(x) > (3(8 — 1)r 4 0.5) ¢%.

)0+

Assumption 6.2.3. Assume that there exists a positive real number H > 0 such that

(z —y)(f(z) — f(y) < H|lz — y[,

for all z,y € Ry.
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6.2. Notations and preliminaries

Remark 6.2.1. First, we let 1 < .

fle) =F (1) + / * (),

STORD Y RS
1

Kl (anrl _ 1)

=f(1)+2K1(x— 1)+ P}

i

< (Irleem + S ) e,

Now we let 0 < 2 < 1. We then have

1
f(x) =F(1) - / f(2)dz,
1

<f(1) +K1/ (2+277)dz,

x

=f(1) + 2K, (1 —z) + M,
5—1
< (10124 5 ) (a0,

Therefore, [Assumption 6.2.1| implies

()] < Co(1+ 2" + 27, vz eRy,

where Co = | /(1) + 2K + S + J.

Remark 6.2.2. In the rest of this chapter, we let ¢ = 6(8 — 1)r. We then have

lim inf > 0.5 1)¢2.
i in zf(x) (¢+1)s

Let g9 > 0 be sufficiently small such that
1 2
liminfxf(z) > (g+ 1)

x0t 2(1 - 60)'

We also let p > (¢ + 2) V 6(« + 1)r be sufficiently large.
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6.2. Notations and preliminaries

From [Assumption 6.2.3] we have

wf(zr) < Hlr — 17 = f(1) + f(z) + f(1)z,

for x € Ry. When z > 2, we have

1) (@) Hlo - PP+

x x 2

0.5f(x)/x < (1 -
It follows that

limsup f(z)/x < 2H.
zT+o00

Therefore, there exist positive real numbers z* € (0,1) and K3 such that

(1 —co)zf(z) — (@ +1)?/220, x€(0,2%),

f(z) < K3z, x € [z¥,00).

The next lemma shows that SDE (6.2.1) has a unique strong solution on [0, 7.

Moreover, this solution takes values in the positive domain, i.e.,
Pr(z(t) € (0,00),Vt € [0,T]) = 1.

Therefore, as above assumptions show, we only need to check properties of the drift

coefficient for positive real numbers.

Lemma 6.2.1. Assume that [Assumptions 6.2.1], [6.2.3 and [6.2.3 hold. Then SDE
(6.2.1) has a unique positive strong solution on [0,T] such that

sup Elz(t)|*? < C, and sup Elz(t)|7 < C,
te[0,T] t€[0,T]

where r > 1, ¢ =6(8—1)r and p > (¢+2)V6(a+1)r and they are fized in[Assumptior]
[6.2.2 and [Remark 6.2.2

Proof. Using [Remark 6.2.2] we have aV (8 + 1) < 2p + ¢. Then this is an application
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1 of Lemma 2.1 in [2]. O

2 We also establish a stronger lemma which will be used in section 4. In the proof,

3 we use different ways to estimate upper bounds of

4 o(t)f(x(t) + (p—1)s*/2 and () f(x(t)) - (¢ - 1)s*/2,

5 based on the value of z(t). This technique will be frequently used in the rest of this

6 chapter. For the sake of convenience, we simply write
7 {z(t) € [27,00)} ={w e Q] z(t,w) € [27,00)},

s and it is an F;-measurable subset of the probability space (£, F,Pr). Similar subset

o notations will also be frequently used in section 3.

10 Lemma 6.2.2. Assume that [Assumptions 6.2.1, [6.2.9 and hold. Then there

[

1 exists a constant C, depending on p, q, T, o, B, H, Ky, Ko and s, such that

[
N

E ( sup ]:U(t)|p> <C, and E ( sup ]:v(t)|_q+2> < C,

t€[0,7) t€[0,T
13 wherer >1,¢q=6(8—1)r,p>(¢g+2)V6(a+1)r.

s Proof. Define 1 = inf {t | x(t) < 1/k} for k € Ny. Using the It formula, we have

=

s et AP 4 Lot AT [ = (zol? + o)
. T /0 P ()2 (2()f ((s) + (p — 1)52/2) ds
. +op /0 " le(s)P1dB(s)

18 —(¢-2) /0 ; [(5)| 7 (2(s) f (2(s)) = (¢ = 1)<*/2) ds

19 —¢(qg—2) /0 " |:E(S)|_(Q—1)dB(S),

N

o forall t € [0,7].
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Using the Young inequality, [Remarks 6.2.1] and [6.2.2], we have

()P~ (2(8) f(2(1) + (p — 1)s*/2)
<Cla(®)P72 (1412017 Inweoay

+ Cla(®)P72 (1 + |2(0) ) Lia(eeleo0))
<C (14 272+ 2(1)7),

for all t € [0,7T]. Similarly, we also have

— 217 (2 f(2(t) — (¢ — 1)s*/2)

<= Je(@®)7 (@) F(2(8) = (@ = 1)6%/2) Iaeo.am)
+Clz(®)7 (1 + [2(0)*) Lawefer 00

<O (L+ [a()[*79),

<C (1 + [a(®)] 7+ |z@®)]?) ,

for all t € [0,T], sincep >a+1>a+2—q.
Since z(t) has finite 2p-th moment in|Lemma 6.2.1} we then use the above arguments

and the Burkholder-Davis-Gundy inequality to derive

E ( sup (|x(u A TP + |z (u A Tk)|_q+2)>
u€[0,¢]
<E (|zol” + ol ~"?)
t
+CE / (1+1a()| 742 + [2(s)|7) ds
0
t
+ CIE/ (L4 |2(s)[77 + |2 (s)P) ds
0
. 1/2
+321/26pE ( / Irv(S)IQpQI{se[o,tw}‘“)
0

t 1/2
+32Y%¢(q - 2)E ( /0 [#(5) " pseloanny ds> ’
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1 for all t € [0,T]. Using the Young inequality, we have

: 1/2
2 321/2¢pE (/0 \x(s)!”’QI{se[o,mTk]}dS>
1/2
5 <32'2¢pE [ sup |z (u A T |p/ lz(s)|P~2ds ;
u€l0,t]
4 <0.5E | sup |z(u A 7g)|P +CE/ |$(3)‘p72d57
u€(0,t] 0
5 and
. 1/2
6 321/2g(q —-2)E </ |x(8)|_2q+2f{se[0,t/\rk}}d5>
0
1/2
7 <32'%¢(q —2)E | sup |z(uA )l q+2/ |z(s)|"ds ,
u€[0,¢]
8 <O05E | sup |z(u A1) 792 +C’IE/ |z(s)|"Yds.
u€[0,¢]
o Finally, we have
10 E| sup (|x(u/\7k)\p+ \:U(u/\Tk)|—q+2)
u€[0,¢]
1 <E (‘$0|p + |x0|7q+2)
t
1 + C’IE/ (1 + |x(s)‘—5+2 + |x(s)|l’> ds
0
t
. +CIE/ (14 2(s)|~7 + |o(s)[?) ds
0
t
14 + 0.5E | sup |z(uA7g)lP —i—CE/ |$(8)|p_2d3
u€(0,t] 0
t
15 + 0.5E [ sup ]:U(u/\Tk)|_q+2 +CE/ lz(s)|"ds,
u€[0,t] 0
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6.3. The projected EM method

for all ¢ € [0,T]. Since ¢ = 6(5 — 1)r > [, we further have

- ( sup (|z(u A7)l + |x(uATk)|_q+2)) <2E (|aol? + |20/ 7%)
u€(0,t]

+ CIE/O (14 2(s)|7 + [2(s)[P) ds,

for all t € [0,T]. We then use [Lemma 6.2.1] to derive

E ( sup (Jz(u A7) |P + |z(u A Tk)]q+2)> < C.

u€[0,t]

Finally, we let £k — oo to achieve the result. O

6.3 The projected EM method

Given a step size A € (0, 1], we first define the truncation function by

_ %*51
QS(A) - A2(B 1 ’

1
where €1 € (0, W) .
Let Ag < 1 be sufficiently small such that

2o A 0.52™ € (p(Ay), A—0-5/(o¢+1))‘

Let A € (0,A¢] and k£ € N. Then the projected EM numerical solutions to (6.2.1])

XAa(ty) = x(ty) for tx, = kKA are defined by starting from xy and computing

ZA () = wa(te) + f (zatn) (t = t) + < (B(t) — B(ty)),

za(t) = (9(8) vah (1) A AT D),

fort e [tlmthrl]-
To establish the strong convergence theory of the projected EM solution, we first

prove some necessary lemmas. In we will estimate the upper bounds
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6.3. The projected EM method

of probabilities of some important subsets of (€2, F,Pr). They will be used in proving

Lemmas 6.5.2]and [6.3.9] In[Cemmas 6.3.2|and [6.3.3], we prove the uniform boundedness
of moments of the numerical solution. In particular, is devoted to proving

the uniformly bounded inverse moments of the numerical solution, which is one of main
contributions of this paper. Finally, we establish a stronger result in We

will prove

sup E| sup (|1:A(u)|p—|—|xA(u)|_q+2) < C,
A€(0,A) u€[0,T]

which will be used in section 4.

Lemma 6.3.1. Let k € N be arbitrary and t € [tg,tp+1]. Let A € (0,Aq]. Let

Si,t = { inf :L‘Z(u) < a*/2,za(ty) € [x*,A—Oﬁ/(aH)]} 7

WE [tg,t]

and

SAi= { sup |2 (u) — wa(te)] > coza(te), za(ty) € [¢>(A)ax*)},

ue[tk,t]
where €q is fized in[Remark 6.2.3. Then we have

Pr(SA,USA,) < CAP,

wherer > 1, g=6(8—1)r andp > (¢+2) V6(a+ 1)r.

