

University of Strathclyde

Department of Pure and Applied Chemistry

Aptamers as Biosensors

Ву

Colette Dalton

A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy.

2010

This thesis is the result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree. The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Acknowledgements

I would like to thank Professor Duncan Graham for giving me the opportunity to work on this project. Thanks also go to Dr Alastair Ricketts, Dr Ross Stevenson and Dr Marion Darnaud for all their advice and assistance. In particular AI and Ross for their help with the biological aspects and Marion for all the SELEX work. Their time and effort was greatly appreciated. Thank you to Dr Andrew Ingram and Dr Fiona M^cKenzie for all their help with nanoparticles and Dr Jennifer Dougan for all her help with HPLC. I would like to thank Dr David Thompson for dye synthesis and Dr Victoria Steven for DNA synthesis. I would like to acknowledge Dr Sharon Kelly (University of Glasgow) for carrying out circular dichroism and Biacore experiments. I would like to express my gratitude to the entire Raman group who were always friendly and helpful. To Charlotte, thanks for helping me keep things in perspective. To Victoria and Sarah, the ARF crew, thank you for all the hilarity and for reading chapters. Massive thanks to Jane, Fiona and Jen who were a haven of support, advice, laughter and much outrageous chat. Quite simply, I could not have done it without you all.

I express my utmost thanks to my Mum and Dad, to whom I owe absolutely everything. Their whole-hearted support throughout this process, and everything that came before, remained unshakeable (despite my best efforts!) and I and will always be grateful. To my brothers, Connor and Ciaran, who were always on the other end of the phone to offer words of wisdom, keep me motivated and who constantly reminded me of how proud they were. Thank you to Kelly and the long awaited arrival of baby Pierce, making me a very proud auntie. I would like to thank lan for all his love and support during the first half of my PhD, and while we never made it here, he never doubted that I would. And last, but certainly not least, my friends, who never gave up on me. I am truly thankful to have such a brilliant group of girls; Billie, Claire, Emma, Katie, Laura, Leanne, Lynsay, Misty and Sally. Their friendship over the many years has provided with me with some great memories and stories. From our holidays, weekends away, crazy nights out or just sitting in watching TV. They have all helped in more ways than they'll ever know. And here's to many more great years of friendship.

Abstract

Aptamers are short, single strands of artificial nucleic acids which bind to specific targets. This binding is similar to the binding exhibited by antibodies but aptamers offer improved properties and consequently are replacing antibodies in some applications.

This first part of this project attempted to generate an aptamer which would bind to the molecules amphetamine and methamphetamine, with high selectivity and affinity. The process for generating an aptamer is called Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and is carried out *in vitro*. The strength of an aptamer / target binding interaction can be assessed using a variety of different techniques and in this work an Enzyme Linked Immunosorbent Assay (ELISA) was investigated. Other methods including surface plasmon resonance (SPR) and circular dichroism were attempted.

The phenomenon of naturally occurring RNA molecules with catalytic properties (ribozymes) were the inspiration for the development of catalytic aptamers. Consequently, a novel SELEX system was deigned to select aptamers capable of catalysing a Diels Alder reaction between cyclohexadiene modified DNA and maleimide. A number of potential sequences were isolated and when one such sequence was incorporated into a test reaction a cycloadduct resulting from a successful Diels-Alder reaction was confirmed using MALDI – MS.

In addition to generating novel aptamers, this thesis details work on the application of existing aptamers with the aim of creating novel assays and expanding the potential use of aptamers. Two protein targets, namely Protein kinase C (PKC) and thrombin were chosen and their respective aptamers investigated for use in metallic nanoparticle conjugates. The combination of aptamers and nanoparticles (in particular metallic nanoparticles) has grown in prominence in the literature and is regarded as an exciting development due to their desirable optical properties. Consequently, novel assays based on UV-visible spectroscopy were developed using the two specified DNA aptamers conjugated to gold and / or silver nanoparticles. In addition, the possibility of incorporating Surface enhanced resonance Raman scattering (SERRS) analysis was investigated.