Proof. Using we have

|
o
—_
+
—~
g
©
ot
=
Q2
+
=
SN—
Q
+
=
+
—~
>
o
ot
=
T
=
|
™
—
~—
|
T
=
~—

)
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for z € [p(A), A=0%/(@+D] Then we have

p/et
E ( sup xg(u) - .TUA(tk)‘ )
uE[tk,tk+1]

<E ( sup | f(za(tr)(u—tr) +<(B(u) — B(tk))|p/51> ,

ue[tk,tk+1]

<E sup
ue [tk ,tk+1]

<orla (IE ‘00(1 F2ATE)A

Co(1+2A73)A + ¢ (B(u) — B(tk))‘p/“> ,

M s E|<<B<u>—B<tk>>|P/€l>,

uE[tk,tk+1]

<SCAOP/e,

Using the Chebyshev inequality, €1 < 0.5 and A < 1, we have

Pr (S )

inf (ah (u) - :EA(tk)) < (272 = xa(tr)) , walty) € 27, A‘O'S/(O‘“)]) :

<u€ tk ,t]

inf (e (u —mm) 2" 2.aalte) € o7, A0,

ue tk,t]

( sup mA — xA(tk)) > /2, xa(ty) € [:c*,AO'5/(“+1)]> ,

WE [tg,t]

<E ( sup ‘mi(u) - xA(tk))p/€1> /(" /2)P/,

<0A0.5p/a1’

SCAP.

105



10

11

12

13

14

15

16

17

18

19

20

6.3. The projected EM method

Using 8> 2, A <1, ¢(A) = AT and the Chebyshev inequality, we have

Pr (Si,t)

=Pr ( sup |z (u) — za(te)] > coza(te), za(ty) € [¢(A),x*)> :

<Pr < sup |24 (u) — za(tn)] > cod(A), za(te) € [¢(A),x*)> :

<E ( sup mZ(u) — xA(tk))p/q) /(50A0-5/(5*1)761)p/617

<0A0'5p/€1 (A—O.5/(,B—1)+51 )p/m 7
—CO AVSP(1=1/(B=1))/e1 AP,

SCAP.

Remark 6.3.1. Let k € N and ¢ € [ty, txy1]. First,

Sii = { inf I‘Z(u) < ‘/L‘*/Q)xA(tk) c [x*,A_0'5/(°‘+1)]}

uE[tk,t]

is Fi-measurable for t € [tg,tx+1]. Second, I sL, is cadlag (right continuous and left

limit). Since [g1 s cadlag and adapted, it is measurable (see section 1.3 in [3])-

Therefore, E f(f 1 sk ds is well-defined and will be used in proving

0.9.0l

Lemmas 6.3.2

and

Lemma 6.3.2. Assume that [Assumptions 6.2.1], [6.2.9 and hold. Then there

exists a constant C, depending on T, o, B, H, K1, etc., such that

sup  sup Elza(t)|? < C,
A€(0,A¢] te[0,T)

wherer =1, g =6(8 —1)r and p > (¢ +2) V6(a+ 1)r. In addition, we have

sup  Eleh (u)[* < C,
’U.E[tk,tk+ﬂ
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6.3. The projected EM method

for all k € N such that kA < (T + A).

Proof. Let k € N. Define 7']].‘7 = inf {t € [ty, tiy1) | 2R (t) > j} for j € N, Let A €

(0, Ag]. Using the It6 formula, we have

A (AT ~foa (b +2 [ ek ()P (h (5)fealt) + (20— 162/2) ds

t/\le
2 / " ek ()2 2K (5)dB(s),

ty

for all t € [tk, tk+1].
Using the Young inequality, [Remarks 6.2.1] and [6.2.2] we have

A (8)[*P72 (2R () f(wa(tr)) + (20 — 1)s%/2)
<C|$Z(S)|2p—2 (1 + |x2(5)|$A (U;)) I{xkA’(s)>x*/2,9:A(tk)e[af*,A’O‘5/(a+1)]}

+ Clak ()22 (1+ |2k ()] (1+2474) ) Iy |

2p—1
TA(9)

:EA(tk)
+C\$’Z(S)|2p_21{(

+C

2p—1 2p—
(Jea ()PP~ + |za(te) [P ﬂ)I{(mZ(s)/zA(tk)71)e(750,50),1’A(tk)€[¢(A),m*)}

@K (5)/2.a (81) 1) €(—e0,20) wa (1) E[H(A),27) }
+ Clak ()22 (1+ 2k ()] (1+2474) ) Iz,

SO+ RO+ aBT) Tk )50 20a () ler A0/ 07)
+C (L+ 2R () + A7P) Isy

k
+C (142X () + |zaltr)]*) I{(mkA(s)/zA(tk)—l)E(—so,60),mA(tk)€[¢(A),m*)}
+C (L+ 2R () + A7P) Isz

<CA (Isy +Isy ) +C (1+ A ()P + lealt))

for all s € [tg, tp+1 A Tf], since 2p > 2q +4 > 123 — 8 > (.
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Taking expectations on both sides and using above arguments, we then have

k k
E|zA (t A T; )|2p

tATE t/\le
<E|xA(tk)|2p+CA+CE/ ’ ]a;A(tk)|2pds+CIE/ " 12k (5) 2P

123 ty

t
L OAP / (Pr(Sk.,) + Pr(S3.,)) ds,

173

for all ¢ € [tg, tg+1]. Using|[Lemma 6.3.1, we have <Pr(8&s) + Pr(Sis)) < CAP. Then

we have

t
sup ElzK (u A Tf)\Qp < Elza(ty)|? + CA +C sup Elzk (u A Tf)\zpds,
UE [tk t] tr u€lt,s]

for all t € [tg,tg+1]. The Gronwall inequality implies that

sup  E|zk (uA7F)|? < (Eloa(ty)|® + CA) 2.
uE[tk,tk+ﬂ

Letting j — oo, we then have

sup  E[zk (v)[* < (Elza(ty)|? + CA) 92,
uE[tk,tk+1}

Moreover, we have

sup E[wA(u)|2p
uE[tk,tk+1}

k 2 2,
< sup B (AP yeforarco) + OO uk e(-sesian})

uE[tk,tk+1}

k % p(1—2(B—1)eq)
< sup Bk +AT T
uG[tk,tk+1}

< (Elza(ty)|? + CA) e + A,

< (Elea(te)? + CA) “2,
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since p > 6(8 —1) > % By induction, we have

sup  Elza(u)? < (70 + C(k + 1)A) CEHDA,
UE[tg tt1]

That is,

sup Elza(t)]? < C.
t€[0,T]

In addition, we have

sup E]:J;Z(uﬂ?p < C,
’uE[tk,tk+ﬂ

for all & € N such that kA < (T + A).

Lemma 6.3.3. Assume that [Assumptions 6.2.1], [6.2.9 and hold. Then there

exists a constant C, depending on T, o, B, H, K1, etc., such that
sup  sup Elza(t)[7? <C,
A€(0,A0] t€[0,T7]

wherer > 1, g=6(8—1)r andp > (¢+2) V6(a+ 1)r.

Proof. Let k € N and A € (0, Ap]. We define

TR =inf{t € [tg, trr1] | 2R (1) < S(A)}.

Using the It6 formula, we have

O]

t/\TZ
P EATR T =aalt)l = [ B (o) (ahs) walte))  (a-+ 163/2) ds

tg

t/\‘rg .
¢ / 2k ()@ VB (s),

tg

for all t € [tg, trt1].
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Using the Young inequality, [Remarks 6.2.1] and [6.2.2] we then have

<C (14 |za(te)?) +

+C
+C
+C

A~@ED/2 (14 9A2) 4 A

( (
(A (4+1)/2 (1+2A *)
|o*

(1 + |1'A(tk)

s)|~ (4+2) (xg flealty)) —(¢+1)s 2/2)
((1-

)|~ (g+2) ( g0)za(

2
tk (xA(tk)) - (q + 1)§ /2) I{ka(S)>(1—EO)IA(tk),a?A(tk)E[d’(A),x*)}

—(q+2) /2) o

—(q+2) /2)

I{a:k (s)<(1—

A,s

for all s € [tg, tg41 A TX], since p > 6(a + 1)r > (a +1).

Taking expectations on both sides and using the Young inequality,
and we then have

ElzA(t A TR)|

c0)za (tr),za(te)E[G(A),27)}

)I{wA (s)>z*/2,xa(tr)E[z* , A~ 0o/<a+1)]}

cA-E-1 (151 n ISZ’S) ,

—eloat) g8 [ A (A al) - 0+ 1672) ds

t
<E|xA(tk)|—q+C]E/ (1+ |za(tn)[P) dS—I—CA_g_lE/

173

tg

<Eloa (i)~ + CA,

for all t € [tg, trt1].

Now we have

TA (t)

za(t) 2

¢

A
(A

(A TA)I{x (tark)<A=05/(at)} +

)=

A(t N TA):

110

A—O.S/(a—i—l)

t
(I'Si,s + I'Si,s) dS,

ti

k
I{z’g(t/\‘rgDA*O'E’/(““)}’ U< T,

t>7'£.
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6.3. The projected EM method

Using and the Chebyshev inequality, we then have

sup  Elza(u)|™?
ue[tk,tk+1}

< sup Elzk(un7i)| ™9+ sup E (A_0'5/(a+1))_qI{zg(uATg»A—O»S/(aH)}),
’U,E[tk,t}H_ﬂ uE[tk,tk+1]

= sup Elek(wAh)| 7+ (A= gup Pr(zk(uark) > A_0‘5/(°‘+1)> ,
UE [t ot py1] UE [t otpy1]
|z (u)[*

k k\|1—q —0.5/(a+1)\—¢q Ayt
< sup  ElzA(uATR)|[+ (A ) D (A05/er D)2

uE[tk,tk+1} UE[tk,tk+1
= sup Elzk(un7h)|77 + C(ATOD/(at1))=Crta)
uE[tk,tk+1}

<E|za(ty)|"9 + CA + CAOPrra)/(a+]),
Since A< Ap<1,7r>1and p> (¢+2)V6(a+1)r, we have

sup  Elxa(u)|™?
uG[tk,tk+1}

<E|za(ty)|"9 + CA + CAP/(@F1)
<Elza(ty)| 7+ CA + CA®,
<Elza(ty)|"? + CA,

<C.
By induction, we have

sup El|lza(t)| 2 < C.
te[0,7]

O]

Furthermore, we use similar arguments to derive a stronger result that the numerical
solutions have finite moments over the time interval [0,7]. This lemma is useful in

section 4.

Lemma 6.3.4. Assume that [Assumptions 6.2.1) [6.2.9 and [6.2.3 hold. Then there
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6.3. The projected EM method

exists a constant C, depending on T, o, B, H, K1, etc., such that

sup E | sup (|xA(u)|p+|:cA(u)|fq+2) <C,
A€(0,A0]  \uel0,T]

wherer > 1, q=6(8—1)r andp > (¢+2) V6(a+ 1)r.

Proof. Let A € (0,Ag]. This proof is simliar to that of [Lemma 6.3.2, The only

difference is that

ue[tk,tk+1} tr

spE ( sup ' IxZ(S)!”_Qw’K(S)dB(S)> # 0.

Therefore, an additional estimate should be added. Using the Burkholder-Davis-Gundy

inequality and the Young inequality, we have

cpE< sup /ule(S)lp_%Z(S)dB(S))

u€ltg,tet1] Jtk

tet1 1/2
CE < / \x’g(s)|2p—2ds> ,
tk

- 1/2
CE[ sup |2 (u) 2R (s)[P2ds |

’U,E[tk,tk_’_ﬂ tr

N

N

tet1
<0.5E< sup |;1:Z(u)|p> —i—C’E/ lzK (s)|P2ds.

uE[tk,tk+1] tr
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1 Combining it with the arguments in we have

2 E{ sup !w'i(u)lp>
’U,G[tk,tk+1]

tei1 th+1
3 <Elza(t)]P + CA + CE / (wa(te)|Pds + CE / 2k (s)Pds
tE ty
4 + CATPH (Pr(SA ) + Pr(SA,))
th+1
: v s B[ AP @B,
WE[ty trt1] (2
[
; <eDE|za(ty)f + CA + CE / 2k (s)Pds
ty
tkt1
7 + 0.5E sup  |z% (w)|P +CE/ |2 (5)[P~2ds.
UE[tgsthy1] tk

s Then we have

9 E( sup }IﬂfA(%OI”) <E< oup IIEZ(U)!p) + (AP,

UE[tg,trt1 thotht1]
10 <C  sup  ElzK (w)]P + CA + ¢(A)P,
ue[tk,thrl]
1 <C.
12 That is,

13 E( sup |xA(u)|p> <C

u€[0,T]

14 Using the Burkholder-Davis-Gundy inequality and the Young inequality, we have

15 E ( sup ' |x2(s)|_q+1dB(s)>

ue[tk,tk+1] tk

tk+1/\‘l'£ 1/2
16 <CE (/ |x£(s)]2q+2ds> ,
123
tk+l/\7'£
17 <0.5E ( sup  |zh (u A T£)|q+2> + CE/ 2K (s)|~%ds.
ue[tk,thrl] tr
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Using arguments in [Lemma 6.3.3] we have

E( sup ]a:A(u/\T )| q+2>

’U,G[tk,tk+1]

<E|xA(tk)|q+2+CA+O.5E< sup |z (u A TR)|” q+2>

ue[tk,tk+1]
tk+1/\7’£
+ C’IE/ 2K (5)|79ds.

ty

Using arguments in we have

E( sup [za(uw)| 7"
uE[tk,tk+1]

<E ( sup |$Z(u A T£)|_q+2> 4 CA0-5(2p+q)/(a+1)’

UE[tg,tr+1]

<E|za(ty)| 792 + CA.

Therefore, we have

IE( sup |33A(u)|_q+2> < C.

u€el0,T

In the following, we define e, = x(tg11) — 2% (tp+1) and e(t) = z(t) — za(t) for

€ [0,T]. We also let

Shi = {ah(ter) € (—o0,0(2))
SAp = {33 (te+1) € [6(A), A_0’5/(a+1)]} :
83 = {x (1) € (A~05/(@+1), OO)} ’

St = {a(tis1) € (0,6())}
St = {a(ten) € (A0 o)L

Theorem 6.3.1. Assume that [Assumptions 6.2.1), [6.2.9 and [6.2.5 hold. Let A €
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(0,Ag]. Let n = |T/A]. Then there exists a constant C, depending on T, «, 3, H,
K1, ete., but independent of A, such that

E( sup \e(tk)|27"> < CA™.

0<k<n

Proof. Using the Tto formula for f(z(s)) — f(2(ty)), we have
ox=etw) + [ (reto) - foat)) s
ettt [ () St
# [ et - atyas
et + [ () St
7

N / /tjcf’(ﬂc(U))dB(U)ds,

=e(tr) + (f(@(tp)) — f(zate))) A+ i,

S

(f'(@(w) f(x(u) + 0.5¢° f" (2(u))) duds

where

go= [ (et et + 056 1 a(w) duds
- | srayinods

Using [Assumption 6.2.3|and the Young inequality, we then have

e =e(tr)” + (f(x(tr) — flwa(te)® A% + J3
+ 2e(te) (f(z(te)) — f(zalte))) A+ 2e(tr) Ji
+2(f(2(te) = flzalt))) Jud,
<1+ 2HA)e(ty)? + 2 (f(x(tr) — f(za(te)? A% + 272 + 2e(ty,) Jy.
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e(tir1)” = (A(A) = 2(t11))? Isy

Then we

have

2
+ (A (tkg1) — @ tk+1)) Isy

(A
n ( —0.5/(a+1) _ (tk+1)>2 ISZ,k

(A Isy  +eilsy eilsy,,  w(tri) € (0,6(A)),

e(tes1)’ < (edls +edls +ells 2(tp1) € [B(A), A0/ @HD)],

In summary,

e(tyt1)?

ei[g&k + ei[gi,k + m(tk+1)21«§i,k’ x(tky1) € (A70'5/(a+1), 00).

we have

< e+ (D) Is1 + x(te1)’Isz.

By induction, we have

e(tp+1)?

k
<IN ST (2(f((t) - flaalt)’ A2+ 207 + 6(A Ls; + falter) P2 )

k

+2) (1+2HA) e(t,) J;,

1=0

k
=M S (2(7(@(t) — T(ea(t)? A% + 207 + 6(APIgy +la(tinn) L )

Let 0 <

k ) tir1 s
231+ 2HA) et / / (F (2(w)) f (2(w)) + 056" (2(w))) duds
i=0 ti ti

k tiv1 s
2 (14 2HA) e(ty) f'(z(u))dB(u)ds.
> I

m

< n be an arbitrary integer. Taking expectations on both sides, we then
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have

E( sup e(tk)zT)
0<k<m+1

<CE (Z (2(7(@(t) — flaa(t))’ A2+ 272 + (A )Is}+|x(tz‘+1)|213i2>>

i=0

k T
U k= Z 2 en uds
+C]E<O<sk£m ;O( +2HA) / / 2(w)) + 0.5 " (x(w))) dud >
k tiy1 ps r
Fle(t; "(x(u u)ds . 3.
+CE (025271 ;(1+2HA) e(tz)/ti /t Sf'(x(u))dB(u)d ) (6.3.1)

Using |[Remark 6.2.1] [Assumption 6.2.1, the mean value theorem and the Young

inequality, we have

(
= (f(x(t:) + fza(t:)))" (f(x(t:) — fza(t))” A,
(14 2(t) 7 4 () =BT e () 2T wa (1)) (a(ls) - walts)) A

<C
<C 1+.’L‘(ti)(2a+1)r+x(ti)_(2ﬂ_l)r+$A(ti)(2a+1) +37A( ) (28— 1)7") A?’T—i—e( )QTAT'
<C (1+x(ti)2(2a+l)r+x(ti)—2(2ﬁ—l)r_i_x (t )2(2a+1)r+x (t:) 2(28— 1)r> A 4 e(t;) 2T AT

Using [Lemmas 6.2.1} [6.3.2)[6.3.3], we then have

AYE (f(x(t;) — flza(t:)* < CA% +e(t) 7 AT, (6.3.2)

since p > 6(av+ 1)r and ¢ > 2(25 — 1)r-.

Using [Lemma 6.2.1] [Remark 6.2.1] [Assumption 6.2.1) and the Holder inequality, we
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have

2r

[l et + 0.5 o)) du| - ds

it+1

m m t
EZ ‘Ji‘ZT <0A27’—1EZ/
i=0 i=0 Yt
m tit1

+CAYEY /

i=0 /1t

<cATE Y / " / 17 @) () + 0.5 (w(w)[* duds
i=0 /ti ti

2r
ds,

s

[ 7/ (aw)aB)

m ti+1 S
+CA2Y / E / |f (z(w) > duds,
i=0 /ti ti
m tiv1 s
<0A4r—22/ / E (1 +$(u)2(20¢+1)7’ +x(u)—2(25—1)r> duds
i=0 v ti ti

m tiv1 s
+ AN / / E (1 + z(u)®r + x(u)*%r) duds,
i=0 i ti

<OA3 1 (6.3.3)

since p > 2(2ac+ 1)r and g > 2(28 — 1)r.
Using (6.3.2)), (6.3.3)), |[Lemma 6.2.1] the Holder inequality and the Chebyshev in-
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equality, we have

E<§mj (20£(a(t)) = Flaalt)® A% + 277 + o(A >Iss+lw<ti+l>|218f)>r
<om”§;“‘3(2<f<m<ti>> Flealt))? A + 272 + (AP Is; + laltin)PLsz)
<Om B ((f0100) — Sralt)” 4+ 19
O p(A)" ip (w(tis1) € (0,6(2))
+Cm"! zmg (B (j2(ti)1")) " (Pr (w(ti11) € (A7, OO))>1/2 ’

<CARE Z ) 4+ CA%

+ Cmr_l(b(A)Qr Z E|‘2)((7ZJ31>€|{_Q

=0
- 12 Elz(t;y1)2\ "/
“A-P/(at1) ’

<SCAE e(t;)* + CA™, (6.3.4)

=0

since p > 6(av+ 1)r, ¢ > 2(28 — 1)r and (quQT)(Ql(gE(lﬁ)_l)el) > 3r.