Abbreviations

2 ^v Ab	Secondary antibody
11-MHEG	Secondary antibody 11-Mercaptoundecyl hexa(ethylene glycol)
11-THEG	Triethylene glycol mono-11-mercaptoundecyl ether
	Adenine
A ADHD	Attention-deficit hyperactivity disorder
AFM	Atomic force microscopy
AGNC	Aptamer gold nanoparticle conjugate
AP	Alkaline phosphatase
API	Active pharmaceutical ingredient
ASNC	Aptamer silver nanoparticle conjugate
BDTDD	(<i>E</i>)-4((1 <i>H</i> -benzo[<i>d</i>][1,2,3]triazole-5-yl)diazenyl)-3,5-dimethoxy phenol
BCIP	3-Bromo-4-chloro-5-indolyl phosphate
bp	base pair
BS	Blocking solution
BSA	Bovine serum albumin
C	Cytosine
CCD	Charged coupled device
CD	Circular dichroism
CM	Carboxymethylated dextran
Da	Daltons
DATP	Deoxyadenine triphosphate
DCTP	Deoxycytosine triphosphate
DEPC	Diethylpyrocarbonate
DGTP	Deoxyguanine triphosphate
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
dNMP	Deoxynucleotide monophosphate
ds	Double stranded
dTTP	2' Deoxythymidine 5'-triphosphate
DTT	Dithiothreitol
EDC	Ethylene carbodiimide
EDTA	Ethylene diamine tetraacetic acid
EF	Enhancement factor
ELISA	Enzyme linked immunosorbent assay
ELONA	Enzyme linked oligonucleotide assay
EMSA	Electromobility shift assay
FAM	5-Carboxyfluorescein
FDA	Food and Drug Administration
G	Guanine
GC-MS	Gas chromatography-mass spectrometry

GRO	G-rich oligonucleotide
HBV	Hepatitis B virus
HEG	Hexaethylene gycol
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HIV	Human immunodeficiency virus
HNE	Human neutrophil elastase
HPLC	High performance liquid chromatography
HRP	Horse raddish peroxidase
lgG	Immunoglobulin G
IPTG	Isopropyl-β-D-thiogalactopyranoside
KOD	Thermococcus kodakaraensis
LB	Luria broth
LNA	Locked nucleic acid
LPA	Linear polyarcylamide
MALDI	Matrix assisted laser desorption ionisation
MDMA	Methylenedioxymethamphetamine
MWQ	MilliQ water
MS	Mass spectrometry
MWCO	Molecular Weight Cut Off
NECEEM	Non–equibrium capillary electrophoresis of the equilibrium
	mixture
NBT	Nitro blue tetrazolium
NHS	<i>N</i> -hydroxy succinimide
NP	Nanoparticle
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PDGF	Platelet – derived growth factor
ΡΚC (δ)	Protein Kinase C (delta)
pNPP	p-Nitrophenyl phosphate
RNA	Ribonucleic acid
	Ribonucleases
RNases ROX – ITC	
	X-Rhodamine isothiocyanate
SELEX	Systematic evolution of ligands by exponential enrichment
SER(R)S	Surface enhanced (resonance) raman scattering
SPR	Surface plasmon resonsnce
SS T	single stranded
T	Thymine
TBE	Tris borate EDTA
TEAA	Triethyl ammonium acetate
TLC	Thin layer chromatography
ТМВ	Tetramethylbenzidine
TOF	Time of flight
U Forward (P)	Universal phosphorylated forward primer
U	Uracil
U Reverse	Universal reverse primer
U Reverse (B)	Universal biotinylated reverse primer

UV – vis spectroscopy	Ultra violet - visible spectroscopy
v /v	volume / volume
VEGF	Vascular endothelial growth factor
VSDR2 mid	12 base oligonucleotide containing a cyclohexadiene modified
	T base located mid sequence
w/v	weight / volume
X – Gal	5-bromo-4-chloro-3-indolyl-β-D-galactoside