Using the Holder inequality, we have

)

(1+2HA) (¢ /m/ (f'(z z(u)) + 0.5¢* " (x(u))) duds

. ( Z

tis1 T
(Z(1+2HAm et |/ / | (x )) 4 0.5¢2 " ( ]duds> ,

.
<Cm’"‘1EZ le(t)]"
1=0

/ ‘f )) + 0.5¢ 2 ‘duds

Using the Young inequality, we have

t+1 r

r1|

) + 0.5¢ f” ‘ duds

2r

tit1 s
<A|e(ti)|2T+m2T_2A_1/ |1l )+ 0567 ()| duds

i
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Using the Holder inequality and we have

i+1 "
E| sup Z(1+2HA k=ie / / (w)) + 0.562 " (x(u))) duds
0<k<m
tir1 s 2r
gomﬁzze(u)?r+cm2f—2A2T—2EZ / () f(2(w)) + 0.5 f" (o(u))| du| ds,
° ° t
1+1
<CAIEZ D 4+ Cm-2AN- 32/ / 2(2a+1)r +$(u)—2(25—1)r> duds,

<CAEZ 2r+cm2r 1A4r 1

Since m < |T/A|, we have mA < T. Therefore, we have

k

E ( sup Z( + 2HA) ~e(ty) / o (f"(z(w) f(z(u) + 0.5§2f”(x(u))) duds )
o<ksm |7; -0 t;
<CAEZ )2 4+ CA%, (6.3.5)

Since

5 (ctw) / [ sretpanas 7, )
—e(ee ([ [ srtatnanes | 7).

=0,

k
(1+2HA)*ie(t;) of (x (u)d }
{; / /t k=0,1,2,....m

is a martingale. Using the Burkholder-Davis-Gundy inequality, the Young inequality
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and the Holder inequality, we have

Z(1+2HA F=ie /M/ of(z

(u)ds

E{ sup
0<k<m

tit1 2\ /2
<CE Zye(t )2 B(u)ds ,
i=0
7,+1 2 T/2
<CE (sup le(tr)] >< )s) ,
0<k<m
m tiv1 2\ "
<0.5E <0<S}j£ e(tr) ) E Z B(u)ds ,
m .
tiv1 2r
O5E(sup e(tr) )—i—C’ (u)ds|
0<ksm
i+1 2r
05E< sup e(t) >—|— " 1A2T_IZ/ E / I (x( (u)| ds,
0<k<m i—o Jti t;
m tit1
05E< sup e(tx) >+ 4 IA?”_QZ/ / 1+ 2(u)?" + z(u) 2" duds,
0<k<m o Jti t
<0. 5E< sup e(tx) > + COm" A%
0<k<m

Since mA < T, we have

Z(1+2HA yeie /tﬁl/ of'(x

27“) + CAQT.

(u)ds

E{ sup
0<ksm

<0.5E< sup e(tx)

0<ksm

Substituting (6.3.4 and (| into , we finally have

E ( sup e(tk)2T> < CAEZ e(t;)?" + CA™,
0<ks<m+1 i—0

for all 0 < m < n. Then the Gronwall inequality implies

E( sup e(tk)2r> < CA™,
0<k<n+1

121
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6.4. Examples

6.4 Examples

In this section, we will apply [Theorem 6.3.1]to several important SDE models. Markedly,
the projected EM method can be applied for most of examples in [20].

Example 6.4.1. In this example, we let

where a1 > 0 > ag, by < by <...<bg, by >1and by < —1.
In this case, SDE (/6.2.1)) has the following properties.
1. We have
k

k
fl(@) = Zaibmbi_l and f"(z) = Zaibi(bi —1)zhi2,
=1

i=1

That is, |Assumption 6.2.1| holds with

a=b,—1 and (= —-b+1.

2. Since

lim zf(z) = a;z® 1 = oo,

z[0t+

[Assumption 6.2.2 holds for arbitrary large r > 1.

3. Since a1 > 0> ap, by < by < ...<bi and by < —1,
k
f(z) = Zaib,-xbfl
i=1

is bounded from above for x € RT. Then the mean value theorem implies that

[Assumption 6.2.3| holds.
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Let A € (0,A¢] Then we have

E ( sup |x(ty) — ZL‘A(tk)|2T> < CA™,

0<k<n

for arbitrary large r > 1. Moreover, [Lemmas 6.2.2] and [6.3.4] hold for arbitrary p > 0

and ¢ > 0.

Example 6.4.2 (The Ait-Sahalia model). The Ait-Sahalia model is given by
dz(t) = f(z(t))dt + g(2(t))dB(t),

where
flz) = a1zt —ag + ez — asa?,

and
g(z) = ox’

with a_1,a9,a1,az,0 > 0, p,0 > 1. Using the Lamperti transformation y = P we

have a new SDE
dy(t) = fy())dt + (1 — p)odB(t),
where
fly)=(p—1) (aw% +po2y /2 — ary + agyrT — aflyf%}) :

First, we consider the case §# +1 > 2p. Let r > 1 be arbitrary and A € (0, Ag].
From [Example 641} we have

E ( sup [y(te) — yA<tk>|2T) <ca”r

0<k<n
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and

B (s (s + st ) ) <

0<k<n

Let 0 < u < v. Using the mean value theorem, there exists a £ € (u,v) such that

1
p—1

BT _ o
lu" P T —v T | = & 7T lu— o] <

Using the Holder inequality, we then have

E < sup |z(tg) — xA(tk)‘r)

0<k<n

L 1
:E< sup |y(tg)” 71 —ya(ty) 7T |T> ’

0<k<n

<CE ( sup (Jy(t) 7T +yalte) 7T

0<k<n

_ 2pr _ 2pr 1/2
<C (IE( sup (y(tk) 7T+ yna(tr) Pl>>> <E< sup |y
0<k<n 0<k<n

<CA™.

Now we focus on the critical case with § +1 = 2p and

In this case, we have

fly)=(p—-1) ((az +p02/2) y~ — ary + agy? T — a1y

Then we have the following conclusions.

1. |JAssumption 6.2.1| holds with

2
a=—— and (=2
p—1

124

ptl
p—1

1|u_# —i—v_%Hu —vl.

"0t - (e)r) ).

(tk) — yA(tk)‘2r>>1/2 ;

2a2/02+1
p—1

).
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2. Let 1 <r< 2%2(1/;121451' We have

liminf 2 f(z) =(p — 1) (a2 + po?/2),

zJ0t
2
p—

>(1—p)2o? (3r +0.5),

=(1-p)%?(3(B-1)r+0.5).

2a2/02+1

That is, [Assumption 6.2.2/ holds for 1 < r < SR

_ app L a—i(p+1) _2_
P00 = (=1 (= (aa+ po?/2) 77 — oy L0yt - D) )

is bounded from above for y € RT. Then the mean value theorem implies that
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[Assumption 6.2.3| holds.

Let 1 < r such that (lffrl +2) vV 6r < 2a2p/fi+1. Let 7

have
liminfzf(z) =(p — 1) (a2 + po?/2),

0+
2+0.
=(1- p)2o? <a2/0+15 + 0'5> 7
p J—

1- 22 (2 115
S0 gt (1))

=(1~p)*0* (3(8 — 1)ro +0.5),

2
since % < @/0H05 g mpat is, |Assumption 6.2.2| holds for rg. Since —6rg + 2 =

p—1

2pr

— o1y We have

B ( s (s +a(t) ) ) <

0<k<n

+ 1), then we
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1 From eorem 6.3.1] we have

: E( sup ly(te) —m(tkn”) <oar,

0<k<n

s Using the Holder inequality, we then have

. E ( sup |z(tg) — ZL‘A(tkz)‘r)

0<k<n

1 1

5 _E< sup [y(tx) 7T — ya(tk) ”1’T> ’

0<k<n

__p ——e_|"
o <or (s (ot s i - sl ).
0<k<n

<o (s (e (e e =) (2 (s e -waeo))

0<k<n 0<k<n

8 <CA".
o Example 6.4.3 (The CEV process). The CEV process is given by
10 dz(t) = A(p — z(t))dt + ox(t)/*T0dB(t),

1 where \, j,0 > 0 and 6 € (0,1/2). Using the Lamperti transformation y = z/2=,

-

we

12 have a new SDE

E dy(t) = f(y(t))dt + (1/2 — 0)odB(1),
12 where
15 fly)=(1/2-10) (Auy%z - #02(@—1 _ Ay) _

16 Then we have =0 and 8 = 1_—220.

17 Let r > 1 be arbitrary. Let A € (0, Ap]. From [Example 6.4.1} we have

18 E ( sup |y(tg) — yA(tk)\Qr) < CA?,

0<k<n
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and

2(1420)r 2(1+20)r
E| sup (y(te) 727 +ya(ty) 20 <C.

0<k<n
Let 0 < u < v. Using the mean value theorem, there exists a £ € (u,v) such that

2
1—26

1420 1420
|uT=20 + p1-20 Hu —|.

€150 ju — o] <
YTUIS T

luT=2 — T | =
Using the Holder inequality, we then have

E < sup |z(tg) — xA(tk)‘r)

0<k<n

5 2
) ( sup [y(tg) =2 — ya(ty) =2 ’T> ;

0<k<n

T

1426 1426 r
<0E(sup (Jote) ™ + ya(t) ™5 | 1wt = yalte)l") ) -
0<k<n

2(1420)r 2(1420)r 1/2 . 1/2
< (xa( sup (yuk) 5 ) ))) (E( sup ly(te) — ya(te)] )) ,

0<k<n 0<k<n

<CA".

Example 6.4.4 (The Heston-3/2 volatility model). The Heston-3/2 volatility model

is given by

dz(t) = ayx(t)(ag — z(t))dt + asz(t)>/2dB(t),

where ay,az,a3 > 0 and a1 /a3 > 1. Using the Lamperti transformation y = /2

have a new SDE

, We

dy(t) = f(y(t))dt — 0.5a3dB(t),

where

fly) = (a1/2 + 3a§/8) yl— arasy/2.
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Then we have the following conclusions.

1. [Assumption 6.2.1] holds with

a=0 and (=2

2
2. Let1<r< 2(“/%“ We have

1i30i£1f zf(z) =ay/2 + 3d3/8,

=0.25 (2a; + 1.5a3) ,

2 241 1
=0.75a2 (al/?"" T 6) 7

>0.25a3 (3r + 0.5),

=0.25a3 (3(8 — 1)r 4+ 0.5) .

That is, [Assumption 6.2.2| holds for 1 < r < Qal/gﬁ

3.
f'y) =— (a1/2 + 3a§/8) y 2 — ajas/2
. is negative for all y € RT. Then the mean value theorem implies that
6.2.3 holds.

Let 1 <rsuchthat 1 <r < % Let ro = r + 1/3, then we have
3

liminf zf(x) =a1/2 + 3a2/8,

z[0t
=0.25 (2a1 + 1.5a3) ,
>0.25a3 (3r + 1.5),
=0.25a3 (3(8 — 1)rg + 0.5),
since 1 <r < ;% That is, |Assumption 6.2.2| holds for ry. Since —6rg + 2 = —6r, we
3
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have

B ( s (10" () ) ) <C

0<k<n

From we have

E ( sup |y(tx) — yA(tk)\2T> < CA7,

0<k<n

Let 0 < u < v. Using the mean value theorem, there exists a £ € (u,v) such that
lu™? — v =2/ 3w —v| < 2u™® + 073 |ju— .
Using the Holder inequality, we then have

E < sup |x(tg) — l”A(tk)\T)

0<k<n

=i (sup [y(00)2 ~ ()T ).

0<k<n

<CE < sup (|y(tk)_3 + yA(tk)_g}r |(y(t) — yA(tk:))V)) )

0<k<n
1/2 1/2
< (E( sup (y(tk>—67"+yA<tk>—6’“))) (E( sup \y(twyA(tk)r?’“)) |
O<k<n O<k<n
<CA'".

Compared to existing explicit EM methods, the strong convergence theory of the
projected EM method is established in general £P-norm (see. In particular,
we consider the critical cases for the Ait-Sahalia model. In [51], the researchers only
consider the case: § = 2,p = 1.5. In [55], the research proves strong one half order
convergence for § + 1 = 2p,as/0? > 4p — 2.5 in L2-norm. shows we
require az/0? > (3p—1.5) V (6p — 6.5) for a mean-square convergence rate of order
one. If p € (1,2], our parameter range is wider. If p > 2, then our parameter range
(az/0? > (6p — 6.5)) is smaller. However, a better theoretical LP-strongly convergence

rate is proved.
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6.5. Numerical simulations

For the Heston-3/2 volatility model, the strong convergence theory is also estab-
lished for ai/a3 > 1.5 in L'-norm. Compared to results in [52] (a1/a3 > 2.5), our
parameter range (aj/a3 > 3) is a little smaller. However, a better theoretical L£P-

strongly convergence rate is proved.

6.5 Numerical simulations

In this section, we will conduct numerical simulations for examples in section 4 to
support our theoretical results. In each example, we let T' = 1. We now conduct
numerical simulations with 1000 sample paths for step sizes A = 2717, 2716 9=15 9—14,
In view of the fact that there is no analytical solution for many models in section 4, we

= 2724 35 the “exact” solution.

regard the numerical solution with the step size A
One important contribution of this chapter is that we prove that the projected
EM method is LP-strongly convergent with order one. Therefore, we will show that

experimental p-th strong convergence errors have about order p in each example.

Example 6.5.1 (Ait-Sahalia model). First we consider the Ait-Sahalia model with
20=001,a_1=05,a0=2,a1=1,a2=2,0=4,p=2,0=1andr = 8 in[Example
This is a non-critical case, since § + 1 > 2p. Using the linear regression method,

the experimental error (see [Figure 6.5.1]) shows that the strong convergence error for
the 8th moment has order about 8.8382.

Then we consider the Ait-Sahalia model with zg = 0.01, a_1 = 0.1, a9 = 1, a1 = 2,

aa=1,0=2 p=15 0 =0.1and r = 10. This is a critical case with % >

2 . . . . R
Ipf q V 6r + 2. Using the linear regression method, the experimental error (see

6.5.2) shows that the strong convergence error for the 10th moment has order about

10.1668.

Example 6.5.2 (CEV model). In this example, we consider the CEV model with
zg=0.01, A\=1,u=1,0=0.25, 0 =1 and r = 6 in [Example 6.4.3] Using the linear
regression method, the experimental error (see [Figure 6.5.3)) shows that the strong

convergence error for the 6th moment has order about 5.9578.
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Figure 6.5.1: The £8-strongly convergence order of the projected EM method for the
Ait-Sahalia model with non-critical parameters.

Example 6.5.3 (Heston-3/2 volatility model). In this example, we consider the Heston-
3/2 volatility model with 29 = 0.01, a; = 1, az = 1, ag = 0.2 and r = 16 in [Example|
Then we have 6r < 4a;/a3. Using the linear regression method, the experimental
error (see shows that the strong convergence error for the 16th moment
has order about 16.0405.

6.6 Conclusion

In this chapter, we introduce a new explicit EM method, called the projected EM
method, for a series of scalar positive SDEs. Compared to existing explicit EM methods,
its strong convergence theory has better theoretical £P-strongly convergence rates for
more parameter settings. In addition, we prove that the projected EM method is

positivity preserving. We also conduct numerical simulations to support our theoretical
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Figure 6.5.2: The £'%-strongly convergence order of the projected EM method for the
Ait-Sahalia model with critical parameters.

convergence rate order results. The projected EM method can be applied for many
important SDE models, e.g., the Ait-Sahalia model, the CEV model and the Heston-
3/2 volatility model. A pity thing is that our results exclude SDE models which stay
in an interval, e.g., the Wright-Fisher model. However, we trust that our techniques

can be extended for those SDE models with little modifications.
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Figure 6.5.3: The £5-strongly convergence order of the projected EM method for the
CEV model.
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Figure 6.5.4: The £%-strongly convergence order of the projected EM method for the
Heston-3/2 volatility model.
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Chapter 7

Strong order one convergence of
the projected EM method for the
Wright-Fisher model

7.1 Background

Let B(t) be a scalar Brownian motion defined on the complete probability space
(Q, F,Pr). The main aim of this chapter is to establish the strong convergence theory
of the projected EM method for the Wright-Fisher (WF) model, which is defined by

dy(t) = (a — By(1)) dt + o /|y(t) (1 — y(1))|dB(t), (7.1.1)

where a, 3,0 > 0.

The WF model has many applications in finance and biology (see [58] and [59] for
detailed introductions). However, the analytical solution is inaccessible currently. In
[58], the authors proposed an algorithm to exactly simulate the WF model. It should
be the best numerical simulation method for the WF model, if we only need to simulate
values for a small amount of grid points. However, a complete sample path over an
interval may be required in some situations, e.g., evaluating discounted payoff. Then

the computational cost of the exact simulation will be expensive, and an alternative
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7.1. Background

numerical method is the EM method.

Therefore, an alternative effective EM method with high convergence rate order is
desirable. Moreover, it can be proved that y(t) € (0,1) if a A (B — a) = 0%/2 (see
Appendix A in [60]). Therefore, we also hope EM numerical approximations can stay
in (0,1). As we mentioned above, the drift-implicit EM method [20] can be applied
for the WF model and is £P-strongly convergent with order one. However, expensive
computational cost is also required for implementation of it, since it is an implicit EM
method.

In previous chapters, we introduced many explicit EM methods which are developed
for scalar SDEs whose coefficients are locally Lipschitz near 0. However, coeflicients of
the WF model are also locally Lipschitz near 1. Therefore, numerical analysis methods
in those papers cannot be directly used for the WF model. The SIS epidemic model is
defined by

dy(t) = y(t) (BN — p— v — By(t)) dt + oy(t) (N — y(t)) dB(t),

where N > 0 and pu, v, 8 > 0. The exact solution of it also takes values in an interval.
In [56] and [57], researchers used the Lamperti transformation and the exact solution
of the Lamperti transformed model will take values in the whole real line. They then
use the modified truncated EM to deal with superlinearly growing coefficients of the
transformed SIS epidemic model. However, the Lamperti transformed WF model still
takes values in (0, 7). Therefore, numerical analysis techniques for the transformed SIS
epidemic model is not valid for the WF model.

There are also some specific explicit EM methods which are devised to simulate
the WF model. Stamatiou [60] proposed a boundary preserving semi-discrete method
and proved its convergence without concrete convergence rate order. The balanced
implicit split step method [61] is also a boundary preserving and £!-strongly convergent
with order one half. For appropriate parameter settings, the Lamperti smooth sloping
truncation [59] is proved to be £2-strongly convergent with order one.

In this chapter, we will further study the strong convergence theory of the projected
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7.2. Preliminaries

EM method and extend it for WF model. Similarly, we will prove the convergence rate
order one in general £P-norm and has better theoretical LP-strong convergence rate for
some parameter settings. The main challenge in this chapter is to prove finite inverse
moments near two endpoints, while we only consider one endpoint in Chapter 6. This
chapter is organized as follows. In section 2, we first establish a useful lemma. Then
we construct the projected EM method and investigate its convergence rates in section
3. In section 4, we will conduct numerical simulations for the WF model to support

our theoretical results. Finally, we make a brief conclusion in section 5.

7.2 Preliminaries

As before, we set inf () = oo, where () is an empty set. Moreover, we use C to stand
for generic positive real numbers which are dependent on T', «, 3, o, r (used below),
etc., but independent of A, ¢, k and m (used below) and its values may change between
occurrences.

In this chapter, we first consider the Lamperti transformed WF model. We apply
the transformation z = 2 arcsin(,/y) to the SDE (7.1.1). We then have

dx(t) = f(x(t))dt + odB(t) (7.2.1)
on t € [0,T] with the initial value x(0) = xq = 2arcsin(,/yo) € (0, 7), where

f(@) = (a—0?/4) cot(z/2) — (B — a — o /4) tan(z/2)

and o, B,0,T > 0, yp € (0,1) and 2 < B=)ha e fix 1 < r < M—% and

o2 302

or <g< % — 2. We also let 9 :2arctan( %).
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1 Proposition 7.2.1. Using Lemma 3 in [59], we have

2 f/(.'E) <_007

3 |f(x)] <2nCo (¢! + (m —2)71),

IS

|f'(@)] <x?Co (272 + (m —2)7?) |

() <7®Co (a7° + (m — 2)7%) |

[&]

7 where Cy = 0.5(8 — 02/2).

8 Since f'(x) <0, we have

9 (z —y) (f(z) — fy)) <0,

for any x,y € (0,7). In addition, x2 is the unique root of f(x).

=
o

1 Since

12 iﬁﬁ zf(z) =2(a—0?/4) > (¢+1)0°/2,

15 and

14 J}%g(ﬁ—w)f(x) =-2(f—a—d*/4) < ~(¢+1)0%/2,

15 there exist 0 < x1 < x9 < x3 < w and sufficiently small eg > 0 such that

(1 -eo)zf(z) — (¢ +1)0?/2 >0, z € (0,21),

16

(1—¢co)(m—2)f(x) + (¢+1)0%/2 <0, z € (x3,7).

17 Then we prove finite moments of the exact solution to the Lamperti transformed

18 WF model.
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7.2. Preliminaries

Lemma 7.2.1.

sup E (z(t)"7+ (7 — z(t)) %) < C.
t€[0,T]

Proof. Given a k € N, we define the stopping time
T, = 1inf{t € [0,T] : z(t) ¢ (1/k,m — 1/k)}.
Using the It6 formula, we have

x(tNTE) T+ (m—x(t A1) !
tATE
—3% 4 (m— o) T — g /0 £(5)7D (2(s) £ (2(5)) — (g + 1)0%/2) ds
tATE
Ty /0 (r — ()" @D ((x — 2(s)) f(2(5)) + (q + 1)o?/2) ds
— qo tATk:Us_( +1) S
’ /0 (5)~ @D dB(s)

+qo /0 o (m — x(s)) @ DdB(s), (7.2.2)

for all ¢ € [0,T].

Using [Proposition 7.2.1) we have

— ()" (2(t) f (2 (1) — (g + 1)0*/2)
<= a(t)"9) (2() f(2(1) = (0 + 1)0%/2) Taye(o1)
+ ()" (27 Cox(t) (x(t) " + (r —2(8) ") + (g + 1)0%/2) Ta(yelerm)

<O (14 (r—a(t)™),
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7.3. The projected EM method

and

(m — ()~ ((r — 2(0) f(2(1) + (g + 1)0?/2)
<CO(r — ()" (1 4+ 2(t) " (7 — 2(1))) Twwe©.0s))
+ (= 2() 7 ((r — 2(8))f(@(6) + (0 + 1)0*/2) Ip(ryefes m)

<C (14271,

for all t € [0,T A 7).
Taking expectations on both sides of ((7.2.2)) and using the Young inequality and

the above arguments, we then have
t
E(@ztAm) 9+ (m—a(tAT) 7)< C’—|—C’E/ (z(s A7)~ T+ (T — (s ATR))9) ds,
0
for all t € [0,7]. Then the Gronwall inequality implies that
E(z(t A7) 9+ (r—z(tAT) ") < C.

Letting k£ — oo, we have the desired conclusion. O

7.3 The projected EM method
Given a step size A € (0, 1], we first define the projection function by
9(A) = A7,

where 1 € (0,0.125). Then the projected EM numerical solutions to the Lamperti
transformed WF model za (t;) ~ x(tx) for t;, = kA are defined by starting from z and

computing the recursion

zA(t) = za(ty) + f (za(tn)) (t = te) + 0 (B(t) — B(ty)),

za(t) = (6(A) Vah(®)) A (7 — 6(A)),
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7.3. The projected EM method

for t € [tg,try1]. Finally, we let ya(t) = sin? (za(t)/2) to derive projected EM solutions
to the original WF model.

To establish the strong convergence theory of the projected EM solution, we first

prove two useful lemmas. In we will estimate upper bounds of some
subsets of (2, F, Pr). For example, we will estimate an upper bound of the probability

of

Sé,t = {w €Q ’ inf .CL‘IZ(U,W) < (1 - €O)xﬁ(tkvw)7$A(tkaw) € [d)(A)axl]},

for t € [tg,tg41]. For the sake of convenience, we will simply write it as

She={inf , #h0) < (1 - cjoa(t).aa o) € [o(A). 1}

Similarly, we let

e
in Lemma 7.3.21

Lemma 7.3.1. Let Ay < 1 be sufficiently small such that xq, x1, 2,3 € (H(Ag), ™ —
#(Ao)). Let A € (0,A¢] and k € N be arbitrary. Let t € [ty,tg+1]. Then we have

Pr(Sy,USA,USA,;USA,) < CAIT?, (3.1)

Sii = { sup xZ(u) > xa(ty) +eo(m — zalty)), za(ty) € [x3,m — qﬁ(A)]} ,

Sgt = { sup xZ(u) > 0.5 (z3+ 71— d(Ao)),za(ty) € [(ﬁ(A),xg]}
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and

si,tz{ in x2<u><o.5<¢<Ao>+x1>,xA<tk>e[xl,w—qu)]}.

uE[tk,t]

Proof. Using |Proposition 7.2.1] and the Burkholder-Davis-Gundy inequality, we have

(g+2)/e1
E( sup [a (u) = wa(ti)| )

ue[tk,tk+1]

=E< sup |f(l‘A(tk))(u—tk)+a(B(u)—B(tk))|(q+2)/51>,

ue[tk,tk+1]

uE[tk,tk+1]

<CE <|47TC’0¢(A)_1A|(CI+2)/51 + ot/ sup  |Bu) — B(tk)|(q+2)/€1> :
q+2
<CA21
Using the Chebyshev inequality, we then have

Pr < inf 2K (u) < (1 —eo)zaty), za(ty) € [¢(A),$1]>

=Pr < inf (xg(u) — xA(tk)) < —coza(ty), za(ty) € [qb(A),xl]) )

u€lty,t]

<Pr ( sup |24 (u) — xa(th)] > cod(A), za(ty) € [¢(A)aw1]> :

ue[tk,thrl]

<Pr ( sup |k (u) —za(ty)| = €o¢(A)) ,
2)/eq

B (s0Pucp ) [P 1) — a(0) )

h (e0pp(A))(a+2)/e1 ’

SCATT2
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7.3. The projected EM method

where ¢(A) = Az¢1. Similarly, we also have

Pr ( SEpt] 2K (u) = za(ty) + eo(m — za(t)), za(ts) € [x3,7 — qZ)(A)])

=Pr ( sup (:rg(u) — ZL‘A(tk)) > eo(m — xa(tr)), va(ty) € [z3, 7 — @(A)O 5

u€Elty,t]

<Pr ( sup 2R (u) — za(ty)] = 50¢(A)) )

UE[tg thy1]

SCATH2,

Since x1,z3 € (P(Ao), ™ — (D)), 0.5(m — ¢(Ag) — x3) and 0.5(z1 — ¢(Ap)) are

constants. We then have

Pr ( sup 2k (u) = 0.5 (x3 + 7 — ¢(Ao)), za(ty) € [qb(A),azg])

—Pr ( sup (x’g(u) - xA(tk)> > 0.5 (25 + 7 — (Do) — za(tr), za(t) € [H(A), x3]> :

<Pr ( sup (a:]Z(u) — xA(tk)> > 0.5(m — ¢(Ag) — 3), 2 (t) € [QZ)(A),xg]) ,

<Pr ( sup |z (u) — za(tp)] = 0.5(1 — ¢(Ag) — x3), zA(tr) € [qb(A),mg]) ,

’U,G[tk,tk+1]

12

13

14

<E (Supu€[tk,tk+1} |x2(u) - xA(tk)‘(q+2)/€l>

(0.5( — p(Ag) — mg))aHD/e

o2
SCA=>,

gch-i-Q’

143

)



10

11

12

13

14

15

16

17

18

7.3. The projected EM method

and
<ue112f ; 2R (1) < 0.5(p(Ao) + x1), zA(tg) € [x1, 7 — (;S(A)])
<u€1r§f ; 2k (u) — xA(tk)) < 0.5(0(Ag) + x1) — xa(tr), xza(ty) € (21,7 — qﬁ(A)}) ,
<pr( inf (500~ 2a(0)) < 05(6(80) - 21).0a(00) € o7~ (A)]).
( Sup ]|33A u) — za(te)] = 0.5(z1 — (o)), za(ty) € [z1, 7 — ¢(A)]> ;
UE(tk, k1
E (suPucfy . |7 (0) — 2 ()T
(0.5(z1 = 6(A0))) 2= |
<oaly,
gCAqu?,
since €1 € (0,0.125) and A < 1. O

is devoted to proving finite inverse moments of the projected EM

numerical solution, which is critical in proving the strong convergence for r > 1. How-

ever, existing modified EM methods for the transformed WF model do not have this

property.

Lemma 7.3.2.
sup  sup E (za(t) 9+ (r—za(t)) ™) < C.

A€(0,1] t€0,T]

Proof. First we let A € (0,Ag]. Given a k € N, we define two stopping times:

%ﬁ = inf{t € [tg, txt1] : xZ(t) < ¢(A)},

and
PR = inf{t € [ty, tpy1] : 2R (1) > 7 — (A)}.
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Let ¢ € [tg, tx+1]. Using the It6 formula, we have

E (le(t ATE A %ﬁ)—q) ) ((77 —aR(tATE A %ﬁ))—q)

=E (za(tr) ™) + E ((r — za(tr)) ™)

g [ a0 (K (97w 0)  (a+ 10%2) ds

ti

k[ = a6 ((r = aK (s + g+ 1)02) ds

k

Using [Proposition 7.2.1) and the Young inequality, we have

— 2j(5)" ) (2h () fwalte)) — (¢ +1)0”/2)

<—(1- go)xkA(5)7<q+2>m(tk)f(m(tk))I{wz<s>><1fso>m(tk>,m<tk>e[¢m>,z1>}

k _
+ 05((] + 1)0'21'A(5) (q+2)l{;1;k (s)}(lfso)zA(tk),IA(tk)E[(b(A)’wl)}

1)
+ CHA) T (14 (D)) Ik (1) <(1-corma(ta)mat)ciof@)en}

-1
+CO 1+ (r—zaltr)™) TEok (5)20.5(8(80) +21),2. (t1) €l m—d(A)]}

1 —1
+ CO(A) D (14 G(A) ™) {ak (4)<0.5(0(80) ta1) s ()l m— (A1}

<C + Cp(A)~(a+2) (ISL + ISXS) L O —zalty) L

and

(r —2h ()" ((r — 2k (s) f(za(tr) + (g +1)0°/2)
SO (L4 2a) ™) I{ak ()<0.50ms tr—6(20)) ma (1) E[6(A) 3]}

+CH(A) D (14 p(A)” )I{xk(s)>05(a:3+ﬂ' $(80)),za (tr)ED(A),z5]}

+(1—eo)(m — ak(s) T (r - CA ) F(@a Rk (5)<aaltn)teo(rrate))eatn)e@s —o(A)]}

+0.5(q + )o?(m — xk (5))7(q+2)1{m

K (s)<za (tu)+eo(r—za(tn)),za (tn) € (z3,m—H(A)] }

(q+1) -1
+ COA) T (1 S(A) ™) Lk ()5 (1) o0 () () Elsm— (AN}
<C+Co(8) @ (I +Isy )+ Caalts) ™,

for all s € [tg, tp+1 A ?ﬁ A %ﬁ]
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Using the Young inequality, (7.3.1]), (7.3.2]) and [Lemma 7.3.1, we then have

E (x’g(t ATE A %ﬁ)—q) ) ((77 R (tATE A %ﬁ))—q)

tet+1
<CA—|—C¢ —(q+2) ZE/ ISiA dS—l—(l—l—CA)E ((W—IA(tk))fq—l-xA(tk)*q),

=CA + Cp(A)~a+2) Z /

<e“PE (za(tr) @+ (7 — za(te) ") + CA.

r (Sh)ds+ (14 CAE ((r — za(te) 9+ zate) 9,

For u € [¢p(A),m — ¢(A)], the function v 7 + (7 — u)~¢ takes its maximum at

u=¢(A) and u =1 — $(A). If 7k A 7K

aR AT AR+ (w — k(AT A %ﬁ))

< t, we then have

—-q

=p(A)" 1+ (= ¢(A)) 77,

Zra(t) 1+ (m —za(t) 7,

since zA(t) € [p(A), 7 — ¢(A)]. Otherwise, we have

aR @ ATE AR+ <7r — R (AT A TA))

—q

= 2a(t)+ (r = za(®) 7",

since t A 7“2 A ?ﬁ = t. In either case, we always have

zAt) I+ (m—2at) "I < K EATE AFR) T+ <7r — a2kt ATEA %ﬁ)) ,

for all t € [tg,tgs1]. Therefore, we have

—-q

sup B (za(t) 7+ (7 — 2a(t))79) < e“2E (za(tr)  + (7 — 2a(ts)) ") + CA.

te [tk tit1]

By induction, we have

sup B (za(t) ™0+ (m —za(t)79) < oC(k+1)A

te[tk,tk+1]
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sup E (xA(t)_q + (7 — JUA(t))_q)
)

telo

Since

7.3. The projected EM method

<C.

sup E (za(t)77+ (m — 2a(t)77) < 26(A0) 7Y,

telo,

7]

for all A € (Ay, 1], we derive the conclusion.

Given a k € N, we define e, = z(tgy1) —

t € [t, tkr1]. We also let

Shi = {ah(ter) € (—o0,0(2))
Shx = {ah(tin) € [6(2). 7= 9(A)]}
Sk = {ah(ter) € (r—o(8),20)}
St = {a(ti) € (0,6(A))},

S = {atis1) € (x = 9(8), ™)}

2k (tgy1) and e(t)

z(t) — za(t) for

Now we prove the strong order one convergence of the projected EM method for the

transformed WF model.

Theorem 7.3.1. Let A € (0,1].

“

sup
0<k<|T/A|

e(tk)”> < CA™.

Then we have
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7.3. The projected EM method

Proof. First, we let A € (0, Ag]. Using the Ito formula for f(x(s)) — f(z(tx)), we have

tet+1

e =e(ty) + / (F(x(s)) — F(zalt))) ds,

k

—e(ty) + / T (Fet) — Flaalty) ds

+ / T F) - fat)) ds,

—e(w)+ [ (alte)) — Fea())ds

173
S
t

th+1
/
tr

where

Ji _/t - ts (f'(x(u) f(z(u)) + 0.50° f" (x(u))) duds

(f"(@(w)) f(2(u) + 0.50% f" (x(u))) duds
tky1 S
+ /tk /tk of' (x(u))dB(u)ds,

=e(tr) + (f(@(tp)) — f(zate))) A+ g,

N /;k+ /t o ' (u))dB (u)ds.

Now we have

ex =e(tr)? + (f(x(te) — f(za(tr)® A%+ J¢
+ 2e(ty) (f(z(tk)) — f(za(tr))) A+ 2e(ty) Jk

+2(f(z(tr)) — f(zalte))) JKA.

Using [Proposition 7.2.1, we have

e(tr) (f(z(tr)) — flxaltr))) <O.
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7.3. The projected EM method

Using the the Young inequality, we then have

er <e(tr)? + (f(x(te) — f(za(tr)® A%+ J¢
+ 2e(ty) T, + (f(2(tr) — flzaltn))® A% + J7,

—e(ti)? + 2 (f(x(tr) — f(zalty))? A% + 272 + 2e(ty,) Ji.
Now we estimate e(t;1)%. We have
e(tr+1)” = W(A)—ﬂ?(tkﬂ)’2153,,“HHUIZ(tkH)—x(tkH)|21527k+|7f—¢(A)—$(tk+1)’2152,,“-
Then we have

S(A)Isy, +eplsy, +eilsy o wltin) € (0,6(A)),
6(tk+1)2 < ezfgi i + e%]gi i + e%]gik, x(tgs1) € [p(A), T — p(A)],

eilsy , +eilsy, +0(A) sy, a(te) € (1= B(A), 7).

In summary, we have

e(th+1)? S€plia(y,elpa) o T (ek +S(A)?) <IS,1 + IS%)

zez + ¢(A)2 (Igé + Ig}z) .
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7.3. The projected EM method

By induction, we have

k
eten)? <Y (2(F(alt) - Flaa(t)) A+ 207 + (A (Is: +1s2))

/m/ (f (= u)) + 0.50% f"(z(u))) duds

> e(ti)/t;+l /t o ' ((u))dB (u)ds

Let 0 < m < |T/A]| be an arbitrary integer. Taking expectations on both sides, we

then have

E( sup e(tk)2T>
0<k<m+1

<CE (i (2(f(:c(t,-)) Flza(t)))? A% + 22 + ¢(A)? (153”53))>T

=0
=0

k ti
+CE[ su e(t / / o ))dB(u
Oék’g’m Z f

1=

) (7.3.3)

Using [Proposition 7.2.1, the mean value theory and the Young inequality, we have

k tiv1
2 pll
+CE (Ozggm Ze / / (f'(z )+ 0.50° f" (x(v))) duds

S
|
8

+(m—2a(t) ™) (a(t) — xalty)) A,
)+ wa(t) Y + (7 — wa(ts) ) AV 4 e(t) AT
+ (r—zat:) %) A% +e(t;) A
(7.3.4)
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7.3. The projected EM method

Using [Lemma 7.2.1] [Proposition 7.2.1| and the Hélder inequality, we have

it+1 s 2r
EZ\JPT <CA?~ 11@:2/ / z(w) f(z(u)) + 0.50% " (2(u))) du| ds

2r—1 s
+ CA"'E /
>
i+1
<CAY- ZEZ/ / | (z () + 0.502 " (w(u))|*" duds
eI 22/2 " / | ()2 duds,
i+1
<CAY—2 Z/ : / E (x(u)_ﬁr + (m— :U(u))_GT) duds
i=0 v ti ti
m tir1 S
+ CA% 2 Z/ / E (z(u) ™ + (7 — 2(u))™*") duds,
i=0 7 ti

<CA L (7.3.5)

2r
ds,

s

(u))dB(u)

since q > 6r.

Using (7.3.4)), (7.3.5), [Lemmas 7.2.1] [7.3.2] the Young inequality, the Holder in-

equality and the Chebyshev inequality, we have

E(Z (2(£(@(t) = Flaa(t))) A2+ 272 + 6(A)* (IS;+133))>
1=0
<Cm™ Y B ((f((t) = Faa(t:) A + [ 5[)

=0

+Cm ()Y (Pr (8)) +Pr(SP)),

s

I
=)

7

<Cm" A% iE (x(ti)_&" + (1 —2(t;)) 75" + xa(t) T + (7 — -%'A(ti))_GT)

1=0
+ Cmr—lA?ﬂ’—l
r—1 2r N~ B (@(ti1) ™+ (7 — 2(ti1)) 79

gcmTA:gT + Cmr—lA?)r—l + C«WL'I'A47“—8517'7

ngTA?)T + Cmr—lA?)r—l + CmTA3T’
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7.3. The projected EM method

since g > 6r and € < 0.125. Since 0 <

1=0

m <

Using the Holder inequality and the Young inequality, we have

“

gmrflEZ le(t;

sup
0<k<m

l

m

27“ + Cm2r ZA

27‘+Cm27‘ 22— QEZ/ZH

I Lo
<E<;|e /t /\f

z(u)) + 0.50% f"(x(u))) duds

)

u)) + 0.502 f (2( } duds) ,
u)) + 0.50% f"(x(u))| duds| ,
Lit1
u)) + 0. 502f/’

Using [Proposition 7.2.1| and [Lemma 7.2.1} we have

“

<A]EZ

Since mA <

“[s

AE

sup
0<ksm

sup
0<ksm

=0

41 S
tl /

i+1 S
<AE Z e(t;)?" + Cm> 23 Z/ / E (z(u
i i=0 Vti ti

2T+Cm2r 1A4r 1

T, we finally have

i+1
el /

L

e(t)* 4+ CA?".

S

t;

(f'(x

(W) F(2(w)) + 0.502 " (w(u))) duds

(W) f(z(u)) + 0.502 f" (2(u))) duds

152

)

)

|T/A|, we have mA < T. Then we have

E(Z (2(F(@(t:)) = f(za(ti))® A% + 272 + 9(A)? (IngrIsg))) < OAY. (13.6)

‘ duds

/ | (@ (u)) + 0.502 f (x(

T (7 — ()7 duds,

(7.3.7)

’du

2r

2r

)

ds.
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(et [ [ ortwtanas
- tis1 s
{;e(ti) /tz /tZ o f (z(u))dB

7.3. The projected EM method

(u)ds | ]-"ti> —¢(

?

(u)ds}
k=0,1,2,....m

n([" o

dB(u)ds | ]:ti)

is a martingale. Using the Burkholder-Davis-Gundy inequality and the Young inequal-

ity, we have

E|{ sup
0<k<m

<CE < le(t;)]?
=0

<CE <5up le(tx)|
0<k<m

<0.5E <

sup e(tx)
0<ksm

2T> +CE (i

/tt’“/taf <>sr)

)w
><

(u)ds

z+1

tit1

Using the Holder inequality, we have

E|{ sup
0<k<m

<0.5E <
<0.5E (

<0.5E <

sup e(ty)?
0<k<m

sup e(t)
0<k<m

sup e(tx)
0<k<m

27“) + Cmr—lAQT—l Z/ o E
i=0 v ti

m ti+1 S
2r> +Cmr1A3r22/ / E (2(u)~
i=0 't ti

/t - /t o f'(2(u))dB(u)ds )

>+Cm7" 1EZ /tl+1 )
t;

153

)

u))dB(u)ds

/ ['(a(u))dB

i}
/)

2r

(u)

—z(u) ™

2r
ds,

T) duds.



7.3. The projected EM method

)

<0.5E( sup e(tk)27“) + CA™. (7.3.8)

0<ksm

Using and mA < T, we finally have

k

z;e(ti)/“’+ /t o f'(2(u))dB(u)ds

=l

E{ sup
0<ksm

<0.5E< sup e(tk)2T> + Cm" A3,

0<k<m

Substituting (7.3.6)), (7.3.7)) and (7.3.8)) into (7.3.3]), we finally have

E ( sup e(tk)%) < CAEZ e(t;)?" + CA™,

0<k<m+1 i—0

for all 0 < m < |T/A]. Then the Gronwall inequality implies

E ( sup e(tk)%) < CA™.
0<k<|T/A|

Finally, the conclusion clearly holds for A € (A, 1]. O

Finally, we use to prove the strong order one convergence of the
projected EM method for the original WF model.

Theorem 7.3.2. Let A € (0,1]. Then we have

E ( sup  |y(t) — yA(tk)\2T> < CA?.
0<k<|T/A]
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7.4. Numerical simulations

Proof. Using we have

E( sup !y(tk)—yA(tk)!2T>

0<k<|T/A|

=K ( sup  |sin? (z(t)/2) — sin® (za(tr)/2) \2r> ;

0<k<|T/A|

=E ( sup  |sin (z(t)/2) +sin (za(tr)/2) [*7| sin (z(t)/2) — sin (za(tx)/2) ]2’"> ,

0<k<|T/A|

<CE< sup e(tk)”>,

0<k<|T/A]

<CA?,

O]

The strong convergence theory of the Lamperti smooth sloping truncation method

(B;w > 2.75 and in the £2-norm (see Corollary 9 in

has been established only for
[59]). In this section, we establish the strong convergence theory for (ﬁ;% € (2,00)

and in the general £P-norm.

7.4 Numerical simulations

We first conduct numerical simulations to support our theoretical results. In each
example, we let T'= 1. We conduct numerical simulations with 1000 sample paths for
step sizes A = 2710279 278 277 In view of the fact that there is no analytical solution
for the WF model, we regard the numerical solution with the step size A = 2720 as the
“exact” solution. We will let r be different values and show that experimental 2r-th
strong convergence errors over an interval have about order 2r in each example.

We now conduct numerical simulations for three different parameter settings.
1. r=2,9=0.01,a=1, =2 and ¢ = 0.5 (Figure 7.4.1));
2. r=06,9=0.99, a=0.1, =0.4 and 0 = 0.1 (Figure 7.4.2).
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7.5. Conclusion
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Figure 7.4.1: The L£*strongly convergence order of the projected EM method for the
WEF model with the initial value yo = 0.01.

Using the linear regression method, the experimental error (see |[Figures 7.4.1| and

2 [7.4.2) shows that the strong convergence error have order about 4.0523 and 12.0535.

3

4

10

11

They suggest that the strong convergence error for the 2r-th moment has order about

2r. Our numerical simulations show that the projected EM method works well for

general £2"-norm as long as 1 < r < W — %

7.5 Conclusion

In this chapter, we study the strong convergence theory of the projected EM method for
the WF model, which is a popular SDE model without an analytical solution. We ex-
tend numerical analysis techniques in Chapter 6 and prove finite inverse moments near

two endpoints. Then we prove that the projected EM method is positivity preserving

2(B—a)A\2a
2

1
35 — 5. Compared

and L2 -strongly convergent with order one, where 1 < r <
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Figure 7.4.2: The £'2-strongly convergence order of the projected EM method for the
WEF model with the initial value yo = 0.99.

to existing explicit EM methods for the WF model, the projected EM method has bet-
ter proven LP-strong convergence rate for some parameter settings. We also conduct

numerical simulations to support our theoretical results.
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Chapter 8

Conclusion and Future work

In this thesis, we introduce in detail our contributions to developing modified EM
methods for SDEs with locally Lipschitz coefficients. In each chapter, we also conduct
numerical simulations to support our theoretical results. In Chapter 3, we extend the
truncated EM method for multi-dimensional SDEs with polynomially growing drift
and concave diffusion coefficients satisfying the Osgood condition. We then introduced
the the logarithmic truncated EM method, and used an improved numerical analysis
method to prove finite inverse moments of the logarithmic truncated EM numerical
solution. In Chapter 4, we then show that the logarithmic truncated EM method
is LP-strongly convergent with order one half for the CEV model and the Ait-Sahalia
model with a wider parameter range. Our numerical analysis methods can also improve
the strong convergence results of the truncated EM methods.

In Chapter 5-7, we focus on studying the strong convergence theory of the projected
EM method. The projected EM method is developed to replace the drift-implicit
EM method to some extent. Compared to existing EM methods, we proved that
the projected EM method has better theoretical £P-strong convergence rate for many
important SDE models, e.g., the CIR model, the CEV model, the Ait-Sahalia model, the
Heston-3/2 volatility model and the WF model. In particular, many existing explicit
EM methods has only at most £2-strongly convergence rate for some SDEs. That
is because previous explicit EM methods generally do not have finite inverse moments

and they have to use specific numerical analysis methods to derive concrete convergence
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rate. However, the projected EM method will generate approximations only in a certain
range, which can guarantee finite inverse moments near some finite endpoints.
Nevertheless, the projected EM still fails to cover some boundary parameter set-
tings. A possible way is to modify the projected EM to further capture structures
of coefficients of a specific SDE model. There are also many other problems needed
to be solved. For example, the strong convergence theory is established based on the
one-sided Lipschitz condition. However, there are still many SDE models which fail to
be covered, e.g., the stochastic population model. Novel numerical analysis techniques
should be developed to study the strong convergence rate of EM methods for these
SDEs. In addition, we used the Bihari inequality in Chapter 3 and only prove the LP-
strong convergence without concrete convergence rate. We also only consider modified
EM methods for SDEs, and do not involve delay functions, Poisson jumps, Markov
switching and so on. Further work should be devoted into these more complicated

models.
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